

 i

More iPhone Cool
Projects

Cool Developers Reveal the Details of Their
Cooler Apps and Discuss Their iPad

Development Experiences

■ ■ ■

Danton Chin Ben Britten Smith
Claus Höfele Chuck Smith
Ben Kazez David Smith
Saul Mora Arne de Vries
Leon Palm Joost van de Wijgerd
Scott Penberthy

ii

More iPhone Cool Projects: Cool Developers Reveal the Details of Their Cooler Apps and
Discuss Their iPad Development Experiences

Copyright © 2010 by Danton Chin, Claus Höfele, Ben Kazez, Saul Mora, Leon Palm, Scott
Penberthy, Ben Britten Smith, Chuck Smith, David Smith, Arne de Vries, and Joost van de Wijgerd

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-2922-3

ISBN-13 (electronic): 978-1-4302-2923-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Publisher and President: Paul Manning
Lead Editor: Clay Andres
Development Editors: Douglas Pundick, Matthew Moodie, and Brian MacDonald
Technical Reviewer: Ben Britten Smith
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan
Parkes, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editors: Candace English and Debra Kelly
Copy Editor: Katie Stence
Compositor: MacPS, LLC
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

 iii

My gratitude and thanks to Mom and Dad (they would have liked this), to my wife Carol for
everything over the years, and to our wonderful and artistically, musically talented son Tim. Also,

thanks to Robert and Elizabeth Bergenheim, Elise Falkinburg and Errol Frankel, and their
wonderfully intelligent sons, John and James Frankel.

—Danton Chin

Thanks to my wife and daughters, who inspire me daily to help make the world a better place. And
for letting me buy that awesome new MacBook Pro (you know which one).

—Saul Mora

To my mother, who taught me to pursue excellence, and to my father, who always inspired
creativity in me. Also to Andrea Zemenides, for being cute and little.

—Leon Palm

To the beautiful women in my family: Lisa, Julia, and Taylor. Taylor insists I mention our dog,
Jack, and Snickers too.

—Scott Penberthy

To my lovely wife Leonie.

—Ben Britten Smith

To my parents, who were always there for me and gave me the joy of reading. Also to my
professor, Dr. Gene Chase, who always brought an incredible amount of enthusiasm to everything

he taught, and made computer science inspiring.

—Chuck Smith

To my wife and best friend, Lauren.

—David Smith

iv

Contents at a Glance

■Contents at a Glance ...iv
■Contents...v
■Preface...x
■Acknowledgments ..xi
■ Introduction ...xii
Danton Chin.. 1�

■Chapter 1: Using Concurrency to Improve the Responsiveness
 of iPhone and iPad Applications ... 3�

Claus Höfele ... 57�

■Chapter 2: Your Own Content Pipeline: Importing 3D Art Assets
 into Your iPhone Game.. 59�

Ben Kazez .. 89�

■Chapter 3: How FlightTrack Uses External Data Providers to
 Power This Best-Selling Travel App.. 91�

Saul Mora, Jr. .. 107�

■Chapter 4: Write Better Code and Save Time with Unit Testing.............................. 109�

Leon Palm .. 135�

■Chapter 5: Fun with Computer Vision: Face Recognition with
 OpenCV on the iPhone ... 137�

Scott Penberthy ... 161�

■Chapter 6: How to Use OpenGL Fonts without Losing Your Mind............................ 163�

Ben Britten Smith... 189�

■Chapter 7: Game Development with Unity .. 191�

Chuck Smith... 249�

■Chapter 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 251�

David Smith.. 287�

■Chapter 9: Creating an Audio-Centric App for the iPhone
 with AVAudioPlayer .. 289�

Joost van de Wijgerd and Arne de Vries .. 309�

■Chapter 10: Implementing Push Notifications at eBuddy 311�

■ Index ... 577

 v

Contents

■Contents at a Glance... iv�

■Contents .. v�

■Preface .. x�

■Acknowledgments.. xi�
■Introduction... xii�

Danton Chin .. 1�

■Chapter 1: Using Concurrency to Improve the Responsiveness
 of iPhone and iPad Applications.. 3�

Prepare for Concurrency...3�

Non-Responsive User Interfaces...6�

Building the Interestingness User Interface...7�

Adding A JSON Parsing Framework to the Interestingness App..10�

Composing a RESTful Request for a List of Interestingness Images ...10�

Using the RESTful Request and the JSON Parser to Parse the Response ...12�

Implementing the UITableViewDataSource Protocol Methods to Display the Results14�

Concurrency Landscape ...16�

Considerations When Using Concurrent Solutions..17�

Concurrency with NSThread and NSObject ..19�

Concurrency with Operation Objects ..24�

NSOperationQueue...25�

NSOperation and NSInvocationOperation ..26�

Concurrency with Operation Objects and Blocks..45�

Blocks ..46�

Summary ..53�

Resources ...54�

Apple and Apple-related News ..54�

Apple Documentation...54�

■ CONTENTS

vi

Blocks and Grand Central Dispatch ...55�

General...56�

JSON ..56�

POSIX Threads ...56�

Claus Höfele .. 57�

■Chapter 2: Your Own Content Pipeline: Importing 3D Art
 Assets into Your iPhone Game... 59�

Starting an iPhone Game ..59�

Why Write Your Own Tools?..60�

Creating a Flexible Content Pipeline ...61�

The Tools Problem ...61�

Data Exchange vs. In-Game File Formats ..63�

Outline of the Example Code...64�

Exporting 3D Models...65�

Reading FBX files...66�

Traversing the Scene Contents...69�

Distinguishing between Different Types of Scene Nodes ...70�

OpenGL Triangle Data ..71�

Converting FBX Models into Triangle Data ..73�

Converting Triangle Data into an In-Game Format ..76�

Handling Textures...79�

Image Compression vs. Texture Compression...79�

Imagination’s PVRTC Format ...80�

Reading PNG Images ...82�

Converting Images into the PVRTC Format ..84�

Rendering the Converted Data on the iPhone ...86�

Running the Converter Tool ...86�

Creating the iPhone Project ...86�

Summary ..87�

Ben Kazez ... 89�

■Chapter 3: How FlightTrack Uses External Data Providers
 to Power This Best-Selling Travel App .. 91�

Choosing a Data Source..92�

API Design..93�

Data Coverage and Accuracy...94�

Economics ...95�

Trials ..96�

Source-Driven User Interface Design..96�

Challenges ...97�

Techniques from FlightTrack ...98�

Design Patterns for Data Source Consumption...99�

Direct-Client Consumption...99�

Server-Intermediary Consumption...100�

Data-Driven Cocoa App Architecture ..101�

Data Model Design...101�

Connecting Data to UI ..102�

■ CONTENTS

 vii

Choosing an Approach ...104�

Release! ..105�

FlightTrack Today ...105�

Saul Mora, Jr. ... 107�

■Chapter 4: Write Better Code and Save Time with Unit Testing 109�

Mock Objects ...120�

Testing Your Core Data Models..127�

Summary ..134�

Leon Palm... 135�

■Chapter 5: Fun with Computer Vision: Face Recognition
 with OpenCV on the iPhone.. 137�

What Is Computer Vision?...140�

Why do Computer Vision on an iPhone? ...141�

Your Project: Creating a Face Detector...142�

Setting Up OpenCV...142�

Setting Up XCode ...145�

Adding Image Conversion Functions..147�

Creating a Simple GUI ..149�

Loading Images from the Photo Library...151�

Loading the Haar Cascades ...152�

Performing Face Detection ..154�

Bonus...156�

Performance Tweaking...157�

Going Further ..159�

Summary ..160�

Scott Penberthy .. 161�

■Chapter 6: How to Use OpenGL Fonts without Losing Your Mind 163�

History...164�

Terminology ..165�

Pragmatic Fontery...167�

fCookie..167�

Creating a Font’s Texture Atlas...168�

Texture Mapping..171�

Opening Your App ..173�

The Fontery Classes..173�

APGlyph..174�

APChar ...175�

APText..177�

Putting It All Together ...179�

Setting Up the Display...181�

Creating Your Fortune...182�

Displaying the Fortune..184�

Summary ..187�

■ CONTENTS

viii

Ben Britten Smith ... 189�

■Chapter 7: Game Development with Unity ... 191�

What Is Unity? ...192�

Why Use Unity? ...193�

Exploring the Unity Interface...195�

The Scene View ...196�

The Game View ..197�

The Project View ..198�

The Hierarchy View..198�

The Inspector View ..198�

How the Pipeline Flows..198�

The Transform: Everybody Has One...199�

Meshes, Renderers, and Materials ..200�

Importing Assets ..204�

Custom Scripting ...205�

Playing Your Game...208�

Coroutines Not Updates ...209�

The Game View ..210�

Adding Lights ...213�

Using the iPhone as a Game Pad ...214�

Your Game ..215�

Adding a Base to Work From ...216�

The Main Character..218�

Inputs and Colliders ...224�

Your First Design Iteration ...228�

Adding More Touchable Objects ..230�

Prefabs...231�

Animations ...232�

Animation Import Settings ...233�

Interacting with Something Besides the Floor...237�

User Interface ..240�

Multiple Cameras...241�

3D Objects As GUI Items ..243�

Building for Your Device ..247�

Summary ..248�

Chuck Smith ... 249�

■Chapter 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 251�

Origins of Cocos2d..251�

Why Use Cocos2d? ...252�

Getting Started with Cocos2d ...252�

Installing Cocos2d..254�

Configuring Sample Code ..254�

Installing the XCode Project Templates ...255�

Starting a New Project ...256�

Introduction to Video Poker...257�

Making a Scene ..258�

Creating a Game Menu ..260�

■ CONTENTS

 ix

Game Logic ...261�

Card ...262�

Deck...264�

SimpleHand..266�

I Like the Sprites in You ...270�

Putting It All together ...272�

Events: Making It Interactive ...275�

Adding Sound..280�

Supporting the iPad ..281�

Further Exploring cocos2d ..286�

David Smith .. 287�

■Chapter 9: Creating an Audio-Centric App for the
 iPhone with AVAudioPlayer ... 289�

Design...290�

Designing for Your Target User..290�

Our Design Process..291�

Implementation...295�

Example Project ..296�

Getting Started...296�

Setting Up the UI ..298�

Coding the Audio Player...302�

Summary ..307�

Joost van de Wijgerd and Arne de Vries... 309�

■Chapter 10: Implementing Push Notifications at eBuddy............................ 311�

Introduction to eBuddy..311�

The eBuddy Messenger ...312�

The eBuddy iPhone Application ...312�

Apple Push Notification Service..313�

The Communication Flow ..314�

The Client Implementation...314�

The eBuddy Push Implementation ..317�

Client / Server Protocol ..317�

Server to APNS...318�

Fitting the Parts Together ..322�

Changes along the Way ..323�

Introducing eBuddy Pro ...323�

Extending the Beta Program ..324�

Summary ..325�

■Index.. 577

■ INTRODUCTION

x

Preface

Dear Reader,

This is the fifth in the Apress series of iPhone Projects books and the first to have the word iPad
mentioned. To say that we’re all hyperaware of the iPad and all that it promises is something of
an understatement; will eBooks and Apple’s new iBooks store be the killer app for iPad, is this
really as “magical” as Steve Jobs says it is, and who are all of these people buying every iPad Apple
can manufacture? And yet, More iPhone Cool Projects is was written about smaller-screen apps
for iPhone and iPod touch. Fear not!

When we started putting this book together, it was still 2009 and the iPad had not been
announced. As we were finishing the editorial process, each of the ten chapters was reviewed and
updated as appropriate to make mention of iPad considerations. At the same time, we discovered
an inherent truth about iPhone and iPad development: all of your iPhone knowledge is invaluable
for writing iPad apps, as well. We know this, because each of the 11 contributors (one chapter has
coauthors) is moving right into iPad app development.

We urge you think of the lessons learned and code shared in this book as applying to any app you
might choose to create using Apple’s iPhone OS! In fact, the tools remain the same: Objective-C
(with a few exceptions), Cocoa Touch, and XTools. Because of this core of Apple technologies, the
best practices also carry across all of the various iPhone OS–running mobile platforms. This is a
key theme running through all of the Apress Projects books. Somehow, we had an idea that Apple
had more things up its corporate sleeve.

As always, I’d like to mention Dave Mark, our tireless series editor and author of several
bestselling Apress titles, including Beginning iPhone 3 Development, More iPhone 3 Development,
and, very soon, Beginning iPad Development. In many ways, Dave embodies the positive energy
and inspirational spirit that makes the iPhone and iPad developer community such an exciting
place to be a part of.

It’s in this spirit of collegiality that we have done everything we can to ensure that all of the books
in this series are truly useful and enjoyable. We’ve tried to include something for every style of
development, or at least to cover a range of tastes. Please let us know what you think, and we’d be
happy to hear about new ideas you may have.

Clay Andres
Apress Acquisitions Editor, iPhone and Mac OS X

clayandres@apress.com

Dave Mark
Series Editor, Bestselling Author, and Freelance Apple Pundit

■ INTRODUCTION

 xi

Acknowlegments

What can I say? A book like this cannot exist without the efforts and passion of a great many
people. I have read this book. A few times now. It is amazing and I learn new things every time I
go through it. It is the product of thousands of combined hours of effort, and I want to give some
credit and thanks to the people who made it all possible.

First off, I want to thank all of the authors who took great pains to distill their years of knowledge
and experience into words and code for us to learn from, and who patiently took all of our
comments, critiques, and requests for yet more code samples but always came back with
increasingly better and better material to work with.

I would like to give a shout-out to Clay Andres, the lead editor who originally approached me
about this book and basically did all the legwork to gather the authors together and get the
project rolling.

I want to give huge thanks to Debra Kelly and Candace English for keeping all of us authors and
reviewers herded in the right direction, working on the right things at the right times and keeping
the maze of files and revisions and documents in order.

Huge admiration goes out to the development editors Douglas Pundick and Brian MacDonald
and our copy editor Katie Stence. They let us authors focus on getting our thoughts onto paper,
and they came through and made sure it sounded good and looked professional.

Thanks!

—Ben Britten Smith

■ INTRODUCTION

xii

Introduction

This is a wonderful book.

I am a working iPhone developer. I spend each and every day of the work week (and most
weekends) writing code that is destined to run on someone's iPhone, iPad, or iPod Touch. I have
been doing this for a long time now, and yet there is still so much more to learn!

During the course of this book project, I had the task of going through every single chapter, every
single line of code, and building every single sample project (often more than once). I don't recall
a single chapter that did not provide me with some insight to a problem that I had worked on
recently, was currently working on, or am planning to implement in future projects. Some of the
stuff I learned I was able to apply immediately to my running projects. I can pretty much
guarantee there is something in here for most every developer out there.

Who This Book Is For
This book presupposes that you have some familiarity with iPhone development. Most of the
projects presume that you are able to build and deploy apps written in XCode onto your device
for testing. If you started with a book like Beginning iPhone Development by Dave Mark and Jeff
LaMarche (Apress, 2009), then you will be well set to tackle the projects in the following pages.

There are a few chapters that go into some Mac based tools, so it will also be helpful to be familiar
with Objective-C and C development with XCode on the desktop. However, if you have used
XCode to compile and deploy an iPhone app, then the desktop stuff should be fairly easy to pick
up. If you want to learn more, have a look at some books like Learn C on the Mac by Dave Mark
(Apress, 2009) and Learn Objective-C for the Mac by Mark Dalrymple and Scott Knaster (Apress,
2009).

There is even a light dusting of C# in the chapter on Unity3D. What?! C# in an iPhone book? I told
you there is something for everyone here. The C# is very simple and mastery is not required to
understand the chapter, but if you are interested, check out Beginning C# 2008 by Christian Gross
(Apress, 2007).

Astute iPad developers may notice that all of the sample code and projects in this book are
generally built for the iPhone and iPod Touch devices. This is to make sure that we could cover as
many devices as possible. All of the concepts and ideas covered here apply equally to the iPad, of
course, and all the code runs perfectly well on that device.

■ INTRODUCTION

 xiii

What’s in the Book
In Chapter 1, Danton Chin delves into concurrency on the iPhone to help speed up your
interfaces and make your apps snappier. If you have some performance bottlenecks in your app,
this chapter will be very useful.

Chapter 2 brings Claus Höfele showing you how to use some desktop tools to streamline your
game content pipelines. He shows you a specific example from his own extensive game developer
experience, but the concepts he elucidates are applicable to many type of apps.

In Chapter 3, Ben Kazez recounts some of the lessons learned and design choices made in
developing the very popular Flight Track app. He sheds some light on the process of finding and
utilizing external data providers. With so much data available to your applications these days, the
concepts shown here will be very helpful.

Saul Mora reminds that testing is important in Chapter 4. He shows how to use unit testing to
greatly improve your code stability and help speed up your iPhone development processes.

If you were curious how computers can recognize human faces, then Chapter 5 where Leon
Palm's takes on computer vision will quench that thirst. Leon introduces you to the exciting
world of computer vision and shows you how to integrate the very powerful OpenCV libraries
into your applications. If you are thinking of doing some Augmented Reality in your apps, this
chapter will be invaluable.

If you have ever tried to render fonts in OpenGL then you know it is a complex beast. Scott
Penberthy breaks it down in Chapter 6. Scott provides some tools and direction that make
custom font rendering so easy that you won’t go back to boring system fonts ever again.

In Chapter 7, Ben Britten Smith dips his toes into the Unity3D game engine and shows you how
to leverage that middleware to build some very complex 3D games very quickly.

If 3D isn't your thing, head to Chapter 8 where Chuck Smith gives you a great introduction to 2D
game development with the very popular framework: Cocos2d. Chuck shows you everything you
need to know to get started slinging sprites around like the pros.

In Chapter 9, David Smith gives some insight into his popular Audiobooks app, and shows you
how to handle lengthy audio content in his sample code. Properly dealing with large audio files is
a complicated task, but David makes it so easy.

In the final chapter, Chapter 10, Arne de Vries and Joost van de Wijgerd team up to tell you about
their experiences integrating push notifications into their popular eBuddy application.

iPhone and iPad development have come a long way in the short years since the SDK became
available. Even working on iPhone projects every day, I still have a hard time keeping up with all
of the new features and APIs available to us as iPhone developers. This book is such a great
resource you will want to keep it close at hand when you embark on your next iPhone project.

Ben Britten Smith

1

Danton Chin
Company: iPhone Developer Journal
(http://iphonedeveloperjournal.com/)

Location: Pelham, NY

Former Life as a Developer: I have programmed with both procedural and object-
oriented languages on hardware ranging from mini-computers, workstations,
personal computer systems, and mobile devices. I started to program in BASIC
and C. In 1993, I was looking for a better way of designing and developing
systems and came across NeXTStep. The night I was ready to place my order for
my own NeXT workstation, NeXT announced that they were out of the hardware
business. Four NeXTStep conferences and two years later it was over. Later that
year, the alpha version of Java was released and over the following years I was
able to watch and use a new computer language as it was born, evolved, and
grew. Along the way, I got my first experience with mobile application
development using J2ME (now Java ME) for Palm PDA devices. I have also
developed with Actionscript and MXML, and worked with relational databases
and application servers. I have worked in the financial services sector for banks
and brokerage firms as well as energy, radio station, and newspaper companies.

Life as an iPhone Developer: Doing iPhone development has led me to speak
 at the 360iDev iPhone Developer Conferences (http://www.360iDev.com/) in
San Jose (http://www.360idev.com/about/san-jose-2009) and Denver
(http://www.360idev.com/about/denver-2009), and at meetings of the NY iPhone
Software Developers Meetup Group (http://www.meetup.com/newyork-iphone-
developers/calendar/11630710/). I also started the iPhone Developer Journal blog
and continue to do freelance iPhone development. I am currently working on an
application for a newspaper company that should be in the App Store by the time
this book is in print.

App on the App Store:

� PBN (Providence Business News)

 2

What's in This Chapter: This chapter looks at concurrency solutions that are
available on iPhone and iPad devices. A real-world poorly performing application
is developed. Then possible approaches to a concurrent solution are discussed.
A working solution using operation queues and operation objects is developed.
Finally, a solution is developed using operation queues, operation objects, and
blocks. The main thesis is that using a concurrent solution that makes use of
operation queues, operation objects, and blocks is an optimal way of writing your
application today to reduce the complexity of developing a solution with
concurrency and to take advantage of changes in the iPhone OS and underlying
hardware tomorrow.

Key Technologies:

� Concurrency

� NSOperationQueue

� NSOperation

� NSInvocationOperation

� Blocks

3

3

 Chapter

Using Concurrency to
Improve the
Responsiveness of iPhone
and iPad Applications
You do not have to have a lot of experience developing iPhone applications before you

begin to realize that you may need to fetch data from a server on the Internet or that you

have a CPU intensive calculation that freezes your application and prevents your user

from interacting with the user interface of your application. On any platform with any

computer language, the standard way of dealing with such issues is to perform these

tasks in the background allowing your application’s user interface to remain responsive

to a user’s interaction with your application. Fortunately, iPhone OS, like its much bigger

sibling Mac OS X, provides a rich array of concurrency solutions for developers needing

to use them. However, as you will see the concurrency solutions vary quite a bit in terms

of their degree of complexity, level of abstraction, and scalability. This chapter is a brief

survey of the concurrency solutions available and you will develop solutions with some

of them. There is a definite point of view that I’ve developed by working with the iPhone

SDK and trying to divine the path that Apple might take in the future that hopefully will

come across. After all, whether the application is for an iPod Touch, iPhone, or an iPad it

isn’t cool if the application is sluggish!

Prepare for Concurrency
It had been quite a while since I had attended a conference where Steve Jobs would

normally be expected to appear and attendees would go home with their cube-shaped

box of books and software for the latest version of the NeXTStep operating system.

When NeXT faded away many hopes were dashed, but what is happening with Mac

1

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 4

desktop, laptop, iPhone, iPod Touch, and iPad devices is far, far sweeter! Therefore, it

was almost but not quite déjà vu as I sat in the audience at Apple’s World Wide

Developers Conference in 2009. As I listened, a point of view started to develop. Bertran

Serlet and Bud Tribble were starting off the conference after the keynote with an

overview of all the sessions (Session 700 WWDC Sessions Kickoff). Two new

technologies being introduced in Snow Leopard—Grand Central Dispatch (GCD) and

OpenCL (Open Computing Language)—stuck out. Grand Central Dispatch is a

technology that has several facets: changes to the Mac OS X kernel; a language

extension to Objective-C, C, and C++ called Blocks; and new APIs to take advantage of

GCD using blocks, queues, and operation objects. OpenCL specifies OpenCL C, which

is used to rewrite the calculation intensive portions of an application into C-like functions

called OpenCL kernels. The OpenCL kernels are compiled at run-time for the target

GPUs for execution. It was hard not to think that this was pretty amazing.

It was the “Seeker” demo (13:46 minutes into the presentation) that drove it home.

Seeker is an interactive, 3D solar system simulator developed by Software Bisque

(http://www.bisque.com/) for exploring our solar system. In the demo given by Richard

S. Wright (co-author of the OpenGL SuperBible) the Seeker program calculates the

position of satellites in orbit around the Earth using hundreds of calculations per frame

per satellite and is able to perform the display at about 23 fps. Adding the display of

space junk objects to the display of satellites brought the total number of objects in orbit

around the Earth to over 12,000 maxing out the CPU and bringing the display rate down

to 5 fps. Turning GCD on distributed the computations over all the cores and brought

the framerate up to 30 fps! Then, GCD and OpenCL were used to display the position of

over 400,000 asteroids in addition to the satellites and junk objects achieving a

framerate of 30 fps. It was some demo!

At WWDC and in the months afterwards, I speculated and talked about whether GCD or

some of its components, such as blocks and OpenCL, would someday become an

integral part of iPhone OS in my presentations at conferences. As a follower of Apple

and Apple-related news (see Table 1–1), I was aware of Apple’s acquisition of P.A. Semi,

a semiconductor design firm, in April 2008 and Imagination Technologies’ desire to hire

OpenCL engineers in December 2008 as reported by the media.

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 5

Table 1–1. Apple and Apple-related News Items that May Impact Concurrency

Date News Item

2008

 April Acquisition of P. A. Semi by Apple.

 December Imagination Technologies job openings for OpenCL engineers.

2009

 June ■ WWDC Apple announces GCD and OpenCL for Snow Leopard.

■ iPhone 3GS released.

 July Plausible Labs releases PLBlocks for Mac OS X 10.5+ and iPhone OS 2.2+.

 September ■ Snow Leopard released.

■ ARM announces availability of dual core Cortex-9 ARM reference

 implementation.

2010

 January ■ Imagination Technologies announces the availability of the PowerVR SGX545

 mobile GPU which provides full support for OpenGL 3.2 and OpenCL 1.0.

■ Apple announces the iPad powered by a 1 GHz Apple A4 SOC.

 February Plausible Labs PLBlocks 1.1 Beta with support for Mac OS X 10.5+ and iPhone

OS 2.2+ including 3.2.

 April iPhone OS 3.2 and iPad released.

The availability of a third-party implementation of blocks for iPhone OS led me to

wonder not whether, but when an official implementation from Apple would be available.

In addition, the availability of reference implementations of dual core ARM chips,

OpenCL implementations in the latest version of Imagination Technologies’ PowerVR

mobile GPU chips, the availability of the iPad and iPhone SDK 3.2 by April 3 all continue

to point the way to the possibility that a multicore iPhone could be available around the

WWDC 2010 timeframe. If there is a multicore iPhone device then we’ll need

enhancements to the operating system and the Cocoa Touch classes to harness the

power of those cores using GCD and blocks. With rumors of multitasking coming to the

next version of the iPhone operating system there may be sweeping changes ahead.

We’ll all know for sure once the successor to iPhone OS 3.2 is released under an NDA.

All this was speculation then and it still is. What then is an appropriate strategy for

concurrency that will take advantage of multiple cores if and when they arrive? What I

realized at WWDC was that using operation objects would be that strategy as long as it

met the needs of my application. And, if multicore iPhones never arrive have we lost

anything by using operation objects? No, especially if it helps to reduce complexity in

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 6

your application. I think it would be really sweet and exciting to have Apple’s

implementation of GCD, blocks, and OpenCL on the iPhone at some point in the

future—possibly in the next version of the iPhone and iPhone OS at WWDC 2010! But

concurrent solutions exist already so let’s look at a possible use case without using

concurrency and see how various concurrent solutions can increase user satisfaction

and perhaps ease development efforts.

Non-Responsive User Interfaces
Almost any long-running operation can make the user interface sluggish and

unresponsive. Some examples of operations that can impact the responsiveness of your

user interface are loading images or data over the Internet to be displayed in your

application; manipulating images or data; parsing XML or RSS; performing a complex

mathematical calculation such as finding n prime numbers, calculating pi to m decimal

places, or calculating Euler’s constant e to p decimal places. In addition, there are

situations where a concurrent solution is typically used such as sorting a socket server

as well as countless other situations. As a point of discussion for looking at concurrent

solutions, you will develop a simplistic application to view the images that have made it

into Flickr’s top 500 interestingness list for the most recent day. Schematically, your

Interestingness app will make RESTful HTTP requests to Flickr servers and receive a

response in JavaScript Object Notation (JSON) a lightweight data format for transferring

data in name—value pairs (see Figure 1–1). The images will be displayed using a

UITableView managed by a UITableViewController. Interestingness is a ranking assigned

to each photo using a secret algorithm patented by Flickr based on a number of factors

including the number of users who added the photo to a list of favorites, origin of the

clickthroughs, user assigned tags, comments, relationship between the uploader of the

image and those who comment on the image, and other secret factors. Flickr’s

flickr.interestingness.getList API is used to retrieve this list and does not require

user authentication—only an API key. The roadmap that you will follow to build the first

version of the Interestingness app will be:

� Build the user interface.

� Add a JSON parsing framework to the application.

� Compose a RESTful request to fetch a list of interestingness images.

� Use the RESTful request and the JSON framework to parse the

response.

� Implement the UITableViewDataSource Protocol Methods to display

the results.

Let’s get started!

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 7

Figure 1–1. Request/Response data flow between the Interestingness app and Flicker servers

NOTE: The projects were all built using both iPhone OS 3.1.3 and Xcode 3.2.1 and iPhone OS 3.2
and Xcode 3.2.2 on Snow Leopard.

Building the Interestingness User Interface
The application as you’ll build it does not check if the network is available nor does it

provide any user feedback on the progress of fetching data over a network connection.

Of course, a shipping application should do both. The Reachability APIs that are a part

of the SystemConfiguration.framework will allow you to check for network availability

while progress indicators are a part of the standard user interface components. These

aspects have been left out to focus on concurrency. So start up Xcode and create a new

project using the Window-based Application template. Name the application

Interestingness to create the header and implementation files for the

InterestingnessAppDelegate and the main window nib file. You do not need the main

nib file in this simple application and it could even be deleted but you will just leave it.

TIP: For more details on creating iPhone applications, see the highly regarded book Beginning
iPhone 3 Development: Exploring the iPhone SDK, by Jeff Lamarche and David Mark (Apress,
2009).

Next CTRL-Click on the Classes folder to add a new file, click on Cocoa Touch class

templates, and choose the UIViewController subclass template making sure that the

Options checkbox for UITableViewController is checked. Click the Next button and

name the subclass InterestingnessTableViewController. Make sure that the checkbox

to create the header file is checked then click the Finish button (see Figure 1–2).

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 8

Figure 1–2. Subclassing UITableViewController

In the application delegate header file, you forward declare

InterestingnessTableViewController and declare the variable for an instance of this

subclass and name it tableViewController so that the declaration of the application

delegate class appears as in Listing 1–1.

Listing 1–1. InterestingnessAppDelegate Header fFle

#import <UIKit/UIKit.h>

@class InterestingnessTableViewController;

@interface InterestingnessAppDelegate : NSObject <UIApplicationDelegate> {
 UIWindow *window;
 InterestingnessTableViewController *tableViewController;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;

@end

On the implementation side of the application delegate import the header file for the

InterestingnessTableViewController and in the applicationDidFinishLaunching

method, allocate and initialize an instance of our table view controller, set the frame for

the view controller, add the table view controller’s view as a subview of the window, and

for good memory management practice release the tableViewController in the dealloc

method as in Listing 1–2.

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 9

Listing 1–2. InterestingnessAppDelegate Implementation File

#import "InterestingnessAppDelegate.h"
#import "InterestingnessTableViewController.h"

@implementation InterestingnessAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching:(UIApplication *)application {

 tableViewController = [[InterestingnessTableViewController alloc]
 initWithStyle:UITableViewStylePlain];

 [[tableViewController view] setFrame:[[UIScreen mainScreen] applicationFrame]];

 [window addSubview:[tableViewController view]];

 [window makeKeyAndVisible];
}

- (void)dealloc {
 [tableViewController release];
 [window release];
 [super dealloc];
}

@end

Note that you are programmatically creating your table view controller and that you are

not using a nib file in which a table view is defined with a data source and a delegate. In

this case, the UITableViewController by default sets the data source and the delegate

to self. Out of the box, the subclass provides stubs for two of the required methods of

the UITableViewDataSource Protocol—tableView:cellForRowAtIndexPath: and

tableView:numberOfRowsInSection:—and one of the optional methods

numberOfSectionsInTableView:. In addition, the subclass provides a stub implemention

of only one of the optional methods— tableView:didSelectRowAtIndexPath:—of the

UITableViewDelegate Protocol which you do not need to implement in this case since

the Interestingness app will not be providing a detail view for the selected row. Since

you are creating the table view controller programmatically uncomment the

initWithStyle: method. At this point, that is the only change in the implementation of

InterestingnessTableViewController. So go ahead and build and run this in the

Simulator to make sure that everything works. You currently have a responsive but

empty table view!

NOTE: The Interestingness project up to this point is in the folder Interestingness-Version1.

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 10

Adding A JSON Parsing Framework to the Interestingness
App
As was mentioned earlier the Interestingness app will receive a response to an HTTP

request in JSON format (see Figure 1–1). In order to use the data, the reponse will be

parsed using a JSON parser. JSON has become increasingly popular as a data

exchange format and parsers are available for just about every computer language. The

next step then is to download and add a JSON parsing framework to your project. The

framework used in this project is the json-framework which can be downloaded from

Google’s Code repository at http://code.google.com/p/json-framework/ (see the

“Resources” section). Download and expand the disk image. Drag the JSON folder to

the Interestingness project and drop it on the project or into your favorite folder (such

as Classes). Be sure to check the checkbox to copy the items to the destination folder

(Figure 1–3). You can also CTRL-Click to add an existing folder and its contents to the

project making sure to select the option to copy the items to the destination folder. Now

importing JSON.h will provide access to the methods that make up the json-framework.

Figure 1–3. Adding the JSON classes to the Interestingness project

Composing a RESTful Request for a List of Interestingness
Images
To fetch the images from the Flickr interestingness API make a RESTful request to

Flickr for a list of these images. The information needed to build a URL for the individual

images is extracted from the list to build a URL for an individual image. A Flickr API

request consists of four components—a service endpoint, a method name, an API key,

and a list of required and optional parameters for the method:

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 11

� Service Endpoint: Flickr accommodates requests and provides

responses via three formats: REST, XML-RPC, and SOAP. Flickr also

provides responses using JSON and PHP. You will be making RESTful

requests using HTTP GET for which the service endpoint is

http://api.flickr.com/services/rest/.

� Method name: Flickr provides authenticated and nonauthenticated

access to the photos and the extended data attributes around the

photos that are uploaded to their site. Most of the APIs require

authentication in addition to an API key. You will use a

nonauthenticated, “public” API named

flickr.interestingness.getList to get a list of the most interesting

photos.

� Flickr API key: If you have a Flickr API key you will need it in order to

download images for your project. If you do not have a Flickr API key,

head over to Flickr (http://www.flickr.com/services/apps/create
/apply/) to create an API key for which you will need a Yahoo

account.

� Method parameters: As parameters you will need to provide:

� per_page (optional): The number of photos to return per page.

� format (optional): Specify that the response be in JSON format.

Additionally, you just want the raw JSON output without the

enclosing function wrapper so that as part of the request one of

the parameters of the request will be nojasoncallback=1.

Your Flickr request will appear as follows:

http://api.flickr.com/services/rest/?method=flickr.interestingness�
.getList&api_key=%@&tags=&per_page=%d&format=json&nojasoncallback=1

with two values to be filled in, the API key and the number of photos per page, which will

be done when you create the NSString.

Now to make the changes to the Interestingness application so it fetches and displays

the images change InterestingnessTableViewController.h as follows:

#import <UIKit/UIKit.h>

@interface InterestingnessTableViewController : UITableViewController {

 NSMutableArray *imageTitles;
 NSMutableArray *imageURLs;
}
-(void)loadInterestingnessList;

@end

This declares two mutable arrays to store the image names and URLs and a method to

load the list of interestingness images from Flickr.

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 12

Next, you will need to change the implementation. Begin by importing JSON.h, defining

your Flickr API key, modifying the initWithStyle: method to initialize the two mutable

arrays, and uncomment the viewWillAppear: method so that you can add the call to

self to load the list of images:

#import "InterestingnessTableViewController.h"

#import "JSON.h"

#define API_KEY @"INSERT YOUR FLICKR API KEY HERE"

@implementation InterestingnessTableViewController

- (id)initWithStyle:(UITableViewStyle)style {
 if (self = [super initWithStyle:style]) {
 imageTitles = [[NSMutableArray alloc] init];
 imageURLs = [[NSMutableArray alloc] init];
}
 return self;
}

- (void)viewWillAppear:(BOOL)animated {
 [super viewWillAppear:animated];
 [self loadInterestingnessList];
}

Now is as good a time as any to remember to release the mutable arrays in the dealloc

method so that you don’t leak memory.

- (void)dealloc {
 [imageTitles release];
 [imageURLs release];
 [super dealloc];
}

Using the RESTful Request and the JSON Parser to Parse
the Response
Now implement the loadInterestingnessList method:

-(void)loadInterestingnessList
{

 NSString *urlString = [NSString stringWithFormat:@"http://api.flickr.com/services�
/rest/?method=flickr.interestingness.getList&api_key=%@&extras=description&tags=�
&per_page=%d&format=json&nojsoncallback=1", API_KEY, 500];

 NSURL *url = [NSURL URLWithString:urlString];

 NSError *error = nil;

 NSString *jsonResultString = [NSString stringWithContentsOfURL:url
 encoding:NSUTF8StringEncoding
 error:&error];

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 13

 NSDictionary *results = [jsonResultString JSONValue];

 NSArray *imagesArray = [[results objectForKey:@"photos"] objectForKey:@"photo"];

 for (NSDictionary *image in imagesArray) {

 // build the url to the image

 if ([image objectForKey:@"id"] != [NSNull null]) {
 NSString *imageURLString = [NSString
 stringWithFormat:@"http://farm%@.static.flickr.com/%@/%@_%@_s.jpg",
 [image objectForKey:@"farm"],
 [image objectForKey:@"server"],
 [image objectForKey:@"id"],
 [image objectForKey:@"secret"]];

 [imageURLs addObject:[NSURL URLWithString:imageURLString]];

 // get the image title

 NSString *imageTitle = [image objectForKey:@"title"];

 [imageTitles addObject:([imageTitle length] > 0 ? imageTitle �
: @"Untitled")];

 }

 }
}

Here you build the URL string using NSString’s class method stringWithFormat: to

provide the API key and the number of images you want to retrieve per page. Then you

retrieve the URL with NSString’s convenience method

stringWithContentsOfURL:encoding:error and store the result in jsonResultString. You

then use the json-framework to return the NSDictionary represented by the string and

retrieve the array of dictionary objects representing the images using the key “photo”.

Next, iterate through the array of dictionary objects (the info for each image) using the

keys farm, server, id, and secret to retrieve the corresponding value in order to build a

URL for the image and add the URL to your mutable array of URLs in the instance

variable imageURLs. Your final steps in this method are to retrieve the title for the image

and store either the title if the length is greater than zero or “Untitled” in your mutable

array of titles imageTitles.

NOTE: More details on how to build a URL for an individual photo can be found at
http://www.flickr.com/services/api/misc.urls.html.

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 14

Implementing the UITableViewDataSource Protocol
Methods to Display the Results
Next, you need to modify the UITableViewDataSource methods

numberOfSectionsInTableView:, tableView:numberOfRowsInSection:, and

tableView:cellForRowAtIndexPath: to fetch and display the images in our table. Since

your user interface is very basic there will only be one section in the table view and the

numberOfSectionsInTableView: method returns the following:

-(NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 return 1;
}

Next change the tableView:numberOfRowsInSection: method to return the number of

elements in the imageURLs array:

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection�
:(NSInteger)section {
 return [imageURLs count];
}

Finally, change the tableView:cellForRowAtIndexPath: method to set the text of the

label to the title of the image, fetch the image using NSData’s class method

dataWithContentsOfURL, and finally set the cell’s imageView to the image that was just

downloaded:

- (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath�
:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier�
:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault�
 reuseIdentifier:CellIdentifier] autorelease];
 }

 // set the title

 [[cell textLabel] setText:[imageTitles objectAtIndex:[indexPath row]]];

 // fetch the image

 NSData *data = [NSData dataWithContentsOfURL:[imageURLs objectAtIndex�
:[indexPath row]]];

 // set the cell's image

 [[cell imageView] setImage:[UIImage imageWithData:data]];

 return cell;
}

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 15

NOTE: The project up to this point is in the folder Interestingness-Version2.

Now it is time to test the Interestingness application on a device. Select the

Interestingness target, CTRL-Click, select Info, and then select the Properties tab and

set the Identifier to one that matches your provisioning profile that has been set up with

your iPhone Developer Certificate. Then set the Active SDK to Device – 3.1.3 | Debug

and build and run. The application can be installed and tested in the Simulator but

performance of the application in the Simulator does not resemble the performance of

the application on a real device. The Interestingness application should look like Figure

1–4 although the images and text will not be the same.

CAUTION: A splash screen will load immediately but it may take the application several seconds
before the interestingness images appear.

TIP: If the application compiles but no images appear you may have forgotten to enter a valid
Flickr API key so be sure to check that. Also, you must be a paid member of the iPhone
Developer Program in order to install and test on an iPhone, iPod, or iPad device. See
http://developer.apple.com/programs/iphone/develop.html.

Figure 1–4. A screen shot of the Interestingness application

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 16

Concurrency Landscape
Why is the application slow? Both Cocoa and iPhone Applications start life with one

thread and a run loop. Basically, a run loop listens for events and passes them on to an

appropriate handler. Once the handler finishes processing, the event control returns to

the run loop which either processes the next event or puts the main thread to sleep until

there is something to do. Your application is doing all of its work on the main thread

preventing it from responding to any user interface events or any other event until your

task has finished.

Figure 1–5. The Interestingness app makes a RESTful request for the master list of images and then one RESTful
request for each image for each exposed table view cell , all on the main thread in Version 2 of the app.

Interestingness fetches data over the Internet at two points—once to fetch the list of

Interestingness images and then one fetch for each image in each cell of the table view

(see Figure 1–5). It does so synchronously, and until the data has been returned, no

updates of the user interface can occur. Our application needs to perform such time

consuming tasks in a background thread and not on the main thread. There are a lot of

concurrent options available as you can see from Table 1–2. The concurrency solutions

range from a high level of abstraction and a lower level of complexity to a low level of

abstraction and a higher level of complexity. Depending upon the needs of your

application one solution may be better than another. It may be almost obvious but it

does not hurt to state that the best concurrency solution is the concurrency solution that

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 17

has the highest level of abstraction that is consistent with your application needs. There

are multiple benefits from doing so and in this case it applies particularly to the use of

operation objects—it reduces complexity in your application (KISS), it may insulate your

application from lower level changes, it may lay the groundwork for future changes in

the operating system, and it may allow your application to take advantage of underlying

hardware changes. Using the highest level of abstraction is consistent with the history

and development of computers, programming languages, and programming

methodologies.

Table 1–2. Available Concurrency Solutions As of April 2010

Level of

Abstraction

Technology Description iPhone OS Mac OS X Complexity

Operation objects NSOperation

NSOperationQueue

Yes 10.5+

Grand Central

Dispatch

Dispatch queues and

blocks, etc.

No 10.6+

Cocoa Threads NSThread

NSObject

Yes Yes

Asynchronous

methods

Some classes have both

synchronous and

asynchronous methods,

NSURLConnection, for

example

Yes Yes

High

Low

POSIX Threads

(pthreads)

C-based APIs and libraries

for creating and managing

threads

Yes Yes

Low

High

Considerations When Using Concurrent Solutions
There are some general considerations to be aware of when implementing any

concurrent solution. A primary consideration is that generally UIKit classes are not

thread safe unless the Apple documentation specifically states that it is. All updates to

the user interface should occur on the main thread and not from a background thread.

Another major concern that must be taken into account once an application has two or

more threads is synchronizing access to shared data, especially mutable data. Altering

shared data structures from more than one thread can lead to race conditions and

deadlocks.

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 18

NOTE: This is such an important point that it bears repeating: UIKit is not thread safe and all
updates to the user interface should occur on the main thread. See Apple’s Threading
Programming Guide Appendix A: Thread Safety Summary for a compilation of thread safety
issues across the frameworks.

For Cocoa Touch applications each thread must maintain its own autorelease pool.

Although an autorelease pool is created for the application in main.m each new thread is

responsible for creating its own autorelease pool. Creating the autorelease pool is the

first thing that should take place in your thread’s routine and the last thing the routine

should do is to release the objects in the pool. The general outline looks like the

following code:

-(void)main
{
 NSAutoreleasePool *localPool;

 @try {
 /*
 * create an autorelease pool for objects released during�
 a long running task
 */

 localPool = [[NSAutoreleasePool alloc] init];

 /*
 * perform a long running task
 */
 …

 }
 @catch (NSException * e) {
 NSLog(@"An exception was thrown %@", e);
 }
 @finally {
 /*
 * the @finally block is always executed whether an exception�
 is thrown or not
 */

 [localPool release];

 }
}

If an autorelease pool is not created you will see messages in your console such as in

Figure 1–6 and your application could eventually run out of memory and crash. In a loop

that creates a lot of autoreleased objects, you will probably want to periodically release

those objects in order to reduce the memory footprint of your application.

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 19

Figure 1–6. Console messages with no autorelease pool in place for a thread

Concurrency with NSThread and NSObject
Since Objective-C is a superset of C one possible threading solution is to create and

manage threads with the POSIX thread library a C-based API to the underlying Mach

threads. Compared to the other possible options for concurrency in Table 1–2, POSIX

threads are relatively low in terms of their level of abstraction and represent a higher

degree of complexity. POSIX threads can be mixed with the Cocoa frameworks but you

must ensure that Cocoa knows that your application is multithreaded. Use NSThread’s

class method +isMultithreaded to determine if your app is multithreaded. If it is not then

spawning a thread and letting it exit is enough to let the application know that it is in

multithreaded mode. Using POSIX threads may be a good solution for an application if

you are using a C-based API already. Since it would represent a move towards more

direct thread management rather than less it won’t be examined further here.

Another solution that may solve an application’s need for concurrency is to try to take

advantage of the Apple APIs that have both synchronous and asynchronous methods. A

good example is NSURLConnection with methods to initialize and set the delegate for

the connection. The delegate at a minimum needs to implement the methods

connection:didReceiveResponse:, connection:didReceiveData:,

connection:didFailWithError:, and connectionDidFinishLoading:. Sometimes these

asynchronous methods may be all your application needs.

At the next level up support for concurrency solutions starts right from the root object—

NSObject. NSObject provides support for spawning a thread with the method

performSelectorInBackground:withObject: that creates a detached thread using the named

method as the entry routine for the new thread. NSObject also has methods to perform a

method of the receiver on the current thread, to perform a method of the receiver on the

main thread, and to perform a method of the receiver on a specified thread.

As a first step towards a concurrent solution in the Interestingness application, you will

fetch the list of images from flickr.interestingness.getList in a background thread

and parse the returned list in the main thread. NSObject’s

performSelectorInBackground:withObject: will be used to fetch the master list on a

background thread while the performSelectorOnMainThread:withObject:waitUntilDone:

method will be used to invoke the method on the main thread to parse the results (see

Figure 1–7). You will break up the original loadInterestingnessList method into two

parts: a disaggregateInterestingnessList: method which takes an NSDictionary

parameter and returns void and a fetchInterestingnessList which takes no parameters

and returns void.

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 20

Figure 1–7. Performing the RESTful request for the master list of interestingness images on a background thread
for version 3 of the Interestingness app. A portion of the JSON results is displayed.

Change the header file for the InterestingnessTableViewController so that it appears as

follows:

#import <UIKit/UIKit.h>

@interface InterestingnessTableViewController : UITableViewController {

 NSMutableArray *imageTitles;
 NSMutableArray *imageURLs;
}

-(void)loadInterestingnessList;
-(void)fetchInterestingnessList;
-(void)disaggregateInterestingnessList:(NSDictionary *)results;

@end

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 21

Next change the implementation of the InterestingnessTableViewController as

follows. First delete the implementation of the loadInterestingnessList. Then add the

new method fetchInterestingnessList:

-(void)fetchInterestingnessList
{

 NSAutoreleasePool *localPool;

 @try {
 localPool = [[NSAutoreleasePool alloc] init];

 if ([NSThread isMainThread]) {
 NSLog(@"fetchInterestingnessList is executing in the�
 main thread");
 } else {
 NSLog(@"fetchInterestingnessList is executing in a�
 background thread");
 }

 NSString *urlString = [NSString
stringWithFormat:@"http://api.flickr.com/services�
/rest/?method=flickr.interestingness.getList&api_key=%@&tags=&per_page=%d&format�
=json&nojsoncallback=1", API_KEY, 500];

 NSURL *url = [NSURL URLWithString:urlString];

 NSError *error = nil;

 NSString *jsonResultString = [NSString stringWithContentsOfURL�
:url encoding:NSUTF8StringEncoding error:&error];

 NSDictionary *results = [jsonResultString JSONValue];

 [self performSelectorOnMainThread:@selector�
(disaggregateInterestingnessList:) withObject:results waitUntilDone:NO];

 }
 @catch (NSException * exception) {
 // handle the error -- do not rethrow it
 NSLog(@"error %@", [exception reason]);
 }
 @finally {
 [localPool release];
 }

}

This method is the entry point for the background thread. The very first thing that you

must do is to initialize an autorelease pool or you will leak memory. Then add a log

statement to indicate whether the method is performing on the main thread or another

thread. Then, perform your potentially long running task. When it is done the current

thread is sent the message performSelectorOnMainThread:withObject:waitUntilDone:

using disaggregateInterestingnessList: as the selector and passing it the

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 22

NSDictionary results object and indicate that you do not want this background thread to

block until the main thread finishes executing the selector that was specified.

Now add the disaggregateInterestingnessList: method with the NSDictionary results

parameter:

-(void)disaggregateInterestingnessList:(NSDictionary *)results
{
 if ([NSThread isMainThread]) {
 NSLog(@"disaggregateInterestingnessList is executing in the main thread");
 } else {
 NSLog(@"disaggregateInterestingnessList is executing in a background thread");
 }

 NSArray *imagesArray = [[results objectForKey:@"photos"] objectForKey:@"photo"];

 for (NSDictionary *image in imagesArray) {
 // build the url to the image
 if ([image objectForKey:@"id"] != [NSNull null]) {
 NSString *imageURLString =
 [NSString stringWithFormat:@"http://farm%@.static.flickr.com/%@/%@_%@_s.jpg",
 [image objectForKey:@"farm"],
 [image objectForKey:@"server"],
 [image objectForKey:@"id"],
 [image objectForKey:@"secret"]];

 [imageURLs addObject:[NSURL URLWithString:imageURLString]];

 // get the image title

 NSString *imageTitle = [image objectForKey:@"title"];

 [imageTitles addObject:([imageTitle length] > 0 ? imageTitle�
 : @"Untitled")];

 }

 }

 [[self tableView] reloadData];
}

There are only a few changes here. The first is that it logs which thread the method is

running on and there is an addition of the message to the table view to reload the data

for the table. Finally, change the viewWillAppear: method to kick off the

fetchInterestingnessList method on a background thread.

- (void)viewWillAppear:(BOOL)animated {
 [super viewWillAppear:animated];

 [self loadInterestingnessList];

 [self performSelectorInBackground:@selector(fetchInterestingnessList)�
 withObject:nil];

}

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 23

NOTE: This version of the project is in the folder Interestingness-Version3.

Build and run it on a device. There is a slight improvement in the performance of the

user interface in that the initial empty table view appears more quickly but after the

images for each cell of the table start to appear the performance is sluggish at best. For

a real performance boost the individual images need to be loaded on a background

thread. The NSThread class method detachNewThreadSelector:toTarget:withObject:

could be used to spawn a new detached thread as follows:

[NSThread detachNewThreadSelector:@selector(fetchImage:) toTarget:self withObject:url];

where fetchImage: is a new method implemented on the current object and passing it

the url object for the image. Alternatively, a new NSThread object (see Figure 1–8) could

be initialized and started:

NSThread *fetchThread = [[NSThread alloc] initWithTarget:self
 selector:@selector(fetchImage:)
 object:url];
[fetchThread start];

Figure 1–8. A possible solution would be to spawn off a thread for each RESTful request to fetch an image.

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 24

You could create an NSDictionary object to track and cache each image object using

the image url as a key and determine whether you need to spawn a new thread to fetch

the image. Even so, if you carry either of these alternatives to their logical conclusion,

the following questions emerge: How many threads do you spawn? What is the optimal

number of threads to spawn? It would be easy to see that you could end up in a

situation where the application spawns enough threads to bring your application to a

grinding halt. But wait, isn’t there a solution for that?

Concurrency with Operation Objects
Need work done on a background thread? Think operation objects! Why use operation

objects? There are some very good reasons to use operation objects. Operation objects

are a high-level abstraction for threading which reduces the complexity and level of

difficulty in developing a multithreaded application. That’s a great reason right there!

Secondly, it will position your application to take advantage of multiple cores should

they become available on future iPhone and iPad devices with no effort on your part.

Another great reason!

Operation objects have been available on Mac OS X since Leopard. It is a high level of

abstraction approach to concurrency. Instead of thinking about creating and managing

threads an operation queue manages that and the scheduling of the execution of the

tasks submitted to it. Using operation objects allows you to focus on the task itself; the

unit of work that is needed by your application and represented by an NSOperation

object. In order to use operation objects there are only three classes that you need to

become familiar with: NSOperationQueue, NSOperation, and NSInvocationOperation

(Figure 1–9). NSOperationQueue and the abstract class NSOperation both inherit from

NSObject while NSInvocationOperation is a subclass of NSOperation. NSBlockOperation

is not available as a part of the standard iPhone OS distribution.

Figure 1–9. Operation Objects class hierarchy as of April 2010

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 25

NSOperationQueue
An NSOperationQueue instance manages the operations or work units added to the

queue and works dynamically with the operating system to determine the optimal

number of concurrent operations as a function of the number of cores available in the

system and the overall load on the system at a given moment. A new instance of an

NSOperationQueue is created just like any other Cocoa object:

NSOperationQueue *workQueue = [[NSOperationQueue alloc] init];

After the queue has been initialized the maximum number of concurrent operations—

maxConcurrentOperationCount—is set to the constant

NSOperationQueueDefaultMaxConcurrentOperationCount to allow the NSOperationQueue

to determine how many operations can run concurrently. NSOperationQueue is key-value

coding (KVC) and key-value observing (KVO) compliant and the properties

maxConcurrentOperationCount and operations can be observed. To create a serial

queue and only allow one operation to execute at a time set

maxConcurrentOperationCount to 1:

[workQueue setMaxConcurrentOperationCount:1];

NOTE: For more on key-value coding and key-value observing see Apple’s Introduction to Key—
Value Observing Programming Guide listed in the “Resources” section.

To set the maxConcurrentOperationCount back to its default value, use the constant

NSOperationQueueDefaultMaxConcurrentOperationCount.

Operation queues can be suspended and restarted using the method setSuspended:YES

to suspend and NO to restart the queue. Suspending or restarting a queue suspends the

scheduling or restarts the scheduling of operations. Suspending a queue does not

suspend the execution of currently running operations. Executing operations are allowed

to run until they finish or are cancelled.

To add operations to the queue use the method addOperation: as in:

[workQueue addOperation:workOperation];

There is no corresponding removeOperation: method. All of the operations in a queue

can be cancelled by sending the queue a cancelAllOperations message but there is no

message that can be sent to the queue to cancel an individual operation in an operation

queue. But you can send an individual operation object a cancel message:

[workOperation cancel];

All operations that are dependent on workOperation finishing receive notification that the

dependency has been satisfied. A cancelled operation is still considered to be

“finished”. So if there are operations that depend on the operation that had been

cancelled it would appear to have finished normally. If an operation is cancelled then it

may be desirable to cancel all operations particularly if a subsequent operation is

dependent upon a result of the operation. Cancelling all operations then would be more

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 26

common then canceling individual operations. Note that it is up to the operation object

to check to see that it has been cancelled and stop executing (this will be discussed in

greater detail in the following section).

NSOperation and NSInvocationOperation
Operation objects encapsulate the data and the methods that belong to a task. If an

application has a time-consuming task that would benefit from being executed in a

background thread then there are two approaches to modeling that task, either subclass

NSOperation to define a custom operation object or use an instance of

NSInvocationOperation. NSOperation is an abstract class and must be subclassed in

order to be used while NSInvocationOperation is a concrete subclass of NSOperation.

Both are KVO compliant. The properties that can be observed are the following:

� isCancelled

� isConcurrent

� isExecuting

� isFinished

� isReady

� dependencies

� queuePriority

Operation objects also have characteristics that can affect their execution order, namely

dependencies and priorities. Dependencies are used to serialize the execution of

operation objects and are used to make the execution of an operation object be

dependent upon another operation object. The methods addDependency: and

removeDependency: are used to set and remove an operation’s dependencies. Creating

circular dependencies can lead to a situation in which the operations are deadlocked

since an operation object will not run until all of its dependent operation objects have

finished executing. As was noted earlier, a cancelled operation is considered to have

finished executing. It is a recommended practice that an operation object’s

dependencies be set before it is added to a queue since a dependency added after may

not prevent the operation object from running.

Operation objects can have priorities that range from the following:

NSOperationQueuePriorityVeryHigh 8

NSOperationQueuePriorityHigh 4

NSOperationQueuePriorityNormal 0

NSOperationQueuePriorityLow –4

NSOperationQueuePriorityVeryLow –8

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 27

and are set using the setQueuePriority: method. For operations in a queue the order of

execution is determined first by the readiness of the operations followed by their relative
priority levels. An operation is ready if all its dependencies have been met. As shown in

Figure 1–10 a low priority operation that is ready will run before a high priority operation

that is not ready.

Figure 1–10. Execution order of operations is determined first by their readiness then by their relative priorities.

NSInvocationOperation—Quick and Easy
Depending upon your application needs using an NSInvocationOperation is a viable

alternative when the task is already segregated in a method in an existing class of your

application. Using an NSInvocationOperation object is the easiest way to define an

operation object to be added to an operation queue for execution and eliminates

creating custom operation objects. The operation object created by an

NSInvocationOperation is a non-concurrent operation. To use an

NSInvocationOperation object create and initialize a new instance by passing to the

initialization method the target which defines the selector and the parameter object if

any. A typical initialization would look like this:

NSInvocationOperation *myOperation =
[[[NSInvocationOperation alloc] initWithTarget:self
 selector:@selector(doWorkMethod:)
 object:myData] autorelease];

Subclassing NSOperation
If an NSInvocationOperation does not meet the needs of your application then the

alternative is to subclass NSOperation. There are two types of subclasses of

NSOperation—a nonconcurrent operation and a concurrent operation. In a

nonconcurrent operation (which is the default for operation objects) the operation’s task

is performed synchronously. As such, the operation object subclass itself does not

create a new thread on which to execute the task and the isConcurrent method returns

NO. On the other hand, a concurrent operation executes asynchronously; the operation

object subclass creates a new thread to perform the task or calls an asynchronous

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 28

method to execute a task and the isConcurrent method returns YES. In a nonconcurrent

operation submitted to an operation queue, the operation queue will manage

concurrency for the operation and will create a new thread in which to run the operation.

The result is still asynchronous execution of the nonconcurrent operation.

You’ll only be creating nonconcurrent subclasses of NSOperation. Creating a concurrent

subclass of NSOperation is much more work in which the start, main, isExecuting,
isFinished, and isConcurrent methods must be overridden. A nonconcurrent subclass

must at a minimum implement an init method to create a known state for the long-

running task, a main method to perform the long-running task, and a dealloc method to

clean up any memory allocated by the operation object. The main method must create

an autorelease pool and must try to respond to cancellation events. Responding to

cancellation is entirely voluntary. To determine whether the operation has been

cancelled, use the isCancelled method and if it returns YES free up memory and exit

immediately. The isCancelled method should be called:

� Before any work is performed

� At the beginning of an iteration loop and within the body of a long

iteration

� Anywhere you can

The implementation of the selector that performs the work in an NSInvocationOperation

should also respond to cancellations.

Building HelloOperationQueues—a Toy Application
To make some of these ideas more concrete we’ll develop a toy application to add and

remove operations from a queue as pictured in Figure 1–11.

So fire up Xcode and choose as your template a view-based application. Name the new

project HelloOperationQueues. The default declaration and implementation of the

application delegate for HelloOperationQueues is all you need in your toy application.

However, in the header file for HelloOperationQueuesViewController you’ll declare

outlets for the two labels that you will need to use to update the user interface—one for

the operation count output and one for the operation work message. You also need to

declare the operation queue that you will be using. You’ll declare one action for the

button presses and another method addOp: that will be used to add our work units to the

operation queue. Then you’ll also declare the custom subclasses of NSOperation that

you will be adding to the queue. The completed HelloOperationQueuesViewController

header file will look like this:

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 29

Figure 1–11. Adding operations to a queue

#import <UIKit/UIKit.h>

@class JobUnit;

@interface HelloOperationQueuesViewController : UIViewController {

 UILabel *operationCountOutput;
 UILabel *operationOutput;

 NSOperationQueue *workQueue;

 JobUnit *jobA;
 JobUnit *jobB;
 JobUnit *jobC;

}

@property(nonatomic, retain)IBOutlet UILabel *operationCountOutput;
@property(nonatomic, retain)IBOutlet UILabel *operationOutput;

-(IBAction)buttonPressed:(id)sender;
-(void)addOp:(JobUnit *)job;

@end

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 30

Building the User Interface for HelloOperationQueues
Save it and open up the HelloOperationsViewController.xib file in Interface Builder to

build the user interface. If the window with a title of View is not already open double-

click the View icon in the nib file’s main window. Click on the view and �-1 to bring up

the View Attributes. Then, click on the background color well to change the background

color to blue. Enter �-shift-L to bring up the Library palette of components and drag a

UILabel to the top of the View window. Change the size of the label so that vertically

there is enough room for two lines of text and extend the width of the label to the outer

edges. Change the text of the label to read “NSOperationQueue and

NSOperationObjects”.

Next, change the layout so that the text is centered and the number of lines is set to 2.

Drag another UILabel from the Library palette and place it below the existing label. This

second label will be used to display messages from the operations. Clear the text and

set the layout so that the text is centered and the number of lines is 4. Extend the height

to accommodate four lines of text and extend the width of this second label to the outer

edges of the window. To connect the outlet for this label click on the File’s Owner icon

and control drag from the File’s Owner icon to the label, let go, and select the

operationOutput outlet. Now add two more labels on the same line. Set the text on the

left label to hold the static text “Number of operations in queue”, for the label

immediately to the right clear the text. Then to connect the outlet for this label click on

the Files’ Owner icon and control drag to the label, let go, and select the

operationCountOuput outlet as in Figure 1–12.

Figure 1–12. The four UILabels added to the view with the last remaining outlet for operationCountOutput about
to be selected.

Now add four Round Rect Buttons to the View laying them out, as shown in Figure 1–13.

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 31

Figure 1–13. Layout of the four buttons. The tag number for the “Get operation count” button is about to be set to
zero.

You will be using the tag property (an integer) of each button to identify which button

was pressed to perform the appropriate action. Set the button’s tag number to zero for

“Get operation count”, to one for “Add Op A”, to two for “Add Op B”, and to three for

“Add Op C” in each button’s attribute inspector window. Now control drag from each

button to the File’s Owner icon and select the buttonPressed: event, or you can control-

click on a button and in the gray panel that pops up drag from the Touch Up Inside

event to the File’s Owner icon and select the buttonPressed: event. Save the nib file and

close Interface Builder.

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 32

Creating Work Units by Subclassing NSOperation
Your operations will be a nonconcurrent subclass of NSOperation. In Xcode, click on the

Classes folder and control-click to add a new file. Choose the Objective-C template and

name the class JobUnit. Be sure to check the checkbox to create the header file as well.

In the header file for JobUnit change the superclass of JobUnit to be NSOperation,

declare a property for workMsg, and declare an initialization and a main method as

follows:

#import <Foundation/Foundation.h>

@interface JobUnit : NSOperation {
 NSString *workMsg;

}

@property (nonatomic, retain) NSString *workMsg;

-(id)initWithMsg:(NSString *)msg dependency:(id)obj;
-(void)main;

@end

Now change the implementation for JobUnit:

#import "JobUnit.h"

@implementation JobUnit
@synthesize workMsg;

-(id)initWithMsg:(NSString *)msg dependency:(id)obj
{
 if (self = [super init]) {
 [self setWorkMsg:msg];

 if (obj != nil) {
 //
 [self addDependency:obj];
 }
 }
 return self;
}

-(void)main
{
 /*
 * create an autorelease pool for objects released
 * during a long running task
 */

 NSAutoreleasePool *localPool;

 @try {

 localPool = [[NSAutoreleasePool alloc] init];

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 33

 /*
 * check if operation has been cancelled
 */

 if ([self isCancelled]) return;

 /*
 * perform a long running task
 */

 NSLog(@"performing work for %@", [self workMsg]);

 }
 @catch (NSException * e) {
 // handle the exception but do not rethrow the exception
 }
 @finally {
 [localPool release];
 }
}

-(void)dealloc
{
 [workMsg release];
 [super dealloc];
}

@end

The implementation of JobUnit uses initWithMsg:dependency: to initialize the object.

You’ll use this to initialize operation objects with a different work message and a

dependent operation object if any. The main method implementation contains the

minimum that a main method must do: within an @try—@catch—@finally block you create

an autorelease pool, use the isCancelled method to see if the operation has been

cancelled, and since the @finally block is always executed release the autorelease pool

in the @finally block.

Implementing HelloOperationQueues
For the implementation of the controller you’ll start by importing the header file for

JobUnit.h at the top of the HelloOperationQueuesViewController.m and then

synthesizing your two outlets as follows:

#import "HelloOperationQueuesViewController.h"
#import "JobUnit.h"

@implementation HelloOperationQueuesViewController

@synthesize operationCountOutput, operationOutput;

Change the viewDidLoad: method to allocate and initialize the operation queue

workQueue. Each of the work units JobA, JobB, and JobC are allocated and initialized

with a custom work message and a dependent operation object is set. JobA has no

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 34

dependencies. JobB is dependent upon JobA running while JobC is dependent on JobB

running. For each work unit, you have added self as an observer of the KVO property

isFinished. When a work unit has finished executing in the operation queue, you will be

notified. Since operation queues are also KVO compliant, you have added self as an

observer of the KVO property operations.

- (void)viewDidLoad {
 [super viewDidLoad];

 /*
 * create the NSOperationQueue
 */

 workQueue = [[NSOperationQueue alloc] init];
 [workQueue setMaxConcurrentOperationCount:1];

 /*
 * create the NSOperation objects
 */

 jobA = [[JobUnit alloc] initWithMsg:@"Welcome " dependency:nil];
 [jobA addObserver:self forKeyPath:@"isFinished" options�
:NSKeyValueObservingOptionNew context:nil];

 jobB = [[JobUnit alloc] initWithMsg:@"to " dependency:jobA];
 [jobB addObserver:self forKeyPath:@"isFinished" options�
:NSKeyValueObservingOptionNew context:nil];

 jobC = [[JobUnit alloc] initWithMsg:@"NSOperationQueues!" dependency:jobB];
 [jobC addObserver:self forKeyPath:@"isFinished" options�
:NSKeyValueObservingOptionNew context:nil];

 [workQueue addObserver:self forKeyPath:@"operations" options�
:NSKeyValueObservingOptionNew context:nil];

}

In order to capture the KVO notifications, you must implement the

observeValueForKeyPath:ofObject:change:context: as follows. The first two

parameters are the KVO property and the object that triggered the notification while the

last two contain a dictionary with details of the change and the context that was used

when you registered to observe the KVO property. You will be using the first two

properties to determine which property and the object that changed (for more on Key

Value Observing see the Apple documentation section in “Resources”).

-(void)observeValueForKeyPath:(NSString *)keyPath ofObject:(id)object
 change:(NSDictionary *)change context:(void *)context
{

 if ([keyPath isEqual:@"isFinished"])
 {
 // operation finished
 [operationOutput setText:[NSString
 stringWithFormat:@"%@%@",

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 35

 [operationOutput text], [object�
 workMsg]]];
 }

 if ([keyPath isEqual:@"operations"]) {
 // number of operations changed
 [operationCountOutput setText:[NSString
 stringWithFormat:@"%d",
 [[workQueue operations] count]]];
 }

}

The button presses have all been set to call the buttonPressed: action method. In the

implementation of the buttonPressed: method, use the tag number that you previously

set to a unique number for each button, and you are using that property to determine

which button was pressed. To add the job to the operation queue, send yourself the

addOp: message with the appropriate job as the single parameter. The addition of each

operation to the operation queue is enclosed in a @try—@catch block. If there is an

error, an alert is presented with the reason. Don’t forget to release the operations and

the queue in the dealloc method as follows:

-(IBAction)buttonPressed:(id)sender
{

 switch ([sender tag]) {
 case 0:
 /*
 * get operation count button pressed
 */
 {
 NSArray *opArray = [workQueue operations];

 [operationCountOutput setText:[NSString�
 stringWithFormat:@"%d", [opArray count]]];

 }
 break;
 case 1:
 /*
 * Add JobA button pressed
 */
 [self addOp:jobA];
 break;
 case 2:
 /*
 * Add JobB button pressed
 */
 [self addOp:jobB];
 break;
 case 3:
 /*
 * Add JobC button pressed
 */
 [self addOp:jobC];
 break;

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 36

 default:
 break;
 }
}

-(void)addOp:(JobUnit *)job
{
 UIAlertView *alert;

 @try {
 [workQueue addOperation:job];
 }
 @catch (NSException * exception) {

 alert = [[UIAlertView alloc] initWithTitle:@"NSOperationQueue Error:"
 message:[exception reason]
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 }

}

- (void)dealloc {
 [jobA release];
 [jobB release];
 [jobC release];
 [workQueue release];
 [super dealloc];
}

Build and run it. When all the operations have finished executing you’ll see the screen on

the left side of Figure 1–14. Trying to add an operation that has finished executing will

display the alert shown on the right. Operation objects are one shot deals.

NOTE: Use this application to experiment with priorities, multiple queues, and setting the
maxConcurrentOperationCount to the default value.

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 37

Figure 1–14. Adding operation objects to an operation queue and the result of adding an operation to a queue
after it has finished executing.

Changing the Interestingness App to Use NSOperationQueues
Now that you know how operation queues and objects work and interact with each

other, you are ready to change the Interestingness application to use operation

objects. You will use an NSInvocationOperation to retrieve the list of images from

flickr.interestingness.getList (see Figure 1–15) and then a subclass of NSOperation

to retrieve the individual images for the table view (see Figure 1–16).

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 38

Figure 1–15. Using NSInvocationOperation to retrieve the master list of interestingness images returned in result

You’ll start with the changes to use an NSInvocationOperation using version three of the

project as you last left it or use the project in the folder Interestingness-Version4-Start.

First, change the header file for InterestingnessTableViewController to include a

declaration for the NSOperationQueue that will be used to execute the operations as

follows:

 NSOperationQueue *workQueue;

Then, in the implementation file you need to change the initWithStyle: method to

initialize the operation queue:

 workQueue = [[NSOperationQueue alloc] init];
 [workQueue setMaxConcurrentOperationCount:1];

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 39

Figure 1–16. Encapsulating image requests in the NSOperation subclass FetchImageOperation

Implementing the NSInvocationOperation to Fetch the List of
interestingness images
All of the work for the initialization of the NSInvocationOperation will occur in the

viewWillAppear: method. Initialize the NSInvocationOperation object by passing self

for the target, fetchInterestingnessList as the selector, and nil for the object since

the method doesn’t take a parameter. Once the operation has been added to the

operation queue, you can release it or you will leak memory. Remove the call to the

method performSelectorInBackground:withObject: and the viewWillAppear: method

should look as follows:

- (void)viewWillAppear:(BOOL)animated {
 [super viewWillAppear:animated];

 // allocate and initialize the invocation operation

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 40

 NSInvocationOperation *fetchList =
[[NSInvocationOperation alloc] initWithTarget:self
 selector:@selector(fetchInterestingnessList)
 object:nil];

 // add it to the queue

 [workQueue addOperation:fetchList];

 // release the invocation operation

 [fetchList release];

}

The fetchInterestingnessList method needs no changes. Just as in the previous

version, the method will fetch the list of interestingness images and then it will perform

the disaggregateInterestingnessList: method with the results object on the main

thread. Build it and run it on your device. Of course, there is no difference in

performance since you have just substituted a different mechanism for performing the

task using an NSOperationQueue and an NSInvocationOperation instead of using

NSObject’s performSelectorInBackground:withObject: method.

Implementing FetchImageOperation a Subclass of NSOperation

It will take a little more work to fetch the individual interestingness images

asynchronously (refer back to Figure 1–16). Currently, these images are loaded

synchronously using the url for the image when the image for the cell’s imageView is set.

One way to make this occur asynchronously is to use a method to check a data store to

determine whether the image is present. If it is not present, store the url for the image

and kick off a background fetch of the image using an NSOperation object. When the

NSOperation object finishes fetching the image in the background the operation object

will use the performSelectorOnMainThread:withObject:waitUntilDone: method to

invoke a method on the main thread to update the data store with the image. In the

InterestingnessTableViewController, you’ll implement a method named

getImageForURL: to check for the image and to kick off the fetch if needed. Then you’ll

implement a method named storeImageForURL: that will be used by the custom

subclass of NSOperation to update the data store on the main thread.

To start, you’ll create a nonconcurrent subclass of NSOperation to perform the loading of

the images in the background. Click on the Classes folder and control-click to add a

new file choosing the Objective-C template and name the class FetchImageOperation.

Be sure that the checkbox to create the header file is selected. Change the superclass

of FetchImageOperation to NSOperation instead of NSObject, declare a variable of type

NSURL named imageURL, and declare a custom initialization method for the class named

initWithImageURL:target:targetMethod that takes as parameters an NSURL, an object,

and a selector as follows:

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 41

#import <Foundation/Foundation.h>

@interface FetchImageOperation : NSOperation {

 NSURL *imageURL;
 id targetObject;
 SEL targetMethod;

}

-(id)initWithImageURL:(NSURL *)url target:(id)targClass�
 targetMethod:(SEL)targClassMethod;

@end

On the implementation side for FetchImageOperation the initialization method will retain

and keep a reference to the url of the image to download. The other two parameters are

the object on which you’ll send the update message to and the selector that you want to

perform. The main method is where all the work occurs. You set up the requisite

autorelease pool and immediately check if the operation has been cancelled. Then

NSData’s initWithContentsOfURL: method is used to download the image data and

create a UIImage with the data. In order to return two objects—the image and the url to

the image—back to the main thread use an instance of an NSDictionary with the keys

@”image” and @”url” to store the image and the url, respectively. Finally, the operation

object uses the performSelectorOnMainThread:withObject:waitUntilDone: method to

pass the results back to the targetObject or main thread. The FetchImageOperation

implementation should look like so:

#import "FetchImageOperation.h"

@implementation FetchImageOperation

-(id)initWithImageURL:(NSURL *)url target:(id)targClass�
 targetMethod:(SEL)targClassMethod
{
 if (self = [super init]) {
 imageURL = [url retain];
 targetObject = targClass;
 targetMethod = targClassMethod;
 }
 return self;
}

-(void)main
{
 NSAutoreleasePool *localPool;

 @try {
 // create the autorelease pool
 localPool = [[NSAutoreleasePool alloc] init];

 // see if we have been cancelled

 if ([self isCancelled]) return;

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 42

 // fetch the image

 NSData *imageData = [[NSData alloc] initWithContentsOfURL:imageURL];

 // create the image from the image data

 UIImage *image = [[UIImage alloc] initWithData:imageData];

 // store the image and url in a dictionary to return

 NSDictionary *result =
 [[NSDictionary alloc]
 initWithObjectsAndKeys:image, @"image", imageURL, @"url", nil];

 // send it back

 [targetObject performSelectorOnMainThread:targetMethod
 withObject:result
 waitUntilDone:NO];

 [imageData release];
 [image release];
 [result release];
 }
 @catch (NSException * exception) {
 // log exception
 NSLog(@"Exception: %@", [exception reason]);
 }
 @finally {
 [localPool release];
 }
}

-(void)dealloc
{
 [imageURL release];
 [super dealloc];
}
@end

Implementing the getImageForURL: and storeImageForURL:
Methods
Among the last changes that need to be implemented is the implementation of the

getImageForURL: and the storeImageForURL: methods in the

InterestingnessTableViewController. The getImageForURL: method will be called in the

tableView:cellForRowAtIndexPath method when the tableView needs to set the image

and the title for the cell while storeImageForURL: is called by a custom subclass of

NSOperation—FetchImageOperation—when it has finished fetching an image.

Start with the changes to the header file for the InterestingnessTableViewController by

making the additions in bold:

#import <UIKit/UIKit.h>

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 43

@interface InterestingnessTableViewController : UITableViewController {

 NSMutableArray *imageTitles;
 NSMutableArray *imageURLs;
 NSOperationQueue *workQueue;
 NSMutableDictionary *imageDictionary;
}
-(void)fetchInterestingnessList;
-(void)disaggregateInterestingnessList:(NSDictionary *)results;

-(UIImage *)getImageForURL:(NSURL *)url;
-(void)storeImageForURL:(NSDictionary *)result;

@end

Then, in the implementation file for the InterestingnessTableViewController begin by

importing the header file for FetchImageOperation.h:

#import "FetchImageOperation.h"

Now initialize the mutable dictionary that will be used to store the fetched images in the

initWithStyle: method:

imageDictionary = [[NSMutableDictionary alloc] init];

Next, in the tableView:cellForRowAtIndexPath method remove the synchronous loading

of the image and set the image for the cell by calling getImageForURL: as follows:

 NSData *data = [NSData dataWithContentsOfURL:[imageURLs
 objectAtIndex:[indexPath row]]];

 // set the cell's image

 change this [[cell imageView] setImage:[UIImage imageWithData:data]]; to

 [[cell imageView] setImage:[self getImageForURL:[imageURLs
 objectAtIndex:[indexPath row]]]];

The implementation of the getImageForURL: method will get the object from the mutable

dictionary using the NSURL object as the key. If the object is nil, an NSString object is

added to the dictionary using the key and a new FetchImageOperation is initialized with

the url for the image; using storeImageForURL: as the method that you want invoked on

self when the operation is finished. The FetchImageOperation is then added to the

queue and released so that you don’t have a memory leak. Finally, if the object is not nil

and it is an image object then it is returned to be used to set as the image to be set on

the cell’s imageView otherwise the object is set to nil. The implementation should appear

as follows:

#pragma mark -
#pragma mark Methods for Loading Remote Images using NSOperation

-(UIImage *)getImageForURL:(NSURL *)url
{
 /*
 * called by tableView:cellForRowAtIndexPath to get the image

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 44

 * from the imageDictionary for the row
 * If the image is not in the row kick off a FetchImageOperation
 * to get the image
 */

 id object = [imageDictionary objectForKey:url];

 if (object == nil) {

 // we don't have an image yet so store a temporary NSString object for the url

 [imageDictionary setObject:@"F" forKey:url];

 /*
 * create a FetchImageOperation
 */

 FetchImageOperation *fetchImageOp =
 [[FetchImageOperation alloc] initWithImageURL:url
 target:self
 targetMethod:@selector(storeImageForURL:)];

 // add it to the queue

 [workQueue addOperation:fetchImageOp];

 // release it

 [fetchImageOp release];
 } else {
 // we have an object but need to determine what kind of object

 if (![object isKindOfClass:[UIImage class]]) {
 // object is not an image so set the object to nil
 object = nil;
 }
 }

 return object;

}

The implementation of storeImageForURL: is straightforward. The immutable dictionary

that is returned by the FetchImageOperation is used to update the mutable

imageDictionary. Then the tableView is sent a message to reload the data:

-(void)storeImageForURL:(NSDictionary *)result
{
 /*
 * method called by FetchImageOperation to store the image
 */

 // get the url object using the key @"url" from the dictionary
 // get the image object using the key @"image" from the dictionary

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 45

 NSURL *url = [result objectForKey:@"url"];

 UIImage *image = [result objectForKey:@"image"];

 // store the image

 [imageDictionary setObject:image forKey:url];

 // tell the table to reload the data

 [[self tableView] reloadData];
}

You are done with all the required changes. Build it and run it on a device. You’ve

enhanced your unresponsive application and made it much more responsive! Oh by the

way, there’s just one more thing!

NOTE: This version of the Interestingness project is in the folder Interestingness-Version4.

Concurrency with Operation Objects and Blocks
Grand Central Dispatch, blocks, and OpenCL are only available on Snow Leopard. GCD

was implemented to move the job of managing, scheduling, distributing, and executing

threads over multiple cores from the hands of application developers to the operating

system. A key part of the implementation of GCD on Mac OS X is the language

extension to Objective-C, C, and C++ called blocks. Blocks is not available for iPhone

OS as a part of Apple’s standard distribution of iPhone OS 3.1.2 and 3.2. However, a

third-party implementation of blocks has been made available by Plausible Labs since

July of 2009 for Leopard, Snow Leopard, and iPhone OS 2.2+. A new 1.1 beta 3 was

released in March 2010 for Leopard and Snow Leopard that is compatible with the iPad

OS. Plausible Labs has verified that both the 1.0 and 1.1 beta versions work with the

iPad OS.

Based on the availability of reference implementations of multicore chips for mobile

devices, industry competitive pressures, and the number of changes that Apple has

made to over one hundred APIs on Snow Leopard to use blocks it is my guess that

blocks, Grand Central Dispatch, and maybe even OpenCL may be available in the near

future as a standard distribution from Apple for iPhone OS. In the meantime, why wait?

Applications can be using operation objects and blocks now to be in the best position to

take advantage of underlying hardware and operating system changes with little or no

changes to the application once those enhancements occur. Who’s using it in shipping

apps? Plausible Labs of course and Cocos2d has added support for blocks using the

PLBlocks framework. That should be some incentive to learn about blocks. You’ll take a

brief tour of blocks and then you’ll put it to use.

Why use blocks? On Snow Leopard blocks are used in callbacks, to perform an

operation on all items in a collection, to compare two objects when sorting the contents

of an array, and to enclose a unit of work in a queue to mention a few uses. To place

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 46

operation queues (see Table 1–2) in perspective there are two broad groups of queues in

GCD: dispatch queues and operation queues. Dispatch queues are a part of GCD and

the C runtime and are a C-based mechanism for executing tasks. Dispatch queues

always execute tasks in a first-in, first-out order and use blocks to encapsulate the unit

of work. There are three kinds of dispatch queues: serial, concurrent, and the main

dispatch queue. Serial dispatch queues execute one task at a time while concurrent

dispatch queues start as many tasks as it can and do not wait for the other tasks to

complete before starting a new task. Serial dispatch queues are created and managed

by you and you can create as many serial queues as needed (within the constraints of

the system). Concurrent queues on the other hand are system queues—three are made

available to each application—and for this reason are called global dispatch queues. The

last type of dispatch queue, the main dispatch queue, works with the application’s main

thread to execute tasks. The operation queue that you have been using,

NSOperationQueue, is the Cocoa equivalent of concurrent dispatch queues with the

characteristics that have already been discussed. On Snow Leopard NSOperationQueue

is implemented on top of GCD so that one could say it is an even higher level of

abstraction than GCD. Another broad difference is the existence of NSBlockOperation

on Snow Leopard (see Figure 1–9). On Snow Leopard NSBlockOperation is a concrete

subclass of NSOperation and is used as a wrapper for one or more block objects around

a block of code to be executed. You will be using an analogous version of

NSBlockOperation to add a block of work to an NSOperationQueue.

Blocks
Blocks are similar to closures in other computer languages such as Scheme, Lisp,

SmallTalk, and Ruby. Blocks can be explicitly declared using a syntax similar to C

function pointers but use a caret instead of an asterisk. Unlike C function pointers which

use the * operator to mark the beginning of a C function pointer blocks use the caret ^

operator to start the declaration of a block variable or a block literal. For example, the

declaration of a block named cubeIt that will return the cube of a number would be

written as shown in the following illustrations.

caret operator indicates start of the block variable cubeIt

the block returns an int cubeIt takes an int as a parameter

int (^cubeIt)(int);

The block literal definition can be defined and assigned to the block variable.

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 47

literal block definition

block body

argument is named num

block variable

cubeIt = ^(int num) { return num * num * num; };

This can also be done on one line as follows:

int (^cubeIt)(int) = ^(int num) { return num * num * num; };

Since cubeIt was declared as a variable cubeIt can be used just like any function and

the following log statement would print 64:

NSLog(@"%d", cubeIt(4));

Alternatively, blocks can also be defined as a type definition using the C language

typedef feature. The cubeIt block above could have been defined as:

 typedef int (^cubeIt)(int);

 cubeIt cube = ^(int num){
 return num*num*num;
 };

And subsequently, the cubeIt block could be used as:

 NSLog(@”The cube of 5 is %d”, cube(5));

Blocks can also be defined inline anonymously and can be passed as parameters in a

method. When blocks are passed as parameters they use an abstract declarator form

syntax:

(returnDataType (^) (parameterType1, parameterType2, …))blockName

Blocks capture const versions of variables that have been defined within the same

scope as the block that can be used in the body of the block. If there is a need to

change the variable within the block body, then the variable can be declared with the

new storage modifier __block which would then allow the variable to be modified within

the block.

Blocks start life on the stack as opposed to the heap and can be copied to the heap if

needed. All blocks are Objective-C objects even when they are used in a C program. In

an Objective-C environment blocks will respond to –copy and –release. Whew, that’s a

whirlwind tour of blocks!

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 48

Adding the PLBlocks Framework
Think this is academic? Not on your life! With this basic idea of what Blocks are let’s

apply this to our project and we’ll begin with installation. To install PLBlocks download a

distribution from http://code.google.com/p/plblocks/. Double click the compressed

disk image to unarchive it. The expanded disk image includes a folder for the iPhone

Runtime, a folder for the Mac OS X Runtime, and the Plausible Blocks SDK package.

The package installs the custom compilers to be used with Xcode while the runtime

frameworks must be included with your project. Exit Xcode and then double click the

Plausible Blocks SDK package to install it. Click on the image of the hard drive to install

it to the default location Developer or choose the folder for the location where Xcode is

installed.

NOTE: The applications were built using the PLBlocks 1.0 for Snow Leopard build and tested on
a 3.1.3 device.

Start Xcode and open the project as you last left it or start with the Interestingness

project in the folder Interestingness-Version5-Start. Add the PLBlocks.framework by

dragging it to the Frameworks folder of the Interestingness project and dropping it or by

choosing Add Existing Framework and navigating to the folder with the

PLBlocks.framework and selecting it as in Figure 1–17. Be sure to check the box to

copy the items. The next step is to set the PLBlocks compiler as the compiler for the

project. Click on the target for the project and click �-I or click on the Info button. In the

Compiler Version section select GCC 4.2 (Plausible Blocks) as the compiler as in

Figure 1–18. Now you’re ready to use Blocks. Enter the following Block statements in

the viewWillAppear: method in the implementation of

InterestingnessTableViewController:

 int mFactor = 2;

 int numberToCube = 4;

 int (^cubeIt)(int);

 cubeIt = ^(int num) { return num * num * num; };

 NSLog(@"The cube of %d is %d", numberToCube, cubeIt(numberToCube));

 int (^cubeItTimesAFactor)(int) = ^(int num) { return cubeIt(num) * mFactor; };
 NSLog(@"The cube of %d multiplied by a factor of %d is %d",
 numberToCube, mFactor, cubeItTimesAFactor(4));

CAUTION: Make sure that the compiler version appears exactly as in Figure 1–18 otherwise the
project wll not compile.

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 49

Figure 1–17. Adding the PLBlocks.framework to the project

Figure 1–18. Set the compiler for the project to GCC 4.2 (Plausible Blocks).

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 50

The statements define two block examples. The first declaration is a standard int

variable named mFactor with a value of 2. The next statement declares a block variable

named cubeIt that takes an int as a parameter. Then you define a block literal

expression and assign it to the block variable cubeIt. The second block example

declares the block variable cubeItTimesAFactor and declares the block literal that is

assigned to it all in one statement. The block declaration in this example illustrates how

blocks have access to variables defined in the same scope; in this case, another block

variable and an integer. Since you declared cubeIt and cubeItTimesAFactor as block

variables you can call them just like any other function. The NSLog statements do that

and print the results. Build and run application and the results should appear in the

console as:

2010-04-01 14:02:33.207 Interestingness[2425:207] The cube of 4 is 64
2010-04-01 14:02:33.230 Interestingness[2425:207] The cube of 4 multiplied by a�
 factor of 2 is 128

Changing the Interestingness Application to Use
NSOperationQueues and Blocks
Now you know that PLBlocks has been set up correctly. To see what blocks can do

you’ll change the Interestingness application to use Blocks and NSOperationQueues.

You’ll change the getImageForURL: method in the InterestingnessTableViewController

implementation to use a PLBlockOperation—an operation with block support—to add

an operation to our operation queue. First, you need to add a modified version of

Plausible Labs’ extensions (see Resources) to NSOperationQueue contained in the

NSOperationBlock sample project. Add a new Group folder named Blocks to the

Interestingness project. Then control-click on the folder to add existing files and select

the files NSOperationQueue+PLBlocks.h and .m from the folder named Interestingness-

Version5-PLBlockExtensions that are part of the project files for this chapter as in Figure

1–19. Be sure that the checkbox to copy the files is selected and click the Add button to

add the files to the project. Then import the header file NSOperationQueue+PLBlocks.h

and remove the import for FetchImageOperation.h at the top of the

InterestingnessTableViewController implementation file as follows:

#import "InterestingnessTableViewController.h"
#import "FetchImageOperation.h"
#import "NSOperationQueue+PLBlocks.h"

Change the getImageForURL: method:

-(UIImage *)getImageForURL:(NSURL *)url
{
 /*
 * called by tableView:cellForRowAtIndexPath to get the image
 * from the imageDictionary for the row
 * If the image is not in the row kick off a FetchImageOperation
 * to get the image
 */
 id object = [imageDictionary objectForKey:url];
 if (object == nil) {
 // we don't have an image yet so store a temporary NSString object

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 51

// for the url
 [imageDictionary setObject:@"F" forKey:url];
 /*
 * create a block operation
 */
 PLBlockOperation *fetchImageOp = [PLBlockOperation�
 blockOperationWithBlock:^{
 NSAutoreleasePool *localPool;
 @try {
 localPool = [[NSAutoreleasePool alloc] init];
 // fetch the image
 NSData *imageData = [[NSData alloc] initWithContentsOfURL:url];
 // create the image from the image data
 UIImage *image = [[UIImage alloc] initWithData:imageData];
 // store the image and url in a dictionary to return
 NSDictionary *result = [[NSDictionary alloc]
 initWithObjectsAndKeys:image,@"image",url,@"url",nil];
 [self performSelectorOnMainThread:@selector(storeImageForURL:)
 withObject:result
 waitUntilDone:NO];
 [imageData release];
 [image release];
 [result release];
 }
 @catch (NSException * e) {
 NSLog(@"error in block operation");
 }
 @finally {
 [localPool release];
 }
 }];
 } else {
 // we have an object but need to determine what kind of object
 if (![object isKindOfClass:[UIImage class]]) {
 // object is not an image so set the object to nil
 object = nil;
 }
 }
 return object;
}

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 52

Figure 1–19. Adding NSOperationQueue+PLBlocks.h and .m from the folder Interestingess-Version5-
PLBlockExtensions folder to the Interestingness project.

In the getImageForURL: method instead of allocating and initializing an instance of the

subclass of NSOperation that you created—FetchImageOperation — to do the work of

fetching the image you use a PLBlockOperation. A PLBlockOperation is a subclass of

NSOperation that is a block operation and is an analogous version of Snow Leopard’s

NSBlockOperation. The blockOperationWithBlock: class method returns an

NSOperation object with the provided block of statements. In the block, you create an

autorelease pool, do all the work to fetch the image, and then execute the

storeImageForURL: method on the main thread. When you are done with the objects

imageData, image, result you release them. There is no need to release the block

operation since the class method returns an autoreleased object. The local autorelease

pool is released in the finally clause of the @try—@catch—@finally block.

NOTE: This version of the project is in the folder Interestingness-Version5.

Build and run this version of the Interestingness application. While you will not notice

any performance gains in the application there have been tremendous gains in terms of

increased locality and clarity of the code. Because of blocks you are able to locate all of

the statements near where they are used. Using blocks you were able to eliminate two

files needed to declare and implement a subclass of NSOperation. All of the code that is

needed to do the work is right there where you need to use it and not in another class.

One of the truly great advantages of using blocks is this ability to create units of work

that can then be executed where you need them with far less code; code that is easier

to write, and code that is more precise.

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 53

Converting the Interestingness App to Use an Official Version of
Blocks and NSBlockOperation from Apple
When an official version of blocks from Apple becomes available it should be quite

simple to convert the Interestingness app with blocks to use the official version of

blocks and NSBlockOperation from Apple on an iPhone or iPodTouch device. Since

iPhone OS 4.0 for iPad devices will not be available until the fall 2010, as announced at

the iPhone OS 4.0 media event, it is not clear whether the steps will work in the interim.

The steps that would be required are the following:

� Remove the PLBlocks.framework.

� Remove the PLBlocks header and implementation files

NSOperationQueue+PLBlocks.h and .m.

� Change the compiler for the project from GCC 4.2(Plausible Blocks) to

GCC 4.2.

� In the implementation file for the InterestingnessTableViewController

remove the import statement for NSOperationQueue+PLBlocks.h.

� In the getImageForURL: method change PLBlockOperation to

NSBlockOperation as follows:

…
/*
 * create a block operation
*/

NSBlockOperation *fetchImageOp = NSBlockOperation blockOperationWithBlock:^{
…

� Save and recompile.

Summary
This chapter covers a lot of ground in just a few pages. Just about every subtopic on

concurrency can be expanded upon. You started by developing a sluggish application

that performed a task that many applications need to perform and that is well

understood—downloading data from the web. Using this starter application, you then

looked at possible concurrency solutions and then honed in on operation objects. Using

operation objects, you developed a fully asynchronous solution that eliminated any

sluggishness in the application. Using operation objects to achieve concurrency when it

is a good fit for the application gives the best chance of taking advantage of multiple

cores on an iPhone device if and when it happens. On the software side, another reason

for using operation objects is to position the concurrency solution in your application to

take advantage of GCD and blocks when they are introduced for iPhone OS. Whether

that happens is anyone’s guess, but as I have been saying in conference presentations

last year and here, I believe there is a very strong likelihood that it will. Finally, you

looked at blocks on the iPhone even though it is not an official offering from Apple and

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 54

saw how appealing it is to use operation objects and blocks. You also saw how easy it

would be to convert the application to use an official version of blocks from Apple. I

hope you’ll be able to put some of this to practice in your own applications for the

iPhone family of devices, and if not then certainly to try out some of the APIs available

on Snow Leopard. Lastly, I certainly hope I have raised your interest in operation objects

and blocks. Happy coding and have fun playing with your blocks! After all, we are all

kids at heart!

Resources
The resources listed here are not exhaustive. The authoritative resources of course are

the Apple documentation, sample code, and videos. While the Apple documentation are

a tremendous resource it is often like drinking water from a fire hose. I always like to

read about the same topic from different points of view to gain further understanding

and clarity.

Apple and Apple-related News
� Future iPhones to wield OpenCL acceleration:

http://www.appleinsider.com/articles/08/12/20/future_iphones_to
_wield_opencl_acceleration.html

� Imagination Technologies reveals future iPhone GPU candidate:

http://www.appleinsider.com/articles/10/01/08/imagination_techn
ologies_announces_successor_to_iphone_3gs_gpu.html

� ARM Announces 2GHz Capable Cortex-A9 Dual Core Processor

Implementation: http://www.arm.com/about/newsroom/25922.php

Apple Documentation
� Threading Programming Guide:

http://developer.apple.com/iphone/library/documentation/Cocoa/C
onceptual/Multithreading/Introduction/Introduction.html

� Concurrency Programming Guide:

http://developer.apple.com/iphone/library/documentation/General
/Conceptual/ConcurrencyProgrammingGuide/Introduction/Introducti
on.html

� Introduction to Key—Value Observing Programming Guide:

http://developer.apple.com/iphone/library/documentation/Cocoa/C
onceptual/KeyValueObserving/KeyValueObserving.html

� WWDC 2009 Videos

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 55

Blocks and Grand Central Dispatch
� Grand Central Dispatch Technology Brief:

http://images.apple.com/euro/macosx/technology/docs/GrandCentra
l_TB_brief_20090608.pdf

� Introducing Blocks and Grand Central Dispatch:

https://developer.apple.com/mac/articles/cocoa/introblocksgcd.h
tml

� Blocks Programming:

http://developer.apple.com/mac/library/documentation/Cocoa/Conc
eptual/Blocks/Articles/00_Introduction.html

� Blocks Specification:

http://clang.llvm.org/docs/BlockLanguageSpec.txt

� Apple’s Block presentation to the C Standards Working Group

N1370:Apple’s Extensions to C: http://www.open-
std.org/jtc1/sc22/wg14/www/docs/n1370.pdf

� Plausible Labs Blog:

http://www.plausiblelabs.com/blog/?tag=plblocks/

� PLBlocks download: http://code.google.com/p/plblocks/

� Blocks Examples: NSOperationQueue and UIActionSheet, Landon

Fuller:

http://landonf.bikemonkey.org/code/iphone/Using_Blocks_1.200907
04.html

� Landon Fuller/Plausible Labs extensions to NSOperationQueue and

NSThread contained in block_samples:

http://github.com/landonf/block_samples/tree/master/NSOperation
Blocks

� Friday Q&A 2008-12-26: http://www.mikeash.com/pyblog/friday-qa-
2008-12-26.html

� Friday Q&A 2009-08-14:Practical Blocks:

http://www.mikeash.com/pyblog/friday-qa-2009-08-14-practical-
blocks.html

� Blocks, Episode 1, Jim Dovey:

http://quatermain.tumblr.com/post/135882428/blocks-episode-1

� Blocks, Episode 2: Life Cycles, Jim Dovey:

http://quatermain.tumblr.com/post/138827791/blocks-episode-2-
life-cycles

� Programming with C Blocks on Apple Devices, Joachim Bengtsson:

http://thirdcog.eu/pwcblocks/

CHAPTER 1: Using Concurrency to Improve the Responsiveness of iPhone and iPad Applications 56

General
� Beginning iPhone 3 Development: Exploring the iPhone SDK, by Jeff

LaMarche and Dave Mark, Apress, 2009.

JSON
� json-framework project page: http://code.google.com/p/json-

framework/, which is currently version 2.2.3

� Introducing JSON: http://www.json.org/

POSIX Threads
Programming With POSIX Threads, by David R. Butenhhof, Addison-Wesley, 1997.

57

Claus Höfele
Company: www.claushoefele.com

Location: Sydney, Australia

Former Life as a Developer: Over the years, I have worked with various
technologies and platforms such as the PlayStation 2 and 3, the Xbox 360,
iPhone, Android, BlackBerry, Java Micro Edition, Symbian, i-mode, and lots of
other proprietary stuff. I enjoy working on embedded systems and getting the
most out of constrained memory and processing power.

In addition to being a software engineer, I'm the author of Mobile 3D Graphics:
Learning 3D Graphics with the Java Micro Edition and many other publications
about application development. I also serve as a member of the expert group for
Java Specification Request 297: Mobile 3D Graphics API 2.0.

Life as an iPhone Developer: Professional game developer for video consoles.
Currently developing my own game engine and tools for mobile games.

App on the App Store:

� Shark Feeding (working title)

What's in This Chapter:

� Starting an iPhone Game

� Why Write Your Own Tools?

� Creating a Flexible Content Pipeline

� Outline of the Example Code

� Exporting 3D Models

� Handling Textures

� Rendering the Converted Data on the iPhone

 58

Key Technologies:

� Maya, 3ds Max, Blender

� OpenGL ES

� FBX, PNG, PVRTC

59

59

 Chapter

Your Own Content
Pipeline: Importing 3D Art
Assets into Your iPhone
Game
Before 3D models can be used in an iPhone game, they have to be converted into a

format suitable for distribution and rendering. This process is particularly complex for 3D

games which require specialized digital content creation tools to create art assets. The

question is: how to export 3D models from software packages such as Maya, 3ds Max,

and Blender and use them in an iPhone game?

Starting an iPhone Game
Developing games for video consoles and for the iPhone are polar opposites: On the

one hand, dozens of people working for several years to wring the last drop of

performance out of a platform. On the other hand, small teams creating innovative

games in a few months. In many ways, programming iPhone games is a breath of fresh

air for a seasoned game developer.

For this reason, I was looking forward to starting an iPhone project with two artist friends

who also come from a commercial game development background. Having been

involved in game development on video consoles for a while, we figured we had the

skills to create something of our own for the iPhone.

Initially, we wanted to go for a zombie shooter in 3D with a story mode and dozens of

levels. After a look at our time budget, however, we decided to start off with something a

little less ambitious: a game involving sharks. Figure 2–1 shows a model from our

upcoming game.

2

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 60

Figure 2–1. One of the models for our shark game. Model courtesy of Dimitri Kanis.

Despite the many game concepts we were discussing, they all had one feature in

common: the games were to be realized with 3D polygon art—as opposed to 2D pixel

art—because that reflected the games we had been working on so far.

3D games on the iPhone are a tricky proposition because the additional dimension

makes content creation much more difficult and time consuming. In addition, 3D

games often result in complex gameplay, which makes it more difficult to target a

casual audience.

The way we’ve seen it so far is that these challenges allow our games to distinguish

themselves from the sea of games offered in the App Store. If we can pull off a good 3D

game, it might just afford us to earn our share of the iPhone market.

3D games have to score in the graphics department. So, I started to investigate the best

way to render models in our game. Since I have been working on 3D games on consoles

before, I found myself reflecting on my previous experience.

Why Write Your Own Tools?
Early on, I decided to aim for a high-performance render engine, as this will give my

projects a leg up compared to games created with other engines. This decision had two

consequences: one, my engine is programmed in C++ and two, I’ve started to create my

own tools.

C++ allows me not only to structure the code in a modular way, but also to program to

the bare metal when needed. In contrast to Objective-C, which I still use for APIs

specific to the iPhone, C++ allows you fine-grained control over memory and

performance trade offs. Using C++ in combination with OpenGL also makes it easy to

port my engine, should I decide to create a game for a platform other than the iPhone.

Good render performance requires more than just the right choice of programming

language. There’s a lot of optimizations you can do to your game data to suit the target

platform. Tools and engine code goes hand in hand because the output of the former is

the input to the latter.

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 61

The idea is to write tools that optimize game data offline, on a desktop computer, where

computational power is not an issue. The render engine on the iPhone, on the other

hand, should be as simple as possible. In the best case, the engine would just pass data

through to OpenGL, without any additional steps involved.

The process of transforming your data into an efficient game format isn’t without its

problems. The additional step required before you can use a new asset in your game

takes time and adds complexity. Fortunately, the number of art assets used in iPhone

games is fairly low, so it never takes more than a few minutes to process the data.

(That’s in contrast to console games, where I have seen this step take several days

because of the high number of art assets involved.)

Another disadvantage is that it takes a lot of time to write tools. If you are like me, you’d

rather spend your time writing code for a fancy graphics effect. However, having my

own tools allows me to innovate on technology. For example, I could optimize my game

data for a new hardware platform or take advantage of a new graphics effect that

requires the game data in a special way fairly quickly.

Creating a Flexible Content Pipeline
Having decided on creating my own tools and engine, I set out to design a content

pipeline that can achieve my goals of optimized game data.

The Tools Problem
The first idea I had was to write an exporter for a content creation tool. Blender, for

example, can be extended with scripts written in Python. Autodesk’s Maya and 3ds Max

also have SDKs to allow you to extend these applications. Figure 2–2 shows the shark

model in 3ds Max, where it was created.

Figure 2–2. Screenshot of shark model in Autodesk 3ds Max. Model courtesy of Dimitri Kanis.

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 62

The problem is that the exporter for one software package would be a completely

separate development effort from the exporter for another one—each exporter requiring

time to learn all the quirks of a particular application and make it compatible with the

engine.

Big game studios often solve this problem by requiring people to use one particular tool

set. Given that, as an independent game developer, I need to rely on the good will of

artists to work with me, I could foresee problems if I did the same. Each artist has his or

her own preferences when it comes to modeling tools and it’s difficult to convince them

to use a different software package, just because your tools can only handle one

particular application.

The next idea I had was to use a file format that’s widely supported by applications but

simple enough to use in my games. Wavefront’s OBJ file format

(http://en.wikipedia.org/wiki/Obj) is such a format: it’s a text based file format that’s

easy to parse and you’ll find plenty of code on the internet that helps you get started.

This sounded like a good idea until I thought about the optimizations I wanted to

implement. OBJ uses floating-point numbers to represent all data. What if I wanted to

use a different number representation instead to save memory? (Single precision

floating-point numbers use 4 bytes of memory for each datum whereas sometimes you

can get away with using a 16-bit integer type that only uses 2 bytes.) What if you needed

additional information to render the mesh more efficiently in the engine? (For example,

by adding information about the memory layout of a mesh’s geometry.)

Basically, if I used a format that I can’t or don’t want to change, I'd always be restricted

in what I could do in my engine. At the same time, I don’t want to write dozens of

exporters either. The solution to this dilemma is to separate the file format used for

exporting models from the file format used on the iPhone.

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 63

Data Exchange vs. In-Game File Formats
To satisfy all the requirements I had for my engine, I came up with the content pipeline

depicted in Figure 2–3.

Figure 2–3. Content pipeline with distinction between data exchange and in-game format.

The important feature in this design is the distinction between a data exchange and an

in-game file format. Whereas the data exchange format is used to unify the output of

many different content creation tools, the in-game format is designed for my engine

running on a particular platform. A converter transforms the data from one format into

the other.

I’ve chosen FBX as the data exchange format for 3D model data. FBX—named after a

product that used to be called Filmbox—is a file format owned by Autodesk, which uses

it to provide interoperability between its content creation tools. This makes FBX well

supported in all of Autodesk’s products. Despite the fact that FBX is proprietary, a

number of other companies and organizations have implemented FBX support. For

example, both Blender and Cheetah have FBX exporters built-in.

An alternative to FBX would be Collada (http://en.wikipedia.org/wiki/Collada), an

open file format that is managed by Khronos, the same organization that handles the

OpenGL specification. In the end, however, I decided to use FBX because I found the

exporters that support this file format very robust and well supported. Also, Autodesk

provides a ready-to-use library to read FBX files, which simplifies the creation of tools.

FBX data is stored in a way so all parts of a model can still be edited when transferred

from one application into another. This increases the files size, but also means that FBX

is a good starting point for optimizations, because valuable information about the

original data set is retained.

Similar to the way I’m using FBX as the format for mesh geometry, Portable Network

Graphics (PNG) serves as format for image data. PNG is a good choice, in my opinion,

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 64

because it’s lossless, so you can modify PNG files without degrading the quality of the

image. Also, it’s widely supported by graphics editing tools such as Photoshop and GIMP.

The information from the FBX and PNG files is used in my converter to create the in-

game versions of the content. At this stage of the pipeline, the converter applies

transformations to make the data compatible with my engine, such as unit and data type

conversions, but also optimizations for efficient rendering on the iPhone. The main

design goal of the converter was to keep the engine simple and have all optimization

logic that can be performed offline implemented in this tool.

The output of the converter is the file formats that are used in-game. For geometry data,

I found that I needed to tweak the format every now and then to adapt it to new engine

features. For this reason, the geometry format is specific to the engine and evolves in

parallel.

In contrast to geometry, there aren’t many different ways you would want to format

textures. That’s why in this case, I’ve opted for PowerVR Texture Compression (PVRTC),

an optimized texture format that’s natively supported by the iPhone hardware. PVRTC is

a compressed texture format, which results in efficient memory usage while being easy

to decode by the iPhone’s GPU at the same time.

I find that the split between a data exchange format and an in-game format provides a

lot of flexibility to change parts of the content pipeline without affecting the artists who

create the models. When I implement a new optimization in the converter, for example, I

simply re-run the tool on the original FBX and PNG files to produce new game data for

the iPhone. This allows me to stay agile in development without requiring artists to re-

export all the models.

Outline of the Example Code
The rest of this chapter will provide more details about the implementation of the

converter and the handling of the mentioned file formats. Before jumping into a detailed

discussion, I’d like to give an overview of the example code that comes with this

chapter.

The example project includes the following directories:

� assets: Contains the shark model from Figures 2–1 and 2–2 as FBX

and PNG files as well as the converted model data ready to be used

on the iPhone.

� converter: An Xcode project to build the converter application. The

converter is provided as a command line tool for Mac OS X and

transforms the FBX and PNG files into the iPhone format.

� lib: Third-party libraries required for the converter application.

� opengl: an Xcode project for iPhone OS that displays the converted

shark model.

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 65

� src: This folder contains the reusable part of the C++ code required to

build the converter and read the converted model on the iPhone

You’ll find most of the code discussed in this chapter in the src folder. If you don’t want

to open each file individually, simply open the Xcode projects in the converter and

opengl directories, which reference the required files from the src folder. The converter

and opengl folders themselves only contain the additional code required to create an

executable application.

Exporting 3D Models
To start using the FBX technology, you can download the FBX SDK from Autodesk’s

web site (http://www.autodesk.com/fbx). For licensing reasons, the FBX SDK is not

included in the sample project for this chapter (it’s also a fairly large download). The FBX

SDK contains pre-compiled libraries and includes files that allow you to read and write

FBX files from C++ code.

On the same web site, you’ll also find the latest versions of exporter plug-ins for Maya

and 3ds Max as well as a tool to convert popular 3D mesh formats into FBX. Some

modeling packages, such as Blender and Cheetah, have an FBX exporter already built

in.

FBX actually defines two file formats: one is a text-based format (ASCII) and the other is

binary. The main difference in features is that a binary FBX file can embed images,

whereas a text-based FBX file has to store images in a separate file (don’t forget to

include those images when sending your models by email).

The FBX SDK handles both versions of the format transparently, but I usually store all

my models in the text-based format because it makes it easier to examine the data if

something goes wrong. Figure 2–4 shows how to select the file format in 3ds Max’s FBX

export dialog.

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 66

Figure 2–4. FBX exporter dialog in 3ds Max with ASCII file format selected.

Reading FBX files
For reading FBX files, I created a class called FbxResourceReader (see

src/resource/fbx/FbxResourceReader.h and .cpp). This class contains three objects

from the FBX SDK: one to manage FBX objects (an instance of KFbxSdkManager), one to

hold the contents of a scene (KFbxScene), and another one to import files (KFbxImporter).

/** FBX file reader. */
class FbxResourceReader
{
public:

 /** Creates a new resource reader. */
 FbxResourceReader();

 /** Destructor. */
 ~FbxResourceReader();

 /**

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 67

 * Opens the given file and reads in the scene contents.
 * @param fileName file name.
 * @return true if the file was read successfully, false otherwise.
 */
 bool open(const char* fileName);

 /** Resets the current scene. */
 void close();

 //@{
 /** Getter/setter. */
 inline FBXFILESDK_NAMESPACE::KFbxSdkManager* getSdkManager();
 inline FBXFILESDK_NAMESPACE::KFbxScene* getScene();
 //@}

private:
 FBXFILESDK_NAMESPACE::KFbxSdkManager* m_SdkManager; ///< SDK manager for FBX API.
 FBXFILESDK_NAMESPACE::KFbxScene* m_Scene; ///< Current scene.
 FBXFILESDK_NAMESPACE::KFbxImporter* m_Importer; ///< Importer to load files.
};

All three FBX objects are needed to read in an FBX file and are created through calls�
 to their Create() method:
 FbxResourceReader::FbxResourceReader()
 : m_SdkManager(KFbxSdkManager::Create())
 , m_Scene(KFbxScene::Create(m_SdkManager, ""))
 , m_Importer(KFbxImporter::Create(m_SdkManager, ""))

{
}

When instantiating a class from the FBX SDK, KFbxSdkManager is passed in as a

parameter. The SDK manager keeps tabs on all the objects that were created and

handles the memory for those objects.

In the case of FbxResourceReader’s constructor, the two objects created are

KFbxImporter, which is used to read in FBX files, and KFbxScene, which will contain the

models and other information from the FBX file contents.

With the required FBX objects created, you can load an FBX file as shown in

FbxResourceReader::open():

bool FbxResourceReader::open(const char* fileName)
{
 close();

 // Initialize the importer with a file name.
 bool result = m_Importer->Initialize(fileName);
 if (result)
 {
 // Read in file contents.
 result = m_Importer->Import(m_Scene);
 }

 if (result)
 {
 // Convert coordinate system.

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 68

 KFbxAxisSystem fbxSceneAxisSystem = m_Scene->GetGlobalSettings().GetAxisSystem();
 KFbxAxisSystem fbxLocalAxisSystem(KFbxAxisSystem::YAxis,
 KFbxAxisSystem::ParityOdd, KFbxAxisSystem::RightHanded);
 if(fbxSceneAxisSystem != fbxLocalAxisSystem)
 {
 fbxLocalAxisSystem.ConvertScene(m_Scene);
 }

 // Convert units. "The equivalent number of centimeters
 // in the new system unit"
 const float centimetersPerUnit = 100.0f;
 KFbxSystemUnit fbxSceneSystemUnit = m_Scene->GetGlobalSettings().GetSystemUnit();
 if(fbxSceneSystemUnit.GetScaleFactor() != centimetersPerUnit)
 {
 KFbxSystemUnit fbxLocalSystemUnit(centimetersPerUnit);
 fbxLocalSystemUnit.ConvertScene(m_Scene);
 }
 }

 return result;
}

The FBX SDK comes with a number of handy utility functions that can save you a lot of

time when writing a converter. In this case, I’m using KFbxAxisSystem to convert the

coordinate system and KFbxSystemUnit to adjust the scale of the original geometry data.

OpenGL uses a right-handed coordinate system. In other words, if you use your right

hand and stretch out thumb, index finger, and middle finger so they are orthogonal to

each other, your thumb is the x axis, your index finger the y axis, and the middle finger

the z axis. By convention, the y axis usually points up in world space, which means

increasing the y coordinate of a model would move it towards the sky.

In comparison, Maya uses the same coordinate system as OpenGL, but both 3ds Max

and Blender use a right-handed coordinate system with z as the up axis. The coordinate

systems of these content creation tools is shown in Figure 2–5.

Figure 2–5. Coordinate systems in Maya, 3ds Max, and Blender (front view).

As long as you keep all data in the same coordinate system, it doesn’t matter which

system you use. However, as soon as you want to move or rotate an object in code or

mix data from different tools, you need to know what convention was used. For this

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 69

reason, I convert all geometry into the OpenGL convention. Similarly, I convert all units

into meters so that all my models have the same scale.

It’s important to know, however, that the FBX library doesn’t modify the vertex positions,

but instead modifies the scale and rotation parameters of the model. To render the

model correctly, you will have to use the converted information rather than the

information found in the content creation tool.

Traversing the Scene Contents
A scene (KFbxScene) is a container for all the contents of the FBX file, such as models,

cameras, and lights. These scene objects are arranged in a hierarchical way. In other

words, each scene object can have a number of child objects, which themselves can

have children, and so on. An example hierarchy is shown in Figure 2–6.

Figure 2–6. Example scene hierarchy in an FBX file.

To traverse this hierarchy, call KFbxScene::GetRootNode() to obtain the top-most node

of the scene hierarchy and check if it has any children. If so, check all children for further

children until you have recursively visited all scene nodes.

This code (implemented in converter/main.cpp) will call the function ConvertHierarchy()

for every child of the root node:

 FbxResourceReader fbxReader;
 bool result = fbxReader.open(fileName);
 if (result)
 {
 // Traverse hierarchy of scene nodes.
 KFbxScene* scene = fbxReader.getScene();
 ...
 for(int i = 0; i < scene->GetRootNode()->GetChildCount(); i++)
 {
 ConvertHierarchy(..., scene->GetRootNode()->GetChild(i));

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 70

 }
 }

To also visit the children’s children, you then call ConvertHierarchy() recursively.

void ConvertHierarchy(..., KFbxNode* fbxNode)
{
 if(fbxNode->GetNodeAttribute() != NULL)
 {
 ... do something with the scene node
 }

 // Recurse
 for(int i = 0; i < fbxNode->GetChildCount(); i++)
 {
 ConvertHierarchy(..., fbxNode->GetChild(i));
 }
}

Those two code snippets together allow you to get access to all scene nodes, which

FBX represents as instances of KFbxNode.

Distinguishing between Different Types of Scene
Nodes
An instance of KFbxNode represents a node in the scene hierarchy and contains

properties that are generic for all types of nodes. For example, to get the position of a

node, you would call

 KFbxVector4 translation;
 fbxNode->GetDefaultT(translation);
 printf("x=%f y=%f z=%f\n",
 translation[0], translation[1], translation[2]);

Whether a node is a model, a camera, or another type of scene object, depends on the

node attribute.

 if(fbxNode->GetNodeAttribute() != NULL)
 {
 const char* fbxNodeName = fbxNode->GetName();
 printf("Processing node '%s'\n", fbxNodeName);

 // Find out what type of node we are dealing with.
 KFbxNodeAttribute::EAttributeType attributeType =
 fbxNode->GetNodeAttribute()->GetAttributeType();
 switch (attributeType)
 {
 case KFbxNodeAttribute::eMESH:
 {
 // Convert mesh geometry.
 KFbxMesh* fbxMesh =
 static_cast<KFbxMesh*>(fbxNode->GetNodeAttribute());
 ...

 break;

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 71

 }

 // no default
 }
 }

You can find out what type of node you are dealing with by calling GetNodeAttribute()-
>GetAttributeType() on a KFbxNode instance and comparing the returned value against

a list of predefined values.

The only node type you’re interested in here is KFbxNodeAttribute::eMESH, which

corresponds to a mesh consisting of polygon data. (If the model in your content creation

tool is a different type of mesh, for example a NURBS surface, you will have to convert it

into a polygon mesh first.)

Once you know that the node is a mesh, you can cast the node attribute into a KFbxMesh:

 KFbxMesh* fbxMesh =
 static_cast<KFbxMesh*>(fbxNode->GetNodeAttribute());

Whereas the KFbxNode instance contains generic node information, the KFbxMesh
instance gives you access to the actual polygon data that makes up the model.

OpenGL Triangle Data
Because FBX is a file format designed for data interchange, it supports a number of

different layouts for geometry data to match the native format of the original application.

This allows FBX to be compatible with a range of content creation tools, but also

complicates extracting data out of FBX objects.

For example, one application that exports FBX files might decide that a 3D model is best

represented by quads with four vertex positions and one normal per quad. For rendering

with OpenGL, on the other hand, you’ll always want your data as triangles with each

attribute (position, normal, texture coordinates) available per vertex. To save memory,

the vertex data is usually indexed so that vertices that are used several times don’t have

to be stored more than once. This format is depicted in Figure 2–7.

Figure 2–7. Indexed triangle list: each tuple of three indices forms a triangle.

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 72

As a code representation of the OpenGL vertex data, I created the class Geometry with

the following members (see src/resource/Geometry.cpp):

/** Container for vertex data. */
class Geometry
{
public:

 /** Vertex declaration. */
 struct Vertex
 {
 float position[3];
 float normal[3];
 float uv0[2];
 };

 /** Index declaration. */
 typedef uint16_t Index;

 /** Type of primitives to render. */
 enum PrimitiveType
 {
 PT_TriangleList = 0, ///< List of triangles.
 PT_LineList, ///< List of lines.
 PT_PointList, ///< List of points.
 };

 ...

private:

 std::vector<Vertex> m_Vertices; ///< Vertices.
 std::vector<Index> m_Indices; ///< Indices.
 unsigned m_VertexBufferId; ///< OpenGL VBO ID.
 unsigned m_IndexBufferId; ///< OpenGL VBO ID.
 size_t m_NumIndices; ///< Number of indices to render.
 PrimitiveType m_PrimitiveType; ///< Type of primitives to render.
};

The class Geometry is designed to be used both in the converter to hold the converted

FBX data as well as on the iPhone when rendering the mesh. This makes sure that the

converter produces a format that matches the data structures needed on the iPhone.

In the class, I added an array each for vertices and indices, which simply contains each

set of data in a contiguous area of memory. The vertex layout defined by

Geometry::Vertex is an interleaved format where positions, normals, and texture

coordinates are written alternately.

Even though not implemented here, it’s a good idea to support several vertex layouts

specific to your needs (for example, a vertex layout without normals if you don’t use

lighting). The smaller the vertex data, the less time it will take to transfer the data to the

GPU and the faster the rendering.

I also recommend you read Apple’s OpenGL guide, which contains valuable information

how the layout of your vertex data affects rendering performance:

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 73

http://developer.apple.com/iphone/library/documentation/3DDrawing/Conceptual/Op
enGLES_ProgrammingGuide/TechniquesforWorkingwithVertexData/TechniquesforWorking
withVertexData.html.

Converting FBX Models into Triangle Data
In a previous step, I’ve shown you how to traverse the scene hierarchy and distinguish

different node types (see ConvertHierarchy() in converter/main.cpp). The result was a

KFbxMesh instance when a polygon mesh was encountered. To make the FBX data useable

on the iPhone, however, you need the mesh converted into triangle data stored in Geometry.

The data conversion is the purpose of the following method (see

src/resource/fbx/FbxResourceConverter.cpp):

bool FbxResourceConverter::convert(KFbxMesh& fbxMeshIn,
 Geometry& geometry) const
{
 ASSERT_M(fbxMeshIn.GetNode() != NULL, "Invalid mesh.");
 ASSERT_M(fbxMeshIn.GetControlPoints() != NULL, "No position data.");
 ASSERT_M(fbxMeshIn.GetControlPointsCount() <= 65536, "Only 16 -bit indices�
 supported.");

 // Reserve memory.
 vector<Geometry::Vertex>& vertices = geometry.getVertices();
 vector<Geometry::Index>& indices = geometry.getIndices();
 vertices.reserve(fbxMeshIn.GetControlPointsCount());
 indices.reserve(fbxMeshIn.GetPolygonCount() * 3);

 // Make sure all geometry is converted into triangles.
 KFbxMesh* newFbxMesh = NULL;
 if (!fbxMeshIn.IsTriangleMesh())
 {
 KFbxGeometryConverter geometryConverter(m_SdkManager);
 newFbxMesh = geometryConverter.TriangulateMesh(&fbxMeshIn);
 }
 const KFbxMesh& fbxMesh = newFbxMesh ? *newFbxMesh : fbxMeshIn;
 const int numTrianglesFbx = fbxMesh.GetPolygonCount();

 // Extract per-vertex data.
 FbxResourceUtils::processTriangles(fbxMesh, vertices, indices);
 ASSERT_M((int)indices.size() == numTrianglesFbx * 3,
 "Invalid number of indices.");

 if (newFbxMesh != NULL)
 {
 // Release temporary data.
 newFbxMesh->Destroy();
 }
 geometry.setPrimitiveType(Geometry::PT_TriangleList);
 geometry.setNumIndices(indices.size());

 return true;
}

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 74

At the beginning of FbxResourceConverter::convert(), I’m using another convenient

feature of the FBX SDK: KFbxGeometryConverter can convert the input data into

triangles. This makes sure that no quads or polygons with more than three vertices slip

through. Quads are often used in content creation tools for convenience, but can’t be

rendered by OpenGL ES.

Once the mesh is converted into triangles, I’m passing the mesh to

FbxResourceUtils::processTriangles() (see src/resource/fbx/FbxResourceUtils.cpp):

void FbxResourceUtils::processTriangles(const KFbxMesh& fbxMesh,
 vector<Geometry::Vertex>& vertices, vector<Geometry::Index>& indices)
{
 // Functor to help compare vertices.
 VertexPredicate vertexPredicate;
 vertexPredicate.epsilon = 0.001f;

 // Loop through triangles to extract a list of vertices with
 // per-vertex data. This normalizes the various ways in which FBX
 // stores mesh data.
 const int numTrianglesFbx = fbxMesh.GetPolygonCount(); for (int triangleIndex = 0;�
 triangleIndex < numTrianglesFbx;
 triangleIndex++)
 {
 for(int cornerIndex = 0; cornerIndex < 3; cornerIndex++)
 {
 // Vertex position
 KFbxVector4 position;
 FbxResourceUtils::getPolygonVertexPosition(fbxMesh, triangleIndex, cornerIndex,�
 position);
 vertexPredicate.currentVertex.position[0] = (float)position[0];
 vertexPredicate.currentVertex.position[1] = (float)position[1];
 vertexPredicate.currentVertex.position[2] = (float)position[2];

 KFbxVector4 normal;
 FbxResourceUtils::getPolygonVertexNormal(fbxMesh, triangleIndex, cornerIndex,�
 normal);
 vertexPredicate.currentVertex.normal[0] = (float)normal[0];
 vertexPredicate.currentVertex.normal[1] = (float)normal[1];
 vertexPredicate.currentVertex.normal[2] = (float)normal[2];

 // Vertex UV0
 KFbxVector2 uv0;
 FbxResourceUtils::getPolygonVertexUv(fbxMesh, 0, triangleIndex, cornerIndex, uv0);
 vertexPredicate.currentVertex.uv0[0] = (float)uv0[0];
 vertexPredicate.currentVertex.uv0[1] = (float)uv0[1];

 // Re-index vertices to remove duplicates.
 vector<Geometry::Vertex>::iterator existingVertex =
 find_if(vertices.begin(), vertices.end(), vertexPredicate);
 size_t index = existingVertex - vertices.begin();
 if (index == vertices.size()) // new vertex?
 {
 vertices.push_back(vertexPredicate.currentVertex);
 }
 indices.push_back(index);
 }
 }
}

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 75

This method loops through all the polygons in the FBX mesh and extracts the position,

normal, and texture coordinates for each vertex. Because KFbxGeometryConverter

triangulated the mesh, your code can be sure that it deals with triangles at this point.

To map from the FBX way of storing polygon data to per-vertex data, you created small

conversion routines in FbxResourceUtils. For example, this function retrieves the

position of a vertex:

void FbxResourceUtils::getPolygonVertexPosition(const
 KFbxMesh& fbxMesh, int polyIndex, int vertexIndex,
 KFbxVector4& position)
{
 int positionIndex =
 fbxMesh.GetPolygonVertex(polyIndex, vertexIndex);
 const KFbxVector4* fbxPositions = fbxMesh.GetControlPoints();
 position = fbxPositions[positionIndex];
}

Similar routines exist for normals and texture coordinates.

By this time, you would be finished with the conversion, if you didn’t want the vertices to

be indexed. To re-index the data, first store the current vertex temporarily in a variable of

the type VertexPredicate (see src/resource/fbx/FbxResourceUtils.h).

 /** Predicate to compare two vertices. */
 struct VertexPredicate
 {
 /** Returns true if two vertices are equal. */
 bool operator()(const Geometry::Vertex& other);

 Geometry::Vertex currentVertex; ///< Current vertex.
 float epsilon; ///< Difference that two floating-point values can
 // be apart, but still compare equal.
 };

This structure serves two purposes: for one, it stores the current vertex that is being

processed and for two, it has a method VertexPredicate::operator() to check if two

vertices are equal (see src/resource/fbx/FbxResourceUtils.cpp).

bool FbxResourceUtils::VertexPredicate::operator()(
 const Geometry::Vertex& other)
{
 bool result =
 fabs(currentVertex.position[0] - other.position[0]) < epsilon &&
 fabs(currentVertex.position[1] - other.position[1]) < epsilon &&
 fabs(currentVertex.position[2] - other.position[2]) < epsilon;
 result &=
 fabs(currentVertex.normal[0] - other.normal[0]) < epsilon &&
 fabs(currentVertex.normal[1] - other.normal[1]) < epsilon &&
 fabs(currentVertex.normal[2] - other.normal[2]) < epsilon;
 result &=
 fabs(currentVertex.uv0[0] - other.uv0[0]) < epsilon &&
 fabs(currentVertex.uv0[1] - other.uv0[1]) < epsilon;
 return result;
}

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 76

This operator compares the vertex data with a tolerance stored in epsilon. This

tolerance avoids problems with floating-point precision as well as snapping nearby

vertices together to remove duplicates. Epsilon values must be large enough to find

nearby vertices, but at the same time small enough to avoid collapsing vertices that

shouldn’t be merged. (In the sample code, I’m using 0.001, which works well for my

meshes.)

The purpose of the VertexPredicate becomes clear when looking again at the last step

of the vertex conversion in FbxResourceUtils::processTriangles():

 // Re-index vertices to remove duplicates.
 vector<Geometry::Vertex>::iterator existingVertex =
 std::find_if(vertices.begin(), vertices.end(), vertexPredicate);
 size_t index = existingVertex - vertices.begin();
 if (index == vertices.size()) // new vertex?
 {
 vertices.push_back(vertexPredicate.currentVertex);
 }
 indices.push_back(index);

In this code, I check if a vertex already exists in the vertex data by calling std::find_if

with an instance of VertexPredicate that contains the current vertex. This loops through

the existing vertices and compares each of them with the current vertex by calling

VertexPredicate::operator().

find_if either returns a pointer to the position of the matching array element or a

pointer one past the last element of the array, if no matching vertex was found. This

pointer is converted into an index number by subtracting a pointer to the beginning of

the vertex array.

If the vertex doesn’t exist yet, the index will be equal to the size of the vertex array. If so,

I append the new vertex at the end, which creates a new element at the index position. If

the vertex does exist, the index is already valid and no new vertex is required.

Either way, the index now points to the correct vertex element and can be added to the

index array. This removes all duplicate vertices and creates the indices.

Converting Triangle Data into an In-Game Format
FbxResourceConverter::convert() resulted in two arrays: one with the vertices and one

with the indices that describe the triangles of the geometry. This data is stored in an

instance of “Geometry” and now needs to be written into a file that you can ship with

your iPhone game.

As mentioned before, my goal is to implement all logic that can be handled offline in my

tools, so that my engine can be as simple and fast as possible. For this reason, I

decided to model the in-game format closely on the data layout I need for OpenGL ES.

A portion of one of my data files looks like this (you can find the entire file in the

assets/converted/geometry folder):

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 77

// Sat Feb 27 09:25:40 2010
// Shark
geometry 0 740 2502
62.222061 -171.275208 14.209234
0.753058 0.017204 0 .657729
0.302249 0.610170

.. more vertices
0
1
2
2
3
0

...more indices

The first two lines are comments that allow me to see when the file was created and

what the original FBX scene node was called.

After the comments, the line starting with “geometry” describes the data in the file. The

numbers indicate the primitive type (0 stands for a list of triangles), the number of

vertices, and the number of indices.

The geometry description is then followed by the vertex data. Each vertex consists of

three lines, with one line each for position, normal, and texture coordinates. At the end

of the file come the indices with each index in a separate line.

The file format is text based, so that you can generate and parse the data with the

printf and scanf family of functions that are part of the C standard library. This makes

the file format quick to implement and easy to debug because you can have a look at

the file contents in a text editor.

Writing the data is accomplished with these lines of code (see

src/resource/geometry/GeometryResourceWriter.cpp):

bool GeometryResourceWriter::write(const Geometry& geometry,
 uint32_t resourceId, const char* comment)
{
 bool result = false;

 char dirName[sizeof(m_FileName) + 16];
 snprintf(dirName, sizeof(dirName), "%s/geometry", m_FileName);
 char fileName[sizeof(dirName) + 16];
 snprintf(fileName, sizeof(fileName), "%s/%08x", dirName, resourceId++);

 FILE* file = NULL;
 createDirectory(dirName);
 file = fopen(fileName, "w");
 result = (file != NULL);
 ASSERT_M(result, "Can't open file '%s'.", fileName);

 if (result)
 {
 char buffer[256];

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 78

 // Comment
 writeComment(file, buffer, sizeof(buffer), comment);

 // Geometry data
 snprintf(buffer, sizeof(buffer), "geometry %d %d %d\n",
 geometry.getPrimitiveType(), geometry.getVertices().size(),
 geometry.getIndices().size());
 fputs(buffer, file);

 // Vertices
 const vector<Geometry::Vertex>& vertices = geometry.getVertices();
 for (size_t i = 0; i < vertices.size(); i++)
 {
 const Geometry::Vertex& vertex = vertices[i];
 snprintf(buffer, sizeof(buffer), "%f %f %f\n",
 vertex.position[0], vertex.position[1], vertex.position[2]);
 fputs(buffer, file);
 snprintf(buffer, sizeof(buffer), "%f %f %f\n",
 vertex.normal[0], vertex.normal[1], vertex.normal[2]);
 fputs(buffer, file);
 snprintf(buffer, sizeof(buffer), "%f %f\n",
 vertex.uv0[0], vertex.uv0[1], vertex.uv0[2]);
 fputs(buffer, file);
 }

 // Indices
 const vector<Geometry::Index>& indices = geometry.getIndices();
 for (size_t i = 0; i < indices.size(); i++)
 {
 const Geometry::Index& index = indices[i];
 snprintf(buffer, sizeof(buffer), "%d\n", index);
 fputs(buffer, file);
 }

 fclose(file);
 result = true;
 }

 return result;
}

On the other end, the iPhone app uses similar code to read in the geometry (see

src/resource/geometry/GeometryResourceReader.cpp).

As you can see, the file format is fairly simple. However, it doesn’t matter much what

format you choose for your in-game files as long as you can change it quickly when

needed. For example, I find the loading times in my game acceptable at the moment,

but I could switch to a binary file format to improve performance if I wanted to. This

change wouldn’t require any modification to the original art assets (the FBX files).

Instead, I would just run them again through my modified converter to benefit from

shorter loading times.

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 79

Handling Textures
So far, I’ve only covered geometry data. Textures for 3D models require separate tools

because the optimizations you can apply to images are completely different.

Image Compression vs. Texture Compression
Probably the most common image format used on the iPhone is the PNG format. PNG is

a lossless format, but still compresses into small files for line art and images with sharp

transitions such as text. JPEG, on the other hand, works best for photographic images

where the lossy compression isn’t noticeable and leads to good file size savings.

Image file formats, as their name implies, are designed to minimize storage space while

retaining as much quality of the original image as possible. That’s an important

consideration for iPhone games because the download time of a game increases with its

size. In addition, Apple limits the size of applications downloaded over mobile network

connections. If your app exceeds this limit, buyers have to connect to a WLAN to

download it, which prevents impulse purchases and thus is bad for your sales. However,

file sizes are not the only thing you need to worry about. The memory used after loading

the image on the device is important too.

For example, the texture for the shark in Figure 2–8 with dimensions of 256×256 pixels

results in a PNG file that’s 66 KB when exported from Photoshop. When using the image

on the iPhone, however, the PNG file has to be decompressed and the same image will

take up 192 KB in memory if you use an RGB format (256 * 256 * 3 bytes). The image will

need to be transferred from memory to the GPU, costing valuable bandwidth on the

electrical bus that connects the chips on the device. Especially for 3D art assets, the

amount of run-time memory used by images and the associated bandwidth bottleneck

adds up very quickly.

Figure 2–8. Texture used for shark model.

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 80

To address this problem, GPU manufacturers have introduced texture compression. The

idea is that a texture is decompressed by the GPU, bypassing the CPU for any image

decoding. This means the image can stay in a compressed format in memory up to the

very end: when it’s being used to color the 3D model.

Texture compression became popular with the introduction of the S3 Texture

Compression format (S3TC, sometimes also called DXT or DXTC) into DirectX, but has

also found its way into the iPhone with Imagination’s PVRTC format. Imagination is the

manufacturer of the GPU chips used in all iPhones to date.

Texture compression is designed to be easy to decode on GPU hardware. GPUs

process pixels in parallel so they require random access to the texture data. That’s why

all widely used texture compression formats use a fixed compression ratio. The

achievable compression is thus independent of the image contents. In contrast to PNG,

which produces smaller file sizes the fewer colors you use.

PVRTC supports two modes: one which compresses the original data into 2 bits per

pixel and one which results in 4 bits per pixel. For the example texture of 256×256

pixels, this results in 16 KB and 32 KB of memory usage. That’s a massive saving

compared to the original 192 KB, resulting in less memory usage and faster rendering.

Imagination’s PVRTC Format
There’s a downside, of course: PVRTC is a lossy compression format, resulting in a

reduced quality compared to the original image.

The advantage of PVRTC is that you can trade quality against file size by increasing the

texture resolution: if a 256×256 texture doesn’t look good enough, try 512×512, and you

are still only using 64 KB (2 bpp) or 128 KB (4bpp).

Apple’s iPhone SDK comes with a command-line tool to convert images into the PVRTC

format called texturetool. Alternatively, you can download Imagination’s PowerVR SDK

(http://www.imgtec.com/powervr/insider/powervr-sdk.asp), which includes

PVRTexTool, which is similar to texturetool, but comes with a graphical user interface.

(PVRTexTool runs on Mac OS, but requires installation of Mac OS’s X Window System,

which you’ll find on the DVDs that come with your computer.) Figure 2–9 shows

PVRTexTool with the original texture and the compressed version side-by-side.

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 81

Figure 2–9. PVRTexTool with uncompressed texture on the left and texture in PVRTC format on the right.

There are a few requirements that using PVRTC textures on the iPhone imposes on your

images:

� Height and width must be at least 8.

� The images must have a power-of-two width and height (8, 16, 32,

etc). The iPhone 3G supports textures up to a size of 1024×1024.

� The images must be square (for example 256×256).

� Pixels at the border of texture elements should be surrounded by a 4

pixel wide outline, filled in with a color similar to the border pixel.

The size requirements are self-explanatory, but the border handling needs an

explanation.

When decompressing a pixel, PVRTC takes adjacent blocks of pixels into account to

create a kind of average color value. This allows it to avoid artifacts that could appear

when encoding smooth color gradients. On the other hand, this technique will create

problems when a pixel is surrounded by pixels that don’t match its color, such as a

black background. When the average color value is computed, the black is taken into

account and causes a dark halo.

In the case of the texture in Figure 2–9, the gaps between texture elements (for example

between the body of the shark and the fins) have been filled with a similar color to

prevent this issue.

While it’s easy to convert PNG files into PVRTC files, it’s difficult to automatically adjust

the images to all the peculiarities of the iPhone hardware. For this reason, I ask artists to

provide images with all the requirements taken into account. Most artists are already

well trained in the art of packing texture elements into power-of-two textures. The

square size and border requirements are unusual, though, and you should discuss this

early on with people new to the iPhone platform.

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 82

Reading PNG Images
It’s theoretically possible to use PNG in your iPhone app and encode the image into a

compressed texture format on the fly, but this process is too computationally expensive.

Instead, the conversion process is done offline, when preparing the application, where

no requirement for real-time processing exists.

To help reading PNG files in a Mac OS application, the converter tool uses libpng

(http://www.libpng.org/pub/png/libpng.html) and zlib (http://www.zlib.net/)

converter. libpng provides a C API to decode PNG images and uses zlib underneath.

The advantage of using these open source libraries—in contrast to Mac OS specific

frameworks—is that this makes my tools cross-platform.

Access to these libraries is wrapped in a class call PngResourceReader (see

src/resource/png/PngResourceReader.h and .cpp), which is declared like this:

class PngResourceReader
{

public:

 /** Constructor. */
 PngResourceReader();

 /** Destructor. */
 ~PngResourceReader();

 /**
 * Opens the file with the given name for reading.
 * @param fileName file name.
 * @return true if successful; false otherwise.
 */
 bool open(const std::string& fileName);

 /**
 * Decodes a PNG image into RGB or RGBA format.
 * @param image resulting image.
 * @return true if successful; false otherwise.
 */
 bool read(Image& image);

 /** Closes the file and ends decoding. */
 void close();

private:

 FILE* m_File; ///< File handle.
};

Decoding PNG images with libpng is fairly simple. At the core of
PngResourceReader::read(), you’ll find the following code:

bool PngResourceReader::read(Image& image)
{
 .
 . // read the meta data

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 83

 .

 int number_of_passes = png_set_interlace_handling(png_ptr);
 png_read_update_info(png_ptr, info_ptr);

 // Create Image
 color_type = info_ptr->color_type;
 Image::ImageFormat format;
 switch (color_type)
 {
 case PNG_COLOR_TYPE_RGB:
 format = Image::R8G8B8;
 break;
 case PNG_COLOR_TYPE_RGBA:
 default:
 format = Image::R8G8B8A8;
 break;
 }
 image.init(format, width, height);

 // Read image
 const png_bytep data = (png_bytep)image.getData();
 const size_t numChannels = image.getNumChannels();
 for (int pass = 0; pass < number_of_passes; pass++)
 {
 for (size_t y = 0; y < height; y++)
 {
 png_bytep row_ptr = &data[y * width * numChannels];
 png_read_rows(png_ptr, &row_ptr, NULL, 1);
 }
 }
 png_read_end(png_ptr, info_ptr);

 //... clean up
}

Image is a class that manages an image’s memory and its attributes for me. The class

has different format specifiers that determine how many color channels there are and

how the image data is laid out in memory. Image::R8G8B8, for example, is RGB data

whereas Image::R8G8B8A8 has an additional alpha channel (red, green, blue, and alpha

pixels take up one byte each). These image formats map to the respective color types

defined for PNG (PNG_COLOR_TYPE_RGB and PNG_COLOR_TYPE_RGBA).

RGB and RGBA formats are the most useful ones because PVRTC doesn’t distinguish

between greyscale and color images. Even if the PNG file doesn’t contain image data in

this format, You can force a PNG image to come out as either RGB or RGBA by

applying input transformations when reading in the data with libpng:

 // Convert unusual formats into 8-bit RGB/RGBA format.
 if (color_type == PNG_COLOR_TYPE_PALETTE)
 {
 png_set_palette_to_rgb(png_ptr);
 }
 if (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8)
 {

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 84

 png_set_gray_1_2_4_to_8(png_ptr);
 }
 if (png_get_valid(png_ptr, info_ptr, PNG_INFO_tRNS))
 {
 png_set_tRNS_to_alpha(png_ptr);
 }
 if (bit_depth == 16)
 {
 png_set_strip_16(png_ptr);
 }
 if (bit_depth < 8)
 {
 png_set_packing(png_ptr);
 }
 if (color_type == PNG_COLOR_TYPE_GRAY ||
 color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
 {
 png_set_gray_to_rgb(png_ptr);
 }

With this code in place, libpng will automatically convert all PNG image formats into

either RGB or RGBA.

Converting Images into the PVRTC Format
To compress image data into the PVRTC format, Imagination’s PowerVR SDK comes

with a pre-compiled library called libPVRTexLib. This library expects the data in 32–bit

RGBA format. If the PNG file doesn’t have an alpha channel, I simply convert the RGB

information into 32 bits and set the 8 bits for the alpha channel to 255.

Compressing the image is accomplished by these lines of code (see

src/resource/pvrtc/PvrtcResourceWriter.cpp):

bool PvrtcResourceWriter::write(const Image& image)
{
 ASSERT_M(image.getFormat() == Image::R8G8B8A8,
 "Input image must be RGBA.");
 ASSERT_M(image.getHeight() == image.getWidth(),
 "Input image must be square.");
 ASSERT_M(image.getHeight() >= 32,
 "Input image must be at least 32x32 pixels.");

 bool result = true;
 PVRTRY
 {
 // 1. Wrap RGBA data in PVR structure.
 CPVRTexture originalTexture(image.getWidth(), image.getHeight(),
 0 /*num mipmaps*/, 1 /*num surfaces*/, false /*border*/,
 false /*twiddled*/, false /*cube map*/, false /*volume*/,
 false /*false mips*/, false /*has alpha*/,
 m_FlipVertically /*vertically flipped*/,
 eInt8StandardPixelType, 0.0f /*normal map*/, (uint8*)image.getData());

 // 2. Apply transformations
 CPVRTextureHeader processHeader(originalTexture.getHeader());

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 85

 const size_t maxMipmaps = m_GenerateMipMaps ?
 ComputeMaxMipmaps(image.getWidth(), image.getHeight()) : 0;
 processHeader.setMipMapCount(maxMipmaps);
 PVRTextureUtilities* pvrTextureUtilities = PVRTextureUtilities::getPointer();
 pvrTextureUtilities->ProcessRawPVR(originalTexture, processHeader);

 // 3. Compress to PVRTC
 CPVRTexture compressedTexture(originalTexture.getHeader());
 compressedTexture.setPixelType(
 m_TwoBppEnabled ? OGL_PVRTC2 : OGL_PVRTC4);
 pvrTextureUtilities->CompressPVR(originalTexture, compressedTexture);
 compressedTexture.setAlpha(m_AlphaModeEnabled);
 compressedTexture.setTwiddled(true);
 compressedTexture.writeToFile(m_FileName);
 }
 PVRCATCH(exception)
 {
 // Handle any exceptions here
 result = false;
 }

 return result;
}

The conversion is a three step process:

1. Wrap the image data from the decoded PNG file in a CPVRTexture

object, which is a type used by libPVRTexLib to handle textures. The

parameters in the constructor describe the input format and must match

the image contents.

2. Apply transformations with PVRTextureUtilities::ProcessRawPVR(). In

my case, the purpose of this call is to generate mipmaps for the texture.

3. Compress texture and write out data into a file with the ending .pvr.

(libPVRTexLib forces you to use this extension.)

When compressing the texture in the last step, it’s important that you specify the correct

output parameters. The pixel type determines whether the generated texture uses 2 bits

per pixel (OGL_PVRTC2) or 4 bpp (OGL_PVRTC4). This is a quality/memory trade off that’s

easiest determined by compressing an image and having a look at the result on the

iPhone.

The alpha setting specifies whether the texture features an alpha channel. The input to

libPVRTexLib must be RGBA, but at this point, you can disable the alpha channel again

if you don’t need it.

“Twiddled” (sometimes also called “swizzled”) refers to a non-linear memory layout. This

means pixel values are not stored one after each other, but instead have been reordered

to improve memory access locality. The GPU expects PVRTC textures in this format, so

you have to enable this option.

Last, but not least, you should set setVerticallyFlipped() to true for OpenGL, or

otherwise the texture will be displayed upside down.

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 86

Rendering the Converted Data on the iPhone
Now that you’ve learned how to convert FBX files into a custom in-game format and

how to convert PNG files into PVRTC Textures, you are now at the point where you can

take the converted data and render it on the iPhone.

Running the Converter Tool
As part of the source code that comes with this chapter, there’s an Xcode project in the

converter directory that wraps the code for converting FBX and PNG files in a command

line tool for Mac OS. You’ll also find shark.fbx and shark.png in the assets folder as

sample input to the converter.

After building the application, you can start the conversion process by entering the

following command line:

converter ../../../assets/converted ../../../assets/shark.png \
 ../../../assets/shark.fbx

The first argument is the target directory of the converted files, followed by the files to

be converted. The converter automatically figures out what to do based on the file

ending.

I’ve already added this command line to the Xcode project at

converter/converter.xcodeproj, so you only need to build and run this project on Mac OS

to convert the data.

Creating the iPhone Project
Afterwards, the converted files are in the assets/converted folder and need to be

included in your iPhone project in which you want to render the model. To do this, right

click on in the Groups & Files pane in your Xcode project. Then, add the files by

selecting Add ➤ Existing Files....

Again, I’ve already done those steps with the shark files and the resulting Xcode project

is located at opengl/opengl.xcodeproj. Figure 2–10 shows this Xcode project.

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 87

Figure 2–10. The Xcode project to render the converted shark model

The iPhone project is based on the OpenGL ES Application template that comes with

Xcode; modified to use the custom geometry format and PVRTC textures. To get

started, I suggest you have a look at opengl/Classes/EAGLView.mm to see how to read

in the files and at ES1Renderer.mm to see how the model is rendered.

Summary
Writing your own tools can be a lengthy process, but a flexible content pipeline is well

worth it because it allows you to optimize your data for the target platform and innovate

on new engine features quickly.

The distinguishing feature of the content pipeline that I presented in this chapter is the

separation between a data exchange and an in-game file format. The former is used to

export data losslessly from content creation tools and the latter is designed to take

CHAPTER 2: Your Own Content Pipeline: Importing 3D Art Assets into Your iPhone Game 88

advantage of the target platform and engine. A converter transforms the one format into

the other and allows you to apply optimizations on the way.

Once the content pipeline is in place, it’s straight-forward to add additional features.

Here are some ideas, how you could optimize your data to increase render performance:

� Experiment whether your models benefit from an index buffer

(glDrawElements()) or whether rendering is faster without indices

(glDrawArrays()).

� Create strips out of the list of triangles coming from the FBX file to

decrease the file size. You could use Nvidia’s NvTriStrip library, for

example (http://developer.nvidia.com/object/nvtristrip_
library.html).

� Try reordering the vertex data to be in the same order as the indices.

This improves cache coherency. Imagination’s PowerVR SDK contains

code to help you with this (have a look at PVRTTriStrip()).

� Implement settings in your converter to disable unused vertex

attributes. For example, remove normals if you don’t use lighting when

rendering your models.

� Merge geometries from different files into one large triangle list. This

benefits rendering because it reduces the number of draw calls. This

requires that you also move all required textures into one file because

you can’t change textures in between render calls.

The way I go about optimizations in my games is that I implement the major game

features first and then have a look where the performance bottlenecks are. The flexibility

of my content pipeline allows me to add optimizations easily, even late in the project.

89

Ben Kazez
Company: Mobiata
(http://www.mobiata.com)

Location: Ann Arbor, Michigan

Former Life as a Developer: Built web applications in PHP, MySQL, JavaScript,
and Mac applications in Objective-C/Cocoa. Designed user interfaces for
desktop web apps, Mac desktop apps, and iPhone web apps.

Life as an iPhone Developer: Designed and built multilingual dictionary
applications for Ultralingua. Currently heading up design and development at
Mobiata, where we develop and maintain the best-selling FlightTrack, HotelPal,
and TripDeck apps, and develop and manage mobile apps for major travel
brands.

Apps on the App Store:

� Ultralingua

� FlightTrack

� FlightTrack Pro

� HotelPal

� TripDeck

� StayHIP

What's in This Chapter: This chapter describes how to develop effective data-
driven iPhone applications, using real-world examples from FlightTrack, the best-
selling travel app on the App Store.

Key Technologies:

� • Third-Party XML APIs

� • Data-Driven UI Design

� • Design Patterns for Consuming Real-Time Data Sources

� • Data-Driven Cocoa App Architecture

 90

91

91

 Chapter

How FlightTrack Uses
External Data Providers to
Power This Best-Selling
Travel App
The idea for FlightTrack was born, very appropriately, in an airport.

Picture one more weary traveler wandering the endless walkways of Minneapolis–St.

Paul International Airport. This particular traveler is on his way home to visit family at the

end of a relaxing summer spent baking cookies and hanging out with friends. He’s flying

Northwest Airlines through O’Hare International Airport. As usual, he’s awkwardly pulling

a boarding pass out of his computer backpack to remind himself of the flight number,

gate, and departure time, and checking the current time on his watch before realizing

that it was probably time to run.

3

CHAPTER 3: How FlightTrack Uses External Data Providers to Power This Best-Selling Travel App 92

Concerned that the gate might have changed, he squints at the flight information display

monitors, hunting for the flight number printed on the boarding pass. Cancelled. The

running was for naught. It was going to be a long day.

That weary traveler was me last September, as just one among the nearly one in four

passengers every year who experiences flight delays, cancellations, or other so-called

“flight irregularities.”

Focusing initially on the annoyance of the paper boarding pass, I thought, “This could be

better. There should be an iPhone app for this.” Sure, I could type my flight info into the

Notes app on the iPhone, but that didn’t seem as sexy—and it wouldn’t update as my

flight information changed. Moreover, if the app was going to display real-time flight

information updated minute-by-minute, why not include a map view that helped ease

airport pickups and added a fun factor by showing exactly where any flight was on a

map of the world? As a former Apple software engineer who had been looking for a fun

side project, this seemed perfect. I began figuring out how to make it happen.

The chapter you are about to read is structured differently from most chapters in this

book. Since FlightTrack is a live iPhone (and now iPad) app available on the App Store

today, it’s unfortunately not possible to list code samples directly from FlightTrack itself.

However, I hope you’ll enjoy the more conceptual nature of this chapter, in which I’ve

attempted to take you through the process of choosing a data source, designing an

effective user interface, and architecting the backend, using high-level concepts from

the actual design and development of FlightTrack as a running example.

Choosing a Data Source
Most iPhone apps that are not driven by user-entered content are driven by external

data sources. These data-driven applications are the bread and butter of iPhone apps

for checking the weather, navigating streets or backwoods, traveling the globe, and

many more. As a solo developer on this side project, I had no means of developing an

original set of flight data—calling every airline every minute? Photographing flight info

displays? It seemed impossible.

CHAPTER 3: How FlightTrack Uses External Data Providers to Power This Best-Selling Travel App 93

A simple online search was encouraging, though. At least half a dozen flight data

providers appeared in a sea of similarly named services like FlightWise, FlightAware,

FlightView, and FlightStats. No matter what the data-driven app, I found over the past

year that a few basic techniques are helpful in evaluating data providers.

API Design
You’ll be working with the provider’s APIs, whether that means a barrage of XML tags or

dense JSON code. For this decision, the engineer in you should speak loudly: How are

the data fields named? How is the data structured? How many API calls does it take to

do one “operation” in your application, whether that’s refreshing the display or searching

for new data? If it seems that the API design does not affect the user, take another look.

As a mobile developer, you should be particularly concerned about the number of API

calls, since per-request latency is a major issue on today’s cellular data networks. If the

API is returning formatted English text where it might otherwise return structured data,

this could directly influence your user interface design possibilities. Consider the

following XML snippets:

A

<WeatherForecast>
<day>Partly cloudy with a 30% chance of showers</day>
<day>Sunny</day>
<day>Partly cloudy with a 10% chance of showers</day>
</WeatherForecast>

B

<WeatherForecast>
<day showerChance="30" conditions="partlyCloudy"/>
<day showerChance="0" conditions="sunny"/>
<day showerChance="10" conditions="partlyCloudy"/>
</WeatherForecast>

CHAPTER 3: How FlightTrack Uses External Data Providers to Power This Best-Selling Travel App 94

Figure 3–1. Apple’s Weather app is developed from an API that’s more like API B above. The data is heavily
structured so that the developer has much more freedom in making user interface design choices (which
temperatures to display, how to indicate sunny and partly cloudy, and so on).

With API A, you’d better be planning on writing an English-only application that displays

weather forecast data in a textual format. With API B, you’ll have the freedom of

displaying weather condition iconography (assuming a finite set of values for the

“conditions” attribute), displaying the chance of showers in a larger font, localizing to

any number of languages, and so on. It may take a bit more work if you’re developing

the simple display of weather forecast data in text, but the longer-term freedom will be

worth it.

Data Coverage and Accuracy
Your application’s usefulness will be judged largely on the coverage and accuracy of the

data source you choose. Does the data source work in the United States only?

Regardless of the countries covered, what is the coverage like within those countries

(major cities, small towns, rural areas, etc.)? Breadth of coverage is excellent, but what

about depth? Many data sets have both essential and less essential information: to

return to FlightTrack, I knew gate and baggage claim information would be very helpful

both to travelers and to their friends and colleagues making airport pickups.

Excellent coverage is only a plus, though, if given excellent accuracy as well. Not only is

it important that the data be correct, but it must also be as close to real-time as

possible. Your iPhone application will likely not retrieve data more often than every few

minutes, so a data provider with untimely info will be particularly difficult to deal with.

Let the customer speak loudly for this decision. Think of your application in all its

possible usage contexts, being used by all the types of users you can imagine.

CHAPTER 3: How FlightTrack Uses External Data Providers to Power This Best-Selling Travel App 95

Economics
Next, you’ll need your business development hat. Most companies will not permit you to

develop applications that use their data and make money from doing it. These data

companies, like you, probably want to make money in order to continue improving their

data and adding new features. A few application developers I’ve seen over the past

months have decided to forego business terms and steal the data—not only illegal, but a

terrible idea since it is in the data provider’s interest to cut off that stream of data and

disenfranchise you and your app users. A few of the actually acceptable arrangements

you may find include the following.

Attribution
Some companies looking to extend their brand will simply require you to include a

“Powered by X” footer in your application and give you their data for free. Generally, a

win-win for the developer and data provider.

Subscription
Some data providers simply require a flat fee for using their data, whether that’s

monthly, quarterly, or yearly. For a typical application engineer without a business

background, this will seem fairly risky, as you will need to ensure that you make at least

a certain amount of revenue from the application each period. However, with fixed costs

per time period, as your application downloads grow, your application only becomes

more profitable. Not bad.

Transactional
Data companies looking to share in your success often use a transaction-based model

wherein they meter your app’s usage and charge you, the developer, per query. Think of

this like your natural gas bill: If you use 25 cubic feet of natural gas in a given month,

you’ll pay a certain amount. If you use less the next month, you’ll save on your next

natural gas bill.

Though tying payments to usage seems attractive, it poses problems on the iPhone

where, at least to date, an effective means of charging auto-renewing subscriptions has

yet not been developed. If your customers pay you a fee for the application download,

that fee will need to cover all future use of your application. Some users may delete the

app (in which case you or your accountant is happy), but some users may use the app

heavily for years, incurring large costs. Again, as a typical engineer without a business

background, this may seem overly risky. Modeling various scenarios is the way to go,

but beware—there will be lots of unknowns.

CHAPTER 3: How FlightTrack Uses External Data Providers to Power This Best-Selling Travel App 96

Revenue Share
If you’re charging a purchase price for your app, why not simply pay your data provider

a percentage of that and call it a day? This simple arrangement carries no risk for you as

a developer, and requires no complicated accounting on the data provider’s end. Users

can pay once for your application and use it as much as they’d like. The data provider

will likely have server costs to worry about as your application grows in popularity, but

many providers will be willing to consider an arrangement like this if your application

looks like it will be successful. For the provider, this model is still transactional—more

queries means more server capacity and bandwidth—but a revenue share places the

burden of risk on the provider rather than yourself.

On the downside, a revenue share may limit your flexibility to add more data sources in

the future. The Apple developer royalty pie is only so large, and if you’re giving 35% of

revenue to one provider, 25% to another, 20% to another, you’ll need to consider that

there may not be much left for you to buy a Ferrari at the end of the year.

Trials
Most self-respecting data providers, whether providing dictionary data, destination

guides, weather, or something altogether obscure and different will give you an

evaluation account so you can try the data for yourself. This is the time to evaluate

breadth of coverage, depth of coverage, accuracy, and API design so as to weigh these

factors against the business terms that the providers can offer you. For FlightTrack, I

quickly narrowed the field to two consumer-focused data providers. One company had

superior accuracy and coverage (both breadth and depth) but required a transactional

model. For me, that was too risky. I wasn’t a venture-funded startup, I was a single

developer looking for a great side project that would be fun to develop and engaging to

users. That was a deal-breaker for me. I ended up choosing a different company that

covered only the US and Canada and didn’t include gate or terminal info, but had much

less risky revenue-share terms that I could easily deal with.

Source-Driven User Interface Design
I quickly learned that each data provider supplied slightly different information—not only

less or more accurate data, but also different levels of depth and descriptiveness. Some

providers might, for example, list an aircraft type code (“777”) rather than a full aircraft

name (Boeing 777). More major differences such as lack of gate or baggage claim info

can make for substantial differences from provider to provider. All of this means that

designing a user interface for a data-driven application requires considerable attention

to the data source: what depth of data is available, how descriptive the fields are, how

normalized they are, and so on. Of course, the user is the true driving force, but the data

source itself influences user interface design decisions considerably. This section guides

the reader through the process of designing a user interface while keeping data source

limitations and features in mind.

CHAPTER 3: How FlightTrack Uses External Data Providers to Power This Best-Selling Travel App 97

Challenges
Having secured a data provider, I next tackled the user interface design portion of the

application. External data sources add user interface constraints not present in

applications driven by user-generated content, such as games, to-do lists, and so forth.

That’s a challenge I love—human-computer interaction and graphical user interface

design are fascinating to me, and the small screen of the iPhone coupled with external

constraints ups the ante but keeps things fun.

Recall API A, which was previously shown. An API of this sort will severely limit the user

interface design choices you can make when presenting the flight information, because

the data is much less structured. For example, say you wanted to accompany each daily

weather forecast with an image representing the weather for that day. In API A, this

would require guessing at the weather forecast meaning by filtering for keywords

(“cloudy,” “x%,” etc.), which is an extremely error-prone approach that API B avoids

through more detailed data structuring. Perhaps you chose this source for other

reasons, or perhaps this was the only source available for the type of data you needed

to display. Regardless, you’ll need to spend some time thinking about how to work with

the limitations of the API in order to present useful data to users (see Figure 3–2).

Figure 3–2. Depending on the flight, FlightTrack’s flight detail screen may hide more data than it shows. The
result is a user interface that is useful to travelers running through chaotic airport environments, even the most
frequent road warrior .

Another consideration that many developers overlook is simply how much data to

display. A good API will give you a large, sometimes monstrous amount of data to work

with. For FlightTrack, that meant an API that gave potentially nearly a dozen times for a

flight departure or arrival: published gate time, scheduled gate time, estimated gate

time, estimated runway (takeoff/landing) time, actual gate time, actual runway time, and

so on. Only the most professional users will actually have any use for this kind of data

breadth. In my case, a traveler rushing through the airport surely didn’t need to know all

these pieces in order to figure out when to arrive at gate G7. This led to the interface

CHAPTER 3: How FlightTrack Uses External Data Providers to Power This Best-Selling Travel App 98

depicted in Figure 3–2. Of course, your app may have a very professional audience, but

always keep in mind that what you leave out is almost more important than what you

leave in.

Techniques from FlightTrack
User interface designs for FlightTrack started with user narratives. Though I never wrote

out actual user stories, each decision was motivated at least in part by picturing

travelers and other flight trackers in their element, tracking flights for various reasons. A

traveler rushing through an airport terminal to catch a flight is likely looking for live, at-a-

glance departure gate and time info, whereas a grandmother waiting to pick up her

grandchildren from the airport is likely more interested in a live flight tracking map and

arrival gate and time information. You may find it helpful to write out a few types of

stories and annotate them based on what your data source provides: What pieces of

data will most help the user at each point? What pieces will be somewhat helpful?

Which will be extraneous? By keeping your users and data source in mind at all times,

you’ll find yourself developing an application that is not only more useful, but that you

can actually implement once it comes time to parse data and turn it into an iPhone

application.

The design process for FlightTrack then turned to visual interface design. I like to start

with pencil sketches of user interfaces. Some start directly in Photoshop, and some

developers start coding immediately (to the obvious detriment of the final product!). The

tools aren’t important; it’s a matter of progressing from the most freeing medium (pencil

and paper for me) to the most exacting (Photoshop, Illustrator, etc.). Original user

interface sketches for Mobiata’s latest application, TripDeck (created in conjunction with

Mobiata engineer Jason Bornhorst), are shown in Figure 3–3.

CHAPTER 3: How FlightTrack Uses External Data Providers to Power This Best-Selling Travel App 99

Figure 3–3. Initial interface sketches for TripDeck. Note the barebones, wireframe style—the emphasis is on
concepts, not execution.

A full treatment of user interface design techniques is outside the scope of this chapter.

However, you’ll find many references to help you such as books, web sites, and any

particularly forthright friends you might have.

Design Patterns for Data Source Consumption
Having settled on a user interface design, you’ll next want to decide on the client-server

interactions your app may use. FlightTrack requires live flight status information in order

to give up-to-date, reliable, actionable information to travelers and their families, friends,

and colleagues. Distributing this information to iPhones in a scalable way is a challenge,

and two primary patterns for designing these interactions exist.

Direct-Client Consumption
In the simpler approach, each iPhone queries the remote data provider directly. This was

the clear choice for FlightTrack’s initial design: With only one data provider, it was

incredibly simple to write an application that queried the provider directly. I wanted to

avoid server costs and constraints on my end, so that if the application did well, I wouldn’t

need to become a server administrator and worry night and day about whether my server

piece was operational. I preferred to leave that concern to the data provider, which

ultimately was equipped with better expertise and equipment, as shown in Figure 3–4.

CHAPTER 3: How FlightTrack Uses External Data Providers to Power This Best-Selling Travel App 100

Figure 3–4. Direct-client consumption requires no server infrastructure on the part of the developer.

Server-Intermediary Consumption
A more flexible alternative does exist, however: Rather than having each iPhone contact

the data provider directly, point each iPhone to a server application that you maintain

(see Figure 3–5). That server application can then query the data provider directly. This

approach, though it slightly increases latency and requires paying additional server

costs, provides far superior flexibility. If your data provider goes out of business, you can

point the server to a new provider. If you want to supplement your data with additional

information from other sources, you can become a data aggregator without changing

your iPhone app. Some data providers may even require this.

Figure 3–5. Server-intermediary consumption requires added server infrastructure but lends enhanced flexibility
in design and development.

In the case of HotelPal, Mobiata’s live hotel rate, availability, and booking application,

our booking partner Travelocity required secure connections for booking requests to

come from a single IP address. Though the server component required specialized

knowledge to write (our engineer Daniel Lew saved the day here), and though

maintaining the server has required ongoing expertise for the continuous uptime of

HotelPal, this approach has been a boon for flexibility. We can update hotel data and

even some aspects of the user interface presentation by tweaking the server rather than

making application releases. We’ve even been able to improve overall usability by

adjusting which providers we use for reverse address geocoding, or translating vague

user-entered locations like “ann arbor mi” to latitudes and longitudes (see Figure 3–6).

CHAPTER 3: How FlightTrack Uses External Data Providers to Power This Best-Selling Travel App 101

Figure 3–6. Users can type very freeform locations to search HotelPal for available rooms and rates. Adding this
feature post-launch without necessitating an App Store update was made possible through server-intermediary
consumption.

Today, FlightTrack is actually a hybrid of these approaches. FlightTrack consumes data

from three data sources, each specialized for various times of the flight and features of

the application. This data source consumption happens directly from the application, to

avoid server scalability issues that would increase server costs. However, FlightTrack

Pro’s push notifications of airport delays are generated by a server component that

communicates directly with the data provider, to receive notifications of flight status

changes as they happen.

Data-Driven Cocoa App Architecture
A full treatment of object-oriented application design patterns is clearly outside the

scope of this chapter, but I wanted to highlight a few aspects that you may find helpful

in developing your data-driven applications.

Data Model Design
The most important item to attend to in the design of your data object model is

decoupling from the data source. You will surely find it all too easy to design a data

model that perfectly fits the data source you have chosen, with all its design benefits

and idiosyncrasies. But this is the best time in application development to consider the

future: Your users may tell you that your data source is inaccurate, or your data source

may go out of business. Whatever the case may be, you’ll want the flexibility afforded by

a data model design that’s data-source agnostic, designed to accommodate any

idiosyncrasies of your chosen source but not so well molded to it that any other data

source would be a misfit. You’ll find that time here is well spent.

CHAPTER 3: How FlightTrack Uses External Data Providers to Power This Best-Selling Travel App 102

The accompanying code sample demonstrates a data object model design for very

simple weather data. The key point is that regardless of which API is chosen—API A or

API B or one entirely different—this data structure ought to be able to represent the data

effectively. In the case of API A, this may be a bit more difficult given the freeform nature

of the fields, but the goal remains the same: a single data representation, regardless of

the data source.

@interface MyWeatherForecast {
NSArray *_days;
}
// ...
@end

typedef enum _MyWeatherForecastCondition {
 MyWeatherForecastConditionCloudy,
 MyWeatherForecastConditionSunny,
 MyWeatherForecastConditionPartlyCloudy
} MyWeatherForecastCondition;

@interface MyWeatherForecastDay {
 float _showerChance;
 MyWeatherForecastCondition _condition;
}
// ...
@end

Connecting Data to UI
Having developed a beautiful, incredibly flexible data model, you’ll face the problem of

ensuring that the user interface is as up-to-date as possible. When the data source has

updated data, your app’s data will likely refresh through a timer (NSTimer will be your

friend here), but then how will the user interface know that an update has taken place?

In FlightTrack’s case, it was one thing for our data provider to refresh, another thing for

each application to pull in that updated data, but getting the data to the various view

controllers that make up FlightTrack’s interface could be surprisingly complex.

Fortunately, a few design patterns will help you avoid any nightmarish spaghetti code.

Delegates
If you’ve developed an application that uses table views, you’re already familiar with

delegates: UITableView has delegate methods that allow you to customize various user

interaction behaviors and receive notifications when users perform table-related actions,

such as entering editing mode or attempting to rearrange a cell.

This same pattern can apply beautifully to data driven applications in which only one

object needs to be notified of changes to a particular object. Simply add an instance

variable to a data controller object, using Objective-C protocols to enforce the

implementation of certain methods:

id <MyDelegateProtocol> _delegate;
@property (nonatomic, retain) id <MyDelegateProtocol> delegate;

CHAPTER 3: How FlightTrack Uses External Data Providers to Power This Best-Selling Travel App 103

You’ll need to define the MyDelegateProtocol protocol, which is simply a list of methods

that your delegate will need to implement:

@protocol MyDelegateProtocol
- (void)dataDidChange;
@end

Your data controller can simply call this method, if the delegate is set, and otherwise do

nothing. In this way, the data source can let any user interface object know about

changes to the data model, without the inflexibility of needing to know which particular

user interface object is displaying its data.

Notifications
Delegates are simple and clean, but they don’t scale well beyond a single data object. In

a different model, your data source is updated by a controller class, which then sends

out a notification of the change. Any user interface controller objects that need to stay

up-to-date simply listen for notifications and update upon receiving them. This is where

Apple’s NSNotificationCenter comes in.

+ (id)defaultCenter;
- (void)addObserver:(id)notificationObserver selector:(SEL)notificationSelector�
 name:(NSString *)notificationName object:(id)notificationSender;
- (void)postNotificationName:(NSString *)notificationName object:�
(id)notificationSender userInfo:(NSDictionary *)userInfo;
- (void)removeObserver:(id)notificationObserver;

NSNotificationCenter lets each user interface controller object register for notifications

by first retrieving the shared, “default” notification center object, and then by adding

itself as an observer:

[[NSNotificationCenter defaultCenter] addObserver:self�
 selector:@selector(dataDidChange:) name:MyAppDataDidChangeNotification object:nil];

This call registers the current object (self) to receive notifications called

MyAppDataDidChangeNotification. I’ve left the optional object parameter nil in this

sample; see NSNotificationCenter documentation for details on scoping notifications by

object. In the data source, you define MyAppDataDidChangeNotification simply as a

string:

#define MyAppDataDidChangeNotification @"MyAppDataDidChangeNotification"

Then, post notifications whenever data changes:

[[NSNotificationCenter defaultCenter] postNotificationName:�
 MyAppDataDidChangeNotification object:self userInfo:nil];

This all automatically calls the appropriate methods in the observer classes, optionally

passing additional information, stored in the userInfo NSDictionary parameter, to the

observers of this notification. Bingo. Each object is up to date.

CHAPTER 3: How FlightTrack Uses External Data Providers to Power This Best-Selling Travel App 104

Setter Propagation
An alternate approach that combines the simplicity of delegates with the multiobserver

power of notifications is one I’ll term setter propagation. This model works particularly

well with the hierarchies of UINavigationController objects that typically appear in

navigation-based iPhone applications: The front screen of the app is replaced by a detail

view (“pushed” into view), which is then replaced by a more detailed view, and so on. In

this model, any data source changes will neatly cascade up the stack of navigation

controllers without any need for notifications flying around to all objects at once. Here’s

how to do it:

1. Set up a delegate pattern with the top-most controller in your navigation

stack. In FlightTrack’s case, that meant that the application delegate

(later moved to a flight data controller class, FTFlightManager) made

queries to the flight data server and waited for their properly parsed

responses.

2. Create a setter in your user interface controller. For FlightTrack, the

top-level flight data controller set an NSArray property on

FTFlightListController, the table view controller that displays the list

of user flights.

3. Override the setter in your user interface controller to propagate the

changes upward. FlightTrack’s FTFlightListController’s -
setFlights: method ensured that any currently displaying view

controller was informed of the new flight info by a -setFlight method.

4. Repeat from step 2. Each view controller is responsible only for telling

its “child” view controller about the data that that child needs to know

about.

In this way, through only one delegate point of contact (step 1), your entire application

user interface can be kept up to date.

Choosing an Approach
The approach you choose will depend on how complicated your application is, how

many controllers are involved, and how they relate to one another. I’ve found that setter

propagation is simple and natural, but in practice notifications can actually work better

and be more flexible. You may want to start with notifications, since the cascading of

setter propagation can be a tad more difficult to debug, but most of you should

experiment and see what works best for you.

CHAPTER 3: How FlightTrack Uses External Data Providers to Power This Best-Selling Travel App 105

Release!
It’s what all developers anticipate endlessly. Having settled on a data source, developed

intuitive user interface designs that reflected the ways I thought users would interact

with flight data, designed a data source consumption model and Cocoa app

architecture, and then having actually implemented the nuts and bolts that hold

everything together, it was time for some testing. I didn’t have the luxury of a QA staff

that we had at Apple—a team of smart folks who are pros at breaking code. I simply left

my development machine, went to the couch, and started poking around as a user,

uncovering a few bugs and noting them as I went.

I also recruited a few beta testers by posting messages to iPhone enthusiast forums.

One beta tester was especially helpful, testing out numerous versions of FlightTrack and

finding, on more than one occasion, major bugs that would have resulted in terrible

reviews and a malfunctioning app.

After a few weekends and late weekday nights spent at Goodbye Blue Monday coffee

shop, drinking cappuccinos and typing ever more furiously (caffeine can be a wonderful

thing), FlightTrack made it to completion and I submitted it to the App Store in early

November. After a lucky two-week review time, Apple approved the app and it went live!

Post release, I did encounter a few problems that tested decisions made throughout the

process. Most importantly, it turned out that the initial data provider did not provide

good coverage of pre-takeoff delays and cancellations, because the provider’s clients

were primarily limo drivers and other ground transportation agents who care more about

arrivals. This, coupled with a colossal snow storm and airport closures nationwide on

Thanksgiving weekend in November, meant my e-mail box was flooded with users who

were upset that the app hadn’t notified them of delays and cancellations. Moreover,

users wanted gate info, international flight data, and so on. Other data sources had this

data well covered but presented other limitations, such as only being able to search a

few days in advance.

Through some clever feature implementation, and eventually by partnering with

additional data providers, I was able to get around these issues. Talking frankly with

the data source about coverage to make sure that I had the right expectations would

have been helpful. The original data provider didn’t have a bad product; it just wasn’t

that suitable for our use, and it would have avoided some tough telephone calls to find

that out earlier.

FlightTrack Today
Today, FlightTrack is maintained by a team of engineers at Mobiata, including myself.

Marshall Weir’s server background means he maintains the push notification server,

though he also writes plenty of new features into the app. Daniel Lew has contributed

some major backend improvements (even an Android version), and Jason Bornhorst has

developed features as well. The app now exists in a Pro version as well, which adds the

push notifications and syncs with an online itinerary service. An in-app purchase makes

CHAPTER 3: How FlightTrack Uses External Data Providers to Power This Best-Selling Travel App 106

the upgrade process seamless. We’ve attempted to present users with the best of all

worlds—graphical flight maps from a provider that specializes in those, FlightStats flight

data that covers the world with excellent depth, and flight schedule data that fills in

scheduled airline flight information for up to 330 days in advance. It’s taken a huge

amount of hard work to get here, but in the end, it’s the happy stories of users who were

able to spend time with their kids at an airport restaurant rather than waiting at the gate

for a delayed flight, or people reassured by knowing where their spouses are, that make

it all worthwhile.

107

Saul Mora
Company: Magical Panda Software, LLC

Location: Phoenix, Arizona

Former Life as a Developer: Prior to jumping in head-first to the iPhone waters,
Saul worked at IBM on Java applications, Intel on C# web applications, and then
a Phoenix-area startup on Ruby on Rails web applications. Saul started his
journey into Mac development when he bought his first MacBook Pro in late
2007. It's been a wild ride since then, and he wouldn't trade it for anything!

Life as an iPhone Developer: In between jobs as an independent iPhone
developer and consultant, Saul has managed to squeeze in some time to publish
a couple of apps on the store that he needed himself. Saul is an active member
of the Phoenix-area developer community, with contributions at the Phoenix
iPhone Developer user group and local Cocoaheads meetings. Saul spoke on the
benefits of unit testing at the April 2010 360iDev iPhone developer conference in
San Jose.

Apps on the App Store:

� Freshpod

� Desert Code Camp Schedule

� DocBook (as a consultant)

What's in This Chapter:

� What is Unit Testing?

� What is it in Cocoa?

� Why do you need to test your code?

� How do you test your code (quickly)?

 108

Key Technologies:

� XCode

� SenTest, GHUnit or Another Cocoa/Objective-C Unit Testing
Framework

� OCMock

109

109

 Chapter

Write Better Code and
Save Time with Unit
Testing
Along my journey as a professional software engineer, I have encountered few

developers eager to write code that exercises their code. In a typical structured

environment, management is usually the least excited about developers writing unit

tests because they assume it takes them away from actually writing production code.

Some developers proudly proclaim that their code is perfect the first time, and will fly

through the testing phase of development only to be shocked when their flawless

creation of art and code has been returned, unapologetically, by some random QA guy.

You know this scenario: That random guy in QA is the iTunes AppStore approval

process. While approval times have gotten better, wouldn’t you like to know that when

you submit an app for approval that you have run your app through a thorough battery

of tests that you’ve handcrafted over the lifetime of the app’s development? I feel much

more confident giving an app to the AppStore approval gods, or a client, once it has

passed my suite of unit tests. This doesn’t mean I’ve caught every bug to be found. But

it does mean that old bugs don’t show up. It also means that the new features I add

don’t break existing code, and those simple assumptions that I had taken care of six

months ago when I started working on the app are taken care of, once and for all.

With all the cool things to write (and read) about, why do something on, of all things, unit

tests? Unit tests are boring. OpenGL, MapKit, or GameKit is where the hotness is with

games, location-based applications and peer-to-peer connectivity, so who has time for

unit testing? Besides, this code is never going onto a customer’s device anyway, so why

waste time on it in the first place?

The simple answer is that Unit Tests will return your time investment tenfold. It may not

feel like it when you’re writing tests and getting things set up, but every test you write

will make your code more solid, flexible, reusable, documented, and easier to read. After

4

CHAPTER 4: Write Better Code and Save Time with Unit Testing 110

a while, you will also start to notice that tested code will be written in smaller, more

understandable chunks. Methods will be fairly concise and easily understandable.

One big advantage to testing your code is that you will rarely use the debugger. Why use

the debugger to step through your code when you have something that verifies the

method is returning the correct value automatically? It turns out that minimizing your

time spent in the debugger will speed up the time it takes to complete your app with a

higher level of quality. You just don’t realize how much the debugger slows you down

until you’ve essentially automated that process. So, if you think unit testing takes too

much time, ask yourself how much time you spend in the debugger.

Unit Tests are something even Apple Engineers are starting to pick up. A blog post
1

 by

long time Apple Engineer, Bill Bumgarner explains at length why the Core Data team has

unit tests around the Core Data framework, and how it has greatly improved the quality

of the framework, the quality of the code, and allows new team members to make

drastic changes while at the same time making the code simpler and easier to

understand.

XCode has a unit testing library built-in called OCUnit. The OCUnit framework that

comes with XCode is based off an old third-party framework called SenTest.
2

 I have

found that the built-in library has a few problems that make it more difficult to use:

� Setting up unit tests in XCode is difficult and error prone.

� Not all that useful since you can’t debug the tests when necessary.

� Not terribly in vogue among other cocoa and iPhone Developers.

The built-in Unit Testing project works, however I find the experience to be difficult at

best. By default (and with no easy way to change this behavior), unit tests are run every

time you build your project. When tests pass or fail, they show up in the build results

window. While that isn’t so bad, the tests aren’t necessarily debug-able from XCode.

This is not quite useful, nor ideal. This ties your tests too close to your app.

Cocoa itself is actually an ideal framework for unit testing. Back when you were learning

the basics of Cocoa, don’t you remember something about the Model-View-Controller

pattern, and how it was built into the framework? You use Views and ViewControllers all

over your app, and if you use Core Data, you have implemented Models. Plain old

Objective-C objects are Models as well. The MVC pattern lets you easily partition your

app into components that are easier for testing and replacing.

Let’s go over the basics of installing a Unit Testing framework that will get you started

running unit tests against your iPhone Applications quickly and easily.

GHUnit, written by Gabriel Handford, is a newcomer to the Cocoa Unit Testing

Framework space. GHUnit was written to address many of the shortcomings of the unit

testing framework built into XCode, OCUnit. GHUnit (available on Github.com at

1 http://www.friday.com/bbum/2005/09/24/unit-testing/
2 http://www.sente.ch/software/ocunit/

CHAPTER 4: Write Better Code and Save Time with Unit Testing 111

http://github.com/gabriel/gh-unit) is an open source alternative to OCUnit and builds

off the unit testing part of Google’s Mac Toolkit. GHUnit is actively developed, and has

several lofty goals, mostly filling in the gaps where the built-in tool lacks. The most

notable, and perhaps useful, goal is:

� The ability to debug unit tests.

GHUnit also excels in other areas that OCUnit makes difficult, such as:

� A stand-alone unit test running app that runs on the simulator and,

more importantly, on your devices.

� Being easier to install, correctly, the first time.

� Being easily run from the command line for regularly scheduled

testing.

GHUnit provides a nifty unit testing harness. This harness does all the heavy lifting of

scanning the compiled test library for subclasses of GHTestCase, reading those

subclasses for all the test methods, running them, reporting broken tests—all in a helpful

user interface that runs both on the iPhone simulator and your devices.

Let’s install GHUnit into a default XCode Project. Be sure to download GHUnit from

http://github.com/gabriel/gh-unit/downloads. You’ll be using version 0.4.12 for

iPhone OS 3.x for the remainder of this chapter. The GHUnit package file will contain

several header (.h) files and a static library file, in addition to a couple of other contents

that will be used to build and run your unit test project.

One important thing to keep in mind while installing GHUnit is the Configuration into

which you are installing. A Configuration in XCode is a simple way to maintain a group of

build settings for a particular part of your application’s development and access them by

a name. I normally keep tests in the Debug configuration, as this is the default selected

configuration in any new XCode project, and they won’t be accidentally included in the

released application when using the Release configuration. However, there is no limit to

which configurations your tests can be run.

First things first, you need to create a new project in XCode. I’ll be working with a View

Based Application Template, however, these steps will work with any application

template. Let’s name the project MusicPlayer (see Figure 4–1).

CHAPTER 4: Write Better Code and Save Time with Unit Testing 112

Figure 4–1. Making a new view-based XCode project called MusicPlayer

Next, you need to add a new build target, as shown in Figure 4–2. Control-click on the

target item in the Groups & Files pane in XCode, and select “Add ➤ New Target...”. Set

the type as Application. Ignore the Unit Test Bundle here, as you’re creating your own

test suite. Then, click Next. Give your new Build Target a name, MusicPlayerTests. I

typically use the convention “<ProjectName>Tests”. This new build target will be a place

where all the unit test code will be collected specifically for unit tests. This is how you

will separate your application code from your unit test code.

Figure 4–2. Adding a new Build Target to your project

The next step in creating a new build target is to include libraries and bundles required

to build and run the target. If you do not already have the Target Info window open,

Control-click on MusicPlayerTests target, and select “Get Info”. Select the name of the

other build target, MusicPlayer as seen in Figure 4–3. In the MusicPlayerTests General

tab, click on the plus icon under the Direct Dependencies section shown in Figure 4–4. By

adding this to the unit testing target, your shipping app will be built (based on normal

compile rules) when you build your unit tests.

CHAPTER 4: Write Better Code and Save Time with Unit Testing 113

Figure 4–3. Select the Direct Dependent library, MusicPlayer

Figure 4–4. To add the proper libraries to the Unit Testing target, you will need to click the Plus icons to display
the available libraries.

CHAPTER 4: Write Better Code and Save Time with Unit Testing 114

This essentially makes sure that when you run your unit tests, they are being run against

the latest code you’ve written.

Next, click the Plus icon under the Linked Libraries section in the General tab. These are

the runtime Frameworks that you need in order to run the unit test harness GHUnit

provides (see Figure 4–5). The unit test harness is essentially the main UI Application

that will run your tests, and show whether they have passed. Make sure to select the

following, then click add:

� UIKit.framework

� Foundation.framework

� CoreGraphics.framework

Figure 4–5. The minimum required libraries for GHUnit are CoreGraphics.framework, Foundation.framework, and
UIKit.framework.

There is one last step to configure in the Test Build target window before you can install

your unit tests. Select the Build tab and you will see all the preprocessor, compiler, and

linker options available for configuration. Let’s get to the one option you need to alter,

“Other Linker Flags” (see Figure 4–6). In the search bar, start typing “linker”, and the

option will be easily visible in the Linking section. Add the following parameters to this

option:

-all_load –ObjC

CHAPTER 4: Write Better Code and Save Time with Unit Testing 115

 Figure 4–6. Debug configuration linker flags in the Build tab for the MusicPlayerTests target

Now, you have a new build target specifically for running your unit tests and unit testing

harness; however, you still haven’t included the GHUnit libraries yet. Before you do, let’s

set the Active Target to your new Unit Test Target. Do this by selecting the Project menu

item, “Set Active Target ➤ <YourProject>Tests”. In your case, you’ll be selecting

MusicPlayerTests. Only one build target can be the Active target at a time. A little green

checkbox in the target list will indicate that your test target is indeed the Active Target.

Let’s add the GHUnit Libraries, now that you have your unit test build target set up.

First, let’s add a Tests folder to your project. I like to add an actual test folder in my code

directory, and add that to XCode so that all my tests are in their own little area which is

not part of the application code. This way, when you create new tests within XCode

within the Tests folder, they will be created in this actual folder.

Next, grab the GHUnit Library you already downloaded, and copy it to the Tests folder

you just created in XCode. The easiest way to do this is to drag the entire folder you

downloaded into the folder structure of XCode. Make sure the little blue indicator

appears as a sub item of the Tests folder in order for the destination to be in the Tests

folder, as shown in Figure 4–7.

CHAPTER 4: Write Better Code and Save Time with Unit Testing 116

Figure 4–7. The GHUnit folder in XCode will contain all the files required to compile and run the unit test harness
for your unit tests

In the “Add Files” Sheet that appears after dragging your folder into XCode, make sure

that the MusicPlayer target is checked, while the MusicPlayerTests target is checked

(see Figure 4–8). Doing this adds all the files into their proper places in your unit testing

target by default. Now, your unit test project should be properly configured.

Figure 4–8. When copying external files into your project, make sure you have the copy option selected, and
select the MusicPlayerTests target.

CHAPTER 4: Write Better Code and Save Time with Unit Testing 117

You’re now ready to add actual unit tests to your project! Don’t let this process scare

you. It is only done once per project, and can be done in about five minutes.

You’re going to start building unit tests for a simple app that will grab some items

(MP3s, podcasts, or whatever else is there) from the built-in iPod library on a device,

and insert those objects into a Core Data store
3

. Plus, you’re going to have unit tests for

all moving parts you write. First though, you have to learn how to write a unit test and

how to run it.

With GHUnit, as well as OCUnit, you specify a test by implementing a new method in

your GHTestCase subclass that begins with the word “test”. So, all your tests are going

to look like the following:

- (void) testSomething {}

After a while, you may notice that many tests look similar. That is, you are setting up

your tests in a similar fashion for each test case. To help keep your tests clean and

usable, GHUnit provides four wrapper methods in each test case:

� - (void) setUp;—Called once before every unit test method in your

GHTestCase.

� - (void) tearDown;—Called once after every unit test method in your

GHTestCase.

� - (void) setUpClass;—Called once before all tests are run, and

before the first time setUp is called.

� - (void) tearDownClass;—Called once after all tests are run, and

after the last tearDown is called.

Define one or more of these methods when you find your tests have some setup or

teardown commonality.

The unit test harness will dynamically scan your test executable for all GHTestCase

subclasses, and look for all methods whose names start with “test” within those classes.

It will then run each method in the order it chooses (generally alphabetically by method

name). For the iPhone, each test will appear in a section on its own based on the

GHTestCase subclass in which it is defined.

Add a new NSObject class file to your Tests folder in XCode, and call it

PlaylistControllerTests.m. Make sure the Unit Test Target is checked, and uncheck the

Project Target so that the tests are only built when you build the test target. Since you

created the test case class from a default NSObject template, you will need to make a

couple of modifications to the file to transform it into a GHUnitTestCase:

At the top of the PlaylistControllerTests.h file, add

#import "GHUnit.h"

3

 This application will only run on iPhone OS 3.0 or higher, since the CoreData and

MPMediaPlayer frameworks were only introduced in this version.

CHAPTER 4: Write Better Code and Save Time with Unit Testing 118

and, change the superclass of the class to

 GHTestCase

This new unit test class will contain all the test cases you are going to write. It should

look like Figure 4–9.

Figure 4–9. Class definition of PlaylistControllerTests, your first test case

In the PlaylistControllerTests.m file, you’re going to add a simple test for sanity checking

your install.

- (void) testFirstUnitTest
{
 GHAssertEquals(1, 2, @"If this works, the universe has contradicted itself");
}

One of the core aspects of unit testing is assert macros. After all, you are trying to verify

that return values from methods are within your own specifications. GHUnit contains a

set of predefined macros that help with comparing actual results with expected results

in your test. The full list is on the GHUnit project page; however, the basic format of

each macro is the first two parameters are what will be compared, while the third

parameter is a description of why the particular result is expected, which will be

displayed in the output window if the test were to fail.

Click Build and Run (or Command + Return) and you should see the iPhone simulator

appear, with a new UI (this is packaged with GHUnit). The test named “testFirstUnitTest”

CHAPTER 4: Write Better Code and Save Time with Unit Testing 119

is in black. Tap Run, and you should see the name of the test turn red, indicating that it

has failed (see Figure 4–10). Hooray! (As of this writing, GHUnit support for the iPad and

the iPad simulator was still being finalized.)

Figure 4–10. The GHUnit unit test runner application on the iPhone simulator

Now, you can easily fix this by changing the assertion to test that 1 is indeed equal to 1,

but maybe you want to do something a little more complex.

Your application’s goal is to create a list of PlaylistItem objects, based off the

MPMediaItems you can get from the internal iPod Library, and save them into a

CoreData store. Let’s write one test that gets you going:

- (void) testCreatePlaylistItemFromMPMediaItem
{
 MPMediaItem *sampleItem = [[MPMediaItem alloc] init];
 PlaylistItem *testItem = [[PlaylistItem alloc] init];

 [testItem readMediaItem:sampleItem];

 GHAssertEquals(testItem.title, @"My Title", nil);
}

This seems like a simple test. However, since you’re writing it before writing your

application code, this forces you to do quite a few things even before you can compile

your code, let alone run it. To be sure, the list of steps required to run your tests is

identical to what you would need to do without tests, so the added value of tests here is

that they guide in telling what needs to be done next.

The things that need to be done in order for this test to work are as follows:

CHAPTER 4: Write Better Code and Save Time with Unit Testing 120

� Import the MediaPlayer.framework library, and add it to the Link steps

in both the unit test, and project targets.

� Create a PlaylistItem class.

� Add the preprocessor directive #import <MediaPlayer/MediaPlayer.h>

to the PlaylistItem header, and your test case.

� Add the PlaylistItem.h header to your test case file.

� Create a readMediaItem method on your PlaylistItem class.

� Create a title Property on your PlaylistItem class.

That’s a long list of things to be done since you wrote the test first. But these steps will

always need to be taken regardless of whether you include tests in your application. The

exercise of writing the test first only verified that these steps were, in fact, required for

the application to work. This is indeed valuable information because you only want

enough code and libraries for your app to work and nothing more.

After you complete the quick list of to-do’s your non-compiling test just gave you, do

simplest thing possible to make the unit test pass in the readMediaItem method,

namely:

- (void) readMediaItem:(MPMediaItem *)mediaItem
{
 title = @"My Title";
}

What value is there in that, you ask? Well, since the test was failing before, if you run it

now, you know it passes. The simple information that you know the test is running

against actual application code is valuable information. Now, it’s time to make the test

fail again. But how? There is no way to set a title property on an instance of a

MPMediaItem since it’s a system provided, readonly object. Heck, this implementation

isn’t even using the mediaItem parameter, and the test still passes, something smells

funny here.

Mock Objects
Quite simply, mock objects are a class of objects that stand in for the real thing. Think of

a mannequin at the mall. Mannequins are essentially mock objects, since they fill in for

the real object (a person instance). They don’t replace the functionality of the real object,

but do a good enough job (of displaying clothes) to let you understand how well the

function works (how does the shirt look unfolded).

You may be wondering, “Why do I need a mock object? Shouldn’t I be writing tests on

REAL objects?” The answer to that is, you are. The mock mannequin has a definite

purpose which is that a person isn’t moving or getting bored. Mock objects make it

easier to set up scenarios that occur in real applications, so in a sense they’re even

better than the real objects because of this control.

CHAPTER 4: Write Better Code and Save Time with Unit Testing 121

Take, for example, a typical Twitter app. Back in the early days of Twitter, the web

service would display the “Fail Whale” quite often. But if you were to write a test that

touched the actual network to test for a failed connection, it would probably not pass all

the time. That’s because the Twitter service, for all the Fail Whale stories, was up most

of the time. In order to induce a Twitter connection problem in your app, you could

unplug the network cable from your machine, turning off your Airport card or any

number of other means for manually disconnecting the app for testing. With mock

objects, however, you can simply command your Mock Twitter Connection to fail for one

test, and you can then design the app to handle that one issue appropriately. This is the

power of mock objects.

OCMock is a mock object framework for Objective-C. But why would you need a whole

framework for mock objects? Shouldn’t you be able to create these as new classes in your

tests? While this is certainly possible, the reason you need a whole framework is because

several aspects of creating mock objects from real objects (or rather, classes), and

reacting to real objects are the same. All instances of mock objects created by OCMock

behave the same way. That is, they will all keep track of the real expectations of your real

objects, keep track of the methods that are or aren’t called, and fail accordingly.

To get started with OCMock in your test project, download version 1.55 of the OCMock

Framework
4

. Copy the OCMock.framework folder from your Downloads folder to your

Tests folder, and make sure the Test target is checked, and not the main application

build target. Also make sure at the top, that Copy Files is checked as well.

When you add OCMock to the MusicPlayerTests target, OCMock will automatically be

added to the “Link Binary with Libraries” section of the MusicPlayerTests target. This

alone won’t get OCMock running the on the iPhone simulator. You will need to add a

custom build step to copy the library to your unit test application bundle.

1. First, create a new Copy Files build phase in the Unit Test Project (see

Figure 4–11).

Figure 4–11. Use the New Copy Build Phase option to copy the OCMock static library into your unit test
application bundle to use mock objects in your unit tests.

4

 http://www.mulle-kybernetik.com/software/OCMock/

CHAPTER 4: Write Better Code and Save Time with Unit Testing 122

2. Set the destination to $(BUILT_PRODUCTS_DIR), as shown in Figure 4–12.

Figure 4–12. Set this custom copy files phase to copy OCMock.framework to the Absolute Path of your unit test
application bundle.

3. Drag the Copy Files phase to just before the link framework step in the

build target (see Figure 4–13).

Figure 4–13. Copy OCMock.framework to the unit test application bundle before linking. Otherwise, the link step
will fail.

4. Drag the OCMock.framework item within XCode to this new phase.

OCMock is now ready for use within your project.

To use OCMock in your unit test files, you must add the proper import statement to the

top of your test case (.m) files:

#import <OCMock/OCMock.h>

Now that you have a mock object framework installed, you have the ability to write the

following test:

- (void) testCreatePlaylistItemFromMPMediaItem
{
 MPMediaItem *sampleItem = [OCMockObject mockForClass:[MPMediaItem class]];
 [[[sampleItem expect] andReturn:@"My Title"] �
valueForProperty:MPMediaItemPropertyTitle];

 PlaylistItem *testItem = [[PlaylistItem alloc] init];

 [testItem readMediaItem:sampleItem];

CHAPTER 4: Write Better Code and Save Time with Unit Testing 123

 GHAssertEquals(testItem.title, @"My Title", nil);
 [sampleItem verify];
}

Notice a few things about this test:

� If you run it now, it will fail.

� You don’t perform an alloc/init for a “real” MPMediaItem instance,

instead, you’re creating a mock instance.

� The mock instance is now expecting that you call a method named

valueForProperty, with the explicit parameter

MPMediaItemPropertyTitle.

� After the assertion passes, you must verify that the mock object met

its expectations, which leads to the test failure in the unit test runner

on the iPhone simulator.

Using a mock object here makes sense because, even in your real production code, you

never actually create an instance of an MPMediaItem object. Instead, you perform a

query using MPMediaQuery, which returns pre-allocated and initialized instances. Also,

notice that while you are running a test app that references the MediaPlayer.framework,

if you tried to run a normal app in the simulator, it will not work since there is no iPod

application. The MediaPlayer framework requires the iPod application to function

because an MPMediaItem is, under the covers, a proxy to an internal object reserved for

direct use only by the internal iPhone applications. You have overcome this limitation by

simply working around this fact with a mock object that looks and acts good enough for

your code to keep running based on what you know about the (documented) Cocoa

APIs. This is the core of why you need mock objects.

How can you make your test pass? Let’s try the following:

- (void) readMediaItem:(MPMediaItem *)mediaItem
{
 title = [mediaItem valueForProperty:MPMediaItemPropertyTitle];
}

This is a simple, straightforward implementation. However, this makes your test pass. If

you want to verify that this is indeed checking the parameter passed to the

valueForProperty: method, you can change it to MPMediaItemPropertyGenre, and watch

it fail on the next run. The fact that the test fails for anything other than what is expected

is valuable information.

You might be thinking “Golly gee willikers, there’s a whole lot of stuff to do just to get

the first line of production code to pass just one test.” And, “There’s about five lines of

code just to get one single line of application code written. I could have saved all those

steps.”

You’re right, there’s quite an investment not only in setup, but in authoring tests in the

first place. However, let’s think about how this will logically progress. Will the second

test cost more to write? Not too much, since the setup is done, you can get to the next

CHAPTER 4: Write Better Code and Save Time with Unit Testing 124

test fairly quickly. And the next one after that, and so on. After a little while, you can

have a tested application that gives you quite a bit of useful information:

� If you broke something, you will know right away what broke and

where.

� By knowing that all tests pass before you move on to the next one,

you can easily build on that foundation.

In most tested code I’ve ever seen or written, the ratio of test code to actual code is

around four to one. That is, about four lines of test code leads to one line of app code.

The one method you tested is a single line of simplicity. However, your test is a

perplexing six lines. This will often be the case in tests, since there is going to be some

setup involved in creating test instances, verifying mocks, and asserting values are

correct. Keep your test code clean and as well maintained as your app code. When it

comes time to change up a test because an application-wide assumption changes,

you’ll find it easier to change.

Now that you have a fully functioning test environment, utilitize mock objects and are

testing your code before you write it. Let’s discuss some techniques on how to test

certain parts of your application.

Objective-C categories are like puppies: they’re fun, cute, and cuddly until they poop in

your favorite shoes. Categories give you unlimited flexibility to extend any Objective-C

class without subclassing it. This is great for adding that one method on NSString that

you think should be there, without getting into the problems of subclasses or submitting

a bug report, hoping Apple will see things your way. With great power, comes great

responsibility. You must make sure that your new categories are working correctly, and

not trampling over existing functionality. So, let’s go over how you would test a

category.

For this example, you’re going to extend NSDate to have some simple to use methods

such as
5

(void) mp_isBefore:(NSDate *)otherDate;
(void) mp_isAfter:(NSDate *)otherDate;
(void) mp_isEqual:(NSDate *)otherDate;

First, you’ll create a new GHTestCase class called NSDate+HelpersTests. I generally put

categories in files named for the object I’m extending and append ‘+Helpers’, or another

descriptive name when necessary. Create a new test:

- (void) testNSDateImplementsIsBefore
{
 NSDate *testDate = [NSDate date];

 BOOL result = [testDate respondsToSelector:@selector(mp_isBefore:)];

5

 One convention to avoid category collisions in your code is to prefix your category names in

the same vein that all Cocoa classes have a prefix convention of NS. mp_ is the designated

convention for Magical Panda.

CHAPTER 4: Write Better Code and Save Time with Unit Testing 125

 GHAssertTrue(result, nil);
}

What are you doing here? You’re checking that an instance of NSDate has your new

category by checking if it respondsToSelector. If you run this test prior to actually

implementing the basic category, this test will fail. That is good news since you can see

a difference from before adding the category and then after. So, let’s make the test

pass:

� Add a new file called NSDate+Helpers.(h m) and make sure both test

and project build targets are selected.

� Add the following category implementation:

//NSDate+Helpers.h
@interface NSDate (Helpers)

- (BOOL) mp_isBefore:(NSDate *)otherDate;

@end

//NSDate+Helpers.m
@implementation NSDate (Helpers)

- (BOOL) mp_isBefore:(NSDate *)otherDate
{
 return NO;
}

@end

Next, select Build and Run from the menu and the previous test should pass. You have

now extended NSDate with a new method, mp_isBefore:(NSDate *)otherDate. Now, let’s

make sure mp_isBefore works as expected.

- (void) testSelfIsBeforeDistantPast
{
 NSDate *testDate = [NSDate date];

 BOOL result = [testDate mp_isBefore:[NSDate distantPast]];

 GHAssertFalse(result, nil);
}

- (void) testSelfIsBeforeDistantFuture
{
 NSDate *testDate = [NSDate date];

 BOOL result = [testDate mp_isBefore:[NSDate distantFuture]];

 GHAssertTrue(result, nil);
}

These two tests cover the simplest test cases I can think of to test next, namely what

happens when you compare the current date (the result of [NSDate date]) with the largest

and smallest date values available. Running these tests will result in one passing and one

CHAPTER 4: Write Better Code and Save Time with Unit Testing 126

failing. That’s because you gave mp_isBefore a default return value of NO, so for the first

test, this result will be correct. Let’s make isBefore something a little more useful:

- (BOOL) mp_isBefore:(NSDate *)otherDate
{
 return [self compare:otherDate] == NSOrderedDescending;
}

Now, if you run your unit tests with this implementation, both will fail. This is the

incorrect constant you are comparing to. The correct constant should be

NSOrderedAscending. Change that the right side of the comparison to

NSOrderedAscending, and you have it passing tests again. You’re on a roll. Let’s see

what happens when you compare the date to itself.

- (void) testSelfIsBeforeSelf
{
 NSDate *testDate = [NSDate date];

 BOOL result = [testDate mp_isBefore:testDate];

 GHAssertFalse(result, nil);
}

Let’s step back and think about why this test is necessary. If two dates are equal, then

they are not greater than or less than each other. The mp_isBefore operation will cannot

return true for equal dates. This test is saying, in a sense, that today cannot come before

today. While this may seem obvious, it is these types of foundational tests and

assumptions that applications are built around. Nailing down these assumptions with

tests will make it easier for you to find real errors faster.

However, there is a problem with this test as it is now: it already passes without adding

code. It’s more important that the test fails first, then passes to make sure that the code

is actually being executed. Ideally, this shouldn’t happen, as you want to add tests that

fail first so you know they are working only against the new code. Practically speaking, it

is fine if you manually make this test fail through the implementation of the method being

tested. That is, you can make sure this test is checking the method correctly by breaking

the method in its current working form to something that doesn’t work, such as the

following:

- (BOOL) mp_isBefore:(NSDate *)otherDate
{
 return [self compare:otherDate] == NSOrderedSame;
}

This same process and similar tests can be repeated for correctly tested

implementations of mp_isAfter: and mp_isEqual: category methods.

However, let’s try writing a test for isEqual, without your mp_ method prefix:

- (void) testNSDateImplementsIsEqual
{
 NSDate *testDate = [NSDate date];

 BOOL result = [testDate respondsToSelector:@selector(isEqual:)];

CHAPTER 4: Write Better Code and Save Time with Unit Testing 127

 GHAssertTrue(result, nil);
}

This test will pass since isEqual is a method on NSObject, and all objects will have a

default implementation for isEqual. Since this test passes without your own

implementation, you need to make a choice. You can do either of the following:

� Overwrite the implementation of isEqual for all NSDate instances in

your application

� Choose another name for your category

Of course, since you are choosing to name your methods with the mp_ namespace, you

won’t be overriding built-in methods. The unit test you wrote reveals the implications of

your design decisions right away, and leads to better method naming conventions for

your categories. This should lead to less hair pulling in the future as you will be 100%

sure that there isn’t a category overriding functionality, as well as knowing that

functionality works as expected when it is used.

Testing Your Core Data Models
Core Data is a convenient way to persist objects in your application. While it is an object

storage mechanism, the underlying SQLite store gives you a better idea of how it stores

its data. Using the fact that your app is backed by SQLite does not change the way you

test your Core Data models.

There is a philosophy of MVC development that tries to emphasize the Skinny-

Controller-Fat-Model paradigm. That is, your controllers (not your View Controllers)

should be fairly lightweight code, while your Models should have most or all of your

application logic. The reason being that Models are easier to test since they contain no

UI. By having simple controllers, they are easier to test even though they will eventually

require UI interactions; those are simple and less error prone to begin with. Another

reason to have more isolated models is that your resulting code will be more portable

should you decide that extending your app to the Mac platform is the next step.

While any NSObject is essentially a Model in Objective C, Core Data is a powerful way

to build Models and persist instances of your Model objects. Core Data has a great

built-in Entity Modeling tool that basically lets you configure your schema with entities,

their attributes and relationships. In fact, this mechanism can be thought of as Interface

Builder for your data model. Once your data model is defined in the Core Data Entity

Modeling tool, it’s fairly simple to persist these models to disk, and herein lies the

problem.

Bringing unit testing into the picture, you can test many aspects of your data model,

specifically the additional logic you place in each Entity or NSManagedObject subclass.

In this way, unit testing your model classes is very similar to testing any other normal

object. However, there are a couple of caveats in this approach.

First, in order to create an instance of an Entity in Core Data, it needs to be defined in an

NSManagedObjectModel. The built-in Entity modeling tool in XCode defines that model

CHAPTER 4: Write Better Code and Save Time with Unit Testing 128

for you. After you have a model, you have to create the entire Core Data stack. While

each piece of the stack can exist independently, in order for your objects to work in a

normal app, you should test your app with the stack you intend to use. How can you

create tests using Core Data entities that are re-runable? All data is persisted to a Core

Data store by performing save: on an NSManagedObjectContext. By not performing

save:, you can avoid persistence, but you will also not be triggering the built-in core data

validations on your data entities and their relationships. A better way is to perform save:

and toss the persisted data. But that involves some messy cleanup routines. An even

better way is if you used an idea built into the Objective C language itself, namely,

saving to nil. Core Data has an InMemory store data type, which gets reset every time

your test harness is run. This is the key to testing your core data models and taking

advantage of the other handy attributes built into the Core Data framework.

Let’s add to your music player application example, and design a Core Data model with

Songs and Playlists (see Figure 4–14). A Song has a few standard attributes such as

title, artist, and duration. A Playlist has many Songs and a Playlist can have a name that

isn’t necessarily unique. You’ll not order the Songs in the Playlist for now.

 Figure 4–14. To add one of the iPhone SDK Frameworks, choose Add ➤ Existing Frameworks...

Where do you start testing this? There are a few specifications here, such as the

relationship between a Song and a Playlist and the attributes that are present on Songs

and Playlists. Let’s start there.

Before you can start with Core Data, you have to add the CoreData.framework library

into your project. Control+Click on the Frameworks folder, and select “Add Existing

Frameworks...”. From the list that appears, select CoreData.framework and click Add.

Your project will now compile, link against, and run with the Core Data framework.

To create a Core Data entity model, from the File menu item, select New File. In the New

File window select Resource in the left menu, and Data Model in the main file type (see

Figure 4–15). Click Next, and name this new Data Model MusicPlayer.xcdatamodel.

CHAPTER 4: Write Better Code and Save Time with Unit Testing 129

Figure 4–15. Create a new Core Data Model file using the standard New File menu item in XCode

To follow along with the remainder of this example, you will find the following tools

helpful: mogenerator, active record fetchers for Core Data:

� http://github.com/rentzsch/mogenerator

� http://code.magicalpanda.com/activerecord-for-core-data

The first tool, mogenerator, is a code generation tool that implements the Generation

Gap pattern
6

 made popular among Cocoa developers by Jonathon “Wolf” Rentzsch.

Many seasoned developers will tell you they abhor generated code. In some cases, such

as when using the Core Data Entity Modeling tool, generated code is necessary. The

Generation Gap pattern specifies simple boundaries for working with generated code

using the object oriented properties of classes, namely subclassing. mogenerator will

generate four files for each Entity you define in your model, two machine specific files,

and two human specific files. The idea is that all your custom model logic code will go

into the human specific files. As you make changes to your Model, mogenerator will

6

 http://www.research.ibm.com/designpatterns/pubs/gg.html

CHAPTER 4: Write Better Code and Save Time with Unit Testing 130

update the machine specific files to keep your code in sync with the Model. Also

included in the mogenerator tool is a plug-in for XCode so that this generation happens

on every save of your Model file. mogenerator then essentially automates a process that

is quite manual with the default XCode tools.

The second set of code is a simple helper library developed for use with custom

NSManagedObjects (the core data entities in Core Data). This library makes it extremely

simple to add Core Data to your application as well as to perform fetches on your Entity

data. Core Data consists of several objects; however, two will be used most often,

NSManagedObject and NSManagedObjectContext. The Active Record Fetching helpers

have added the idea of a default NSManagedObjectContext instance. This default

context will be used in the following examples. It’s important to keep in mind that this

default context is not part of Core Data, but the Active Record Fetching helpers.

Now, create two new test case files, one called SongTests, and the other called

PlaylistTests. (Notice that you’re going with the Test First approach here.)

Next, you’re going to test your data model intentions, namely that a Playlist should have

one or more Songs, as shown in Figure 4–16.

Figure 4–16. A simple Core Data model with Playlist and Song entities defined.

The first thing you want to create is a new Playlist. You’re going to require that all

Playlists have at least one Song and a name. You’ll start this time with a data model,

and write tests to solidify your assumptions. Create your Core Data model in XCode,

and call it MusicPlayer.xcdatamodel. Once it’s in your project, command + click on the

MusicPlayer.xcdatamodel file and select Get Info. In the comment tab, enter “xmod”.

CHAPTER 4: Write Better Code and Save Time with Unit Testing 131

This will tell the mogenerator tool to generate custom NSManagedObject subclasses.

While it is perfectly acceptable to use Core Data with only NSManagedObject instances,

managing the extra custom logic your entities will contain, it’s best to have custom

subclasses for the code to live in.

In order to test your Core Data model in your test cases, you need to set up the Core

Data stack every time you run your tests. Not only that, but you need to make sure your

Core Data Model will store its data using an In Memory store. Your friends at Magical

Panda Software have put together several Core Data helper files that make including

Core Data in your applications quick and easy. How easy? One line easy as follows:

 - (void) setUpClass
{
 [ActiveRecordHelpers setupCoreDataStackWithInMemoryStore];
 }

If you were to manually set up the Core Data stack of objects without this simple one-

line helper, you’d very quickly get lost in the details of providing the support structure

before you were even close to testing. First, you’d have to create and set up instances

of an NSManagedObjectModel, NSPersistentStoreCoordinator, an NSPersistentStore

and an NSManagedObjectContext. Configuring each of these is not trivial, and can be

error prone if you’ve never dealt with Core Data prior to reading this chapter. This single

line helper method contains two important features. The first is the obvious need to

consolidate all the logic and boiler plate Core Data setup code for an In-Memory SQLite

store. The second, and more important, is that this single line of code easily documents

the intended environment the tests will need in order to run without all the mess.

The Active Record helpers used in the follow code are provided by the Active Record

Fetching for Core Data library previously referenced. Be sure to add the proper import

statement to get this one line of awesomeness:

#import "CoreData+ActiveRecordFetching.h"

You should also be studious and clean up after all the tests are run:

- (void) tearDownClass
{
 [ActiveRecordHelpers cleanUp];
}

Getting back to your data model, let’s test what happens when you create a Playlist

entity and try to save it without a song and without a name. Let’s write the following test

in a new test case called PlaylistTests, and let’s check that the Playlist entity is only valid

when you have at least one Song.

- (void) testPlaylistIsNotValid
{
 Playlist *testPlaylist = [Playlist newEntity];

 NSError *error = nil;
 [[NSManagedObjectContext defaultContext] save:&error];

 GHAssertNil(error, @"Shouldn't be any errors on save!");
}

CHAPTER 4: Write Better Code and Save Time with Unit Testing 132

Once you run this test, however, you find that the test fails (see Figure 4–17).

 Figure 4–17. Your test fails since the value you’re testing is not nil.

After a quick realization that an invalid Playlist entity should have errors when it saves,

fix the assertion that error should be not nil:

- (void) testPlaylistIsNotValid
{
 Playlist *testPlaylist = [Playlist newEntity];

 NSError *error = nil;
 [[NSManagedObjectContext defaultContext] save:&error];

 GHAssertNotNil(error, @"Shouldn't be any errors on save!");
}

You can test further that the error contains two userInfo messages; however, the mere

fact that there are errors is enough to validate that if you try to save a Playlist that

doesn’t have the required fields set, the code will generate an appropriate error.

This brings me to an important piece of testing philosophy I generally adhere to: Don’t

test the framework. To be sure, you are in fact testing that Core Data generates errors

on save. However, the subtle difference here is that you are configuring a particular

entity to validate in a certain way on save. Knowing that this happens only when you

expect it is useful knowledge, and is not testing the low-level bits of the framework, but

rather that our assumptions are configured correctly in your Core Data model.

Now, let’s test that a playlist can calculate its total duration based on the duration of

each song it contains. First, let’s set up a new test that verifies that the duration method

CHAPTER 4: Write Better Code and Save Time with Unit Testing 133

on the Playlist Entity will add two song durations together upon calculating the total

duration of the Playlist:

- (void) testPlaylistCalculatesDurationBasedOnSongDuration
{
 Playlist *testPlaylist = [Playlist newEntity];
 Song *testSong1 = [Song newEntity];
 [testSong1 setTitle:@"Song 1"];
 [testSong1 setDurationValue:3];

 Song *testSong2 = [Song newEntity];
 [testSong2 setTitle:@"Song 2"];
 [testSong2 setDurationValue: 2];

 [testPlaylist addSongsObject:testSong1];
 [testPlaylist addSongsObject:testSong2];

 GHAssertEquals([testPlaylist duration], 5.0, nil);
}

Let’s add a default implementation of the duration method in your custom Playlist entity:

- (NSTimeInterval) duration
{
 return 0.0;
}

Running this test with your obviously wrong implementation results in another test failure

(see Figure 4–18).

Figure 4–18. The test failed since the return value of the duration method is 0. Your test expects the return value
to be 5.

Let’s add the simplest implementation that comes to mind to get this test to pass,

namely, loop through all the Songs, and sum all the durations together into one

calculation:

- (NSTimeInterval) duration
{
 NSTimeInterval duration = 0.0;

CHAPTER 4: Write Better Code and Save Time with Unit Testing 134

 for (Song *song in [[self songs] allObjects])
 {
 duration += [song durationValue];
 }

 return duration;
}

Now your test passes, but this may not be the most optimal implementation. You can

use the power of KeyValue coding to solve this calculation. However, now that you have

a test to make sure that your outcome is what you expect, you can craft this code with

confidence to something more optimal. Let’s try this implementation:

- (NSTimeInterval) duration
{
 return [[self valueForKeyPath:@"songs.@sum.duration"] doubleValue];
}

Your code is cleaner and the test still passes. That is the power of Unit Testing.

Summary
You’ve now entered the world of unit tested code. There are many ways to get even

more value for your unit tests, such as through a Continuous Integration environment. A

Continuous Integration environment (usually a server or spare desktop) is simply a

method to automatically compile your application and run your unit tests against this

compiled app. Continuous Integration relies heavily on version control systems such as

Mercurial, Git, or Subversion in order to checkout a copy of the code for itself. So, now if

you configure your Continuous Integration system to your version control system, your

application can be automatically checked for bugs as soon as you check in your code.

The only requirement to kick off the process is to check in the code. There are several

solutions that are compatible with XCode (and the command line tool, xcodebuild) such

as Integrity, Cruisecontrol.rb, Hudson, and buildbot.

Automated Unit Testing is how the small shops can maintain their development

productivity without the need for a huge QA department. More importantly, it’s another

tool you can use to improve the quality and simplify the design of your iPhone

applications. Learning to write unit tests that are easy to read, not very brittle, and

exercise your code well takes many hours of practice. It’s almost like learning to code all

over again. But, just as it was when you first learned to code, the more you practice, the

better you become.

This chapter was a broad overview explaining how to start incorporating unit tests into

your development cycle with a little less pain and effort than is required by the built-in

tools. The examples and frameworks discussed here were chosen due to their real-

world issues in testability. The questions asked throughout each example are typical of

the questions I ask myself when I set about testing a new piece of code. These are a few

of the solutions I’ve come up with thus far on my journey into unit testing in Cocoa. I

hope these help you in your unit testing endeavors.

135

Leon Palm
Companies: Google and MagicSolver.com

Location: Washington, DC

Former Life as a Developer: Constantly creating and solving AI problems from an
early age. Examples include poker bots, Real Time Strategy AIs that
automatically learn to play any game and Augmented Reality interfaces. If it is an
AI-Complete problem, he has probably tried solving it.

Life as an iPhone Developer: Co-founded MagicSolver.com with two other
outstanding students at the University of Cambridge. Together they released
Sudoku Magic which instantly solves Sudoku puzzles on newspapers from just a
picture and FaceShift, a fun face detection and swapping app.�

Apps on the App Store:

� Sudoku Magic (+Lite version)

� Faceshift (+Lite version)

What's in This Chapter: All the steps required to get the world's most powerful
computer vision library up and running on your phone, as well as code to build a
computer vision app that automatically blurs faces in images.

Key Technologies:

� Compiling and Running OpenCV on the iPhone

� Loading Images from the Camera and Photo Library

� Converting Between the OpenCV and iPhone Image Formats

� Face Detection and Image Manipulation with OpenCV

 136

137

137

 Chapter

Fun with Computer Vision:
Face Recognition with
OpenCV on the iPhone
My interest in Computer Vision began in October 2008 after having read a paper on

optical Sudoku puzzle solving.
1

 I was just beginning the final year of my Computer

Science Tripos
2

 at the University of Cambridge and I had to pick a final year project. The

Sudoku solver seemed perfect. Unfortunately, I was not allowed to pursue that project

due to it being too specific and hard to evaluate scientifically.

Instead, I would be developing a more general system to provide Augmented Reality

playing interfaces for board game programs (see Figure 5–1). Augmented Reality

provides a live view of a real-world environment whose elements are merged with virtual

computer-generated imagery, creating a mixed reality. The project would be

quantitatively evaluated by batch testing it with thousands of images of realistic

computer-generated models. This approach would be far more challenging and

technically impressive, giving me invaluable experience in Computer Vision. However, I

still yearned to build an application to solve Sudoku puzzles with a single snap.

1

 An Optical Sudoku Solver. Martin Byröd. February 12, 2007.

2

 Cambridge parlance for “Bachelor’s Degree.”

5

CHAPTER 5: Fun with Computer Vision: Face Recognition with OpenCV on the iPhone 138

Figure 5–1. My finished final year project. With 100 lines of code and a cheap webcam, an open-source Checkers
or Connect-4 library could now play against humans on a real board. The computer’s move is rendered on top of
the original image in real-time.

One month later in early 2009, Oliver Lamming, a colleague of mine, mentioned that the

CUE
3

 business plan competition was coming up and asked if I had any ideas. We would

be competing for a £1k prize and entry to the £5k final. I pulled out my iPhone and

checked the calendar to see how many weeks we had to decide. Suddenly, the penny

dropped and it all became clear: we would build a Sudoku solver for the iPhone and sell

it on the App Store!

Oliver and I had the necessary technical skills, but no business savvy or marketing

experience. We would need someone to fill that gap. The two of us began attending

Enterprise Tuesdays, a popular series of talks for would-be entrepreneurs, held at the

Engineering Department in Cambridge. After the main talks, there were networking

sessions. It was in one of those sessions where we met Emmanuel Carraud, an MBA

student with a decade of international marketing experience under his belt. Emmanuel

got fired up about our idea and soon team iSolve was formed.

3

 Cambridge University Entrepreneurs. A society that provides training and advice to

students on starting up a company.

CHAPTER 5: Fun with Computer Vision: Face Recognition with OpenCV on the iPhone 139

After writing and submitting our executive summary and app development plan, iSolve

won the £1k prize. This money was immediately invested into purchasing two Mac

Minis so that we could begin developing the app. At the awards ceremony, we met

some graduates who developed a similar application in the past and were also

involved in Computer Vision research. They provided us with advice and expertise for

the next round.

The £5k grand finale would involve a more detailed business plan, a live demo, and a

pitch to future investors (Dragon’s Den style, see Figure 5–2). To make things more

difficult, the finale was just days before our final exams.
4
 Despite a tough pitch and

technical problems with the demo, we pulled through and seized the £5k prize. This led

to the incorporation of our company MagicSolver.com Ltd.

Figure 5–2. MagicSolver.com pitching to a panel of judges and investors at the CUE £5k Grand Finale.

Since then, MagicSolver has developed and released a string of apps, each one more

successful than the previous. Our team is still playing a role in the Cambridge

Entrepreneur scene, having won other prizes. One of our main goals is to help build an

iPhone developer community in Cambridge; therefore, we’re always looking for the

chance to give talks on iPhone development and Entrepreneurship. We also help

budding iPhone developers by providing advice, Apple developer memberships and

lending Mac hardware.

4

 For this reason, no other undergraduates competed through to the final.

CHAPTER 5: Fun with Computer Vision: Face Recognition with OpenCV on the iPhone 140

For the remainder of this chapter, I will guide you step-by-step into downloading and

compiling the world’s most powerful Computer Vision library on your iPhone and

building a fully functioning face detector app with it. I’ll finish up with some advice on

improving performance and further paths to be explored.

We’ve got a lot of ground to cover so let’s get started!

What Is Computer Vision?
Computer Vision is the science of making machines see. It is a broad collection of

disciplines rather than just a set of algorithms. It could be used to describe just about

any process whose input or output consists of visual data. This data can be in the form

of still images, infrared footage, or video, for example.

Computer Vision has been researched for over 40 years. However, it can still be said to

be in its infancy. This is understandable as processing visual data requires a huge

amount of computing power.

Take, for example, the old NTSC standard for video, with a resolution of 640×480 (just

over 0.3 megapixels) and running at 30 frames per second. This corresponds to 9.2

million pixels per second. Using 8 bits to represent each color channel, you end up with

27.6 MB/s. For comparison, the human eye has around 120 million photoreceptors, or

400 times NTSC’s resolution. Now that’s a lot of data! Only recently have computers

become powerful enough to perform more interesting visual processing tasks. Thanks to

Moore’s law, rapid advances have been made.

The goal of a Computer Vision algorithm is to build models from visual data, reducing

enormous floods of pixel data to simpler representations of regions, contours, and

properties. These representations are far easier to manipulate and usually less sensitive

to noise. They can be further refined so that object detection and tracking, face

recognition, pose estimation, scene segmentation, texture extraction, or image

rectification can be performed. When these models are then used to modify the original

visual data, the process is said to produce an Augmented Reality.

However, computing capacity isn’t the only hurdle in the way of processing vision. The

problems themselves are inherently hard. Some reasons are the following:

� Reconstructing a 3D scene from 2D data is mathematically impossible.

There are infinitely many possible scene arrangements that could

produce a given 2D image.

� Objects may appear to have different surface color and texture under

different types of light.

� Two different people photographed with the same expression, pose

and illumination will look much more similar than the same person in

two shots where those parameters vary a lot.

CHAPTER 5: Fun with Computer Vision: Face Recognition with OpenCV on the iPhone 141

� Objects change apparent shape as they rotate, may be occluded by

other objects and their texture changes due to shadow positions and

viewing angle. To make things worse, some objects are deformable,

such as faces.

Despite these challenges, today’s Computer Vision is already capable of incredible

feats, and will become ever more present in devices and robots.

Phone-based barcode scanners and gaming consoles using cameras as a controller are

a thing of the past. Enter today. Have you ever seen the movie Minority Report? Those

scary iris scanners are a reality. There are systems being built that can quickly and

automatically find a person’s eyes and reliably scan their irises from 30 feet away as

they walk by.

The mobile front has advanced rapidly as well; imagine pointing your phone at the Mona

Lisa. Looking through your phone screen, her face has a 3D relief, as if she was popping

out of the canvas. She is fully animated and telling you about how she was painted in a

soft, lip-synched voice. This is all being done in real-time, even as you move the phone

around the painting. I’ve seen technology capable of this on a real phone long ago.

Why Do Computer Vision on an iPhone?
Now is arguably the best time ever to be developing Computer Vision apps for mobile

devices and the iPhone is arguably the best platform to do it in. Phones have just

become capable of handling it, with the iPhone being one of the fastest and thus most

capable phones available. Its screen is large enough for you to see the results. Being

always connected, the iPhone could allow better use of Computer Vision apps by

fetching prices from scanned barcodes, contact information extracted from images of

business cards, or automatically tagging images from detected faces or fetching

automated translations of foreign street signs.

The possibilities of mobile Computer Vision are endless. Cameras are the most powerful

sensor on the iPhone. Yet, it is the least used sensor for directly interacting with apps.

Out of your five senses, vision is the most important and frequently used and the world

is built around it—from aesthetic design to advertising to education. Shouldn’t phones

take advantage of this to help us? There exists an endless stream of possible inventions.

Finally, due to its novelty and lack of established libraries (until now!), there is very little

competition for mobile Computer Vision/Augmented Reality providing huge payoffs for

first movers. To seize this opportunity, one must act quickly so let’s get started in the

next section.

The rest of the chapter will provide you with the initial skeleton for building and using

OpenCV on the iPhone. OpenCV is one of the world’s most powerful Computer Vision

libraries, having been used in many, many applications. Surveillance software, off-road

robot vehicles that drive themselves, paintball sentry guns and optical Sudoku solvers

are just some of its current uses.

Unfortunately, OpenCV was designed mainly for use with Windows/Linux and won’t run

on other platforms off the box. Thankfully with a little work on the Terminal you’ll compile

CHAPTER 5: Fun with Computer Vision: Face Recognition with OpenCV on the iPhone 142

it for the iPhone OS. It is mainly targeted for the iPhone as it has a camera but it should

also work on iPod Touch or any other iPhone OS device. You will then build a simple

app that provides everything that you’ll need to unleash the power of OpenCV on your

device.

Your Project: Creating a Face Detector
You are about to build a face detector app from scratch then add a fun twist to it.

Excited? Good! Being your first time, it is best to be prepared or it might be a little

painful. Before getting started, make sure that you have the following:

� Some resemblance of familiarity with command-line interfaces: You

have to be able to find the terminal app so you can launch it and know

how to navigate the directory structure.

� Used Xcode and Interface Builder before: I’ll make this a very gentle

ride to cater to most, but you should roughly know your way around. If

not, go do some tutorials. It will only take a moment.

� The iPhone SDK 3.0+ installed. It would be hard to build apps

otherwise!

� Internet access, allowing you to download OpenCV. This almost goes

without saying in today’s hyper-connected world.

NOTE: Typing code from a book is rather dull. To keep it short, I’ve left out safety procedures
such as checking for null pointers after loading a resource. Be sure to add these if you plan to
release your app. Check out the documentation and samples included with OpenCV for examples
of such checks. If you really don’t like typing, you could always cheat and download the
complete source code for this chapter at the code download area of the Apress web site at
www.apress.com.

Setting Up OpenCV
This first section will guide you through the process of downloading, configuring, and

compiling OpenCV, so that it can be used with the ARM processor found in the iPhone

and iPod Touch.

1. Open up the terminal. I assume you’ll be using bash, so make sure to

switch to it if needed or look up equivalent commands if you like being

difficult.

2. Make sure your computer is connected to the Internet and that the

iPhone SDK 3.0+ is installed.

CHAPTER 5: Fun with Computer Vision: Face Recognition with OpenCV on the iPhone 143

3. The following commands will download and compile OpenCV with the

correct settings for the iPhone OS 3.0+ and then build universal static

libraries that run on both the Intel-based simulator and the ARM-based

device.

First, let’s create a working directory.

$ mkdir OpenCV; cd OpenCV

Use CURL to fetch the OpenCV 1.1 package SourceForge. The following command

should be in a single line, but the URL was too long for this book. The “L” flag performs

the request upon redirect (SourceForge first needs to give us a mirror). The “O” is so the

response is written to a file rather than blurting out binary data all over the terminal,

which would be most rude.

$ curl -LO http://downloads.sourceforge.net/project/opencvlibrary/opencv-
unix/1.1pre1/opencv-1.1pre1.tar.gz

The downloaded file is compressed, so we extract it with tar.
$ tar xvfz opencv-1.1pre1.tar.gz

NOTE: This is not the latest version of OpenCV, but it is far easier to compile for the iPhone than
v2.0. Once you’re feeling more confident, check the web for instructions and scripts for
compiling OpenCV 2.0+ on the device.

Any good programmer likes to avoid repeated work, so let’s set some variables to save

some typing further on.

First, let’s set some compiler flags to remove features incompatible with the iPhone OS

such as video windows and webcam support.

$ CFLAGS="--disable-apps --disable-dependency-tracking --disable-shared \
$ --without-carbon --without-gtk --without-imageio --without-python \
$ --without-quicktime --without-swig"

DEV is just shorthand for the developer directory. BIN serves a similar purpose.

$ DEV="/Developer/Platforms/iPhoneOS.platform/Developer/"
$ BIN="${DEV}usr/bin/"

To keep things tidy, create directories to separate the compiled files for the device and

simulator. opencvlib will hold all the files needed to use OpenCV in an Xcode project.

NOTE: The next three commands depend on your version of OS X. If you’re running a 64-bit OS X
version such as Snow Leopard+, you’ll want to use “x86_64” instead of “i686” for the next
three.

$ mkdir armv6 i686 opencvlib
$ cd i686

CHAPTER 5: Fun with Computer Vision: Face Recognition with OpenCV on the iPhone 144

The following command will set the compiler for the i686 (Intel x86) architecture. The

compiled code will be used by the simulator which runs on your Intel-based Mac.

$../opencv-1.1.0/configure $CFLAGS --host=i686-apple-darwin9 CXXFLAGS="-arch i686"

If you were running on a 64-bit operating system, the three previous commands would

instead be the following:

$ mkdir armv6 x86_64 opencvlib
$ cd x86_64
$../opencv-1.1.0/configure $CFLAGS --host= x86_64-apple-darwin9 CXXFLAGS="-arch x86_64"

With the configuration in place, it’s time to compile. This may take several minutes…

$ make

Now you do the same for the armV6 (iPhone) architecture.

$ cd ../armv6

The configuration command for the ARM platform is a little bigger!

$../opencv-1.1.0/configure $CFLAGS --host=arm-apple-darwin9 \
$ CXX="${BIN}arm-apple-darwin9-g++-4.0.1" \
$ CXXFLAGS="-arch armv6 -isysroot ${DEV}SDKs/iPhoneOS3.0.sdk" CXXCPP="${BIN}cpp"

Next, it is time to compile again. Go make a coffee, we’re just warming up!

$ make

Now merge the compiled code for the two platforms using lipo, a program that creates

universal (multi-architecture) files. The five resulting universal library files can be used by

either the device or simulator without the need to swap them.

$ cd ../opencvlib
$ for LIB in libcv.a libcxcore.a libcvaux.a libml.a libhighgui.a
$ do lipo -create `find .. -name $LIB` -output $LIB
$ done

In order to access functions in these libraries, you’ll need the header files containing the

function declarations. These files are found under cv/include, cvaux/include,

cxcore/include, ml/include, and otherlibs/highgui.

To save you from looking around and copying them manually, use the following hacky

command to copy all the necessary .h and .hpp files to the opencvlib directory

automaticaly. Essentially, it looks for certain header filename patterns (grep), but

excludes some unnecessary matches (egrep –v) and copies the results.

$ cp `find ../opencv-1.1.0 | grep '\.[h]p*$' | egrep -v 'tests|swig|/_|\/apps'` ./

You’re all set. The opencvlib directory has all that you need to start using OpenCV on

your iPhone. Just drop it in your project folder when you need it! I always keep a copy of

this folder around so I can quickly copy it into new projects. Whew! You are done here

so feel free to close the terminal.

CHAPTER 5: Fun with Computer Vision: Face Recognition with OpenCV on the iPhone 145

TIP: The opencv-1.1.0 folder you just downloaded contains a wealth of docs and samples that
will help you understand and explore OpenCV. Be sure to look around once you’ve finished this
chapter!

Setting Up XCode
You’ve built OpenCV, which is arguably most of the hard work out of the way. Now let’s

use it!

1. Open up Xcode.

2. Create a new iPhone project using the “View-based application”

template and name it “FaceDetect” (see Figure 5–3).

Figure 5–3. Creating a view-based application

3. Drag the opencvlib folder you just created into the root of the project

(see Figure 5–4). Check the “Copy items into destination group’s folder”

box and click “Add,” as shown in Figure 5–5.

CHAPTER 5: Fun with Computer Vision: Face Recognition with OpenCV on the iPhone 146

Figure 5–4. Drag the “opencvlib” folder to your project’s root

Figure 5–5. Ensure you check the “Copy items into destination group’s folder” box

CHAPTER 5: Fun with Computer Vision: Face Recognition with OpenCV on the iPhone 147

4. On the top menu bar, go to Project ➤ Edit Project Settings. This will bring up

the settings window. Select the “Build” tab. Ensure that the

“Configuration” dropdown is set to “All Configurations”, so the changes

apply to both debug and release builds. Now search for the “Other

Linker Flags” setting (the search box is there for a reason!) and add a

new entry to it with the string “-lstdc++”. This allows GCC to link

standard C++ libraries statically, preventing a stream of nasty linker

errors (Figure 5–6). You can close the settings window.

Figure 5–6. Setting the appropriate linker flags

Adding Image Conversion Functions
Besides getting OpenCV to compile, this is the most important step in getting it to run

on the iPhone. OpenCV uses IplImage, its own data structure to store images and

without a way to convert them to and from CGImage, nothing interesting can be done.

It’s time to implement those functions. Thankfully, IplImages have very similar structures

to CGImages—an array of pixels with a header, making your job easy!

1. Open up FaceDetectViewController.h (under the “Classes” group) and

import cv.h. This provides access to OpenCV functions:

#import <UIKit/UIKit.h>

#import "cv.h"

@interface FaceDetectViewController : UIViewController {

2. You will be using Apple’s Image Picker to select images later on. This

requires your view controller to implement two interfaces:

UIImagePickerControllerDelegate and UINavigationControllerDelegate.

Add them in the class declaration:

@interface FaceDetectViewController : UIViewController
 <UIImagePickerControllerDelegate, UINavigationControllerDelegate> {
}

3. Now add the following two method declarations to

FaceDetectViewController.h:

CHAPTER 5: Fun with Computer Vision: Face Recognition with OpenCV on the iPhone 148

- (IplImage *)iplImageFromUIImage:(UIImage *)image;
- (UIImage *)uiImageFromIplImage:(IplImage *)image;

4. And their corresponding definitions in FaceDetectViewController.m:

// You should always release the image returned by this method.
- (IplImage *)iplImageFromUIImage:(UIImage *)image {

Firstly, you must create the return value and data structures to hold the metadata for

your image. cvCreateImage() initializes an image header and allocates a contiguous

array of pixels. The size and structure of this array depend on how many color channels

and bits per channel are used. Here you will use a general 4-channel (RGBA) image with

8 bits per channel. It is the least space efficient but most flexible way to store an image.

 CGImageRef imageRef = image.CGImage;
 CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();
 IplImage *iplImage =
 cvCreateImage(cvSize(image.size.width,image.size.height), IPL_DEPTH_8U, 4);

With the image space allocated, you need to set its pixels. One way to do this is to

create a bitmap context to be drawn on by passing CGBitmapContextCreate(), the

pointer, to the IplImage’s pixel array (imageData).

 CGContextRef contextRef =
 CGBitmapContextCreate(iplImage->imageData, iplImage->width, iplImage->height,
 iplImage->depth, iplImage->widthStep, colorSpace,
 kCGImageAlphaPremultipliedLast|kCGBitmapByteOrderDefault);

The context has the same dimension, properties, and color encoding as the IplImage. To

transfer the image data, you can simply draw the UIImage onto the context, whose pixel

array is in fact the IplImage’s imageData.

 CGRect imageRect = CGRectMake(0, 0, iplImage->width, iplImage->height);
 CGContextDrawImage(contextRef, imageRect, imageRef);

Finally, you clean up the bitmap context and the color space object, returning the

converted image. You can now manipulate your image in all sorts of ways using

OpenCV.

 CGContextRelease(contextRef);
 CGColorSpaceRelease(colorSpace);
 return iplImage;
}

You’ll also need a function to convert IplImages back to UIImages.

- (UIImage *)uiImageFromIplImage:(IplImage *)image {

To start out, you create an NSData structure and copy the IplImage’s whole pixel array

into it.

 NSData *data = [NSData dataWithBytes:image->imageData length:image->imageSize];

In order to construct the UIImage, you’ll need a colorSpace reference and a data

provider for the NSData just created.

 CGDataProviderRef provider = CGDataProviderCreateWithCFData((CFDataRef)data);
 CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();

CHAPTER 5: Fun with Computer Vision: Face Recognition with OpenCV on the iPhone 149

In this case, converting the image is a little easier. You create a CGImage of the

appropriate size and type, using data, then wrap it with a UIImage. That’s it.

 CGImageRef imageRef =
 CGImageCreate(image->width, image->height, image->depth,
 image->depth * image->nChannels, image->widthStep,
 colorSpace, kCGImageAlphaLast|kCGBitmapByteOrderDefault,
 provider, NULL, false, kCGRenderingIntentDefault);
 UIImage *uiImage = [UIImage imageWithCGImage:imageRef];

Once again, you clean up and return the brand new UIImage.

 CGColorSpaceRelease(colorSpace);
 CGDataProviderRelease(provider);
 CGImageRelease(imageRef);

 return uiImage;
}

Creating a Simple GUI
Like most iPhone apps, ours will be interacted with through a GUI. It will be simple and

built in Interface Builder (IB) rather than programmatically, keeping this section quicker

and shorter than a rocket-powered midget.

1. Open up FaceDetectViewController.h and add a variable declaration

inside the @interface block.

IBOutlet UIImageView *imageView;

This imageview will be used to display the output of your app.

2. Also add the following method declaration below the @interface

declaration in FaceDetectViewController.h. You’ll implement it soon, I

promise!

- (IBAction)detectFaces;

3. Save your file (�S). This will allow IB to see the changes you’ve just

made.

4. Double-click FaceDetectViewController.xib under the “Resources”

group. This will open Interface Builder.

5. Bring up the window for this .xib’s View and the IB object library (��L).

6. From the objects library, add an Image View that takes up most of the

screen, so you can see what you’re doing!

7. Bring up the ImageView’s Attributes window (�1). Under the “view” bar,

set the “mode” to “Aspect Fit”. This prevents large images from

rendering past the ImageView’s boundaries.

CHAPTER 5: Fun with Computer Vision: Face Recognition with OpenCV on the iPhone 150

8. Now add a Round Rect Button under the Image View and set its title to

“Detect Faces”. It should look somewhat like Figure 5–7.

Figure 5–7. What the GUI should look like

9. Right-click the translucent orange cube (File’s Owner) to bring up the

connections dialog. Now drag the “imageView” outlet onto the

UIImageView in your GUI (Figure 5–8).

Figure 5–8. Connecting the “imageView” outlet to the main Image View in the GUI

CHAPTER 5: Fun with Computer Vision: Face Recognition with OpenCV on the iPhone 151

10. The button also needs connecting. Right-click File’s Owner and drag the

“detectFaces” outlet onto the button. Select “Touch Up Inside” from the

pop-up list that appears (see Figure 5–9).

Figure 5–9. Connecting the “detectFaces” method to the “Detect Faces” button

11. Save your work in IB (�S) and go back to Xcode.

Loading Images from the Photo Library
To use images from the photo library, you will bring up the built-in image picker screen

and implement the method that handles the chosen image. This is the picker that comes

up when selecting an image to e-mail, for example. The delegate business is so the

picker knows to which view will be shown to the user once an image has been chosen.

1. Open up FaceDetectViewController.m and implement a detectFaces

method that brings up the picker:

- (IBAction)detectFaces {
 UIImagePickerController* controller = [[UIImagePickerController alloc] init];
 controller.delegate = self;
 [self presentModalViewController:controller animated:YES];
 [controller release];
}

2. Now define the following method to allow you to do something when an

image is chosen from the picker. Remember to add a corresponding

declaration for it in FaceDetectViewController.h.

CHAPTER 5: Fun with Computer Vision: Face Recognition with OpenCV on the iPhone 152

- (void)imagePickerController:(UIImagePickerController *) picker
 didFinishPickingMediaWithInfo:(NSDictionary *) info {
 // Load up the image selected in the picker.
 UIImage *originalImage = [info objectForKey:UIImagePickerControllerOriginalImage];
 IplImage *iplImage = [self iplImageFromUIImage:originalImage];

 // We will do some CV magic here later.
 // ...

 UIImage* newImage = [self uiImageFromIplImage:iplImage];
 // IplImages must be deallocated manually.
 cvReleaseImage(&iplImage);

 [imageView setImage:newImage];
 [[picker parentViewController] dismissModalViewControllerAnimated:YES];
}

For now, this method will simply convert the UIImage into OpenCV’s IplImage format

and then back so it can be displayed. Later, you will add some processing on the

IplImage.

3. Cross your fingers and push the “Build and Run” button. If you get

errors/warnings, take a step back (or ten!), so as to see where things

went wrong.

4. Pat yourself on the back. Not only do you have a working app that you

can re-use for your next projects, but most of the code transcription is

now finished. Well done, little scribe!

Doesn’t seem very exciting, but your program is already capable of converting images in

the library to the OpenCV’s IplImage format, back to UIImage, then displaying the

UIImage. This is the starting point for any iPhone application using OpenCV. However,

this doesn’t quite tick the “Cool” box, so up next I’ll show you how easy it is to add

some real Computer Vision once a good foundation has been laid.

Loading the Haar Cascades
One way to perform face detection with OpenCV is by using Haar object detection. It

works by summing and subtracting the pixel values of rectangular shapes or “features.”

These shapes are scanned across the image, and the pixel intensities in the black

regions are subtracted from the intensities in the white regions (see Figure 5–10). The

result is a sum that encodes the edge properties (edge intensity, angle, and polarity)

from all pixels at each location into a single number, greatly simplifying processing.

Unsurprisingly, the nerve cells in your eyes work in a similar way. This compression

partly explains why we have 120 million photoreceptors in each retina but only 1 million

axons running down each optic nerve.

CHAPTER 5: Fun with Computer Vision: Face Recognition with OpenCV on the iPhone 153

Figure 5–10. Rectangular Haar-like features.

Haar object detection is essentially a template matching approach, trying to match facial

features at every position in the image at a variety of scales. In order to use it, a trained

Haar cascade needs to be loaded. Thankfully OpenCV already comes with some

examples.

1. For this project, you will use a frontal face detector, so it will not detect

tilted or turned faces! “haarcascade_frontalface _alt_tree.xml” works

well, so let’s use it. This file is located under opencv-
1.1.0/data/haarcascades. Copy it to the Resources group in your

project (see Figure 5–11).

Figure 5–11. The Haar cascade file goes in the Resources group.

CHAPTER 5: Fun with Computer Vision: Face Recognition with OpenCV on the iPhone 154

2. Create the necessary static variables by adding the following code at

the top of FaceDetectViewController.m, right below the import

declarations:

#import "FaceDetectViewController.h"

// Filename where the Haar Cascade is stored.
static const char *CASCADE_NAME = "haarcascade_frontalface_alt_tree.xml";

// Temporary storage for the cascade. Due to its size, it is best to make it static.
static CvMemStorage *cvStorage = NULL;

// Pointer to the cascade, we also only need one.
static CvHaarClassifierCascade *haarCascade = NULL;

@implementation FaceDetectViewController

3. Loading a cascade is a time-intensive procedure that uses a lot of

memory. XML is a very inefficient way to store numbers and on top of

that, OpenCV’s XML parsing is very wasteful. Therefore, you only want

to do it once if possible. For this simple app, it suffices to place the

cascade initialization in the viewDidLoad: method in

FaceDetectViewController.m.

- (void)viewDidLoad {
 [super viewDidLoad];
 cvStorage = cvCreateMemStorage(0);
 NSString *resourcePath =
 [[[NSBundle mainBundle] resourcePath] stringByAppendingPathComponent:
 [NSString stringWithUTF8String:CASCADE_NAME]];
 haarCascade = (CvHaarClassifierCascade *)cvLoad([resourcePath UTF8String], 0, 0, 0);
}

Keep in mind that you cannot use cvLoadImage in the same way! You have to load it as

a CGImage using the built-in methods and convert it into an IplImage later.

Performing Face Detection
You now have the means to obtain an image from the photo library and have a cascade

loaded on startup. It is time to expand the

imagePickerController:didFinishPickingImage:editingInfo method to detect faces in an

image and draw a box around them.

1. Implement the drawOnFaceAt:InImage method by adding the following

code to FaceDetectViewController.m. This method will be called for

each face found in the image in the next step. Again, be sure to add a
corresponding declaration in the header file.

- (void)drawOnFaceAt:(CvRect *)rect inImage:(IplImage *)image {
 // To draw a rectangle you must input points instead of a rectangle. I know, I know...
 cvRectangle(image, cvPoint(rect->x, rect->y),
 cvPoint(rect->x + rect->width, rect->y + rect->height),

CHAPTER 5: Fun with Computer Vision: Face Recognition with OpenCV on the iPhone 155

 cvScalar(255, 0, 0, 255) /* RGBA */, 4, 8, 0);
}

2. Now add some real functionality to the method below by modifying it as

shown in the following code:

- (void)imagePickerController:(UIImagePickerController *) picker
 didFinishPickingMediaWithInfo:(NSDictionary *) info {
 UIImage *originalImage = [info objectForKey:UIImagePickerControllerOriginalImage];
 IplImage * iplImage = [self iplImageFromUIImage:originalImage];

 // Clear the memory storage from any previously detected faces.
 cvClearMemStorage(cvStorage);

 // Detect the faces and store their rectangles in the sequence.
 CvSeq* faces = cvHaarDetectObjects(iplImage, // Input image
 haarCascade, // Cascade to be used
 cvStorage, // Temporary storage
 1.1, // Size increase for features at each scan
 2, // Min number of neighboring rectangle matches
 CV_HAAR_DO_CANNY_PRUNING, // Optimization flags
 cvSize(30, 30)); // Starting feature size

 // CvSeq is essentially a linked list with tree features. "faces" is a list of
 // bounding rectangles for each face found in iplImage.
 for (int i = 0; i < faces->total; i++) {
 // cvGetSeqElem is used for random access to CvSeqs.
 CvRect* rect = (CvRect*)cvGetSeqElem(faces, i);
 [self drawOnFaceAt:rect inImage:iplImage];
 }

 UIImage* newImage = [self uiImageFromIplImage: iplImage];
 cvReleaseImage(&iplImage);

 [imageView setImage:newImage];

 // Optional: save image.
 UIImageWriteToSavedPhotosAlbum(newImage, self, nil, nil);

 [[picker parentViewController] dismissModalViewControllerAnimated:YES];
}

NOTE: For more information on each of the cv* functions and their parameters, take a look at the
OpenCV documentation. It is very useful!

3. Now run your application on the simulator and try detecting some faces

(see Figure 5–12).

CHAPTER 5: Fun with Computer Vision: Face Recognition with OpenCV on the iPhone 156

Figure 5–12. The finished app in the Simulator

If you try running this app on the device, you’ll see that it will either run really slow or

crash outright, depending on the size of the input image. I’ll get to this in the

Performance section shortly.

This is a very simple example, but it provides all that you need to unleash the full power

of OpenCV on your iPhone! There are plenty of guides and documentation online to help

you choose your next exciting project!

Bonus
It is very easy to do some seemingly complex tasks thanks to OpenCV. For example, to

turn this app into an automatic face blurrer like the one used in Google Street View, you

just have to tweak the drawOnFaceAt:InImage method (see Figure 5–13).

- (void)drawOnFaceAt:(CvRect *)rect inImage:(IplImage *)image {
 IplImage* faceImage = cvCreateImage(cvSize(rect->width, rect->height), 8, 4);

 // The Region Of Interest acts as a temporary crop of the image.
 cvSetImageROI(image, *rect);

 // Create a copy of the face and apply gaussian blur to it.
 cvCopy(image, faceImage, NULL);
 cvSmooth(faceImage, faceImage, CV_GAUSSIAN, 51, 51, 0, 0);

 // Let's build a (elliptical) mask to apply blur only around the facial area.
 IplImage *copyMask = cvCreateImage(cvGetSize(faceImage), 8, 1);

CHAPTER 5: Fun with Computer Vision: Face Recognition with OpenCV on the iPhone 157

 // Center of the ellipse.
 CvPoint center = cvPoint(faceImage->width / 2, faceImage->height / 2);
 cvZero(copyMask);
 // Draw the ellipse.
 cvEllipse(copyMask, center, cvSize(faceImage->width * 0.5, faceImage->height * 0.6),
 0, 0, 360, cvScalarAll(255), CV_FILLED, 8, 0);

 // Pixels in faceImage will only be copied if they are non-zero in copyMask.
 cvCopy(faceImage, image, copyMask);

 // Clean up.
 cvReleaseImage(&faceImage);
 cvReleaseImage(©Mask);
 cvResetImageROI(image);
}

Figure 5–13. Your app, improved with face blurring

Voilà! Google ain’t got nuthin’ on ya now! Use this app to take photos of your in-law or

ugly cousins at social events, keeping your photo library untarnished!

Performance Tweaking
If you tried running this program on the device, you’ll have noticed that it is slow! The

effect is usually not noticeable in the simulator. This is because the simulator doesn’t try

to emulate the iPhone’s CPU speed and a multi-core Intel CPU is typically faster than a

tiny ARM chip.

CHAPTER 5: Fun with Computer Vision: Face Recognition with OpenCV on the iPhone 158

Don’t fret though! Computer Vision, like AI, is all about trimming down on the amount of

computation at the right places. Tweaking parameters so they are optimized to your

exact use cases is also immensely helpful. Done carefully, your program will be orders of

magnitude faster with a small loss or even a gain in reliability.

You can easily get more than 10x performance improvement with the following tweaks:

� Reduce the resolution of the input image. You won’t need a

1600×1200 image to find faces, and most photos are blurry anyway,

wasting pixels. 400×300 will do the trick just fine and give your app

16x less data to process. Just use a smaller IplImage in the

iplImageFromUIImage:image method:

...
CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();
IplImage *iplImage =
 cvCreateImage(cvSize(image.size.width/4,image.size.height/4), IPL_DEPTH_8U, 4);

// Use the IplImage as a bitmap context.
...

� Read the OpenCV documentation to learn how to tweak parameters in

cvHarrDetectObjects(). As an example, the following settings are much

faster and still work reasonably well when people are up close:

cvHaarDetectObjects(iplImage, haarCascade, cvStorage,
 1.2, // scale_factor
 2, CV_HAAR_DO_CANNY_PRUNING,
 cvSize(50, 50)); // min_neighbors

The fourth parameter (scale_factor) controls how much the features are enlarged each

time they are scanned over the whole image. Setting this number higher greatly

decreases the number of runs required for them to reach the image’s size. However,

your detector won’t find faces unless they happen to have a very similar size to the

features. Setting scale_factor too high will lower reliability.

The last parameter (min_neighbors) controls the starting size of the features. The ratio of

this size to the image size greatly affects speed, especially if scale_factor is small.

Larger is faster but no faces smaller than that can be found.

� If you’re feeling adventurous, edit OpenCV itself. The iPhone is much

faster at integer calculations than floating-point (FP) ones.

Unfortunately, cvHarrDetectObjects() uses FP calculations in a lot of

places where it doesn’t really need to. Replacing some frequent

calculations with fixed point math will boost speed further. The code

looks really hairy but is manageable if you spend some time on it.

Searching the web might save you the work!

� You could also convert the XML Haar Cascades into a more compact

format that doesn’t require parsing (e.g., as binary data), which will

greatly boost loading times as well as cutting down on the size and

RAM usage of your app.

CHAPTER 5: Fun with Computer Vision: Face Recognition with OpenCV on the iPhone 159

Another thing that you’ll soon notice, if you haven’t already, is that the app is not very

good at picking up tilted faces. That’s because Haar object detection is essentially a

template matching algorithm. It is already attempting to match faces of many different

sizes in thousands of positions across the image. Duplicating those searches for face

rotation in three axes would make it prohibitively slower due to a combinatorial

explosion. Newer and better algorithms do exist, but they usually have a higher

complexity and memory cost.

Going Further
This was just a very simple example to illustrate what a few lines of code are capable of

with OpenCV. In the following, you’ll find some other interesting projects to explore,

progressing in difficulty from trivial to clinically insane:

� Group photo fun: Modify the program you’ve just built to add

moustaches, hats, and ties to people in pictures. Randomly deform

their heads or replace them with celebrities’ faces!

� Mobile photo editing tools: Use OpenCV’s image in-painting algorithm

to repair damaged images or remove pimples from one’s face. Then,

apply visual effects using morphological operators, blurring and

segmentation.

� Real-time, real-life pong: Play pong with a friend by holding rulers or

broomsticks, or bounce a virtual ball around virtually any environment.

Canny Edge detection followed by a Hough Transform can be used to

find major lines in an image, the paddles. To run this at several frames

per second even on a 2G iPhone, use frame-grabbing on the iPhone’s

virtual viewfinder. Since you’ll be looking for large image features, it is

fine to use very-low resolution images for internal processing. 320×200

would be plenty for this.

� Play board games using the camera: Sudoku Magic, my first app,

captures, grades, and solves Sudoku puzzles visually by applying 20

distinct image processing steps in sequence. A Checkers solver would

be a great starting point due to its simple, regular visual structure. Use

the Hough Transform to find the board edges, apply a perspective

transform to rectify it, then perform segmentation and color matching

at the now fixed tile centers to extract piece arrangement.

� Emotion detector: Great for sizing up new people you meet. Use

feature extraction functions and Delaunay Triangulation to measure

relative distances between facial features. This can be used to

represent facial expressions as a small set of numbers. Then use a

learning algorithm from OpenCV’s Machine Learning library to

recognize a person’s emotional state based on their portrait. Easy

peasy lemon squeezy…or not, but the sky is the limit with OpenCV!

CHAPTER 5: Fun with Computer Vision: Face Recognition with OpenCV on the iPhone 160

Whatever it is that you choose to do, there is a vast amount of material available online

to help you achieve it with OpenCV. Be sure to browse around!

Summary
In this chapter, you learned a little bit about Computer Vision. You then got OpenCV

running on the iPhone by building a simple app that detects and blurs faces, converting

the results back into a UIImage. I hope you enjoyed reading this as much as I enjoyed

writing it. I would love to hear about your ideas and projects in mobile Computer Vision!

If you have any questions/comments or want to get in touch, drop me an e-mail at

iphonecompvis@gmail.com.

161

Scott Penberthy
Company: North Highland Partners

Location: New York City

Former Life as a Developer: Scott began coding shortly after the Apple II was
launched in the '70s. His addiction to coding bloomed into a scholarship to MIT,
earned by writing a multiplayer online game that brought his school’s antique
computer to its knees. After graduating, Scott took a job at IBM Research, the
birthplace of IBM’s web products and services. After running up the corporate
ladder in the 1990’s building massive web sites, Scott jettisoned himself in 2005 to
return to his true love of coding. Now a successful entrepreneur, Scott runs an
app studio in New York City.

Life as an iPhone Developer: Scott cracked open the iPhone SDK in 2007 while
running engineering for Photobucket. It wasn’t until Apple announced in-app
purchases in 2009 that his entrepreneurial itch became unbearable. Scott
jumped into apps full-time in 2009, writing a messaging app for push services, an
app for a major movie studio, and an app for sharing photos on FourSquare. As
of early 2010, Scott’s studio has several apps under development.�

Apps on the App Store:

� Flame It!

� iSlide Camera

� Pushtones

What's in This Chapter:

� A study of Gutenberg's printing press and how it applies to
OpenGL

� Objective-C classes for representing the steps of Gutenberg's
printing process

� A simple production application that uses the Gutenberg
process

� Tools for preparing to use any TrueType font in the Gutenberg
process

 162

Key Technologies:

� A study of Gutenberg’s printing press and how it applies to
OpenGL

� TrueType fonts

� Texture atlases

� Objective-C classes for the above

163

163

 Chapter

How to Use OpenGL Fonts
without Losing Your Mind
Here I sit in my office, building an app for a major movie studio. It’s a dream job. The alpha

code drop is due shortly before Christmas. I’m trying to use Core Animation and Cocoa

touch, keeping my costs down. The brand designers want something special, with custom

menus, buttons, animated graphics, sounds, the works. “Ah,” I say to myself, “It’s time to

dive into OpenGL. This should be straightforward, just like the old days.”

The graphics are screaming right along. The sound engine is coming together, as long

as you ignore the occasional simulator crash and inability to pause. I haven’t seen my

wife or kids in days. More on that later. Then it hits me. Marketing calls.

“We need some text describing each dragon, each with their own font.”

As I scurry through the iPhone documentation, I realize Apple is not too fond of mixing

UIView and UIFonts with OpenGL. The documentation, blogs, and forums warn against

mixing Cocoa Touch and OpenGL. Blasphemy! They seem to fight each other for the

frame buffer. Timing can be an issue.

I take a peek at the available open source libraries for True Type fonts, as well as

numerous gaming engines. They appear to work well, but the interfaces are a bit

onerous, and I tremble at the idea of having to recreate all of Apple’s handiwork for a

single app. Do I really need all that complexity? I don’t want physics, a game engine,

levels, and all that rot. With the deadline looming, it’s too late now to switch. I need a

pragmatic approach, something fast, lightweight; something that just works.

This chapter describes pragmatic font techniques in OpenGL. As it turns out, these

techniques are nearly identical to those employed by the inventor of the printing press.

They’re not too different from what I learned in kindergarten. As fast as technology

changes, human nature really does stay the same. I call these techniques “fontery.”

6

CHAPTER 6: How to Use OpenGL Fonts without Losing Your Mind 164

History

n the medieval days of fontery, there were monks and monasteries.

Monks were fond of wearing heavy, woolen garments in the heat of the

day. Some would spend years with painstaking calligraphy, creating

massive books that were four to five times the size of their head. Once

produced, they’d blame it on the devil. Literally. One of the most

famous of all such books is the Codex Gigas, the “devil’s bible” that took a single monk

more than 20 years of toiling, largely in solitary confinement. Legend has it that he

created the work in one massive night of furious calligraphy, driven by the devil after

selling his soul.

Most monks would craft elaborate fonts with interesting artistic tastes, such as the letter

“I” used to introduce the preceding paragraph. These dropped capitals were quite

elaborate. In this illustration, a monk has depicted a dog biting a bone while being

attacked by jellyfish, a lizard, and perhaps some holly in the background. Others would

adorn their letters with fruit, wild animals, trees, and just about anything that was on

their mind.

These elaborate works inspired a German goldsmith born in 1398. Johannes Gutenberg

was working as an apprentice to a card maker, who was stamping the back of the

playing cards with a copper engraving, dipped in ink. Gutenberg wondered if he could

produce copies of the monk artwork, jellyfish and all, in a similar fashion. Instead of

engraving an entire page, as was done for the playing cards, Gutenberg decided to

engrave individual letters, then position them along tracks held together by a vise grip.

In Figure 6–1, you see a replica of Gutenberg’s engravings, where bins are used to sort

the engravings for faster retrieval. The vise grip is seen on top of these bins in the figure.

Figure 6–1. Parts from Gutenberg’s movable type

CHAPTER 6: How to Use OpenGL Fonts without Losing Your Mind 165

Gutenberg would dip his vice grip full of letters into card ink, pressing it to paper,

producing the written word. Later, he would attach and align several vise grips on the

back of an Olive Oil press, pressing down onto sheets the size of monk bibles. Voilà.

Gutenberg’s printing press was born, enabled by his invention of “movable type.”

Gutenberg’s movable type is credited with starting the European Renaissance, and

perhaps is the most important invention of the 15th century. His technique of engraving

individual letters and aligning them by hand is at the core of many font engines today.

Terminology
We’ve all played with ink and stamps, starting with our first years in preschool and

kindergarten. It’s fun! You pick up a stamp, press it into a mat of colored ink, and then

stamp it on paper to create letters, words, and pictures. Suppose you wanted to create

an entire book or pamphlet by just stamping letters and placing them on the page. It’s a

laborious process. You’ll need help. Next, you’ll have to describe how you want your

helpers to do their job. For the book to look professional, you’ll need to make sure

everything is spaced well, lines up, and is easy to read.

Suddenly, the little stamps from kindergarten get a lot more complex. Centuries of

playing with words made from stamps and ink have produced a common nomenclature.

You’ll see a lot of this nomenclature in the modern documentation for Cocoa Touch,

Quartz 2D, and other libraries that display text. Sadly, OpenGL provides none of it. Zip.

Nada. Not a word.

You’ll be creating an OpenGL font system from scratch in this chapter, as part of a real

(though embarrassingly trivial) fortune cookie app. I provide the complete source code

to the app, as well as tools I’ve used to create fonts in other apps.

Your font system will rely on the techniques and nomenclature honed over centuries. If

you’re like me, you like to cut to the chase and start coding, so enough with the

pretense and background story.

Bear with me. It’s really important that you understand some basics about fonts before

writing a font system. This is one of those instances where history does indeed teach us

a valuable lesson.

Figure 6–2 shows several of these ancient terms, annotating the imaginary word

“Fontery.”

Figure 6–2. The different components of a font

CHAPTER 6: How to Use OpenGL Fonts without Losing Your Mind 166

Imagine for a moment that the word “Fontery” was stamped from engravings in the era

of Gutenberg. A single engraving of a character is called a glyph. I guess “engraving”

had too many syllables or didn’t sound erudite. “Stamp” would have been too

demeaning. So, we have glyph. C’est la vie.

Gutenberg found that some glyphs don’t look good when stamped side by side—they

leave too much space. For example, the letters “f” and “i” in the word “fish” actually

touch each other. Being the pragmatist, Gutenberg would simply create a single

engraving for the “f” and “i” together. To distinguish these from his “glyphs,” they were

called ligatures, as shown in Figure 6–3. Common ligatures are “fi,” “ly,” and “ae.” fi fi
One ligature Two glyphs

Figure 6–3. The letters “f i” as a single ligature or two glyphs.

A typeface is a set of glyphs and ligatures for an entire alphabet and number system.

Typefaces have common treatment for the strokes and shapes, providing an aesthetic

look and feel. In Figure 6–2, you see many names for the different glyph elements. You

need to remember two of them. The ascender is the part of a character that sits “above”

most other glyphs. The descender is the part that lies below.

Gutenberg would line up his engravings using a common baseline. Every glyph would

appear to “sit” on the baseline, dangling descenders below. To ensure a consistent size

for the typeface, Gutenberg would draw two imaginary lines above the baseline. The x-

height line aligns the top of lower case letters. The cap height aligns upper case.

Ascenders for characters such as “h” would rise above the x-height line. Finally, the

maximum descender and the maximum ascender would define the line size for a single

line of text.

Gutenberg’s process for printing was straightforward. First, he chose a typeface, and set

the line size by changing movable tracks within his Olive Oil-inspired printing press.

Every word was assembled by hand, choosing appropriate glyphs and ligatures from

bins of engravings for his chosen typeface. The engraving sat on a base block of metal

that was carefully designed to have the appropriate level of spacing. This made layout

very efficient. Individual engravings were placed side by side, clamped down, forming

words that were a close approximation to the handwritten calligraphy.

CHAPTER 6: How to Use OpenGL Fonts without Losing Your Mind 167

Pragmatic Fontery
You’re going to use Gutenberg’s 15th century techniques to create a font system in

OpenGL, demonstrating its use in an iPhone app. The system contains some basic data

structures for representing Gutenberg’s glyphs, typefaces, vise grips, and olive oil

presses. The system captures Gutenberg’s techniques in three algorithms, one for laying

out glyphs into words, a second for laying words out on a vise grip, and a third for

applying the vice grip full of glyphs to your digital display.

I like to call this replica of Gutenberg’s process “Pragmatic Fontery.” This system is

quite useful for head-up displays, game status, simple help screens, display titles,

tickertape, and more.

fCookie
I’ll review the algorithms, data structures, and code for pragmatic fontery by describing

a simple app called “fCookie.” Think of this as the “Hello World” version of fontery, with

a twist. This app is available on iTunes for free. I’ve included the entire source code at

the Source Code area of the Apress web site at www.apress.com, so that you can get

started immediately on fontery in your projects. Two screenshots of fCookie are seen in

Figure 6–4.

Figure 6–4. The fCookie iPhone App

CHAPTER 6: How to Use OpenGL Fonts without Losing Your Mind 168

fCookie selects a random fortune from an array of character strings, then selects one of

six different typefaces for displaying the fortune. Figure 6–5 shows a typeface for a

“Bonzai” font, as well as a peek at the property list describing all the glyphs it contains.

Figure 6–5. The Bonzai typeface and a property list describing its glyphs

fCookie uses the algorithm’s I’ll show you, stitching together the letters and words into a

fortune. OpenGL routines display the fortune, creating a ticker tape animation by shifting

the letters to the left on each frame. A random color is chosen for each display and the

transparency is slowly shifted in and out. These crude effects illustrate how OpenGL can

manipulate the various characteristics of a font, including color, size, rotation,

transparency, and more.

Creating a Font’s Texture Atlas
There are thousands of professionally designed fonts available on the Internet, many for

free. Pragmatic Fontery will be using TrueType fonts, the fonts originally invented for the

Mac in the early 90’s. The fonts on your Mac are stored in /Library/Fonts in OS/X and

have “ttf” extensions, which stands for “True Type Font.” My 10.6 version of OS/X has

230 such fonts at the time I wrote this chapter in early 2010.

The first challenge you face is to convert these font files into something usable and fast

on the iPhone. It’s time to break out the terminal app, which is located in the Utilities

folder of your Applications directory (see Figure 6–6).

CHAPTER 6: How to Use OpenGL Fonts without Losing Your Mind 169

Figure 6–6. Opening the Terminal Application

Go ahead and launch a terminal window. You’ll be greeted by a command prompt in a

new window, much like the one in Figure 6–7.

Figure 6–7. The Terminal window for entering commands

You’re going to use an open source tool for image manipulation, in combination with

scripts I’ve written for this chapter, transforming TrueType files into a PNG image and a

property list (.plist) file.

If you’re new to open source on the Mac, you’ll want to download a tool called

MacPorts. This provides a “port” command that lets you search and install software

CHAPTER 6: How to Use OpenGL Fonts without Losing Your Mind 170

packages that have been pre-compiled for your version of Mac OS/X. MacPorts is

available at http://www.macports.org/install.php#pkg.

Follow directions and install the appropriate software. MacPorts can be finicky. It

requires that you install the “Unix Support” that comes with Xcode, found on the Xcode

DVD that shipped with your Macintosh. The instructions in this chapter assume that

Macports has been installed and working correctly. If you get stuck, check out more tips

on this issue at https://trac.macports.org/ticket/21062.

Make sure your MacPorts packages are up-to-date by issuing the following command in

your terminal window:

% sudo port -v selfupdate

The “sudo” (pronounced “soo-doo”) command attempts to grab administrative

privileges on your machine, as the installation will have to touch many system

directories. You’ll need your administrator password, or run this from an administrator

account on your Mac.

With MacPorts in hand, you can download and install ImageMagick with the following

command:

% sudo port install ImageMagick

ImageMagick has been around for years, starting in academia as students and faculty

exchanged code for manipulating computer images. It’s the secret sauce behind many

online services for creating avatars, advertising banners, image overlays, Twitter

badges, and so on. We used it at Photobucket for processing billions of images every

day. The initial installation is quite large but well worth the wait. A friend of mine installed

this on a slow connection, and had more than enough time for a cup of coffee and a

slice of pie.

Let’s grab a few handy utilities that will make your job easier. You’ll use MacPorts again:

% sudo port install wget
% sudo port install php5

The wget tool was used to create the original search database for Google. It retrieves

any web page or item from the Internet and stores it locally. php5 is the language I use

for scripting in this chapter, ensuring you have the latest version as of this writing.

After all the software has been installed, close and restart your terminal window. The

new window should now have access to all this software.

Now let’s create a directory for storing the source code with this project. I call it fontery.

You’ll then download source code from my company’s site, so as to create texture

atlases from any true type font (*.ttf):

% mkdir fontery
% cd fontery
% wget http://bit.ly/fontery1
% tar xfvz code.tar.gz
% rm code.tar.gz

CHAPTER 6: How to Use OpenGL Fonts without Losing Your Mind 171

The mkdir line creates a directory “fontery” in your home directory. You change to this

directory with the cd command. The wget command downloads a compressed “tarball”

that contains the sample code for this chapter. A tarball is a common technique for

bundling files together for transmission on the Internet. You’ll see a bunch of text printed

out as your computer reaches out to the Internet, downloading content. Finally, the tar

command extracts (x) the content from a file(f) “code.tar.gz”, being quite verbose (v),

decompressing (z) as it goes along. This will print dozens of lines, showing all the

individual files that are being placed on your machine. Since you now have the files, you

no longer need the tarball, so delete it with the remove (rm) command.

The code bundles a sample True Type font, “bonzai.ttf,” a font that evokes Chinese

writing for the fCookie app. While this example is shown to use bonzai.ttf, you can use

any of the files in /Library/Font, as well as other TrueType fonts you download or

purchase. Assuming you’ve installed everything correctly, generating a texture atlas is

straightforward. Let’s try it.

% ./genfont bonzai.ttf
Working............
We created a fontmap font0.png and property list font1.png
using font size 32.
%

The genfont script produces two files:

� font0.png: A PNG graphic that contains all readable Latin characters

of your font into a single 256x256 image. The script tries multiple point

sizes until it finds one that just fits. The glyphs are painted in white on

a transparent background. This will allow you to change the colors by

applying filters in OpenGL, and map the fonts to any underlying image

(e.g., a signpost, a car, a heads up display). Inspired by Gutenberg, the

script also includes extra spacing for each character so that they flow

properly when laid out on the screen. This spacing will vary as

specified in the original TrueType font.

� font0.plist: A property list (plist) file that will be read by your

Objective-C classes. This property list stores font information including

the location of each glyph on the PNG graphic, plus its width, height,

descender, ascender, and baseline.

Texture Mapping
These PNG and PLIST files form the core of your Gutenberg font system. You use a

graphics technique known as texture mapping. Texture mapping is the process of

painting pieces of an image onto a display. There’s a small bit of math involved, which

you’ll need to understand. The math helps you position characters exactly on the

screen. It also lets you rotate and scale the characters to handle different font sizes.

Let’s take a quick diversion to learn more about the underlying math now, so that the

rest of the chapter makes sense.

The “mapping” is formally defined with two coordinates:

CHAPTER 6: How to Use OpenGL Fonts without Losing Your Mind 172

� (x, y) is a point on the display

� (u,v) is a point on the image

Let’s assume for this discussion that (x,y) starts at (0,0) in the upper left of the screen,

increasing x to the right, and y to the bottom. In this example, you will use the full

dimensions of the iPhone in portrait mode, where the upper left is (0,0) and the lower

right is (320,480). See Figure 6–8.

The (u,v) coordinate of an image has a similar coordinate system, starting at (0,0) in the

upper left of the image, and continuing to the right until you reach the width w of an

image, continuing to the bottom until you reach the height h the image. But, the values

of (u,v) are normalized.

G G(u,v)

u=0 u=1

v=1

v=0

x=0 x=319
y=0

y=419

G
(x,y)

Image (u,v) Display (x,y)

Figure 6–8. The coordinate systems of texture mapping

You may recall that normalization maps an interval of numbers to the range [0,1]. The

value u, which represents a point along the horizontal axis, starts at 0.0 and progresses

to 1.0 for the entire width w. For example, 0.5 represents halfway across the image, 0.25

is one quarter from the left, 0.75 is one quarter from the right. The value v, which

represents a point along the vertical axis, starts at 0.0 at top and progresses to 1.0 at

the bottom height h.

Texture mapping takes a piece of an image as defined in (u,v) coordinates, then maps

the bits in the image to (x,y) coordinates on the screen. In Figure 6–8, you see the letter

G in (u,v) space being mapped to a different location on the iPhone screen (x,y). This

operation is quite fast and accelerated by the graphics processing unit or GPU. OpenGL

will automatically scale and transform the image bits in hardware to maintain a fast

frame rate.

So to recap, (x,y) is a point on the display screen, and (u,v) is a point on your image. I’ll

be referring to these throughout the rest of the chapter. Feel free to come back and

review this section if you get lost. Now, on to the app.

CHAPTER 6: How to Use OpenGL Fonts without Losing Your Mind 173

Opening Your App
Return to your terminal window. You want to use the texture maps and the uv values

created by the genfont utility in your app. The texture map is captured in the file

font0.png. The uv values and size of each glyph are kept in font0.plist.

Let’s rename these to something you’ll remember:

% mv font0.png bonzai.png
% mv font0.plist bonzai.plist

Let’s get these fonts into your app. Open the Xcode project included with the download

(see Figure 6–9).

% cd FortuneCookie
% open FortuneCookie.xcodeproj

Figure 6–9. A snapshot of the Fontery classes in fCookie

The Fontery Classes
After you open the FortuneCookie Xcode project, you should see the familiar workspace

for building iPhone apps. Take a look at the classes included with the file, available in

the main pane (as in Figure 6–9). If you don’t see all the names here, click on the Fontery

folder to expose them.

The bulk of the code lies within APFontMap. This class does the heavy lifting of reading

texture atlases from an external PNG file, then chopping the texture into little bits for

each glyph as specified in the font’s PLIST file. Since texture atlases consume resources

in mass quantity, APFontMap maintains a singleton Dictionary that maps font names

(e.g. “bonzai”) to the texture.

CHAPTER 6: How to Use OpenGL Fonts without Losing Your Mind 174

@interface APFontMap : NSObject {
 NSMutableDictionary *glyphLibrary;
 NSMutableDictionary *mapLibrary;
}

The mapLibrary variable is a Dictionary of texture atlases. In this demo app, I use a

single dictionary for all of the glyphs as well. You map from a character like “z” to an

instance of an APGlyph. In a production app, you’ll want to have a set of glyphs for each

map to avoid duplicates.

APGlyph
Individual glyphs within a font map are represented by instances of APGlyph. This class

has the instance variables discussed earlier:

@interface APGlyph : NSObject {
 CGFloat *uv;
 CGFloat width;
 CGFloat height;
 CGFloat ascent;
 CGFloat descent;
 NSString *mapKey;
 NSString *glyphName;
}

Recall that (u,v) represents a coordinate on the texture atlas. The APGlyph points to this

location, and captures the glyph’s width and height in (u,v) pixels. See Figure 6–10 for an

example of an APGlyph for the capital letter “H,” as seen on a fragment of a texture atlas.

The ascent and descent variables are used for lining up glyphs on a line. These, too, are

measured in pixels. The mapkey variable represents the name of the font map from which

this glyph was pulled. This is useful during game loops, to ensure that the font map is

first loaded into OpenGL before texture mapping is done. The glyphName will be helpful

in mapping from characters in a string to this glyph. In Figure 6–10, glyphName would

have the value @“"H".

ABC
GHIJ

(u,v)

width

height

descent

ascent

Figure 6–10. The dimensions of an APGlyph for the letter “H”

CHAPTER 6: How to Use OpenGL Fonts without Losing Your Mind 175

APChar
Glyphs represent the individual engravings from Gutenberg’s printing press. Recall that

Gutenberg would place these glyphs in a vise grip, forming words and sentences. You

need to capture the placement of glyphs in two dimensions, ensuring that everything

lines up on a baseline. This is the purpose of the APChar class:

@interface APChar : NSObject {
 CGFloat x;
 CGFloat y;
 CGFloat width;
 CGFloat height;
 CGFloat baseline;
 CGFloat r;
 CGFloat g;
 CGFloat b;
 CGFloat a;

 // The following are taken from the glyph map,
 // then cached here.
 CGFloat minU;
 CGFloat maxU;
 CGFloat minV;
 CGFloat maxV;
}

As you see, there are a few more values you capture than the (x,y) position. You cache

the color and size of your glyph for speed in rendering, the process of stamping your

glyph in digital ink, then pressing it to the digital display.

Figure 6–11 shows all the values for an APChar for the letter “H” as it is mapped to the

iPhone screen, where H” begins the green text string “Hello world.” You’ll recognize

(x,y), the location of a character on the iPhone screen. You add r, g, b, and a to

represent the amount of red, green, blue color, as well as the alpha transparency. A

value of 0.0 means no color and 1.0 means full color. Similarly, an alpha value of 0.0

means completely transparent or invisible while 1.0 means completely opaque. You also

cache the width, height, baseline values for speed, to avoid chasing pointers at render

time. Finally, you compute the bounding box of the glyph. The bounding box is the

smallest rectangle in (u,v) coordinates that completely surrounds the glyph. The upper

left is (minU, minV) and the lower right is (maxU, maxV). Bounding boxes are helpful for

quickly positioning and layout out text on a screen, abstracting a line of characters into a

rectangle.

CHAPTER 6: How to Use OpenGL Fonts without Losing Your Mind 176

ABC
GHIJ

(minU,minV)

(maxU,maxV)

Hello WorldHello World
(x,y)

width

height(minU,minV)

(maxU,maxV)

Texture Atlas
Screen

r = 0.0
g = 0.8
b = 0.0
a = 1.0

baseline

Figure 6–11. An APChar maps an APGlyph from the texture atlas to the screen.

APChar captures the placement of an individual glyph on a vise grip. You want to take

these placements and have OpenGL do the bidding, cutting glyphs from the larger

texture map, dipping them in ink, and pressing them to your display.

Recall that OpenGL has no notion of a font. Don’t worry in Gutenberg’s day, the olive oil

press had no idea it was being used to print bibles. Gutenberg hacked it. He used

screws to attach vise grips into the underside of the large, wooden press. He replaced

the grate that extracted olive oil with a solid block of wood. He substituted paper for

olives. Finally, Gutenberg painted ink on the vice grips moments before he screwed the

press down, pressing the vise grips into his paper.

You need to replicate this elegant hack in the world of OpenGL. OpenGL speaks in

triangles, polygons, and colors. You’ll split your glyphs diagonally, creating two triangles

for each glyph, as shown in Figure 6–12. OpenGL likes to have all of its triangles at

once, much like the olive oil press likes to have an entire page at a time. You’ll

accommodate OpenGL by figuring out all the triangles for your string of font characters,

keeping them in a single array. Since this is memory intensive, keep a pool of these

triangles handy, pulling from them whenever your string grows, returning triangles to the

pool when your string shrinks.

Figure 6–12. Splitting a glyph into two triangles for OpenGL rendering

CHAPTER 6: How to Use OpenGL Fonts without Losing Your Mind 177

APText
You abstract this complexity away with an APText class. APText houses most of the

fontery complexity, mapping from a set of APChar placements to triangle arrays in

OpenGL.

@interface APText : NSObject {
 NSMutableArray * chars;
 NSMutableArray * unusedChars;

 GLfloat * uv;
 GLfloat * vertices;
 GLfloat r, g, b;
 CGFloat alpha;

 NSInteger vertexIndex;
 NSInteger vertexCount;
 NSInteger alignment;
 NSInteger charCount;
 NSString *string;

 CGFloat lineWidth;
 CGFloat lineHeight;

 NSString *fontName;
 BOOL needsLayout;
 BOOL okToRender;
}

An APText instance represents a character string that you want to display on the screen.

Interesting character strings will change. Examples are the hit count in a front-person

shooter, trash talkin’ text from another user, elapsed time, status messages, and more.

APText is optimized for speed. It pre-allocates all the memory it will need for the largest

string it could display. I typically set this limit to the number of characters that will fit on

a single line, say, 64. APText keeps track of memory with two mutable arrays. Assume

for now that 64 is the limit you’ve chosen.

The unusedChars array is first filled with all 64 instances of APChar, one for each

character in the string. The chars array is initially empty. Class methods will pull

characters from unusedChars and place them in chars when needed, or returning them

from chars to unusedChars if they’re no longer needed (for shorter strings).

The uv array specifies the (u,v) locations of all characters you’ll display, in order from the

first to the last. Since you’ll be displaying this with OpenGL and a GPU, you cut each

glyph into two triangles, as shown for the letter “F.” Six coordinates are used, specifying

the triangle formed by (1,2,3), then the triangle formed by (3,2,4). Figure 6–12 shows the

vertices (1,2,3,4) and the two triangles that are formed for the letter F. You pre-allocate

enough memory to store 64*6 or 384 of these.

The vertices array specifies the (x,y) locations on the iPhone screen that correspond to

each (u,v) coordinate in or text string. These are matched one for one with the (u,v)

coordinates in the uv array, splitting characters into the two triangles (1,2,3) and (3,2,4)

as show in the letter “F”. You pre-allocate enough memory to store 384 xy pairs.

CHAPTER 6: How to Use OpenGL Fonts without Losing Your Mind 178

So far, APText has enough memory allocated for 64 characters, storing the (u,v) and

(x,y) pairs in tight arrays. You add a few more instance variables to keep track of your

current string, whose size could vary. See Figure 6–13 for an example using the string

“Hello World,” pulling triangles from a texture atlas in the font Papyrus.

� string is your current string of characters, up to 64 characters in

length.

� vertexCount tracks the total number of vertices you need from (u,v)

and (x,y). It will be the same for both.

� charCount tracks the total number of characters in your string.

� lineHeight tracks the line height of our font. This is useful for

positioning multiple APText instances in a paragraph, for example.

� lineWidth tracks the total width of your character string, in pixels.

Hello World

ABCDEFGHIJKLM
OPQRSTUVWXYZa
bcdefghijklmnopqrst
uvwxyz 01234567890

uv coordinates refer to
triangles on the texture map.

Hello World

xy coordinates place
triangles on the display

(u,v) and (x,y)
both represent each
glyph with 2 triangles,
shown here in red
and grey

vertexCount: 66

lineWidth

lineHeight

string: “Hello World”

charCount: 11

Figure 6–13. Instance variables within the APText Class

So far you’ve sent the basic elements of Gutenberg’s press. APGlyphs are placed on

your virtual vise grip with APChars. A set of APChars are mapped to your OpenGL

printing press with an APText instance, which represents a vise grip being screwed into

the back of an olive oil press.

Now you need to capture the physical act of screwing the press down onto paper. This

is the role of APRenderController.

CHAPTER 6: How to Use OpenGL Fonts without Losing Your Mind 179

This class organizes OpenGL calls to set up, display, and animate your APText instance.

This class was derived from the ESRenderer* classes in the standard OpenGL template

available in the iPhone SDK. You have a few instance variables:

@interface APRenderController : NSObject
{
@private
 EAGLContext *context;

 // The pixel dimensions of the CAEAGLLayer
 GLint backingWidth;
 GLint backingHeight;

 // The OpenGL names for the framebuffer and renderbuffer
 // used to render to this view
 GLuint defaultFramebuffer;
 GLuint colorRenderbuffer;

 APText *ourText;
 CGFloat offset;
}

The context is an OpenGL drawing context. Think of this as housing the state of

graphics processing unit (GPU), keeping track of all the OpenGL switches for color,

transparency, shading, scaling, rotation, and more. You refer to the context every time

you want to draw to the screen.

The dimensions of your screen are kept in (backingWidth x backingHeight). The names

were taken from the ESRenderer class.

When drawing in OpenGL, one “frame” is usually being shown while a second “frame

buffer” is being filled with the contents of the next frame. Once the frame buffer is

complete, a single call to OpenGL will copy the contents of the frame buffer to the live

frame. The process repeats ad infinitum, producing animation. You’ll create these two

frame buffers in memory, ask OpenGL for their “handle,” and store the handle in

defaultFrameBuffer and colorRenderBuffer. Therefore, point all your drawing and

texture mapping operations to defaultFrameBufferefaultFrameBuffer.

Putting It All Together
You’ve used open source tools to convert True Type fonts into texture maps and

property lists. You’ve seen Objective C classes that ingest these into font maps, creating

modern versions of Gutenberg’s tools. To recap, review the following:

� A PNG file and a property list capture the essence of any True Type

font.

� APGlyph’s are Gutenberg’s individual engravings, cut from a master

design kept in an APFontMap.

CHAPTER 6: How to Use OpenGL Fonts without Losing Your Mind 180

� APChar’s represent the placement of glyph’s on a single Gutenberg

track.

� APText represents Gutenberg’s vise grip, holding the glyphs in place

and attaching them to the back of the OpenGL oil press.

Figure 6–14. The six fonts and their property lists within fCookie

Let’s do some oil pressing, Gutenberg style!

First, load up the resources. Make sure the PNG image and PLIST property list are part

of the Resources folder within XCode. You’ll notice in Figure 6–14 that I’ve loaded 6

different fonts, each starting with “font” and ending in a number from zero (0) to (6). I

also organized these into a “Fonts” group for clarity.

Your app begins as a modification of the OpenGL template in the iPhone SDK. You have

a single view, EAGLView, that contains an OpenGL layer. This view contains an instance

of your APRenderController in the renderer instance variable. When your controller is

created, you do three things:

1. Create your OpenGL context, essentially Gutenberg’s workspace.

2. Create your frame buffers.

3. Create your APText object, picking a random fortune and font.

Most machines need some “setup” time. Even an oil press needs to oiled, placed on a

solid footing, and cleared of debris. A clean bucket needs to be placed beneath the

press for capturing olive oil. OpenGL is no different. Let’s take a moment to review how

you get OpenGL ready for displaying text.

CHAPTER 6: How to Use OpenGL Fonts without Losing Your Mind 181

Setting Up the Display
You’ll use the simplest and oldest of the OpenGL interfaces, version 1.1, using the

initWithAPI call:

- (void) createContext
{
 context = [[EAGLContext alloc initWithAPI:kEAGLRenderingAPIOpenGLES1];
 if (!context || ![EAGLContext setCurrentContext:context])
 {
 [self release];
 context = nil;
 }
}

Your framebuffers are the digital equivalent of Gutenberg’s paper, of the olive oil bucket.

You create them with a handful of OpenGL calls:

- (void) createFrameBuffers
{
 glGenFramebuffersOES(1, &defaultFramebuffer);
 glGenRenderbuffersOES(1, &colorRenderbuffer);
 glBindFramebufferOES(GL_FRAMEBUFFER_OES, defaultFramebuffer);
 glBindRenderbufferOES(GL_RENDERBUFFER_OES, colorRenderbuffer);
 glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES, GL_COLOR_ATTACHMENT0_OES,�
 GL_RENDERBUFFER_OES, colorRenderbuffer);
}

“OES” in the function names refers to “OpenGL Embedded System.” The first call tells

OpenGL to create a frame buffer internally, and return to you a handle for referring to it

in the future. OpenGL handles are all unsigned integers, perhaps a pointer in memory.

The frame buffer is used to draw items before they’re rendered. You’ll keep this handle

in defaultFrameBuffer.

The next call tells OpenGL to create a render buffer for display to the screen. I know this

seems a bit redundant. On the iPhone, you never draw directly to the screen. Other

versions of OpenGL allow this, an “immediate” mode. You’ll still keep this handle around

to tell OpenGL to do the drawing for you, copying from the framebuffer.

The next two calls “bind” the framebuffers to the live, graphics pipeline. Binding tells the

graphics hardware which memory to use for certain operations. This could allow you, for

example, to create multiple framebuffers, and only bind the one you want to use at a

given time. You bind your single frame buffer to the live frame buffer, and your render

buffer to the live render buffer.

The final call tells OpenGL to hook up a feed from the live frame buffer to the live render

buffer. This way the hardware will know the ultimate target, so it can figure out which

color schemes to use, how many bits to use per each color, and so forth. These

hardware attributes are determined whenever you associate the render buffer with a

Layer. This critical connection is done in the resizeFromLayer method of

APRenderController, which is called from the main view at startup:

glBindRenderbufferOES(GL_RENDERBUFFER_OES, colorRenderbuffer);

CHAPTER 6: How to Use OpenGL Fonts without Losing Your Mind 182

[context renderbufferStorage:GL_RENDERBUFFER_OES fromDrawable:layer];

You capture the dimensions of the hardware in your two instance variables, using the

following calls into OpenGL:

 glGetRenderbufferParameterivOES(GL_RENDERBUFFER_OES,
GL_RENDERBUFFER_WIDTH_OES, &backingWidth);
 glGetRenderbufferParameterivOES(GL_RENDERBUFFER_OES,
GL_RENDERBUFFER_HEIGHT_OES, &backingHeight);

So far you’ve created an OpenGL graphics context, created your frame buffers, hooked

them together, connected the render buffer to your layer, and retrieved the raw

hardware dimensions. Your next and final step is to specify how you’ll map from your

math coordinates to physical screen coordinates. This is done once, in

setupPortraitMode of APRenderController, in APRenderController.m:

- (void) setupPortraitMode
{
 glBindFramebufferOES(GL_FRAMEBUFFER_OES, defaultFramebuffer);
 glViewport(0, 0, backingWidth, backingHeight);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrthof(-backingWidth/2.0, backingWidth/2.0,
 -backingHeight/2.0, backingHeight/2.0,
 -1.0f, 1.0f);
}

The call the glOrthof specifies the x-range, y-range, and z-range that you’ll use to

represent the physical screen. Here I’ve chosen to make the center of the screen (0,0),

and have the X axis go from –w/2 to +w/2 from left to right. Similarly, I’ve chosen to

make the Y axis start at –h/2 on the bottom, to +h/2 on the top. I won’t be using the Z

range, so I left it at –1.0 to 1.0.

Your digital olive oil press—the OpenGL context—is now ready for drawing!

Creating Your Fortune
You want to display a fortune, and have it scroll across the screen. For this example, I’ve

hardwired the character strings in C. Open the file Fortunes.h. You’ll see the following

near the top of the file:

#define kFortuneCount 441
#define kFontCount 6

static char* kFortunes[] = {
 "He who climbs a ladder must begin at the first step.",
 "The one who snores will always fall asleep first.",
 …
}

kFortunes is an array of ASCII character strings, 441 to be exact. I’ve also defined a total

number of fonts, kFontCount as 6.

CHAPTER 6: How to Use OpenGL Fonts without Losing Your Mind 183

Now switch to the file APRenderController.m, where you create an instance of APText,

initializing it with a random quote from the kFortunes array. This all occurs in the

createObjects method which follows:

- (void) createObjects
{
 int fortune = round(randomPercent * (kFortuneCount-1));
 int fontid = round(randomPercent * kFontCount);
 NSString *quote = [NSString stringWithUTF8String: kFortunes[fortune]];
 NSString *font = [NSString stringWithFormat: @"font%d", fontid];
 NSLog(@"Showing fortune:\n%@\nin font %@",quote,font);

 ourText = [[APText alloc] init];
 [ourText useFont: font];
 [ourText setString: quote];
 ourText.r = 0.7*randomPercent;
 ourText.g = 0.7*randomPercent;
 ourText.b = 0.7*randomPercent;
 offset = 0;
}

You’ll notice the use of randomPercent, C shorthand defined as

#define randomPercent (((CGFloat)(arc4random() % 40001))/40000.0)

This uses an improved random function generator, arc4random, to determine a value

from 0.0 to 1.0. I find it much more “random” than the stock rand() function, as it

initializes itself based on current time and the content of CPU registers. But I digress.

Next, you choose a random number, then pick one of the C strings out of your Fortunes

array and convert it to an NSString, as follows:

NSString *quote = [NSString stringWithUTF8String: kFortunes[fortune]];

You also pick a font from font0 to font6, which as you recall are stored with your

resources:

NSString *font = [NSString stringWithFormat: @"font%d", fontid];

Creating the actual APText is straightforward. You allocate an instance then tell APText

the name of the font, and the value of your string:

ourText = [[APText alloc] init];
[ourText useFont: font];
[ourText setString: quote];

You also choose random values for the red, green, blue colors, representing the relative

intensity of each color from 0 to 70%:

ourText.r = 0.7*randomPercent;
ourText.g = 0.7*randomPercent;
ourText.b = 0.7*randomPercent;

I’ve kept the range from to nothing higher than 70% saturation, producing a darker

range of colors that will be placed on a white background. If you let value range all the

way to 100% saturation, you could get bright, white colors that are impossible to see.

CHAPTER 6: How to Use OpenGL Fonts without Losing Your Mind 184

Finally, record the “offset” for shifting the text on the display as 0. Increase the offset on

every frame, shifting your text to the left. Once the text is completely off the screen,

reset the offset to zero and repeat.

Displaying the Fortune
You now have an OpenGL layer ready for display, and an APText object containing your

lucky fortune. Now let’s look at how you use fontery to display the string on the display.

The render method of APRenderController is called for every frame. You break this

down into three steps, as seen in APRenderController.m:

- (void) render
{
 [self beforeRender];
 [self renderObjects];
 [self afterRender];
}

The beforeRender step chooses your graphics context, clears the OpenGL display, and

gives a fresh perspective, with no translations, rotations, color changes, etc. It resets the

math and engine state so you don’t get confused.

- (void) beforeRender
{
 [EAGLContext setCurrentContext:context];
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glShadeModel (GL_SMOOTH);
 glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
 glEnable(GL_BLEND);
 glClearColor(0.9f,0.9f,0.9f,0.6);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
}

The renderObjects step iterates through all objects in your display, asking them to

render themselves. For this app, you only have one – ourText.

- (void) renderObjects
{
 offset += 2;
 if (offset > ourText.lineWidth + 160) {
 offset = 0;
 ourText.r = 0.7*randomPercent;
 ourText.g = 0.7*randomPercent;
 ourText.b = 0.7*randomPercent;
 }
 glTranslatef(-offset,0,0);
 ourText.alpha = 0.6+0.2*(cos(offset*3.1415926/180)+1.0);
 [ourText render];
}

To spice things up a bit, change the offset of each iteration, then use glTranslatef to

shift the display to the left (negative x values). Also, play with the transparency of the

text, using math to make it oscillate between 40% and 80% opaque. Once the offset

CHAPTER 6: How to Use OpenGL Fonts without Losing Your Mind 185

moves the text completely off the screen, reset the offset and change the color for the

next scrolling display.

You then call the render method of APText:

-(void)render
{
 // Choose font atlas and uv mapping
 if (fontName != nil) {
 [[APFontMap sharedFontMap] bindMaterial: fontName];
 glEnableClientState(GL_TEXTURE_COORD_ARRAY);
 glTexCoordPointer(2, GL_FLOAT, 0, uv);
 if (glGetError()) printf("Error setting texture uv\n");
 }

 // Load (x,y) mapping
 glEnableClientState(GL_VERTEX_ARRAY);
 glVertexPointer(2, GL_FLOAT, 0, vertices);
 if (glGetError()) printf("Error setting vertices xy \n");

 // Set paint color
 GLfloat red = (r < 0) ? 0 : ((r > 1) ? 1 : r);
 GLfloat green = (g < 0) ? 0 : ((g > 1) ? 1 : g);
 GLfloat blue = (b < 0) ? 0 : ((b > 1) ? 1 : b);
 glColor4f(red, green, blue, alpha); //, alpha, alpha);

 // Apply triangles to the screen
 glDrawArrays(GL_TRIANGLES, 0, vertexCount);
 if (glGetError()) printf("Error drawing vertices\n");

 // Clean up our work area
 glColor4ub(255, 255, 255, 255);
 glDisable(GL_TEXTURE_2D);
 glDisableClientState(GL_VERTEX_ARRAY);
 glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}

Let’s now step through this algorithm and how it executes at runtime.

1. Bind your texture map in OpenGL.

 // Choose font atlas and uv mapping
 if (fontName != nil) {
 [[APFontMap sharedFontMap] bindMaterial: fontName];
 glEnableClientState(GL_TEXTURE_COORD_ARRAY);
 glTexCoordPointer(2, GL_FLOAT, 0, uv);
 if (glGetError()) printf("Error setting texture uv\n");
 }

You have to choose your font. Use the fontName string as a key, mapping from the

fontName to an OpenGL texture stored in a shared dictionary. This is done in the file

APFontmap.m, as follows:

-(void)bindMaterial:(NSString*)mapKey
{
 NSNumber * numberObj = [mapLibrary objectForKey:mapKey];
 GLuint textureID = [numberObj unsignedIntValue];
 glEnable(GL_TEXTURE_2D);
 glBindTexture(GL_TEXTURE_2D, textureID);
}

CHAPTER 6: How to Use OpenGL Fonts without Losing Your Mind 186

2. Specify (u,v) locations for each glyph triangle.

You next tell OpenGL to use the UV coordinates that correspond to the particular glyphs

in your string. This is the purpose of the two lines of code:

glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, 0, uv);

The first, glEnableClientState, tells our OpenGL olive press that you’ll be using texture

mapping as a technique for painting on the screen. You’re “turning on” the ability to

pass in a set of UV coordinates in a single array. The next call, glTexCoordPointer,

actually passes your array of UV coordinates for all the characters you need from your

font.

NOTE: Production applications will want to behave a little better than what you’ve shown here,
keeping track of the state of the OpenGL graphics pipeline. Calls to glEnableClientState and
glDisableClientState can get expensive. You’ll want to make these calls only when absolutely
necessary. For example, you might set up a texture mapping mode, then map all your textures,
before switching to other modes. Your sample code turns these on and off for each APText
display.

3. Specify (x,y) screen locations for each glyph triangle

You have to map these textures to locations on the screen. Recall that you position the

glyphs in your string with APChar instances. Each of these has an x,y value, and you

collect all the XY values into an array named vertices. You tell OpenGL to use this array

with two API calls:

glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(2, GL_FLOAT, 0, vertices);

The first call enables the use of such a “vertex array,” and the second call says you’re

only specifying 2 dimensions, (x,y), using floating point values.

4. Choose your ink color.

You then set up the color of your font. Your font texture atlases are created with white

characters on a transparent background. You can use a single call into OpenGL to

shade this white to whatever color you want, at a transparency set by your alpha value.

Neat. First, you turn the r,g,b values into a valid range from 0.0 to 1.0:

GLfloat red = (r < 0) ? 0 : ((r > 1) ? 1 : r);
GLfloat green = (g < 0) ? 0 : ((g > 1) ? 1 : g);
GLfloat blue = (b < 0) ? 0 : ((b > 1) ? 1 : b);

Then, you tell OpenGL to turn on its color shader:

glColor4f(red, green, blue, alpha);

5. Paint the triangles on the framebuffer

Finally, draw the entire character string in a single OpenGL call:

CHAPTER 6: How to Use OpenGL Fonts without Losing Your Mind 187

glDrawArrays(GL_TRIANGLES, 0, vertexCount);

OpenGL will use the (u,v) positions and (x,y) positions you gave it earlier, iterating

through the array, mapping each (u,v) triangle to an (x,y) triangle on the screen. OpenGL

“presses” the triangle into an off-screen framebuffer. Think of this as the raw sheet of

paper on the olive oil press. With the glDrawArrays call, you’ve now imprinted one copy

of your APText string onto the virtual display.

These five steps are repeated for all the text strings on your display. This completes the

renderObjects step of your APRenderController. You have one step left, done once for

the entire set of images rendered to the frame buffer.

The afterRender step asks OpenGL to dump the frame buffer into the render buffer,

displaying your text on the screen. This is the equivalent of lifting the head of the olive oil

press, allowing you to reach inside and see the final work product.

- (void) afterRender
{
 glBindRenderbufferOES(GL_RENDERBUFFER_OES, colorRenderbuffer);
 [context presentRenderbuffer:GL_RENDERBUFFER_OES];
}

You’re done. You repeat this every frame to create an animated, scrolling fortune.

Summary
This chapter has demonstrated “pragmatic fontery,” a technique first devised by

Gutenberg in the 15th century. Gutenberg created individual carvings for each letter,

casting them into individual blocks that also included spacing. He would space these

blocks together on a track, holding them in place with a vise grip. The vise grips were

attached to the back of an Olive Oil press, which was then pressed down on monk-sized

paper.

Your digital version mirrors his invention. An APGlyph class instance represents an

individual character block, cut from a larger APFontMap image with (u,v) coordinates. An

APChar class places this glyph on a track using (x,y) screen locations. An APText class

gathers all characters together to represent a single track, with its own lineWidth and

lineHeight. Your APRenderController class acts as the Olive Oil press, essentially

“pressing” an APText into your iPhone screen, by first casting it in a framebuffer with a

chosen (r,g,b) color, then swapping the framebuffer for the live display.

I demonstrated the use of pragmatic fontery in a simple fortune cookie app, fCookie.

Source code for the app and its supporting scripts are available on the Apress web site

at www.apress.com . I hope you enjoy using these classes, extending them for use in

heads up displays, counters, menus, status messages, and more!

189

Ben Britten Smith
Company: EscapeFactory
(http://escfactory.com)

Location: Melbourne, Australia

Former Life as a Developer: I have been writing software in one form or another
since grade school. Back then, I wrote in BASIC and Logo. Over the intervening
quarter century or so, I have ranged all over the map, from writing low-level
assembly for embedded systems through all the major (and not so major)
languages settling now and again on the big ones, like C, C++, Perl, Smalltalk,
Obj C, and PHP.

Somewhere along the way, I got involved with a visual effects company called
Spydercam and wrote their industrial motion control system. This system is still
in heavy use and is used on many feature films. In 2005, Spydercam’s lead
hardware designer, lead mechanical engineer, and I were awarded an Academy
Award for Technical Achievement for our efforts in 3D motion control. Some
interesting trivia: the system we designed is the only one that I am aware of that
runs on a Mac, written entirely in native Cocoa/Obj-C.

I am also active in the Multitouch surface open source community. I wrote an
open source tracker called xTouch and an open source OSC implementation
called BBOSC. I also collaborated on a Unity-based Multitouch framework called
uniTUIO.

Life as an iPhone Developer: Recently, I have relocated from New York City to
live in Melbourne with my wife Leonie. Here I have started offering my services as
a freelance cocoa developer, and once the SDK became public, the market for
iPhone work exploded. I have worked on a half dozen apps that are on the store
now for various clients, like Anti-Stress, Blackout, and aSleep. Just after the SDK
was released, I was approached by a few clients interested in game
development. My first iPhone game was SnowDude and it was entirely in
Cocoa/OpenGL. On the heels of the SnowDude release late in 2008, Unity3D
announced their Unity for iPhone tools, so I started making games using Unity3D.
By the time of this printing, I will have over a half dozen games in the app store,
both Unity and OpenGL/Cocoa.

 190

Apps on the App Store:

� Mole: The Quest for the Terracore Gem

� Gamebook Adventures Volume 1: An Assassin in Orlandes

� Gamebook Adventures Volume 2: The Siege of the Necromancer

� Snowferno

� SnowDude

What's in This Chapter: In this chapter Ben explores the power of the Unity3D
game engine. During this gentle introduction to the Unity API, Ben shows you
how to get around in the Unity editor, takes you through the process of importing
3D models, building a 3D scene, and attaching custom scripts to your game
objects, explores touch interaction and a simple GUI interface, and even shows
you how to control a fully animated 3D character.

Key Technologies:

� Unity3D

� 3D Modeling/Texturing

� Asset Management

191

191

 Chapter

Game Development with
Unity
Most of us have built our own game engine in one form or another. If you are a

programmer and you build games, then it is like a rite of passage. I have done it. In fact,

I have done it a few times. 2D-game engines based on Core Animation, both 2D and 3D

engines based on OpenGL and OpenGL ES, the list goes on. I love making my own

engines. They do exactly what I need them to do, no more and no less. The downsides:

it takes a long time to write your own engine and unless you make the exact same kinds

of games over and over again, you will be spending a long time adding features to your

engines to match your new game designs. It is often hard to see this happening to

yourself because writing game engines is fun!

At some point along the way, I realized that if I was really going to be serious about

game development, I needed to stop writing game engines and start writing games.

After I had built a handful of games for clients using my own custom 2D/3D OpenGL

ES–based engine, I decided that I really wanted to branch out and build my own games.

Once I started thinking about my own games, I wanted to add things like physics and

complex object interactions, cool lighting effects, and particles—all in 3D, of course.

Now, there was nothing stopping me from adding all these features to my own little

engine and using that, except time.

I first started looking around at the various physics libraries available, and began

mapping out what it would take to properly integrate a physics library with my little 3D

engine. I took a look at a few various options, made some notes, and decided that no

matter which way I went I would need at least a few days to get myself even a bit

familiar with the physics API, a few more days of testing and fiddling with the bits and

pieces to figure out how it would best integrate with my existing code, and then a few

more days to actually add it in. On top of that, there would be at least a few more days

worth of bug fixing and issues down the line. Therefore, to add one feature to my

engine, it would take me a couple of weeks of work.

7

CHAPTER 7: Game Development with Unity 192

I am a freelance programmer, so my hours have dollar values attached to them. Any

time I am not spending on client projects is money that I am not earning. With this in

mind, it was easy for me to put a fairly large monetary value on my two weeks of time

and come to the conclusion that simply buying some pre-built engine would make so

much more sense.

What Is Unity?
This brings us to Unity3D (http://unity3d.com), the main Unity application, which is

usually just called Unity. It comes in two flavors: a Pro version, which costs money, and

a free version, which does not. There is also another standalone app which is Unity

iPhone, and it also comes in two types: Unity iPhone Basic, which is a few hundred

dollars and Unity iPhone Advanced, which is a bit more expensive. As of this writing,

Unity 3.0 was just announced. It will bring the iPhone and “desktop” versions into the

same package. This will make cross platform development even easier.

But, really, what is Unity? I used some terms like “game engine” earlier, but Unity is not

really a game engine. It is a game creation tool that happens to have a game engine built

into it. What does that mean? It means that if you want to build a game (or any 3D

application) and you want to focus on the game play aspects of the game yet not worry

about the esoteric 3D rendering issues, then Unity is a good place to start.

This is not all though. The folks at Unity are very keen to provide as many platforms for

easy deployment as possible. This means that if you use Unity to build a game for the

iPhone, or iPad, you will be able to easily port it for the browser or the desktop (even the

Windows desktop). The recently announced Unity 3 will also support Android

deployment as well as a handful of consoles.

As an indie game developer, the cross platform support is one of the reasons I

consistently choose Unity for my projects. I can prototype game designs and build them

for the browser so that our team members can easily game test from any computer.

After we have settled on a working game design, I can build the game and quickly

produce an iPhone version; then tweak the interface and display to build an iPad

version, and then maybe add gamepad or keyboard support so as to produce a desktop

version. Finally, I could add Facebook integration to deploy on Facebook or another

social network. This flexibility is simply not possible with any other engine out there.

So, let’s get into Unity.

The Unity application is also known as the Unity Editor, and at first it can be a bit

overwhelming (see Figure 7–1).

The Unity Editor is where you will do most of your game building work. This is also

where you store your assets and make object connections. The Unity Editor is where

you will be able to quickly build your game objects and place them in your scenes. The

inspector allows you to easily change the variables for all the various game objects and

scripts you will be using and writing. It holds all the images and materials you will use for

your textures and user interface elements. It is all very simple to use and you will spend

a great deal of time in the Unity Editor.

CHAPTER 7: Game Development with Unity 193

Figure 7–1. The Unity Editor window. Unity Pro working on my game, Mole.

The other thing you will need is a good text editor. Unity comes with one, called Unitron,

and it is really quite good if you are just starting out. It gives you easy auto-completion

of the API calls and quick access to the documentation.

For this chapter, I would suggest you go to http://www.unity3d.com and download the

free Unity editor. As of this writing, you can get a 30 day free trial of the iPhone Basic

version. You can also use the desktop version if you are just starting out with iPhone

development and have yet not gotten your Apple development account. The desktop

version will not allow you to build for the iPhone, and some of the specific iPhone API

calls are not available (like the touch processing). However, you will be able to

implement the code in this chapter and I will point out anything iPhone specific. This

way you can get a feel for the Unity API and building a game, the Unity way.

Why Use Unity?
I already talked a bit about why I initially started using Unity: the price/performance ratio

was far higher than what I could accomplish on my own. I also talked a bit about cross

platform deployment.

CHAPTER 7: Game Development with Unity 194

Additionally, with Unity I also get a nice asset management interface and a nice 3D

scene modeler for my game scenes. Building all that on my own would have taken me

years.

Let’s pretend you already have an OpenGL|ES code base that does most everything you

want. I still think that you could find some value in Unity. First, the Editor provides a

handful of primitive shapes and game objects that allow you to very quickly put together

game prototypes. This is so much more helpful than I ever thought it would be. Do you

have a crazy idea for a game, but you don’t know if it is going to be fun or not? You can

probably knock out a rough game play prototype with boxes and spheres in a few hours.

Add to that built-in physics, collisions, particles, texture handling, audio handling, and

anything you need to build a game is there.

If you have been building games on the iPhone, you also know of the dreaded iPhone

Simulator issues. There is no accelerometer, which means you can’t do more than very

basic double-touch gestures. This doesn’t feel like an iPhone, which means that when

you are building your game and testing it, to get a real feel, you have to always build for

the device. This can take a long time and really slows down your process. Unity

provides you with an iPhone app called Unity Remote that allows you to use a device

like a gamepad and test games right in the editor. Therefore, if you are doing a rolling-

ball game, like you did with Snowferno, then you just hit the play button in the editor,

and the game shows up on your device instantly, so you can test it without having to

compile or install every time. You’ll see this in the “Using the iPhone As a Game Pad”

section later in this chapter.

You can change your scenes and your game objects while you are play testing. If that bit

of the scene is in the wrong place, you can just grab it, move it, and play on.

There are many more pros to using Unity, and you will see many of them during the rest

of the chapter, but to summarize all of them: Unity makes it easy to build games. It is

made specifically to build games and it does it very well.

However, Unity is not a panacea and is not without its downsides. The biggest issue for

me when I first began using Unity was that I could not use Objective-C and Cocoa. If

you are familiar with Objective-C and the Cocoa APIs you will need to learn some new

stuff. (Others who do not like Objective-C might find this to be a big upside.) I am a big

fan of Objective-C. I love the Cocoa APIs and generally dislike writing in the other C

languages. That said, it took me only a few days to really get comfortable with the

scripting for Unity. Unity uses the Mono scripting project, which means you can pick a

few different languages. The most popular are Javascript and C#.

There is some debate as to the best scripting language to use within Unity. Truth be

told, there is no better language for scripting in Unity. At the time of writing this chapter,

there was some internal discussions of whether we should be using Javascript or C# for

the sample code.

Javascript has an advantage in that is very simple to use and building scripts in

Javascript can be very quickly done. Much of the Unity documentation is also provided

CHAPTER 7: Game Development with Unity 195

with Javascript samples. I built my first Unity-iPhone game, Snowferno, entirely with

Javascript and it works great.

That said, I think that C# is a bit more of a programmer’s language. By that, I mean C# is

more strongly typed, and I find it a bit easier to do more complex things in C#.

Sometimes I want to be specific with my variable types, and I often want to take

advantage of Object Oriented design patterns. These types of things are easier in C# in

my opinion.

Ultimately, I decided to do the sample code in C#. I think that most programmers

reading this will be familiar with the C languages and Objective C in particular. I tend to

design my C# code in a very cocoa-like fashion, so it should be easy to transition.

How do you build a game in Unity? Read on!

Exploring the Unity Interface
I only have one chapter here, so I am not going to make a comprehensive guide to all

things Unity. What I plan to do is introduce you to some common features of Unity while

making a simple game. At the end of the chapter, I hope you will have an appreciation

for how simple Unity can be and yet how you can leverage Unity’s pre-existing

architecture to build your own games quickly and easily.

If you haven’t gotten a version of Unity, download the iPhone version from the

Unity3d.com web site, then run the installer and sign up for the 30 day trial.

With that in mind, the first thing you will need to do is get familiar with Unity’s interface.

Over the course of the chapter, you will be using lots of different art assets, from 3D

models to textures to scripts. In all of the cases, you can substitute your own 3D models

or images, but to make things a bit easier I have built a sample project. You should be

able to find the source here: http://apress.com/book/sourcecode. Once you have it,

open up the sample code in Unity by going to the File ➤ Open Project and selecting the

CoolerUnity folder.

In Figure 7–2, you see the five major sub window types in unity. These five are the ones

you will be looking at most of the time, so you will start with these.

CHAPTER 7: Game Development with Unity 196

Figure 7–2. The five main chunks of the Unity editor. This is what you are staring at for the majority of your time
in Unity.

If you opened up Unity and it doesn’t look quite like this that is OK. As of this writing, the

desktop version is slightly different from the iPhone version pictured here. However,

don’t let the slight differences in UI worry you, the functionality is almost identical.

Everything you do in this chapter, with the exception of the iPhone specific things will

work just fine in the desktop version, and I will point out how to replicate touches in the

desktop version as well, so if all you have is the free Unity download, you will be just

fine.

Let’s have a look at each one of these sub windows.

The Scene View
The scene is similar to a 3D editor. It allows you to move objects around in your scene

and view your scene from anywhere. You can grab your scene objects and rotate, scale,

and move them.

The scene provides you with some basic manipulation tools in the upper-left corner as

shown in Figure 7–3.

CHAPTER 7: Game Development with Unity 197

Figure 7–3. The scene manipulators: the pan/zoom/tumble tool, move tool, rotate tool, and the scale tool.

The leftmost tool is the pan/zoom/tumble tool. If you just click and drag in the scene

window, then that tool will have a hand icon and you will pan the camera around the

scene. If you hold the option key while dragging, the icon will change to a little eye and

you can tumble the scene. If you hold the command key while dragging, the scene will

zoom. If your mouse has a scroll wheel, then the scroll will zoom as well.

The next three tools are for manipulating a single object. If you select an object in the

scene then these tools will allow you to move it around, spin its orientation, and scale it.

You can also do this from the Inspector view by typing in the exact values you want and

you will talk about that in a second.

The Game View
The game view is what the player will see when they play your game. When you hit the

play button to test out your game, you will be playing the game in this view, and this is

what will show up on your device if you are using it as a remote (more on that later). You

can set this view to show various different resolutions and aspect ratios, but generally

when developing for the iPhone you want to stick to the iPhone screen size.

If you have a look at Figure 7–4, you are going to be making a game that is in the

landscape format, so you want to lock the game view into the iPhone wide resolution.

This way you know exactly what the player is seeing and you can tweak your camera

angles and scene design to that screen size.

Figure 7–4. Setting the game view to only show the iPhone landscape aspect.

CHAPTER 7: Game Development with Unity 198

The Project View
The project view is a shortcut to all the assets in your project. There is a folder in your

Unity project called Assets. Everything in that folder (including other folders) will show

up in the project view. One of Unity’s unique and awesome features is the way that

assets are imported. Any time you make a change to anything in the assets folder, Unity

automatically imports it into your project or updates the existing assets. For example, if

you have a texture you are tweaking in Photoshop, you can open it up right out of the

assets folder and every time you save, your changes will appear in Unity automatically.

This even works while you are playing the game in the Game View.

The Hierarchy View
The hierarchy view shows only those objects that you have in the scene currently. Most

games have multiple scenes.

The Inspector View
The Inspector is where you can change the values of your object’s attributes. In the

scene view, you could rotate, scale, and move the objects. Similarly, in the inspector,

you can simply type in new values for the various transform properties. The inspector

also exposes various attributes of all the components of the objects, from the material

that you are using to render the object to the customized script variables that you

choose to expose to the editor. More on all of this later, but suffice it to say, you will be

using the inspector quite a bit.

Now that you have seen the interface, you are going to have a quick look at how you put

objects into your games and how you interact with them in the editor.

How the Pipeline Flows
Each object in your game is built up of various bits and pieces. Things like the material

you are using, the mesh of vertexes that define the shape of your objects and the

transform that defines where in space the object is. In Unity, these are called

Components. The container that holds a bunch of components is known as a

GameObject.

Most every object in your scene will be either a game object or a component of a game

object. The asset pipeline is about getting various art assets into components and

attaching those components to a game object, which becomes part of your scene.

This sounds a bit convoluted and complicated, but it is actually very simple. I am going to

go through the process of making a game object from scratch, so that you can get familiar

with each of the major components. Then, I will show you how to do it the easy way.

Any given game object can have a dozen or so different types of components attached

to it. You are going to look at the most common of these: the renderer, the transform,

CHAPTER 7: Game Development with Unity 199

the collider, and the script. You will look at each one individually and look at how you

import assets into these components.

Before you can look at components, you need a game object container. If you haven’t

already, make a new scene in your project. This can be found under File ➤ New Scene.

The Transform: Everybody Has One
In this new scene, you should see a blank scene view and your hierarchy has a Main

Camera object in it. You want to add a new empty game object. Go to the menu

GameObject ➤ Create Empty.
 Now your scene should look something like Figure 7–5. Your object shows up in the

scene as an empty box because it has no renderer attached to it. We will get to that in a

moment.

 Figure 7–5. A new empty game object

For now, have a look in the inspector. You can see two components there: the Game

Object and the Transform.

The Game Object isn’t actually a component; it is the instance variables of the game

object itself. For now, let’s just change the name to something besides “GameObject”, I

will call it: “Rotating Barrel”.

The next thing to look at is the transform. Every object has a transform, even empty

ones like this one. The transform lets you adjust the general transformations like

position, scale, and rotation.

In the case of new empty objects, Unity has a tendency to put the object at the last

place you were looking at, or at some other inexplicable place. When you are dealing

with objects that have meshes, then it is obvious that they are out of place, but with the

empty ones, it is sometimes hard to tell. I tend to automatically set the transform

position for any new object to 0,0,0 just so I can tell where it is easier.

CHAPTER 7: Game Development with Unity 200

TIP: Keeping the empty objects at 0,0,0 is a good practice to get into, because later on when you
are using empty objects to group other objects together, or make pivot points, then the position
becomes more important.

Meshes, Renderers, and Materials
Empty objects are very handy for lots of things, but if you want to be able to see them,

then you need a renderer.

With your new Rotating Barrel selected, go to the Component ➤ Mesh ➤ Mesh Filter menu

item. This will add a mesh filter to your Rotating Barrel object, as shown in Figure 7–6.

Figure 7–6. Selecting the Barrel mesh for the Rotating Barrel Object.

What is a mesh filter? A mesh filter is the object that handles all of the actual vertex data

for your models. In this case, you want to use a barrel mesh, and there is one already

conveniently located in the project. If you open the tiny popup menu in the mesh filter

component, you will get a list of all the meshes in the project, something similar to

Figure 7–6. Select the barrel - Cylinder mesh. The drop-down triangle that indicates that

the meshes is a list is small and off to the right. It is not immediately obvious that it is a

drop down, but it is, and those are very handy.

Ok, now you have a mesh, but you still can’t see your object!

You need a Mesh Renderer component. Go to the Component ➤ Mesh ➤ Mesh Renderer
menu item. Now you should be able to see your barrel object. If you can’t see your

object, there are a few things that may have gone wrong.

CHAPTER 7: Game Development with Unity 201

First off, check to make sure that your barrel is at position 0,0,0. Second, check to see if

your Scene View is pointing at your barrel. You can do this by just tumbling around in

the scene view a bit to try and find it, or select your barrel in the hierarchy view, then roll

the mouse pointer into the scene view and hit ‘f’. This will automatically frame your

selected object in the Scene View (see Figure 7–7).

Figure 7–7. The barrel mesh, rendered

This is a pretty boring barrel, you need one more thing: a material. Currently, the mesh

renderer is using a default none material, so you are getting a black colored object.

A material is basically a texture and a shader. Like everything else in Unity, you can

tweak all of the various settings for your materials to get just the right thing, but for now

you will just grab the one that was prepared earlier.

Just like with the mesh filter, if you pop open the menu under the materials in the

inspector, you get a list of all the available materials. Choose the barrel-cylindermat

material, like in Figure 7–8.

CHAPTER 7: Game Development with Unity 202

Figure 7–8. Material Selection

Now you should be able to see the barrel in all of its glory.

Since you don’t yet have any lighting, the barrel might be very dark. In this case, you

need to shut off the scene lighting. In the scene view at the top-center, there is a little

button that looks like a sun. That is the scene lighting. When it is on, it lights the scene

view using whatever lights you have in your scene. You don’t have any lights in your

scene, so when it is on, your scene is awfully dark. Turn it off, and you will get some nice

ambient lighting, as shown in Figure 7–9.

CHAPTER 7: Game Development with Unity 203

Figure 7–9. Finally, a barrel. If your barrel seems dark, make sure you have the scene lighting turned off in the
Scene View.

Let’s step back and have a look at what you have done. First, you have an empty

container object then you added a mesh to it. The mesh is just a list of vertexes, UVs,

and normals. Then, you added a mesh renderer that took that mesh and drew it to the

screen. Finally, you added a material for the renderer to use and you can now see your

final object.

This is roughly the same thing you would need to do if you were writing your own

OpenGL engine. Also, it is good to know that the process you just went through is the

hardest way to build an object, but it shows you the various bits that go into how each

object is drawn on screen.

Now if you wanted to make an object with the same mesh, but a different texture, then

you can just assign a different material. I encourage you to play around with the

materials, colors, and other options in the mesh renderer component to see how it

affects the barrel.

If you would like to know the easy way to do what you just did, select your rotating

barrel and use either the transform component in the inspector, or the drag tool, and

move the rotating barrel off to the left or right of center. In the project view, find the

directory Models. Inside that is a model called: barrel. Drag that from the project view

into the hierarchy view. Now you have two barrels.

CHAPTER 7: Game Development with Unity 204

Importing Assets
In the sample project, I have already imported a bunch of assets, like the barrel model

and material. At some point, you will want to use your own models and images, which is

where importing comes in.

For the most part, the importing of objects into your scene is as simple as dragging and

dropping them. Generally, you simply grab your asset from the desktop and drag it into

the Project View in Unity. In this case, the barrel was created and textured in a 3D

modeling program (specifically, Cheetah3D) and just saved into the Models folder. Either

way Unity automatically imports the model into a mesh and the texture into a material.

All you have to do is drag the model into your scene.

If you want to apply a new texture, you could go back into 3D modeler and remap the

texture, or you could just drag the new texture image into Unity and create a new

material then assign that image to the material. Then, assign the new material to my

object like you just did. It is very easy.

Let’s try it now. In the project view, select the folder Materials. Then go to the Assets ➤

Create =➤ Material menu item. This should put a new material asset into the materials

folder. Rename it something useful, like “Gray Barrel”. Now open the Images folder in

the project view and find the image: barrelTextureHigh. Select your new Gray Barrel

material and then drag the barrelTextureHigh into the image well for that material. This

can be seen in Figure 7–10.

You now have a new material. You can assign that material to one of your barrels in the

same fashion you did previously by selecting that object, and then selecting the material

from the mesh renderer material drop down, or you can simply drag the material from

the project view onto the object, either in the hierarchy view or the scene view.

CHAPTER 7: Game Development with Unity 205

Figure 7–10. Creating a new material and assigning a texture

Custom Scripting
Now that you have a few objects in your scene, you need them to do something besides

just sit there. If you have been following along, then you should have two barrels, one

grayish and one brownish. One of them will be called “Rotating Barrel” while the other

will be called ‘Grey Barrel’. Let’s focus on the rotating one for now.

As the name might imply, you would like to have this barrel rotate. Not because barrels

are generally found to be rotating, but because rotating is a nice easy place to start

talking about scripting.

What you will do is go ahead and make the script to rotate this barrel, make it work, and

then we will come back and have a look at the bigger picture of how all these things

work together.

Go to the project view, find the scripts folder, and select it. From here, you can either

right-click the folder and select Create ➤ C Sharp Script, or you can go to Assets ➤ Create ➤

C Sharp Script in the menu bar.

CHAPTER 7: Game Development with Unity 206

In either case, you will get a new script called “NewBehaviourScript”. Rename this

“RotateBarrel” and then double-click the script to edit it (or click on the edit button in the

inspector).

Unity will nicely preload your new script with a few empty methods.

using UnityEngine;
using System.Collections;

public class NewBehaviourScript : MonoBehaviour {

 // Use this for initialization
 void Start () {

 }

 // Update is called once per frame
 void Update () {

 }
}

If you are not familiar with C Sharp, don’t worry it is pretty easy, and you won’t be doing

anything particularly esoteric with it. It is a derivative of C, just like Obj-C so it should

come fairly easy if you know any of the other C based languages.

The first thing you need to do for your script is rename the object to match the file name.

You named your file “RotateBarrel”, so the class name needs to be RotateBarrel.

Change the NewBehaviorScript to be RotateBarrel. This is not a C# thing, but a Unity

thing. Unity is going to precompile all of your scripts, and it needs to have the file names

match the class names or it will not be able to make to proper links.

You can see from the class declaration that this object inherits from some object called

MonoBehaviour. MonoBehaviour is required for any script you want to be able to attach

to a game object. Not only that, but MonoBehaviour has lots of useful methods that you

can override to implement custom functionality. Two of these are Start() and Update().

Start() is called before the first time the object is ever rendered. It is only ever called

once for any object. It is a good place to put any initialization you may want. You don’t

really need to do anything in the Start() method, but you can add some code there just

to show that it is doing something.

 void Start () {
 gameObject.transform.rotation = Quaternion.identity;
 }

Ultimately, this script will be attached as a component to a game object. If you want to

get a handle to the gameObject you are attached to, you can call it via the gameObject

instance variable. From there, you are calling the transform, and finally the rotation part

of the transform. You are setting it to the quaternion identity.

A quaternion is a way of expressing an arbitrary orientation in space. The identity

basically means that the object is at rotation 0,0,0. In the case of the barrel, that is

CHAPTER 7: Game Development with Unity 207

upright if you haven’t rotated your barrels, so they are probably still in the identity

rotation orientation.

Overall, you are making sure that the barrel is upright before you start to rotate it.

 // Update is called once per frame
 void Update () {
 transform.Rotate(Vector3.right, 1.0f);
 }

As the comment would imply, update is called every frame. Here you are grabbing a

handle to the transform, and rotating it around the X axis (which is also known as

Vector3.right) at one degree per frame.

Before you had to use: gameObject.transform to get a handle to the transform, but here

you do not? Well, actually, you never really need to call gameObject to access the

standard components like transform, collider, renderer etc. It is implied that you are

referencing your gameObject when you call one of those components so you can

reference it like I do in the Update() method.

Now you have finished your script, save it and go back into Unity.

If your scripts have any errors, then you will get compile errors right away once you go

back to Unity (as long as you saved your script).

As you can see in Figure 7–11, the status bar will pop up a red X if you have compile

errors. If you click the status bar once, then you will get the console window and it will

have more detailed information. If you double-click, the error in the console window, or

in the status bar, it will open your editor and send you to the offending line.

Figure 7–11. The status bar at the bottom of the editor tells you if you have any errors.

Once you have a working script with no errors, then you can attach the script to your

barrel object. This is just like assigning a material, because you can simply drag the

script from the project view onto the object in the hierarchy or in the scene view. Once

attached, it will appear as a component of that object in the inspector, as shown in

Figure 7–12.

CHAPTER 7: Game Development with Unity 208

Figure 7–12. Attaching a script to an object

Playing Your Game
Now you should have some movement in your scene, but nothing is happening. This is

because you are not playing the game.

In the lower-left corner of the editor is a play button, press that now. If all goes well, you

should see your barrel in the scene view spinning, like in Figure 7–13. If all you see is a

blue background, then you are probably looking at the Game View. You haven’t set up

the game view yet, so you may or may not see much happening in there.

Figure 7–13. You can see the effects of our RotateBarrel script in the rotating barrel.

CHAPTER 7: Game Development with Unity 209

Let’s make one more adjustment to your barrel spinning script.

public class RotateBarrel : MonoBehaviour {
 public float speed = 1.0f;
 .
 .
 // Update is called once per frame
 void Update () {
 transform.Rotate(Vector3.right, speed);
 }
 .
 .

You are adding a public instance variable called speed to the top portion of the script,

and then you are using speed in your rotate method instead of just hardcoding a value in

there. Functionally, this is no different then what you just had, except now you can

access the speed variable from within the editor.

If you go back into Unity and select your rotating barrel, then you will see your new

variable exposed in the editor, like in Figure 7–14.

Figure 7–14. Now you can change the speed of your barrel right from the editor.

Next, hit play. Your barrel should be spinning just as before, but now you can go into the

editor and change the speed value to 5 or 10 so the barrel will spin much faster. Find a

nice rotating speed that is appealing to your sense of spinning barrels. I have chosen

3.2. Now click on the play button again to stop the game preview.

Wait! Your speed changed back to 1! This is because you changed it during a game

preview. Since your game can be altered during play by any number of internal and

external forces, any changes made to an object’s state during game preview are not

saved. If you find a value for the speed that you like using the live preview, then you

have to stop the preview, set the speed, and save your scene. Otherwise, you will lose

your changes.

In any case, the important thing to take away from this is that you can expose values from

your scripts in the editor, so that you can change them easily and in real time during a

game preview. This will speed up your game balancing and tweaking process hugely.

Coroutines Not Updates
I am going to take a minor tangent and talk about a very important topic in the world of

Unity scripting: Coroutines. A coroutine is a scheduled method call that runs outside of

the main game loop.

CHAPTER 7: Game Development with Unity 210

What does that mean? Every frame of the game, any object with an Update() method

gets called to update itself. I hope you are running your game at a nice high frame rate,

so you want to keep these updates to a minimum. Very often there are things in the

scene that may be constantly updating, but are not so important that they need to

update every frame.

For example, your rotating barrel is pretty fantastic, but it would probably be just fine

rotating at about 10 fps, thus costing you one-sixth of the resources, if you are trying to

run your game at 60fps.

How do you use these mystical coroutines?

Let’s have a look at how the barrel script might look if you used coroutines:

void Start () {
 gameObject.transform.rotation = Quaternion.identity;
 StartCoroutine(this.periodicRotate());
}
 IEnumerator periodicRotate () {
 while (true) {
 transform.Rotate(Vector3.right, speed);
 yield return new WaitForSeconds (0.1f);
 }
}

This looks very similar to your current code. The few big things: in your Start() method,

you call StartCoroutine() and pass it another method: periodicRotate().

In the periodicRotate() method, you want to spin forever, and you have the exact same

transform function call as before, but now you have this strange line:

 yield return new WaitForSeconds (0.1f);

This command may look a bit odd, but the upshot is that it will wait for however long you

tell it to, and then come back to this method, right where it left off.

Practically speaking, it makes this a loop that runs about ten times a second. Of course,

this will affect your rotation speed, but you can tweak that in the editor with your

exposed variable to get it to look right again.

Coroutines are hugely important in iPhone development with Unity. On the desktop,

where you generally have extra CPU to burn, you can get away with moving things every

frame, even if they don’t need it, but on the iPhone every CPU cycle is precious, so

don’t waste any. Use coroutines (and really you should be using them on the desktop as

well, no need to waste cycles if you don’t need to).

The Game View
The game is pretty lame so far. Even on the app store I don’t think people will pay a

dollar for this new app: “Two barrels, one spinning”. But it does bring us to that other

view down in the lower left that you haven’t really used yet: the game view.

CHAPTER 7: Game Development with Unity 211

The game view is where you get to actually play your game. Once you hit the play

button, unity loads up your scene as if you are the user and you can play the game right

there in the editor. This is immensely useful, and makes for a nice quick testing

turnaround when you are building your scenes.

You add an object, or tweak a script, and you can just hit play and see right away

whether it looks right or behaves the way you think it should. You can even change

inspector values, add objects, and generally do whatever you want while the game is

playing and see your changes taking place in real time.

This brings us to the camera object. Up to this point, you have been interacting with the

objects in the scene view. In the game view, you see the scene as the user would, and

that means you are seeing it through the in-scene cameras.

In this case, youhave one camera called Main Camera. You can actually have as many

cameras as you want in your scene, and they all will display at the same time to the

game view. I will talk about this setup in the “Multiple Cameras” section later. For now,

you can focus on just the one.

Depending on whether you have moved your camera from the default starting position

or not, you will probably be looking at a mostly blue screen with some small barrels near

the center. This is not exactly what you want to see in your barrel spinning app, so let’s

move the camera to a better spot.

Go to the scene view, and tumble, pan, and zoom your scene view until it looks

something like the scene view in the top of Figure 7–15. (if you don’t remember how to

do this, see the section called The Scene View.) Then, select your Main Camera object in

the hierarchy view and go to GameObject ➤ Align With View in the menubar. This should

align your main camera with the scene view orientation, and your game view should

resemble something like the lower portion of Figure 7–15.

This is a nice quick way to get the game camera lined up on something or get it close to

what you want. You can also adjust the camera position and orientation right in the

scene view, like any other object, or just type the values into the inspector if you know

what they are. Most often, you will be scripting your cameras to follow the main

character or similar behavior. You will be doing that in a few pages.

First, you need to fix the darkness issue in your game view and that requires lights.

CHAPTER 7: Game Development with Unity 212

Figure 7–15. Aligning the camera with the Scene view

CHAPTER 7: Game Development with Unity 213

Adding Lights
Currently, in the lower portion of Figure 7–15, you are looking at your two barrels and

they are being illuminated with the default ambient lighting. In terms of performance,

ambient is the cheapest lighting and if your game can get away with it, I would suggest

using the ambient as your major source of light.

If you go to Edit ➤ Render Settings in the menu bar, then the render settings will appear in

the inspector (see Figure 7–15). You want to change the ambient light to something nice

and bright, like white. This will mean that your objects will be fully lit all the time from any

angle. This looks great, but for now let’s pick a nice 50% gray. This way you can add

some light to the scene and actually see it.

Figure 7–16. Changing the ambient light setting

The three types of lights are described in the following, but you can see them in Figure

7–17.

� Point light: This is the equivalent of a bare lightbulb. It radiates light in

all directions for a certain range.

� Spot light: This is the equivalent of a flashlight or searchlight. It

radiates light out in a cone from the source.

� Directional light: This is roughly equivalent to sunlight. Whatever

direction the light is coming from, it will hit all faces from that same

direction. The position of the directional light does not matter, only the

orientation.

CHAPTER 7: Game Development with Unity 214

Figure 7–17. Three types of lights: Point, Spot, and Directional

It is important to remember that for every light you add, Unity has to do an extra draw

call for any objects that are hit by that light. By adding a single directional light, you

effectively double your draw time. Be sparing with your light sources on the iPhone.

Let’s add a point light. GameObject ➤ Create Other ➤ Point Light. This will add a new light to

your barrel scene. Grab the light in the scene editor and move it around so as to get a

feel for how the light affects the rendering. Again, it may need to be moved to 0,0,0 to

get it close to your barrels. Once you have it near your barrels, adjust the range and

attenuation settings in the inspector to play around with it.

You have nearly seen enough of the Unity interface to start looking at a more realistic

game situation. There is one more thing you should have a look at briefly: the Unity

Remote.

Using the iPhone as a Game Pad
One of the best things about Unity for the iPhone is the ability to preview your game on

the device instantly. This is done using an application called the Unity Remote. If you

have Unity for the iPhone, one of the things that comes with it is an Xcode project called

Unity Remote. You build this project with your own certificates and install it on your

device. Then, whenever you have Unity running and a WiFi network going, you can run

Unity Remote and use your iPhone as a gamepad to control the Unity editor.

Unity Remote streams a low-quality compressed version of the game video to your

device as well as catching all the touch inputs and accelerometer data. This sends that

all back to the editor so you can get a feel for how your game will play on the actual

device. This also allows you to build and test your game very quickly because you don’t

have to constantly build and deploy to your device to check to see if the touch points

are working or if that one model looks too big.

Installing Unity Remote is more about doing an Xcode build than anything else, and I am

presuming that if you are reading this book, then you already know how to do that, so I

won’t waste lots of page space going into that. If you are feeling particularly lazy, you

can also download Unity Remote off of the App Store, because it is a free app. Overall,

you should have Unity Remote up and running for the next parts of the chapter dealing

with the more iPhone specific inputs.

CHAPTER 7: Game Development with Unity 215

Your Game
You have seen a brief glimpse of the Unity pipeline, built a few objects, and wrote a

script. Now you are going to combine all of those things into an actual game scene as

well as explore a few new topics, like animations.

Before you can get started in Unity, you need a game design. This is usually the most

important step of any game development project. I realize that you are not really making

a game, but a game-like environment. I also realize that this game is designed less to be

a fun game and more to be able to highlight the various things I want to show you about

Unity. That said, the game design is the foundation that you build your game from, so

without a good foundation, you cannot have a good game.

I have always been partial to dungeon crawlers, so I think you should have a dungeon-

crawler sort of game. You are going to be on the iPhone, so your control interface

should be as simple as possible. You don’t want to have giant faux-joysticks in either

corner forcing you to cover 50% of the screen with your thumbs the entire time, so you

should implement some tap-to-move sort of interface.

A third person isometric sort of setup would work well for this. You can have the simple

tap interface to move the character and tap on an object to interact with it, whether to

open a chest or to attack a foe. This keeps your interface nice and simple.

This also means you need a main character, some environment elements that you can

interact with, and maybe some enemies.

You are doing an isometric view game where you tap the scene and the character

moves to that position, so you need some touch input controlling mechanism to handle

those taps. You will also want objects that you can attack, some that you can interact

with, and some that you can pick up.

Admittedly, this is a pretty lame game design, but it should give you plenty of topics for

the rest of the chapter. Your final game won’t really be a game so much as a collection

of game-like interactions, but it will give you a good idea how to handle the more

complicated object interactions needed for good gameplay.

So, open up a new scene in your sample project and you can get started.

CHAPTER 7: Game Development with Unity 216

Adding a Base to Work From
The first thing you are going to need is some terrain on which your game will take place.

In this case, it will be a simple dungeon floor.

A floor gives you the opportunity to use one of Unity’s primitives. In your new scene, go

to GameObject ➤ Create Other ➤ Plane in the menu. This will put a nice plane down

somewhere in your scene. Make sure that it is at position 0,0,0, and name it something

nice. I called it “Floor”.

It might look a bit dark in your game view. This is because the ambient light settings are

per-scene. Therefore, you will need to go back in and set the ambient light to a 50% gray.

It is also a bit small. A primitive plane is 10 units square at a scale of one. It is usually

helpful to keep the units in your game to match something simple, like one unit is one

foot. With this in mind, your character model will be about 6 feet tall, so you will make

this starting area 50 square feet. Change the plane scale to 5,5,5 (the y scale doesn’t

really do anything, it’s beneficial to keep these things consistent).

Next, you must set the camera angle. You want an isometric feel to your game, but I

don’t think that you want a real isometric rendering, so you will keep the default camera

perspective, but lock the angle.

Select your camera and set the position to: –12,15, –12, and then set the rotation to be

30,45,0. This gives you an isometric viewpoint.

To finish off the floor, you should add a texture to it. Gray is pretty boring. In the Images

folder, in the project view, there is an image called “floorTile”. If you just drag that image

onto the plane, a material will be automatically created and applied to the plane.

Now your scene should look something like Figure 7–18.

CHAPTER 7: Game Development with Unity 217

Figure 7–18. The floor of your dungeon

Currently, your floor is meant to be 50 feet square, in which case those tiles are nearly 8

feet across. It would be better if you could repeat the tile texture across the floor.

If you select the floor object, in the inspector you will see the material component. There

is a small button there labeled “placement”. If you click that then you will get the texture

placement options. Set the tiling to 5 for both x and y, like in the bottom of Figure 7–19.

CHAPTER 7: Game Development with Unity 218

Figure 7–19. Setting your X and Y tiling multipliers so that you can have many more tiles on your floor

Now your floor is beginning to look more like a floor.

The Main Character
You now have a floor, so you need a character to wander around on your floor. The

creation of the main character in your game needs to have some control mechanism,

whether a warrior maiden who wields a mean broadsword or a snowball that rolls

around.

Enter the CharacterController component. The CharacterController component is a

specially made kind of collider that has some special methods that allow for easy

control. There is nothing stopping you from taking your barrel, modifying the rotate

script to look for touch inputs or acceleration, and making that the main character. By

using a CharacterController component, you have much finer control over the object’s

movements.

Let’s go ahead and add a CharacterController to your scene. First, you need an empty

GameObject, so: GameObject ➤ Create Empty. Make sure that your new game object is at

0,0,0 position and name it something clever like “Character”.

Next, make sure that your new Character object is selected, so go to Component ➤

Physics ➤ Character Controller.

CHAPTER 7: Game Development with Unity 219

You are going to use the character controller in its most basic capacity to motivate your

character model around the scene and to provide simple collision detection. If this were

a high-paced action-shooter, then you might also use the character controller to handle

more complicated collision dynamics like platforming and keeping the player from

walking up too steep of a slope. For today, you will keep it simple.

Because of this, you need to adjust your CharacterController collider capsule to be

slightly above the ground you just made. Select the character and in the

CharacterController component, set the height to 5, the radius to 1.1, and the center Y

value to 3. It should look something like Figure 7–20.

Figure 7–20. Your new character controller looks like a big pill. This is the collider that will contain your
character model.

What have you really done here? Well, by moving the capsule center up by 3 and

making the capsule height 5, your capsule is actually hovering just off the ground.

This will be handy later when you start to add colliders to the scene. For now, what you

really need is a character model. You actually have a great animated warrior model that

you are going to add into the scene, but that involves a complex discussion of character

animation. I just want to talk about moving around the floor for now, so you will just add

a placeholder model.

Go to GameObject ➤ Create Other ➤ Cube. Name it something like “Faux Character” and set

the position to 0,3,0 and the scale to 2,6,2. This new cube primitive also has a box

collider attached to it. You are going to be using this as your character stand in model.

Your CharacterController already has a collider so you don’t need the box collider.

Select the new faux character. To the right of the collider component in the inspector is

a small gear-menu, click that and select Remove Component (you can also just right-

CHAPTER 7: Game Development with Unity 220

click the component name to get the same menu). This will remove the box collider from

your cube.

Now, you should have a 6 foot square pillar sitting on your floor. Next, make the

character controller object the parent of your new character model. This is done simply

by dragging the faux character onto the character controller object in the hierarchy view.

Much like adding a document to a folder in the Finder, your scene should now look like

Figure 7–21.

Figure 7–21. Your CharacterController object is now the proud parent of a Faux Character model.

What does it mean to be the child of another object? Wherever the parent moves, the

child moves, if the parent is rotated then the child is rotated and so on. In mathematical

terms, the child transforms are multiplied by the parent transforms. In practical terms, it

means that if you attach a script to move the character controller around then you

character model will follow.

Before you get into the code, you should attach the script to your character. Remember

way back in the early part of the chapter when you attached a rotation script to your

barrel? You are going to do the same thing here. Grab the BBCharacterController script

and drag it from the Scripts folder up onto the Character object (the parent, not the faux

character). That is it, now you should see the BBCharacterController script in the

inspector right under the CharacterController component.

Now double-click the BBCharacterController script in the Scripts folder. Let’s look at the

code.

public class BBCharacterController : MonoBehaviour {
 public float moveSpeed = 7.0f;
 public float attackRange = 3.0f;

CHAPTER 7: Game Development with Unity 221

 public int attackDamage = 5;

 public GameObject cursor;
 public GameObject characterModel;

 private Vector3 movementDestination;
 private CharacterController controller;

First, you have a whole handful of public and private instance variables. At the top, you

have some floats and an int. You have seen this kind of thing before in the rotating

barrel example, and it allows you to change your character’s attributes from the editor

(or from other scripts). Next, you see some interesting public GameObject declarations.

You can expose pretty much any kind of variable. In this case, you are saying that you

want to be able to attach another game object to this script. Don’t worry too much

about that, I will discuss it in detail within the “Animations” section.

Next, you have some private variables. These are things that you don’t want to expose

to the interface either because changing them during play would cause badness to

happen, or because I just don’t need them to be cluttering up the editor interface.

Next up is your final instance variable and your first method.

 private static BBCharacterController sharedInstance = null;

 public static BBCharacterController instance {
 get {
 if (sharedInstance == null) {
 sharedInstance = FindObjectOfType(typeof (BBCharacterController)) as
BBCharacterController;
 if (sharedInstance == null)
 Debug.Log ("Can't find a BBCharacterController. You must have an
object with a BBCharacterController attached to it.");
 }
 return sharedInstance;
 }
 }

You are doing some mildly esoteric C# magic here, but it is not too bad. This is a static

accessor method, which implements the Singleton design pattern. This will allow other

objects to easily get a handle to the character controller script. This works when another

object calls this method, like so:

BBCharacterController theController = BBCharacterController.instance;

If it does not already have a static reference to the controller, it will use the

FindObjectOfType() method to look through all the objects in the scene until it finds an

object that is of type BBCharacterController. Then, it returns it.

The next time this method is called, the static reference will not be null, and it will return

immediately a reference to the controller object. This ensures that anyone who calls this

method will get the same controller back. This will come in very handy later on when

your touch manager object needs to tell the character to go somewhere.

CHAPTER 7: Game Development with Unity 222

Now you begin the Start() method. Recall that this gets called once, right before the

object is rendered for the first time.

void Start ()
{
 movementDestination = transform.position;
 controller =
(CharacterController)gameObject.GetComponent(typeof(CharacterController));
 if (characterModel != null) {
 characterModel.animation.wrapMode = WrapMode.Loop;
 characterModel.animation["Attack"].wrapMode = WrapMode.Once;
 characterModel.animation["Attack"].layer = 1;
 }
}

Here you are initializing two of your private variables. The movementDestination is where

you want your character to move to, so you want it to be initially set to your current

position. Next, you are caching a reference to the CharacterController component. You

are going to be using the CharacterController component quite a bit, even in your tight

loops like Update() which gets called every frame. GetComponent() is not a particularly

slow method, but it is not very fast either. If you are going to be calling something every

frame, you want it to be as fast as possible, so that is why you are making a local

reference to the CharacterController component. This way you can have much faster

access to the character controller.

That last bit about the characterModel is basically initializing your animations, which you

don’t have yet. You just have a big gray block, so I will cover those later in the

“Animations” section.

void Update () {
 Vector3 moveDirection = movementDestination - gameObject.transform.position;
 moveDirection.y = 0.0f;

 if (moveDirection.sqrMagnitude > 0.5) {
 controller.Move(moveDirection.normalized * Time.deltaTime * moveSpeed);
 if (characterModel != null) characterModel.animation.CrossFade ("Walk");
 } else {
 if (characterModel != null) characterModel.animation.CrossFade ("Idle");
 }
}

Now, you have your main method, the Update(). I will say this a few more times

probably, but remember that the update is called every frame, so anything you put in an

update method should be fast, fast, fast.

Here you are making a new vector that points to where you want to be moving. You are

going to keep all of your movements in the y=0 plane, so you will just set your

movementDirection.y = 0 just in case. You don’t want your character flying off the floor

or burrowing into the ground accidentally.

Next, you are checking the square magnitude of the movement vector. This will tell you

whether you are actually moving or not. You use the square magnitude instead of the

actual magnitude because it is a much faster operation. If you are moving, then you call

the Move() method on the character controller.

CHAPTER 7: Game Development with Unity 223

The Move() method is one of those special methods that is only available on a character

controller component. It is actually doing some complex stuff, but the upshot for is that

it will handle collisions automatically. It is not like you are just setting the position to the

next incremental move value, by using Move() on a CharacterControler component you

are telling Unity to be clever and check way ahead to see if you are going to collide with

anything, or if the terrain goes up or down, and a whole slew of other things. This is one

of the main reasons to use a CharacterController component instead of rolling your

own control scripts.

Note that in the Move() call you are doing some data wrangling:

moveDirection.normalized * Time.deltaTime * moveSpeed

Move takes a Vector3 as the parameter, and you are using your moveDirection vector as

the basis for that parameter. This makes sense because you want to get to your

destination point. But you don’t want to teleport there instantly; you want to move at

some regulated speed. Therefore, you are normalizing the vector first, which reduces it

to a new vector that points in the same direction, but has length of 1. This way you can

now multiply it by a few scalers and make a new, probably much shorter movement

vector. Time.deltaTime is the amount of time that has passed since the last frame. You

don’t know how many fps your game will be running at, so this allows you to move at a

constant rate no matter how fast or slow the actual device is working. Finally, you

multiply by your moveSpeed. This is how many units your character will cover in one

second.

So, to sum up: You are reducing the movement vector to a unit vector so you can use it

just for its directional attribute. Next, you are scaling that vector so that it is the length of

a single frame’s worth of movement at your move speed. Finally, you call Move().

Practically speaking, when some other script tells the character to move to some other

point, the character will smoothly move there.

After your move, you are calling some animation methods. I will go into this in the

“Animations” section later, but you probably managed to figure out that when you are

moving, you want to be playing the walking animation. When you are not moving, you

want to be playing the idle animation. That is what those lines do for you.

You have this variable movementDestination, which is where you want to move to. In

order for you to move anywhere, you need to let other scripts be able to set this for you.

You could just make it public, but you want it to have a few side effects, so you will

instead make a public method.

public void moveTowards(Vector3 position)
{
 position.y = 0.0f;
 movementDestination = position;
 transform.LookAt(position);
 position.y = 0.1f;
 if (cursor != null) cursor.transform.position = position;
}

This is a pretty simple method because you are limiting your movement to the y=0

plane. Therefore, first filter the input to make sure no other scripts are trying to make the

CHAPTER 7: Game Development with Unity 224

character leave the floor. Next, set your movementDestination to this new position. You

could stop right there and your character would diligently move toward this new position

during the next Update() loop. However, you want to have a few other things happen as

well.

transform.LookAt(position);

This will take your orientation and spin it so that it is facing your destination. This doesn’t

matter so much when you just have a block, but when you get your actual character

model attached, it will be fairly important.

Next, take your position and move it up very slightly and move your cursor object so that

it is just off the floor at your destination.

You haven’t made a cursor object yet, but you will do that after you figure out the touch

handling. What you want to happen is that there is some indication of where you are

moving to, so you will have some object that indicates your target position.

void OnControllerColliderHit (ControllerColliderHit hit)
{
 movementDestination = gameObject.transform.position;
 movementDestination.y = 0.0f;
 if (cursor != null) {
 Vector3 cursorPosition = movementDestination;
 cursorPosition.y = 0.1f;
 cursor.transform.position = cursorPosition;
 }
}

OnControllerColliderHit() is another one of the handy things that you get by being

attached to an object that has a CharacterController component. Basically, when you

are calling the Move() method in your update loop, if your capsule collider bumps into

any other collider, then this method will be called.

What you are doing here is pretty simple. If you bump into anything, you stop trying to

move, and you set your cursor so that it is right under you. This way if you try to walk

though a wall, then when you bump into the wall, your destination will change to right

where you are and your cursor will also jump there as well, showing the user that you

are not going to be trying to walk through the wall.

This would be the point where you could add in some kind of path-finding algorithm, so

that your character would walk around the wall, but for your game you will make the

user be your pathfinder.

You have a character that should move when you tell it to, but now you need some way

to tell it to move. This brings you to input handling.

Inputs and Colliders
So far you have a floor and you have a character. You need to implement a touch

system so that you can tell your character where to move to on this floor. In order for

your touch system to work, you will need some colliders in the scene that you can

CHAPTER 7: Game Development with Unity 225

touch. Now you can just put invisible colliders into the scene. However, that is not very

good, so you want to make the floor so that you can attach a collider to it and build a

touch system to interact with it. Overall, your floor needs a collider, which is an excellent

segue into a discussion about colliders.

What is a collider? When working with objects in a 3D space, figuring out if one object is

hitting another object becomes a very complicated problem. Luckily, you don’t have to

care very much about that because Unity handles all the tedious math and complicated

space segmenting issues for you. All you need to know are the relative costs of each

kind of collider and when to use them.

There are four basic collider types: Sphere, Capsule, Box, and Mesh. Figure 7–22 shows

the first three.

Figure 7–22. The three primitive collider shapes and also three primitive solid objects that you can make in Unity.

A sphere collider is just what it sounds like. It is a sphere that extends a certain radius

around a central point. Sphere colliders are the least expensive type of collider in terms

of processing. If you can get away with just using a sphere collider, it will always help

performance.

The next best thing is a capsule collider. This looks like a cylinder with round ends. A

capsule collider has a length and a radius. It extends by the radius amount out from a

line segment.

After that, a box collider has simply six sides. it doesn’t have to be square.

Finally, there is mesh collider. This is a collider that will be the exact shape of whatever

mesh you assign it to. These kinds of colliders are very useful if you have some complex

geometry and you must have proper collisions where a simpler collider just won’t do.

CHAPTER 7: Game Development with Unity 226

However, beware of the mesh collider: your performance will suffer if you use too many

of these.

Generally, it is best to pick a primitive collider that closely matches your object in shape.

If you have complicated geometry, it is almost always better to use a few different

collider primitives than to use a mesh collider.

You want to add a box collider to the floor. However, astute readers will have noticed

that the plane already has a mesh collider. As discussed, mesh colliders are expensive,

and you don’t really need a mesh collider when a box collider would do fine, so you are

going to replace the mesh collider with a box collider. Select the floor object in the

hierarchy, then go to Component ➤ Physics ➤ Box Collider, and say OK to replace the

existing collider.

Now you have a floor and it has a collider, so what now? Let’s write some code.

Go to your Scripts folder in the project view and find a script called

BBTouchInputController. This will be the script that handles all the touch inputs and

distributes them to any objects that might be looking for touches.

void Update () {
 if (Input.GetMouseButton(0)) {
 // show the crosshairs
 Vector2 touch = new Vector2(Input.mousePosition.x, Input.mousePosition.y);
 this.handleTouchAtPoint(touch);
 }
}

This is your Update() method. It is pretty simple really. Essentially, once every frame you

check to see if there has been a mouse button pressed, and if so, you deal with it. Wait

a minute; this is a touch input device, so there is no mouse. This makes no sense!

Unity does provide you with a whole slew of iPhone based input mechanisms. If you

need to access more than one touch at a time, then you will want to use the iPhoneInput

class to access the touches.

However, Unity remaps some of the iPhone specific inputs to the Unity desktop inputs.

For example, GetMouseButton(0) usually refers to a mouse left click. On the iPhone, it

refers to the first touch to hit the screen. This is handy for many reasons; when testing in

the editor, you don’t always have a device handy or attached. By using the mouse

button mapping, both mouse clicks and screen taps work fine. Also, if you plan to port

your game to a web preview or reuse your code for another game on a different

platform, this increases the portability. I always use the remapped inputs unless it is

absolutely necessary to use the iPhoneInput class.

You have your update method and it is checking for inputs. Therefore, it grabs the input

point and converts it to a Vector2, which is just x,y with no z. Then, you send it off to the

next method: handleTouchAtPoint().

public void handleTouchAtPoint(Vector2 touchPoint) {
 RaycastHit hit = new RaycastHit();
 if (Physics.Raycast(Camera.main.ScreenPointToRay(touchPoint),out hit,
Mathf.Infinity)) {

CHAPTER 7: Game Development with Unity 227

 BBTouchable touchableObject =
(BBTouchable)hit.transform.gameObject.GetComponent(typeof(BBTouchable));
 if (touchableObject != null) touchableObject.handleTouch(hit.point);
 }
}

Here you are doing some physics magic, but again Unity does all the heavy lifting for

you. Therefore, you are taking the point on the screen that was touched and converting

it into a ray. A ray is basically just a line going from the point on the screen straight out

into the scene. The Physics.Raycast() method returns true if any colliders are hit by the

ray, and the first one to be hit is put into the hit object.

It is important to note that you are calling ScreenPointToRay() on Camera.main. What is

this? Camera.main is a convenience reference to whatever camera is tagged as the main

camera. In this case, it will be the only camera in the scene. Later on when you have

more cameras, you will have to change this code slightly.

When the Physics.Raycast() hits something, you get a hit object back. Therefore, you

need to figure out if it is something that can respond to a touch command. To do this,

you need to access the base game object that the hit is referring to, and then ask that

base game object if it has a specific class of component attached to it. Calling

hit.transform.gameObject gives you a handle to the gameObject that your raycast hit.

You then call the GetComponent() method which returns the first component of the

specified type that is attached to that object.

Remember when you attached the RotateBarrel script to your barrel in the first half of

the chapter? What you were doing was actually attaching a component of type

RotateBarrel to that object.

In this case, you are looking for objects that have a script attached to them of type

BBTouchable. You will look at that script next. Using GetComponent() is how you go back

in and programmatically get a handle to that script.

In the next line, you check to make sure that the script handle you got back is not null. If

it is null, then the object you hit had a collider, but did not have a BBTouchable

component attached, so you will ignore it.

Now you have this script, and it needs a place to live in your scene. Go to GameObject ➤

Create Empty in the menu. Rename this new object: InputManager and attach your

BBTouchInputController script to it.

Your scene now has an input manager. You have nothing that is touchable, but you

have an input manager.

At the start of this section, I mentioned attaching a collider to your floor, and then I got

off on a tangent about the Input Manager. Now your floor has a collider, and you have

an object that is monitoring the inputs, ready to send them to any object that has a

BBTouchable script attached. You will want to find the BBTouchable script and attach it

to your floor. Now your floor is touchable.

Let’s open up the BBTouchable script and see what is happening here.

public class BBTouchable : MonoBehaviour {

CHAPTER 7: Game Development with Unity 228

 public virtual void handleTouch(Vector3 worldPoint) {
 BBCharacterController.instance.moveTowards(worldPoint);
 }
}

Wow, really not a whole lot going on. You get called by the touch manager with the

world point of where you were touched, and you basically just pass it right on to the

character controller. Why didn’t you just have the input manager call the character

controller directly?

Have a close look at the function declaration, especially the word: virtual. This is a bit of

C# jargon that you don’t have to worry about in ObjC, but it does mean that you can

have objects inherit from this object and be able to override this method. You are going

to have a few different objects that behave in slightly different ways when touched, so

this is the basis for those classes.

By decoupling the actual processing of the touches from the touch input manager, you

have created a very flexible touch input system.

Now for the exciting moment! Hit the play button and tap or click somewhere on the

floor. Be sure you are clicking in the game view and not the scene view. Your big gray

block should slide back and forth across the floor to wherever you clicked.

If it is not working, have a look at the console and see if you can figure out what the

problem is. Make sure that you have a BBTouchInputController script attached to a

Game Object in your scene. Also, be sure the floor has a collider and a BBTouchable

script attached to it. Finally, make sure that your character controller has a

BBCharacterController script attached (note: the parent object, not the faux character

model).

Your First Design Iteration
So far, so good. You have a character model (a big block) and it is wandering around the

floor (well, sliding around the floor). However, you may have noticed a few problems.

First, try to move to a space that is directly behind the character model. In other words,

tap right on the model itself. You should be moving to a position behind, but it does not

move. Why is that?

The CharacterController is a collider, so when your touch input manager does its

raycast, it is hitting that collider before it is hitting the floor collider behind. Since the

character collider is not a touchable collider, it is ignored, so you don’t move.

You want the character collider to collide with stuff in your scene, but not your raycasts.

This is actually a very common problem; so common, in fact, there is a very quick and

easy fix.

Select your Character Controller (the parent, not the model) and have a look at the

inspector. At the top, under the object name are a few drop-down menus, one called

Tag and one called Layer. Tags and Layers are convenience attributes that allow you to

find objects quicker and filter objects easily. You are concerned mostly with the Layer

CHAPTER 7: Game Development with Unity 229

for now. All the objects you have made so far are in the Default layer. This means they

are visible to just about anything that is looking for objects, and this includes the

Raycast method. You can add your own layers and use them to hide objects from

cameras or exclude them from various operations.

As mentioned, the raycast issue is so common that Unity already has a built-in layer

called Ignore Raycasts just for this. Set your Character controller into the “Ignore

Raycasts” layer. You will get a popup asking if you want to change the children too.

Since the faux character does not have a collider, it doesn’t really matter either way, but

I like to keep things consistent so I changed all the children as well.

Now try to play the game again, you should be able to tap just behind the model and

have it move directly away from the camera.

Speaking of the camera, right now you can move all over the floor that you can see, but

you can’t go any further. This may be great for some games, but this is a dungeon

explorer game, so you want to be able to explore. This means that you want the camera

to move with your player.

For this, you need a new script. Have a look at the BBSimpleFollower script.

public class BBSimpleFollower : MonoBehaviour {
 public GameObject target;
 private Vector3 offset;

 void Start() {
 offset = transform.position - target.transform.position;
 }

 // Update is called once per frame
 void Update () {
 transform.position = Vector3.Lerp(transform.position,
target.transform.position + offset,0.1f);
 }
}

True to its name, it is a very simple script. You have a few instance variables. One is a

GameObject that is your target, the object you want to follow. The other is a private

variable which will be the offset vector that you will use to determine your position in

relation to the target.

Your Start() method defines your offset by measuring the current relationship between

your object and the target. In the update, all you do is set yourself so that you are at that

constant distance from the target.

You are doing something a bit funky here, though. What is a Lerp?

Lerp is a shorthand way of saying Linear Interpolation. Linear interpolation is the process

by which you find a point that is some percentage of the way between two known

points. In this case, your points are where you are now and where you want to be. You

are finding the point that is 10% of the way between those two points and using that

point to set your position.

CHAPTER 7: Game Development with Unity 230

What is this doing? This is a simple and easy way to make your camera movement a bit

smoother. When the character is moving, your camera will be lagging behind by a bit,

and then when the character stops, you will smoothly catch up.

In fact, this is a perfect opportunity to try to add your own public variable to this script.

Change that 0 to a public variable so you can change it in the editor to see the effects.

Remember that the lerp value should generally be between 0 and 1. Zero being never

moving and 1 being never lagging.

If you attach this script to your main camera and look in the inspector, you see that your

Target variable value is “None”. You need to attach a target. This will be your Character

Controller. Drag the character controller object from the hierarchy menu then down into

the target slot in the editor for your simple follower script. Alternatively, you can use the

drop-down menu to the right of the target field and select the Character out of the scene

portion of the drop down.

Now press play and move around the scene. The camera will follow you at a slight lag,

but you can now explore the entire floor.

Adding More Touchable Objects
As much fun as moving a block around a floor is, you would most likely love to have a

few more interesting things in your scene. Remember your barrel from the first part of

the chapter? Let’s add one of those.

Find the barrel model in the Models folder and drag it into the hierarchy view. You will

get a tiny barrel in your scene. It may be right under your character, so go ahead and

move it out where you can see it.

It is very small. Currently, the barrel is only 1 foot high. Let’s change the scale so that the

barrel is 3,3,3. This will make it proportional to your 6 foot tall character block. You will

also have to move it up, so that it looks like it is sitting on the floor (see Figure 7–23).

Now if you hit play and walk around, you will see that you can walk right through the

barrel. Not exactly what you want. Your barrel needs a collider. As you saw earlier, there

are lots of options for colliders, but you always want to use the cheapest one. Your

barrel is pill shaped, so you should go for the capsule collider. Select the barrel and go

to Component ➤ Physics ➤ Capsule Collider to add your collider. This will possibly cause a

popup notice warning you that you are losing your prefab. This is fine for now, but I will

talk more about prefabs in the next section.

The default collider size is a bit small, so let’s make it a bit taller set the collider height to

1.5. That will work well. Now if you hit play, you will bump into the barrel and stop.

One barrel is pretty great, but more barrels would be even greater.

CHAPTER 7: Game Development with Unity 231

Figure 7–23. Your barrel is back again.

Prefabs
This brings us to the wonderful topic of prefabs. Prefabs are, as you might suspect, pre-

fabricated objects. This is a wonderful feature that Unity provides to make your scene

building go very quickly. I am going to show you just how easy prefabs can be.

There is a folder called Prefabs in the project view. It has some prefabs already, but you

want to make a new one. Just like making a new material, you can right-click or go to

the Assets ➤ Create menu and select Prefab. This will make a new prefab, and it will be

colored gray. This means that it is empty. You need to put something in it, why not your

new barrel with attached collider? Drag the barrel from the hierarchy view down on top

of the new prefab. It will change to blue, meaning that it now has something in it.

Rename this something like “barrelWithCollider”.

That is it, you have made a prefab. Yes, it is that easy. Now you can drag that barrel

prefab from the prefabs folder into your scene, and you will get a new copy of that

object. You can drag it in a few times if you want to make more than one barrel. You can

close this scene, open another new scene, and drag your barrel prefab into that scene.

Prefabs are easy to make and easy to use because they multiply your productivity. You

should be using prefabs for any object in your game that appears more than once. You

will see a bit more about the power of the prefab when you want to change your barrel.

CHAPTER 7: Game Development with Unity 232

Animations
Animations are not particularly difficult to deal with in Unity, but the subject of

animations covers a very broad spectrum of functionality. You are going to just dip your

toes into the lake of possibilities that are animations.

What is an animation exactly? Technically speaking, your rotating barrel could be

considered an animation. However, in the context of Unity, and game development in

general, usually animations refer to prebuilt sequences of movements and

transformations, usually made in some external 3D editor like Maya or Cheetah3d.

If you are not familiar with making animations in a 3D editor, then some of this won’t

make much sense to you, but that is OK. As a programmer, you will hopefully have

artists who make your animations for you. As long as you understand the parts where

you have to play the animations back, you will be fine.

Making animations for a game engine is a bit different than making them for a video

sequence, or for whatever other reason you may want to make an animation. For an

animation to be useful in Unity, it generally needs to have multiple stages. For example,

if you want to make an animation of a treasure chest opening then you would need

some number of frames that would be the “closed” animation. Probably a closed chest

is not doing too much, so it could be a very short animation. Then, you would need

some more frames that animate the chest opening, and some more to animate it

closing, if needed.

These animations are generally built into the same file in your 3D modeling program. In

your treasure chest example, you might have frames 1–10 be the “idle” animation where

the chest just sits there. Then, you might make frames 11–45 be the frames where the

chest opens up, and then frames 46–60 might be the frames where the lid closes.

This is the simplest kind of animation. You can also have rigged characters, but the

premise is the same. Frames 1–100 might be an idle animation, where the character

taps her feet or something. Frames 101–200 might be a walk cycle that you can loop

over and over again to simulate walking, and frames 201–300 might be an attack with a

sword, frames 301–350 might be an attack with a bow, and so on.

How you go about making these animations depends on your choice of 3D modeler and

what it is you are animating. I am not going to go into the specifics of how you would go

about making an animation in a 3D modeler; instead, you will work with one that I had

made for this chapter.

Adam Taylor is an animator and character rigger here in Melbourne where I am based,

and he very generously donated some of his time to rig and animate a warrior maiden

character for you to use in our sample game. Here she is in Figure 7–24.

CHAPTER 7: Game Development with Unity 233

Figure 7–24. Your leading lady, thanks to Melbourne, AU animator Adam Taylor
(http://www.adamtaylorfolio.com).

Animation Import Settings
The leading lady can be found in the Warrior folder, in a file called “warrior fbx

animations”. Before you drag her out to be part of your scene, you need to have a look

at the import settings. Select the “warrior fbx animations” file and at the top of the

project view is a button labeled: ‘Settings’, hit that and you will get a new window that

will look like Figure 7–25. (This is one place where the newer desktop version of Unity

looks quite a bit different. If you are following along with the desktop version, then you

will see most of the same options, but in the inspector.)

If you were importing a new animation, then it would look the same, only there would be

no clips at the bottom, you would need to add those.

Remember how I talked about each set of frames being a different animation state? This

is how your warrior model is set up. Frames 1 to 141 is the “Idle” animation. This is a

looping animation that shows your character shrugging a bit and looking around. Next is

the Walk cycle between frames 142 and 173. This is a single step, meant to be looped

when walking. Finally, you have an Attack animation that is of the warrior swinging her

gigantic sword.

CHAPTER 7: Game Development with Unity 234

Figure 7–25. The animation import settings for your warrior model

You are very close to having a working, walking model. Close the settings window. Find

the Faux Character model and delete it from the scene using z-Delete. Be sure to delete

just the Faux Character and not the parent Character controller. Now drag the “warrior

fbx animations” file out into the scene.

Yikes, she is tiny! When you first bring her in, she is about ten times too small (see

Figure 7–26).

This is a common issue and is easily fixed. Delete the warrior from your scene, and go

back to the import settings. There is a setting called Mesh Scale Factor. Change that to

0.1 (instead of 0.01) and re-import. Now drag a new warrior into the scene, and she

should be the right size.

Now double-check that your warrior model is at position 0,0,0 and that the

CharacterController is also at 0,0,0. Then, in the Hierarchy view, drag the warrior model

onto the character controller, so the warrior is a child to the Character Controller, just

like your Faux Character block. You should have a hierarchy like Figure 7–27. Notice

how the capsule collider lines up with the character model. If your collider and character

do not line up properly, move the warrior model back out of the Character parent, and

make sure everything is at 0,0,0 and try again.

CHAPTER 7: Game Development with Unity 235

Figure 7–26. It is like Alice in Wonderland. Your model scales are off. Back to the settings window!

Figure 7–27. Your warrior model is a child of the Character Controller object.

Recall your Character Controller script had some exposed GameObject variables and

one of those was the character model. Therefore, select the Character Controller object

and in the inspector, find the BBCharacterController component. Now drag the warrior

model from the hierarchy view down into the character model slot. It should look

something like Figure 7–28.

CHAPTER 7: Game Development with Unity 236

Figure 7–28. Connecting your Character Model to the warrior animation.

If you don’t like to drag and drop things, you can also select the warrior fbx animations

object from the drop-down menu to the right of the Character Model variable in the

inspector. However, be aware that you now have two things that are called “warrior fbx

animations”. One is in the assets section and one is in the scene section. In this case,

you want to link to the instantiated object in the scene, so be sure to pick the correct

version.

At this point, you should be able to hit play and have the character walk around the

scene. Let’s go back and have a look at that BBCharacterController script that is doing

this work for us.

void Update () {
 Vector3 moveDirection = movementDestination - gameObject.transform.position;
 moveDirection.y = 0.0f;

 if (moveDirection.sqrMagnitude > 0.5) {
 controller.Move(moveDirection.normalized * Time.deltaTime * moveSpeed);
 if (characterModel != null) characterModel.animation.CrossFade ("Walk");
 } else {
 if (characterModel != null) characterModel.animation.CrossFade ("Idle");
 }
}

You saw this previously, but now you can focus on the animation related lines. When

you imported your model with animations, you had to set up each animation as a

separate clip and gave each clip a name. That name is how you reference those clips, it

is important to be sure you use the exact name, capitals and all, or it won’t work. So

what is happening here?

When you are walking, you call characterModel.animation.CrossFade ("Walk") and when

you are not moving you call characterModel.animation.CrossFade ("Idle"). How do you

crossfade from a character animation?

CHAPTER 7: Game Development with Unity 237

Unity uses a fairly common technique in game development known as animation

blending. When your character comes to a stop, you just stop the walk animation and

start the idle animation. But, the motion would jump, especially if you stop in midstride.

Animation blending fixes that problem. It takes the actual keyframes for the animation

currently being played and averages them with the new animation that you want to play.

This has the effect of a nice smooth transition from walking to idle. Walk around the

scene a bit and pay close attention to the split second when the animation changes

from walking to idle and back again. Animation blending is crucial to keep your

character movements nice and smooth.

You can actually play multiple animations at one time, giving each one a certain weight

in terms of how much that set of keyframes effects the actual movement of the model.

You will do this with the attack animation, and it makes handling complex animations

very easy.

However, before you can attack anything, you need to add some object interactivity.

Interacting with Something Besides the Floor
You have already seen quite a broad range of functionality that Unity can provide, and

hopefully you have gotten a bit familiar with the Unity interface. I am going to move a bit

quicker in these last few pages because there are still a handful of things I want to

cover. However, what you will be doing in the rest of the chapter is the same thing you

have been doing all along: make objects, attach scripts to them, and test them. That is

the basic iteration.

At this point, you want to be able to interact with your environment a bit more than just

walking around and bumping into things. You want to be able to use your cool attack

animation, and for that you need some objects that are attackable.

Have a look at the BBAttackable script.

public class BBAttackable : BBTouchable {

 public float armor = 0.0f; // higher armor is harder to hit
 public float health = 1.0f; // at health = 0 i am dead

 public override void handleTouch(Vector3 worldPoint)
 {
 // this will cause the player to attack me
 BBCharacterController.instance.attack(this);
 }

 public virtual void applyDamage(int damage)
 {
 health -= damage;
 if (health <= 0) this.die();
 }

 public virtual void die()
 {
 // need to play a death animation or something

CHAPTER 7: Game Development with Unity 238

 // for now, we will just destroy
 Destroy(gameObject);
 }
}

First, you can see that this is inheriting functionality from the BBTouchable class, so it

will get touch events. You have added a few public instance variables to control how

much health and armor the object has.

In your touch handler, you are calling a new method on the Character Controller called

attack(). You also have a public method that applies any damage you might have

sustained. If you go below 0, you call your die() method which removes your object from

the scene.

If you jump to the BBCharacterController script and have a look at the attack method,

you can see how this is working.

public void attack(BBAttackable target)
{
 // first off, am I close enough to hit it?
 // if not, then move towards it
 if (Vector3.Distance(transform.position, target.transform.position) >
attackRange) {
 this.moveTowards(target.transform.position);
 return;
 }
 Vector3 lookAt = target.gameObject.transform.position;
 lookAt.y = 0.0f;
 transform.LookAt(lookAt);
 if (characterModel != null) characterModel.animation.CrossFade ("Attack");
 StartCoroutine(this.doDamage(target));
}

The first thing to do is check to see if you are within your attack range to actually attack

the other object. You shouldn’t be able to hit an object with your sword unless you are

right in front of it, so if you are not close enough to hit it, you move towards it.

Next, you turn to face the object you are hitting. Generally, you will already be facing it

because you will have moved toward it to get close enough to hit it. If you happen to

already be close enough to hit an object that is behind you, then you need to turn to

face it.

Now you cross fade to your attack animation.

Astute readers will be thinking, the next time the update loop runs, it will just override

this crossfade with a walk or idle animation. This can’t work.

That would be true, unless you make the attack animation worth more than the other

animations. You can play multiple animations at once, each one having a weight which

is used to determine how much the different animations effect the overall movement of

the model. In the case of the Attack animation, you actually want it to have 100% of the

weight while it is playing, so you will just assign it a higher layer. Each animation has a

layer, and the highest layer basically gets the most weight.

Have a look at the Start() method in the BBCharacterController script.

CHAPTER 7: Game Development with Unity 239

 if (characterModel != null) {
 characterModel.animation.wrapMode = WrapMode.Loop;
 characterModel.animation["Attack"].wrapMode = WrapMode.Once;
 characterModel.animation["Attack"].layer = 1;
 }

Here you are initializing your animations. First, set all of the animations to loop. Next,

single out the attack animation and set it so it only plays once then stops. The last line is

the important line. You set the attack animation to be layer 1. Animations are by default

layer 0.

So, if you play the attack animation, it will play out to its completion no matter what

other animations are playing.

Back to the attack() method, the last line:

StartCoroutine(this.doDamage(target));

Recall way back in the beginning of the chapter I talked about coroutines as a way to

schedule periodic events outside the update loop? This is a perfect place to use them.

IEnumerator doDamage(BBAttackable target)
{
 yield return new WaitForSeconds (1.0f);
 if (target != null) target.applyDamage(attackDamage);
}

Instead of a loop like you had in the spinning barrel example, you are just waiting a

certain amount of time, then calling applyDamage to the target. This is timed so that it is

about where the sword moves through the center of its swing.

Let’s have a look back at how this all works. Let’s say that you have some object, like a

barrel, and you attach the Attackable script. When it is touched, it tells the player to

come and attack it. If the player is close enough, it plays the attack animation and

applies some damage to the barrel. If the player is not close enough, then the attack

command basically turns into a moveTowards() command.

Now, you want to actually add this BBAttackable script to all of your barrels. You could

add it to them one by one, but wait! They are all prefab copies. That must mean

something! It means that you can add the script to the prefab, and if you haven’t broken

the prefab connection, all the prefab copies in the entire game will gain that new script.

Attaching a script to a prefab is just like attaching a script to a normal scene object.

Find the barrel prefab that you made earlier, make sure it is the prefab, and not the

barrel model. When you select it, you will see its attributes in the inspector. Now find the

BBAttackable script and drag it into the barrel prefab inspector, or right onto the prefab

itself. You should see the BBAttackable script show up in the inspector, and now all of

your prefab barrel copies will be attackable.

If you play the game now, you should be able to walk up to a barrel and attack it,

causing it to vanish, like in Figure 7–29.

CHAPTER 7: Game Development with Unity 240

Figure 7–29. Your warrior attacking a defenseless barrel

User Interface
Unity provides for a few different kinds of UI methods. It has a whole set of GUI objects

that provide things like buttons, scroll areas, and things of that nature. It also has an

intermediate set of GUI classes that are used to make your own GUIs. These are the

GUITexture and the GUIText. I would encourage you to play with both the GUITexture

and the GUIText classes, but I would avoid the GUI objects like GUI.Button and GUI.Box

or anything that requires an onGUI() method call.

The GUI class of objects are fairly heavy in terms of performance, and on the iPhone

even the simplest of GUI style interfaces can bring the phone to its knees. The simpler

GUITexture and GUIText objects are much more lightweight so I would recommend

using those if you need to do any GUI type displays.

What is a GUI object? The GUI objects are a special breed of objects that live in the

screen space and always appear flat to the camera. Add a GUIText object to your

scene, then walk around a bit, you will see what I mean.

However, I tend to build my GUIs out of plain old quads and have them live in the world

space. This method is slightly more complicated to set up, but it allows me to reuse all

of the interaction scripts that I have already made for 3D objects, saving lots of time and

keeping code clean and consistent.

Let’s have a look at a very simple example.

CHAPTER 7: Game Development with Unity 241

Multiple Cameras
You want to add a button to your interface that makes more barrels. To do this, you are

going to need a new camera. GameObject ➤ Create Other ➤ Camera. This will add a second

camera to your scene, and this camera will make it look like everything has vanished.

Dont worry, that is just because you are now looking through the new camera, and it is

not set up right yet.

First, rename it something like GUICamera. Then remove the Audio Listener component

from the new camera. You can only have one listener, and your Main Camera already

has one.

Now you are going to do some new stuff. You need to make a new layer. At the top of

the inspector, under the camera’s name is the Layer menu. You saw this earlier with the

Ignore Raycasts layer. Now you want to make a new custom layer. At the bottom of the

Layer popup is: Add New Layer.... Select that and you will see all the layers in the

inspector. Pick any one of the user layers and name it something like, “faux gui”. This

will be the layer that your fake GUI objects live in and this will allow you to filter their

visibility from your main camera.

 Now, select the GUICamera. In the inspector you will see a bunch of options, one of

which is the Culling Mask. The culling mask tells the camera which objects it should be

rendering. By default, a camera will show everything. You just want it to show your new

faux gui layer. First thing is to select "Nothing" in the CUlling mask drop down. By

selecting Nothing, you can quickly clear the list of visible objects. Now in the same

Culling Mask drop down, select your new layer, faux gui. This camera will only show

objects that are in the faux gui layer. Before you leave this camera, change the Clear

Flags to Depth Only. This effectively makes this camera have a clear background color,

and now you should be able to see your scene again. Your GUICamera attributes should

look like Figure 7–30.

The last thing that you need to do is set the Culling Mask to filter out any faux gui layer

objects on your Main Camera. Select the main camera and uncheck the faux gui layer in

its Culling Mask drop down (it should already be unchecked as new layers do not get

added to the culling mask by default, but it is good to check these things).

What have you done here? You have made a new camera, and set it so that it only

shows objects in a certain layer. You have also made sure that your other camera does

not show these objects. This means you can effectively use this new camera to build an

overlay scene. In this case, you will use it to add a button.

CHAPTER 7: Game Development with Unity 242

Figure 7–30. The GUICamera attributes

CHAPTER 7: Game Development with Unity 243

3D Objects As GUI Items
Set your new GUICamera position to 0,0,–5. Now find the prefab in the Prefabs folder, in

the project view, called barrelButton. Drag this out into your scene, so it should now

look something like Figure 7–31.

Figure 7–31. Your new barrel button. In the game view, it is in the center of the screen, even though in the scene
view it seems to be half-poking out of the floor.

CHAPTER 7: Game Development with Unity 244

Here you can see what is going on. In your scene view, you can see all of your objects.

Your new button is just poking out of the floor at 0,0,0. In the game view, your Main

Camera, the one that can see the barrels and the warrior does not show the button

poking out of the floor, but the second GUICamera which can only see the button shows

it as center screen.

Keep in mind you only have the one little button, but your GUI interfaces can get quite

complicated, and having them all cluttering the scene view can be a bit annoying. There

are lots of ways to fix this. The simplest I find is to make a new empty Game Object, and

put all the faux gui layer objects into that parent object, then you can deactivate the

whole lot of them by deactivating the parent object (just uncheck the checkbox that is at

the top of the inspector, next to the object name). This allows you to turn off your entire

gui so you can focus on your scene or vice versa. Your scene is simple enough so you

don’t need to worry too much about it.

Everything is working properly, but your button is in a bad spot. In the scene view, or by

using the inspector, move your button to one of the corners. I put mine at 3.5,-2.1,0, but

you should be able to drag it all over the screen and see how it looks in other positions.

Now you need to make it do something. You have a touchable interface going on, so

you should take advantage of that. Have a look at the BBTouchableButton script.

public class BBTouchableButton : BBTouchable {

 public GameObject buttonDelegate;
 public string message = "doButtonAction";

 public override void handleTouch(Vector3 worldPoint)
 {
 if (buttonDelegate == null) buttonDelegate = gameObject;
 buttonDelegate.SendMessage(message,SendMessageOptions.DontRequireReceiver);
 }
}

Very simple. I like to keep my scripts as simple as possible, because there is less

chance for bugs that way.

You can see that your touchable button is a subclass of BBTouchable, so it will work

within your current touch handling scheme. Your script is basically just calling this one

method:

buttonDelegate.SendMessage()

What is this doing? SendMessage() is a generic way to try to call a method on another

object. SendMessage() is a bit slower than finding the script component and calling the

method like you have done previously, but it allows for a bit more flexibility.

SendMessage() attempts to call the specified method call on any components of the

object that it is being called on. By adding the

SendMessageOptions.DontRequireReceiver constant, you are basically saying: try to

send this message out, but if there is nobody to hear it, then that is OK.

CHAPTER 7: Game Development with Unity 245

At the top of your file, you define a public GameObject to attach any delegate object you

want in the editor, but the default (when the delegate is null) is to just send the message

to whatever object your script is attached to.

You also make the message a public variable, so if you want to call some other method

when the button is tapped then you can easily change it.

Next, you need a script to actually perform the action. Open up the

BBSpawnBarrelsAction script.

public class BBSpawnBarrelsAction : MonoBehaviour {

 public GameObject barrelPrefab;

 public void doButtonAction()
 {
 // are there any spawned barrels left?
 if (GameObject.Find("Spawned Barrel") != null) return;

 // We want to spawn some barrels
 this.spawnBarrelAtPoint(new Vector3(10.0f,1.5f,10.0f));
 this.spawnBarrelAtPoint(new Vector3(-10.0f,1.5f,-10.0f));
 }

 void spawnBarrelAtPoint(Vector3 spawnPoint)
 {
 GameObject newBarrel =�
(GameObject)Instantiate(barrelPrefab,spawnPoint,Quaternion.identity);
 newBarrel.name = "Spawned Barrel";
 }
}

This script will be attached to the same object as the BBTouchableButton script, so

when that button receives a touch call, it will send the message “doButtonAction” to

itself. This means that doButtonAction() will get called on this script.

The first thing you do is check to see if there are any spawned barrels already. You don’t

want to spawn barrels if there are still some out there that you already spawned.

The GameObject.Find() method returns the first object with the supplied name, if it does

not find anything it returns null.

If there are no previously spawned barrels in the scene, then you spawn a couple. Your

spawn method simply instantiates a prefab that you will hook up via the editor, and then

names it “Spawned Barrel” so that you can easily find them later.

Take both the BBTouchableButton script and the BBSpawnBarrelsAction and attach

them to your barrelButton. The only thing you need to do is hook up the barrel prefab to

the BBSpawnBarrelsAction script. Find the barrel prefab and drag it onto the

BBSpawnBarrelsAction script into the barrel prefab slot.

Now if you hit play and try it out, your button doesn’t work!

CHAPTER 7: Game Development with Unity 246

What has happened is that your touch input controller is only looking at the main camera

when it is raycasting. The main camera can’t see your button. You need to add a second

camera to your BBTouchInputController. Let’s have a look at that script.

public class BBTouchInputController : MonoBehaviour {

 public Camera GUICamera;
 .
 .
 .

 public void handleTouchAtPointForAllCameras(Vector2 touchPoint) {
 if (this.cameraDidHandleTouch(GUICamera,touchPoint)) return;
 this.cameraDidHandleTouch(Camera.main,touchPoint);
 }

 public bool cameraDidHandleTouch(Camera cam, Vector2 touchPoint) {
 RaycastHit hit = new RaycastHit();
 if (Physics.Raycast(cam.ScreenPointToRay(touchPoint),out hit,�
 Mathf.Infinity)) {
 BBTouchable touchableObject =�
 (BBTouchable)hit.transform.gameObject.GetComponent(typeof(BBTouchable));
 if (touchableObject != null) {
 touchableObject.handleTouch(hit.point);
 return true;
 }
 }
 return false;
 }

This looks like a bunch of changes but really it is very simple.

You added a public instance variable for the GUICamera so you can hook that up in the

editor. You moved the raycasting code into its own method so that you can just send it

any old camera, and if it successfully handles a touch, then it returns true, otherwise it

returns false.

Then, in the handleTouchAtPointForAllCameras() method you first check to see if the

GUICamera has any touches, and if not you check the main camera. You want to give

the gui preference because it will be visually in front of the main camera scene.

Lastly, in the Update() method, just change the handleTouchAtPoint() method to the

handleTouchAtPointForAllCameras() method.

Back in the editor, be sure to link the GUICamera object into the

BBTouchInputController script. Once that is hooked up, you are ready to try it again.

Now everything should work (see 7–32).

CHAPTER 7: Game Development with Unity 247

Figure 7–32. Your very simple gui and your resultant spawned barrels

Building for Your Device
So far you have spent the entire time inside the Unity editor. You have built your little

game and tested it in the game preview window. At some point, you will want to test it

on the device to make sure that it is behaving properly and performing well.

In Unity, this is really very easy. If you have already built things in Xcode for your device,

(and you should have already done it at least once to get the Unity Remote working)

then it will be very easy indeed. First, save your scene, then open the Build Settings

found under the File menu. Drag your scene into the build settings window to add it to

the scene list. Then press the build button. That is about it.

What Unity does is take all of your game data and build a big binary blob, it then wraps

that in a tasty Cocoa/ObjC wrapper, and serves it up in an Xcode project. When the

build is finished, you will have a new xCode project that is ready for you to add your

certificates to and build for your device, just like any other iPhone project.

Unity projects cannot be used in the simulator, so don’t bother trying that. Not that you

need the simulator when Unity Remote is a far better simulation solution.

If you have been following along with the free desktop version of Unity, then you don’t

have the option to build for iPhone, but you can deploy to a slew of other platforms, like

CHAPTER 7: Game Development with Unity 248

the web, which is a great way to get the word out about your game, build a web version

and let people demo your game before buying it on the App Store.

Summary
This chapter has covered a huge amount of ground. You managed to build a working

game-like application that had a fully animated character model, imported 3D assets,

multi-camera rendering, and touch input handling.

All of this in less than a hundred lines of code.

This is the power of using Unity for your game development. All the hard stuff is already

done for you, so all you need to do is build your game on top of it. I spent many years as

a hobbyist, building little games here and there for the fun of it, but once the iPhone

came along, I finally had a deployment platform for my games.

This is when I realized that mostly what I had been writing were game engines. I spent all

of my time tweaking the material loading code so that it worked with PVRTC textures or

adjusting the way my particle system handled its memory management, and I really

spent very little time actually building my games. With Unity all that stuff becomes a very

distant secondary consideration. Yes, you still need to worry about memory and texture

compression, but Unity handles all the hard bits for you. Once I started using Unity, I

stopped building game engines and started building games.

Hopefully, this shallow but broad introduction to Unity will pique your interest and show

you how useful a tool like Unity can be.

If you are already hooked, and want to try more, here are some suggestions to help hone

your Unity skills: In your game, change the touch input system so that it handles touch,

down/touch, moved/and touch up. Use the character model (or make your own if you

know how) and make an evil twin for the warrior to fight for domain over the land of the

barrels. Add walls and rooms and expand the dungeon so you can go exploring. Add a

health bar to your GUI. Or alternatively, scrap the whole thing and make your own game!

In closing, I want to offer my help: Feel free to email me at support@benbritten.com if

you have any questions, or check out my game development blog:

http://escfactory.com/blog. I often post tips and tricks there, and there are a few other

people who post there as well, artists, writers, and sound people.

In addition, if you hang out on the Unity forums for even a few minutes

(http://forum.unity3d.com) then you will notice that the Unity support team and the

Unity community is incredibly helpful and generous with their time and expertise. The

Unity forums were instrumental for me when I was picking up Unity for the first time, and

I still constantly go there to find help when I get stuck.

Again, many thanks to Adam Taylor for the model/texture/animation work on the warrior

model. You can check out some more of his work at his site:

http://www.adamtaylorfolio.com.

249

Chuck Smith
Company: Chuck Smith
(www.chucksmith.de)

Location: Berlin, Germany

Former Life as a Developer: I started my career developing a web front-end using
Siebel and found that sitting behind a cubicle wasn’t really for me. I then founded
the Esperanto Wikipedia and took off to travel Europe for half a year to promote
it and see more of the world. Since then, I’ve developed a complete e-commerce
solution in PHP for a company in New York City and then moved to Heilbronn,
Germany where I was a wiki researcher for two years mostly working in Java.
After that, I lead the Ruby on Rails development team on a poker social
networking site in Berlin. Finally, I became fascinated with the iPhone, jumped on
board, and haven’t looked back.

Life as an iPhone Developer: I am a freelance iPhone developer and developer of
educational iPhone software such as Chess Player and German Course, as well
as “game helpers” like Dominion Minion and Random Chess. I also do contract
work writing iPhone credit-card applications. On the side, I coordinate an iPhone
internationalization service (www.iphone-i18n.com) and am happy to report
success: after iphone-i18n translated Harbor Master into German, it quickly rose
to the Top 10 list in the German App Store!

Apps on the App Store:

� Games: Chess Player, Go Player, Dominion Minion, Random
Chess

� Education: German Course and German Sex

What's in This Chapter: I will show you how to create a simple card game quickly
and painlessly. You will create a menu to navigate to different scenes in the
game. Then, you will see and appreciate how easy sprite manipulation can be
using the Cocos2d library. Finally, you will add sound and learn how to port your
app to Apple’s ultimate gaming device, the iPad.

 250

Key Technologies:

� Game Menu Creation

� Sprite Handling

� Sound Engine

251

251

 Chapter

Cocos2d for iPhone and
iPad; It Is Easier than You
Think
So, you’ve decided to write an iPhone game, but are scared off by the complexities of

OpenGL ES? Quartz2D doesn’t have enough power for you? The answer is cocos2d,

which provides an abstraction layer, so you can easily use the power of OpenGL ES.

This lets you focus on your game rather than the mathematics behind matrix

transformations.

Origins of Cocos2d
Cocos2d originally began as an open source game library for Python. The iPhone port

even uses the same API, but in Objective-C. It all started after many Argentine Python

developers kept attending Pyweek every year and lamented the fact that every time they

met, they had to recode everything from scratch, essentially “reinventing the wheel”

each time: the menu, logic for manipulating scenes, sprites, animations, etc. In January

2008, fifty Python developers gathered in Los Cocos, a region in Argentina where six

ambitious souls started writing an open source 2d game engine. It was then named

cocos2d after its birthplace.

In March 2008, Apple released its SDK and they immediately started to port the code for

the iPhone. They kept all the original principles of the Python version and made sure the

project remained open source. In the early days, Apple’s NDA was their biggest obstacle

preventing them from sharing code with others and raising doubts about whether Apple

would ever allow open source libraries on their platform. At this time, cocos2d

development stayed underground until Apple gave the green light to share. Since Apple

removed the restrictions, the community and codebase has steadily grown and now

cocos2d v1.0 is planned to go live in May 2010.

8

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 252

NOTE: Some ambitious developers are hard at work on an Android version as well, but it is still in
its very early stages at the time of this writing.

Why Use Cocos2d?
OpenGL ES is a very powerful low-level graphics engine which also has a very difficult

learning curve. After an hour introductory lecture, I was even more confused by it than

before. However, in just a few hours learning and using cocos2d, I already had playing

cards spinning and moving around a screen. Sure, cocos2d won’t give you the full

power of OpenGL ES, but for more applications it will give you enough, and will greatly

speed up your development time unless you already have a strong background in

OpenGL. Benjamin Jackson summarized it best, “OpenGL is powerful, but hand-coding

the same calls to its cryptic method names repeatedly will have any sane person leaving

head-shaped holes in the wall before the first prototype is out the door
1

.”

Another powerful feature of cocos2d is its inclusion of the popular physics libraries

Chipmunk and Box2d. Many people choose Box2d because it was written in C++

instead of C. On the other hand, Chipmunk has been integrated into cocos2d longer, so

there is more sample source code available which can make it faster to learn. That being

said, the developer of Stick Wars recently migrated his app from Chipmunk to Box2d.

Box2d is more powerful giving it a steeper learning curve, yet its documentation is more

complete (http://www.cocos2d-iphone.org/forum/topic/762). From what I’ve seen,

most developers prefer Box2d over Chipmunk, but a detailed discourse on this topic is

beyond the scope of this chapter.

Getting Started with Cocos2d
Cocos2d development may use some concepts which may be unfamiliar to you if you

have not done game development before. First of all, now in v0.99 of cocos2d, all

cocos2d-specific objects start with CC. This will make it easier to see which parts of

your code are dealing with the cocos2d API and which are native to the iPhone SDK.

At the highest level, you will work with CCDirector, CCScene, CCLayer, and CCSprite

objects.

� The CCDirector looks over your entire program and controls the flow

of scenes.

� A CCScene could be an intro page, menu, a level, a cutscene, or even

a high scores page. They help you organize individual components of

your game into logical units. See an example game flow in Figure 8–1.

Each rectangle in that figure represents a different scene.

1

 Wolfgang Ante et al., iPhone Cool Projects (New York: Apress, 2009), p 109.

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 253

Figure 8–1. Possible scene flowchart. (Taken with permission from rights owner: http://www.cocos2d-
iphone.org/wiki/doku.php/prog_guide:basic_concepts.)

� Within a scene, you can have multiple CCLayer objects. Each layer has

the size of the entire screen area and can also include transparent or

partially transparent sections which show the layer(s) behind it. You

will define event handlers within layers, so this is where most of your

programming will be done. A CCLayer can contain a CCLabel, CCSprite

and even other CCLayer objects. A CCLabel is an object for displaying

text. These can be used for displaying messages to the user or even

just the score or other important details. Figure 8–2 shows how layers

might look in an actual game.

Figure 8–2. Combining layers to make a scene. (Taken with permission from right owner:
http://www.cocos2d-iphone.org/wiki/doku.php/prog_guide:basic_concepts.)

� CCSprite objects are a way to store images in memory for easy

manipulation. In this form, it is easy to move, rotate, scale, and

animate them simply by calling simple methods. This is how a

beginner game developer can make simple impressive animations

without trekking to the local community college to enroll in a course of

Linear Algebra.

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 254

Installing Cocos2d
Download the latest stable version of Cocos2d from http://www.cocos2d-
iphone.org/download. Unzip this and you’re almost ready to go. Feel free to unzip this

file anywhere, because its location is not important.

Configuring Sample Code
Open the cocos2d-iphone.xcodeproj in XCode. cocos2d-iphone.xcodeproj is a sample

jungle gym where you can see examples of many different frameworks like in the virtual

Targets group in Figure 8–3. Since cocos2d is relatively new and documentation is

incomplete at the time of this writing, a critical tool to learning will be viewing sample

source code to learn what you need to continue your project. Unfortunately, this code

does not automatically work right out of the box, so you need to set it up. Fortunately, it’s

quite simple: from the XCode menu, select View ➤ Customize Toolbar. Now drag the

Overview item to the far left place in the toolbar. This will help you to easily see which

targets you are building. When this is completed, your toolbar should look like Figure 8–4.

Figure 8–3. Sample tests at your disposal in cocos2d-iphone.xcodeproj

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 255

Figure 8–4. Customized XCode toolbar to run cocos2d sample code

Now that you have this set up, you will want to run the HelloWorldSample. From the

Overview dropdown, choose HelloWorldSample for Active Target and then click this

dropdown again and select HelloWorldSample for the Active Executable too. Now, click

Build and Debug (or Build and Go depending on your version of XCode) and see the

cocos2d splash screen followed by the words Hello World appear in your iPhone

Simulator.

You will find the sample code for this app at /tests/Samples/HelloWorld.m.

This also means you can modify the sample code to play around with cocos2d. Find the

following line of code and change “Hello World” to “Hello cocos2d” and then build this

project again to see it in action.

CCLabel* label = [CCLabel labelWithString:@"Hello World" fontName:@"Marker Felt"�
 fontSize:64];

Installing the XCode Project Templates
Let’s install the cocos2d project templates into XCode to give you skeleton projects

which you can use to jump start your new game idea. To do so, start Terminal, navigate

to the folder with the unzipped files you downloaded, and enter the following command:

./install_template.sh

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 256

NOTE: If you want to uninstall these templates later, you can find them in the following folder on
your hard drive:
/Developer/Platforms/iPhoneOS.platform/Developer/Library/Xcode/Project

Templates/Application.

Starting a New Project
Here you will want to start a new project by clicking File ➤ New Project. After this, your

window should look like Figure 8–5. If not, then you still need to install the XCode

Project Templates as described in the previous section “Installing the XCode Project

Templates.”

Figure 8–5. Starting a new cocos2d project

Here you will want to choose the cocos2d Application. You will only want the Box2d or

Chipmunk application template if you are planning to have heavy physics elements in

your game. At this point, a project skeleton will be created for you as in Figure 8–6. (See

my comparison of Box2d and Chipmunk in the “Why use cocos2d?” section for more

details about the other templates.) Under the Classes folder, you’ll find

HelloWorldScene.m and .h were auto-generated for you which you can now use to start

building your game.

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 257

Figure 8–6. Auto-generated cocos2d project skeleton

Introduction to Video Poker
To demonstrate cocos2d, I will be using Video Poker as an example, since it is deep

enough to be interesting, yet easy enough to explain cocos2d without too many

distracting details. The player taps a Deal button which will then deal five cards. Then he

may choose which cards to hold and tap the Deal button again. At this point, if the

player has a hand which is a pair of jacks or better, then he will receive chips back

according to Table 8–1.

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 258

Table 8–1. Prize Table for Video Poker

Hand Prize

Royal flush 4000

Straight flush 250

Four of a kind 125

Full house 45

Flush 30

Straight 20

Three of a kind 15

Two pair 10

Jacks or better 5

The player will receive this many chips for the given hand.

Making a Scene
A scene is basically one screen of information. This could be a main menu, a level of a

game, a game over screen, a high scores list, etc. Here you will start by making a main

menu, so that the user can choose to either start a game or learn how to play or change

options. This menu is an excellent opportunity to get your feet wet and learn how to

switch between scenes.

To start, find the auto-generated HelloWorldScene.h and HelloWorldScene.m files in the

Classes folder. Remove the lines in the init section and you can now use these files as a

template for any scene you would like to create. Create empty files called

HowToPlayScene.h and HowToPlayScene.m, copy the contents from HelloWorldScene.h

and HelloWorldScene.m into them and set their object name to HowToPlay. Also,

remember to import HowToPlayScene.h and change both occurrences of “HelloWorld”

in the following line to HowToPlay as well.

HelloWorld *layer = [HelloWorld node];

Now you should have two files, which look like Listings 8–1 and 8–2. Also, notice the

node method here. A CocosNode is basically the super-object of all cocos2d objects.

Basically, if you want to draw it or it contains something, this will be a CocosNode. The

node function is generally a factory method which returns a CocosNode. In the previous

example, the HowToPlay layer will be initialized using the HowToPlay node.

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 259

Listing 8–1. HowToPlayScene.h: Sample Scene Header File Template

// HowToPlayScene.h
// Video Poker

#import "cocos2d.h"

@interface HowToPlay : CCLayer {
}

+(id) scene;

@end

Listing 8–2. HowToPlayScene.m: Sample Scene Main File Template

// HowToPlayScene.m
// Video Poker
#import "HowToPlayScene.h"

@implementation HowToPlay

+(id) scene
{
 // 'scene' is an autorelease object.
 CCScene *scene = [CCScene node];

 // 'layer' is an autorelease object.
 HowToPlay *layer = [HowToPlay node];

 // add layer as a child to scene
 [scene addChild: layer];

 // return the scene
 return scene;
}

-(id) init
{
 // always call "super" init
 // Apple recommends to re-assign "self" with the "super" return value
 if((self=[super init])) {
 // Put code to initialize cocos2d scene here
 }
 return self;
}

@end

In Listing 8–1, you first created a CCScene object and a CCLayer object to be placed

within that scene. Then you added the CCLayer object as a child of the CCScene and

finally returned the CCScene to the CCDirector. You will rarely deal with the CCDirector

object directly, you’ll only call it within a CCScene to replace it with another scene (more

about this in the next section).

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 260

Creating a Game Menu
Python developers got tired of writing the same menu logic code every time they wrote a

new game, so they made menu creation very quick and easy. Now let’s create a menu

item with the text “How to Play” which will call the function howToPlay. You just need

the following line within a scene:

CCMenuItem *howToPlay = [CCMenuItemFont itemFromString:@"How to Play"
 target:self selector:@selector(howToPlay:)];

Now, let’s add this to your project. Copy HelloWorldScene.m and .h again and call them

MainMenuScene.m and .h. In this line, you’re creating a CCMenuItem object. Don’t forget

to change the @interface and @implementation lines in MainMenuScene.m and .h

respectively as follows:

@interface MainMenu : CCLayer

@implementation MainMenu

Now you want to add three menu items: Play Game, How to Play, and Options. So,

you’ll need to replace anything in your init function (MainMenuScene.m) and replace it

with the code in Listing 8–3.

Listing 8–3. Creating Your Game’s Menu Items

// New menu
CCMenuItem *playGame = [CCMenuItemFont itemFromString:@"Start Game"
 target:self
 selector:@selector(playGame:)];

CCMenuItem *howToPlay = [CCMenuItemFont itemFromString:@"How to Play"
 target:self
 selector:@selector(howToPlay:)];

CCMenuItem *options = [CCMenuItemFont itemFromString:@"Options"
 target:self
 selector:@selector(options:)];

Now that you have these menu items, you have to put them somewhere. Let’s display

them vertically down the center. First, you need to create a CCMenu object and initialize it

with the menu items you already created. Next, the menu will need to align its items

vertically. Finally, you need to add this menu as a child to the MainMenuScene, as you can

see by Listing 8–4 and then you should run your app and see the result in Figure 8–7.

Listing 8–4. Adding Menu iIems to a Menu and Adding it to the Scene

CCMenu *menu = [CCMenu menuWithItems: playGame, howToPlay, options, nil];
[menu alignItemsVertically];
[self addChild:menu];

Now you need to create the functions that will be called when these buttons are

pressed. To replace a single scene, you will have to run the following command:

[[CCDirector sharedDirector] replaceScene:[HowToPlay node]];

Now you see the first reference to the CCDirector. The CCDirector is used to keep track

of the program’s scenes internally. This function will change the current scene with a

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 261

new scene you indicate. You’ll finish the menu by creating a transition to the HowToPlay

CCScene and then commenting out the transitions to the other CCScene objects that

you want to add in the future, as demonstrated in Listing 8–5. This code should go

under the init function of MainMenuScene.m.

Figure 8–7. Main menu aligned vertically

Listing 8–5. Creating Functions for Menu Item Clicks

-(void)playGame:(id)sender {
 // [[CCDirector sharedDirector] replaceScene:[PokerGame node]];
}

-(void)howToPlay:(id)sender {
 [[CCDirector sharedDirector] replaceScene:[HowToPlay node]];
}

-(void)options:(id)sender {
 // [[CCDirector sharedDirector] replaceScene:[Options node]];
}

Now you will just have to replace [HelloWorld scene] in Video_PokerAppDelegate.m with

[MainMenu scene]. Next, add the Main Scene class to the App Delegate and you should

be able to run the app and see the menu.

Since the code is in place, create PokerGameScene.h, PokerGameScene.m,

OptionsScene.h, and OptionsScene.m in the same manner as you did in the “Making a

Scene” section of this chapter. Finally, you can uncomment out the commented out

lines in Listing 8–5.

Game Logic
Now that you have the basic navigation complete to get to the game, you can start

working on the logic of the game itself. This will need to be done before you start playing

with graphics. Since this chapter is about cocos2d, this will be a summary of how the

game logic classes work. I would recommend copying the files Card.h, Card.m, Deck.h,

Deck.m, SimpleHand.h, SimpleHand.m, and GlobalVariables.h from the sample source

code into your project now. If you do not care about the game logic and just want to get

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 262

back to the cocos2d API, you can skip ahead to the section “I Like The Sprites in You”

later in this chapter.

Card
The smallest unit of data in this app is a card. This just contains the rank (like 2 or King)

and suit (like heart or diamonds) of a card. You also need to add a simple boolean value

to tell whether the card is locked into place before the second draw. So, you will create

a Card class and add the following to the interface as seen in Listing 8–6.

Listing 8–6. Creating Card object interface in Card.h

@interface Card : NSObject
{
 NSUInteger rank;
 NSUInteger suit;
 BOOL locked;
}

@property BOOL locked;

Let’s make a list of constants for card ranks and suits. While you’re at it, you might as

well add card hand values too. You’ll make a file called GlobalVariables.h for this

purpose in Listing 8–7.

Listing 8–7. Constant for Global Variables in GlobalVariables.h

#define JACK 11
#define QUEEN 12
#define KING 13
#define ACE 14

#define SPADES 1
#define HEARTS 2
#define CLUBS 3
#define DIAMONDS 4

#define HIGH_CARD 1
#define JACKS_OR_BETTER 2
#define TWO_PAIR 3
#define THREE_OF_A_KIND 4
#define STRAIGHT 5
#define FLUSH 6
#define FULL_HOUSE 7
#define FOUR_OF_A_KIND 8
#define STRAIGHT_FLUSH 9
#define ROYAL_FLUSH 10

Note that for the card ranks, you will be using the actual values for cards 2–10 and then

Jack = 11, Queen = 12, King = 13, and Ace = 14. Most importantly, back in your Card.m

file, you need a function to create a random card (see Listing 8–8).

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 263

Listing 8–8. Functions in Card.M for Initializing Cards

-(id) initWithRandomCard
{
 suit = arc4random() % 4 + 1;
 rank = arc4random() % 13 + 2; // Pick random card between 2 and ACE (14)
 return self;
}

-(id) initWithRank:(NSUInteger)cardRank andSuit:(NSUInteger)cardSuit
{
 rank = cardRank;
 suit = cardSuit;
 return self;
}

-(id)initWithCard:(Card *)myCard;
{
 rank = [myCard rank];
 suit = [myCard suit];
 return self;
}

Now you can set up a card, but you’ll also need to access it. I have all my card images

saved as two character filenames, so the Queen of Clubs is Qc.png, 2 of Spades is

2s.png and the Ten of Hearts is Th.png. First, let’s make two classes to return the

human-readable string representation for the rank and suit (see Listing 8–9).

Listing 8–9. Making Human-Readable Description for Each Card in Card.M

-(NSString *)humanRank
{
 switch (self.rank)
 {
 case 0: return @"Error";
 case JACK: return @"J";
 case QUEEN: return @"Q";
 case KING: return @"K";
 case ACE: return @"A";
 case 10: return @"T";
 default: return [NSString stringWithFormat:@"%d", rank];
 }
}

-(NSString *)humanSuit {
 switch (self.suit) {
 case 0: return @"Error";
 case SPADES: return @"s";
 case HEARTS: return @"h";
 case CLUBS: return @"c";
 case DIAMONDS: return @"d";
 default: return @"Suit >4 Error";
 }
}

-(NSString *)description
{
 return [NSString stringWithFormat:@"%@%@",

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 264

 [self humanRank],
 [self humanSuit]];
}

Now you just need to add a few utility functions to Card.m for card locking, as shown in

Listings 8–10 and 8–11.

Listing 8–10. Making Human-Readable Description for Each Card in Card.M

-(void)lock {
 locked = true;
}

-(void)unlock {
 locked = false;
}

-(void)toggleLock {
 locked = !locked;
}
Now we just need to declare what we have in Card.h.

Listing 8–11. Declaring Variables and Prototyping Functions in Card.h

#import <Foundation/Foundation.h>

@interface Card : NSObject <NSCopying>
{
 NSUInteger rank;
 NSUInteger suit;
 BOOL locked;
}

@property BOOL locked;

-(id)initWithRandomCard;

-(NSString *)humanSuit;
-(NSString *)humanRank;

@end

Deck
Now that you have cards, you need to put them in a deck. This will also simplify the

logic of the rest of the app, because the deck can shuffle its own cards, etc. Let’s create

the header file. You just need a mutable array of cards and an indicator of the current

card, as shown in Listing 8–12.

Listing 8–12. Declaring Variables and Prototyping Functions in Deck.h

#import <Foundation/Foundation.h>

@class Card;

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 265

@interface Deck : NSObject {
 NSMutableArray *cards;
 NSUInteger curCard;
}

@property (nonatomic, retain) NSMutableArray *cards;

-(void) shuffle;
-(Card *)nextCard;

@end

Let’s set up an initial deck. You simply need to create all 52 cards, as shown in Listing

8–13.

Listing 8–13. Initializing Cards in Deck.m

-(id) init
{
 cards = [[NSMutableArray alloc] initWithCapacity:52];

 for (int suit = 1; suit <= 4; suit++)
 {
 for (int cardRank = 2; cardRank <= 14; cardRank++)
 {
 Card *myCard = [[Card alloc] initWithRank:cardRank�
 andSuit:suit];
 [cards addObject:myCard];
 [myCard release];
 }
 }

 [self shuffle];

 return self;
}

Now for the most important part: shuffling. Many programmers simply always go

through each card and swap it with any other card. However, this will not get you a very

random shuffle, because cards at the beginning have a bigger chance to be swapped

than cards later in the deck. Instead, you need to shuffle in the following way, as shown

in Listing 8–14.

Listing 8–14. Shuffling Cards in Deck.m

-(void) shuffle
{
 // Swap each card with a random card AFTER it to get an even random�
 distribution.
 for (int i = 0; i < 51; i++)
 {
 [cards exchangeObjectAtIndex:i withObjectAtIndex:arc4random()�
 % (52 - i) + i];
 }

 curCard = 0;
}

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 266

Here you cycle through the cards, but you only swap it with a random card that comes

after this card and then you keep swapping until the 51
st

 card. You don’t need to check

the last card, because if you did, it would just swap with itself since there are no cards

after it. Also, notice that I use arc4random() instead of rand() or random(). I do this for the

following two reasons:

� rand() must first be seeded by running arandom(time(NULL)); while

arc4random() automatically seeds on its first run.

� arc4random() has twice the precision of rand().

NOTE: For more details about shuffling algorithms and an amusing story about an online poker
scam that profited from this mistake, see
http://www.cigital.com/papers/download/developer_gambling.php.

Now you just need a simple utility function to access the next card in the deck, as

shown in Listing 8–15.

Listing 8–15. Advance to Next Card in Deck.m

-(Card *)nextCard
{
 return [cards objectAtIndex:curCard++];
}

SimpleHand
Now you need to calculate which hand the user has, so you’ll know how much to reward

depending on the hand. This is the heart of the game logic and can get somewhat

complicated. First, you need to initialize with space for five cards, as shown in Listing 8–

16.

Listing 8–16. Initializing Hand in SimpleHand.m

-(id) init
{
 cards = [[NSMutableArray alloc] initWithCapacity:5];
 [super init];
 return self;
}

Next, you want to create a function to add a card to this SimpleHand as can be seen in

Listing 8–17.

Listing 8–17. Add Another Card to Hand in SimpleHand.m

-(void)addCard:(Card *)anotherCard
{
 [cards addObject:anotherCard];
}

After you have cards in your hand, you need to see if a player has Jacks or Better. You

start by sorting the cards, so you can simplify your hand checking algorithms. Now you’ll

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 267

check to see if it is a Royal Flush, then a Straight Flush, Four of a Kind, etc. If it finds no

hand value at all, then you can assume the hand was a pair of tens or worse (see Listing

8–18).

Listing 8–18. Calculate Hand Rank in SimpleHand.m

-(void)calculate
{
 SimpleHand *sortedHand = [[SimpleHand alloc] initWithHand:cards];

 // Sort cards to make hands easier to calculate
 [sortedHand sort];

 if ([sortedHand isRoyalFlush]) { handRank = ROYAL_FLUSH; return; }
 if ([sortedHand isStraightFlush]) { handRank = STRAIGHT_FLUSH; return; }
 if ([sortedHand isFourOfAKind]) { handRank = FOUR_OF_A_KIND; return; }
 if ([sortedHand isFullHouse]) { handRank = FULL_HOUSE; return; }
 if ([sortedHand isFlush]) { handRank = FLUSH; return; }
 if ([sortedHand isStraight]) { handRank = STRAIGHT; return; }
 if ([sortedHand isThreeOfAKind]) { handRank = THREE_OF_A_KIND; return; }
 if ([sortedHand isTwoPair]) { handRank = TWO_PAIR; return; }
 if ([sortedHand isJacksOrBetter]) { handRank = JACKS_OR_BETTER; return; }

 [sortedHand release];

 // No hand found
 handRank = HIGH_CARD;
 return;
}

As shown in Listing 8–18, you first make another SimpleHand object called sortedHand

which you then sort. Now you need an initWithHand method as seen in Listing 8–19.

Listing 8–19. Initialize with Hand in SimpleHand.m

-(id)initWithHand:(NSMutableArray *)myHand
{
 cards = [[NSMutableArray alloc] initWithArray:myHand];
 return self;
}

Next, you need a sorting function like in Listing 8–20.

Listing 8–20. Simple Sort Function in SimpleHand.m

-(void) sort
{
 [cards sortUsingSelector:@selector(compareDescendingTo:)];
}

You need a compare function in Card.h, since you have to sort at the Card level as in

Listing 8–21.

Listing 8–21. Simple Sort Function in Card.m

-(NSComparisonResult) compareDescendingTo:(Card *)anotherCard
{
 if (rank < [anotherCard rank]) { return NSOrderedDescending; }
 if (rank > [anotherCard rank]) { return NSOrderedAscending; }

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 268

 // The value is the same
 return NSOrderedSame;
}

Here you only compare cards by their rank. In Poker, all cards of different suits are the

same worth, so there is no need to sort by suit like you would in Bridge, for example.

Now that your cards are sorted, you can determine the hand rank. The program starts

by checking a royal flush as you can see from Listing 8–22.

Listing 8–22. Check for Royal Flush in SimpleHand.m

-(BOOL)isRoyalFlush
{
 return ([[cards objectAtIndex:0] rank] == ACE &&�
 [[cards objectAtIndex:1] rank] == KING
 && [self isStraightFlush]);
}

Since the hand is sorted, you can check to see if the first card is an ace, the second

card is a king, and the hand is also a straight flush; then it is a royal flush. How do you

check for a straight flush? Have a look at Listing 8–23.

Listing 8–23. Check for Straight Flush in SimpleHand.m

-(BOOL)isStraightFlush
{
 return ([self isFlush] && [self isStraight]);
}

Simple enough, check to see if the hand is a flush and a straight. How do you check for

a flush? A flush is a hand where every card in your hand is the same suit, so if every card

in your hand is a spade, then you have a flush. You check to see if the second, third,

fourth, and fifth card are all the same as the first card. See Listing 8–24 to see how this

was done.

Listing 8–24. Check for Flush in SimpleHand.m

-(BOOL)isFlush
{
 for (int i = 1; i < 5; i++)
 {
 if ([[cards objectAtIndex:0] suit] != [[cards objectAtIndex:i] suit])
 {
 // If any suit doesn't match the 1st card, it's not a flush.
 return false;
 }
 }

 // All suits match, this is a bona fide flush!
 return true;
}

A straight is a hand where each card forms a sequence like 9-8–7-6-5. Now it is

incredibly useful that you sorted the cards! Therefore, you just have to check to see if

each card is exactly one lower than the one before it. You also have to account for the

rare possibility that a hand is 5-4-3-2-Ace. In this one rare case, it is useful for an ace to

have a value of 1, so that the player can get credit for a straight. The problem is that

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 269

your sorting function already placed the Ace in the front like Ace-5-4-3-2, so you will

need a special test just for this condition. Also, note that straights that “wrap around”

like 3-2-A-K-Q are not valid in poker, so you do not need to check for this (see Listing

8–25).

Listing 8–25. Check for Straight in SimpleHand.m

-(BOOL)isStraight
{
 // Special boolean to check for A-5-4-3-2 straight -> 5-4-3-2-A
 BOOL aceAndFiveStart = false;

 if ([[cards objectAtIndex:0] rank] == ACE && [[cards objectAtIndex:1] rank]�
 == 5)
 {
 aceAndFiveStart = true;
 }

 // If 1st card is not exactly one less than current and the ace and five�
 don't start, not straight.
 if ([[cards objectAtIndex:0] rank] != [[cards objectAtIndex:1] rank]�
 + 1 && !aceAndFiveStart)
 {
 return false;
 }

 // See if 8–7-6-5-4
 for (int i = 1; i < 4; i++)
 {
 if ([[cards objectAtIndex:i] rank] != [[cards objectAtIndex:i+1]�
 rank] + 1)
 {
 // The next card is not exactly one less than current one,�
 so not a straight.
 return false;
 }
 }

 if (aceAndFiveStart) {
 // Save first card to put at the end.
 Card *aceCard = [[Card alloc] initWithCard:[cards objectAtIndex:0]];
 [cards removeObjectAtIndex:0];
 [cards addObject:aceCard];
 [aceCard release];
 }

 // All cards are in order, it's a straight!
 return true;
}

There are quite a lot of hand rank functions and I do not want to bog down the chapter

with them all, so I leave it as an exercise to the reader to go through all the methods in

SimpleHand.m to see how they work. I have made an effort to comment them well, so

they should be easy to figure out.

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 270

I Like the Sprites in You
Putting images into Sprite objects in Cocos2d is very powerful and one of the key

building blocks of the architecture. This section will go through the process of loading,

displaying, and manipulating sprites. This also includes how you can chain actions,

either so that some actions immediately follow each other, or so that your sprite can

walk and chew gum at the same time.

Load and Display a Sprite
You can load a sprite into memory with just one command:

CCSprite *mySprite = [CCSprite spriteWithFile:@"MySprite.png"];

Let’s place the sprite in the center of the screen. First, you need to get the size of the

screen. This can especially be important in differentiating an iPhone from an iPad. To do

this, you get the winSize from the CCDirector. Then you set the position of the sprite to

be half the width and height of the screen. By default, cocos2d will place the center of

the sprite at the coordinates that you set for it, so keep this in mind when working with

position. Also note that in Objective-C, you typically use CGPointMake() to create a

CGPoint, but in cocos2d it is recommended to use ccp() to create a cocos2d point

instead. After you have set the sprite’s position, you can display it using the addChild

function of the current CCScene, as shown in Listing 8–26.

Listing 8–26. Display Sprite in the Center of Screen

// ask director the window size
CGSize size = [[CCDirector sharedDirector] winSize];

// set position of image in center of screen
mySprite.position = ccp(size.width / 2, size.height / 2);

// display image on screen in Z-Axis 0
[self addChild:newCardImage z:0];

NOTE: ccp() is an abbreviation for a CoCos2d Point which is considered better style in Cocos2d
programs instead of the standard Objective-C method CGPointMake(). If you are using Chipmunk,
you will want to use cpv() instead for Chipmunk’s cpVect.

Another nice feature of cocos2d is its automatic management of the Z-Axis. This

basically means that the lower the number on the Z-Axis you place the image, the

further back on the screen it appears. Thus, if you have a dog on Z-Axis 2, a tree on Axis

1, and the sky on Axis 0, the system will show the dog in front of the tree and the tree in

front of the sky. This way you can have several nice flowing backgrounds to achieve a

psuedo-3D effect in 2D games. Be aware though that the more Z-axes you use, the

slower your game will perform. If you have an iPhone 3GS or later, you will want to test

on the iPhone 3G and earlier to ensure that the game performs satisfactorily on older

devices to reach the entire market and avoid bad reviews.

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 271

Manipulating Sprites
This is the real beauty of cocos2d. With very simple commands, you can perform many

actions on your sprites with nice animations: rotate, move, scale, etc. So, let’s say you

have a CCSprite object called mySprite which you want to move to coordinates (25, 60),

you can just use the following command:

[mySprite runAction:[MoveTo actionWithDuration:1.0 position:ccp(25, 60)]];

The runAction parameter tells the CCSprite to immediately run the following action. The

actionWithDuration parameter tells the sprite how quickly it should move. In this case, it

will take it one second to move to (25, 60).

Spawns

If you run multiple actions at the same time, then you can use a Spawn. Just add the

actions you want in a Spawn object. These actions are like commands you give a sprite,

so you can collect different commands into different variables and then combine them

together into bigger commands. Let’s say you want to show cards (of class CCSprite)

spin while moving:

id deal = [MoveTo actionWithDuration:0.75 position:ccp(200, 100)];
id rotate = [RotateBy actionWithDuration:0.75 angle:360.0];
id spawn = [Spawn actions:deal, rotate, nil];
[card runAction:spawn];

This tells the card to move to coordinate (200, 100) and rotate itself a complete 360

degrees in 0.75 seconds. You can see multiple sprites in the middle of this action in

Figure 8–8. You can add as many actions as you would like to be performed

simultaneously to the Spawn. To let the system know that the action list is finished, you

need to finish it with nil. Also note that if you set the actionWithDuration in one action to

be different from another, then one action will continue while another has already

stopped.

Figure 8–8. Five sprites spinning and moving simultaneously

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 272

Sequences

In the same way you can make actions happen simultaneously with a Spawn, you can

make them happen one after another with a Sequence. Say you want to move a

CCSprite called card in the form of a square, starting at the upper-left corner and then

right, down, left, and back up:

card.position = ccp(100, 100);
id moveRight = [MoveTo actionWithDuration:0.5 position:ccp(200, 100)];
id moveDown = [MoveTo actionWithDuration:0.5 position:ccp(200, 200)];
id moveLeft = [MoveTo actionWithDuration:0.5 position:ccp (100, 200)];
id moveUp = [MoveTo actionWithDuration:0.5 position:ccp(100, 100)];
id square = [Sequence actions:moveRight, moveDown, moveLeft, moveUp, nil];
[card runAction:square];

Now the card can move in a square around the screen in two seconds. If you want to

call a method when you’re done with a sequence, you have a problem, because you

cannot just call an ordinary Objective-C function from a CCSprite. So, how can you do

it? Well, you can use the CallFunc method like this which sends a selector to your sprite.

id sendAlert = [CallFunc actionWithTarget:self selector:@selector(sendAlert)];

Now that you have the action in sendAlert, you can sequence this with your preceding

square action, so that the card will move in a square and then call the function

sendAlert.

id squareAndAlert = [Sequence actions:square, sendAlert, nil];
[card runAction:squareAndAlert];

-(void) sendAlert {
 // Send alert here
}

You can also cause something to repeat a certain number of times or forever.

id rotate = [RotateBy actionWithDuration:1.0 angle:360.0];

// This will cause the card to rotate 5 times.
[card runAction:[Repeat actionWithAction:rotate times:5]];

// ...or you can choose to have this card rotate forever
[card runAction:[RepeatForever actionWithAction:rotate]];

Putting It All together
Now that you have the menu and the logic, let’s create the heart of the game interface:

PokerGameScene.h and .m which will inherit from CCLayer. You will need to allocate

memory for the following:

� A deck (Deck)

� A simple hand (SimpleHand)

� Card images (NSMutableArray which will hold CCSprite objects)

� A deal button image (Sprite)

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 273

� A hand label (CCLabel) to show hand value

� First or second draw state (BOOL)

You will also need the following methods:

� for dealing a card and animating it onto the table

� toggling a card: lock or unlock it

� displaying the calculated value of a hand

You can find these object allocations and method prototypes of PokerGameScene.h in

Listing 8–27

Listing 8–27. Initialize Variables and Methods in PokerGameScene.h

// When you import this file, you import all the cocos2d classes
#import "cocos2d.h"

@class Deck;
@class SimpleHand;

// PokerGame Layer
@interface PokerGame : CCLayer
{
 Deck *myDeck;
 SimpleHand *myHand;
 NSMutableArray *cardImages;
 CCSprite *dealButton;
 BOOL firstDraw;
 CCLabel *handLabel;
}

@property (nonatomic, retain) NSMutableArray *cardImages;
@property (nonatomic, retain) Deck *myDeck;
@property (nonatomic, retain) SimpleHand *myHand;
@property (nonatomic, retain) CCLabel *handLabel;

// returns a Scene that contains the HelloWorld as the only child
+(id) scene;

- (CGPoint)cardHomePoint:(NSUInteger)cardIndex locked:(BOOL)lockedVal;
- (void) dealCard:(NSUInteger)curCard;
- (void)animateCard:(NSUInteger)cardIndex;
- (void) toggleCard:(NSUInteger)cardIndex;
- (void) calculateHand;

@end

Now, for the moment you’ve been waiting for: PokerGameScene.m! You start by

initializing the deck and simple hand in the init function (for more information about the

Deck and SimpleHand classes, see the “Game Logic” section.). Just initializing the deck

automatically shuffles it, so you can go ahead and take the first five cards and put it into

your hand. Then you’ll use your own calculate function to calculate the hand’s rank (like

is it two pair or a straight?). Listing 8–28 shows how this was done.

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 274

Listing 8–28. Initialize Deck and Hand in PokerGameScene.m

Deck *myDeck = [Deck new];
SimpleHand *myHand = [SimpleHand new];

for (int a = 0; a < 5; a++)
{
 [myHand addCard:[myDeck nextCard]];
}

[myHand calculate];

Now you’ll calculate the home position of each card using a method called

cardHomePoint. If the card is locked into place (so it won’t get swapped out on the next

deal), then this function will return a position somewhat lower than normal. Note that I

will need to use the winSize function from the CCDirector to get the dimensions of the

device as shown in Listing 8–29.

Listing 8–29. Set Up Card Home Points

// Calculate home point of card given its index
- (CGPoint)cardHomePoint:(NSUInteger)cardIndex locked:(BOOL)lockedVal {

 // ask director the window size
 CGSize size = [[CCDirector sharedDirector] winSize];

 NSUInteger multiplier = 1;

 // Move sprite lower for locked cards.
 if (lockedVal) { multiplier = 2; }

 // For each iPhone card, position it 80 pixels over
 CGPoint homePoint = ccp((cardIndex + 1) * 80,�
 size.height / 2 - 50.0f * multiplier);

 return homePoint;

}

Before you add this next code, go ahead and copy the Images folder from my project

into your project. Now load the card images that you need into memory as CCSprite

objects and put them into the cardImages NSMutableArray. Next, place each card in the

center of the screen, but 50 pixels off the top of the screen, so you can later spin them

onto the screen to make it look like someone is dealing the cards. Then, put all the cards

on Z-Axis 0, so they will appear under other sprites you put in later. Set these sprites’

tags to 100-104 to make it easier to access them later if you want to change the cards

on new draws. Finally, deal the cards onto the screen (see Listing 8–30).

Listing 8–30. Load Card Sprites into Memory Using spriteWithFile and Deal Them Out

cardImages = [NSMutableArray new];

for (int a = 0; a < 5; a++)
{
 CCSprite *newCardImage = [CCSprite new];

 // Load image of card

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 275

 newCardImage = [CCSprite spriteWithFile:[NSString stringWithFormat:@"%@.png",
 [myHand getCard:a]]];

 // Place card off screen centered on the top.
 newCardImage.position = ccp(size.width / 2, size.height + 50);

 // Add card image to Z-Axis:0
 [self addChild:newCardImage z:0 tag:a+100];
 [cardImages addObject:newCardImage];
 [newCardImage release];

 // Animate card to screen
 [self dealCard:a];
 }
}

Here comes the fun part. The effect you want is for a card to move from offscreen to its

home point in the middle, as seen back in Figure 8–8. You first set up a deal action to

move the sprite from off screen to its card home point. Next, set up a rotate action to

spin the card sprite 360 degrees. Note that you are setting both of these actions to

happen in 0.75 seconds. Now you create a Spawn command to deal and rotate at the

same time. Then, you choose the sprite you wish to deal (from the curCard parameter in

the method), and run this spawn on it, as shown in Listing 8–31.

Listing 8–31. Use Spawn to Deal a Card

- (void) dealCard:(NSUInteger)curCard
{
 id deal = [CCMoveTo actionWithDuration:0.75
 position:[self cardHomePoint:curCard locked:NO]];

 float degrees = 360.0f;

 id rotate = [CCRotateBy actionWithDuration:0.75 angle:degrees];
 id spawn = [CCSpawn actions:deal, rotate, nil];

 [[cardImages objectAtIndex:curCard] runAction:spawn];
}

Events: Making It Interactive
This section describes how to detect mouse taps and drags as well as covering gotchas

that are quite common among beginners on the platform. This will include how to drag a

sprite under your finger and techniques for making this happen smoothly.

At this point, it may look nice to see the cards fly in on the screen, but you want to play,

so you have to get ready for user interaction. A user can always do one of three things:

� Lock a card.

� Unlock a card.

� Deal new cards.

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 276

Remembering the rules, you will first get five cards, and then you can lock some into

place and get new cards, similar to the way Yahtzee works. Of course, if someone locks

a card, but changes his mind, he can unlock it. So, the user taps on a card to lock it. To

accept taps, you first need to run the following line of code, preferably at the beginning

of the init function:

self.isTouchEnabled = YES;

In the app, you don’t need the accelerometer, but if you need it in your creation, use the

following code:

self.isAccelerometerEnabled = YES;

Detecting Sprite Taps
You detect touches in the same way as ordinary iPhone development, through the

ccTouchesBegan method. First you make sure it’s a single tap, then get the coordinates

of the touch and convert them to landscape mode. If the deal button was tapped, you

will need to deal new cards. Otherwise, you check to see if any card was tapped (see

the next section for details). If a card is tapped, and it can be locked (first draw), then the

card moves down into the lock position or up if it is already locked, as can be seen in

Figure 8–9 and Listing 8–32.

Figure 8–9. Locking cards in preparation for second draw

Listing 8–32. Process Taps

- (void)ccTouchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 // Get UITouch object
 UITouch *touch = [touches anyObject];
 NSUInteger numTaps = [[touches anyObject] tapCount];

 // Only process if single tap.
 if (numTaps == 1)
 {
 // Find point of touch
 CGPoint location = [touch locationInView: [touch view]];
 // Convert point to landscape mode
 CGPoint touchPoint = [[CCDirector sharedDirector] convertToGL:location];

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 277

 NSLog(@"You touched (%0.f, %0.f)", touchPoint.x, touchPoint.y);

 // See if deal button was tapped.
 if ([self tappedSprite:dealButton withPoint:touchPoint]) {
 [self dealCards];
 }

 // Check each card to see if it was tapped.
 for (NSUInteger a = 0; a < 5; a++) {
 if ([self tappedSprite:[cardImages objectAtIndex:a]
 withPoint:touchPoint]) {
 if (firstDraw) {
 // Only lock and unlock cards
 // if it's the first draw.
 [self toggleCard:a];
 }
 }
 }
 }
}

In almost every game you will have to detect whether a sprite has been tapped or not. In

the following tappedSprite function, you first get the size of the sprite with the

contentSize method and its position with the position method. Then you create a

rectangle object (CGRect) with the location data where the sprite is currently on screen.

Once you have this information, the program then checks to see if the user has tapped

somewhere between the upper-left and lower-right corner of this rectangle. See how

you can do this in Listing 8–33.

Listing 8–33. See if the Sprite Was Tapped

- (BOOL)tappedSprite:(CCSprite *)curButton withPoint:(CGPoint)touchPoint
{
 CGSize sprSize = [curButton contentSize];
 CGPoint sprPos = [curButton position];

 // Make rectangle from size and position data.
 CGRect result = CGRectOffset(CGRectMake(0, 0,
 sprSize.width,
 sprSize.height),
 sprPos.x-sprSize.width/2,
 sprPos.y-sprSize.height/2);

 // See if touch is within rectangle.
 if (touchPoint.x > result.origin.x &&
 touchPoint.y > result.origin.y &&
 touchPoint.x < result.origin.x + result.size.width &&
 touchPoint.y < result.origin.y + result.size.height)
 {
 NSLog(@"Tapped sprite");
 return true;
 }
 else {
 NSLog(@"DID NOT tap sprite");
 return false;
 }
}

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 278

Combining Many Actions Together
To deal out new cards, you first have to move all the unlocked cards (while rotating to

get a better visual effect). Then, once the card is off screen, you have to change the card

image to the newly dealt card and send it spinning back on screen. Once the cards

come back, you need to call your function (calculate) to show the value of the hand

(such as two pair or full house).

Listing 8–34. Remove and Deal New Cards

- (void) dealCards
{
 // If second draw, shuffle the deck to get ready for fresh cards.
 if (!firstDraw) {
 [myDeck shuffle];

 // Empty hand value display
 [handLabel setString:@""];
 }

 // Temporarily state that all cards are locked to check later if still true.
 BOOL allLocked = true;

 for (NSUInteger a = 0; a < 5; a++)
 {
 if ([[myHand getCard:a] locked])
 {
 // Card is locked, unlock it for later.
 [[myHand getCard:a] unlock];
 }
 else
 {
 // Something is unlocked, so change all locked state to false.
 allLocked = false;
 [self animateCard:a];
 }
 }

 firstDraw = !firstDraw;

 // All cards are locked, so new cards will not need to be dealt.
 if (allLocked) {
 NSLog(@"ALL LOCKED");
 [self calculateHand];
 } else {
 NSLog(@"NOT ALL LOCKED");
 }
}

In Listing 8–34, you can see the line of code [self animateCard:a]; which calls the

method in Listing 8–35. This method uses Spawn to send a card off screen, change the

card, bring it back on screen and then display the value of the resulting hand. Using

what you have just learned, you should be able to read the code in Listing 8–35 without

any problems. Congratulations!

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 279

Listing 8–35. Animate Card Off Screen and Then Back

- (void)animateCard:(NSUInteger)cardIndex {
 // Card is not locked, swap it out.
 CGSize size = [[CCDirector sharedDirector] winSize];

 // Prepare CCMoveTo action to send card off screen
 id dealAway = [CCMoveTo actionWithDuration:0.75
 position:ccp(size.width / 2, size.height - 25.0)];

 id rotate = [CCRotateBy actionWithDuration:0.75 angle:360.0];

 id dealBack; // Initialize dealBack action

 // Prepare to move card back on screen in unlocked position.
 dealBack = [CCMoveTo actionWithDuration:0.75
 position:[self cardHomePoint:cardIndex
 locked:firstDraw]];

 // Create spawns to send cards away and back on screen.
 id spawnAway = [CCSpawn actions:dealAway, rotate, nil];
 id spawnBack = [CCSpawn actions:dealBack, rotate, nil];

 // Switch sprite to new card from new deal
 id changeCard = [CCCallFuncN actionWithTarget:self
 selector:@selector(changeCard:)];

 // Display hand rank (like one pair or three of a kind)
 id showHandRank = [CCCallFunc actionWithTarget:self
 selector:@selector(calculateHand)];

 // Set up sequence to send cards away, change the card,
 // bring it back and show hand rank.
 id sequence = [CCSequence actions:spawnAway, changeCard,
 spawnBack, showHandRank, nil];

 // Finally, run the above sequence for this card.
 [[cardImages objectAtIndex:cardIndex] runAction:sequence];
}

Switching a Sprite Image
Unfortunately, changing the image of a sprite is not as simple as one would hope. In this

case, you also have to figure out which sprite is referenced by its node which is passed

from the animateCard function. Since you set the tags of your card sprites to values of

100–104, you can subtract 100 from the tag to determine which card needs to be

replaced. Then you replace the card in memory with the next card from the deck.

Finally, you have to change the actual image of the sprite. The image itself is stored in

what is called the texture of the sprite. So, you need to use a new CCTextureCache

object, add the new image to this, and then set that as the texture of your sprite as

shown in Listing 8–36.

Listing 8–36. Swap Card Image

- (void) changeCard:(id)node {

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 280

 // Subtract 100, since we set card sprite tags to 100-104.
 int cardNum = [node tag] - 100;

 // Replace card at index with the next card in the deck.
 [myHand replaceCardIndex:cardNum withCard:[myDeck nextCard]];

 // Swap out images in the card sprite for the new card.
 [[cardImages objectAtIndex:cardNum]
 setTexture:[[CCTextureCache sharedTextureCache]
 addImage:[NSString stringWithFormat:@"%@.png",
 [myHand getCard:cardNum]]]];
}

Adding Sound
To complete the gaming experience, you’ll have to provide background music and

sound in your game. Fortunately, once again cocos2d makes this extraordinarily easy.

First, copy the contents of the Sound folder of the sample project into your project’s

Resources folder. Next, you need the following line of code to import the Cocos2d

simple audio engine into PokerGameScene.m which is still called SimpleAudioEngine.h

although Cocos2d classes generally start with CC:

#import "SimpleAudioEngine.h"

To play the card-slide.wav sound, you simply need the following line of code which you

will put at the very beginning of the toggleCard function in PokerGameScene.m:

[[SimpleAudioEngine sharedEngine] playEffect:@"card-slide.wav"];

If you have headphones plugged in, you may see the following error:

AQMEIOBase::DoStartIO: timeout
2010-03-21 07:59:17.244 Video Poker[662:207] AQMEDevice::StartIO: error -66681
2010-03-21 07:59:17.245 Video Poker[662:207] AUIOClient_StartIO failed (-66681)

This error seems only to occur sometimes in the iPhone Simulator when headphones are

plugged in. Some developers were able to get around this error by hacking with settings

in the Audio MIDI Setup app, but I just tested without headphones or on the iPhone

itself. This appears to be a bug in iPhone Simulator which will hopefully be fixed in a

future release.

As for the game, I may be spoiled, but I’ve always liked game background music ever

since Super Mario Bros. on the original Nintendo. Well, with just a couple short lines of

code, your dreams can come true and you can have background music in your game

too. Here you’ll start playing an mp3 file which I called poker-music.mp3.

[[SimpleAudioEngine sharedEngine] playBackgroundMusic:@"poker-music.mp3"];

Now, I don’t actually recommend stopping the background music while the game is in

play unless you have a very good reason to do so, but I’ll stop it in this app just to

demonstrate how easy it is. Between hands while the hand rank is being displayed, I will

stop the music and when the next hand is dealt, I want to continue it again. Therefore,

change the lines in the if (!firstDraw) block of the dealCards function in

PokerGameScene.m to the following code in Listing 8–37.

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 281

Listing 8–37. Pausing and Resuming Background Music

// If second draw, shuffle the deck to get ready for fresh cards.
if (!firstDraw) {
 [myDeck shuffle];

 // Empty hand value display
 [handLabel setString:@""];

 // Unpause background music
 [[SimpleAudioEngine sharedEngine] resumeBackgroundMusic];
} else {
 // Pause background music
 [[SimpleAudioEngine sharedEngine] pauseBackgroundMusic];
}

While I’ve only shown you the basics, the Cocos2d sound library can be very powerful

including preloading music, adjusting music volume, looping music, and even muting all

sounds. For more information, see the CocosDenshion Cookbook at

http://www.cocos2d-iphone.org/wiki/doku.php/cocosdenshion:cookbook.

Supporting the iPad
Since Cocos2d v0.99rc was released on Feb 1, 2010, it has supported the iPad. In

Apple’s iPad Programming Guide, they show three ways to support the iPad from a

current iPhone app.

� Create a Universal Application that works on both devices.

� Use a single project to build separately for each device.

� Use two projects and build separately for each device.

For the sake of simplicity and ease of use for the reader, I will create a Universal

Application. Since many of you may be new to iPad development, I will also quickly

explain how to port an iPhone app to the iPad. Note that this was written using the

iPhone SDK 3.2 and details may have changed before this book’s publication.

First, make sure that the Video Poker target is selected as the Active Target in the

Overview, Now select the Video Poker Target and choose Project ➤ Upgrade Current Project
for iPad, as shown in Figure 8–10.

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 282

Figure 8–10. Dialog box to upgrade target for iPad

Now let’s run your new iPad app and see what you get in Figure 8–11.

Figure 8–11. Rough menu after automated iPad upgrade

It works, but looks a bit strange with the menu items so small. Let’s increase the menu

font. First, you need to determine if the app is being run on an iPad. Fortunately, Apple

provides code which uses a new variable called UIUserInterfaceIdiomPad. Unfortunately

though, since this is only available in the iPhone 3.2 or later, you will also have to run a

preprocessor directive to check the IPHONE_OS_VERSION_MAX_ALLOWED value

which must be greater than or equal to 30200, as shown in Listing 8–38. This directive

tells the program to ignore this code if its iPhone OS is earlier than v3.2. Remember that

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 283

the name of the OS is called iPhone OS, even if it is running on an iPod Touch or iPad

(see Listing 8–38).

Listing 8–38. Detecting if the User is on an iPad

#if __IPHONE_OS_VERSION_MAX_ALLOWED >= 30200
if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad)
{
 // The device is an iPad running iPhone 3.2 or later.
}
else
{
 // The device is an iPhone or iPod touch.
}
#endif

Now you can add larger menu fonts in Listing 8–39 right before declaring all of your

CCMenuItem objects in MainMenuScene.m which will result in a much better looking

menu, as shown in Figure 8–12.

Listing 8–39. Increase Font Only on the iPad

#if __IPHONE_OS_VERSION_MAX_ALLOWED >= 30200
if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad)
{
 // The device is an iPad running iPhone 3.2 or later.
 [CCMenuItemFont setFontSize:64];
}
#endif

Figure 8–12. A new, improved menu for the iPad

Next, you need to look at what happened to your gameplay which you can see in Figure

8–13.

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 284

Figure 8–13. Rough game after iPad project upgrade

You need a larger Deal button, larger card rank text, and larger cards. First, start by

increasing the size of the deal button. Normally you would use separate larger sprites,

but to simplify things, just scale up the deal button to be a better fit for the iPad, as

shown in Listing 8–40.

Listing 8–40. Increase Size of Deal Button on the iPad

#if __IPHONE_OS_VERSION_MAX_ALLOWED >= 30200
// Increase font size if user is on an iPad
if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad)
{
 // The device is an iPad running iPhone 3.2 or later.
 [dealButton runAction:[CCScaleBy actionWithDuration:0.1f scale:2.0f]];
}
#endif

Next, you increase the font size for the card rank text. You need to substitute your

current code in the init function of PokerGameScene.m to Listing 8–41.

Listing 8–41. Increase Font size of handLabel on the iPad

// create and initialize a Label
#if __IPHONE_OS_VERSION_MAX_ALLOWED >= 30200
 // Increase font size if user is on an iPad
 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad){
 // The device is an iPad running iPhone 3.2 or later.
 handLabel = [CCLabel labelWithString:@"" fontName:@"Marker Felt"�
 fontSize:64];
 } else {
 // The device is an iPhone or iPod touch.
 handLabel = [CCLabel labelWithString:@""
 fontName:@"Marker Felt"
 fontSize:32];

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 285

 }
#else
 // The device is an iPhone or iPod touch earlier than v3.2
 handLabel = [CCLabel labelWithString:@"" fontName:@"Marker Felt" fontSize:32];
#endif

Now comes the hard part: the card images. I like the ratio of the card width to the

iPhone’s screen width, so the card images are 75×101 and the iPhone’s screen is

320×480. The iPad’s resolution is 1024×768. Fortunately, all you care about here are the

widths, so you can put them into the simple equation in Figure 8–14.

Figure 8–14. Simple formula to calculate desired iPad image size

Feeling lazy, I put this equation into Wolfram Alpha and it gave me the solution: x = 160.

Luckily, my source images are much larger than that, so I shove them into the Mac app

ResizeMe, which I bought to do mass resizing of photos and voilà, iPad-appropriate

images. Now I rename all the images using Terminal.

for x in *.png; do mv $x Large-$x; done

Now, modify the cardHomePoint function in PokerGameScene.m to work for the iPad.

Luckily, you only need to change the amount of pixels, so Listing 8–42 is the only code

you have to add right before returning homePoint.

Listing 8–42. Change Card Positions on the iPad

#if __IPHONE_OS_VERSION_MAX_ALLOWED >= 30200
 // Increase font size if user is on an iPad
 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {
 // The device is an iPad running iPhone 3.2 or later.
 homePoint = ccp((cardIndex + 1) * 170.66667f,
 size.height / 2 - 100.f * multiplier);
 }
#endif

Finally, I need to modify the card file name in Card.m. Just add Listing 8–43 to the beginning

of the description function, so it will return Large- at the beginning of the filename.

Listing 8–43. Change Card Image Filename on the iPad

#if __IPHONE_OS_VERSION_MAX_ALLOWED >= 30200
 // Increase font size if user is on an iPad
 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad)
 {
 // The device is an iPad running iPhone 3.2 or later.
 return [NSString stringWithFormat:@"Large-%@%@",
 [self humanRank],
 [self humanSuit]];
 }
#endif

CHAPTER 8: Cocos2d for iPhone and iPad; It Is Easier than You Think 286

Figure 8–15. Finished sample game for iPad

Further Exploring cocos2d
Due to cocos2d’s open vibrant community, there are many open source projects from

which you can learn. If you are more interested in developing physics, Ray Wenderlich

has a set of blog posts introducing the reader to cocos2d

(http://www.raywenderlich.com/352/how-to-make-a-simple-iphone-game-with-
cocos2d-tutorial) and then to Box2d (http://www.raywenderlich.com/457/intro-to-
box2d-with-cocos2d-tutorial-bouncing-balls). Since 0.99 was just released at the time

of this writing, there is not much current sample code online, but it should be easier to

find by the time this book is in your hands.

I’d also highly recommend checking out the forum at http://www.cocos2d-
iphone.org/forum/ if you have any further questions. The community is always very

helpful and I look forward to seeing your next creation. In any case, you now have a

good foundation to start a deeper exploration of the cocos2d framework. Remember,

the most successful cocos2d app, StickWars (a castle defense game) stayed in the App

Store’s paid top ten list for three months. Hopefully your game will stay at least four

months!

287

David Smith
Company: Traveling Classics

Location: Herndon, Virginia

Former Life as a Developer:

� Ruby

� Java

� .NET

Life as an iPhone Developer: I began iPhone development as a hobby in 2008
with an application I wrote while on a family vacation. Over the succeeding two
years that hobby grew into a full-time profession, and I've now built a business
large enough to support six employees. Our breakthrough moment was when
our Audiobooks app was released and, in the absence of a marketing campaign,
soared to become the number-one book app in the store. The App Store
continues to be our focus, and while we dabble in some of the new awesome
technologies that seem to be constantly appearing in the mobile space,
Audiobooks is still our primary application.

Apps on the App Store:

� Audiobooks (Books)

� AudioBookShelf (Books)

� Somewhere around 150 individual audiobook apps for specific
titles (Books)

� PerDiem (Travel)

� PictureBooks (Education)

� ZenDraw (Entertainment)

� TweetThisSong (Entertainment)

 288

What's in This Chapter: A discussion of how to build an audio-focused
application, including design considerations, a case study of our Audiobooks
app, and a detailed guide on how to build your first audio player.

Key Technologies:

� AVAudioPlayer

� UIKit

289

289

 Chapter

Creating an Audio-Centric
App for the iPhone with
AVAudioPlayer
I’ve loved audiobooks for years. When I used to commute hours into work, they kept me

sane. Now that I make audiobooks apps, they keep me fed.

I remember how it felt when I first heard about the iPhone SDK. It was a combination of

opportunity and intimidation. I think there was a collective appreciation that this was

going to be huge, and that for probably the first time since the .COM bubble that

individual developers could write some code and make their fortune. Well, that was the

dream anyway.

To begin, I started creating what I think has become the “Hello World” of the iPhone, a

Tip Calculator. This was never intended to see the light of day. Coming from a

Java/Ruby background, just getting used to the conventions of Objective-C and its

unique syntax took some time. That rite of passage behind me, I then started making my

first app. It was a Per Diem calculator that allowed me to dive into things like database

management and then tackling the App Store submission process. The best advice I

was ever given in regard to doing first submission to the app store was to print out the

directions, pick a quiet time in the day without distractions, and go through line by line,

checking off each step as I read. The process is tricky to get right at first, but this

method saved me from the headaches I hear lots of new developers have.

Audiobooks wasn’t my first foray into iPhone development. However, it has certainly

been my most successful. The idea for it came almost immediately when I first stumbled

across the Librivox project. The Librivox project coordinates volunteers to narrate

classic, public domain literary works, and then releases the recordings freely into the

public domain. They have a catalog of over 3,000 works spanning most genres and

topics. At once, I had the idea to write an app that would wrap this immense collection

and make it accessible on the iPhone. The real wonder of the Librivox project is that it

9

CHAPTER 9: Creating an Audio-Centric App for the iPhone with AVAudioPlayer 290

includes such a variety of works. There are famous novels, children’s books, poetry, and

non-fiction. This makes it an ideal venue to attract a diverse customer base. Plus, since

it is all free content I could wrap it all in a free or $0.99 app.

At its core, Audiobooks is a simple application that lets the user browse/search through

the Librivox collection. They can read book descriptions and choose what books they

want to listen to. Then, the app downloads the book’s mp3 contents and lets the user

listen to the chosen classic.

This chapter will walk you through the design and development process of creating

Audiobooks. I hope that at the end of it, you will have a good understanding of the

challenges and opportunities in creating an audio-focused application. Specifically, this

chapter will cover:

� UI Design for audio-centric apps

� Core APIs and frameworks needed

� Walk-through the development of a simple audio app

� Discuss the high-level aspects of the business of development

Design
At the core of building an application on any platform, but especially the iPhone, is the

layout of the design and the user’s interaction with it. It is essential to have a thoughtful

examination of how the user will experience your applications content and be proactive

about making that a positive experience.

Designing for Your Target User
The design of an audio focused application takes on a slightly different process than

that of a more traditional, visually focused app. The UI of an audio focused application is

more about getting the user set up to start listening. Once they begin listening, they

typically turn off the display and stop interacting with the UI. This means that while most

users’ sessions are over 45 minutes, they will only see the UI for a few minutes.

The second major consideration in designing an application is to define the target

audience. We were seeking to create an application with as broad an appeal as

possible. That means that we can assume no prior experience or skills of our users. For

us, that meant streamlining our application to be as simple as possible. The user is

presented with a simple option to select how they want to browse for their titles. After a

quick description to make sure they want it, then two to three seconds later they are

listening.

CHAPTER 9: Creating an Audio-Centric App for the iPhone with AVAudioPlayer 291

Our Design Process
The iPhone’s small screen means that each screen tends to have a highly focused purpose and

use. When designing our applications we tend toward designing each screen’s content

individually. This helps us keep a focus on the goals that particular screen is trying to accomplish

and ensure we don’t include any extraneous content or functionality.

Home Screen
Most often, the first interaction the user has with the application and the screen is the

Home Screen. Because it is the first place the user lands when launching the app, it

needs to load quickly and provide simple navigation to the other parts of the app. Our

initial attempts at this page rendered it too simple. We just included the Titles, Authors,

and Most Popular links plus a link to the Library. It quickly became clear that this would

be insufficient. Our initial user feedback was that they wanted as many different ways to

navigate through our 3,000 books as possible. So we added the Languages, Narrators,

Genres, and Surprise Me features (see Figure 9–1).

Figure 9–1. Home screen

Surprise Me is a feature that bears some further discussion. This is a simple link that

randomly selects a book for the user to try. It is a simple idea that took only a few

minutes to implement. However, it has routinely been referenced as one of the “most

fun” parts of Audiobooks. It takes the task of browsing and makes it feel like a game. It

almost feels like a slot machine, because you can keep hitting it again and again until

you find a book you like. Generally, whenever you can find a way to make a mundane

CHAPTER 9: Creating an Audio-Centric App for the iPhone with AVAudioPlayer 292

part of your app (in this case, browsing through thousands of books) into something that

is more interactive I find users really enjoy it.

Book Selection Screens
The actual browser screens in Audiobooks follow a very simple UI. They each include a Search

bar at the top to allow the user to quickly filter down lists of potentially thousands of books.

Secondly, a section navigator on the right side is included that lets the user quickly scan through

the contents, organized by name (see Figure 9–2).

Figure 9–2. Book Selection screens

Getting this window to display with acceptable performance was made possible by the

introduction of Core Data in the 3.0 release of the SDK, specifically by using a

NSFetchedResultsController. This class provides a wrapper for accessing your core data store

that performs smart caching and paging of the rows in your database. Using this, the phones can

display a 3,000 row table view and scroll through it without delay.

Book Information Screen
Once the user has selected a book, a screen sharing the details of the book is provided.

This is one of the few places where we decided to embellish the look of the UI.

Generally, our UI is simple and straightforward, focused on getting the user to their

audio. Also, because the user won’t be spending much time looking at it, a more

utilitarian UI makes sense. For this screen, however, the user is actually reading through

a reasonably long bit of text and making a decision about whether to download this

CHAPTER 9: Creating an Audio-Centric App for the iPhone with AVAudioPlayer 293

book or not. Therefore, we decided to keep with the generally bluish tones of the

standard iPhone tab bar, but texturize and embellish the background and buttons. Our

goal for this is similar to the goals of a book’s cover. We want the user to be attracted to

the aesthetics of the imagery so that they are more inclined toward listening to our

books (see Figure 9–3).

Figure 9–3. Book Information screen

Player Screen
The player screen is the most streamlined of the screens. The goal here is to provide the

typical playback controls (play, pause, skip, and rewind) and the core-related functionality.

We experimented here with a variety of designs, ranging from the very intricate to the

downright plain looking. In the end, we settled on a very simple black background with

gray/white buttons. We felt this spartan approach was reminiscent of the iPod app and

would hopefully make it very clear about how to use this screen. We also didn’t want to

have too much going on with this screen since the users were most often going to

immediately lock the device screen once they start listening (see Figure 9–4).

CHAPTER 9: Creating an Audio-Centric App for the iPhone with AVAudioPlayer 294

Figure 9–4. Player screen

Another aspect of this screen that took a lot of discipline to achieve was cutting back on

the number of added embellishments. It can be tempting to go crazy in Photoshop,

adding more and more detail to a screen until it becomes gaudy.

CHAPTER 9: Creating an Audio-Centric App for the iPhone with AVAudioPlayer 295

Implementation
The iPhone SDK provides a variety of ways to play audio. These are all essentially

differing levels of abstraction on top of the Core Audio framework (see Figure 9–5).

Figure 9–5. iPhone OS Audio stack

The Core Audio framework provides total control over audio playback, but does it at the

price of complexity. This framework requires the direct management of the audio data

and playback. The use of Core Audio usually only makes sense if you need that level of

control on the audio session. Generally, I find that using the AVFoundation classes is

much more productive. My initial experiments with using Core Audio directly lead to a lot

of headaches and complications. If simple playback and control is all that is required,

AVFoundation is the way to go.

AVFoundation is a collection of utility classes that hide the details of Core Audio away

from the developer and let them get on with development. For playback, the primary

class to look at is AVAudioPlayer. This provides a clean and straightforward interface for

playing back a variety of formats of sound. The supported file formats (as of SDK version

3.0) are shown in Table 9–1.

CHAPTER 9: Creating an Audio-Centric App for the iPhone with AVAudioPlayer 296

Table 9–1. Supported Audio Formats in SDK Version 3.0

Format Usual Extensions

MPEG-1, Layer 3 .mp3

MPEG-2 or MPEG-4 ADTS .aac

AIFF .aif,.aiff

CAF .caf

WAV .wav

MPEG-4 .m4a, mp4

Example Project
The creation of our Audiobooks application involves a lot of file management and

interactions with web services to allow the user to navigate through the thousands of

audiobooks in our collection. However, the core capability of our application is that it

can play and manage a user’s place in MP3 files. I will now walk through the creation of

a simple application that does just that. It will provide basic playback controls for play,

pause, skip forward, and back. Plus, it will include basic bookmarking to keep the user’s

place and resume where they left off.

Getting Started
To demonstrate how to use AVAudioPlayer in a simple application I will now discuss the

creation of an application that provides for playback of an MP3 file. This will include the

following:

� Player initialization and setup

� Playback controls (Play, Pause, Skip Forward, and Skip Back)

� On screen display of time elapsed and remaining

� Setting up the correct audio session

This tutorial assumes that you have Xcode and iPhone SDK 3.0 or greater installed on

your development machine.

To get things started, let’s launch Xcode and create a new project (File ➤ New Project),

select a “View-based Application,” and then name it AudioExample, as shown in Figure

9–6.

CHAPTER 9: Creating an Audio-Centric App for the iPhone with AVAudioPlayer 297

Figure 9–6. Create a new view-based application

This will have give you a basic template from which to set up your project. Run your

application now (Build ➤ Build and Run) and you will see a basic flashlight app with a

plain gray background (see Figure 9–7).

CHAPTER 9: Creating an Audio-Centric App for the iPhone with AVAudioPlayer 298

.

Figure 9–7. Starting point

Setting Up the UI
The UI will have the following controls:

� Three UIButtons

� Play & Pause

� Skip Forward

� Skip Backward

� Two UILabels

� A time elapsed label

� A time remaining label

First, you will set up the outlets for the UI controls. Open the file

AudioExampleViewController.h found in the Classes group, as shown in Figure 9–8.

CHAPTER 9: Creating an Audio-Centric App for the iPhone with AVAudioPlayer 299

Figure 9–8. Basic application classes

Add to this file the IBOutlet declarations for the UI elements. You don’t need outlets to

the back and forward buttons since they are not changed during execution.

These declarations will look like the following code:

 IBOutlet UIButton* playPauseButton;
 IBOutlet UILabel* timeRemaining;
 IBOutlet UILabel* timeElapsed;

and should be added inside of the @interface block.

Next, add the IBAction methods for the buttons to call when clicked. You need one of

these for each of the buttons.

-(IBAction)playPauseButtonClicked;
-(IBAction)forwardButtonClicked;
-(IBAction)backButtonClicked;

Now let’s add some UI elements to control and display the playback of our file. Locate and

open the AudioExampleViewController.xib file in the Resources group (see Figure 9–9).

Figure 9–9. UI resource classes

This will bring up the Interface Builder, where you can connect the outlets to actual UI

controls. Drag from the Library panel the three Round Rect Buttons and give them titles

corresponding to the three functions the app has (see Figure 9–10).

Figure 9–10. Playback controls

CHAPTER 9: Creating an Audio-Centric App for the iPhone with AVAudioPlayer 300

Next, add two UILabels to display time elapsed and remaining. This should result in a UI

that looks like Figure 9–11.

Figure 9–11. Full UI

Now connect these controls to their corresponding outlets in the view controller. This is

done by control-clicking on the File’s Owner element in the main Interface Builder

window and then dragging from the corresponding outlet to the desired control. This

process is repeated until all of the controls in the view controller have been matched up

with their physical control (see Figure 9–12).

CHAPTER 9: Creating an Audio-Centric App for the iPhone with AVAudioPlayer 301

Figure 9–12. Connection IBOutlets

Next, connect the IBActions to their controls, Touch Up Inside method, as shown in

Figures 9–13 and 9–14.

Figure 9–13. Connecting IBActions (Step 1)

CHAPTER 9: Creating an Audio-Centric App for the iPhone with AVAudioPlayer 302

Figure 9–14. Connecting IBActions (Step 2)

Coding the Audio Player
You can now begin to implement the various methods needed to set up playback. First,

you need to quickly add an example mp3 file to use during playback. This can be any

supported file you need. For this example, I have a file named example.mp3 that will be

added to the project. To add a file to the project control-click on the Resources group

and select Add ➤ Existing Files… then browse to your file and select it.

Next, you need to add the AVFoundation framework to your project. This is done by

control-clicking the current target and then selecting Get Info (see Figure 9–15).

CHAPTER 9: Creating an Audio-Centric App for the iPhone with AVAudioPlayer 303

Figure 9–15. Setting the options for the target

Then, add the AVFoundation Framework in the Linked Libraries area (see Figure 9–16).

Figure 9–16. Adding AVFoundation to the Linked Libraries list

The AVFoundation classes provide wrapper classes for simple audio playback and

recording. The main class you will be concerned with is AVAudioPlayer. This provides a

mechanism to playback any supported media file and then control and monitor its state.

You then import the AVFoundation classes in AudioExampleViewController.h.

#import <AVFoundation/AVFoundation.h>

In order to control the playback, once you have begun playing you will need to retain a

reference to the player. Add an AVAudioPlayer variable to the view controller for this

purpose.

CHAPTER 9: Creating an Audio-Centric App for the iPhone with AVAudioPlayer 304

 AVAudioPlayer* player;

Connecting the Play/Pause Button
First, let’s fill in the body of the playPauseButtonClicked method. This method will be

called whenever the play/pause button is pressed. To start this, set up an

AVAudioPlayer and begin it playing. The body of this method will look like the following

code:

-(IBAction)playPauseButtonClicked {
 NSBundle* bundle =[NSBundle mainBundle];
 NSString* path = [bundle pathForResource:@"example" ofType:@"mp3"];
 NSURL *url = [NSURL fileURLWithPath:path];

 player = [[AVAudioPlayer alloc] initWithContentsOfURL:url error:nil];
 [player play];
}

NOTE: Replace the string @”example” and @”mp3” with the filename and extension of the
media you are going to play.

If you run the app now and hit the play button, your sound file should begin playing. You

may have noticed, however, that your playPauseButton still says “Play”. To fix this, you

need to update the label of the button based on the player state. Add this to the end of

the playPauseButtonClicked method.

if([player isPlaying]) {
 [playPauseButton setTitle:@"Pause" forState:UIControlStateNormal];
} else {
 [playPauseButton setTitle:@"Play" forState:UIControlStateNormal];
}

Now the label updates correctly, but when you click the pause button it just keeps

playing. To pause playback, you need to check to see if the player has been initialized

and if it has then to select pause. Otherwise, select initialize and play. Replace the

original initialization with this one.

-(IBAction)playPauseButtonClicked {
 if(player == nil) {
 NSBundle* bundle =[NSBundle mainBundle];
 NSString* path = [bundle pathForResource:@"example" ofType:@"mp3"];
 NSURL *url = [NSURL fileURLWithPath:path];
 player = [[AVAudioPlayer alloc] initWithContentsOfURL:url error:nil];
 }
 if([player isPlaying]) {
 [playPauseButton setTitle:@"Play" forState:UIControlStateNormal];
 [player pause];
 } else {
 [playPauseButton setTitle:@"Pause" forState:UIControlStateNormal];

CHAPTER 9: Creating an Audio-Centric App for the iPhone with AVAudioPlayer 305

 [player play];
 }
}

Run the application now to see that it is functioning correctly. You can start and stop

playback as you like by clicking the playPauseButton.

Connecting the Skip Controls
Next, let’s set up the skip forward and backwards methods. This is done by filling out

the backButtonclicked and forwardButtonClicked methods.

-(IBAction)forwardButtonClicked {
 if(player != nil && [player isPlaying]) {
 player.currentTime += 30;
 }
}
-(IBAction)backButtonClicked {
 if(player != nil && [player isPlaying]) {
 player.currentTime -= 30;
 }
}

These check to see if the player is set up and playing before adjusting the currentTime

attribute. This is measured in seconds.

Providing Player State in the UI
Now it’s time to make those time elapsed remaining labels update as the file is played.

The AVAudioPlayer provides no mechanism for getting updates on playback position so

instead you set up a timer to update the display once per second. Add this call to the

initialization section of your playPauseClicked method directly after the initialization of

the player.

[NSTimer scheduledTimerWithTimeInterval:1.0 target:self selector:@selector(onTimer)
 userInfo:nil repeats:YES];

Then, add the onTimer method to actually update your display.

-(void)onTimer {

 if(player != nil && [player isPlaying]) {

 float remainingTime = player.duration - player.currentTime;
 timeElapsed.text = [NSString stringWithFormat:@"%0.1f",player.currentTime];
 timeRemaining.text = [NSString stringWithFormat:@"-%0.1f",remainingTime];

 } else {
 timeElapsed.text = @"";
 timeRemaining.text = @"";
 }

}

CHAPTER 9: Creating an Audio-Centric App for the iPhone with AVAudioPlayer 306

Understanding Audio Sessions
The iPhone SDK uses audio sessions to determine how the device should be respond to

various audio impacting events. These are described in Table 9–2.

Table 9–2. AudioSession Types

Session Type Allow Other

Audio

Input/Output Respect Silent

Switch

kAudioSessionCategory_AmbientSound Yes Output only Yes

kAudioSessionCategory_SoloAmbientSound No Output only Yes

kAudioSessionCategory_MediaPlayback No Output Only No

kAudioSessionCategory_RecordAudio No Input Only No

kAudioSessionCategory_PlayAndRecord No Input and Output No

For the purposes of this example application, you would choose the

kAudioSessionCategory_MediaPlayback category, because you want playback to not

mix with the iPod application and for playback to continue whether or not the silent

switch is set.

Add the Audio Toolbox framework to your current target then add the following after

your player initialization code in playPauseButtonClicked. The first step creates a

variable with the correct session value. Then you initialize an AudioSession with all

default settings. Next, you set the session to your desired mode. Finally, you activate the

session.

UInt32 category = kAudioSessionCategory_MediaPlayback;
AudioSessionInitialize(NULL,NULL,NULL,NULL);
AudioSessionSetProperty (kAudioSessionProperty_AudioCategory, sizeof (category),
 &category);
AudioSessionSetActive (true);

Now, you have a fully working audio application. The finished result should look like

Figure 9–17.

CHAPTER 9: Creating an Audio-Centric App for the iPhone with AVAudioPlayer 307

Figure 9–17. Final App

Summary
Our Audiobooks application has been a massive success. It has stood as the number

one Book app and has hundreds of thousands of downloads. It was initially created in

around five days of full-time effort and has now become successful to such a degree

that it supports a small company of three. This is truly a remarkable aspect in the App

Store. There is a lot of talk about how iPhone apps are a gold rush, so there is a lot of

exuberance. While this is no doubt correct, there are a lot of very disappointed

developers out there, many of who came to the platform expecting quick riches and

automatic success.

For me, the App Store has shown that when individual developers can be made

accessible to customers, customers get exactly what they want. I think the real

uniqueness of the App Store is that it has created the first software ecosystem where

customers feel comfortable working with small indie developers (because they have

Apple acting as curator), and so the brilliant ideas of developers can be immediately

tried. Coming into that kind of market requires that developers be creative (it is hard to

succeed if you are just copying other successes). For developers to be agile, you have

to be first to market and then iterate to stay ahead. Finally, be realistic and don’t put all

your eggs in one basket. Audiobooks was my eighth app. Keep trying! Eventually if you

have the right skills and good ideas, the marketplace will reward you.

309

Joost van de
Wijgerd
and
Arne de Vries
Company: eBuddy

Location: Amsterdam, the Netherlands

Former Life as a Developer: Joost has been designing and developing Java
applications since 1996. His areas of expertise are server side development, high
performance java, and scalable architectures. Joost is an Open Source advocate
and has been active in and working with Open Source Java projects since 2000.
Most notably, is his work on the Spring Framework of which he was one of the
early adopters as well as one of the founders of SpringSource, the commercial
company built around the product. At eBuddy, Joost is responsible for the overall
architecture of the eBuddy server platform.

Arne finished his Master’s degree on Telematics at Twente University in
Enschede, the Netherlands in 2008. He started with iPhone development in 2007
as part of his Master’s thesis project, and at the same time worked as lead
iPhone developer at Mobilaria, Enschede, creating the basis for their streaming
radio applications that are now available in the AppStore. Arne has been working
at eBuddy since 2009 as lead iPhone developer, taking over the development of
the eBuddy iPhone applications.

Life as an iPhone Developer: Arne created the basis for multiple streaming-radio
iPhone applications, using an adaptive bit-rate switching technique developed
during his Master's-thesis project.

 310

Apps on the App Store:

� eBuddy Messenger (Social Networks)

� eBuddy Pro Messenger (Social Networks)

What's in This Chapter: This chapter describes the implementation of Push
Notifications in the eBuddy iPhone application. It discusses both server side and
client side aspects of the Apple Push Notifications framework.

Key Technologies:

� Apple Push Notifications

� Java 6

� Apache Mina

311

311

 Chapter

Implementing Push
Notifications at eBuddy
In this chapter we would like to share our experiences with implementing push

notification for the eBuddy iPhone application. While being relatively late to market with

our iPhone application, we were the first free Instant Messaging application to have

push notifications. To get there, we had to overcome a number of hurdles yet we have

learned a lot in the process. Since supporting push notification requires an application to

have a server side component, we would like to tell our story from the client

development and server development perspectives. We were both part of the core

development team that created the eBuddy iPhone application and we also currently

continue to work on extending and improving its functionality.

Introduction to eBuddy
eBuddy was founded in 2003 as e-Messenger and created the world's first,

independent, web browser-based Instant Messaging service for MSN. The company

was rebranded in 2006 from e-Messenger to eBuddy and now enables millions of users

worldwide to chat free of charge in one aggregated interface on multiple networks

besides MSN, such as AIM, Google Talk, Yahoo!, Facebook, MySpace, Hyves and ICQ,

without having to download or install any application on their computer. The eBuddy

web application is mostly used in public places where users are not allowed to install

applications, or where firewalls block connections to popular chat networks, like

companies and schools.

eBuddy also offers a web application optimized for mobile phones (eBuddy Lite), and

chat clients for mobile phones supporting mobile Java (J2ME), Android phones, and the

iPhone. We have been the most downloaded Java application on getjar.com since

January 2008, and send more than ten billion chat messages all over the world each

month. Our free iPhone application has been downloaded more than three million times

and our paid iPhone application with special features like push notification for a longer

time is seeing good uptake.

10

CHAPTER 10: Implementing Push Notifications at eBuddy 312

The company eBuddy is located in the heart of Amsterdam, and at the time of writing

employs over 60 people from which around 20 people are full-time developers.

The eBuddy Messenger
The eBuddy Messenger is a Multi Network Instant Messaging Client meaning you can

add multiple accounts to your eBuddy ID account. The account details are remembered,

so the next time you log in to eBuddy you will be automatically logged in to your IM

Network accounts. The different applications will show you an aggregated list of all your

buddies and their status (online, away, offline, etc). The server part of the eBuddy

service is written in Java. When you log in to one of our clients, the client connects to

one of these servers and the server then creates the actual connections with the IM

networks. Most of our clients offer, besides chatting of course, managing your buddies

(adding, blocking, and deleting them), starting group chats, managing your different IM

accounts, and setting your displayname, personal message, and status. Some of the

clients also support setting your display pictures, sending pictures, and video chatting.

The eBuddy iPhone Application
There are two eBuddy iPhone applications: the free version called eBuddy Messenger

and a paid version called eBuddy Pro Messenger. eBuddy Messenger has all of the

basic chat features: sending messages, smileys, and buzzers; managing buddies and IM

accounts; setting your personal information like displayname, personal message, and

status; starting and chatting in group chats; viewing pictures and web sites inside the

application, etc. The eBuddy Pro Messenger can also send pictures to your buddies, set

your display picture, and offers a longer Push timeout than the free version.

Due to the nature of the iPhone environment, the application on the device will

shutdown and be removed from memory when the user goes to the Springboard or

when there is a period of inactivity; no applications other than Apple’s own applications

can exist in the background. At these moments, the application will lose the connection

with our server. In order to solve this lack of applications running in the background,

Apple chose to offer the Push Notification Service, so users can still receive messages

for applications that are not running. When a disconnect from a client application is

detected, all incoming messages and some events (such as network disconnects) are

sent to the iPhone using these push messages.

We created a specialized server component called the Push Server to support the Push

functionality for the iPhone. The iPhone application connects to the Push Server directly,

and the Push Server connects to one of the normal servers. After it is detected that the

iPhone application was shut down or got disconnected in some other way, the session

on the Push Server stays alive for a specific amount of time that can be set by the user

from within the application. We keep the state of the session in memory because of

performance reasons, but it would also be possible to keep the state in a database.

Figure 10–1 shows how this works.

CHAPTER 10: Implementing Push Notifications at eBuddy 313

Figure 10–1. eBuddy connection diagram while the application is running

Figure 10–2 shows how the messages arrive on the iPhone as Push Notifications when

the eBuddy application is not running and there is no connection between the iPhone

and the eBuddy Push Server available.

Figure 10–2. eBuddy connection diagram while the application is closed

Apple Push Notification Service
Through Push Notifications Apple provides application developers with a tool to

communicate with their users even when the application is not active on the device. This

is a very powerful feature since it enables long-running sessions while saving battery life.

An obvious drawback for application developers is that you need a server-side

component to facilitate the communication between your application and the iPhone.

Apple acts as a middleman to deliver messages to the device.

CHAPTER 10: Implementing Push Notifications at eBuddy 314

The Communication Flow
The iPhone Dev Center web site gives an excellent explanation

1

 about the Apple Push

Notification Service (APNS) which we will quickly reiterate here.

1. First, the application must register itself with APNS.

2. APNS will return a token that can be used to send notifications to the

device.

3. The application must communicate this token to the server side

component.

4. The server side component must create a TLS (secure) connection to

APNS using the Provider certificate.

5. During the lifetime of the session, the server side component must send

messages to APNS in a binary format.

6. The user will be presented with a Push Notification on the iPhone and

gets the opportunity to start the application; if the application is running

a callback method will be called.

Another important aspect to consider is feedback. Since the server keeps a client

session online while the application on the iPhone is off, it could happen that a user

either disables push, or deinstalls the application altogether. Apple uses the feedback

service to provide the application with feedback on messages that couldn’t be delivered

to the device for one of the reasons previously stated. The server will then terminate the

session.

The Client Implementation
To register for push notifications, the application has to start by requesting a device

token from the device, which you can do by calling a method on the UIApplication. This

is best done when the application is starting up in the applicationDidFinshLaunching

method of your UIApplicationDelegate. In this method, you can specify for which types

of notifications you want to register.

� Alert: The user gets a pop-up when the notification is received, with

either one or two buttons. When one button is shown, clicking it will

dismiss the alert. When two buttons are shown, the first dismisses the

alert while the second button opens the application.

� Badge: The push notifications change the badge number on the

applications icon on the Springboard.

1

 Apple Push Notification Service Programming Guide

CHAPTER 10: Implementing Push Notifications at eBuddy 315

� Sound: A sound is played and/or the phone vibrates when the push

notification is received.

To register for all three types, format your call like this:

- (void)applicationDidFinishLaunching:(UIApplication *)application {
 [[UIApplication sharedApplication]
 registerForRemoteNotificationTypes:UIRemoteNotificationTypeAlert|
 UIRemoteNotificationTypeBadge|UIRemoteNotificationTypeSound];

 // other initialization code…
}

BACKWARDS COMPATIBILITY

Use the following line of code to check whether the operating system supports push notifications:

[[UIApplication sharedApplication] respondsToSelector:

@selector(registerForRemoteNotificationTypes:)]

This way it is possible to register for push notifications on operating systems that contain this
functionality, and still support older operating systems (OS 2.x) that don’t support push
notifications.

You have to call this method on the UIApplication every time the application starts;

calling this method when running the application for the first time will pop-up an alert to

the user giving a choice whether to allow or deny push notifications to be sent. If the

user gives the green light for push notifications, the phone will call a callback function

that has to be implemented by your UIApplicationDelegate:

- (void)application:(UIApplication *)application
didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)deviceToken;

In this callback, the deviceToken variable is passed, which contains the token that the

server has to include when sending push notifications to that specific phone. Inside the

body of this method, you may want to include your logic for communicating the device

token to the server. This can be done however you prefer; you probably already have a

client-server communication protocol in place. To convert the deviceToken object to a

string you can simply use [deviceToken description]. If something went wrong

registering for remote notifications, the phone will call the following method on your

UIApplicationDelegate:

- (void)application:(UIApplication *)application
didFailToRegisterForRemoteNotificationsWithError:(NSError *)error;

The error variable contains the reason why the phone couldn’t register for remote

notifications. In the body of this method, you may want to notify the user that something

went wrong, for instance by showing an alert.

Although we try to prevent it, it can be possible that the phone receives a push

notification for the application, while the application is running. This can happen, for

CHAPTER 10: Implementing Push Notifications at eBuddy 316

example, when the connection with the server is lost and the server thinks that the

application is closed, or when a push message sent when the application was actually

closed got delayed somewhere on its way from the eBuddy servers, via the Apple Push

Notification servers, to the phone. To prevent this notification from being shown to the

user (which could be confusing for the user when the application is already running), you

can implement the following method in your UIApplicationDelegate:

- (void)application:(UIApplication *)application
didReceiveRemoteNotification:(NSDictionary *)userInfo;

The userInfo variable contains the information in the push notification (alert text, sound,

badge number, etc). Based on what you put in your push notifications server side, you

can put some logic inside the body of this method if you want. If you do not implement

this method, the phone will not show the push notification to the user.

It is also possible to launch the application directly from a push notification by touching

the View button. In this case, the method that’s called in your UIApplication delegate is

not the normal - (void)applicationDidFinishLaunching:(UIApplication
*)application, but a different method is called that also provides the information in the

push notification:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 NSDictionary *remoteNotificationDictionary = [launchOptions

objectForKey:@"UIApplicationLaunchOptionsRemoteNotificationKey"];
 NSArray *infoArray = [remoteNotificationDictionary objectForKey:@"info"];

 // code to handle the push message information

 return TRUE;
}

You can get the dictionary containing the push message information by getting the

object for the UIApplicationLaunchOptionsRemoteNotificationKey key from the passed

dictionary. This dictionary is exactly the same as the JSON dictionary you created server

side and sent to Apple. You use the info field to pass in a custom array that contains

information about what to do with this message; for example, immediately open the chat

with the buddy that sent the message, and show a chat bubble with a spinner in it to

indicate that new messages for this buddy are being retrieved (see Figure 10–3). Note

that this method is the same as the method to support custom URL schemes (for

example ebuddy://), so if you implemented support for that you will have to make a

distinction somewhere in this method.

Figure 10–3. Opening the chat from a push message showing a spinner

CHAPTER 10: Implementing Push Notifications at eBuddy 317

The eBuddy Push Implementation
When we decided to implement the iPhone application, we already had a number of

other clients, on web as well as mobile, and a stable server environment. Most of the

functionality was already thought out and developed for the other applications so it

would just be a matter of copying and building them into the iPhone app.

The iPhone deployment environment has however some unique properties that we

needed to address. Since only one application can be active at one time we suddenly

had to deal with a lot of disconnected clients. It used to be an exceptional case when a

client suddenly disconnected during a session but now with the iPhone it would become

a rule rather than an exception.

Another feature of the iPhone was the Push functionality. In order to support this, we

needed to support a new type of endpoint to relay our messages. Suddenly it also

became important to actually know if a client was online or not. Another side effect of

Push and the ability for a client application to be offline would be that the session

duration was expected to grow exponentially, 24 hours online would become the norm.

These requirements made us decide to define a new component in the backend

architecture: the Push Server. The Push Server will extend the normal protocol with

Push related functionality. This component would also be responsible to implement the

contract between the iPhone and the backend. The contract consists of two integration

points:

� Definition of the protocol between iPhone and server.

� Definition of the payload to be send to APNS.

Client / Server Protocol
The iPhone communicates to the eBuddy Backend via a JSON API. We have extended

the API to add the push settings. The API message structure is defined as follows:

{
 "action" : "push_settings",
 "seq" : 12,
 "parameters" : {
 "push_destination" : "<DEVICE_TOKEN_HEX>",
 "push_type" : "iphone",
 "push_timeout" : "60"
 }
}

The action and seq dictionary entries are part of the eBuddy protocol, but the

parameters dictionary is push-specific.

� push_destination: This parameter contains the device token as a

hexadecimal string (64 characters long). This device token was

obtained from APNS via the SDK method described earlier.

CHAPTER 10: Implementing Push Notifications at eBuddy 318

� push_type: Since you need support for multiple applications (for

instance eBuddy Pro Messenger is a separate application in the app

store) the client needs to tell the server which application channel it

needs to use to send Push Notifications.

� push_timeout: The application gives users the opportunity to select

how long they want to receive push notifications after they were last

seen online, as shown in Figure 10–4.

Figure 10–4. Setting the push timeout in the free eBuddy application

Server to APNS
Our server code is all developed in Java. We use the excellent Apache MINA framework

as a basis for all our networking code. Within the MINA framework, we created the

following classes (see Figure 10–5).

Figure 10–5. Server class structure

CHAPTER 10: Implementing Push Notifications at eBuddy 319

� APNSConnection

� APNSNotificationEncoder

� APNSFeedbackDecoder

� SSLContext

� FeedbackReceiver

� NotificationSender

� FeedbackNotification

� Notification

The server component communicates with the APNS via a binary protocol. This protocol

consists of a header containing the device token and a payload of 256 bytes at

maximum. The payload is a JSON dictionary object that contains a mandatory dictionary

named aps. We set the following values for the keys, as shown in Table 10–1.

Table 10–1. Values for the Standard aps Dictionary

Key Value type Comment

alert String or

dictionary

 Uses the alert key as a dictionary where we provide the body field

as follows: ${from} + ": " + ${msg}.

badge number Provides the number of waiting messages.

sound String Always sends "message.aif" or buzz.aif.

For the sound, you can specify a sound file inside your application bundle, or specify

"default" to play the default iPhone alert sound. Besides the aps dictionary, it is

possible to pass some custom data, as shown in Table 10–2.

Table 10–2. Values for the Custom Dictionary

Key Value type Comment

Info String, array or

dictionary

We provide an array with the necessary information to open the

correct chat directly when the application is started from the push

notification.

When the phone is in sleep, it will display the push message in the unlock screen,

making the slider the action button to open the application and view the message, as

shown in Figure 10–6. To not open the application, simply lock the phone again; the next

time you unlock it, the slider will function as unlock again.

CHAPTER 10: Implementing Push Notifications at eBuddy 320

Figure 10–6. Push message in sleep mode

When the user has the Springboard or another application open, the push message is

shown over it and requiring the users action immediately. When the user touches the

View button, the application for which the push message was received is opened. On

the springboard, the badge icon is immediately updated on the application’s icon, as

shown in Figure 10–7.

Figure 10–7. Push message on the springboard

CHAPTER 10: Implementing Push Notifications at eBuddy 321

It is also possible to localize the push messages you send to the users. This can be

done in two ways: either by passing the phones localization setting to the server, or by

sending a language string which is specified in the Localizable.strings files in the

applications bundle. To let the server know what the current locale is, you would have to

pass the value obtained from [[NSLocale preferredLanguages] objectAtIndex:0] in a

message from the client to the server. Using this value, the server can send a localized

version of the message in the push notification. You can let your application listen to the

notification named NSCurrentLocaleDidChangeNotification to detect the user changing

the current locale, after which you can send the new setting to the server again. If the

server doesn’t have a translation for the current language, it should send the message in

one of the mainstream languages like English or Spanish.

The other way to support localization is by using a language key in the

Localizable.strings files in your applications bundle. This way you can localize both

the alert message and provide a customized, localized value for the action button, which

is the button that will open your app when the user taps it. You will have to pass a

dictionary as the value for the alert field in your aps dictionary, configured as shown in

Table 10–3.

Table 10–3. Values for the Custom Dictionary

Key Value type Comment

body string The text of your alert message, or not present when using

loc-key.

action-loc-key string or null The (localized) value for the action button. If null, then only

one button is displayed saying “Dismiss”.

loc-key string Key to a localized string in Localizable.strings in the

application bundle. Use %@ or %n$@ for passing arguments.

loc-args array of strings An array of the arguments to use in the localized string

specified in loc-key.

To give you an example, we send a message saying "Your %@ account %@ got
disconnected from eBuddy" when one of your accounts gets disconnected while you

are in push mode. The first argument is the network (e.g., Facebook or MSN), the

second argument shows the username used for that specific account. Configure the aps

dictionary as follows to send this message:

{
 "aps" : {
 "alert" : {
 "action-loc-key" : "",
 "loc-key" : "AccountDisconnectedKey",
 "loc-args" : ["MSN", user@example.org]
 },
 "sound" : "default"
 }
}

CHAPTER 10: Implementing Push Notifications at eBuddy 322

This push message will show the user the message “Your MSN account

user@example.org got disconnected from eBuddy” and play the default alert sound. It

will show only one button displaying a localized version of “Dismiss” that dismisses the

alert, because we specified an empty string for the action-loc-key in the dictionary.

Next, we send a somewhat similar push message when we completely log the user out

of eBuddy (see Figure 10–8). For example, the following displays: “You were

automatically logged out of eBuddy”, along with a Dismiss button. The aps dictionary is

configured as follows:

{
 "aps" : {
 "alert" : {
 "action-loc-key" : "",
 "loc-key" : "AllAccountsDisconnectedKey",
 },
 "sound" : "default"
 }
}

Figure 10–8. Localized push message in sleep

Because there is no action key provided in the dictionary, this push message will not

display the “slide to view” slide, but sliding it will just unlock the phone.

Fitting the Parts Together
Because the push server and the iPhone application were developed at the same time,

the iPhone application had to communicate with the normal backend servers at first,

and at a certain moment in time be switched to the push server. Since the push server

CHAPTER 10: Implementing Push Notifications at eBuddy 323

was a completely newly developed server system, this of course caused some issues

when the switch was made.

One of the most important problems we needed to solve was to detect whether the

iPhone is connected or not. This may sound simple but mobile phones have notoriously

bad network connections and it is not always easy to determine whether the user has

closed the app or is simply walking through a tunnel. In the end, we opted for a model

where the client regularly pings or polls the server to let it know that it is still there. If no

ping or poll occurs for a period of say 20 seconds, we consider the session offline and it

will start to send push notifications.

Changes along the Way
Of course, when you have an application in the App Store, as a developer you

constantly want to update, improve, and extend functionality of this application. At

eBuddy, we have a team of developers working on improving the client constantly, and

this process also sometimes influences the working of the push notifications. In the

following, you find some examples of what we encountered when developing new stuff

for the eBuddy iPhone application.

Introducing eBuddy Pro
In the beginning, we only had the free eBuddy Messenger application to worry about.

This meant one configuration on our servers that kept one connection to the Apple Push

Notification servers over which all the push messages were sent. Then our product

managers thought it was a good idea to start making some money on this application,

and introduced another application called eBuddy Pro Messenger. eBuddy Pro

Messenger would contain more fancy features like sending pictures, setting your display

picture, and all sorts of other customization. Besides these fancy features, one of the

most requested features was, as our users called it: longer push. At that moment, we

offered a period of one hour for the users of our free application that they would stay

online after closing the application. Keeping a user online after it closes the application

increases the load on our servers, because they still had to keep the connections to the

IM networks open. For eBuddy Pro Messenger the so called push timeout would be

raised to three days. This basically meant that if a user logs in once every 72 hours,

eBuddy Messenger will keep its session on the IM networks online forever!

Next to that, with introducing more applications we had to overcome another hurdle as

well. When there was only one application, we would only have certificates for one

application for the connection with the Apple servers as well. But with more than one

application, the application needed to identify itself whether it was eBuddy Messenger

or eBuddy Pro Messenger: the server needs to use the certificates created for this

specific application.

Each application needs to make its own secure connection to the Apple servers. You

can create more than one connection to the APNS but it’s a best practice to create one

connection per server and push your notifications over that connection. Each application

CHAPTER 10: Implementing Push Notifications at eBuddy 324

has one certificate for the development environment and one for the production

environment. We used the application ID in the Info.plist file to identify the developer

account: [[NSBundle mainBundle]
objectForInfoDictionaryKey:@"CFBundleIdentifier"]. Each application has its own

application ID, usually formatted as com.yourcompany.uniquename. You set this up in the

iPhone Developer Program Portal. The server then has to send the push messages for

this client session via the proper connection to the Apple servers to make them arrive at

the device.

MULTIPLE APPLICATIONS

When designing your server components for Push Notifications, keep in mind that you might be adding
other applications in the future, and that you need to maintain multiple connections to Apple’s servers.
Changing this afterwards is a lot more work than implementing it right from the start!

Extending the Beta Program
As most developers know, Apple has a restriction of one hundred devices you can use

for development and beta testing. The reasoning behind this is that you cannot add

unlimited devices to your beta program and in that way start distributing your

application through other ways as the Apple App Store. In order to prevent developers

to simply add a device, create a build for it and then delete the device from the list

again, they let each device you add count for a complete year, regardless of whether

you delete it or not.

DELETING DEVICES

 As a developer, you get a chance to delete devices from the list once a year. When this time has
come (you get a notice in your iPhone Developer Program Portal; see Figure 10–9), be sure not to
add any devices before you cleaned up the list; it will take away your possibility to remove any
devices from the list.

Figure 10–9. Apple Development Devices Announcement

CHAPTER 10: Implementing Push Notifications at eBuddy 325

At eBuddy, we have a pretty big user base and want to be able to thoroughly test our

applications before we release it. For this, we started a beta program which of course

contains all the company employees that own an iPhone or iPod Touch, and besides

that a number of selected users that were willing to test the new releases of the eBuddy

iPhone application before we would submit it to the AppStore. Unfortunately, some of

the users that we selected lost interest in testing our beta applications shortly after they

were added to the beta program, or only signed up to take a sneak peek at our new

features and left it at that. Meanwhile, they were still taking up a slot of our valuable one

hundred devices.

To workaround this limitation, we simply paid the $99 fee and created another developer

account. Of course, this solution didn’t come without problems: different developer

accounts mean different certificates, provisioning profiles and private keys, as well as

two different groups of beta testers that need different builds to install. We use

automated build scripts that monitor our revision control system, and automatically

create builds for code we submit. Both developer accounts are registered to eBuddy,

and Apple automatically names your distribution certificate after your company. XCode

will not build your project in Distribution mode if there are two distribution certificates in

the keychain with the same name. This meant creating different keychains that only

contain the private keys and certificates for the appropriate developer account, and

importing them into the keychain before building and then deleting them after building.

Another problem was that by introducing a new developer account, we also got extra

certificates to let our servers connect to the Apple Push Notification servers, like we had

with introducing the eBuddy Pro application. More configurations had to be introduced

server side, and the client had to be able to identify to which account it belongs and

communicate this to the server.

On the server side, this meant adding another set of APNS endpoints, but after we

changed our architecture once to accommodate the eBuddy Pro Messenger version it

was just a matter of configuring two more endpoints.

Summary
In this chapter, we showed you how to start implementing support for Push Notifications

in your iPhone application, how to set up your server side component, and how to

configure the messages you want to send to the iPhone. We hope we helped you on

your way in creating a Push Notification service for your own application. To conclude,

we would like to give you some nice numbers: in total, we process around 13 billion

messages a month through eBuddy, of which around one eighth are sent or received

using the eBuddy iPhone application. A lot of these messages are sent as Push

Notifications, and so far our users are very happy with this service!

327

327

Index

■Special Characters
and Numerics

+isMultithreaded method, 19

2s.png file, 263

32-bit RGBA format, 84

3D model exporting, 65–69

3D objects, as GUI items, 243–246

3ds Max, 59, 61, 65–66, 68

4-channel (RGBA) image, 148

8 bits per channel, 148

16-bit integer type, 62

■A
acceleration, 218

accelerometer data, 214

action dictionary entry, 317

action-loc-key, 321

actionWithDuration parameter, 271

active record fetchers for Core Data tool, 129

Active Record Fetching for Core Data library,

131

Active Record Fetching helper library, 130

Active Target XCode toolkit, 255, 281

Add Existing Framework option, 48, 128

Add New Layer option, 241

addChild function, 270

addDependency: method, 26

addOp: message, 35

addOp: method, 28

addOperation: method, 25

Advanced RISC Machine (ARM), 5, 142–144,

157

afterRender method, 187

AI (Artificial Intelligence), 158

Alert notification option, 314

Align With View menu option, 211

ambient light setting, 213

ambient light settings, 213, 216

Android phones, 311

animateCard function, 279

animated warrior model, 219

animation import settings, 233–237

animations, 232

Apache MINA framework, 318

APChar class, 175–176

APFontMap class, 173

APFontmap.m file, 185

APGlyph class, 174, 179

API (Application Programming Interface), 6, 93–

94, 193, 252, 317

API key, 10–13, 15

APNS (Apple Push Notification Service), 318–

322

APNSConnection class, 319

APNSFeedbackDecoder class, 319

APNSNotificationEncoder class, 319

Apple Development Devices Announcement,

324

Apple documentation, 17

Apple Image Picker, 147

Apple iPad Programming Guide, 281

Apple OpenGL guide, 72

Apple Push Notification servers, 316, 323, 325

Apple Push Notification Service (APNS), 318–

322

Apple World Wide Developers Conference, 4

application delegate class, 8

application delegate header file, 8

Application Programming Interface (API), 6, 93–

94, 193, 252, 317

applicationDidFinishLaunching method, 8, 314

applications

Cocoa, data-driven architecture

choosing approach, 104

connecting data to UI, 102–104

data model design, 101–102

data driven, 102

English-only, 94

fCookie, 167–168

Interestingness, adding JSON parsing

framework to, 10

Interestingness, changing to use

NSOperationQueues, 37–38

Index 328

Interestingness, changing to use

NSOperationQueues and blocks, 50–

52

Interestingness, converting to use official

version of blocks, 53–54

iPhone, unit testing, 109–134

texture atlas, opening, 173

Applications directory, 168

applyDamage method, 239

APRenderController class, 178, 181–182, 184,

187

APRenderController instance, 180

APRenderController.m file, 183–184

Apress web site, 142, 167

aps dictionary, 319, 321–322

APText class, 177–180, 183

arandom(time(NULL)) method, 266

arc4random function, 183

arc4random() method, 266

ARM (Advanced RISC Machine), 5, 142–144,

157

armV6 architecture, 144

Artificial Intelligence (AI), 158

ascenders, 166

ascent variable, 174

ASCII (text-based format), 65

ASCII file format, 66

assert macros, 118

asset management interface, 194

asset pipeline, 198–199

assets, importing, 204

assets/converted folder, 86

assets/converted/geometry folder, 76

Asynchronous methods, 17, 19

attack animation, 237–239

attack command, 239

attack method, 238

attack() method, 239

attribution, 95

audio handling, 194

Audio Listener component, 241

Audio MIDI Setup app, 280

audio player coding

connecting play/pause button, 304–305

connecting skip controls, 305

overview, 302–303

providing player state in user interface (UI),

305

understanding audio sessions, 306–307

audio sessions, 306–307

Audio Toolbox framework, 306

Audiobooks app, 289–292

Audio-Centric apps for iPhones

designing

book information screen, 292–293

book selection screens, 292

Home Screen, 291–292

player screen, 293–294

for target users, 290

example project

coding audio player, 302–307

overview, 296–297

setting up user interface (UI), 298–301

implementation, 295

overview, 289

AudioExampleViewController.h file, 298, 303

AudioExampleViewController.xib file, 299

AudioSession class, 306

autorelease pool, 18–19, 21, 28, 33, 41, 52

AVAudioPlayer class, 295–296, 303–305

AVAudioPlayer variable, 303

AVFoundation classes, 295, 303

AVFoundation framework, 302–303

■B
backButtonclicked method, 305

backingHeight dimension, 179

backingWidth dimension, 179

Badge notification option, 314

barrel button object, 243–245

Barrel mesh component, 200–201

barrelButton object, 245–246

barrelButton prefab object, 243

barrel-cylindermat material component, 201

barrelTextureHigh image, 204

barrelWithCollider prefab object, 231

BBAttackable script, 237, 239

BBCharacterController script, 220–221, 228,

236, 238

BBSimpleFollower script, 229

BBSpawnBarrelsAction script, 245

BBTouchable class, 227–228, 238, 244

BBTouchableButton script, 244–245

BBTouchInputController script, 226–228, 246

beforeRender method, 184

beta program, extending, 324–325

BIN variable, 143

bits per channel, 148

bits per pixel (bpp), 85

Blender, 59, 61, 63, 65, 68

block literal expression, 50

Block statements, 48

blockOperationWithBlock: method, 52

blocks

adding PLBlocks framework, 48–50

changing Interestingness application to use

NSOperationQueues and blocks, 50–

52

Index 329

converting Interestingness application to

use official version of blocks, 53–54

overview, 46–47

Blocks Group folder, 50

Blocks language extension, 4–6, 45, 48, 50

blurring, 156–157

Bonzai font, 168

book information screens, 292–293

book selection screens, 292

bookmarking, 296

box collider component, 219–220, 225–226

Box Collider menu option, 226

Box2d application template, 256

Box2d physics library, 252, 256, 286

bpp (bits per pixel), 85

Build and Debug button, 255

Build and Go button, XCode toolkit, 255

Build and Run button, 152

Build and Run option, 118, 125, 297

Build Settings option, 247

Build tab, 114–115, 147

Build Target, 112, 115, 122

building, for devices, 247

Bumgarner, Bill, 110

buttonPressed: method, 31, 35

buzz.aif file, 319

Byröd, Martin, 137

■C
C Sharp Script menu item, 205

calculate function, 278

callback method, 314

CallFunc method, 272

Camera menu option, 241

cameras, 69, 141, 241

cancelAllOperations message, 25

Capsule collider component, 225, 230, 234

Capsule Collider menu option, 230

card CCSprite object, 272

Card class, 262

Card.h file, 261–262, 264, 267

cardHomePoint method, 274, 285

cardImages NSMutableArray object, 274

Card.m file, 261–264, 267, 285

cards, 262–264, 284

card-slide.wav file, 280

Carraud, Emmanuel, 138

cascade initialization, 154

categories, Objective-C, 124–127

CCDirector object, 252, 259–260, 270, 274

CCLabel object, 253, 273

CCLayer object, 252–253, 259, 272

CCMenu object, 260

CCMenuItem object, 260, 283

ccp() method, 270

CCScene object, 252, 259, 261, 270

CCSprite class, 271

CCSprite object, 252–253, 271–272, 274

CCTextureCache object, 279

ccTouchesBegan method, 276

cd command, 171

center Y property, 219

CGBitmapContextCreate() method, 148

CGImage class, 147, 149, 154

CGPoint object, 270

CGPointMake() method, 270

CGRect object, 277

character block model, 230

character controller component, 219, 222–223

Character Controller menu option, 218

Character game object, 218

Character Model variable, 235–236

Character object, 218, 220–222, 224, 228, 230,

236–237

CharacterController component, 218–220,

222–224, 228, 234

characterModel.animation.CrossFade ("Idle")

method, 236

characterModel.animation.CrossFade ("Walk")

method, 236

characters, main, 218–224

charCount variable, 178

chars array, 177

Checkers solver app, 159

Cheetah3D, 63, 65, 204, 232

child view controller, 104

Chipmunk application template, 256

Chipmunk physics library, 252, 256, 270

Classes folder, 7, 32, 40, 256, 258

Clear Flags option, 241

client implementations, of Push Notification

service, 314–316

client protocol, 317

Cocoa APIs, 123, 194

Cocoa application, data-driven architecture

choosing approach, 104

connecting data to UI

delegates, 102–103

notifications, 103

setter propagation, 104

data model design, 101–102

Cocoa frameworks, 19, 110

Cocoa Threads, 17

Cocoa Touch applications, 18, 165

Cocoa Touch class templates, 7

Cocoa Unit Testing Framework space, 110

Cocoa wrapper, 247

Cocos2d

Index 330

adding sound, 280–281

game logic

cards, 262–264

deck, 264–266

events, 275–280

overview, 261

SimpleHand.m file, 266–269

sprites, 270–272

getting started with, 252–253

installing

configuring sample code, 254–255

installing XCode project templates,

255–256

starting new project, 256

making scenes, 258–261

origins of, 251

reasons for using, 252

supporting iPad, 281–285

Video Poker, 257–258

cocos2d-iphone.xcodeproj XCode project, 254

CocosDenshion Cookbook, 281

CocosNode object, 258

code outline, example of, 64–65

code.tar.gz file, 171

coding audio player

connecting play/pause button, 304–305

connecting skip controls, 305

overview, 302–303

providing player state in user interface (UI),

305

understanding audio sessions, 306–307

colliders, 224–228

collision detection, 219

collision dynamics, 219

color matching, 159

color options, 203

color shader, 186

color space object, 148

colorRenderBuffer, 179

colorSpace reference, 148

.COM bubble, 289

comment tab, MusicPlayer.xcdatamodel file,

130

communication flow, of Push Notification

service, 314

compile errors, 207

compiler flags, 143

compiler option, Build tab, 114

component name right click menu, 220

Computer Vision, on iPhones

defined, 140–141

face detector application, creating

adding image conversion functions,

147–149

creating simple GUI, 149

face blurring, 156–157

loading Haar cascades, 152–154

loading images from photo library, 151–

152

performing face detection, 154–156

setting up OpenCV, 142–144

setting up XCode, 145

improving performance, 157–159

other projects, 159

overview, 137–139

reasons for, 141–142

concurrency, improving responsiveness using

non-responsive user interfaces

adding JSON parsing framework to

Interestingness application, 10

building Interestingness user interface,

7–9

composing RESTful request for list of

Interestingness images, 10–12

overview, 6

RESTful request and JSON parser, 12–

13

UITableViewDataSource protocol

methods, 14–15

with NSThread and NSObject objects, 19–

24

with operation objects

NSOperation and

NSInvocationOperation, 26–45

NSOperationQueue, 25–26

overview, 24

with operation objects and blocks, 45–54

overview, 3–5

using concurrent solutions, 17–18

Connecting IBAction methods, 301–302

connection:didFailWithError: method, 19

connectionDidFinishLoading: method, 19

connection:didReceiveData: method, 19

connection:didReceiveResponse: method, 19

constraints, external, 97

consumption

direct-client, 99

server-intermediary, 100–101

content creation tools, 61, 63, 68–69, 71

content pipeline, creating, 61–64

contentSize method, 277

Continuous Integration environment, 134

Continuous Integration system, 134

Controller called attack() method, 238

controls, connecting, 305

conversion routines, 75

converted data rendering on iPhone, 86–88

converted shark model, 64, 87

converter directory, 64–65, 86

converter tool, running, 86

Index 331

converter/converter.xcodeproj file, 86

converter/main.cpp file, 69, 73

ConvertHierarchy() method, 69, 73

CoolerUnity folder, 195

Coordinate systems, 68, 172

coordinates, mapping, 171–172

Copy Files option, 121–122

Copy items into destination group's folder

check box, 145–146

copy to destination folder option, 10

Core Audio framework, 295

Core Data entities, 128

Core Data Entity Modeling tool, 127, 129

Core Data framework, 110, 127–128, 130–132,

292

Core Data helper files, 131

Core Data models, 127–132

Core Data stack, 128, 131

Core Data store, 117, 128, 292

Core Data team, 110

CoreData framework, 117

CoreData.framework library, 128

CoreGraphics.framework, 114

coroutines, 209–210, 239

cpv() method, 270

cpVect object, 270

CPVRTexture object, 85

Create Empty menu option, 218, 227

create header file checkbox, 7

createObjects method, 183

cross platform development, 192–193

cross platform support, 192

Cube menu option, 219

cubeIt variable, 46–47, 50

cubeItTimesAFactor block variable, 50

CUlling mask drop down menu, 241

Culling Mask option, 241

curCard parameter, 275

CURL utility, 143

currentTime attribute, 305

custom scripting, 205–207

cv* functions, 155

cvaux/include header file, 144

cvCreateImage() method, 148

cv.h file, 147

cvHarrDetectObjects() method, 158

cv/include header file, 144

cvLoadImage method, 154

cxcore/include header file, 144

■D
data

connecting to UI

delegates, 102–103

notifications, 103

setter propagation, 104

coverage and accuracy, 94

source consumption, design patterns for,

99–101

data exchange file format, vs. in-game file

format, 63–64

data model design, 101–102

data sources, choosing

API design, 93–94

data coverage and accuracy, 94

economics, 95–96

overview, 92

trials, 96

dataWithContentsOfURL method, 14

Deal button, 257, 284

dealCards function, 280

dealloc method, 8, 28, 35

Debug configuration, 111, 115

deck, 264–266

Deck class, 273

Deck.h file, 261, 264

Deck.m file, 261, 265

default NSManagedObjectContext instance,

130

default XCode Project, 111

defaultFrameBuffer, 179, 181

Delaunay Triangulation, 159

delegates, 102–103

dependencies property, NSOperation class, 26

descent variable, 174

detachNewThreadSelector:toTarget:withObject

: method, 23

Detect Faces button, 151

detectFaces method, 151

DEV variable, 143

developer accounts, 324–325

development environment certificate, 324

device token, 314–315, 317, 319

devices, building for, 247

deviceToken object, 315

deviceToken variable, 315

die() method, 238

Direct Dependencies section, 112

direct management, 295

direct-client consumption, 99

directional attribute, 223

disaggregateInterestingnessList: method, 19,

21–22, 40

Dismiss button, 322

dispatch queues, 46

display, setting up, 181–182

Distribution mode, 325

doButtonAction() method, 245

Index 332

drag tool, 203

Dragon's Den television program, 139

drawOnFaceAt:InImage method, 154, 156

duration attribute, 128

duration method, 132–133

DXT format, 80

DXTC format, 80

■E
EAGLView view, 180

eBuddy application

client / server protocol, 317

eBuddy iPhone application, 312–313

eBuddy Messenger aplication, 312

eBuddy Pro application, 323–324

fitting parts together, 322–323

overview, 311

server to APNS, 318–322

eBuddy Pro application, 323–324

economics, 95–96

edge angle property, 152

edge intensity property, 152

edge polarity property, 152

Edit Project Settings menu option, 147

Emotion detector project, 159

empty container object, 203

empty game object, 199

empty methods, 206

empty objects, 199–200

English-only applications, 94

Entity class, 127

Entity data, 130

Entity instance, 127

Entity Modeling tool, 127

Epsilon values, 76

error variable, 315

ES1Renderer.mm file, 87

ESRenderer class, 179

events

combining many actions together, 278–279

detecting sprite taps, 276–277

overview, 275

switching sprite image, 279–280

example.mp3 file, 302

Existing Files option, Add menu, 86, 302

exporter plug-ins, 65

exporting 3D models, 65–69

Extensible Markup Language (XML), 6, 154,

158

external constraints, 97

■F
face blurring, 156–157

face detector application, creating

adding image conversion functions, 147–

149

creating simple GUI, 149

face blurring, 156–157

loading Haar cascades, 152–154

loading images from photo library, 151–152

performing face detection, 154–156

setting up OpenCV, 142–144

setting up XCode, 145

FaceDetect project, 145

FaceDetectViewController.h file, 147, 149, 151

FaceDetectViewController.m file, 148, 151, 154

FaceDetectViewController.xib file, 149

factory method, 258

Faux Character model, 220, 228, 234

Faux Character object, 219, 229

faux gui layer objects, 241, 244

faux-joysticks, 215

FBX exporter dialog box, 65–66

FBX files, reading, 66–69

FBX models, converting into triangle data, 73–

76

FBX reader library, 63

FBX scene node, 77

FBX SDK, 65–68, 74

FbxResourceConverter::convert() method, 74,

76

FbxResourceReader class, 66–67

FbxResourceUtils class, 75

FbxResourceUtils::processTriangles() method,

74, 76

fCookie application, 167–168

FeedbackNotification class, 319

FeedbackReceiver class, 319

fetchImage: method, 23

FetchImageOperation class, 39–44, 52

FetchImageOperation.h file, 43, 50

fetchInterestingnessList method, 19, 21–22,

39–40

file formats, data exchange vs. in-game, 63–64

File's Owner element, 300

File's Owner icon, 30

Files' Owner icon, 30

File's Owner icon, 31

find_if method, 76

FindObjectOfType() method, 221

flashlight app, 297

flexible content pipeline, creating, 61–64

Flickr API key, 11, 15

flickr.interestingness.getList API, 6, 11, 19, 37

FlightTrack application

Index 333

choosing data sources

API design, 93–94

data coverage and accuracy, 94

economics, 95–96

overview, 92

trials, 96

current status, 105–106

data-driven Cocoa application architecture

choosing approach, 104

connecting data to UI, 102–104

data model design, 101–102

design patterns for data source

consumption, 99–101

overview, 91

release of, 105

source-driven user interface design

challenges, 97–98

overview, 96

techniques, 98–99

floating-point (FP), 158

Floor plane object, 216

font techniques, 163

font0.plist file, 171, 173

font0.png file, 171, 173

Fontery classes

APChar, 175–176

APGlyph, 174

APText, 177–179

overview, 173

Fontery folder, 173

fontName string, 185

Fonts group, 180

fonts in OpenGL. See OpenGL fonts

format parameter, 11

FortuneCookie project, 173

fortunes

creating, 182–184

displaying, 184–187

Fortunes array, 182–183

forwardButtonClicked method, 305

Foundation.framework, 114

FP (floating-point), 158

framebuffers, 179, 181

framework, JSON parsing, 10

Frameworks folder, 48, 128

FTFlightListController, 104

FTFlightManager class, 104

functions, adding image conversion, 147–149

■G
game development

3D objects as GUI items, 243–246

adding terrain, 216–218

adding touchable objects, 230

animation import settings, 233–237

animations, 232

building for devices, 247

inputs and colliders, 224–228

interacting with objects, 237–239

main characters, 218–224

multiple cameras, 241

prefabs, 231

Unity interface

adding lights, 213–214

asset pipeline, 198–199

coroutines, 209–210

custom scripting, 205–207

game view, 197, 210–211

hierarchy view, 198

importing assets, 204

inspector view, 198

meshes, renderers, and materials, 200–

203

playing, 208–209

project view, 198

reasons for using, 193–195

scene view, 196–197

Transform component, 199

using iPhones as game pads, 214

user interface (UI), 240

game pads, using iPhones as, 214

game view, Unity interface, 197, 210–211

gameObject class, 206–207, 218, 227, 245

gameObject instance variable, 206, 229

GameObject.Find() method, 245

gameObject.transform component, 207

games, starting on iPhone, 59–60

gaming consoles, 141

GCC (GNU Compiler Collection), 147

GCC 4.2 compiler, 53

GCD (Grand Central Dispatch), 4, 17, 45

Generation Gap pattern, 129

genfont utility, 173

Genres features, 291

Geometry class, 72–73, 76

Geometry::Vertex class, 72

Get Info option

MusicPlayerTests target Control-click

menu, 112

MusicPlayer.xcdatamodel file, 130

target control-click menu, 302

GET method, 11

GetComponent() method, 222, 227

getImageForURL: method, implementing, 42–

45

GetMouseButton() method, 226

GetNodeAttribute()->GetAttributeType()

method, 71

Index 334

GHTestCase class, 111, 117, 124

GHUnit file, 111

GHUnit framework, 110–111, 114, 117–119

GHUnit libraries, 115

GHUnit unit test runner application, 119

GHUnitTestCase class, 117

glDisableClientState method, 186

glDrawArrays method, 187

glEnableClientState method, 186

GlobalVariables.h file, 261–262

glTexCoordPointer method, 186

glTranslatef method, 184

glyphName variable, 174

GNU Compiler Collection (GCC), 147

Google Code repository, 10

Google Mac Toolkit, 111

Google Street View, 156

GPU (Graphics Processing Unit), 5, 72, 79–80,

85

Grand Central Dispatch (GCD), 4, 17, 45

graphical user interface (GUI), 80, 97, 149, 240

graphics pipeline, 181, 186

Graphics Processing Unit (GPU), 5, 72, 79–80,

85

grep utility, 144

Grey Barrel object, 205

Group photo fun project, 159

Groups & Files pane, XCode, 86, 112

GUI (graphical user interface), 80, 97, 149, 240

GUI items, 3D objects as, 243–246

GUI.Box object, 240

GUI.Button object, 240

GUICamera attributes, 241–242

GUICamera object, 241, 244, 246

GUICamera position property, 243

GUIText class, 240

GUIText object, 240

GUITexture class, 240

Gutenberg, Johannes, 164–167, 171, 175–176,

180

■H
Haar cascades, loading, 152–154

Haar object detection, 152–153, 159

haarcascade_frontalface _alt_tree.xml file, 153

Handford, Gabriel, 110

handLabel object, 284

handleTouchAtPoint() method, 226, 246

handleTouchAtPointForAllCameras() method,

246

handling textures

converting images into PVRTC format, 84–

85

image compression vs. texture

compression, 79–80

Imagination's PVRTC format, 80–81

reading PNG images, 82–84

header files, 144, 154

height property, 219, 230

HelloOperationQueues

building, 28

building user interface for, 30–31

implementing, 33–36

HelloOperationQueues project, Xcode, 28

HelloOperationQueuesViewController class, 28

HelloOperationQueuesViewController.m file, 33

HelloOperationsViewController.xib file, 30

HelloWorldScene.h file, 256, 258, 260

HelloWorldScene.m file, 256, 258, 260

hierarchy view, Unity interface, 198

hit.transform.gameObject method, 227

Home Screen, 291–292

HotelPal application, Mobiata, 100–101

HowToPlay node, 258

HowToPlayScene.h file, 258–259

HowToPlayScene.m file, 258–259

HTTP (HyperText Transfer Protocol), 6, 10–11

HyperText Preprocessor (PHP), 11

■I
IB (Interface Builder), 30–31, 127, 142, 149,

151, 299

IBAction methods, 299, 301

IBOutlet declarations, 299

"Idle" (characterModel.animation.CrossFade)

method, 236

idle animation, 223, 237–238

Ignore Raycasts layer, 229, 241

IM (Instant Messanger), 312, 323

Image class, 83

image compression, vs. texture compression,

79–80

image conversion functions, adding, 147–149

Image Picker, Apple, 147

image tagging, 141

Image View, 149–150

imageData element, 148

imageData object, 52

imageDictionary class, 44

imagePickerController:didFinishPickingImage:e

ditingInfo method, 154

Image::R8G8B8 property, 83

Image::R8G8B8A8 property, 83

images

converting into PVRTC format, 84–85

loading from photo library, 151–152

Index 335

Images folder, 204, 216

imageTitles mutable array, 13

imageURL variable, 13, 40

imageURLs array, 14

ImageView boundaries, 149

imageView outlet, 150

imageView property, 14, 40, 43

imageview variable, 149

Imagination PowerVR SDK, 80, 84

Imagination Technologies, 4–5

Imagination's PVRTC format, 80–81

importing 3D art assets into iPhone games

advantages of writing tools, 60–61

creating flexible content pipeline

data exchange vs. in-game file formats,

63–64

tools problem, 61–62

example code outline, 64–65

exporting 3D models, 65–69

handling textures

converting images into PVRTC format,

84–85

image compression vs. texture

compression, 79–80

Imagination's PVRTC format, 80–81

reading PNG images, 82–84

rendering converted data on iPhone, 86–88

starting iPhone games, 59–60

traversing scene contents

converting FBX models into triangle

data, 73–76

converting triangle data into in-game

formats, 76–78

OpenGL triangle data, 71–73

overview, 69

types of nodes, 70–71

importing assets, 204

In Memory store, 131

Indexed Triangle list, 71

Info option, Interestingness target CTRL-Click

menu, 15

Info.plist file, 324

in-game file format, vs. data exchange file

format, 63–64

in-game formats, converting triangle data into,

76–78

init method, 28, 260, 276

initWithAPI method, 181

initWithContentsOfURL: method, 41

initWithHand method, 267

initWithImageURL:target:targetMethod

instantiation method, 40

initWithMsg:dependency: method, 33

initWithStyle: method, 9, 12, 38, 43

InMemory store data type, 128

InputManager object, 227–228

inputs, 224–228

inspector view, Unity interface, 198

installing Cocos2d

configuring sample code, 254–255

installing XCode project templates, 255–

256

starting new project, 256

Instant Messanger (IM), 312, 323

int variable, 50

interacting with objects, 237–239

Interestingess-Version5-PLBlockExtensions

folder, 52

Interestingness algorithm, Flickr, 6

Interestingness application

adding JSON parsing framework to, 10

changing to use NSOperationQueues, 37–

38

changing to use NSOperationQueues and

blocks, 50–52

converting to use official version of blocks,

53–54

Interestingness, composing RESTful request

for list of images, 10–12

Interestingness images

composing RESTful request for list of, 10–

12

implementing NSInvocationOperation to

fetch list of, 39–40

Interestingness project, 9–10, 48, 50, 52

Interestingness user interface, building, 7–9

InterestingnessAppDelegate class, 7

InterestingnessAppDelegate file, 8–9

InterestingnessTableViewController class, 8–9,

20–21, 38, 40, 42–43, 48, 50

InterestingnessTableViewController.h file, 11

Interface Builder (IB), 30–31, 127, 142, 149,

151, 299

internal iPod Library, 119

iPad Programming Guide, 281

iPad simulator, 119

iPad, supporting, 281–285

iPhone Developer Program Portal, 324

iPhone SDK, 80, 179–180, 289, 295, 306

iPhone simulator, 111, 118–119, 123

IPHONE_OS_VERSION_MAX_ALLOWED

value, 282

iPhoneInput class, 226

IplImage class, 148, 152, 154, 158

IplImage format, 148, 152

IplImage image, 148

iplImageFromUIImage:image method, 158

iPod library, 117

iris scanners, 141

isBefore method, 126

Index 336

isCancelled method, 28, 33

isCancelled property, 26

isConcurrent method, 27–28

isConcurrent property, 26

isEqual method, 126–127

isExecuting method, 28

isExecuting property, 26

isFinished KVO property, 34

isFinished method, 28

isFinished property, 26

iSolve team, 138–139

isometric rendering, 216

isometric view, 215–216

isReady property, 26

■J
J2ME (mobile Java), 311

Jackson, Benjamin, 252

Javascript language, 194–195

JavaScript Object Notation (JSON), 6, 11, 20,

316–317, 319

Jobs, Steve, 3

JobUnit class, 32–33

JobUnit.h file, 33

JPEG format, 79

JSON (JavaScript Object Notation), 6, 11, 20,

316–317, 319

JSON parsing framework, 10–13

JSON.h file, 10, 12

jsonResultString class, 13

■K
Kanis, Dimitri, 60–61

kAudioSessionCategory_MediaPlayback

category, 306

Key Value Observing (KVO), 25–26, 34

keychains, XCode, 325

key-value coding (KVC), 25, 134

KFbxAxisSystem method, 68

KFbxGeometryConverter class, 74–75

KFbxImporter class, 66–67

KFbxMesh class, 71, 73

KFbxNode class, 70–71

KFbxNodeAttribute::eMESH node type, 71

KFbxScene class, 66–67, 69

KFbxScene::GetRootNode() method, 69

KFbxSdkManager class, 66–67

KFbxSystemUnit method, 68

kFortunes array, 182–183

KVC (key-value coding), 25, 134

KVO (Key Value Observing), 25–26, 34

■L
L flag, 143

Lamarche, Jeff, 7

Lamming, Oliver, 138

Languages features, Home Screen, 291

Layer attribute, 228

Layer drop-down menu, 228

Layer menu, GUICamera object, 241

layer property, 239

lerp variable, 230

Lew, Daniel, 100

lib directory, 64

libPVRTexLib library, 85

libPVRTexLib libraty, 84

Library component palette, 30

Library link, Home Screen, 291

library, loading images from, 151–152

Library panel, 299

Librivox collection, 290

Librivox project, 289

light objects, 211, 214

lights, adding, 213–214

Linear Interpolation process, 229

lineHeight variable, 178

lineWidth variable, 178

Link Binary with Libraries section, 121

Linked Libraries list, 303

Linked Libraries section, 114

linker errors, 147

linker flags, 115, 147

linker option, 114

lipo program, 144

listener component, 241

loading Haar cascades, 152–154

loadInterestingnessList class, 21

loadInterestingnessList method, 12, 19

Localizable.strings files, 321

localization setting, 321

loc-args key, 321

lossy compression format, 80

■M
Mac OS X Runtime folder, 48

Mac Toolkit, Google, 111

Mach threads, 19

Machine Learning library, 159

MacPorts package, 170

MacPorts tool, 169–170

Magical Panda Software, 124, 131

MagicSolver.com Ltd, 139

Main Camera object, 199, 211, 230, 241, 244,

246

Index 337

main characters, 218–224

main Image View class, 150

main Interface Builder window, 300

main method, 28, 32–33

main nib file, 7

Main Scene class, 261

main window nib file, 7, 30

MainMenuScene scene, 260

MainMenuScene.h file, 260

MainMenuScene.m file, 260–261, 283

mapkey variable, 174

mapLibrary variable, 174

mapping, 171–172

Mark, David, 7

material components menu, 201

Material menu item, 204

materials, 200–203

Materials folder, 204

maxConcurrentOperationCount property, 25,

36

MediaPlayer.framework library, 120, 123

Mesh collider components, 225–226

Mesh Filter menu item, 200

Mesh Renderer component, 200–201, 203–204

Mesh Renderer menu item, 200

Mesh Scale Factor setting, 234

meshes, 200–203

message.aif file, 319

Messenger aplication, eBuddy, 312

mFactor variable, 50

MIDI (Musical Instrument Digital Interface), 280

min_neighbors parameter, 158

MINA (Multipurpose Infrastructure for Network

Applications), 318

mipmaps, 85

ml/include header file, 144

mobile Java (J2ME), 311

mobile network connections, 79

Mobile photo editing tools project, 159

mock objects, 120–123

mode attribute, 149

Models folder, 203–204, 230

Model-View-Controller (MVC), 110

mogenerator plug-in, XCode, 130

mogenerator tool, 129–131

Mono scripting project, 194

MonoBehaviour object, 206

Moore's law, 140

morphological operators, 159

mouse button mapping, 226

Move() method, 222–224

move speed property, 223

moveDirection vector, 223

movement vector, 222–223

movementDestination variable, 222–224

movementDirection.y property, 222

moveSpeed property, 223

moveTowards() command, 239

mp_isAfter: method, 126

mp_isBefore method, 126

mp_isBefore:(NSDate *)otherDate method, 125

mp_isEqual: method, 126

MP3 files, 296, 302

MPMediaItem class, 120, 123

MPMediaItem instance, 123

MPMediaItem object, 123

MPMediaItemPropertyGenre parameter, 123

MPMediaItemPropertyTitle parameter, 123

MPMediaItems class, 119

MPMediaPlayer framework, 117

MPMediaQuery class, 123

multi-architecture files, 144

multiple cameras, 241

Multipurpose Infrastructure for Network

Applications (MINA), 318

music player application, 128

Musical Instrument Digital Interface (MIDI), 280

MusicPlayer build target, 112

MusicPlayer Direct Dependent library, 113

MusicPlayer project, 111–112

MusicPlayerTests Build Target, 112

MusicPlayerTests General tab, 112

MusicPlayerTests target, 112, 115–116, 121

MusicPlayer.xcdatamodel Data Model, 128,

130

MusicPlayer.xcdatamodel file, 130

MVC (Model-View-Controller), 110

MyAppDataDidChangeNotification, 103

MyDelegateProtocol protocol, 103

■N
name attribute, 130

Narrators features, 291

National Television System Committee (NTSC),

140

NDA (Non-Disclosure Agreement), 5, 251

New Copy Build Phase option, 121

New File menu item, XCode, 129

New File window, 128

NewBehaviorScript script, 206

node attribute, 70–71

node method, 258

nojasoncallback=1 parameter, 11

Non-Disclosure Agreement (NDA), 5, 251

Non-uniform rational B-spline (NURBS), 71

normal attribute, 71

normalized values, 172

Notification class, 319

Index 338

notifications, 103

NotificationSender class, 319

NSArray property, 104

NSBlockOperation class, 24, 46, 52–53

NSCurrentLocaleDidChangeNotification

method, 321

NSData class, 14, 41, 148

NSDate class, 124–125

NSDate+Helpers.h file, 125

NSDate+Helpers.m file, 125

NSDate+HelpersTests class, 124

NSDictionary class, 13, 19, 22, 24, 41

NSFetchedResultsController class, 292

NSInvocationOperation. See NSOperation

class and NSInvocationOperation

NSLog statements, 50

NSManagedObject class, 127, 130–131

NSManagedObjectContext class, 128, 130–

131

NSManagedObjectModel class, 127, 131

NSMutableArray object, 272

NSNotificationCenter, Apple, 103

NSObject class, 19–24

NSOperation class and NSInvocationOperation

building HelloOperationQueues, 28

building user interface for

HelloOperationQueues, 30–31

changing Interestingness app to use

NSOperationQueues, 37–38

creating work units by subclassing, 32–33

implementing FetchImageOperation

subclass of, 40–41

implementing getImageForURL: and

storeImageForURL: methods, 42–45

implementing HelloOperationQueues, 33–

36

implementing to fetch list of interestingness

images, 39–40

overview, 26

subclassing, 27–28

NSOperationBlock sample project, 50

NSOperationQueue class

changing Interestingness application to

use, 37–38, 50–52

overview, 25–26

NSOperationQueue+PLBlocks.h file, 50, 52–53

NSOperationQueue+PLBlocks.m file, 50, 52–

53

NSOperationQueueDefaultMaxConcurrentOper

ationCount constant, 25

NSOrderedAscending constant, 126

NSPersistentStore class, 131

NSPersistentStoreCoordinator class, 131

NSString class, 11, 13, 43

NSThread class, 19–24

NSURL class, 40, 43

NSURLConnection class, 19

NTSC (National Television System Committee),

140

numberOfSectionsInTableView: method, 9, 14

NURBS (Non-uniform rational B-spline), 71

■O
O flag, 143

Obj-C language, 32, 40, 60, 102, 171, 179,

194–195, 206, 228

objects

interacting with, 237–239

touchable, adding, 230

objects, operation, 24–45

NSOperation and NSInvocationOperation,

26–45

building HelloOperationQueues, 28

building user interface for

HelloOperationQueues, 30–31

changing Interestingness app to use

NSOperationQueues, 37–38

creating work units by subclassing, 32–

33

implementing FetchImageOperation

subclass of, 40–41

implementing getImageForURL: and

storeImageForURL: methods, 42–45

implementing HelloOperationQueues,

33–36

implementing to fetch list of

interestingness images, 39–40

subclassing, 27–28

NSOperationQueue, 25–26

observeValueForKeyPath:ofObject:change:con

text: method, 34

OCMock Framework, 121–122

OCMock object, 121

OCMock static library, 121

OCMock.framework folder, 121–122

OCMock.framework item, XCode, 122

OCUnit framework, 110–111, 117

OCUnit library, XCode, 110

off-road robot vehicles, 141

off-screen framebuffer, 187

offset vector variable, 229

On screen display, 296

OnControllerColliderHit() method, 224

onGUI() method, 240

onTimer method, 305

Open Computing Language (OpenCL), 142–

144

opencv-1.1.0 folder, 145

Index 339

opencv-1.1.0/data/haarcascades directory,

153

opencvlib directory, 143–146

OpenGL fonts, 163–187

creating texture atlas, 168–171

opening applications, 173

texture mapping, 171–172

fCookie application, 167–168

Fontery classes, 173–179

APChar, 175–176

APGlyph, 174

APText, 177–179

fortunes

creating, 182–184

displaying, 184–187

history of, 164–165

Pragmatic Fontery system, 167

setting up display, 181–182

terminology, 165–166

OpenGL triangle data, 71–73

opengl/Classes/EAGLView.mm file, 87

opengl/opengl.xcodeproj file, 86

open-source Checkers library, 138

open-source Connect-4 library, 138

operation objects, 24–54

blocks, 46–54

adding PLBlocks framework, 48–50

changing Interestingness application to

use NSOperationQueues and blocks,

50–52

converting Interestingness application

to use official version of blocks, 53–

54

NSOperation and NSInvocationOperation,

26–45

building HelloOperationQueues, 28

building user interface for

HelloOperationQueues, 30–31

changing Interestingness app to use

NSOperationQueues, 37–38

creating work units by subclassing, 32–

33

implementing FetchImageOperation

subclass of, 40–41

implementing getImageForURL: and

storeImageForURL: methods, 42–45

implementing HelloOperationQueues,

33–36

implementing to fetch list of

interestingness images, 39–40

subclassing, 27–28

NSOperationQueue, 25–26

Operation Objects class hierarchy, 24

operation queues, GCD, 46

operationCountOuput outlet, 30

operationCountOutput outlet, 30

operationOutput outlet, 30

operations property, NSOperationQueue class,

25

optimized texture format, 64

Options checkbox, UITableViewController

class, 7

Options menu item, 260

OptionsScene.h file, 261

OptionsScene.m file, 261

Other Linker Flags option, Build tab, 114

Other Linker Flags setting, settings window,

147

otherlibs/highgui header file, 144

overlay scene, 241

Overview dropdown menu, 255

Overview item, XCode toolkit, 254, 281

■P
paging, 292

paintball sentry guns, 141

pan/zoom/tumble tool, 197

Papyrus font, 178

parameters dictionary, 317

parent object, 228, 244

parent transforms, 220

path-finding algorithm, 224

pause playback control, 293, 296, 304

Per Diem calculator, 289

per_page parameter, 11

performance, 157–159

performSelectorInBackground:withObject:

method, 19, 39–40

performSelectorOnMainThread:withObject:wait

UntilDone: method, 19, 21, 40–41

periodicRotate() method, 210

perspective transform, 159

Phone-based barcode scanners, 141

photo library, loading images from, 151–152

PHP (HyperText Preprocessor), 11

php5 language, 170

physics libraries, 191

Physics.Raycast() method, 227

pipelines, 61–64

placeholder model, 219

Plane menu option, GameObject menu, 216

Plausible Blocks SDK package, 48

Plausible Labs extensions, 50

Plausible Labs PLBlocks 1.1 Beta, 5

Play & Pause, UIButton class, 298

Play board games using the camera project, 159

play button, 304

play button, Unity editor, 208–209, 211, 228

Index 340

Play Game menu item, 260

player screens, 293–294

player setup, 296

player state, providing in UI, 305

Playlist entities, 128, 130–133

PlaylistControllerTests class, 118

PlaylistControllerTests.h file, 117

PlaylistControllerTests.m file, 117–118

PlaylistItem class, 120

PlaylistItem header, 120

PlaylistItem objects, 119

PlaylistItem.h file, 120

PlaylistTests test case, 131

PlaylistTests test case file, 130

play/pause button, 304–305

playPauseButton class, 304–305

playPauseButtonClicked method, 304, 306

playPauseClicked method, 305

PLBlockOperation class, 50, 52–53

PLBlocks, 48–50, 53

plist (property list) file, 171

PLIST file, 169, 171, 173

PLIST property, 180

plus icon, Direct Dependencies section, 112

PNG (Portable Network Graphics) format, 63,

82–84

PNG_COLOR_TYPE_RGB property, 83

PNG_COLOR_TYPE_RGBA property, 83

PngResourceReader class, 82

PngResourceReader::read() method, 82

Point light, 213–214

Point Light menu option, GameObject menu,

214

PokerGameScene.h file, 261, 272–273

PokerGameScene.m file, 261, 273–274, 280,

284–285

poker-music.mp3 file, 280

polygons, 71, 73–74

port command, 169

portability, 226

Portable Network Graphics (PNG) format, 63,

82–84

Portable Operating System Interface [for Unix]

(POSIX), 17, 19

portrait mode, iPhone, 172

position attribute, 71

position method, 277

position property, 200–201, 216, 219, 224, 234

position transformation, 199

POSIX (Portable Operating System Interface

[for Unix]), 17, 19

Powered by X footer, 95

PowerVR SDK, 80, 84

PowerVR Texture Compression (PVRTC)

format, 64, 80–81, 83–85

pragmatic font techniques, 163

Pragmatic Fontery system, 167–168

Prefab menu option, Assets menu, 231

prefab objects, 230–231, 239, 245

prefabs, 231

Prefabs folder, 231, 243

preprocessor directive, 282

preprocessor option, Build tab, 114

preview window, 247

price/performance ratio, 193

primitive collider component, 226

primitive collider shapes, 225

primitive shapes, 194

primitive solid objects, 225

printf function family, 77

private keys, 325

production environment certificate, 324

Project menu, 115

Project Target, 117

project view, 198, 203–205, 207, 216, 226,

233, 243

<ProjectName>Tests convention, 112

Properties tab, Interestingness target CTRL-

Click menu, 15

property list (plist) file, 171

protocols, client / server, 317

Provider certificate, 314

push notifications, 311–325

Apple Push Notification service, 313–316

client implementations, 314–316

communication flow, 314

client implementations, 314–316

communication flow, 314

eBuddy application, 311–323

client / server protocol, 317

eBuddy iPhone application, 312–313

eBuddy Messenger aplication, 312

fitting parts together, 322–323

server to APNS, 318–322

eBuddy Pro application, 323–324

extending beta program, 324–325

Push Server, 312–313, 317, 322

Push timeout, 312

push_destination parameter, 317

push_timeout parameter, 318

push_type parameter, 318

.pvr file, 85

PVRTC (PowerVR Texture Compression)

format, 64, 80–81, 83–85

PVRTexTool, 80–81

PVRTextureUtilities::ProcessRawPVR()

method, 85

Python language, 61, 251, 260

Pyweek challenge, 251

Index 341

■Q
QA (Quality Assurance), 109

Qc.png file, 263

quads, 71, 74, 240

Quality Assurance (QA), 109

quaternion, 206

queuePriority property, NSOperation class, 26

■R
radius property, CharacterController

component, 219

rand() method, 266

random(). method, 266

range setting, light object, 214

raycast method, 227, 229

raycasting code, 246

Reachability API, 7

readMediaItem method, 120

Really Simple Syndication (RSS), 6

real-time processing, 82

Real-time, real-life pong project, 159

rectangle object, 277

regions, 140

relative priority level, operation object, 27

Release configuration XCode, 111

remapped inputs, 226

remove (rm) command, 171

Remove Component option, gear-menu, 219

removeDependency: method, 26

removeOperation: method, 25

render method, 184–185

Render Settings menu option, Edit menu, 213

renderers, 200–203

renderObjects method, 184, 187

renewing subscriptions, 95

Rentzsch, Jonathon, 129

resizeFromLayer method, 181

ResizeMe Mac application, 285

Resource option, New File window, 128

Resources folder, 180, 280

Resources group, 149, 153, 299, 302

respondsToSelector method, 125

RESTful request, 10–13

RESTful Web Services, 6, 16, 20, 23

revenue share, 96

revision control system, 325

rewind playback control, 293

RGB format, 79, 83–84

RGBA (4-channel) image, 148

RGBA format, 83–85

right-handed coordinate system, 68

rm (remove) command, 171

rotate method, 209

rotate script, 218

rotate tool, 197

RotateBarrel class, 206

RotateBarrel script, 206, 208, 227

Rotating Barrel object, 199–200, 203, 205,

208–209, 232

rotating barrel script, 221

rotation parameter, model, 69

rotation part, transform component, 206

rotation property, camera object, 216

rotation script, 220

rotation transformation, 199

Round Rect Buttons, 30, 150, 299

RSS (Really Simple Syndication), 6

Ruby language, 289

runAction parameter, 271

run-time memory, 79

■S
S3 Texture Compression (S3TC) format, 80

S3TC (S3 Texture Compression) format, 80

save: method, 128

scale parameter, model, 69

scale property, Faux Character object, 219

scale transformation, 199

scale_factor parameter, 158

scale_factor parrameter, 158

scanf function family, 77

scanned barcodes, 141

scene contents, 69–78

converting FBX models into triangle data,

73–76

converting triangle data into in-game

formats, 76–78

OpenGL triangle data, 71–73

types of scene nodes, 70–71

scene nodes, 69–71

scene segmentation, 140

scene view, 196–197

scenes, 258–261

ScreenPointToRay() method, 227

screens

book information, 292–293

book selection, 292

Home Screen, 291–292

player, 293–294

scripting, custom, 205–207

scripts folder, 205, 220, 226

Search bar, browser screens, 292

section navigator, browser screens, 292

Seeker demo, 4

Seeker program, 4

Index 342

segmentation, 159

sendAlert function, 272

SendMessage() method, 244

SendMessageOptions.DontRequireReceiver

constant, 244

SenTest framework, 110

seq dictionary entry, 317

Sequences, 272

serial dispatch queues, GCD, 46

serial queues, GCD, 46

Serlet, Bertran, 4

server protocol, 317

server-intermediary consumption, 100–101

Set Active Target Project menu item, 115

-setFlights: method, 104

setQueuePriority: method, 27

setSuspended:NO method, 25

setSuspended:YES method, 25

setter propagation, 104

settings, animation import, 233–237

Settings button, project view, 233

settings window, 147, 234–235

setUp method, 117

setup time, 180

setupPortraitMode method, 182

setVerticallyFlipped() method, 85

shader component, 201

shadow positions, 141

shape, objects, 141

shark files, 86

shark model, 61, 79

shark.fbx file, 86

shark.png file, 86

silent switch, 306

simple follower script, 230

Simple Object Access Protocol (SOAP), 11

SimpleAudioEngine.h file, 280

SimpleHand class, 273

SimpleHand object, 266–267, 272

SimpleHand.h file, 261

SimpleHand.m file, 261, 266–269

Single precision floating-point numbers, 62

Singleton design pattern, 221

size property, collider component, 230

Skinny-Controller-Fat-Model paradigm, 127

skip back playback control, 296

Skip Backward, UIButton class, 298

skip controls, connecting, 305

skip forward playback control, 296

Skip Forward, UIButton class, 298

skip playback control, 293

sleep mode, 319–320

smart caching, 292

Snow Leopard+, 143

Snowferno game, 194–195

SOAP (Simple Object Access Protocol), 11

Software Bisque, 4

Song entities, 128, 130–133

SongTests test case file, 130

sortedHand object, 267

Sound notification option, 315

Source Code area, Apress web site, 167

SourceForge, 143

Spawn object, 271, 275, 278

Spawned Barrel object, 245

Sphere collider component, 225

Sphere collider components, 225

Spot light, 213–214

Springboard, 312, 314, 320

sprites, 270–272

detecting sprite taps, 276–277

load and display, 270

manipulating, 271–272

switching sprite image, 279–280

spriteWithFile method, 274

SQLite store, 127

square magnitude, movement vector, 222

square size requirements, 81

src directory, 65

src/resource/fbx/FbxResourceConverter.cpp

file, 73

src/resource/fbx/FbxResourceUtils.cpp file,

74–75

src/resource/fbx/FbxResourceUtils.h file, 75

src/resource/Geometry.cpp file, 72

src/resource/geometry/GeometryResourceRea

der.cpp file, 78

src/resource/geometry/GeometryResourceWrit

er.cpp file, 77

src/resource/png/PngResourceReader.cpp file,

82

src/resource/png/PngResourceReader.h file,

82

src/resource/pvrtc/PvrtcResourceWriter.cpp

file, 84

SSLContext class, 319

stages, animations, 232

Start() method, 206, 210, 222, 229, 238

StartCoroutine() method, 210

static accessor method, 221

static library file, GHUnit framework, 111

status bar, 207

std::find_if method, 76

Stick Wars application, 252

StickWars application, 286

stock rand() function, 183

storeImageForURL: method, 40, 42–45, 52

string variable, 178

stringWithContentsOfURL:encoding:error

method, 13

Index 343

stringWithFormat: method, 13

subclassing, 27–28

creating work units by, 32–33

subscription, 95

subscriptions, auto-renewing, 95

sudo command, 170

Sudoku Magic app, 159

Sudoku solver application, 138

Supported Audio Formats in SDK Version 3.0,

296

surface color, 140

Surprise Me features, Home Screen, 291

Surveillance software, 141

swizzled option, 85

synchronous methods, 19

system queues, GCD, 46

SystemConfiguration.framework API, 7

■T
tableView:cellForRowAtIndexPath: method, 9,

14

tableView:cellForRowAtIndexPath method, 42–

43

tableViewController class, 8

tableViewController instance variable, 8

tableView:didSelectRowAtIndexPath:, 9

tableView:numberOfRowsInSection: method,

9, 14

Tag attribute, 228

Tag drop-down menu, 228

tag property, 31

tap interface, 215

tappedSprite function, 277

tap-to-move interface, 215

tar command, 171

tarball technique, 171

target field drop-down menu, 230

Target Info window, 112

target item, Groups & Files pane, 112

Target variable, main camera object, 230

targetObject class, 41

Targets group, Xcode toolkit, 254

Taylor, Adam, 232–233

tearDown method, 117

template matching algorithm, 159

Terminal application, 141–142, 144, 169, 255,

285

terrain, 216–218

Test Build target window, 114

test folder, code directory, 115

Test target, 121, 125

testFirstUnitTest class, 118

testing iPhone application units, 109, 134

Tests folder, XCode, 115, 117

text-based format (ASCII), 65

texture atlas

creating, 168–171

opening applications, 173

texture mapping, 171–172

texture compression, vs. image compression,

79–80

texture mapping, 171–172

Th.png file, 263

tiling, texture placement setting, 217

time elapsed label, UILabel class, 298

time remaining label, UILabel class, 298

Time.deltaTime variable, 223

Tip Calculator app, 289

title attribute, Song entity, 128

title property, MPMediaItem class, 120

title Property, PlaylistItem class, 120

title property, Round Rect Button, 150

Titles link, Home Screen, 291

TLS (Transport Layer Security), 314

toggleCard function, 280

tools, advantages of writing, 60–61

touch inputs, 214–215, 218, 226, 228, 246

touch manager object, 221, 228

Touch Up Inside event, 31

Touch Up Inside method, 301

touchable objects, 230, 244

transaction-based model, 95

transform component, 198–199, 203, 206–207

transform properties, 198

Transport Layer Security (TLS), 314

triangle data, 73

converting FBX models into, 73–76

converting into in-game formats, 76–78

Tribble, Bud, 4

TripDeck, 99

TrueType fonts, 163, 168–169, 171, 179

.ttf extention, 168, 170

Twiddled option, 85

typedef feature, C language, 47

typeface, 166

typefaces, 166

■U
UIApplication class, 314–315

UIApplicationDelegate class, 314–316

UIApplicationLaunchOptionsRemoteNotificatio

nKey key, 316

UIButton class, 298

UIImage class, 41, 148–149, 152

UIImagePickerControllerDelegate interface,

147

Index 344

UIImageView class, 150

UIKit classes, 17–18

UIKit.framework, 114

UILabel class, 30, 298, 300

UINavigationController objects, 104

UINavigationControllerDelegate interface, 147

UITableView class, 6, 102

UITableViewController class, 6–9

UITableViewDataSource protocol methods,

14–15

UITableViewDelegate Protocol class, 9

UIUserInterfaceIdiomPad variable, 282

UIViewController template, 7

Uniform Resource Locator (URL), 316

unit test harness, GHUnit framework, 114

Unit Test Project, 121

Unitron text editor, 193

Unity interface, 192–214

adding lights, 213–214

asset pipeline, 198–199

coroutines, 209–210

custom scripting, 205–207

game view, 197, 210–211

hierarchy view, 198

importing assets, 204

inspector view, 198

meshes, renderers, and materials, 200–

203

playing, 208–209

project view, 198

reasons for using, 193–195

scene view, 196–197

Transform component, 199

using iPhones as game pads, 214

universal files, 144

unlock screen, 319

unusedChars array, 177

unusedChars method, 177

update loop, 224, 238–239

Update() method, 206–207, 210, 222, 224,

226, 229, 246

Upgrade Current Project for iPad option,

XCode Project menu, 281

URL (Uniform Resource Locator), 316

user interfaces, 240

building for HelloOperationQueues, 30–31

building Interestingness, 7–9

connecting data to, 102–104

delegates, 102–103

notifications, 103

setter propagation, 104

non-responsive, 6–15

adding JSON parsing framework to

Interestingness application, 10

building Interestingness user interface,

7–9

composing RESTful request for list of

Interestingness images, 10–12

RESTful request and JSON parser, 12–

13

UITableViewDataSource protocol

methods, 14–15

providing player state in, 305

setting up, 298–301

source-driven design, 96–99

challenges, 97–98

techniques, 98–99

userInfo variable, 316

utility classes, AVFoundation, 295

Uunity editor, 209

■V
valueForProperty method, 123

valueForProperty: method, 123

Vector3.right property, 207

version control systems, 134

vertexCount variable, 178

vertexes, 198, 203

VertexPredicate class, 75–76

VertexPredicate::operator() method, 75–76

vertices array, 177

Video Poker, 257–258, 281

video windows feature, 143

Video_PokerAppDelegate.m file, 261

view-based application, 111, 145, 296–297

view-based XCode project, 112

viewDidLoad: method, 33, 154

viewWillAppear: method, 12, 22, 39, 48

virtual viewfinder, 159

■W
"Walk" (characterModel.animation.CrossFade)

method, 236

walking animation, 223, 233, 237–238

warrior animation, 236

Wavefront OBJ file format, 62

Weather app, Apple, 94

webcam support feature, 143

Wenderlich, Ray, 286

wget command, 171

while arc4random() method, 266

Window-based Application template, XCode, 7

winSize function, 274

winSize property, 270

Index 345

Wolfram Alpha computational knowledge

engine, 285

work units, creating by subclassing, 32–33

workMsg property, 32

workOperation operation, 25

workQueue class, 33

World Wide Developers Conference (WWDC)

Apple, 4–6

wrapper classes, 303

Wright, Richard S., 4

writing tools, advantages of, 60–61

WWDC (World Wide Developers Conference)

Apple, 4–6

■X
XCode, 145, 255–256

.xib file, 149

XML (Extensible Markup Language), 6, 154,

158

XY values, 186

■Z
z character, 174

Z range, 182

Z-Axis management, 270

z-Delete utility, 82, 234

	Title Page

	Copyright Page

	Contents at a Glance
	Table of
Contents
	Preface
	Acknowlegments
	Introduction
	Who This Book Is For
	What’s in the Book

	Danton Chin
	Chapter 1 Using Concurrency to Improve the Responsiveness of iPhoneand iPad Applications
	Prepare for Concurrency
	Non-Responsive User Interfaces
	Building the Interestingness User Interface
	Adding A JSON Parsing Framework to the InterestingnessApp
	Composing a RESTful Request for a List of Interestingness Images
	Using the RESTful Request and the JSON Parser to Parse the Response
	Implementing the UITableViewDataSource Protocol Methods to Display the Results

	Concurrency Landscape
	Considerations When Using Concurrent Solutions
	Concurrency with NSThread and NSObject
	Concurrency with Operation Objects
	NSOperationQueue
	NSOperation and NSInvocationOperation
	NSInvocationOperation—Quick and Easy
	Subclassing NSOperation
	Building HelloOperationQueues—a Toy Application
	Building the User Interface for HelloOperationQueues
	Creating Work Units by Subclassing NSOperation
	Implementing HelloOperationQueues
	Changing the Interestingness App to Use NSOperationQueues
	Implementing the NSInvocationOperation to Fetch the List of interestingness images
	Implementing FetchImageOperation a Subclass of NSOperation
	Implementing the getImageForURL: and storeImageForURL:Methods

	Concurrency with Operation Objects and Blocks
	Blocks
	Adding the PLBlocks Framework
	Changing the Interestingness Application to Use NSOperationQueues and Blocks
	Converting the Interestingness App to Use an Official Version of Blocks and NSBlockOperation from Apple

	Summary
	Resources
	Apple and Apple-related News
	Apple Documentation
	Blocks and Grand Central Dispatch
	General
	JSON
	POSIX Threads

	Claus Höfele
	Chapter 2 Your Own Content Pipeline: Importing 3D Art Assets into Your iPhoneGame
	Starting an iPhone Game
	Why Write Your Own Tools?
	Creating a Flexible Content Pipeline
	The Tools Problem
	Data Exchange vs. In-Game File Formats

	Outline of the Example Code
	Exporting 3D Models
	Reading FBX files

	Traversing the Scene Contents
	Distinguishing between Different Types of Scene Nodes
	OpenGL Triangle Data
	Converting FBX Models into Triangle Data
	Converting Triangle Data into an In-Game Format

	Handling Textures
	Image Compression vs. Texture Compression
	Imagination’s PVRTC Format
	Reading PNG Images
	Converting Images into the PVRTC Format

	Rendering the Converted Data on the iPhone
	Running the Converter Tool
	Creating the iPhone Project

	Summary

	Ben Kazez
	Chapter 3 How Flight Track Uses External Data Providers to Power This Best-SellingTravel App
	Choosing a Data Source
	API Design
	Data Coverage and Accuracy
	Economics
	Attribution
	Subscription
	Transactional
	Revenue Share

	Trials

	Source-Driven User Interface Design
	Challenges
	Techniques from FlightTrack

	Design Patterns for Data Source Consumption
	Direct-Client Consumption
	Server-Intermediary Consumption

	Data-Driven Cocoa App Architecture
	Data Model Design
	Connecting Data to UI
	Delegates
	Notifications
	Setter Propagation

	Choosing an Approach

	Release!
	FlightTrack Today

	Saul Mora
	Chapter 4 Write Better Code and Save Time with Unit Testing
	Mock Objects
	Testing Your Core Data Models
	Summary

	Leon Palm
	Chapter 5 Fun with Computer Vision:Face Recognition with OpenCV on the iPhone
	What Is Computer Vision?
	Why Do Computer Vision on an iPhone?
	Your Project: Creating a Face Detector
	Setting Up OpenCV
	Setting Up XCode
	Adding Image Conversion Functions
	Creating a Simple GUI
	Loading Images from the Photo Library
	Loading the Haar Cascades
	Performing Face Detection
	Bonus

	Performance Tweaking
	Going Further
	Summary

	Scott Penberthy
	Chapter 6 How to Use OpenGL Fonts without Losing Your Mind
	History
	Terminology
	Pragmatic Fontery
	fCookie
	Creating a Font’s Texture Atlas
	Texture Mapping
	Opening Your App

	The Fontery Classes
	APGlyph
	APChar
	APText

	Putting It All Together
	Setting Up the Display
	Creating Your Fortune
	Displaying the Fortune
	Summary

	Ben Britten Smith
	Chapter 7 Game Development with Unity
	What Is Unity?
	Why Use Unity?
	Exploring the Unity Interface
	The Scene View
	The Game View
	The Project View
	The Hierarchy View
	The Inspector View
	How the Pipeline Flows
	The Transform: Everybody Has One
	Meshes, Renderers, and Materials
	Importing Assets
	Custom Scripting
	Playing Your Game
	Coroutines Not Updates
	The Game View
	Adding Lights
	Using the iPhone as a Game Pad

	Your Game
	Adding a Base to Work From
	The Main Character
	Inputs and Colliders
	Your First Design Iteration
	Adding More Touchable Objects
	Prefabs
	Animations
	Animation Import Settings
	Interacting with Something Besides the Floor
	User Interface
	Multiple Cameras
	3D Objects As GUI Items
	Building for Your Device

	Summary

	Chuck Smith
	Chapter 8 Cocos2d for iPhone and iPad; It Is Easier than YouThink
	Origins of Cocos2d
	Why Use Cocos2d?
	Getting Started with Cocos2d
	Installing Cocos2d
	Configuring Sample Code
	Installing the XCode Project Templates
	Starting a New Project

	Introduction to Video Poker
	Making a Scene
	Creating a Game Menu

	Game Logic
	Card
	Deck
	SimpleHand
	I Like the Sprites in You
	Load and Display a Sprite
	Manipulating Sprites
	Spawns
	Sequences

	Putting It All together
	Events: Making It Interactive
	Detecting Sprite Taps
	Combining Many Actions Together
	Switching a Sprite Image

	Adding Sound
	Supporting the iPad
	Further Exploring cocos2d

	David Smith
	Chapter 9 Creating an Audio-Centric App for the iPhone with AVAudioPlayer
	Design
	Designing for Your Target User
	Our Design Process
	Home Screen
	Book Selection Screens
	Book Information Screen
	Player Screen

	Implementation
	Example Project
	Getting Started
	Setting Up the UI
	Coding the Audio Player
	Connecting the Play/Pause Button
	Connecting the Skip Controls
	Providing Player State in the UI
	Understanding Audio Sessions

	Summary

	Joost van de Wijgerd and Arne de Vries
	Chapter 10 Implementing PushNotifications at eBuddy
	Introduction to eBuddy
	The eBuddy Messenger
	The eBuddy iPhone Application

	Apple Push Notification Service
	The Communication Flow
	The Client Implementation

	The eBuddy Push Implementation
	Client / Server Protocol
	Server to APNS
	Fitting the Parts Together

	Changes along the Way
	Introducing eBuddy Pro
	Extending the Beta Program

	Summary

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

