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Preface

This volume contains the conference proceedings of the 39th German Conference on
Artificial Intelligence, KI 2016, which was held on September 26–30, 2016. Having
started as German Workshop on AI (GWAI) in 1975, this annual event traditionally
brings together academic and industrial researchers from all areas of AI, providing a
highly regarded international forum for research on the foundations and applications of
artificial intelligence systems and algorithms.

This year, the conference took place in Klagenfurt, Austria, in conjunction with the
Austrian Society for Artificial Intelligence (ÖGAI). Five workshops on specialized
topics within Artificial Intelligence as well as the workshop on Current AI Research in
Austria (CAIRA) were held on the first two days of the conference, followed by three
days featuring the main technical program of the conference.

The conference received 44 submissions from 18 countries, which were evaluated in a
rigorous single-blind peer reviewing process by a Program Committee including 49
experts. Of the 44 submissions, 8 (18 %) were accepted for inclusion in these proceedings
as full papers, and a further 12 (27 %) were accepted as technical communications.
Technical communications are shorter papers that can report on research in progress,
important implementation techniques or experimental results, novel interesting bench-
mark problems, or other issues of interest to the AI community.

We thank all Program Committee members and additional reviewers for their efforts
in reviewing and discussing the submissions to the conference. The selectivity of the
review process shows the dedication of the Program Committee to maintaining high
quality standards and is a major reason for the ongoing success and vitality of the KI
conference series.

In order to further promote the role of the KI conference as a venue for the exchange
of ideas between AI researchers and practitioners in the German-speaking countries, in
a new initiative, KI 2016 also invited researchers from Germany, Austria, Switzerland,
and neighboring regions who have published papers at the flagship international AI
conferences in 2016 to present this work at KI. This initiative was very well received,
resulting in 18 additional conference presentations. In addition, the presenters were
given the opportunity of providing a report on their research to the KI audience in the
form of an extended abstract, an opportunity that 16 of the 18 presenters made use of.
These extended abstracts are included in an appendix of these proceedings.

Last but certainly not least, the KI 2016 program included four keynote presenta-
tions by distinguished scientists. Our heartfelt thanks goes to Michael Wooldridge
(“From Model Checking to Equilibrium Checking”), Thomas Eiter (“Artificial Intel-
ligence at the Gates of Dawn?”), Michael May (“Towards Industrial Machine Intelli-
gence”), and Ulrich Furbach (“Automated Reasoning and Cognitive Computing”).

Concluding these remarks, we would like to thank everyone who helped make KI 2016
a success. This, of course, includes all authors, Program Committee members, reviewers,
and keynote speakers, as well as the organizers, reviewers, and authors of the workshops.



In addition to the conference and program chairs, the organizing team included Konstantin
Schekotihin, Gerald Steinbauer, and Stefan Wölfl, who dedicated much of their time and
deserve many thanks for organizing the workshop program, liaising with the German and
Austrian AI societies, advertising the conference, and providing general advice. Our final
thanks goes to the the participants of KI 2016, the heart and soul without which the
conference could not exist.

September 2016 Gerhard Friedrich
Malte Helmert
Franz Wotawa
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Providing Built-In Counters in a Declarative
Dynamic Programming Environment

Michael Abseher, Marius Moldovan(B), and Stefan Woltran

Institute of Information Systems 184/2,
TU Wien, Vienna, Austria

{abseher,moldovan,woltran}@dbai.tuwien.ac.at

Abstract. D-FLAT is a framework for developing algorithms that solve
computational problems by dynamic programming on a tree decompo-
sition of the problem instance. The dynamic programming algorithm
is specified by means of Answer-Set Programming (ASP), allowing
for declarative and succinct specifications. D-FLAT traverses the tree
decomposition and calls an ASP system with the provided specification
at each tree decomposition node. It is thus crucial that the evaluation
of the ASP program is done in an efficient way. As experiments have
shown, problems that include weights or more involved arithmetics slow
down this step significantly due to the grounding step in ASP, which
yields large ground programs in these cases. To overcome this problem,
we equip D-FLAT with built-in counters in order to shift certain com-
putations from the ASP side to the internal part of D-FLAT. In this
paper, we highlight this new feature and provide empirical benchmarks
on weighted versions of the Dominating Set problem showing that our
new version increases D-FLAT’s robustness and efficiency.

1 Introduction

Many computationally hard problems become tractable if the graph structure
underlying the problem instance at hand exhibits certain properties [17,23].
An important structural parameter of this kind is treewidth [9,25]. By using a
seminal result due to Courcelle [13] several fixed-parameter tractability (FPT)
results have been proven in the last decade for this parameter. Moreover, small
treewidth often occurs in practice, for instance, in traffic networks1.

To turn such tractability results into efficient computation, designing a suit-
able dynamic programming (DP) algorithm that works directly on tree decompo-
sitions of the instances is necessary (see, e.g., [14,23]). D-FLAT [1,2] is a system
for rapid prototyping of such DP algorithms by making use of Answer-Set Pro-
gramming (ASP) [12]. The key features of D-FLAT are that (i) ASP is used
to specify the DP algorithm by declarative means; this allows for a convenient
way to describe table transitions which are the typical operations in DP [23];

1 In [4] it was shown that the treewidth of metro and urban train systems even of
large cities like Singapore is relatively small and often not much higher than 5 or 6.

c© Springer International Publishing AG 2016
G. Friedrich et al. (Eds.): KI 2016, LNAI 9904, pp. 3–16, 2016.
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4 M. Abseher et al.

(ii) the burden of computation and optimization is delegated to existing tools for
finding tree decompositions and to ASP solvers; and (iii) D-FLAT relieves the
user from tedious non-problem-specific tasks, but stays flexible enough to offer
enough power to solve a large number of problems [8]. D-FLAT is free software
written in C++ and internally uses the answer set solving systems gringo and
clasp [20], as well as an improved version of the htdecomp library2 for heuristi-
cally generating a tree decomposition of the input [16].

As experiments have shown, problems which include weights or more involved
arithmetic operations slow down D-FLAT. This can be explained by the ground-
ing step in ASP which yields large ground programs in such cases. To overcome
this problem, we present in this paper a new version of D-FLAT which offers
built-in counters in order to shift certain computations from the ASP side to
the internal part of D-FLAT, but keeping the ASP interface of D-FLAT fully
declarative. We shall describe the usage of this new feature via some examples
and provide empirical benchmarks on weighted versions of the Dominating Set
(DS) problem. However, the aim of this work is not to outperform existing ASP
solvers (where the unsatisfiable-core option is often the most efficient) but to
simplify the process of developing complex dynamic programming algorithms.

Several attempts to separate more involved computational operations from
the actual ASP evaluation exist, resulting in systems which are termed as hybrid
or ASP-modulo solvers, see e.g. [22,24]. However, in the case of D-FLAT, shift-
ing certain operations from the ASP side to the D-FLAT functionality is even
more natural, since D-FLAT already takes care of several tasks in-between the
calls of the ASP system (for instance, to remove duplicate information in the
subsolutions of the DP). The latest version of the D-FLAT system is available
at www.dbai.tuwien.ac.at/proj/dflat/system/. This page also contains further
examples of how to use the new built-in counters.

2 Background

Answer Set Programming. Answer Set Programming (ASP) is a declarative lan-
guage where a program Π is a set of rules

a1 ∨ . . . ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn.

The constituents of a rule r ∈ Π are h(r) = {a1, . . . , ak}, b+(r) = {b1, . . . , bm}
and b−(r) = {bm+1, . . . , bn}. We call r a fact if b+(r) = b−(r) = ∅, and we omit
the ← symbol in this case. A set of atoms I satisfies a rule r if I ∩ h(r) �= ∅ or
b−(r) ∩ I �= ∅ or b+(r) \ I �= ∅. I is a model of a set of rules if it satisfies each
rule. I is an answer set of a program Π if it is a subset-minimal model of the
program ΠI = {h(r) ← b+(r) | r ∈ Π, b−(r) ∩ I = ∅} [21].

In this paper, we use the language of the grounder gringo [18,19] (version 4)
where programs may contain variables that are instantiated by ground terms

2 Free software, available at github.com/mabseher/htd.

www.dbai.tuwien.ac.at/proj/dflat/system/
http://github.com/mabseher/htd
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(elements of the Herbrand universe, i.e., constants and compound terms con-
taining function symbols) before a solver computes answer sets according to the
propositional semantics stated above.

Example 1. The following program solves the Dominating Set (DS) problem
for graphs that are given as facts using the predicates vertex/1 and edge/2, i.e.
we have to determine sets S such that each v ∈ V is either contained in S or
adjacent to at least one vertex from S. In the latter case we call v dominated.

{ selected(X) : vertex(X) }.

dominated(Y) :- selected(X), edge(X,Y).

:- vertex(X), not selected(X), not dominated(X).

The first rule chooses which of the vertices are selected for the dominating set.
The second rule derives dominated/2 for each vertex which is adjacent to a
selected vertex. Finally, the last rule ensures that each vertex is selected or
dominated.

Dynamic Programming on Tree Decompositions. The ideas underlying the con-
cept of dynamic programming on tree decompositions stem from the field of para-
meterized complexity. Many computationally hard problems become tractable
in case a certain problem parameter is bound by a fixed constant. This property
is referred to as fixed-parameter tractability [17], and the complexity class FPT
consists of problems that are solvable in f(k) · nO(1), where f is a function that
only depends on the parameter k, and n is the input size.

For problems whose input can be represented as a graph, an important
parameter is treewidth, which measures “tree-likeness” of a graph. It is defined
by means of tree decompositions (TDs) [25]. A tree decomposition of a graph
G = (V,E) is a pair T = (T, χ) where T = (N,F ) is a (rooted) tree and
χ : N → 2V assigns to each node a set of vertices (called the node’s bag),
such that the following conditions are met: (1) for every v ∈ V , there exists a
node n ∈ N such that v ∈ χ(n); (2) for every edge e ∈ E, there exists a node
n ∈ N such that e ⊆ χ(n); and (3) for every v ∈ V , the subtree of T induced
by {n ∈ N | v ∈ χ(n)} is connected. The width of T is maxn∈N |χ(n)| − 1.
The treewidth of a graph is the minimum width over all its tree decompositions.
Although constructing a minimum-width TD is intractable in general [5], it is in
FPT [10] w.r.t. parameter treewidth, and moreover, there are polynomial-time
heuristics giving “good” TDs [11,15,16]. Variants of the Dominating Set prob-
lem are examples for problems in FPT when considering treewidth as parameter.

Example 2. Let us consider the enumeration variant of the Minimum Domi-
nating Set (MDS) problem on a graph G = (V,E). This means we want
to determine all dominating sets S of minimal cardinality. An example graph
GEx and a possible TD TEx are given in Fig. 1. The width of TEx is 2. Note
that T contains unnecessarily many nodes: We could obtain another valid TD
for GEx by arranging n3, n2 and n1 in a path. However, we chose TEx to
serve for our example because it is more suitable for illustrating DP algorithms
(cf. Example 3).
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GEx : u

v

w

x

y

z

TEx : ∅n6

{x}n5

{v, w, x}n2

{u, v}n1

{x} n4

{x, y, z} n3

Fig. 1. Example graph GEx and a TD TEx for GEx .

r D P C

61 (51), (52) 2
n6

r D P C

51 x (23, 41), (27, 41) 2

52 x (25, 42) 2

n5

r D P C

21 v, w, x (13) 3

22 v, w, x (13) 2

23 v, x, w (13) 2

24 w, x, v (12) 3

25 v, w, x (13) 1

26 w, v, x (12) 2

27 x, v, w (12) 2

n2

r D P C

11 u, v () 2

12 u, v () 1

13 v, u () 1

14 () 0

n1

r D P C

41 x (35) 1

42 x (36), (37) 1

n4

r D P C

31 x, y, z () 3

32 x, y, z () 2

33 x, z, y () 2

34 y, z, x () 2

35 x, y, z () 1

36 y, x, z () 1

37 z, x, y () 1

38 () 0

n3

Fig. 2. DP computation for MDS

Algorithms for DP on TDs generally traverse the TD in post-order. At each
node, partial solutions for the subgraph induced by the vertices encountered so
far are computed and stored in a data structure associated with the node. The
goal of DP algorithms on TDs is generally to compute every such data structure
in polynomial time, assuming the treewidth of the instances is bounded. This
results in an algorithm that decides the problem in polynomial time because the
number of TD nodes is linear in the input size. So if the width is bounded by a
constant, the search space for subproblems is constant as well, and the number
of subproblems only grows linearly for larger instances.
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Example 3. Figure 2 illustrates the DP computation for MDS. The tables are
computed as follows. For a TD node n, each table row r consists of data D(r),
which stores partial solutions (subsets of dominating sets) over vertices in χ(n).
Here, D(r) contains vertices which are selected into a dominating set and dom-
inated vertices. To distinguish the two groups in Fig. 2, dominated vertices are
highlighted via a bar above the vertex name. All vertices in χ(n) \ D(r) have to
be dominated during the further steps of the tree traversal. The set P(r) contains
so-called extension pointer tuples (EPTs) that denote the rows in the children
which r was constructed from. The value in column C denotes the cost (number
of selected vertices) of the cheapest solution which is consistent with the selection
in D(r). Partial solutions with higher costs are not propagated. First consider
node n1: Here, χ(n1) = {u, v} allows for four solution candidates. In n2, the child
rows are extended, the partial assignments are updated (by removing vertices
not contained in χ(n2) and guessing which of the vertices in χ(n2)\χ(n1) are to
be selected and which become dominated). In n3 we proceed as described before.
In n4, data related to removed vertices y and z are projected away. (Observe
that row 42 is constructed from two different child rows.) In n5, additionally
only partial solutions that select the same subset of common vertices are to be
joined. We continue this procedure recursively until we reach the TD’s root.

The overall procedure is in FPT time because the number of nodes in the
TD is bounded by the size of the input graph and each node n is associated
with a table of size at most O(2|χ(n)|) (i.e., the number of possible selections).
Solutions (minimum dominating sets of GEx ) can be enumerated with linear
delay by starting at the root and following the EPTs while combining the partial
assignments associated with the rows. For instance, the minimum dominating
set {v, x} is constructed by starting at 61 and following EPTs (51), (23, 41), (13)
and (35), thereby combining D(61) ∪ D(51) ∪ D(23) ∪ D(41) ∪ D(13) ∪ D(35).

3 D-FLAT: A Quick Tutorial

D-FLAT [1,7] is a framework for developing algorithms that solve computational
problems by dynamic programming on a tree decomposition of the problem
instance. It proceeds in the following way:

1. D-FLAT parses a representation of the problem instance and automatically
constructs a tree decomposition of it using heuristic methods.

2. It provides a data structure that is suitable for representing partial solutions
for many problems. The programmer only needs to provide an ASP program
of how to populate the data structure associated with a TD node.

3. D-FLAT traverses the tree decomposition in post-order and calls an ASP
system at each tree decomposition node for computing the data structure
corresponding to that node by means of the user-specified program.

4. The framework automatically combines the partial solutions and prints all
complete solutions. Alternatively, it is also possible to solve decision, counting
and optimization problems.
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Table 1. Reserved predicates for specifying the DP via ASP in D-FLAT.

Input predicate Meaning

initial The current tree decomposition node is a leaf

childNode(N) N is a child of the current decomposition node

current(V ) V is an element of the current bag

introduced(V ) V is a current vertex but was in no child node’s bag

removed(V ) V was in a child node’s bag but is not in the current one

childRow(R,N) R is a table row belonging to decomposition node N

childItem(R, I) The item set of table row R contains I

childAuxItem(R, I) The auxiliary item set of table row R contains I

childCost(R,C) C is the cost value corresponding to the table row R

Output predicate Meaning

item(I) The item set of the current table row shall contain the
item I

auxItem(I) The auxiliary item set (for the default-join) of the
current table row shall contain the item I

extend(R) The current table row shall extend the child table row R

cost(C) The current table row shall have a cost value of C

currentCost(C) The current table row shall have a current cost value of
C

The system is free software and can be downloaded at www.dbai.tuwien.ac.
at/research/project/dflat/system/. In our presentation of the initial D-FLAT
prototype [7] we were able to successfully apply it to several problems, and we
showed in [8] which modifications could further extend its applicability.

Before we move on to introducing new functionality we first want to draw
the reader’s attention to the most important input and output predicates used
in D-FLAT. Here we restrict ourselves to those predicates in D-FLAT’s table
mode that are crucial for this paper. D-FLAT also offers an item tree mode for
problems at higher levels of the polynomial hierarchy, which we will not handle
here. The full set of input and output predicates supported by D-FLAT together
with their detailed semantics can be found in [1].

Table 1 shows available input predicates which are provided to the ASP solver
in each decomposition node and refer to the structure of the tree decomposition
and to the information which was computed in the child nodes of the current
decomposition node, respectively. To enable D-FLAT to store partial solution
candidates and other relevant information which should be propagated to the
parent nodes of the TD, certain output predicates are required. Also these pred-
icates are shown in Table 1.

In Listing 1.1 we provide a simple example which shows how to solve the
problem of Minimum Weighted Dominating Set (MWDS) (i.e., given a

www.dbai.tuwien.ac.at/research/project/dflat/system/
www.dbai.tuwien.ac.at/research/project/dflat/system/
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1 1 { extend(R) : childRow(R,N) } 1 :- childNode(N).

2 { item(in(X)) : introduced(X) }.

3 item(in(X)) :- extend(R), not removed(X), childItem(R,in(X)).

4 auxItem(dominated(X)) :- extend(R), not removed(X),

childAuxItem(R,dominated(X)).

5 auxItem(dominated(Y)) :- item(in(X)), current(X),

current(Y), edge(X,Y).
6 :- extend(R), removed(X), not childItem(R,in(X)),

not childAuxItem(R,dominated(X)).
7 cost (0) :- initial.

8 cost(CC + IC) :- extend(R), childCost(R,CC), IC =

#sum{ W,X : item(in(X)), introduced(X), weight(X,W) }.

9 currentCost(CC) :- CC =

#sum{ W,X : item(in(X)), weight(X,W) }.

Listing 1.1. MWDS encoding for D-FLAT with default-join.

graph with weights associated to vertices, find all weight-minimal subsets S of
vertices such that each vertex is either contained in S or directly adjacent to a
vertex in S) using D-FLAT on semi-normalized3 tree decompositions. In Line 1
we guess a child row which should be extended. In Line 2 we guess which of the
introduced vertices X are actually in S. Via Lines 3 and 4 we retain information
computed in the child nodes which is still relevant and in Line 5 we update which
of the vertices is dominated by S. For each vertex which is removed from the
bag we have to make sure that it is either selected or dominated; this is handled
by the constraint in Line 6.

This solves the problem of DS. To retain only weight-minimal solutions we
have to add the rules in Lines 7–9 in the previous versions of D-FLAT. For leaf
nodes (they are empty by default in D-FLAT) we assign a cost of 0. In Line 8
we set the cost of the current node equal to the cost of the child node plus the
sum of weights of newly added vertices to the dominating set and via Line 9 we
keep track of the cost generated by vertices which are in the current node bag
and in the dominating set by summing up their weights. In join nodes, D-FLAT
uses the so-called default-join where candidates with equal item sets are merged
and the costs are updated automatically using the inclusion-exclusion principle
which ensures in our case that a single selected vertex is counted only once.

This approach works well only in cases when the grounding of the rules having
cost/1 or currentCost/1 in the head can be done fast. The larger the bags and/or
the more complex the required arithmetics become, the more possibilities there
are for the outcome of the cost predicates so grounding a rule like those in Lines
8 or 9 will take more and more time.

4 Built-In Counters

In order to overcome the aforementioned problems, we extend the functionality
offered for tracking the cost of each solution to any type of counter, such that
D-FLAT now also stores the value for any defined counter, not only for the cost of

3 Each node n has at most two child nodes; in case of two child nodes, the bags of n
and its children contain the same vertices.
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a solution, internally. To this end we introduce new output predicates: counter/2
and currentCounter/2. counter/2 takes an identifier and an integer value and
sets the value of the counter denominated by the first argument, in the current
table row. If the counter does not exist yet, it is created with its first occurrence
as argument of the predicate counter/2. currentCounter/2 also takes a string
and an integer value, yet it sets the value of the counter denominated by the first
argument only corresponding to the current node. The latter is necessary when
using the option --default-join, which D-FLAT now uses to automatically
merge counter values from different branches at join nodes by the inclusion-
exclusion principle, just as it used to do for costs in previous versions. On the one
hand, this feature makes the post-processing node with identical bag elements
above each join node, when using the default-join, superfluous, on the other
hand it offers the possibility to write encodings that are easier to understand
and maintain.

Furthermore, D-FLAT now offers another feature that also boosts its perfor-
mance. Instead of having to calculate the value for each counter every time, we
can specify by how much a certain counter will be incremented. For this purpose,
D-FLAT offers output predicates counterInc/2+ and currentCounterInc/2+.
These can be used alternatively to counter/2 and currentCounter/2 to incre-
ment the counter, or current counter, respectively, denominated by the first
argument, by the value given in the second. The values of the counter and the
current counter, respectively, to be incremented are taken by D-FLAT from the
extended table row of the child node, or the extended item tree leaf of the child
node, respectively. Further, we need to add as many arguments as needed to make
each instantiation of the predicate unique. The uniqueness in turn is required
to ensure that the different instantiations with the same cost do not overlap.
Hence the predicates have arity of at least two. Again, if the counter does not
exist yet, it is created with its first occurrence as argument of the predicate
counterInc/2+. In the worst case, the performance does not improve signifi-
cantly, on average however, it improves due to smaller program groundings. The
latter can be achieved as the use of aggregate functions is not necessary anymore
when incrementing, as opposed to calculating, counter values.

When these new predicates are used with “cost” as first parameter, they
act as a cost declaration and D-FLAT optimizes the set of solutions specifi-
cally on the values stored in this counter. Further, if counters other than the
“cost” counter have different values for identical item sets, the partial answer
sets are not merged. For removing counters which will not be used anymore,
D-FLAT provides the output predicate counterRem/1, which takes the name
of the counter to be removed as its argument. Further, besides the predicate
childCost/2, also childCounter/3 is printed for each counter, at each node,
and passed as input for the parent node of the tree decomposition. The first
argument indicates the extended table row of the child node, or the extended
item tree leaf of the child node, respectively, while the second denominates the
counter and the third bears its value.
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1 counterInc(cost ,W,X) :- introduced(X), item(in(X)),

weight(X,W).

2 currentCounterInc (cost ,W,X) :- introduced(X), item(in(X)),

weight(X,W).

3 currentCounterInc (cost ,-W,X) :- extend(R), removed(X),

childItem(R,in(X)), weight(X,W).

Listing 1.2. Cost calculation for MWDS using counters.

Table 2 shows the newly introduced predicates in D-FLAT’s table mode. The
same functionality is provided in item tree mode by analogous predicates.

Table 2. New reserved predicates for specifying counters in D-FLAT.

Input predicate Meaning

childCounter(R, T,C) C is the counter value corresponding to the
table row R and the counter T

Output predicate Meaning

counter(T,C) The counter T of the current table row shall
have a value of C

currentCounter(T,C) The current counter T of the current table row
shall have a value of C

counterInc(T,C) The value of the counter T of the current table
row shall be increased by a value of C

currentCounterInc(T,C) The value of the current counter T of the
current table row shall be increased by a
value of C

counterRem(T ) The counter (and current counter) T shall be
removed

Usage of the New Features. In order to illustrate the use of the newly introduced
predicates in a simple manner, we present the cost calculation for the MWDS
encoding for D-FLAT with default-join on semi-normalized tree decompositions
using the counterInc/2+ and currentCounterInc/2+ predicates in Listing 1.2,
replacing Lines 7–9 from Listing 1.1. Instead of summing up vertex weights in
each inner node and having to use time-costly aggregate functions, we only
increment the value of the cost by the weights of the newly introduced vertices
that are part of the dominating set (Line 1). For the current cost, we increment
this value by the weights of the newly introduced vertices that are part of the
dominating set (Line 2), and decrement it by the weights of the newly removed
vertices that are part of the dominating set (Line 3).

Further, if we wanted to implement a generalization of Minimum Weighted
Perfect Dominating Set (MWPDS), where one can specify for each vertex
by how many other vertices it is allowed to be dominated, we would need to use
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1 auxItem(dominated(Y,N,CR)) :- extend(R), currentNode(CR),

introduced(Y), not item(in(Y)),

1 #count { CH: childAuxItem(R,n(CH)) } 1,
N = #count { X : item(in(X)), edge(X,Y) }.

2 auxItem(dominated(Y,N1+N0,CR)) :- extend(R),

currentNode(CR), current(Y),
1 #count { CH: childAuxItem(R,n(CH)) } 1,
childAuxItem(R,dominated(Y,N1 ,CH1)), N0 =
#count { X : item(in(X)), edge(X,Y), introduced(X) }.

3 auxItem(dominated(Y,N1+N2-N12 ,CR)) :- extend(R),

currentNode(CR),
current(Y), childAuxItem(R,dominated(Y,N1,CH1)),
childAuxItem(R,dominated(Y,N2 ,CH2)), CH1 != CH2 ,

N12 = #count { X : item(in(X)), edge(X,Y) }.

4 auxItem(n(CR)) :- currentNode(CR).

5 :- extend(R), removed(X), not childItem(R,in(X)),

childAuxItem(R,dominated(X,N,CH)), lowerBound(X,B),

N<B.

6 :- extend(R), removed(X), not childItem(R,in(X)),

childAuxItem(R,dominated(X,N,CH)), upperBound(X,B),

N>B.

Listing 1.3. Generalized MWPDS encoding: auxiliary items and constraints.

some rather cumbersome constructs, namely the code in Listing 1.3, replacing
Lines 4–6 from Listing 1.1. Instead of using an auxiliary item dominated/1, with
one argument, now we would need one that takes three arguments: besides the
name of the dominated vertex, the number of vertices it is dominated by and the
name of the current node. The latter is necessary together with another option
that inserts a so-called post-processing node with identical bag content right
above each join node (option --post-join), where the dominated/3 predicate
can be adjusted, as the default-join just passes auxiliary items through without
merging them. In Line 1 we count for each vertex newly introduced into a bag
of exchange nodes, by how many other vertices it is dominated, in Line 2 we
instantiate the dominated/3 predicate for vertices which are not new to the
tree decomposition by adding the number of dominating vertices in the child
node to the number of newly introduced dominating vertices, while in Line 3 we
merge the dominated/3 instantiations in a post-processing node, coming from
different branches of the join node below, by the inclusion-exclusion principle.
Line 4 defines the n/1 predicate which is used when checking that we are not
dealing with a post-processing node. Finally, in Lines 5 and 6 we throw away all
those partial solution candidates for which there is at least one newly removed
vertex that does not comply with the number of vertices it must be dominated
by in case it is not part of the dominating set.

Using the newly implemented built-in counters simplifies the encoding for
two reasons: we do not need auxiliary items and post-processing nodes are
not necessary anymore, as the counters replacing dominated/3 are now merged
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1 counter(Y,N) :- introduced(Y), not item(in(Y)),

N = #count { X : item(in(X)), edge(X,Y) }.

2 counter(Y,N0+N1) :- extend(R), current(Y),

childCounter(R,Y,N1), N0 =

#count { X : item(in(X)), edge(X,Y), introduced(X) }.

3 currentCounter(Y,N) :- current(Y), not item(in(Y)),

N = #count { X: item(in(X)), edge(X,Y) }.

4 counterRem(Y) :- removed(Y).

5 :- extend(R), removed(X), not childItem(R,in(X)),

childCounter(R,X,N), lowerBound(X,B), N<B.

6 :- extend(R), removed(X), not childItem(R,in(X)),

childCounter(R,X,N), upperBound(X,B), N>B.

Listing 1.4. Use of built-in counters for generalized MWPDS.

automatically in join nodes when using the default-join. Thus, the counters need
to store only their name, which coincides here with the name of the vertex they
describe, and the number of vertices that dominate the former, as shown in
Listing 1.4, which illustrates the use of counter/2 and currentCounter/2. The
rule in Line 1 instantiates the counters for newly introduced vertices that are
not part of the dominating set. The next rule defines the counters for vertices
that are not newly introduced by adding the value of the counter of the vertex
in the child node to the number of newly introduced vertices it is dominated by
in the current node. In Line 3, we now define the current counter for each vertex
that is not in the dominating set as being the number of vertices that dominate
the former, for the default-join to be able to correctly merge the counters in join
nodes by the inclusion-exclusion principle. Line 4 is needed for D-FLAT to stop
carrying counters of vertices that are not in the current bag anymore and the
last two lines again throw away those partial solution candidates for which the
number of dominating vertices is out of the specified range. These improvements
to the MWPDS encoding are rather small in terms of runtime, being attributed
to the fact that a post-processing node is not needed anymore. However, the
readability of the code is strongly improved.

5 Experimental Results

In order to check possible performance improvements of the new features, we
compared the implementation for D-FLAT of the MWDS problem, that does
not use the newly implemented features, as seen in Listing 1.1, and the one in
which Lines 7–9 from Listing 1.1 are replaced by Listing 1.2, using the newly
introduced built-in counters to calculate the costs of the solutions. Further, we
used a standard ASP encoding for the MWDS problem, which we fed to clingo
[20] using two different strategies, branch-and-bound and unsatisfiable-core, for
having a general reference. The complete benchmark set-up is available online4.

4 See www.dbai.tuwien.ac.at/proj/dflat/system/files/counters.zip.

www.dbai.tuwien.ac.at/proj/dflat/system/files/counters.zip
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As benchmarks we used 50 graphs based on real world instances of rail trans-
portation networks in and around cities, namely combinations of train, metro
and tram networks. They all have a treewidth of at most three and less than
400 vertices. For each graph we generated random weights and compared how
the total number of rules generated in the grounding steps and the runtime var-
ied when the weights took values of at most 1, 10, 100 and 1000, respectively.
The tests were performed using ten different seeds for each instance on D-FLAT
implementations on a machine with an AMD Opteron 6308@3.5 GHz processor
operated with Debian 8 (jessie, kernel 3.16.0-4-amd64), on which clingo 4.5.0
and D-FLAT 1.2.0 were executed.

Figure 3 shows the results on 32 of the preliminary experiments, the rest
exceeding the time bound of 30 min for clingo with branch-and-bound. As we
can see, without using the new features, the runtime of D-FLAT grows linearly
with an increase of the weights of the vertices and there is a clear correlation
between the total number of rules in the groundings used by D-FLAT and the
total necessary computation time. This can be easily explained by the fact that
aggregate functions were used, whose groundings also grow with the existence of
higher weights. The wider the span of weights gets, the smaller the probability
becomes that some rules coincide by the summed value of weights in the ground-
ing, and the larger the number of rules to be processed gets, as can also be seen
on the left figure. Compared to this exponential growth, the implementation with
built-in counters makes aggregates unnecessary and shows a major improvement
in runtime, backed again by the total number of rules in the groundings. Now
the growth in runtime is only logarithmic, growth which can be explained by
the mere fact that clasp has to operate with higher numbers. We further notice
that D-FLAT performs better than clingo with branch-and-bound strategy when
making use of the built-in counters. Nevertheless, when using the unsatisfiable-
core strategy, clingo is highly efficient on this problem.
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6 Conclusion

In this paper we introduced a new feature to the D-FLAT system, namely built-
in counters. These counters make encodings more convenient to write and much
easier to maintain compared to encodings done for older versions of D-FLAT.
Moreover, encodings using counters need considerably less computation time
when minimizing the optimal solution based on weights. Future work will com-
prise experiments on further applications where dynamic programming algo-
rithms require involved arithmetics, for instance, versions of the Secure Sets
Problem [3].5 Furthermore, we want to integrate counters also to a recently
proposed lazy-evaluation variant of D-FLAT [6].
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Abstract. Recent advances of deep learning technology enable one to
train complex input-output mappings, provided that a high quality train-
ing set is available. In this paper, we show how to extend an existing
dataset of depth maps of hand annotated with the corresponding 3D
hand poses by fitting a 3D hand model to smart glove-based annota-
tions and generating new hand views. We make available our code and
the generated data. Based on the present procedure and our previous
results, we suggest a pipeline for creating high quality data.

1 Introduction

The big leap Deep Learning technology (DLT) is making today has its roots in
the two different ways it can be used:

Component 1: DLT learns to map inputs to outputs
Component 2: It can be run in reverse, working as a generative model to create

an input-like imaginary structure

The combination of these two components was already present in the autoen-
coding scheme developed many years ago [4,11]. The breakthrough is due to the
inclusion of Component 2 into deep learning architectures in diverse manners.
Steps of the technology include the stacked autoencoder system, the the end-
to-end learning schemes using rectified linear units, the very recent variational
autoencoder [10] and the brute force inversion methods [6,14], among many
others. For thorough reviews, the interested reader is referred to the literature
[1,21].

The fast progress of DLT is constrained by an obstacle: present day deep
learning methods need large training datasets with high quality annotations.
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Such high quality and numerous annotations, however, are hard to produce. For
example, as pointed out in [13,25], there are many misplaced joints in the 3D
hand pose dataset of [26]. Errors in the annotations make training and – more
importantly – the evaluation unreliable. Different solutions have been put forth

1. for extending datasets and improving tracking capabilities, such as data gen-
eration from synthetic models [18,19], high tech complex camera setup [27]
or data gloves [28] for data collection and

2. for improving tracking capabilities by means of error correction via re-
generating the inputs as in [14], and exploiting spatial, temporal and appear-
ance constraints for fine pose estimation [12]

among others. They all have certain drawbacks, such as the lack of proper noise
in the synthetic data, the cost (multiple cameras) or the inaccuracies of the high
tech tools of the annotation procedure, errors in data collection, imprecision
coming from the sensor noise, or the differences between the noise of the training
samples and the noise of the actual sensor. These issues are to be overcome by
the combination of methods and by means of novel and efficient algorithms,
including automated and robust outlier filtering in the training examples and
the labels themselves [3,7,24].

Our contributions are as follows. We exploit (i) the synthetic open source
LibHand software tool1 [20], which provides a realistic articulated 3D hand
model, (ii) the ICVL dataset of 3D hand poses [26], (iii) the DeepPrior archi-
tecture [13] that predicts a 3D hand pose given a depth map and which was
rewritten in Caffe [25] and Lasagne, (iv) the Neofect data glove [23], and (v) a
temporal series dataset collected for some examples of the American Sign Lan-
guage by taking advantage of the capabilities of the data glove and fitting the
data to the LibHand model. We shall make the new dataset and the related soft-
ware tools available in order to accelerate their developments. We demonstrate
the advantages of joining the methods; we increase the range of the orientation
where tracking is feasible.

The paper is organized as follows. The next section (Sect. 2) describes the
methods and the tools we used. Sections 3, 4, and 5 detail our results, discuss
them, and conclude, respectively.

2 Tools, Datasets, and Methods

Below, we report about the tools we used, such as the NeoFect data glove, the
LibHand software, ICVL hand posture dataset and our data collection method
(Sect. 2.1). This subsection is followed by the description of the dataset extension
pipeline (Sect. 2.2). Finally, we sketch the details of the ConvNet architecture
called Deep Prior that we used for learning (Sect. 2.3) and list the open source
software tools that are available already or will be made available soon (Sect. 2.4).

1 http://www.libhand.org/.

http://www.libhand.org/
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(a) NeoFect proto-
type data glove

(b) Sample LibHand
model

Fig. 1. The NeoFect prototype data glove and the LibHand graphics model.

2.1 Smart Glove, Model Software, Dataset

The NeoFect prototype data glove: We have used a prototype of the
RAPAEL Smart GloveTM (Fig. 1(a)). The data glove has 14 pieces of 9 degree-
of-freedom inertia sensors and a software that outputs the relative angles
between them.

The LibHand software: We applied the open-source LibHand library [20] for
rendering hand poses (Fig. 1(b)). This tool was used to fit the ICVL dataset.

ICVL Dataset: The hand posture dataset of the Imperial College Vision and
Learning Lab has a large number of depth images, mostly taken from the
direction of the palm. This is the direction, where occlusions for different
hand poses are minimal. The dataset has 16 markered joints (Palm, Thumb
root, Thumb mid, Thumb tip, and root, mid tip for the Index, Middle, Ring,
and Pinky fingers.

Data Collection: The prototype NeoFect data glove has considerable uncer-
tainties. In order to collect feasible hand poses that cover the most relevant
hand pose configurations, we turned to the signs of the American Sign Lan-
guage (ASL). We configured the LibHand model to 22 ASL signs, set the
experimenter’s hand to e achsign with the data glove on and recorded differ-
ent motions starting from the signs and also from open hand configurations.
Different motions were recorded with the gloves both by starting from the
same pose and by using different starting poses.

Data, if played backwards end up in ASL positions and could be used for
temporal recognition of ASL signs, e.g., by means of recurrent neural networks
(for a review on 3D skeletal data of people and related methods, see [8] and the
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references therein) or using temporal kernels [5,9]. Since ASL configurations that
our time series start from have been carefully designed and are very different
and since our time series end up in more prototypical hand poses, we expect that
the data we collected cover a large portion of relevant hand poses. We fitted the
data to LibHand and if the fit corresponded to some impossible configuration
(due to the imprecision of the glove), then we deleted it from the dataset.

2.2 Database Generation for Extending the ICVL Dataset

We developed mappings between the data types and extended the available
dataset in different ways.

Mapping: We connected three data types; the angles of the sensors of the data
glove, the parameters of the LibHand model, and the markers of the ICVL
dataset. The goal was to compare the data and to combine them such a
way that synthetic data can be created. The pipeline for generating synthetic
depth images is shown in Fig. 2 and is detailed below:

(i) We get the angles from the glove,
(ii) construct a rotation-invariant pose representation with joint angles

that we
(iii) fit to the LibHand model and then we
(iv) generate the new depth image with different hand orientations.

ICVL integration: Due to the synthetic nature of our dataset, it is easy to
derive new orientations. Beyond our collected dataset, we also fit the LibHand
model to the ICVL dataset and rotated the dataset to novel orientations. This
step was to produce additional depth and marker data with a large variety
of real hand configurations. The original ICVL data was also kept since it
contained data with real noise content. The procedure is as follows:

(i) We get the 3D markers from the ICVL dataset
(ii) construct a rotation-invariant pose representation with joint angles using

the Deep Prior software
(iii) fit to the LibHand model and that enables us to
(iv) generate the new depth images with different hand orientations.

Fig. 2. Database generation pipeline
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2.3 DeepPrior-Lasagne CNN

Training was performed with a ConvNet architecture shown in Fig. 3. The inputs
are 128× 128 normalized images processed first by a tandem made of a convolu-
tional layer (8 pieces of 5×5) and pooling layer (with 4×4 pooling region). The
architecture has two more similar, but somewhat smaller double layers followed
by two dense layers having 1024 units each. The final layer is also a dense layer,
which has 30 units. Units of the two large dense layers are rectified linear units,
whereas units of the output layer are linear. Another important feature of the
architecture concerns the processing of the marker data. They undergo princi-
pal component analysis and only the largest 30 dimensions are kept. This PCA
filtered dataset forms the output of the training sessions.

Fig. 3. ‘DeepPrior’ parameters for ConvNet: 3 convolutional and pooling layers, 2 dense
layers and a linear output layer

2.4 Open Source Contributions

We open our dataset. We add crowdsourcing annotation options for further
extensions and quality assurance [16]. Deep Prior is already available under
GPLv32 [13] and there is a Caffe implementation3 [25], too. We make our code
available in Lasagne that includes the fitting tool to the LibHand library [20].

3 Results

3.1 Non-linear Mapping from ICVL 3D Markers
to the LibHand Model

Skeleton angles are the basic control features of LibHand. ICVL, on the other
hand, provides marker points on the hand. To our best knowledge, marker points
on the fingers and on the hand are at middle points between corresponding
surface points of the forehand and backhand poses. We assigned forehand and
backhand surface vertex points of LibHand to the ICVL marker points.
2 https://cvarlab.icg.tugraz.at/projects/hand detection/.
3 https://github.com/jsupancic/deep hand pose.

https://cvarlab.icg.tugraz.at/projects/hand_detection/
https://github.com/jsupancic/deep_hand_pose
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The other element of the generation took advantage of the NeoFect glove.
The angles of the NeoFect sensors have considerable uncertainties from day-
to-day and also for large orientation changes. On the other hand, precision of
measuring small changes of the pose is sufficiently precise. With the glove on our
hand, we imitated fixed hand poses that we constructed in the LibHand model.
We had 22 of those, most of which correspond to basic positions of the American
Sign Language. We modified all poses in relatively small ranges allowed by the
precision of the gloves and measured the angle changes. In addition, we developed
a simple mapping between the angles of the glove sensors and the angles of the
LibHand model. This way, to each hand pose changes we had a corresponding
LibHand model.

Taking together, we collected over 20,000 LibHand poses with LibHand
angles, LibHand forehand and backhand vertex positions and estimated ICVL
marker positions within the LibHand model. We paired the ICVL marker posi-
tions and LibHand angle vectors. We used these pairs for training a deep learning
of architecture made of four dense layers and rectified linear units. 3D marker
point positions of the fitted ICVL model served as the input and skeleton angles
were the outputs during training. We tested the mapping on samples not used in
the training sessions and found that in the front-hand and the backhand poses
the errors in the angles were slightly above 4◦ and around 4.7◦, respectively.

Fig. 4. Realistic set of pose models generated by means of the NeoFect gloves, LibHand
model and the ICVL. Top row: original depth images. Middle row: conservative Lib-
Hand fits. Such fits enable the generation of any orientations. Bottom row: LibHand
generated depth images.
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Performance of the trained network is shown in Fig. 4. In turn, we could unify
the models generated by means of the NeoFect glove and the models generated
by means of the ICVL dataset. In the following, we shall present our results con-
cerning (a) the network trained on the ICVL dataset, (b) the network trained on
the Glove dataset, i.e., the dataset contained no data from the ICVL dataset, (c)
the network trained on the augmented ICVL (A-ICVL dataset), and (d) the net-
work trained on rotated and augmented ICVL dataset (RA-ICVL dataset). We
shall also use the shorthand expression IGT for the ICVL marker point ground
truth as well as GGT for the glove marker point ground truth.

3.2 Tests on the New Datasets

We conducted a number of tests with artificial and real data.

First test: Comparison between the networks trained on the ICVLon
the A-ICVL datasets. We found that networks trained on ICVL and
A-ICVL perform equally well (Fig. 5).

Second test: Comparison between Glove and A-ICVL datasets. We
found that the samples generated from the Glove dataset are not sufficient
for generating good fits to the Glove depth data themselves. However,
the combined dataset, i.e., the A-ICVL dataset fits the Glove dataset well
(Fig. 6).

Third test: Testing in real scenarios. We trained networks for frontal and
backward poses. The procedure was the following:
(a) We collected the data of a real frontal hand pose detected by a Senz3D

depth camera.

Fig. 5. Training results with the ICVL dataset and the augmented ICVL dataset. ICVL
depth images: grey, ICVL ground truth (IGT) markers: green dots. Upper row: IGT
pose + prediction with model trained on the ICVL frontal dataset. Lower row: IGT
pose + prediction with model trained on the frontal augmented ICVL dataset. (Color
figure online)
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Fig. 6. Training results with the Glove dataset and the augmented ICVL dataset.
Glove depth images: grey, Glove ground truth (GGT) markers (green dots). Upper
row: GGT pose + prediction with model trained on the Glove dataset for frontal
orientation. Lower row: GGT pose + prediction with model trained on the frontal
augmented ICVL dataset. (Color figure online)

Fig. 7. Testing on real hand data taken with Senz3D depth camera. In four out of the
five examples, occlusion is considerable. Top row: real data in frontal pose and fits
generated by the model trained on the frontal ICVL data; Middle row: real data taken
from the back and fits generated with the same model as above. Bottom row: Results
are very similar for the fits generated by the model trained on the data collected with
glove alone and when it is combined with the fitted and rotated ICVL data restricted
to the direction of the back side of the hand. Here we show the latter. Mean errors for
the former and the latter are 9mm and 8.8 mm respectively with about 50% higher
values for the V-like pose in the middle.
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(b) We estimated the hand pose with the DeepPrior architecture
(c) We rotated the hand in front of the camera while maintaining the hand pose
(d) We estimated the hand pose with models trained on different datasets

(see, Fig. 7).
Fits are best on the rotated and augmented ICVL dataset

Fourth test: Results as a function of the rotation range. We used our
datasets and trained networks for different central hand orientations hav-
ing different orientation ranges. Central orientations were set to 0◦, 45◦, 90◦,
135◦, and 180◦, respectively along the vertical axis. Training angle ranges
were 0◦, ±20◦, ±40◦, ±60◦, and ±80◦, respectively. Results are shown for
overall mean and for overall max errors in Figs. 8 and 9, respectively.
Results are very similar for the different orientation angles: the low error range
increases as the range of rotation angle grows. At the same time, precision
barely decreases as it can be seen on the (g)–(i) subfigures of both figures.

(a) Legend (b) 0° (c) ±20°

(d) ±40° (e) ±60° (f) ±80°

(g) 0° (h) 45° (i) 90°

Fig. 8. Mean errors of all models trained on different central orientations and different
orientation ranges. Central orientations: 0◦: blue, 45◦: green, 90◦: red, 135◦ aqua, 180◦:
magenta. Training ranges around the central orientations: (b): 0◦, (c): ±20◦, (d): ±40◦,
(e): ±60◦, (f): ±80◦. Subfigures (g)–(i): curves reordered according to the training
ranges. Symmetrical cases are not shown. (Color figure online)
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(a) Legend (b) 0° (c) ±20°

(d) ±40° (e) ±60° (f) ±80°

(g) 0° (h) 45° (i) 90°

Fig. 9. Max errors of all models trained on different central orientations and different
orientation ranges. Notations are the same as in Fig. 8. (Color figure online)

4 Discussion

Having a hand model, the task is to fit it to the detected data. There are dif-
ferent approaches for such optimizations, including particle filtering [2], particle
swarm optimization [15] that can be combined with deep learning methods [22].
Our method exploits marker based and model based approaches, alike [29]. Such
methods can also be extended by interpolation techniques to improve precisions
[12]. These methods can learn specific artifacts arising from sensor noise and can
improve tracking capabilities by the richness of model generated databases. We
demonstrated that such enlarged databases can improve the performance of deep
learning methods in both directions: collected data improves model based track-
ing (Fig. 6) and the model can be used to extend the variety of data, including,
e.g., hand orientations (Figs. 8 and 9). We also note that the two component role
of deep networks – as mentioned in the introduction – can be used for reducing
problems arising from particular types of sensory noise [14]. These technology
elements can greatly reduce the DLT needs for high quality human annotations.

Here we presented a set of methods for dataset extension for hand pose
tracking. Some of the tools are already available on the Internet, and we are
making the new tools and the new database open for further improvements.
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We list the drawbacks that if overcome may improve performance
considerably.

(i) The depth images need larger dynamic ranges: We used Unity3D and the
distance of the near and far clipping planes (of the virtual camera) together
with the 8 bit precision of the software is not sufficient should be increased.
We lost a great amount of depth information and the mapping of the gener-
ated dataset to the ICVL is not sufficiently precise.

(ii) The generated dataset contains no noise. When we combined it with the
ICVL database we experienced considerable improvements on real data taken
with a Senz3D depth camera. Noise data for structured light sources may
be necessary for fitting the data taken with such cameras if the method of
brute force inversion [14] is not sufficient.

Furthermore, the advances in deep learning technology are very fast and more
efficient architectures are being developed see, e.g., [6,10,14,17] and may give
rise to considerable improvement in performances when combined.

5 Conclusions

Human-computer (human-robot) interactions require human models with fast
tracking capabilities. 3D depth cameras offer novel solutions especially if they
are combined with deep learning methods. The latter is constrained by the need
of large datasets with high quality annotations that can be expensive. Here we
put forth a combination of methods that can simplify the problem for real time
hand tracking. In addition, we make our tools and the database available for
further works.
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9. Jeni, L.A., Lőrincz, A., Szabó, Z., Cohn, J.F., Kanade, T.: Spatio-temporal event
classification using time-series kernel based structured sparsity. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part IV. LNCS, vol.
8692, pp. 135–150. Springer, Heidelberg (2014)

10. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

11. Kohonen, T., Lehtio, P., Oja, E., Kortekangas, A., Makisara, K.: Demonstration of
pattern processing properties of the optimal associative mappings. In: Proceedings
of the International Conference on Cybernetics and Society (1977)

12. Oberweger, M., Riegler, G., Wohlhart, P., Lepetit, V.: Efficiently creating 3D train-
ing data for fine hand pose estimation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2016, accepted)

13. Oberweger, M., Wohlhart, P., Lepetit, V.: Hands deep in deep learning for hand
pose estimation. In: Proceedings Computer Vision Winter Workshop (CVWW)
(2015)

14. Oberweger, M., Wohlhart, P., Lepetit, V.: Training a feedback loop for hand pose
estimation. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 3316–3324 (2015)

15. Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Tracking the articulated motion of
two strongly interacting hands. In: 2012 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1862–1869. IEEE (2012)

16. Palotai, Z., Lang, M., Sarkany, A., Toser, Z., Sonntag, D., Toyama, T., Lorincz,
A.: Labelmovie: semi-supervised machine annotation tool with quality assurance
and crowd-sourcing options for videos. In: 2014 12th International Workshop on
Content-Based Multimedia Indexing (CBMI), pp. 1–4. IEEE (2014)

17. Rasmus, A., Berglund, M., Honkala, M., Valpola, H., Raiko, T.: Semi-supervised
learning with ladder networks. In: Advances in Neural Information Processing Sys-
tems. pp. 3532–3540 (2015)
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Abstract. We look at probabilistic first-order formalisms where the
domain objects are known. In these formalisms, the standard approach
for inference is lifted variable elimination. To benefit from the advantages
of the junction tree algorithm for inference in the first-order setting, we
transfer the idea of lifting to the junction tree algorithm.

Our lifted junction tree algorithm aims at reducing computations by
introducing first-order junction trees that compactly represent symme-
tries. First experiments show that we speed up the computation time
compared to the propositional version. When querying for multiple mar-
ginals, the lifted junction tree algorithm performs better than using lifted
VE to infer each marginal individually.

Keywords: Probabilistic logical models · Lifted inference · Junction
tree · Belief propagation

1 Introduction

New probabilistic logical representation formalisms support first-order logic,
rather than just propositional logic, and one can reason about sets of individuals
in a relational domain. To express patterns or symmetries in the relation between
individuals, we combine random variables (randvars) with logical variables (log-
vars) to denote a whole set of randvars (parameterized randvars, PRVs). In an
undirected formalism with known domain objects, the idea of lifting is to use
these patterns and symmetries to infer knowledge faster.

A small example that serves as a running example for the upcoming sections
is a knowledge base (KB) Gex with PRVs epidemic(D) and sick(D,P ). The
PRV epidemic(D), for example, could stand for two propositional randvars if
logvar D had the two instantiations flu and measles.

In general, we study the inference task of computing marginal distributions.
Many approaches and applications need optimizations to enhance efficiency. For
propositional representation languages, variable elimination (VE) [19] speeds
up computation. VE decomposes a KB into parts that we can solve faster. In
the first-order context, lifted VE [12] aims at answering queries more efficiently
by exploiting symmetries captured in PRVs. More specifically, with PRVs in
a KB, we have parameterized factors (potential functions), called parfactors
for short, that have PRVs as arguments. A parfactor represents a set of fac-
tors with an identical potential function, e.g., a probability distribution. Lifted
c© Springer International Publishing AG 2016
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sick(D,P )epidemic(D)

φ1(epidemic(D)) φ2(sick(D, P ), epidemic(D))

Fig. 1. Parfactor graph for Gex

VE uses the symmetries in the potential functions to reduce the number of
computations carried out. Figure 1 shows a graphical representation of Gex

with PRVs epidemic(D) and sick(D,P ) and parfactors φ1(epidemic(D)) and
φ2(sick(D,P ), epidemic(D)). The graph consists of two variable nodes, one
for each randvar in Gex, and two factor nodes for the two parfactors. The
factor nodes have edges to the nodes of the randvars involved. E.g., factor
φ1(epidemic(D)) denotes that all randvars for which epidemic(D) stands have
the same potential function φ1, e.g., a prior probability for some epidemic to
occur.

When asking multiple queries in the propositional case, an optimization is
the junction tree algorithm [7]. It allows to compute all marginal distributions
efficiently instead of answering queries individually with VE. The junction tree
algorithm is designed for query answering with respect to KBs specified with
undirected formalisms. We can transfer directed formalisms into undirected
ones by moralizing the underlying graphs or by building decomposition trees
(dtrees) [7]. Dtrees are tree representations of the decomposition of a KB dur-
ing VE. The junction tree algorithm supports exact reasoning through message
passing where we basically apply VE in all directions at a time. In the context of
junction trees, message passing distributes “knowledge” in a graph. It does not
approximate in itself. With symmetries present, many unnecessary messages are
sent. We transfer the idea of lifting to the junction tree algorithm to optimize the
junction tree representation and message handling. We illustrate our findings in
the evaluation with an extended example where we show that the advantages of
a junction tree transfer from the propositional to the first-order setting.

This paper contributes the following: We propose a lifted junction tree algo-
rithm for inference in probabilistic logical KBs. We lift the algorithm by building
a lifted (first-order) junction tree (FO jtree). To this end, we introduce para-
meterised clusters (parclusters) that, similar to parfactors, support logvars to
capture symmetries. We modify the message passing scheme to operate on FO
jtrees. When calculating messages and results to queries, we integrate lifted VE.

The representation language and lifted VE operators we use heavily rely on
Taghipour’s work [17] (and the papers cited therein). Taghipour also introduces
lifted (first-order) dtrees (FO dtrees) based on [6] and gives a simple algorithm
to find one for a given KB. We use FO dtrees to build FO jtrees.

In terms of performance, the lifted junction tree algorithm imposes some
static overhead due to the junction tree construction and message passing. But,
with multiple queries or varying evidence where the tree is reusable, the overhead
amortizes and becomes more and more negligible compared to the junction tree
speed-up. According to our experiments, we significantly speed up run times in
the presence of symmetries compared to the grounded version. Additionally, we
speed up inference compared to lifted VE if asking multiple queries.
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The remainder of this paper starts with related work on lifted inference and
belief propagation followed by background information on the junction tree algo-
rithm, parameterized KBs, and FO dtrees. Next, we introduce our lifted junc-
tion tree algorithm. Additionally, we present an evaluation of our algorithm with
promising results. We conclude the paper by looking at future work.

2 Related Work

We present related work in the area of probabilistic (first-order) formalisms,
focusing on the junction tree algorithm and lifted inference.

Basic junction tree algorithms, specifically, their message passing schemes,
use one of two architectures. Shafer and Shenoy [13] propose the first archi-
tecture under the name probability propagation, often called Shafer-Shenoy.
Jensen et al. [9] introduce the second architecture, nowadays referred to as Hugin.
Both architectures have a collect and a distribute phase but vary with respect
to what they store and how they compute messages. On the one hand, Shafer-
Shenoy is more space-efficient than Hugin. On the other hand, Hugin usually is
faster. Hugin saves time by doing fewer computations per message but requires
more space to store larger intermediate results. We adapt the ideas of both
architectures to pass and process messages in our lifted algorithm.

Darwiche [7] provides the foundation for the dtrees as we use them and the
connection between dtrees and junction trees. His work on recursive conditioning
[6] and local symmetry (the latter together with Chavira and Darwiche [5])
provides ideas on how to further utilize first-order structures in different ways.

Lifted inference has been the focus of research for some years now. The first
formalizations of lifted inference go back to [12], named FOVE for first-order VE.
The research presented in [3,10,17] extends the formalism to the standard form
GC-FOVE of lifted VE with generalized counting. We use the lifting operators
in GC-FOVE for internal lifted calculations in our algorithm.

Parallel to lifted VE, weighted first-order model counting emerges using the
lifting idea applied to weighted model counting for inference [4]. Another branch,
lifted belief propagation (BP), picks up the idea of probability propagation and
combines it with lifting. Often, the work on belief propagation is accompanied
with lifted representations. The work of Singla and his colleagues includes BP
on a lifted network, using hypercube-based representations, and an approximate
lifted BP, to approximate lifting in presence of noise [14–16]. Gogate uses hyper-
cubes as well for a lifted representation [8]. Ahmadi et al. [1] provide a counting
BP using a coloring algorithm including an extension to dynamic Bayesian net-
works. Though lifted BP uses belief propagation similar as we do, none of the
approaches given uses a lifted version of junction trees.

The junction tree algorithm provides an efficient alternative to inference if
confronted with the need to answer multiple queries or queries under varying
evidence. Lifting provides an idea to further optimize inference by handling sym-
metries in an efficient way. We take the propositional version and adapt it to
a first-order setting by modifying the underlying tree structure. Additionally,
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we revise the propositional algorithm to deal with first-order constructs effi-
ciently. We alter the computing instructions for delivering results to queries as
well as assembling messages to incorporate lifted VE instead of ground VE.
Overall, we propose a lifted algorithm that compactly represents clusters in a
KB and efficiently handles inference on them.

3 Background

This section presents the standard junction tree algorithm and introduces defi-
nitions for parameterized KBs and FO dtrees. The first subsection is based on
[7], the second on [17]. Taghipour [17] calls the KB we work on a model. We
use the term model for the remainder of this paper. We assume familiarity with
common notions such as dtrees and its properties cutsets, contexts, and clusters
(for an introduction, see also the appendix in [2]).

3.1 Junction Tree Algorithm

In inference, we query models, e.g., a factor graph, given some evidence. For
one query, VE is the standard approach. With multiple queries, we look for a
data structure that allows to pre-compute recurring calculations for faster query
answering. Junction trees (jtrees) serves as such a data structure. Jtree nodes
represent sets of variable nodes of the underlying model, called clusters. One
algorithm run distributes knowledge in the underlying jtree. At the end, a node
holds all information to compute marginal probabilities for its variables.

Intuitively, clusters consist of elements (i.e., randvars) that share close rela-
tions, through factors, otherwise not present in the model. Randvars that con-
tribute to various clusters inform the structure of the jtree. All clusters that share
a randvar build a subgraph to ensure that if local changes in one cluster influence
a randvar, the effect is communicated to the other clusters. To construct a jtree,
we build a dtree and compute its clusters. A dtree represents a decomposition
of a model during VE. The dtree structure and its clusters associated with each
node form a jtree.

A factor is associated with a cluster that includes the factor’s arguments.
Evidence influences arguments. If we enter evidence in the graph at one end, we
propagate that information to other parts using messages. After propagating all
information (factors are information as well), we answer queries by looking at
clusters that contain the query variables. Starting from evidence, we compute
aggregations of factors by propagating information from node to node. We reuse
the jtree with new evidence.

Next, we formalize the dtree and jtree data structure and the junction tree
algorithm. A dtree for a graph G is a tree whose leaf nodes correspond to the
factors in G. An inner node represents a decomposition of its factors into parti-
tions, one for each child, containing the factors in the child’s subtree. The cluster
of a dtree node N is the union of its cutset and context. The cutset of N is the
set of randvars shared between any pair of its child nodes. In case of N not being
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the root, we subtract the randvars appearing in its ancestor cutsets. The context
of N is the intersection of its randvars and those in its ancestor cutsets.

A jtree for a graph G is a pair (J ,C) where J is a tree (the structure of
the jtree) and C is a function that maps each node i in J to a label Ci called
a cluster. The mapping function effectively makes the clusters and nodes of J
interchangeable. A jtree must satisfy three properties: (i) A cluster Ci is a set
of nodes from G. (ii) For every edge X—Y in G, variables X and Y appear in
some cluster Ci. (iii) If a node from G appears in clusters Ci and Cj , it must
appear in every cluster Ck on the path between nodes i and j in J . Sij , called
the separator of edge i—j, holds those randvars shared by clusters Ci and Cj

and is given by Ci ∩ Cj .
A jtree is minimal if by removing a variable from any cluster, the jtree stops

being a jtree The clusters of a dtree fulfil the jtree properties. But, the resulting
jtree is seldom minimal. We merge two neighboring clusters if the randvars in
one of them is a subset of the randvars in the other.

The main workflow to answer queries is to construct the jtree, pass messages,
and then answer queries. We modify the junction tree algorithm from [7] using
potential functions instead of conditional probability tables (CPTs). The algo-
rithm consists of a preparation phase and the actual algorithm. The preparations
incorporate three steps: (i) Construct a jtree. (ii) Assign each potential function
φ to a cluster that contains its randvars. (iii) Assign for each randvar X an
evidence indicator λX to a cluster that contains X. We use evidence indicators
to assign an observed value of a randvar. By multiplying an indicator with a
potential function, we incorporate the evidence into the model. For each cluster,
we multiply the assigned factors.

The algorithm itself is short: We enter evidence e through the indicators.
Then, the algorithm sends messages to distribute knowledge. Message Mij from
node i to node j holds new information for j encoded in a readable way: Mij

is a product of the factor assigned to i and the messages received from other
nodes but j projected onto Sij by summing out Ci\Sij . Message computation
is a form of VE, summing out variables unknown at the receiver node. We can
interpret a message as a factor with the separator variables as arguments. After
passing two messages per edge, we can compute, e.g., marginal P (C, e) for every
cluster C. To answer a query, we can now use any cluster that contains the query
variables and sum out all other variables.

3.2 Parameterized Models and FO Dtrees

Parameterized models provide a compact way to specify KBs using first-order
constructs allowing lifted VE. To enable a compact dtree representation, we need
a first-order version, which we use for constructing FO jtrees.

First, we define a few useful shortcuts. Consider the PRV epidemic(D)
representing a set of randvars depending on the instantiations of D. We call
the possible values of D its domain, denoted D(D). Assuming epidemic(D) is
binary, the range of each randvar represented by epidemic(D) is true and false:
range(epidemic(D)) = {true, false}. The term logvar(P ) denotes the logvars
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in a set or sequence of randvars P (e.g., logvar(epidemic(D)) = {D}). Domains
constrain the instantiations of a PRV to a given set by specifying the values of
its logvars. As PRVs are arguments to parfactors, parfactors are subject to con-
straints as well. We introduce a constraint C to specify instantiations of logvars.
Taghipour defines a constraint C as a tuple (X, CX), with CX ⊆ ×n

i=1D(Xi)
where X = (X1, . . . , Xn) is a tuple of logvars.

To specify a parfactor g, we need the potential function with its arguments,
i.e. PRVs, and a constraint on the logvars in g. Formally, g is given by

g := ∀L : φ(A) | C

where L is a set of logvars that the factor generalizes over. A = (A1, . . . , An)
is a sequence of randvars. If L = logvar(A), we omit ∀L in the parfactor. φ =
×n

i=1range(Ai) → R
+ is a potential function with values of A as input.

A model G is given by a set of parfactors {gi}n
i=1. Model Gex becomes the par-

factor model Gex = {g1, g2} with g1 = φ1(epidemic(D))|C1, g2 = φ2(sick(D,P ),
epidemic(D))|C2. Let D(D) = {flu,measles} and D(P ) = {alice, eve, bob}.
Then we could define C2 by ((D,P ), C(D,P )) and C(D,P ) = {(flu, eve),
(flu, bob), (flu, alice), (measles, eve), (measles, bob), (measles, alice)}.

Lifting uses the fact that we can decompose a model into isomorphic sub-
problems and solve only one representative. For our algorithm, we use the lifting
operators defined by Taghipour (for full definitions including pre- and postcon-
ditions, see [17]). For example, we use lifted absorption when entering evidence
in the FO jtree or lifted summing-out when computing messages.

First-Order Dtrees. We now define a compact representation of the decom-
position of a model. Logvars allow us to ground models partially by grounding a
subset of the logvars and work with representatives of the grounded logvars. If a
model is in a certain normal form, we can decompose it into partial groundings
isomorphic up to permutations of inputs. For details on the normal form and
decomposition into partial groundings (DPG), see also the appendix in [2].

Isomorphic decomposition (ID) nodes represent isomorphic partial ground-
ings in the FO dtree. An ID node TX is given by a triplet (X,x, C) where
X = {X1, . . . Xk} is a set of logvars all of the same domain DX, x = {x1, . . . xk}
is a set of symbolic constants from DX, and C is a constraint on x, such that for
i, j : xi �= xj ∈ C. We denote TX by ∀x : C in the FO dtree. TX has one child
named Tx. The model under Tx is a representative instance of TX.

An FO dtree represents a decomposition of a parfactor model during lifted
VE with parfactors in its leaves and ID nodes to model representative instances.
Formally, an FO dtree is a tree that can have ID nodes and in which (i) each leaf
contains a factor (possibly with symbolic constants), (ii) each leaf with symbolic
constant x is the descendent of exactly one ID node TX such that x ∈ x, (iii)
each leaf that is a descendent of ID node TX has all symbolic constants x in
its factor, and (iv) for each ID node TX, X = {X1, . . . Xk}, Tx has k! children
{Ti}k!

i=1, which are isomorphic up to a permutation of symbolic constants x.
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∀d TD

Td

φ1(epidemic(d))∀p TP

Tp

φ2 (sick(d, p), epidemic(d))

Fig. 2. FO dtree for Gex

∀D : ∅ TD

epidemic(d) Td

epidemic(d)
∀P :

epidemic(d)
TP

epidemic(d)
sick(d, p)

Tp

sick(d, p)
epidemic(d)

Fig. 3. FO jtree for the FO dtree in Fig. 2

For an FO dtree, one can compute a cluster for each node analogously to
computing clusters for propositional dtrees. The appendix in [2] shows how to
build an FO dtree for a model and how to compute clusters for FO dtrees.

Figure 2 shows an FO dtree for Gex. For readability purposes, we only
write the element for singleton sets and omit � constraints. The root is an
ID node TD = (D, d,�) (logvar D allows a DPG). TD has a child Td with
the model G′ = {g′

1 = φ′(epidemic(d)), g′
2 = φ′(sick(d, P ), epidemic(d))}. G′

does not allow a DPG (g′
1 has no logvar). Hence, G′ is split based on the

occurrence of P . Thus, Td gets two children. The right child with the model
{g′

1 = φ′(epidemic(d))} is ground. It has only one factor in its model which
results in a leaf node with factor φ′(epidemic(d)). The left child with the
model {g′

2 = φ′(sick(d, P ), epidemic(d))} has a logvar, P, that permits a DPG.
Hence, the child is an ID node TP = (P, p,�) with a child Tp with the model
{g′′

2 = φ′′(sick(d, p), epidemic(d))}. g′′
2 is ground and only consists of one fac-

tor as well, so the child is a leaf node with factor φ′′(sick(d, p), epidemic(d))
contained in it.

4 Lifted Junction Tree Algorithm

This section presents our lifted version of the junction tree algorithm including
FO jtrees and parclusters.

4.1 First-Order Junction Trees

FO jtrees follow the idea of ground jtrees. Clusters combine PRVs with close
relations and message passing distributes knowledge to enable efficient query
answering of many queries. A ground jtree in the presence of symmetries has
many nodes with identical factors where messages propagate information that
basically is already present. We allow parameterized randvars to capture sym-
metries and parameterize the notion of a cluster to represent a subgraph of
grounded clusters with identical potential functions.
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Algorithm 1 . Constructing an FO Jtree for a Model G Using an FO Dtree
function FO-jtree(G)

FO dtree T = FO-dtree(G)
Compute clusters for T
Construct FO jtree J
Minimize J
return J

Parclusters. Intuitively, parclusters are the nodes of an FO jtree formed by
FO dtree clusters. A parcluster describes the set of randvars in a cluster and can
have factors assigned. It generalize over logvars if ID nodes are involved.

Formally, a parcluster C = ∀L : A|C is a set of randvars A. The parameters of
C are the set of logvars L and logvar(A) ⊆ L. The constraint C puts limitations
onto logvars and symbolic constants. A factor φ(Aφ)|Cφ assigned to C has to
fulfil (i) Aφ ⊆ A, (ii) logvar(Aφ) ⊆ L, and (iii) Cφ ⊆ C.

As jtrees built from dtrees often are non-minimal, we define a merge operation
for parclusters. Parclusters Ci and Cj with possibly assigned factors φi and φj

can merge if Ai ⊆ Aj ∨ Aj ⊆ Ai holds. The merged parcluster Ck and its
assigned factor φk are determined by

– Ak = Ai ∪ Aj ,
– Lk = Lj ∪ Li,
– Ck = Ci ∪ Cj , and

– φk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φi if only φi exists
φj if only φj exists
φi ⊗ φj if both exist
undefined otherwise.

The new node k takes over all neighbours of i and j. To merge a parcluster with
logvars and another with corresponding symbolic constants, we first perform an
inverse substitution from symbolic constants to logvars and then merge.

FO Jtrees. An FO jtree for a model G is a graph with parclusters as nodes. It
must also satisfy the three properties introduced for ground jtrees. Grounding
an FO jtree leads to a jtree that could have been built by converting a ground
dtree into a jtree. The set of factors in the grounded version of the FO jtree is
identical to the set of factors in the ground jtree. Algorithm 1 shows pseudo code
for constructing an FO jtree for a model G. First, it constructs an FO dtree and
computes its clusters. Then, it builds an FO jtree using the clusters. Finally, the
FO jtree is minimized by merging parclusters.

The clusters of the FO dtree in Fig. 2 lead to the FO jtree in Fig. 3. The
labels next to the nodes indicate from which node a cluster came. The FO jtree
shown is not minimal. Iteratively merging leaf parclusters with their neighbor
leads to a single parcluster C = ∀D,P : {epidemic(D), sick(P,D)} with φ1 and
φ2 assigned to it.
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Algorithm 2 . Lifted Junction Tree Alg. for Model G, Queries Q, Evidence E

function FOJT(G, Q, E)
FO jtree J = FO-jtree(G)
J .enterEvidence(E)
J .passMessages

J .getAnswers(Q)

4.2 Algorithm Description

Our lifted junction tree algorithm has the following workflow: (i) Construct an
FO jtree for a given model G. (ii) Enter evidence E into the tree. (iii) Pass
messages. (iv) Compute answers. Algorithm 2 shows a corresponding pseudo
code description, which uses Algorithm 1.

FO jtree construction uses the clusters of an FO dtree for model G. After
the FO jtree construction, we enter evidence E, a set of evidence parfactors.
We assign an evidence parfactor to a parcluster if the represented set of the
parcluster randvars includes the randvars of the evidence parfactor.

Message passing on FO jtrees proceeds analogously to the one on grounded
jtrees. A message from node i to node j is a factor over the randvars in separator
Sij where all other randvars in parcluster Ci are summed out. The messages
and factors include PRVs which allow us to use lifted VE for computations.
Message passing starts from the leaves and moves inward (collect phase). When
all neighbors but one have sent messages to a node, the node itself sends a
message to the remaining neighbor. Sending messages in such a way leads to
one or two nodes in the center of the jtree to have received messages from
all neighbors. Then, the distribute phase begins. The one or two nodes send
messages to all its neighbors. If now a node receives a message (from the node to
which it sent a message during the collect phase), it sends messages to all other
neighbors. With new evidence, we repeat message passing.

To answer a query, we identify a cluster with the query terms in its domain
and sum out all other terms in its parfactor and messages received. For answering
queries (or handling evidence), we need the lifted VE operator splitting to rewrite
the model to permit lifted summing out. (A parfactor is split into one parfactor
for the query term (or the terms for which we have evidence) and one for the
other instances of the logvar.)

Compared to the ground version, we do not change the algorithm structure
much to lift it. We enter evidence and pass messages. The preparation phase and
how we handle evidence, messages, and queries vary. In a dtree, the leaves hold
the factors and every factor appears in exactly one leaf. Therefore, clusters have
assigned factors and our merge operation maintains them. Additionally, we do
not assign evidence indicators as we use evidence parfactors to handle evidence
in a lifted manner. So, the preparation phase (construction, assign factors, assign
indicators) melts down to construction. For message and query computation, we
incorporate lifted VE operators to further optimize calculations.
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C1 = ∀W :
{U(W ), S}

φC1 = φ5(U(W ), S)

Node 1

C2 = ∀X,Y :
{Q(X,Y ),
P (X), S}

φC2 = φ1(Q(X, Y ), S)⊗
φ3(Q(X, Y ), P (X), S)

Node 2

C3 = ∀X,Z :
{R(X,Z),
P (X), S}

φC3 = φ2(R(X, Z), S)⊗
φ4(R(X, Z), P (X), S)

Node 3

S S, P (X)

Fig. 4. FO jtree for Gex2

5 Evaluation

We compare our lifted algorithm with GC-FOVE and a propositional version
of the junction tree algorithm. We have implemented our lifted junction tree
algorithm with Shafer-Shenoy message passing as a Java program that builds on
GC-FOVE [18] which is an extension of C-FOVE [10] in BLOG [11].

First experiments exhibit promising results. Since lifting is relevant in the
presence of symmetries, the experiments focus on models with symmetries.
Additionally, inference benefits from our approach particularly if asking sev-
eral queries. Although GC-FOVE has to eliminate all non-query randvars in the
model, it is usually faster than our algorithm if asking only one query as it does
not have to construct an FO jtree. With multiple queries, though FO jtree con-
struction and message passing impose some static overhead, our algorithm needs
considerably fewer computations to answer queries. If evidence changes, we can
reuse the FO jtree and only add the overhead of a message passing run.

We illustrate our findings with an extended model Gex2 = {g1, g2, g3, g4, g5}.
The parfactors are defined as follows:

– g1 = φ1(Q(X,Y ), S)
– g2 = φ2(R(X,Z), S)
– g3 = φ3(Q(X,Y ), P (X), S)
– g4 = φ4(R(X,Z), P (X), S)
– g5 = φ5(U(W ), S)

The domains of the four logvars are of size four. The randvars are binary and
the potential functions are CPTs with random entries. We have no evidence
and the queries are P (S), P (U(w1)), P (P (x1)), P (Q(x1, y1)), and P (R(x1, z1)).
Figure 4 displays the minimized FO jtree for Gex2 consisting of three nodes with
the associated parfactors as labels. The two parfactors of parclusters C2 and C3

are multiplied into one parfactor using lifted multiplication during merging.

Comparison with GC-FOVE. We feed our algorithm with the model and
the five queries as input and receive as answers five probability distributions.
We run GC-FOVE with the same model and each query individually. Asking
multiple queries in GC-FOVE may lead to dependencies between query terms
which causes GC-FOVE to abort.
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Fig. 5. Accumulated number of calls to lifted VE operators during query answering
by GC-FOVE and FOJT (The lines between data points are only there for readibility.
The gray dots denote that the counts include queries that GC-FOVE aborted.)

For the queries P (S), P (U(w1)), and P (P (x1)), we get three probability
distributions identical to the ones from our algorithm. The query P (Q(x1, y1))
leads GC-FOVE to terminate and prompt the following error message: Fatal
error: Parfactor[qe(x1, y1), qe($318, y1)]
:{constraint} still contains a non-query term. When GC-FOVE
aborts, it has already performed 30 split and sum-out operations to no avail.
Query P (R(x1, z1)) causes the same problem.

Figure 5 shows the accumulated number of calls to lifted VE operators during
answering the five queries for GC-FOVE and our algorithm called FOJT in the
figure. We initialize the accumulated counts with the number of calls to lifted
VE operators during message passing for FOJT. The order of the added counts
is from the shortest to the longest query in terms of operator calls. GC-FOVE
has to always eliminate all randvars in the model except for the query randvar.
In contrast, after message passing, FOJT only has to eliminate all non-query
randvars in a parcluster. E.g., for P (U(w1)), we take the final parfactor at C1,
φC1 , and sum out U(W ),W �= w1 (with lifted VE) and S. GC-FOVE has to
additionally sum out P (X), Q(X,Y ), and R(X,Z).

With the second query, FOJT needs fewer overall calls. Considering that we
also need to construct the FO jtree, the test run supports our statement that
with only very few queries to answer, the overhead of our lifted junction tree
algorithm does not amortize. But with an increasing number of queries, our
approach becomes more and more efficient.

Overall, GC-FOVE calls the splitting operator over three times more and the
summing-out operator over one and a half times more than our algorithm as it
has to eliminate all non-query terms for each query. We pay the savings in calls
with time spent on constructing the FO jtree and passing messages. The message
passing, which involves four messages being sent, takes another five calls to the
summing-out operator.
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A brief look at runtimes shows that FOJT appears to be competitive. GC-
FOVE has an accumulated runtime of ∼55 ms for model Gex2 and the three
queries it can answer. The runtime of the implementation of our algorithm is
∼40 ms which ∼15 ms faster and answers two more queries. With only the three
queries GC-FOVE can answer, our algorithm needs ∼24 ms.

Comparison with Ground Version. The ground jtree for Gex2 has 36 clus-
ters, 4 clusters of form {U(wi), S}, 16 clusters of the form {Q(xi, yj), P (xi), S},
and 16 clusters of the form {R(xi, zj), P (xi), S}. If we merge the clusters of the
dtree to have one virtual root, e.g., {Q(x1, y1), P (x1), S}, with 35 neighbors, we
send 70 messages instead of 4. In the collect phase, we perform 35 grounded
sum-out operations. For each message in the distribute phase, we calculate a
product with 35 multiplicands and sum out one or two ground randvars. At the
end, each leaf node has to multiply the received message into its factor and the
virtual root has to multiply all its messages and its factor. To answer queries,
we have less work as we only need to sum out one or two ground randvars.

For the grounded-out version, the Hugin architecture is advantageous. We
would not calculate 35 products with 35 multiplicands but multiply each incom-
ing message into the stored factor once (leading to overall 35 multiplications)
and divide the stored factor by the received message if sending the return mes-
sage (35 divisions). Using Hugin in our lifted algorithm does not have a huge
effect on the number of computations given the FO jtree for Gex2.

6 Conclusion

Most applications need efficient inference algorithms. As first experiments with
our lifted junction tree algorithm show, our proposal performs inference more
efficiently when dealing with multiple queries in the presence of symmetries. The
junction tree construction imposes overhead but only once per fixed knowledge
base. If the evidence changes, message passing is repeated. For different queries
for a model and given evidence, the algorithm only needs to run once.

Currently, we are fleshing out our algorithm and implementation to fully
handle evidence. Additionally, we intend to optimize the basic implementation
of the algorithm and extend it to include message passing based on the Hugin
architecture. We plan to thoroughly evaluate different settings and analyze the
behavior of our algorithm in terms of growing knowledge bases. In a broader
scope, we investigate ideas to further use the data structures with respect to
other theoretical constructs as well as practical applications that could benefit
from our algorithm. Symmetries within a factor present an area of interest to
potentially refine the data structures and increase efficiency. Dynamic structures
to incorporate temporal constructs are another branch of work to look at.
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References

1. Ahmadi, B., Kersting, K., Mladenov, M., Natarajan, S.: Exploiting symmetries for
scaling loopy belief propagation and relational training. Mach. Learn. 92, 91–132
(2013). Kluwer Academic Publishers, Hingham

2. Braun, T.: Lifted junction tree algorithm. Technical report, Universität zu Lübeck
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Abstract. For combinatorial search in single-player games nested
Monte-Carlo search is an apparent alternative to algorithms like UCT
that are applied in two-player and general games. To trade exploration
with exploitation the randomized search procedure intensifies the search
with increasing recursion depth. If a concise mapping from states to
actions is available, the integration of policy learning yields nested roll-
out with policy adaptation (NRPA), while Beam-NRPA keeps a bounded
number of solutions in each recursion level. In this paper we propose
refinements for Beam-NRPA that improve the runtime and the solution
diversity.

1 Introduction

Cazenave [4] has invented nested Monte-Carlo search (NMCS), a randomized
search algorithm inspired by UCT [12] but specifically designed to solve single-
player games. Instead of relying on a playout at each search tree leaf, the decision-
making in level l of the algorithm relies on a level (l−1) search for its successors.

With nested rollout policy adaptation (NRPA), Rosin [14] came up with the
idea to learn a policy within the recursive procedure. NRPA has been very
successful in solving a variety of optimization problems, including puzzles like
morpion solitaire, but also hard optimization tasks in logistics like constraint
traveling salesman problems [9] combined pickup-and-delivery tasks [8], vehicle
routing [10], and container packing [7] problems.

Monte-Carlo tree search algorithms balance entering unseen areas of the
search space (exploration) with working on already established good solutions
(exploitation). Many Monte-Carlo search algorithms including NRPA, however,
suffer from a solution process that has many inferior solutions in the beginning
of the search. If policies are learnt too quickly, the number of different solutions
reduces, and if not strong enough they will not help sufficiently well to enter
parts of the search space with good solutions.

In other words, the diversity of the search remains limited. Beam-NMCS [5]
is a combination of memorizing a set of best playouts instead of only one best
playout at each level. This set is called a beam and all the positions in the set are
c© Springer International Publishing AG 2016
G. Friedrich et al. (Eds.): KI 2016, LNAI 9904, pp. 43–55, 2016.
DOI: 10.1007/978-3-319-46073-4 4
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developed. Beam search carries over to improve NRPA, enforcing an increased
diversity in a set of solutions. In Beam-NRPA [6], for each level of the search, the
algorithm keeps a bounded number of solutions together with their policies in
the recursion tree. In selected applications, Beam-NRPA improves over NRPA.

In this paper, we reengineer the implementation of Beam-NRPA. We show
that the solution quality can be improved by applying a selection of refinements.
In particular, we study more closely how to increase the diversity.

2 NRPA and Beam-NRPA

NRPA is a randomized optimization scheme that belongs to the wider class of
Monte-Carlo tree search (MCTS) algorithms [3]. The main concept of MCTS is
the random playout (or rollout) of a position, whose outcome, in turn, changes
the likelihood of generating successors in subsequent trials. Prominent members
in this class of reinforcement learning algorithms are upper confidence bounds
applied to trees (UCT) [12], and nested monte-carlo search (NMCS) [4]. MCTS
is state-of-the-art in playing many two-player games [11] or puzzles [2], and has
been applied also to other problems than games like mixed-integer programming,
contraint problems, mathematical expression, function approximation, physics
simulation, cooperative pathfinding, as well as planning and scheduling.

What makes NRPA [14] different to UCT and NMCS is the concept of learn-
ing a policy through an explicit mapping of moves to selection probabilities. The
pseudo-code of the recursive search procedure is shown in Fig. 1 (left). NRPA
has two main parameters that trade exploitation with exploration: the number of
levels l and the branching factor N of recursion calls. If r is not better than best,
on the first glance it looks like the same call to NRPA is performed within the
loop on i. However, rollouts change due to randomness, and policy adaptation
in other level of the recursion.

Beam-NRPA is an extension of NRPA that maintains B instead of one best
solution in each level of the recursion. The motivation behind Beam-NRPA is
to warrant search progress by an increased diversity of existing solutions to pre-
vent the algorithm from getting stuck in local optima. The basic implementation
of Beam-NRPA algorithm [5] is shown in Fig. 1 (right). Each solution is stored
together with its score and the policy that was used to generate it. Better solu-
tions are inserted into a list that is sorted wrt. the objective to be optimized.

As the NRPA recursion otherwise remains the same, the number of playouts
to a search with level L and (iteration) width N rises from NL to (N · B)L. To
control the size of the beam, we allow different beam widths Bl in each level l
of the tree. At the end of the procedure, Bl best solutions together with their
scores and policies are returned to the next higher recursion level. For each level
l of the search, one may also allow the user to specify a varying iteration width
Nl. This yields the algorithm Beam-NRPA to perform

∏L
l=1 NlBl rollouts.
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Fig. 1. NRPA and Beam NRPA. To cover both minimization and maximization prob-
lems, score ordering is imposed by means of implementing Init, better, and best. SL is
implemented as a sorted list.

3 Refinements

We propose several refinements to Beam-NRPA.

Dropping Policy Information. First, we have observed that copying the policy in
each rollout of Beam-NRPA is a rather expensive operation that can dominate
the runtime of the entire algorithm.

In fact, further code analysis showed that the policy update is always per-
formed wrt. the currently best solution found in a level and the policy one level
up, so that it is not required to store the policy attached each solution, as long
as we keep Bl best policies alive for each level l of the recursive search procedure.

Employing Faster Adaptation. For a faster processing of policy adaptation, we
avoid the regeneration of successors by providing all the information that is
needed at the time we construct the solution in the rollout. Hence, we store the
sequence of codes Codel and successor node codes Succl for each best solution
(relative to a level l) produced, where the code is a user-specified domain-specific
address into the policy table calculated based on the current state and the current
move executed in this state [14].

The implementation in Fig. 2 shows that this strategy is already applicable to
the original NRPA algorithm. It leads to minor extensions to the implementation
of the generic playout function: each time a successor is checked for availability
the corresponding code is stored. We see that the update in Adapt affects only
the codes of the good solution to be adapted and its successor codes, to balance
the positive effect put on choosing it as negative effect to all of its successors.
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Fig. 2. Old and new policy adaptation procedure for NRPA reproducing rollout data
and its successors (left) and recorded solution information (right); z is used for nor-
malization, α is the learning rate, usually α = 1.

Avoiding Memory Defragmentation. To avoid fragmented access to the memory
and operating system calls to provide memory, high-speed algorithm implemen-
tations often avoid dynamic memory allocation or have their own memory main-
tenance and allocators. Beam-NRPA pre-allocates the information in the beam
in static arrays and operates on the stored information directly. Besides faster
insertion and deletion this allows to follow the progress of the search by showing
the top k ≤ Bl elements.

4 Improving the Diversity

Beam-NRPA itself is inspired by the objective of higher diversity in the solution
space of NRPA. In larger search spaces NRPA often got stuck with inferior
solutions. It simply takes too long to backtrack to less determined policies in
order to visit other parts in the search space. The beam is stored in a bounded
number of buckets. The information contained in the buckets is visualized in
Fig. 6. Instead of the moves executed in a rollout we store the Code of the
chosen move and the code of its successors Succ. Additionally, the length of the
rollout and its score is stored for each bucket in the beam.

Improving Diversity in the NRPA Driver. When looking at a beam, a natural
aim is to keep solutions in the beam substantially different. This can be imposed
by a matching the best obtained rollout with of the ones stored in the beam.
Duplicate solutions wrt. this criterion are excluded from the beam. Figure 3
provides a pseudo-code implementation.

The application of a filter to improve diversity is implemented in method
Similar. We expect that si = sj implies Similar(si, sj) and Similar(si, sj) =
Similar(sj , si). The output is a truth value (interpreted as a number in {0, 1}).
The beam is scanned for similar states, and if present, the new insertion request
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Fig. 3. Beam-NRPA with high diversity; Bl is the size of the beam Beaml maintained
in level l, Scorel,b is the score of the rollout in bucket bl in level l, Lengthl,b is the
length of the rollout in bl, Codel,b is an array with codes for the rollout in bucket bl,
Succl,b is a matrix for the successor codes for the rollout in bucket bl.

is rejected. Such similarity can be implemented on top of the score of the solution,
the solution length, or other features of the rollout. The example implementation
in Fig. 4 looks at the score and the length of the rollout.

The concept of similarity implies a formal characterization of solution diver-
sity. Let S be a set of solutions of an optimization problem with and let Similar
be a pairwise similarity score (being large for high similarity and small for
low similarity) between every two solution si and sj in S, then the diver-
sity is defined as the sum of the pairwise similarities, i.e., Diversity(S) =∑

si,sj∈S Similar(si, sj). This means that if the solutions are pairwise similar
the diversity is low. A similar concept is that of pre-sortedness in an input array
by adding the pairwise number of inversions.

One important aspect is that adaptation is now applied in every iteration,
while before it was applied only for improved solutions. This increases the num-
ber of calls significantly, but allows more information exchange between the
members in the beam. If the parameters are chosen carefully, the efforts for the
playouts and for executing policy adaption are roughly the same.

We also skip some Θl iterations before we start learning. The motivating
objective is the secretary problem, in which the best secretary out of n rankable
applicants should be hired for a position. Applicants are interviewed one after
the other and the final decision has to be made immediately after the interview.
The stopping rule rejects the first applicants after the interview and then stops
at the first applicant, who is better than every applicant interviewed so far.

Diversity is an objective that has to be dealt with care. In some domains
the solution length (like the snake-in-the-box ) already is the score, so that only
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Fig. 4. Example of applied similarity measure, returning true iff both the score and
the length of a solution matches one in the beam Beaml of size Bl.

solutions of different lengths are kept in the beam. This may limit the number of
good solutions in the beam (too) drastically. As a solution to this problem, we
propose to include other state features into the fractional part of the solution.

A good compromise has to be found. Using the entire state vector for sim-
ilarity detection requires comparing regenerated solutions, which can be slow,
or storing the full state in the rollout to be retrieved in later calls of the policy
adaptation, which would results in a significant overhead in space and time.

Fig. 5. Policy adaptation within Diversity-NRPA, with function Other checking for
fork duplicates; CL and LC are list of codes, (cj , ci) ∈ Beaml,1..b−1 is shorthand for
checking that the code ci and successor codes cj match the one stored in any bucket
smaller than b of Beaml.
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Improving Diversity in the Policy Adaptation. We refine beam NRPA by a
reduction of elements eligible to be included in the beam. Therefore, we use
(cj , ci) ∈ Beaml,1..b−1 to denote that the best rollout code (defined by (cj , ci))
in a given level is already present in the prefix of the beam to bucket b in level l.
This avoids overly stressing good solutions that have already influenced the pol-
icy to be learnt. We also do not want to update elements twice. The according
code is shown in Fig. 5. The main function Diversity-Adapt calls the function
Other which works as a filter, and collects the codes of moves that should be
used to change the policy.

We used simple arrays for the data structure to check that a code and set
of successor codes is contained in the beam and thus learnt already. Profiling
revealed that a significant part of the running time is spent here. Surely, a hash
map would be more efficient for checking (cj , ci) ∈ Beaml,1..b−1. However, the
algorithm has to be modified as the hash map then has to support deletion,
given that elements in the buckets being dominated by incoming solutions are
removed from the beam, and, thus, do no longer serve for duplicate detection in
form of membership queries.

Fig. 6. Sketch of information that is stored in a beam of Diversity-NRPA; the buckets
on top stand for the beam, thin arrows indicate successors (codes, stored in Succ), the
thick arrow the best solution (codes, stored in Code). Duplicates are checked wrt. forks
of state and set of successor states.

Given that the selection strategy of the successors does not prune away moves
that are required to generate an optimal rollout sequence, NRPA and Beam-
NRPA are probabilistically complete in the sense that an optimal solution can
eventually be found. This, however, does not imply any performance quality like
the ε-optimality of the resulting search algorithms.

5 Experiments

Same Game. The same game (Fig. 7) is an interactive game frequently played
on hand-held devices. The input is an n × m board with tiles each of which
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Fig. 7. Initial and terminal position in the same game.

having one (usually, n = m = 15 and k = 5). Tiles can be removed, if they form
a connected group of l > 1 elements. The reward of the move is (l−2)2 points. If
a group of tiles is removed, others fall down. If a column becomes empty, others
move to the left, so that all non-empty columns are aligned. The objective is to
maximize the total reward until no more move is possible. Total clearance yields
an additional bonus of 1,000 points.

The problem is known to be hard [1]. It is solvable in polynomial time for
one column of tiles but NP-complete for two or more columns and five or more
colors of tiles, or five or more columns and three or more colors of tiles.

Table 1 shows the scores in a level 4 (iteration 100) Diversity-NRPA and 30 ×
level 3 (iteration 100) Diversity-NRPA searches both obtained with beam width
10 and initial offset for learning 10. This is compared to NRPA and NMCS.
An entire level 4 search takes about half a day of computation, while 30 level 3
searches finish in about two hours on our computer1. The sum of the high scores
of Diversity-NRPA is 81706 (+144 if the 30 level 3 searches are included). While
this is best wrt. all published results on the game, it is still inferior to the results
published in the Internet2. Little is known about the holders of these records.
However, we could exchange emails with a record holder who told us he is using
beam search with a complex domain specific evaluation function.

We can see that improving the diversity generally gives better results than
NMCS and NRPA, even though, through randomization, there are problem
instances where the opposite is true.

Snake-in-the-Box. The snake-in-the-box problem is a longest path problem in a
d-dimensional hypercube. The design of a long snake has impact for the genera-

1 We used one core of an Intel R© CoreTM i5-2520M CPU @ 2.50 GHz × 4. The
computer has 8 GB of RAM but all invocations of the algorithm to any problem
instance used less than 10 MB of main memory. Moreover, we had the follow-
ing software infrastructure. Operating system: Ubuntu 14.04 LTS, Linux kernel:
3.13.0-74-generic, the compiler: g++ version 4.8.4, and the compiler options: -O3

-march=native -funroll-loops -std=c++11 -Wall.
2 http://www.js-games.de/eng/games/samegame.

http://www.js-games.de/eng/games/samegame
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Table 1. Results in the same game.

ID NMCS(4) NRPA(4) Diversity-NRPA(4) Diversity-NRPA(3)

1 3121 3179 3145 3133

2 3813 3985 3985 3969

3 3085 3635 3937 3663

4 3697 3913 3879 3887

5 4055 4309 4319 4287

6 4459 4809 4697 4663

7 2949 2651 2795 2819

8 3999 3879 3967 3921

9 4695 4807 4813 4811

10 3223 2831 3219 2959

11 3147 3317 3395 3211

12 3201 3315 3559 3461

13 3197 3399 3159 3115

14 2799 3097 3107 3091

15 3677 3559 3761 3423

16 4979 5025 5307 5005

17 4919 5043 4983 4881

18 5201 5407 5429 5353

19 4883 5065 5163 5101

20 4835 4805 5087 5199

Sum 77934 80030 81706 74753

tion of improved error-correcting codes. During the game the snake increases in
length, but must not approach any of its previous visited vertices with Hamming
distance 1 or less. The formal definition of the problem and its variants as well
as heursitic search techniques for solving it are studied by [13]. Information on
snake visits are kept in a perfect hash table of size 2d.

Instead of having a Hamming distance of at least k = 2 for the incrementally
growing head to all previous nodes of the snake (except the ones preceding the
head), one may impose a minimal Hamming distance k > 2 to all previous nodes
(inducing a Hamming sphere that must not be revisited). In Table 2 (left) we
show the best-known solutions lengths for the (k, n) snake problem, where an
asterisk (*) denotes that the optimal solution is known. The validation of the
results in generating a solution with Diversity-NRPA is indicated with suffix v.
For the first problem not solved, the best solutions are shown in brackets (all
within one hour, (11, 5) = 39 within two days of computation in about 3.3 billion
rollouts).
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Table 2. Best known results in snakes-in-the-box and coil-in-the-box problems vali-
dated with Diversity-NRPA (approximate solutions are shown in brackets).

2 3 4 5 6 7

3 4*v 3*v 3*v 3*v 3*v 3*v
4 7*v 5*v 4*v 4*v 4*v 4*v
5 13*v 7*v 6*v 5*v 5*v 5*v
6 26*v 13*v 8*v 7*v 6*v 6*v
7 50*v 21*v 11*v 9*v 8*v 7*v
8 98*(95) 35*v 19*v 11*v 10*v 9*v
9 190 63(55) 28*v 19*v 12*v 11*v

10 370 103 47*(46) 25*v 15*v 13*v
11 707 157 68 39*v 25*v 15*v
12 1302 286 104 56(54) 33*v 25*v
13 2520 493 181 79 47(46) 31v

2 3 4 5 6 7

3 6*v 6*v 6*v 6*v 6*v 6*v
4 8*v 8*v 8*v 8*v 8*v 8*v
5 14*v 10*v 10*v 10*v 10*v 10*v
6 26*v 16*v 12*v 12*v 12* 12*v
7 48*v 24*v 14*v 14*v 14* 14*v
8 96*(92) 36*v 22*v 16*v 16* 16*v
9 188 64(55) 30*v 24v* 18*v 18*v

10 358 102 46*v 28v* 20*v 20*v
11 668 160 70(64) 40v* 30*v 22*v
12 1276 288 102 60(56) 36*v 32*v
13 2468 494 182 80 50*v 36*v

Another variant asks for a closed cycle, by means that the snake additionally
has to bite its own tail at the end of its journey. The algorithm’s implementation
has to take care that this is in fact possible. In Table 2 (right) the best-known
solutions lengths and our validation results are given.

VRP. In the vehicle routing problem (VRP) we are given a fleet of vehicles, a
depot, and a time delay matrix for the pairwise travel between the customers’
locations, service times, time windows and capacity constraints, the task is to
find a minimized number of vehicles with a minimized total distances that sat-
isfies all the constraints. Clearly, by choosing only one vehicle, VRP extends the
capacitated traveling salesman with time windows. We chose instances to the
Solomon VRPTW benchmark for our experiments3. It containts a well-studied
selection of (N=)100-city problem instances. Different solvers have contributed
to the state-of-the-art.

Our implementation of the problem is based on the simple observation that
a tour with V vehicles can be generated by a single vehicle, where the time
(makespan) and the capacity of the vehicle are reset at each visit of the depot.
Of course, in difference to all other cities the depot is allowed to be visited more
times. In the implementation the i-th visit to the depot gets the ID i and has
to be revisited. The tour again has size N + V but the range of stored index
of a city has increased. This imposes an order to set of depot IDs in every tour
to 0, 1, . . ., V −1, 0. This form of symmetry reduction saves about factor V ! for
the permutations of the depot visits. The solver has the selective strategy that
whenever a candidate city invalidates reaching another city it is discarded from
the successor set. We selected a (Level 5, Iteration 50) Diversity-NRPA search
with threshold Θ = 0 to start learning.

3 https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark
http://web.cba.neu.edu/∼msolomon/problems.htm.

https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark
http://web.cba.neu.edu/~msolomon/problems.htm


Improved Diversity in Nested Rollout Policy Adaptation 53

Fig. 8. Learning curve solving a VRP with Diversity-NRPA (y-axis shows the change
in the score, x-axis denotes the number of completed level 4 search).

We could repeat the experiment of solving r101 in our implementation and
found the optimal solution of cost 1650.79 in about 20 min after 625 thousand
playouts. With 20 vehicles we found a slightly better solutions than this one,
but the published results often assume a hierarchical objective of first reducing
the number of vehicles, and only after that, reducing the score.
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With about 2.5 days of computation we could solve the r102 problem. After
215.125 million rollouts in total, we found a new high score 1486.664889, slightly
improving the reported best solution4.

In about a week of computation and more than 550 million rollouts we could
not finish solving the r103 problem. Our best solution 1332.77670, while the
best has value 1292.68. The learning process of the cost function is visualized in
Fig. 8. We see that even after considerable time of no visible progress, there is
continuation in the solving process. Figure 9 compares the different single-agent
Monte Carlo search processes for the first 100 thousand playouts of the r101
problem. We see that Diversity-NRPA shows the fastest learning progress.

6 Conclusion

Nested Monte-Carlo tree search is a class of random search algorithms that has
lead to a paradigm shift in AI game playing from enumeration to randomization,
and NRPA has proven to be a viable option to solve hard combinatorial prob-
lems, combining random exploration with learning. In this paper we proposed
to add more diversity to Beam-NRPA search. Together with a number of imple-
mentation refinements the algorithm performed convincingly in our benchmark
domains.
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Abstract. This paper aims to speed up the pruning procedure that is
encountered in the exact value iteration in POMDPs. The value function
in POMDPs can be represented by a finite set of vectors over the state
space. In each step of the exact value iteration algorithm, the number
of possible vectors increases linearly with the cardinality of the action
set and exponentially with the cardinality of the observation set. This
set of vectors should be pruned to a minimal subset retaining the same
value function over the state space. Therefore, pruning procedure in gen-
eral is the bottleneck of finding the optimal policy for POMDPs. This
paper analyses two different linear programming methods, the classical
Lark’s algorithm and the recently proposed Skyline algorithm for detect-
ing these useless vectors. We claim that using the information about the
support region of the vectors that have already been processed, both
algorithms can be drastically improved. We present comparative experi-
ments on both randomly generated problems and POMDP benchmarks.

Keywords: Linear programming · POMDP · Pruning

1 Introduction

A Partially Observable Markov Decision Process (POMDP) models an agent
acting in an uncertain environment with imperfect actuators and noisy sensors.
For real life problems that require complex models, POMDPs have received much
attention and applied in diverse areas such as radar resource management [11],
scheduling in sensor networks [8], healthcare [7,9], collision avoidance [15], etc.
Even though POMDPs provide the possibility for modeling various phenomena,
the huge computational cost for coming up with an exact solution limits its
use. Therefore last two decade research has focused on fast and approximate
(heuristic) solvers for POMDPs over an infinite horizon [6,17]. These solvers put
a trade-off between the liability of the final solution to the optimal one and the
computational time.

Over a finite horizon, POMDPs can be solved by dynamic programming. The
value function can be represented by a finite set of vectors over the belief state.
During the dynamic programming update, the number of possible vectors, that

c© Springer International Publishing AG 2016
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model the problem, grows linearly with the cardinality of the action set and
exponentially with the cardinality of the observation set [12]. Many of these
vectors can be pruned without changing the exact value representation. The
task of removing these useless vectors is typically known as pruning and is done
by solving a number of linear programs (LPs).

Improving the scalability of solution methods for POMDPs is a critical
research topic and have received much attention. There is a field of research that
exploits the properties of the dynamic programming update steps to decrease
the complexity of the LPs to be solved [2–4,16]. Yet, in all steps of the dynamic
programming update, LPs are used to prune a set of given vectors, that takes the
main computation. This paper presents an algorithmic improvement to speed up
the pruning procedure.

The rest of the paper is organized as follows. In the next section, we briefly
review the POMDP model and the properties of the optimal value function.
Section 3 reviews the exact value iteration algorithm. Section 4 reviews two dif-
ferent pruning algorithms and discusses their linear programming implementa-
tion. Section 5 describes the revised counterparts. Section 6 gives the test results
on benchmark and artificial problems. Section 7 concludes the paper.

2 Partially Observable Markov Decision Processes

The mathematical definition of a discrete time POMDP is a tuple composed of
(S,A, Θ, T ,O,R), where;

– S corresponds to a finite set of world states
– A is a finite set of actions the agent can execute
– T : S × A × S → [0, 1] defines the transition probability distribution

P (s
′ |s, a) that describes the effect of actions on the state of the world. The

transition function models the stochastic nature of the environment
– Θ is a finite set of observations
– O : Θ × S × A → [0, 1] is the observation probability distribution, P (o|s, a)
– R : S × A × S → R corresponds to the reward models that the agent receives

for executing action a in state s.

For POMDPs, the aim is to maximize a function of its reward stream such as the
sum of rewards, the average reward or, more often, the discounted reward. The
standard approach to solving a POMDP is to convert it to a belief-state MDP.
The belief state b is a probability distribution over the state space b : S → [0, 1],
such that

∑
s∈S b(s) = 1. For a given belief state b, ba

o is the updated belief state
after action a is executed and observation o is experienced. The calculation of
ba
o is given as follows:

ba
o(s

′
) =

P (o|a, s
′
)
∑

s P (s
′ |s, a)b(s)

P (o|a, b)
(1)

P (o|a, b) =
∑

s,s′′
P (o|a, s

′′
)P (s

′′ |s, a)b(s) (2)
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It has been shown that a belief state is a sufficient statistic that summarizes
the entire history of the process. Using belief state as the sufficient statistic, the
optimal value function for finite n-steps-to-go problems is obtained as follows:

V ∗
n (b) = max

a∈A

(
∑

sεS
r(s, a)b(s) +

∑

o∈Θ

P (o|a, b)V ∗
n−1(b

a
o)

)

(3)

where n denotes time to reach to the final time (time to go), r(s, a) is the state
dependent reward function, V ∗

n is the value function to be backed up at each
time step and P (o|b, a) is the probability of observing o for the belief state b
when action a is executed.

Smallwood and Sondik [14] showed that the optimal finite horizon value
function is piecewise linear and convex for any horizon T . This piecewise linear
(PWLC) property is useful because it allows the value function to be repre-
sented using finite resources. Therefore, the value function V ∗

n in Eq. 3 can be
represented by a finite set of row vectors Γn = {γ0, γ1, . . . , γk} as follows:

V ∗
n (b) = max

γ∈Γn

γb (4)

where γb =
∑

s∈S γ(s)b(s) is the dot product of vector γ and belief state b.

3 Value Iteration

The dynamic programming approach to finding the optimal value policy in
MDPs is referred to as value iteration. Value iteration means to compute V ∗

n

from V ∗
n−1. It is beneficial to break down the optimal finite horizon POMDP

value function into a series of related value functions. Value function given in
Eq. 3 can be written in a series of related value functions [2];

V ∗
n (b) = max

a∈A
V ∗,a

n (b) (5)

V ∗,a
n (b) =

∑

o∈Θ

V ∗,a,o
n (b) (6)

V ∗,a,o
n (b) =

1
|Θ|r(b, a) + P (o|a, b)V ∗

n−1(b
a
o) (7)

As piecewise linearity assumption is preserved through the value iteration
steps, the series of value functions can be written in terms of vector operations:

Γn = PR

(
⋃

a

Γ a
n

)

(8)

Γ a
n = PR

(
⊕

o

Γ a,o
n

)

(9)
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Γ a,o
n = PR

({
1

|Θ|r(a) + P a,oχn−1 | χn−1 ∈ Γn−1

})

(10)

The cross sum operator ⊕ in Eq. 9 is defined by U ⊕V = {u+v|u ∈ U , v ∈ V}.
In Eq. 10, P a,o(s, s

′
) := P (o|a, s

′
)P (s

′ |s, a). Recall that in Eq. 7, we had to
calculate ba

o for each belief point to form the value function V ∗,a,o
n . To avoid

calculating updated belief states, batch enumeration algorithm constructs the
Γ a

n sets by constructing each possible γa
n ∈ Γ a

n as shown in Eq. 10. The algorithm
prunes the useless ones in each step of the value iteration algorithm. The pruning
operation is denoted by PR.

In each iteration, the value function is updated across the entire belief space.
As noted in [13], in Eq. 9, we create |Γ ||Θ| new vectors for each action, with a
complexity of |S| operations for each vector. There are |Γ | × |A| × |Θ| vectors
generated in Eq. 10 and computing each of these vectors takes |S|2 operations.
Hence, the overall complexity of calculating all vectors for a single iteration is
O(|A| × |S| × |Γ ||Θ| + |Γ | × |A| × |Θ| × |S|2).

4 Pruning

In each step of exact value iteration algorithm, the number of vectors increases
exponentially with |Θ| and linearly with |A|. Yet, not all these vectors are useful
when determining the optimal value function V ∗

n . Only those vectors that are
maximal at some belief state are really necessary. In mathematical terms, when
an arbitrary set of vectors Γ̄ is given, the clean set Γ is defined as follows:

γ ∈ Γ ⇐⇒ ∃b ∈ B : γb ≥ γ̄b, ∀γ̄ ∈ Γ̄ (11)

where B represents the infinite space of all belief states. In other words, R(γ, Γ̄ ) 
=
∅, where R denotes the support region of this vector. Such γ vectors are called
non-dominated vectors. Moreover, we will denote Γ̄ as the dirty set and Γ as
the clean set for the rest of the paper.

Obviously, if a vector γ̄ is pointwise dominated, that is ∃γ ∈ Γ̄ : γ(s) ≥
γ̄(s), ∀s ∈ S, then it can be easily pruned. Yet, eliminating vectors that are not
pointwise dominated is not an easy task. Having a fast pruning procedure which
can take an arbitrary set of vectors Γ̄ and reduce it to a set of non-dominated
vectors Γ , is the main concern for exact value iteration. We will explain two
different pruning algorithms, namely Lark’s algorithm and Skyline algorithm.
For the rest of the paper we will denote D = |S|, N = |Γ̄ |, and n = |Γ |. n is the
number of vectors in the clean set at any time instant of the algorithm.

4.1 Lark’s Algorithm

When an arbitrary set of vectors Γ̄ is given, Lark’s algorithm starts with an
empty clean set Γ that holds the non-dominated vectors. The algorithm picks a
vector γi ∈ Γ̄ and tries to find a belief point b that satisfies γib > γjb, ∀γj ∈ Γ ,
j 
= i. Such a belief point is found by the following LP:
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min δ

(γi − γj)b + δ > 0, ∀γj ∈ Γ
∑

s∈S

b(s) = 1

b(s) ≥ 0, ∀s ∈ S

(12)

If the optimal value of δ is less than 0, that means there is a vector in set Γ̄ that
gives a higher value for the belief state b0 where the optimal solution occurs.
For all vectors γk ∈ Γ̄ the one which gives the highest value for γkb0 is added to
the clean set Γ and deleted from Γ̄ . If the optimal value of δ is greater than or
equal to zero, the vector γi is dominated by the vectors in the clean set Γ and
this vector is deleted from Γ̄ . The procedure continues until there are no vectors
left in Γ̄ . Note that the number of constraints in the LP is n. Therefore, as the
clean set, Γ , gets larger, the LP becomes harder to solve.

4.2 Skyline Algorithm

A recent alternative to the Lark’s algorithm is the Skyline algorithm proposed
by Raphael and Shani [13]. Skyline algorithm traces the upper envelope formed
by the set of vectors. All vectors visited during this traversal are non-dominated,
hence should be added to the clean set Γ , while vectors that can never be visited
are pruned.

When an arbitrary set of vectors, Γ̄ , is given, it is possible to pick any vector
γi and write the following equations for any belief state b ∈ B;

γib + xi = γjb + xj ∀i, j ∈ {1, . . . , N}
xi ≥ 0, ∀i ∈ {1, . . . , N}

(13)

where xi, xj are the slack variables. If we are at a belief state b ∈ R(γi, Γ̄ ) where
xi = 0, then γi is a dominant vector. Therefore, if the algorithm reaches a belief
state where xi = 0 for the set of Equations given in 13, it concludes that vector
γi is on the skyline.

The LP given in Eq. 14 is called iterative Skyline algorithm [13]. In the iter-
ative version, Skyline algorithm starts with an empty set Γ that holds the non-
dominated vectors. During the simplex iterations, if the algorithm discovers that
a vector is on the skyline, adds it to Γ and discards it from Γ̄ . At the end of
simplex iterations, if xi is 0, then vector γi is added to Γ and discarded from
Γ̄ . If xi is greater than 0, vector γi is removed from Γ̄ . After the decision about
vector γi is given, the algorithm picks one of the other vectors, say γk, from Γ̄
and continues the procedure.
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min xi

(γi − γj)b + xi − xj = 0, ∀γj ∈ Γ̄ − {γi}
∑

s∈S

b(s) = 1

b(s) ≥ 0, ∀s ∈ S

xi ≥ 0, ∀i ∈ {1, . . . , N}

(14)

5 Revised Pruning Algorithms

As discussed above, both algorithms select one vector from the dirty set, Γ̄ , at
each turn and try to make a decision about it. Raphael et al. discuss in detail
the time complexity of both of the algorithms [13]. In this section, we propose
different modifications to each algorithm and give the pseudocodes of the revised
algorithms. The modified version of the Skyline algorithm, named as SM, is
described in Algorithm 1 and Lark’s algorithm, LRI, is described in Algorithm2.
The original algorithms will be mentioned as IS, for iterative Skyline algorithm
and LR, for Lark’s algorithm when needed. For the pseudocodes of the original
algorithms, the reader can refer to [13].

5.1 Revisions to the Skyline Algorithm

Writing the LP. This LP is the same as the one given in Eq. 14 but written
in a different format in which every hyperplane equation is written on its own.
For this, variable y > γib,∀i ∈ {1, . . . , N} is defined. This modification has no
impact on the solutions, but makes the LP implementation easier.

min xi

γib − y + xi = 0, ∀γi ∈ Γ̄
∑

s∈S

b(s) = 1

b(s) ≥ 0, ∀s ∈ S

xi ≥ 0, ∀i ∈ {1, . . . , N}

(15)

Checking All the Vectors at Every LP Iteration. In a typical step to
determine if a vector γi is in the clean set, we try to find the greatest improvement
of this vector to the value function. This point b would always be a vertex.
Therefore, if we are passing through a vertex which has not been visited before,
we can check which of the vectors that are included in the simplex tableau have
reached their optimal proximity to the skyline graph. We will demonstrate this
with an example.

Suppose that the dirty set of vectors is Γ̄ = {[4 0]′, [0 4]′, [2 1.9]′, [1 2.9]′}.
Clearly, none of these vectors are pointwise dominated by another. In Table 1,



62 S. Özgen and M. Demirekler

the hyperplane equations for each vector is written in the first four rows and the
fifth row corresponds to the simplex constraint. Assume that, we are trying to
determine if vector γ3 = [2 1.9]′ is in the clean set. That would mean minimizing
the slack variable x3. Notice that in this case, the objective function has a great
similarity with the hyperplane equation for γ3. The solution for the simplex
tableau is also given in Table 1. As can be seen here, x3 = 0.05 > 0 in the optimal
point so γ3 is not in the clean set. Moreover, γ4 has also reached the optimal
point as the coefficients of the non-basic variables are all negative (−0.263 for
x1 and −0.738 for x2) and x4 = 0.05 > 0. Therefore both hyperplane equations
for γ3 and γ4 will be erased from the table in the following round. Using the
similarity of the objective function to the hyperplane equations, by only doing
a simple sign check for the coefficients of the undecided vectors in the simplex
tableau, we can determine which of these vectors have reached their optimal
point.

Table 1. Checking all vectors in Γ̄ , |S| = D = 2

5.2 Skyline Algorithm with Multiple Objective Functions

Algorithm 1 is the revised version of the Skyline algorithm. The main procedure
is defined by SM, where we get an arbitrary set of vectors Γ̄ , and initialize
an empty clean set Γ . LPINIT procedure writes the initial simplex tableau P
defined by Eq. 15. Note that through LPINIT procedure, an equation is defined
for each vector in the set Γ̄ . This set of equations, with the simplex constraint∑

s∈S b(s) = 1, defines the simplex tableau. After this moment, the same simplex
tableau is used to the end of the pruning procedure. After the simplex tableau is
initialized, the objective function is selected as minxi, which is the slack variable
of γi by the function LPOBJ. The objective function is important because it
determines the direction of simplex iterations.

Yet for every simplex iteration, we call the function LPITER. LPITER is a
simple simplex iteration followed by a check routine for the rows of the whole
matrix at any point. With such a routine, we can detect which vectors from the
dirty set Γ̄ are at the belief point where they reached the closest to the skyline.
As they can never get closer to the skyline, they can be discarded from the dirty
set and also from the simplex tableau P . The algorithm continues until there
are no vectors in the dirty set Γ̄ .
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Algorithm 1 . Skyline Algorithm with Multiple Objective Functions

1: procedure SM(Γ̄ )
2: Q ← ∅
3: F ← {1, . . . , N}
4: P ← LPINIT(Γ̄ )
5: while F �= ∅ do
6: i ← any element in F
7: P ← LPOBJ(P, i)
8: while i ∈ F do
9: (P, F, Q) ← LPITER(P, F, Q)

10: end while
11: end while
12: return Γ̄ (Q)
13: end procedure
14: procedure LPINIT(Γ )
15: write the initial tableau P

variables: y, xi, b(s) ∀s ∈ S
P (i, :) : γib − y + xi = 0, ∀γi ∈ Γ

P (N+1, :) :
∑

s∈S b(s) = 1
16: set the objective function to zero

17: return (P )
18: end procedure
19: procedure LPOBJ(P, i)
20: set the objective function to min xi

21: return (P )
22: end procedure
23: procedure LPITER(P, F, Q)
24: do one simplex iteration to P
25: for all optimal P (i, :), i ∈ F do
26: if xi �= 0 then

delete P (i, :) from the tableau
delete i from F

27: else
add i to Q
delete i from F

28: end if
29: end for
30: return (P, F, Q)
31: end procedure

5.3 Revisions to the Lark’s Algorithm

Sorting the Vectors. As Lark’s algorithm adds one vector to the constraint
set at every LP, we want to define a measure which would help us to select
the vector from the dirty set, Γ̄ , at each round. In two dimensional case, the
belief state is parametrized as b(λ) = [λ (1 − λ)]. Assume that we have three
non-dominated vectors as given in Fig. 1. For these vectors, it is possible to show
the following relationship:

λ = 0 =⇒ γ2
2 > γ2

1 > γ2
0

λ = 1 =⇒ γ1
0 > γ1

1 > γ1
2

(16)

where γj
i denotes the jth element of vector γi. Therefore, ||γ0 −γ1|| < ||γ0 −γ2||.

Moreover, as γ1 is neighbouring to γ0 and γ2 but γ0 and γ2 are not neighboring,
∀bi ∈ R(γi, Γ ), i ∈ {0, 1, 2} we can assert ||b0 − b1|| < ||b0 − b2||. Therefore non-
neighbouring vectors have distant support sets compared to neighboring vectors
in 2D.

To understand the importance of this relationship, assume that in Fig. 1, we
only have two non-dominated vectors γ0 and γ1 in the clean set Γ , and we are
trying to find if γ2 is a non-dominated vector. If we start from any point in the
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support region of γ0, we will first arrive at the vertex between γ0 and γ1, and
then the Skyline algorithm would terminate at the maximal vertex between γ1
and γ2, and Lark’s algorithm would come to an end at the point b(s0) = 0.
However, if we were to start from anywhere in the support region of γ1, both of
the pruning algorithms would arrive at the solution by visiting one vertex less.

Fig. 1. Belief state partition

Figure 1 shows that if we start the pruning
algorithm for a selected vector from the support
set of one of its neighbouring vectors, we would
reach to the solution faster. Unfortunately, it is
not easy to extend this idea to the vectors of
dimension greater than two. Yet the experiments
show that by sorting the vectors by using vector
distance, Lark’s algorithm benefit from not tra-
versing the same paths again and again.

5.4 Lark’s Algorithm with Initial Condition

Algorithm 2 is the revised version of the Lark’s algorithm. The main routine is
LRI, where we get an arbitrary set of vectors, Γ̄ , and initialize an empty clean set
Γ . After a new vector, γ, is selected from the dirty set, the l2 distance between
this vector is compared to the vectors in the clean set Γ by the SORT routine and
a vector γ̂ is selected. Since we know a witness point of this vector, b0 = w(γ̂),
we start the LP, discussed by the LPLARK procedure, from this belief state b0.
Notice the similarity of the LPLARK procedure with the structure of the LP for
the Lark’s algorithm discussed in Sect. 4.1. The major difference is the use of an
initial condition b0 in the algorithm.

Algorithm 2 also explains two other routines; PNTDOM and BEST. These
two routines are used in the same fashion as the original algorithm. PNTDOM
is used to prune, if possible, some of the dominated vectors without using linear
programming and BEST is used to select one of the dominating vectors if a
belief state is given. The symbol <lex in the pseudo-code denotes lexicographic
ordering [10].

6 Experimental Results

In this section, we will present the result of the experiments with benchmark
and artificial problems. All four of the algorithms (IS, SM, LR, LRI) were tested
in all problems. We have written our own POMDP code for value iteration using
batch enumeration in MATLAB environment. The tests are performed with a
standard desktop computer (Intel Core i7-3770 3.4 GHz 8 GB RAM).
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Algorithm 2 . Lark’s Algorithm with Initial Condition

1: procedure LRI(Γ̄ )
2: Γ ← ∅
3: while Γ̄ �= ∅ do
4: γ ← any element in Γ̄
5: b0 ← SORT(Γ, γ)
6: if PNTDOM (γ, Γ ) then
7: Γ̄ ← Γ̄ − {γ}
8: else (δ, b∗) ← LPLARK(γ, Γ, b0)
9: if δ < 0 then

10: Γ̄ ← Γ̄ − {γ}
11: else
12: γ ← BEST(b, Γ̄ )
13: w(γ) ← b∗

14: Γ ← Γ ∪ γ
15: Γ̄ ← Γ̄ − {γ}
16: end if
17: end if
18: end while
19: return Γ
20: end procedure
21: procedure SORT(Γ, γ)
22: k = ∞
23: for all γ̂ ∈ Γ do
24: if k > ||γ − γ̂|| then
25: k ← ||γ − γ̂||
26: b ← w(γ̂)
27: end if
28: end for
29: return b
30: end procedure
31: procedure PNTDOM(γ, Γ )
32: for all γ̂ ∈ Γ do

33: if γ(s) ≤ γ̂(s), ∀s ∈ S then
34: return true
35: end if
36: end for
37: return false
38: end procedure
39: procedure BEST(b, Γ̄ )
40: γ̂ ← ∅
41: k = −∞
42: for all γ ∈ Γ̄ do
43: if k < γ.b then
44: γ̂ ← γ
45: else
46: if k = γ.b & γ̂ <lex γ

then
47: γ̂ ← γ
48: end if
49: end if
50: end for
51: return γ̂
52: end procedure
53: procedure LPLARK(γ, Γ, b0)
54: solve the following linear program

start the linear program from b0
variables: δ, b(s) ∀s ∈ S
min δ subject to
(γ − γ̂)b + δ > 0 ∀γ̂ ∈ Γ∑

s∈S b(s) = 1
b(s) ≥ 0 ∀s ∈ S

55: return (δ, b)
56: end procedure

6.1 Benchmark Problems

We first tested the algorithms on a set of benchmark problems from [1]. As the
proposed algorithms can be used for the general pruning procedure of any set of
vectors, the operation in Eq. 8 will be targeted in these experiments. After action
dependent vectors are calculated by the cross-sum step of the value iteration
algorithm, PR (

⋃
a Γ a

n ) operation is tested with different pruning algorithms.
Table 2 gives the specified time horizon for each problem, h, the number of

non-dominated vectors at the end of the specified horizon, |Γ |, and the time
spent in four algorithms in seconds. Different time horizons are chosen regarding
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the complexity of the specific benchmark problem. The time column consists of
four results for IS, SM, LR, LRI from top to down. The discount factors specified
for the benchmark problems in [1] are taken into consideration (0.75 for tiger,
0.95 for the other problems).

Table 2. Tests with benchmark problems in seconds
Problem h |Γ | Time Problem h |Γ | Time

IS 4 × 3 7 132 1.295 Cheese 15 14 0.0118

SM 132 0.760 14 0.0110

LR 132 3.722 14 0.115

LRI 132 1.371 14 0.0682

IS Tiger 15 49 0.0596 Shuttle 7 411 8.010

SM 49 0.0150 408 6.918

LR 49 0.235 411 101.86

LRI 49 0.0826 397 4.342

Table shows that for
benchmark problems, mod-
ified versions of the algo-
rithms prove beneficial.
Benchmark problems with
a large observation set
are not suitable to deal
with batch enumeration
algorithm, because the
number of vectors even
for one step to go can
increase dramatically. In our case, as we are aiming the pruning procedure of
any set of linear vectors, we will strict our experiments with small benchmark
problems and deal with randomly generated sets because it is easier to define
any problem with a reasonable size.

The number of non-dominated vectors for different algorithms tends to alter
due to the numerical errors in the LP. With the use of the discount factor
for the benchmark problems, the vectors start converging to the optimal solu-
tion and getting closer to each other. Due to the computation precision, small
roundoff errors can accumulate and get over a predetermined threshold causing
some extraneous vectors to appear in the clean set. In our application, to assure
numerical stability of the pivot operation, Harris ratio test is applied [5]. In the
ratio test, the selection of the ε = 10−8 value is critical especially for almost-
degenerate cases where the support region of some of the vectors becomes very
small.

6.2 Pruning Performance of Randomly Generated Sets

To demonstrate the scalability of the proposed algorithms, we have also tested
them with artificial problems. We first constructed a set of random vector sets
{Γ1, . . . , Γk}. Random vectors in Γi are created by selecting D random num-
bers uniformly distributed between (0, 200). Then, additional random vectors
are generated and added to the set provided that they are not pointwise dom-
inated. This process is repeated until the number of vectors in Γi reaches n.
Then these vector sets are used to calculate PR

(⊕k
i=1 Γi

)
using different prun-

ing algorithms. This operation corresponds to Eq. 9, which is the bottleneck of
one step value iteration algorithm. Here, k = |Θ| is a substitute for the cardi-
nality of the observation set. Increasing k means an exponential increase in the
number of vectors as nk.
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Table 3. Time used by pruning algorithms for problems
(k, D, 5) in seconds

k D LR LRI IS SM

2 5 0.2404 0.2726 0.0309 0.0369

3 5 1.0624 0.4438 0.3772 0.2544

4 5 8.0704 2.4245 10.687 5.4149

5 5 70.805 14.673 937.26 403.54

2 10 0.2161 0.1414 0.0298 0.0286

3 10 1.6880 0.7833 0.6329 0.4772

4 10 45.3547 4.9769 26.07 16.691

5 10 717.98 36.106 2800.9 1786.4

2 15 0.2271 0.1862 0.0299 0.0256

3 15 1.8488 1.1345 0.543 0.3865

4 15 139.21 7.859 27.838 18.280

5 15 980.21 73.330 2935.3 1875.1

2 20 0.2204 0.2828 0.0230 0.0207

3 20 2.0238 1.5664 0.4772 0.3323

4 20 155.60 10.915 22.928 13.166

5 20 1837.6 114.37 1929.3 880.54

A test problem is
thus specified by the
triple (k,D, n). The pro-
cedure for creating artifi-
cial vector sets is a sim-
ulation of Eq. 10. This
procedure is logical, while
in Eq. 10, the matrix
P a,o is not a regu-
lar transition probability
matrix; it can scale the
vector from the set Γn−1

to a completely different
vector in Γ a,o

n for differ-
ent observation probabil-
ities P (o|a, s

′
).

Tests show that, when
the number of vectors are

small, Skyline algorithm outperforms the Lark’s algorithm. Revision of the algo-
rithms does not contribute much to the time complexity of these simple problems.
However, as the number of vectors increase, the importance of using initial con-
ditions is stressed. In all of the cases, the algorithms are strictly much more time
consuming compared to their revised counterparts. Lark’s algorithm becomes
more advantageous among the revised algorithms, because it solves smaller LPs.

7 Conclusion

In the dynamic programming update of POMDPs, the number of vectors increase
exponentially. Therefore, pruning this set of vectors to a minimal set becomes
a major concern. This paper takes two pruning algorithms from the literature,
Lark’s and Skyline algorithms, and offers major revisions to these algorithms
that decreases the time complexity of the pruning procedure drastically.

Our focus at this moment is on the comparison of the algorithms with their
revised counterparts. For the Lark’s algorithm we have used the optimization
toolbox of MATLAB. However, for the Skyline algorithm, as we are considering
the whole of the simplex tableau at each iteration, we have written our own
simplex code. For this reason, the time disadvantage of the Skyline algorithm to
the Lark’s is not fair. The main result of this paper is to stress the effect of the
revisions which can speed up the algorithm up to ten times as can be seen from
Table 3. This manifests the importance of the revisions that have been made.
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Abstract. Cognitive robotics aims at understanding biological
processes, though it has also the potential to improve future robotics
systems. Here we show how a biologically inspired model of motor con-
trol with neural fields can be augmented with additional components
such that it is able to solve a basic robotics task, that of obstacle avoid-
ance. While obstacle avoidance is a well researched area, the focus here
is on the extensibility of a biologically inspired framework. This work
demonstrates how easily the biological inspired system can be used to
adapt to new tasks. This flexibility is thought to be a major hallmark of
biological agents.

1 Introduction

Cognitive robotics has two main aims. One is to help understand biological
processes as it is increasingly recognized that this requires the implementation
of models in systems that interact with the real world. A second aim is the poten-
tial in improving some robotics solutions where biological system still outperform
robotics systems. A good example of an area where humans performance is still
superior is motor control such as grasping a objects with our hand. Another
recognized challenge for robotic systems is their adaptability or better the lack
thereof. While highly specialized systems can easily outperform humans in spe-
cific tasks, such as assembling a car, adapting these industrial robots to perform
tasks typical for a service robot is now a major area of research.

In this paper we study a biologically inspired motor control system based
on Dynamic Neural Fields (DNFs). Such models are derived from a macro-
scopic description of cortical tissue (Wilson et al. 1972, 1973; Amari 1977).
The group around Bochum (Schöner et al. 1992, 1995; Sandamirskaya 2014)
has developed this framework into a general language for cognitive neurorobot-
ics, and several other authors applied them in the robotics domain such as in
collaborative human-robot interaction (Bicho et al. 2010), rodent-inspired navi-
gation and SLAM (Milford et al. 2004), human decision making (Strauss et al.
2012) and internal models for arm movements (Fard et al. 2015). (Engels et
al. 1995) demonstrated that a DNF implementation is able to unify a planning
and control process in a stable manner. DNF models can be augmented with a
path integration mechanisms to enable dead reckoning (Stringer et al. 2002a,b;
Connors et al. 2013). A specific model that can learn motor primitives has been
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proposed in (Stringer et al. 2003). Here we investigate the model by (Stringer
et al. 2003) further and contribute in with two aspects, (1) we generalize this
model to two dimensional neural fields appropriate for two dimensional move-
ments, and (2) we show how this model can be augmented to implement obsta-
cle avoidance in a robotics setting. While neural fields have been generalized
to higher dimensions for some time, we are not aware of an implementation of
the motor control model by (Stringer et al. 2003) in two dimensions. The second
part is in particular an attempt to study how such a framework can be combined
with other tasks specific modules.

Obstacle avoidance is related to path planing, though we distinguish here
path planning that deals with generating a path prior to execution from obsta-
cle avoidance that modifies an existing path during execution. Most methods of
obstacle avoidance rely on a representation of the world, by a map, which is either
provided by a human designers or obtained from sensor data. Most algorithm
use some form of search algorithms on the representation of the environment to
determine the movement of the robot. For example, some path planning meth-
ods, like the visibility graph, cell decomposition and Voronoi diagram method
(Latombe 1991; Siegwart et al. 2011), represents the world as a graph to deter-
mine an optimal path to a goal by applying some mathematical algorithms. A
method called Potential Field Path Planning applies a function to calculate the
gradient towards a goal (Khatib 1985). A descending gradient would attract
the robot towards a goal, while an ascending gradient, which indicates obsta-
cles, would repel the robot. Obstacle avoidance methods like the Bug algorithm
(Lumelsky et al. 1987) follow the contours of an obstacles and leaves the obstacle
at a point where the distance is closest to the goal. Other methods like the Vec-
tor Field Histogram (Borenstein et al. 1991) employs histograms to represent
obstacle density. The Curvature-Velocity method (Simmons 1996) formulates
obstacle avoidance as a constrained optimization problem in the velocity space
of the robot. Recently, novel methods are proposed. Some are based on rein-
forcement learning (Yang et al. 2004; Xia et al. 2015), some biologically-inspired
(Montiel et al. 2015), and others, are based on a dynamic systems approach
(Khansari-Zadeh et al. 2012). (Iossifidis et al. 2001) showed how a 8 degree-of-
freedom arm can be controlled to perform obstacle avoidance in a reaching task.
While obstacle avoidance is used here as an example application, the focus is
not so much its comparative performance with these existing systems but rather
the investigation of the adaptability of the biological framework. The long term
goal here is to understand solutions found by nature and to see if such solutions
can advance robotics systems in the future.

Related to our work is the paper by (Torta et al. 2012) who proposes a DNF
framework to coordinate different competing behaviours in mobile robot in an
obstacle avoidance task. While their methods selects a heading direction, our
method is based on learned movement primitives. Also, their work does not use
path integration as their work does not encode the workspace of the agent. In
addition, the purpose of our work is less solving again obstacle avoidance but to
show how a common robotics tasks can be integrated with a biologically inspired
motor control framework.
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In Sect. 2, we introduce the motor control model by (Stringer et al. 2003)
and describe the augmentations to the model. Section 3 covers the training of
the networks. Section 4 presents simulation results from three different test cases.

2 Model Specification

2.1 2-Dimensional DNF Program to Represent Motor Learning

(Stringer et al. 2003) introduced a generalized motor control model based on
DNFs to present a dynamical systems approach to motor control. The model
follows the framework proposed by (Schmidt 1987, 1988) which states that a
generalized motor model controls a class of actions, instead of specific movements
or sequences. It is also suggested that a particular class of actions has a common
set of invariant features which defines that class. Common invariant features
are: the relative timing of the components of the skill, the relative force used in
performing the skill, and the sequencing of components.

In this paper, we extend the model by (Stringer et al. 2003) into a
2-dimensional (2D) form and introduced components necessary for the task of
obstacle avoidance.

The basic model by (Stringer et al. 2003) is outlined in Fig. 1 with the solid
boxes. The boxes with dashed lines are additions that will be described in the
next section. The model has three components. The state network contain state
cells that represent the postural state of the agent. The recurrent connections of
the state network, wS (Fig. 1), cause the state network to operate as a continuous
attractor network and is able to maintain an activity region, which encodes the
pose of the agent, in absence of external visual or proprioceptive inputs. The state
network also operates as a movement path integrator, with inputs from the motor
network. The motor network contains motor cells to represent motor activity.
The motor network in the model represents the cortical motor command, and
these neurons activate appropriate subcortical motor neurons that carry out a
movement. The third component contains motor selector cells that represent
prefrontal decision to perform a motor sequence.

This motor control model represents an internal model that can predict
changes in pose with path integration (Stringer et al. 2003). More specifically, it is
a forward model that is implemented with the weights from the motor network
to the state network, wMS (Fig. 1). This connection carries an efference copy
from the motor command to the state network to update its positional state
with path integration. The weights are learned with a traced Sigma-Pi learn-
ing rule, which describes the multiplicative interaction between neurons during
learning. This learning rule allows a combination of the preceding position and
motor command to be associated with the current positional state. Thus, in
trained connections, for a particular combination of the agent’s state and motor
activity, the pattern of activity within the network of state cells should evolve
continuously to express the changing state of the agent as it performs a motor
sequence. Force can be controlled with the movement selector cells by varying
their firing rates. An increase in firing rates of the movement selector cells would
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Fig. 1. Overview of the proposed system including the generalized original motor sys-
tem by (Stringer et al. 2003) (solid lines) and the additional components for obstacle
avoidance.

cause a corresponding increase in the size of the activity packet in the motor
network, leading to an increase in force.

We extended the implementation of this model to 2-dimensions and use bold
letters to indicate tensors.The activation h of the state network is governed by

τ
dht

I(t)

dt
= −hS

I (t) + (
2π

N
)2
∑

J

wS
IJrSJ (t)

︸ ︷︷ ︸
2nd term

+ eI︸︷︷︸
3rd term

+(
2π

N
)2
∑

J,K

wMS
IJKrSJ rMK
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4th term

−
∑

J

wOS
IJ robsJ

︸ ︷︷ ︸
5th term

,

(1)
where the second term on the right-hand side of the equation describes the
effects of the firing of the state cells. The third term is an external input. The
forth term described the coupled inputs from both the state cells and motor
cells. Finally, the fifth term describes the inhibition by the detection network. N
refers to the number of neurons in the network. The firing of the state network
is monotonically related to the sigmoid activation,

rS
I (t) =

1
1 + e−2βS(hS

I (t)−αS)
, (2)
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where αS and βS are the threshold and slope, respectively. The activation of the
motor network is governed by

τ
dhM

I (t)
dt

= −hM
I (t) + tI︸︷︷︸

2nd Term

+ (
2π

N
)2

∑

J,K

wSM
IJKrS

J rMS
K
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3rd Term

−
∑

J

wOM
IJ robs

J

︸ ︷︷ ︸
4th Term

. (3)

The second term on the right-hand side represents a training signal that mod-
els attention processes during learning. This input is set to zero during testing.
The third term describes the contributions from the coupled state and motor
selector cells. The fourth term describes the inhibition from the obstacle detec-
tion network. Finally, the firing of the motor network is similar to Eq. 2 (Replace
the “S” superscript with “M”) where αM and βM are again the threshold and
slope, respectively. To stabilize the network against noise, the firing of the state
and motor networks are modified such that they enhance the firing rate of the
neurons that are already firing,

αi =

{
αHIGH if ri < γ

αLOW if ri ≥ γ
(4)

This allows the activity packet within the networks to remain stable in pres-
ence of noise. Parameters of network used in the following simulations are sum-
marized in tables below. All Gaussian profiles used for weights in the extended
mode, be it 2D or 1D, have the same width, σ = π

8 . Simulations of this basic 2D
model have reproduced the findings of (Stringer et al. 2003).

2.2 Augmentations of the Model for Obstacle Avoidance

To allow obstacle avoidance we need to combine sensory components to this
motor control framework. The goal is to show how learned actions can be selected
with a combination of an intended goal, current state of the agent and presences
of obstacles. Figure 1 provides a graphical overview of the complete model with
the new components of this work depicted with dotted lines and boxes. These
are the Obstacle Detection Network, the goal network, the gate node, and the
action selection (AS) subsystem.

The Obstacle Detection network indicates the location of an obstacle in a 2D
state space that is similar to the space that is represented by the state network.
The activity of this network could be generated from sensor readings, but how-
ever, for the purpose of our simulations, the Obstacle Detection Network is mod-
elled by a 2D Gaussian centred around an pre-defined location. Currently, this
network assumes that only one obstacle is present in the state space. Inhibitory
connections to the state and motor networks are provided by the connections
with weights labelled wOS and wOM . The reason for these connections is that
when an obstacle is present in the state space, the activity bubble representing
the state and motor model of the agent should not enter the location of the
obstacle. Thus, the obstacle network inhibits the neurons at the location where
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the obstacle is detected in the state and motor space. The weights wOS and
wOM also perform the function of “expanding” the obstacle such that the agent
does not physically touch the obstacle in the real world. This feature takes into
consideration an aspect in robotics that physical contact with the robot and
any obstacle should be avoided. Connections are provided to the AS subsystem
without weights as the AS subsystem only needs to know the location of the
obstacle.

The Goal network represents the location of the intended state that the agent
wishes to achieve and is also modelled with a 2D Gaussian. The goal is assumed
to be given by a high level executive functions, and is set manually during our
simulations.

The Gate node consists of cells in this node are used to gate the action
selection mechanism. The assumption is that in absence of a goal, the agent
should not execute any actions in its memory. Gate cells have the additional
function to stop motor commands once the agent is near the goal, hence the
connection from the AS subsystem (Fig. 1). The activation of gate cells in our
model depends on two factors, the existence of a goal and the closeness of a goal
if there is one. The existence of a goal is checked by two subnodes, whose firing
profile solely depends on the level of activity in the goal network. One subnode
is always active, characterized by

rgate−ext =
1

1 + e
−2βgate−ext(

∑

I
rgoal
I −αgate−ext)

, (5)

and the other that is only active when a goal is present

rgate−inh =
1

1 + e
−2βgate−inh(

∑

I
rgoal
I −αgate−inh)

, (6)

These two subnodes are connected such that rgate−inh inhibits rgate−ext with
postsynaptic inhibition. This is written as rgate−ext − rgate−inh.

A subnode calculates how much inhibition to send to the selector network.
First, we calculate the distance to the goal,

rclose
I = rgoal

I (t) − rstate
I (t), (7)

where negative values are removed by
{

0 rclose
I ≤ 0

rclose
I rclose

I > 0
. (8)

This step is important because negative values will cause premature inhibi-
tion, as this subnode interprets any values below zero as “the current state is
right on top of the goal”. The activation and firing of this subnode is defined as

hinh =
∑

I

rgoal
I −

∑

I

rclose
I , (9)
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with the firing given as

rinh =
1

1 + e−2βinh(hinh−αinh)
. (10)

The final output from the gate node is a sum of all the firing within the node,

rgate−final = rinh + (rgate−ext − rgate−inh). (11)

AS Subsystem. Figure 2 gives a detailed view of the internals of the AS subsys-
tem. Each sub node in the AS subsystem encodes the motor traces of a learned
motor sequence, that is, these are copies of the trained weights of wSM . Each sub
node encodes a single motor action. In this paper, we are working with 3 actions
for our simulations, hence there are only 3 sub nodes. Within each subnode,
there are 4 more nodes that respond to the state, goal and obstacle inputs. The
last node fires regardless of inputs, keeping the entire motor sequence active for
further processing.

Fig. 2. AS subsystem

Excitatory inputs from the goal and state network are projected onto each
motor sequence, activating only areas of the motor sequence that are close to the
goal and current state. Similarly, inputs from the obstacle detection network is
projected onto each motor sequence, but are inhibitory in nature, characterized
by a negative value in simulation. This tells the nodes which area of the sequence
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is “blocked”. Each subnode then sums up the total strength of response from
all 4 elements and outputs them to a decision network. The decision network
is trained to only respond to inputs at specific locations, hence each subnode
can only activate cells that are associated with its own motor command on
the decision network. These locations match locations that are activated in the
selector network during training. A lateral interaction kernel allows the inputs to
compete with each other via inhibition. Thereafter, the decision network sends
its output to the selector cells.

Theoretically, the decision network is unnecessary, since the competition
between nodes can actually occur in the selector network. However, since these
nodes are dealing with the sum of responses from 4 different elements, the values
of response can get very high. This would also cause the kernel parameter values
for the selector network to be high as well, to handle these high value inputs.
This would make it harder to tune during design. Hence, this decision network
is more of design decision to normalize the values.

The activation of each subnodes are described by 2 sets of equations.

rsubnode
I =gstate

( ∑

J,K

wSM
IJKrS

J rsubnodecmd

K

)
+ ggoal

( ∑

J,K

wSM
IJKrgoal

J rsubnodecmd

K

)
+

gtrace
( ∑

J,K

wSM
IJK(1)rsubnodecmd

K

)
− gobs

( ∑

J,K

wSM
IJKrobs

J rsubnodecmd

K

) ,

(12)
where gx(h) is a sigmoid activation function defined as

rx
I =

1
1 + e−2βx(hx

i −αx)
. (13)

The superscript x denotes the respective terms in the subnode (state, goal,
trace, obstacle (shortened to “obs” in Eq. 12)). Also, note that each activation
function will have their own parameters. For clarity, the term rsubnodecmd

K refers
to the set of selector cells that are activated during training. Finally, negative
values are removed by thresholding:

{
0 rsubnode

i ≤ 0
rsubnode
i rsubnode

i > 0
. (14)

To project the strength of responses from all the subnodes to a common
network, the 2D firing responses will have to be “converted” into a 1D form to
fit the decision network (1D because the selector network is also 1D). This is
done by taking the sum of firing of the subnodes, then passing them through a
1D weight kernel that is only specific to their own motor sequence. Using the
firing response from subnodes above (Eq. 12) this is expressed as

hDecision
i =

∑

j

(wDecision
j

∑

I

rsubnode
I ) (15)

rDecision
i =

1
1 + e−2βDecision(hx

i −αDecision)
, (16)
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where the subscript j is an index represents the number of motor sequences and
their associated motor commands. The weight kernel description is the same as
Eq. 37, except that it is a 1D weight kernel instead of a 2D. The end result is a
weight kernel, wcmd

M , being a 1D centre-surround interaction kernel, with centres
around their respective locations associated with motor commands. Note that
the AS node is classic feed-forward network, and we assume in our simulations
that the AS operates instantaneously. Therefore, there is no need to formulate
them as dynamic systems. The sigmoid parameters for the “trace” subnetwork
are adjusted so as the output strength of each subnetwork are relatively equal
to each other.

Since the Selector Network is now a recurrent network, it is necessary to
describe them formally. The activation of the Selector Network is given by:

τ
dhSelector

i (t)
dt

= −hSelector
i (t) + rDecision

i +
2π

N

∑

j

wSelector
ij rSelector

i (17)

and the firing of the selector network is governed by

rSelector
i (t) = (

1
1 + e−2βSelector(hSel

i (t)−αSelector)
) − rgate, (18)

where rDecision
i represents input from the AS node. Inhibition from the gate cells

are applied as postsynaptic inhibition on the entire network, as denoted by the
rgate in the firing equation.

Tables 1 and 2 below depicts the parameters used for our simulations

Table 1. Network firing profiles and dimensions

Network type (superscript) α β αHIGH γ X dimension Y dimension

State (S) −4.0 1 −0.25 0.5 20 20

Motor (M) 10.0 1 10.0 0.5 20 20

Selector 2 0.9 20 1

Gate (gate-ext) −3 1 1 1

Gate (gate-inh) 3 1 1 1

Gate (inh) 3 1 1 1

AS subnode, state (state) 70 0.1 20 20

AS subnode, goal (goal) 50 0.1 20 20

AS subnode, obstacles (obs) 50 0.1 20 20

AS subnode, trace sequence 1 220 0.5 20 20

AS subnode, trace sequence 2 258 0.5 20 20

AS subnode, trace sequence 3 226 0.5 20 20

AS subsystem (decision) 95 1 20 1

Obstacle (obs) 20 20

Goal 20 20



78 C.K. Tan et al.

Table 2. Weight scaling parameters of networks

Weight type Anet Cnet

wS 4 0.5

wSM 12 0.2

wMS 12 0.0

wSelector 13 0.4

wOS 1 0.3

wOM 2 0.3

wDecision 12 0.3

3 Training the Model

To speed up training, we chose to set the learning rate to k = 1 in Eqs. 23, 24,
27, 32, 33 and 34. This allows for 1 single training iteration.

Similar to the training phase in the original model (Stringer et al. 2003), we
used a Gaussian training profile for the firing of the networks. However, in our
case, the Gaussian is a 2D profile given as a multiplication of 2 Gaussians:

r2Dnet
I = exp(−(s2Dnet

i1 )2/2(σ2Dnet)2) ∗ exp(−(s2Dnet
i2 )2/2(σ2Dnet)2), (19)

where 2Dnet = state,motor, obstacle, goal. s is the absolute difference between
the preferred firing state of the network and current firing state for each cell in
the network. This is given as:

s2Dnet
i1 = min(|xi − x|, sizex − |xi − x|)

s2Dnet
i2 = min(|yi − y|, sizey − |yi − y|),

(20)

where the variables x and y describe the two dimensions of the network. The
addition of the min function account for periodic boundary conditions. This
form of equation apply to all 2D networks (state, motor, obstacle detection,
goal) by changing the superscript net to reflect the firing profiles of the said
network. Since these firing profiles are used to train weight kernels, it follows
that all associated weight kernels have similar 2D profiles. As for the remaining
networks, they are trained with 1D Gaussian profiles,

r1Dnet
i = exp(−(s1Dnet

i )2/2(σ1Dnet)2) (21)

and
s1DNet

i = min(|xi − x|, sizex − |xi − x|)|xi − x|. (22)

Similar to the 2D Gaussian profile, the min function accounts for periodic
boundary conditions. This form of the equation applies to the decision network
in the AS subsystem and the selector cells.
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All of the training rules used in the original model are extended to the 2D
form. The training rule for the recurrent connections of the state network, wS

IJ

is given by
δwS

IJ = kSrS
I rS

J , (23)

and the connections from motor to state network is adjusted by

δwMS
IJK = kMSrS

I r̄S
J r̄M

K , (24)

where the bar over r denoting a memory trace of the firing over the state and
motor activity. This trace value is given by

r̄(t + δt) = (1 − η)r(t + δt) + ηr̄(t), (25)

where η is a parameter which determines the contribution of the previous firing
rate and current rate to the trace activity. For the purpose of our simulation, we
set η = 0.6

Weights are normalized after the learning of each motor sequence. This is to
ensure weights encoding each sequence are of the same relative strength,

wMS
final =

∑

M

((wSeq + δwSeq)/max(wSeq)) (26)

In our implementation, the weights for each sequence are normalized before
combining them together.

The connection from state to motor network are changing according to

δwSM
IJK = kSMrM

I rS
J rSelector

K . (27)

A normalization of connection strength is performed after every learning
of the motor sequence. This is to ensure that the weights encoding each motor
sequence have the same relative strength, regardless of the length of the sequence.
This is done by dividing the weight kernel with the its maximal value. They are
combined together after normalization,

wSM
final =

∑

M

((wSeq + δwSeq)/max(wSeq)), (28)

where M denotes the number of motor sequences to be learned, and wSeq denotes
the current motor sequence is being trained. We defined three motor sequences
for training by shifting a 2D Gaussian profile centred about the points listed
below:
1st Motor Command: Diagonal movement

Sequence 1: X-direction =[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
Sequence 1: Y-direction =[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]

(29)
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2nd Motor Command: Diagonal with a curve to the right

Sequence 2: X-direction =[4, 5, 6, 7, 8, 9, 10, 10, 11, 11, 12, 12, 13,

13, 14, 14, 15, 15, 16, 16, 16, 16, 16, 16]
Sequence 2: Y-direction =[4, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,

9, 9, 10, 10, 11, 11, 12, 13, 14, 15, 16]

(30)

3rd Motor Command: Right movement then straight up

Sequence 3: X-direction =[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15,

15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16]
Sequence 3: Y-direction =[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5,

6, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]

(31)

Note that these motor sequences are deliberately chosen such that they are
able to “cover” at least half of the locations in the motor network.

The connection from obstacle to state and motor network are modelled with
the equations

δwOS
IJ = kOSrOS

I rOS
J (32)

and
δwOM

IJ = kOMrOM
I rOM

J (33)

respectively. These connections represent the effects of the obstacles on both the
state and motor network. Although the learning rules are the same, the lateral
interaction parameters given later would change their strength of inhibition to
their respective networks.

Recurrent connections for selector network are trained with

δwSelector
ij = kSelectorrSelectorl

i rSelector
j . (34)

This learning rule is similar, except that in the case of the selector network,
it utilizes a 1D Gaussian profile for training. The weights from each subnode to
the decision network is described by a 1D Gaussian profile.

wDecision
i = exp(−(sDecision

i )2/2(σDecision)2) (35)

sDecision
i = |xi − x|, (36)

where xi is the centre of the Gaussian used for encoding motor commands. For
our simulations, the centres of the Gaussians are used as indices of connections to
the decision network. We associated x1 = 5 with the 1st motor sequence, x2 = 10
with the second motor sequence and x3 = 15 with the 3rd motor sequence. Note
that these values are arbitrarily chosen for the purpose of our simulations.

After training has been carried out, the weights kernels are adjusted with a
scaling factor A and global inhibition constant C. This can be expressed as:

wnet = Anet((wnet/max(wnet)) − Cnet), (37)
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where the superscript net denotes the respective superscripts of the network
where the weights belong to. Note that a normalization factor is also included,
given by the division with the maximal value of trained weights, max(wnet). This
help ensure that the relative strength of weights in the network are of similar
magnitude. Also note that each network have their respective parameters A and
C, which is listed below:

4 Simulations

In this section we demonstrate the abilities of the model in three scenarios. Model
simulations are implemented in MATLAB R2015a (64 bits) on a system with
Intel Core i7-4900MQ (2.8 GHz), with 16 GB memory running Windows 8.1 Pro
(64 bits). For the numerical integration we use a simple Euler method with a
time constant of τ = 1 and an integration timestep of Δt = 0.2. Before the start
of every simulation, we initialized our state network with an external input, eI ,
at the location (4, 4) for 100 timesteps. Then the external input is removed and
the network is allowed to rest for another 30 timesteps to ensure that the activity
region is stable. This location is assumed to be the agent’s start position. Plots
below show the activity of the networks consolidated over time.

Note that during simulation, no planning times were reported, as there is no
planning, if viewed from a strict classic robotics planning context. Each state
encoded by the state network is associated with a corresponding motor command
and the next state of a sequence during training, thus allowing the agent to
immediately move to the next state. This continues until the selector cells are
inhibited, which stops the agent from moving.

4.1 Test Case 1: Goal State with No Obstacles

The first test case is similar to the original experiments by Stringer et al. except
that it includes the goal network to automatically stop movements when the
goal is reached. In this experiment we move the agent from its initial location at
(4, 4) to a goal at (16, 16). The goal is communicated to the system by setting
the goal network to a 2D Gaussian between t = 50 and t = 180. Figure 3 show
the activities in the different subsystems.

The state activity moves from the initial state to the desired state (Fig. 3A),
while the motor nodes and the selector network are only active during the move-
ment (Fig. 3B and C). The AS subsystem (Fig. 3D) is inactive from t = 0 to
t = 50 as there is no goal. Inhibition is strong from the beginning, preventing
any movement. Inhibition is removed once a goal is detected at t = 50 and the
gate node releases its inhibition on the selector cells. At about t = 150, the gate
node begins to inhibit the selector network again, because of the proximity of
the agent to the goal.

Figure 3F shows the Centre of Mass (CoM) of the activity packets within
the motor network. This plot reveals that it took about 40 time steps before the
agent started moving at t = 90 and stopped moving at t = 174. Furthermore,
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Fig. 3. Consolidated network activity trajectories over time (Test Case 1)

the motor network did not stop directly at point (12, 12), but instead stopped
near (10,10). This is attributed to the “closeness” parameter within the gate
node. However, since the width of the state activity packet is able to cover the
goal, the agent is considered to have reached the goal.

4.2 Test Case 2: Static Obstacle

For the second test case, we presented a static obstacle to the model at location
(10, 10), while giving a goal of (16, 16). This means that there is now an obstacle
right in the path of the motor sequence executed in the first experiment. As
shown in the corresponding Fig. 4, the agent avoids activating the motor com-
mand for the first motor sequence. Instead, the motor command for the second
motor sequence is activated and the agent moves in a trajectory that avoids the
obstacle. Interestingly, the output of the AS subsystem makes the decision to
activate two motor commands together, the initial output at t = 50 is already
stronger for the second motor command, thus selecting it. The recurrent con-
nection of the selector network strengthens the decision output with a positive
feedback loop, eventually activating the second motor command. As with test
case 1, the inhibition is lifted once a goal is detected at t = 50.

The CoM analysis showed that needed just 21 time steps (from t = 50 when
the goal is given) for the motor command to be activated at t = 71. This is
because of the effects of inhibition from the obstacle caused the subnode for
the first motor command to be weaker, hence reducing the amount of lateral
inhibition on other motor commands. Since the competition is now between two
motor commands, instead of three, the increase in speed for the decision makes
sense.
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Fig. 4. Consolidated network activity trajectories over time (Test Case 2)

4.3 Test Case 3: Dynamic Obstacle

In this test case, we demonstrated that the agent can change motor commands
dynamically when encountering an obstacle that is moving around. The obstacle
is initially placed at location (10, 10) at t = 52, then moved to location (14, 9)
at t = 115.

The shape of the activity trace extending outward to point (10, 4) in Fig. 5(a)
is the agent’s attempt to move using the first motor command, switch to the sec-
ond motor command, before finally deciding to activate the first motor command.
This changing of decision is reflected in the plots of the selector network. Some
signs of the decision making process can also be seen in the motor network, where
motor activity dies off momentarily. This occurred between t = 77 to t = 84,
where the agent switches from activating the first motor command to the second
motor command after detecting an obstacle at (10,10). The second occurrence
of motor activity discontinuity is between t = 127 and t = 142, where the agent
switches from the second motor command to the first motor command. However,
the decision to execute a motor command is not clear from the perspective of the
motor network, since motor commands will not be executed if the firing rates of
the selector network is not high enough.

A step-by-step analysis of the AS subsystem output and selector network
plots demonstrates the decision process. Right before the introduction of an
obstacle at location (10, 10) when t = 52, the selector network is about to acti-
vate the first motor sequence, as characterized by the increasing activity in the
selector network. At the same time, the AS subsystem “notices” the introduction
of the obstacle and changes its output. This causes the activity in the selector
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Fig. 5. Consolidated network activity trajectories over time (Test Case 3)

network to slowly decay, from t = 53 to t = 77. A point to note is that when
the obstacle input is introduced to the state network, there is some excitation to
the state network in areas far away from the obstacle location. Coupled with the
slight activation of the motor network from the decaying selector inputs from
t = 53 to t = 77, the state activity packet moves slightly to the right. The
selector network then proceeds to build up activity to activate the second motor
command, as per outputs from the AS subsystem. At t = 115, the obstacle
changes location to (14, 9), causing the AS node to immediately switch to the
first motor command. At that time, the selector network is about to activate the
second motor command, but is unable to maintain the current activity bubble,
thus allowing it to decay. From t = 130 onwards, the selector network begins to
activate the first motor command. Since there is no more change in the location
of the obstacle, the first motor command will be fully activated and the agent
moves towards the goal. Throughout the entire decision process, the agent only
moved slightly to the right, which is partly due to the long-range excitation.

5 Discussions and Outlook

The model has been designed to show how an obstacle avoidance systems could
be integrated with the original model that is able to learn motor sequences. We
have demonstrated with simulations that the system is able to perform obsta-
cle avoidance even when the initial learned motor sequences are initiated first.
Although the current simulations only demonstrate movement towards a single
direction, general movements would require additional networks to store move-
ment sequences in different directions. This is described in detail in Experiment 4
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in (Stringer et al. 2003). The addition of the AS subsystem is an improvement over
Experiment 4 in (Stringer et al. 2003) in the sense that we do not require every sin-
gle state to be associated with the motor networks, thus reducing learning time.
It also made single trial learning possible, as described in the section on training
above (setting of learning rate k to 1).

Currently, we demonstrated that single obstacles can be represented and used
in the model. To extend the model to represent multiple obstacles, the obstacle
network would have to be modified in such a way that it can properly encode
multiple Gaussian profiles without interference. Weights from the obstacle net-
work to the state and motor networks would also have to be modified such that
the activity in the state and motor networks will not be completely inhibited.
However, this would require further work to determine the effects of the exten-
sions on the current model.

The original motor system by (Stringer et al. 2003) represents an internal
model of an agent to represent the state or pose of the agent and to update this
representation with specific motor commands. The work presented here shows
that such an internal system can be easily interfaced with a sensory system and
a goal system. We do not claim biological realism of this specific solution to
obstacle avoidance, but our aim here was more to show that such solutions are
possible with a biological inspired system. We used here obstacle avoidance as an
example that requires the interaction of internal events with the internal planing
or decision system. While the extensions look highly engineered for this specific
part, the main message here is that it was easy to influence the original motor
control system without major fine tuning of parameters.

We do not claim at this point that our method outperforms highly engi-
neered solutions and think that new measures of robotics performance need to
be introduced. Indeed, progress in the field of cognitive robotics is somewhat
difficult with highly specialized benchmarks, and there is a real need to provide
appropriate benchmarks that capture the difficulties that current robotic sys-
tems have, including the flexibility of the robotics system. For example, recall
that there is no actual planning in this system. To use metrics in robotics like
“planning time” makes it hard to quantify this system. Perhaps terms from neu-
rophysiology could be borrowed, like “reaction time” to measure how fast can
decisions that can arise from systems with a memory element. However, it is a
question for further research to quantify the ability of such systems.
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Universitätsstr. 65-67, 9020 Klagenfurt, Austria

erich.teppan@aau.at
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Abstract. Answer Set Programming (ASP) under the stable model
semantics supports various language constructs which can be used to
express the same realities in syntactically different, but semantically
equivalent ways. However, these equivalent programs may not perform
equally well. This is because performance depends on the underlying
solver implementations that may treat different language constructs dif-
ferently. As performance is very important for the successful application
of ASP in real-life domains, knowledge about the mutual interchange-
ability and performance of ASP language constructs is crucial for knowl-
edge engineers. In this article, we present an investigation on how the
usage of different language constructs affects the performance of state-
of-the-art solvers and grounders on benchmark problems from the ASP
competition. Hereby, we focus on constructs used to express disjunction
or choice, classical negation, and various aggregate functions. Some inter-
esting effects of language constructs on solving performance are revealed.

Keywords: Answer set programming · Evaluation · ASP Competition

1 Introduction

In recent years, Answer Set Programming (ASP) under stable model seman-
tics [13] has evolved to an extremely powerful approach to represent and solve
even industrial-sized combinatorial problems in real-life application domains
[1,10,12]. There are mainly two reasons for these significant advancements: First,
the performance of state-of-the-art ASP systems has tremendously improved,
e.g. by the incorporation of conflict-driven search [11], portfolio solving [9], lazy
grounding [5], or the inclusion of powerful heuristics like berkmin or vsids [17].
Second, the language itself has been extended by expressive constructs like dis-
junction, choice rules, aggregates, weak constraints or optimization statements
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[8,14,16,20]. As a consequence, various language features allow to express the
same thing in different ways and thus to produce syntactically different, but
semantically identical problem encodings.

For this reason, a line of research has emerged that focuses on different
aspects of automatic code rewriting. For example, [6] discusses the theoretical
aspects of different equivalence-preserving rewritings under uniform and strong
equivalence. The authors of [15] propose an extended calculus for ASP in order
to add additional redundant rules for increasing solving performance. In [18], the
effects of an automatic rule decomposition approach are discussed. In opposition
to this line of research that concentrates on the background of a solving system
itself, this paper focuses on how to write user programs (cf. [7], for example).

Taking up the point of view of domain engineers, we are concerned with (1)
which language constructs can easily by changed by engineers without changing
program size significantly, and (2) how the changes influence time and memory
requirements of state-of-the-art grounders and solvers. The solvers are hereby
seen as black boxes.

In particular, we present the setup and most important results of an exten-
sive empirical evaluation. The experiments were conducted using the bench-
mark problems from the ASP competitions 20131 and 20142. For each of these
problems, several encodings were produced. It was made sure that the differ-
ent encoding versions for a particular problem were equivalent, i.e. produced
the same solutions. Furthermore, the program differences introduced were kept
small and modular so that any change in time or memory consumption could be
attributed to the usage of a certain language construct. All programs have been
tested on a number of randomly drawn test instances from the ASP competi-
tion by running them on different combinations of state-of-the-art grounders and
solvers. Statistical analysis of the experimental data revealed interesting depen-
dencies between the usage of certain language constructs, problems, grounders
and solvers in terms of memory and time consumption.

The remainder of this article is structured as follows. Section 2 refreshes the
most important concepts of ASP, in particular syntax and semantics of the ASP
language constructs treated in this article. Those who are totally unfamiliar
with ASP might want to consult additional literature, e.g. [2,4,7,8]. Section 3
describes the experimental setup. Section 4 discusses the most interesting results
of our evaluations. Finally, Sect. 5 briefly concludes the article.

2 Background

A term is either a variable or a constant. Strings starting with upper-case letters
denote variables. Constants are represented by strings starting with lower-case
letters, by quoted strings or by integers. An atom is either a classical atom, a car-
dinality atom or an aggregate atom. A classical atom is an expression p(t1, . . . , tn)

1 https://www.mat.unical.it/aspcomp2013.
2 https://www.mat.unical.it/aspcomp2014.

https://www.mat.unical.it/aspcomp2013
https://www.mat.unical.it/aspcomp2014


90 R. Taupe and E. Teppan

where p is an n-ary predicate and t1, . . . , tn are terms. A classical literal is a clas-
sical atom α or its negation ¬α. A negation as failure (NAF) literal is either a
classical literal λ or its negation not λ. A cardinality literal is either a cardinality
atom ψ or its negation not ψ. A cardinality atom is of the form

l ≺l {a1 : l11 , . . . , l1m ; . . . ; an : ln1 , . . . , lno
} ≺u u

where

– ai : li1 , . . . , lim represent conditional literals in which ai (the heads of the
cardinality atom) constitute classical literals and lij are NAF literals

– l and u are terms representing non-negative integers and
– ≺l and ≺u are comparison operators.

An aggregate literal is either an aggregate atom ϕ or its negation not ϕ. An
aggregate atom is of the form

l ≺l #op{t11 , . . . , t1m : li1 , . . . , lio ; . . . ; tn1 , . . . , tnp
: li1 , . . . , liq} ≺u u

Most syntactical parts of aggregate literals are the same as with cardinality
atoms, except that

– the heads ti1 , . . . , t1m of conditional literals are tuples of terms
– and #op is an aggregate function from {#min,#max,#count,#sum}.

Generally, a rule is of the form

h1; . . . ;hd ← b1, . . . , bm, not bm+1, . . . , not bn.

where

– h1, . . . , hd and b1, . . . , bm are positive literals (i.e. atoms),
– not bm+1, . . . , not bn are negative literals,
– H(r) = {h1, . . . , hd} is called the head of the rule,
– B(r) = {b1, . . . , bm, not bm+1, . . . , not bn} is called the body of the rule,
– B+(r) = {b1, . . . , bm} is the positive body and
– B−(r) = {not bm+1, . . . , not bn} is the negative body of the rule.

A rule r with H(r) consisting of a cardinality atom is called choice rule. A
rule r with a head consisting of more than one classical atom (i.e. |H(r)| > 1) is
called disjunctive rule. A rule r with a head consisting of at most one classical
atom is a normal rule. A normal rule r where B(r) = {}, e.g. ’a ←’ is called
fact. A normal rule r where H(r) = {}, e.g. ’← b’, is called integrity constraint,
or simply constraint.

We allow the typically built-in arithmetic functions (+, −, ∗, /) and com-
parison predicates (=, �=, <,>,≤,≥). For example, A = B + C could also be
rewritten as = (A,+(B,C)).
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2.1 Semantics of ASP

The semantics of a non-ground program is defined w.r.t. its grounding. A pro-
gram’s grounding can be defined in terms of its Herbrand universe and base. The
Herbrand universe HUP of a program P is the set of all constants appearing in P .

The grounding for a rule r without cardinality atoms and aggregates is the
set of rules obtained by applying all possible substitutions of variables in r
with constants in HUP . The grounding of a rule which contains cardinality or
aggregate literals is defined by the two-step instantiation described in [19]: first
produce a set of partially grounded rules by substituting variables occurring
outside the cardinality/aggregate literal and then, within each partially grounded
rule, substitute each conditional literal by a set of ground conditional literals by
substituting the remaining variables inside the cardinality or aggregate literal.

The grounding PG of a program P is the union of all rule groundings. The
Herbrand base HBP w.r.t P is the set of all positive NAF literals (i.e. classical
literals) that occur in PG. An interpretation I ⊆ HBP w.r.t P is consistent
iff there are no complementary classical literals, i.e. α ∈ I =⇒ ¬α /∈ I and
(equivalently) ¬α ∈ I =⇒ α /∈ I. For the remainder of this article we always
assume interpretations to be consistent.

An interpretation I satisfies a (ground) positive NAF literal λ (written as
I � λ) iff λ ∈ I. A positive cardinality literal is satisfied by I iff the number
of satisfied head literals in the cardinality atom satisfies the lower and upper
bounds l and u w.r.t. the order relations ≺l and ≺u. Both bounds and comparison
symbols are optional. By default, 0 ≤ is used for the lower and ≤ ∞ for the upper
bound. A choice rule is said to have trivial bounds if both default bounds are
used and to have explicit bounds otherwise. In the latter case, we also call it
bounded. A positive aggregate literal is satisfied iff the value returned by the
aggregate function #op applied on the set of term tuples fulfilling its conditions
does not violate the lower and upper bounds. Here, #count counts the number
of distinct term tuples fulfilling the related conditions, and #min,#max and
#sum calculate the minimum, maximum or sum of the first terms in the distinct
term tuples fulfilling the related conditions. A negative literal not ω is satisfied
(written as I � not ω) iff ω is not satisfied. A set of literals, in particular the
body B, the positive body B+ or the negative body B−, is satisfied if every
literal in B, B+ respectively B− is satisfied.

A ground rule r is satisfied by I (written as I � r) iff the head is satisfied or
the body is not. In particular, an empty body is always satisfied and integrity
constraints are satisfied iff the body is not satisfied, i.e. the constraint is not
violated. The head of a rule is satisfied iff at least one of the literals in it is
satisfied. A program P is satisfied by an interpretation I iff all rules in its
grounding PG are satisfied.

An answer set for a program can be defined on the basis of the program’s
reduct [13,19]. The reduct P I of a ground program P relative to an interpretation
I ⊆ HBP is defined as P I := {H(r) ← B+(r) : r ∈ P, I � B−(r)}.

An interpretation I ⊆ HBP (which may be empty) is an answer set for a
program P not containing choice rules iff
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– I satisfies all rules r in P I , i.e. ∀r ∈ P I : I � r and
– I is subset-minimal, i.e. there is no I ′ ⊂ I so that I ′ satisfies all rules in P I′

.

Choice rules can produce answer sets that are not subset-minimal, which
leads to a slight change of semantics when such rules are present. For example,
the program consisting only of the choice rule {a}. possesses the two answer
sets {} and {a}. In order to be in line with the original semantics and thus to
restore subset-minimality, an equivalent program can be produced by extending
the program as follows:

For every head ai within a cardinality atom of a choice rule, a new atom a′
i

is introduced that does not occur anywhere else in the program. Furthermore,
additional rules are added that assure that either ai or a′

i but not both are in an
answer set. Thus, informally speaking, a′

i expresses that ai is not in the inter-
pretation. This way, the choice rule {a}. equivalently produces the two answer
sets {a′} and {a}, i.e. one answer set contains ai while the other does not. For
details, consult [8].

An ASP program is unsatisfiable iff it has no answer sets and satisfiable
otherwise.

2.2 ASP Coding Practices and Equivalence

It is common practice in ASP to encode the generic problem specification and
instance data as two separate programs. We call them encoding and instance,
respectively. While the encoding always stays the same, it can be solved together
with different instance programs to solve different problem instances [3,8].

An instance typically contains only facts involving certain predicates. We call
this set of predicates the program’s input signature. On the other hand, solutions
to the problem are also encoded by a specific set of predicates, which we call
the program’s output signature. Given an answer-set program Π, we denote by
in(Π) its input signature and by out(Π) its output signature [3].

As the rule transformations discussed in this paper often change the pro-
gram’s predicates, we use the concept of output-equivalence [3]:

For a set X of atoms and a set P of predicate symbols3, let X|P be the
subset of X that only contains the atoms whose predicate symbols are in P .
Furthermore, let AS(φ) denote the set of answer sets for φ.

Two encodings Π and Π ′ are output-equivalent, if and only if

1. their input and output signatures coincide, i.e. in(Π) = in(Π ′) ∧ out(Π) =
out(Π ′), and

2. for each instance I, i.e. a set of facts of predicates in in(Π), it holds that:
– For each answer set X ∈ AS(Π ∪ I) there exists an answer set X ′ ∈

AS(Π ′ ∪ I) such that X|out(Π) = X ′
|out(Π′) and vice versa.

3 To distinguish predicates with the same symbol but different arities, identifiers like
p/n can be used.
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3 Experimental Setup

In order to test whether and how the inclusion or exclusion of certain language
constructs influences solving performance, we tested variations of problem encod-
ings on a set of state-of-the-art grounders and solvers. In these experiments, we
focused on the language constructs for expressing disjunction, classical negation
and the aggregate functions count, min and max. An overview on the experi-
mental setup is given in Fig. 1.

Fig. 1. Experimental setup

3.1 Problems and Encodings

All problems that appeared in the ASP competitions 2013 and 2014 were used for
our experiments4, except for Chemical Classification, Reachability and Strategic
Companies, for which no alternative encodings could be produced. At least one
of the official encodings provided for each problem was used as a basis. From this
basis, variations were produced by making small changes where special language
constructs were used. For the 24 problems that were used in our experiments, 223
different problem encodings were produced, i.e. 9.3 encodings per problem on
average (not every language construct was applicable to every problem). Many
of these 223 encodings had to be additionally adapted for grounders accepting
different dialects of ASP5.

In many cases, classical negation can be replaced by introducing a new predi-
cate. Take, for example, the following rule from an encoding of the Bottle Filling
problem:

filled(X,Y );¬filled(X,Y ) ← bottle(B,X, Y ).

If the negated version of the filled predicate is not used anywhere else, the
disjunction is only used to guess whether filled(X,Y ) is present or not. In this
case, the following rule without classical negation is equivalent to the one stated
above:

filled(X,Y ); unfilled(X,Y ) ← bottle(B,X, Y ).

4 Please find datasets and additional information at https://www.mat.unical.it/
aspcomp2013 and https://www.mat.unical.it/aspcomp2014.

5 Encodings can be downloaded from http://isbi.aau.at/hint/misc.

https://www.mat.unical.it/aspcomp2013
https://www.mat.unical.it/aspcomp2013
https://www.mat.unical.it/aspcomp2014
http://isbi.aau.at/hint/misc
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If the whole program is head-cycle free6 w.r.t. this disjunctive rule, the disjunc-
tion can be shifted into the body, i.e.

filled(X,Y ) ← bottle(B,X, Y ), not unfilled(X,Y ).
unfilled(X,Y ) ← bottle(B,X, Y ), not filled(X,Y ).

or be replaced by the following choice rule:

1{filled(X,Y ); unfilled(X,Y )}1 ← bottle(B,X, Y ).

Furthermore, a choice rule with explicit bounds can often be expressed as
an unbounded choice rule, which may require the addition of a small number
of constraints. For example, the bounded choice rule from above can as well be
represented by the following rules:

{filled(X,Y )} ← bottle(B,X, Y ).
unfilled(X,Y ) ← bottle(B,X, Y ), not filled(X,Y ).

If unfilled is not used anywhere else, the latter of these two rules can even
be omitted.

Disjunction, shifted disjunction, choice rules and bounded choice rules are
also referred to as guessing constructs.

Rules with counting aggregates where the lower and upper bounds are con-
stants (and the difference between the lower and upper bound is small) can be
replaced by a small set of normal rules without aggregates. Take, for example,
the following (simplified) integrity constraint from an encoding of Knight Tour
with Holes:

←cell(X,Y ), not #count{X1, Y 1 : move(X1, Y 1,X, Y )} = 1.

This constraint enforces that for each cell(X,Y ) there must be exactly one
other cell from which it is visited. This can also be expressed by the introduction
of two new predicates e1 and e2 reflecting whether there is exactly one or at
least two moves entering from different cells and a constraint stating that the
first one must hold:

← cell(X,Y ), not e1 (X,Y ).
e1 (X,Y ) ← move(X1, Y 1,X, Y ), not e2 (X,Y ).
e2 (X,Y ) ← move(X1, Y 1,X, Y ), move(X2, Y 2,X, Y ),X1 <> X2.

e2 (X,Y ) ← move(X1, Y 1,X, Y ), move(X2, Y 2,X, Y ), Y 1 <> Y 2.

Min and max aggregates can be replaced by rules which check whether there
is a smaller respectively greater element. Take, for example, the following rule
from an encoding of Graceful Graphs:

next(X,Y ) ← pair(X,Y ), Y = #min{Z : pair(X,Z)}.

6 Please find more information about head-cycles in [16].
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This rule can be replaced by the following rules:

existsSmaller(X,Y ) ← pair(X,Y ), pair(X,S), S < Y.

next(X,Y ) ← pair(X,Y ), not existsSmaller(X,Y ).

These examples show that rules that use special language constructs are
often interchangeable. When doing this, attention has to be paid to producing
equivalent encodings. In our setting, encodings are considered as equivalent, iff
they are output-equivalent (as defined in Sect. 2.2).

3.2 Benchmarking

We tested our encodings on different grounders and solvers in various config-
urations that already proved a certain stability in the ASP competitions or in
our own evaulations. Table 1 gives an overview on the grounders and solvers
used. They were used in all combinations (henceforth called systems) where the
solver was compatible to the grounder’s output format. Grounders produce the
grounding of a program and solvers search for solutions of a ground program.

Table 1. Used ASP systems

Solvers Grounders

clasp 3.1.0 gringo 3.0.5

claspfolio 2.0.0 gringo 4.4.0

cmodels 3.85 dlvg (29-09-2014)

dlv

GnT 2.1

lp2bv

lp2sat

lp2normal2 1.7

MinisatID 3.9.3

smodels 2.34

wasp 1.0

wasp 2.0

Some of the mentioned solvers were additionally used in several configura-
tions, e.g. clasp was used with varying heuristics. For each problem we randomly
selected four test instances. As there were 223 encodings, 73 systems in different
configurations and 4 test instances for each problem, there were 65,116 differ-
ent test cases. As it was known beforehand that the monolithic system dlv was
not able to digest the encodings containing choice rules, the actual number of
test cases was 63,884. Experiments were run on four virtual machines running
Ubuntu 14.04.1 LTS trusty. Each machine had exclusive access to one processor
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with 2.53 GHz and 7.8 GB of RAM. The RAM available to ASP grounders and
solvers was limited to 6 GB. Furthermore, there were time limits of 60 min for
grounding and of 10 min for solving.

RunLim7 was used to measure use of time and space during the execution
of grounders and solvers. The correctness of the produced answer sets was ver-
ified by checkers provided by the ASP competition 2014. For each test case,
we recorded information on the involved systems, grounding and solving time
and space, information about the problem and its encoding (including which
language constructs were present), the problem instance, and the verification
results of the checker.

Of the 63,884 test cases, 25,913 produced a valid solution or proved to be
unsatisfiable. In 16,774 cases the solver ran out of time and in 4695 cases it
ran out of memory. In 1449 cases the grounder ran out of memory and in 552
cases it ran out of time. In the remaining 14,501 cases, the solver had problems
with some language constructs which could be identified post-hoc, produced an
incorrect answer or aborted out of unknown reasons. Those were excluded from
analysis.

4 Results

For reasons of readability we use short names in the tables within this section in
order to refer to the different types of language constructs. The meaning should
be clear from the context and the textual explanations.

Tables 2 and 3 list the median values for grounding and solving time and
space for all systems and gringo4/clasp respectively w.r.t. classical negation as
well as count, min and max aggregates. Please note that the median of the total
time (i.e. grounding + solving) is not the same as the median of grounding +
the median of solving. For all constructs, only those problems were included in
the analysis where the respective language construct could be varied, i.e. where
there were encodings with and without the language construct. The number of
these problems is given as #probs. The given number of cases indicates how
often an encoding with (yes) or without (no) the respective language construct
was used by a system.

It can be seen that the inclusion of classical negation slightly increases
required space and grounding time but decreases solving time which results
in a lower total time. The differing case numbers are due to the fact that, in
contrary to other guessing constructs, for unbounded choice rules no encodings
including classical negation could be produced (in a natural and intuitive way).
As our measurements also showed that unbounded choice rules overall had a
slight positive influence but was not used with classical negation, the positive
influence of classical negation can be seen as even stronger.

Aggregates with count function decreased the grounding size and time sig-
nificantly, but solving was much harder compared to the cases where this con-
struct was not present. As the effort for grounding can be neglected in these
7 http://fmv.jku.at/runlim/.

http://fmv.jku.at/runlim/
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Table 2. Medians for non-guessing constructs: space in MB, time in secs

All systems Cases grd-space slv-space grd-time slv-time Total

negation
(#probs = 22)

No 29, 513 8.00 150.80 0.29 87.33 182.13

Yes 17, 856 8.10 161.25 0.39 72.83 145.21

aggrcount
(#probs = 9)

No 12, 914 7.20 160.80 0.86 99.39 241.26

Yes 12, 358 6.70 103.85 0.18 128.32 285.22

aggrmin
(#probs = 1)

No 1605 8.80 144.60 0.09 Timeout Timeout

Yes 1603 8.80 148.80 0.09 Timeout Timeout

aggrmax
(#probs = 2)

No 3796 0.00 25.35 0.00 16.63 16.83

Yes 3796 0.00 25.50 0.00 16.56 16.95

Table 3. Medians for non-guessing constructs: space in MB, time in secs

gringo4/clasp Cases grd-space slv-space grd-time slv-time Total

negation
(#probs = 22)

No 3629 7.20 45.30 0.09 43.03 49.78

Yes 2306 7.20 48.90 0.09 25.42 27.51

aggrcount
(#probs = 9)

No 1645 6.50 43.90 0.09 92.07 92.15

Yes 1686 6.50 31.30 0.08 125.11 155.31

aggrmin
(#probs = 1)

No 168 1.30 55.45 0.04 527.01 527.01

Yes 168 0.00 54.05 0.00 339.56 339.56

aggrmax
(#probs = 2)

No 476 0.00 5.70 0.00 1.46 1.46

Yes 476 0.00 5.70 0.00 1.46 1.46

cases, aggregates with count function had a negative overall effect. Since there
were only very few problems which allowed encodings with and without min
and max aggregates, the results are only representative for the problems where
these constructs were varied. These were Labyrinth and Weighted Sequence for
max aggregates and Graceful Graphs for min aggregates. Instances of Graceful
Graphs were not hard to ground but very hard to solve such that the all-systems
median of the solving time (and consequently of the total time) was a timeout.
The combination of gringo 4 and clasp performed much above average. Clasp
showed significantly smaller solving times in cases with min aggregates. The
presence/absence of max aggregates effected only negligible differences over all
systems and no differences at all for the combination of gringo 4 and clasp.
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Tables 4 and 5 show the measured median values w.r.t. the different guessing
constructs for all systems and gringo4/clasp respectively. Here, only those 19

Table 4. Medians for guessing constructs (#probs = 19): space in MB, time in secs

All systems Cases grd-space slv-space grd-time slv-time Total

Choice 6198 7.40 135.00 0.27 84.65 178.40

Bounded choice 7589 7.20 98.90 0.09 147.72 260.95

Disjunction 13, 735 8.90 166.90 0.57 77.51 171.90

Shifted disjunction 12, 503 7.80 168.50 0.48 95.07 186.96

Table 5. Medians for guessing constructs (#probs = 19): space in MB, time in secs

gringo4/clasp Cases grd-space slv-space grd-time slv-time Total

Choice 861 7.00 35.30 0.09 76.70 91.45

Bounded choice 1134 4.00 38.55 0.06 76.98 77.07

Disjunction 1918 7.60 48.00 0.09 40.54 42.67

Shifted disjunction 1742 7.00 40.10 0.09 58.63 73.11

Table 6. Problem-dependent medians: total time in secs

Problem Encoding Constructs All systems gringo4/clasp

Bottle filling 1 Shifted disjunction 66.44 0.83

2 Choice 17.57 0.47

3 Disjunction 26.08 0.57

4 Disjunction, negation 26.83 1.06

5 Shifted disjunction, negation 54.70 0.89

6 Bounded choice 45.25 1.19

7 Bounded choice, neg 43.14 1.26

Labyrinth 1 Shifted disjunction Timeout 85.13

2 Bounded choice Timeout 98.47

3 Disjunction 261.68 42.43

4 Shifted disjunction, aggrmax Timeout 85.51

5 Bounded choice, aggrmax Timeout 99.48

6 Disjunction, aggrmax 261.61 42.46

Partner units 1 Disjunction, negation 149.09 580.67

2 Disjunction 148.08 540.89

3 Shifted disjunction, negation 156.76 572.88

4 Shifted disjunction 155.97 561.26

5 Choice 154.51 575.20

6 Bounded choice 595.23 405.73
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problems were included for which there were encodings for all guessing constructs
and each encoding included exactly one of them. Furthermore, only those systems
were taken into account which could deal with all four guessing constructs. It can
be seen that over all systems, bounded choice rules led to smaller space usage.
The combination of gringo 4 and clasp showed a similarly efficient space usage
for all four constructs. Disjunction showed best solving and total times in the
view on all systems as well as in the one on gringo 4 and clasp.

Although some general tendencies can be seen in the results, on the problem
level there are more fine-grained influences, partially working in the opposite
direction. Table 6 shows some examples. Although disjunction showed the best
performance over all problems, for the Bottle Filling problem, unbounded choice
rules (encoding 2) outperformed disjunction. On the other hand, for Labyrinth
the median values for encodings without disjunction over all systems were time-
outs. For Labyrinth, also gringo4 + clasp performed best on encodings with
disjunction. For the Partner Units problem, gringo4 + clasp performed above
average with encoding 6 that includes bounded choice rules, but below average
with all other encodings.

5 Conclusions

Answer Set Programming (ASP) under the stable model semantics constitutes an
extremely powerful approach to solve hard combinatorial problems. One reason
for the success of ASP is the high performance of state-of-the-art solvers harness-
ing sophisticated conflict-driven search methods. Also, ASP provides superior
problem encoding capabilities as ASP is declarative in nature and even provides
language features beyond first order.

As a consequence of the broad problem representation capabilities, there are
many elegant ways to express the same issue differently. In particular, for most
problems various encodings of similar readability including different language
constructs can be created quite naturally. However, even if logically equivalent,
the performance of different encodings may vary significantly, depending on the
language constructs involved. The reason for that is clearly that different con-
structs are processed differently by the solver implementations.

The main goal of this work is to answer the question whether there is a
relevant non-negligible impact of the used language constructs on runtime and
space consumption and, if so, whether general tendencies can be identified. Our
results suggest that the runtime and space consumption heavily depends on
the used constructs in some cases and is never to be neglected. Furthermore,
some general tendencies were identified in our experiments. For example, normal
disjunction had a positive overall effect on the solving speed compared to the
other guessing constructs. A more fine-grained analysis revealed that, although
there are general tendencies, the presence of positive or negative effect is highly
dependent on the problem at hand and the ASP system used.

An important conclusion with respect to the implementation of an ASP solu-
tion for a real-life problem is that a small investment in producing various slightly
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differing problem encodings may pay off with remarkable performance gains. An
interesting direction for future work is automatic code rewriting, similarly to
query optimization for relational databases.
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project Heuristic Intelligence (HINT) funded by the Austrian research fund FFG under
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5. Dal Palù, A., Dovier, A., Pontelli, E., Rossi, G.: GASP: answer set programming
with lazy grounding. Fundam. Informaticae 6(3), 297–322 (2009)

6. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under
uniform and strong equivalence. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004.
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Abstract. We present the robotic system IRMA (Interactive Robotic
Memory Aid) that assists humans in their search for misplaced belong-
ings within a natural home-like environment. Our stand-alone system
integrates state-of-the-art approaches in a novel manner to achieve a
seamless and intuitive human-robot interaction. IRMA directs its gaze
toward the speaker and understands the person’s verbal instructions
independent of specific grammatical constructions. It determines the
positions of relevant objects and navigates collision-free within the envi-
ronment. In addition, IRMA produces natural language descriptions for
the objects’ positions by using furniture as reference points. To evaluate
IRMA’s usefulness, a user study with 20 participants has been conducted.
IRMA achieves an overall user satisfaction score of 4.05 and a perceived
accuracy rating of 4.15 on a scale from 1–5 with 5 being the best.

Keywords: Robotic home assistant · Human-robot interaction · Social
robotics ·Memory service system · Speech recognition · Natural language
understanding · Object detection · Person detection

1 Introduction

Trying to find misplaced belongings may be time consuming and might end in
frustration. A study about domestic assistive systems has shown that older adults
would prefer robotic assistance over human help to support them in finding lost
objects at home [3].

One assistive system developed for this task is the Home-Explorer presented
by Guo and Imai [16]. It locates objects, that are equipped with smart sensors,
in an indoor environment and is operated by a search interface. Deyle et al. [10]
use a similar approach by attaching RFID (Radio-Frequency Identification) tags
to household objects, which can then be found by a robot. Another example is
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the robotic home assistant Care-O-bot 3 presented by Graf et al. [15], that can
execute fetch and carry tasks on objects. The user selects the object using a
touch screen attached to the robot.

For such robots to be incorporated into everyday life, however, additional
aspects beyond functionality need to be considered. Foster et al. [13], for exam-
ple, present a robot bartender that can operate in dynamic social environments.
They identify both task success and dialogue efficiency as the main factors con-
tributing to user satisfaction. Fasola and Matarić [11] present a robotic system
that engages elderly people in physical exercise and conclude that users strongly
prefer a physical robot embodiment instead of a computer simulation. To our
knowledge, no working object finding system exists that provides a physical
robot embodiment, offers a natural and intuitive interaction, and is independent
of external sensors (e.g. on objects).

In a student project, we developed the stand-alone robotic system IRMA
(Interactive Robotic Memory Aid) that can help users find various objects in an
indoor home-like environment. IRMA integrates the required functionalities in
a stable and robust manner, aims for a more intuitive and natural interaction,
and is capable of learning the position of objects without the support of external
hardware. This paper presents system details and the scores IRMA received in
a user study. Also, the aspects of the system that have an impact on the users’
opinions as well as further insights gained in the study are discussed here.

2 The IRMA System

IRMA is a domestic robotic system that assists people in their search for mis-
placed belongings.1 It provides help in two ways, either by moving to the posi-
tion of the requested object or by describing the requested object’s position
using other objects in the scene as reference points. The robotic system is able
to navigate through the home environment in a collision-free manner. To do
so, the robot creates a map beforehand. Knowledge about the current positions
of all objects is acquired by performing an initial exploration run through the
environment, during which the objects are detected and located on the map.

2.1 Architecture

We implemented IRMA as a distributed system in ROS (Indigo) [25]. As shown
in Fig. 1, the overall system is decomposed into eight modules which can be
grouped into four categories:

– Communication: There are three communication-related modules in the
system. The Speech Recognition module recognizes human speech and con-
verts the audio input into a string representation. The Natural Language
Understanding module takes the string as input and identifies the desired

1 A video showing the robot’s performance is presented in the video session of the
IEEE RO-MAN 2016 conference [29].
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Fig. 1. An overview of the IRMA system: A picture of the robotic platform is shown
in addition to a list of the used hardware components (left) and the decomposition of
the IRMA system (right). The arrows depict the data flow.

object and type of action, which can be either “move” or “describe”. The
Speech Production module allows the output of generated natural language
descriptions, e.g. to describe an object’s position.

– Perception: Two modules provide the required perceptual capabilities. The
Object Detection module uses visual input to detect and locate relevant
objects in the scene. The Person Detection module uses both visual and
audio input to do the same for persons.

– Motion: Navigation performs exploration in an environment, maps it and
uses the map to navigate through the environment without any collisions.

– Interface: The Behavior module realizes the interface between all modules.
It is the core of the system and contains the control of the robot’s behavior.
For storing knowledge it relies on the Knowledge Representation module that
provides a database. It is also responsible for generating natural language
descriptions of an object’s position relative to other objects in the scene.

2.2 Robot Platform

IRMA’s robotic platform is composed of different hardware components, shown
in Fig. 1. The base component is a NAO torso. It offers a significant number
of in-built functionalities such as turning text into speech used by the Speech
Production module. Also, its appearance is very likely to make the overall system
look more approachable, as shown in [26]. The NAO torso is mounted on a
TurtleBot platform. The TurtleBot is accessed and controlled by the Navigation
module. To get both, depth information and high quality RGB images, an Xtion
camera is used, which is attached to the TurtleBot. The Xtion camera is used
by the Object Detection, Person Detection and Navigation modules. The robotic
platform is also equipped with a directional microphone and stereo microphones.
As the robot faces the human during a conversation, a directional microphone
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enables a more robust speech recognition by reducing the noise from different
directions. The stereo microphones are used to perform sound source localization
to determine the position of the person relative to the robot [24].

2.3 Methods

Speech Recognition: To convert speech signals to textual transcriptions the
speech recognition framework DOCKS (Domain and Cloud-based Knowledge for
Speech recognition) [27] is adapted. The concept behind DOCKS is to combine
the recognition advantages of large-scale ASR (Automatic Speech Recognition),
here Google ASR, with phoneme-based post-processing techniques. This restricts
the very general cloud-ASR results to a more specific, domain-based language.

To generate the domain-based language, user data has been collected via an
online form. The users were asked to write down sentences to make the robot
execute a task-object combination. These phrases are used as domain-specific
hypotheses. The hypothesis with the lowest phonetic Levenshtein distance [19]
to any of the cloud-ASR results is selected as the final textual transcription.

Natural Language Understanding: To understand the user command, the
following semantic words need to be identified: The requested action, the object
of interest and corresponding attributes (e.g. “find”, “ball”, “red”). Filtering
keywords is straightforward and fast, but it is restricted to specific words and
is highly error-prone (e.g. “I will find the ball” has a different meaning than
“Can you find the ball?”). Other known approaches, such as semantic role label-
ing [23], rely on hardly accessible corpora that do not focus on the grammatical
constructions required in our scenario (e.g. direct and indirect questions).

Thus, a combination of bi-gram scoring, an ESN (Echo State Network) based
on Hinaut et al. [17], and a filter is utilized, see below. The ESN has been
modified to extract also attributes and special “clues”. The clues are impor-
tant to differentiate the meaning of sentences like “Tell me the color of the
ball” and “Tell me the location of the ball”. Thus, the roles extracted by
our modified ESN are predicate(object,clue) and object(attribute), e.g.
tell(ball,location), ball(red). We chose to use an ESN with 750 reser-
voir units and a leak rate of 0.2 after empirically evaluating different numbers
of reservoir units and different leak rates in a 6-fold cross-validation. In a pre-
processing step, collocated words are detected using bi-gram scoring and joined
to provide only a one-word representation to the ESN (e.g. “milk carton” to
“milkcarton”). The filter that is additionally applied to the output of the ESN
serves two purposes: The assurance that only context-relevant verbs and objects
are extracted (e.g. “Where is my love?” is beyond the scope) and the recognition
of predefined synonyms.

As each sentence is processed individually by the ESN, the system is not able
to recognize context spanning more than one sentence. Also, it cannot handle
collocations consisting of more than two words or anaphora. Despite that, with
the proposed approach, IRMA is capable of recognizing a substantial number of
different grammatical constructions. Compared to grammar-based approaches,
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the user is not limited to a specific set of commands, but can use various sentences
such as direct and indirect questions as well as imperative statements. This gives
the user freedom in formulating a request intuitively and naturally. While the
false negative rate lies above 93 %, it achieves a true positive accuracy rate of
82 % on an independently collected test set.

Object Detection: A pipelined approach with classical image processing tech-
niques is used to detect and locate objects in real-time: First, region proposals
are extracted. Mean shift filtering [8] is used to smoothen the image. The image
is then binarized using adaptive thresholding and contours are extracted. The
bounding boxes around the contours define our ROIs (Regions Of Interest). Due
to the nonparametric nature of the segmentation pipeline, detections are inde-
pendent of specific scenarios and objects.

In the next stage, SIFT (Scale-Invariant Feature Transform) [21] features are
extracted from each ROI and BoW models (Bag of Visual Words) are created
for each ROI [12]. These are vectors counting the occurrence of certain groups
of features that are listed in a codebook. The codebook is constructed before-
hand by extracting SIFT features on all training images and performing k-means
clustering on the concatenation of the features. BoW models destroy the spatial
structure of the features that constitute an object, therefore we employ a spatial
pyramid-based ROI representation [18] to partially retain that structure: Each
ROI is recursively decomposed into four cells, where the depth of the recursion
is three. For the cells on the same layer, the BoW models are constructed and
are concatenated to obtain a layer-based intermediate representation. The final
ROI representation is then obtained by concatenating the vectors for all layers.

In the final stage, the ROI representations of all training images are used to
train K-SVM (Kernel Support Vector Machine) classifiers [9]. To deal with the
high-dimensionality in the histograms representing the ROIs, Histogram Inter-
section was used as a kernel distance metric [1].

To reduce the number of false positives caused by a noisy background, “object
background classes” are created. These classes act as a buffer between the object
and the background class in the dataset. This approach is combined with median
filtering on the list of detections.

Person Detection: To detect and then locate human presence in the robot’s
surroundings, visual as well as audio input is used. A pre-trained OpenCV Haar
features-based cascade classifier is applied to the image for frontal face detec-
tion [28]. This classifier can yield multiple face candidates, among which the one
with the largest bounding box area is selected. As the visual field alone is lim-
ited, sound source localization is additionally performed on audio input coming
from the stereo microphones. The implementation is based on Parisi et al. [24],
where the angle of the sound source relative to the robot is estimated using
TDOA (Time Difference Of Arrival) [22]. While it is not possible to distinguish
between a sound source that is located in the front or in the back, it can be
determined whether the sound source is located to the left or to the right, in
a range of ±90◦. This was taken into consideration when implementing person
tracking: If no face is detected in the visual field, but a sound is located, IRMA
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is turned towards the sound source incrementally based on the sign of the angle
value. It stops turning once a face has been detected or a maximum number of
turns has been performed.

Navigation: Robot localization and exploration of the environment rely on the
navigation stack of the ROS middleware. Robot localization is achieved using
the amcl stack, which uses a particle filter to track the pose of a robot against
a known map (Adaptive Monte Carlo Localization [14]). The robot explores its
environment by navigating in a collision-free manner to a sequence of waypoints
distributed throughout the room. If a particular waypoint is unreachable (e.g.
because of an obstacle), the robot drops the unreachable waypoint and carries on
to the next. The aim of exploration is to identify known objects and locate their
positions on a two-dimensional map of the environment. To do so, the robot first
identifies objects using the Object Recognition module. The centroid of the object
in the depth image is utilized to calculate the three-dimensional coordinate of
the object with respect to the robot’s reference frame. This 3D coordinate is
converted to a 2D coordinate and stored in the knowledge database for later
usage. To allow the robot to continuously move and, at the same time, process a
given frame for the object recognition task, timestamps are used to query caches
of transformations and depth information.

In order to move to a particular object, the object’s position needs to be
retrieved from the knowledge base and a valid path needs to be calculated.
However, as objects are usually placed on or even inside furniture (e.g. in a shelf),
the object’s position itself cannot always be chosen as the final destination point
for the robot. To overcome this problem, goal rectification was implemented.
This process results in a new goal, which is as close as possible to the original
goal (if the original goal is within an obstacle), and ensures that the goal is
reachable for the robot. The final orientation of the robot is chosen so that it
faces the object when it reaches its goal.

Knowledge Representation: Knowledge about the environment (e.g. object
positions) is stored in the RDF (Resource Description Framework) format. The
description of an object’s position is generated with respect to the robot’s view-
point. This verbal description is calculated in two steps.

At first, the reference objects that are closest to the requested object are
determined based on the Euclidean distance. If the two closest reference objects
have approximately the same distance to the requested object and it lies within
their convex hull, the requested object is considered to be “in between” both.

If there is no such relation, the direction (“right”, “left”, “front”, “behind”)
of the closest reference object needs to be computed. Initially, the perspective is
normalized so that the requested object becomes the center of the new coordinate
system and the y-axis corresponds to the robot’s viewing angle. The Cartesian
quadrant, in which the reference object (that is, its representative point) is,
determines two possible directions. In Fig. 2 (left) for example, the representative
point is in Quadrant I, so the directions are “front” and “left”. The reference
object’s bounding box is used and a 45◦-diagonal is computed through the corner
that points towards the opposite quadrant. The side of the diagonal, on which
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Fig. 2. Left: Determining the spatial relations between objects. Here, the requested
object is “in front of” the reference object. Right: The descriptions produced for a test
environment (the robot in the center). Each colored area has the same reference object
and the intensity corresponds to one of the four spatial relations, which are only shown
for the drawer. Gray stands for “in between”.

the requested object is, determines the actual direction. In the example, it is
below the diagonal, and thus the requested object is “in front” of the reference
object. In Fig. 2 (right) a visualization of generated descriptions is shown.

Behavior: The desired system behavior was modeled with SMACH [4], which is
a library for designing complex task-level executives. SMACH is faster than other
imperative scripting approaches or model-based task planners [5] and can be used
by a task planning system as a procedure definition architecture. Here, four par-
allel state machine containers were implemented. Each container performs one of
the following tasks: Exploration, Object and Person Detection, Person Tracking
and Object Finding. Among the termination policies that SMACH provides to
overrule an active state machine container by another one, preemption is used.

3 Evaluation

To evaluate the usability of IRMA, we conducted a user study2 with 20 par-
ticipants (8 female, 11 male, 1 not specified) of different nationalities and ages
ranging from 20 to 50 years. The participants were proficient in English and
their previous experience with robots varied significantly: 5 did not have any
experience with robots, 10 had little experience and 5 were familiar with robots.

3.1 Experimental Setting

The user study took place in a living room environment, shown in Fig. 3. It
consists of a couch, a table, a drawer and a shelf placed along walls and a setting
of two chairs with a coffee table between them. The setting covered 3.7m×4.8m.
2 Our dataset is available at https://figshare.com/s/d949d3410df8db468f77 [30].

https://figshare.com/s/d949d3410df8db468f77
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Fig. 3. Left: Setting and used objects. Right: Schematic map of all four object con-
figurations used in the user study. The circle marked with the letter ‘T’ indicates the
trash can and the circle marked with ‘M’ indicates the milk carton.

To provide consistent lighting conditions, all windows were shaded and artificial
light was used. The room was mapped a priori to provide information about the
layout and positions of static objects (i.e. furniture). Two objects, a milk carton
and a trash can, can be moved within the environment.

The participants were introduced to the environment and the robot IRMA.
After being informed about the available objects and tasks that can be requested,
they were asked to interact with the robot. In particular, the participants were
asked to speak in a moderately loud voice and to repeat their command if IRMA
does not react within 5–10 s.

In each user study session, a participant performed 8 runs in total, where
each run ends with the robot performing the command. After the first 4 runs, the
placement of the objects within the room was changed. All object configurations
used in the study are shown in Fig. 3 (right). After each run, the participants were
asked to rate how satisfied they were with the performed action and how accu-
rate the system was in their opinion. After the complete session, the participant
filled out a questionnaire comprised of three parts: (1) the SUS questionnaire [6],
which measures overall usability, (2) the GODSPEED questionnaire [2], which
measures five key HRI aspects, namely Anthropomorphism, Animacy, Likeabil-
ity, Perceived Intelligence, and Perceived Safety, and (3) additional questions
regarding the overall performance of the system that were answered on a 5-point
Likert scale [20].

3.2 Results

Overall, IRMA correctly understood the requested type of help in 82.9 % and
the requested object in 92.1 % of all runs performed during the user study. We
did not consider two runs that had to be aborted and six runs that were not
performed due to network issues. The response time, which was measured for
each individual run, is the time between the end of the user’s request until IRMA
finishes its task, i.e. either having moved in front of the object or having finished
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its verbal description. For all runs without repetitions, the average response time
for the task describe is 10.1 s, whereas the average response time for the task move
is 36.8 s. For the move-task the robot did not move in 19.5 % of the runs since it
was already positioned close enough to the requested object. In the other cases
the distance to the object was reduced, except for one run (out of 82 in total).
The results of the user feedback are summarized in Table 1. IRMA achieves a
mean SUS score of 77.3, which translates to a C on the Grade Scale and to a Good
on the Adjective Rating Scale according to [7]. The achieved GODSPEED scores,
which evaluate key HRI aspects, are shown in Table 1. IRMA was perceived as
likeable by the participants (4.28). However, it received a comparatively low
score for antropomorphism (2.95).

Table 1. User study results including the SUS score (on a scale 0–100 with 100 being
the best), the GODSPEED scores, and the scores computed from the additional ques-
tions on a scale of 1–5 with 5 being the best score

SUS Mean (±StD)

Score 77.3 (±15.3)

GODSPEED Mean (±StD)

Anthropomorphism 2.95 (±0.66)
Animacy 3.19 (±0.70)
Likeability 4.28 (±0.57)
Perceived Intelligence 3.61 (±0.69)
Perceived Safety 3.86 (±0.48)

Additional Questions Mean (±StD)

Average over all runs

User Satisfaction 4.05 (±0.56)
Perceived Accuracy 4.15 (±0.56)

Average over all sessions

Usefulness for Elderly 4.15 (±1.19)
Intuitiveness 4.25 (±0.94)
Enjoyment 4.21 (±0.83)

The mean user satisfaction is little correlated with the perceived quickness
of response (correlation value of 0.35). No correlation could be found between
the final distance of the robot from the queried object and the satisfaction (0.0)
or accuracy (−0.13) perceived by the user for a move-task.

The users’ satisfaction and assessment of accuracy are consistent for all four
object configurations used, as shown in Fig. 4 (left). The standard deviation
for the settings are roughly the same and they overlap across all settings. This
indicates further that no setting was significantly better or worse than the others.
The slightly lower value in the accuracy rating for Config 4 is most likely due to
the central position of the milk carton, see Fig. 3 (right). The central position of
the milk carton might make the usefulness of the system seem less valuable due
to the obvious placement of the object. Also, after completion of the move-task,
the robot was on average further away from the milk carton, whereas it got very
close to the trash can. This interpretation can be justified by Fig. 4 (right) which
shows lower accuracy ratings for the runs including the milk carton compared
to the runs including the trash can, especially for the move-task.

Although the participants were informed in advance about the possible tasks
IRMA can perform, in 5.2 % of all runs users used commands like “bring” or
“get me” to instruct the robot. 3.6 % of all sentences include other object
references (e.g. “Is the milk carton left or right from you?” or “Is the milk
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Fig. 4. Left : User satisfaction and accuracy scores for each object configuration Right :
User satisfaction and accuracy scores for each individual task in Config 4

box on the table?”). Also, in 1.3 % two tasks were requested within one sentence
and in 1.9 % anaphora were used. In total, in 13.5 % of all sentences, the user
asked IRMA for something that it was not able to understand or perform.

The number of times a user had to repeat a phrase until IRMA understood
the command had a negative impact on his satisfaction, as shown in Fig. 5 (left).
IRMA understood 50.7 % of the instructions on the first try, while only 11.4 %
of the instructions had to be repeated more than two times. However, the assess-
ment of accuracy does not seem to be affected by the number of repeats.

Figure 5 (right) shows that the subjective rating of IRMA’s intuitiveness as
well as the user’s enjoyment increased with how often the robot identified the
task and object requested by the user correctly. The relation between the number
of utterances that IRMA misinterpreted and the resulting intuitiveness (signif-
icantly worse only for 3 sentences) and enjoyment scores can be seen in this
plot. The number of misinterpreted commands is correlated with intuitiveness
and enjoyment, with the correlation coefficients being −0.54 and −0.51 respec-
tively. It also turns out that the correct object being identified by the robot is
more important for the satisfaction of the users than the intended task being

Fig. 5. Left : User satisfaction and accuracy scores versus the number of times a user
had to repeat himself until a reaction of the robot was observed Right : The number of
sentences misunderstood by IRMA versus the intuitiveness and enjoyment scores
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performed by the robot. While the correlation coefficient for user satisfaction
and correct object is 0.57, the correlation for user satisfaction and correct task
is only 0.29. Similarly, the users perceive the performance of the robot as more
accurate if the correct object is being identified compared to the correct task
being performed. Here, the correlation coefficient for the perceived accuracy and
the correct object is higher than the one for accuracy and correct task, with the
values being 0.56 and 0.25 respectively.

Table 2 shows that all subjective factors obtained in the user study, such as
satisfaction and accuracy, are uncorrelated to the previous experience the par-
ticipants have had with robotics. The highest correlation value with experience
with robots exists for a GODSPEED aspect, namely animacy, with still a low
value of −0.29.

Table 2. Results of the correlation between the users’ prior experience with robots
and SUS, GS (GODSPEED) and additional subjective factors

Correlation Experience

SUS:Score 0.22
GS:Anthropomorphism 0.02
GS:Animacy −0.29
GS:Likeability 0.10
GS:Perceived Intelligence −0.20
GS:Perceived Safety 0.02

User Satisfaction −0.28
Perceived Accuracy −0.25
Usefulness for Elderly 0.06
Intuitiveness 0.08
Enjoyment 0.09
Perceived Quickness −0.09
Time Acceptable 0.00

4 Discussion

In general, IRMA performs well and achieves a high user satisfaction. However,
there are certain parts of the system that can still be improved in future studies.
The rotation of the robot was confusing to many participants. Firstly, Person
Detection sometimes recognized false positives in a very cluttered environment
and thus, the robot stopped rotating at the wrong time. Secondly, participants
were not aware that the robot is trying to locate the user and sometimes misin-
terpreted this behavior as a “reaction” to their request.

Also, sometimes participants used sentences containing anaphora (e.g.
“I still cannot find the milk. Can you show it to me?”). This occurred in 1.9 %
of all utterances. The Natural Language Understanding module, however, is not
yet capable of understanding anaphoric references or context spanning multiple
sentences. On average only every second request of the participants was per-
formed by the IRMA system. In many cases, Speech Recognition was not able
to recognize the sentence correctly. This might be due to the microphone not
being clearly directed towards the user, as person tracking stopped too early.
Moreover, in 21 % of all recognized sentences, the sentences contained either an
object or a task that was different from what was actually requested by the user.
The results show that a wrongly understood object has more impact on the user
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satisfaction than a wrongly chosen task (describe or move). This is because the
position of the wrong object is not of interest to the user, while performing the
wrong task with the correct object is still helpful.

Most people preferred one of the capabilities over the other (40 % move,
55 % describe, 5 % neither-nor), which shows that it is useful to have both capa-
bilities in our scenario. However, the fact that users often expected the robot
to interact more with the environment and bring the object directly to them,
indicates that this additional task might be a more helpful form of assistance to
the user when compared to the move-task alone. The assistance could further be
enhanced by other tasks, e.g. with a reminder functionality for taking medicine.
One reason for the higher preference of the describe-task might be that the aver-
age response time for the describe-task took only about 25% of the time required
for the completion of the move-task. Additionally, description tasks were rated
with a higher accuracy (4.3) compared to movement tasks (4.02).

The results of our user study show that the previous experience of the users
with robots has little influence on how they rated the system. In combination
with a relatively high satisfaction score of 4.05 (on a scale from 1–5 with 5 being
the best), this indicates that our system is intuitive to use. Moreover, the average
response time for a describe-task only takes 10.1 s. Assuming that a search by the
user without external help would take longer than 10 s, IRMA can save valuable
time and effort of the user locating misplaced belongings.

5 Conclusion

IRMA is a stand-alone robotic system designed to help people in finding lost
objects. Several state-of-the-art methods and frameworks have been integrated
to enable an easy, robust and natural human-robot interaction. IRMA has the
ability to explore the environment, detect objects and remember their positions.
It can also describe the location of objects using natural language and is able
to move to a specified object, when the user asks to do so using natural phrases
(e.g. direct and indirect questions as well as imperative statements).

The results of our user study with 20 participants show that the system is able
to accomplish its task to an average satisfaction rate of the user of 4.05 on a scale
from 1–5 with 5 being the best. IRMA is able to identify the intention of the user
for every second sentence that has been naturally uttered by the participants,
and perform the corresponding task successfully. As the average response time
for a successful description of the object’s position is 10.1 s on average, IRMA
can save time for users, especially elderly, finding a misplaced belonging. IRMA
has also shown to be intuitive to use, as the user’s previous experience with
robots has no influence on the subjective evaluation of the system.
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Abstract. The number of parameters leading to a defined medical
cancer therapy is growing rapidly. A clinical decision support system
intended for better managing the resulting complexity must be able to
reason about the respective active ingredients and their interrelation-
ships. In this paper, we present a corresponding ontology and illustrate
its use for answering queries relevant for clinical therapy decisions.

1 Introduction

For the medicamentous therapy of cancer, a large variety of different active
pharmaceutical ingredients is available. Typically, several of these ingredients
are combined in a therapy and are applied to the patient according to a given
temporal scheme. For determining a patients’s therapy, several important aspects
originating from different information resources have to be taken into account.
In particular, this includes the current medical guidelines regarding the present
cancer type, the individual situation of the patient, and the molecular factors of
the tumor.

The parameters leading to a defined therapy are rapidly changing for mul-
tiple reasons. Many new drugs representing new therapeutic strategies have
come to the clinic during the last five years and their number is constantly
increasing. In addition, the knowledge of individual properties of each individual
tumor is facilitated by new molecular technologies. These developments lead to
a rapid diversification and individualization of tumor therapy. Many attempts
are undertaken to manage this ongoing informational diversification. Over the
last 15 years, the pharmaceutical department together with the clinic of Oncol-
ogy of the St.-Johannes-Hospital Dortmund has developed an electronic support
system containing treatment plans for more than 2.300 individual treatment sit-
uations. These plans are provided together with all necessary information on
co-medication, behavioral rules and explanations for the patient. In addition,
the system documents all therapies of more than 40.000 therapeutical cycles
with the information of actual application, dose modifications, and tumor-board
c© Springer International Publishing AG 2016
G. Friedrich et al. (Eds.): KI 2016, LNAI 9904, pp. 119–125, 2016.
DOI: 10.1007/978-3-319-46073-4 9
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decisions. In an ongoing project, these data together with advanced knowledge
representation and reasoning methods from computer science are the basis of
an approach for the development of a comprehensive AI-based tool to support
decision making taking into account all available clinical as well as molecular
information of each patient and his tumor. Part of this project is the develop-
ment of an ontology providing general knowledge about active ingredients and
their interrelationships in medical cancer therapy that can be used by such a
clinical decision support system. The purpose of this paper is to give a short
overview of the ontology OCTA (Ontology for Cancer Therapy Application) we
have developed and implemented. We will also illustrate how OCTA, whose cur-
rent focus is the therapy of breast cancer, can be used to answer queries relevant
for clinical therapy decisions.

This paper is organized as follows: We first present the requirements guiding
the development of OCTA and describe its main concepts and roles in Sect. 2,
deal with answering queries in Sect. 3, and discuss related work, conclude, and
point out further developments in Sect. 4.

2 Ontology Development

OCTA was developed in OWL using Protégé http://protege.stanford.edu, and
for reasoning, Pellet was used [10].

2.1 Requirements

The overall objective of the ontology to be developed is to provide general knowl-
edge about active ingredients and their interrelationships in medical cancer ther-
apy that can be used by a clinical decision support system. Therefore, the ontol-
ogy should enable the answering of the following kinds of queries:

– Which active ingredients belong to a particular therapy regimen? What is the
administered dose of the active ingredients?

– Which therapy regimens contain a particular active ingredient? Which ther-
apy regimens contain an active ingredient from a particular class of active
ingredients?

– What are the regular doses of the active ingredients of a particular therapy
regimen, given the patient’s body surface area?

– Which therapy regimens contain active ingredients within a specific toxicity
profile?

– What is the cumulative dose of an active ingredient that has been administered
to the patient within the treatment?

– How much of the maximal cumulative dose of an active ingredient has been
administered to a patient within the treatment?

http://protege.stanford.edu
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2.2 Core Concepts and Roles

Fig. 1. Part of the concept hierarchy of the
ontology OCTA

The active ingredients employed in
medical cancer therapy can be classi-
fied in different ways. There are cyto-
toxic substances that disturb phys-
iological processes of the cell, thus
influencing other somatic cells. On
the other hand, specific cell struc-
tures of the tumor are attacked by so-
called targeted therapies. For instance,
there is an increased occurrence of the
protein HER2/neu in the cell mem-
brane of the tumor cells in a sub-
set of patients suffering from breast
cancer [7],1 and the monoclonal anti-
body trastuzumab is a targeted ther-
apy that interferes with the HER2/neu
receptor. A further therapy category
is given by the anti-hormonal ther-
apy. Within the different therapy
categories, further subcategories can
be identified. For instance, cytostatic
drugs can be differentiated according
to their mechanism of action, and tar-
geted therapies can be categorized by
the target structures of the cell. Fur-
thermore, the active ingredients used
in cancer therapy may have severe
adverse effects regarding e.g. the car-
diovascular system or the neurologi-
cal system. Thus, the toxicity of an
active ingredient can be subcategrized
according to its toxicity with respect
to the particular organ systems. We
developed the concept hierarchy in the ontology OCTA along these lines. Part
of the resulting concept hierarchy is shown in Fig. 1.

When a malignant tumor is diagnosed and indication for medical cancer
therapy is given, the patient is administered drugs with the corresponding
active ingredients. These drugs are associated with the treatment of the given
tumor type. Accordingly, the classes Patient and MalignantTumor were defined,
together with the relation diagnosedWith.

1 All examples in this paper will focus on the treatment of breast cancer.
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2.3 Therapy Regimens

In medical cancer therapy, usually a combination of active ingredients, called a
therapy regimen , is administered. Particular therapy regimens are employed for
specific tumor entities, where the dose of each active ingredient mainly depends
on the body surface area of a patient. Figure 2 illustrates the FEC regimen which
is used for the treatment of breast cancer [4]; it contains three different cytotoxic
substances.

Typically, therapy regimens are administered in cycles. For instance, accord-
ing to the FEC regimen, the cytotoxic substances are administered on day 1 of a
cycle. Thus, for a cycle of 21 days, the 22nd day will be the first day of the next
cycle. The dose of each active ingredient has to be computed at the beginning
of each cycle since the body surface area of the patient may have changed.

For modelling therapy regimens in the ontology, the class 2 Regimen is intro-
duced. Via the property hasComponent , each of its instances may be connected
to one or to several instances of the class ComponentSpecification. Using the
property hasDrug , each instance of ComponentSpecification can be connected
to the corresponding active ingredient. Figure 3 shows (part of) the resulting
ontology representation of the FEC regimen.

active ingredient day dose route of administration infusion time

cyclophosphamide 1 500 mg/m2 intravenous 1h
epirubicin 1 100 mg/m2 intravenous 15min
5-fluorouracil 1 500 mg/m2 intravenous 1h

Fig. 2. Example of a therapy regimen: the FEC regimen

Fig. 3. Ontology representation of the FEC regimen

2 In the OWL context, often the terms class and property are used instead of concept
and role. In the following, we will often adopt this wording.
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In order to model the fact that if an active ingredient being connected to a
component via hasDrug it should also be considered to be connected to the Reg-
imen instance having a hasComponent property with respect to this component,
OWL propertyChain axioms are used. E.g., in the presence of the triples3

ctx:FEC ctx:hasComponent ctx:Cyclophosphamide500.
ctx:Cyclophosphamide500 ctx:hasDrug ctx:Cyclophosphamide.

a reasoner will be able to infer that the FEC regimen contains the active ingre-
dient cyclophosphamide although this is represented only indirectly.

For modelling that specific toxicities are typical for an active ingredient or
a class of active ingredients, the property hasToxicity is used. hasRelativeDose
indicates the dose with respect to the body surface area, and hasApplication-
Route points to the route of application, e.g., RouteIV for intravenous (cf. Fig. 3).
The cumulative dose of a certain active ingredient administered to a patient
must not be higher than a certain maximal level. For instance, for doxorubicin
the maximal cumulative dose is 550 mg/m2, and for epirubicin it is 850 mg/m2

[2]; thus, a patient with body surface area 1.7 m2 must not be administered
more than 550 mg × 1.7 = 935 mg doxorubicin. This is modelled using the prop-
erty hasCumulativeDose connecting an active ingredient to the corresponding
maximal cumulative dose.

3 SPARQL Queries

For answering the kind of questions outlined in Sect. 2.1, SPARQL (http://www.
w3.org/TR/rdf/sparql-query/) is used. Factual evidence was added to the ontol-
ogy OCTA as facts represented by RDF triples. The facts are expressed in a
separate name space with prefix joho:, while the prefix ctx: is used for the
original ontology. For combining factual and ontological knowledge, we used the
semantic web framework Jena together with the reasoner Pellet. For executing
SPARQL queries the ARQ application API provided by the Jena framework
was employed. In the following, we present some SPARQL queries along with
the computed answers as obtained as output from a Java test program.

For illustration purposes, we assume that there are just two (fictitious)
patients Testpat1 and Testpat2. Testpat1 has been administered a single cycle
of the TAC regimen, while Testpat2 has been diagnosed with two malignant
tumors and has been administered two cycles of the FEC regimen and a sin-
gle cycle of the TAC regimen. The SPARQL query shown in Fig. 4(a) asks for
all patients that have been administered alkaloids. While no information about
alkaloids is present in the factual knowledge, the reasoner is able to infer that
the TAC regimen contains docetaxel (cf. the chain axioms in Sect. 2.3). From
the concept hierarchy, the reasoner infers that docetaxel belongs to the group
of taxanes, and that taxanes are alkaloids. Thus, since both patients have been
administered the TAC regimen, they are both returned in the result of the query.
3 For the representation of RDF triples we use the turtle syntax, cf. http://www.w3.
org/TR/turtle.

http://www.w3.org/TR/rdf/sparql-query/
http://www.w3.org/TR/rdf/sparql-query/
http://www.w3.org/TR/turtle
http://www.w3.org/TR/turtle
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(a)
1SELECT DISTINCT ?pat WHERE {
2?pat ctx : diagnosedWith ?tumor .
3?tumor ctx : hasTherapyList ? l i s t .
4? l i s t o l o : s l o t ? s l o t .
5? s l o t o l o : item ? regimen .
6? regimen ctx : hasDrug ?drug .
7?drug rd f : type ctx : AlkaloidDrug .
8}
9−−−−−−−−−−−−−−−−−
10| pat |
11=================
12| joho : Testpat2 |
13| joho : Testpat1 |
14−−−−−−−−−−−−−−−−−

(b)
1SELECT ? pat ?drug (SUM(? dose ) AS ? t o t a l )
2WHERE {
3?pat ctx : diagnosedWith ?tumor .
4?tumor ctx : hasTherapyList ? l i s t .
5? l i s t o l o : s l o t ? s l o t .
6? s l o t o l o : item ? regimen .
7? regimen ctx : hasComponent ?comp .
8?comp ctx : hasDrug ?drug .
9?comp ctx : hasAbsoluteDose ? dose .
10} GROUP BY ?pat ?drug
11−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12| pat | drug | t o t a l |
13==============================================================
14| joho : Testpat2 | ctx : Cyclophosphamide | "2450.0"ˆˆxsd : f l o a t |
15| joho : Testpat2 | ctx : Doxorubicin | "85.0"ˆˆxsd : f l o a t |
16| joho : Testpat2 | ctx : F l uo r ou r a c i l | "1600.0"ˆˆxsd : f l o a t |
17| joho : Testpat2 | ctx : Ep i rub i c in | "320.0"ˆˆxsd : f l o a t |
18| joho : Testpat2 | ctx : Docetaxel | "127.5"ˆˆxsd : f l o a t |
19−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 4. Queries (a) asking for all patients having been administered alkaloids, and
(b) asking for the cumulative dose for patients diagnosed with a tumor.

The query in Fig. 4(b) asks for the cumulative dose of the active ingredi-
ents administered to patients diagnosed with a tumor, returning the absolute
doses. For patients that have been administered anthracyclines in the past and
that are intended to be administered a therapy regimen containing anthracy-
clines, the remaining admissible dose must be computed, taking into account
the current cumulative doses of all kinds of anthracycline. Our system is also
able to determine this information. For instance, for a corresponding query, the
system might answer that Testpat2 has already been administered 31.2 % of the
maximal cumulative dose of anthracyclines. Similarly, all other question types
sketched in Sect. 2.1 can be processed by the system.

4 Related Work, Conclusions, and Further Development

There are several ontologies related to OCTA. The objective of the ontology
GO [1] is to provide a standardized vocabulary for the annotation of genes.
The ontology ChEBI [3] classifies biologically interesting molecules, focussing
on chemical, biochemical, and structural properties of the molecules. The NCI
thesaurus [9] is a controlled vocabulary aiming at the support of adiministra-
tive and scientific activities. SNOMED CT [5,6] and GALEN [8] also provide



Using Ontological Knowledge About Active Pharmaceutical Ingredients 125

standardized terminologies for medical terms. Whereas all these ontologies cover
various aspects belonging to the area of medical cancer therapy, none of them
addresses the specific point of view of clinical therapy decisions as in OCTA.

We presented the main features of the OCTA ontology and illustrated its use
for answering queries relevant for clinical therapy decisions. The development
of OCTA is part of an ongoing project aiming at the realization of a clinical
decision support system in medical cancer therapy. While the current focus of
OCTA is the therapy of breast cancer, further tumor entities are addressed in
our ongoing work. Another aspect of further work is the investigation of how
modifications of the ontology induced e.g. by a newly developed active ingredient
can be adequately supported.
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Abstract. For a successful automated negotiation, a vital issue is how
well the agent can learn the latent preferences of opponents. Opponents
however in most practical cases would be unwilling to reveal their true
preferences for exploitation reasons. Existing approaches tend to resolve
this issue by learning opponents through their observations during nego-
tiation. While useful, it is hard because of the indirect way the target
function can be observed as well as the limited amount of experience
available to learn from. This situation becomes even worse when it comes
to negotiation problems with large outcome space. In this work, a new
model is proposed in which the agents can not only negotiate with oth-
ers, but also provide information (e.g., labels) about whether an offer is
accepted or rejected by a specific agent. In particular, we consider that
there is a crowd of agents that can present labels on offers for certain
payment; moreover, the collected labels are assumed to be noisy, due to
the lack of expert knowledge and/or the prevalence of spammers, etc.
Therefore to respond to the challenges, we introduce a novel negotiation
approach that (1) adaptively sets the aspiration level on the basis of
estimated opponent concession; (2) assigns labeling tasks to the crowd
using online primal-dual techniques, such that the overall budget can be
both minimized with sufficiently low errors; (3) decides, at every stage
of the negotiation, the best possible offer to be proposed.

1 Introduction

Negotiation has traditionally been investigated in game theory [17,18], and in
previous years it has also developed into a core topic of multiagent systems
[1,5,15,16,20]. Generally speaking, it is a process by which parties of conflicting
interests try to reach a mutually acceptable agreement [13]. In many cases, it
is however expensive and low efficient mainly because humans find the activity
challenging, stressful as well as time-consuming. Thus, to alleviate huge negotia-
tion efforts of humans, autonomous agents are proposed that perform, on behalf
of humans, complicated negotiation tasks in a efficient manner. Automated nego-
tiation also provides one of the most fundamental and powerful mechanisms for
c© Springer International Publishing AG 2016
G. Friedrich et al. (Eds.): KI 2016, LNAI 9904, pp. 126–133, 2016.
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intelligent systems, e.g., managing inter-agent dependencies, coordination and
cooperation. With the rapid development of automated negotiation in recent
decades, it has successfully gained a broad spectrum of applications in indus-
trial and commercial domains [6,10,19,20].

The driving force of negotiating agents is governed by its (hidden) prefer-
ences through its (hidden) negotiation strategy [4]. By exploiting the preferences
and/or strategy of opposing agents, better final (or cumulative) agreement terms
can be reached [3]. Existing literature [7–9,11] attempts to achieve that by means
of learning the behavior/preferences of opponents through observations of oppo-
nent negotiation moves. Although useful, learning an opposing agent’s model is
not efficient, mainly because: (1) the opponent preference can only be observed
indirectly through offer exchanges (e.g., our rejected offers and opponent counter
offers), (2) the absence of prior information about opponent strategy/preferences,
and (3) the confinement of the interaction number/time in single negotiation
sessions. Apparently, this kind of learning methods somehow restrict agents’
learning ability.

Thus, we consider a general negotiation model in which automated agents
not only carry out negotiation with others, but also provide advice (e.g., in terms
of binary label) on whether an offer is accepted or rejected by a specific agent
in a ongoing negotiation, according their knowledge and experience. Each label
on offers from the crowd is associated with a certain (but low) cost, while the
overall budget is limited; moreover, the collected labels are assumed to be noisy,
due to labeling agents’ lack of expert knowledge regarding negotiation problems
or the target agents, and the prevalence of spam, etc. That is to say, each agent
may have different and unknown reliability. Therefore to infer the true labels
from the non-expert crowd, an assignment strategy is needed to allocate tasks
to the crowd, to minimize the labeling budget, while guaranteeng sufficiently
low errors. With the labels in hand, the negotiating agent is more likely to make
decisions toward reaching efficient agreements.

2 Negotiation Approach

The actions of the agent at each time point should take into account, (1) the aspi-
ration level, which governs the minimum amount of expected satisfaction from
negotiation at a time point, and (2) what offer to accept or reject given that. The
decision-making process is decomposed into two stages – aspiration setting (AS)
component and offer responding (OR) component, which are essential and vital
for the agent to operate successfully. The aspiration setting (AS) component is
described. It adopts a non-parametric and computationally efficient regression
technique in order to approximate the opponent’s negotiation strategy. This
allows the agent to have accurate estimates that are used to adjust its own aspi-
ration level. The second stage of the approach (i.e., the offer responding (OR)
component) deals with how to respond to those counter-offers and determines
what counter-offer to send out if not satisfied with proposals from opponents.
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When selecting offers of interest, the agent adopts an adaptive assignment strat-
egy to ask information from the crowd so that the preferences of opponents over
offers could be well learnt. Next, each of the above components is detailed.

2.1 Aspiration Setting Component

As opponent strategies are unavailable to the agent, it may be beneficial to adap-
tively set aspiration level R(t) according to negotiation dynamics, which specifies
the lowest utility expectation of the agent. Toward this end, we adopt Gaussian
process to obtain opponent strategy in terms received concession, which is proved
to be successful in a variety of negotiation scenarios [4,8], while we refine a sim-
plified version here to get rid of tuning a bunch of parameters (overfitting).

The agent uses the expected received utility E(t) in its decision making. This
utility, which corresponds to the expectation of how much profit can be received
from an opponent at some future time t�, is defined by:

E(t�) =
t�
NC

∫ +∞

−∞
u · f(u;μ�, σ�)du (1)

where NC is a constant called normalizing constant, f is the probability density
function of Gaussian distribution, and μ� and σ� are the mean and standard
deviation (both obtained from GPs) at t�. Unlike the approach described in [21],
which truncates the probability distribution to [0, 1], the agent preserves the
probability distribution by introducing the normalizing constant C.

R(t) = ures + (Umax − ures)(1 − t)β (2)

where ures = min(θ, ξ) (with ξ the maximal received concession), and concession
coefficient controlling the concession rate is given by,

β = 1 − (
E(t�)
Umax

)2 (3)

where Umax is the possible maximum utility in the scenario.

2.2 Offer Responding Component

Having obtained the aspiration level, the agent then needs to decide acceptance
or rejection of opponent offers. If the opponent offer can provide a utility higher
(or at least equal to) than the R(t), the agent agrees with the offer and the
negotiation is finished successfully; otherwise, the agent should prepare a counter
offer to continue the negotiation. The two steps are detailed next.

Negotiation Decision-Making. Given the expected utility of R(t), the agent
needs to examine one of two conditions in response to the opponent. In the
first the agent has to validate whether the utility of the counter-offer U(Oopp)
is better than u′, while in the second the agent has to determine whether the
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opponent had already proposed this offer earlier in the negotiation process. If
either one of these two conditions is satisfied, the agent accepts it and terminates
the session as shown in line 12 of Algorithm 1.

Otherwise, if none of them are met, the agent proposes a new offer depending
on an λ-greedy strategy. That is to select either a greedy action (i.e., exploit)
with λ probability or to select a random action with a 1 − λ probability (0 ≤
λ ≤ 1). The greedy action is determined based on the advice of crowds, that
is, labels of acceptance or rejection on offers provided by a large amount of
related agents. Those agents either have negotiation experience with the agent’s
opponents or have certain domain knowledge. Unfortunately, the labels may be
noisy due to the lacking expertise and/or different reliability among them. It
usually makes labels generated by crowd suffer from low quality. Moreover, each
label is produced at certain cost. In the next subsection, we will dive into details
of how to adaptively assign tasks to crowded agents. With a probability λ, agent
then picks the offer whose gets the best negotiation value.

In the case of the random action (probability 1 − λ), the agent constructs a
new offer which has an utility within some range around u′. The main motivation
behind this choice is twofold: (1) it is possible, for multi-issue negotiations, to
generate a number of offers whose utilities are the same or very similar to the
offering agent, with granting the opposing negotiator different utilities, and (2)
it is sometimes not possible to find an offer whose utility is exactly u′. Thus it
is reasonable that an agent selects an offer whose utility is in the narrow range
[(1 − 0.005)u′,(1 + 0.005)u′]. If no such solution can be found, the agent repeats
sending the latest bid in the next round.

Adaptive Assignment Strategy. Crowdsourcing services, as a remedy for
noisy labels, usually resort to labeling redundancy – collecting labels from dif-
ferent workers for each item [14,22]. A fundamental issue for crowdsourcing in
negotiation is then raised: how to make crowdsourced task assignments such that
it can output desired labels with sufficiently low error, while requesting as few
labels from workers as possible. Toward this end, we apply the technique pro-
posed in [2,12] to solve crowdsourced task assignment for automated negotiation
setting. Prior to task assignment, the agent first decides upon which part of the
outcome space to explore via crowdsourcing. In our approach, the exploration
zone first excludes offers of utility below reservation value (θ) and offers of first
K highest values (by sorting the possible outcomes according to our agent’s own
preferences), and then selects offers randomly from the remaining offers accord-
ing to the given budget. When having collected enough opponent responses (i.e.,
gold standard tasks) placed by Algorithm 1, the agent begins online crowdsourc-
ing task assignment (e.g., each agent’s reliability is unknown). The main steps
of assignment strategy is given below.

Before diving into details of the assignment strategy, we introduce a simple
model to capture workers’ reliability: each worker (agent) wj is characterised by
a reliability pi,j ∈ [0, 1] for task ti, and workers answer each question correct
independently. Since errors are common among the low-paid workers, majority
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Algorithm 1 . Adaptive assignment strategy for negotiation tasks. s is the
number of gold standard tasks. m is the number of workers, with n the number
of tasks.
1: Require: s, q∗

min, m, n
2: while K < s do
3: collect more offer responses;
4: recordOffers(tc, Oopp);
5: end while
6: pick up random γ percentage workers from m
7: calculate q̂i,j for each agent in γ m
8: calculate Cε′ and obtain estimated task wight x̂∗

9: for each agent j do
10: calculate q̂i,j using s gold standard tasks
11: run primal approximation algorithm with q̂i,j and x̂∗

12: assign agent j to tasks i if yi,j = 1
13: end for
14: aggregate labels using weighted majority voting.
15: return labels

voting should be applied to their advice for a target reliability. Next, we show
the error bound under this model using majority voting. Assume Ji is the set of
workers assigned to task ti, Xi,j a random variable which represents the weighted
label, with wi,j being the weight. Given a positive label (e.g., the value is 1), we
have

Xi,j =

{
wi,j with probability pi,j ,

−wi,j with probability 1 − pi,j

(4)

and Xi = Σj∈Ji
Xi,j .

If Xi ≥ 0 the task is predicted to have a label of 1, and 0 otherwise. Assume
the true label is 1, bounding P(Xi ≥ 0) would give us a bound on the probability
of an error. The expectation of Xi can be expressed as below,

E[Xi] = Σj∈Ji
E[Xi,j ]

= Σj∈Ji
(pi,jwi,j − (1 − pi,j)wi,j)

= Σj∈Ji
(wi,j(2pi,j − 1)) (5)

Applying Hoeffding’s inequality, we have

P (Xi ≤ 0) ≤ exp(− 2(E[Xi])2

Σj∈Ji
(2wi,j)2

)

= exp(− (Σj∈Ji
wi,j(2pi,j − 1))2

2Σj∈Ji
w2

i,j

) (6)

Obviously, this error bound is maximized when the right side of Eq. 6 is mini-
mized. So, we set the gradient of this expression to 0.

Then, let yi,j be a variable to indicate the assignment of task ti to worker wj ,
with 1 representing positive and 0 negative. The requirement can be expressed
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as a linear constraint of these variables. This allows us to express the optimal
assignment strategy as an integer linear program,

min
n∑

i=1

m∑

j=1

yi,j · η (LP1)

s.t.
n∑

i=1

yi,j ≤ Mj

m∑

j=1

qjyi,j ≥ Cε

yi,j ∈ 0, 1 ∀(i, j)

where η is the cost for each task. However, solving integer linear program requires
the values qj for each worker. It will be convenient to work with the dual of the
linear program,

max Cε

n∑

i=1

xi −
m∑

j=1

Mjzj −
n∑

i=1

m∑

j=1

ti,j (LP2)

s.t. 1 − qi,jxi + zj + ti,j ≥ 0 ∀(i, j)
xi, zj , ti,j ≥ 0 ∀(i, j)

(7)

Suppose that we were given access to the task weights xi for each task i and
the values qi,j . Then we could use the following algorithm to approximate the
optimal primal solution. Then, the agent should choose the offer whose utility
not smaller than the utility indicated by R(tc), and whose label is positive, When
needing to propose a counter-offer. If no such an offer can be found, the offer
with the minimal utility (but not smaller than the utility indicated by R(tc)) is
proposed for greedy offer selection.

3 Conclusions

This work introduced a novel automated negotiation approach on the basis of
opponent behavior prediction and crowdsourcing services. Opponent behavior
prediction is captured by Gaussian processes to estimate future received con-
cession, thereby governing the aspiration level function in an adaptive way. The
deployment of crowdsourcing mechanism provides the agent with the wisdom
of the noisy crowd, and using the assignment strategy, the labeling budget can
be both minimized, while guaranteing sufficiently low errors. It is clear that
the agent is more efficient than the others due to a more advanced technical
framework.
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Abstract. Job-shop scheduling problems constitute a big challenge in
nowadays industrial manufacturing environments. Because of the size of
realistic problem instances, applied methods can only afford low com-
putational costs. Furthermore, because of highly dynamic production
regimes, adaptability is an absolute must. In state-of-the-art production
factories the large-scale problem instances are split into subinstances, and
greedy dispatching rules are applied to decide which job operation is to
be loaded next on a machine. In this paper we propose a novel scheduling
approach inspired by those hand-crafted scheduling routines. Our app-
roach builds on problem decomposition for keeping computational costs
low, dispatching rules for effectiveness and declarative programming for
high adaptability and maintainability. We present first results proving
the concept of our novel scheduling approach based on a new large-scale
job-shop benchmark with proven optimal solutions.

Keywords: Job-shop scheduling · Problem decomposition · Declarative
programming

1 Introduction

The scheduling of jobs [6] is an important task in almost all production systems
in order to optimize various objectives such as the makespan, i.e. the time needed
to perform all the job operations. In general, jobs are structured into operations,
which must be allocated to resources such that various manufacturing constraints
are satisfied and in addition an objective function is minimized. The job-shop
scheduling problem (JSP) and variants like the flexible job-shop problem (FJSP)
are among the most famous NP-hard [10] and longest studied combinatorial
problems (e.g. [4]).

State-of-the-art search algorithms for JSP and FJSP are local search meth-
ods like tabu search [15] or large-neighborhood search [17]. However, without
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equipping the search approaches with sophisticated domain specific heuristics
the performance is quite limited [1,7,8]. Furthermore, for large-scale problems,
problem decomposition is absolutely needed [5]. When applying problem decom-
position, a problem instance is partitioned into subinstances which are solved
independently. The subsolutions are then combined again to form the overall
solution.

Daily scheduling routines in semi-conductor factories like those of our project
partner Infineon Technologies also build on problem decomposition on the one
hand and heuristics on the other hand for producing scheduling solutions. The
problem decomposition is hereby realized by partitioning the machines into so
called workcenters. Each workcenter is responsible only for a fraction of oper-
ation types, i.e. job operations are assigned to workcenters rather than actual
machines. The production plan is made for each workcenter independently based
on dispatching rules, a widely employed state-of-the-art technique for dealing
with large and complex scheduling problems in nowadays manufacturing environ-
ments [13]. Dispatching rules are greedy heuristics for step-wise deciding which
is the operation to be processed next by a machine. Simple examples for dis-
patching rules are first-come-first-serve, i.e. the preference of the longest waiting
operation, or shortest-job-first. One of the most effective dispatching rules for
minimizing the makespan is the most-total-work-remaining (MTWR) rule [16].
According to MTWR, the next operation to be dispatched belongs to a job such
that the sum of lengths of all remaining operations is maximal.

One big advantage of dispatching rules is that they can be computed typi-
cally in linear time. Another big advantage is their flexibility. Dispatching rules
can be changed, adapted or combined easily in order to react on changing order
situations as well as changing product portfolios. This is crucial for modern man-
ufacturing regimes like mass customization [9], just-in-time or lean production
[14]. Moreover, almost every real-world scheduling problem has specific con-
straints regarding the manufacturing processes. Consequently, in order to be
successfully applied in real-life production environments, an approach for auto-
matic decomposition and dispatching must be easily adaptable. In particular, it
must be possible to implement different decomposition methods and dispatching
rules in a compact but well-maintainable form.

One way of achieving high adaptability and maintainability is declarative
programming. Declarative programming approaches such as answer set and con-
straint programming [2,11] provide high-level language representation features.
Encodings specify the problem to be solved rather than how it is to be solved,
which leads to short and well-maintainable code. A general problem solver is then
responsible for finding a consistent solution for the encoded problem. Although
declarative approaches have already been often applied to scheduling problems
(e.g. [3]), their direct applicability on large-scale problems is limited. For exam-
ple, incremental scheduling problem instances (a variant of FJSP) used in the
answer set programming competition1 do not comprise more than 120 job oper-
ations on max 7 machines. Also constraint programming approaches cannot be

1 https://www.mat.unical.it/aspcomp2014/.

https://www.mat.unical.it/aspcomp2014/
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directly applied on problems like investigated in this paper. This is due to the
fact that otherwise well-applicable global constraints2 possess quadratic com-
plexities which, in the light of instances comprising up to 10000 job operations
and 100 machines, can already be too much.

In this paper we present a novel scheduling approach building on declarative
programming in order to benefit from the high-level and compact knowledge
representation and combine it with problem decomposition and dispatching rules
in order to ensure adaptability and maintainability, low computational costs and
effectiveness.

2 A Novel Scheduling Approach

Figure 1 shows the general architecture of our scheduling approach. Conforming
to our proposed architecture, a scheduler is build upon a general purpose declar-
ative problem solver. This can be - but is not limited to - constraint solvers like
Gecode3 or Jacop4, answer set solvers like Clingo5 or hybrids like proposed in
[2,12].

Our first proof-of-concept prototype is implemented in Java incorporating
ASCASS, a constraint answer set programming (CASP) solver [18]. ASCASS
follows the idea given in [2], i.e. answer set programming (ASP) is used for
specification of constraint satisfaction problems (CSPs). The CSPs are solved by
the constraint solver Jacop. CASP approaches have proven to be highly effective
for problems with very large domains, like industrial sized scheduling problems
[3]. This is due to the combination of the high-level knowledge representation
features of ASP and the possibility of stating the variable domains as intervals
by means of constraint variables. Since the scheduling problems usually present
large domains for the time representation, CASP suits well our needs.

Two declarative programs written in the language of the solver are respon-
sible to define the scheduling behavior. In particular, decompose.prg specifies

Fig. 1. General architecture of the scheduler

2 http://sofdem.github.io/gccat/.
3 http://www.gecode.org/.
4 http://jacop.osolpro.com/.
5 http://potassco.sourceforge.net/.

http://sofdem.github.io/gccat/
http://www.gecode.org/
http://jacop.osolpro.com/
http://potassco.sourceforge.net/
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the strategy for the problem decomposition, i.e. the method for splitting the
problem instance into subinstances, which are then treated independently. How
those subinstances are processed is determined by a dispatching rule defined in
dispatch.prg.

As a first decomposition strategy we currently split the input instance based
on the predefined machine and workcenter information so that every subinstance
comprises a single machine of each workcenter. This makes sure that it is possible
to process every operation type in every subinstance. In order to balance the
workload, the set of jobs is equally divided among the subinstances.

Concerning the dispatching rule implemented in dispatch.prg, we currently
rely on the most-total-work-remaining (MTWR) rule for makespan optimization.
In our encoding, this rule can easily be expressed as a logic predicate specifying
the operation priorities in a recursive manner, i.e.

opPriority(J,L):-

op(J), opLength(J,L), not precedes(J,_).

opPriority(J,P2+L):-

op(J), op(J2), precedes(J,J2), opPriority(J2,P2), opLength(J,L).

The declarative solver (ASCASS) processes the operations conforming the
stated priorities, behaving in accordance to the MTWR rule.

Fig. 2. Data flow of the scheduling process

Figure 2 shows the data flow of the scheduling process. First, the solver com-
bines the instance with the decomposition program, that divides it into a number
of subinstances. Both the number of subinstances and the decomposition strat-
egy are determined by decompose.prg. Once the subinstances have been created,
they are processed sequentially by the declarative solver following the dispatch-
ing rule defined in dispatch.prg. The dispatching process is incremental. Thus,
the solution of one subinstance is forwarded as an additional input to the next
subinstance in line until no more subinstances are left. The overall solution is
the composition of all the subsolutions.

3 Proof of Concept

In this section we discuss the impact of problem decomposition on our large-
scale scheduling benchmark. The purpose of the presented experiment is not
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to investigate the performance of different dispatching rules. Instead, we want
to show that dispatching rules in general can be successfully exploited in the
context of declarative programming and problem decomposition.

We tested our prototype against a new large scale benchmark instances com-
prising up to 10000 job operations to be performed on 100 machines6. All the
instances are solved once with the decomposition approach described in the last
section and once without decomposition. In both cases, we used the most-total-
work-remaining (MTWR) dispatching rule. The experiment was conducted on
a system with Intel i7-3930K CPU (3.20 GHz), 64 Gb of RAM. The timeout for
the computation of the complete schedule for each instance was set to 4000 s.
This time frame would allow a frequent recalculation in a weekly or bi-weekly
scheduling scenario.

3.1 Results

Table 1 shows the percentage of solved instances for the different machines/op-
eration settings. The first column distinguishes between the approaches with
decomposition (dec) and without decomposition (no dec). The results are given
grouped by the different flexibility factors, i.e. the number of possible machines
for each operation. It gets obvious that the sizes of the job-shop in terms of num-
ber of machines/operations as a big impact in the number of solved instances.
In particular, less instances can be solved without producing a timeout in larger
job-shops. On the other hand, also the increase of the flexibility factor nega-
tively impacts on the number of solved instances. A particular result is the case
with flexibility of 5, where in the approach without decomposition it was possi-
ble to solve 66.7 % of the 100/1000 instances, but 0 % of the 10/1000 instances.
The reason behind this behavior is the ratio between the number of operations
and the number of machines. In the case with 100 machines and 1000 opera-
tions the ratio is 10, meaning that in a perfectly balanced schedule, where all

Table 1. Comparison of percentage of solved instances of the approaches with and
without decomposition

#mach/#ops JSP FJSP-2 FJSP-5 FJSP-10 FJSP-20 FJSP-50 FJSP-100 total

No dec 10/100 100% 100% 100% 0% - - - 75%

Dec 10/100 100% 100% 100% 100% - - - 100%

No dec 10/1000 100% 100% 0% 0% - - - 50%

Dec 10/1000 100% 100% 100% 100% - - - 100%

No dec 100/1000 100% 100% 66.7% 0% 0% 0% 0% 38%

Dec 100/1000 100% 100% 100% 100% 100% 100% 100% 100%

No dec 100/10000 83.3% 0% 0% 0% 0% 0% 0% 11.9%

Dec 100/10000 83.3% 100% 100% 100% 100% 100% 100% 97.6%

No dec Total 95.8% 75% 58.4% 0% 0% 0% 0% 38.6%

Dec Total 95.8% 100% 100% 100% 100% 100% 100% 99.2%

6 Benchmark and prototype at http://isbi.aau.at/hint/scheduling-prototype.

http://isbi.aau.at/hint/scheduling-prototype
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the machines get the same amount of operations, there are 10 operations per
machine. In the case of 10 machines and 1000 operations the ratio is 100 oper-
ations per machine. An increased number of operations per machine leads to a
longer constraint propagation in the general declarative problem solver.

Concerning the instances with 10 machines and 1000 operations, 12 out of
24 (50 %) were solved. In the set of instances with 100 machines and 1000 opera-
tions, the number of solved instances was 16 out of 42 (38 %). Note, the varying
number of total instances (24 vs. 42) is due to the varying number of machines
in the different settings. A greater number of machines naturally allows more
flexibility factors. The total number of solved instances of the approach without
decomposition is 51 out of 132, which corresponds to 38.6 % of the benchmark.

In comparison, the decomposition approach showed better results. With
respect to the JSP, the results are the same as in the approach without decompo-
sition, because the JSP corresponds to a FJSP with flexibility of 1. Consequently,
no decomposition occurs, as the workcenters cannot be split any further. In all
the other cases the decomposition plays a crucial role in the solvability, since
it was possible to solve all the FJSP instances with any size of the problem.
The only unsolved case is a JSP instance with 100 machines and 10000 opera-
tions, where the decomposition is not applied. Overall it was possible to solve
131 out of 132 (99.2 %) instances, proving the effectiveness of the decomposition
approach.

Table 2. Comparison of the makespan results (in seconds) of the two approaches

#mach/#ops JSP FJSP-2 FJSP-5 FJSP-10 FJSP-20 FJSP-50 FJSP-100

No dec 10/100 855350 712685 645226 t/o - - -

Dec 10/100 855350 1067370 1093303 1014521 - - -

No dec 10/1000 780589 696931 t/o t/o - - -

Dec 10/1000 780589 995531 1083530 995953 - - -

No dec 100/1000 933775 754580 670931 t/o t/o t/o t/o

Dec 100/1000 933775 1170844 1426045 1451335 1686282 1418501 1193235

No dec 100/10000 767278 t/o t/o t/o t/o t/o t/o

Dec 100/10000 767278 1035810 1225529 1295864 1353059 1365883 1236629

Table 2 shows the makespans produced by MTWR with and without decom-
position. The term t/o indicates where the instances reached the timeout. It is
to be noticed that, when it is possible to find a solution, the approach with-
out decomposition presents a lower makespan. This is due to the fact that the
decomposition program used in our experiment aims to distribute the job equally
among the subinstances. However, the number of operations per job varies in the
benchmark. Thus, an equal number of jobs in the subinstances does not neces-
sarily correspond to an equal number of operations. Consequently, the total
workload to be processed in the subinstances is not perfectly balanced. Oppor-
tune tuning of the decomposition program may lead to better results in terms
of makespan. This will be investigated in future work.



140 G. Da Col and E.C. Teppan

References

1. Azi, N., Gendreau, M., Potvin, J.Y.: A dynamic vehicle routing problem with
multiple delivery routes. Ann. Oper. Res. 199(1), 103–112 (2012)

2. Balduccini, M.: Representing constraint satisfaction problems in answer set pro-
gramming. In: ICLP09 Workshop on Answer Set Programming and Other Com-
puting Paradigms (ASPOCP 2009) (2009)

3. Balduccini, M.: Industrial-size scheduling with ASP+CP. In: Delgrande, J.P.,
Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 284–296. Springer, Heidelberg
(2011)

4. Bellman, R.: Mathematical aspects of scheduling theory. SIAM J. Soc. Ind. Appl.
Math. 4, 168–205 (1956)

5. Bent, R., Van Hentenryck, P.: Spatial, temporal, and hybrid decompositions for
large-scale vehicle routing with time windows. In: Cohen, D. (ed.) CP 2010. LNCS,
vol. 6308, pp. 99–113. Springer, Heidelberg (2010)

6. Blazewicz, J., Ecker, K., Pesch, E., Schmidt, G., Weglarz, J.: Handbook on Schedul-
ing: Models and Methods for Advanced Planning (International Handbooks on
Information Systems). Springer, Secaucus (2007)

7. Carchrae, T., Beck, J.C.: Principles for the design of large neighborhood search. J.
Math. Model. Algorithms 8(3), 245–270 (2009)

8. Easton, T., Singireddy, A.: A large neighborhood search heuristic for the longest
common subsequence problem. J. Heuristics 14(3), 271–283 (2008)

9. Fogliatto, F.S., Da Silveira, G.J.C., Borenstein, D.: The mass customization
decade: an updated review of the literature. Int. J. Prod. Econ. 138(1), 14–25
(2012)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York (1979)

11. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
and Claypool Publishers, San Rafael (2012)

12. Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In: Hill,
P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 235–249. Springer,
Heidelberg (2009)

13. Hildebrandt, T., Goswami, D., Freitag, M.: Large-scale simulation-
basedoptimization of semiconductor dispatching rules. In: Proceedings of
the 2014 Winter Simulation Conference, WSC 2014, pp. 2580–2590. IEEE Press,
Piscataway (2014). http://dl.acm.org/citation.cfm?id=2693848.2694175

14. Holweg, M.: The genealogy of lean production. J. Oper. Manag. 25(2), 420–437
(2007). Special Issue Evolution of the Field of Operations Management SI/ Special
Issue Organisation Theory and Supply Chain Management

15. Hurink, J., Jurisch, B., Thole, M.: Tabu search for the job-shop scheduling problem
with multi-purpose machines. Oper.-Res.-Spektrum 15(4), 205–215 (1994)

16. Kaban, A.K., Othman, Z., Rohmah, D.S.: Comparison of dispatching rules in job-
shop scheduling problem using simulation: a case study. Int. J. Simul. Model. 11(3),
129–140 (2012)

17. Pacino, D., Van Hentenryck, P.: Large neighborhood search and adaptive ran-
domized decompositions for flexible jobshop scheduling. In: Proceedings of the
International Joint Conference on Artificial Intelligence (2011)

18. Teppan, E.C., Friedrich, G.: Heuristic constraint answer set programming. In: Pro-
ceedings of the 6th International Workshop on Combinations of Intelligent Methods
and Applications (CIMA16 at ECAI16) (2016)

http://dl.acm.org/citation.cfm?id=2693848.2694175


A Multi-Objective Approach
for both Makespan- and Energy-Efficient

Scheduling in Injection Molding
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Abstract. Recent sustainability efforts require machine scheduling
approaches to consider energy efficiency in the optimization of sched-
ules. In this paper, an approach to reduce power peaks while maintain-
ing the makespan is proposed and evaluated. The central concept of the
approach is to slowly equalize highs and lows in the energy input of
the schedule without affecting the makespan through an iterative opti-
mization. The approach is based on the simulated annealing algorithm
to optimize machine schedules regarding the makespan and the energy
input, using the goal programming method as the objective function.

Keywords: Energy efficiency · Goal programming · Multi-objective
optimization · Scheduling · Simulated annealing

1 Introduction

Large-scale facilities and devices such as industrial machines, air-condition, as
well as computer and server systems may unnecessarily load the power grid if
they are operated in parallel and especially if they have unsteady power con-
sumption. Temporarily switching off one or many appliances not essential to
the business processes may be one option to solve this problem. But, if the
power consumption of the individual is known or well documented, the appli-
ances may instead be parallelized in such a way that unnecessary peak loads can
be avoided altogether without severely affecting the business processes. Espe-
cially with regard to the scheduling of industrial machines, this concept may
already be utilized at a predictive planning level to generate energetically ideal
schedules without sacrificing an already good makespan.

This paper therefore presents an approach for the optimization of the total
energy input while maintaining a near-optimal makespan using the example of
discontinuous plastics processing via injection molding machines. The approach
is then examined through a combinatorial evaluation, describing, testing, and
assessing different, plausible parameter settings.

The challenge herein is that the injection molding cycles of different products
and machines do not have the same duration and power consumption throughout
c© Springer International Publishing AG 2016
G. Friedrich et al. (Eds.): KI 2016, LNAI 9904, pp. 141–147, 2016.
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the cycle as well as the fact that the highs and lows of the energy input are not
equally spaced and symmetrical.

The different injection molding machines considered for this paper are shown
in Table 1. The steps cooling and melting start at the same time and run in
parallel.

Table 1. Individual steps, durations and power consumption of the injection molding
cycles of the machines considered.

Step Engel victory 750/140 tech Engel ES 2550/400 HL KraussMaffei KM420-2700C1

Duration Power Duration Power Duration Power

Clamping 3 s 1.8 kW 7 s 14.08 kW 5 s 14.85 kW

Nozzle 1 s 1.2 kW 1 s 9.39 kW 1 s 9.9 kW

Injecting 3 s 7.2 kW 6 s 56.31 kW 6 s 59.4 kW

Dwelling 3 s 1.2 kW 5 s 9.39 kW 5 s 9.9 kW

Cooling 11 s 4.22 kW 29 s 32.98 kW 27 s 34.79 kW

Melting 7 s 5.98 kW 20 s 46.8 kW 22 s 49.37 kW

Opening 3 s 0.32 kW 6 s 2.48 kW 7 s 2.62 kW

Ejecting 1 s 0.4 kW 3 s 3.13 kW 0 s 3.3 kW

Demolding 2 s 0.17 kW 0 s 1.34 kW 0 s 1.41 kW

Set-up 25min - 60min - 150min -

These issues, both machine scheduling and energy-efficient production, have
had increased recent consideration: Multi-objective optimization approaches for
job and flow shop problems have been sucessfully used to either create the pareto
front of possible solutions for an a posteriori evaluation [3,5] or to compare the
results of different local search heuristics for the special case of no-wait scheduling
[10]. Holistic simulation and forecasting systems have been employed to examine
mutual dependencies and reciprocal effects regarding the energy efficiency of the
appliances [4,6] while evolutionary/genetic algorithms have been successfully
utilized for energy optimization within the context of parallel machines and
cloud service scheduling [9,11, pp. 191–224].

2 Approach

As the scheduling of injection molding machines and jobs is based on combi-
natorial and NP-hard optimization problems [1, p. 51], the trajectory-based
simulated annealing algorithm [2,7] instead of a mathematically exact method
is chosen. The initial solution is constructed while attempting to balance pro-
duction jobs on the available machines, thereby minimizing the total makespan.
The main objective of the optimization is to reduce the power peaks within the
initial solution without negatively affecting the makespan while doing so.

Minimizing the makespan by parallelizing as many jobs as possible increases
the total energy input and may cause unwanted power peaks. However, trying
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to minimize energy consumption means to run as few machines as possible in
parallel. In this paper, this dilemma will be counteracted by using the goal pro-
gramming objective function to define aspiration levels or goals for each objective
and subsequently attempting to find solutions to the scheduling problems con-
sidered that reach these goals with the least deviation. As simulated annealing
only genereates a single solution, a posteriori objective functions are not suited
for further consideration. Goal programming on the other hand is an a priori
objective function that permits an equal examination of all objectives [8]. The
goal factors are relative to the initial solution, e.g. a goal factor of 1 describes
a goal value that is identical to the initial solution while goal factor of 1.5 and
0.5 means a goal value that is 50 % larger or smaller respectively and a goal
factor of 0 describes a utopian zero value. Because the objectives considered in
multi-objective decision making are often measured on different scales (in this
case time in seconds and energy input in watts), a subsequent standardization
of the scales is necessary to make them comparable. The solution is then rated
using a distance function to determine the deviation between the current and
the goal values.

The neighborhood function used for the simulated annealing algorithm selects
a random, active machine at the instant of time of a random power peak to shift
the current and all future jobs one time unit towards the end, slowly resolving
power peaks originating from unfavorable parallelization in the process.

3 Evaluation

The aim of the evaluation is twofold: On the one hand, different distance func-
tions are evaluated in their applicability for bi-objective optimization regarding
time-based and energy-based objectives. On the other hand, as energy-efficient
optimization is a rather recent consideration, utopian and realistic goals for the
power peak are compared with regard to their feasibility. The underlying idea
of the evaluation is to systematically observe the behavior of the power peaks of
the resulting schedules and to describe their dependency on the makespan, the
objective function as well as the structure of the initial solution.

3.1 Method

To mimic the layout of the local company the machine data of which was
obtained from, two machines of each type shown in Table 1 will be assumed for
the following evaluation, making a total of six machines. The simulated anneal-
ing parameters remain unchanged for the entire evaluation. The algorithm starts
at an initial temperature of 1 and is iteratively cooled by 1 % until it reaches or
falls below the minimal temperature of 0.01. Two different initial solutions are
examined in the evaluation. The first solution assumes constant production on
all machines after an initial setup time while the second solution consists of two
to four equidistant changeovers to alternative product variants on each machine
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during the observation period, depending on the size of the machine. The obser-
vation period itself is a single work shift of 8 h for all experiments. Three common
distance functions are individually examined as objective functions for the goal
programming method: The euclidean distance, the manhattan/taxicab distance,
or the maximum/Chebyshev/chessboard distance. Moreover, six different goals
regarding the makespan are set and analyzed. A utopian goal with a makespan
of zero as well as five further goals, starting at a goal identical to the initial
solution’s makespan and increasing in 5 % steps up to 20 % more makespan.
The last parameter of the evaluation is the goal factor for the power peak, with
two different goals being compared. The first goal is the utopian goal as well
while the second, realistic goal is calculated based on the average power peaks
of the first set of evaluations using the utopian goal. These parameters and their
assignments make a total of 72 different combinations. Each combination is then
independently run 20 times to avoid some statistical deviation due to the random
simulated annealing and neighborhood function.

3.2 Results

The results of the evaluation are divided into four categories, one for each com-
bination of changeovers in the initial solution (with or without) and power peak
goal factor (utopian or realistic). For reference, both initial solutions, with or
without changeovers, have a duration of 8 h and a power peak of 348.3 kW.

Without Changeover and Utopian Power Peak Goal Factor. A utopian
goal for the makespan results in a plan that has only little improvement on
the power peak but also does not increase the makespan at all. Results from
makespan goal factor 1 depend on the chosen distance function: For the euclid-
ean distance, the average power peak is identical to the solution using a utopian
makespan goal while the makespan is slightly longer. For the manhattan dis-
tance, the results are identical to the utopian makespan goal. For the maximum
distance, the results are located in the same value range as those for makespan
goal factor 1.1 to 1.2, as further described below. For the euclidean and the man-
hatten distance, a makespan goal factor of 1.05 creates solutions that have their
power peaks reduced by 20 to 15 kW and are approximately 2 min longer than
the initial solution. For the maximum distance, the results are again in the same
value range as those with from goal factor 1.1 to 1.2. Makespan goal factors 1.1,
1.15, and 1.2 generate results that decrease the power peak by roughly 30 to
40 kW while increasing the makespan by about 3 min.

With Changeover and Utopian Power Peak Goal Factor. For the utopian
makespan goal factor 0, the results for the euclidean and manhattan distance
have their power peak reduced by about 30 kW peak without affecting the
makespan, while for the maximum distance, the power peak does not change
much at all. Regarding the solutions for makespan goal factor 1, these are, in
case of the manhattan distance, either identical to those obtained with a goal
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factor of 0, in case of the euclidean distance slightly longer but with identical
power peak, or, in case of the maximum distance, located in the same value
range as all further goal factors. The average results for makespan goal factors
1.05 to 1.2 have their power peaks reduced between 50 and 60 kW while having
their makespan increased by almost 2 min.

Without Changeover and Realistic Power Peak Goal Factor. When
setting realistic goals for the power peak, the results of the euclidean distance
are similar to those of the manhattan distance throughout all makespan goal
factors. For goal factors 0 and 1, the results again show just little improvement
of the power peak but do not increase the makespan. For the euclidean and
manhattan distance, goal factor 1.05 results in solutions that have a roughly
10 kW reduced power peak, just slightly better than those generated with goal
factors 0 and 1, but have their makespan increased by about 2 min. Results
generated by makespan goal factors 1.1 to 1.2 have their power peaks reduced
by 25 to 30 kW while simultaneously having their makespan increased by about
3 min. The results when using the maximum distance are significantly different
from those described above. A utopian makespan goal creates almost no change
at all for both the power peak and the makespan. Results from goal factors 1
to 1.2 have their power peaks reduced by roughly 20 to 30 kW but at the same
time have their makespan increased by up to 7 min.

With Changeover and Realistic Power Peak Goal Factor. The results
for the euclidean and the manhattan distance are again comparable. Makespan
goal factors 0 and 1 generate solutions with almost 30 kW smaller power peaks
while not increasing the makespan of the results. Goal factors 1.05 to 1.2 reduce
the power peaks of the results even further by 55 to almost 60 kW, but increase
the makespan by 2 min. The results generated using the maximum distance are
again different from those using the euclidean or manhattan distance. For a
utopian makespan goal there is again no change for neither the power peak nor
the makespan. For all other evaluated goal factors, the power peak is reduced
by about 55 to 60 kW, but the makespan progressively increases from 1 min at
goal factor 1 to 9 min increase at goal factor 1.2.

3.3 Discussion

Several different properties and behaviors can be derived from the evaluation:
Regarding the behavior of the three distance functions examined, it is evident
that there is no direct linear dependency between the makespan and the power
peak. Allowing for an increase in makespan does not automatically imply a
proportional reduction of the power peak. Instead, the power peaks of the solu-
tion become more balanced and equalized with every iteration of the optimiza-
tion, resulting in plans that cannot be further improved within the up to 20 %
makespan increase considered in the evaluation. This power peak limit is reached
when using a makespan goal factor of 1.1 or higher, in some cases even earlier.
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Continuing on to the individual analysis of the distance functions, the behav-
ior of the euclidean and manhattan distance is comparable while the results
generated using the maximum distance differ significantly. In general, when com-
paring the results of the euclidean and manhattan distance, using a utopian
power peak goal causes the individual solutions scatter more around the average
solutions than they do when using a realistic power peak goal. When setting a
utopian makespan goal, the euclidean and manhattan distance can create results
that have a reduced power peak without affecting the makespan at all. The
actual amount of improvement depends on the initial solution with just a slight
improvement using a plan without changeovers to a more significant improve-
ment when starting from a solution with frequent changeovers. This is because it
is more difficult to move power peaks to phases of low energy input when using
a plan with constantly operating machines than it is when working with a plan
that already has long phases of low energy input due to changeovers.

In contrast, the results of the maximum distance differ greatly from those
described above. When setting a utopian makespan goal, only the makespan
will be considered. But, as the initial solution is makespan-optimal already, the
makespan cannot be further reduced, resulting in solutions that do not differ
much from the initial solution. When using a non-utopian goal for the makespan
with a utopian goal for the power peak, it is the other way around. As a utopian
power peak goal attempts to reduce the energy input by 100 %, the mere 0 to
20 % goals set by the makespan goal factors 1 to 1.2 are never taken into account,
resulting in virtually identical average solutions for all makespan goal factors.
The third and last case when using the maximum distance is the setting of
realistic, attainable goals for both the makespan and the power peak. For these
settings, the general characteristic of the maximum distance, as described above,
becomes apparent. Contrary to the euclidean and manhattan distance, the max-
imum distance attempts to reach all different makespan goals, even if it does not
provide any improvement for the power peak.

4 Conclusion

This paper presented and evaluated an approach and its parameters to retroac-
tively optimize machine schedules, improving their energy efficiency without
significantly worsening the already optimal makespan. As apparent from the
results and the subsequent discussion, there is no consistently and uniformly
best setting for all situations. Rather, the decision maker setting up the opti-
mization and its goals needs to know the desired extent of the results. If small
improvements of the power peak suffice, using the euclidean or manhattan dis-
tance with utopian goals for both makespan and the power peak creates plans
with unchanged makespan. If extending an 8-h work shift by just a few minutes
is acceptable, better results can be achieved by increasing the makespan goal. If
a suitable makespan goal is not known, using the maximum distance together
with virtually any non-utopian makespan goal and a utopian power peak goal
may also be an option.
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Abstract. In this work, several approaches to feature extraction on sets
of time-based events will be developed and evaluated. On the one hand,
these sets of events will be extracted from video files and on the other
hand it will be manually annotated. By using methods of supervised
machine learning the two sets of events will be mapped onto each other.
After that, per time slot and requested event type, a binary classification
will be applied. Thus aspects of data mining and media technology will
be discussed and combined with the goal to reach a reasonable reduc-
tion of the input-set by projecting it on an output-set. This will save
operator-time in an automated process environment for quality control
of audiovisual files. It can be shown, that this objective can be achieved
by applying the developed methods. In addition to that, further results
and limitations will be presented.

1 Introduction

To meet the aspects of quality assurance in media industry available analysis
tools are integrated in the process flow to support decisions. One question is, if
a video file meets all relevant requirements in order to be broadcast, or whether
further processing steps are needed.

Analysis tools rate the audio-visual material at different levels in the
process [1]. The analysis of what is heard or seen, however, remains a major
challenge [8], because the results of the various tools are always coupled with
uncertainty. In addition, the accuracy, the recall and the precision in individual
analysis tools are often insufficient. Furthermore, tools from the professional sec-
tor are black boxes and provide no insight into their internal workings. Another
problem is the syntax of the analytical results, because there is no standardized
notation being accepted among all tool manufacturers, e.g. MPEG 7 [4]. This
fact makes it difficult to make the right decisions in the process flow. Also, the
prediction quality of the events varies not only from tool to tool, but also between
different analysis focuses. After passing through an analysis tool it is, therefore,
necessary to interrupt the process flow and evaluate the results manually. Based
on these inspections, decisions for the course of actions are made.

c© Springer International Publishing AG 2016
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The demanding question is whether there is a way through which a manual
intervention could be accelerated by intelligent filtering the analytical results,
and to what extent an added-value from supposedly independent results from
multiple analysis tools with respect to the same audio-visual file can be obtained.
Machine learning by data mining the tools’ analyses can provide a basis for
improved decisions. However, as the frame-based data is a time series of many
even noisy events, the choice of features is not immediate, so that novel discrete
approaches for feature extraction are derived.

2 Problem Formulation

In the broadest sense, we aim at a mapping between two sets of temporally
correlated events in order to detect patterns in one of the events sets. For fast
storage of and access to events, they are stored in an interval tree [2].

Definition 1 (Event, Domain). An event e is a tuple e = (start, end,
type, conf) with start, end ∈ N, type ∈ C, where C is a set of event types and
conf ∈ [0, 1] a confidence value. The set of all events is denoted by E. A domain
D ∈ D is a pair (length, E) containing its duration length and a set of events
E ⊆ E.

Definition 2 (Automated and Manual Events). The set of events in a
domain D = (length, E) partitiones into sets of automated events A ⊆ E and
manual events B ⊆ E with E = A ∪ B and A ∩ B = ∅. Furthermore, for
domains D1, . . . , Dn with Di = (lengthi, Ei) classes A and B are defined as
A = A1 ∪ . . .∪An with Ai ∈ Ei and, similarly, for B we have B = B1 ∪ . . .∪Bn

with Bi ∈ Ei, i ∈ {1, . . . , n}. If D = (length, E) and E = A ∪ B, we impose that
for all e = (start, end, type, conf) ∈ E we have 1 ≤ start < end ≤ length; and
for all e = (start, end, type, conf) ∈ A, and e′ = (start′, end′, type′, conf ′) ∈ B
we have conf ′ = 1 and type �= type′.

Definition 3 (Types, Events, Evaluation). The Function types : E → C
maps events to their according types, the function events : C × D → E projects
domains to ones of the chosen type. Function types (events) naturally extends
to sets of events (sets of domains). The evaluation function evalA,b : N → B is a
mapping indexed by a set of events (A, b) ∈ 2A ×B used for binary classification.

Definition 4 (Event Learning Task). Given a domain set D = {D1, . . . , Dn}
inducing sets of automated events A = {A1, . . . , An} and manual events B =
{B1, . . . , Bn}, the event learning task is to find a binary classifier evalA,b that
for set Ai ∈ A determines the existence of b ∈ types(Bi), Bi ∈ B, in a given
time step t, i ∈ {1, . . . , n}.

Definition 5 (Slice, Probe, Pattern). An event e = (start, end, type, conf) ∈
A is sliced by event e′ = (start′, end′, ·, 1) ∈ B into event e′′ =
(start′′, end′′, type, conf) if start′′ = max{start, start′}, and end′′ =
min{end, end′}. Function probeA,b : B → E is a slice of A ⊆ E wrt. event
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e.type length(D)
a1 0.75
a2 0.25 1.0 0.75
a3 1.0 0.75
a4 0.75 1.0
a5 0.5
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b1 1.0
b2 1.0
b3 1.0

B
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t 1 2 3 4 5 6 7 8 9 10 11 12 13 14
a1
a2
a3
a4
a5

.

.

.
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.
.
.

︸ ︷︷ ︸

Probe

Fig. 1. Domain and pattern (wrt. event (9, 10, b2, 1) and r = 2).

b ∈ B. Let P be the set of all probes b. Then, function patternA,r : B → P
denotes a pattern to select a probe in set A wrt. event b ∈ B and radius r ∈ N.

Figure 1 (left) shows a sample domain D. In the upper part we see the tem-
porally correlated occurrence of the events in A, and in the lower part the the
occurrence of the events from B. Each event contains its confidence parameter,
which is also reflected in its gray scale (e.g., event (2, 5, a1, 0.75) can be found).
In addition, we see that there are a total of eight different types of events in
this image. Several events of the same type may co-exist in one domain (e.g.
for a2). The intersection of events of the same type, however, is prohibited. For
the events e = (start, end, type, conf) ∈ A we have type ∈ {a1, . . . , a5}, and for
the events e′ = (start′, end′, type′, conf′) ∈ B we have type′ ∈ {b1, . . . , b3}. More-
over, types(A) = {a1, . . . , a5}, events(a3,D) = {(4, 7, a3, 1), (11, 14, a3, 0.75)},
and evalA,b1 is the following mapping from N to B:

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14

eval (A, b1) 0 0 1 1 1 0 0 0 0 0 0 0 0 0

Figure 1 (right) highlights probeA,2 in dark and patternA,2(9, 10, b2, 1) in light
gray.

3 Feature Extraction

The learning problem is a classification of multi-variate time series, where for all
types c individual event sets are considered. To reduce the dimensionality of the
learning vector, feature extraction is recommended. In the following, we propose
two different approaches: fingerprints and event correlation. Two more statistics
are gererated from the event data stream: relevance and event parallelism [5].
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Fig. 2. Superposition of and score function for fingerprints.

A fingerprint is a data structure related to a probe, for which repeating
combinations of events are generalized and used for classification.

Definition 6 (Fingerprint). A fingerprint fA,c,r: N → E wrt. radius r ∈ N is
a slice of A wrt. a time interval, defined through an event type c ∈ types(B),
B ∈ B. It consists of a radius r which defines the extension to both sides of its
current median time point t. The set of all fingerprints is denoted by F . The
function radius : F → N can be used to access the extension of the fingerprint,
while the length |f | of the fingerprint f ∈ F is defined as 1 + 2 · radius(f).

For matching fingerprints f of set A we call performMatch that loops on t
(to the length of A) and k (to the radius of f). In the inner loop for each c in the
slice wrt. k and t that is touched the evaluation h is incremented by the weight
w of k and t, times a certain combination of probability and confidence.

The superposition of the fingerprints f1 . . . , fk wrt. events a1 . . . , al operates
in two phases. The relative occurence of the events is determined, followed by
the multiplication with the confidence value average conff (a). For the example
of Fig. 2 we have conff (a1) = 0.58. To raise the influence of values closer to the
middle of the fingerprint, we apply Gaussian decay: the weight of time step t
and radius r is defined as weight(t, r) = e−4·(t/r)2 .

For scoring we apply procedure performMatching to a set of manual events B.
For each b ∈ B an individual score is computed and the predicted values v are
normalized to [0, 1]. Finally, we add the distance values between the predicted
and the manual annotation u, so that score(u, v) =

∑
1≤t≤length −|ut − vt|. For

the example we have score([0.1, 0.8, 0.9, 0.5, 0.3, 0, 0.8, 0.9, 0.7, 0.6, 0.2, 1, 0.1, 0],
[0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0]) = −2.7.

Another aspect for the extraction of features for a set of annotated videos
is based on the following observation. Suppose an event of type c ∈ types(B)
frequently occurs at the same time as c′ ∈ types(A), with high probability the
interval of a c′ event has to be anotated with c. Therefore, we use an event
(correlation) matrix that denotes statistical relations between events.

Definition 7 (Event Matrix, Score). Let k = |types(A) ∪ types(B)|, the
event matix M of size k2, is defined as M = {Rc ∈ R

k | c ∈ types(A) ∪
types(B)}, where each Rc is a row in M and each colum of Rc contains a pair
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Fig. 3. Video annotation.

of values (c′, z) with c′ ∈ types(A) ∪ types(B), c �= c′ and z ∈ R. Assum-
ing function occurD(c) : C → N that counts the number of events of a given
type, and matchesD,q : C × C → N that returns how often two types are
present at the same time and q to be threshold parameter for tolerance, we have
z =

∑
D∈D matchesD,q(c, c′)/occD(c′). The score of M wrt. event set A and

b ∈ types(A) is a function scoreA,M,b(t) =
∏

e=(start,end,type,conf)∈sliceA(t) 1 +
relOccM (b, type) where relOccM (c) : C × C → N is the relative occurence of
accessing event c wrt. event c′.

4 Evaluation

We first copied all video test data (with and without audio) to a Digital Betacam
tape. Then the tape was physically manipulated to enforce errors in the replay.
Especially, we used diagonal bendings that were efficient to generate dropout
artefacts. Horizonal bendings yield the loss of audio signal. Stronger manipula-
tions yield to problems in the recorder, while perforation let to no significant
change to the video (in the BlackmagicDeckLink Studio 4K capture card).

Given that the video data was uncompressed, we converted it to IMX MPEG
50 and stored it into MXF containers. For audioanalysis-only we also exported
audio in WAV-format. The MXF data was forwarded to the different tools for
push-botton analysis. Manual annotation has been done via the cutting program
Sony Vegas Pro 13 (see Fig. 3). Similar to other tools like Adobe Premiere or
Final Cut ProX it features annotations via markers, linking a text to a frame
or sequence of frames in an easy to handle manner.

First, we separated start from end fingerprints. For constant color frames
we get a picture shown in Fig. 4 (left). For the learning process we use a set of
annotated files and generate the following six different feature graphs for each of
the file to be analyzed: single-frame fingerprint, start-fingerprint, end-fingerprint,
event matrix, accumulated relevance and parallel events. Every graph consists of
a time series of discrete values for each frame. Based on the large amount of noise,
we avoid thresholding, but instead take these as features to train a classificator
(random forest) using the WEKA machine learning library [3,6]. If g is the
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Event Type Number Accuracy F1
Macro Blocking 199 0.79 0.58

Digibeta Drop Outs 135 0.91 0.76
Stripe Blocking 84 0.85 0.35
Edge Blocking 81 0.84 0.43
Border Blocking 41 0.81 0.3

Fig. 4. Effect of start-end fingerprints to detect constant color frames (start blue, end
red, manual shaded); and overall learning results.

number of feature graphs and r is the radius of the frame to be classified we
obtain 3g + (2r + 1)g + 1 attributs. For the six graphs above and a radius of 30
frames this results in 385 attributes.

As a feature of our algorithm we learn different parameters for each of the five
error types. Moreover, to control the experiment, we used 10-fold crossvalidation
already on the file layer (to avoid inter-dependency of the features collected),
and the standard statistical quality measures (accuracy, error rate, precision,
recall, F1-measure). As the parameter space, we had 6 feature graphs (finger-
prints, result correlation matrix, etc.), 4 analytical tools, n as the frame radius,
together with 6k model-specific parameters for the fingerprints and l model-
specific parameters for the result correlation matrix. As n = 50, k = 20 and
l = 10 yield 56.7 million combinations, we performed the experiments in stages.
(1) For the 5 event types (macro blocking, digibeta drop outs, stripe blocking,
edge blocking, and border blocking) 35 configurations were tested each (30 for
finger prints and 5 for event matrix correlation). (2) The frame radius for the
best 3 configuration for each type is varied, yielding 75 further configurations.
(3) Additional feature graphs for the best 3 configurations are chosen yielding
15 further configurations. (4) For each event type we drop tools in their best
setting, yielding 40 further configurations.

For each of the steps we obtain a certain parameterization. For the quality
of the overall learning process, we obtain the data shown in Fig. 4 (right).

If we relate this to the saving in operator time for 1 min video, than this
leads to significant advance. For pure manual quality constrol we have an aver-
age analysis, we measured 30 min working time and about 18 events. This is
compared to the results of the four professional tools that in summary yield 671
events in about 15 min. Checking one event might consume 3 s, so that again
30 min working time is needed. Our learning scheme, however, resulted in a
reduction to only 22 events, which contained 66 % of the manually annotated
ones. This reduces the working time to about 1 min. Note that the input set of
the professional tools is also incomplete and contains errors. While the training
process consumes considerable time, classification is immediate.

5 Conclusion

This work improved automated quality control of audio-visual inputs by classi-
fying event data of different analysis tools. This way, an increase in the degree of
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automation could be obtained that is able to deal with uncertain and imprecise
analysis results. The amount of the automatic analysis results depends on the
(manually defined) event types. In principle an arbitrary reduction is possible.
Compared to the state of the art for quality assurance in the media industry, the
presented system provides a significant relief of the employees by reducing the
event diversity and given the fact that virtually no prior knowledge about the
analysis tools has been assumed. The ultimate goal is an unsupervised learning
algorithm with early results to be found in [7].
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Abstract. Freespace navigation for autonomous robots is of growing
industrial impact, especially in the logistics and warehousing domain.
In this work, we describe a multiagent simulation solution to the physi-
cal vehicle routing problem, which extends the physical traveling salesman
problem —a recent benchmark used in robot motion planning research—
by considering more than one concurrent vehicle.

For the interaction of vehicles, we compute the collision of physical
bodies and then apply the impact resulting from the elastic collision.
A multi-threaded controller is implemented which forwards the proposed
actions from each individual robot’s controller to the environment real-
time simulator. For computing an optimized assignment of the pickup
and delivery tasks to the vehicles we apply nested Monte-Carlo tree
search.

In the experiments, we study the problem of robot navigation for
automated pickup and delivery of shelves to and from picking stations.

1 Introduction

The market for consumer goods which are ordered in online shops is continuously
growing. Companies store large amounts of goods in distribution warehouses.
Several optimization tasks have to be solved, including the selection of the most
appropriate warehouse, the proper choice of the delivery point (e.g., packing
station), the distribution of goods to the vehicles, and their respective best tour.

Within warehouses, an increased level of automatism takes place. Companies
like Amazon Robotics1 employ hundreds of autonomous robots to improve the
transport of shelves from and to picking stations. So far, these robots (also called
autonomous vehicles, carriers, or forklifts) operate on an underlying grid of floor
cells. This eases some of the navigation aspects, but neglects the dynamics of the
moving robots. In larger environments, including vehicle dynamics and freespace
navigation, however, is inevitable.

In alignment with the terms physical traveling saleman problem (PTSP)
(which has been invented for a competition for solving single-vehicle TSP prob-
lems [18]) and vehicle routing problem (VRP) (which is used for the distribution

1 Previously KIVA Systems.

c© Springer International Publishing AG 2016
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of goods with several vehicles [20]), we introduce the physical vehicle routing
problem (PVRP) in this paper. In addition to the static vehicle routing prob-
lem, the vehicle model in the PVRP includes orientation and speed, as well as
friction and acceleration.

The challenge of the PTSP is to visit a number of waypoints in the best pos-
sible order, where best is expressed in a cost function that reflects the travel time
(number of ticks) in the simulation. In the multi-objective PTSP, the cost func-
tion has been extended to include other factors like minimized damage and fuel
consumption. The number of actions for steering options has been discretized.
In the real-time simulation, an obstacle-avoiding dynamically-feasible trajectory
is executed. While the benchmark is bound to a bitmap representation of the
environment and its obstacles, it has been shown that solutions valid for the
PTSP translate to more complex robot motion planning problems, including 2D
and 3D environmental models, robots with higher degree of freedom and nonlin-
ear, high-dimensional, nonholonomic system dynamics [10]. The challenge for the
PVRP besides the computation of valid low-cost solution trajectories are often
long and that, after some precomputations, a simulation operates in real-time:
only a few milliseconds are available to select the next possible steering and for-
ward the action vector to the simulator. In the PVRP we assume three possible
waypoint types (colors): the location to pickup a shelf, the picking station, and
the location to store the shelf.

To model collisions properly in real-time, we use a refined physical model with
bounding spheres which eases the computation of the intersection of every two
polygonial vehicle objects (the robots), and, if required, computes the impact
of the elastic collision. For tour optimization we apply Nested Rollout Policy
Adaptation (NRPA) [19], an extension to nested Monte-Carlo search [4]. It com-
putes a possible assignment of waypoints to the vehicles and the order in which
a vehicle will traverse the waypoints. As NRPA can be parameterized, we will
study the change of parameters in this work.

2 Physical TSPs and VRPs

The classic vehicle routing problem (VRP) [2] is a well-studied problem in Oper-
ations Research. It extends the traveling salesman problem (TSP) from one to
several vehicles. Often constraints are added to the problem, like pickup-and-
deliveries, time-windows, and/or capacity constraints. For the sake of simplicity
and driven by the application, we assume the stacker-crane scenario where each
vehicle carries at most one object (shelf).

There are different formalizations for the VRP. The most prominent one is
mathematical programming model with 0-1 variables for choosing tour edges.
This formalization, however, includes subtour elimination constraints that our
solver does not need, as it will create complete (sets of) tours. Let G = (V,E,w)
be a weighted graph with V = {0, 1, . . . , n} being the nodes set, E = {ei,j | 0 ≤
i, j ≤ n, i �= j} being the edge set, and w being a weight function that models
the cost (time, distance) to travel from one node to another. The graph may be
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constructed by compressing a larger graph (the map) using calls to a shortest
path algorithm, so that the input of a VRP often operates on a cost matrix. Each
node i represents a customer that has a demand (in our case 1) for his goods and
a time window (in our case maximal), during which service must take place. Let
R = {V1, . . . , Vr} be the set of all vehicles. The available fleet is homogeneous
and each vehicle has a known capacity (in our case 1). A valid solution S consists
of a set of non-vertex-intersecting vehicle routes S = {S1, . . . , Sr} that visit all
customer nodes. Usually, all routes start and end in the common depot 0, but in
an Open VRP that we consider, all vehicles start in an individual position, and
end in some arbitrary destination (often the last customer visited), resulting in
a cost matrix of size n · r × n · r.

In continous space S and U denote the state and control spaces of the robots,
respectively. The equations of motions are given by a set of differential equations
f : S × U → Ṡ, where Ṡ denotes the tangent space of S. A trajectory λ :
[0, T ] → S is a continuous function, parametrized by the time duration T ∈
R

≥0. Trajectories are obtained by applying a control function u : [0, T ] → U
starting from some state s ∈ S and integrating f , i.e., ∀t ∈ [0, T ] : λ(t) =
s +

∫ t

0
f(λ(h), u(h))dh.

Let W,O = {O1, . . . , Om},P = {P1, . . . , Pn} denote the workspace, obsta-
cles, and waypoint regions, respectively, where Oi ⊆ W and Pj ⊆ W, 1 ≤ i ≤
m, 1 ≤ j ≤ n. A function valid : S → {�,⊥} is used to determine whether
a state is valid or not. Such function typically checks whether the robot is in
collision with obstacles and that state values are within desired bounds. A tra-
jectory λ is considered valid if every state along the trajectory is valid, i.e.,
for all t ∈ [0, T ] : valid(λ(t)) = �. Let waypoint : S → {P1, . . . , Pn,⊥}
determine which waypoint, if any, a state s ∈ S satisfies. For a trajectory
λ : [0, T ] → S, let waypoints(λ) denote the waypoints satisfied by λ, i.e.,
waypoints(λ) = P ∩

(⋃T
t=0 waypoints(λ(t))

)
.

Let C = {C1, C2, C3} denote a partition of P into three groups, i.e., P =
⋃3

i=1 Ci and for all i, j ∈ {1, . . . , 3}, i �= j : Ci ∩ Cj = ∅. Let color : P → C
return the color assignment, i.e., color(Pi) = Cj ⇐⇒ Pi ∈ Cj . For a trajectory
λ : [0, T ] → S, let colors(λ) denote the color set associated with the waypoints
satisfied by λ, i.e., colors(λ) =

⋃
Pi∈waypoints(λ) color(Pi). The objective is then

for each robot to compute a valid trajectory that (a) in combination visits all
waypoints, (b) reaches the colors in the order C1, C2, C3 (as imposed by task,
station and delivery sets).

The PVRP framework origins in the PTSP competition [18] with its main
purpose to provide a benchmark for combined task and motion planning. As an
input the framework takes different sets of two-dimensional bitmaps of blocking
and non-blocking cells with colored waypoints (see Fig. 1)2.

Within the framework, vehicles move autonomously and freely through an
environment by applying thrust and rotation, with up to six different macro

2 A video animation of the solution process is avaialble at https://bitbucket.org/
Denis Golubev/pvrp/src.

https://bitbucket.org/Denis_Golubev/pvrp/src
https://bitbucket.org/Denis_Golubev/pvrp/src
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Fig. 1. A warehouse-inspired physical vehicle routing problem (robots are yellow, pick-
ing stations are green, empty spots are purple, and occupied spots are blue, and orders
are indicated with red lines; figure best viewed in colors on screen) (Color figure online).

actions. The former can be seen as a boolean input (either the vehicle accelerates
or not), while the latter is an integer value to indicate rotation to the left, to the
right or no rotation at all. All actions are applied to the vehicle as forces which
update its position, orientation and velocity at each time step. The environment
itself is modeled as map of pixel cells. The crucial parts of the software framework
are the controller and the solver. The controller adapts the map to a proper world
model and determines the shortest path from the current position of the vehicle
towards every available waypoint. The solver then calculates a route based on
the shortest paths provided by the controller and reports it back. Based on the
solution, the controller navigates the vehicle.

We extended both, controller and solver, to find solutions for the PVRP. In
the default controller, each map is approximated by a weighted graph (every
64 cells are merged into one graph node), in which A* is called to compute
pairwise shortest paths between the start location and each of the waypoints.
These distances are then fed as a matrix into a VRP solver, and –utilizing
the imposed schedule of waypoints– the controller software performs a random
search on macros. As part of the framework, besides computer play, the interface
allows replay of preceding games and human players to participate in solving the
problem using interactive steering. The execution model of the framework is real-
time: actions have to be committed at a rate of about 40 ms. The startup time
is 0.1 s for each waypoint.

The shortest path implementations of [9,17] (one based on flood-fill the other
on radix heaps, respectively) are more efficient, so that pixel-precise shortest-
paths distance computation from every waypoint to every pixel cell could be per-
formed within setup time. Besides adding more vehicles, we are solving PTSPs
with colored waypoints. In the general PTSP a node of each color has to be
visited at least once within a tour, so that all colors but not necessarily all
waypoints are visited. In a Clustered PTSP, we have to visit every waypoint
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in a pre-defined cluster before approaching the next. Our quest is a mixture,
requesting to visit shelf locations (one color), bringing them to the picking sta-
tion (second color) and back to empty spots (third color). There is even dynamics
that can be considered, as empty spots are generated during the time the shelves
are transported. The changes to include colored waypoints in the PTSP software
framework were rather small: for waypoints we included colors as member vari-
ables that were randomly assigned. For debugging the controller, we also added
waypoint IDs.

3 Implementation

The implementation in Java uses design patterns [11]. For the test of collision,
we model the robot as a convex polygon and add a bounding sphere to it, the
latter to filter the intersection tasks by looking at the sum of the radii.

2D intersection is computed by evaluating the normals [1], resulting in the
minimum translation [3,8] for a collision to be avoided. If the two vehicles inter-
sect, an elastic collision is performed: based on the angle of the collision, the
speed and acceleration of the two vehicles [6] are computed [7].

NRPA by [19] has been applied to two puzzles. For tour generation the recur-
sion looks as follows (parameters level & iteration, and calls to rollout & adapt).

public Tour nrpa(final int level, final Policy policy) {

if (level == 0) return rollout(policy);

Tour bestTour = Tour.worst();

Policy currentPolicy = policy;

for (int i = 0; i < iterations; ++i) {

Tour resultingTour = nrpa(level - 1, currentPolicy);

if (resultingTour.cost() < bestTour.cost())

bestTour = resultingTour;

currentPolicy.adapt(initialSimulation, bestTour);

return bestTour

}

}

We parallelized the controller by using threads [16]. Each agent gets an own
controller thread, which is synchronized by communication to the multicon-
troller. The multicontroller sends action information to and receives the outcome
from the server. In every simulation step, the agents have to make a number of
decisions:

1. After reaching a delivery stop, a next pickup is visited, or stop.
2. After a pickup, one station initiating the order has to be visited.
3. After visiting a station, every possible delivery waypoint is available.

A list of decisions together with the according cost is maintained and per-
formed in the simulation engine.
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Table 1. Simulation and running time for different NRPA parameters.

Simulation time CPU time

Mean Std-dev Mean Std-dev

Initial (level 2, 100 iterations) 4354.17 90,89 2.91 s 0.13 s

Initial (level 3, 100 iterations) 4260.78 1.46 286.63 s 28.17 s

Random (level 2, 100 iterations) 4576.62 104.37 0.9 s 0.03 s

Random (level 3, 100 iterations) 4299.23 40.43 88.46 s 9.5 s

4 Results

We extended the parser to process maps with annotations of the form
tasks : (x1, y1) → (x2, y2), (x3, y3),→ (x4, y4), . . . , (xn, yn) → (xn+1, yn+1) and
deliveries : (x1, y1) → (x2, y2), (x3, y3) → (x4, y4), . . . , (xn, yn) → (xn+1, yn+1).
The task parsing part uses regular expressions. The map viewer visualizes the
problem including task and delivery task (used to produce Fig. 1).

The simulation time and CPU time results are shown in Table 1. We used
Linux Kernel: 4.4.1, Java-Version: 1.8.0 74 Intel Xeon E3-1230 v3 CPU, 3.3 Ghz

Reducing the iteration width from 100 to 75 of the NRPA solver with level 3
search gave one more solution, namely 4260.49. We also implemented an optimal
solver based on depth-first search, which found the best solution 4260.49 in 48 s.
It generated 15’114’240 tours compared to the 421’875 playouts in the best
NRPA setting. Using one more station, 46’125’000 and 2 m 24 s were needed by
the optimal solver, whereas NRPA’s performance remained fixed.

5 Conclusion

In this paper we have illustrated a novel scientific challenge with high relevance
in the logistics domain: the optimized freespace navigation of multiple robots
in warehouses with obstacles. The dynamics of the robots as well as pairwise
intersections are handled properly without affecting real-time constraints. In the
long term, we envision applications, where extended PVRP controllers navigate
autonomous robots in the real-world.

In pick-pack-and-ship warehouses hundreds of small autonomous robots lift
movable storage shelves. By bringing the product to the worker, productivity is
increased by a factor of two or more, while simultaneously improving account-
ability and flexibility. The ultimate goal of KIVA [22] goes back to Alphabet
Soup [12], a testbet for assembling words with robots that —in contrast to the
currently implemented solutions— operate in freespace instead of a grid.
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Abstract. We tackle social media analysis based on trending topics like
“super bowl” and “oscars 2016” acquired from channels such as Twit-
ter or Google. Our approach addresses the identification of semantically
related topics (such as “oscars 2016” and “leonardo dicaprio”) by enrich-
ing trends with textual context acquired from news search and apply-
ing a clustering and tracking in term space. In quantitative experiments
on manually annotated trends from Feb–Mar 2016, we demonstrate this
approach to work reliably (with an F1-score of > 90%) and to outperform
several baselines, including knowledge graph modelling using DBPedia
as well as a direct comparison of articles or terms.

Keywords: Trending topics · Social media analysis · Text mining

1 Introduction

Social media provide a rich repository of people’s opinion about a broad spectrum
of topics, extracting which is the challenge of multimedia opinion mining [1–3].
One task in this area is the detection of topics of general interest the very
moment they occur. Such trending topics (related to natural disasters, sports
events, etc.) are usually derived from spikes in search frequency, and are highly
useful indicators of user interest.

Often, the same event is represented by different topic titles. Sometimes these
may be similar, in which case a simple string matching may suffice (e.g. “oscars”
vs. “oscars 2016”). In other cases, semantic relatedness may be more difficult to
uncover (e.g., “oscars 2016” vs. “leonardo dicaprio”). We refer to the challenge of
identifying and grouping semantically identical topics as aggregation (see Fig. 1
for an example). Aggregation is supposed to merge topics from different channels
(“patriots” on Twitter, “super bowl” on Wikipedia) as well as topics over time
(“paris bombing” in Nov 2015, changing into “isis” the next days).

To do so, we enrich trending topics with news context: Given a topic title, we
retrieve news articles from the corresponding day and use simple models of text
statistics to cluster and track trending topics in term space. The approach is
c© Springer International Publishing AG 2016
G. Friedrich et al. (Eds.): KI 2016, LNAI 9904, pp. 162–168, 2016.
DOI: 10.1007/978-3-319-46073-4 15
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Fig. 1. Aggregating trending topics of Feb 29 2016.

plugged into an end-to-end system for trending topic understanding, including
the acquisition from various social media channels, aggregation, and in-depth
inspection of trends1. We demonstrate on a dataset crawled in Feb–Mar 2016
covering about 800 trending topics and 10 K topic pairs labeled by a human
expert that this approach outperforms several baselines, including knowledge
graph modelling (DBPedia), a string matching comparison of trending topic
titles, as well as the comparison of articles acquired by a search engine.

2 Related Work

Detecting and tracking topics in broadcast media has been studied for about two
decades (including the mapping of television and radio sources) [4]. Over the last
decade, work on trend discovery has focused on blogs and Twitter content [5,6],
where approaches employ aggregated trends provided by the platform itself [6]
or perform trend analysis on the raw data [2,5]. Similar to the former, we utilize
platform provided lists of trends to form clusters, contextualize those trending
topics, and arrange them around real-world events.

In this context, Benhardus et al. [7] employ uni- and bigrams in tf-idf space.
Temporal characteristics of trending topics were studied by Li et al. [8], where
topic clusters were tracked over time by comparing topic centroids representing
stories to newly emerging topics. Semantic similarity based on synonyms were
also utilized in the context of trending topic clustering [9]. In this work, we
combine all three approaches together to improve clustering performance within
one day and inbetween multiple days capturing topic shift over time.

3 Approach

This section outlines our approach towards trending topic aggregation and expla-
nation. We first discuss the acquisition of trending topics from social media chan-
nels, followed by the aggregation of trends over different channels (clustering)
and over time (tracking).

Acquisition of Trending Topics and Context Data. We crawl the
top trends from three major online media channels (Twitter, Google, and
1 A demo is available at http://multimedia-opinion-mining.appspot.com.

http://multimedia-opinion-mining.appspot.com


164 S. Fuchs et al.

Wikipedia), covering different aspects of people’s communication needs, search
patterns, and information demand. We retrieve daily ranked lists of popular
terms from 10 different sources: 5 Google channels (Search and News for USA
and Germany as well as the “Trends”s feed), 3 Twitter channels (daily trends
for USA and Germany as well as the “Daily Trends” feed), and two Wikipedia
channels (popular articles in English or German). For each feed we retrieve 10–
20 ranked topics (110 topics per day). In total our dataset covers the observation
period Feb 02 2016–Mar 09 2016.

Given a trending topic title (such as “super bowl”), we retrieve news articles
as a context. As a news source, we use the Bing Search API2, which can be
queried for news from certain regions and dates. Each retrieved article contains
a headline (consisting of about 5–10 terms) and a short description (consisting of
about 20–30 terms). We obtain about 44 articles per trending topic on average,
after removing duplicates from Bing’s result list. We preprocess each article by
lowercasing, removing non-alphabetic characters (incl. numbers), tokenization,
stopword removal, and stemming (using the Porter stemmer for English and the
Snowball stemmer for German).

Clustering. We first focus on aggregating trending topics from a single day.
Hereby, a trending topic refers to a short 1–3 words title (such as “super bowl”
or “oscars 2016”). From several social media channels, we obtain a set of such
trending topics that may contain duplicates, near-duplicates (such as “super
bowl” vs. “super bowl L”) or different but semantically related topics (such as
“super bowl L” vs. “broncos”). Our goal is to cluster the set of trending topics
into semantically coherent groups. Thereby, two topics should be assigned to
the same cluster if they refer to the same specific news event, not if they bare
some general semantic resemblance (e.g., both covering sports). We refer to the
resulting clusters as trends.

We discuss two approaches. The first considers two topics similar if their
news context contains similar terms. The other exploits a structured knowledge
representation, i.e. topics are considered similar if they are closely connected in
the DBPedia knowledge graph.

The first approach collects terms for each trending topic from all its news
articles (using both the title and description, both preprocessed) and derives a
bag-of-words representation. Each trending topic (or document) is represented by
a tf-idf vector (we use all terms appearing at least once on the day in question).
To estimate a similarity between two trending topics, the cosine measure is
applied to their tf-idf vectors. Based on these similarity values, the trending
topics are clustered using an agglomerative clustering with single linkage. The
resulting dendrogram is transformed into a set of flat clusters by cutting it off
at a threshold similarity α.

Our second approach is based on linked data: As an alternative to unstruc-
tured text (which comes with well-known caveats such as context dependence,
synonymy and polysemy, etc.), useful indicators for topic relatedness can be

2 https://datamarket.azure.com/dataset/bing/search.

https://datamarket.azure.com/dataset/bing/search
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derived from large-scale knowledge graphs: For example, in DBPedia3 the Oscar
nominees “leonardo dicaprio” and “mark ruffalo” share the (dct:subject)
links 21th-century American male actors or American male film actors.
Our approach replaces the news statistics similarity with one derived from the
DBPedia knowledge graph. Given two trending topics t1, t2, we use SPARQL
queries with the bif:contains operator to conduct a full text search for both
topics’ titles. We obtain two sets of entry nodes in the DBPedia knowledge graph
and collect the nodes’ subjects in two sets S(t1) and S(t2). Our similarity mea-
sures the normalized overlap of those subjects:

sim(t1, t2) :=
1
2

·
(

#
(
S(t1) ∩ S(t2)

)

#S(t1) + 1
+

#
(
S(t1) ∩ S(t2)

)

#S(t2) + 1

)

. (1)

The above normalization is used because the distribution of subjects may be
highly imbalanced between different nodes: Some nodes like “super bowl” come
with 378 subjects, while others like “oscars” display only 8 subjects. Given this
similarity measure, we apply the same single-linkage agglomerative clustering as
with the text statistics approach and cut-off at a threshold α.

Tracking. While the above approach focuses on grouping topics within a single
day, trending topics in practice keep emerging and evolving over time. New
(clusters of) trending topics need to be matched to existing trends, which may
shift as new events occur (think of “paris attacks” on Nov. 13 2015, leading to
a terrorist hunt in “brussels” a few days later).

Our approach is based on the news statistics representation. We represent
each cluster of trending topics (or trend) by a centroid in term space. When
a new trend T is initialized as a cluster of trending topics, we compute the
centroid by averaging the trending topics’ tf-idf representations. As time pro-
gresses, new topics t1, ..., tN emerge and need to be matched against existing
trends T1, T2, ..., TK . To do so, we compute each trending topic’s tf-idf similar-
ity to each trend, cos(vtf−idf (t), vtf−idf (T )). We assign the topic to the closest
trend if at least a minimum similarity γ is measured. The remaining new topics
– which seem to fit no existing trend – are clustered using the above approach.
The resulting clusters are added to the set of current trends. We further assume
trends to expire when not matched to any trending topics for a subsequent period
of days.

As a set of new trending topics T ′ is assigned to a trend T , we expect the
trend to evolve over time as new events and developments are added. Therefore,
we adapt T’s centroid using exponential decay, i.e. we update:

vtf−idf (T ) := (1 − λ) · vtf−idf (T ) + λ · 1
#T ′

∑

t∈T ′
vtf−idf (t)

3 The Live endpoint (http://live.dbpedia.org/sparql) which syncs with Wikipedia
continuously.

http://live.dbpedia.org/sparql
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4 Experiments

We evaluated topic clustering and tracking on a set of trending topics acquired
between Feb. 02 2016–Mar. 09 2016 for the regions “US” and Germany (“DE”)
from Google, Wikipedia and Twitter. A human expert grouped each day’s topics
to clusters. Two topics were assigned to the same cluster when related to the
same event: For example, “Hillary Clinton” and “Donald Trump” (both pres-
idential candidates in the US pre-elections 2016) would be considered similar,
but not “Hillary Clinton” and “Angela Merkel” (both famous female politicians
and both subject to current news, but due to different events). The resulting
dataset contains 805 trending topics grouped into 530 clusters, with 4, 749 (DE)
and 5, 760 (US) topic pair annotations. As an evaluation measure, we use the
well-known F1-score derived from precision and recall over all topic pairs’ cluster
annotations.

Clustering. We first evaluate the text statistics approach from Sect. 3. News
articles were acquired from Bing, preprocessed and represented by tf-idf vec-
tors (whereas the inverse document frequency was computed over all articles
of a day). Figure 1 illustrates a sample result of clustering from Feb 29, with a
major cluster covering the Oscar awards. We compared several approaches and
baselines:

– Our Approach: The above approach based on news statistics using tf-idf
representations. α was set to 0.03 for German and 0.05 for US topics (we
found accuracy to be quite stable within a range of [0.03, 0.05]).

– DBPedia: The Linked Data approach from Sect. 3, deriving a trending topic
similarity from the DBPedia knowledge graph. Like for the tf-idf representa-
tion, the α parameter was derived using grid search.

– String Matching: Our prior work [1] conducted a simple fuzzy string match-
ing between the topic titles: Given two trending topic titles t1 and t2, we
compute their Levenshtein distance distL(t1, t2) and define the similarity
as sim(t1, t2) := 1 − distL(t1, t2)/max(length(t1), length(t2)) This similar-
ity measure is used in standard single-linkage clustering (α optimized via grid
search).

– Article Matching: Obviously, our approach relies heavily on the quality of
its news context. In our evaluation, we acquire such context from Bing, whose
internal statistical models and optimizations are not publicly revealed. To
evaluate the extent to which our approaches’ success is due to the “black box”
Bing, we compare our approach to a baseline that defines semantic relatedness
based not on article content but article identity. Let A(t) be the set of articles
retrieved by our news source for a trending topic t. Then we employ the
similarity measure from Eq. 1, only measuring the overlap in Bing articles
instead of DBPedia subjects. Accordingly, two topics are considered “similar”
if Bing retrieves the same articles for them. We use standard single-linkage
clustering (α determined via grid search).
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Fig. 2. Left: results of topic clustering for different approaches. Right: results of track-
ing, comparing our approach vs. the ‘article matching’ baseline.

– Word Matching: Finally, we use another baseline comparing news titles: For
each topic, we collect all terms from all its articles’ titles. Then we measure
the overlap in those terms as a similarity between topics (again, using Eq. 1
but replacing DBPedia subjects with title terms).

We observe (Fig. 2) that our approach yields the highest accuracy, outper-
forming string matching significantly (by about 30 % on average). A detailed
inspection revealed that most remaining errors occurred in cases where a Bing
news search yielded no context articles (“unix-shell”, “hilbert-transformation”,
or “mansplaining”, which are all not in the core focus of “regular” news arti-
cles). The DBPedia approach worked well in some cases. For example, the topics
“leonardo dicaprio” (with 151 subjects in total) and “mark ruffalo” (with 120 sub-
jects in total) share 22 subjects, which leads to a relatively high similarity of about
16 %. In contrast, “bridge of spies” (with 26 subjects in total) and “jodie sweetin”
(with 39 subjects in total) share only 1 common subject and are not grouped.
Overall, the DBPedia similarity is outperformed significantly by all news-based
approaches. This is because (1) we found the acquisition of suitable DBPedia entry
nodes by text tricky (think of topics like “why is there a leap day”), and (2) DBPe-
dia links express a general semantic relatedness not necessarily a relatedness to
current events (think of “Hillary Clinton” vs. “Angela Merkel”).

The article matching baseline yields a high accuracy, which indicates that our
approach heavily depends on the quality of Bing’s news context. However, we also
see that adding a statistical text modelling by tf-idf on top improves performance
further (by about 4 %). Finally, we observe that the word matching baseline per-
forms well too, but that modelling context in its entirety via tf-idf outperforms a
mere keyword matching (consider a topic like “super bowl” where tf-idf can exploit
contextual terms like “inning” or “stadium” for a more accurate matching).

We also compare the tracking accuracy of our approach (α adopted from
Sect. 4, λ set to 0.5) with the Bing article matching baseline. When progressing
to the next day, we replace a trend’s Bing articles with all its articles from the
last day it has been observed. The similarity threshold γ is adopted from the
clustering experiment.
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For any day t in the observation period, we track trending topics from day t to
day t+dt and compare our tracking results to manual annotations over all pairs
of trending topics between the two days. Figure 2 displays the F1-score, averaged
over all trending topics and all start days t and grouped by the difference dt. The
resulting plot indicates the average tracking accuracy dt days into the future. We
observe that our approach yields an accurate tracking and outperforms article
matching significantly.

5 Conclusion

We have presented an approach towards trending topic aggregation based on
news context modeling and text mining. The approach was demonstrated to
yield accurate clusters (with an F1-score of > 90 %) and outperform several
baselines that use the DBPedia knowledge graph, article identity, or plain string
matching on topic titles.

Our remaining key challenge – and basis of future work – is the integration of
other appropriate context sources. Trending topics are diverse, covering anything
that causes spikes in user interest, and we found some of these spikes to be poorly
covered by news, such as “unix-shell” or “mansplaining”. Other issues might be
the exploitation of additional information sources such as topic popularity for
an improved tracking or prediction [1].
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Abstract. Collection and maintenance of biodiversity data is in need
for automation. We present first results of an automated and model-free
approach to the species identification from herbarium specimens kept in
herbaria worldwide. Methodologically, our approach relies on standard
methods for the detection and description of so-called interest points and
their classification into species-characteristic categories using standard
supervised learning tools. To keep the approach model-free on the one
hand but also offer opportunities for species identification even in very
challenging cases on the other hand, we allow to induce specific knowl-
edge about important visual cues by using concepts of active learning on
demand. First encouraging results on selected fern species show recogni-
tion accuracies between 94 % and 100 %.

1 Introduction

The automated collection and integration of botanical observation data is crucial
for the sustainable conservation and documentation of biodiversity. Moreover,
the fields of systematics, evolutionary biology and ecology would generally bene-
fit from the greater throughput and repeatability achieved by such automation.
The classical representation of a conserved botanical sample is the herbarium
specimen - dried plants or plant parts mounted on herbarium sheets and stored
and organized in herbaria. Millions of these specimens have already been digi-
tized and are available online as digital images. However, these images are highly
underutilized, because analytic tools for the extraction and analysis of morpho-
logical data are lagging behind, while techniques for the acquisition and analysis
of molecular data have been universally adopted. Most image-based identifica-
tion methods proposed in the past were so far based on leaf images (e.g. in
Backes et al., 2009 [2], Belhumeur et al., 2008 [3], Goëau et al., 2011a [5], 2011b
[6]). Kadir et al. [9] give a comprehensive survey on methods to identify plants
by classifying their leaves. Only few approaches focused on flower’s images as in
Nilsback and Zisserman (2008) [13]. But while leaves are far from being the only
c© Springer International Publishing AG 2016
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discriminant visual key for species identification, they have the advantage to be
easily observed, captured and described due to their shape and size.

These methods are model-based, i.e., they are customised to the specific
application or specific plant parts, e.g., leaves. Model-free approaches do not
employ application-specific knowledge and therefore promise a higher degree of
generalisation onto different plants and plant parts. One approach to model-
free methods in computer vision uses so-called interest points (IPs) and their
descriptors. These IP descriptors are based on the image gradient information
within their local pixel neighbourhood. Informally, IPs are showing high contrast
in their local neighbourhood thereby identifying object edges or object corners.
A comprehensive survey and performance evaluation of keypoint descriptors is
given by Mikolajczyk and Schmid [11]. In an interdisciplinary project between
biologists of Münster University and computer scientists of Bonn University,
we are working on an automatic approach to species identification of plants
conserved in herbarium specimens. Due to the huge variety, we are aiming for a
model-free approach to species identification.

2 A Model-Free Approach to Identification of Species
from Herbaium Specimens

The image data used are scanned herbarium specimens of ferns depicting dried
plants or plant parts (cf. Fig. 1). The example scans of herbarium specimens used
in this contribution are from the collection of the Muséum national d’histoire
naturelle in Paris [12]. Specimens of fern represent a very difficult application
example due to different sizes, orientations and (partially filigree) shapes. Addi-
tionally, the plant parts are bended in different ways. For finding IPs in multiple
levels of detail, we employ the Scale Invariant Feature Transform (SIFT) intro-
duced by David Lowe in 2004 [10]. SIFT detects IPs and describes them with

(a) (b) (c)

Fig. 1. Three herbarium specimens of fern species (a) Asplenium scolopendrium
(P01515633), (b) Asplenium andantium-nigrum (P00636536), (c) Asplenium ceterach
(P01560771).
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Fig. 2. Six fern species used in our experiments. From left to right: (a) A. adiantum-
nigrum, (b) A. ceterach, (c) A. ruta-muraria, (d) A. scolopendrium, (e) A. trichomanes,
(f) A. viride.

a gradient magnitude and direction based descriptor. Furthermore, SIFT has
shown to perform superior in a performance evaluation of IP descriptors by
Mikolajczyk and Schmid [11]. The SIFT-based descriptor vectors of the IPs are
used within a supervised classification approach to species identification from
the herbarium specimens using a Support Vector Machine (SVM) approach.

We used scans of four different fern species resulting in four classes for SVM
learning: Class 1 = Asplenium adiantum-nigrum, Class 2 = Asplenium ceterach,
Class 3 = Asplenium ruta-muraria, and Class 4 = Asplenium scolopendrium.
For training and parameter optimization of the SVM, we used 18 scans per
species resulting in our evaluation on 4 species in 72 scans. For the evaluation,
we operated a leave-one-out cross-validation. This first approach shows very
promising identification results, i.e., classification accuracies of at least 96 %
up to 100 %. It must be stressed that these identification results have been
obtained without any explicit modelling and customization.

But we still have not reached the end of the road. As Fig. 2 shows, the four
fern species used in that approach so far (A. adiantum-nigrum, A. ceterach, A.
ruta-muraria, A. scolopendrium (cf. Fig. 2, parts a, b, c and d)) show a sufficient
amount of specific characteristic visual features to identify these species with the
given accuracies. Adding in our evaluation two additional fern species, i.e., A.

Table 1. Results of the cross-validation for six classes

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

True positive 18 17 16 18 12 10

True negative 83 90 85 90 88 87

False positive 7 0 5 0 2 3

False negative 0 1 2 0 6 8

Recall 1, 00 0, 94 0, 89 1, 00 0, 67 0, 56

Precision 0, 72 1, 00 0, 76 1, 00 0, 86 0, 77

Accuracy 0, 94 0, 99 0, 94 1, 00 0, 93 0, 90
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trichomanes (Class 5) and A. viride (Class 6), we see that these two additionally
fern species are very similar with respect to their visual appearance (cf. Fig. 2,
parts e and f). In fact, our experiments on this enlarged data set show less
successful classification results with classification accuracies of only 90 % up to
100 % with a data set of 18 scans per species (cf. Table 1).

To meet the challenge of very similar and hard to separate species on the one
hand, but to keep our approach model-free on the other hand, we add concepts
of active learning to our approach.

3 A Model-Free Approach to Species Identification
Including Concepts of Active Learning

To discriminate very similar species, we propose a hierarchical approach to our
project of species identification. In the initial level, our pure model-free approach
summarized in Sect. 2 is used to identify as many species as possible. In following
levels, we interactively query the human expert to define image templates of sig-
nificant and characteristic plant features of her choice for such species showing
insufficient identification accuracies in the initial level. Since the user is able to
decide, which characteristic part to select, the approach is still model-free. We
implemented this approach for species identification of ferns within a two level
hierarchy. We will now explain the complete processing chain of this implemen-
tation that is summarized in Fig. 3. The input is formed by images of plants, i.e.,
scans of the herbarium specimens that are preprocessed by contrast stretching
and downsampling to a fixed resolution to have keypoints in comparable detail
levels for each scan. In the first step of our processing chain, we use the SIFT
detector to detect IPs in the scans (1). For these IPs, we derive the SIFT descrip-
tors (2). The SIFT descriptors are numeric vectors used as training and test data
for the SVM classification (3). For four of our six species A. adiantum-nigrum,
A. ceterach, A. ruta-muraria and A. scolopendrium, we have good recognition
accuracies. So, scans of these species already are identified after step 3. For A.
trichomanes and A. viride, the recognition accuracies of this step are not suffi-
cient. Therefore we proceed with step 4 by using a template matching approach
to discriminate these very similar species (4). Image templates depict small, but
very characteristic plant parts like lobes in our implementation and therefore
serve to select species-characteristic regions. The expert user is asked to select
interactively these species-characteristic regions in an easy understandable and
operable way by drawing bounding boxes around these regions. The generated
templates are then matched with the detected IPs (5) and described by a well
established shape based image descriptor (6), namely the HOG descriptor [4].
Now these HOG descriptors are used in a SVM-based classification to identify the
very similar species of A. trichomanes and A. viride (7). For the active learning
approach in step 4, we employ the average margin in a threshold-based minimum
marginal hyperplane strategy for SVMs (cf. Settles [17], Tong and Koller [18]).
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Fig. 3. The processing chain of the two-level approach to species identification from
herbarium specimens of fern species.

4 Evaluation

We implemented the complete processing chain in Java as a plug-in for ImageJ
[15]. For the SIFT method, we employ an implementation of Saalfeld [16]. For
the SVM, we chose SVMlight (cf. [7,8]). For the HOG descriptor, we use the
implementation of Anzivino and Spampani [1] and for the Template matching,
we utilise an implementation of O’Dell [14].

We proceed with the scans of the six mentioned fern species (cf. Fig. 2) as
described in Sect. 3 . Low identification rates are predicted by a threshold-based
minimum marginal hyperplane strategy for SVMs for the two species A. tri-
chomanes and A. viride. Therefore, in this evaluation templates of their lobes
are selected. Using these templates, such SIFT points are identified that are posi-
tioned on such lobes. Their HOG descriptors are now used in the second level of
our identification approach to identify scans of the species A. trichomanes and
A. viride again by using an SVM.

For the evaluation, we operate a leave-one-out cross-validation on a separate
test data set of so far unseen for the SVM. The results are shown in Table 2. We
now see classification accuracies of 96 % and 94 % for the difficult to separate
species A. trichomanes and A. viride, respectively, compared to the results given
in Table 1 that show identification accuracies of only 93 % and 90 %. Again,
we stress that our complete approach is in general still model-free but allows
to incorporate application-specific models in terms of templates on demand by
using concepts of active learning.
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Table 2. Results of the cross validation for six classes (cf. Sect. 4).

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

True positive 18 17 16 18 14 12

True negative 83 90 85 90 90 89

False positive 7 0 5 0 0 1

False negative 0 1 2 0 4 6

Recall 1, 00 0, 94 0, 89 1, 00 0, 78 0, 67

Precision 0, 72 1, 00 0, 76 1, 00 1, 00 0, 92

Accuracy 0, 94 0, 99 0, 94 1, 00 0, 96 0, 94

5 Conclusion and Future Work

In this contribution, we proposed a model-free approach to the image-based
identification of plant species. Our processing chain shows two identification
levels.

In the first level, we combine a standard approach (SIFT) to the detection
and description of interest points (IPs) with a standard approach to supervised
learning (SVM) to identify plant species. For species that can be identified in this
first level with only low identification accuracy, we employ a concept of active
learning by interactively querying the expert user for domain-specific models in
terms of templates. The templates specify meaningful plant parts like lobes and
are used to select those interest points positioned at this plant parts within a
second identification level. In the second level, a shape descriptor (HOG) is used
for an SVM-based identification for the difficult to separate species.

We employed this approach to scans of herbarium specimens from fern species
that show challenging variations with respect to their visual appearance and are
difficult to identify. This first evaluation shows encouraging results in terms
of classification accuracies between 94 % and 100 %. By applying concepts of
active learning, we advocate that our approach is still free of predefined models.
Domain-specific models are only generated on demand by interactively querying
the expert user for domain-specific models in terms of templates. These tem-
plates can be selected by the user in an easy understandable and operable way
by drawing bounding boxes around characteristic plant parts.

Based on these promising results, we will investigate additional feature
descriptors in both levels of our image-based approach to species identification
from herbarium specimens. As suggested by Mikolajczyk and Schmid [11] we will
compare for the first level the SIFT approach for IP description with its GLOH
variant that uses a larger neighbourhood region to describe an IP compared to
SIFT, but also a reduction of dimensions by PCA yielding higher computational
costs. For the shape-based description of the IP selected by the templates in the
second level, we want to investigate the combination of the HOG descriptor with
the LBP descriptor since Wang et al. [19] reported that this combination of LBP
with HOG improves the detection performance considerably on some datasets.
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We will also investigate the generalisation capacity of our approach by apply-
ing it to herbarium specimens of other plant groups. Thereby, our hierarchical
approach that shows currently two processing levels, could easily be extended
by adding more levels that offer the inclusion of taxon-specific knowledge and
methods on demand using again concepts of active learning.
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Birnbaum, P., Mouysset, E., Picard, M.: The imageclef 2011 plant images classi
cation task. In: ImageCLEF 2011 (2011)
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{lange,moeller}@ifis.uni-luebeck.de

2 Hamburg University of Technology, Hamburg, Germany
felix.kuhr@tuhh.de

Abstract. Workflow mining is the task of automatically detecting work-
flows from a set of event logs. We argue that network traffic can serve as
a set of event logs and, thereby, as input for workflow mining. Networks
produce large amounts of network traffic and we are able to extract
sequences of workflow events by applying data mining techniques. We
come to this conclusion due to the following observation: Network traf-
fic consists of network packets, which are exchanged between network
devices in order to share information to fulfill a common task. This com-
mon task corresponds to a workflow event and, when observed over time,
we are able to record sequences of workflow events and model workflows
as Hidden Markov models (HMM). Sequences of workflow events are
caused by network dependencies, which force distributed network devices
to interact. To automatically derive workflows based on network traffic,
we propose a methodology based on network service dependency mining.

Keywords: Workflow mining · Hidden Markov model · Network depen-
dency analysis

1 Introduction

Workflow and business process models have recently gained a lot of traction in
the cyber security community. This is due to the fact that they can be used
as a foundation for operational impact assessment within a security information
and event management system, or as a foundation for process-aware information
systems. Workflows are often not documented and there have been reoccurring
issues [16] with manually designed workflows. It is a very time consuming process
to design hand-made workflow models and, thereby, expensive. Hand-made work-
flows are idealized descriptions of the process at hand and often describe more
what should be done, than the actual process. Additionally, with a hand-made
workflow it difficult to detect when concept drifts have occurred and the work-
flow model needs to be updated. Hence, the data mining community has paid a
lot of attention to the automated acquisition of workflow models [5,13,14,17,18].
Based on event logs, workflow mining methods automatically deduce sequences
of workflow events.
c© Springer International Publishing AG 2016
G. Friedrich et al. (Eds.): KI 2016, LNAI 9904, pp. 177–184, 2016.
DOI: 10.1007/978-3-319-46073-4 17
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Currently, workflow mining is dependent on event logs and research in this
domain can be divided into three topics: discovery, conformance and enhance-
ment of workflows [15]. As we focus on workflow discovery in the context of this
work, we list workflow discovery techniques in the following. A lot of workflow
mining methods [5,13,14,17,18] rely on Petri nets, due to their similarities to
workflow models established in business science. Other workflow mining meth-
ods [2,11] rely on HMMs, which are statistical models. Unlike Petri nets, HMMs
are able to model properties such as the transition probability between workflow
events. However, Petri nets can be efficiently mapped to HMMs [9,10]. Event
logs are the basis for all previously listed techniques and are supposed to contain
workflow data. Obtaining workflow information is not as easy and often exper-
iments are conducted based on synthetic data sets [11]. A common limitation
that all previously listed techniques have is that they rely on event logs contain-
ing workflow data, a data source that is hard to come by in every day enterprise
networks.

Network traffic contains traces of communicating network services, which
interact to fulfill a higher mission. This communication leads to indirect depen-
dencies, which are clues for a data-communication networks workflow. To achieve
the goal of mining workflows based on network traffic, we rely on network ser-
vice dependency discovery to identify workflow events. This is why we rely on
an automatic network service dependency methodology called Mission Oriented
Network Analysis (MONA) [7]. MONA was compared to three state of the art
network service dependency discovery methodologies: NSDMiner [8], Sherlock [1]
and Orion [3]. MONA was compared via F-measures to all these state of the art
methodologies and was shown to have a better performance.

2 Network Service Dependency Discovery

In the following, we will only use the term workflow, however it should be
noted that earlier publications use the terms workflow and business process
models interchangeably [5]. Companies, organizations and enterprises have a
workflow, which translates into network activities within their data communica-
tion network. Workflows often cause reoccuring network activity patterns. We
understand these network activity patterns as workflows and network service
dependency analysis has the purpose of detecting workflow events. and we rely
on an automatic network service dependency methodology called Mission Ori-
ented Network Analysis (MONA) [7]. In the following, we thus rely on the same
network model introduced by MONA.

2.1 Indirect Dependencies

In the context of this work, we introduce network dependency analysis as a
basis for workflow mining. For this purpose, indirect dependencies correspond to
workflow events. Similarly to previous work, we distinguish remote-remote (RR)
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Fig. 1. Example for indirect dependencies.

dependencies and local-remote (LR) dependencies [3]. Examples for both depen-
dency types are shown in Fig. 1. For a remote-remote (RR) dependency, first
one remote host must be contacted before issuing a request to another remote
host. Figure 1a shows an RR dependency ISDEPRR and Fig. 1b shows and LR
dependency ISDEPLR. The set of all RR and LR dependencies is defined as
ISDEP = {ISDEPLR, ISDEPRR}. Following MONA [7], normalized cross corre-
lation provides us with a heuristic for learning indirect dependencies ISDEP . An
indirect dependency event ιi = {δ(sj

i , s
l
k), δ(sj

m, sn
o )} is based on direct depen-

dency events δ. The set of all indirect dependencies ISDEP translates into a
set of indirect dependency events Ω = {ι0, . . . , ιn}. MONA creates probabili-
ties �(τdelay) ∈ P� ranging between �(τdelay) = [0, . . . , 1] and provides a set of
observed workflow events F ⊆ Ω.
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Obviously, there is a level of uncertainty associated with detected indirect depen-
dencies. By understanding indirect dependencies as indirect dependency events,
we are able model the probability of uncertain event by relying on Kolmogorov
axioms of probability theory [6]. An example for this probability space is illus-
trated in Fig. 1a and contains a set of workflow events F ⊆ Ω, showing an
RR dependency and consists of a client dc sending an HTTP request to a
load balancing server dlbs. The load balancing server dlbs then sends an HTTP
request to a webserver dws. The RR dependency, shown in Fig. 1a, can be writ-
ten as ι01

(
δ0(sc

∗, s
lbs
80 ), δ1(slbs

∗ , sws
80 )

)
. Figure 1b shows an LR dependency, where

the client dc sends a request to a DNS server dDNS . Afterwards, the client dc

sends a load balancing server dlbs. The LR dependency, shown in Fig. 1b, can be
written as ι23

(
δ2(sc

∗, s
DNS
53 ), δ3(sc

∗, s
lbs
80 )

)
.

3 Workflow Mining

Normalized cross correlation provides an heuristic approach for estimating work-
flow events and the result is described by a probability space (Ω,F, P�) described
in Sect. 2. Based on the probability space, we define the problem of mining work-
flows as detecting the most likely sequence of hidden states. This is a problem
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often associated with HMMs. Using HMMs, it is possible to identify the proba-
bility whether a specific workflow is in place or not. We are interested in the most
likely sequence of workflows in a given communication data network. The most
likely sequence of hidden states can be calculated using the dynamic program-
ming Viterbi algorithm [4]. An HMM λ = (aij , eιkl

, π) representing a workflow
is defined as follows:

– n states Ω = {ι0, . . . , ιn−1},
– an alphabet Δ = {δ0, . . . , δm−1} of m symbols,
– a transition probability matrix aij = ιi × ιj ,
– emission probabilities eιkl

(δl) representing the probability of a state ιkl emit-
ting symbol δl and

– initial state distribution vector π = πo.

We refer to a sequence of observed symbols as O = δ0, δ1, δ2, . . . and a sequence
of states as Q = ι0, ι1, ι2, . . . . Based on tumbling windows wti ∈ W

W = wt0 , . . . , wti , . . . , wtn−1 (2)

with a shift Δt, we derive indirect dependency events based on observed direct
dependencies. Direct dependencies imply that network packets are exchanged
between two network services. Normalized cross correlation is a heuristic app-
roach, hence observed workflow events can be untrue and existing indirect depen-
dencies might not be detected. However, repeatedly reoccurring workflow events
are very likely to be actual workflow events.

The parameters of aij and eιkl
(δl) the HMM λ = (aij , eιkl

, π) can be learned
over multiple tumbling windows wti ∈ W and ti ∈ [t0, . . . , tp] by:

aij =
Aij

∑
q={0,...,p} Aiq

, (3)

where Aij is the number of observed state transitions from state ιi to ιj over p
tumbling windows and it is normalized over all of ιi’s outgoing state transitions.
An emission probability eιkl

(δl) is derived as

eιkl
(δl) =

Eιkl
(δl)

∑′
∀ιxl,δl⊂ιxl

Eιxl
(δl)

, (4)

where Eιkl
(δl) is the number of times that state ιkl is observed, when symbol

δl is emitted. This is normalized over the number of occurances of all states
ιxl ⊂ δl, ιxl ∈ F , which also emit symbol δl. By observed network traffic within an
monitored network traffic, this HMM allows us to automatically derive workflows
based on network service dependency analysis. This introduced methodology is
applied to a real-life network and the results of this experimental evaluation are
shown in the next section.
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4 Experimental Evaluation

The disaster recovery site of an energy distribution network, provided an Italian
water and energy distribution company, was available for non-invasive experi-
mentation. We integrate our framework into this test network to test the ability
of our newly introduced workflow mining approach to rediscover workflows based
on network traffic. The implementation of our introduced methodology works
online and continuously analysis network traffic, which is mirrored by routers
and switches in the test environment. Based on this set-up, we are able to ana-
lyze detected network service dependencies, which constitute workflow events
and evaluate, whether our novel workflow mining approach is able to rediscover
workflows. Figure 2 shows all network service dependencies detected by MONA.
Based on Supervisory Control and Data Acquisition (SCADA) protocols, remote
terminal units TTY-T116 to TTY-T164 in substations of medium voltage and
high voltage, acquire data from electrical devices (e.g., programmable logic

Fig. 2. Network service dependency analysis in an energy distribution network.
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controllers, sensors, etc.), and send them via front end servers mferp1, mferp2
to the supervisory scada servers muel1 and muel2 of the power grids main office.
These network service dependencies were classified as complete and correctly
identified by network operators.

Figure 3 shows an excerpt of workflows derived based on network service
dependencies. These workflows are plotted in BPMN 2.0 [12]. To point out work-
flows spanning multiple subnetworks, we model subnetworks as swimlanes. Our
experimental analysis consists of comparing automatically derived workflows to
workflows provided by network operators beforehand. Based on this analysis,
we conclude whether our introduced online workflow mining approach is able to
rediscover workflows. This experimental evaluation showed that our introduced
workflow mining approach is able to rediscover workflows based on network
traffic.

Fig. 3. Excerpt of workflows derived from network traffic in an energy distribution
network.
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5 Conclusion

We introduced an approach to mine workflows online, based on network traffic
via network service dependency discovery. To the best of our knowledge this
is the first workflow mining approach, which is able do deduce a HMM based
workflow model by analyzing network traffic. We integrate this online workflow
mining approach into the data-communication network of an energy distribution
network. In the context of our experimental evaluation, we came to the conclu-
sion that network operators have a high level understanding of workflows in
their monitored network. However, they lack a detailed understanding on what
applications and network services are involved. This was generally due to this
network relying heavily on third party software that are often also updated and
maintained by the third party. Thus, we concluded that deriving manual work-
flow models is costly and requires specialist know how. Luckily, network traffic
based workflow mining support network operators in understanding workflows
in their monitored network on application layer level.

Acknowledgments. This work was partly supported by the Seventh Framework
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grated research project (GA 610416).
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Abstract. Despite ample advantages of model-based diagnosis, in prac-
tice its use has been somehow limited to proof-of-concept prototypes.
Some reasons behind this observation are that the required modeling
step is resource consuming, and also that this step requires additional
training. In order to overcome these problems, we suggest to use mod-
eling languages like Modelica that are already established in academia
and industry for describing cyber-physical systems as basis for deriving
logic based models. Together with observations about the modeled sys-
tem, those models can then be used by an abductive diagnosis engine
for deriving the root causes for detected defects. The idea behind our
approach is to introduce fault models for the components written in
Modelica, and to use the available simulation environment to determine
behavioral deviations to the expected outcome of a fault free model. The
introduced fault models and gained information about the resulting devi-
ations can be directly mapped to horn clauses to be used for diagnosis.

1 Introduction

Formalizing and automating diagnosis, i.e., the identification of root causes for
observed, but unwanted or unexpected effects, are tasks that have a long tra-
dition in Artificial Intelligence. Based on experience gained from classical rule-
based expert systems, Davis [4], and later on Reiter [13] as well as De Kleer
and Williams [7] introduced the concept of model-based diagnosis (MBD). With
MBD the idea is to use a sytem model for localizing faulty components in the
actual system directly from its model and some observations. Due to its flex-
ibility, this “reasoning from first principles” is very appealing. The only thing
that we have to provide is a system’s model, ideally comprised of interconnected
components. When using such component-connection models, changes in the
system can be easily incorporated in the model, thus making also a system’s
diagnosis much more convenient and flexible since changes are kept local. Due
to these advantages, one would expect a high adoption of model-based diagnosis
in practice. Indeed, many prototypical implementations have been proposed and
numerous case studies have been published, all showing that model-based diag-
nosis can be used in practice, see, e.g., [10,12,14,16]. Unfortunately, however,
the current use of model-based diagnosis methods and techniques in practice is
rather limited.
c© Springer International Publishing AG 2016
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There are several reasons that lead to this observation. Some major issues
are connected to the fact that, indeed, modeling a system has turned out not
to be that easy, if we are not lucky enough that the “system” itself provides
a model, like for behavioral diagnosis of specifications [11]. Moreover, modeling
requires tools that have to be integrated into the development process, which
often requires us to change this process. Hence, there is a need for tools and
techniques that (1) make modeling more easy, and (2) seamlessly integrate into a
development process. In this paper, we contribute to these goals, and introduce a
method that makes use of the modeling language Modelica [6]. Modelica is used
in academia and industry for modeling systems as complex as cyber-physical
ones, and we show in this paper how to extract models via Modelica that then
can be used for model-based reasoning. In contrast to classical consistency-based
diagnosis, e.g., [13], we suggest to use abductive diagnosis [2,3]. The proposed
approach allows one for automating the modeling step and thus for an easy
integration into any existing development process.

In [1], the authors introduced a methodology of how to use abductive diag-
nosis in practice. This work relies on earlier work [17] where Wotawa explained
the use of tables comprising information about component fault modes and their
effects for abductive diagnosis. In our paper, we rely on these previous research,
but extend it such that we are able to extract abductive models from Modelica
programs directly, without the need of generating fault-effect tables manually.
For this article to be self-contained, we briefly discuss the definitions of abductive
diagnosis from Friedrich et al. [5] first.

Definition 1 (PHCAP). Given a knowledge base (A,Hyp,Th), where A ⊆
PROPS denotes a set of propositional variables, Hyp ⊆ A a set of hypotheses,
and Th ⊆ HC a set of horn clause sentences over A, and a set of observations
Obs ⊆ A, the tuple (A,Hyp,Th,Obs) forms a propositional horn clause abduction
problem (PHCAP).

Given a PHCAP and a set of concrete observations, we are interested in
finding the reason for the observations, i.e., the diagnosis or solution of a PHCAP.

Definition 2 (Diagnosis; Solution of a PHCAP). Given a PHCAP
(A,Hyp, Th,Obs), a set Δ ⊆ Hyp is a solution if and only if Δ ∪ Th |= Obs
and Δ∪Th �|= ⊥. A solution Δ is parsimonious or minimal if and only if no set
Δ′ ⊂ Δ is a solution.

In Definition 2, diagnoses need not be minimal or parsimonious. In most
practical cases, however, only minimal diagnoses or minimal explanations for
given effects are of interest. Hence, from here on, we assume that all diagnoses
are minimal ones if not specified explicitly.

In the remainder of this paper, we introduce our model generation process,
discuss related research, and finally conclude this paper.
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2 Model Generation Approach

In a nutshell, our approach works as follows: First, we extend the Modelica
program with fault modes for individual components and describe their corre-
sponding behavior. Those modes can then be invoked at any point during sim-
ulation. Second, we enable the individual faults in the Modelica program and
simulate the resulting faulty program versions together with the correct variant
for certain inputs. The fault modes leading to a deviation between the output
behavior are then the causes for the deviations, i.e., the effects. Third, we store
the fault modes together with the corresponding deviations as cause-effect rules
in an abductive knowledge base. These three initial steps lead to the computa-
tion of a knowledge base, where this process can be automated and executed
before deploying the diagnosis system. In the final step we use this knowledge
base together with obtained observations, i.e., deviations and inputs obtained
from the observed system for diagnoses. For computing possible root causes for
the unexpected or unwanted effects we make use of abductive reasoning.

Let us explain our approach using a voltage divider as an example. In Fig. 1,
you can find the schematics of a voltage divider circuit comprising a battery
BAT and two resistors R1, R2. The voltage drops v1 and v2 of resistors R1 and
R2 with respective resistances of 100 Ω and 50 Ω can be computed as follows:
v1 = v2 · r1

r2
. Furthermore, according to Kirchhoff’s circuits’ law, we know that

we have v = v1 + v2, where v is the voltage of the battery BAT. Hence, in our
example, v1 has to be 8 V and v2 4 V, summing up to the 12 V delivered by the
battery.

For obtaining a diagnosis model, we have to introduce fault modes for the
different components written in Modelica. For a resistor’s extended model we
introduce three modes ok, short, and broken as shown in Fig. 1 (the latter mode
only indirectly used for going to the else branch). Here we see that all the modes
have their corresponding behaviors attached. When specifying these behaviors it
is necessary to avoid specifications that do not hold always. For example, there
will never be a current flowing through a broken resistor. However, there might
be a voltage drop. For a resistor that is a short, i.e., that has a value of 0 Ω,
the voltage drop is always 0 V but there might situations (like the one in the
example) where a current flows through it. As suggested, this faulty behavior
is implemented in Modelica. In addition to a resistor’s extended model, we also
introduce an extended Modelica model for batteries delivering 12 V in case of it
working correctly, and 0 V in case of an empty battery.

In total, the set of fault modes for the components COMP = {BAT, R1, R2}
in our example is: FM = {short, broken, empty}. Hence, we call the simulator for
all components and all fault modes (the latters enabled individually). Figure 1
outlines some of the results where the outcomes, i.e., simulation results, for
empty batteries or a short in resistor R2 at time 0.5 s are depicted. In summary,
we obtain the following results for the individual fault modes:

In the table given above, we also state the deviations (or effects e1, e2) of the
individual modes to values v1 and v2, which should be 8 V and 4 V respectively.
What we also see is that the values obtained when simulating our extended
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Component Mode v1 v2 e1 e2

BAT empty 0 0 smaller smaller

R1 short 0 12 smaller larger

R1 broken 12 0 larger smaller

R2 short 12 0 larger smaller

R2 broken 0 12 smaller larger

Modelica program do not necessarily guarantee that we are able to distinguish
between all diagnoses. For example, both, a broken R1 and a short R2 would
produce the same values for v1 and v2.

Using the conversion of tables into abductive diagnosis models from [17], we
obtain the following rules for the knowledge base for our example:

empty(BAT) → smaller(v1) empty(BAT) → smaller(v2)
short(R1) → smaller(v1) short(R1) → larger(v2)
broken(R1) → larger(v1) broken(R1) → smaller(v2)
short(R2) → larger(v1) short(R2) → smaller(v2)

broken(R2) → smaller(v1) broken(R2) → larger(v2)

The hypotheses {empty(BAT), short(R1), broken(R1), short(R2), broken(R2)}
together with propositions {smaller(v1), larger(v1), smaller(v2), larger(v2)}
form the set of propositions, which completes our knowledge base for the volt-
age divider example. Note that in addition, we might also want to specify that
some values cannot occur at the same time. For example, a voltage drop can-
not be larger and smaller at the same time. Such background knowledge can be
added easily to the knowledge base via stating smaller(v1)∧ larger(v1) → ⊥ and
smaller(v2) ∧ larger(v2) → ⊥. Furthermore, any such information can be easily
added automatically to some knowledge base in a similar way.

3 Related Research

Regarding related research, we focus on publications related to Modelica and
model-based diagnosis. In the context of Modelica, we found three main
approaches for diagnosis making use of model-based reasoning as underlying
diagnosis technique.

Lunde [8] discussed the capabilities of the tool RODON that uses an extended
version of the language Modelica for diagnosis. In particular, RODON makes use
of some extensions to Modelica in order to deal with unknown behavior and also
fault models directly. In contrast to this approach, we rely on pure Modelica and
do not require modifications or adaptations.

Minhas and colleagues [9] discussed an approach for diagnosis using Modelica
that is based on fault augmented model extensions. There, the underlying idea
is to introduce fault models into the Modelica models in an automated way.



Using Modelica Programs for Deriving Propositional Horn Clause AP 189

Fig. 1. Voltage divider circuit and its fault modes represented in Modelica.

These fault models are then used to identify a fault for some observations. In
particular, a Bayesian approach is used for comparing the simulation results with
the given observations. In case of a small enough distance between the observed
and simulated data based on a fault model, the corresponding fault model can
be given back as result. Minhas et al.’s work is very close to ours. However, in
our method introduced in this paper, we make all simulations before deployment
of the diagnosis system. Moreover, we assume that the observations are already
provided in a qualitative form, i.e., either as deviations from expected values or
as some qualitative value representing a set of concrete values. Furthermore, we
make use of abduction as logical foundation for diagnosis.

In [15], Sterling et al. introduced a model-based diagnosis approach that is
coupled with Modelica in the following way. For each used basic Modelica com-
ponent model there is a qualitative representation. When using an hierarchical
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model based on the component library, the qualitative component models are
used for diagnosis. The authors also present the application of the proposed tech-
nique to Air Handling Units. Sterling et al.’s work focuses more on an integration
of diagnosis into well established model-based system development processes.
The approach of Sterling et al. is different to ours in the way models are gen-
erated. We obtain the abductive diagnosis model directly from the simulation
whereas in [15] it is assumed that a qualitative representation of component
models already exists.

4 Conclusion

In this paper, we focused on modeling for diagnosis based on abduction. The idea
was to make use of models that are usually written as part of a development
process for verification and validation purposes. In order to allow obtaining an
abductive diagnosis model, we introduce fault modes to be incorporated into
these models. This way, the model can be simulated with disabled or individ-
ually enabled faults, such that we compare the respective values and derive
an abductive knowledge base comprising horn clause rules of the form “causes
implies effects”. In particular, we assume our models to be written in the object-
oriented modeling language Modelica. In the paper, we used a small case study
for explaining the different steps through the process.

The advantage of the introduced method is that we are able to obtain models
requiring an additional overhead only for specifying the incorrect behavior. The
rule extraction process can be automated and thus allows one for an easy inte-
gration of model-based diagnosis into the development process of cyber-physical
systems. There are of course also limitations to the proposed approach. Cur-
rently, we only consider single fault simulation and corresponding single fault
diagnoses. However, this limitation can be lifted easily, if we consider a combi-
nation of fault modes for multiple components when simulating the Modelica
model and creating the knowledge base.

Another challenge is the mapping of concrete quantities to their qualita-
tive representation. In this paper, we made use of the concept of deviations
between the expected and the observed values. However, there might also be
other qualitative representations that can be used in the context of this work.
More and larger case studies have to be carried out in order to obtain experience
in corresponding classifications and the mapping of quantitative values to their
qualitative representation as then used for diagnosis.
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Abstract. One long term goal of artificial intelligence and robotics
research is the development of robot systems, which have approximately
the same cognitive, communicational, and handling abilities like humans.
This yields several challenges for future robot systems. For instance in the
field of communicational abilities, future robot systems have to bridge
between natural communication methods of the human, primarily uti-
lizing symbols like words or gestures, and the natural communication
methods of artificial systems, primarily utilizing low-level subsymbolic
control interfaces. In this work, we outline a system which utilizes phys-
ical properties, respectively physical effects for the mapping between a
high-level symbolic user interface and a low-level subsymbolic robot con-
trol interface.

1 Introduction

There are several long term goals in current robotic research. One is the develop-
ment of robot systems, which have approximately the same cognitive, communi-
cational, and handling abilities like humans. As part of this ongoing development,
application domains for robot systems shall be expanded, from industrial set-
tings with separated working cells, fixed object positions, and preprogrammed
motions towards a flexible usage in small or medium-sized enterprises (SMEs)
or private households. This sets additional requirements to the abilities of future
robot systems. In the field of cognitive abilities, future robot systems must utilize
appropriate sensors to extract information from the environment. In the field of
handling abilities, future robot systems need action representations, which allow
a flexible parameterization and execution of a specific task. In the field of commu-
nicational abilities, future robot systems must provide an intuitive and symbolic
user interface.

The interaction between cognitive, communicational, and handling abilities
is crucial for future robot systems. In Fig. 1, potential tasks in SMEs or private
households are visualized. Such tasks typically require the definition of sensor-
based actions, which are defined utilizing a subsymbolic robot control interface
like iTaSC [1] or manipulation primitives [2]. The definition of sensor based
actions require expert knowledge in the domain of robotics, since the programmer
must define subsymbolic parameters like positions, forces, setpoints, or control
c© Springer International Publishing AG 2016
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Fig. 1. Typical applications in SMEs or private households which require the execution
of sensor based motions. From left to right: Drilling, Paletting, Pouring.

strategies. In SMEs or private households, it cannot be assumed that this expert
knowledge in robotics is available. Therefore, future robot systems must provide
an intuitive user interface, which allows a symbolic communication. Such a robot
system needs information about the semantics of the used symbols, for example
executable actions or manipulable objects. Furthermore, the robot system must
be able to extract the needed subsymbolic information from the environment,
utilizing appropriate software components and sensors.

In the following sections, we give an overview of our system, which utilizes
physical effects, respectively physical properties for the grounding of symbols
and parameterization of subsymbolic sensor-based motions.

The remainder of the work is organized as follows: The related work is
described in the next section. Here, an overview of robot systems utilizing a
symbolic user interface is given. In Sect. 3, we give an overview of our system, out-
line the action representation based on verbalized physical effects, and describe
the relations between the used symbols, physical parameters, and components
for the extraction of the needed subsymbolic parameters from given symbolic
instructions. At last, we describe our future work in Sect. 4.

2 Related Work

The problem of assigning semantics to symbolic tokens like words is known as the
symbol grounding problem and was described by Harnad [3] with aspects from
psychology and artificial intelligence. Since practical applications of artificial
intelligence, for example in form of robots and intelligent systems, become more
complex, also researchers from these domains have to consider about the problem
of symbol grounding [4]. The grounding of symbols can be organized into two
subtopics, physical symbol grounding [5], and social symbol grounding [6]. While
social symbol grounding focuses on sharing symbols in populations of agents,
physical symbol grounding focuses on building relations between sensor values
and symbols. Since we want to extract subsymbolic physical parameters, we focus
on physical symbol grounding in more detail. There are already systems, which
can be operated utilizing symbolic commands. In general, such robot systems
are either used within navigational [7–10] or handling tasks [11–16]. These sys-
tems can be categorized according to the extractable subsymbolic information.
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The first category of systems allows no extraction of subsymbolic information, i.e.
they can only execute predefined instructions. The second category of systems is
able to extract geometric information from known object identifiers utilizing an
object database and an object recognition system. Systems of the third category
can additionally extract spatial relations from symbolic instructions.

Because all of the described systems are based on action representations,
which utilize geometric information, they do not need to extract kinematic and
dynamic parameters like forces, torques, or energies. Our system is based on
an action representation utilizing verbalized physical effects and manipulation
primitive nets [17], which is parameterized by geometric, kinematic, and dynamic
parameters, therefore we need to specify how to extract these quantities from a
symbolic representation.

3 System Overview

An overview of our system architecture is shown in Fig. 2. The system is build
according to the 3T architecture [18], a common architecture for systems which
have to transform between different types of representations. In case of our sys-
tem, we need to transform a high-level symbolic user representation into a low-
level subsymbolic robot control representation. Typically, these high-level repre-
sentations cannot be mapped directly to a low-level robot control representation.
Therefore, such systems consists of an additional transformation layer, which
describes the mapping between the high-level user interface and the low-level
robot control interface. In the following subsections, we outline the realization
of the three tiers of our system.

3.1 User Layer

The main function of this layer is to provide high-level user interfaces, which
allow the usage of the robot system by non-experts. Therefore, we focus on intu-
itive symbolic representations like a domain specific language (DSL) or a nat-
ural language interface. We introduced a domain-specific language for sensor-
based actions in [19]. In the DSL, executable actions are described by verbal
expressions, and parameterized by phrases. For instance, the DSL provides a
sensor-based action shove, which takes a noun phrase and a prepositional phrase
as parameter. This allows the user to specify an instruction like shove("the
red cube", "towards the gray box"). Users are able to instruct executable
actions to the robot system, without specifying low-level control parameters.
Since these parameters are required for the execution, the robot system must
be able to extract low-level parameters utilizing additional components like
a knowledge base, action skeletons, or environment information gathered by
sensors.
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Fig. 2. Overview of the system architecture.

3.2 Transformation Layer

The next step is to transform the high-level user input into a suitable repre-
sentation for the low-level robot control. The robot control typically consists
of subsymbolical interfaces, which require the definition of parameters like set
points, control strategies, or task frames. These parameter are not specified
explicitly by the user, therefore this information must be specified implicitly
based on the context, respectively based on the semantics of the used symbols.
This information must be grounded to the robot system.

The main idea of our symbol grounding approach is based on the working
hypothesis that object manipulation tasks consist of mechanical operations and
can be described using the laws of physics, especially from the field of mechanics.
If we analyze the function of a specific symbol, it represents either an executable
action or a parameter for an action. Therefore, we describe the grounding of
actions and parameters in the following paragraphs.

Action Grounding. The concept of verbalized physical effects VPEs is used
to describe executable actions in terms of physical effects. This representation
is utilized for the linkage of symbolic instructions and sensor based motions,
and the calculation of subsymbolic parameter from a given symbolic instruction.
Furthermore, this concept is used for the identification of needed information
and the automatic generation of temporal states, since instructions typically
specify only the goal state of a task. In this subsection, we give an overview of
the used physical quantities, principal physical effects PPEs, and the mapping
of a verbal expression to an specific PPE .

Generally, seven base units are defined in ISO 30-0 [20]. Within an object
manipulation task, mechanical base units length L, mass M and time T are
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manipulated. In addition to these base units, also derived units can be measured
and manipulated, which can be categorized in geometric, kinematic, and dynamic
units [21]. We use these physical quantities as parameter for a set of principal
physical effects and define the five principal effects absorb, change, transform,
merge, split on physical quantities (PPEs).

The next step is to find a suitable verb for a principal physical effect, for
example for the physical effects transform a force into a length (displacement),
transform a momentum into a displacement, or absorb a force. These terms are
not intuitive to verbalize for a user. The most proper verb for each PPE can
only be evaluated by collecting and analyzing empirical data, which is described
in our previous work [22]. There, we collected the data in German, and use
here an appropriate translation. For instance, the PPE transform a force into a
length (displacement) is mapped to the VPE consisting of the verbal expression
to shove (schieben), the PPE transform a momentum into a displacement to the
VPE consisting of the verbal expression to push (stoßen), and the PPE absorb a
force to the VPE consisting of the verbal expression to touch (berühren). More
details about the concept of verbalized physical effects are presented in [17].

Parameter Grounding. Besides executable actions, the semantics of the sym-
bolic parameters have to be grounded to the robot system. These parameters
are applied to the defined verbalized physical effects, therefore it is necessary to
describe the semantics of the parameters in terms of physical properties. Based
on an analysis of symbols, we introduced a physical dictionary for the grounding
of symbols based on physical properties in [23].

The first task of the physical dictionary is to ground information about the
symbol class and syntactic function of a specific symbol. This information is used
to determine coherence between different symbols. Let a user instruct the natural
language instruction Stack the red cylinder on the blue cube! With the grounded
information, we can determine that the determiner the and the adjective red
relates to the noun cylinder.

The second task of the dictionary is to ground information about the manip-
ulated properties of a specific symbol. We analyzed that symbols can affect
various properties, which can be specified in different degrees of determination.
In general, a symbol describes either an object, a process, a relation, or a prop-
erty. For instance, the class of adjectives describe properties of objects or the
class of prepositions describe relations between objects. The degree of determi-
nation can be for example exact or within an interval. For instance, a symbol of
type numeral describes a property exact, while an adjective describes a property
typically by an interval.

Parameter Extraction. The next step towards an robotic execution of the
instructed symbolic command is the subsymbolic parameter extraction, depen-
dent on the actual context, respectively environment of the robot system. The
extraction of the subsymbolical information is done by specific software compo-
nents, which utilize the sensors of the actual robot system. Therefore, we expand
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our knowledge base with a component and a sensor submodule. The component
submodule stores information about available extraction methods for physical
quantities, and the sensor submodule stores information about the sensors uti-
lized by the specific extraction method. All components share the same interface,
which on the one hand allows us to integrate existing approaches in the overall
system. On the other hand, the extraction of subsymbolical information is decou-
pled from the overall functionality and new components or sensors can easily be
integrated in the knowledge base. Since there are typically more components
and sensors for the extraction of a physical quantity available, we can define a
criteria which describes the most suitable component for the actual situation
of the environment. An evaluation of the symbol grounding and subsymbolical
parameter extraction is described in [23].

3.3 Control Layer

As low-level robot control interface, we use manipulation primitives [2], respec-
tively manipulation primitive nets [24]. In general, a manipulation primitive net
is a graph representation of an sensor-based task, consisting of manipulation
primitives as nodes and stopping criteria as edges. The definition of a manipu-
lation primitive consists of a hybrid motion, a set of tool commands, and a set
of termination criteria.

The hybrid motion describes the executable sensor-based motion based on
a local coordinate system, called the task frame. For this task frame, a control
strategy for each degree of freedom must be specified. Valid control strategies are
for instance position or force control. The set of tool commands holds information
about the used tool and the state of the tool. For instance, a gripper shall be
opened or closed during the execution of the sensor-based motion. The set of
termination criteria is a set of Boolean conditions, which are checked during the
execution of a manipulation primitive. The execution of the actual manipulation
primitive is stopped, when at least one termination criteria is fulfilled.

The relations between verbalized physical effects, effect parameters, and the
mapping and parameterization of the appropriate manipulation primitive net is
describe in [17] in more detail.

4 Conclusion and Future Work

In this work, we gave a conceptual overview of our robot system. We outlined
the different approaches from a symbolic user interface towards a subsymbolical
robot control interface. The transformation between the symbolical and sub-
symbolical representation is done utilizing physical effects, respectively physical
properties.

Our future work mainly focuses on extending the supported vocabulary,
which includes on the one hand more complex executable actions, and on the
other hand a more flexible parameterization of the actions. Furthermore, we
will extend the toolbox of components, which are available for the extraction of
subsymbolic information from the environment.
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Abstract. There is a growing interest in behavior based biometrics.
Although biometric data has considerable variations for an individual
and may be faked, yet the combination of such ‘weak experts’ can be
rather strong. A remotely detectable component is gaze direction esti-
mation and thus, eye movement patterns. Here, we present a novel per-
sonalization method for gaze estimation systems, which does not require
a precise calibration setup, can be non-obtrusive, is fast and easy to
use. We show that it improves the precision of gaze direction estimation
algorithms considerably. The method is convenient; we exploit 3D face
model reconstruction for the enrichment of a small number of collected
data artificially.

1 Introduction

With the advance of facial expression recognition and animation technologies
(see, e.g., [8] and the references therein) biometric information is becoming more
and more ambiguous and imitable by computer graphics. Behavior based bio-
metric may serve us as a rescue. It was shown more than a decade ago that facial
expressions and head movements provide as relevant recognition cues as the face
itself [22]. From both practical and theoretical point of views, imitation of such
behavioral patterns will also be feasible in the near future, but – as argued many
years ago – the more behavioral information is available, the better the chances
are for the identification of anomalies and malicious episodes [18]. IoT and smart
tools provide novel means for such characterization. On the other hand, remote
identification of a person may not use IoT tools and only visible behavioral pat-
terns may serve us. Eye movement pattern is one of the suggested components
[1] and it may be used both in task oriented [2] and task independent settings
[6,12,17]. Precision of the measurement is critical.

Another application field is gaze-based control, e.g., for special needs, since
it may replace the need for wearable tools [24].

Here, we put forth a personalization method that can work with a small
number of labeled samples, since we increase the number of samples artificially:
c© Springer International Publishing AG 2016
G. Friedrich et al. (Eds.): KI 2016, LNAI 9904, pp. 200–207, 2016.
DOI: 10.1007/978-3-319-46073-4 20
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we fit the mentioned 3D face model (i.e., [8]) to the image, rotate the model to
different head poses and increase our dataset with the 2D projections of the 3D
data. Otherwise, the method would be of limited use, as we discuss it later.

The paper is organized as follows. We review the related gaze direction esti-
mation works (Sect. 2) followed by the section on the databases and the estima-
tion methods. The methods include deep learning, supervised descent, Support
Vector Regression (SVR) that we use for the estimation of the facial mesh,
positions of eye marker points, the head pose, and the gaze direction and we
are searching for a good combination (Sect. 3). Results can be found in Sect. 4.
Conclusions are drawn in the last section (Sect. 5).

2 Related Works

Gaze estimation systems are generally classified into two types: model-based and
appearance-based methods. Our work is concerned with the latter.

In recent years, numerous papers have been published on appearance-based
gaze estimation systems. Lu et al. [13,14] described a method using Adaptive
Linear Regression (ALR). They manually designed a feature descriptor based
directly on normalized pixel intensities of the preprocessed eye region. They
estimate the gaze positions by finding the best subset of the training samples,
which linearly reconstructs the feature descriptor of the actual test sample. The
estimated gaze position is computed with a linear regression on the selected
subset.

Instead of regression, Smith et al. [20] solve a classification problem: they
classify images to detect “gaze locking” i.e. direct eye contact with the camera.
They also start from raw pixel intensities of a masked area on the image, but they
apply principal component analysis and multiple discriminant analysis to achieve
dimensionality reduction. Their classifier is a linear support vector machine.

Using the same dataset, Schneider et al. [19] compared various feature
descriptors such as Histogram of Oriented Gradients (HOG) [5], Local Binary
Patterns (LBP) [16] and raw pixel intensities in combination with different
regression algorithms, such as k-Nearest-Neighbours and Support Vector Regres-
sion. They report that a multi-level HOG with LBP features and SVR make the
best combination.

Sato et al. [23] presented a unique solution to enrich their training database
for gaze estimation. They created a setup with multiple 2D cameras and recon-
structed a 3D model of the subject’s face. Given this 3D model they synthesised
2D images from multiple views thus increasing the variation coverage of the head
pose. For regression, they used random forests on the image features combined
with the data on the 3D head poses.

To our best knowledge Zhang et al. [26] were the first to use convolutional
neural networks for gaze estimation. Alike Sato et al. [23], they also appended
the head pose to the convolutional feature descriptor. They achieved slightly
better results than Schneider et al. [19]. For more details, on this subject, the
interested reader is referred to the paper of Zhang et al. [26].
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3 Databases and Methods

3.1 Databases

Several datasets are publicly available for training gaze estimation systems,
including the EYEDIAP [15], the MPIIGaze [26] and the UT Multi-view [23]
sets. Among these, the full face is visible only in the EYEDIAP dataset. Since
we extend our training dataset by fitting a 3D model of the head to images and
we want to rotate the heads, our method requires the whole face. We used two
datasets in our studies; the dataset from Columbia and our own dataset.

The ‘Columbia Gaze Data Set’ (CGDS) [20] consists of 5880 images from 56
subjects. The head of each subject was stabilized with a chin rest. The authors
used multiple, carefully aligned cameras and gaze targets to record various head
poses and gaze directions. The resolution of the images is high: they use 5184×
3456 pixels. A sample image is shown in Fig. 1(a).

Our dataset (ELTE dataset) consists of recorded videos of 19 subjects
(4 females and 15 males) taken in more realistic scenarios. Subjects were
instructed to gaze directly into the camera and rotate their heads in differ-
ent directions while keeping their gaze locked at the camera. We used a HD
webcam, uniform lighting conditions, and a white canvas as background during
data collection (Fig. 1(a)).

(a) (b)

Fig. 1. (a) Datasets. Top: chins are stabilized and subjects look at predefined gaze
targets [20]. Bottom: gazes are locked at the camera and head poses are changed. (b)
Gaze estimation pipeline. Solid lines: used in all cases, dotted lines: used in some of
the experiments. Marker positions are used for image normalization (not shown).

3.2 Methods

In our gaze estimation pipeline presented on Fig. 1(b) we use non-linear regres-
sions at multiple stages that we review below.
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As the first step of our pipeline, we estimate a bounding box around the
face. The method we used is a linear support vector machine on Histogram of
Oriented Gradients (HOG) features, similar to [5]. We used the open source
implementation together with the available trained model from the dlib library
[10]. Once the face has been detected, we estimate 2D facial landmarks from a
small subset of pixel intensities, using a cascade of random forests [9].

The visual features used for gaze estimation were extended with the 3D
head pose data. We used 49 pieces of 2D facial markers as the inputs to the
Supervised Descent Method (SDM) [25] and estimated the head pose as follows:
we constructed a 3D mean shape, rotated it, and successively minimized the
angular error using the 2D reprojection error.

The position of the pupil center was also estimated and served as an optional
additional feature. We used the facial marker positions of the SDM regressor,
normalized our training images by converting them to grayscale, scaling them
to a predefined intercanthal distance (ICD) and by rotating them in 2D to hori-
zontal intercanthal direction. We also flipped each training image horizontally to
increase the variance of our training data. The initial estimation was the centroid
of the eye corners. We used HOG features with 9 signed bins.

The last step in our pipeline is the gaze estimation. We compared two vari-
ants: a Support Vector Regressor-based estimator (SVR) with HOG features as
a baseline and a convolutional neural network (CNN) as the state-of-the-art. In
both cases, we tried if additional features can improve the quality of the estima-
tion, such as (i) the 3D head pose and (ii) the position of the 2D eye and pupil
markers. In both cases, images were scaled to a predefined ICD.

We used both LIBLINEAR [7] and the LIBSVM [3] libraries for SVR esti-
mations, both of which are publicly available. Details of these well-performing
algorithms are well described in the literature [4].

We implemented a convolutional neural network similar to [26] in Lasagne.
There are two main differences between the original implementation and ours:
(i) we use dropout [21] and (ii) rectified linear units in all layers except for the
output. Image patches were cut for both eyes with the centroid of the eye corners
at the center. Adamax [11] and early stopping were used for network training.

Our architecture was composed of two convolutional and max pooling layer
pairs, and 2 dense layers. The first four layers had 2×2 filters, except for the first
convolutional one, which had 3 × 3. The optional head pose and pupil position
were concatenated to the convolutional features. We used 1024 units in both
fully connected layers. The dropout probability was 10% for the last pooling
layer and for the first dense layer.

Beyond our pipeline, we included the ZFace tool [8], an SDM application.
ZFace starts with an SDM based generic tracker that locates the 2D and 3D
coordinates of main fiducial landmarks in each image. It then reconstructs a high
resolution 3D mesh of 512 points. We generated new, realistic 2D projections of
the face by mapping the texture to the 3D mesh and rotating it. Although
ZFace could be used in the gaze estimation pipeline, due to time considerations,
we inserted the cascade of random forests into that.
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3.3 Personalization

The personalization method requires only a handful of images, yet it may
decrease gaze estimation error by more than 40%.

Fig. 2. Personalization pipeline on a CGDS image: input → reconstruct the 3D mesh →
generate new training samples by rotating it.

Our algorithm works as follows.

1. Get ‘personalization images’ of the subject with known gaze vectors and var-
ious head positions, e.g., when both components of the gaze vector is 0, i.e.
the subject is looking directly into the camera.

2. Fit a 3D mesh to each personalization image. We used ZFace [8] in this step.
3. Rotate the estimated 3D meshes in random directions and generate 2D pro-

jections. Calculate the gaze vectors in accordance with these rotations.
4. Improve the gaze estimation model with the generated 2D projections.

The method is sketched in Fig. 2. We explored different algorithmic combinations
to be detailed in the following section (Sect. 4).

4 Results

We studied the performance of three algorithms, namely, LIBLINEAR, LIBSVM
and CNN in the absence of personalization. We evaluated these algorithms on our
own database and on the CGDS database. After reconstructing the 3D meshes
on both of them, we first rotated them back to a frontal view, then we rotated
them with angles drawn randomly from the uniform distributions in the ranges
[−30◦, 30◦] and [−15◦, 15◦] for the yaw and pitch angles, respectively. We evalu-
ated the gaze algorithms with leave-one-subject-out cross-validation. LIBSVM is
somewhat better than LIBLINEAR, but in some cases we used the latter as our
baseline due to computer time requirements; scaling characteristics of LIBSVM
can be prohibitive for large sample sizes. In LIBLINEAR we used the solver for
the dual problem and also employed a bias term. Results are shown in Table 1.

We evaluated the performance of the personalization pipeline for different
algorithms and ICDs. We extended the visual features both with the head pose,
the eye and pupil marker positions in all cases. Images used for personalization
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Table 1. Comparisons of performances for the two databases ELTE and CGDS [20]
and for the three algorithms LIBSVM (LSVM), LIBLINEAR (LLIN), and CNN. 32
and 96 in the table header denote the ICD we used for scaling. The table shows mean
angular errors in degrees.

Additional ELTE LSVM ELTE LLIN ELTE CNN CGDS CNN

features 32 96 32 96 32 96 32 96

None 6.89 7.11 6.69 7.06 5.98 5.06 10.37 8.62

Pupil 4.88 7.69 5.20 5.36 5.64 5.07 10.11 8.53

Head pose 6.17 6.35 6.05 6.06 3.92 3.85 8.07 6.97

Pupil + h.pose 3.78 7.96 5.07 5.27 3.82 3.86 8.28 7.12

Table 2. Comparisons of personalization performances for the two databases ELTE
and CGDS [20], for the the three algorithms LIBSVM (LSVM), LIBLINEAR (LLIN),
CNN, and for different number of personalization images. All runs had both pupil
and head pose data as inputs. For each personalization image 10 rotated samples were
generated. Notation: augmented database is (a): trained from scratch, (b): added as a
single mini batch at the end of training. The displayed values are mean angular errors
in degrees.

Pers ELTE ELTE ELTE CNN 32 ICD ELTE CNN 96 ICD CGDS CNN 96 ICD

images LSVM LLIN (a) (b) (a) (b) (a) (b)

0 3.78 5.07 3.82 3.83 3.86 3.89 7.12 7.09

5 2.81 3.71 2.91 3.06 2.45 3.29 6.13 6.47

10 2.56 3.45 2.61 2.75 2.24 3.24 5.59 6.27

15 2.36 3.13 2.34 2.26 2.02 2.28 4.98 5.33

20 2.22 3.08 2.21 2.04 1.80 1.93 4.61 4.59

were randomly selected from the samples of each subject. The images were pre-
processed the same way as in the evaluation of gaze estimation algorithms. We
show our results on Table 2. By using the personalization pipeline, performace
increases gradually. For 20 personalization images rotated to 10 different head
poses, the mean gaze error fell down to less than two third of its original value
(from 100% to 58%) on the average.

5 Summary

We have presented a non-obtrusive method together with a learning architecture
for gaze direction estimation in a considerable range of head pose angles. Such
estimations have a number of applications from the medical field, to remote
surveillance systems and also computer assisted education. The special feature of
our method is the personalization capability that does not require a complicated
calibration setup, yet improves precision considerably.
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1 Introduction

Recent developments in information extraction have enabled the construc-
tion of huge Knowledge Graphs (KGs), e.g., DBpedia [1] or YAGO [8]. To
complete and curate modern KGs, inductive logic programming and data
mining methods have been introduced to identify frequent data patterns,
e.g., “Married people live in the same place”, and cast them as rules like
r1 : livesIn(Y,Z)←isMarriedTo(X,Y ),livesIn(X,Z). These rules can be used
for various purposes: First, since KGs operate under Open World Assumption
(OWA – i.e. absent facts are treated as unknown), they can be applied to derive
new potentially true facts. Second, rules can be used to eliminate erroneous
information from the KG.

Existing learning methods restrict to Horn rules [4] (i.e. rules with only positive
body atoms), which are insufficient to capture more complex patterns, for instance
like r2:livesIn(Y,Z)←isMarriedTo(X,Y ),livesIn(X,Z),not researcher(Y ),
i.e., nonmonotonic rules. While r1 generally holds, the additional knowledge thatY
is a researcher could explain why few instances of isMarriedTo do not live together;
this can prevent inferring the missing living place by only relying on the isMar-
riedTo relations.

Thus, for KG completion and curation, understanding exceptions is crucial.
While learning non-monotonic rules under Closed World Assumption (CWA –
i.e. absent facts are treated as false) is a well-studied problem that lies at the
intersection of inductive and abductive logic programming (e.g., [11]), it has not
been yet investigated in the context of KGs treated under OWA, despite evident
importance of this research direction. To overcome the limitations of prior work
on KG rule mining, our goal is to develop methods for learning non-monotonic
rules from KGs.

We formulate this ambitious task as a version of a theory revision problem
[10], where, given a KG and a set of (previously learned) Horn rules, the aim
is to update them to nonmonotonic rules, so that their quality is better than

Original paper appeared at the 15th International Semantic Web Conference
(ISWC), 2016.
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the Horn rules’. In [9], we made a first step towards tackling this problem by
providing an approach of step-wise rule revision, where novel ranking functions
are used to quantify the strength of nonmonotonic rules w.r.t the KG. We did
not merely estimate the quality of for individual rules in isolation, but considered
their cross-talk through a new technique that we call partial materialization. We
implemented a prototype of our approach and reported on the improvements we
obtained both in terms of rules’ quality as well as predicted fact quality when
performing KG completion. In the remaining of this paper, we summarize the
main results from [9] and discuss possible extensions to more general settings.

2 Nonmonotonic Rule Learning from Knowledge Graphs

Problem Statement. On the Web, knowledge graphs (KG) G are often encoded
using the RDF data model, which represents the content of the graph with
a set of triples of the form 〈subject predicate object〉. These triples can be
seen as positive unary and binary facts, i.e., the above triple corresponds to
object(subject) if predicate = isA and to predicate(object, subject) otherwise1.
KGs are naturally treated under the OWA.

In this work, we focus on non-monotonic rules. A nonmonotonic logic program
is a set of rules of the form a1 ← b1, . . . , bk not bk+1, . . . , bn where each ai and
bj is a first-order atom and not is called negation as failure (NAF) or default
negation. The answer set semantics [5] for nonmonotonic logic programs is based
on the CWA. Given a ruleset R and a set of facts G, the models (aka. answers
sets) of the program R ∪ G can be determined following [5]. They reflect the
information that can be deduced from R ∪ G under the answer set semantics.

Let Ga be a given (possibly incomplete) KG, and let Gi be the ideal KG that
contains nodes from Ga and all relations between these nodes that hold in the
current state of the world. Our ultimate goal is to automatically extract a set of
rules R from Ga, applying which (i.e. computing some answer set of R ∪ Ga) we
can obtain the graph Ga

R, which minimally differs from Gi. Our approach is to
first learn a set of Horn rules, and then aim at simultaneously revising them by
adding negated atoms to the rule bodies. Since normally, the ideal graph Gi is
not available, in order to estimate the quality of a revised ruleset, we devise two
generic quality functions qrm and qconflict, that take as input a ruleset R and a
KG and output a real value, reflecting the suitability of R for data prediction.
More specifically,

qrm(R,G) =
∑

r∈R rm(r,G)
|R| , (1)

where rm is some standard association rule measure [2]. To measure qconflict for
R, we create an extended set of rules Raux, which contains each revised rule in
R together with its auxiliary version. For each rule r in R, its auxiliary version
raux is constructed by: (i) transforming r into a Horn rule by removing not from
negated body atoms, and (ii) replacing the head predicate a of r with a newly

1 For simplicity in this work we identify a given graph with its factual representation.
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introduced predicate not a which intuitively contains instances which are not in
a. Formally, we define qconflict as follows

qconflict(RNM ,G) =
∑

p∈pred(Raux)

|c | p(c), not p(c) ∈ GRaux |
|c |not p(c) ∈ GRaux | (2)

We are now ready to state our problem: Given a KG G, a set of nonground
Horn rules RH mined from G, and a quality function rm, our goal is to find a
set of rules RNM obtained by adding negated atoms to Body(r) for some r∈RH

s.t. (i) qrm(RNM ,G) is maximal, and (ii) qconflict(RNM ,G) is minimal.

Unary Rules. In [9], we focused on rules with unary atoms. To this end, we
transformed binary facts in our initial KG to unary ones via propositionalization.
Our approach proceeds in four steps.

Step 1. After mining Horn rules using an off-the-shelf algorithm (e.g.,
FPGrowth [3] or [4], [6] we compute for each rule the normal and abnormal
instance sets, defined as

Definition 1 (r-(ab)normal instance set). Let G be a KG and, moreover,
let r : a(X)←b1(X), . . . , bk(X) be a Horn rule mined from it. Then

– NS( r,G)={c | b1(c), . . . c, bk(c), a(c)∈G} is an r-normal instance set;
– ABS( r,G)={c | b1(c), . . . , bk(c)∈A, a(c) �∈ G} is an r-abnormal instance set.

Step 2. Intuitively, if the given data was complete, then the r-normal and r-
abnormal instance sets would exactly correspond to instances for which the rule
r holds (resp. does not hold) in the real world. Since the KG is potentially
incomplete, this is no longer the case and some r-abnormal instances might in
fact be classified as such due to data incompleteness. In order to distinguish
the “wrongly” and “correctly” classified instances in the r-abnormal set, we
construct exception witness sets (EWS ), which are defined as follows:

Definition 2. Let G be a KG and let r be a Horn rule mined from G. An r-
exception witness set EWS( r,G) = {e1, . . . , el} is a maximal set of predicates,
such that

(i) ei(c′) ∈ G for some c′ ∈ ABS(r,G), 1 ≤ i ≤ l and
(ii) e1(c), . . . , el(c) �∈ A for all c ∈ NS(r,G).

Steps 3 and 4. After EWS s are computed for all rules in RH , we use them to
create potential revisions (Step 3), i.e., from every ej ∈ EWS(ri,G) a revision rji
of ri is constructed by adding a negated atom over ej to the body of ri. Finally,
we determine a concrete revision for every rule, that will constitute a solution
to our problem (Step 4). To find such globally best ruleset revision RNM many
candidate combinations have to be checked, which due to the large size of our G
and EWSs might be too expensive. Therefore, instead we incrementally build
RNM by considering every ri ∈ RH and choosing the locally best revision rji
for it.
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In order to select rji , we introduce four special ranking functions: a naive one
and three more advanced functions, which exploit the novel concept of partial
materialization (PM ). Intuitively, the idea behind it is to rank candidate revi-
sions not based on G, but rather on its extension with predictions produced by
other (selectively chosen) rules (grouped into a set R′), thus ensuring a cross-talk
between the rules. We now describe the ranking functions in more details.

– Naive ranker is the most straightforward ranking function. It prefers the
revision rji with the highest value of rm(rji ,G) among all revisions of ri.

– PM ranking function prefers rji with the highest value of

rm(rji ,GGR′) + rm(rji
aux

,GR′)
2

(3)

where R′ is the set of rules r′
k, which are rules from RH\ri with all exceptions

from EWS(rk,G) incorporated at once. Informally, G′
R contains only facts

that can be safely predicted by the rules from RH\ri, i.e., there is no evident
reason (candidate exceptions) to neglect their prediction.

– OPM is similar to PM , but the selected ruleset R′ contains only those rules
whose Horn version appears above the considered rule ri in the ruleset RH ,
ordered (O) based on some chosen measure (e.g., the same as rm).

– OWPM is the most advanced ranking function. It differs from OPM in
that the predicted facts in GR′\G inherit weights (W ) from the rules that
produced them, and facts in G get the highest weight. These weights are taken
into account when computing the value of Eq. 3. If the same fact is derived by
multiple rules, we store the highest weight. To avoid propagating uncertainty
through rule chaining when computing weighted partial materialization of G
we keep predicted facts (i.e., derived by applying rules from R′) separately
from the explicit facts (i.e., those in G), and infer new facts using only G.

Extension to Binary Rules. A natural direction for extending the work from
[9] is to consider rules involving binary atoms. In this case, there can be a
potentially larger number of possible EWS sets to construct and consider. More

specifically, if a rule has n distinct variables, then there could be n +
(
n
2

)

candidate EWS sets. Given the large size of KGs, computing all exceptions
in every EWS set might be inpractical for scalability reasons. To overcome this
issue, the language bias of possible exception candidates should be carefully fixed.
Practically, several possibilities for such restriction exist. For instance, one could
search only for binary (resp. unary) exceptions, or only consider EWS s w.r.t. to
the variables in (a certain position of) the head atom. An in-depth analysis of
these possibilities is planned for our future work.
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3 Evaluation

We briefly discuss some of experimental results that are reported in more detail
in [9].

Step 1. Initially, we considered the Horn rules produced by AMIE [4]. However,
they involve unsupported binary predicates and the only unary rules regard the
isA predicate, which was too limiting for us. Therefore, we used the standard
mining algorithm FPGrowth [6] offered by SPMF Library2 and extracted Horn
rules from two well-known KGs: YAGO (general purpose) and IMDB (domain-
specific). Before learning Horn rules, we preprocessed a given KG by converting
binary facts predict(subject , object) into unary ones predict object(subject), and
automatically abstracting the new unary predicates using the type hierarchy of
the KG to make them more dense and allow mining expressive data patterns.
In order to avoid over-fitting, we applied some restrictions to the rules (e.g. we
limited to rules with at most four body atoms, a single head atom, a minimum
support of 0.0001× #entities, etc.).
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Fig. 1. Average rules’ confidence and number of conflicts on IMDB KG.

Steps 2 and 3. We implemented a simple inductive learning procedure to cal-
culate the EWS s. We could find EWS s for about 6 K rules mined fromYAGO,
and 22 K rules mined from IMDB. On average, the EWS s for the YAGO’s rules
contained 3 exceptions, and 28 exceptions for IMDB.

Step 4. We evaluated the quality of our rule selection procedure in terms of
the increase of rules’ confidence and the decrease of the number of conflicts
introduced by negated atoms. The confidence shows how well the revised rules
adhere to the input. The number of conflicts indicates how consistently the
revised rules predict the unseen data. Figure 1 reports the obtained average rules’
confidence of original Horn rules and rules revised with our ranking functions on
the IMDB dataset (YAGO’s follows a similar behaviour [9]). Figure 1a reports

2 http://www.philippe-fournier-viger.com/spmf/.

http://www.philippe-fournier-viger.com/spmf/
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the average confidence of the original Horn rules. For each ranking method, we
show the results for the top 10,. . .,100 % rules ranked by lift.

From Fig. 1a, we make two observations. First, we notice that enriching Horn
rules with exceptions increases the average confidence (appr. 3.5 %). Second, as
expected, the highest confidence is achieved by the (Naive) procedure, as the
latter blindly chooses exceptions that maximize confidence, while ignoring the
conflict ratio. However, confidence alone is not sufficient to determine the overall
rule’s quality, and also consistency of the predictions (i.e., qconflict function)
should be taken into account.

In order to evaluate qconflict, we computed the number of conflicts by exe-
cuting the revised rules and their corresponding auxiliary versions (raux) on
IMDB KG using the DLV tool [7]. The conflict appears whenever both p(c)
and not p(c) are derived. Figure 1b reports the ratio between the number of
conflicts and negated derived facts. One can observe that OWPM and OPM
produce less conflicts than the Naive function in most of the cases. Moreover,
the OWPM ranking function works generally better than OPM and PM func-
tions, i.e., taking into account weights of the predicted facts leads to improved
revisions. For instance, for IMDB, moving from OPM to OWPM reduced the
number of conflicts from 775 to 685 on a base of about 2000 negated facts.

In another experiment, we counted the number of derivations that our excep-
tions prevented using the top-1000 YAGO rules. With the original Horn rules,
the reasoner inferred about 924K new facts, while the revised rules deduced
around 890K facts. In order to assess whether the 34K predictions neglected
due to our revision method are actually erroneous, we sampled 259 random
facts from the removed set (we selected three facts for each binary predicate to
avoid skewness), and manually consulted online resources (mainly Wikipedia)
to determine whether they were indeed incorrect. We found that 74.3 % of them
were actually faulty predictions. This number provides a first empirical evidence
that our method is capable of detecting good exceptions, and hence can improve
the general predictive quality of the Horn rules. Unfortunately, since KGs follow
OWA, automatic evaluation of predictions is problematic, and human judgment
is often required to estimate the validity of exceptions. Cross validation methods
could be adapted for our needs and exploited for evaluation purposes to some
extent. This is planned for future work. However, since fully complete versions
of the real-world KGs (i.e., Gi) are not available, to measure how correct and
probable our exceptions actually are, manual assessment might be still required.

4 Discussion and Outlook

We have presented a method for mining nonmonotonic rules from KGs: First
learning a set of Horn rules and then revising them by adding negated atoms
into their bodies. We evaluated it with various configurations on both general-
purpose and domain-specific KGs and observed significant improvements over a
baseline Horn rule mining.

Apart from extensions to rules with predicates of higher arity, there are other
future directions to explore. First, one can look into extracting evidence for or
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against exceptions from text and web corpora. Second, our framework can be
enhanced by partial completeness assumptions for certain predicates (e.g., all
countries are available in the KG) or constants (e.g., knowledge about Barack
Obama is complete). We believe these are important research topics that should
be studied in the future.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Pan, J.Z., Chen, H., Kim, H.-G., Li, J., Wu,
Z., Horrocks, I., Mizoguchi, R., Wu, Z. (eds.) JIST 2011. LNCS, vol. 7185, pp.
722–735. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76298-0 52

2. Azevedo, P.J., Jorge, A.M.: Comparing rule measures for predictive association
rules. In: Kok, J.N., Koronacki, J., de Mantaras, R.L., Matwin, S., Mladenič, D.,
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Abstract. Profound knowledge about at least the fundamentals of Arti-
ficial Intelligence (AI) will become increasingly important for careers in
science and engineering. Therefore we present an innovative educational
project teaching fundamental concepts of artificial intelligence at high
school level. We developed a high school AI-course (called “iRobot”) deal-
ing with major topics of AI and computer science (automatons, agent
systems, data structures, search algorithms, graphs, problem solving by
searching, planning, machine learning) according to suggestions in the
current literature. The course was divided into seven weekly teaching
units of two hours each, comprising both theoretical and hands-on com-
ponents. We conducted and empirically evaluated a pilot project in a
representative Austrian high school. The results of the evaluation show
that the participating students have become familiar with the concepts
included in the course and the various topics addressed.

1 Introduction

Nearly every day an article is published in a newspaper in which a new gadget or
a innovation is being described and labelled with tags like “adaptive”, “learning”,
“smart” or “intelligent”. Therefore, it will be important for our civilisation to be
able to differentiate between just smart gadgets that contain e.g. an adaptable
algorithm to better sort their shopping list and real artificial intelligence (AI)
that indeed might eventually become smarter than humans. Many of us know
about the existence of services and devices based on AI, but hardly anybody
knows about the technology behind them.

But e.g. in Austria currently even basic education about AI is mainly
restricted to university programs. One future goal is to include AI topics in the
general curriculum of computer science education in schools. Thus, we worked
out answers to the following questions (i) what contents are important enough
to be fit into e.g. a class of one hour each week? (ii) how could such classes
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(AAAI), 2016.
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be structured? (iii) which suggestions already exist in the literature? (iv) what
prior knowledge would be required to understand some foundations of artificial
intelligence? (v) what methods or tools could be used during such a class? A
prototype of such a class should be taught in one of our partner schools and
then be evaluated to acquire valuable feedback from the first students.

In the next section we present the results of the literature research. Based
on this we can outline a possible AI class in high schools. Section 3 contains the
results of the planning and the outline of the complete course. In the fourth
section our experiences and lessons learnt during and after the the conduction of
the classes will be described. The last section discusses the whole work and makes
implications and outlines for possible future classes about artificial intelligence
in high schools.

2 Background and Related Work

Looking at international literature, the teaching of fundamental concepts and
techniques of AI independent of any platform or programming language at school
level is rare. Many approaches focus on undergraduate/graduate students at uni-
versity level. [11] describes a research oriented course for undergraduate students
in which the IBM Watson was used to teach AI fundamentals. [10] suggests ways
to structure lessons and assignments for undergraduates to teach them basic
problem solving strategies. In [7] a course for undergraduate and graduate stu-
dents is presented, where students have to use Java to program suitable agents
for certain games. Combinations of programming AI and using LEGO robots
can be found in [8] where undergraduate students are encouraged to build an
autonomous chess agent. [6] report about the design of a robot lab to be used in
introductory AI classes. Some universities also offer training courses for future
teachers about how AI can be taught in school (e.g. [4]). Common approaches
at school level typically deal with more general areas of AI like its history, the
Turing test, chat bots or philosophical questions (e.g. [5]).

2.1 Competencies and Self-directed Learning

A modern approach in education is the use of so called “competencies” the
students should acquire during their study instead of traditional facts that
they should “know” and be able to reproduce. Typically, competencies can be
described with sentences beginning with “I can . . . ”, like “I can evaluate the
efficiency of algorithms.” Important for us are not only competencies in arti-
ficial intelligence, but the connection to important topics of classic computer
science like data structures, to be able to explain and possibly program impor-
tant algorithms (e.g. searching). Resulting from these considerations we defined
17 competencies that the students should acquire until the end of the course.
The final competencies are described in detail in [1].

According to [9] learning is more sustainable when the students get eager
or curious to know something. Authentic problems lead to gaps in the cur-
rent knowledge, that require the construction of new knowledge. E.g. students
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Fig. 1. An illustration from [2] of the various AI topics covered in our introductory
course. The topics were spread among the seven classes we held. The assignments are
written in italics.

involved in RoboCup can see that it is difficult to let their robot escape from an
arbitrary labyrinth. Showing them connections between graphs, searching and
labyrinths, the motivated student will probably start to research how such an
algorithm works and how it can be implemented. Thus, one premise of our course
is to actively involve the students in the learning process. Activities can include
e.g. paper-and-pencil or programming exercises, robot construction, discussions,
group works etc. depending on given tasks or problems. A course in a school that
actively participates e.g. in junior robotics competitions can include assignments
on the basis of the existing robots and code and let the students see possible
shortcomings or possibilities for enhancements of their current approach.

3 Design of the Classes

Wollowski et al. [12] did a survey of current practice and teaching of AI. This
survey asked educators what they are currently teaching in various AI courses
and practitioners what techniques they use in practice. According to the edu-
cators the primary goal of current AI courses is to teach the basics or main
ideas of AI. The views of the practitioners do not differ here. The recommended
topics of the educators list “Search” and “Knowledge Representation and Rea-
soning” (KR&R) in the first places, followed by “Machine Learning”. Also the
practitioners do say that KR&R is the most wanted topic in AI, followed by
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“Machine Learning”. These topics will form the basic outline of our course,
although machine learning will certainly only be coverable as a sort of overview
or outlook, because the variety of different approaches and the necessary math-
ematical skills demand much more time and background knowledge.

Due to these expected limitations in the students prior knowledge for this
course, we can only cover introductory topics of artificial intelligence. We have to
include some necessary general topics like data structures (e.g. trees) or funda-
mental algorithms (like searching) as well. The extent of topics is further limited
due to the time restrictions and the planned methods of teaching. The planned
final structure and the coarse contents of the seven classes are illustrated in
Fig. 1. One can find further details including the planning of the classes as well
as the accompanying experiments and assignments in [1].

4 Realization and Evaluation

We partnered with a school that has a focus in natural and computer sciences
and is interested in offering some of its students a class in the area of artificial
intelligence. The nine students that subscribed to this special course come from
the 9th, 10th and 11th year of school attendance (i.e. approximately between 15
and 18 years old, average age 16.5 years). Hence, they also had a very varying
previous knowledge in the area of computer science (none of them in AI). But
additionally all of them are participating for several years in robotics electives,
especially in various leagues in the Robocup. There were 1 female and 8 male
students attending. We agreed on seven timeslots on Friday afternoons from
13:20 to 15:20 from May to July 2015. To be able to evaluate a learning success,
we apply current methods of learning goal assessments, especially self evaluation
and foreign evaluation. For our course we defined 17 core learning goals or com-
petencies. After the course the students were asked to fill out the self-evaluation
anonymously. The students stated, that they have fully acquired most of the
defined competencies, which coincides the teachers’ observations.

The course itself and the teacher were evaluated too. We selected questions
that should give us feedback on several measures that can be grouped as (i) the
contents, (ii) the presentation and (iii) the dealing with the students. Very posi-
tive aspects are, that the students agree to a high degree to the statements that
they have learnt something new, that they could actively participate and that
they are motivated to deepen their knowledge in the area of AI. The realisation
and the presentation of the contents, the material for the course (including the
exercises) and especially the explanations have reached very high approval rates,
too. More details about the self-evaluation and the course evaluation including
all questions, competencies and the feedbacks can again be found in [1].

The final empirical project evaluation was done using reliable quantitative
and qualitative empirical research methods []. In terms of quantitative evalua-
tion we applied a paper-and-pencil post-questionnaire (Likert-scale, open-ended
questions) comprising a self-assessment of acquired skills as well as feedback
on the structure and teaching method of the weekly teaching units. In terms of
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qualitative evaluation we conducted semi-structured interviews with all 9 partic-
ipating students using a set of predefined open-ended questions as guideline. The
interviews were structured around the topics background (technical, prior knowl-
edge), motivation/reason for joining the iRobot project, expectations (prior and
after the project), memorable AI topics/situations and lessons learned. Further
qualitative data was collected by using techniques of participant observation
(field notes, discussions, taking pictures) during the weekly teaching units. All
collected data were treated confidentially and anonymously.

Summarizing the results of the qualitative evaluation students’ main motives
for participating in the project were interest in robotics, computers and AI as
well as the possibility to prepare for science studies at university. According to
students’ statements they gained basic knowledge of the principles of AI. They
also positively stressed the good balance between theory and hands-on activ-
ities, the good atmosphere as well as the technical discussions with university
researchers. Finally, students will also benefit from the acquired content in future
(e.g. robotics competitions, high school theses, starting university studies).

5 Discussion and Outlook

Like classic literacy which includes writing, reading and mathematics, literacy in
AI/computer science will become a major issue in future. Therefore, we presented
an educational project teaching fundamental concepts of artificial intelligence
and computer science at high school level (grades 9–11). We conducted and
empirically evaluated a pilot project in a representative Austrian high school
with nine voluntarily participating students in spring 2015. Weekly courses held
by university researchers covered major AI topics. The contents were chosen
according to current AI education literature and adapted and structured with
respect to the students’ prior knowledge and educational background. The units
focused on the students’ experiences and built the new knowledge on the basis
of these. Together with a mixture of theory, various work settings (i.e. solitary
work, group work, open discussions, learning stations etc.) and hands-on projects
we employed a constructionistic learning model as good as it was possible. The
course was finally evaluated in three ways. First, the students had to self-evaluate
their acquired competencies, second, the course itself was evaluated in terms
of content, presentation, methods and dealing with the students and third, by
conducting qualitative semi-structured interviews with all participating students.

The first pilot project was successful, nevertheless there were some drawbacks
and shortcomings to be dealt with in future realisations of such a course. For a
well founded scientific evaluation of the course the sample of the participating
students was quite small with only nine attending. Additionally, they had a
quite different previous knowledge because they were coming from three different
grades. So they formed a very inhomogenous group in terms of prior knowledge.
What also should be changed in future courses is the time structure of the course
which was not very beneficial. We had too few classes to talk about and discuss
all the different foundations of AI that we intended to include. Additionally, the
course was quite compact placed at the end of the semester.
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Summarizing the results of the evaluations, the project succeeded in teaching
high school pupils the foundations of artificial intelligence. The participating
students got a well founded understanding of at least the concepts we presented
and discussed and the growing importance of artificial intelligence in every day
life. We are planning to conduct the project in other high schools in the next
few years, pursuing our long-term goal of integrating artificial intelligence topics
into the regular science education in high schools and to foster ‘AI literacy’.
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1 Clause-Learning State Space Search

The ability to learn from conflicts is a key algorithm ingredient in constraint sat-
isfaction (e. g.[2, 6, 8, 20, 22, 24]). For state space search, like goal reachability
in classical planning which we consider here, progress in this direction has been
elusive, and almost entirely limited to length-bounded reachability, where reacha-
bility testing reduces to a constraint satisfaction problem, yet requires iterating
over different length bounds until some termination criterion applies [5, 16, 19,
28]. But do we actually need a length bound to be able to do conflict analysis and
nogood learning in state space search?

Arguably, the canonical form of a “conflict” in state space search is a dead-
end state, from which no solution (of any length) exists. Such conflicts are not
as ubiquitous as in constraint satisfaction (including length-bounded reachabil-
ity), yet they do occur, e. g., in oversubscription planning [26], in planning with
limited resources [11], in single-agent puzzles [4, 15], and in explicit-state model
checking of safety properties [7] where a dead-end is any state from which the
error property cannot be reached.

We introduce a method that learns sound and generalizable knowledge from
dead-end states during state space search classical planning. To our knowl-
edge, this is the first of its kind. Prodigy [21] comes closest with its learning
of sound action-pruning rules in backward search. Inspired by Prodigy, Bhatna-
gar and Mostow [3] considered forward-search conflict-based learning, yet their
techniques are not sound (do not guarantee that pruned states actually are
dead-ends). Kolobov et al’s SixthSense technique [17] is sound, yet is placed
in probabilistic planning and incorporates classical planning as a sub-procedure.
Value function refinement using Bellman updates [1, 18, 25] will eventually learn
that a state is a dead-end, yet does not generalize that knowledge.

The key to our technique are critical-path heuristics hC [9, 10], relative to
a set C of atomic conjunctions. These heuristics incorporate an approximation
allowing to break up conjunctive subgoals into the elements of C. We don’t give
a full definition here, but the central equation should be suitable to get an idea:

hC(s,G) =

⎧
⎨

⎩

0 G ⊆ s
1 + mina∈A[G] h

C(s,Regress(G, a)) G ∈ C
maxG′⊆G,G′∈C hC(s,G′) else

(1)
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This equation is easiest understood as a recursive estimation of goal distance.
The bottom case in the equation splits up the current subgoal G into its atomic
subgoals. The middle case in the equation minimizes over all actions the subgoal
can be regressed through. The top case terminates the recursion on subgoals
that are true in our state s. The overall distance estimate is obtained through
a top-level call (not shown here) on s and the global planning goal specified in
the input planning task.

Critical-path heuristics were originally designed for admissible goal distance
estimation. Here we are interested only in their ability to recognize dead-end
states s, returning hC(s) = ∞. This happens if every recursion path in the
equation eventually hits an unsupported subgoal. Intuitively, hC(s) = ∞ if s
has no solution even when allowing to break up conjunctive subgoals into atomic
conjunctions.

It is easy to see that, for sufficiently large C, all dead-ends will be recognized
(just let C be the set of all conjunctions). But how to find a small yet informative
set C useful for search? Our key idea is to learn C during search, through conflict
analysis.

We start from the simple set C that contains only the singleton conjunctions.
We augment forward state space search to identify unrecognized dead-ends s,
where hC(s) < ∞ yet search has already explored all descendants of s and thus
proved s to be a dead end. We design hC-refinement methods analyzing the
situation at such s, adding new conjunctions into C to obtain hC(s) = ∞, thus
learning to recognize s as well as similar dead-ends search may encounter in
the future. The refinement step is the most technical part of our work, and we
refer to our AAAI’16 paper [27] for details. In a nutshell, the technique assumes
as input a component of states s, where all direct successors t of any state s
are already pruned (recognized to be dead-ends) by hC . It then tackles open
hC-paths on the states s, canceling each such path by combining conjunctions
canceling corresponding paths on states t. Suitable combined conjunctions neces-
sarily exist, so that the method is constructive, guaranteeing to find the desired
new conjunctions to learn, without having to do any search or exploration.

We furthermore learn clauses φ, in a manner inspired by, and similar to,
a nogood certification technique in SixthSense: we minimize the commitments
made in a dead-end state s while still preserving that hC(s) = ∞. The clauses
are sound in that s′ �|= φ implies hC(s′) = ∞, i.e., we learn sufficient conditions
for hC dead-end detection. While these sufficient conditions constitute a weaker
pruning method than hC itself, they are much faster to evaluate. Doing so prior
to computing hC strongly reduces the runtime overhead, which can otherwise
be prohibitive.

Arranging these techniques in a depth-first search, we obtain an algorithm
approaching the elegance of clause learning in SAT: When a subtree is fully
explored, the hC-refinement and clause learning (1) learns to refute that sub-
tree, (2) enables backjumping to the shallowest non-refuted ancestor, and (3)
generalizes to other similar search branches in the future. Our experiments show
that this can be quite powerful. On problems where dead-ends abound, relative
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NoMystery (30 base instances) Rovers (30 base instances) TPP (5 base instances)
FD-hFF DFS-CL FD-hFF DFS-CL FD-hFF DFS-CL

M&S M&S M&S
W Blind FD-hFF OA NM W/O L W/ L Blind FD-hFF OA NM W/O L W/ L Blind FD-hFF OA NM W/O L W/ L
0.5 19 25 30 30 25 30 2 5 30 29 5 30 4 4 5 5 5 5
0.6 10 16 30 30 16 30 1 2 29 25 2 30 1 1 5 5 2 4
0.7 0 11 30 29 11 29 0 0 29 23 0 30 0 0 5 3 0 3
0.8 0 0 30 26 0 24 0 0 24 21 0 24 0 0 1 1 0 0
0.9 0 0 29 24 0 16 0 0 16 13 0 22 0 0 0 0 0 0
1.0 0 6 26 20 0 12 0 1 10 6 0 21 0 1 0 2 0 0
1.1 0 10 24 21 0 11 0 0 5 3 6 14 0 3 0 4 0 2
1.2 0 16 19 22 0 13 0 1 3 1 1 14 0 3 0 3 3 3
1.3 0 20 18 24 0 8 0 2 1 2 1 12 0 4 0 4 3 3
1.4 0 25 15 27 0 11 0 2 0 3 3 12 0 4 0 4 4 5∑

29 129 251 253 52 184 3 13 147 126 12 208 5 20 16 31 17 25

Fig. 1. Coverage results. Best per-domain results highlighted in boldface. DFS-CL is
our approach, “W/O L” without learning, “W/L” with learning. Other abbreviations
see text. For each base instance and value of W , the resource budget is set according
to W .

to the same search but without learning, our technique often reduces the search
space by several orders of magnitude.

2 Empirical Results

Our implementation is in FD [12]. Our current experiments focus on resource-
constrained planning, where the goal must be achieved subject to a fixed resource
budget. We use the benchmarks by Nakhost et al. [23], which are controlled in
that the minimum required budget bmin is known, and the actual budget is set
to W ∗ bmin. The parameter W allows to control the frequency of dead-ends;
values of W close to 1.0 are notoriously difficult. In difference to Nakhost et al.,
we also consider values W < 1 where the tasks are unsolvable.1

We use a cluster of Intel E5-2660 machines running at 2.20 GHz, with run-
time (memory) limits of 30 min (4 GB). Our technique runs a forward depth-first
search; in selecting the next children node to expand, it prefers children with
smaller hFF [14] value. We compare to blind search, and to FD’s greedy best-
first dual-queue search with hFF and preferred operators (denoted “FD-hFF”),
as baselines. We compare to Hoffmann et al.’s [13] two most competitive configu-
rations of merge-and-shrink (M&S) heuristics for proving unsolvability (denoted
here “OA” and “NM”). We run the latter as dead-end detectors in FD-hFF to
obtain variants competitive also for satisficing planning.

Figure 1 gives coverage data. Our approach easily outperforms the standard
planner FD-hFF. It is vastly superior in Rovers, and generally for budgets close
1 Not all actions consume resources, so that the fixed budget does not per se entail an

upper bound on plan length. The more important role of the fixed budget for our
technique, to our current understanding, is that search paths will tend to be short,
i.e., a depth-first forward search will quickly run into dead-ends from which we are
then able to learn.
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to, or below, the minimum needed. The stronger planners using FD-hFF with
M&S dead-end detection are better than DFS-CL in NoMystery, worse in Rovers,
and about on par in TPP.

For the exciting news, consider the comparison between with vs. without
learning. The former outperforms the latter dramatically. The only reason for
this is generalization, i.e., refinements of hC on states s leading to pruning on
states other than s. Without generalization, the search spaces would be identical,
including tie breaking. So generalization occurs at massive scale. It lifts a hope-
less planner (DFS with singleton-conjunction, aka h1, dead-end detection) to a
planner competitive with the state of the art in resource-constrained planning.

101 102 103 104 105 106 107 108 ∞101

102

103

104

105

106

107

108

∞

Fig. 2. Search space size for DFS-CL with learning (y-axis) vs. without learning (x-
axis). “+” (red) NoMystery, “×” (blue) Rovers, “�” (orange) TPP, “∞”: out of time
or memory.

Figure 2 compares the search space sizes directly. On instances solved
by both, the reduction factor min/geometric mean/maximum is: NoMystery
7.5/412.0/18117.9; Rovers 58.9/681.3/70401.5; TPP 1/34.4/1584.3.

3 Conclusion

Our work pioneers conflict-directed learning, of sound generalizable knowledge,
from dead-end states in forward state-space search. This is made possible by
the progress in modern classical-planning heuristic functions, specifically hC ,
and our key technical contribution in that context is a method for refining hC ’s
dead-end detection capabilities during search. The resulting technique is, in our
humble opinion, quite elegant, and suggests that the learning from “true” con-
flicts in state space search, not necessitating a solution length bound, is worth
the community’s attention.

Beauty contests aside, from a pragmatical point of view the technique
certainly does, as it stands, not deliver an empirical breakthrough. It vastly
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improves over using the same technique without learning, and it appears to
have strengths in (certain) resource-constrained situations. As ours is merely a
first foray into this kind of technique, and lots more remains to be explored –
combinations with alternate search techniques, refinement of different dead-end
detection machineries, reasoning over knowledge learned from different sources,
etc. – we expect this to be the beginning of the story, not its end.

One thing we would particularly like to see is the export of this (kind of)
technique, from classical planning where it is presently placed, to game-playing
and model checking. For hC refinement, this works “out of the box” modulo the
applicability of Eq. 1, i.e., the definition of critical-path heuristics. As is, this
requires conjunctive subgoaling behavior. But more general logics (e. g. mini-
mization to handle disjunctions) should be manageable.

Acknowledgments. This work was partially supported by the German Research
Foundation (DFG), under grant HO 2169/5-1 “Critically Constrained Planning via
Partial Delete Relaxation”.
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1 Introduction

Knowledge representation and reasoning is a central concern of modern AI. Its
importance has grown with the availability of large structured data collections,
which are published, shared, and integrated in many applications today. Graph-
based data representations, so called knowledge graphs (KGs), have become pop-
ular in industry and academia, and occur in many formats. RDF [8] is most
popular for exchanging such data on the Web, and examples of large KGs in
this format include Bio2RDF [7], DBpedia [6], Wikidata [20], and YAGO [9].
Nevertheless, KGs are not always stored in their native graph format, and many
reside in relational databases as well.

The great potential of the conceptual view offered by KGs is the ability
to connect heterogeneous and often incomplete data sources. Inferring implicit
information from KGs is therefore essential in many applications, such as onto-
logical reasoning, data integration, and information extraction. A common foun-
dation for specifying such inferences is the rule-based language Datalog [3]. While
Datalog rules are rather simple types of if-then rules, their recursive nature is
making them powerful. Many inference tasks can be captured in this framework,
including many types of ontological reasoning commonly used with RDF. In par-
ticular, Datalog can be used to perform reasoning in all of the three lightweight
profiles of the OWL Web Ontology Language, as shown by Krötzsch [12, 13]
and (implicitly by translation to path queries) Bischoff et al. [4]. Datalog thus
provides an excellent basis for exploiting KGs to the full, and a foundation for
more advanced inferencing mechanisms and more expressive features.

Unfortunately, the implementation of Datalog inferencing on large KGs
remains very challenging. The task is worst-case time-polynomial in the size of
the KG, and hence tractable in principle, but huge KGs are difficult to manage.
A preferred approach is therefore to materialize (i.e., pre-compute) inferences.
Modern DBMS such as Oracle 11g and OWLIM materialize KGs of 100M–1B
edges in times ranging from half an hour to several days [5, 11]. Research proto-
types such as Marvin [15], C/MPI [21], WebPIE [18], and DynamiTE [19] achieve
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(AAAI), 2016.
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scalability by using parallel or distributed computing, but often require signifi-
cant hardware resources. Urbani et al., e.g., used up to 64 high-end machines to
materialize a KG with 100B edges in 14 hours [18]. In addition, all of the above
systems only support (fragments of) the OWL RL ontology language, which is
subsumed by Datalog but significantly simpler.

In our recent work, we have therefore presented a new approach of in-memory
Datalog materialization [17]. Performing recursive reasoning tasks in main mem-
ory can lead to significant performance gains; recent works by Motik et al. have
been the first to adapt this insight to large-scale Datalog materialization [14].
However, a challenge for this approach is that KGs (and the inferences one may
draw from them) may require large amounts of memory, so that powerful high-
end machines are necessary. The primary goal of our work therefore has been to
reduce memory consumption to enable even larger KGs to be processed on even
simpler computers.

To this end, we have proposed to maintain inferences in a customised column-
based storage layout. In contrast to traditional row-based layouts, where a data
table is represented as a list of tuples (rows), column-based approaches use a
tuple of columns (value lists) instead. This enables more efficient joins [10] and
effective, yet simple data compression schemes [1]. However, these advantages are
set off by the comparatively high cost of updating column-based data structures
[2]. This is a key challenge for using this technology during Datalog material-
ization, where frequent insertions of large numbers of newly derived inferences
need to be processed.

We have shown that our approach can overcome this challenge, and we have
presented a working implementation, VLog (for Vertical Datalog), which exhibits
significant memory savings while remaining competitive in terms of performance.
More recently, we have further extended VLog to support both RDF and rela-
tional database management systems to store the KGs upon which reasoning is
performed.

In this extended abstract, we summarize the main contributions in our recent
work and give a short report on recent improvements, including some new eval-
uation results.

2 A Short Introduction to Datalog

To illustrate the basic principles of Datalog reasoning, we give a short example.
Readers looking for a more detailed introduction may wish to consult the full
paper [17]. The following rules use a ternary predicate triple to represent RDF
triples (edges in directed, labelled graphs):
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T(x, v, y) ← triple(x, v, y) (1)
Inverse(v, w) ← T(v, owl:inverseOf, w) (2)

T(y, w, x) ← Inverse(v, w),T(x, v, y) (3)
T(y, v, x) ← Inverse(v, w),T(x,w, y) (4)

T(x, hasPart, z) ← T(x, hasPart, y),T(y, hasPart, z) (5)

The first rule (1) simply copies RDF data from triple to T. Rule (2) “extracts”
an RDF-encoded OWL statement that declares a property to be the inverse
of another. Rules (3) and (4) apply this information to derive inverted triples.
Finally, rule (5) is a typical transitivity rule for the RDF property hasPart.

We follow the common practice in Datalog to distinguish extentional (EDB)
predicates, which store the fixed input data, from intentional (IDB) predicates,
which store the inferred information. This is useful in our setting, since we want
to keep KGs (EDB) in their native databases and represent inferences (IDB) in
memory. In the previous example, the inferred prediates T and Inverse are IDB,
while triple is EDB.

The semantics of Datalog can be defined as the least fixed point of an
iterative bottom-up application of rules, which starts from an input data-
base I = P

0(I) and proceeds to compute increasing sets of inferences P
1(I),

P
2(I), . . . until no further derivations follow. For the above example, consider

an input database I = {triple(a, hasPart, b), triple(b, hasPart, c), triple(hasPart,
owl:inverseOf, partOf)}. Iteratively applying rules (1)–(5) to I, we obtain the
following new derivations in each step, where superscripts indicate the rule used
to produce each fact:

P
1(I) : T(hasPart, owl:inverseOf, partOf)(1) T(a, hasPart, b)(1) T(b, hasPart, c)(1)

P
2(I) : Inverse(hasPart, partOf)(2) T(a, hasPart, c)(5)

P
3(I) : T(b, partOf, a)(3) T(c, partOf, b)(3) T(c, partOf, a)(3)

No further facts can be inferred after this. For example, applying rule (4) to
P
3(I) only yields duplicates of previous inferences.

A naive application of rules as in the example is not practical, and our app-
roach therefore adopts a slightly modified version of the more efficient semi-naive
evaluation [17]. The key idea is to restrict recursive rule applications to cases
that rely on inferences made in the previous step. To this end, one uses more
fine-grained data structures that store the newly derived facts in each step. We
use Δi

p to denote the set of new facts with predicate p derived in step i.

3 VLog: Vertical Datalog

We have implemented our approach to Datalog materialization in our system
VLog, which can evaluate arbitrary (positive) Datalog programs over a range of
databases. VLog was designed to be easy to use, and offers a command line and
a Web interface. The main features of the system include:
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Fig. 1. Column-Based Storage Layout in VLog

1. Support for a variety of database systems that can be the source for the
(EDB) data on which the recursive computation is evaluated.

2. Space-efficient in-memory storage of derivations using column-store technol-
ogy

3. Dynamic optimization techniques for more efficient processing at runtime
4. Combinations of bottom-up and top-down computation strategies
5. Free and open source C++ code available at https://github.com/jrbn/vlog

VLog completely isolates the IDB layer, which is a column-based in-memory
store, from the EDB layer, which can be any database. In addition to an RDF
backend1, VLog also natively supports popular relational databases (MySQL,
MonetDB) and a generic ODBC interface. Datalog rules are specified in a simple
text format.

The heart of VLog is its columnar storage layout for IDB relations. Figure 1
illustrates our approach using the previous example. Each of the IDB tables in
the upper part of the figure is stored column-by-column instead of row-by-row. A
dictionary is used to translate constant names into numeric identifiers. To avoid
costly updates, VLog never inserts new tuples into existing tables, but creates
new tables instead. The figure therefore contains four tables for derivations of
T. This approach is efficient when processing data set-at-a-time, with many new
facts derived and stored in one step. Column-based layouts can safe memory
through simple yet effective data compression, such as run-length-encoding [1],
and by sharing whole columns between multiple tables.

A downside of our approach is that single IDB relations may be stored in
many tables, which adds processing overhead to rule applications. We counter
this effect by several dynamic optimizations that enable us to disregard, at run-
time, the contents of some IDB tables. This can avoid expensive unions and save
significant computation.

The aforementioned techniques are the basis for VLog’s bottom-up material-
ization. In addition, VLog uses top-down reasoning algorithms to pre-compute
(“memoize”) some IDB relations before bottom-up reasoning. We use a heuris-
tics: if an IDB relation can be pre-computed top down within a short time-out,

1 Trident, the in-house RDF triple store used in our earlier work.

https://github.com/jrbn/vlog
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we memoize it; otherwise we leave it for semi-naive bottom-up reasoning. Memo-
ization can simply rule applications significantly, since memoized predicates can
be treated like EDB predicates.

4 Experiments

We present some experimental results that illustrate the performance of VLog
on a laptop.2 Further experiments and methodological details can be found in
our full paper.

Runtime and Memory Usage. In a first experiment, we have compared per-
formance to RDFox [14]. For better comparability with VLog (which does not
support parallel processing yet), we have used the sequential version of RDFox.
Note that RDFox may achieve almost linear speed-ups in multi-processor set-
tings, but memory usage is hardly affected by this. We have used several datasets
here: DBpedia (112M triples), LUBM-1K (133M triples), LUBM-5K (691M
triples), Claros (19M triples), and Claros-S (0.5M triples). Datalog rules were
derived from OWL ontologies, leading to rule sets with a varied number of rules:
from 170 (LUBM L) and 202 (LUBM U) over 2,689 (Claros L) and 2,749 (Claros
LE) up to 9,396 (DBpedia). Table 1 (left) shows the results measured for these
inputs, and the number of IDB facts derived in VLog in each case. As we can
see, VLog shows the hoped-for memory savings while maintaining competitive
performance, even when anticipating some speed-up for RDFox on multi-CPU
systems.

Performance on Different Backends. To investigate the performance of
VLog on various types of database backends, we have used a smaller version of
LUBM (17M triples) with a reduced set of 66 rules. Table 1 (top right) shows the

Table 1. Evaluation results: time [sec] and memory [MB] vs. RDFox (left); time
depending on backend (top right); time vs. SocialLite (bottom right)

2 Macbook Pro; 2.2GHz Intel Core i7; 512GB SDD; 16GB RAM; MacOS Yosemite
OS.
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runtimes for several backends. Trident is our own RDF store, MonetDB (column-
based) and MySQL (row-based) are popular RDBMS for which VLog has custom
bindings, and “ODBC” refers to the use of MonetDB through VLog’s generic
ODBC driver. Trident enjoys performance advantages due to tighter integration
and specialization towards KGs.

Social Network Analysis with Datalog. Finally, we have compared VLog’s
performance to SocialLite, a Datalog-based tool to analyse networks [16]. Here we
used networks from the popular SNAP repository: the Google WebGraph (875K
nodes, 5M edges) and a Twitter Network graph (80K nodes, 1.75M edges). For
Google WebGraph we created two smaller samples (sample1: 2M edges; sample2:
1M edges). We used simple Datalog rule sets for two tasks: reachability within
four hops (5 rules) and triangle matching (2 rules). The results for these tasks are
shown in Table 1 (top left). VLog performs significantly faster than SocialLite
even with MonetDB as a backend.

5 Outlook

VLog is still a prototype, but it can already be used productively in applica-
tions that require rule-based reasoning. Our evaluation indicates that it is a
viable alternative to existing Datalog engines, with competitive runtimes at a
significantly reduced memory consumption. At the same time, our experiments
show that some tasks are still difficult for current systems, which motivates fur-
ther research in this field. Current development of VLog is focussed on further
runtime optimizations, the effective use of parallel processing, the expansion of
existing interfaces and general usability improvements.

Acknowledgments. This work was partially funded by COMMIT, the NWO VENI
project 639.021.335, and the DFG in grant KR 4381/1-1 and CRC 912 HAEC.
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Abstract. We present a method for detecting driver frustration from
both video (driver’s face) and audio (driver’s voice) streams captured
during the driver’s interaction with an in-vehicle voice-based naviga-
tion system. We analyze a dataset of 20 drivers that contains 596 audio
epochs (audio clips, with duration from 1 sec to 15 sec) and 615 video
epochs (video clips, with duration from 1 sec to 45 sec). The dataset
is balanced across 2 age groups, 2 vehicle systems, and both genders.
The model was subject-independently trained and tested using 4-fold
cross-validation. We achieve an accuracy of 77.4 % for detecting frustra-
tion from a single audio epoch and 81.2 % for detecting frustration from
a single video epoch. We then treat the video and audio epochs as a
sequence of interactions and use decision fusion to characterize the trade-
off between decision time and classification accuracy, which improved the
prediction accuracy to 88.5 % after 9 epochs.

Keywords: Frustration detection · Affective computing · Voice con-
trol · Voice navigation system · HCI · SVMs

1 Introduction

The question of how to design an interface in order to maximize driver safety has
been extensively studied over the past two decades [13]. Numerous publications
seek to aid designers in the creation of in-vehicle interfaces that limit demands
placed upon the driver [10]. As such, these efforts aim to improve the likelihood
of driver’s to multi-task safely. Evaluation questions usually take the form of “Is
HCI system A better than HCI system B, and why?”. Rarely do applied evalua-
tions of vehicle systems consider the emotional state of the driver as a component
of demand that is quantified during system prove out, despite of numerous stud-
ies that show the importance of affect and emotions in hedonics and aestetics to
improve user experience [8]. The work in this paper is motivated by a vision for
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(a) Class 1: Satisfied with Voice-Based In-
teraction

(b) Class 2: Frustrated with Voice-Based
Interaction

Fig. 1. Representative video snapshots from voice navigation interface interaction for
two subjects. The subject (a) self-reported as not frustrated (satisfied) with the inter-
action and the (b) subject self-reported as frustrated (frustrated).

an adaptive system that is able to detect the emotional response of the driver
and adapt, in order to aid driving performance. The critical component of this
vision is the detection of emotion in the interaction of the human driver with
the driver vehicle interface (DVI) system. We consider the binary classification
problem of a “frustrated” driver versus a “satisfied” driver annotated based on
a self-reported answer to the following question: “To what extent did you feel
frustrated using the car voice navigation interface?” The answers were on a scale
of 1 to 10 and naturally clustered into two partitions as discussed in Sect. 2. As
presented in Fig. 1, the “satisfied” interaction is relatively emotionless, and the
“frustrated” interaction is full of affective facial actions.

The task of detecting drivers’ frustration has been researched in the past [1].
Boril et al. exploited the audio stream of the drivers’ speech and discriminated
“neutral” and “negative” emotions with 81.3 % accuracy (measured in Equal
Accuracy Rate – EAR) across 68 subjects. This work used SVMs to discrimi-
nate between classes. The ground truth came from one annotation sequence. A
“humored” state was presented as one of the 5 “neutral” (non-negative) emo-
tions. This partitioning of emotion contradicts our findings that smiling and
humor are often part of the response by frustrated subject.

Contributions. We extend this prior work by (a) leveraging audiovisual data
collected under real driving conditions, (b) using self-reported rating of the frus-
tration for data annotation, (c) fusing audio and video as complimentary data
sources, and (d) fusing audio and video streams across time in order to charac-
terize the trade-off between decision time and classification accuracy. We believe
that this work is the first to address the task of detecting self-reported frustration
under real driving conditions.

2 Dataset for Detecting Frustration

The dataset used for frustration detection was collected as part of a study for
multi-modal assessment of on-road demand of voice and manual phone calling
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and voice navigation entry across two embedded vehicle systems [9]. Partici-
pants drove one of two standard production vehicles, a 2013 Chevrolet Equinox
(Chevy) equipped with the MyLink system and a 2013 Volvo XC60 (Volvo)
equipped with the Sensus system.

For the frustration detection task we selected 20 subjects from the initial
dataset of 80 such that our selection spanned both vehicles, gender (male, female)
and four age groups (18–24, 25–39, 40–54, 55 and older). This pruning step was
made for two reasons. First, a significant amount of videos had poor lighting
conditions where extraction of facial expressions was not possible or was very
difficult. To address this issue, we discarded subjects where less than 80 % of
video frames contained a successfully detected face. We applied the face detector
described in [4] that uses a Histogram of Oriented Gradients (HOG) combined
with a linear SVM classifier, an image pyramid, and a sliding window detection
scheme. Second, a substantially higher proportion of subjects self-reported low
frustration level (class “satisfied”), thus we had to select our subjects viligantly
to keep the dataset balanced and have both classes represented equally.

It is important to note that all subjects drove the same route and all tasks
were performed while driving. For this paper, we focused in on the navigation
task. After each task, subjects completed a short written survey in which they
self-reported the workload and rated an accomplished task, including their frus-
tration level on a scale from 1 to 10, with 1 being “not at all” and 10 “very”. The
question that the subjects were asked to answer is as follows: “To what extent did
you feel frustrated using the car voice navigation system?”. We found that the
navigation system task had a clustering of responses for self-reported frustration
that naturally fell into two obvious classes, after removing the minority of “neu-
tral” responses with self-reported frustration level from 4 to 6. The “frustrated”
class contained all subjects with self-reported frustration level between 7 and 9,
and “satisfied” class contained all subjects with self-reported frustration level
from 1 to 3. There are two different types of epochs: (1) audio epochs, where
subjects are dictating commands to the machine, and (2) video epochs, where
subjects are listening to a response from the machine and signaling frustration
through various facial movements.

3 Methods

3.1 Audio Features

In contrast to large scale brute-force feature sets [11], a smaller, expert-
knowledge based feature set has been applied. In fact, a minimalistic standard
parameter set reduces the risk of over-fitting in the training phase as compared
to brute-forced large features sets, which in our task is of great interest. Recently,
a recommended minimalistic standard parameter set for the acoustic analysis of
speaker states and traits has been proposed in [2]. The proposed feature set is
the so-called Geneva Minimalistic Acoustic Parameter Set (GeMAPS). Features
were mainly selected based on their potential to index affective physiological
changes in voice production, for their proven value in former studies, and for
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their theoretical definition. Acoustic low-level descriptors (LLD) were automat-
ically extracted from the speech waveform on a per-chunk level by using the
open-source openSMILE feature extractor in its 2.1 release [3].

3.2 Video Features

We used automated facial coding software to extract features from the videos.
The software (Affdex - Affectiva, Inc.) has three main components. First, the
face is detected using the Viola-Jones method [14] (OpenCV implementation).
Thirty-four facial landmarks are then detected using a supervised descent based
landmark detector and an image region of interest (ROI) is segmented. The
ROI includes the eyes, eyebrows, nose and mouth. The region of interest is
normalized using rotation and scaling to 96× 96 pixels. Second, histogram of
oriented gradient (HOG) features are extracted from the ROI within each frame.
Third, support vector machine classifiers are used to detect the presence of each
facial action. Details of how the classifiers were trained and validated can be
found in [12]. The facial action classifiers return a confidence score from 0 to
100. The software provided scores for 14 facial actions. In addition to facial
actions we used the three axes of head pose and position of the face (left and
right eye corners and center of top lip) as observations from which to extract
features. For each epoch the mean, standard deviation, minimum and maximum
values for each action, head pose and position metric were calculated to give 60
video features ((14 actions + 3 head pose angles + 3 landmark positions)*4).

3.3 Classifier

We used a Weka 3 implementation of Support Vector Machines (SVMs) with the
Sequential Minimal Optimization (SMO), and audio and video features described
in Sect. 3 [5]. We describe a set of SMO complexity parameters as:

C ∈ {10−4, 5 × 10−4, 10−3, 5 × 10−3, ..., 1}. (1)

For each SMO complexity parameter C from (1) we upsampled the feature vec-
tors (one per epoch) from the original datasets to balance the number of epochs
per class by calculating the upsampling factors. An average upsampling factor
across four folds is 1.03 for the “frustrated” class and 1.24 for the “satisfied”
class. We kept the original datasets, and produced an additional upsampled
dataset for further experiments. We then (a) normalized and (b) standardized
both upsampled and original datasets for each SMO complexity parameter C,
and obtained 36 different configurations per fold. We carried out 144 experiments
across four folds, computed accuracy, and selected the configuration that gave
us the best average result. The term “accuracy” stands for Unweighted Average
Recall (UAR).
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4 Results

We used features and a classifier as described in Sect. 3 and achieved an accuracy
of 77.4 % for “audio” epochs and 81.2 % for “video” epochs as presented in
Table 1. The epoch type column indicates whether the human or the machine are
speaking and data source indicates the source of the signal which is being used
for extracting features. The presented results are the average accuracy for the
subject-independent cross-validation over four folds.

Table 1. Results for predicting frustration from a single epoch of audio and video.

Epoch type Data source C Acc. (%)

Machine speaking Video 1e−3 81.2

Human speaking Audio 5e−3 77.4

In order to characterize the tradeoff between classification accuracy and the
duration of the interaction, we fused the predictions from consecutive epochs
for both video and audio using a majority vote fusion rule [7]. The interaction
of the driver with the voice-based system is a sequence of mostly-alternating
epochs of face video data and voice data. In presenting the results, we consider
two measures of duration: (1) de is the duration in the number epochs and (2)
ds is the duration in the number of seconds. Both measures are important for
the evaluation of systems performance, since classifier decisions are made once
per epoch (as measured by de) but the driver experiences the interaction in real-
time (as measured by ds). The fused results for up to 17 epochs are presented
in Fig. 2 where duration de is used. The average accuracy is shown with the red
line and the accuracy for each of the four folds is shown with the gray line. The
average accuracy does not monotonically increase with the number of predictions
fused. Instead, it slightly fluctuates due to a broad variation in complexity of the
underlying subtasks. An average accuracy of 88.5 % is achieved for an interaction
that lasts approximately 1 min but a lower average accuracy of 82.8 % is achieved
for an interaction that lasts approximately 2 minutes. Evaluation over one of the
folds in Fig. 2 achieves 100 % accuracy after 9 epochs. This is possible due to
the fact that the number of epochs for total interaction varies between subjects,
and the reported accuracy for a specific duration de is averaged over only the
interactions that last at least that long. It follows that with the longer durations
de (x-axis), the number of subjects over which the accuracy is averaged decreases
and the variance of the accuracy increases.

We used a Weka implementation of the Information Gain (IG) feature eval-
uation to rank video features [6]. Then, we grouped features into the feature
categories by summing corresponding category IG ranking values for mean,
maximum, minimum and standard deviation. Each feature category represents
one action, i. e., inner brow rise, nose wrinkle or lip depressor. The 5 best dis-
criminating feature categories are: (1) horizontal location of the left eye corner,
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Fig. 2. Trade-off between fused prediction accuracy and the number of epochs per
interaction (de).

(2) horizontal location of the top of the mouth, (3) horizontal location of the
right eye corner, (4) the angle of head tilt (i.e. rotation of the head about an
axis that passes from the back of the head to the front of the head), and (5)
smile confidence (on a scale of 0–100). We ranked only video features to select
the most interesting epochs for our presentation video: http://lexfridman.com/
driverfrustration.

5 Conclusion

We presented a method for detecting driver frustration from 615 video epochs
and 596 audio epochs captured during the driver’s interaction with an in-vehicle
voice-based navigation system. The data was captured in a natural driving con-
text. Our method has been evaluated across 20 subjects that span over differ-
ent demographic parameters and both cars that were used in our study. This
method resulted in an accuracy of 81.2 % for detecting driver frustration from
the video stream and 77.4 % from the audio stream. We then treated the video
and audio streams as a sequence of interactions and achieved 88.5 % accuracy
after 9 epochs by using decision fusion. Future work will include additional data
streams (i. e., heart rate, skin conductance) and affective annotation methods
to augment the self-reported frustration measure.
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Inconsistency in Gödel’s Ontological Theory

Christoph Benzmüller1(B) and Bruno Woltzenlogel Paleo2

1 Freie Universität Berlin, Berlin, Germany
c.benzmueller@fu-berlin.de

2 Australian National University, Canberra, Australia
bruno.wp@gmail.com

Abstract. This paper discusses the inconsistency in Gödel’s ontological
argument. Despite the popularity of Gödel’s argument, this inconsistency
remained unnoticed until 2013, when it was detected automatically by
the higher-order theorem prover Leo-II. Complementing the meta-logic
explanation for the inconsistency available in our IJCAI 2016 paper [6],
we present here a new purely object-logic explanation that does not rely
on semantic argumentation.

1 Introduction

Kurt Gödel’s ontological argument for the existence of God [9, 14] is amongst
the most discussed formal proofs in modern literature. A rich body of publi-
cations – including very recent ones – present, discuss, assess, criticize, modify
and improve Gödel’s original work (see e.g. Sobel [15] and Oppy [12] and the
references therein).

Scott’s version of Gödel’s argument was automatically reconstructed by
higher-order automated theorem provers [4] and its correctness was verified step-
by-step in the Coq proof assistant [5]. To bridge the gap between higher-order
logics (HOL; cf. [1] and the references therein), as used by these systems, and
higher-order modal logics (HOML; cf. [10] and the references therein), on which
the ontological argument is based, the logic embedding approach [2, 4] was used.

However, Gödel’s original axioms, as used in his manuscript [9], are inconsis-
tent. This fact has remained unnoticed to philosophers until 2013, when Leo-II
[3] found a surprising refutation of the axioms. In [6] we extracted from Leo-II’s
machine-oriented refutation an informal and human-oriented intuitive explana-
tion for the inconsistency, and we reconstructed and verified it in the Isabelle
proof assistant. But that explanation relied on reasoning at the meta-logic (HOL)
level, which was only possible because of the embedding. Here we complement
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that work with a purely object-logic (HOML) explanation, and we compare and
formalize both explanations in the Coq proof assistant.

Applications of (first-order) theorem proving technology in metaphysics were
first reported by Fitelson, Oppenheimer and Zalta [8, 11]. Later on, Rushby [13]
used the PVS proof assistant. Common to both works is a significant amount
of proof-hand-coding work as well as their focus on a non-modal formalization
of St. Anselm’s simpler and older ontological argument.

Fig. 1. Scott’s consistent axioms (left) and proof of the inconsistency of (a subset of)
Gödel’s original axioms (right)

2 An Essential Difference in the Definitions of Essence

Gödel’s manuscript can be considered a translation of Leibniz’s ideas on the
argument into modern modal logic. Gödel discussed his manuscript with Scott,
who shared a slightly different version with a larger public. Scott’s version of the
axioms and definitions, formalized in Isabelle, is shown in Fig. 1. The main
difference to Gödel’s version is an extra conjunct in the definition of essence
(ess). For Scott, an essential property of an individual must be possessed by
him/her. For Gödel, this is not required.

Gödel’s omission has been considered inessential and merely an oversight by
many. For more than four decades, its serious consequences remained unnoticed,
despite numerous analyses and criticisms of the argument. However, as explained
here, the extra conjunct is in fact crucial. Without it, Gödel’s original axioms are
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inconsistent. With it, Scott’s axioms are consistent (cf. Fig. 1, where the model
finder Nitpick [7] confirms consistency). In personal communication, Dana Scott
confirmed that he was unaware that Gödel’s original axioms were inconsistent.

3 Automating HOML in HOL

In our experiments in this branch of metaphysics we utilize an embedding of
HOMLs, such as K, KB and S5 with various domain conditions (possibilist
and actualist quantification), in HOL. More precisely, formulas in HOML are
lifted, i.e., converted into predicates over worlds, which are themselves explic-
itly represented as terms. The logical constants of HOML are translated to
HOL terms in such a way that, for instance, �ϕ and �ϕ (relative to a current
world w0) are mapped, respectively, to the HOL formulas ∀w.(rw0w)→(ϕw) and
∃w.(rw0w)∧ (ϕw). This form of embedding is precisely the well-known standard
translation, which is here intra-logically realized — and extended for quanti-
fiers — in HOL by stating a set of equations defining the logical constants. The
resulting logic is the HOML K with rigid terms and constant domains (possibilist
quantifiers). Other logics (e.g. KB, S5) are embedded by adding axioms that
restrict the accessibility relation r. Varying domains and actualist quantifiers
can be simulated by using an existence predicate to guard the quantifiers.

4 Intuitive Explanations for the Inconsistency

In the typical workflow during an attempt to prove a conjecture with a theorem
prover, it is customary to check the consistency of the axioms first. For if the
axioms are inconsistent, anything (including the conjecture) would be trivially
derivable in classical logic (ex falso quodlibet). Surprisingly, when this routine
check was performed on Gödel’s axioms [4], the Leo-II prover claimed that
the axioms were inconsistent. Unfortunately, the refutation generated by Leo-
II was barely human-readable. The refutation was based on machine-oriented
inference rules (a higher-order resolution calculus [3]), and the text file had 153
lines (with an average of 184 characters per line) and used a machine-oriented
syntax (TPTP THF [16]).

Although Leo-II’s resolution refutation is not easy to read for humans, it
did contain relevant hints to the importance of the empty property1 λx.⊥ (also
denoted ∅, as in HOL it is customary to think of unary predicates as sets)2. Based
on this hint, we conceived the following informal explanation for the inconsis-
tency of Gödel’s axioms (reproduced without change from [6]):
1 Note that the terms for the empty property (λx.⊥) and for the property of self-

difference (λx.x �= x) have identical denotations in the logic setting with functional
and Boolean extensionality assumed here. For the proof to go through, it is irrelevant
which property is used.

2 An additional lambda abstraction occurs in the empty property in Leo-II’s proof
(and in the reconstruction in Isabelle) because the embedding approach lifts the
boolean type o to ι→o.
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1. From Gödel’s definition of essence (φ ess x ↔ ∀ψ(ψ(x)→�∀y(φ(y)→ψ(y))))
it follows that the empty property (or self-difference) is an essence of every
individual
(Empty Essence Lemma): ∀x (∅ ess x)

2. From axiom A5 (‘necessary existence’ is a positive property: P (NE ) ) and the-
orem T1 (Positive properties are possibly exemplified : ∀φ[P (φ)→�∃xφ(x)]),
it follows that NE is possibly exemplified: �∃x[NE (x)]

3. Expanding
the definition of ‘necessary existence’ (NE (x) ≡ ∀φ[φ ess x→�∃yφ(y)]), the
following is obtained: �∃x[∀ϕ[ϕ ess x→�∃y[ϕ(y)]]]

4. The sentence above holds for all ϕ and thus, in particular, for the empty
property (or self-difference): �∃x[∅ ess x→�∃y[∅(y)]]

5. By the Empty Essence Lemma, the antecedent of the implication above is
valid. Therefore, the sentence above entails: �∃x[�∃y[∅(y)]]

6. By definition of ∅: �∃x[�⊥]
7. As the existential quantifier is binding no variable within its scope, the sen-

tence is equi-valid with: ��⊥
8. To see that the sentence above is contradictory, we may reason semantically,

thinking of possible worlds. If w0 is the arbitrary current world, the � operator
forces the existence of a world w accessible from w0 such that �⊥ is true in
w. But �⊥ can only be true in w, if there is no world w′ accessible from w. In
logics3 with a reflexive or symmetric accessibility relation (e.g. KB), it is easy
to see that there must be a world w′ accessible from w: either w′ itself, in case
of a reflexive relation, or w0, in case of a symmetric relation. In fact, even in
K, with no accessibility condition, there must be a world w′ accessible from
w. The reason is that ��⊥ should be valid (true in all worlds). Therefore,
it is true in w as well, where the existence of an accessible world w′ is forced
by the � operator. As a model for ��⊥ (which is a consequence of Gödel’s
axioms) cannot be built, Gödel’s axioms are inconsistent.

If we were to convert the informal proof above to a formal proof, the semantic
reasoning in step 8 would require a leap to the meta-logic (HOL), in order to
expand the definitions of modal operators and reason directly about possible
worlds. The alternative proof below avoids this leap and remains purely within
the object logic (HOML K):

8*. We must derive ⊥ from ��⊥. In order to derive ⊥, it suffices to show that
there exists a derivable proposition such that its negation is also derivable.
We choose ��⊥ as the candidate proposition, and hence we must show that:

3 Interestingly, the refutation automatically generated by Leo-II uses a symmetric
accessibility relation, and thus requires the modal logic KB. The informal, human-
constructed refutations described here, on the other hand, requires only the weaker
modal logic K. In our experiments Leo-II (like all other HOL provers) was still
too weak to automatically prove the inconsistency already in logic K. Hence, this
remains an open problem for automated theorem provers.
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(a) ¬��⊥ is derivable: this proposition is equi-valid to ��
, which is triv-
ially derivable from 
 by two applications of the necessitation inference
rule.

(b) ��⊥ is derivable: and indeed, it can be derived (using a recently devel-
oped natural deduction calculus for modal logic K [5]) as follows:

An interesting and unusual feature of the derivation shown above is that
the leftmost �E (diamond elimination) inference derives a formula (�⊥) that is
never used as a premise. This is necessary because of the eigen-box condition,
which requires that every box must be accessed by exactly one strong modal
rule. The purpose of the strong �E inference is merely to create and access
the innermost box that is needed by the weak �E and �I inferences inside the
outermost box.

The proofs above have been formalized and verified step-by-step in Coq.
The complete proofs can be found in https://github.com/FormalTheology/
GoedelGod. The following Coq script shows the formalization of step 8 of the
meta-logic proof.

The other Coq scripts below show the formalization of step 8* of the object-logic
proof.

Due to a deliberate and disciplined use of only the simplest (and non-automatic)
Coq tactics, there is a straightforward correspondence between the tactics used

https://github.com/FormalTheology/GoedelGod
https://github.com/FormalTheology/GoedelGod
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in the scripts above and the inference rules of the modal natural deduction cal-
culus [5]. Therefore, the lengths of the proof scripts (in number of tactic appli-
cations) can serve as estimations for the lengths of the corresponding natural
deduction proof. It is noticeable that the meta-logic proof is significantly shorter
than the pure object-logic proof. An in-depth analysis reveals that the reasoning
about the possible worlds semantics in the meta-logic proof acts as a short-cut:
when it becomes impossible (in step 8) to build the third world w′ (because
⊥ would have to hold in it, and thus w′ would be contradictory), a contradic-
tion at the HOL level can be immediately derived, completing the proof. In the
object-level proof, on the other hand, such a contradiction has to be found in the
arbitrary initial world w. This requires not only additional tedious logical infer-
ences (cf. the proofs of the lemmas mimplies to mnot and dia not not box),
but also a non-trivial guessing of the contradictory proposition ��⊥, whose
purpose is precisely to carry over the contradiction from w′ back to w.

5 Conclusion

The axioms and definitions in Gödel’s manuscript are inconsistent (even in the
weakest modal logic K); this was detected automatically by the prover Leo-II. In
our previous work [6], we presented a human-readable and intuitive meta-logic
explanation for the inconsistency, and we formalized and semi-automatically
reconstructed it in the Isabelle proof assistant. Here this work was extended
with an object-level explanation, and both explanations were formalized step-
by-step in Coq proof assistant. A comparison of the formal Coq proofs of both
explanations revealed that the meta-logic reasoning is more powerful, because
it enables shortcuts and, therefore, requires fewer inferences and guesses. We
conjecture that this is not accidental, but rather a fundamental reason why the
embedding approach is effective in practice.

It is kind of entertaining that our work reveals a mistake in Gödel’s man-
uscript and at same time further substantiates Gödel’s belief that “there is a
scientific (exact) philosophy and theology, which deals with concepts of the high-
est abstractness; and this is also most highly fruitful for science.” [17, p. 316].
Indeed, through the investigation of Gödel’s mistake, we have been led to an
interesting little conjecture in automated reasoning and proof theory (the global
axiom ��⊥ is inconsistent).
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Abstract. Tableaux-based methods were among the first techniques
proposed for Linear Temporal Logic satisfiability checking. The earli-
est tableau for LTL by [21] worked by constructing a graph whose path
represented possible models for the formula, and then searching for an
actual model among those paths. Subsequent developments led to the
tree-like tableau by [17], which works by building a structure similar to
an actual search tree, which however still has back-edges and needs mul-
tiple passes to assess the existence of a model. This paper summarizes
the work done on a new tool for LTL satisfiability checking based on a
novel tableau method. The new tableau construction, which is very sim-
ple and easy to explain, builds an actually tree-shaped structure and it
only requires a single pass to decide whether to accept a given branch or
not. The implementation has been compared in terms of speed and mem-
ory consumption with tools implementing both existing tableau methods
and different satisfiability techniques, showing good results despite the
simplicity of the underlying algorithm.

1 Introduction

Linear Temporal Logic (LTL) is a modal logic useful to reason about proposi-
tions whose truth value depends on a linear and discrete flow of time. Initially
introduced in the field of formal methods for the verification of properties of
programs and circuit designs [13], it has found applications also in AI, e.g., as a
specification language for temporally extended goals in planning problems [3].

The most studied problem regarding LTL is probably model checking, i.e., the
problem of establishing whether a given temporal structure satisfies an LTL for-
mula. However, satisfiability checking, that is, the problem of deciding whether a
formula has a satisfying model in the first place, has also received a lot of atten-
tion. After being proved to be PSPACE-complete [18], the satisfiability problem
for LTL was solved by a number of different methods developed over the years.

Original paper appeared at the 25th International Joint Conference on Artificial
Intelligence (IJCAI), 2016.
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First of all, LTL satisfiability can be easily reduced to the model checking prob-
lem, for which a number of successful techniques exist [5]. Substantial work has
also been devoted to methods based on temporal resolution, first pioneered by
Cavalli and Fariñas del Cerro, and later refined by [8] in [7, 8]. Temporal reso-
lution is also at the core of the more recent labeled superposition method [19],
which proved to be very fast in practice. See [15, 16, 20] for comprehensive
experimental comparisons among the tools implementing these techniques.

This paper focuses on tableau-based decision procedures for LTL, which were
among the first satisfiability checking methods proposed for it. The first tableau-
based method for LTL has been proposed by [21]. His tableau works by first
building a graph-shaped structure, and then performing a number of operations
on this graph. Thus, it can be classified as a graph-shaped and multiple-pass
tableau method. An incremental version, which does not require to build the
whole graph, was later proposed in [10]. In a subsequent development by [17], a
tree-like tableau was proposed which, according to experimental comparisons [9],
outperformed the graph-shaped one. The major breakthrough of this new tableau
was that of being single-pass. While the shape of [17]’s tableau is arguably similar
to a tree, it is actually still a graph since a number of back-edges have to be
maintained. Moreover, the extraction of an actual model from the built tableau
is possible, but it requires some work.

Here, we describe an original tool to check LTL satisfiability based on the tree-
shaped tableau proposed in [14]. A detailed account of the tool and of relevant
experiments can be found in [4]. In contrast to the tableau by [17], an actual tree
is built, and a successful branch directly provides the corresponding satisfying
model. Moreover, the tableau rules are very easy to explain and to reason about,
but, despite this simplicity, an efficient implementation has shown to offer good
average performance on a number of standard benchmarks.

The next sections are organized as follows. Section 2 introduces LTL syntax
and semantics, and it quickly describes how previous tableau-based methods
behave. Section 3 gives a short account of the new one-pass tree-shaped tableau,
and it summarizes the result of experimental comparisons that were reported in
[4]. Section 4 outlines possible future developments of the work.

2 Tableau-Based Methods for LTL

Before illustrating tableau-based decision procedures for LTL, we briefly recap
syntax and semantics of the logic. An LTL formula is obtained from a set Σ of
proposition letters by possibly applying the usual Boolean connectives and the
two temporal operators X (tomorrow) and U (until). Formally, LTL formulae φ
are generated by the following syntax:

φ := p | ¬φ1 | φ1 ∨ φ2 | Xφ1 | φ1 U φ2, (1)

where φ1 and φ2 are LTL formulae and p ∈ Σ. Standard derived Boolean con-
nectives can also be used, together with logical constants ⊥ ≡ p ∧ ¬p, for p ∈ Σ,
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and � ≡ ¬⊥. Moreover, two derived temporal operators Fφ ≡ �U φ (eventually)
and Gφ ≡ ¬F¬φ (always) are defined.

LTL formulae are interpreted over temporal structures. A temporal structure
is a triple M = (S,R, g), where S is a finite set of states, R ⊆ S × S is a
binary relation, and, for each s ∈ S, g(s) ⊆ Σ. R is the transition relation,
which is assumed to be total, and g is a labeling function, that tells us which
proposition letters are true at each state. Given a structure M , we say that an
ω-sequence of states 〈s0, s1, s2, . . .〉 from S is a full-path if and only if, for all
i ≥ 0, (si, si+1) ∈ R. If σ = 〈s0, s1, s2, . . .〉 is a full-path, then we write σi for si
and σ≥i for the infinite suffix 〈si, si+1, . . .〉 (also a full-path). We write M,σ |= ϕ
if and only if the LTL formula ϕ is true on the full-path σ in the structure M ,
which is defined by induction on the structural complexity of the formula:

– M,σ |= p iff p ∈ g(σ0), for p ∈ Σ,
– M,σ |= ¬ϕ iff M,σ �|= ϕ
– M,σ |= ϕ1 ∨ ϕ2 iff M,σ |= ϕ1 or M,σ |= ϕ2

– M,σ |= Xϕ iff M,σ≥1 |= ϕ
– M,σ |= ϕ1 U ϕ2 iff there is some i ≥ 0 such that M,σ≥i |= ϕ2 and for all j,

with 0 ≤ j < i, it holds that M,σ≥j |= ϕ1

Most existing tableau methods for LTL, including the one described in this
paper, make use of the observation that any LTL formula can be rewritten by
splitting it into two parts, one prescribing something about the current state,
and one talking about the next state. In particular, this is true for formulae
whose outermost operator is a temporal one:

α U β ≡ β ∨ (α ∧ X(α U β)); Fβ ≡ β ∨ XFβ; Gα ≡ α ∧ XGα (2)

Here, the formulae X(α U β) and XFβ are called X-eventualities, i.e., pending
requests that has to be eventually fulfilled somewhere in the future, but that
can for the moment be postponed. Note that Gα does not lead to an eventuality,
since it has to be fulfilled immediately in any case.

The first tableau by [21] starts by building a graph where each node is labeled
by a set of locally consistent formulae belonging to the closure of φ. Each node
collects the relevant formulae that are true at a specific state. Nodes u and v
are connected by an edge if v can be a successor state of u according to the
semantics of the logic. The equivalences shown above are useful in determining
these edges. Paths in the graph represent potential models, which are consistent
when we look at the single transitions. Finding an actual model then consists
of searching for a path that fulfills all the pending eventualities. This approach
requires the construction of the entire graph before the actual search, which
means that an exponential amount of memory was required, which is not opti-
mal with regards to the complexity of the problem, which is PSPACE-complete.
An incremental version of this tableau, which does not require to build the whole
graph beforehand, thus achieving the polynomial space lower bound, was intro-
duced by [10]. Later, a tableau à la Wolper was provided by Lichtenstein and
Pnueli [12] to also handle past temporal operators.
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Marking a significant development, a new one-pass tableau for LTL was intro-
duced by [17]. His tableau method works by building a tree-like structure, more
similar to a search tree. Since the fulfillment of the eventualities in a branch
are checked during the construction, subsequent passes are not needed. While
the tableau structure resembles a tree, it is actually still a sort of cyclic graph
(called loop tree in the original presentation), and the searches performed on
separate branches are not completely independent. Although the complexity of
the decision procedure based on [17]’s tableau is worse than the one by [21], since
it requires doubly exponential time in the worst case, experimental comparisons
[9] have shown that in practice this method outperforms previous tableaux, in
some cases by large margins.

3 A New One-Pass and Tree-Shaped Tableau for LTL

A new one-pass and tree-shaped tableau for LTL was proposed in [14]. A satisfia-
bility checker based on it1, written in C++, and a detailed comparison with pre-
vious tableaux as well as with tools implementing different satisfiability checking
techniques are given in [4].

In contrast to [17]’s one, the new tableau works by building an actual tree.
In the tableau tree for a formula φ, each node is labeled by a set Γ of formulae.
For each ψ ∈ Γ , ψ is a subformula of φ or is a formula of the form Xψ′, where
ψ′ is a subformula of φ. The tree construction starts from the root being labeled
by {φ}. The tree is then built by applying a sequence of rules which, for what
concerns Boolean connectives, resembles the classical tableau for propositional
logic, with disjunctions causing a node to fork into different branches. Temporal
formulae are instead expanded using the already mentioned equivalences from
Sect. 2. A node where no further expansion is possible is said to have a poised
label, and it represents what is true at the current state in the resulting model.
In a poised label, only literals or tomorrow temporal operators are present at
top level. A Step rule is then used to advance the branch to the next temporal
state, by creating a new node whose label includes a formula α for each formula
of the form Xα found in the previous node. If contradictory literals are ever
introduced into a label, the branch is rejected (✗), while if a Step rule results
into an empty label, the branch is accepted (✓), and a model can be extracted
from all the nodes preceding the application of the Step rule from there to the
root of the tree.

These rules alone, however, are insufficient to handle formulae satisfiable
by infinite models only as well as formulae that are unsatisfiable not because of
propositional contradictions but because of unsatisfiable eventualities. To handle
these cases, the following two rules are applied before the Step one. The first,
the Loop rule, accepts a branch each time we find ourselves on a label that have
already been expanded before, and all the eventualities have been fulfilled in
between, meaning that the node needs not to be further expanded because the
repeating part of an ultimately periodic model has been found. The second, the
1 http://www.github.com/corralx/leviathan.

http://www.github.com/corralx/leviathan
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Prune rule, handles unsatisfiable formulae like, for instance, G¬p ∧ q U p, by
ensuring that the tableau expansion does not hang into the infinite expansion of
a branch that would not be able to fulfill the remaining pending eventualities.
The latter is definitely the most sophisticated rule of the tableau system. One of
its distinctive features is that it needs to go through three different nodes with
the same label before crossing the branch.

A complete description of the rules can be found in [14], but it can already be
noted how simple the whole construction is. The space and running time worst
cases are the same as those of the tableau system by [17], but the rules and the
bookkeeping required to apply them is simpler and can be implemented in an
efficient way. The result is an implementation that, despite its simplicity, has
good performance on average both in terms of speed and memory consumption
on a number of standard benchmarks [4].

4 Conclusions and Future Work

In this extended abstract, we described a new one-pass and tree-shaped tableau
for LTL which is very simple to state and to reason about and can be imple-
mented in an efficient way, showing good performance when compared with
previous tableau-based systems. Simplicity may be regarded as its major advan-
tage, that we plan to exploit in future developments. For example, we expect
that its simple search procedure can be augmented with advanced search heuris-
tics like clause-learning techniques used in propositional SAT solvers. SAT and
SMT technologies can also be exploited in order to improve performance when
dealing with temporal formulae that sport large propositional parts.

Such a simple tableau can also be viewed as a useful tool to reason about
theoretical properties of LTL and its extensions. For instance, extending its rules
to support a parametric Xn operator, with n represented succinctly, appears to be
straightforward, and immediately results into an optimal decision procedure for
this simple EXPSPACE extension of LTL. In a similar way, we plan to investigate
the possibility of implementing other LTL extensions on top of this framework,
such as logics that feature metric variants of the until operator [1], past operators
with forgettable past [11], freeze quantifiers [2], finite models [6], and others.
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Abstract. Answer Set Programming (ASP) has recently been employed
to specify and run dynamic programming (DP) algorithms on tree
decompositions, a central approach in the field of parameterized com-
plexity, which aims at solving hard problems efficiently for instances of
certain structure. This ASP-based method followed the standard DP
approach where tables are computed in a bottom-up fashion, yielding
good results for several counting or enumeration problems. However,
for optimization problems this approach lacks the possibility to report
solutions before the optimum is found, and for search problems it often
computes a lot of unnecessary rows. In this paper, we present a novel
ASP-based system allowing for “lazy” DP, which utilizes recent multi-
shot ASP technology. Preliminary experimental results show that this
approach not only yields better performance for search problems, but
also outperforms some state-of-the-art ASP encodings for optimization
problems in terms of anytime computation, i.e., measuring the quality
of the best solution after a certain timeout.

1 Introduction

Answer Set Programming (ASP) [1] is a vibrant area of AI providing a declar-
ative formalism for solving hard computational problems. Thanks to the power
of modern ASP technology [2], ASP was successfully used in many application
areas, including product configuration [3], bio-informatics [4], and many more.

Recently, ASP has been proposed as a vehicle to specify and execute dynamic
programming (DP) algorithms on tree decompositions (TDs). TDs [5] are a
central method in the field of parameterized complexity [6], offering a natural
parameter (called treewidth) in order to identify instances that can be solved
efficiently due to inherent structural features. Indeed, many real-world networks
enjoy small treewidth; problems like Steiner Tree can then be solved in linear

Original paper appeared at the 25th International Joint Conference on Artificial
Intelligence (IJCAI), 2016.

c© Springer International Publishing AG 2016
G. Friedrich et al. (Eds.): KI 2016, LNAI 9904, pp. 257–263, 2016.
DOI: 10.1007/978-3-319-46073-4



258 B. Bliem et al.

time in the size of the network (see, e.g., [7]). Such efficient algorithms process
a TD in a bottom-up manner, storing in each node of the TD a table contain-
ing partial solutions; see, e.g., [8, 9]. The size of these tables is bounded by
the treewidth, which, roughly speaking, guarantees the aforementioned running
times. Abseher et al. [10] proposed a system that calls an ASP solver in each
node of the TD on a user-provided specification (in terms of an ASP program)
of the DP algorithm, such that the answer sets characterize the current table.
Its contents are then handed over to the next call which materializes the table
of the parent node and so on.

Albeit this method proved useful for rapid prototyping of DP algorithms
and performed well on certain instances, there is one major drawback: A table
is always computed in its entirety before the next table is processed. Hence, the
system cannot report anything before it has finished the table of the TD’s root
node (and thus computed all tables entirely). Moreover, this final table implicitly
contains information on all solutions. This leads to situations where unnecessarily
many rows are computed, in particular if we only need one solution. Even worse,
in optimization problems the system cannot give any solution until all solutions
have been obtained.

In this paper, we present an alternative approach to using ASP for DP on
TDs that overcomes these shortcomings. Our method is based on a “lazy” table
computation scheme. In particular, for optimization problems this allows us to
interrupt the run and deliver the best solution found so far.

We first describe our general framework independently of ASP. Then we show
how we use ASP in the core of our algorithm for computing the DP tables. In
contrast to the standard approach from [10], we now require multiple coexisting
ASP solvers that communicate with each other. Achieving this in an efficient
way poses a challenge, however: A naive way would be to restart a solver every
time new information comes in. Alternatively, the recent multi-shot ASP solving
approach [11] might be useful, as it allows us to add information to a solver
while it is running.

We implemented both alternatives and performed an experimental evalua-
tion, which we omitted from this extended abstract. The multi-shot approach
turns out to have clear advantages and the performance of our new “lazy” algo-
rithm is typically superior to the traditional “eager” approach. Finally, on some
problems our system performs better in an anytime setting than the state-of-
the-art ASP system clingo [11].

This extended abstract is based on a longer conference paper [12]. That work
contains pseudocode, a detailed description of our algorithm and experiments,
which we omitted.

Related Work. Anytime algorithms for certain ASP problem have been investi-
gated in the literature. Alviano et al. [13] presented such an algorithm for com-
puting atoms that occur in all answer sets. Nieuwenborgh et al. [14] proposed
an approximation theory for standard answer sets. Also related to our approach,
Gebser et al. [15] propose a method for improving the quality of solutions for opti-
mization problems within a certain time bound. They customize the heuristics
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to find the first solutions faster, with the drawback that checking for optimality
becomes more expensive. In contrast to that, our lazy evaluation method does not
have such undesirable side-effects compared to the eager approach.

2 Background

Answer Set Programming. ASP [1] is a popular tool for declarative problem solv-
ing due to its attractive combination of a high-level modeling language with high-
performance search engines. In ASP, problems are described as logic programs,
which are sets of rules of the form
where each ai is a propositional atom and not stands for default negation. We
call a rule a fact if n = 0, and an integrity constraint if we omit a0. Semantically,
a logic program induces a collection of so-called answer sets, which are distin-
guished models of the program determined by answer sets semantics; see [16] for
details.

To facilitate the use of ASP in practice, several extensions have been devel-
oped. For instance, rules with variables are viewed as shorthand for the set of
their ground instances. Further language constructs include conditional literals
and cardinality constraints [17].

Tree Decompositions. Tree decompositions (TDs), originally introduced in [5],
are tree-shaped representations of (potentially cyclic) graphs. The intuition is
that multiple vertices of a graph are subsumed under one TD node, thus isolating
the parts responsible for cyclicity.

A tree decomposition of a graph G = (V,E) is a pair T = (T, χ) where
T = (N,E′) is a (rooted) tree and χ : N → 2V assigns to each node a set of
vertices (called the node’s bag) as follows: (1) For each vertex v ∈ V , there is
a node n ∈ N such that v ∈ χ(n). (2) For each edge e ∈ E, there is a node
n ∈ N such that e ⊆ χ(n). (3) For each v ∈ V , the subtree of T induced by
{n ∈ N | v ∈ χ(n)} is connected. We call maxn∈N |χ(n)| − 1 the width of T . We
call a node n ∈ N a join node if it has two children with equal bags, and we call
T semi-normalized if all nodes with more than one child are join nodes.

In general, constructing a minimum-width TD is intractable [18]. However,
there are heuristics that give “good” TDs in polynomial time [19–21], and any-
time algorithms that allow for a trade-off between time and width [22]. We can
transform any TD into a semi-normalized one in linear time without increasing
the width [23].

Many computationally hard problems become tractable if the instances admit
TDs whose width can be bounded by a constant. This is commonly achieved by
DP algorithms that traverse a TD in post-order (cf. [8]). We use the following
framework for such computations: At each TD node n, partial solutions for the
subgraph induced by the vertices encountered so far are computed and stored
in a table Tn. When clear from the context, we equate nodes with their tables
(e.g., “child tables” are tables at child nodes). Each table is a set of rows r
consisting of (a) a set items(r) that stores problem-specific data to be handled
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by the DP algorithm, (b) a nonempty set extend(r) of tuples (e1, . . . , ek), where
k is the number of child tables and ei is a row in the i-th child table, and (c)
cost(r) whose intended purpose is to indicate the cost of each (partial) solution
obtainable by recursively combining predecessor rows from extend(r). If the root
table is nonempty in the end, we can obtain complete solutions by recursively
combining rows with their predecessors. To achieve tractability if the width w is
bounded, the size of each table should be bounded by some function f(w).

Traditional TD-based DP algorithms follow an “eager evaluation” approach:
At each decomposition node, they compute a table in its entirety based on the
(entire) child tables. While this is theoretically efficient in many cases (as long
as the width is bounded), it has the property that we cannot give any solution
until all tables are computed and we can construct an optimal solution. In many
practical applications, though, we would like to report the best solution found
after a certain amount of time even if this solution is not optimal. Traditional
DP on TDs lacks such an anytime feature.

3 ASP for Anytime Dynamic Programming on TDs

We present an algorithm that performs DP on TDs via “lazy evaluation” in
contrast to the traditional “eager” approach. The basic idea is that whenever a
new row r is inserted into a table T , we try to extend r to a new row in the parent
table, and we only compute a new row at T if all attempts of extending r have
failed. In the best case, we thus only need to compute a single row at each table
to reach a solution, whereas the eager approach would compute potentially huge
tables. In the worst case, we compute as many rows as the eager approach, with
some additional overhead due to the constant “jumping around” between tables.

For each table T we start an instance of an external solver, denoted by
solverT , which for now we consider as a black box responsible for computing
rows at T when given a combination of child rows. When we compute a row at
table T , there is exactly one row in each child table T ′ that has been marked
as the active row of T ′ (denoted by activeT ′). The meaning of active rows is
the following: At any point of the execution, the tuple (activeT1 , . . . , activeTn

)
indicates the combination of child rows that we are currently trying to extend
to a new row at T . Whenever solverT is invoked, it uses this tuple to construct
row candidates that extend the active rows.

We implemented two further optimizations. First of all, especially TD nodes
with more than one child incur a big computational effort. For this reason, in
addition to our general algorithm that works on every TD, we implemented a
special treatment for semi-normalized TDs that does not call an external solver
at join nodes. Rather, it uses the fact that many DP algorithms produce a row at
a join node if and only if there is a combination of child rows that “fits together”,
which means that they all contain the same “join-relevant” items. Which items
are “join-relevant” depends on the problem. In our implementation, the user can
mark the desired items with a special flag.

This join behavior allows us to greatly restrict the active row combinations
that must be considered. In fact, we can ignore all combinations where some
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activei and activej differ on their “join-relevant” items. Whenever a new row r
is added to a child table, we can quickly identify which rows from the other child
tables can be combined with r. To find such matches, we keep tables sorted and
use binary search.

The second optimization regards the cost bound that is used to discard rows
that are too expensive. A naive algorithm eliminates rows whose cost exceeds
the cost of the best solution found so far. However, we can do better if the
DP algorithm exhibits “monotone costs” (i.e., the cost of a row is at least the
sum of the costs of its origins): Suppose, for example, that T is a table with
children T1, T2, and that T1 is exhausted, which means that all tables below it
are exhausted, too. Then, in a way, we “know everything” about the subgraph G′

induced by the vertices that occur somewhere below T1 but have been forgotten.
In particular, we know that G′ contributes at least a certain amount c to the
cost of every solution, since each solution in part originates from some row in T1.
If the currently best solution has cost k and we now try to compute a new row
at T2, we can restrict ourselves to rows whose cost is below k−c: If a row r at T2

had cost(r) ≥ k− c, any row in T that originates from r would have a cost of at
least k (due to monotonicity) and would thus not lead to a better solution. This
argument can easily be extended to the case where not T1 but some table below
T1 is exhausted, and to the case of more than two child tables. In this way, our
implementation can tighten the cost bound for new rows in many cases, which
often results in significantly fewer rows being computed.

We implemented our algorithm by modifying the publicly available D-FLAT
system [10]. This system so far only allowed for an eager evaluation technique
that works as follows. The user provides an ASP specification Π of a DP algo-
rithm for her problem. At each TD node, D-FLAT runs the ASP system clingo
on Π. From each answer set D-FLAT then extracts a table row. This is done
until the table is complete.

Our lazy evaluation algorithm on the other hand also calls clingo on Π with
the relevant bags and part of the instance as input, but this time we do not
provide the entire child tables. Instead, we only supply the currently active child
rows. Note that we perform grounding only in an initialization step and use the
resulting propositional program for all of the remaining execution. For each item
that may occur in a row from a child table, we declare a corresponding atom
as external. This causes the grounder not to assume these atoms to be false
even though no rule can derive them. Assumption-based solving allows us to
temporarily freeze the truth value of these atoms according to the currently
active rows, compute answer sets, then possibly change the active rows and
repeat the process. Our experiments showed that this technique is far more
efficient than the naive approach of re-grounding the program for each active
row combination.

4 Conclusion

We presented a generic algorithm for performing DP on TDs via lazy evaluation,
and we implemented a system that allows the user to specify the DP steps for
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a particular problem in a declarative language. In contrast to existing solutions
like [10], this allows us to print solutions before the optimum is found. Experi-
ments showed that this is typically more efficient, also for search problems with-
out optimization, and on some problems it outperforms state-of-the-art ASP
systems. We verified that assumption-based solving, a recent advance in ASP
solving technology, is indispensable for good performance.

In the future, we intend to improve efficiency by integrating the ASP solver
tighter and tuning its parameters. Alternatively, it might be interesting to incor-
porate different formalisms instead of ASP. Moreover, for deciding at which table
we should compute a new row, we proposed a round-robin strategy, and we plan
to investigate different strategies. We implemented a branch-and-bound tech-
nique by discarding table rows that are more expensive than the best known
(global) solution so far. Currently, we just ignore models that would induce such
rows. We plan to compare this to a version that adds constraints in ASP instead.
Finally, our experiments indicate that the actual shape of the TD has a high
impact on running times, so techniques from [24] could help.
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Abstract. In this paper, we explore how ontological knowledge
expressed via existential rules can be combined with possibilistic net-
works (i) to represent qualitative preferences along with domain knowl-
edge, and (ii) to realize preference-based answering of conjunctive
queries (CQs). We call these combinations ontological possibilistic net-
works (OP-nets). We define skyline and k-rank answers to CQs under
preferences and provide complexity (including data tractability) results
for deciding consistency and CQ skyline membership for OP-nets. We
show that our formalism has a lower complexity than a similar existing
formalism.

1 Introduction

The abundance of information on the Web requires new personalized filtering
techniques to retrieve resources that best fit users’ interests and preferences.
Moreover, the Web is evolving at an increasing pace towards the so-called Social
Semantic Web (or Web 3.0), where classical linked information lives together
with ontological knowledge and social interactions of users. While the former
may allow for more precise and rich results in search and query answering tasks,
the latter can be used to enrich the user profile, and it paves the way to more
sophisticated personalized access to information. This requires new techniques
for ranking search results, fully exploiting ontological and user-centered data,
i.e., user preferences.

Conditional preferences are statements of the form “in the context of c, a is
preferred over b”, denoted c : a � b [1, 7, 13]. Two preference formalisms that
can represent such preferences are possibilistic networks and CP-nets.
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Fig. 1. Database D

Example 1. Bob wants to rent a car and (i) he prefers a new car over an old
one, (ii) given he has a new car, he prefers it to be black over not black, and (iii)
if he has an old car, he prefers it to be colorful over being black. We have two
variables for car type (new (n) or old (o)) and car color (black (b) or colorful (c)),
T and C, respectively, such that Dom(T )= {n, o} and Dom(C)= {b, c}. Bob’s
preferences can be encoded as � : n � o, n : b � c, and o : c � b. In CP-nets [7],
we have the following ordering of outcomes: nb � nc � oc � ob. That is, a new
and colorful car is preferred over an old and colorful one, which is not a realistic
representation of the given preferences. A more desirable order of outcomes for
Bob would be nb � oc � nc � ob, which can be induced in possibilistic networks
with an appropriate preference weighting in the possibility distribution. ��

We propose a novel language for expressing preferences over the Web 3.0 using
possibilistic networks. It has lower complexity compared to a similar existing for-
malism called OCP-theories [9], which are an integration of Datalog+/− with
CP-theories [13]. This is because deciding dominance in possibilistic networks can
be done in polynomial time, while it is pspace-complete in CP-theories. Every
possibilistic network encodes a unique (numerical) ranking on the outcomes,
while CP-theories encode a set of (qualitative) total orders on the outcomes.
Our framework also allows to specify the relative importance of preferences [1].
Possibilistic networks are also a simple and natural way of representing condi-
tional preferences and obtaining rankings on outcomes, and can be easily learned
from data [5]. We choose existential rules in Datalog+/− as ontology language
for their intuitive nature, expressive power for rule-based knowledge bases, and
the capability of performing query answering.

All details can be found in the full paper [6].

2 Ontological Possibilistic Networks (OP-nets)

See [3, 8] for the basic notions regarding possibilistic networks and Datalog+/–.
Let O = (D,Σ) be a Datalog+/– ontology, where D is a database and Σ a finite
set of tuple-generating dependencies (TGDs) and negative constraints (NCs).

Example 2. Consider the database D in Fig. 1, modeling the domain of an online
car booking system. Moreover, the dependencies

Σ = {offer(V, P, S) → ∃C,F, T specs(S,C, F, T ),
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offer(V, P, S) → ∃R vendor(V,R),
specs(S,C, F, T ) → color(C) ∧ type(T ),
specs(S,C, F, T ) → ∃N feature(F,N),
offer(V, P1, S) ∧ offer(V, P2, S) → P1 = P2 }

say that every offer must have a specification and a vendor and that there cannot
be two equivalent offers from the same company with different prices. We denote
by t1 the term specs(s1, b, f1, o) and by t1 the tuple (s1, b, f1, o). ��

Let now XO be a finite set of variables, where each X ∈ XO corresponds to a
predicate from O, denoted pred(X). The domain Dom(X) consists of at least two
ground atoms p(c1, . . . ck) with p = pred(X). An outcome o ∈ Dom(XO) assigns
to each variable an element of its domain, and can be seen as a conjunction of
ground atoms. An OP-net is of the form (O,Γ), where Γ is a possibilistic network
over XO, i.e., a collection of conditional possibility distributions π(Xi|pa(Xi)),
where pa(Xi) are the parents of Xi. Taken altogether, they define a joint possi-
bility distribution over Dom(XO). An outcome o dominates another outcome o′

(written o � o′) if π(o) > π(o′). This relation can be decided in polynomial time.

Fig. 2. Graph and possibility distribution for Example 3.

Example 3. Consider the OP-net (O,Γ) given by the ontology O of Example 2
and the dependency graph and the conditional possibility distribution in Fig. 2.
Here, we have XO = {CO, RO, FO} with the domains

Dom(CO) = {specs(t1), specs(t2), specs(t3)},

Dom(FO) = {feature(t7), feature(t8), feature(t9)},

Dom(RO) = {vendor(t10), vendor(t11)}.

The parents of FO are {CO, RO}, which in turn do not depend on other variables.
The distribution could either be learned or derived from explicit preferences; see
Example 4 below. The possibilities of outcomes are then computed as

π(COROFO) = π(FO|CORO) ⊗ π(CO) ⊗ π(RO).
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The outcome o with o(CO) = specs(t1), o(RO) = vendor(t10), o(FO) = feature(t7)
represents the conjunction t1 ∧ t10 ∧ t7 and has the possibility 1. ��

Since outcomes are conjunctions of ground atoms, they may be inconsistent
or equivalent w.r.t. Σ. An outcome o of (O,Γ) is consistent if the ontology
Oo = O ∪ {o(X) | X ∈ XO} is consistent. Two outcomes o and o′ are equivalent,
denoted o ∼ o′, if Oo and Oo′ have the same models. An interpretation I for
(O,Γ) is a total preorder over the consistent outcomes in Dom(XO). It satisfies
(or is a model of) (O,Γ) if it is compatible with the dominance and equivalence
relations, i.e., for all consistent outcomes o and o′, (i) if o ≺ o′, then (o, o′) ∈ I
and (o′, o) /∈ I, and (ii) if o ∼ o′, then (o, o′), (o′, o) ∈ I. An OP-net is consistent
if it has at least one consistent outcome and it has a model.

3 Encoding Preferences with OP-Nets

In [9], conditional preferences were generalized to Datalog+/– as follows. Let
Dom+(X) be the set of all (possibly non-ground) atoms p(t1, . . . , tk) with p =
pred(X). An ontological conditional preference ϕ is of the form v : ξ � ξ′, where

– v ∈ Dom+(Uϕ) for some Uϕ ⊆ XO is the context, and
– ξ, ξ′ ∈ Dom+(Xϕ) for some Xϕ ∈ XO − Uϕ.

A ground instance vθ : ξθ � ξ′θ of ϕ is obtained via a substitution θ such that
vθ ∈ Dom(Uϕ) and ξθ, ξ′θ ∈ Dom(Xϕ). Under suitable acyclicity conditions,
one can construct an OP-net (O,Γ) that respects all ground instances of some
given ontological conditional preferences.

Example 4. Consider the ontological conditional preference specs(I, C, F, o) :
vendor(V1, p)� vendor(V2, n), i.e., for an old car, it is preferable to have a ven-
dor with positive feedback. One ground instance for this preference is specs(t1) :
vendor(t10)� vendor(t11). We could choose π(vendor(t10)|specs(t1)) = 1 and
π(vendor(t11)| specs(t1)) = α < 1 to encode this in an OP-net ��
Although possibilistic networks are less expressive than conditional preference
theories (CP-theories) [3, 13], they allow for a more compact encoding of condi-
tional preferences over ground atoms and have lower complexity.

4 Query Answering Under OP-Nets

The notions of skyline and k-rank answers are defined in the same way as for
OCP-theories [9]. In a conjunctive query (CQ), a variable X of the OP-net may
be used to annotate an atom over the predicate pred(X). Hence, an answer
(tuple) a to a CQ q w.r.t. an outcome o is an assignment of the distinguished
variables that can be used to satisfy q in such a way that the marked atoms
of q evaluate to the ones given by o. A skyline answer is an answer w.r.t. an
undominated outcome of the OP-net. CQ skyline membership is the problem
of deciding whether a given tuple is a skyline answer. Similarly, one can define
k-rank answers as the k “most preferred” answers, i.e., those resulting from the
outcomes with the highest possibilities.
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Example 5. Consider the consistent OP-net (O,Γ) of Example 3 and the CQ
q(C,F, T,N) = ∃I specs(I, C, F, T ) ∧ feature(F,N). Then, 〈b, f1, o, ac〉 is the
skyline answer under the consistent outcome t1∧t10∧t7. The skyline answer for
q′(C, T ) = ∃N q(C, f2, T,N) is 〈c, n〉 with possibility π(t2t10t8) = 0.5 · 1 · 0.7 =
0.35, while the 2-rank answer is 〈〈c, n〉, 〈c, o〉〉. Hence, if feature f2 is mandatory,
the offered new and colorful car is preferred over the old and colorful one, mainly
due to positive feedback about vendor v1. ��

5 Computational Complexity

We now analyze the computational complexity of the consistency and CQ skyline
membership problems for OP-nets. We assume familiarity with the complexity
classes ac

0, p, np, co-np, Δp

2, Σp

2, Πp

2, Δp

3, pspace, exp, and 2exp. The class
d
p = np ∧ co-np (resp., dp

2 = Σp

2 ∧ Πp

2) is the class of all problems that are the
intersection of a problem in np (resp., Σp

2) and a problem in co-np (resp., Πp

2).
Following Vardi’s taxonomy [12], the combined complexity is calculated by

considering all the components, i.e., the database, the set of dependencies, and
the query, as part of the input. The bounded-arity combined (ba-combined) com-
plexity assumes that the arity of the underlying schema is bounded by a constant.
For example, in description logics (DLs) [4], the arity is always bounded by 2.
The fixed-program combined (fp-combined) complexity is calculated by consider-
ing the set of TGDs and NCs as fixed. Finally, for data complexity, we take only
the size of the database into account.

Although CQ answering in Datalog+/– is undecidable in general, there exist
many syntactic conditions that guarantee decidability. We refer the reader to [6]
for a short overview of the classes of acyclic (A), guarded (G), and sticky (S)
sets of TGDs, their “weak” counterparts WA, WG, and WS, linear TGDs (L),
full TGDs (F), and the combinations AF, GF, SF, and LF.

Our complexity results for the consistency and the CQ skyline membership
problems for OP-nets are compactly summarized in Tables 1 and 2, respectively.
Compared to OCP-theories [9], we obtain lower complexities for L, LF, AF, G, S,
F, GF, SF, WS, and WA in the fp-combined complexity (completeness for dp and
Δp

2, respectively, rather than pspace), and for L, LF, AF, S, F, GF, and SF in the
ba-complexity (completeness for d

p

2 and Δp

3, respectively, rather than pspace).

Theorem 6. Let T be a class of OP-nets (O,Γ). If checking non-emptiness of
the answer set of a CQ w.r.t. O is in a complexity class C, then consistency in T
is in np

C ∧ co-npC and CQ skyline membership in T is in p
np

C
. If C =np and

we consider the fp-combined complexity, then consistency in T is in d
p and CQ

skyline membership in T is in Δp

2.

In particular, for C =pspace, we obtain inclusion in pspace for both prob-
lems, and the same for any deterministic complexity class above pspace. For
C =np, we get the classes d

p

2 and Δp

3. The lower bounds pspace and above
follow from consistency and equivalence of outcomes being as powerful as check-
ing entailment of arbitrary ground CQs. The remaining lower bounds for the
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Table 1. Complexity of deciding consistency of OP-nets

Class Comb ba-comb fp-comb Data

L, LF, AF pspace d
p

2 d
p in ac

0

G 2exp exp d
p

p

WG 2exp exp exp exp

S, SF exp d
p

2 d
p in ac

0

F, GF exp d
p

2 d
p

p

WS, WA 2exp 2exp d
p

p

Table 2. Complexity of deciding CQ skyline membership for OP-nets

Class Comb. ba-comb. fp-comb. Data

L, LF, AF pspace Δp

3 Δp

2 in ac
0

G 2exp exp Δp

2 p

WG 2exp exp exp exp

S, SF exp Δp

3 Δp

2 in ac
0

F, GF exp Δp

3 Δp

2 p

WS, WA 2exp 2exp Δp

2 p

(fp-/ba-)combined complexity hold already if only NCs are allowed, and are
shown by reductions from variants of the validity problem for QBFs. For exam-
ple, the problem of deciding, given a valid formula ∃X∀Yϕ(X,Y) where ϕ(X,Y)
is a propositional 3-DNF formula, whether the lexicographically maximal satis-
fying truth assignment for X= {x1, . . . , xn} maps xn to true is Δp

3-complete [11].
Finally, we can show that tractability in data complexity for deciding con-

sistency and CQ skyline membership for OP-nets carries over from classical CQ
answering. Here, data complexity means that Σ and the variables and possibility
distributions of Γ are both fixed, while D is part of the input.

Theorem 7. Let T be a class of OP-nets (O,Γ) for which CQ answering in O
is possible in polynomial time (resp., in ac

0) in the data complexity. Then,
deciding consistency and CQ skyline membership in T is possible in polynomial
time (resp., in ac

0) in the data complexity.

The listed p-hardness results hold due to a standard reduction of proposi-
tional logic programming to guarded full TGDs. These results do not apply to
WG, where CQ answering is data complete for exp, and data hardness holds
even for ground atomic CQs; however, data completeness for exp can be proved
similarly to the results for combined complexity above.

We want to emphasize that our complexity results are generic, applying also
to Datalog+/– languages beyond the ones listed. Even more, they are valid for
arbitrary preference formalisms for which dominance between two outcomes can
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be decided in polynomial time, e.g., combinations of Datalog+/– with rankings
computed by information retrieval methods [10].

Interesting topics of ongoing and future research include the implementation
and experimental evaluation of the presented approach, as well as a general-
ization based on possibilistic logic [3] to gain more expressivity and some new
features towards non-monotonic reasoning [1]; moreover, an apparent relation
between possibilistic logic and quantitative choice logic [2] may be exploited.

Acknowledgments. This work was supported by a Google European Doc-
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Abstract. Understanding the relation between different semantics in
abstract argumentation is an important issue, not least since such
semantics capture the basic ingredients of different approaches to non-
monotonic reasoning. The question we are interested in relates two
semantics as follows: What are the necessary and sufficient conditions,
such that we can decide, for any two sets of extensions, whether there
exists an argumentation framework which has exactly the first exten-
sion set under one semantics, and the second extension set under the
other semantics. We investigate in total nine argumentation semantics
and give a nearly complete landscape of exact characterizations. As we
shall argue, such results not only give an account on the independency
between semantics, but might also prove useful in argumentation systems
by providing guidelines for how to prune the search space.

1 Introduction

Within Artificial Intelligence argumentation has become one of the major fields
over the last two decades [3]. In particular, abstract argumentation frameworks
(AFs) introduced by Dung [6] are a simple, yet powerful formalism for modeling
and deciding argumentation problems that are integral to many advanced argu-
mentation systems. Evaluating AFs is done via semantics (cf. [1] for an overview)
that deliver subsets of jointly acceptable arguments.

Over the years, several semantics have been introduced [4–6, 15], and rela-
tions between them have been thoroughly studied. For instance, it is known that
for any AF, its set of stable extensions is a subset of its set of preferred exten-
sions (already proven by Dung [6]). Moreover, for any AF F , its set of stable
extensions (if not empty) can be realized via preferred semantics (i.e. there exists
an AF F ′ such that the preferred extensions of F ′ equal the stable extensions
of F ). However, there is one aspect which has not been addressed yet. In fact,
in this paper we are interested in questions of the following kind: Given sets
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S, T of extensions, does there exist an AF F such that its stable extensions are
given by S and its preferred extensions are given by T. More formally, we are
interested in characterizing the following concepts for semantics σ, τ , which we
call two-dimensional signatures:

Σσ,τ = {〈σ(F ), τ(F )〉 | F is an AF }.

Such signatures help to determine the amount of independence between
semantics. Let us again consider stable (sb) and preferred (pr) extensions and
suppose we have two AFs F, F ′ with sb(F ) ⊆ pr(F ′). Is there also an AF F ′′

with sb(F ′′) = sb(F ) and pr(F ′′) = pr(F ′)? This might not always be possible
since there are certain dependencies between the two semantics which can make
the existence of such an F ′′ impossible, and – as we will show – this is indeed
the case for this particular pair of semantics, i.e.

Σsb,pr �={〈sb(F ), pr(F ′)〉 |sb(F ) ⊆ pr(F ′);F, F ′ AFs }. (1)

However, for certain other pairs of semantics such a strong form of independence
holds; for instance, for naive (na) semantics, it is known that sb(F ) ⊆ na(F ),
and we will show that this is sufficient for the corresponding two-dimensional
signature:

Σsb,na={〈sb(F ),na(F ′)〉 |sb(F ) ⊆ na(F ′);F, F ′ AFs }

Another application of two-dimensional signatures is pruning the search space
for systems designed to enumerate all extensions of a given semantics τ . This is of
particular interest when the complexity for some other semantics σ is milder than
the one for τ . Again consider stable and preferred semantics, the latter being
more complex [7]. Results like (1) indicate that for enumerating all preferred
extensions, starting with the computation of all stable extensions not only yields
a subset of the desired preferred extensions but ultimately rules out certain
candidates to become preferred extensions.
Main Contributions. The paper gives exact characterizations for 32 two-
dimensional signatures.
Related Work. There has been thorough research on translations [10, 11] where
mappings θ are studied such that, for any AF F , σ(θ(F )) is in a certain relation
to τ(F ). Naturally, these results are concerned with two different AFs; we on
the other hand explore the range of pairs of extensions a single AF is able to
express via two types of semantics. The work by Dunne et al. [8] has initiated
this kind of research but treated semantics separately.

2 Background

We first recall basic notions of Dung’s abstract frameworks (the reader is referred
to [1, 6] for further background). An Argumentation Framework (AF) is a pair
F = (A,R), where A ⊂ A is a finite set of arguments for A being the (countably



Investigating the Relationship between Argumentation Semantics 273

infinite) universe of all arguments available, and R ⊆ A×A is its attack relation.
The collection of all AFs is given by AFA. For (a, b) ∈ R we say that a attacks
b (in F ), accordingly a set S ⊆ A attacks an argument a ∈ A (in F ) if ∃b ∈ S :
(b, a) ∈ R. The range in F of a set of arguments S ⊆ A is given as S+

F = S∪{a ∈
A | S attacks a}. Subscript F may be dropped if clear from the context. A set
S ⊆ A defends argument a ∈ A (in F ) if S attacks all attackers of a.

A semantics σ is a mapping from AFs to sets of arguments. For a given
AF F = (A,R) the members of σ(F ) are called (σ-)extensions. A set S ⊆ A is
conflict-free in F (S ∈ cf(F )) if it does not contain any attacks, i.e. (S×S)∩R =
∅; S ∈ cf(F ) is admissible in F (S ∈ ad(F )) if each a ∈ S is defended by S;
S ∈ ad(F ) is complete (S ∈ co(F )) if S contains all a ∈ A it defends. We define
the naive, stable, preferred and semi-stable extensions as follows:

– S ∈ na(F ), if S ∈ cf(F ) and �T ∈ cf(F ) s.t. S ⊂ T ;
– S ∈ sb(F ), if S ∈ cf(F ) and S+

F = A;
– S ∈ pr(F ), if S ∈ ad(F ) and �T ∈ ad(F ) s.t. S ⊂ T ;
– S ∈ sm(F ), if S ∈ ad(F ) and �T ∈ ad(F ) s.t. S+

F ⊂ T+
F .

Finally, for semantics σ, τ we define the ideal reasoning semantics (see e.g. [4])
for σ under τ (idσ,τ ) as sets S ∈ σ(F ) being ⊆-maximal in satisfying S ⊆ T for
each T ∈ τ(F ). In this paper, we use the grounded (gr(F ) = idad,,(F )), ideal
(id(F ) = idad,pr(F )) and eager (eg(F ) = idad,sm(F )) semantics. Recall that gr,
id and eg always provide exactly one extension.

Towards the characterization of signatures, we require a few more concepts,
mostly taken from [2, 8] (however, written in a slightly different way). A set
of sets of arguments S ⊆ 2A is called extension-set if

⋃
S is finite. Given an

extension-set S, we denote the ⊆-maximal elements of S by max(S). Moreover,
we define the conflicts in S (ConfsS) and the borders of S (bd(S)) as

ConfsS ={(a, b) ∈
⋃

S ×
⋃

S | �S ∈ S : a, b ∈ S}, and

bd(S) ={T ⊆
⋃

S | b∈
⋃

S\T iff ∃a∈T : (a, b)∈ConfsS}.

Finally, given S, T ⊆ 2A, S is called conflict-sensitive wrt. T (S � T) if for all
A,B ∈ S such that A ∪ B /∈ S there are a ∈ A, b ∈ B with (a, b) ∈ ConfsT.

Example 1. Let S = {{a, b}, {a, c, e}, {b, d, e}}. We have max(S) = S, ConfsS =
{(a, d), (d, a), (b, c), (c, b), (c, d), (d, c)}, and bd(S) = {{a, b, e}, {a, c, e}, {b, d, e}}.
Finally, S � S as, for instance, (b, c) ∈ ConfsS for {a, b} and {a, c, e}.

3 Characterizations of Two-Dimensional Signatures

We first recall the results from [8] (similar in style of presentation to [2]) on
signatures and then generalize this concept to multiple semantics.

Definition 1. Given a semantics σ, a set S ⊆ 2A is realizable under σ if there
is an AF F with σ(F ) = S (F realizes S under σ). The signature of σ is defined
as Σσ = {σ(F ) | F ∈ AFA}.
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Proposition 1. The following collections of extension-sets S yield the signa-
tures of the semantics under consideration.

– Σgr = Σid = Σeg = {S | |S| = 1};
– Σcf = {S �= ∅ | max(S)=bd(S),∀S ∈ S∀S′ ⊆ S : S′∈S};
– Σna = {S �= ∅ | S = bd(S)};
– Σsb = {S | S ⊆ bd(S)};
– Σad = {S �= ∅ | ∅ ∈ S, S � S};
– Σpr = Σsm = {S �= ∅ | S = max(S), S � S}.

The natural generalization of signatures is now defined as follows. It captures
the capabilities of AFs with respect to different sets of semantics.

Definition 2. Given semantics σ1, . . . , σn, their (n-dimensional) signature is
defined as Σσ1,...,σn

= {〈σ1(F ), . . . , σn(F )〉 | F ∈ AFA}. We say that AF F
realizes 〈S1, . . . , Sn〉 under (σ1, . . . , σn) if σi(F ) = Si for all i ∈ {1, . . . , n}.

In this paper, we will restrict to two-dimensional signatures. The following
observation is crucial. Given arbitrary semantics σ and τ it always holds for
members 〈S, T〉 of Σσ,τ that S ∈ Σσ and T ∈ Στ . When characterizing the
two-dimensional signatures we will omit this necessary condition by using the
following abbreviation: 〈S, T〉σ,τ := 〈S, T〉 ∈ Σσ × Στ .

We now give characterizations for the nine semantics we consider in this
paper. Exploiting the obvious symmetry Σσ,τ = {〈S, T〉 | 〈T, S〉 ∈ Στ,σ}, char-
acterizing in total 36 signatures is still required.

Showing the exact characterization of a signature Σσ,τ usually consists of
two parts. First, one has to show that for each AF, the σ- and τ -extensions
fulfill the conditions given by the characterization. Second, one has to provide
a canonical construction for an AF Fσ,τ such that, given an arbitrary pair of
extension-sets 〈S, T〉 fulfilling the conditions, it holds that σ(Fσ,τ (S, T)) = S and
τ(Fσ,τ (S, T)) = T. The concrete constructions can be found in [9].

Our results can be summarized as follows.

Theorem 1. For (σ0, τ0) ∈ {(gr, id), (gr, eg), (id, eg)}, (σ1, τ1) ∈ {(id, sm),
(gr, sm), (gr, pr)}, σ2 ∈ {id, gr}, (σ3, τ3) ∈ {(eg, sm), (id, pr)}, σ4 ∈ {sm, pr},
σ5 ∈ {gr, id, eg}, τ6 ∈ {ad, sm, pr} it holds that

Σσ0,τ0 ={〈{S}, {T}〉σ0,τ0 | S ⊆ T ⊆ A}
Σσ1,τ1 ={〈{S}, T〉σ1,τ1 | S ⊆

⋂
T}

Σσ2,sb ={〈{S}, T〉σ2,sb | T �= ∅, S ⊆
⋂

T} ∪ {〈{S}, ∅〉σ2,sb}

Σσ3,τ3 ={〈{S}, T〉σ3,τ3 | |T| > 1, S ⊆
⋂

T} ∪ {〈{S}, {S}〉σ3,τ3}

Σeg,sb ={〈{S}, T〉eg,sb | |T| > 1, S ⊆
⋂

T} ∪ {〈{S}, {S}〉eg,sb, 〈{S}, ∅〉eg,sb}
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Σna,sb ={〈S, T〉na,sb | T ⊆ S}
Σna,σ4 ={〈S, T〉na,σ4 | ∀T ∈ T ∃S ∈ S : T ⊆ S, T � S}
Σsb,sm ={〈T, T〉sb,sm} ∪ {〈∅, T〉sb,sm}
Σsb,pr ={〈S, T〉sb,pr | S ⊆ T ∩ bd(T)}
Σσ5,cf ={〈{S}, T〉σ5,cf | S ∈ T}
Σcf,sb ={〈S, T〉cf,sb | T ⊆ max(S)};
Σcf,τ6 ={〈S, T〉cf,τ6 | T ⊆ S, T � S}
Σid,ad ={〈{S}, T〉id,ad | {S} = max({T ∈ T | T ⊆

⋂
max(T)})}

Σna,ad ={〈S, T〉na,ad | ∀T ∈ T ∃S ∈ S : T ⊆ S, T � S}
Σsb,ad ={〈S, T〉sb,ad | S ⊆ T ∩ bd(T)}
Σgr,ad ={〈{S}, T〉gr,ad | ∃ strict total order < onS s.t.

∀s ∈ S : {s} ∪ {s′ ∈ S | s′ < s} ∈ T, S ⊆
⋂

max(T)}.

We briefly discuss the two-dimensional signature of stable and preferred
semantics that was already mentioned in the introduction. First observe that
for any pair 〈S, T〉 ∈ Σsb,pr it holds that S ⊆ T. However, already the fact that
Σsb ⊂ Σpr [8] implies that this condition cannot be sufficient as not all pairs
with S = T are realizable under (sb, pr). The following example illustrates that
stable extensions may only be certain subsets of the preferred extensions. In [9]
we show that also S ⊆ bd(T) must hold in order to have 〈S, T〉 ∈ Σsb,pr.

a a

b d

c

f e

Fig. 1. AFs F and F ′ discussed in Example 2.

Example 2. Consider the extension-sets S = {{a, d, e}, {b, c, e}, {c, d, e}} and
T = S ∪ {{a, b}}. The pair 〈S, T〉 is realized under (sb, pr) by the AF F depicted
in Fig. 1 (without the dotted part). However, observe that T �⊆ bd(T) (since
{a, b, e} ∈ bd(T)) and therefore 〈T, T〉 is not realizable under (sb, pr). In fact, no
AF with T as preferred extensions can contain {a, b} as stable extension since
{a, b} /∈ bd(T) cannot achieve full range in such an AF. We can get an arbitrary
subset of S under sb though: take AF F ′ in Fig. 1 including the dotted part.
Then, pr(F ′) = T and sb(F ′) = {{a, d, e}}.

What has to be left open are the characterizations of Σσ,τ for σ ∈ {sm, eg}
and τ ∈ {ad, pr}. A detailed discussion on the difficulties involved is given in [9].
As it turns out, particular realizations of pairs under these semantics must make
use of implicit conflicts [13].
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4 Discussion

In this paper, we have given a full characterization of all but four two-dimensional
signatures for the semantics of conflict-free, admissible, naive, stable, preferred,
semi-stable, grounded, ideal, and eager extensions. Two-dimensional signatures
give further insights about the relationship between semantics, but also yield
practical implications. For example, when enumerating preferred extensions, we
may start with computing the less complex stable semantics. Assume we have
found {a, b} and some S ∪{a} as stable (and therefore preferred) extensions. By
our insights we can now, for instance, exclude any S′ ∪{b} with S ∩S′ �= ∅ from
the search-space, even if it could still be compatible with Σpr. The research on
multi-dimensional signatures is not limited to argumentation. We plan to apply
our method also to logic programming in order to compare stable, well-founded,
and supported semantics [12, 14] in a similar vein.
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1 Star-Topology Decoupled State Space Search

State space search is a canonical approach to testing reachability in large tran-
sition systems, like goal reachability in classical planning which is where this
work is placed. Decomposition techniques for state space search have a long tra-
dition, most notably in the form of Petri net unfolding [7, 14, 20] decomposing
the search over concurrent transition paths, and factored planning [2, 4, 8, 19]
decomposing the search into local vs. global planning over separate components
of state variables.

Recent work by part of the authors [9, 10] has devised star-topology decou-
pling, which can be viewed as a hybrid between Petri net unfolding and factored
planning, geared at star topologies. The state variables are factored into com-
ponents whose cross-component interactions form a star topology. The search
is akin to a Petri net unfolding whose atomic elements are component states,
exploring concurrent paths of leaf components in the star independently. Relative
to both Petri net unfolding and traditional factored planning, the key advantage
lies in exploiting the star topology, which gets rid of major sources of complexity:
the need to reason about conflicts and reachable markings, respectively the need
to resolve arbitrary cross-component interactions.

The best way to understand the star topology impact is in terms of a partic-
ular form of “conditional independence”: given a fixed path of transitions by the
center component in the star, the possible center-compliant paths are independent
across the leaf components. For example, say the center is a single truck-position
variable t, and each leaf is a single package-position variable pi. Given a fixed
state-transition path πC for t, the compliant state-transition paths for any pi,
alongside πC , are those which load/unload pi at suitable points along πC . Any
such load/unload sequence – any πC-compliant path – can be committed to for
pi, independently of what any other pj is committed to. Star-topology decoupled
search exploits this by searching over center paths πC only. Alongside each πC ,
it maintains, for each leaf separately, the leaf states reachable on πC-compliant
paths. This avoids the enumeration of combined states across leaves. In imprecise
analogy to conditional independence in graphical models, star-topology decou-
pling “instantiates” the center to break the dependencies between the leaves.

Original paper appeared at the 25th International Joint Conference on Artificial
Intelligence (IJCAI), 2016.
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Table 1. State space size data. Best results highlighted in boldface. “Success”:
reachable state space fully explored. “X”: X-shape factoring identified. “Std”: standard
state space. Other notations see text. All planning competition benchmark domains
were run. Domains on which no X-shape was identified anywhere, and domains where
no approach could build any state space, are not included in the table. Multiple test
suites of the same domain are accumulated into the same table row. Runtime limit 30
minutes, memory limit 4 GB.

Domain # Instances Reachable state space. Right: average over instances commonly built

Success Representation size (in thousands)

All X Std POR Punf Cunf OPT COM Std POR OPT COM

Solvable benchmarks: from the International Planning Competition (IPC)

Depots 22 22 4 4 2 2 3 5 30,954.8 30,954.8 35,113.1 3,970.0

Driverlog 20 20 5 5 3 3 8 10 35,632.4 35,632.4 706.1 127.2

Elevators 100 100 21 17 1 3 8 41 22,652.1 22,651.1 21,046.2 186.7

Floortile 80 80 2 2 0 0 0 2

Logistics 63 63 12 12 7 11 23 27 3,793.8 3,793.8 85.5 8.2

Miconic 150 145 50 45 25 30 45 145 52,728.9 52,673.1 218.8 2.4

NoMystery 40 40 11 11 5 7 40 40 29,459.3 25,581.5 11.5 10.0

Pathways 30 30 4 4 3 3 4 4 54,635.5 1,229.0 11,211.9 11,211.9

PSR 50 3 3 3 3 3 3 3 39.4 33.9 11.1 11.1

Rovers 40 40 5 6 4 4 5 5 98,051.6 6,534.4 4,045.9 4,032.9

Satellite 36 36 5 5 5 5 4 4 2,864.2 582.5 2,219.1 352.7

TPP 30 29 5 5 4 4 11 11 340,961.5 326,124.8 .9 .8

Transport 140 140 28 23 11 11 18 34 4,958.6 4,958.5 12,486.4 173.3

Woodworking 100 87 11 20 16 22 16 16 438,638.5 226.8 16,624.1 9,688.9

Zenotravel 20 20 7 7 2 4 7 7 17,468.0 17,467.5 1,028.5 99.4

Unsolvable benchmarks: extended from [15]

NoMystery 40 40 9 8 2 4 40 40 85,254.2 65,878.2 3.9 3.8

Rovers 40 40 4 4 0 0 4 4 697,778.9 302,608.9 22,001.8 20,924.4
∑

1001 935 186 181 93 116 239 398

Star-topology decoupling is exponentially separated from all previous search
reduction techniques, i.e., there are example families which it handles expo-
nentially more effectively than Petri-net unfolding, factored planning, partial-
order reduction [23, 24], symmetry reduction [6, 22], etc. While this is merely
a theoretical result pointing out that star-topology decoupling is, in principle,
complementary to previous methods, the potential advantage of star-topology
decoupling is also very much manifested in practice. On planning problems with
a pronounced star topology, the empirical impact of star-topology decoupling
is dramatic. Taking the effort required to build and represent the entire state
space as the most basic measure of reduction power, Table 1 gives data compar-
ing star-topology decoupling to its closest relatives.

The “OPT” variant of our technique keeps track of leaf-state costs and
preserves optimality, the “COM” variant keeps track of leaf-state reachabil-
ity and preserves completeness only. We compare to Petri-net unfolding using
“Punf” [18], as well as contextual Petri net unfolding using “Cunf” [21] which
directly supports non-consumed (prevail) preconditions. We compare to stan-
dard state space search with strong stubborn set pruning [24], as star-topology
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decoupling can also be viewed (like Petri net unfolding) as a form of partial-order
reduction. We do not compare here to factored planning because, while concep-
tually the use of separate components is a commonality, the concrete algorithms
end up being completely different when considering arbitrary cross-component
interactions (as all previous method do), vs. exploiting a star topology. Represen-
tation size is the number of integer variables in our C++ implementation based
on FD [12]. We do not include representation size data for Petri net unfolding
as these lag far behind in terms of the number of state spaces built.

The data clearly attest to the power of our approach. There are some domains
where previous techniques are stronger, but overall the picture is very clearly in
our favor, with typical improvements of orders of magnitude, up to 5 and 6 orders
of magnitude in the extreme cases. Considering that partial-order reduction
and unfolding are venerable techniques into which sustained research effort was
invested since decades, while star-topology decoupling was only just invented,
we find this remarkable.

The major weakness evident from Table 1 is the absence of data for all the
other competition domains. We show only those domains where a simple auto-
matic factoring strategy succeeded – taking a few milliseconds to identify what
we call an X-shape, a simple special case of star topologies where the interac-
tion between the center and each leaf is one-way. X-shapes do occur in planning
competition domains, but not widely.

Preempting the conclusion section a bit, one major conclusion here is the need
for more powerful factoring strategies. Every planning task has star-topology fac-
torings. We currently do not lose any runtime on cases we cannot handle, but
the number of such cases is large. Another major conclusion is that domain-
independent planning may not be the prime target application for star-topology
decoupling – why go search for star topologies in arbitrary input problems when
there are so many important problems that come with a star topology by defi-
nition?

2 Combination with Strong Stubborn Sets Pruning

As star-topology decoupling is complementary to all previous methods, the ques-
tion arises whether it can be combined with these methods to mutual benefit.
The question is especially pertinent as star-topology decoupling essentially just
reformulates the state space into a component-wise fashion, and should thus
leave many of the technicalities of other methods intact. In the IJCAI’16 paper
[11] this extended abstract is based on, we show that this is indeed so for strong
stubborn set pruning, the most well-known and wide-spread partial-order reduc-
tion method.



Decoupled Strong Stubborn Sets 281

Given a state s during search, a stubborn set for s is a subset S of actions so
that, in s, to preserve optimality it suffices to branch over those actions from S
applicable in s. To ensure this, S collects actions that (1) make progress to the
goal, that (2) are required for this progress and are applicable in s, and that (3)
interfere with applicable actions already included into S. For (1), it is enough
to pick one open goal fact from the goal conjunction; for (2), one recursively
includes actions achieving open preconditions of actions already included into S;
given (3), all true alternatives at this point – all conflicting decisions one may
take in s – are included in S and will be branched over.

As we show in detail in the paper, (1)–(3) transfer directly, almost straight-
forwardly, to decoupled search, when restricting to fork topologies where the leaf
components depend on the center but not vice versa. In this setting, reachabil-
ity within each leaf factor can only grow along a search path (along a transition
path by the center), and one can view a decoupled search state s as the union
s of all leaf states reachable at that point. Given this, in a nutshell, (1) remains
as-is, (2) redefines “applicability” relative to s, and (3) needs to consider only
interference with applicable center actions as all applicable leaf actions (more
precisely, their effects) are already incorporated into s.

The only additional complication is that, to guarantee optimality, decou-
pled search has to proceed beyond decoupled goal states, as cheaper leaf-goal
costs may become available on a longer center-component path. Standard strong
stubborn sets are undefined for goal states, so a new concept is required here.
That can be achieved by replacing (1) with a simple notion of “making progress
towards cheaper leaf-goal costs”.

In theory, the combination of star-topology decoupling with strong stubborn
sets dominates each of its components, and is exponentially separated from each
of its components. Indeed, there are cases where the combination is exponentially
stronger than both its components, i.e., there can be synergistic effects where,
thanks to the decoupling, strong stubborn sets are able to exploit a structure
they are unable to exploit in the original state space. For example, this hap-
pens in simple transportation-style domains akin to the planning competition
“Logistics” benchmarks, where a decoupling over packages enables partial-order
reduction over trucks.

In practice, the proposed combination is almost as strong as in theory. It
inherits the strengths of its components in almost all cases, and it outperforms
both its components in some cases. Table 2 shows coverage data. Observe that
the benefit of star-topology decoupling is much stronger for blind search, where
the search space reduction does not compete with the reduction already provided
by the heuristic function (the state-of-the-art admissible heuristic LM-cut [13]).
The additional advantage brought by using strong stubborn sets on top of the
decoupling is similar in both settings though.
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Table 2. Coverage data. Best results highlighted in boldface. “SSS”: standard search
with strong stubborn sets pruning; “DS”: star-topology decoupled search; “DSSS”: our
combination of the two. Results shown on planning competition benchmarks with a
fork topology.

Domain # Blind heuristic LM-cut

A∗ SSS DS DSSS A∗ SSS DS DSSS

Driverlog 20 7 7 11 11 13 13 13 13

Logistics’00 28 10 10 22 24 20 20 28 28

Logistics’98 35 2 2 4 5 6 6 6 6

Miconic 145 50 45 35 36 136 136 135 135

NoMystery 20 8 7 17 15 14 14 20 19

Pathways 29 3 3 3 3 4 4 4 4

Rovers 40 6 7 7 9 7 9 9 11

Satellite 36 6 6 6 6 7 11 7 11

TPP 27 5 5 23 22 5 5 18 18

Woodworking’08 13 4 6 5 7 6 11 10 11

Woodworking’11 5 0 1 1 2 2 5 4 5

Zenotravel 20 8 7 11 11 13 13 13 13
∑

418 109 106 145 151 233 247 267 274

3 Conclusion

Star-topology decoupling is a powerful new approach to state-space decomposi-
tion. The possible benefits are dramatic, the space of opportunities is wide open,
the research questions are manifold.

The most obvious direct follow-up on our work here regards the extension
of decoupled strong stubborn sets to general star topologies, beyond forks. We
believe that this is possible and will lead to similar theoretical and practical
results, but that remains to be proven. More generally, the combination with
alternate search enhancements is a whole research line in its own right: symme-
try reduction; heuristic functions exploiting the star topology; BDDs compactly
representing leaf state spaces; adaptations to multi-core search; adaptations of
bitstate hashing; etc.

Regarding domain-independent planning, the most pressing question regards
more powerful factoring strategies. Much more interesting factorings than our
current ones – X-shapes and forks – definitely exist. As a simple rim case, every
partition into 2 subsets of state variables is a star-topology factoring, already
opening an exponentially large space of factorings to choose from. The more
practically pertinent factorings, though, presumably are the ones with maximum
number of leaves. These correspond to maximum independent sets in the input
task’s causal graph, so approximations to the latter could form the starting point
for factoring strategies.
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A cute thought is to generalize from the idea to fix and exploit a star-topology
profile: target-profile factoring could, perhaps, work also for different structural
profiles, like chains, trees, DAGs, etc. This suggests an entirely new way of
exploiting structure in planning. Instead of relaxing the planning task into a
(structurally defined) fragment to obtain a heuristic function, try to factorize
the task into a fragment to obtain a plan. The huge amount of effort invested
into tractability analysis (e. g. [3, 5, 17]) could then be redirected to the design
of fragments suited to specialized combinatorial search algorithms. In the long
term, this could lead to an entire portfolio of target profiles.

Lastly and probably most importantly, the world is full of star topologies
so we should go out there and apply star-topology decoupling to those. For AI,
a highly suggestive thought is that of multi-agent systems interacting via a set
of shared variables – so the agents are the leaves, and the shared variables are
the center? Star topology also is a classical system design paradigm, which cries
out for applications in model checking. A highly relevant recent direction are
concurrent programs under weak memory models (e. g. [1, 16]). Processes run
on separate processors (leaves), yet a consistent view of shared memory (cen-
ter) needs to be guaranteed. The objective is verification, i.e., exhausting the
state space, for which star-topology decoupling is especially beneficial (compare
Table 1 against Table 2). Key challenges include the adaptation to model check-
ing languages, and the extension to properties beyond reachability.
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Abstract. Abstraction heuristics are a popular method to guide opti-
mal search algorithms in classical planning. Cost partitionings allow to
sum heuristic estimates admissibly by partitioning action costs among
the abstractions. We introduce state-dependent cost partitionings which
take context information of actions into account, and show that an opti-
mal state-dependent cost partitioning dominates its state-independent
counterpart. We demonstrate the potential of state-dependent cost par-
titionings with a state-dependent variant of the recently proposed sat-
urated cost partitioning, and show that it can sometimes improve not
only over its state-independent counterpart, but even over the optimal
state-independent cost partitioning.

Keywords: AI planning · Abstraction heuristics · Cost partitioning ·
State-dependent cost partitioning

1 Introduction

Abstraction heuristics [2, 14] are a popular method to guide optimal heuristic
search algorithms in classical planning. Since a single abstraction often provides
poor guidance, we would like to combine the information from several abstrac-
tions admissibly. This can be accomplished either by maximizing over a set of
admissible heuristics, or even better, by adding admissible heuristics, provided
that one can guarantee that the sum of heuristic values is still admissible. This
can be guaranteed either by restricting oneself to additive abstractions [3, 11],
or by cost partitioning [7, 8]. The latter approach counts only some fraction of
the original cost of each action in each abstraction, such that the accumulated
cost of each action over all abstractions does not exceed its original cost.

This extended abstract is based on an IJCAI 2016 paper by the same authors [9].
Full proofs can be found there and in an associated technical report [10].
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Interesting instances of cost partitioning include optimal cost partitioning
that leads to highest possible accumulated costs per state, general cost parti-
tioning [12] that also allows negative costs, and saturated cost partitioning [15],
where the cost partitioning is computed iteratively by “consuming” the minimum
costs in each abstraction such that the costs of all shortest paths are preserved.

In this paper, we show that even more information can be extracted from
a collection of abstractions if context information is taken into account and
abstract action costs are allowed to differ from state to state. To that end,
we define state-dependent cost partitioning and show that its optimal version
dominates optimal state-independent cost partitioning. Since computing optimal
state-dependent cost partitionings is usually infeasible, we also consider satu-
rated state-dependent cost partitioning, which is cheaper to compute. Whereas
saturated state-independent cost partitioning loses valuable information when
maximizing over all transitions incurred by the same action, saturated state-
dependent cost partitioning, where costs are consumed only in a given context,
does not suffer from this loss of information.

Besides the definition of state-dependent cost partitioning, the major contri-
bution of this paper is a complete analysis of theoretical dominance relationships
between the four combinations of optimal and saturated, and state-dependent
and state-independent cost partitionings.

2 Preliminaries

Planning. We consider SAS+ planning tasks [1] Π with the usual components,
i. e., variables V, actions A, initial state sI , and goal description s�. The set of
states is denoted with S. Applicability of actions and action sequences to states
as well as the result of their application is also defined as usual via preconditions
and effects. In addition, we allow non-negative action costs to be specified by
cost functions c : A → R

+
0 . At several places in this paper, we are interested in

costs that are based on modified cost functions. An important aspect of this work
are general and state-dependent cost functions c : A × S → R that determine
transition costs c(a, s) that depend on the state s in addition to the action a that
is applied. Since state-dependent cost functions are more general, we define the
following concepts in terms of state-dependent instead of regular cost functions
unless we want to emphasize that the cost function of the original task is used.

An action sequence π = 〈a1, . . . , an〉 is an s-plan if it is applicable in s and
leads to a state satisfying the goal condition. It is a plan if it is an sI -plan. The
cost of s-plan π under cost function c is the sum of action costs along the induced
state sequence 〈s0, . . . , sn〉, i.e., c(π, s) =

∑n
i=1 c(ai, si−1). A plan π is optimal

under c if it minimizes c(π, s). A heuristic function h estimates the cost of an
optimal s-plan under cost function c with values h(s, c) ∈ R ∪ {−∞,∞}. Note
that we allow negative heuristic values to support general cost partitioning [12].
A heuristic h is called admissible if it never overestimates the true optimal cost.
A planning task Π and a cost function ct induce a weighted labeled transition
system T in the usual way. Edge weights in T are the (possibly state-dependent)
action costs of the planning task.
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Abstraction Heuristics. The core idea of abstraction heuristics is to collapse sev-
eral states into a single abstract state, which reduces the size of the transition
system and allows the computation of abstract goal distances that can be used
as admissible heuristic estimates in the original task. Given a planning task Π
with induced transition system T , we denote abstraction mappings from con-
crete to abstract states preserving initial state, goal states, and transitions, by α,
and the induced abstract transition system by T α. In defining the weight of an
abstract transition in T α between abstract states t and u with transition label
a, we follow Geißer et al. [4, 5] and define it to be the minimal weight of all
concrete transitions labeled with action a that start in a state s with α(s) = t.
Together with the fact that every plan in the concrete transition system is a
plan in the abstract transition system, this ensures that the cost of each optimal
abstract plan is an admissible heuristic estimate. Abstractions where all abstract
states are Cartesian products of domain subsets of the state variables are called
Cartesian abstractions. Since we only consider Cartesian abstractions here, we
simply call them abstractions in the following.

3 State-Dependent Cost Partitioning

Early work on additive admissible heuristics has mostly focused on techniques
that allow to generate or identify heuristics that can be added up admissibly
because each deals with a sub-problem of the planning task that can be regarded
independently from the rest [3, 6]. An equivalent view on these techniques is
to regard them as cost partitionings [8] that distribute action costs such that
each operator is assigned its full cost in one heuristic and a cost of zero in all
other. However, cost partitionings are more general as costs can be distributed
arbitrarily between the heuristics as long as the sum over the individual costs
does not exceed the original cost. Given such a cost partitioning, heuristic values
are then computed on a copy of the planning task where actions cost only the
fraction of the actual action cost that is assigned to the heuristic. In this paper,
we continue developing more accurate cost partitioning techniques by presenting
state-dependent cost partitionings, a generalization where context information
of applied actions is taken into account.

Definition 1 (State-dependent cost partitioning). Let Π be a planning
task. Then a general state-dependent cost partitioning for Π is a tuple P =
〈c1 . . . , cn〉, where ci : A × S → R for 1 ≤ i ≤ n and

∑n
i=1 ci(a, s) ≤ c(a) for

all s ∈ S and a ∈ A. If P is state-independent, i.e., if ci(a, s) = ci(a, s′) for
all s, s′ ∈ S, a ∈ A and 1 ≤ i ≤ n, then P is a general state-independent cost
partitioning for Π.

Let h1, . . . , hn be admissible heuristics and P = 〈c1 . . . , cn〉 a cost par-
titioning. Then the corresponding cost partitioning heuristic is denoted as
hP (s) =

∑n
i=1 hi(s, ci), where the sum is defined as ∞ if any term in the sum is

∞, even if another term is −∞. We want to point out that the introduction of
state-dependent cost functions does not break admissibility of hP .
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State-dependent cost partitionings differ from their state-independent coun-
terpart in that each state-action pair can have its own cost instead of a cost that
is shared among all possible applications of an action.

Definition 2 (OCPD and OCPI). Let h1, . . . , hn be admissible heuris-
tics for a planning task Π, PD the space of state-dependent cost par-
titionings and PI ⊆ PD the space of state-independent cost partition-
ings for Π. The optimal state − dependent cost partitioning (OCPD) heuris-
tic estimate for h1, . . . , hn in state s is hocpD (s) = maxP∈PD

hP (s), and
the optimal state − independent cost partitioning (OCPI) heuristic estimate for
h1, . . . , hn is hocpI (s) = maxP∈PI

hP (s).

State-dependent cost partitionings allow the computation of more accurate
heuristic estimates.

Theorem 1 (OCPD dominates OCPI). Let h1, . . . , hn be admissible heuris-
tics for a planning task Π. Then hocpD (s) ≥ hocpI (s) for all s ∈ S. Moreover,
there are planning tasks where the inequality is strict for at least one state. ��

Although Theorem 1 provides an encouraging result, its practical impact
appears limited. This is mostly because the computation of an optimal state-
dependent cost partitioning with a method designed for state-independent cost
partitionings [8, 12] would require a compilation with one action for each state-
action pair, a number that is exponential in the number of state variables.
Whereas there are techniques like context splitting [13] that allow to compute a
more compact compilation, the worst-case exponential blowup cannot be avoided
in general. We therefore turn our attention to saturated cost partitioning [15], a
technique that is tractable in practice.

4 Saturated Cost Partitioning

Seipp and Helmert [15] introduced the concept of cost saturation. Iteratively, they
compute an abstraction, reduce the action costs such that all goal distances are
preserved, and use the remaining costs for subsequent abstractions. The result is
a saturated cost partitioning. Due to the greediness of the procedure, the resulting
cost partitioning usually provides poorer estimates than the optimal cost parti-
tioning. However, we can compute the saturated cost partitioning much faster
and more memory-efficiently. Following Seipp and Helmert [15] and extending
their definition to potentially negative, but still state-independent action cost,
we can define saturated state-independent cost partitioning as follows.

Definition 3 (SCPI). Let Π be a planning task with cost function c and α1, . . . ,
αn abstractions. Let 〈c1, . . . , cn〉 and P = 〈ĉ1, . . . , ĉn〉 be tuples of cost functions
with the following properties: c1 = c; ĉi(a) = maxs∈S hi(αi(s)) − hi(αi(s[a])),
where hi is the goal distance function of T αi with cost function ci; and ci+1 =
ci − ĉi. We call ci the remaining cost for T αi , ĉi the saturated cost of T αi and
P the saturated state − independent cost partitioning (SCPI) for α1, . . . , αn.
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We denote the associated heuristic by hscpI . Seipp and Helmert [15] show that
the saturated cost function preserves the goal distances of all abstract states in
all abstractions, and is minimal among all distance-preserving cost functions.
The same holds for the potentially negative cost partitioning that we use.

As state-independent cost functions do not allow assigning costs to actions
in the context of the current state, saturated cost functions are computed by
maximizing over all weights of transitions that are labeled with the same action.
State-dependent cost partitioning offers an opportunity to overcome this weak-
ness by allowing to reduce the costs of state-action pairs rather than actions.

Definition 4 (SCPD). Let Π be a planning task with cost function c and
let α1, . . . , αn be abstractions. Let 〈c1, . . . , cn〉 and P = 〈ĉ1, . . . , ĉn〉 be tuples
of cost functions with the following properties: c1(a, s) = c(a) for all a ∈
A and s ∈ S; ĉi(a, s) = hi(α(s)) − hi(α(s[a])), where hi is the goal
distance function of T αi with cost function ci; and ci+1 = ci − ĉi. We
call ci the remaining cost for T αi , ĉi the saturated cost of T αi and P the
saturated state − dependent cost partitioning (SCPD) for α1, . . . , αn.

We denote the associated heuristic by hscpD . In analogy to Theorem 1, we
might be tempted to expect a similar theoretical dominance of SCPD over SCPi.
However, it turns out that this is not the case due to the inaccuracy caused by
the greediness of saturated cost partitionings.

Theorem 2 (SCPD and SCPI are incomparable). There are planning tasks
Π and Π ′ with states s ∈ S and s′ ∈ S′ such that hscpD(s) > hscpi(s) and
hscpI (s′) > hscpD(s′). ��

In Theorems 1 and 2, we investigated the relationship between OCPD and
OCPI, and between SCPD and SCPI. Dominance of OCPD over SCPD and of
OCPI over SCPI is clear. What is left is comparing SCPD to OCPI.

Theorem 3 (SCPD and OCPI are incomparable). There are a planning
tasks Π and Π ′ with states s ∈ S and s′ ∈ S′ such that hscpD (s) > hocpI (s) and
hocpI (s′) > hscpD . ��

OCPD

SCPD OCPI

SCPI

(clear)

≺
(Thm. 1)�

(clear)≺

(Thm. 3)

incomparable

(Thm. 2)
incomparable

The figure to the left shows a summary of our
theoretical results (where A � B means A domi-
nates B). Optimal state-dependent cost partition-
ing combines the best of both worlds, but comput-
ing it is exponential. Saturated state-dependent
cost partitioning may not always result in better
heuristic estimates, but it has the potential to sur-
pass optimal state-independent cost partitioning.

5 Conclusion

We generalized cost partitionings and showed that additional information can
be extracted from a set of abstractions if context information of applied actions
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is taken into account. We showed that an optimal state-dependent cost parti-
tioning dominates all state-independent cost partitionings and that there are
planning tasks where the dominance is strict. As it is unclear how an optimal
state-dependent cost partitioning can be computed efficiently in practice, we
applied the idea to the efficiently computable saturated cost partitioning. We
showed that saturated state-dependent cost partitioning does not dominate its
state-independent sibling, but may still surpass optimal state-independent cost
partitioning. Preliminary experimental results are generally in line with what
our theoretical results suggest.

Acknowledgments. This work was supported by the European Research Council as
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Group decision making [4, 5, 8, 9, 11, 14] addresses the problem of finding a
reasonable decision when multiple decision makers have different preferences. In
this extended abstract, we give a high-level description of the key ideas from
[20]. We explain how probabilistic belief merging can be applied to solve Group
decision problems when the preferences can be derived from agents’ individual
utilities and beliefs. Subsequently, we discuss some guarantees that our approach
can give regarding the relationship between the individual preferences and the
derived group preferences.

Some group decision approaches consider dynamic aspects like communica-
tion between agents [16, 23]. Our group-decision approach is static, similar to
social-choice approaches that take individual preferences for granted and apply
voting rules to make a group decision from the individual preferences [3, 21].
However, instead of aggregating individual preferences directly, we aggregate
their beliefs and utilities that (as we assume) constituted their preferences.

Our agent framework extends the single agent framework from [1]. Each
agent is associated with an individual knowledge base that contains its personal
beliefs, which are represented by probabilistic conditionals [12, 13]. Additionally,
we consider a public knowledge base (again consisting of probabilistic condition-
als) that contains beliefs shared by all agents. The alternatives from which our
agents can choose are evaluated by different criteria, which can be expressed
by relational formulas. Agents can assign different utility values to these criteria
and can have diffent beliefs about which alternative satisfies which criterion. The
following example illustrates these abstract terms.

Example 1. Let us consider two agents, which we will call 1 and 2 for simplicity.
Our agents are about to choose a politician from a set of alternatives A =
{peter, nicole}. Our agents evaluate the candidates with respect to the criteria
C = {Honest(x), Intelligent(x)}. Agent 1 believes

Original paper appeared at the 25th International Joint Conference on Artificial
Intelligence (IJCAI), 2016.
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(Honest(peter))[0.2], (Honest(nicole))[0.9],
(Studied(peter, harvard))[1],
(Intelligent(x) | Studied(x, y) ∧ Prestigious(y))[0.9].

Note that a conditional (B|A)[x] can be read as ‘the probability of B given that
A holds is x’. If A is tautological, we just write (B)[x] and read this as ‘the
probability of B is x’. In particular, if x = 1, we basically have a logical rule.
So, for instance, agent 1 believes that nicole is probably honest, while peter is
probably not. Agent 2’s knowledge base contains

(Honest(peter))[0.9], (Honest(nicole))[0.6],
(LooksIntelligent(nicole))[1],
(Intelligent(x) | LooksIntelligent(x))[0.8].

Our public knowledge base contains only the conditional (Prestigious (har-
vard)) [1]. We consider the utilities u1(Intelligent) = 70, u2(Intelligent) =
80, u1(Honest) = 40, u2(Honest) = 95. Note that agents cannot only have differ-
ent beliefs about candidates, but also about the causes of different alternatives.

Given a set of agents along with their beliefs, we want to derive preferences
from their expected utilities. Formally, we let agent i’s expected utility of alter-
native a be

EUi(a) =
∑

C∈C
Bi(C(a)) · ui(C).

The sum ranges over all criteria and multiplies the belief Bi(C(a)) that alter-
native a satisfies criterion C with agent i’s utility of C. The individual beliefs
Bi(C(a)) are derived from the public beliefs and agent i’s individual beliefs by
means of probabilistic entailment [10, 13, 15]. Bi(C(a)) is a probability interval,
whose lower and upper bound corresponds to the minimum and maximum prob-
ability of C(a) among all probability distributions that satisfy both the public
beliefs and agent i’s individual beliefs. If all agents’s beliefs are consistent, we
could also derive group beliefs for the agents by considering the multiset-union
of all individual knowledge bases and the public knowledge base. However, in
general this union can be inconsistent. That is, there exists no probability distri-
bution that satisfies all the probabilistic conditionals in the union and so we will
be unable to derive a group belief for C(a). However, in order to overcome this
problem, we can replace the distributions that satisfy the knowledge base with
those that ‘minimally violate it’ [7, 17, 19]. This is the basic idea of generalized
probabilistic entailment [19]. We can measure the violation of a knowledge base
with respect to different norms, see [20] for more detailed explanations. Gener-
alized probabilistic entailment indeed generalizes probabilistic entailment in the
sense that the derived probabilities coincide whenever the knowledge base is con-
sistent. We let BG(C(a)) denote the generalized probabilistic entailment result
for C(a) when using the multiset-union of all individual knowledge bases and
the public knowledge base. The group’s expected utility interval of an alternative
a is
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Table 1. Individual Beliefs B1, B2 and group belief BG for Example 1 when measuring
violation by the 1-norm.

Honest Intelligent

Nicole Peter Nicole Peter

B1 [0.9, 0.9] [0.2, 0.2] [0, 1] [0.9, 0.9]

B2 [0.6, 0.6] [0.9, 0.9] [0.8, 0.8] [0, 1]

BG [0.6, 0.9] [0.2, 0.9] [0.8, 0.8] [0.9, 0.9]

Table 2. Expected utilities of individuals and the group for Example 1 when measuring
violation by the 1-norm.

Nicole Peter

EU1 [36, 106] [71, 71]

EU2 [121, 121] [85.5, 165.5]

EUG [100.5, 120.75] [81, 128.25]

EUG(a) =
1

|N |
∑

i∈N

∑

C∈C
BG(C(a)) · ui(C).

Intuitively, BG(C(a)) corresponds to the merged belief of the agents that alterna-
tive a satisfies C and 1

|N |
∑

i∈N ui(C) corresponds to the agents’ average utility
of criterion C. Again, BG(C(a)) can yield a probability interval rather than a
point probability. Given that the beliefs can be probability intervals in general,
we get expected utility intervals rather than expected utilities. Tables 1 and 2
show the agents’ beliefs and expected utilities for Example 1 to illustrate this.

Let us denote these intervals in the form EU(a) = [EU(a), EU(a)]. We con-
sider optimistic, pessimistic and cautious inference relations. Alternative a1 is
preferred over alternative a2 iff

– Optimistic: EU(a1) ≥ EU(a2)
– Pessimistic: EU(a1) ≥ EU(a2)
– Cautious: EU(a1) ≥ EU(a2)

At this point, our framework is completely defined. Starting from agents
individual beliefs and utilities, we can derive group preferences from the group
expected utilities. Of course, the question remains whether this approach can
give us some meaningful guarantees. We will now discuss the intuition of sev-
eral properties that group decision making by means of generalized probabilistic
entailment satisfies. For a thorough formal investigation, we refer to [20] and the
corresponding proof appendix.

To begin with, what can we say about the influence of the interactions
between agents’ beliefs on the expected utilities and the corresponding pref-
erence relations? Since it is difficult to make an objective statement about what
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we should expect in the presence of conflicts between agents’ beliefs, we start
with some intuitive properties that hold if there are no conflicts.

– Cautious Dominance: If the decision base is conflict-free and alternative a is
cautiously preferred over b by all agents, then a will be cautiously preferred
over b with respect to the group preferences.

– Cautious Condorcet-Consistency : If the decision base is conflict-free and alter-
native a is cautiously preferred over all b by all agents, then a will be cautiously
preferred over all b with respect to the group preferences.

– Consensus: If the decision base is conflict-free, the expected utility of the
group will be a refinement of the individual expected utilities in the sense
that it yields a subinterval of the averaged individual belief intervals.

Dominance and Condorcet-Consistency correspond to social-choice-theoretic
properties [21]. We conjecture that these properties also hold for optimistic and
pessimistic preference relations, but proved this only for cautious preference.
These properties actually still hold if there are only minor conflicts in the deci-
sion base as we can show formally by continuity arguments. Roughly speaking,
we have the following result.

– Continuity of Expected Utilities: Minor changes in the agents’ beliefs and util-
ities will result only in minor changes in the expected utilities. In particular,
if there are only minor conflicts in the knowledge base, Consensus, Cautious
Dominance and Cautious Condorcet-Consistency will still hold.

The computational problem of computing expected utilities can sometimes be
simplified by exploiting independence structure.

– Decomposition of Utility : If the agents’ beliefs are independent of each other,
the problem of computing expected utilities can be decomposed.

– Modularity : If the agents’ beliefs and utilities are independent of each other,
then the expected utility of the decision base will be a weighted sum over the
expected utilities of independent sub decision bases.

Finally, the choice of the norm that we use for generalized probabilistic entail-
ment can control the influence of large interest groups.

– Majority : The influence of large interest groups on the aggregated group
beliefs and preferences can be regulated by the choice of the norm.

Please consult [20] for a more thorough discussion of these properties.
In summary, we found that group decision making via generalized entailment

satisfies several intuitive properties. The corresponding computational problems
can be solved by convex optimization techniques [19], that is, non-global local
minima are not an issue. Since we use generalized entailment for belief merg-
ing, we have to work with expected utility intervals rather than with point
utilities. While this approach is unbiased in the sense that we consider all pos-
sible probability distributions that satisfy (minimally violate) agents’ beliefs, it
might be interesting to restrict to particular probability distribution in order
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to obtain stronger guarantees for the group decision. Interesting candidates are,
for instance, selecting the probability distribution that maximizes entropy or
minimizes some notion of distance to a prior distribution [2, 6, 18, 22]. We are
planning to investigate this in more detail in future work.
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1 Introduction and Overview

Being able to reason nonmonotonically is crucial both for many practical appli-
cations of artificial intelligence and for humans in their everyday lives. It has
been shown that humans deviate systematically from classical logic, in particular
with respect to revising previously drawn conclusions, and they are very success-
ful in solving their everyday problems this way. Although many approaches to
default and nonmonotonic reasoning in artificial intelligence have been developed
in close correspondence to human commonsense reasoning, only few empirical
studies have actually been carried out to support the claim that nonmonotonic
and default logics are indeed suitable to formally represent human reasoning
(e.g., [9, 11], and they are mostly motivated from the points of view of computer
science. In this paper, we focus on a core research problem that had been raised
first in psychology and was one of the first examples to make the nonmonotonic-
ity phenomenon obvious for psychologists: The so-called suppression task was
introduced in [1] to show that additional information may cause humans to give
up conclusions which they have drawn previously via modus ponens. More pre-
cisely, three groups of participants received one of three types of problems: αδ
(Group 1), αβδ (Group 2, also referred to as β-case), and αγδ (Group 3, also
referred to as γ-case), where α, β, γ are symbols for the following sentences:

Both for Group 1 and 2, most participants (98 %) in the study concluded: She
will study late in the library. However, for Group 3, the γ-case, only 38 % of the

Original paper appeared at the 25th International Joint Conference on Artificial
Intelligence (IJCAI), 2016.
G. Kern-Isberner—This work is supported by DFG-Grants KI1413/5-1 to G. Kern-
Isberner and by RA1934 2/1 and a Heisenberg DFG fellowship RA1934 3/1 to M.
Ragni. C. Eichhorn is supported by Grant KI1413/5-1.

c© Springer International Publishing AG 2016
G. Friedrich et al. (Eds.): KI 2016, LNAI 9904, pp. 297–302, 2016.
DOI: 10.1007/978-3-319-46073-4



298 M. Ragni et al.

participants made a modus ponens inference [1] and concluded that She will study
late in the library while 62 % concluded that She may or may not study late in
the library. This example shows that although the conclusion “she will study late
in the library” is still correct, it is suppressed by the γ-conditional, but not by the
β-conditional. This study shows not only that humans are capable of drawing
non-monotonic inferences but that the semantical contents of the additional
conditional that may hint a reasoner to exceptions of the α-conditional is crucial
to suppress inference.

The aim of the paper [12] is to analyze the inferences provided by major
formal approaches to nonmonotonic reasoning in the suppression task, more pre-
cisely, we investigate system P [8], logic programming under weak completion
semantics [2, 18], Reiter’s default logic [14] under skeptical semantics, system
Z [3], and c-representations [5, 6]. In particular, we evaluate whether they can
reflect human inferences observed in the empirical studies. A bit surprisingly,
not many of them succeed in modeling the suppression task. We discuss for-
mal properties of successful theories and general insights of how to improve the
inferences.

This paper is an extended abstract of [12], more detailed information, in
particular on formal background and technical issues, can be found in that paper.

2 Nonmonotonic Reasoning and the Suppression Task

There are at least two ways how a formalism can be evaluated: The so-called
conceptual cognitive-adequacy (Is the formal representation of a reasoning system
similar to human mental representations?) and the so-called inferential cognitive-
adequacy (Are the inferences a reasoning system draws similar/identical to
human inferences?) of a reasoning system [7, 15, 18]. With respect to the sup-
pression task, it is crucial how we interpret the conditional statements (con-
ceptual cognitive-adequacy) and the inference system that we apply (inferential
cognitive-adequacy). There are different ways how a conditional given in nat-
ural language as, e.g., “if e then l” can be interpreted. The first possibility is
to interpret it as material implication (in propositional logic) which, however, is
linked to monotonic reasoning. A nonmonotonic inference expresses “if e
is true, then typically l is true as well”, weakening the strong deduction relation.
On the syntactical level, conditionals (B|A) express such weakened relationships
between antecedent A and consequent B; in particular, conditionals are often
used to express rules that may have exceptions, “if A then usually B”. In logic
programming approaches, this is represented by a weakening of a conditional by
an abnormality predicate (ab), and with this the implementation of the γ-case is

{l ← e ∧ ¬ ab1, l ← o ∧ ¬ ab2, ab1 ← o, ab2 ← e, e ← �}. (1)

We used conditional knowledge bases for system P, system Z, and c-
representations, default rules for Reiter’s default logic, and logic program rules
from [2, 18] to model the suppression task. We translated the sentences α, β, γ
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as literally as possible into the respective language. Except for logic program-
ming under the weak completion semantics [2, 18], all nonmonotonic systems
failed to reproduce the suppression task – even in the γ-case, from “she has an
essay to write”, the systems inferred “she will study late in the library”. In the
following we will exemplify our studies by briefly reporting on the conclusions c-
representations draw and show how making background knowledge explicit can
indeed lead to reproduce the suppression task.

2.1 A Case Study: Modeling by C-Representations

As demonstrated above the way humans understand conditionals can be modeled
using logic programming with WCS with an adequate implementation of the
knowledge. We can also consider to model and predict inferences based on an
epistemic state in the sense of [4], for instance based on a preferential model [10]
with a preference relation induced by an Ordinal Conditional Function (ranking
function, OCF [16, 17]). An OCF is a function κ : Ω → N

∞
0 that assigns to each

world ω ∈ Ω an implausibility rank, that is, the higher κ(ω), the less plausible the
world is, where the most plausible worlds have a rank of 0. c-representations [5,
6] assign to each conditional in the knowledge base R = {(ψ1|φ1), . . . , (ψn|φn)}
an impact κ−

i ∈ N0. The rank of a world is the composed impact of all falsified
conditionals, so a c-representation κc

Δ is an OCF defined by

κc
Δ(ω) =

∑

ω|=φi∧¬ψi

κ−
i , (2)

where the individual impacts κ−
i ∈ N0 are chosen such that κc

Δ is admissible
with respect to Δ, which is the case if the impacts satisfy the following system
of inequations [5, 6]:

κ−
i > min

ω∈Ω
ω|=φi∧ψi

{ ∑

1≤j≤n,j �=i
ω|=φj∧¬ψj

κ−
j

}
− min

ω∈Ω
ω|=φi∧¬ψi

{ ∑

1≤j≤n,j �=i
ω|=φj∧¬ψj

κ−
j

}
(3)

The (as literal as possible translated) knowledge base of the γ case is the set

The values κ−
1 = 1, κ−

2 = 0 and κ−
3 = 1 are a minimal solution of the system of

inequations (3) applied to this knowledge base, and with (2) these values result
in the OCF κc

Δγ(ω) given Table 1. Here, κc
Δγ(l) = 0 < 1 = κc

Δγ(l) and thus
we can infer that “she will study late in the library”, so no suppression effect
occurs.

This could be the result of a different understanding of the sentence (γ), in
such a way that it could be understood as “if she studies late in the library, the
library is open”, named the γ′-case.

The computations for the minimal c-representations for this knowledge base can
be found in [12], Table 1 gives the resulting OCF. In this modeling, we also do
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not find a suppression effect: we obtain κc
Δγ′(l) = 0 < 1 = κc

Δγ′(l̄) and therefore
can infer l.

2.2 Modeling the Suppression Effect by Expliciting Background
Knowledge

As we have seen in the previous subsection, c-representations and system Z do
not replicate the suppression effect. In the following, we show that it is possible
to mimic the suppression effect using c-representations and system Z, as it was
already demonstrated for logic programming with WCS. In the implementation
of the γ-case in logic programming (1) [18], the weak completion steps connect
the variables o and e in the head of a rule via the abnormality predicate. This
connection is crucial for the retraction of the MP inference in the γ-case. We
hence modeled this connection for the γ and γ′ cases, but not in the β-case where
the additional information (β) does not represent an additional requirement
for “studying late in the library” (as (γ)), but an additional explanation for
“studying late in the library”; this differentiation between the models of the
different cases can also be found in the implementation of the suppression task
in logic programming [18]. The different modelings as well as the results of these
modelings are summarized in Table 1, the computations can be found in [12].
Since the set of maximally plausible worlds is identical both for system Z and
c-representations, these results hold for both approaches. We obtain that in the
modelings of the β-case, the inference l can be drawn, which is not the case both
in the cases γ and γ′, so we find a suppression effect for these cases, but not for
the β-case, which follows the inference pattern found in the original study [1].
It can be seen that the connection of the premises (second row of the γ-case
in Table 1: right) is sufficient for evoking a suppression effect, which is then
preserved in the completion step (fourth row of the γ-case in Table 1: right).

Another line of thought that, in general, might cover human inferences even
better would be to generate the OCF κ from the generic knowledge (in this
example the default rules (α), (β), and (γ)) and revise this epistemic state with

Table 1. Left: OCFs obtained by system Z and minimal c-representations for the cases
γ, γ′, and γ′′. Right: System Z and c-representations mimicking the weak completion
semantics approach for the β, γ, γ′-cases. Tables taken from [12].
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the evidential knowledge (in this example the statement (δ)). This modeling
follows the view that (α), (β), (γ) represent generic knowledge that is applied
to (δ) [13]. For the small examples considered here, that is, the knowledge bases
of the β- and γ-case, having (e|�) in the knowledge base or revising with e does
not make a difference, technically, that is, using this modeling yields the same
results as already given in Table 1.

3 Discussion

The differences in the results produced by the different nonmonotonic systems
cannot be explained by formal properties. In this sense the suppression task
can form a further benchmark for many nonmonotonic systems to evaluate their
fitness to simulate human common sense reasoning. One advantage is that the
formal properties of these nonmonotonic systems are known. By and large, sys-
tem P has been accepted as a good formal standard of nonmonotonic inference
relations, system Z and c-representations are even stronger since both satisfy
rational monotony [10]. Both Reiter’s default logic and logic programming under
weak completion semantics fail to satisfy system P, more precisely, they do not
fulfill cautious monotony [10, 12]. Analyzing the different modelings more closely,
we find that the logic programming rules allow for making slight differences in
the β- and γ-case that reflect background knowledge. By enriching our condi-
tional knowledge bases so that the inference procedure can also make use of such
background knowledge, we find that both system Z and c-representations can
reproduce the suppression effect.

This opens a long debate in psychology that has not yet been resolved satis-
factorily: How much on the reasoning process depends on a cognitively-adequate
inference system (be it syntactically, semantically, heuristic or probabilistic) and
how much depends on possible background information that can ease the infer-
ence process? While such a question is rather difficult to answer if we consider
non-formal systems and reasoning about everyday reasoning scenarios abstract
domains may help further to distinguish the influence of these two sources for
reasoning [9].
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Abstract. Model-Based Diagnosis is a principled AI approach to deter-
mine the possible explanations why a system under observation behaves
unexpectedly. For complex systems the number of such explanations can
be too large to be inspected manually by a user. In these cases sequential
diagnosis approaches can be applied. In order to find the true cause of
the problem, these approaches iteratively take additional measurements
to narrow down the set of possible explanations.

One computationally demanding challenge in such sequential diag-
nosis settings can be to determine the “best” next measurement point.
This paper summarizes the key ideas of our recently proposed sequential
diagnosis approach, which uses the newly introduced concept of “par-
tial” diagnoses to significantly speed up the process of determining the
next measurement point. The resulting overall reductions of the required
computation times to find the true cause of the problem are quantified
using different benchmark problems and were achieved without the need
for any information about the structure of the system.

Keywords: Model-based diagnosis · Sequential diagnosis · Conflicts

1 Introduction

Model-Based Diagnosis (MBD) techniques are used to determine the possible
causes when an observed system behaves unexpectedly. To find the possible
causes, these approaches use knowledge about the system’s expected behavior
when all of its components work correctly. Since their development in the 1980s
[1, 9, 7], MBD-based approaches were applied to many different problem settings
like electronic circuits and software artifacts, e.g., java programs, knowledge
bases, logic programs, ontologies, and spreadsheets.

When applying MBD for complex systems, the number of possible diagnoses
can be too large to be checked individually by a user. For example, even when we

This work was supported by the Carinthian Science Fund (contract KWF-
3520/26767/38701), the Austrian Science Fund (contract I 2144 N-15) and the
German Research Foundation (contract JA 2095/4-1).
This paper summarizes the work from [14], presented at IJCAI’16.

c© Springer International Publishing AG 2016
G. Friedrich et al. (Eds.): KI 2016, LNAI 9904, pp. 303–309, 2016.
DOI: 10.1007/978-3-319-46073-4



304 K. Shchekotykhin et al.

only search for diagnoses up to a size of five, there are already 6,944 diagnoses for
the system c432 (scenario 0) of the DX 2011 diagnosis competition benchmark.

Different approaches to deal with the problem exist. One option is to rank
the diagnoses based on weights or fault probabilities and return only the highest
ranked ones. However, these methods might be incomplete in cases when exist-
ing information is not sufficient to give a high rank to the correct explanation
of a fault. Another possibility is to take additional measurements to discrimi-
nate between fault causes [7], thereby ensuring completeness. A recent work of
Shchekotykhin et al. compared two different strategies for taking the next mea-
surement, applied to the problem of ontology debugging [11]. The result indicates
that the computation of a query, i.e., a suggestion for a next measurement to be
made by a user, can be computationally expensive. Therefore, the approach of
[11] first searches for a few leading diagnoses and then determines the optimal
query to the user. However, for some real-world cases the computation of even
a few leading diagnoses remains challenging [12].

In our work we address this problem setting and aim to reduce the diag-
nosis computation time. Specifically, the technical contribution of our work is
the new notion of “partial” diagnoses, which can be efficiently computed using
only a subset of the minimal conflicts. The partial diagnoses are then used to
determine the best next query, i.e., we determine the best possible partitioning
of the partial diagnoses, which typically form a smaller search space than in the
original problem setting. In [14] we proved that our method remains complete,
i.e., it is guaranteed that the true problem cause – called preferred diagnosis –
will be found. An experimental evaluation on different benchmarks shows signif-
icant reductions of the diagnosis time compared to previous works. Our method
furthermore is not dependent on the availability of application-specific problem
decomposition methods and can therefore be applied to efficiently diagnose all
kinds of systems without exploiting problem-specific structural characteristics.

2 Sequential Diagnosis

Our technique is based on the approach to sequential (interactive) diagnosis
developed in [7, 9]. A diagnosable system in this approach is represented by
a model , which describes the normal behavior of a system in terms of compo-
nents and relations between them. In many scenarios models are encoded using
constants representing the components and first-order sentences representing the
relations. A diagnosis problem arises when the observed behavior of the system –
represented as a finite set of consistent first-order sentences – differs from the
expected one, represented by the model. In this case, a diagnosis Δ corresponds
to a set of components that, if assumed to be faulty, explains the observed mis-
behavior.

In our approach – as in many others – the computation of diagnoses is based
on the concept of conflicts. Informally speaking a minimal conflict is an irre-
ducible set of components that cannot all work correctly at the same time given
the observations. To resolve a minimal conflict every diagnosis therefore needs to
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comprise at least one of its components. Given a method for computing minimal
conflicts such as QuickXplain [5] or Progression [8], algorithms like HS-Tree
[9] find all diagnoses D by enumerating all subset-minimal hitting sets of the
set of all minimal conflicts CS.

If an MBD system returns more diagnoses than can be manually inspected,
additional information is required in order to find the so-called preferred diagno-
sis Δ∗, which corresponds to the set of actually faulty components. This informa-
tion is usually specified by means of measurements expressed as first-order sen-
tences [2, 7, 9]. However, it is often unclear which measurements must be taken to
uniquely determine Δ∗. In order to find Δ∗, sequential methods ask a user or some
oracle a number of queries. The answers to these queries provide measurements
required to rule out irrelevant diagnoses [7, 11].1 The problem in this context is
to determine “good” measurement points and correspondingly construct a set of
first-order sentences Q, called query. Given a set of diagnoses D ⊆ D, queries
are designed such that at least one element of D can be ruled out regardless of
the answer. If more than one query is possible, the best one can be selected using
strategies like split-in-half, entropy, or risk-optimization [7, 10].

3 Query Computation with Partial Diagnoses

Our algorithm operates on the basis of “partial” diagnoses, which can informally
be defined as follows: Given a set of minimal conflicts C ⊆ CS, a set of com-
ponents δ is a partial diagnosis iff it is a subset-minimal hitting set of C. Our
algorithm repeatedly searches for preferred partial diagnoses and thereby incre-
mentally identifies the preferred diagnosis Δ∗. In contrast to existing sequential
approaches, we do not compute all conflicts required to find a set of diagnoses
D in each iteration, but only determine a subset of the minimal conflicts. Find-
ing such a subset of the existing minimal conflicts can be done, e.g., with the
MergeXplain method [13]. Then, we find a set of minimal hitting sets for this
subset of the conflicts, which correspond to partial diagnoses.

In the first step of our overall diagnosis algorithm, we compute at most k
minimal conflicts C. In case there are no conflicts, i.e., the provided system
description is consistent with all observations and measurements, the algorithm
returns Δ∗ = ∅ as a diagnosis. Next, for the minimal conflicts C it finds a set of
partial diagnoses PD . If PD comprises only one partial diagnosis, then its only
element δ∗ is returned as the preferred partial diagnosis. Otherwise, the algorithm
determines a query Q to discriminate between the elements of PD and provides
it to the oracle. The query computation method internally uses the underlying
problem-specific reasoning engine to derive the consequences of the different
answers to possible queries. This engine can for example be a Description Logic
reasoner in case of ontology debugging problems [4, 11] or a constraint solver
when the problem is to diagnose digital circuits [7].

Given an answer of the oracle the algorithm adds the corresponding first-
order sentences to the set of measurements. This update requires the set C to be
1 As in previous works we assume the oracle to answer correctly.
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reviewed because some of its elements might not be minimal conflicts given the
new measurements. Then, the set of partial diagnoses is updated by removing all
elements of PD that are not partial diagnoses with respect to the updated set of
minimal conflicts C. Finally, the algorithm recursively calls itself and continues
the search until the preferred partial diagnosis is found.

Given a preferred partial diagnosis, we declare all its components as faulty
and check whether the model is consistent with the observations. If this is the
case, the set of all faulty components, corresponding to the preferred diagnosis,
is returned. Otherwise, the algorithm starts searching for the next preferred
partial diagnosis. The suggested algorithm is shown to be sound and complete
given correct answers of an oracle to its queries.

Example 1. Let us consider the system 74L85, Scenario 10, from the DX Compe-
tition 2011 Synthetic Track (DXC 2011). There are three minimal conflicts: CS =
{{o1}, {o2, z2, z22}, {o2, o3, z7, z9, z10, z11, z12, z13, z14, z17, z18, z19, z22, z27}}.
These conflicts are not known in advance. The number of minimal hitting sets
(diagnoses) for CS is 14, i.e., |D| = 14. The preferred diagnosis Δ∗ as specified
in the benchmark is {o1, z22}.

The interactive diagnosis process starts with the computation of a subset C
of all minimal conflicts using MergeXplain, e.g., C={{o1}, {o2, z2, z22}}. We
then compute the minimal hitting sets of C and partial diagnoses PD={{o1,
o2}, {o1, z2}, {o1, z22}}. Next, we use PD to find the query o2 asking the user
if component {o2} is faulty. Since o2 is correct, the user answers “no”. Given
the answer we update the conflicts in C, i.e., C={{o1}, {z2, z22}} as well as
PD . From the latter we remove all elements that are no partial diagnoses for the
updated set of C resulting in PD={{o1, z2}, {o1, z22}}.

In the second iteration we first search for new partial diagnoses. Since we have
already found all partial diagnoses for the conflicts in C, PD remains unchanged
and non-empty. Therefore, we compute a new query asking if {z22} is faulty
and the user answers “yes”. This means that the preferred diagnosis must be
a superset of {z22} and we can remove all elements of PD that do not contain
z22, resulting in PD={{o1, z22}}. The third iteration returns {o1, z22} as the
preferred partial diagnosis δ∗, since no additional partial diagnosis can be found.

Next, the algorithm declares the components {o1, z22} as faulty and finds
that this assumption explains the observed misbehavior. Therefore, it returns
Δ∗={o1, z22} as the preferred diagnosis and ignores the third conflict in CS.
As a result, only two queries were required to find the true diagnosis.

4 Experimental Evaluation

We evaluated our method on two sets of benchmark problems: (a) the ontologies
of the OAEI Conference benchmark as used in [12], (b) the systems of the DXC
2011. As the main performance measure we use the wall clock time to find
the preferred diagnosis. The oracle’s deliberation time to answer a query was
assumed to be independent of the query as done in [12]. In addition, we evaluated
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how many queries were required to find the preferred diagnosis and how many
statements were queried. We compared the following strategies:

1. Inv-HS-DFS: The Inverse-HS-Tree method proposed in [12] which computes
diagnoses using Inverse QuickXplain and builds a search tree in depth-first
manner to find additional diagnoses.

2. Inv-HS-BFS: A breadth-first variant of Inv-HS-DFS, similar to [3].
3. QXP-HS-DFS: A depth-first variant of Reiter’s Hitting-Set-Tree algorithm

[9] using QuickXplain to find all conflicts required for complete diagnoses.
4. MXP-HS-DFS: Our proposed method which uses MergeXplain to find a

set of conflicts and a depth-first variant of Reiter’s Hitting-Set-Tree algorithm
[9] to find partial diagnoses based on the found conflicts.

We compared our approach MXP-HS-DFS to these other three, because the
performance of each of them highly depends on the problem characteristics.
Overall, we expect the Inverse-HS-Tree methods to be faster than QXP-HS-
DFS for most of the tested problems. For all strategies, we set the number
of diagnoses n that are used to determine the optimal query to 9 as done in
[12], and used the best-performing Entropy strategy for query selection. We did
not set a limit on the number of conflicts to search for during a single call
of MergeXplain. For the ontology benchmark, the failure probabilities used
by the Entropy strategy are predefined. For the DXC problems, we used ran-
dom probabilities and added a small bias for the actually faulty components
to simulate partial user knowledge about the faulty components. The compo-
nents were ordered according to the probabilities, which is advantageous for the
conflict detection process for all tested algorithms. To simulate the oracle, we
implemented a software agent that knew the preferred diagnosis in advance and
answered all queries accordingly. All tests were performed on a modern lap-
top computer. The algorithms were implemented in Java. Choco was used as a
constraint solver and HermiT as Description Logic reasoner.

For the ontologies the runtime improvements of our approach compared to
the fastest of the other ones range from 28 % for one of the simplest ontologies to
93 % for the most complex one, for which the calculation time could be reduced
from 6 min to 23 s. On average the improvements are as high as 80 %. Looking
at the number of required interactions and queried statements, our method is
also advantageous for the most complex problems. For some ontologies, however,
using partial diagnoses requires the user to answer more questions.

The results for the DXC problems corroborate these observations. Except
for the tiny problems, which can be solved in fractions of a second with all
approaches, significant improvements in terms of the running times could be
achieved with our method compared to all other approaches. For the DXC prob-
lems, Inv-HS-DFS was the fastest of the other approaches. The strongest rel-
ative improvement of our approach compared with this method is at 86 %; on
average, the performance improvement is at 58 %. For those systems where the
computation times of Inv-HS-DFS were more than one second, the average
improvement is as high as 77 %. Some of the benchmark problems could not be
solved by some of the other approaches at all in 24 h. QXP-HS-DFS, which was
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the fastest of the other methods for the ontologies, could, for example, not find
the preferred diagnosis for the three most complex systems. The most complex
system could not be diagnosed in 24 h by any of the other approaches, while our
new approach MXP-HS-DFS finished in about 40 min.

5 Conclusion

In this work we presented a new approach to speed up the sequential diagnosis
process. Our approach uses the new concept of partial diagnoses to reduce the
computation time needed to determine the next best question to ask to the user.
This can be particularly useful in cases when many conflicts exist.

In our future work we plan to additionally speed up the process of deter-
mining the leading diagnoses by incorporating additional information, e.g., the
system’s structure or prior fault probabilities of the components, and will explore
if such information can help us to generate more informative queries.
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Abstract. In many sequential regression problems, the goal is to maxi-
mize correlation between sequences of regression outputs and continuous-
valued training targets, while minimizing the average deviation. For
example, in continuous dimensional emotion recognition sequences of
acoustic features have to be mapped to emotion contours. As in other
domains, recurrent neural networks achieve good performance on this
task. Yet, the usual squared error objective functions for neural network
training do not fully take into account the above-named goal. Hence,
in this paper we introduce a technique for the discriminative training
of neural networks using the concordance correlation coefficient as cost
function. Results on the MediaEval 2013 and RECOLA databases show
that the proposed method can significantly improve the evaluation crite-
ria compared to standard mean squared error training, both in the music
and speech domains.

Keywords: Discriminative training · Recurrent neural networks · Con-
cordance correlation coefficient · Dimensional emotion recognition ·
Audio

1 Introduction

Continuous dimensional emotion recognition from audio is a sequential learn-
ing problem that has recently attracted increasing attention [1, 8, 9]. There,
sequences of acoustic features from, e.g., speech utterances or excerpts of music
have to be mapped to emotion contours in dimensions such as arousal and
valence. Defining the target labels as real-valued mappings from time instants
to targets helps capturing the temporal dynamics of emotion, which cannot be
assumed to be constant over time [8]. To learn such mappings, deep recurrent
neural networks are a promising model [1], as they take into account temporal
dependencies in inputs and outputs and can handle correlated features.
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Continuous emotion recognition is typically evaluated in terms of the corre-
lation between the learner’s outputs and the target values, as well as the average
deviation of outputs and targets, such as by the mean linear or mean squared
error (MLE/MSE). Since neural networks are usually trained using criteria such
as the (root) MSE, this only takes into account the latter while neglecting the
former. However, as the correlation coefficient (CC) is insensitive to scaling and
shifting, it may lead to an infinite number of local minima with different predic-
tion behavior. To alleviate these problems, we propose to use the concordance
correlation coefficient (CCC) [4] as a differentiable objective function that unites
both correlation and mean squared error [12].

2 Discriminative Objectives for Emotion Regression

In this work, we consider three different objectives in training. The standard
sum of squared errors (SSE) training objective for a mini-batch B is given by

∑

i∈B,f∈F

∑

t

(yi
f,t − yi

f,t

∗
)2, (1)

where F is the set of target variables and t denotes the index of a time step at
which the target variable is annotated. Further, we introduce two new objectives
based on CCC. These are discriminative on the sequence level, while the standard
SSE objective is not. Let us define yi

f as the regression outputs for sequence i
and target variable f (in case of neural networks, the sequences of activations of
unit f of the output layer), while yi

f
∗ denotes the corresponding training targets

(i.e., gold-standard). The objective denoted by ΣCCC below is based on the
CCC applied to each sequence, and pertains to minimizing the function O:

O = −
∑

i∈B,f∈F
CCCi

f . (2)

The CCC per sequence i and target f is defined in accordance with [4] as:

CCCi
f =

2Cov(yi
f , yi

f
∗)

Var(yi
f ) + Var(yi

f
∗) +

(
E(yi

f ) − E(yi
f

∗)
)2 , (3)

where E, Var, and Cov denote sample mean, variance, and covariance, respec-
tively. An alternative objective (denoted simply by CCC below) is the ‘total’
CCC on the training set. This can be achieved by simply considering the entire
training set as a single sequence i in (2). The ΣCCC objective differs from the
CCC objective in that it necessarily enforces accurate prediction of the target
contour within each sequence, while the CCC objective would assign a good
score to over-smoothed regression outputs that simply predict the average gold
standard per sequence.

In this study, optimization of the discriminative objectives is performed by
stochastic gradient descent. To this end, we compute the gradients ∇yO =
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(∂O/∂yi
f,t)i,f,t. The gradients w.r.t. the weights, ∂O/∂w are determined by back-

propagation as usual. Discriminative training is implemented on top of the open
source, GPU-enabled neural network training software CURRENNT [10], which
supports deep feed-forward and recurrent neural networks.

3 Experiments and Results

We present in this section the performance obtained in time-continuous dimen-
sional emotion (arousal and valence) prediction on two different corpora from
different domains (speech and music), comparing the ΣCCC, CCC, and SSE
training objectives.

3.1 Emotions from Music: MediaEval

Experiments on emotion recognition from music are done on the ‘Emotion in
Music Database’ which was used in the MediaEval 2013 evaluation campaign
[9]. The data set includes excerpts of 45 s randomly extracted from 744 songs
taken from the Free Music Archive1. It is split into a development set (619
songs) and an evaluation set (125 songs). Ratings of emotion were performed on
a crowd-sourcing platform (MTurk) by a pool of 100 selected workers.

Both feature extraction and machine learning steps are based on the setup
reported in [11]. The 6 373-dimensional ComParE set of generic affective features,
and the Long Short-Term Memory (LSTM) [3] architecture for deep recurrent
neural networks (DRNNs) are used. LSTM networks have two hidden layers with
192 or 256 hidden units. The training parameters are preserved from [11].

In accordance with the MediaEval challenge, the evaluation metrics com-
prise the overall Pearson’s correlation coefficient (CC)2 as well as the average
Kendall’s rank correlation coefficient per sequence (E{τ}), which is related to
our ΣCCC objective function but not differentiable. Furthermore, we report
the average CCC (E{(CCC)}) per sequence, which directly corresponds to the
ΣCCC objective.

3.2 Emotions from Speech: RECOLA

Time-continuous prediction of emotion has also been investigated on speech data
by using the RECOLA database [6]; the full dataset was used for the purpose
of this study, which corresponds to speech recordings from 46 French-speaking
participants with five minutes for each. Ratings of emotion were obtained by six
French-speaking research assistants. Traces were then interpolated at a 40 ms
frame rate and averaged as a gold-standard [5]. The dataset was split equally

1 http://www.freemusicarchive.org.
2 Note that MediaEval uses the determination coefficient, which is the square of the

CC, but we report CC as it is in the same order of magnitude as the CCC, which is
the focus of our evaluation.

http://www.freemusicarchive.org
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in three partitions – train (16 subjects), development (15 subjects) and test
(15 subjects) – by balancing the gender, the age and the nationality of the
speakers. The extended Geneva minimalistic acoustic feature set (eGeMAPS –
102 features) [2] has been applied at a rate of 40 ms using overlapping windows
of 3 s length [7].

For the prediction task, we used LSTM-DRNNs with three hidden layers
with 128 units each. Input noise with σ = 0.1 is added and early stopping
is also used to prevent overfitting. The networks were trained with stochastic
gradient descent on a batch size of five sequences with a fixed momentum of 0.9.
An optimal learning rate η was chosen based on the CCC on the development
set for each emotional dimension and objective function [12]. The CCC metric
was computed on the gold-standard and prediction values concatenated over
all recordings, in accordance with the AV+EC challenge. In addition, we also
report the average CCC (E{CCC}) per sequence in analogy to the experiments
on music.

3.3 Results

The results on the MediaEval 2013 database are shown in Table 1. We can
observe that the evaluation metrics achieved on the test set exactly reflect the
choice of the objective function for training: SSE training works best for min-
imizing the MLE, while CCC based training yields the best CCC on the test
set.

The official Challenge evaluation metric, E{τ}, is significantly (according to a
z-test, α = .05) improved by using the ΣCCC objective function for arousal (.221
→ .251), but only slightly (.189 → .199) for valence. Generally, it is observed that
the larger network with 256 hidden units performs worse on the test set, which
can be attributed to the relatively small data set which causes over-fitting. The
discrepancy between E{CCC} and CCC on this data set is astonishing; we found
that for some test sequences, the variance in the annotated emotion contours is
very low, which makes it hard to achieve good CC on these. One may further

Table 1. Emotion recognition performance on the MediaEval 2013 test set (music
domain). The best achieved Challenge metric (E{τ}) is highlighted. Obj. denotes the
objective function in network training and η the learning rate, determined in cross-
validation.

Arousal Valence

Layers Obj. η CC CCC E{CCC} E{τ} MLE CC CCC E{CCC} E{τ} MLE

192-192 SSE 10−5 .795 .778 .148 .221 .136 .637 .632 .118 .189 .149

256-256 SSE 10−5 .732 .724 .119 .174 .152 .623 .609 .109 .151 .142

192-192 CCC 10−2 .792 .790 .149 .224 .140 .653 .648 .119 .199 .156

256-256 CCC 10−2 .764 .761 .128 .161 .149 .648 .646 .130 .191 .154

192-192 ΣCCC 10−4 .723 .719 .166 .251 .158 .547 .546 .136 .198 .168

256-256 ΣCCC 10−4 .720 .717 .153 .211 .158 .587 .582 .130 .198 .158
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notice that the best performance in terms of CC on valence is obtained with
the CCC objective. The improvement over the SSE objective is significant (.637
→ .653). Regarding the optimization of the network, results show that each
objective function requires a specific learning rate to perform best.

Table 2. Emotion recognition performance on the RECOLA development and test
partitions (speech domain). The best achieved Challenge metric (CCC) is highlighted.
Obj. denotes the objective function in network training and η the learning rate, deter-
mined on the development results.

Arousal Valence

Partition Obj. η RMSE CC CCC E{CCC} η RMSE CC CCC E{CCC}
DEV SSE 10−4 .117 .412 .397 .227 10−4 .105 .210 .201 .066

TEST SSE 10−4 .128 .109 .097 .161 10−4 .108 .133 .131 .052

DEV CCC 10−3 .193 .373 .373 .294 10−2 .133 .179 .179 .112

TEST CCC 10−3 .193 .257 .254 .212 10−2 .130 .155 .155 .080

DEV ΣCCC 10−5 .217 .412 .412 .313 10−2 .188 .249 .242 .150

TEST ΣCCC 10−5 .200 .351 .350 .268 10−2 .192 .227 .199 .139

Next, in Table 2 we report the metrics on the RECOLA database. Here,
we observe a significant improvement in the CC, CCC and E{CCC} metrics
by using the ΣCCC objective function, particularly on the test set, where SSE
training does not deliver useful results in the arousal dimension: Here, CCCs of
.097 and .350 are achieved with SSE training and ΣCCC training, respectively.
Since this difference is less pronounced on the development set, for which the
network is tuned, we have some evidence that the ΣCCC objective function
leads to better generalization. In fact, when training using the SSE criterion,
we observed a tendency of the network to predict the mean annotation on the
training set, which leads to good RMSE but low correlation; conversely, the
RMSE is significantly increased by using the CCC-based criteria. This result can
also be observed on the CC evaluation metric, where a significant improvement
over the SSE objective function is obtained when using ΣCCC for both arousal
and valence.

4 Conclusions

In this study, we introduced neural network regression based on maximizing corre-
lation of the output and target sequences. The CCC was chosen as a differentiable
objective that can effectively replace the traditional SSE objective. We could con-
firm that the CCC is an elegant solution to the issue of scaling and shifting time-
continuous predictions, as it is sensitive to both of these variations and thus allevi-
ates the problem of local minima in neural network training. The choice of training
objective had a significant impact on the performance in the recognition of emo-
tion in the arousal and valence dimensions from speech and music.

Furthermore, note that the proposed approach based on CCC optimization
can be applied to any sequence regression task where the correlation between
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the regression outputs and the ground truth should be maximized. There are
no assumptions made on the underlying problem, other than that there be one
or more continuous-valued target labels and that the regression model can be
effectively trained by a first-order method such as stochastic gradient descent.
Thus, we will verify its efficiency on other recognition tasks involving time-
continuous measurements.
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Grant No. 338164 (iHEARu).

References

1. Coutinho, E., Cangelosi, A.: A neural network model for the prediction of musical
emotions. In: Nefti-Meziani, S., Grey, J. (eds.) Advances in Cognitive Systems, pp.
331–368. IET Publisher, London (2010)

2. Eyben, F., et al.: The Geneva minimalistic acoustic parameter set (GeMAPS) for
voice research and affective computing. IEEE Trans. Affect. Comput. 7(2), 190–202
(2015)

3. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction
with LSTM. Neural Comput. 12(10), 2451–2471 (2000)

4. Lin, L.I.: A concordance correlation coefficient to evaluate reproducibility. Biomet-
rics 45(1), 255–268 (1989)

5. Ringeval, F., Eyben, F., Kroupi, E., Yuce, A., Thiran, J.P., Ebrahimi, T., Lalanne,
D., Schuller, B.: Prediction of asynchronous dimensional emotion ratings from
audiovisual and physiological data. Pattern Recogn. Lett. 66, 22–30 (2015)

6. Ringeval, F., et al.: Introducing the RECOLA multimodal corpus of remote col-
laborative and affective interactions. In: Proceedings of the of EmoSPACE (Held
in Conjunction with ACM FG), p. 8, Shanghai, China, April 2013

7. Ringeval, F., et al.: AV+EC 2015 - The first affect recognition challenge bridging
across audio, video, and physiological data. In: Proceedings of AVEC (Held in
Conjunction with ACM MM), pp. 3–8. Brisbane, Australia, October 2015

8. Schmidt, E.M., Kim, Y.E.: Modeling musical emotion dynamics with conditional
random fields. In: Proceedings of ISMIR, pp. 777–782, Miami, FL, USA (2011)

9. Soleymani, M., et al.: 1000 songs for emotional analysis of music. In: Proceedings
of CrowdMM (Held in Conjunction with ACM MM). ACM, Barcelona (2013)

10. Weninger, F., Bergmann, J., Schuller, B.: Introducing CURRENNT - the Munich
open-source CUDA RecurREnt neural network toolkit. J. Mach. Learn. Res. 16,
547–551 (2015)

11. Weninger, F., Eyben, F., Schuller, B.: The TUM approach to the MediaEval music
emotion task using generic affective audio features. In: Proceedings of MediaEval.
CEUR, Barcelona, October 2013

12. Weninger, F., Ringeval, F., Marchi, E., Schuller, B.: Discriminatively trained recur-
rent neural networks for continuous dimensional emotion recognition from audio.
In: Proceedings of IJCAI, p. 7. AAAI, New York City, July 2016 (to appear)



Author Index

Abdic, Irman 237
Abseher, Michael 3
Acar, Erman 291
Auddy, Sayantan 102

Bahnemiri, Alireza M. 102
Beierle, Christoph 119
Bellon, Richárd 17
Bertello, Matteo 251
Benzmüller, Christoph 244
Bliem, Bernhard 257
Borgwardt, Stefan 264
Borth, Damian 162
Braun, Tanya 30
Burgsteiner, Harald 218

Cazenave, Tristan 43
Chandran, Abhilash 102
Chen, Siqi 126
Choi, Younggeon 17

Da Col, Giacomo 134
Dählmann, Klaas 141
Demirekler, Mübeccel 56
Dunne, Paul E. 271

Edelkamp, Stefan 43, 148, 155
Eichhorn, Christian 297
Eisele, Lewin 119
Ekker, Nikoletta 17
El Shinawi, Ahmed 102

Faragó, Kinga 200
Fazzinga, Bettina 264
Fridman, Lex 237
Fuchs, Sebastian 162
Gad-Elrab, Mohamed 211

Geißer, Florian 285
Gigante, Nicola 251
Gnad, Daniel 278
Golubev, Denis 155
Grenzing, Andreas 102

Greulich, Christoph 155
Grimm, Jonatan 169

Heinrich, Stefan 102
Henrich, Dominik 192
Hinz, Tobias 102
Hoffmann, Jörg 224, 278
Hoffmann, Mark 169

Jacob, Fritz 148
Jacobs, Ceriel 230
Jannach, Dietmar 303
Jeni, László A. 200
Josifovski, Josip 102

Kandlhofer, Martin 218
Karaoğuz, Ethem Can 102
Kaufmann, Benjamin 257
Keller, Thomas 285
Kern-Isberner, Gabriele 119, 297
Krötzsch, Markus 230
Kuhr, Felix 177

Lange, Mona 177
Lepetit, Vincent 17
Linsbichler, Thomas 271
Lőrincz, András 17, 200
Lukasiewicz, Thomas 264

Marchi, Erik 237, 310
Mattmüller, Robert 285
McDuff, Daniel 237
Meyer, Ralf Georg 119
Moldovan, Marius 3
Montanari, Angelo 251
Möller, Ralf 30, 177
Müller, Kai 169
Navarro-Guerrero, Nicolás 102

Nietzke, Mathias 119

Olasz, L. Mike 17
Özgen, Selim 56



Peischl, Bernhard 185
Pill, Ingo 185
Plöger, Paul G. 69
Pommerening, Florian 285
Potyka, Nico 291

Ragni, Marco 297
Reimer, Bryan 237
Remmels, Melanie 102
Reynolds, Mark 251
Ringeval, Fabien 310
Rill, Róbert A. 200

Sahu, Debasish 102
Sauer, Jürgen 141
Seipp, Jendrik 285
Schaub, Torsten 257
Schmitz, Thomas 303
Schuller, Björn 237, 310
Shchekotykhin, Kostyantyn 303
Shrivastava, Akanksha 264
Sonntag, Daniel 17
Spangenberg, Michael 192
Spanring, Christof 271
Steinbauer, Gerald 218
Steinhage, Volker 169
Steinmetz, Marcel 224
Stepanova, Daria 211
Stöver, Ben 169
Strahl, Erik 102
Stuckenschmidt, Heiner 291

Tan, Chun Kwang 69
Taupe, Richard 88
Teppan, Erich C. 88, 134
Thimm, Matthias 291
Tifrea-Marciuska, Oana 264
Toprak, Sibel 102
Tősér, Zoltán 17, 200
Trappenberg, Thomas P. 69
Twiefel, Johannes 102

Ul Wahab, Faiz 102
Ulges, Adrian 162
Urbani, Jacopo 211, 230

Vankadara, Leena Chennuru 102

Wehrle, Martin 278
Weikum, Gerhard 211
Weiss, Gerhard 126
Weninger, Felix 310
Wermter, Stefan 102
Wieser, Iris 102
Woltran, Stefan 3, 257, 271
Woltzenlogel Paleo, Bruno 244
Wotawa, Franz 185

Yoo, Kyounghwan 17

Zhou, Shuang 126

318 Author Index


	Preface
	Organization
	Contents
	Full Papers
	Providing Built-In Counters in a Declarative Dynamic Programming Environment
	1 Introduction
	2 Background
	3 D-FLAT: A Quick Tutorial
	4 Built-In Counters
	5 Experimental Results
	6 Conclusion
	References

	Model Based Augmentation and Testing of an Annotated Hand Pose Dataset
	1 Introduction
	2 Tools, Datasets, and Methods
	2.1 Smart Glove, Model Software, Dataset
	2.2 Database Generation for Extending the ICVL Dataset
	2.3 DeepPrior-Lasagne CNN
	2.4 Open Source Contributions

	3 Results
	3.1 Non-linear Mapping from ICVL 3D Markers to the LibHand Model
	3.2 Tests on the New Datasets

	4 Discussion
	5 Conclusions
	References

	Lifted Junction Tree Algorithm
	1 Introduction
	2 Related Work
	3 Background
	3.1 Junction Tree Algorithm
	3.2 Parameterized Models and FO Dtrees

	4 Lifted Junction Tree Algorithm
	4.1 First-Order Junction Trees
	4.2 Algorithm Description

	5 Evaluation
	6 Conclusion
	References

	Improved Diversity in Nested Rollout Policy Adaptation
	1 Introduction
	2 NRPA and Beam-NRPA
	3 Refinements
	4 Improving the Diversity
	5 Experiments
	6 Conclusion
	References

	A Fast Elimination Method for Pruning in POMDPs
	1 Introduction
	2 Partially Observable Markov Decision Processes
	3 Value Iteration
	4 Pruning
	4.1 Lark's Algorithm
	4.2 Skyline Algorithm

	5 Revised Pruning Algorithms
	5.1 Revisions to the Skyline Algorithm
	5.2 Skyline Algorithm with Multiple Objective Functions
	5.3 Revisions to the Lark's Algorithm
	5.4 Lark's Algorithm with Initial Condition

	6 Experimental Results
	6.1 Benchmark Problems
	6.2 Pruning Performance of Randomly Generated Sets

	7 Conclusion
	References

	A Neural Field Approach to Obstacle Avoidance
	1 Introduction
	2 Model Specification
	2.1 2-Dimensional DNF Program to Represent Motor Learning
	2.2 Augmentations of the Model for Obstacle Avoidance

	3 Training the Model
	4 Simulations
	4.1 Test Case 1: Goal State with No Obstacles
	4.2 Test Case 2: Static Obstacle
	4.3 Test Case 3: Dynamic Obstacle

	5 Discussions and Outlook
	References

	Influence of ASP Language Constructs on the Performance of State-of-the-Art Solvers
	1 Introduction
	2 Background
	2.1 Semantics of ASP
	2.2 ASP Coding Practices and Equivalence

	3 Experimental Setup
	3.1 Problems and Encodings
	3.2 Benchmarking

	4 Results
	5 Conclusions
	References

	A Robotic Home Assistant with Memory Aid Functionality
	1 Introduction
	2 The IRMA System
	2.1 Architecture
	2.2 Robot Platform
	2.3 Methods

	3 Evaluation
	3.1 Experimental Setting
	3.2 Results

	4 Discussion
	5 Conclusion
	References

	Technical Communication
	Using Ontological Knowledge About Active Pharmaceutical Ingredients for a Decision Support System in Medical Cancer Therapy
	1 Introduction
	2 Ontology Development
	2.1 Requirements
	2.2 Core Concepts and Roles
	2.3 Therapy Regimens

	3 SPARQL Queries
	4 Related Work, Conclusions, and Further Development
	References

	Solving Negotiation Problems Against Unknown Opponents with Wisdom of Crowds
	1 Introduction
	2 Negotiation Approach
	2.1 Aspiration Setting Component
	2.2 Offer Responding Component

	3 Conclusions
	References

	Declarative Decomposition and Dispatching for Large-Scale Job-Shop Scheduling
	1 Introduction
	2 A Novel Scheduling Approach
	3 Proof of Concept
	3.1 Results

	References

	A Multi-Objective Approach for both Makespan- and Energy-Efficient Scheduling in Injection Molding
	1 Introduction
	2 Approach
	3 Evaluation
	3.1 Method
	3.2 Results
	3.3 Discussion

	4 Conclusion
	References

	Learning Event Time Series for the Automated Quality Control of Videos
	1 Introduction
	2 Problem Formulation
	3 Feature Extraction
	4 Evaluation
	5 Conclusion
	References

	Solving the Physical Vehicle Routing Problem for Improved Multi-robot Freespace Navigation
	1 Introduction
	2 Physical TSPs and VRPs
	3 Implementation
	4 Results
	5 Conclusion
	References

	Trending Topic Aggregation by News-Based Context Modeling
	1 Introduction
	2 Related Work
	3 Approach
	4 Experiments
	5 Conclusion
	References

	Image-Based Identification of Plant Species Using a Model-Free Approach and Active Learning
	1 Introduction
	2 A Model-Free Approach to Identification of Species from Herbaium Specimens
	3 A Model-Free Approach to Species Identification Including Concepts of Active Learning
	4 Evaluation
	5 Conclusion and Future Work
	References

	Using a Deep Understanding of Network Activities for Workflow Mining
	1 Introduction
	2 Network Service Dependency Discovery
	2.1 Indirect Dependencies

	3 Workflow Mining
	4 Experimental Evaluation
	5 Conclusion
	References

	Using Modelica Programs for Deriving Propositional Horn Clause Abduction Problems
	1 Introduction
	2 Model Generation Approach
	3 Related Research
	4 Conclusion
	References

	Symbolic Robot Commanding Utilizing Physical Properties - System Overview
	1 Introduction
	2 Related Work
	3 System Overview
	3.1 User Layer
	3.2 Transformation Layer
	3.3 Control Layer

	4 Conclusion and Future Work
	References

	Personalization of Gaze Direction Estimation with Deep Learning
	1 Introduction
	2 Related Works
	3 Databases and Methods
	3.1 Databases
	3.2 Methods
	3.3 Personalization

	4 Results
	5 Summary
	References

	Sister Conference Contributions/Extended Abstracts
	Exception-Enriched Rule Learning from Knowledge Graphs
	1 Introduction
	2 Nonmonotonic Rule Learning from Knowledge Graphs
	3 Evaluation
	4 Discussion and Outlook
	References

	iRobot: Teaching an Evaluated, Competencies-Based Introductory Artificial Intelligence Class in Highschools
	1 Introduction
	2 Background and Related Work
	2.1 Competencies and Self-directed Learning

	3 Design of the Classes
	4 Realization and Evaluation
	5 Discussion and Outlook
	References

	Towards Clause-Learning State Space Search: Learning to Recognize Dead-Ends
	1 Clause-Learning State Space Search
	2 Empirical Results
	3 Conclusion
	References

	VLog: A Column-Oriented Datalog Reasoner
	1 Introduction
	2 A Short Introduction to Datalog
	3 VLog: Vertical Datalog
	4 Experiments
	5 Outlook
	References

	Driver Frustration Detection from Audio and Video in the Wild
	1 Introduction
	2 Dataset for Detecting Frustration
	3 Methods
	3.1 Audio Features
	3.2 Video Features
	3.3 Classifier

	4 Results
	5 Conclusion
	References

	An Object-Logic Explanation for the Inconsistency in Gödel's Ontological Theory
	1 Introduction
	2 An Essential Difference in the Definitions of Essence
	3 Automating HOML in HOL
	4 Intuitive Explanations for the Inconsistency
	5 Conclusion
	References

	A New Tableau-Based Satisfiability Checker for Linear Temporal Logic
	1 Introduction
	2 Tableau-Based Methods for LTL
	3 A New One-Pass and Tree-Shaped Tableau for LTL
	4 Conclusions and Future Work
	References

	ASP for Anytime Dynamic Programming on Tree Decompositions
	1 Introduction
	2 Background
	3 ASP for Anytime Dynamic Programming on TDs
	4 Conclusion
	References

	Preferential Query Answering in the Semantic Web with Possibilistic Networks
	1 Introduction
	2 Ontological Possibilistic Networks (OP-nets)
	3 Encoding Preferences with OP-Nets
	4 Query Answering Under OP-Nets
	5 Computational Complexity
	References

	Investigating the Relationship between Argumentation Semantics via Signatures
	1 Introduction
	2 Background
	3 Characterizations of Two-Dimensional Signatures
	4 Discussion
	References

	Decoupled Strong Stubborn Sets
	1 Star-Topology Decoupled State Space Search
	2 Combination with Strong Stubborn Sets Pruning
	3 Conclusion
	References

	State-Dependent Cost Partitionings for Cartesian Abstractions in Classical Planning
	1 Introduction
	2 Preliminaries
	3 State-Dependent Cost Partitioning
	4 Saturated Cost Partitioning
	5 Conclusion
	References

	Group Decision Making via Probabilistic Belief Merging
	References

	Simulating Human Inferences in the Light of New Information: A Formal Analysis
	1 Introduction and Overview
	2 Nonmonotonic Reasoning and the Suppression Task
	2.1 A Case Study: Modeling by C-Representations
	2.2 Modeling the Suppression Effect by Expliciting Background Knowledge

	3 Discussion
	References

	Efficient Determination of Measurement Points for Sequential Diagnosis
	1 Introduction
	2 Sequential Diagnosis
	3 Query Computation with Partial Diagnoses
	4 Experimental Evaluation
	5 Conclusion
	References

	Discriminatively Trained Recurrent Neural Networks for Continuous Dimensional Emotion Recognition from Audio
	1 Introduction
	2 Discriminative Objectives for Emotion Regression
	3 Experiments and Results
	3.1 Emotions from Music: MediaEval
	3.2 Emotions from Speech: RECOLA
	3.3 Results

	4 Conclusions
	References

	Author Index



