
Jérôme Durand-Lose
Benedek Nagy (Eds.)

 123

LN
CS

 9
28

8

7th International Conference, MCU 2015
Famagusta, North Cyprus, September 9–11, 2015
Proceedings

Machines, Computations,
and Universality

Lecture Notes in Computer Science 9288

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Jérôme Durand-Lose • Benedek Nagy (Eds.)

Machines, Computations,
and Universality
7th International Conference, MCU 2015
Famagusta, North Cyprus, September 9–11, 2015
Proceedings

123

Editors
Jérôme Durand-Lose
Université d’Orléans
Orléans
France

Benedek Nagy
Eastern Mediterranean University
Famagusta
North Cyprus

and

University of Debrecen
Debrecen
Hungary

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-23110-5 ISBN 978-3-319-23111-2 (eBook)
DOI 10.1007/978-3-319-23111-2

Library of Congress Control Number: 2015946770

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the papers presented at the 7th international conference on
Machines, Computations and Universality (MCU 2015) held during September 9–11,
2015, in Famagusta.

MCU explores computation in the setting of various discrete models (Turing
machines, register machines, cellular automata, tile assembly systems, rewriting sys-
tems, molecular computing models, neural models…) and analog and hybrid models
(BSS machines, infinite time cellular automata, real machines, quantum computing…).
There is a particular, but not exclusive, emphasis given to:

– The search for frontiers between decidability and undecidability in the various
models

– The search for the simplest universal models
– The computational complexity of predicting the evolution of computations in the

various models
– The connection between parallelism and decidability, complexity and universality
– Universality and undecidability in continuous models of computation

Initiated by Maurice Margenstern, the MCU international conference series traces its
roots back to the mid-1990s, and has since been concerned with gaining a deeper
understanding of computation through the study of models of general purpose com-
putation. Previous MCU conferences took place in Zürich, Switzerland (2013),
Orléans, France (2007), Saint-Petersburg, Russia (2004), Chişinǎu, Moldova (2001),
Metz, France (1998), and Paris, France (1995).

There were 23 papers submitted to the 2015 edition of MCU. Each submission was
reviewed by four Program Committee members or sub-reviewers. The committee
decided to accept ten papers. The program also included four invited talks. Various
topics of MCU were overviewed by the invited talks:

– Jetty Klein from Leiden University is an expert on concurrency and Petri nets. In
her talk she presented on-going research about generalized traces, i.e., an extension
of Mazurkiewicz’s trace theory.

– Linqiang Pan from Huazhong University of Science and Technology is working on
membrane computing. His speciality is spiking neural P systems. In his talk he
explained relationships and differences between spiking neural networks and
spiking neural P systems, some classic and recent results.

– Anne Siegel is a senior researcher at CNRS, IRISA, Rennes. She is one of the
leading scientists in qualitative dynamical systems in computer science, biology,
and discrete mathematics. Her speech was about decidability and undecidability
results connected to Rauzy fractals.

– Mike Stannett, from the University of Sheffield, is a leading expert on hypercom-
putations. He explained that the computational power of a distributed system could
depend on the physical environment, i.e., on spacetime geometry in which the
computation is performed.

Informal presentations were also made at the conference but they are not mentioned
in these proceedings.

MCU 2015 was also an occasion to see the historical city of Famagusta and some
of the beautiful surroundings of the city and enjoy the Mediterranean Sea. The city of
Famagusta is one of the finest examples of medieval well-preserved architecture in the
eastern Mediterranean. The ruins of the ancient city of Salamis are one of the most
impressive archaeological sites on the island.

The EasyChair conference system1 was used to handle submissions, the review
process, and LNCS production. As usual, it worked smoothly and perfectly. We def-
initely recommend it.

MCU 2015 was organized by the Eastern Mediterranean University2, Famagusta,
North Cyprus. We are very thankful to the Eastern Mediterranean University for
making MCU possible and successful. We would like to thank Necdet Osam, Rector of
Eastern Mediterranean University, for his energetic support, and Ahmet Sözen, Vice
Rector for Academic Affairs of Eastern Mediterranean University, for helping us to
resolve organizational problems.

The MCU 2015 organizing team did a great job. As far as the Organizing Com-
mittee is concerned, our first very warm thanks go to Rza Bashirov, Chair of MCU
2015 Organizing Committee, who kept track of every stage of event planning for MCU
2015, striving to reach the highest quality in organizational actions. Special thanks go
to Mehmet Bozer, who carefully selected prizes for the best paper and best student
paper awards as well as gadgets/giveaways for the conference bags. We also thank
Hakan Arslan, who on behalf of the web office in Eastern Mediterranean University
created the nicest website for MCU 2015. We thank in particular Hasan Arslan, the
faculty administrator at the Faculty of Arts and Sciences, who performed his task with
great professionalism, helping in the event’s accounting and financial management. We
thank Selda Adaöz and Gizem Sarca from EMU Press for putting scientific things in an
artistic way: We had the most beautiful announcement poster for the conference.
Finally, we extend our sincere appreciation to our sponsors:

– Deniz Plaza3 for providing conference bags
– Laboratoire d’Informatique Fondamentale d’Orléans (LIFO)4 for partial support in

financial aspects

The editors warmly thank the Program Committee, the invited speakers, the authors
of the papers, the external reviewers, the speakers of informal presentations, and all the
participants for their contribution to the success of the conference.

July 2015 Jérôme Durand-Lose
Benedek Nagy

1 http://www.easychair.org/
2 http://www.emu.edu.tr/
3 http://www.denizplaza.net/
4 http://www.univ-orleans.fr/lifo/?lang=en

VI Preface

http://www.easychair.org/
http://www.emu.edu.tr/
http://www.denizplaza.net/
http://www.univ-orleans.fr/lifo/?lang=en

Organization

Program Committee

Andrew Adamatzky University of the West of England, UK
Rza Bashirov Eastern Mediterranean University, Famagusta
Laurent Bienvenu CNRS, Université Paris Diderot, France
Erzsébet Csuhaj-Varjú Eötvös Loránd University, Hungary
Jérôme Durand-Lose University of Orléans, France (Co-chair)
Henning Fernau University of Trier, Germany
Rudolf Freund University of Vienna, Austria
Gabriel Istrate West University of Timisoara, Romania
Jarkko Kari University of Turku, Finland
Martin Kutrib Universität Giessen, Germany
Peter Leupold University of Leipzig, Germany
Maurice Margenstern University of Lorraine, France
Kenichi Morita Hiroshima University, Japan
Benedek Nagy Eastern Mediterranean University (Co-chair)

and University of Debrecen, Hungary
Turlough Neary University of Zürich and ETH Zürich, Switzerland
Matthew Patitz University of Arkansas, USA
Gheorghe Păun Romanian Academy, Bucharest, Romania
Igor Potapov University of Liverpool, UK
K.G. Subramanian University of Science, Malaysia
Klaus Sutner University Carnegy-Mellon, USA
György Vaszil University of Debrecen, Hungary
Sergey Verlan University of Paris Est, France

Steering Committee

Matthew Cook University of Zürich and ETH Zürich, Switzerland
Erzsébet Csuhaj-Varjú Eötvös Loránd University, Budapest, Hungary
Jérôme Durand-Lose University of Orléans, France (Chair)
Natasha Jonoska University of South Florida, USA
Maurice Margenstern University of Metz, France (Honorary Chair)
Kenichi Morita Hiroshima University, Japan
Gheorghe Păun Romanian Academy, Bucharest, Romania
Arto Salomaa University of Turku, Finland
K.G. Subramanian University of Science, Malaysia

Organizing Committee Chairs

Rza Bashirov
Benedek Nagy

Invited Talks

Decidability Problems for Self-induced Systems
Generated by a Substitution

Timo Jolivet1 and Anne Siegel2,3

1 Université Paul Sabatier, Institut de mathmatique de Toulouse,
Toulouse, France

2 CNRS, Université de Rennes 1, IRISA-UMR 6074, Rennes, France
anne.siegel@irisa.fr

3 Inria Rennes - Bretagne Atlantique, Team Dyliss, Rennes, France

Abstract. In this talk we will survey several decidability and undecidability
results on topological properties of self-affine or self-similar fractal tiles. Such
tiles are obtained as fixed point of set equations governed by a graph. The study
of their topological properties is known to be complex in general: we will
illustrate this by undecidability results on tiles generated by multitape automata.
In contrast, the class of self affine tiles called Rauzy fractals is particularly
interesting. Such fractals provide geometrical representations of self-induced
mathematical processes. They are associated to one-dimensional combinatorial
substitutions (or iterated morphisms). They are somehow ubiquitous as
self-replication processes appear naturally in several fields of mathematics. We
will survey the main decidable topological properties of these specific Rauzy
fractals and detail how the arithmetic properties of the substitution underlying
the fractal construction make these properties decidable. We will end up this talk
by discussing new questions arising in relation with continued fraction algo-
rithm and fractal tiles generated by S-adic expansion systems.

Concurrency, Histories, and Nets

Jetty Kleijn

LIACS, Leiden University, P.O.Box 9512
NL-2300 RA Leiden, The Netherlands

h.c.m.kleijn@liacs.leidenuniv.nl

Abstract

In the setting of discrete sequential system models such as finite automata and Turing
machines, computations can be abstracted to sequences of symbols (words). Each
symbol stands for an atomic action and each symbol occurrence represents an exe-
cution of the corresponding action.

In a concurrent system however, actions are not necessarily executed one after the
other and sequential behavioural descriptions such as words, lack information on
possible concurrency of events. In particular, no distinction can be made between
necessary orderings of causally related events and observational, accidental, orderings.
Still, also for concurrent systems, one may want to opt for an abstract language
semantics to describe the evolutions of a system.

To distinguish between causally related and independent events, the, by now
classical, Mazurkiewicz trace approach extends the alphabet of action symbols with a
binary relation providing information on the independence of actions. Then all words
that differ only in the ordering of occurrences of independent actions are identified as
representing observations of the same concurrent computation of the system. The
resulting equivalence classes are referred to as traces. The causal relations between
symbol occurrences are common to (invariant among) all words constituting a trace and
form an acyclic dependence graph that identifies the trace. The transitive closure of the
dependence graph describes the underlying invariant causality structure of the trace as a
labelled partial order.

All this leads to an order-theoretic counterpart of the trace approach within which
concurrent behaviour is on the one hand represented as a history, i.e., an invariant
closed set of (labelled) total orders, and on the other hand through a (labelled) partial
order. These descriptions are in one-to-one correspondence because a history can be
obtained by linearising (saturating) a partial order description in all possible ways, and
a partial order description of concurrent behaviour is derived from the associated
history by intersecting its total orders.

Finally, Elementary Net (EN) systems, generally regarded as the most fundamental
class of Petri Nets, are the operational model that inspired the introduction of traces.
They can be seen as concurrent counterparts of finite automata with their underlying net
structure defining an independence relation over the transitions (actions) of the system.
Their behaviour is in accordance with the ‘true concurrency’ paradigm formalised in
the trace approach, that equates independence and lack of ordering.

There are however aspects of concurrency that cannot be modeled adequately in
terms of partial orders alone and hence also not by classical traces. This is in particular
the case when in a concurrent computation, actions cannot only be reported as
occurring one after the other, but may be registered also as occurring simultaneously.
Then concurrent computations are represented in terms of step sequences, i.e.,
sequences of sets of (one or more) actions recorded as occurring simultaneously. As
before in the case of words, such sequences lack precise information on the relation-
ships between events: no distinction is made between necessary orderings and simul-
taneity of events and between observational ordering and grouping. Moreover, to
capture the underlying invariants of a concurrent computation described using steps,
one needs relations like ‘before or in the same step’ and ‘unordered but not in the same
step’ which cannot be expressed using partial orders as these would identify inde-
pendence, unorderedness, and now also simultaneity.

In a theory of step traces that extends Mazurkiewicz’ approach to step sequences, the
alphabet of action symbols has three binary relations providing information on the
relationships between actions. These fundamental relations are (i) simultaneity –– indi-
cating that actions can occur simultaneously and defining the legal steps of the system;
(ii) serialisability –– indicating a possible execution order of two potentially simultaneous
actions and making it possible to split and combine steps; (iii) interleaving –– indicating
that actions cannot occur simultaneously though no specific order is required, and making
it possible to swap steps on basis of interleaving and serialisability. Together, they form
the basis of the identification of step sequences describing the same concurrent com-
putation. The resulting equivalence classes of step sequences are referred to as step traces.
Moreover, the clear semantical meaning of the three relations makes it possible to dis-
tinguish in a natural way eight subclasses of extended concurrency alphabets defining
specific types of traces including one corresponding to the original traces and others
already known from the literature as extensions.

The (labelled) relational structures that describe the invariant, common relation-
ships between the symbol occurrences in the step sequences forming a trace, have a
weak causality (‘not later than’) and a mutex relation (‘not ordered and not simulta-
neous’). The resulting dependence structures satisfy a form of acyclicity and can be
closed to yield a so-called invariant structure which identifies the step trace. The
saturated extensions of invariant structures correspond to step sequences in the same
way as total orders correspond to words. Moreover, all step sequences corresponding to
saturated extensions of an invariant structure belong to the same step trace. As each
invariant structure is the intersection of its saturated extensions, concurrent behaviour
can again be represented by histories, now (invariant closed) sets of saturated invariant
structures. Invariant structures turn out to be the most general relational structures in
the sense that they can capture any history. It follows that step traces are the most
general version of Mazurkiewicz traces in the context of step sequences. The various
subclasses of step traces have correspondingly simplified invariant structures.

The EN systems that inspired Mazurkiewicz’ approach have a sequential execution
semantics. In the now extended framework, such traces are defined by the subclass of
concurrency alphabets with an empty simultaneity relation. EN systems with a step
semantics (under which transitions can occur simultaneously) define step traces subject
to the concurrency paradigm by which lack of ordering is the same as simultaneity.

Concurrency, Histories, and Nets XIII

In this case, concurrency alphabets have an empty interleaving relation and the
simultaneity and serialisability relations are the same, both coinciding with the inde-
pendence of transitions and thus defined on basis of structural information obtained
from the net. For EN systems extended with inhibitor arcs and operating under the step
semantics, unorderedness of transition occurrences implies their simultaneity but the
converse need not be the case. Here we deal with (the already known) comtraces with
concurrency alphabets with an empty interleaving relation. Finally, to capture the most
general case when there is no assumed relation between unorderedness and simulta-
neity, EN systems with inhibitor arcs can be further extended with mutex arcs that
prohibit the simultaneous execution of otherwise independent transitions. The resulting
ENIM systems thus fit the least restrictive concurrency paradigm for histories relating
to step sequences and can therefore be viewed as the most general EN systems model.

Acknowledgement. This survey is based on ongoing research carried out together with
Ryszard Janicki (McMaster University, Hamilton, Canada), Maciej Koutny (Newcastle
University, Newcastle upon Tyne, UK), and Łukasz Mikulski (Nicolaus Copernicus
University, Toru, Poland).

Literature

Mazurkiewicz, A..: Basic notions of trace theory. In: de Bakker, J.W., de Roever,
W.-P., Rozenberg, G. (eds.) Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency. LNCS, vol. 354, pp. 285–363. Springer, Heidelberg
(1989)
Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific (1995)
Kleijn, J., Koutny, M.: Mutex causality in processes and traces of general elementary
nets. Fundam. Inform. 122 (1–2), 119–146 (2013)
Janicki, R., Kleijn, J., Koutny, M., Mikulski, Ł.: Characterising concurrent histories.
Fundam. Inform. 139, 21–42 (2015)
Janicki, R.., Kleijn, J., Koutny, M., Mikulski, Ł.: Generalising traces; TR-CS 1436.
Newcastle University (2014)
Janicki, R., Kleijn, J., Koutny, M., Mikulski, Ł.: Step traces; Acta Inf. (to appear)
Janicki, R., Kleijn, J., Koutny, M., Mikulski, Ł.: Order structures for subclasses of
generalised traces. In: Dediu, A.-H., Formenti, E., Martín-Vide, C., Truthe, B. (eds.)
LATA 2015. LNCS, vol. 8977, pp. 689–700. Springer, Heidelberg (2015)

XIV J. Kleijn

Spiking Neural P Systems: A Class of Parallel
Computing Models Inspired by Neurons

Linqiang Pan

Key Laboratory of Image Processing and Intelligent Control,
School of Automation, Huazhong University of Science and Technology,

Wuhan 430074, Hubei, China
lqpan@mail.hust.edu.cn; lqpanhust@gmail.com

An Extended Abstract

Nature or natural systems are a rich source for the inspiration of new computational
paradigms and techniques. Examples of nature inspired computational paradigms
include evolutionary algorithms, artificial neural networks, colony optimization, swarm
intelligence, simulated annealing, cellular automata, etc. Such research leads to various
algorithms, even the design of novel computing systems that use natural media to
compute.

Membrane computing is a computational paradigm inspired by cells, which aims to
abstract computing ideas (data structures, operations with data, computing models, etc.)
from the structure and the functioning of a single cell or from complexes of cells, such as
tissues and organs including the brain [18, 20]. The obtained models are distributed and
parallel computing devices, called P systems. In this talk, we consider a class of P systems
inspired by neurons, called spiking neural P systems (SN P systems, for short) [11].

An SN P system consists of a set of neurons, which are placed in the nodes of a
directed graph whose arcs represent the synapses. Each neuron can contain a number of
copies of a single object type (called spike), spiking rules and forgetting rules. Using its
rules, a neuron can send information (in the form of spikes) to all neurons connected by
an outgoing synapse from it. The applicability of a rule is usually determined by
checking the total number of spikes contained in the neuron against a regular
expression associated with the rule. One of the neurons is the output neuron and its
spikes are sent to the environment. A result can be associated with a computation in
various ways: for example, as the time elapsed between the first two consecutive spikes
sent to the environment by the system, that is, the time dimension is used as data
support.

The SN P systems are a class of distributed parallel computing models in the
framework of membrane computing, which have the same origin as recurrent neural
networks, but the computing units (i.e., neurons) evolve in a quite different way. They
use individual spikes, instead of an averaging mechanism like rate coding, allowing us
to incorporate spatial and temporal information in computation, where the number and
timing of spikes matter. In the above sense, SN P systems fall into the third generation
of neural network models [13].

SN P systems are computationally powerful in the sense that only a small number
of computing units (i.e., neurons) suffice for SN P systems to achieve universality (e.g.,
84 or 49 neurons in [21], even 9 computing units arranged in a linear structure in the
variant of SN P system, axon P system [30]). However, for recurrent neural networks,
one of the most investigated models of artificial neural networks, it was proved that 886
computing units are enough for this device to achieve universality for computing
functions [24].

With various mathematical or biology-inspired motivation, many variants of SN P
systems were introduced, for example, SN P systems with anti-spikes [14], SN P
systems with astrocytes [1, 16, 19], SN P systems with weighted synapses [17], SN P
systems with decaying spikes and/or total spiking [8], SN P systems with rules on
synapses [25].

SN P systems can be used as number generating or accepting devices [10, 11, 26,
31], language generators [6, 7, 32], and function computing devices [21, 22, 33]. SN P
systems can be also used to (theoretically) solve computationally hard problems in a
feasible time [12, 15], even real-life problems, for example, representing and pro-
cessing fuzzy and uncertain knowledge [28, 29], fuzzy inference and learning [27],
fault diagnosis [23].

Some simulating/implementing tools of SN P systems were developed [2–5, 9].
In general, with the rich theoretical results and the initial application of SN P

systems, it is expected to solve real-life problems by SN P systems.

References

1. Binder, A., Freund, R., Oswald, M., et al.: Extended spiking neural P systems with excitatory
and inhibitory astrocytes. In: Proceedings of Fifth Brainstorming Week on Membrane
Computing, pp. 63–72 (2007)

2. Cabarle, F., Adorna, H., Martinez-Del-Amor, M.A., et al.: Improving GPU simulations of
spiking neural P systems. Rom. J. Inf. Sci. Tech. 15(1), 5–20 (2012)

3. Cabarle, F., Adorna, H., Martinez-del-Amor, M.A.: Simulating spiking neural P systems
without delays using GPUs. No. arXiv: 1104.1824 (2011)

4. Cabarle, F., Adorna, H., Martinez-del-Amor, M.A.: A spiking neural P system simulator
based on CUDA. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.)
CMC 2011. LNCS, vol. 7184, pp. 87–103. Springer, Heidelberg (2012)

5. Cavaliere, M., Mura, I.: Experiments on the reliability of stochastic spiking neural P systems.
Nat. Comput. 7(4), 453–470 (2008)

6. Chen, H., Freund, R., Ionescu, M., Păun, Gh., Pérez-Jiménez, M.J.: On string languages
generated by spikng neural P systems. Fund. Inform. 75, 141–162 (2007)

7. Chen, H., Ionescu, M., Ishdorj, T.-O., Păun, A., Păun, Gh., Pérez-Jiménez, M.J.: Spiking
neural P systems with extended rules: universality and languages. Nat. Comput. 7(2), 147–
166 (2008)

8. Freund, R., Ionescu, M., Oswald, M.: Extended spiking neural P systems with decaying spikes
and/or total spiking. Int. J. Found. Comput. S. 19(05), 1223–1234 (2008)

9. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Ramírez-Martínez, D.: A software tool for
verification of spiking neural P systems. Nat. Comput. 7(4), 485–497 (2008)

XVI L. Pan

10. Ibarra, O.H., Păun, A., Rodríguez-Patón, A.: Sequential SNP systems based on min/max
spike number. Theor. Comput. Sci. 410(30–32), 2982–2991 (2009)

11. Ionescu, M., Păun, Gh., Yokomori, T.: Spiking neural P systems. Fund. Inform. 71(2–3),
279–308 (2006)

12. Ishdorj, T.-O., Leporati, A., Pan, L., Zeng, X., Zhang, X.: Deterministic solutions to QSAT
and Q3SAT by spiking neural P systems with pre-computed resources. Theor. Comput. Sci.
411(25), 2345–2358 (2010)

13. Maass, W.: Networks of spiking neurons: the third generation of neural network models.
Neural Netw. 10(9), 1659–1671 (1997)

14. Pan, L., Păun, Gh.: Spiking neural P systems with anti-spikes. Int. J. Comput. Commun.
Control IV (3), 273–282 (2009)

15. Pan, L., Păun, Gh., Pérez-Jiménez, M.J.: Spiking neural P systems with neuron division and
budding. Sci. China Inform. Sci. 54(8), 1596–1607 (2011)

16. Pan, L., Wang, J., Hoogeboom, H.J.: Spiking neural P systems with astrocytes. Neural
Comput. 24(3), 805–825 (2012)

17. Pan, L., Zeng, X., Zhang, X., et al.: Spiking neural P systems with weighted synapses.
Neural Process. Lett. 35(1), 13–27 (2012)

18. Păun, Gh.: Computing with membranes, J. Comput. Syst. Sci. 61(1), 108–143 (2000)
19. Păun, Gh.: Spiking neural P systems with astrocyte-like control. J. Univers. Comput. Sci. 13

(11), 1707–1721 (2007)
20. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): Handbook of Membrane Computing. Oxford

University Press, Cambridge (2010)
21. Păun, A., Păun, Gh.: Small universal spiking neural P systems. BioSystems 90(1), 48–60

(2007)
22. Păun, A., Sidoroff, M.: Sequentiality induced by spike number in SNP systems: small

universal machines. In: Gheorghe, M., Păun, Gh., Rozenberg, G., Salomaa, A., Verlan, S.
(eds.) CMC 2011. LNCS, vol. 7184, pp. 333–345. Springer, Heidelberg (2012)

23. Peng, H., Wang, J., Pérez-Jiménez, M.J., et al.: Fuzzy reasoning spiking neural P system for
fault diagnosis. Inform. Sci. 235, 106–116 (2013)

24. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. J. Comput.
Syst. Sci. 50(1), 132–150 (1995)

25. Song, T., Pan, L., Păun, Gh.: Spiking neural P systems with rules on synapses. Theor.
Comput. Sci. 529, 82–95 (2014)

26. Wang, J., Hoogeboom, H.J., Pan, L., Păun, Gh., Pérez-Jiménez, M.J.: Spiking neural P
systems with weights. Neural Comput. 22(10), 2615–2646 (2010)

27. Wang, J., Peng, H.: Adaptive fuzzy spiking neural P systems for fuzzy inference and
learning. Int. J. Comput. Math. 90(4), 857–868 (2013)

28. Wang, J., Shi, P., Peng, H., et al.: Weighted fuzzy spiking neural P systems. IEEE Trans.
Fuzzy Syst. 21(2), 209–220 (2013)

29. Wang, J., Zhou, L., Peng, H., et al.: An extended spiking neural P system for fuzzy
knowledge representation. Int. J. Innov. Comput. I. 7(7), 3709–3724 (2011)

30. Zhang, X., Pan, L., Păun A.: On the Universality of Axon P Systems. IEEE Trans. Neur. Net.
Lear. doi: 10.1109/TNNLS.2015.2396940.

31. Song, T., Pan, L., Păun, Gh.: Asynchronous spiking neural P systems with local synchro-
nization. Inform. Sci. 219, 197–207 (2013)

32. Zhang, X., Zeng, X., Pan, L.: On languages generated by asynchronous spiking neural P
systems. Theor. Comput. Sci. 410(26), 2478–2488 (2009)

33. Zhang, X., Zeng, X., Pan, L.: Smaller universal spiking neural P systems. Fund. Inform. 87
(1), 117–136 (2008)

Spiking Neural P Systems: A Class of Parallel Computing Models XVII

Towards Formal Verification of Computations
and Hypercomputations in Relativistic Physics

Mike Stannett

Department of Computer Science, University of Sheffield
Regent Court, 211 Portobello, Sheffield S1 4DP, UK

m.stannett@sheffield.ac.uk

Abstract. It is now more than 15 years since Copeland and Proudfoot intro-
duced the term hypercomputation. Although no hypercomputer has yet been
built (and perhaps never will be), it is instructive to consider what properties any
such device should possess, and whether these requirements could ever be met.
Aside from the potential benefits that would accrue from a positive outcome, the
issues raised are sufficiently disruptive that they force us to re-evaluate existing
computability theory. From a foundational viewpoint the questions driving
hypercomputation theory remain the same as those addressed since the earliest
days of computer science, viz. what is computation? and what can be com-
puted? Early theoreticians developed models of computation that are indepen-
dent of both their implementation and their physical location, but it has become
clear in recent decades that these aspects of computation cannot always be
neglected. In particular, the computational power of a distributed system can be
expected to vary according to the spacetime geometry in which the machines on
which it is running are located. The power of a computing system therefore
depends on its physical environment and cannot be specified in absolute terms.
Even Turing machines are capable of super-Turing behaviour, given the right
environment.

Contents

Invited Papers

Decidability Problems for Self-induced Systems Generated
by a Substitution . 3

Timo Jolivet and Anne Siegel

Towards Formal Verification of Computations and Hypercomputations
in Relativistic Physics . 17

Mike Stannett

Regular Papers

A Connection Between Red-Green Turing Machines
and Watson-Crick T0L Systems . 31

Erzsébet Csuhaj-Varjú, Rudolf Freund, and György Vaszil

Tight Bounds for Cut-Operations on Deterministic Finite Automata. 45
Frank Drewes, Markus Holzer, Sebastian Jakobi,
and Brink van der Merwe

Non-isometric Contextual Array Grammars with Regular Control
and Local Selectors . 61

Henning Fernau, Rudolf Freund, Rani Siromoney,
and K.G. Subramanian

Universality of Graph-controlled Leftist Insertion-deletion Systems
with Two States . 79

Sergiu Ivanov and Sergey Verlan

Tinput-Driven Pushdown Automata . 94
Martin Kutrib, Andreas Malcher, and Matthias Wendlandt

Reversible Limited Automata . 113
Martin Kutrib and Matthias Wendlandt

An Intrinsically Universal Family of Causal Graph Dynamics. 129
Simon Martiel and Bruno Martin

The Simulation Powers and Limitations of Hierarchical
Self-Assembly Systems . 149

Jacob Hendricks, Matthew J. Patitz, and Trent A. Rogers

http://dx.doi.org/10.1007/978-3-319-23111-2_1
http://dx.doi.org/10.1007/978-3-319-23111-2_1
http://dx.doi.org/10.1007/978-3-319-23111-2_2
http://dx.doi.org/10.1007/978-3-319-23111-2_2
http://dx.doi.org/10.1007/978-3-319-23111-2_3
http://dx.doi.org/10.1007/978-3-319-23111-2_3
http://dx.doi.org/10.1007/978-3-319-23111-2_4
http://dx.doi.org/10.1007/978-3-319-23111-2_5
http://dx.doi.org/10.1007/978-3-319-23111-2_5
http://dx.doi.org/10.1007/978-3-319-23111-2_6
http://dx.doi.org/10.1007/978-3-319-23111-2_6
http://dx.doi.org/10.1007/978-3-319-23111-2_7
http://dx.doi.org/10.1007/978-3-319-23111-2_8
http://dx.doi.org/10.1007/978-3-319-23111-2_9
http://dx.doi.org/10.1007/978-3-319-23111-2_10
http://dx.doi.org/10.1007/978-3-319-23111-2_10

A Characterization of NP Within Interval-Valued Computing 164
Benedek Nagy and Sándor Vályi

Universality in Infinite Petri Nets . 180
Dmitry A. Zaitsev

Author Index . 199

XX Contents

http://dx.doi.org/10.1007/978-3-319-23111-2_11
http://dx.doi.org/10.1007/978-3-319-23111-2_12

Invited Papers

Decidability Problems for Self-induced Systems
Generated by a Substitution

Timo Jolivet1 and Anne Siegel2,3(B)

1 Université Paul Sabatier, Institut de Mathmatique de Toulouse, Toulouse, France
2 CNRS, Université de Rennes 1, IRISA-UMR 6074, Rennes, France

anne.siegel@irisa.fr
3 Inria Rennes - Bretagne Atlantique, Team Dyliss, Rennes, France

Abstract. In this talk we will survey several decidability and undecid-
ability results on topological properties of self-affine or self-similar fractal
tiles. Such tiles are obtained as fixed point of set equations governed by a
graph. The study of their topological properties is known to be complex
in general: we will illustrate this by undecidability results on tiles gener-
ated by multitape automata. In contrast, the class of self affine tiles called
Rauzy fractals is particularly interesting. Such fractals provide geomet-
rical representations of self-induced mathematical processes. They are
associated to one-dimensional combinatorial substitutions (or iterated
morphisms). They are somehow ubiquitous as self-replication processes
appear naturally in several fields of mathematics. We will survey the
main decidable topological properties of these specific Rauzy fractals
and detail how the arithmetic properties of the substitution underlying
the fractal construction make these properties decidable. We will end
up this talk by discussing new questions arising in relation with contin-
ued fraction algorithm and fractal tiles generated by S-adic expansion
systems.

The following survey is mainly inspired by three papers from the authors and
their collaborators [32,60,84].

1 Substitutions Among Mathematics and Computer
Science

A substitution (sometimes also called iterated morphism) is a combinatorial
object which produces sequences by iteration. It is given by a replacement rule of
the letters of a finite alphabet by nonempty, finite words over the same alphabet.
Thus substitutions define an iteration process on a finite set in a natural way: as
we shall detail it below, they appear in many fields of mathematics, theoretical
physics and computer science whenever repetitive processes or replacement rules
occur.

In combinatorics on words, substitutions have been used in order to exhibit
examples of finite words or infinite sequences with very specific or unusual com-
binatorial properties. The most famous example is the Thue-Morse sequence,
c© Springer International Publishing Switzerland 2015
J. Durand-Lose and B. Nagy (Eds.): MCU 2015, LNCS 9288, pp. 3–16, 2015.
DOI: 10.1007/978-3-319-23111-2 1

4 T. Jolivet and A. Siegel

that is, the infinite fixed-point of the substitution σ(1) = 12, σ(2) = 21, which
is the first example of an overlap-free infinite sequence, meaning that it contains
no subword of the shape 1u1u1, where u ∈ {1, 2}∗ [25,49,52,71,87,88]. The
famous class of Sturmian sequences, including the famous Fibonacci substitu-
tion, is also strongly related to the composition of substitutions in relation with
continued fraction expansion (see [49, Chapter 6]). Their combinatorial prop-
erties are particularly interesting, in terms of minimal complexity as well as in
terms of representation of discrete lines. A sub-class of sturmian sequences with
a quadratic irrational ratio are even proved to be a fixed point of a substitution
[92]. More generally, the use of substitutions to describe discrete planes in R

3 has
proved to be very useful in discrete geometry to decide algorithmically whether
a discrete patch is a part of a given discrete plane [12,28,48].

Since the time when they first appeared, substitutions have also been deeply
related to number theory. For instance, in the field of diophantine approxima-
tion, substitutions produce transcendental numbers which can be approximated
by cubic algebraic integers only in a very bad way [81]; the description of greedy
expansions of reals in noninteger base [5,89] by means of substitutions also
results in best approximation characterizations [53,71]. The Cobham Theorem
[41] also constitutes a strong bridge between substitutions and number theory
and allows one to derive deep transcendence properties: the real numbers with
continued fraction expansions given by the Thue-Morse sequence, the Baum-
Sweet sequence [22] or the Rudin-Shapiro sequence [82] are all transcendental,
the proof being based on the “substitutive” structure of these sequences [1].

Substitutions also appear in theoretical physics in connection with quasicrys-
tals, a class of crystals with forbidden symmetry [34,72,83]. Roughly, a solid
is usually considered as a quasicrystal when it has an essentially discrete dif-
fraction diagram. From a more combinatorial point of view, a quasicrystal is
given by an aperiodic but repetitive structure that plays the role of the lattice
in the theory of crystalline structures. Mathematically, we then speak of Meyer
sets which are obtained by employing the cut-and-project scheme [76]. In the
one-dimensional case, a well-studied family of Meyer sets is given by analogs
of the integers in radix representations with respect to a non-integral base, in
relation with sturmian sequences [51]. In higher-dimensional cases, however, the
situation becomes much more difficult. The well-known Penrose tiling is a qua-
sicrystal since it has essentially discrete diffraction diagram, but defining a wide
class of examples of quasicrystals is an open question [10,62,63,80]. Good can-
didates for cut-and-project schemes (hence, quasicrystals) are given by discrete
approximations of planes that are orthogonal to Pisot directions [11,23] and
can be generated from one-dimensional substitutions with continued fraction
algorithms [11,56]. Following this construction process, focusing on the periodic
cases—an analog to the quadratic case within the sturmian family—it has been
proved that substitutions provide relevant classes of examples for such Meyer sets
in the multi-dimensional case, resulting in explicit examples of atomic structures
(or point sets) with a relevant discrete diffraction diagram [30].

Decidability Problems for Self-induced Systems Generated by a Substitution 5

Another independent reason for the introduction of substitutions is related to
dynamical systems, and more precisely to the field of symbolic dynamics, that is,
the study of dynamical systems by coding their orbits as infinite sequences; to this
matter, a complicated dynamics over a quite simple space is replaced by a simple
dynamics (the shift mapping) over an intricate but combinatorial space made of
infinite sequences. For the complete class of dynamical systems for which past and
future are disjoint, the symbolic dynamical systems are particularly simple: they
are described by a finite number of forbidden words, and they are called shifts of
finite type [68]. A partition that induces a coding from a dynamical system onto
such a shift of finite type is called a Markov partition [3]. The existence of Markov
partitions is extremely useful in studying many dynamical properties (especially
statistical ones); they are used for instance in analytic number theory of in dynam-
ical systems [4,36]. Explicit Markov partitions, however, are generally known only
for hyperbolic automorphisms of the two-dimensional torus [3], and they have rec-
tangular shapes. In higher dimensions, a slightly different behavior appears since
several results attest that the contracting boundary of a member of a Markov par-
tition cannot be smooth [37,40]. In this setting, substitutions have been proved to
be useful to construct explicit Markov partitions, based on generalized radix rep-
resentations with a matrix as base (derived from the substitutions) [63,65–67,77]
or referring to two-dimensional iteration processes (discrete planes construction
processes discussed above) [14,55].

In contrast to shifts of finite type we mention highly ordered self-similar sys-
tems with zero entropy, which can be defined as systems where the large-scale
recurrence structure is similar to the small-scale recurrence structure, or more
precisely, as systems which are topologically conjugate to their first return map-
ping on a particular subset. Importantly, such dynamical systems connected to
all fields described above: they appear as a return mapping of the expanding
flow onto the contracting manifold for hyperbolic toral automorphisms with a
unique expanding direction [20] (in relation with dynamical systems and Markov
partitions); they allow one to generate infinite sequences with interesting com-
binatorial features (in relation with combinatorics of words); they provide a
construction of points sets for quasicristals (in relation with theoretical physics);
they also allow one to describe non unique greedy expansions of reals in non
integer basis. From their self-similar structure, their symbolic dynamical sys-
tems are naturally generated by substitutions [49,78]. Therefore, substitutions
appear to be ubiquitous to describe self-repetitive mathematical processes.

Paper Organization. In Sect. 2 we define Rauzy fractals and explain how they
are used in the study of one-dimensional substitution dynamics. We highlight
how the topological properties of these sets are used to study substitutions under
several different viewpoints. In Sect. 3 we describe a general framework to study
fractal objects, namely graph-directed iterated function systems (GIFS). This
class of objects includes Rauzy fractals. We see that many natural topological
properties are undecidable in this framework. In Sect. 4 we give several examples
of properties which are undecidable in the GIFS framework, but which are in

6 T. Jolivet and A. Siegel

decidable for the particular family of Rauzy fractals, and we briefly describe
the main ideas behind some of the algorithms. In Sect. 5 we consider the more
general problem of understanding the infinite family of systems generated by all
the products of substitutions from a given finite set, and how we can extend the
existing tools to study study such families.

2 The Geometry of One-Dimensional Substitutions

In the world of substitutions, geometrical objects appeared in 1982 in the work
of Rauzy [79], to build a domain exchange in R

2 that generalizes the theory of
interval exchange transformations [61,91].

To each substitution one can associate an incidence matrix M = (mij) in
a natural way. Indeed, mij counts the occurrences of the letter i in σ(j). To
build a Rauzy fractal, we restrict to the case of unit Pisot substitutions, i.e.,
substitutions whose incidence matrix is primitive and has a Pisot unit as a
dominant eigenvalue.

An approach to build a Rauzy fractal is based on formal power series and
projections of broken lines to hyperplanes and is inspired by Rauzy’s seminal
paper [79]. The principle is to consider a periodic point for the substitution,
then to represent this sequence as a stair (also called “broken line”) in R

n,
where n denotes the size of the alphabet on which the substitution acts. The
next step is to project the vertices of the stair onto the contracting subspace of
the incidence matrix. Since the projection is performed on a contracting stable
space of the matrix, and the object that was projected is a periodic point of the
substitution (and, hence, “contracted” by the incidence matrix) the closure of
the projection is a compact set. A final step consists in drawing several colors
with respect to the direction used in the stair to arrive on each vertex before the
projection, and we get the Rauzy fractal.

The standard example is given by the so-called Tribonacci substitution
defined as σ(1) = 12, σ(2) = 13, σ(3) = 1 which was first studied by Rauzy [79].
Projecting the “broken line” related to the unique fixed point of the Tribonacci
substitution to the two-dimensional contracting plane yields a nice fractal pic-
ture, the so-called classical Rauzy fractal T which is depicted in Fig. 1 with its
subtiles T (1) (largest subtile), T (2) (middle size subtile), T (3) (smallest subtile).

Since this compact set is obtained from the fixed point of the substitution, the
self-replication properties of the fixed point have geometrical consequences: we
represent the contracting space as the complex plane C. Denote by α one of the
two complex conjugate roots of the characteristic polynomial of the substitution
matrix X3 −X2 −X − 1; one has |α| < 1. With help of α, the Rauzy fractal can
be written as graph directed iterated function system in the sense of [73] as

⎧
⎪⎨

⎪⎩

T (1) = α(T (1) ∪ T (2) ∪ T (3)),
T (2) = αT (1) + 1,

T (3) = αT (2) + 1.

Decidability Problems for Self-induced Systems Generated by a Substitution 7

Fig. 1. The classical Rauzy fractal with its subtiles (left), and their self-affine decom-
positions (left).

Hence, each subtile is a finite union of translated contracted copies of subtiles.
The contraction is given by the Galois conjugate α (of modulus <1), while the
translations depend on the structure of the substitution.

The main reason for the frequent use of Rauzy fractals in the literature is that
the iterative procedure to generate infinite words with the help of a substitution
is often shifted to a geometric framework and reflects in self-similarity properties
that can be studied. Then, the main questions to be investigated in each domain
can be interpreted as questions related to the topology of the Rauzy fractal and
its tiling properties.

In number theory, diophantine properties are induced by properties of a dis-
tance function to a specific broken line [53] related to the Rauzy fractal and
the size of the largest ball contained in it. Finiteness properties of digit repre-
sentations in numeration systems with non-integer base are related to the fact
that 0 is an inner point of the Rauzy fractal [9]. More generally, the identifi-
cation of those real numbers who has a periodic expansion in non-integer basis
is strongly related to the study of the intersection of the fractal boundary with
appropriate lines [2,6]. Rauzy fractals also allow one to characterize purely peri-
odic orbits of representations in numeration systems w.r.t. non-integer base, and
yield certain generalizations of Galois’ theorem [27,30,57]. In discrete geometry,
there are numerous relations between generalized Rauzy fractals and discrete
planes as studied for instance in [13]. The shape of pieces generating a discrete
plane is tightly related to the shape of Rauzy fractals. On the dynamical system
viewpoint, Rauzy fractals allow one to explicitly build the largest spectral fac-
tor induced by a substitutive dynamical system. Explicit Markov partitions for
hyperbolic automorphisms of tori are constructed for instance in [55,77], actu-
ally using Rauzy fractals. Importantly, in this setting, connectivity properties of
Rauzy fractals are crucial to establish generator properties of the Markov par-
tition [3]. In tiling theory, Rauzy fractals are used to represent the tiling flow
and to prove that substitutive systems are expanding foliations of the space
tiling [17].

For all these reasons, a thorough study of the topological properties of Rauzy
fractals have appeared to be of great importance. There have been quite many

8 T. Jolivet and A. Siegel

contributions on this field in the last decade, establishing that many topological
properties are semi-decidable. In the following, we will illustrate why such decid-
ability results are somehow quite unexpected with respect to the most general
study of self-affine tiles.

3 Undecidability of GIFS Topological Properties

In order to investigate more formally the topological properties of Rauzy fractals,
we will consider these compact sets in the larger family of graph-directed function
systems (GIFS).

One of the most common ways to define fractals is to use an iterated function
system (IFS), defined by a finite collection of maps f1, . . . , fn : Rd → R

d which
are all contracting: there exists 0 ≤ c < 1 such that ‖fi(x) − fi(y)‖ ≤ c‖x − y‖
for all x, y ∈ R

d. The associated fractal, called the attractor of the IFS, is the
unique nonempty compact set R such that

R =
n⋃

i=1

fi(R).

Such a set R always exists and is unique thanks to a famous result of Hutchin-
son [54], based on an application of Banach fixed-point theorem; see also [46]
or [21]. For example, the classical Cantor set can be defined as the unique com-
pact set X ⊆ R satisfying the set equation X = 1

3X ∪ (13X + 2
3), and the

Sierpiński triangle can defined as the unique compact set X ⊆ R
2 satisfying

X = 1
2X ∪ (12X + (1/2, 0)) ∪ (12X + (0, 1/2)).

A natural generalization of IFS can be obtained by restricting which infinite
sequences of maps (fin)n∈N we are allowed to iterate. One of the simplest such
restrictions is to require the set of allowed sequence (in)n∈N to be the language
of the infinite paths of a finite graph. Doing so we can give a new definition: a
d-dimensional graph-directed iterated function system (GIFS) [73] is a directed
graph in which each edge e is labelled by a contracting mapping fe : Rd → R

d.
It can be shown by a fixed point argument that given a GIFS (G, {fe}e∈E)

there exists a unique collection of non-empty compact sets {Rq}q∈Q such that

Rq =
⋃

q∈Q

⋃

e∈Eq,r

fe(Rr),

where Q is the set of vertices of the directed graph defining the GIFS, and Eq,r

denote the set of edges from vertex q to vertex r. The sets Ri are called GIFS
attractors or solutions of the GIFS. Note that the uniqueness statement does
not hold for general sets, but only for non-empty compact sets [45].

In other words, the GIFS attractors are the solution of a set equation. Indeed,
we are in presence of a collection of finitely many compact sets {R1, . . . , Rq} such
that each set Ri can be decomposed as a union of contracted copies of itself and
the other sets Rj .

Decidability Problems for Self-induced Systems Generated by a Substitution 9

Many works are focused on the more specific family of self-affine attractors,
in which the contractions fi must be affine (of the form Mix + vi where Mi

is a d × d matrix and vi ∈ R
d), or the even more constrained family of self-

similar attractors, in which the fi must be similarities (of the form ax+vi where
a ∈ [0, 1] and vi ∈ R

d).
Self-affine attractors are intensively studied, and many results are known

about some particular families. For example the Hausdorff dimension of Bedford-
McMullen carpets admits an exact simple formula [24,74], and similar results
about the fractal dimension or the Lebesgue measure of some other classes
exist [18,35,47,50,64]. Moreover, there is an “almost sure” formula for the pack-
ing and Hausdorff dimension in the self-similar case [44].

Despite all the positive results stated above, the notorious difficulty of self-
affine sets suggests that there cannot exist any simple criteria to decide such
properties in full generality. From a computer-theoretical point of view, this
would correspond to undecidability results of the type: “there cannot be an
algorithm that, given input an IFS specified by rational coefficients, determines
if Property X holds for the IFS attractor”, where “Property X” can be any IFS
attractor property we are interested in. One could naturally expect a Rice-like
theorem stating that every nontrivial property of GIFS attractor is undecidable,
but such a statement does not hold. For example, the property of being equal
to a singleton is nontrivial and decidable.

A first undecidability result has been established by Dube [42]: it is undecid-
able if the attractor of a rational 2-dimensional affine IFS intersects the diagonal
{(x, x) : x ∈ [0, 1]}.

In [60], the undecidability of some topological properties of self-affine graph-
directed iterated function systems is established. More precisely, the authors
prove that deciding whether the attractor of a 2-dimensional, 3-state affine GIFS
has an empty interior is undecidable. In addition, deciding whether the intersec-
tion of two GIFS attractors Rq ∩ Rq′ has empty interior is also undecidable.

To do so, the authors rely on the approach of Dube [42] and associate self-
affine sets with computational devices called multitape automata, which are finite
automata acting on several tapes, with an independent head reading each tape.
Then they relate some properties of the automaton with topological properties
of its associated attractor, and they obtain the undecidability of the latter by
proving the undecidability of the former.

4 Decidability of Rauzy Fractals Properties

Equation 2 shows that Rauzy fractals also belong to the class of GIFS. In general,
a Rauzy fractal associated with a substitution σ on the alphabet A satisfies the
set equation:

∀ i ∈ A, T (i) =
⋃

j∈A,
σ(j)=pis

h(T (j)) + π(p) . (1)

Where h is a contraction map and π a mapping from A∗ to the Euclidean space
where the fractal lives. The graph with nodes in A and with edges described by

10 T. Jolivet and A. Siegel

the relation σ(j) = pis is the so-called prefix-suffix graph. It describes the way
images of letters under σ can be decomposed [38,39]. The mappings in the GIFS
are contracting, thus the nonempty compact sets T (i) satisfying Eq. 2 (and more
generally Eq. 1) are uniquely determined [73]. They always satisfy the following
properties:

– The direction of the expanding eigenvector of the incidence matrix is irrational
[39].

– T as well as T (i) is compact [73].
– T as well as T (i) is the closure of its interior and has a non-zero measure

[32,86].
– The subtiles T (i) induce a self-replicating multiple tiling of the contracting

plane [15].

Similarly to the families studied in [44], the Hausdorff dimension of the
boundary of a planar Rauzy fractal can be computed if its corresponding Pisot
eigenvalue has complex conjugates, because the associated GIFS is then self-
similar [84]. However, no formula is known if the two conjugates of the Pisot
eigenvalue are real, because then their norms are not equal, so the GIFS is self-
affine but not self-similar. This is in agreement with the known difficulty of the
study of self-affine sets.

On the contrary, the study of inner points and intersection between tiles is
at the opposite of multitape automata: indeed, there are several algorithms to
decide if the tiles of the Rauzy fractal of a unimodular Pisot substitution σ
do not overlap, that is, if they intersect on a set of Lebesgue measure zero. In
the case of Rauzy fractals, this is equivalent to having intersection with empty
interior. It follows that the undecidable property that is stated for 2-dimensional,
3-state affine GIFS [60] is actually decidable for the case of Rauzy fractals (see
the review in [32]). This is not contradictory since the family of Rauzy fractals
GIFS is disjoint from the family of the GIFS associated with multitape automata
for which undecidability results are proved. Indeed, negative powers of integers
cannot be the expansion factors of a Rauzy fractal GIFS, which, in opposition,
is always the case for multitape automata GIFS.

More generally, it has been proved that many topological properties or Rauzy
fractals are actually decidable.

– Checking whether the origin is an inner point of T is decidable [84].
– Checking whether the Rauzy fractal generates self-similar tiling of the plane

is decidable [7,8,17,43,58,69,70,85].
– The box-counting dimension of the fractal boundary of the Rauzy fractal and

its subtiles is computable. In the self-similar case, this allows computing the
Haussorf-dimension [84,90].

– Checking the connectivity of T and T (i) is semi-decidable.
– Verifying that T (i) is homeomorphic to a closed disk is semi-decidable.
– The non-triviality of the fundamental group of T is also semi-decidable, as

well as the property of uncountability and being not free.

Decidability Problems for Self-induced Systems Generated by a Substitution 11

The underlying idea in all criteria is to match the structure of the graph
directed iterated function system that defines the central tile with its tiling
properties. All criteria make use and are expressed in terms of graphs. The
graphs we are using to formulate and prove such results contain the structure of
intersections of two or more tiles in the (multiple) tilings induced by the Rauzy
fractal T and its subtiles T (i) (1 ≤ i ≤ n). If the subtiles induce a tiling, they
provide a description of the boundaries of the subtiles T (i) (1 ≤ i ≤ n) and
even permit to draw these boundaries in an easy way. Other graphs encode the
connectivity of the Rauzy fractal, its subtiles as well as of certain pieces of their
boundary.

5 Extending the Framework of Rauzy Fractals

As detailed below, topological properties of Rauzy fractals are now well under-
stood and can be checked for each single Pisot unit substitution. Nonetheless,
these decidability results rely on the construction of graphs which are deeply
dependent on the combinatorics of the substitution and the algebraic prop-
erties of its incidence matrix. This raises a strong issue when one wishes to
address general results about families of substitutions. Then, the decidabil-
ity issue becomes: Is there an algorithm that, given a finite family of substi-
tutions, determines whether Property X holds for the Rauzy fractal of every
finite product of substitutions in the input family of substitutions? This is for
example how Arnoux-Rauzy substitutions are constructed [16]. More generally,
two-dimensional continued fraction algorithms (Brun and Jacobi-Perron contin-
ued fraction algorithms) defined as piecewise fractional maps produce product
families of three-letter substitutions which seems to have relevant invariant topo-
logical properties [26].

To address such decidability questions about product families of substitu-
tions, new frameworks need to be developed. Two main trends are studied nowa-
days. First, relying on the mathematical study of proximality and homoclinic
return points in tiling flows, Barge proved the product family of β-substitutions,
Brun substitutions and Jacobi-Perron substitutions all generate aperiodic tilings,
meaning that their boundary can be approximated as the Haussdorf limit of
polygonal transformations [19]. Second, the construction and study of local two-
dimensional substitution rules to generate Rauzy fractals allow to study generic
topological properties: for instance, these techniques allow one to solve the decid-
ability problem of connectivity for Rauzy fractals associated to the product fami-
lies of Arnoux-Rauzy, Brun and Jacobi-Perron substitutions (which is decidable),
and simple-connectivity (which in non-decidable) [27,59]. As an application of
this result, it becomes possible to elucidate which two-dimensional toral trans-
lation can be represented by a symbolic substitutive system, an extension of
the representation of one-dimensional toral translation by sturmian sequences.
Such a framework has also been successfully applied to a problem in discrete
geometry about the critical thickness at which an arithmetic discrete plane is
2-connected [29].

12 T. Jolivet and A. Siegel

Another raising issue is the study of fractal tiles generated by substitution-
like processes although they do not exactly fit with the framework of Rauzy
fractals or GIFS. In this trend, we mention tiles generated by non unit numbers
[75] or SRS-numerations systems [31], that have intricate properties, and tiles
generated by infinite compositions of substitution (S-adic) framework [33]. In
both cases, all remains to be done in terms of decidability problems. Indeed, in
most cases, the basis algebraic properties of the underlying systems (i.e., ratio-
nal independency of translation vectors in the GIFS), or the basic topological
properties (i.e. the fractal has a non empty interior, 0 is a inner point) cannot
be established in general. Such properties will deserve algorithmic studies and
pave the way to very exciting novel issues to address.

References

1. Adamczewski, B., Bugeaud, Y., Davison, L.: Continued fractions and transcenden-
tal numbers. Ann. Inst. Fourier (Grenoble) 56(7), 2093–2113 (2006). (Numération,
pavages, substitutions)

2. Adamczewski, B., Frougny, C., Siegel, A., Steiner, W.: Rational numbers with
purely periodic β-expansion. Bull. Lond. Math. Soc. 42(3), 538–552 (2010)

3. Adler, R.L.: Symbolic dynamics and Markov partitions. Bull. Amer. Math. Soc.
(N.S.) 35(1), 1–56 (1998)

4. Adler, R.L., Weiss, B.: Similarity of automorphisms of the torus. Memoirs of the
American Mathematical Society, No. 98. American Mathematical Society, Provi-
dence, R.I (1970)

5. Akiyama, S.: Pisot numbers and greedy algorithm. In: Number theory (Eger, 1996),
pp. 9–21. de Gruyter, Berlin (1998)

6. Akiyama, S., Barat, G., Berthé, V., Siegel, A.: Boundary of central tiles associ-
ated with Pisot beta-numeration and purely periodic expansions. Monatsh. Math.
155(3–4), 377–419 (2008)

7. Akiyama, S., Lee, J.-Y.: Algorithm for determining pure pointedness of self-affine
tilings. Adv. Math. 226(4), 2855–2883 (2011)

8. Akiyama, S., Lee, J.-Y.: Overlap coincidence to strong coincidence in substitution
tiling dynamics. Eur. J. Combin. 39, 233–243 (2014)

9. Akiyama, S., Scheicher, K.: Intersecting two-dimensional fractals with lines. Acta
Sci. Math. (Szeged) 71(3–4), 555–580 (2005)

10. Anderson, J., Putnam, I.: Topological invariants for substitution tilings and their
associated C∗-algebras. Ergodic Theory Dyn. Syst. 18, 509–537 (1998)

11. Arnoux, P., Berthé, V., Ei, H., Ito, S.: Tilings, quasicrystals, discrete planes, gener-
alized substitutions, and multidimensional continued fractions. In: Discrete models:
combinatorics, computation, and geometry (Paris, 2001). Discrete Math. Theor.
Comput. Sci. Proc., AA, pages 059–078 (electronic). Maison Inform. Math. Discrèt.
(MIMD), Paris (2001)

12. Arnoux, P., Berthé, V., Fernique, T., Jamet, D.: Functional stepped surfaces, flips,
and generalized substitutions. Theor. Comput. Sci. 380(3), 251–265 (2007)

13. Arnoux, P., Berthé, V., Ito, S.: Discrete planes, Z2-actions, Jacobi-Perron algorithm
and substitutions. Ann. Inst. Fourier 52(2), 305–349 (2002)

14. Arnoux, P., Furukado, M., Harriss, E., Ito, S.: Algebraic numbers, group automor-
phisms and substitution rules on the plane. Trans. Amer. Math. Soc. (2009, to
appear)

Decidability Problems for Self-induced Systems Generated by a Substitution 13

15. Arnoux, P., Ito, S.: Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc.
Simon Stevin 8(2), 181–207 (2001)

16. Arnoux, P., Rauzy, G.: Représentation géométrique de suites de complexité 2n+1.
Bull. Soc. Math. Fr. 119(2), 199–215 (1991)

17. Baker, V., Barge, M., Kwapisz, J.: Geometric realization and coincidence for
reducible non-unimodular Pisot tiling spaces with an application to beta-shifts.
Ann. Inst. Fourier 56(7), 2213–2248 (2006)

18. Barański, K.: Hausdorff dimension of the limit sets of some planar geometric con-
structions. Adv. Math. 210(1), 215–245 (2007)

19. Barge, M.: Pure discrete spectrum for a class of one-dimensional substitution tiling
systems (2014)

20. Barge, M., Kwapisz, J.: Geometric theory of unimodular Pisot substitutions. Amer.
J. Math. 128(5), 1219–1282 (2006)

21. Barnsley, M.F.: Fractals Everywhere, 2nd edn. Academic Press Professional,
Boston (1993)

22. Baum, L.E., Sweet, M.M.: Continued fractions of algebraic power series in charac-
teristic 2. Ann. Math. (2) 103(3), 593–610 (1976)

23. Béal, M.-P., Perrin, D.: Symbolic dynamics and finite automata. In: Rozenberg, G.,
Salomaa, A. (eds.) Handbook of Formal Languages. Linear Modeling: Background
and Application, pp. 463–506. Springer, Heidelberg (1997)

24. Bedford, T.: Crinkly curves, Markov partitions and box dimensions in self-similar
sets. Ph.D. thesis, University of Warwick (1984)

25. Berstel, J., Perrin, D.: The origins of combinatorics on words. Eur. J. Comb. 28(3),
996–1022 (2007)

26. Berthé, V.: Multidimensional Euclidean algorithms, numeration and substitutions.
Integers, 11B: Paper No. A2, 34 (2011)

27. Berthé, V., Bourdon, J., Jolivet, T., Siegel, A.: A combinatorial approach to prod-
ucts of Pisot substitutions. Ergodic Theory and Dynamical Systems (2015, to
appear)

28. Berthé, V., Fernique, T.: Brun expansions of stepped surfaces. Discrete Math.
311(7), 521–543 (2011)

29. Berthé, V., Jamet, D., Jolivet, T., Provençal, X.: Critical connectedness of thin
arithmetical discrete planes. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B.
(eds.) DGCI 2013. LNCS, vol. 7749, pp. 107–118. Springer, Heidelberg (2013)

30. Berthé, V., Siegel, A.: Tilings associated with beta-numeration and substitutions.
Integers 5, 46 (2005)

31. Berthé, V., Siegel, A., Steiner, W., Surer, P., Thuswaldner, J.M.: Fractal tiles
associated with shift radix systems. Adv. Math. 226(1), 139–175 (2011)

32. Berthé, V., Siegel, A., Thuswaldner, J.M.: Substitutions, Rauzy fractals, and
tilings. In: Combinatorics, Automata and Number Theory. Encyclopedia of Math-
ematics and its Applications, vol. 135. Cambridge University Press (2010)

33. Berthé, V., Steiner, W., Thuswaldner, J.: Geometry, dynamics, and arithmetic of
S-adic shifts. Article submitted for publication (2014)

34. Bombieri, E., Taylor, J.E.: Which distributions of matter diffract? An initial inves-
tigation. J. Phys. 47(7, Suppl. Colloq. C3), C3–19–C3-28 (1986). (International
workshop on aperiodic crystals, Les Houches (1986))

35. Bondarenko, I.V., Kravchenko, R.V.: On Lebesgue measure of integral self-affine
sets. Discrete Comput. Geom. 46(2), 389–393 (2011)

36. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,
vol. 470. Springer, Heidelberg (1978)

14 T. Jolivet and A. Siegel

37. Bowen, R.: Markov partitions are not smooth. Proc. Amer. Math. Soc. 71(1),
130–132 (1978)

38. Canterini, V., Siegel, A.: Automate des préfixes-suffixes associé à une substitution
primitive. J. Théor. Nombres Bordeaux 13(2), 353–369 (2001)

39. Canterini, V., Siegel, A.: Geometric representation of substitutions of Pisot type.
Trans. Am. Math. Soc. 353(12), 5121–5144 (2001)

40. Cawley, E.: Smooth Markov partitions and toral automorphisms. Ergodic Theory
Dyn. Syst. 11(4), 633–651 (1991)

41. Cobham, A.: Uniform tag sequences. Math. Syst. Theory 6, 164–192 (1972)
42. Dube, S.: Undecidable problems in fractal geometry. Complex Syst. 7(6), 423–444

(1993)
43. Ei, H., Ito, S., Rao, H.: Atomic surfaces, tilings and coincidences II. reducible case.

Ann. Inst. Fourier 56, 2285–2313 (2006)
44. Falconer, K.: The Hausdorff dimension of self-affine fractals. Math. Proc. Camb.

Philos. Soc. 103(2), 339–350 (1988)
45. Falconer, K.: Techniques in Fractal Geometry. Wiley, Chichester (1997)
46. Falconer, K.: Fractal Geometry, Mathematical Foundations and Applications, 2nd

edn. Wiley, Hoboken (2003)
47. Feng, D.-J., Wang, Y.: A class of self-affine sets and self-affine measures. J. Fourier

Anal. Appl. 11(1), 107–124 (2005)
48. Fernique, T.: Generation and Recognition of digital planes using multi-dimensional

continued fractions. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.)
DGCI 2008. LNCS, vol. 4992, pp. 33–44. Springer, Heidelberg (2008)

49. Fogg, N.P., Berthé, V., Ferenczi, S., Mauduit, C., Siegel, A. (eds.): Substitutions in
Dynamics, Arithmetics and Combinatorics, vol. 1794. Springer, Heidelberg (2002)

50. Fraser, J.M.: On the packing dimension of box-like self-affine sets in the plane.
Nonlinearity 25(7), 2075–2092 (2012)

51. Gazeau, J.-P., Verger-Gaugry, J.-L.: Geometric study of the beta-integers for a Per-
ron number and mathematical quasicrystals. J. Théor. Nombres Bordeaux 16(1),
125–149 (2004)

52. Hedlund, G.A.: Remarks on the work of Axel Thue on sequences. Nordisk Mat.
Tidskr. 15, 148–150 (1967)

53. Hubert, P., Messaoudi, A.: Best simultaneous Diophantine approximations of Pisot
numbers and Rauzy fractals. Acta Arith. 124(1), 1–15 (2006)

54. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30(5), 713–
747 (1981)

55. Ito, S., Ohtsuki, M.: Modified Jacobi-Perron algorithm and generating Markov
partitions for special hyperbolic toral automorphisms. Tokyo J. Math. 16(2), 441–
472 (1993)

56. Ito, S., Ohtsuki, M.: Parallelogram tilings and Jacobi-Perron algorithm. Tokyo J.
Math. 17(1), 33–58 (1994)

57. Ito, S., Rao, H.: Purely periodic β-expansion with Pisot base. Proc. Am. Math.
Soc. 133, 953–964 (2005)

58. Ito, S., Rao, H.: Atomic surfaces, tilings and coincidences I. Irreducible case. Isr.
J. Math. 153, 129–155 (2006)

59. Jolivet, T., Kari, J.: Consistency of multidimensional combinatorial substitutions.
In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR 2012. LNCS,
vol. 7353, pp. 205–216. Springer, Heidelberg (2012)

60. Jolivet, T., Kari, J.: Undecidable properties of self-affine sets and multi-tape
automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014,
Part I. LNCS, vol. 8634, pp. 352–364. Springer, Heidelberg (2014)

Decidability Problems for Self-induced Systems Generated by a Substitution 15

61. Keane, M.: Interval exchange transformations. Math. Z. 141, 25–31 (1975)
62. Kellendonk, J., Putnam, I.: Tilings, C∗-algebras, and K-theory. In: Baake, M.,

Moody, R.V. (eds.) Directions in Mathematical Quasicrystals. AMS CRM Monogr.
Ser., vol. 13, pp. 177–206, Providence, RI (2000)

63. Kenyon, R., Vershik, A.: Arithmetic construction of sofic partitions of hyperbolic
toral automorphisms. Ergodic Theory Dyn. Syst. 18(2), 357–372 (1998)

64. Lalley, S.P., Gatzouras, D.: Hausdorff and box dimensions of certain self-affine
fractals. Indiana Univ. Math. J. 41(2), 533–568 (1992)

65. Le Borgne, S.: Un codage sofique des automorphismes hyperboliques du tore. In:
Séminaires de Probabilités de Rennes. Publ. Inst. Rech. Math. Rennes, vol. 1995,
p. 35. University of Rennes 1, Rennes (1995)

66. Le Borgne, S.: Un codage sofique des automorphismes hyperboliques du tore. C.R.
Acad. Sci. Paris Sér. I Math. 323(10), 1123–1128 (1996)

67. Le Borgne, S.: Un codage sofique des automorphismes hyperboliques du tore. Bol.
Soc. Brasil. Mat. (N.S) 30(1), 61–93 (1999)

68. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cam-
bridge University Press, Cambridge (1995)

69. Livshits, A.N.: On the spectra of adic transformations of markov compacta. Russ.
Math. Surv. 42, 222–223 (1987)

70. Livshits, A.N.: Some examples of adic transformations and automorphisms of sub-
stitutions. Sel. Math. Sov. 11(1), 83–104 (1998). Selected translations

71. Lothaire, M.: Applied Combinatorics on Words. Encyclopedia of Mathematics and
its Applications, vol. 105. Cambridge University Press, Cambridge (2005)

72. Luck, J.M., Godrèche, C., Janner, A., Janssen, T.: The nature of the atomic sur-
faces of quasiperiodic self-similar structures. J. Phys. A 26(8), 1951–1999 (1993)

73. Mauldin, R.D., Williams, S.C.: Hausdorff dimension in graph directed construc-
tions. Trans. Am. Math. Soc. 309(2), 811–829 (1988)

74. McMullen, C.: The Hausdorff dimension of general Sierpiński carpets. Nagoya
Math. J. 96, 1–9 (1984)

75. Minervino, M., Steiner, W.: Tilings for Pisot beta numeration. Indag. Math. (N.S.)
25(4), 745–773 (2014)

76. Moody, R.V.: Model sets: a survey. In: Axel, F., Dénoyer, F., Gazeau, J.-P. (eds.)
From Quasicrystals to More Complex Systems. Centre de Physique des Houches,
vol. 13, pp. 145–166. Springer, Heidelberg (2000)

77. Praggastis, B.: Numeration systems and Markov partitions from self-similar tilings.
Trans. Am. Math. Soc. 351(8), 3315–3349 (1999)

78. Queffélec, M.: Substitution Dynamical Systems-Spectral Analysis, vol. 1294.
Springer, Heidelberg (1987)

79. Rauzy, G.: Nombres algébriques et substitutions. Bull. Soc. Math. Fr. 110(2),
147–178 (1982)

80. Robinson, Jr., E.A.: Symbolic dynamics and tilings of Rd. In: Symbolic dynamics
and its applications. Proc. Sympos. Appl. Math., Amer. Math. Soc., vol. 60, pp.
81–119, Providence, RI (2004)

81. Roy, D.: Approximation to real numbers by cubic algebraic integers. II. Ann. Math.
(2) 158(3), 1081–1087 (2003)

82. Rudin, W.: Some theorems on Fourier coefficients. Proc. Am. Math. Soc. 10, 855–
859 (1959)

83. Senechal, M.: What is. . . a quasicrystal? Not. Am. Math. Soc. 53(8), 886–887
(2006)

84. Siegel, A., Thuswaldner, J.M.: Topological properties of Rauzy fractals. Mém. Soc.
Math. Fr. (N.S.) 118, 140 (2009)

16 T. Jolivet and A. Siegel

85. Sirvent, V.F., Solomyak, B.: Pure discrete spectrum for one-dimensional substitu-
tion systems of Pisot type. Canad. Math. Bull. 45(4), 697–710 (2002). (Dedicated
to Robert V. Moody)

86. Sirvent, V.F., Wang, Y.: Self-affine tiling via substitution dynamical systems and
Rauzy fractals. Pac. J. Math. 206(2), 465–485 (2002)

87. Thue, A.: Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. Mat. Nat. Kl.
37(7), 1–22 (1906)

88. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske
Vid. Selsk. Skr. Mat. Nat. Kl. 43(1), 1–67 (1912)

89. Thurston, W.P.: Groups, tilings and finite state automata. Lectures notes dis-
tributed in conjunction with the Colloquium Series, in AMS Colloquium lectures
(1989)

90. Thuswaldner, J.M.: Unimodular Pisot substitutions and their associated tiles. Jour-
nal de Theorie des Nombres de Bordeaux 18(2), 487–536 (2006)

91. Veech, W.A.: Interval exchange transformations. J. Anal. Math. 33, 222–272 (1978)
92. Yasutomi, S.-I.: On Sturmian sequences which are invariant under some substitu-

tions. In: Number theory and its Applications (Kyoto, 1997). Dev. Math., vol. 2,
pp. 347–373. Kluwer Academic Publishers, Dordrecht (1999)

Towards Formal Verification of Computations
and Hypercomputations in Relativistic Physics

Mike Stannett(B)

Department of Computer Science, University of Sheffield, Regent Court,
211 Portobello, Sheffield S1 4DP, Sheffield, UK

m.stannett@sheffield.ac.uk

Abstract. It is now more than 15 years since Copeland and Proud-
foot introduced the term hypercomputation. Although no hypercomputer
has yet been built (and perhaps never will be), it is instructive to con-
sider what properties any such device should possess, and whether these
requirements could ever be met. Aside from the potential benefits that
would accrue from a positive outcome, the issues raised are sufficiently
disruptive that they force us to re-evaluate existing computability theory.
From a foundational viewpoint the questions driving hypercomputation
theory remain the same as those addressed since the earliest days of
computer science, viz. what is computation? and what can be computed?
Early theoreticians developed models of computation that are indepen-
dent of both their implementation and their physical location, but it
has become clear in recent decades that these aspects of computation
cannot always be neglected. In particular, the computational power of a
distributed system can be expected to vary according to the spacetime
geometry in which the machines on which it is running are located. The
power of a computing system therefore depends on its physical environ-
ment and cannot be specified in absolute terms. Even Turing machines
are capable of super-Turing behaviour, given the right environment.

1 Introduction

The term hypercomputation refers to the study of physical or abstract systems
which are potentially capable of behaviours which cannot be simulated by recur-
sive means. The term was introduced by Copeland and Proudfoot ([2]) as a more
accurate replacement for the term ‘super-Turing’ used by Stannett ([13–15]) and
Siegelmann ([12]) to describe certain types of putative hypercomputational sys-
tem. Although no hypercomputer has yet been built (and perhaps never will be),
it is instructive to consider what properties any such device should possess, and
whether these requirements could ever be met.

Computers are physical devices whose possible behaviours are constrained
and described by physical laws. The answers to the questions what can be com-
puted? and what can be computed quickly? therefore depend on ones theory
of physics and the properties of physical materials. Moreover, because physical
devices exist in space and time, their computational power can depend both on
c© Springer International Publishing Switzerland 2015
J. Durand-Lose and B. Nagy (Eds.): MCU 2015, LNCS 9288, pp. 17–27, 2015.
DOI: 10.1007/978-3-319-23111-2 2

18 M. Stannett

when and where they are located. In particular, spacetime structures can boost
the power of computational systems, but can also constrain and reduce their
power. Similarly, an algorithm’s run-time complexity is not an absolute prop-
erty but depends on the spacetime trajectory being followed by the machine(s)
on which it is running.

1.1 Geometrical Boosting of Computational Power

A well-known strategy for boosting computational power is to exploit the proper-
ties of Malament-Hogarth (M-H) spacetimes [3]. These are spacetimes containing
a point p and a future-pointing semi-infinite worldline w not passing through p,
such that every point x of w can be joined to p by a future-pointing timelike
path which has finite proper length (Fig. 1). We refer to the pair (w, p) as an
M-H structure in what follows.

The following lemma shows that all Σ0
1 and Π0

1 sets become decidable in
M-H spacetime using just two Turing machines, provided they can communicate
at least once.

Lemma 1. Let S be any set in Σ0
1 or Π0

1 . Then S can be decided in M-H
spacetime by a system comprising two computers capable of communicating once.

Fig. 1. Temporal structure of a hypercomputation using an M-H structure (w, p). In
this example, we solve the Halting Problem in constant time using two communicating
Turing machines. Machine A sends the program to machine B, and then travels to the
M-H event p. Machine B, moving along w, runs the program and if it ever halts it
sends a message to p saying so. On reaching p, A looks for the message. It is present
at p if and only if the program halted.

Towards Formal Verification of Computations and Hypercomputations 19

Fig. 2. The programs Sender (running on TS, which is capable of sending at most one
message to Receiver) and Receiver (running on TR, which is capable of receiving and
acting upon at most one message from Sender) co-operate to decide the undecidable
set S in the context of an M-H structure (w, p). The two machines are initially co-
located at some point on the worldline w. The 1-second delay is to avoid ambiguity
as to whether Receiver returns result before or after executing Sender ’s assignment
instruction at p.

Proof. We show that any S in Π0
1 can be decided in M-H spacetime (the Σ0

1 case
follows by complementarity). Since S is in Π0

1 we can write S = {x | ∀y.R(x, y)},
where R is recursive. To decide whether n ∈ S, we run the programs Sender and
Receiver shown in Fig. 2.

Suppose n �∈ S, i.e. ¬∀y.R(n, y). Then there exists some y for which the test
R(n, y) fails. Let ymin be the smallest such y. Then

– The machine TS travels along w, a trajectory which allows it infinite execution
time (since it has infinite proper length). Consequently, Sender eventually
encounters and fails the test R(n, ymin), transmits the instruction “result =
false” to p (along a trajectory of finite proper-length), and terminates.

– Receiver sets result to true, then travels to p where it encounters and executes
the instruction sent there by Sender setting result to false. It waits one second
and then returns the value of result, i.e. false.

Now suppose conversely that n ∈ S. Then

– Sender never exits the loop testing R(n, y) and never issues the instruction
setting result to false. It runs forever without terminating (its trajectory along
w ensures that this is possible).

– Receiver sets result to true and travels to p. After waiting one second it
returns the unchanged initial value of result, i.e. true.

In either case, the system eventually returns a value, and the value returned
correctly reports whether or not n ∈ S. ��

Lemma 1 shows that spacetime geometries can boost computational power,
and that this does not require the introduction of ‘unphysical’ constructs like infi-
nite precision observations or new types of machine. The machines used for this
hypercomputation are simply Turing machines – indeed, Receiver is so simple
that TR could arguably be replaced by an essentially trivial 2-state automaton

20 M. Stannett

with no loss of power to the system as a whole. Notice, however, that a sin-
gle machine acting alone cannot exploit the boosting effect of M-H structures,
because this relies on splitting the system into two parts, one of which can run
forever in a period of time that appears finite to the other. Notice also that
spacetime geometries can be considerably more complicated than those consid-
ered here, and that structures can be envisaged which allow decidability at all
levels of the arithmetic hierarchy [6] and beyond [18].

1.2 Geometrical Reduction of Computational Power

Spacetime geometry can also constrain and reduce computational power. For
example, consider a computer traversing a closed timelike curve (CTC) or ‘time
loop’. Suppose the computer’s clock shows that each circuit of the CTC is long
enough for it to execute N instructions. Since the computer and all of its compo-
nents return to their initial spacetime locations (and hence their initial machine
states) after every N instructions, the number of steps executable by a CTC-
traversing Turing machine is necessarily bounded, and all CTC-located programs
must be reversible [16]. Indeed, it is only possible to run a fully controlled pro-
gram if the temporal length of the CTC is an exact integer multiple of the
program’s runtime, since it will not otherwise return to its initial state on com-
pletion of each circuit.

1.3 Geometrical Effects on Computational Complexity

The possibility of M-H spacetimes also has implications for computational com-
plexity. A simple adaptation of the distributed computation outlined in Lemma
1 allows the result produced by any program to be obtained within a fixed time
period, viz. precisely one second longer than it takes Receiver to reach p. In M-H
spacetimes, all programs have constant run-time complexity. (Similarly, CTCs
can be use to transmit results ‘into the past’, thereby allowing program results
to be obtained more quickly than would otherwise be the case.)

Notice, however, that this requires us to refine our notions of complexity
slightly. The program itself may have arbitrarily large complexity, but it is run-
ning on the machine Sender which is not responsible for reporting the program
output. Instead, this is reported by Receiver in constant time. In relativistic
settings, it is essential to identify carefully which components in a distributed
system are deemed responsible for generating the final system output.

2 Modelling Relativity Theory in Isabelle/HOL

Since a spacetime might potentially contain a combination of ‘normal’ regions,
M-H structures and CTCs, the question “what can be computed” has no absolute
answer but depends on local and global geometric properties, the number of
machines available, their relative spacetime trajectories during computation, and
the availability of suitable communication channels. This is a question we would

Towards Formal Verification of Computations and Hypercomputations 21

like to investigate in more detail, but we are hampered by the informal yet
detailed nature of many proofs in relativity theory (and physics in general). The
issue is particularly relevant because the black hole observed at the centre of
our own galaxy Milky Way is potentially of the right type to be a habitat for
M-H structures [4], and while such structures are obviously beyond our current
technological capabilities to exploit, the mere possibility of their existence is
enough to warrant a re-evaluation of the extent to which abstract computability
and complexity theory give an accurate account of what is actually possible in
the physical universe.

In 2012 we joined forces with researchers at the Rényi Institute of Mathe-
matics in Budapest, who have spent many years developing versions of relativity
theory expressed in first order logic – our goal is to express the Hungarian theo-
ries in Isabelle/HOL [9] so as to allow machine-assisted investigation of various
key hypotheses concerning the possibilities for computation and hypercomputa-
tion in relativistic physics [17]. In this section we briefly describe the Hungarian
approach, and show how it can be translated with relative ease into machine-
readable form.

2.1 First-Order Relativity Theory

The approach adopted by Andréka, Németi and the Hungarian team is to for-
mulate a collection of related relativity theories in first-order logic (FOL), using
axioms that are as simple and transparent as possible [1]. Our own starting point
is the translation of the Hungarian axioms and theorems into machine-readable
format suitable for use with the Isabelle/HOL proof assistant [9].

For example, special relativity is represented as a theory SpecRel based on
just four physical axioms:

– AxPh (Photon Axiom)
Each inertial observer considers the speed of light to be positive, and the same
in every spatial direction. Moreover, photons can be emitted in or arrive from
any spatial direction.

– AxEv (Event Axiom)
All observers inhabit the same universe, i.e. they consider the same events to
take place (though possibly at different locations or times).

– AxSelf (Self Axiom)
Inertial observers consider themselves to be stationary.

– AxSym (Symmetry Axiom)
Whenever observers consider two events to be simultaneous, they agree as
to the spatial distance between those two events – this allows observers to
calibrate their rulers relative to one another.

The underlying theory has two basic sorts: quantities and bodies. Quantities
are used to express distances and times, and are assumed to satisfy the axioms
of a field. Bodies in SpecRel include inertial observers and photons, which are
identified by predicates, e.g. IObs(b) is true if and only if body b is an inertial

22 M. Stannett

Fig. 3. Spatial and temporal distances are defined as properties of lines, and are used
to calculate the speeds needed to move from one spacetime location to another. The
class Lines is one of several classes bundled together to form the background context
class SpaceTime which defines the geometrical structures needed to describe spacetime.
These include quantities, vectors, points, cones, straight lines and planes.

observer, and likewise Ph(b) indicates whether b is a photon. Central to all of
the Hungarian versions of first-order relativity theory is the worldview relation,
W , where W (m, b, x) means that observer m considers body b to be present at
location x.

These constructs are generally sufficient to allow the axioms to be speci-
fied. For example, we can use the field axioms to define functions space2 and
time2 giving the (squared) spatial and temporal distances between two space-
time events (Fig. 3). Recalling that IOb(m) means “m is an inertial observer”,
these in turn let us write AxPh as

IOb(m) → (∃v.((v > 0) ∧ (∀xy.(
(∃p.(Ph(p) ∧ W (m, p, x) ∧ W (m, p, y)))

↔ (space2 xy = (v ∗ v) ∗ (time2 xy))))))

In words: each inertial observer is associated with a positive speed v with the
property that whenever any photon is considered by m to pass through two
spacetime locations x and y, the (squared) speed associated with the straight
line joining these points is v2.

The translation into Isabelle/HOL format is now straightforward, viz.

class AxPh = WorldView +
assumes

AxPh:"IOb(m)
=⇒ (∃v. ((v > (0::’a)) ∧ (∀x y . (

(∃p. (Ph p ∧ W m p x ∧ W m p y))
←→ (space2 x y = (v * v)*(time2 x y))

))))"

Towards Formal Verification of Computations and Hypercomputations 23

Fig. 4. A body can be a photon and/or an inertial observer. We do not require that
the body should only be one or the other, because this is a theorem that can be proven
from the axioms. The worldview relation is a predicate defined on two bodies and one
location, and introduces the notation a sees b at x as a more intuitive rendition of
W a b x. It inherits basic definitions from the class SpaceTime.

This is an essentially verbatim translation of AxPh. It assumes that various
WorldView constructs of Fig. 4 are in place, including the inherited definitions
of space2 and time2.

Two other first-order variants of relativity theory are also relevant here. The
theory AccRel represents a kind of halfway-house: bodies can be accelerated
(non-inertial), but we do not as yet include Einstein’s Equivalence Principle
relating acceleration to gravity. Adding an axiom representing the latter leads
to GenRel, the first-order theory of general relativity. The use of the record
construct in Isabelle/HOL is especially useful in this context, as it allows us
to extend some of our definitions very easily. When reasoning in SpecRel, for
example, we assume that bodies are either photons or inertial observers. When
we come to define AccRel we can simply extend the Body record to include a
third predicate for non-inertial observers, without having to re-work our earlier
proof that bodies cannot be both photons and inertial observers. (Alternatively,
as long as we avoid introducing a fourth type of body we can identify non-inertial
observers semantically – they are bodies b for which IOb b and Ph b are both
false.)

Choosing the axioms as simple as possible allows us to investigate the extent
to which different axioms can be weakened without losing physical realism. For
example, while AxPh says that each observer considers the speed of light to
be constant, there is no assumption that different observers agree as to what
this speed is (this is instead proven as a theorem). Similarly, there is no axiom
declaring the sets of photons and inertial observers to be disjoint; this is another
theorem. On the other hand, the drive for simplicity is not without cost. For
example, the reader may be wondering why AxPh refers to the squared speed
of light. This is because FOL is not powerful enough to characterise the field
R of real numbers; there are fields which satisfy precisely the same first order
theorems as R but which admit infinite values and infinitesimals [5,10]. Simi-
larly, R satisfies various additional field axioms that are not always needed for
the theorems we wish to prove; in particular we do not generally assume the

24 M. Stannett

Euclidean axiom (that all positive quantities have square roots) because, as
AxPh shows, we can redefine concepts using squared values instead. The ques-
tion naturally arises, which number fields can be used when modelling relativity
theory? Madarász and Székely argue that the answer depends on the underly-
ing axiom system used to capture each particular version of relativity theory,
and have demonstrated that an axiom system for special relativity can even be
defined over the field Q of rationals [7]. Taking such considerations into account
can add significantly to the work involved in stating theorems and developing
their proofs.

Nonetheless, the approach has several advantages from a computational point
of view. Consider, for example our Isabelle/HOL description of basic spacetime
constructs. This is a 836-line file giving definitions, axioms and proofs relating to
quantities, vectors, points, lines, planes and cones. This file took approximately 4
person-weeks to construct and verify, but now that it is in place the sparse nature
of our assumptions and constructs means that relatively little additional work is
required when moving from the special (SpecRel) to the accelerated (AccRel)
or general (GenRel) first-order theories of relativity. The main difficulty lies not
in translating the underlying axioms and theorems, but in generating verifiable
proofs.

2.2 Generating Verifiable Proofs

Automated theorem provers are extremely useful tools, but they are also unfor-
giving. For example, in our proof of Lemma 1 we wrote the Σ0

1 case follows by
complementarity , assuming that the reader would have sufficient mathematical
competence to infer the following argument:

– if S is a Σ0
1 set, it can be written S = {x | ∃y.R(x, y)} for some recursive

predicate R.
– this can be rewritten S = {x | ¬∀y.¬R(x, y)}.
– this is the complement of the set S′ = {x | ∀y.¬R(x, y)}.
– the predicate R′ ≡ ¬R(x, y) is recursive because R is recursive.
– consequently S′ = {x | ∀y.R′(x, y)} is a Π0

1 set.
– consequently (as proven) S′ is decidable in M-H spacetime.
– and hence S ≡ N \ S′ is decidable in M-H spacetime.

Seen in this way, it is clear that the phrase follows by complementarity conceals
a significant amount of detailed reasoning, and all of this reasoning would need
to be expressed in machine-readable form if we were to attempt a machine-
verification of our proof.

As our machine verification of the SpecRel theorem “no observer can travel
faster than light” reveals, this problem of abbreviated reasoning is just as pro-
nounced when discussing proofs relating to physical theories. Indeed, the bulk
of the work involved choosing sensible descriptions of what we mean by geomet-
rical terms like line, plane and cone. For example, while a mathematician would
accept that two lines that are both parallel to a third line must be parallel to
each other, this required detailed proof within Isabelle/HOL (Fig. 5).

Towards Formal Verification of Computations and Hypercomputations 25

Fig. 5. Isabelle/HOL proof that if two lines are both parallel to a third line, then they
are also parallel to each other.

Having constructed all of the ‘background’ theory, translating the Hungar-
ian proof that observers cannot travel faster than light into Isabelle/HOL form
became a relatively straightforward – though still extremely time consuming –
process of writing down the major steps in the proof, and then carefully filling
in every possible gap in the reasoning until complete verification was achieved.

3 Next Steps

Although we have had promising results modelling SpecRel, including the first
known machine verified proof of the statement “no observer can travel faster
than light”, the time involved in constructing these proofs means we have yet
to make comparable progress developing Isabelle/HOL verification systems for
theorems in AccRel or GenRel. Our ultimate goal is to provide indisputable
proof of the conjectures:

Conjecture 1. Computation in standard Euclidean spacetime means Turing
computation.

Conjecture 2. Computation in M-H spacetimes verifiably includes super-Turing
computation.

However, verifying these conjectures formally adds an additional layer of
complexity, because they introduce a new factor not normally considered when
discussing relativity theory, namely the nature of computers and computations.

26 M. Stannett

In particular, as we saw in Sect. 1.1 we need to capture within Isabelle/HOL
a first-order theory representing distributed computation occurring within M-H
spacetimes, and we envisage having to capture a localised variant of a theory at
least as complex as the π-calculus [8,11], since we need to discuss the properties of
systems comprising multiple spatially-separated mobile components. Moreover,
given the reliance of the schemes presented here upon the properties of M-H
structures like those occurring in certain types of spacetime singularity, we will
presumably also need to model what it means for a spacetime to contain a black
hole, what it means for that black hole to be rotating, what it means for that
rotation to be slow, and what it means for an entity to cross the event horizon.
These are all new concepts in the world of Isabelle/HOL proof construction,
and while we recognise that the task will require years rather than months to
complete, we remain ever hopeful of eventual success.

References

1. Andréka, H., Madarász, J.X., Németi, I.: Logical analysis of relativity theories. In:
Hendricks, et al. (eds.) First-Order Logic Revisited, pp. 1–30. Logos Verlag, Berlin
(2004)

2. Copeland, J., Proudfoot, D.: Alan Turing’s forgotten ideas in computer science.
Sci. Am. 280(4), 99–103 (1999)

3. Etesi, G., Németi, I.: Non-turing computations via Malament-Hogarth space-times.
Int. J. Theor. Phys. 41, 341–370 (2002)

4. Genzel, R., Schoedel, R., Ott, T., Eckart, A., Alexander, T., Lacombe, F., Rouan,
D., Aschenbach, B.: Near-infrared flares from accreting gas around the supermas-
sive black hole at the Galactic Centre (2003). arXiv:astro-ph/0310821

5. Goldblatt, R.: Lectures on the Hyperreals: An Introduction to Nonstandard Analy-
sis. Graduate Texts in Mathematics, vol. 188. Springer-Verlag, Heidelberg (1998)

6. Hogarth, M.: Deciding arithmetic using SAD computers. Br. J. Philos. Sci. 55,
681–691 (2004)

7. Madarász, J.X., Székely, G.: Special relativity over the field of rational numbers.
Int. J. Theor. Phys. 52(5), 1706–1718 (2013)

8. Milner, R.: Communicating and Mobile Systems: The Pi Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

9. Nipkow, T.: Programming and proving in Isabelle/HOL, August 2014. http://
www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle/doc/prog-prove.pdf

10. Robinson, A.: Non-Standard Analysis. Princeton University Press, Princeton
(1996)

11. Sangiorgi, D., Walker, D.: The Pi-Calculus: A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2003)

12. Siegelmann, H.: Computation beyond the Turing limit. Science 268(5210), 545–548
(1995). http://www.dx.doi.org/10.1126/science.268.5210.545

13. Stannett, M.: Super-Turing computation. Seminar presentation, Department of
computer science, University of Sheffield (1990). http://www.researchgate.net/
publication/258848388 1990 Super-Turing Computation

14. Stannett, M.: X-machines and the halting problem: building a super-Turing
machine. Formal Aspects Comput. 2(1), 331–341 (1990). http://www.dx.doi.org/
10.1007/BF01888233

http://arXiv.org/abs/astro-ph/0310821
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle/doc/prog-prove.pdf
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle/doc/prog-prove.pdf
http://www.dx.doi.org/10.1126/science.268.5210.545
http://www.researchgate.net/publication/258848388_1990_Super-Turing_Computation
http://www.researchgate.net/publication/258848388_1990_Super-Turing_Computation
http://www.dx.doi.org/10.1007/BF01888233
http://www.dx.doi.org/10.1007/BF01888233

Towards Formal Verification of Computations and Hypercomputations 27

15. Stannett, M.: An introduction to post-Newtonian and super-Turing compu-
tation. Technical report CS-91-02, Department of Computer Science, Univer-
sity of Sheffield (1991). http://www.researchgate.net/publication/236852111 An
Introduction to post-Newtonian and super-Turing computation

16. Stannett, M.: Computation and spacetime structure. Int. J. Unconv. Comput. 9(1–
2), 173–184 (2013)

17. Stannett, M., Németi, I.: Using Isabelle/HOL to verify first-order relativity theory.
J. Autom. Reasoning 52(4), 361–378 (2014)

18. Welch, P.: The extent of computation in Malament-Hogarth spacetimes (2006).
arXiv:gr-qc/0609035

http://www.researchgate.net/publication/236852111_An_Introduction_to_post-Newtonian_and_super-Turing_computation
http://www.researchgate.net/publication/236852111_An_Introduction_to_post-Newtonian_and_super-Turing_computation
http://arxiv.org/abs/gr-qc/0609035

Regular Papers

A Connection Between Red-Green Turing
Machines and Watson-Crick T0L Systems

Erzsébet Csuhaj-Varjú1, Rudolf Freund2, and György Vaszil3(B)

1 Department of Algorithms and Their Applications, Faculty of Informatics,
Eötvös Loránd University,

Pázmány Péter Sétány 1/c, Budapest 1117, Hungary
csuhaj@inf.elte.hu

2 Faculty of Informatics, TU Wien, Vienna, Austria
rudi@emcc.at

3 Department of Computer Science, Faculty of Informatics,
University of Debrecen,

P.O. Box 12, Debrecen 4010, Hungary
vaszil.gyorgy@inf.unideb.hu

Abstract. Motivated by the conceptual similarity of a mind change of
a red-green Turing machine and of a turn to the complementary word in
Watson-Crick L systems as well as by the fact that both red-green Turing
machines and Watson-Crick L systems define infinite runs, we establish a
connection between the two areas of unconventional computing. We show
that the sets of numbers which can be recognized by so-called standard
Watson-Crick T0L systems coincide with those recognized by red-green
register machines (or red-green Turing machines). The results imply that
usingWatson-Crick L systemswemay “go beyondTuring” in a similar way
as red-green register machines and red-green Turing machines can do.

1 Introduction

Red-green Turing machines are unconventional computing devices that can “go
beyond Turing” [4]. They can be considered as a type of ω-Turing machines
on finite inputs with a recognition criterion based on some property of the sets
of states visited infinitely (finitely) often. The set of internal states of these
machines is divided into two disjoint sets, called the set of red states and the set
of green states. The machine is deterministic, i.e., for any configuration there
exists exactly one transition. An infinite run of the Turing machine is called
recognizing, if and only if no red state is visited infinitely often and one or more
green states are visited infinitely often. A change from a green state to a red state
or reversely is called a mind change. It has been shown that any recursively
enumerable language can be recognized by a red-green Turing machine with
one mind change, and if more mind changes may take place, then the power
of these constructs exceeds that of the standard Turing machines, since the
complement of any recursively enumerable language can be recognized by a red-
green Turing machine. The computational capacity of red-green Turing machines
can be described as follows: red-green Turing machines recognize exactly the
c© Springer International Publishing Switzerland 2015
J. Durand-Lose and B. Nagy (Eds.): MCU 2015, LNCS 9288, pp. 31–44, 2015.
DOI: 10.1007/978-3-319-23111-2 3

32 E. Csuhaj-Varjú et al.

Σ 2-sets of the Arithmetical Hierarchy, and red-green Turing machines accept
exactly those sets which simultaneously are Σ2- and Π2-sets of the Arithmetical
Hierarchy. By acceptance we mean that for every word not recognized by the
Turing machine the run will finally end up in red. In [1], the idea of red-green
computations has been extended: firstly, variants of red-green Turing machines
as red-green register (counter) machines have been introduced, secondly several
variants of red-green P automata (purely communicating membrane systems
working as accepting devices) have been defined. It was shown that these models
simulate red-green Turing machines and thus are able to “go beyond Turing”.

In this paper we discuss how the concept of a mind change can be related
to some other concept, namely the use of Watson-Crick complementarity, from
DNA computing. A notion, called a Watson-Crick D0L system (a WD0L sys-
tem), where the paradigm of complementarity is considered in the operational
sense, was introduced in [5]. This construct is a D0L system over a so-called
DNA-like alphabet V and a mapping φ called the mapping defining the trigger
for the complementarity transition. In a DNA-like alphabet each letter has a
complementary letter and this relation is symmetric. φ is a mapping from the
set of words (strings) over the DNA-like alphabet Σ to {0, 1} with the following
property: the φ-value of the axiom is 0; whenever the φ-value of a word is 1, then
the φ-value of its complementary word must be 0. (The complementary word of
a word is obtained by replacing each letter in the word with its complementary
letter.) The derivation in a Watson-Crick D0L system is as follows: when the new
word has been computed by applying the homomorphism of the D0L system,
then it is checked according to the trigger. If the φ-value of the obtained word
is 0, then the derivation continues in the usual manner; if its φ-value is equal
to 1, then the word is changed for its complementary word and the derivation
continues from this word. Thus, Watson-Crick complementarity is considered as
an operation: together with or instead of a word w we consider its complemen-
tary word. Watson-Crick D0L systems have been extended to other variants of
L systems, and the area has been studied in detail. Computational completeness
of different variants of Watson-Crick L systems has been proved, for example
in [3,9]. Decidability problems have been studied in [9], uni-transitional systems
were described in [7,8], only to mention a very few articles.

Motivated by the conceptual similarity of a mind change and the concept
of a turn to the complementary word as well as the fact that both red-green
Turing machines and Watson-Crick L systems define infinite runs, in this paper
we are going to establish a connection between these areas of unconventional
computing. We first define a new notion to associate languages with Watson-
Crick T0L (WT0L) systems based on the infinite word sequences that they
generate: If the word sequence induced by a WT0L scheme G with the axiom w is
ultimately stable (that is, generated using only a finite number of complementary
turns), then we say that w is recognized by G. Then the connection between the
complementary turns of Watson-Crick T0L systems and the mind changes of red-
green Turing machines is established by showing that the sets of numbers which
can be recognized by WT0L systems coincide with those recognized by red-green

Red-Green Turing Machines and Watson-Crick T0L Systems 33

register machines (or red-green Turing machines). The results imply that using
Watson-Crick L systems it is possible to “go beyond Turing”. The obtained
results shed new light on the unconventional nature of computing devices in
natural computing, i.e., in DNA computing as well.

We note that the idea of “going beyond Turing” in DNA computing appeared
already long time ago when in [6] the concept of computing by carving was intro-
duced: to generate a set of candidate solutions of a problem, and then remove
the non-solutions such that what remains is the solution. In that paper it was
shown that by carving non-recursively enumerable languages can be computed.

2 Preliminaries

We assume the reader to be familiar with the basic notions of formal language
and computability theory; for further details we refer to [10].

For an alphabet V , V ∗ denotes the set of all words over V ; if λ, the empty
word is not included, we use the notation V +. For an alphabet V , a ∈ V and
u ∈ V ∗, |u|a denotes the number of occurrences of a in u.

A register machine is a construct M = (m,B, l0, lh, P), where m is the num-
ber of registers, B is the set of labels, l0 is the initial label, lh is the final label,
and P is the set of instructions labelled by elements of B. The instructions have
one of the following forms:

– (li : ADD(r); lj), where li ∈ B \ {lh}, lj ∈ B, 1 ≤ r ≤ m.
This instruction, labelled by li, is called an increment instruction; it

increases the value of register r by one and then the computation continues
with instruction lj .

– (li : SUB(r); lj , lk), where li ∈ B \ {lh}, lj , lk ∈ B, 1 ≤ r ≤ m.
This instruction is called a subtract instruction. If the number stored in

register r is not zero, then this instruction decreases this number by one
and then the computation continues with instruction lj ; this case is called
decrement. If the value of register r is zero, then without performing any
change of the registers, the computation continues with instruction lk; this
case is called zero-test.

– lh : HALT . This instruction stops the work of the register machine.

A configuration of the register machine is described by the current instruc-
tion label and the contents of the registers, i.e., the numbers stored in them. The
current instruction label identifies the instruction to be executed. The register
machine works with changing its configurations, these changes are also called
transitions. A transition sequence starting with the initial instruction l0 and end-
ing with the final instruction lh is called a computation by M . A natural number
n is said to be accepted by M if there is a halting computation (a computation
ending with instruction lh) such that at the beginning of the computation n is
stored in the first register and all other registers store the value 0.

It is well-known that for any recursively enumerable set of natural numbers
there exists a register machine M that has at most three registers and accepts
this set of numbers.

34 E. Csuhaj-Varjú et al.

2.1 Red-Green Turing Machines

In [4] an extension of the notion of a Turing machine, called red-green Turing
machine was introduced:

Definition 1. A Turing machine TM is called a red-green Turing machine if its
state set Q is divided into two disjoint sets: Qred, the set of so-called red states,
and Qgreen, the set of so-called green states. Furthermore, TM is deterministic,
i.e., for each configuration there is exactly one transition to the next one. A state
p of a red-green Turing machine TM is said to be of color x, if p ∈ Qx, where
x ∈ {red, green}. If in a transition from configuration C to configuration C ′ the
two corresponding states q and q′ are of different color, then we speak of a mind
change. The initial state is a red state.

Red-green Turing machines work on finite inputs with the following accep-
tance criteria: An input word w is recognized by the red-green Turing machine
TM if for the infinite run on w no red state is visited infinitely often and some
green states are visited infinitely often. It is known (see [4]) that a set of words
L is recognized by a red-green Turing machine with one mind change if and
only if L is recursively enumerable. If more mind changes are allowed, the power
of red-green Turing machines is revealed – red-green Turing machines recognize
exactly the Σ2-sets of the Arithmetical Hierarchy.

There are several ways to define the Arithmetical Hierarchy, we briefly refer
to the following. A way to extend the hierarchy of unsolvable problems is to
ask if a computer program will generate an infinite number of outputs. This
property can be generalized by interpreting the output of a computer as the
Gödel number of another computer. Then one can ask the question “Does a
program have an infinite number of outputs an infinite subset of which, when
interpreted as computer programs, have an infinite number of outputs?” This
can be iterated any finite number of times to create the Arithmetical Hierarchy.
In that sense, the Arithmetical Hierarchy can be described as in Table 1 taken
from [2].

In the analogy to red-green Turing machines, in [1] red-green counter
machines (register machines) have been introduced. In the following we recall
the notion, with the necessary modifications, namely, no input word is read by
the red-green register machine, and as it is common for register machines, we
only deal with natural numbers (non-negative integers).

Definition 2. A red-green register machine is a construct

RM = (m,B,Bred, Bgreen, l0, P)

where m is the number of registers, B is the set of the labels of the instructions in
the instruction set P , and B is divided into two disjoint sets, Bred (red labels) and
Bgreen (green labels). As in the case of standard register machines, l0 is the initial
label; label lh, the halting label, can be omitted. A configuration of a red-green
register machine RM = (m,B,Bred, Bgreen, l0, P) is denoted by (l; r1, . . . , rm)
where l ∈ B and r1, . . . , rm are the natural numbers stored in the registers.

Red-Green Turing Machines and Watson-Crick T0L Systems 35

Table 1. Arithmetical Hierarchy

Level Question: will the computer program

Σ0 = Π0 halt in fixed time

Σ1 ever halt

Π1 never halt

Σ2 have at most a finite number of outputs

Π2 have an infinite number of outputs

Σ3 have at most a finite number of Π2 outputs

Π3 have an infinite number of Π2 outputs

Σn have at most a finite number of Πn−1 outputs

Πn have an infinite number of Πn−1 outputs

Notice that register machines can be considered as counter machines oper-
ating on a unary alphabet; the contents of the first register at the beginning of
the computation can be considered as a unary input word of the corresponding
counter machine.

Similarly to red-green Turing machines, red-green register machines recognize
the contents n ∈ N of their input register, if for the infinite run on n, some green
state is visited infinitely often, while red states are visited only finitely often.

Throughout the paper, N(RM) denotes the length sets of the unary words
in the first register recognized by the red-green register machine RM ; we may
also say that RM computes N(RM).

In [1] it was shown that the computations of a red-green Turing machine
TM can be simulated by a red-green counter machine RM in such way that
during the simulation of a transition of TM leading from a state p with color x
to a state q with color y, for x, y ∈ {green, red}, the simulating counter machine
uses instructions with labels of color x and only in the last step of the simulation
changes to a label of color y, and reversely. That is, the simulating instruction
sequence or the simulating transition sequence performs as many mind changes
as the simulated transition or the simulated instruction means. It was shown
that a language L is recognized by a red-green counter machine with one mind
change if and only if L ∈ Σ1, i.e., L is recursively enumerable, and red-green
counter machines recognize exactly the Σ2-sets of the Arithmetical Hierarchy.

2.2 Watson-Crick L Systems

By a T0L system we mean a construct H = (V, g1, . . . , gn, w0) where V is an
alphabet, the gi, 1 ≤ i ≤ n, are endomorphisms defined on V ∗, and w0 ∈
V ∗ is the axiom. A word sequence σ of H is defined as a sequence of words
w0, w1, w2, . . . where for every i ≥ 0 we have wi+1 = gj(wi) for some 1 ≤ j ≤ n;
we also may say that wi directly derives wi+1. Instead of endomorphisms gj ,
1 ≤ j ≤ n, we also may use the notation Tj , where Tj is a finite set of productions

36 E. Csuhaj-Varjú et al.

of the form a → u, where a ∈ V , u ∈ V ∗, and for every letter a ∈ V there is
at least one production in Tj ; Tj is called a table of H. If the axiom, w0, is not
indicated, then we speak of a T0L scheme.

In the following we recall the basic notions for Watson-Crick L systems.
By a DNA-like alphabet V we mean an alphabet with 2n letters, n ≥ 1,

of the form Σ = {a1, . . . , an, ā1, . . . , ān}. Letters ai and āi, 1 ≤ i ≤ n, are
said to be complementary letters; we also call the non-barred symbols purines
and the barred symbols pyrimidines. The terminology originates from the basic
DNA alphabet {A,G,C, T}, where the letters A and G are for purines and their
complementary letters T and C are for pyrimidines.

By hw we denote the letter-to-letter endomorphism of a DNA-like alphabet
V mapping each letter to its complementary letter; hw is also called the Watson-
Crick morphism.

Definition 3. A Watson-Crick T0L system (a WT0L system, for short) is a
pair W = (H,φ) where H = (V, g1, . . . , gn, w0) is a T0L system with a DNA-like
alphabet V, endomorphisms gj , 1 ≤ j ≤ n, and axiom w0 ∈ V +, and φ : V ∗ →
{0, 1} is a recursive function such that φ(w0) = φ(λ) = 0 and for every word
u ∈ V ∗ with φ(u) = 1 it holds that φ(hw(u)) = 0.

A word sequence σ of a Watson-Crick T0L system W consists of words
w0, w1, w2, . . . , where for each i ≥ 0 there exists a k, 1 ≤ k ≤ n, such that

wi+1 =
{

gk (wi) if φ (gk (wi)) = 0
hw (gk (wi)) if φ (gk (wi)) = 1.

The condition φ(u) = 1 is said to be the trigger for the complementarity
transition. If wj+1 = hw(gk(wj)), then we say that a turn to the complement
takes places when obtaining wj+1 from wj . If it is clear from the context, then
we can omit the reference to φ.

For any pair (wi, wi+1), i ≥ 0, we also may use the notation wi =⇒G wi+1

called a computation step or a derivation step from wi to wi+1 in G. The reflexive
transitive closure of relation =⇒G is denoted by =⇒∗

G. The word sequence σ is
an infinite computation (infinite derivation) in G.

As in the case of T0L systems, if no axiom is indicated, then we speak of a
WT0L scheme.

Various mappings φ are able to satisfy the conditions of defining a trigger
for the complementarity transition. In the following, we shall use a particular
variant and the corresponding WT0L system is called standard. In this case a
word w satisfies the trigger for turning to the complementary word if it has more
occurrences of pyrimidines (barred letters) than purines (non-barred letters).
Formally, consider a DNA-like alphabet V = {a1, . . . , an, ā1, . . . , ān} , n ≥ 1. Let
VPUR = {a1, . . . , an} and VPY R = {ā1, . . . , ān}. Then, we define φ : V ∗ → {0, 1}
as follows: for w ∈ V ∗

φ(w) =
{

0 if |w|VPUR
≥ |w|VPY R

and
1 if |w|VPUR

< |w|VPY R
.

We note that in the case of standard Watson-Crick L systems the trigger φ
is given by a context-free context condition.

Red-Green Turing Machines and Watson-Crick T0L Systems 37

Definition 4. A word sequence σ of a WT0L system W is said to be ultimately
stable if there exists a word wi in the sequence such that for any j ≥ i, wj+1 =
gk(wj) for some k, 1 ≤ k ≤ n.

Notice that if σ is ultimately stable, then there are only a finite number of
turns to the complement in generating the elements of σ.

Languages can be associated with WT0L schemes in different ways; in the
following, we introduce a new concept, in accordance with the notions related
to red-green Turing machines.

Definition 5. We say that a WT0L scheme G = (V, g1, . . . , gn, φ) recognizes
a word w ∈ V ∗ if there is a word sequence of the WT0L system W =
(V, g1, . . . , gn, w, φ) which is ultimately stable.

3 Results

We show that transition sequences of red-green register machines (Turing
machines) can be simulated by computations with standard WT0L schemes and
vice versa.

Lemma 1. Let RM = (m,B,Bred, Bgreen, P), m ≥ 1, be a red-green register
machine. Then there exists a standard WT0L scheme G = (V, T1, . . . , Tn, φ),
n ≥ 1, such that for every transition in RM of the form

(li, r1, . . . , rm) =⇒RM (lj , r′
1, . . . , r

′
m)

and for every d ∈ V ∗ where |d|ai
−|d|āi

= ri, it holds that there exists a derivation

lid =⇒∗
G ljd

′

such that |d′|ai
− |d′|āi

= r′
i, and if li, lj ∈ Bx, x ∈ {red, green}, then during the

derivation lid =⇒∗
G ljd

′ in G there is no turn to the complement, and, on the
other hand, if li ∈ Bx and lj ∈ By for x �= y, then there is exactly one turn to
the complement during the derivation lid =⇒∗

G ljd
′ in G.

Proof. Suppose that RM has s instructions, i.e., card(P) = s holds. Recall that
RM is deterministic, i.e., for any label l ∈ B there is exactly one instruction
labelled by l. Since each transition is realized by executing a certain instruction,
to prove the statement we construct tables of the WT0L scheme which being
applied to words representing the corresponding configuration simulate the effect
of the execution of an instruction.

We construct the simulating WT0L scheme G as follows: Let

V = Vr ∪ V ′
r ∪ Lab ∪

{
#, #̄

}
,

V ′ = Vr ∪ V ′
r ∪ Lab,

Vr = {ai, āi | 1 ≤ i ≤ m} ,

V ′
r =

{
bi, b̄i | 0 ≤ i ≤ m

}
,

Lab =
{
l, l̄, l′, l̄′, l′′, l̄′′ | l ∈ B

}
.

38 E. Csuhaj-Varjú et al.

Now we define the tables of G; we present these tables together with expla-
nations of their role in the derivations; further technical details of the proof are
left to the reader. In the tables, if for some symbol no rule is indicated, then the
identical rule is implicitly assumed to be taken.

We first provide an auxiliary table which helps us to induce an infinite number
of turns to the complement in G; this table

T# = {# → #̄#̄#̄#̄, #̄ → #̄#̄#̄#̄}

will be part of every table of G. The symbols # and #̄ are trap symbols, and
once a symbol #̄ has been introduced, the rule #̄ → #̄#̄#̄#̄ guarantees that
the number of trap symbols #̄ at some moment must exceed the number of
non-barred other symbols (as the number of symbols on the right-hand sides of
any other production does not exceed three), which triggers the complementarity
transition in the next step. With its “twin rule” # → #̄#̄#̄#̄ in the next step the
same situation must arrive again which will become clear from the description
of the other tables in G which perform the simulation of the instructions of RM .

Any transition of RM corresponds to the execution of one of its instructions;
therefore, for every instruction we define a set of tables of G which simulates its
execution. We discuss the cases of increment and subtract instructions separately,
depending also on whether or not they represent a mind change or not. The idea
of getting the table for the mind changing case from the other case mainly is to
convert all non-barred symbols to barred symbols, which means that if before
the non-barred symbols had the majority, afterwards the barred symbols will
have the majority and thus cause a complementarity transition in the next step.

Another important feature of the construction is that the number stored in
the register r is not represented as the corresponding number of symbols ar, but
as the difference between the number of symbols ar and ār. This trick is needed
to perform the decrement case of a subtract instruction on register r by adding
a barred version ār of ar instead of erasing one copy of ar, which has the same
effect when taking the right interpretation as defined above.

Let (li : ADD(r); lj), 1 ≤ i, j ≤ s, 1 ≤ r ≤ m, be an increment instruction
in RM such that li, lj ∈ Bx, where x ∈ {red, green}. The corresponding table
of G is defined as follows:

Tli = {li → ljar} ∪ {l → #̄ | l ∈ Lab, l �= li}
∪ {at → at, āt → āt | 1 ≤ t ≤ m}
∪ {c → c | c ∈ V ′

r} ∪ T#.

Notice the role of letters c ∈ V ′
r – those symbols which are not affected by

the instruction rules given in the first two lines of the description of Tli remain
unchanged. Applying this table Tli , li is changed for lj and one more occurrence
of ar is added to the word in this derivation step, i.e., the instruction is simulated.
If the table is applied to a word containing an occurrence of l ∈ Lab, l �= li, then
#̄ is introduced which means that the obtained word does not represent any
configuration of RM , and from this point on the rules from T# will lead to an
infinite sequence of turns to the complement as already argued above. Notice
that the application of Tli does not imply any turn to the complement.

Red-Green Turing Machines and Watson-Crick T0L Systems 39

We now discuss the case of an increment instruction (li : ADD(r); lj) with a
mind change, i.e., li ∈ Bx and lj ∈ By with x, y ∈ {red, green} and x �= y. The
corresponding table in G simulating this instruction is the following (superscript
mc refers to mind change):

Tmc
li

= {li → l̄j ār} ∪ {l → #̄ | l ∈ Lab, l �= li}
∪ {at → āt, āt → at | 1 ≤ t ≤ m}
∪ {c → c | c ∈ V ′

r} ∪ T#.

It is easy to see that after applying the rules of Tmc
li

a turn to the comple-
ment should be performed. Otherwise, the table simulates the execution of the
instruction, in the same manner as described in the previous case.

Now we turn to the case of subtract instructions, i.e., let (li : SUB(r); lj , lk),
1 ≤ i, j, k ≤ s, be a subtract instruction in RM such that li ∈ Bx and lj ∈ By

with x, y ∈ {red, green}.
For this subtract instruction, we first consider the decrement case, namely,

the case, when RM decreases the value of register r by 1 and then continues the
computation with the instruction labelled by lj .

If x = y, then the corresponding tables of G are given as follows:

Tli,1 = {li → l′ib̄0ār} ∪ {l → #̄ | l ∈ Lab, l �= li}
∪ {ar → ar, ār → ār} ∪ {at → atb̄t, āt → ātbt | 1 ≤ t ≤ m, t �= r}
∪ {c → c | c ∈ V ′

r} ∪ T#,
Tli,2 = {l′i → lj} ∪ {l → #̄ | l ∈ Lab, l �= l′i}

∪ {at → at, āt → āt | 1 ≤ t ≤ m}
∪ {c → λ | c ∈ V ′

r} ∪ T#.

If register r is not empty, then the number of symbols ar in the word is
greater than the number of symbols ār. Then, after applying Tli,1, the word
does not turn to the complement, and by applying Tli,2, the “assistant” letters
b and b̄ disappear. If this is not the case, i.e., if register r is empty, which means
that the number of symbols ar in the word equals the number of symbols ār,
then the complementarity transition will take place, the symbol l̄′i will show up
in the word and then table Tli,2 (and any other table constructed in this proof
for G) will introduce an occurrence of #̄, which finally will lead to an infinite run
with infinitely many mind changes due to the rules in T# as already explained
above.

If x �= y, then the corresponding tables of G are obtained by modifying Tli,1

and Tli,2:

Tmc
li,1

= {li → l̄′iar} ∪ {l → #̄ | l ∈ Lab, l �= li}
∪ {ar → ār, ār → ar} ∪ {at → ātbt, āt → atb̄t | 1 ≤ t ≤ m, t �= r}
∪ {c → c | c ∈ V ′

r} ∪ T#,
Tmc
li,2

= {l′i → lj} ∪ {l → #̄ | l ∈ Lab, l �= l′i}
∪ {at → at, āt → āt | 1 ≤ t ≤ m}
∪ {c → λ | c ∈ V ′

r} ∪ T#.

40 E. Csuhaj-Varjú et al.

If the value of register r is not zero, i.e., if there are more symbols ar in
the word than symbols ār, then after applying Tmc

li,1
, the word has to perform a

change to the complement. Then we use table Tmc
li,2

to get lj and for deleting the
“assistant” letters from V ′

r .
If the guess that register r stores a number greater than zero was wrong, then

no turn to the complement follows after applying Tmc
li,1

. In this case, the symbol
l̄′i remains in the word, but in all tables constructed in this proof, we only find
the rule l̄′i → #̄ thus introducing the trap symbol #̄ in the word.

We finish the discussion with the case when we assume that the value stored
in register r is zero and RM continues its work with instruction label lk. Register
r storing zero means that in the corresponding word in G the number of symbols
ar equals the number of symbols ār. Again we have to distinguish between the
two subcases x = y and x �= y, where li ∈ Bx, lk ∈ By, x, y ∈ {red, green}.

Let first x = y. We define

Tli,3 = {li → l′′i b̄0} ∪ {l → #̄ | l ∈ Lab, l �= li}
∪ {ar → ār, ār → ar} ∪ {at → atb̄t, āt → ātbt | 1 ≤ t ≤ m, t �= r}
∪ {c → c | c ∈ V ′

r} ∪ T#,
Tli,4 = {l′′i → lk} ∪ {l → #̄ | l ∈ Lab, l �= l′′i }

∪ {ar → ār, ār → ar} ∪ {at → at, āt → āt | 1 ≤ t ≤ m, t �= r}
∪ {c → λ | c ∈ V ′

r} ∪ T#.

After applying table Tli,3, no turn to the complement takes place if and only
if the number of symbols ar in the word equals the number of symbols ār (note
that these numbers also can be zero, but the difference between the number of
symbols ar and the number of symbols ār is always non-negative), i.e., if and
only if register r stores zero. Otherwise, after a complementarity transition, the
symbol l̄′′i would appear, which can only go to the trap symbol #̄ in any table.

Then we use table Tli,4 to get lk, to recover ar from ār and vice versa as well
as for deleting the “assistant” letters b and b̄.

If the number of symbols ar in the word does not equal the number of symbols
ār, then a complementarity transition takes place and the symbol l̄′′i we obtain
can only go to the trap symbol #̄.

Let us finally consider the case x �= y. We then define

Tmc
li,3

= {li → l̄′′i } ∪ {l → #̄ | l ∈ Lab, l �= li}
∪ {ar → ar, ār → ār} ∪ {at → ātbt, āt → atb̄t | 1 ≤ t ≤ m, t �= r}
∪ {c → c | c ∈ V ′

r} ∪ T#,
Tmc
li,4

= {l′′i → lk} ∪ {l → #̄ | l ∈ Lab, l �= l′′i }
∪ {ar → ār, ār → ar} ∪ {at → at, āt → āt | 1 ≤ t ≤ m, t �= r}
∪ {c → λ | c ∈ V ′

r} ∪ T#.

The application of table Tmc
li,3

now guarantees a turn to the complement, i.e.,
the obtained new word should change to its complementary word, if and only if
the number of symbols ar in the word equals the number of symbols ār.

Then we apply table Tmc
li,4

to get lk and to recover ar from ār and vice versa
as well as for deleting the “assistant” letters b and b̄.

Red-Green Turing Machines and Watson-Crick T0L Systems 41

The standard WT0L scheme G contains exactly all those tables described
above. It is easy to see that the tables can be applied only in the correct order,
and by the explanations given with the definitions of the tables, it can be seen
that the simulation result holds. 	

Based on the preceding lemma we can establish a connection between sets of
numbers recognized by red-green register machines and sets of numbers recog-
nized by standard WT0L schemes. We show that for any red-green register
machine RM there exists a standard WT0L scheme G such that the set of nat-
ural numbers recognized by RM can be computed by G.

Theorem 1. Let k be a natural number and let RM = (m,B,Bred, Bgreen, P)
be a red-green register machine which recognizes k. Then there exists a standard
WT0L scheme G = (V, T1, . . . , Tn, φ), where B ⊆ V, {a1 . . . , am} ⊆ V , such that
G recognizes l0a

k
1a

0
2 . . . a0

m.

Proof. By Lemma 1 we can construct a standard WT0L system G such that G
simulates the computations in RM , namely for any transition of RM of the form
(li, r1, . . . , rm) =⇒RM (lj , r′

1, . . . , r
′
m) and for any d ∈ V ∗ where |d|ai

−|d|āi
= ri,

|d′|ai
− |d′|āi

= r′
i, there exists a derivation

lid =⇒∗
G ljd

′

and, moreover, if li, lj ∈ Bx, x ∈ {red, green}, then during the derivation
lid =⇒∗

G ljd
′ in G there is no turn to the complement, and, on the other hand, if

li ∈ Bx and lj ∈ By for x �= y, then there is exactly one turn to the complement
during the derivation lid =⇒∗

G ljd
′ in G.

The computation in RM starts with a configuration (l0, r1, 0, . . . , 0) and after
a while it enters a configuration (lp, r′

1, . . . , r
′
m) such that lp ∈ Bgreen, and from

this time on no mind change takes place any more. We construct all tables as
given in the proof of Lemma 1. Then, starting a derivation from l0a

r1
1 a0

2 . . . a0
m

and simulating the corresponding recognizing computation in RM , we will obtain
the word lpu where u is a permutation of the word a

r′′
1

1 . . . a
r′′
1

m ā
r′′
1

1 . . . ā
r̄′′
1

m with
r′
i = r′′

i − r̄′′
i , 1 ≤ i ≤ m, thus establishing an ultimately stable computation

in G. This means that G recognizes l0a
r1
1 a0

2 . . . a0
m, i.e., it computes the natural

number r1. This implies that the statement holds. 	

Definition 6. Let G = (V, T1, . . . , Tn, φ) be a WT0L scheme and let a ∈ V .
Then we define

Na(G) = {k | w is recognized by G, |w|a = k and |w|ā = 0}.

The following statement is a direct consequence of Theorem 1.

Corollary 1. For any red-green register machine RM there exist a standard
WT0L scheme G = (V, T1, . . . , Tn, φ) and an a ∈ V such that N(RM) = Na(G).

Next we will demonstrate how sequences of transitions of red-green Turing
machines can simulate derivations of standard WT0L schemes.

42 E. Csuhaj-Varjú et al.

Lemma 2. Let G = (V, T1, . . . , Tr, φ), r ≥ 1, be a standard WT0L scheme.
Then there exist a red-green Turing machine TM and two states p ∈ Qred and
q ∈ Qgreen such that for any u, v ∈ V ∗ with u =⇒G v there exist two computa-
tions c1, c2 in TM , such that
– computation c1 starts in p and computation c2 starts in q,
– both computations obtain v from u,
– if u =⇒G v involved a turn to the complement, then c1 ends in q and c2 ends

in p, otherwise, c1 ends in p and c2 ends in q.

Proof. We construct the red-green Turing machine TM as follows: the input
word u is put on the input tape in the form $1u$2, i.e., between two markers,
and the machine is in either of the states p or q. We describe the computation
from state p, the other state can be treated in a similar manner. Until the last
step, the states will have the same “color” as p, i.e., red. TM reads the input
from left to right, starting with the first letter following $1, and for each letter
a in u it writes a word ua on a second worktape, where a → ua is a rule in
some table of G. During the whole procedure, i.e., until reaching $2, TM uses
rules of the same table of G. Now the word obtained on the worktape is copied
to the input tape between the two markers, and it is read again from left to
right: using two other worktapes, TM checks whether or not the barred letters
are in majority in the obtained word. The worktapes work as counters: if a non-
barred letter is read, then the machine adds one symbol to the contents of the
first tape, if a barred letter is scanned, then it adds a symbol to the contents of
the second worktape. When TM reaches $2, then it makes a comparison of the
contents of the two worktapes and enters state s if the number of non-barred
letters is equal or greater than the barred letters, or else enters state s̄, in both
cases still in a state with color red. Now TM “cleans” all worktapes and returns
its reading head to the position of $1, using different red states to end up with
s′ when having started this final procedure from state s and with s̄′ otherwise.
Finally, TM enters p from s′, i.e., if no mind change takes place, or else q from
s̄′ otherwise, i.e., if a mind change has to take place.

It can easily be seen that TM performs one mind change if and only if G
performs a turn to the complement. 	

As a consequence of the preceding statement we obtain the following theorem.

Theorem 2. Any language that can be recognized by a standard WT0L scheme
can be recognized by a red-green Turing machine.

Proof. By the preceding lemma, any derivation step of a standard WT0L scheme
G can be simulated by some transitions of a red-green Turing machine TM . Thus,
a derivation in G can also be simulated by a sequence of transition sequences
in TM . Furthermore, the simulation preserves mind change, i.e., whenever a
turn to the complement takes place in G, then a mind change takes place in the
simulating transition sequence in TM . Thus, it can be seen that recognizing a
derivation by G corresponds to recognizing a computation by TM . 	

Corollary 2. Any set of natural numbers that can be computed by a standard
WT0L scheme can be computed by a red-green register machine and vice versa.

Red-Green Turing Machines and Watson-Crick T0L Systems 43

4 Conclusions

We have demonstrated the relationship of ideas from different fields of unconven-
tional computing: Watson-Crick T0L systems and red-green register machines
or red-green Turing machines. We first introduced a way to associate languages
with Watson-Crick T0L (WT0L) systems based on the infinite word sequences
that they generate: If the word sequence induced by a WT0L scheme G with
the axiom w is ultimately stable (that is, generated using only a finite number
of complementary turns), then we say that w is recognized by G. The connec-
tion between the complementary turns of Watson-Crick T0L systems and the
mind changes of red-green Turing machines is established by showing that the
sets of numbers which can be recognized by WT0L systems coincide with those
recognized by red-green register machines or red-green Turing machines.

To demonstrate the power of WT0L systems, we repeat an argument from
[4] to show how the complement of any recursively enumerable language can be
characterized by a WT0L system. As the complements of recursively enumerable
languages are not necessarily recursively enumerable, this shows that (similarly
to red-green Turing machines) the language recognizing power of WT0L systems
is greater than the power of standard Turing machines. To recognize the comple-
ment of a given recursively enumerable language L, we first consider the register
machine machine M with L(M) = L, that is, the machine that halts by execut-
ing a specific halt instruction when started with w ∈ L in its first register, and
executes an infinite computation when started with w �∈ L in the first register.
Based on the technique presented in the proof of Lemma 1, we can construct
a WT0L system G which simulates M . Now, if we also add rules to G in such
a way that after simulating the halting instruction of M , it enters an infinite
cycle turning to the complement in each step, we obtain a WT0L system G′

where the only ultimately stable word sequences are generated by computations
which simulate the infinite (and therefore non-accepting) computations of the
register machine M , which means that the language recognized by G′ is exactly
the complement of L, the language accepted by M .

References

1. Aman, B., Csuhaj-Varjú, E., Freund, R.: Red–green P automata. In: Gheorghe,
M., Rozenberg, G., Salomaa, A., Sośık, P., Zandron, C. (eds.) CMC 2014. LNCS,
vol. 8961, pp. 139–157. Springer, Heidelberg (2014)

2. Budnik, P.: What Is and What Will Be. Mountain Math Software, Los Gatos
(2006)

3. Csima, J., Csuhaj-Varjú, E., Salomaa, A.: Power and size of extendedWatson-Crick
L systems. Theor. Comput. Sci. 290, 1665–1678 (2003)

4. van Leeuwen, J., Wiedermann, J.: Computation as an unbounded process. Theor.
Comput. Sci. 429, 202–212 (2012)

5. Mihalache, V., Salomaa, A.: Language-theoretic aspects of DNA complementarity.
Theor. Comput. Sci. 250, 163–178 (2001)

6. Păun, Gh.: (DNA) Computing by carving. Soft Comput. 3, 30–36 (1999)

44 E. Csuhaj-Varjú et al.

7. Salomaa, A.: Uni-transitional Watson-Crick D0L systems. Theor. Comput. Sci.
281(1–2), 537–553 (2002)

8. Salomaa, A., Sośık, P.: Watson-Crick D0L systems: the power of one transition.
Theor. Comput. Sci. 301, 187–200 (2003)

9. Sośık, P.: Watson-Crick D0L systems: generative power and undecidable problems.
Theor. Comput. Sci. 306(1–2), 101–112 (2003)

10. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1–3.
Springer, Berlin (1997)

Tight Bounds for Cut-Operations
on Deterministic Finite Automata

Frank Drewes1, Markus Holzer2(B), Sebastian Jakobi2,
and Brink van der Merwe3

1 Department of Computing Science, Ume̊a University, Ume̊a, Sweden
drewes@cs.umu.se

2 Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
{holzer,sebastian.jakobi}@informatik.uni-giessen.de

3 Department of Mathematical Sciences, Computer Science Division,
University of Stellenbosch, Stellenbosch, South Africa

abvdm@cs.sun.ac.za

Abstract. We investigate the state complexity of the cut and iterated
cut operation for deterministic finite automata (DFAs), answering an
open question stated in [M. Berglund, et al.: Cuts in regular expres-
sions. In Proc. DLT, LNCS 7907, 2011]. These operations can be seen
as an alternative to ordinary concatenation and Kleene star modelling
leftmost maximal string matching. We show that the cut operation
has a matching upper and lower bound of (n − 1) · m + n states on
DFAs accepting the cut of two individual languages that are accepted
by n- and m-state DFAs, respectively. In the unary case we obtain
max(2n−1, m+n−2) states as a tight bound. For accepting the iterated
cut of a language accepted by an n-state DFA we find a matching bound
of 1 + (n + 1) · F(1, n + 2, −n + 2;n + 1 | −1) states on DFAs, where F
refers to the generalized hypergeometric function. This bound is in the
order of magnitude Θ((n − 1)!). Finally, the bound drops to 2n − 1 for
unary DFAs accepting the iterated cut of an n-state DFA and thus is
similar to the bound for the cut operation on unary DFAs.

1 Introduction

The equivalence of finite automata and regular expressions is well known, and
appropriate constructions for the conversion between these representations of
regular languages can be found in almost all monographs on automata and for-
mal languages. Although the concepts are the same, the implementation of reg-
ular expression matching engines may result in fundamentally different finite
state devices. Besides using deterministic or nondeterministic finite automata
as string matchers, the main difference is their performance characteristics and
operational semantics when performing the string matching of the input word
against the constructed matcher. Recently, the behaviour of nondeterministic
matchers was investigated in detail with respect to exponential matching time,
also referred to as catastrophic backtracking [2,6]. One possibility to control the

c© Springer International Publishing Switzerland 2015
J. Durand-Lose and B. Nagy (Eds.): MCU 2015, LNCS 9288, pp. 45–60, 2015.
DOI: 10.1007/978-3-319-23111-2 4

46 F. Drewes et al.

work-flow of the matcher is to use operations that prevent backtracking, simi-
larly as in the logic programming language Prolog [3]. In fact, language oper-
ations with such a behaviour were recently introduced in [1] as an alternative
to ordinary concatenation and Kleene star modelling leftmost maximal string
matching. In order to explain the behaviour of these new regularity preserving
operations consider the following pseudo-code example, which is literally taken
from [1]—and assume that match regex matches the longest prefix possible:

match = match_regex("(a*b)*", s);
if(match != null) then

match = match_regex("ab*c", match.string_remainder);
if(match != null) then

return match.string_remainder == "";
return false;

For the string s = abac, this program first matches R = (a∗b)∗ to the sub-string ab,
leavingacas a remainder,which ismatchedbyS = ab∗c, returning the empty string
as a remainder, indicating a positive match. On the other hand, for s = aababc in
an execution of the program above, regular expression R matches aabab, leaving
the remainder c, which cannot be matched by S, thus returning false, although s
belongs to R ·S. Exactly this behaviour on leftmost maximal matching is modelled
by the cut and iterated cut operation. In [1] basic properties of these operations
with respect to formal languages and computational complexity were investigated.
In particular, both operations preserve regularity. One of the many open questions
stated in [1] is to develop a better or complete understanding of the upper and lower
bounds on the state complexity of finite automata for both variants of cut opera-
tions. We solve this question by giving exact matching upper and lower bounds in
the number of states for deterministic finite automata (DFAs) accepting the cut of
two languages or the iterated cut of a single language.

In the next section we introduce the necessary notation on DFAs. Moreover,
the cut and iterated cut operation is defined and the basic automata construc-
tions for both cut operations on languages are recalled. Then in Sect. 3 the
state complexity of the cut-operation on DFAs in general and on unary DFAs
is investigated. Both bounds are polynomial in n and m. To be more precise,
(n − 1) · m + n states are sufficient and necessary to accept the cut of two lan-
guages accepted by n- and m-state DFAs, and max(2n − 1,m + n − 2) states
are sufficient and necessary for unary DFAs. Here a DFA is unary if it has a
singleton input alphabet. The tight bound for general regular languages is best
possible, since the lower bound even holds for languages over a two letter alpha-
bet. The iterated cut operation is studied in Sect. 4. Here the situation is much
more involved. For DFAs in general we obtain a sufficient and necessary bound of
1+(n+1) ·F(1, n+2,−n+2;n+1 | −1) on the exact number of states, where F
refers to the generalized hypergeometric function. It is shown that this bound is
in the order of Θ((n−1)!). In the unary case the bound drops to 2n−1. Observe
that the lower bound for the iterated cut operation for regular languages in gen-
eral even holds for languages over a three letter alphabet. Whether a bound in
the order of Θ((n − 1)!) can already be obtained by a language over a two letter

Tight Bounds for Cut-Operations on Deterministic Finite Automata 47

alphabet is left open. Moreover, for all presented results we also discuss the effect
of the number of accepting states in the involved automata to the upper and
lower bounds for the cut operations. Finally, we summarize our results in the
concluding section and state some open problems for future research. Owing to
space constraints some proofs had to be shortened or left out. Complete proofs
will be given in a forthcoming journal version of the paper.

2 Preliminaries

We recall some definitions on finite automata as contained in [5]. A deterministic
finite automaton (DFA) is a quintuple A = (Q,Σ, δ, q0, F), where Q is the finite
set of states, Σ is the finite set of input symbols, q0 ∈ Q is the initial state, F ⊆ Q
is the set of accepting states, and δ : Q × Σ → Q is the transition function. The
language accepted by the DFA A is defined as L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F },
where the transition function is recursively extended to δ : Q×Σ∗ → Q. A DFA
is unary, if the input alphabet Σ is a singleton set, that is, Σ = {a}, for some
input symbol a.

In [1] the cut operation on two languages L an L′, denoted by L ! L′, is
defined as

L ! L′ = {uv | u ∈ L, v ∈ L′, and uv′ �∈ L, for every v′ ∈ pref(v) },

where pref(v) denotes the set of all nonempty prefixes of the word v. Moreover,
also an iterated version of the cut operation was defined. The iterated cut of a
language L, denoted by L! ∗, is the smallest language that satisfies

{λ} ∪ (L !(L! ∗)) ⊆ L! ∗,

i.e., L !(L ! . . . (L !(L !{λ})) . . .) ⊆ L! ∗ for any number of repetitions of the cut. In
other words, the language L! ∗ is the least fixed point of X �→ {λ} ∪ (L ! X). We
also define L! + as the smallest language that satisfies L ∪ (L !(L! +)) ⊆ L! +, or
equivalently, as least fixed point of X �→ L∪(L ! X). Notice that L! ∗ = L! +∪{λ}.
The above defined cut operations preserve regularity as shown in [1]. Since we
are interested in the descriptional complexity of both operations we briefly recall
both constructions from [1]—we slightly adapt these constructions such that they
also work in case the initial state of the automaton has incoming transitions and
is a possible final state. We start recalling the construction for the cut operation.

Let A = (QA, Σ, δA, q0,A, FA) and B = (QB , Σ, δB , q0,B , FB) be two DFAs
accepting the languages L and L′, respectively. Then define the automaton C =
(Q,Σ, δ, q0, F), with state set Q = QA ∪ QAQB . The idea behind δ is to let C first
run A and then, as soon as A has accepted a prefix of the input, both A and B in
parallel, so that B can be reset to its initial state each time A encounters another
(longer) prefix in L. Therefore, for all states qA, rA ∈ QA, q′ = qA qB ∈ Q, and
inputs a ∈ Σ with δA(qA, a) = rA we define

δ(qA, a) =

{
rA if rA �∈ FA

rA q0,B otherwise

48 F. Drewes et al.

and

δ(q′, a) =

{
rA δB(qB , a) if rA �∈ FA

rA q0,B otherwise

and q0 = q0,A, if λ �∈ L(A), and q0 = q0,A q0,B , otherwise. The set of final states
is set to F = QAFB. Then L(C) = L ! L′. Since the states of C are non-empty
sequences of length at most two, we refer to an element q ∈ Q as a stack of
states or a stack state. The height of a stack state is the length of its sequence of
states. This view on the state set is used in the iterated cut construction, which
is more subtle.

Again, let A = (QA, Σ, δA, q0,A, FA) be a DFA accepting the language L.
Before we define the DFA C = (Q,Σ, δ, q0, F) that accepts L! +, we need some
prerequisites in order to keep the presentation of C simple. The idea for the
construction of C is as follows: first the automaton behaves like A. If it reaches
one of the final states of A, say q1, it continues in a state q1q0,A, working essen-
tially like the automaton for the language L(A) ! L(A). In particular, it resets
the second copy each time the first copy encounters a final state of A. However,
if the second copy reaches a final state q2 of A, while q1 �∈ F , a third copy is
initialized, thus resulting in a state of the form q1q2q0,A, and so on. In order
to keep the set of states finite we need a function π : Q+

A → Q
≤|QA|
A , which is

defined as follows: for all s = q1q2 . . . qk ∈ Q+
A: if k = 1, then π(s) = s, and if

k > 1, then

π(s) =

{
π(q1q2 . . . qk−1) if qk ∈ {q1, q2, . . . , qk−1}
π(q1q2 . . . qk−1)qk otherwise.

Obviously, function π removes repeated states in the state sequence from right
to left. Hence, the set π(Q+

A) consists only of those sequences, where every state
appears at most once. Now we are ready to describe C. Let Q = π(Q+

A) and
q0 = q0,A. As in the previous cut construction, the elements of Q are called
stacks of states from QA. Then for every q ∈ Q with q = q1q2 . . . qk and a ∈ Σ
let q′

i = δA(qi, a), for 1 ≤ i ≤ k, and set

δ(q, a) =

{
π(q′

1q
′
2 . . . q′

k) if q′
1, q

′
2, . . . , q

′
k �∈ FA

π(q′
1q

′
2 . . . q′

�q0,A) if � = min{ i | 1 ≤ i ≤ k and q′
i ∈ FA. }

The set of final states is

F = { q ∈ Q | q = q1q2 . . . qk with qk ∈ FA or k > 1 and qk−1 ∈ FA }.

Observe, that a reachable final state q = q1q2 . . . qk with qk−1 ∈ FA must fulfill
qk = q0,A by construction. Moreover, if q = q1q2 . . . qk is a reachable final state
with qk ∈ FA \{q0,A}, then we must have q0,A ∈ {q1, q2, . . . , qk−1}. The language
accepted by C is L(C) = L! +. Because L! ∗ = L! + ∪ {λ}, a DFA for L! ∗ can
be obtained from C by simply introducing an additional accepting copy of the
initial state of C (unless q0,A ∈ FA and thus L(C) = L! + = L! ∗).

Tight Bounds for Cut-Operations on Deterministic Finite Automata 49

In the forthcoming sections we consider the descriptional complexity of both
operations, when the regular languages are given by DFAs. The above presented
constructions show an asymptotic upper bound of O(n·(m+1)) for the cut oper-
ation, and an asymptotic upper bound of O(n!) for the iterated cut operation,
if A and B are DFAs with n and m states, respectively.

3 The Descriptional Complexity of the Cut Operation

In this section we prove a tight bound for a DFA accepting the cut of two
languages, when these languages are represented by an n- and m-state DFA,
respectively. This exact tight bound is (n − 1) · m + n, which is witnessed by
automata using binary input alphabets. Then we consider the special case of
unary languages. Here we have to do a detailed analysis of the structure of
unary DFAs in order to prove a tight bound of max(2n − 1, n + m − 2) on the
number of states for unary DFAs. Notice that for m ≤ n this bound only depends
on the first automaton, but not on the second.

First we consider a few special cases. Let Σ be the input alphabet of the
DFA A. If all states in A are accepting, then L(A) = Σ∗, and if A does not have
an accepting state at all, then L(A) = ∅. Thus in both cases, the cut of L = L(A)
with any other language L′, i.e., L ! L′, is empty or equal to Σ∗ (the latter being
the case if L = Σ∗ and λ ∈ L′). Thus, in each of these cases the resulting
language can be described by a DFA with single state only. In general we obtain
the following result.

Theorem 1. Let A be an n-state and B an m-state deterministic finite automa-
ton. Then (n − 1) · m + n states are sufficient and necessary in the worst case
for any deterministic finite automaton accepting the language L(A) ! L(B). The
lower bound even holds for automata with binary input alphabet.

Proof. Let A = (QA, Σ, δA, q0,A, FA) and B = (QB , Σ, δB , q0,B , FB) be the
n- and m-state DFAs, respectively. Applying the previously described construc-
tion for the cut gives a DFA C that accepts L(A) ! L(B) with a state set consisting
of stack states of height at most two. A careful inspection of this construction
reveals that some stack states are not reachable, since they do not have any
incoming transitions. (i) Among the stack states of height one only those that
are not final states in A are possibly reachable. (ii) For the stack states of height
two we consider two sub-cases, namely if the first element of the sequence is
in FA, then the second one is always the initial state of B, and if the first ele-
ment of the sequence is in QA \FA, the second one may be an arbitrary element
of QB . Thus, the state set QC of C can be restricted to contain stack states from

QC = { p | p ∈ QA \ FA } ∪ FA{q0,B} ∪ { pq | p ∈ (QA \ FA) and q ∈ QB }

without changing the accepted language. Thus, we have at most

n − |FA| + |FA| + (n − |FA|) · m = (n − |FA|) · m + n

50 F. Drewes et al.

states, which is maximal if A has only a single accepting state, leading to an
upper bound of (n − 1) · m + n.

Next we show that this upper bound can be reached. To this end we define
the n-state DFA A = (QA, {a, b}, δA, q0,A, FA), where QA = {0, 1, . . . , n − 1},
q0,A = 0, FA = {n − 1}, and

δA(i, a) = i + 1 (mod n) and δA(i, b) = i, for 0 ≤ i ≤ n − 1.

Moreover, we define the m-state DFA B = (QB , {a, b}, δB , q0,B , FB), where
QB = {0, 1, . . . ,m − 1}, q0,B = 0, FB = {0}, and

δB(i, a) = i, for 0 ≤ i ≤ m − 1 and δB(i, b) = i + 1 (mod m)

Both finite automata are depicted in Fig. 1. Again, let C be the DFA constructed
from A and B by applying the construction for the cut, where the state set QC

is restricted according to our previous considerations. Moreover, let q0,C be the
initial state of C. To prove that C needs exactly the claimed number of states,
it can be shown that all states in QC are reachable and pairwise distinguishable.
Due to space constraints the proof is omitted.
�

As we have seen in the previous proof, the upper bound on the number of
states for the cut of two DFAs implicitly depends on the number of accepting
states of the first automaton. It is easy to generalize the above argument to lead
to an even more precise tight upper and lower bound of (n − f) · m + n states,
where f with 1 ≤ f < n refers to the number of accepting states of the “left”
automaton A. For the lower bound proof one simply has to alter the definition of
the automaton A by setting its accepting states to FA = {n−f, . . . , n−2, n−1}.
The details are left to the reader.

In the remainder of this section we briefly mention (without proofs) the
descriptional complexity of the cut operation on unary languages, that is, lan-
guages over a single letter alphabet. Deterministic finite automata for unary

Fig. 1. The binary DFAs A (left) and B (right) with n and m states, respectively, that
witness the state complexity lower bound for the cut operation.

Tight Bounds for Cut-Operations on Deterministic Finite Automata 51

languages obey a very simple structure: a (possibly empty) initial chain, fol-
lowed by a cycle.

Theorem 2. Let A be an n-state and B an m-state deterministic finite automa-
ton accepting a unary language. Then g(n,m) states, where

g(n,m) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if n = 1,
n if n ≥ 2 and m = 1,
2n − 1 if n,m ≥ 2 and m ≤ n,
n + m − 2 if n,m ≥ 2 and m > n,

are sufficient and necessary in the worst case for any deterministic finite automa-
ton accepting the language L(A) ! L(B).
�

Similarly to the non-unary case, the state complexity of the cut on unary
DFAs also depends on the number of accepting states of the “left” automaton A.
If L(A) is infinite, and automaton A has f accepting states, then we obtain a
tight bound of 2n − f states for a DFA that accepts the language L(A) ! L(B).
However, if L(A) is finite then the bound stays n + m − 2, regardless of the
number of accepting states.

Sometimes, when studying descriptional complexity of unary regular lan-
guages, one does not simply count the number of states of a DFA, but rather
distinguishes between the length of the initial chain and the length of the cycle.
So instead of asking for the number g(n,m) of states of a DFA for accepting the
cut of the languages described by n-state and m-state DFAs, one could also study
the following: given unary DFAs A1 and A2, with t1 (t2, respectively) states in
the initial chain and k1 (k2, respectively) states in the cycle, determine bounds
(as functions in t1, t2, k1, k2) for the number t of states in the initial chain and
the number k of states in the cycle of a DFA for the language L(A1) ! L(A2).
Since the results on tight bounds for t and k branch out into many different
sub-cases, we will not go into details here, but rather summarize our results in
Table 1.

4 The Descriptional Complexity of the Iterated-Cut
Operation

In this section we turn our attention to the state complexity of the iterated cut
operation on DFAs. In order to properly state our result we need some more
notation. A generalized hypergeometric function [4] is a power series in x with
r + s parameters, and it is defined as follows in terms of rising factorial powers:

F

(
a1, a2, . . . , ar

b1, b2, . . . , bs

∣
∣
∣
∣ x

)

=
∑

�≥0

a�
1a

�
2 . . . a�

r

b�
1b

�
2 . . . b�

s

· x�

�!
.

Here the rising factorial is defined as x� = x(x + 1) · · · (x + (� − 1)) and the
falling factorial by x� = x(x − 1) · · · (x − (� − 1)). By convention x0 = x0 = 1.

52 F. Drewes et al.

Table 1. Tight bounds for the length t of the initial chain and the length k of the cycle
of a DFA for the language L(A1) !L(A2), where Ai has an initial chain of length ti and
a cycle of length ki, for i = 1, 2. The table is ordered by ascending values of k1. If a
tuple (t1, k2, t2, k2) matches multiple lines, the additional condition column has to be
checked.

t1 k1 t2 k2 condition t k

0 1 ≥ 0 ≥ 1 0 1
≥ 1 1 ≥ 0 ≥ 1 accepting state in cycle 1 t1 1
≥ 1 1 ≥ 0 ≥ 1 no accepting state in cycle 1 t1 + t2 − 1 k2
≥ 0 ≥ 2 0 1 t1 + k1 − 1 1
≥ 0 ≥ 2 ≥ 1 1 t1 + k1 − 1 k1
≥ 0 2 0 ≥ 2 t1 + k1 − 1 k1
≥ 0 2 1 2 t1 + k1 − 1 1
≥ 0 2 1 ≥ 3 t1 + k1 − 1 k1
≥ 0 2 ≥ 2 ≥ 2 t1 + k1 − 1 k1
≥ 0 ≥ 3 ≥ 0 ≥ 2 k1 ≤ t2 + k2 t1 + k1 − 1 k1
≥ 0 ≥ 3 0 ≥ 2 k1 > k2 and k2 mod k1 > 0 t1 + k1 − 1 k1
≥ 0 ≥ 3 0 ≥ 2 k1 > k2, and k1 = k · k2, and 1 accepting in k1-loop t1 + k1 − 1 k2
≥ 0 ≥ 3 0 ≥ 2 k1 > k2, and k1 = k · k2, and ≥ 2 accepting in k1-loop t1 + k1 − 2 k1
≥ 0 ≥ 3 ≥ 1 ≥ 2 k1 > t2 + k2 t1 + k1 − 1 k1

Then our result on the number of states that are sufficient and necessary to
accept the iterated cut L! + of a single language accepted by an n-state DFA
reads as follows—a corresponding result for L! ∗ will be given later.

Theorem 3. Let A be a deterministic finite automaton with n states. Then

(n + 1) · F
(

1, n + 2,−n + 2
n + 1

∣
∣
∣
∣ −1

)

states are sufficient and necessary in the worst case for a deterministic finite
automaton to accept the language L(A)! +. The lower bound even holds for
automata with ternary input alphabet.

Before we prove this theorem by the upcoming two lemmata, we first show
that the following combinatorial identity holds.

Theorem 4. For natural numbers n with n ≥ 2 we have the identity

(n + 1) · F
(

1, n + 2,−n + 2
n + 1

∣
∣
∣
∣ −1

)

=
n−2∑

�=0

(n + � + 1) · (n − 2)�. (1)

Proof. The proof outline follows the presentation on hypergeometric functions
given in [4]. Note that the sum on the right hand-side can be changed to sum
up for all � with � ≥ 0, because for � > (n − 2) the falling factorials (n − 2)�

are always zero, and thus these terms do not contribute anything to the sum.

Tight Bounds for Cut-Operations on Deterministic Finite Automata 53

Now let the notation of the series be
∑

�≥0 t� with t0 �= 0. If the term ratio t�+1/t�
is a rational function in �, that is, a quotient of polynomials in � of the form

(� + a1)(� + a2) . . . (� + ar)
(� + b1)(� + b2) . . . (� + bs)

· x

(� + 1)

then we can use the ansatz

∑

�≥0

t� = t0 · F
(

a1, a2, . . . , ar

b1, b2, . . . , bs

∣
∣
∣
∣ x

)

.

As t� = (n + � + 1)(n − 2)�, the first term of our sum is t0 = (n + 1), and the
other terms have the ratios given by

t�+1

t�
=

(n + � + 2)(n − 2)�+1

(n + � + 1)(n − 2)�
=

(n + � + 2)(n − 2 − �)
(n + � + 1)

,

which are rational functions of �. Rearranging the terms and introducing the
required factor (� + 1) in the denominator results in

t�+1

t�
=

(� + 1)(� + n + 2)(� − n + 2)
(� + n + 1)

· (−1)
(� + 1)

,

where we can read off the result: the given sum is equal to

(n + 1) · F
(

1, n + 2,−n + 2
n + 1

∣
∣
∣
∣ −1

)

,

which proves the stated result.
�

The first few values of the hypergeometric function in Equation (1) starting
with n = 1 are 1, 3, 9, 31, 129, 651, 3913, 27399, 219201, 1972819, 19728201,
In the On-Line Encyclopedia of Integer Sequences (OEIS)—see www.oeis.org—
this matches the sequence A111063. A detailed analysis of the behaviour of this
sequence is given after the following two lemmata that prove Theorem 3.

Lemma 5. Let A be deterministic finite automaton with n states. Then

n−2∑

�=0

(n + � + 1) · (n − 2)�

states are sufficient for a deterministic finite automaton to accept L(A)! +.

Proof. The upper bound can be seen as follows. Let A = (Q,Σ, δ, q0,A, F) be
a DFA, and C be the DFA as constructed in Sect. 2 for accepting L(A)! +. By
construction the state set of C is π(Q+), consisting of stacks of states from Q.
Every such stack of height � ≥ 1 is of one of the following forms, called types—
recall that by the definition of π, all elements in a stack state are pairwise
distinct:

www.oeis.org

54 F. Drewes et al.

Type 1: q = q1q2 . . . q�, with q1, q2 . . . , q� ∈ Q \ F , or
Type 2: q = q1q2 . . . q�−1q0,A, with q1, q2, . . . , q�−1 ∈ Q \ F , and q0,A ∈ F , or
Type 3: q = q1q2 . . . q�−1q�, with q1, q2, . . . , q�−1 ∈ Q \ F , and q� ∈ F , and

q0,A ∈ {q1, q2, . . . q�−1}, or
Type 4: q = q1q2 . . . q�−2q�−1q0,A (and therefore q0,A /∈ {q1, q2, . . . q�−1}), with

q1, q2, . . . , q�−2 ∈ Q \ F and q�−1 ∈ F .

Let us count the number of states of the different types. Clearly, the number of
different stacks of type 1 is

∑n−|F |
�=1 (n−|F |)�, and the number of type 2 stacks is

∑n−|F |+1
�=1 (n−|F |)�−1. To build a stack of type 3 we choose �− 2 non-accepting,

non-initial states, permute them, then shuffle q0,A somewhere into these states,
and put an accepting state on top. This gives

∑n−|F |+1
�=2 (n−|F |−1)�−2 ·(�−1)·|F |

different stacks. Finally, to count the number of stacks of type 4, we distinguish
between the two cases q0,A ∈ F and q0,A /∈ F . In the former case, a stack is built
by choosing and permuting �−2 non-accepting states, then putting an accepting,
non-initial state and state q0,A on top—this gives

∑n−|F |+2
�=2 (n−|F |)�−2 ·(|F |−1)

different stacks of type 4. Similarly, for the case where q0,A /∈ F we choose and
permute � − 2 non-accepting, non-initial states, put an accepting state and then
state q0,A on top, which gives

∑n−|F |+1
�=2 (n − |F | − 1)�−2 · |F | stacks.

The bound in the statement of the lemma will result from the case where
|F | = 1 and q0,A /∈ F . To see that this case indeed yields an upper bound for
all the cases, we first argue that the overall number of different possible stacks
increases when the number of accepting states decreases.

Given a deterministic finite automaton A = (Q,Σ, δ, q0,A, F) with |F | ≥ 2,
we construct an automaton B = (Q,Σ, δ, q0,A, F ′) such that

F ′ =

{
F \ {q0,A} if q0,A ∈ F ,
F \ {qf} for some qf ∈ F if q0,A /∈ F .

Denote by S(Q,F) the set of stacks that can be built by applying the automaton
construction for L! + to automaton A, and by S(Q,F ′) those that can be built
by applying the construction to B. We want to show |S(Q,F)| ≤ |S(Q,F ′)|.
In fact, treating the stacks as words over alphabet Q, we show the inclusion
S(Q,F) ⊆ S(Q,F ′). Clearly, every type 1 stack in S(Q,F) also appears as type 1
stack in S(Q,F ′), since Q\F is a subset of Q\F ′. Now assume we have a type 2
stack q1q2 . . . q�−1q0,A ∈ S(Q,F), which means that q0,A ∈ F . Then this stack
q1q2 . . . q�−1q0,A is a type 1 stack in S(Q,F ′). For stacks q1q2 . . . q�−1q� ∈ S(Q,F)
of type 3 we have q� ∈ F and q0,A /∈ F . Here we distinguish between the two
cases q� ∈ F ′ and q� /∈ F ′. In the former case, the stack q1q2 . . . q�−1q� also
appears as type 3 stack in S(Q,F ′), and in case q� /∈ F ′ this stack is of type 1
in S(Q,F ′). The argumentation for stacks q1q2 . . . q�−2q�−1q0,A ∈ S(Q,F) of
type 4, where q�−1 ∈ F is similar: if q�−1 ∈ F ′, then q1q2 . . . q�−2q�−1q0,A is also
a type 4 stack in S(Q,F ′), and if q�−1 /∈ F ′, then it appears in S(Q,F ′) as a
stack of type 1. We have shown S(Q,F) ⊆ S(Q,F ′), so the smaller the set of
accepting states, the larger is the number of possible stacks. Therefore, the case

Tight Bounds for Cut-Operations on Deterministic Finite Automata 55

where |F | = 1 forms an upper bound—we ignore |F | = 0 since the accepted
language would be empty. From [1] we already know that languages accepted by
DFAs where the initial state is the sole accepting state are closed under iterated
cut. Thus, for the upper bound we choose the case |F | = 1 and q0,A /∈ F . Using
the sums from above we obtain

n−1∑

�=1

(n − 1)� +
n∑

�=2

(n − 2)�−2 · (� − 1) +
n∑

�=2

(n − 2)�−2

=
n−1∑

�=1

(n − 1) · (n − 2)�−1 + (n − 2)�−1 · (� + 1)

=
n−2∑

�=0

(n + � + 1) · (n − 2)�

as an upper bound for the number of states of a DFA for the language L(A)! +.
Notice that we ignore type 2 stacks and choose the sum for the second case of
type 4 stacks, since we have q0,A /∈ F .
�

The next lemma provides a matching lower bound, and thus concludes the
proof of Theorem 3.

Lemma 6. For every n ≥ 4, there exists a deterministic finite automaton A
with n states, such that the number of states of the minimal deterministic finite
automaton for the language L(A)! + is

n−2∑

�=0

(n + � + 1) · (n − 2)�.

Proof. Let n ≥ 4 and A = (Q,Σ, δ, 0, F) with input alphabet Σ = {a, b, c}, state
set Q = {0, 1, . . . , n − 1} and accepting states F = {n − 1} be the DFA depicted
in Fig. 2. The transition function δ is defined as follows:

δ(q, a) =

⎧
⎪⎨

⎪⎩

q + 1 if 0 ≤ q ≤ n − 3,
0 if q = n − 2,
n − 1 if q = n − 1,

δ(q, b) =

⎧
⎪⎨

⎪⎩

1 if q = 0,
0 if q ∈ {1, n − 1},
q if 2 ≤ q ≤ n − 2,

and

δ(q, c) =

⎧
⎪⎨

⎪⎩

n − 1 if q = 0,
q if 1 ≤ q ≤ n − 2,
0 if q = n − 1.

56 F. Drewes et al.

Fig. 2. The n-state DFA A for witnessing the state complexity lower bound for the
iterated cut operation.

First notice, that the two mappings q �→ δ(q, a) and q �→ δ(q, b) generate all
permutations on the set Q \ F—see, e.g., [7]. Let C = (QC , Σ, δC , q0,C , FC) be
the DFA constructed from A by applying the construction for L! +. To prove
that C needs exactly the claimed number of states, we show that all states, or
stacks, of types 1, 3, and 4 from the proof of Lemma 5 are reachable and pairwise
distinguishable—note that stacks of type 2 do not appear in C.

Reachability of stacks of type 1 is easy to see: using permutations on the
set Q \ F , which can be realized by reading appropriate words over {a, b}, every
type 1 stack can be transformed into every other type 1 stack of the same size.
Moreover, from a type 1 stack of the form q1q2 . . . q�−10 of size � ≤ n − 2, with
1 /∈ {q1, q2, . . . , q�−1}, we can reach a stack q1q2 . . . q�−1 1 0 of type 1 with size �+1
by reading cb. Now every type 4 stack q1q2 . . . q�−2 (n− 1) 0 can be reached from
the type 1 stack q1q2 . . . q�−2 0 by reading c. From type 4 stacks we can reach
type 3 stacks as follows. If the wanted stack has the initial state 0 directly below
state (n − 1), that is, if it has the form q1q2 . . . q�−2 0 (n − 1), then we can reach
it from q1q2 . . . q�−2 (n− 1) 0 by simply reading c. If the element 0 is not directly
below element (n − 1), that is, if we want to obtain a stack of the form

q1q2 . . . qi−1 0 qiqi+1 . . . q�−2 (n − 1),

with i ≤ � − 2, then we can reach it from the type 3 stack

p1p2 . . . pi−1 r pipi+1 . . . p�−2 (n − 1),

by reading aq�−2 , where pj = (qj − q�−2) mod (n − 2) for 1 ≤ j ≤ � − 2, and
r = (−q�−2) mod (n − 2). Notice that p�−2 = 0, so we already know how to
reach the latter stack from a type 4 stack.

It remains to prove that every pair of states, or stacks, s1 and s2 of C can
be distinguished by some input word. Clearly we only have to consider the cases
where either both stacks contain the accepting state n−1, or none of them does.

Tight Bounds for Cut-Operations on Deterministic Finite Automata 57

We start with the case where n − 1 does not appear in the stacks. If there
is some element qi that appears in one of the two stacks but not in the other,
then we can use a permutation that interchanges qi and 0, and leaves the other
elements stable—if qi = 0, we just take the identity permutation. Now one stack
contains element 0 and the other does not, so we can distinguish between those
two by reading c. Now assume that both stacks contain the same elements, but
differ in their ordering. If the two stacks already differ in their bottom elements,
that is, if s1 = q1t1 and s2 = q2t2 with q1 �= q2 and appropriate sequences t1
and t2, then we use a permutation to interchange q1 and 0, and obtain stacks
0 t′1 and q′

2t
′
2, with q′

2 �= 0. With a permutation for interchanging q′
2 and 2, we

obtain stacks 0 t′′1 and 2 t′′2 . These are distinguished by reading cb: the second
stack yields a stack containing the element 2, but the stack 0 t′′1 yields 0 1, which
does not contain this element, and we have seen above how to distinguish the
stacks in this case.

Next we show that we can also distinguish between stacks s1 and s2 that
both contain the accepting state n − 1. Let us consider the lowest (leftmost)
position in which the two stacks differ. We have s1 = s0 q1 t1 and s2 = s0 q2 t2,
for appropriate sequences s0, t1, t2 and elements q1 �= q2. If at least one of the ele-
ments q1 and q2 is from the set {2, 3, . . . , n−2}, then the stacks obtained from s1
and s2 after reading b are still different because every state q ∈ {2, 3, . . . , n − 2}
loops on input b and no other b-transitions lead to q. Now there are only
three cases remaining, namely {q1, q2} = {0, 1}, {q1, q2} = {0, n − 1}, and
{q1, q2} = {1, n − 1}. In the first two cases, where one of the elements q1 and q2
is 0, we can also read input b to get rid of element n−1, and again we obtain two
different stacks because the transition from 0 to 1 is the only b-transition that
leads to state 1. For the remaining case, we may assume q1 = 1 and q2 = n − 1,
so we have stacks

s1 = s0 1 t1 and s2 = s0 (n − 1) t2,

for appropriate sequences s0, t1, and t2, where in particular element 1 does not
appear in s0. Now we read the input word ab. First, after reading a we have
stacks

s′
1 = s′

0 2 t′1 and s′
2 = s′

0 (n − 1) 0,

where element 2 does not appear in s′
0, and thus, not in s′

2. Now by reading the b
symbol, stack s′

1 yields a stack of the form s′′
1 = s′′

0 2 t′′1 that contains element 2,
while stack s′

2 results in stack s′′
2 = s′′

0 0 or s′′
2 = s′′

0 0 1, depending on whether
element 1 appears in s′′

0 . In either case the stacks s′′
1 and s′′

2 are different and
none of them contains element n − 1, so they can be distinguished as described
earlier. This concludes our proof.
�

Recall that the DFA for L! + can be turned into a DFA for L! ∗ by adding a
new accepting initial state. Therefore, the upper bound for the state complexity
for L! ∗ is by one larger than the bound for L! +. In fact, one can see as follows
that this bound is also tight by using the same witness automaton as in the

58 F. Drewes et al.

previous proof. Let q′
0,C be the new accepting initial state; it has the same

outgoing transitions as state q0,C = 0. We only need to distinguish state q′
0,C

from all other accepting states of C, which are the stack states that contain
element (n − 1). This can simply be done by reading letters a: the successor of
the accepting stack state also contains element (n − 1), and thus is accepting,
but the successor of state 0, and thus also of q′

0,C , is the non-accepting state 1.
Therefore we obtain the following result on the state complexity of the iterated
cut L! ∗.

Theorem 7. Let A be a deterministic finite automaton with n states. Then

1 + (n + 1) · F
(

1, n + 2,−n + 2
n + 1

∣
∣
∣
∣ −1

)

states are sufficient and necessary in the worst case for a deterministic finite
automaton to accept the language L(A)! ∗. The lower bound even holds for
automata with ternary input alphabet.
�

As in the case of the (non-iterated) cut operation, one can also derive a
more precise bound for the state complexity of the iterated cut operation, which
depends on the number f of accepting states of the automaton. From the upper
bound analysis in the proof of Lemma 5, a bound of

n−f−1∑

�=0

(n − f − 1)� · (n + f · (� + 1))

states can be derived for the case where the initial state q0,A is not accepting.
In fact, by some calculations and combinatorial argumentation, one can show
that the case, where the initial state is accepting, yields the same upper bound.
By adapting the automaton from the lower bound proof of Lemma 6, one can
obtain witness automata for the more precise bound as follows. Instead of a
single accepting state n − 1 we choose f accepting states n − 1, n − 2, . . . , n − f ,
that are connected to a cycle of n − f non-accepting states in a similar fashion
as shown in Fig. 2: for each accepting state n − i, for 1 ≤ i ≤ f , we use another
input symbol ci that switches between states n − i and 0; on input symbol b the
states n − i also go to state 0.

Now let us come to the asymptotics of the bounds stated in Theorems 3
and 7 in order to get a better feeling for their size. This can be done by first
proving the following upper and lower bounds.

Theorem 8. The following lower and upper bounds apply:

2 · (n + 2) · (n − 2)! ≤
n−2∑

k=0

(n + k + 1)(n − 2)k ≤ e · (2n − 1) · (n − 2)!
�

The upper and the lower bound are quite close, since the former is asymp-
totically only a factor of e away from the latter. This allows us to show that the
bounds provided in Theorems 3 and 7 in the exact number of states asymptoti-
cally behave like (n − 1)!.

Tight Bounds for Cut-Operations on Deterministic Finite Automata 59

Fig. 3. A DFA A with binary input alphabet Σ = {a, b}, where the minimal DFA
for L(A)! + needs at least

∑n−3
�=1 (n − 3)� > (n − 3)! states.

Theorem 9. Let A be a deterministic finite automaton with n states. Then
Θ((n−1)!) states are sufficient and necessary in the worst case for a deterministic
finite automaton to accept the language L(A)! +. The same holds for a determin-
istic finite automaton for L(A)! ∗.
�

Notice that the witness automaton from the proof of Lemma 6 uses a ternary
input alphabet. Theorem 10 will give a tight bound of 2n − 1 for the state
complexity of the iterated cut operation on DFAs with unary input alphabet.
So it remains to study the exact bound for automata using a binary alphabet.
Here we do not have a tight bound yet. However, we know that already a binary
alphabet is enough to provide a huge blow-up in the number of states. Consider
the binary n-state DFA A depicted in Fig. 3. One can show that the minimal
DFA for the language L(A)! + needs more than

∑n−3
�=1 (n − 3)� > (n − 3)! states.

The basic idea to prove this is that all stack states with elements from the
set {0, 1, . . . , n − 4} can be reached: permutations on this set can be obtained
with the help of the input words a (cycling through the set) and b3 (switching
elements n − 5 and n − 6). New elements can be obtained by reading b2ab4 from
a stack of the form s = s′ (n − 4), where n − 5 does not appear in s′.

Now we come to our result on the state complexity of the iterated cut opera-
tion on unary languages. The upcoming theorem only considers input automata
with at least three states. The reader may convince him- or herself that every
minimal two-state DFA A (there are only four possibilities) yields as iterated
cut L(A)! ∗ a language that can also be accepted by a DFA with at most two
states. Moreover, the iterated cut languages of the single-state languages ∅
and {a}∗ are {λ} and {a∗} respectively, and thus are accepted by a two-state,
respectively, single-state DFA.

We now state the already mentioned theorem providing the tight bound for
the iterated cut in the case of a unary alphabet.

Theorem 10. Let A be a deterministic finite automaton with n ≥ 3 states that
accepts a unary language. Then 2n − 1 states are sufficient and necessary in the
worst case for a deterministic finite automaton to accept the language L(A)! +.
The same holds for a deterministic finite automaton for L(A)! ∗.
�

60 F. Drewes et al.

Again one can prove a more precise bound of 2n − f states, where f is the
number of accepting states of A.

5 Conclusions

We have investigated the state complexity of the cut and iterated cut opera-
tion for DFAs. In all cases, we obtained tight upper and lower bounds in the
exact number of states. Thus, we have solved an open problem stated in [1].
Nevertheless, many open questions and details remain to be worked out:

– Consider the upper and lower bounds for nondeterministic finite automata
(NFAs) on cut operations. Can we do better than first determinizing the
involved devices and then performing the cut or iterated cut construction
for DFAs? Note that for cuts one does not need to determinize the second
automaton B in order to construct the (then nondeterministic) automaton
for L(A) ! L(B) as in Sect. 2.

– The complexity of decision problems related to the cut and iterated cut opera-
tion on finite automata, in particular, on DFAs. An example of such a problem
is the following: given a finite automaton A, is L(A)! ∗ = L(A)∗?

– Succinctness of cut expressions (these are regular expressions that also use
the cut operation) compared to DFAs and NFAs were discussed in [1]. There
exponential lower bounds for both types of finite state devices were obtained.
So what about the succinctness of iterated cut expressions (regular expressions
that also use iterated cut) compared to finite automata?

Acknowledgments. Thanks to Rogério Reis for his help doing and verifying some
calculations with the computer algebra system MapleTM.

References

1. Berglund, M., Björklund, H., Drewes, F., van der Merwe, B., Watson, B.: Cuts in
regular expressions. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907,
pp. 70–81. Springer, Heidelberg (2013)

2. Berglund, M., Drewes, F., van der Merwe, B.: Analyzing catastrophic backtracking
behavior in practical regular expressions matching. In: Ésik, Z., Fülöp, Z. (eds.) Pro-
ceedings of the 14th International Conference on Automata and Formal Languages.
EPTCS, vol. 151, pp. 109–123, Szeged, Hungary (2014)

3. Clocksin, W.F., Mellish, C.S.: Programming in Prolog. Springer, Heidelberg (1981)
4. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A foundation

for Computer Science. Addison-Wesley, Boston (1994)
5. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Boston

(1978)
6. Kirrage, J., Rathnayake, A., Thielecke, H.: Static analysis for regular expression

denial-of-service attacks. In: Lopez, J., Huang, X., Sandhu, R. (eds.) NSS 2013.
LNCS, vol. 7873, pp. 135–148. Springer, Heidelberg (2013)

7. Piccard, S.: Sur les bases du groupe symétrique et les couples de substitutions qui
engendrent un groupe régulier. Librairie Vuibert, Paris (1946)

Non-isometric Contextual Array Grammars
with Regular Control and Local Selectors

Henning Fernau1(B), Rudolf Freund2, Rani Siromoney3,
and K.G. Subramanian4

1 Universität Trier, FB 4 – Abteilung Informatikwissenschaften,
54296 Trier, Germany
fernau@uni-trier.de

2 Institut für Computersprachen, TU Wien, 1040 Vienna, Austria
rudi@emcc.at

3 Chennai Mathematical Institute, Kelambakkam 603103, India
siromoney@cmi.ac.in

4 Department of Mathematics and Computer Science, Faculty of Science,
Liverpool Hope University, Liverpool L16 9JD, Great Britain

kgsmani1948@yahoo.com

Abstract. We consider the external variant of non-isometric d-dimen-
sional contextual array grammars with regular control together with local
selectors allowing for controlling how d-dimensional arrays are evolving
by adjoining rectangular (d−1)-dimensional arrays. In the 1-dimensional
case, the computational power of these non-isometric contextual array
grammars with regular control and local selectors equals the computa-
tional power of isometric contextual array grammars with regular control.
The string images of the langauges of 1-dimensional arrays generated by
these contextual array grammars exactly yield the linear languages. In
the more-dimensional case, non-isometric d-dimensional contextual array
grammars with regular control and local selectors can simulate the com-
putations of (d − 1)-dimensional array grammars or Turing machines.
Hence, for example, the emptiness problem for non-isometric d-dimen-
sional contextual array grammars with regular control and local selectors
for d > 1 is undecidable.

1 Introduction

Contextual string grammars were introduced by Solomon Marcus [11] with moti-
vations arising from descriptive linguistics. A contextual string grammar consists
of a finite set of strings (axioms) and a finite set of productions, which are pairs
(s, c) where s is a string, the selector, and c is the context, i.e., a pair of strings,
c = (u, v), over the alphabet under consideration. Starting froman axiom, contexts
iteratively are added as indicated by the productions, which yields new strings.
In contrast to usual sequential string grammars in the Chomsky hierarchy (e.g.,
see [18,19]), these contextual string grammars are pure grammars where new
strings are not obtained by rewriting, but by adjoining strings. If the contexts
are adjoined at both ends of a string; this case is named external (see [11]);
c© Springer International Publishing Switzerland 2015
J. Durand-Lose and B. Nagy (Eds.): MCU 2015, LNCS 9288, pp. 61–78, 2015.
DOI: 10.1007/978-3-319-23111-2 5

62 H. Fernau et al.

in the interior case (see [13]), one occurrence of a selector is bracketed with
the associated contexts. Some more variants of contextual grammars have been
introduced and investigated, e.g., see [1,14] for surveys on the area.

In the area of two-dimensional picture languages, e.g., see [9,15–17], different
kinds of array grammars, both isometric and non-isometric ones, have been pro-
posed, motivated by many application problems such as character recognition
(also confer [3]), cluster analysis of patterns, and so on. Isometric contextual
array grammars were introduced in [7]. Isometric contextual array grammars
with matrix control and with regular control were investigated in [5]. Non-
isometric contextual array grammars (with regulation) were considered in [10]. A
basic variant of non-isometric contextual array grammars (without using selec-
tors) – without control and with regular control – has been considered in [4].

In this paper we consider the extension of this basic variant now in addi-
tion using local selectors, i.e., along the whole cross-section between the array
generated so far and the adjoined rectangle locally context conditions in the
usual sense of selector and context must be fulfilled. For d > 1 we can show
that non-isometric d-dimensional contextual array grammars with regular con-
trol and local selectors can simulate the computations of (d − 1)-dimensional
array grammars or Turing machines. Hence, for example, the emptiness problem
for non-isometric d-dimensional contextual array grammars with regular control
and local selectors for d > 1 is undecidable. On the other hand, in the 1-di-
mensional case we show that the string images of the array languages generated
by non-isometric 1-dimensional contextual array grammars with regular control
and local selectors or by isometric 1-dimensional contextual array grammars
with regular control characterize the linear languages.

2 Definitions

For notions and notations as well as results related to formal language theory,
we refer to textbooks like [18,19]; in particular, λ denotes the empty string. For
the definitions and notations for arrays and sequential isometric array grammars
we refer to [6,16,22]. The families of (λ-free) arbitrary, monotone, context-free,
linear, and regular string languages over a k-letter alphabet are denoted by
L

(
ENUMk

)
, L

(
MONk

)
, L

(
CF k

)
, L

(
LINk

)
, and L

(
REGk

)
, respectively;

we omit the superscript k if the size of the terminal alphabet may be arbitrary.
Let Z be the set of integers, let N be the set of positive integers. Let d ∈ N.

A d-dimensional array A over the alphabet V is a mapping A : Z
d → V ∪ {#}

where shape (A) =
{
v ∈ Z

d | A (v) �= #
}

is finite and # /∈ V is called the blank
symbol. We usually write A = {(v,A (v)) | v ∈ shape (A)}. The set of all d-di-
mensional arrays over V is denoted by V ∗d. The empty array Λd in V ∗d satisfies
shape(Λd) = ∅. Moreover, we define V +d = V ∗d \ {Λd} .

Let v ∈ Z
d. Then the translation τv : Z

d → Z
d is defined by τv (w) = w+v for

all w ∈ Z
d, and for any array A ∈ V ∗d we define τv (A), the corresponding d-di-

mensional array translated by v, by (τv(A)) (w) = A (w − v) for all w ∈ Z
d. The

vector (0, ..., 0) ∈ Z
d is denoted by Ωd; the unit vector in Z

d with all components
being 0 except the i-th one which is 1 is denoted by ed,i.

Non-isometric Contextual Array Grammars with Regular Control 63

Usually (see [16]) arrays are regarded as equivalence classes of arrays with
respect to linear translations. The equivalence class [A] of an array A ∈ V ∗d

satisfies [A] =
{
B ∈ V ∗d | B = τv (A) for some v ∈ Z

d
}
. The set of all equiva-

lence classes of d-dimensional arrays over V with respect to linear translations
is denoted by

[
V ∗d

]
, and this bracket notation carries over to classes of array

languages as well.
As many results for d-dimensional arrays for a special d can be taken over

immediately for higher dimensions, we introduce special notions:
Let n,m ∈ N with n ≤ m. For n < m, the natural embedding in,m : Z

n →
Z

m is defined by in,m (v) = (v,Ωm−n) for all v ∈ Z
n; for n = m we define

in,n : Z
n → Z

n by in,n (v) = v for all v ∈ Z
n. To an n-dimensional array

A ∈ V +n with A = {(v,A (v)) | v ∈ shape (A)} we assign the m-dimensional
array in,m (A) = {(in,m (v) ,A (v)) | v ∈ shape (A)} .

We can use the well-known graph-theoretic notion of a connected graph to
define connected arrays. Let W be a non-empty finite subset of Z

d. We asso-
ciate a graph g(W) to W with vertex set W and an edge between v, w ∈ W
if and only if ‖v − w‖ = 1, where the norm ‖u‖ of a vector u ∈ Z

d, u =
(u (1), ..., u (d)), is defined by ‖u‖ = max {|u (i)| | 1 ≤ i ≤ d}. Then W is said
to be connected if g(W) is connected. There is a natural bijection between the
equivalence classes of 1-dimensional connected arrays and strings: for any 1-di-
mensional array A = {[((i − 1), ai)] | 1 ≤ i ≤ n} we define its string image as
str(A) = {a1 . . . an}, and the string w = a1 . . . an can be interpreted as the
array arr (w) = {{((i − 1), ai)} | 1 ≤ i ≤ n}. In the standard way, these notions
can be extended from strings and arrays to sets of strings and arrays.

In this paper, we will only consider a d-dimensional array production p over
an alphabet V , V = N ∪T , where N is the alphabet of non-terminal symbols, T
is the alphabet of terminal symbols, N ∩T = ∅, # /∈ N ∪T , to be in the 2-normal
form: either p = AvB → CD with A,B,C,D ∈ V ∪ {#}, A �= #, v ∈ Z

d and
‖v‖ = 1 or p = A → b with A ∈ N and b ∈ T . AvB → CD can be applied to a
d-dimensional array C1 if and only if C1 contains a subarray {(u,A), (u + v,B)},
and the result of the application is an array C2 where this subarray has been
replaced by {(u,C), (u + v,D)}. The application of p = A → b means replacing
A by b. In both cases, we also write C1 =⇒p C2. Moreover we say that the array
B2 ∈

[
V ∗d

]
is directly derivable from the array B1 ∈

[
V +d

]
by the d-dimensional

array production p if and only if there exist C1 ∈ B1 and C2 ∈ B2 such that
C1 =⇒p C2; we also write B1 =⇒p B2.

Let us illustrate this concept with a small example:

· · · # # a X a b X # # · · ·
denotes a connected 1-dimensional array aXabX, surrounded by blank sym-
bols #. The production X(1)# → ba is applicable in this array, yet only to the
rightmost variable X, and its application yields:

· · · # # a X a b b a # · · ·
Observe that the production X(1)# → ba is not applicable to the leftmost
variable X in this array, in contrast to the string case where the context-free

64 H. Fernau et al.

production X → ba would also be applicable to the leftmost variable X in the
string aXabX.

We call a d-dimensional array production p = AvB → CD in P

– monotone, if C and D are non-blank symbols from V ;
– strictly context-free, if it is monotone as well as, moreover, A ∈ N and B = #;
– regular, if p is strictly context-free, and moreover, C ∈ T and D ∈ N .

A terminal array production A → b is defined to be regular and therefore
strictly context-free and monotone, too.

The array production X(1)# → ba from our previous example is strictly
context-free, but not regular.

Definition 1. A d-dimensional array grammar is a quintuple

G = (d,N, T, #, P, S),

where N is the alphabet of non-terminal symbols, T is the alphabet of terminal
symbols, N ∩ T = ∅, # /∈ N ∪ T ; P is a finite non-empty set of d-dimensional
array productions over N ∪ T, and S ∈ N is the start symbol.

We say that the array C2 ∈ V ∗d is directly derivable from the array C1 ∈ V +d

in G, denoted C1 =⇒G C2, if and only if there exists a d-dimensional array
production p ∈ P such that C1 =⇒p C2. Let =⇒∗

G be the reflexive transitive
closure of =⇒G. The d-dimensional array language generated by G , L (G), is
defined by

L (G) =
{
C ∈ T+d | {(Ωd, S)} =⇒∗

G C
}

.

For equivalence classes of arrays we say that the array B2 ∈
[
V ∗d

]
is directly

derivable from the array B1 ∈
[
V +d

]
in G, denoted B1 =⇒G B2, if and only if

there exist C1 ∈ B1 and C2 ∈ B2 such that C1 =⇒p C2. Then the d -dimensional
array language generated by G , [L (G)] , is defined by

[L (G)] =
{
B ∈

[
T+d

]
| [{(Ωd, S)}] =⇒∗

G B
}

.

G is called to be of type d-ENUMA, d-MONA, d-SCFA, and d-REGA if all
d-dimensional array productions in P are arbitrary, monotone, strictly context-
free or regular, respectively. The corresponding families of Λ-free d-dimensional
array languages of arrays and of equivalence classes of arrays over a k-letter
alphabet are denoted by L

(
d-ENUMAk

)
, L

(
d-MONAk

)
, L

(
d-SCFAk

)
, and

L
(
d-REGAk

)
and by

[
L

(
d-ENUMAk

)]
,

[
L

(
d-MONAk

)]
,

[
L

(
d-SCFAk

)]
,

and
[
L

(
d-REGAk

)]
, respectively; for arbitrary alphabets, we omit the super-

script k.
In this paper we are only interested in (languages of) connected arrays, which

for monotone array grammars is already guaranteed if we restrict ourselves to
the 2-normal form. Thus, in the following we assume that in array languages in
the families defined above only connected arrays are contained. These families of
array languages form a Chomsky-like hierarchy; the following results are already
folklore:

Non-isometric Contextual Array Grammars with Regular Control 65

Theorem 1. For all d ≥ 2 and all k ≥ 1,
[
L

(
d-ENUMAk

)]
�

[
L

(
d-MONAk

)]

�
[
L

(
d-SCFAk

)]
�

[
L

(
d-REGAk

)]
.

Theorem 2. For all k ≥ 1,
[
L

(
1-SCFAk

)]
=

[
L

(
1-REGAk

)]
=

[
arr

(
L

(
REGk

))]
and

str
([

L
(
1-REGAk

)])
= str

([
L

(
1-SCFAk

)])
= L

(
REGk

)
.

For the technical proof of Theorem7, we need a special normal form for arbi-
trary d-dimensional array grammars, which we call one-pebble normal form as
any intermediate sentential form contains exactly one marked (barred) nonter-
minal symbol and only array productions involving this marked symbol can be
applied; this way of applying productions resembles the working mode of d-di-
mensional Turing machines with the barred symbol marking the position of the
read/write head of the machine:

Lemma 1 (One-pebble normal form). For any d-dimensional array gram-
mar G = (d,N, T, #, P, S) in 2-normal form we can effectively construct an
equivalent d-dimensional array grammar G′ =

(
d,N ′ ∪ N̄ ′, T,#, P ′, S̄

)
such

that every rule in P ′ is of the form ĀvB → CD̄, with Ā, D̄ ∈ N̄ ′, B,C ∈
N ′ ∪ T ∪ {#}, or Ā → b, with Ā ∈ N̄ ′, b ∈ T ∪ {#}.

3 Isometric Contextual Array Grammars

In this section we repeat the main definitions and results on isometric contextual
array grammars as developed in [5].

3.1 The Basic Variant

Definition 2. A d-dimensional contextual array grammar (d ∈ N) is a construct
G = (d, V, #, P,A) where V is an alphabet not containing the blank symbol #, A is
a finite set of axioms, i.e., of d-dimensional arrays in V +d, and P is a finite set of
rules of the form (Uα, α, Uβ , β) where

(i) Uα, Uβ ⊆ Z
d, Uα ∩ Uβ = ∅, and Uα, Uβ are finite and non-empty;

(ii) α : Uα → V and β : Uβ → V.

(Uα, α) corresponds with the selector and (Uβ , β) with the context of the pro-
duction (Uα, α, Uβ , β) ; Uα is called the selector area, and Uβ is the context area.
As the sets Uα and Uβ are uniquely determined by α and β, we will also represent
(Uα, α, Uβ , β) by (α, β) only.

For C1, C2 ∈ V +d we say that C2 is directly derivable from C1 by the contextual
array production p ∈ P, p = (Uα, α, Uβ , β) (we write C1 =⇒p C2), if there exists
a vector v ∈ Z

d such that

66 H. Fernau et al.

– C1 (w) = C2 (w) = α (τ−v (w)) for all w ∈ τv (Uα),
– C1 (w) = # for all w ∈ τv (Uβ),
– C2 (w) = β (τ−v (w)) for all w ∈ τv (Uβ),
– C1 (w) = C2 (w) for all w ∈ Z

d \ τv (Uα ∪ Uβ).

Hence, if in C1 we find a sub-pattern that corresponds with the selector α and
only blank symbols at the places corresponding with β, we can add the context
β thus obtaining C2.

C1 =⇒G C2 means that C1 =⇒p C2 for some p ∈ P . The array language
generated by G is defined as

L (G) =
{
C ∈ V +d | A =⇒∗

G C for some A ∈ A
}

.

The special type of d-dimensional contextual array grammars where axioms
are connected and rule applications preserve connectedness is denoted by
d-ContA, the corresponding family of d-dimensional array languages by
L (d-ContA); by L

(
d-ContAk

)
we denote the corresponding family of d-dimen-

sional array languages over a k-letter alphabet.

3.2 Contextual Array Grammars with Regular Control

Following the general framework established in [8], for any type of grammars
generating strings or arrays, we can define regular control as follows:

Definition 3. Let G be a grammar of type X for generating strings or arrays
with P being the set of productions in G. A pair GC = (G,L) with L being a regu-
lar string language over P is called a grammar with regular control. Derivations
in GC are defined as in G except that in a successful derivation the sequence
of applied rules has to be a string from L. The language (of strings or arrays,
respectively) generated by GC is the set of all terminal objects which can be
derived from (any of) the axiom(s) following a control string from L. The fam-
ily of (string, array) languages generated by grammars of type X with regular
control is denoted by L ((X,REG)).

For example, the families of d-dimensional array languages of arrays and of
equivalence classes of arrays generted by d-dimensional contextual array
grammars over a k-letter alphabet with regular control are denoted by
L

((
d-ContAk, REG

))
and

[
L

((
d-ContAk, REG

))]
, respectively.

The following results are among those established in [5]:

Theorem 3.
[
L

(
1-REGA1

)]
=

[
L

((
1-ContA1, REG

))]
=

[
L

(
1-ContA1

)]
.

Theorem 3 says that even with the regulating mechanisms of regular control
languages, in the case of 1-dimensional contextual array grammars over a one-
letter alphabet we cannot go beyond regularity, i.e., beyond

[
L

(
1-REGA1

)]
.

Non-isometric Contextual Array Grammars with Regular Control 67

Theorem 4. For any d ≥ 1 and any k ≥ 2, we have:
[
L

(
d-ContAk

)]
�

[
L

((
d-ContAk, REG

))]
.

Example 1. Consider the non-regular string language Lnr = {anban | n ≥ 1}.
Due to Theorem 2, there cannot exist an array grammar of type 1-REGA2 (or
even 1-SCFA2) G such that [L (G)] = [arr (Ln)]. Yet take the 1-dimensional
contextual array grammar with regular control GC = (Gnr, L) with

Gnr = (1, {a, b} ,#, {pl, pr} , {aba})

where the contextual array productions can be depicted with the symbols of the
selector being enclosed in boxes:

pl = a a and pr = a a .

With the control language L = {plpr}∗ we get [L (GC)] = [arr (Lnr)]. The
control strings in L guarantee that the number of symbols a grows to the left
and to the right in a synchronized way.

In sum, we get [i1,d (arr (Ln))] ∈
[
L

((
d-ContA2, REG

))]
�

([
L

(
d-ContA2

)]
∪

[
L

(
d-SCFA2

)])

for any d ≥ 1.

4 Non-isometric Contextual Array Grammars

A model of non-isometric contextual array grammars was considered in [10] and
extended to arbitrary dimensions in [4]. In this paper, we will add local selectors
to the rules to allow for controlling how the adjoined rectangles fit to the array
already generated along the cross-section between this array and the adjoined
rectangle.

We first define d-dimensional contextual array productions over a family of
array languages F .

Definition 4. For any d ≥ 1, the set of all d-dimensional rectangular arrays is
denoted by d-RECT ; the set of all d-dimensional rectangular arrays with length
1 in direction ed,i is denoted by d-RECTi; any d-dimensional rectangular array
in d-RECTi can also be considered as a (d − 1)-dimensional rectangular array
in (d − 1)-RECT by omitting component i.

Definition 5. A non-isometric d-dimensional contextual array production p
over a family of (d − 1)-dimensional array languages F is of the form vL1 . . . Lm

where v ∈ {ed,i,−ed,i}, m ≥ 1, 1 ≤ i ≤ d, and the Lj, 1 ≤ j ≤ m, are taken
from F∩ (d − 1)-RECT . For d = 1, the family F of (d − 1)-dimensional array
languages, i.e., of “0-dimensional” array languages, consists of all finite sets
of symbols, and this family will also be denoted by F0. Moreover, to formally

68 H. Fernau et al.

complete the definitions, 0-RECT is understood to coincide with F0, which in
fact means that it consists of the “0-dimensional” squares that are single symbols
at the origin (0).

Then the application of a d-dimensional contextual array production p =
vL1 . . . Lm to a d-dimensional array A ∈ d-RECT in the external mode is
defined as yielding any d-dimensional array obtained by adjoining A1 . . . Am,
where Aj ∈ Lj, 1 ≤ j ≤ m, on the border of A in the direction v such that the
resulting array is again rectangular.

Remark 1. Notice that we have used a kind of catenation notation within the def-
inition of p = vL1 . . . Lm to denote the adjoining of rectangles that fit together.
Let us explain what this means for the important special case d = 2. Then,
L1, . . . , Lm are 1-dimensional array languages (which can likewise be interpreted
as string languages). What happens if p is applied to some array C of width �
and height h? If v = e2,1, then we have to select strings w1, . . . , wm of length h
such that wi ∈ str(Li). Together, these strings form an array A of width m and
height h. More formally, wi corresponds to a 2-dimensional array Ai of height h
and width 1. Using the classical column catenation operation �, applying p to
A, with the chosen arrays A1, . . . ,Am, results in

C � A1 � · · · � Am.

If we take v = −e2,1, staying with the choice of Ai as explained above, we obtain

Am � · · · � A1 � C.

In a similar way, taking v = e2,2 or v = −e2,2 results in interpreting the adjoining
operation (written like the usual catenation) as the classical row catenation �.

Remark 2. In contrast to the definitions given in [4], we here only adjoin rectan-
gles into one of the directions ed,i or −ed,i and not at both “sides” at the same
time, as we will use regular control afterwards. In particular, this means that we
can simulate the contextual grammars as defined in [4] by using regular control
within the framework introduced in this paper.

Definition 6. A (non-isometric) d-dimensional contextual array grammar is a
construct G = (d, V, #, P,A) where V is a finite alphabet of symbols, # /∈ V
is the blank symbol, P is a finite non-empty set of non-isometric d-dimensional
contextual array productions over F , and A is the finite set of axioms (d-di-
mensional arrays). The families of d-dimensional array languages generated by
non-isometric d-dimensional contextual array grammars in the external mode
are denoted by [L (d-ExtContA (F))].

Example 2. Consider the regular string language Lline = {an | n ≥ 1}. Due to
Theorem 2, [arr (Lline)] ∈

[
L

(
1-REGA1

)]
, but we also have

[arr (Lline)] ∈ [L (1-ExtContA (F0))]

Non-isometric Contextual Array Grammars with Regular Control 69

as [arr (Lline)] can be generated by the 1-dimensional non-isometric contextual
array grammar Gline with

Gline = (1, {a},#, {pline}, {arr (a)})

and pline = (1) {a}. The singleton set {a} can be represented by a only, hence,
we can also write pline = (1)a. �

4.1 Non-isometric Contextual Array Grammars with Regular
Control

We now again add regular control to the model of non-isometric contextual array
grammars:

Definition 7. A non-isometric d-dimensional contextual array grammar with
regular control is a pair GC = (G,L) where G = (d, V, #, P,A) is a non-
isometric d-dimensional contextual array grammar and L is a regular string
language over P , i.e., L ⊆ P ∗.

Example 3. Consider G = (2, {a} ,#, P, {ii,2 (arr (a))}) with P = {pu, pr}, pu =
(0, 1) L, pr = (1, 0) L, and L = [arr ({an | n ≥ 1})]. Then GC =

(
G, {pupr}∗)

generates the set of all sqares over {a}.

Example 4. Let Ld
x = [i1,d (arr (Lx))] where Lx = {xn | n ≥ 1} for x ∈ {a, b},

and consider La+b = La ∪ Lb which, obviously, is a regular string language
and, interpreted as a language of 1-dimensional arrays, is regular, too, i.e., with
defining Ld

a+b = [i1,d (arr (La+b))] we have Ld
a+b ∈ [L ((d-REGA))]. On the other

hand, without having the chance to check in which context new columns should
be inserted, even regular control languages cannot enable external contextual
array grammars to generate L′

a+b as adding new symbols a can also be performed
for underlying arrays so far only containing symbols b and vice versa, i.e.,

Ld
a+b /∈ [L ((d-ExtContA (((d − 1) -RECT)) , REG))] .

4.2 Non-isometric Contextual Array Grammars with Regular
Control and Local Selectors

The drawback of the basic model of non-isometric contextual array grammars,
even with regular control, as exhibited in Example 4, now leads us to extend the
model with local selectors Sel to be assigned to the non-isometric contextual
array productions vL1 . . . Lm with v ∈ {ed,i,−ed,i}.

Definition 8. A non-isometric d-dimensional contextual array production p
with local selectors over a family of (d − 1)-dimensional array languages F is
of the form (p′, Sel) where p′ = vL1 . . . Lm is a non-isometric d-dimensional
contextual array production with v ∈ {ed,i,−ed,i}, m ≥ 1, 1 ≤ i ≤ d, and the Lj,
1 ≤ j ≤ m, are taken from F∩ (d − 1)-RECT and Sel is a finite set of local

70 H. Fernau et al.

selectors. A local selector is a pair (s, c) where both s and c are d-dimensional
arrays which put together in direction v fit to form a d-dimensional rectangle.

The application of a d-dimensional contextual array production with local
selectors to a d-dimensional array A ∈ d-RECT in the external mode is defined
as for applying p′, yet in addition the constraints given by the set of selectors Sel
have to be fulfilled, i.e., along the whole cross-section between the array derived
so far and the newly adjoined rectangle one of the selectors from Sel must fit,
i.e., putting together (s, c) in direction v, s is a subarray of A and c is a subarray
of the adjoined rectangle.

Remark 3. As explained in Remark 1, the formal treatment of what it means to
put together d-dimensional rectangular arrays so that they form a rectangle is
rather intricate. However, the intuition behind should become clear with giving
an example for the 2-dimensional case: For an alphabet V , the condition to only
adjoin the same symbols along the whole line, we can use the set of selectors
{(a, a) | a ∈ V }.

Definition 9. A non-isometric d-dimensional contextual array grammar with
regular control and local selectors is a pair GC = (G,L) where G = (d, V, #, P,A)
is a non-isometric d-dimensional contextual array grammar with d-dimensional
contextual array production with local selectors in P and L is a regular string
language over P , i.e., L ⊆ P ∗. The family of d-dimensional array languages
of equivalence classes of arrays generated by these array grammars over a k-
letter alphabet is denoted by

[
L

((
d-ExtContASelk ((d − 1) -RECT) , REG

))]
.

If L = P ∗, we call G a non-isometric d-dimensional contextual array grammar
with local selectors, the corresponding family of languages of rectangular arrays
is denoted by

[
L

(
d-ExtContASelk ((d − 1) -RECT)

)]
.

We now return back to Example 4:

Example 5. [arr (La+b)] now can be generated by G = (1, {a, b} ,#, P, {a, b})
where P contains the rules ((1)a, {(a, a)}) and ((1)b, {(b, b)}), i.e., adjoining
x ∈ {a, b} with the rule (1)x is controlled by the selector (x, x). Hence, we
get [arr (La+b)] ∈

[
L

(
1-ExtContASel2 ((d − 1) -RECT)

)]
.

In the 1-dimensional case, isometric d-dimensional contextual array gram-
mars with regular control and non-isometric d-dimensional contextual array
grammars with regular control and local selectors in fact are not distinguish-
able, i.e., we have the rather astonishing result:

Theorem 5. For any k ≥ 1,
[
L

((
1-ExtContASelk (F0) , REG

))]
=

[
L

((
1-ContAk, REG

))]
.

Proof. (Sketch) A contextual array production q in a 1-dimensional contextual
array grammar inserting b1 . . . bn in the context of a1 . . . am can be depicted
as a1 . . . am b1 . . . bn for rules growing the underlying 1-dimensional array
(string) to the right, i.e., into direction (1)) and bn . . . b1 a1 . . . am for rules

Non-isometric Contextual Array Grammars with Regular Control 71

growing the underlying 1-dimensional array (string) to the left (into direction
(−1)). According to the definition of F0, its elements in fact can simply be
interpreted as symbols over V . A 1-dimensional contextual array production
with local selectors therefore is of the form (p, Sel) with p = vb1 . . . bn, v ∈
{(1) , (−1)}, and the elements Sel being of the form s = (a1 . . . am, b1 . . . bn) for
v = (1) and s = (a1 . . . am, (−1) b1 . . . (−n) bn) for v = (−1). Hence, the effect
of applying q is the same as the effect of the application of (p, {s}). Finally we
observe that the selectors in Sel can be handled independently from each other,
as in the special situation of the 1-dimensional case for checking the context only
one selector can be used.
�

5 A Characterization of Linear String Languages

In this section we will derive a characterization of L (LIN) in terms of 1-di-
mensional array grammars and (isometric and non-isometric) contextual array
grammars. It is well-known that the emptiness problem for the corresponding
class of linear grammars can be solved effectively, so that the constructiveness of
our proofs yields a corresponding decidability result for the many types of array
grammars that we have discussed in this paper.

More precisely, we are going to prove that L (LIN) =

str ([L ((1-ContA,REG))]) = str
([

L
((

1-ExtContASelk (F0) , REG
))])

.

Due to Theorem 5, we only have to show

str ([L ((1-ContA,REG))]) = L (LIN) .

The backbone of the stated characterization is the following normal form
result:

Lemma 2. For any 1-dimensional contextual array grammar GC = (G,L) with
regular control, where G = (1, V,#, P,A), L ⊆ P ∗, we can construct an equiva-
lent 1-dimensional contextual array grammar G′

C = (G′, L′) with regular control,
G = (1, V,#, P ′, A′), L′ ⊆ P ′∗, such that the rules in P ′ have the following two
properties:

– All rules are either of the form a b or of the form b a for some a, b ∈ V .
– If there is a rule of the form a b (or b a , respectively) in P ′, then also all

rules of the form c b or b c , respectively, are in P ′, for any c ∈ V .

Proof. The proof of this normal form result proceeds in several stages that we
only sketch in the following.

1. As L (REG) is closed under union, it is easy to see that for any two con-
textual array grammars with regular control G

(i)
C =

(
G,L(i)

)
, 1 ≤ i ≤ 2,

and GC =
(
G,L(1) ∪ L(2)

)
we have [L (GC)] =

[
L

(
G

(1)
C

)]
∪

[
L

(
G

(2)
C

)]
.

Moreover, by definition, for any contextual array grammar with regular con-
trol G = (1, V,#, P,A), L ⊆ P ∗, we have [L (GC)] =

⋃
A∈A [L (GA)] where

GA = (1, V,#, P, {A}).

72 H. Fernau et al.

2. If there is any rule whose context contains more than one letter, then it is
possible to “spell out” this context; recall that this reduces to spelling out a
string, and this linear task can easily be controlled by slightly modifying the
control language; the resulting control language again is regular. We leave
the details of this construction to the reader, but this is standard from many
similar constructions in basic formal language theory. For simplicity, in the
following we refer to the grammar obtained in this way again as GC = (G,L)
with G = (1, V,#, P,A), L ⊆ P ∗. Moreover, without loss of generality, we
may assume that A contains only one axiom, i.e., A = {A}, as L (LIN) is
closed under union, too.

3. We have to reduce the size of the selector; in fact, as formalized in the second
condition of the normal form, the grammar will only be able to see if the task
is to append something to the left or to the right of the current 1-dimensional
array (or string, in the finally intended interpretation).

Let s be the length of the longest selector of any rule in P . In Ls , we col-
lect all 1-dimensional arrays of length at most max{2s+2, |str(A)|} derivable
from A. In a first phase, we spell out all (finitely many) strings in V ≤s and
keep track of the state that would have been reached by inputting the corre-
sponding control string into the finite automaton accepting L while producing
each string by GC (if it is producible at all).

Due to the properties ensured so far, we can store the leftmost and the
rightmost s letters of the 1-dimensional array obtained so far in the state
information of the finite automaton that accepts L′. More formally, the state
set Q′ of the automaton accepting L′ is a superset of Q × V s × V s, where
Q is the state set of a finite automaton accepting L. Therefore, whenever we
are going to simulate a rule application of GC that first checks the context of
s symbols to the left or to the right, we find this information encoded in the
state set Q′, and the simulation therefore can proceed correctly.

Hence, we can guarantee the promised properties, as possibly adding some
rules to P ′ that are never used in control strings does no harm.
�

Having derived this normal form, we can proceed with the proof of the desired
characterization theorem.

Theorem 6. L (LIN) = str ([L ((1-ContA,REG))])
= str ([L ((1-SCFA,REG))]) .

Proof. For showing str ([L ((1-ContA,REG))]) ⊆ L (LIN) it suffices to point
to the proof of Theorem 12.9 in [14], because especially the second property of
the normal form lemma means that – translated to the string case – we are not
using any choice at all, i.e., each language in str ([L ((1-ContA,REG))]) is a
KEC language, to make use of the terminology of Gheorghe Păun. Hence, it is
also a linear language.

To show the converse, we can proceed similar to the proof of Theorem 12.9
in [14]. This means that the nonterminal information of the linear grammar is
stored in the state of the finite control of the control language. However, we have

Non-isometric Contextual Array Grammars with Regular Control 73

to split the simulation of a linear rule A → uBv into two steps. First, we adjoin
u to the left, and then we adjoin v to the right. The correct sequence of these to
adjoining steps again can easily be controlled by the regular control language.

For showing str ([L ((1-SCFA,REG))]) = L (LIN) we observe that arrays
(strings) being derived by a 1-dimensional strictly context-free array grammar
with regular control grow to the left and to the right only guided by the control
language, hence, similar arguments as above apply. This observation concludes
the proof of our characterization theorem.
�

We remark that the construction somehow resembles the way how 2-head
finite automata can accept the linear languages: the regular control is essentially
the finite state control and the two extremes in which a string can be extended
in the present model can be identified by the two heads that read the input from
the two extremes. This technique has been employed in some arguments in [12].
Similar constructions can be also found in [2,20,21].

Corollary 1. The emptiness problem is decidable for 1-dimensional contextual
array grammars with regular control.

Proof. As the emptiness problem is decidable for linear string languages, the
claim immediately follows from Theorem 6, because all proof steps explained
there are constructive.
�

As we will see in the following section, this decidability result only holds
for the 1-dimensional case, whereas for d ≥ 2 in general the emptiness problem
is undecidable for d-dimensional non-isometric contextual array grammars with
regular control and local selectors.

6 More-Dimensional Non-isometric Contextual Array
Grammars with Regular Control and Local Selectors

In this section we will exhibit that, for d ≥ 2, d-dimensional non-isometric con-
textual array grammars with regular control and local selectors can simulate
the computations of (d − 1)-dimensional array grammars; as a consequence of
this result we infer the undecidability of the emptiness problem for d-dimen-
sional non-isometric contextual array grammars with regular control and local
selectors.

Theorem 7. For any d ≥ 2, the computations of any (d−1)-dimensional array
grammar G can be simulated by a d-dimensional non-isometric contextual array
grammars with regular control and local selectors GC = (G′, L) in such a way
that in each derivation step of GC a (d − 1)-dimensional rectangle representing
the next sentential form obtained in the derivation of G is adjoined.

Proof. The main idea of the proof is to adjoin another (d−1)-dimensional “slice”,
i.e., (d − 1)-dimensional rectangle to the current d-dimensional array which rep-
resents the derivation carpet generated so far of the (d − 1)-dimensional array
grammar to be simulated. The construction then proceeds in three stages:

74 H. Fernau et al.

1. First, a (d − 1)-dimensional rectangle of symbols X# representing the blank
symbol # is generated, having somewhere in the middle the start symbol S
of G and on the borders having special symbols as delimiters. This stage is
guided by the initial part of the control language L that we denote by LI .

2. In the main part, the array productions in the set of array productions P
from G of the form ĀvB → CD̄ are simulated by using specific selectors
guaranteeing that only a new (d− 1)-dimensional “slice” is adjoined in direc-
tion ed,d which represents the next sentential form of the derivation in G to
be simulated; an important feature to keep the changes local is assuming G
to be in the one-pebble normal form. The corresponding set of non-isometric
contextual array productions with local selectors in G′ is denoted by PS .

3. Finally, the derivation in G ends with the application of a rule Ā → b; the
set of non-isometric contextual array productions with local selectors in G′

for simulating those is denoted by PF .

In total, we obtain L = LIP
∗
SPF .

We now explain the construction for d = 2 in more detail, and then explain
how this construction generalizes to the d-dimensional case for d > 2.

Now let G =
(
1, N ∪ N̄ , T, #, P, S

)
be a 1-dimensional array grammar in

one-pebble normal from as defined in Lemma 1. The 2-dimensional non-isometric
contextual array grammars with regular control and local selectors GC = (G′, L)
with G′ =

(
1, N ∪ N̄ , T, #, P ′, S̄

)
, is constructed as follows:

First, from the axiom
{
(0, 0) D, (0, 1) S̄

}
the rules with the local selectors

sI,S

X# S̄

D D , sI,S′ =
S̄ X#

D D ,

sI,# =

X# X#

D D , sI,#′ =

X# X#

D D ,

sI,L =

L X#

D D , sI,R =

X# R

D D .

generate the double-line

L X# . . . X# S̄ X# . . . X# R
D D . . . D D D . . . D D

where the second line corresponds to the string LXm
S̄Xn

#R, m,n ≥ 1. The
symbol X# represents the blank symbol #. With m and n being big enough,
sufficient work space has to be generated. In the following, a blank symbol # in
an array production from P has to be transformed into the corresponding symbol
X# in the rules of G′ described below; yet in order to avoid too complicated
notations, we will not distinguish between these two symbols below.

Non-isometric Contextual Array Grammars with Regular Control 75

A rule r ∈ P ′ of the 2-dimensional non-isometric contextual array grammars
with regular control and local selectors GC can be described by r = (vr, Sr)
where v ∈ {(1, 0) , (−1, 0) , (0, 1) , (0,−1)} is a vector indicating that a fitting
vertical line (for v ∈ {(1, 0) , (−1, 0)}) or horizontal line (for v ∈ {(0, 1) , (0,−1)})
over the alphabet V ′ = N ∪ N̄ ∪ T ∪ {X#,D, L,R} has to be adjoined obeying
to the restrictions given by the local selectors in Sr.

For the initial rules described above, we define the initial set of rules

PI = {((−1, 0) , Sr) | Sr ∈ {sI,S , sI,#, sI,L}}
∪ {((1, 0) , Sr) | Sr ∈ {sI,S′ , sI,#′ , sI,R}}

and the initial part of the control language

LI = {sI,S} {sI,S′} {sI,#, sI,#′}∗ {sI,L} {sI,R} .

A 1-dimensional array production p = Ā (1) B → CD̄ from P is captured by
the local selectors

sp,1 =
E C

E Ā , sp,2 =
C D̄

Ā B , sp,3 =
D̄ E

B E ,

for any E ∈ N∪T∪{X#}, and a 1-dimensional array production p = Ā (−1) B →
CD̄ from P is captured by the local selectors

sp,1 =
E D̄

E B , sp,2 =
D̄ C

B Ā , sp,3 =
C E

Ā E ;

obviously, for the 1-dimensional array production pE = Ā → b from P we simply
can take the local selectors

spE ,1 =
E b

E Ā and spE ,2 =
b E

Ā E .

Due to the one-pebble normal form of G it is guaranteed that for the correctness
of the simulation of applying the 1-dimensional array productions Ā (1) B → CD̄
and Ā (−1) B → CD̄ from P only the local selectors

C D̄

Ā B and
D̄ C

B Ā

are relevant.
In addition, for covering the rest of the line to be adjoined correctly, we have

to take the local selectors

sL =
L E

L E and sR =
E R

E R as well as sE,F =
E F

E F

for any E,F ∈ N ∪ T ∪ {X#}; only in the local environment of the barred
nonterminal other selectors have to be applied than these ones checking the

76 H. Fernau et al.

identity of the adjoined symbols with the ones in the preceding line, and we
collect these selectors in the set Sg.

For any array production p ∈ P , we define the corresponding rule in P ′ as
((0, 1) , Sp) where the set of selectors Sp for p being of the form Ā (1) B → CD̄
or Ā (−1) B → CD̄ is

Sp = Sg ∪ {sp,1, sp,2, sp,3} ;

these rules altogether form the rule set PS . For any final array production pE =
Ā → b we take SpE

= Sg ∪ {spE ,1, spE ,2}, which gives the set of rules PF . The
simulation part of the control language therefore is LS = P ∗

S . The simulation of
a derivation in G has to end with a rule in PF . In total, for the control language
L we obtain L = LIP

∗
SPF .

For higher dimensions, a similar construction applies with an initial phase
represented by a suitable regular control language LI , an intermediate simulation
phase represented as P ∗

S and the final phase PF so that again the control language
will be L = LIP

∗
SPF . The selectors to be used in this case are again squares of

side length 2, but now of course of dimension d.
�

The overall construction described above resembles the simulation of the work
of a Turing machine. However, doing this formally is far more tedious compared
to our construction given within the framework of array grammars.

Corollary 2. For d ≥ 2, the emptiness problem is undecidable for d-dimensio-
nal contextual array grammars with regular control and local selectors.

Proof. As the emptiness problem is undecidable for d-dimensional array gram-
mars as is the emptiness problem for arbitrary string grammars, the claim follows
immediately from Theorem 7, because all proof steps explained there are con-
structive.
�

Remark 4. Both features – regular control and local selectors – are needed to
obtain this undecidability result. Without selectors, the contextual array pro-
ductions are always applicable as long as we take the arrays to be adjoined from
(d− 1)-RECT , hence, in that case the generated array language is empty if and
only if the control language is empty. On the other hand, local selectors alone
without regular control are pure grammars, i.e., the generated language at least
contains all axioms.

7 Conclusions

Extending the basic model of non-isometric d-dimensional contextual array gar-
mmars with using local selectors, we have obtained a powerful tool to describe
the evolution of more-dimensional objects, as for example, 2-dimensional pictures
or even 3-dimensional objects.

For d > 1, we have shown that the emptiness problem is undecidable for d-
dimensional contextual array grammars with regular control and local selectors,

Non-isometric Contextual Array Grammars with Regular Control 77

based on the result that d-dimensional non-isometric contextual array grammars
with regular control and local selectors can simulate the computations of (d −
1)-dimensional array grammars. In contrast to that, in the 1-dimensional case
the string images of array languages generated by isometric contextual array
grammars with regular control or generated by non-isometric contextual array
grammars with regular control (and with or without local selectors) characterize
the linear languages, which implies that the corresponding emptiness problem is
decidable.

References

1. Ehrenfeucht, A., Păun, Gh., Rozenberg, G.: Contextual grammars and formal lan-
guages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol.
2, pp. 237–293. Springer, Heidelberg (1997)

2. Fernau, H.: Even linear simple matrix languages: formal language properties and
grammatical inference. Theor. Comput. Sci. 289, 425–489 (2002)

3. Fernau, H., Freund, R.: Bounded parallelism in array grammars used for character
recognition. In: Perner, P., Rosenfeld, A., Wang, P. (eds.) SSPR 1996. LNCS, vol.
1121, pp. 40–49. Springer, Heidelberg (1996)

4. Fernau, H., Freund, R., Siromoney, R., Subramanian, K.G.: Regulated contextual
array grammars, to appear in Annals of the University of Bucharest (Mathematical
Series)

5. Fernau, H., Freund, R., Siromoney, R., Subramanian, K.G.: Contextual array gram-
mars with matrix and regular control (in preparation)

6. Freund, R.: Control mechanisms on #-context-free array grammars. In: Păun, Gh.
(ed.) Mathematical Aspects of Natural and Formal Languages, pp. 97–137. World
Scientific Publication, Singapore (1994)

7. Freund, R., Păun, Gh., Rozenberg, G.: Chapter 8: contextual array grammars. In:
Subramanian, K.G., Rangarajan, K., Mukund, M. (eds.) Formal Models Languages
and Applications. Series in Machine Perception and Articial Intelligence, vol. 66,
pp. 112–136. World Scientific, Singapore (2007)

8. Freund, R., Kogler, M., Oswald, M.: A general framework for regulated rewriting
based on the applicability of rules. In: Kelemen, J., Kelemenová, A. (eds.) Com-
putation, Cooperation, and Life. LNCS, vol. 6610, pp. 35–53. Springer, Heidelberg
(2011)

9. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages, pp. 215–267. Springer, Heidelberg
(1997)

10. Krithivasan, K., Balan, M.S., Rama, R.: Array contextual grammars. In: Mart́ın-
Vide, C., Păun, Gh. (eds.) Recent Topics in Mathematical and Computational
Linguistics, pp. 154–168. Editura Academiei Române, Bucureşti (2000)

11. Marcus, S.: Contextual grammars. Revue Roumaine de Mathématiques Pures et
Appliquées 14, 1525–1534 (1969)

12. Nagy, B.: On a hierarchy of 5′ → 3′ sensing Watson-Crick finite automata lan-
guages. J. Logic Comput. 23, 855–872 (2013)

13. Păun, Gh., Nguyen, X.M.: On the inner contextual grammars. Revue Roumaine
de Mathématiques Pures et Appliquée 25, 641–651 (1980)

14. Păun, Gh.: Marcus Contextual Grammars. Studies in Linguistics and Philosophy.
Kluwer Academic Publishers, Dordrecht (1997)

78 H. Fernau et al.

15. Pradella, M., Cherubini, A., Crespi-Reghizzi, S.: A unifying approach to picture
grammars. Inf. Comput. 209, 1246–1267 (2011)

16. Rosenfeld, A.: Picture Languages. Academic Press, Reading (1979)
17. Rosenfeld, A., Siromoney, R.: Picture languages - a survey. Lang. Des. 1, 229–245

(1993)
18. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1-3.

Springer, Heidelberg (1997)
19. Salomaa, A.: Formal Languages. Academic Press, Reading (1973)
20. Subramanian, K.G.: A note on regular controlled apical growth filamentous sys-

tems. Int. J. Comput. Inf. Sci. 14, 235–242 (1985)
21. Takada, Y.: A hierarchy of language families learnable by regular language learning.

Inf. Comput. 123, 138–145 (1995)
22. Wang, P.S.-P.: Some new results on isotonic array grammars. Inf. Process. Lett.

10, 129–131 (1980)

Universality of Graph-controlled Leftist
Insertion-deletion Systems with Two States

Sergiu Ivanov1 and Sergey Verlan1,2(B)

1 Laboratoire d’Algorithmique, Complexité et Logique,
Université Paris Est – Créteil Val de Marne,
61, av. gén. de Gaulle, 94010 Créteil, France

sergiu.ivanov@u-pec.fr
2 Institute of Mathematics and Computer Science,

Academy of Sciences of Moldova,
Academiei 5, Chisinau MD-2028, Moldova

verlan@u-pec.fr

Abstract. In this article, we consider leftist insertion-deletion systems,
in which all rules have contexts on the same side, and may only insert
or delete one symbol at a time. We start by introducing extended rules,
in which the contexts may be specified as regular expressions, instead of
fixed words. We then prove that leftist systems with such extended rules
and two-state graph control can simulate any arbitrary 2-tag system.
Finally, we show how our construction can be simulated in its turn by
graph-controlled leftist insertion-deletion systems with conventional rules
of sizes (1, 1, 0; 1, 2, 0) and (1, 2, 0; 1, 1, 0) (where the first three numbers
represent the maximal size of the inserted string and the maximal size
of the left and right contexts respectively, while the last three numbers
provide the same information about deletion rules), which implies that
the latter systems are universal.

1 Introduction

Abstract insertion and deletion operations are simple, yet powerful, special cases
of string rewriting rules. Intuitively, insertion is adding a substring at a site
having a specified left, right, or both contexts, while deletion is removing a
substring from a site having a specified left, right, or both contexts. The precursor
of insertion was context adjoining, first introduced by S. Marcus in the seminal
paper [19] with a linguistic motivation, and then further developed in [24,25].
The modern definition of insertion was introduced in [6] in the form of semi-
contextual grammars.

The works [7,8] defined insertion differently, by generalising Kleene’s opera-
tions of concatenation and closure [15]. Indeed, insertion can be seen as concate-
nation which is allowed to happen anywhere in the string. Following a similar
approach, the work [12] introduced the dual operation of deletion as a gener-
alised quotient operation which does not necessarily happen at the ends of the
string. The paper [14] first considers systems containing finite sets of insertion
c© Springer International Publishing Switzerland 2015
J. Durand-Lose and B. Nagy (Eds.): MCU 2015, LNCS 9288, pp. 79–93, 2015.
DOI: 10.1007/978-3-319-23111-2 6

80 S. Ivanov and S. Verlan

and deletion rules working together: insertion-deletion systems. Such a system
works in generative mode: it sequentially applies insertion or deletion rules to
one of its finitely many axioms; the generated language includes all the terminal
words obtained in the process.

Exciting sources of motivation for studying insertion and deletion opera-
tions were found in biology [4,13,26,28]. A well known one is the theoretically
conceived process of mismatched annealing of DNA, which effectively results
in insertions or deletions of certain segments of the strands [26]. In the for-
mal framework of insertion and deletion operations, such modifications to DNA
strands are modelled by context-free rules, i.e. insertion and deletion rules which
can be applied anywhere in the string. The expressive power of such context-free
operations was studied in the article [20], for example, which shows that context-
free insertion-deletion operations of sizes (3, 0, 0; 2, 0, 0) and (2, 0, 0; 3, 0, 0) can
simulate arbitrary string rewriting rules and are thus computationally complete.
For a detailed overview of the computational power of context-free insertion
and deletion operations, the reader is referred to [29]. For surveys of results on
insertion-deletion systems in general, we refer to [16,30].

Another biological phenomenon which can be seen as a sequence of inser-
tions and deletions is RNA editing, which was discovered in some species of
protozoa [1,2]. RNA editing consists in inserting or deleting fragments of mes-
senger RNA, and is guided by an anchor segment always located on one side of
the edited locus. This directly motivates the study of one-sided insertion-deletion
systems, i.e. systems in which all rules must have the context on one and the same
side. The works [17,18,21] investigate the power of such systems and give several
computational completeness results as a function of the size of the rules, as well
as describe some families of one-sided systems which are not computationally
complete. For these families, additional control mechanisms can be considered
which often increase the expressive power, for example, matrix control [23], or
semi-conditional and random context control [10].

One of the most frequently discussed variant of controlled insertion and
deletion are graph-controlled insertion-deletion systems (sometimes also called
insertion-deletion P systems). The work [18] shows that five-state graph con-
trol increases the power of small one-sided insertion-deletion rules to computa-
tional completeness. In [5], this result is improved upon and four-state graph
control is shown to suffice for generating all recursively enumerable languages.
The article [11] considers insertion-deletion systems of sizes (1, 2, 0; 1, 1, 0) and
(1, 1, 0; 1, 2, 0), and proves that adding three-state graph-control to them results
in computationally complete devices.

In this paper, we focus on a special variant of one-sided insertion-deletion
systems, introduced in [9]: leftist systems. In such systems, the rules can only
insert or delete one symbol at a time, and must use contexts on the same side.
In [9], it is shown that all leftist insertion-deletion systems can be simulated
by systems of sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0), and that these systems
can generate all regular languages. Moreover, [9, Theorem 3.3] shows that leftist
systems can generate non-context-free languages.

Universality of Graph-controlled Leftist Insertion-deletion Systems 81

We continue the exploration of the expressive power of leftist systems and
show that that adding two-state graph control to insertion-deletion systems of
sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0) renders them capable of simulating any 2-
tag system (Theorems 4 and 5). That 2-tag systems are universal [3,22] implies
therefore the universality of two-state graph-controlled leftist insertion-deletion
systems. Our proofs are based on an extension to insertion and deletion rules we
introduce in Definition 1, which allows the specification of contexts as regular
expressions instead of single fixed words. We show that graph-controlled leftist
systems with such extended contexts can simulate any 2-tag system (Theorem 1).
Interestingly, in the non-controlled case, allowing extended context in leftist sys-
tems does not augment computational power, as normal leftist systems can sim-
ulate regular contexts (Theorems 2 and 3). While the same argument does not
generally work in the graph-controlled case, it does apply to the construction from
the proof of Theorem 1, which leads to the universality result mentioned above.

2 Preliminaries

We do not present here definitions concerning standard concepts of the theory
of formal languages and we refer to [27] for more details. We denote by |w| the
length of a word w, by card(A) the cardinality of the alphabet A and by REG,
CF , CS, and RE the families of regular, context-free, context-sensitive, and
recursively enumerable languages, respectively.

An m-tag system is the tuple TS = (m,A, P), where m is a positive integer,
A = {a1, . . . , an+1} is a finite alphabet, and P contains rules of the form ai → αi,
where αi ∈ A∗, for 1 ≤ i ≤ n. The letter an+1 is called the halting symbol.

A configuration of the tag system TS is a word w ∈ A∗. The system passes
from the configuration w = ai1 . . . aimw′, 1 ≤ ij ≤ n + 1, 1 ≤ j ≤ m to the next
configuration z by applying one of the productions ai → αi: the first m symbols
of w are erased and αi is added to the end of the word: w =⇒ z, if z = w′αi.

A computation of TS over the word x ∈ V ∗ is a sequence of configurations
x =⇒ . . . =⇒ y, where either y = an+1ai1 . . . aim−1y

′, or |y| < m. In this case we
say that TS halts on x and that y is the result of the computation of TS over
x, which is denoted by y = TS(x).

Minsky proved that 2-tag systems are universal [3,22]. Moreover, according
to his proof, it is sufficient to consider only tag systems that halt only on the
halting symbol and do not have empty productions.

An insertion-deletion system is a construct ID = (V, T,A, I,D), where:

– V is an alphabet;
– T ⊆ V is the terminal alphabet (the symbols from V \ T are called non-
terminals);

– A ⊆ V ∗ is the set of axioms;
– I,D are finite sets of triples of the form (u, α, v), where u, α (α �= λ), and v

are strings over V .

82 S. Ivanov and S. Verlan

The triples in I are insertion rules, and those in D are deletion rules. An insertion
rule (u, α, v)ins ∈ I indicates that the string α can be inserted between u and
v (which corresponds to the rewriting rule uv → uαv), while a deletion rule
(u, α, v)del ∈ D indicates that α can be removed from between the contexts u
and v (which corresponds to the rewriting rule uαv → uv). By =⇒ we denote
the relation defined by the insertion or deletion rules and by =⇒∗ the reflexive
and transitive closure of =⇒.

The language generated by ID = (V, T,A, I,D) is defined by

L(ID) = {w ∈ T ∗ | x =⇒∗ w for some x ∈ A}.

The complexity of an insertion-deletion system ID = (V, T,A, I,D) is
described by the vector (n,m,m′; p, q, q′) called size, where

n = max{|α| | (u, α, v)ins ∈ I}, p = max{|α| | (u, α, v)del ∈ D},

m = max{|u| | (u, α, v)ins ∈ I}, q = max{|u| | (u, α, v)del ∈ D},

m′ = max{|v| | (u, α, v)ins ∈ I}, q′ = max{|v| | (u, α, v)del ∈ D}.

We also denote by INSm,m′
n DELq,q′

p all the languages generated by the
families of insertion-deletion systems of size (n,m,m′; p, q, q′). Moreover, we
define the total size of the system as the sum of all numbers above: ψ =
n + m + m′ + p + q + q′.

If one of the parameters n, m, m′, p, q, or q′ is not bounded, then we write
instead the symbol ∗. If one of the numbers from the pairs m, m′ and q, q′ is equal
to zero (while the other is not), then we say that the corresponding families have
a one-sided context. If the m′ = q′ = 0, and n = p = 1, the insertion-deletion
systems are called leftist.

We also recall that the family of insertion-deletion languages of size
(1, 1, 0; 1, 1, 0) is incomparable with REG: (CF \ REG) ∩ INS1,0

1 DEL0,0
0 �= ∅

and (ba)+ �∈ INS1,0
1 DEL1,0

1 [18].
A graph-controlled insertion-deletion system is a construct

Π = (V, T,A,H, i0, If , R), where

– V is a finite alphabet,
– T ⊆ V is the terminal alphabet,
– A ⊆ V ∗ is a finite set of axioms,
– H is a set of states of Π,
– i0 ⊆ H is the initial state,
– If ⊆ H is the set of final states, and
– R is a finite set of rules of the form (l, r, E), where r is an insertion or deletion

rule over V , l ∈ H, and E ⊆ H.

The relation {(i, j) | (i, r, E) ∈ R and j ∈ E} defines a graph, called the
communication graph of the system. We remark that in the literature the term
“graph control” often implies that there is a one-to-one correspondence between
the label i and the rule (i, r, E) ∈ R. This corresponds to the point of view that

Universality of Graph-controlled Leftist Insertion-deletion Systems 83

the rules are located on the edges of the communication graph. Another point of
view is to place the rules in the nodes of the communication graph. In this paper
we do not consider such restrictions, as all corresponding models are equivalent
in the computational power and have mostly identical descriptional complexity
parameters.

As is common for graph controlled systems, a configuration of Π is rep-
resented by a pair (w, i), where i ∈ H is the current state and w is the
current string. A transition (w, i) =⇒ (w′, j) is performed if there is a rule
(i, (u, α, v)t, E) in R such that w =⇒t w′ by the insertion/deletion rule (u, α, v)t,
t ∈ {ins, del}, and j ∈ E. The result of the computation consists of all terminal
strings reaching a final state from an axiom and the initial label, i.e.,

L(Π) = {w ∈ T ∗ | (w0, i0) =⇒∗ (w, if), for some w0 ∈ A, if ∈ If}.

The family of languages generated by graph-controlled insertion-deletion sys-
tems having k states and insertion/deletion rules of size (n,m,m′; p, q, q′) is
denoted as GCkINSm,m′

n DELq,q′
p . As we deal with universality we define the

notion of the computation of a system Π on an input word w with respect to a
recursive coding φ, denoted as Π(φ(w)). This can be obtained by replacing the
set of axioms A from the definition of Π by {φ(w)} and then by evolving Π as
usual, L(Π) being considered as the result of the computation.

3 Universality Results

In this section we extend insertion and deletion rules to contexts given by regular
expressions rather than by simple strings.

Definition 1. Given an alphabet V , an extended insertion rule r is the tuple
(El, x, Er)ins, where x ∈ V ∗ and El and Er are regular expressions over V .
The rule r can be applied to the string uv to yield uxv, if u = u1u2 such that
u2 ∈ L(El) and v = v1v2 such that v1 ∈ L(Er). An extended deletion rule is
defined in a similar way.

A (graph-controlled) insertion-deletion system with regular contexts is a
(graph-controlled) insertion-deletion system in which extended insertion and
deletion rules are allowed.

We will use the same notation for families of languages generated by insertion-
deletion systems with regular contexts as for those generated by conventional
ones: INSm,m′

n DELq,q′
p , where m, m′, q, and q′ will be replaced by REG if

the corresponding contexts of insertion or deletion rules are allowed to contain
regular expressions.

We will now show that any 2-tag system can be simulated by a graph-
controlled insertion-deletion system with regular contexts. Next, we show
that regular contexts can be reduced to contexts of size (1, 1, 0; 1, 2, 0) or
(1, 2, 0; 1, 1, 0).

84 S. Ivanov and S. Verlan

Theorem 1. For every tag system TS, there exists a two-state graph-controlled
insertion-deletion system Π of size (1, REG, 0; 1, REG, 0) and a recursive coding
φ such that the following conditions hold:

– Π(φ(w)) = {TS(w)}, if TS halts on w, and
– Π(φ(w)) = ∅, if TS does not halt on w.

Proof. Consider an arbitrary tag system TS = (2,A, P). We will now
construct the extended graph-controlled insertion-deletion system Π(β) =
(V,A, ∅, {1, 2}, 1, {1}, R) simulating the computation of TS on the word β ∈ A∗.
The alphabet V is defined as follows:

V = {B̄, B, S, F,E,E′, Z, Z ′} ∪ {Ri, R
′
i, R

′′
i , R′′′

i , Pi | ai → αi ∈ P} ∪ A.

The coding φ is defined as φ(β) = B̄B β SEE′ F .
The simulation of TS happens in several phases; accordingly, we split the

rules in R into the following logical groups:

1. generation of the control string of alternating Z and Z ′, for each a ∈ A:

r11 :
(
1, (S, Z, λ)ins, {1}

)
,

r12 :
(
1, (S, Z ′, λ)ins, {1}

)
,

r13 :
(
1, (a, S, λ)del, {1}

)
,

r14 :
(
1, (a(ZZ ′)∗, E, λ)del, {1}

)
,

r15 :
(
1, (Z ′, E′, λ)del, {2}

)
;

2. deletion of two symbols at the left end of the string and generation of the
signal Ri, for each a ∈ A:

r21 :
(
2, (B, R′

i, λ)ins, {2}
)
,

r22 :
(
2, (R′

iai, R′′
i , λ)ins, {2}

)
,

r23 :
(
2, (R′′

i a, R′′′
i , λ)ins, {2}

)
,

r24 :
(
2, (R′′

i , a, λ)del, {1}
)
,

r25 :
(
1, (R′

i, ai, λ)del, {1}
)
,

r26 :
(
1, (R′

i, R′′
i , λ)del, {1}

)
,

r27 :
(
1, (B, R′

i, λ)del, {1}
)
,

r28 :
(
1, (BR′′′

i , Ri, λ)ins, {2}
)
,

r29 :
(
2, (B, R′′′

i , λ)del, {1}
)
;

3. insertion of the right-hand side of a production of TS, for each a,b ∈ A, and
ai → αi ∈ P :

r31 :
(
1, (Ria, Ri, λ)ins, {1}

)
,

r32 :
(
1, (a, Ri, λ)del, {1}

)
,

r33 :
(
1, (B, Ri, λ)del, {1}

)
,

r34 :
(
1, (BA∗RiZ, Pi, λ)ins, {1}

)
,

r35 :
(
1, (aZPi, b, λ)ins, {1}

)
,

r36 :
(
1, (a, Z, λ)del, {1}

)
,

r37 :
(
1, (aPiαi, Z ′, λ)del, {1}

)
,

r38 :
(
1, (a, Pi, λ)del, {2}

)
,

Universality of Graph-controlled Leftist Insertion-deletion Systems 85

4. checking of the halting condition and cleanup, where an+1 is the halting
symbol of TS:

r41 :
(
2, (B̄, B, λ)del, {1}

)
,

r42 :
(
1, (B̄an+1A∗, F, λ)del, {1}

)
,

r43 :
(
1, (∅, B̄, ∅)del, {1}

)
.

The simulation of the tag system TS by Π is done in 3 stages. During the first
stage a repeating sequence of words ZZ ′ is inserted, their number being equal to
the number of steps TS needs to reach the final configuration. This corresponds
to the following computation in Π: (B̄B w SEE′ F, 1) =⇒∗ (B̄Bw(ZZ ′)kF, 2).
The second stage repeatedly simulates the application of a production ai → αi

by erasing the two starting symbols and by adding the corresponding appendant
to the end: (B̄Baiajw

′(ZZ ′)kF, 2) =⇒∗ (B̄Bw′αi(ZZ ′)k−1F, 2). During the last
stage the markers B̄, B, and F are removed after checking that the first letter
of the word is an+1: (B̄Ban+1w

′F, 1) =⇒∗ (an+1w
′, 1).

Now we will discuss each stage in more details. The simulation of the tag
system TS starts with the rules of group (1). The symbol S inserts a sequence
of the form (Z|Z ′)∗ by rules r11 and r12, and is deleted by r13. Then the non-
terminal symbol E is deleted permitting to verify that S has inserted an alter-
nating sequence of the form (ZZ ′)∗. Finally, E′ is erased by rule r15, moving
the system in state 2 and starting the second stage. This sequence of actions
corresponds to the following derivation:

(B̄B wa SEE′ F, 1)
r11
r12=⇒∗(B̄B waS(ZZ ′)kEE′ F, 1)

r13=⇒ (B̄B wa (ZZ ′)kEE′ F, 1) r14=⇒ (B̄B wa (ZZ ′)k−1ZZ ′E′ F, 1)
r15=⇒ (B̄B wa S(ZZ ′)k F, 2),

where k ∈ N and underlining indicates the left context of the rule application
effecting the transition into the next configuration.

Remark that for the rules from state 1 and from groups (2) and (3) to be
applicable, some symbols must be present which may only be inserted in state 2,
so if S does not insert the correct alternating sequence, E and E′ cannot be
erased, and Π blocks on a string with non-terminals. The only exception is r36
which can be applied at any time after S is erased, but, as we will see later, if
this deletion happens at the incorrect moment, the system will block as well.
Rules r41 and r43, on the other hand, are also applicable at any moment, but if
they are applied too early (while B is still needed), the string will never reach
the form required for F to be deleted by r42.

Now we consider the second stage of simulation. During this stage the role
of symbols Z and Z ′ is to ensure that every deletion of the substring aia at the
beginning of the string is followed by an insertion of the corresponding αi at
the right end of the string, for ai → αi ∈ P . The string should thus contain
as many pairs ZZ ′ as there are steps in a halting computation of TS starting
with w. Remark that, after r15 is applied, the rules of group (1) can never become
applicable again as there are no more necessary symbols.

86 S. Ivanov and S. Verlan

Whenever Π is in state 2 with a string of the form B̄Baiaw (ZZ ′)kF , rules
r21 through r24 can only be applied, and necessarily in the following order (we
only show the evolution of a prefix of B̄Baia (ZZ ′)kF , because, in state 2, Π
cannot change anything outside it):

B̄Baia
r21=⇒ B̄BR′

iaia
r22=⇒ B̄BR′

iaiR
′′
i a

r23=⇒ B̄BR′
iaiR

′′
i aR

′′′
i

r24=⇒ B̄BR′
iaiR

′′
i R

′′′
i .

The application of r24 moves the system back into state 1. The rules of
group (3) are not applicable at this moment, because the string contains no
instances of Ri yet. The two rules of the second group which can be applied
are r25 and r27; remark though that applying r27 removes R′

i, so r26 cannot be
applied to erase R′′

i anymore. Given that ai must be erased in order to enable
the deletion of R′′

i and the insertion of Ri, the following evolution is the only
possible one in a terminal derivation (again, we only show the evolution of the
prefix):

B̄BR′
iaiR

′′
i R′′′

i
r25=⇒ B̄BR′

iR
′′
i R′′′

i
r26=⇒ B̄BR′

iR
′′′
i

r27=⇒ B̄BR′′′
i

r28=⇒ B̄BR′′′
i Ri,

where the application of r28 moves the system back into state 2. This time,
however, B is separated from the rest of the string by an instance of R′′′

i , so if
rule r21 is applied instead of r29, neither r24 nor r29 will ever become applicable,
and Π will block in state 2 on a string with non-terminals. Thus the system has
to apply r29 immediately after the application of r28 to arrive in state 1 with
the string B̄BRiw(ZZ ′)kF , thereby successfully completing the deletion of aia
and introducing the corresponding signal symbol Ri.

Rules r31, r32, and r33 move the signal Ri to the right end of the string.
Remark that if r32 and r33 erase all the instances of Ri before r34 is applied, Π
just blocks on a string with non-terminals. On the other hand, the context of
r34 requires that, for Pi to be inserted, there should be no extra signal symbols
in the string; this assures that exactly one insertion happens at the right end of
the string per deletion at the left end.

The correct sequence of actions triggered by a signal symbol Ri at the right
end of the string is as follows (we only show the evolution of the suffix, because all
rules modifying the left end of the string in state 1 require primed Ri symbols):

. . . aRiZZ ′ (ZZ ′)k−1F
r34=⇒ aRiZPiZ

′ (ZZ ′)k−1F
r32=⇒ aZPiZ

′ (ZZ ′)k−1F
r35=⇒

∗
aZPiαiZ

′ (ZZ ′)k−1F
r36=⇒ aPiαiZ

′ (ZZ ′)k−1F
r37=⇒ aPiαi (ZZ ′)k−1F

r38=⇒ aαi (ZZ ′)k−1F,

where the last derivation step moves the system into state 2 and initiates the
next deletion at the left end of the string. Remark that r35 is only applicable
after Ri has been erased. Furthermore, even though r36 may delete Z almost at
any moment when Π is in state 1, if this does occur, then both r34 and r35 are
rendered inapplicable, and Π will end up blocking in state 1 on a string with
non-terminals. Rule r37 can only erase Z ′ when applications of r35 insert the
exact substring αi from the production ai → αi. If Z ′ is not erased, the signal
symbol Rj of the following simulation step will not be able to use r34 to initiate

Universality of Graph-controlled Leftist Insertion-deletion Systems 87

the insertion of the right-hand side αj , and Π will block. Finally, the application
of r38 moves the system into state 2, enabling the next deletion at the left end
of the string.

The last stage of the computation is assured by the rules of group (4). Rule
r41 is applied non-deterministically in order to disable any further deletions and
insertions. Then, the end marker F is erased only if the string contains no more
service symbols, no more Z or Z ′, and if the first symbol after B̄ is the halting
symbol of Π. If these conditions are not met, F will never be erased and Π will
block. If F is successfully erased, however, the rule r43 is applied removing the
last non-terminal symbol and finalizing the simulation of TS.

We now show that, in the case of one-sided systems, regular contexts do not
bring additional computational power.

Theorem 2. INSREG,0
1 DELREG,0

1 ⊆ INS2,0
1 DEL1,0

1 .

Proof. We give here only the sketch of the proof of the statement which is based
on the proof of the result REG � INS2,0

1 DEL1,0
1 from [9].

Any rule r : (E, x, λ)t, t ∈ {ins, del}, can be simulated as follows. Let FA =
(Q,T, q0, F, δ) be the finite automaton such that L(FA) = L(E). Consider the
following sets of rules:

I ={(a, Q0, λ)ins | a ∈ T} ∪ {(Qia, Qj , λ)ins | qj ∈ δ(qi, a)}
∪ {(Qf , x, λ)ins | f ∈ F, if t = ins},

D ={(a, Qi, λ)del | a ∈ T} ∪ {(Qf , x, λ)del | f ∈ F, if t = del}.

We claim that these rules faithfully simulate the action of the extended rule r.
The simulation starts by inserting the symbol Q0 that marks the guess for the
leftmost position for the recognition of context E. Then the string is decorated by
symbols Qi according to the transitions of FA. This allows to check if the string
to the right of Q0 belongs to E. In this case a symbol Qf , f ∈ F is ultimately
inserted into the string. Now this symbol can insert or delete x according to the
type t of the rule. Finally, symbols Qi are cleaned up.

The validity of the simulation is based on the observation that if the full
sequence of insertions (checking the contexts) is not performed, then the rule is
not applied. Moreover, if the clean-up phase is not completed, then the string
will contain non-terminals that will block the corresponding portion of the string
from any further evolution.

A similar theorem holds in the case of systems of size (1, 1, 0; 1, 2, 0). It could
be immediately deduced from the previous theorem and [9, Lemma 3.3]; we
would like to present a simpler construction, however.

Theorem 3. INSREG,0
1 DELREG,0

1 ⊆ INS1,0
1 DEL2,0

1 .

Proof. Like for the previous theorem, we shall only give the sketch of the proof.

88 S. Ivanov and S. Verlan

Any rule r : (E, x, λ)t, t ∈ {ins, del}, can be simulated as follows. Let FA =
(Q,T, q0, F, δ) be the finite automaton such that L(FA) = L(E). Consider the
following sets of rules:

I ={(a, Qi, λ)ins | a ∈ T} ∪ {(Qf , x, λ)ins | f ∈ F, if t = ins},

D ={(Qia, Qj , λ)del | qj ∈ δ(qi, a)} ∪ {(a, Q0, λ)del | a ∈ T}
∪{(Qf , x, λ)del | f ∈ F, if t = del}.

We claim that these rules simulate the action of r faithfully. The simulation
strategy is a bit different from the proof of Theorem 2. First, a guess about the
context is made and the string is decorated by the sequence of symbols Qi. When
the symbol Qf , f ∈ F , corresponding to final state of E is inserted, an insertion
or deletion of x can be performed. Finally, the validity of the context is checked
by the deletion rules that require a valid accepting path of FA to be present
to the left of Qf . The difference from Theorem 2 is that at first the symbols
Qi are randomly inserted into the string, and only after that the deletion rules
check that these symbols were inserted in the correct order. In particular, this
means that the insertion or deletion of x can happen even if the left context does
not satisfy E. However, in this case it will be impossible to erase the remaining
non-terminals Qi.

While insertion-deletion systems of sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0) can
simulate any extended insertion-deletion system of size (1, REG, 0; 1, REG, 0),
the same statement cannot be directly extended to the graph-controlled case.
Indeed, the simulation of extended contexts is based on inserting additional
symbols; repeating the same approach for graph-controlled systems would make
it possible to switch states right in the middle of the verification of a context
of an extended rule allowing some incorrect behavior. For example consider a
system containing the following three rules:

1 :
(
1, (ab, x, λ)ins, {2}

)
, 2 :

(
2, (d, a, λ)ins, {1}

)
, 3 :

(
1, (a, a, λ)ins, {2}

)
,

and suppose that we use the approach from the proof of Theorem 3 to simulate
rule 1 with rules of size (1, 1, 0; 1, 2, 0). We will use the following rules to insert
state symbols:

1a :
(
1, (b, Q2, λ)ins, {1}

)
, 1b :

(
1, (a, Q1, λ)ins, {1}

)
,

1c :
(
1, (a, Q0, λ)ins, {1}

)
, 1d :

(
1, (Q2, x, λ)ins, {2}

)
,

for all symbols a, and the following deletion rules to attempt to verify the context
of rule 1:

1e :
(
2, (Q1b, Q2, λ)del, {2}

)
, 1f :

(
2, (Q0a, Q1, λ)del, {2}

)
,

1g :
(
2, (a, Q0, λ)del, {2}

)
,

for all symbols a. In the configuration (db, 1) of the original system, no rule
is applicable. However, in the new system with rules of size (1, 1, 0; 1, 2, 0), the
following sequence of rule applications is possible:

Universality of Graph-controlled Leftist Insertion-deletion Systems 89

(db, 1) 1a=⇒ (dbQ2, 1) 1d=⇒ (dbQ2x, 2) 2=⇒ (dabQ2x, 1) 3=⇒ (daabQ2x, 2)
2=⇒ (daaabQ2x, 1) 1b=⇒ (daaaQ1bQ2x, 1) 1c=⇒ (daaQ0aQ1bQ2x, 1)
1e=⇒ (daaQ0aQ1bx, 1)

1f
=⇒ (daaQ0abx, 1)

1g
=⇒ (daaabx, 1).

Thus, even though the initial string only partially matches the context ab, by
switching to state 2 and after that back to state 1, the missing a is inserted and
the context is successfully validated. Remark that the state switch should be
done on the insertion of x by rule 1d, because otherwise several occurrences of x
can be introduced into the string. In a more general manner, because states are
also in play, it may not be possible to reorder the derivation in such a way that
the string fully corresponds to the contexts of the simulated rule r at one given
moment, which means that a “simulation” of r may be successfully completed
even in the situations in which r itself could never be applied.

The above issue does not occur when simulating regular contexts with sys-
tems of size (1, 2, 0; 1, 1, 0), because the insertion or deletion of x is done after
all of the state symbols checking the context have been inserted, from left to
right (cf. proof of the Theorem 2). However, such systems have another prob-
lem – symbol Qf may not necessarily be deleted immediately; then the insertion
or deletion of x can happen twice, even if the left context was changed to not
match the rule anymore.

Yet, simulation of regular contexts by rules of size (1, 2, 0; 1, 1, 0) is still pos-
sible for the construction from Theorem 1, because the situation we have just
described cannot happen. Indeed, when the symbol E is erased by a simulation
of r14, for example, the system has already assured the correct form of the string
to the left of it. Since moving into state 2 is only possible by r15 at this time, we
are also sure that the string does change after the symbol-by-symbol checking
of the context of r14 verifies that S is no longer present.

A slightly more complex analysis is needed for the rules of group (3). When
the verification of the context of r34 is finished, we know that the string contained
BA∗RiZ some steps ago, but r32 and r36 might have erased Ri and Z in the
meantime, so r38 could be applied thereby allowing one more deletion of two
symbols at the end of the string. Note, however, that Z ′ would not be erased,
so the next signal symbol Rj would not be able to trigger an insertion of Pj and
the system would block. A similar argument is valid for r35: the Z to the left of
Pi should stay in the string in order for all of the symbols of αi to be inserted,
or else Z ′ will not be deleted. In the case of r37, again, if Pi is deleted before Z ′,
the system blocks.

Finally, when the context of rule r42 is completely matched, the only modifi-
cation that may happen to the string before F is erased is the deletion of O by
r43, but this behaviour does not break the simulation of the tag system. Hence,
we obtain the following statement.

Theorem 4. For every tag system TS there exists a two-state graph-controlled
insertion-deletion system Π of size (1, 2, 0; 1, 1, 0), and a recursive coding φ such
that the following conditions hold:

90 S. Ivanov and S. Verlan

– Π(φ(w)) = {TS(w)}, if TS halts on w, and
– Π(φ(w)) = ∅, if TS does not halt on w.

A symmetric statement for the case of graph-controlled insertion-deletion
systems of size (1, 1, 0; 1, 2, 0) is also true, but the simulation of the construction
from Theorem 1 is less straightforward than for systems of size (1, 2, 0; 1, 1, 0),
because, in the case of deletion rules with two-symbol contexts, the simulation
of regular rules starts by an insertion of a state symbol at the rightmost end of
the substring to be matched. It is therefore possible that the action of a rule
is produced before its context is verified, as we have seen above. We will now
analyze those rules of the construction from Theorem 1 which are not of the size
(1, 1, 0; 1, 2, 0) one by one, and describe how they can be correctly simulated.

To deal with r14, we will simulate such a finite automaton corresponding
to the expression a(ZZ ′)∗ in which the first state is only visited once, in the
initial configuration of the automaton. We will then introduce the symbol Q

(14)
0 ,

representing this state, into the axiom, before S, giving B̄BβQ
(14)
0 SEE′F . The

symbol Q
(14)
0 will be erased by the rule

(
1, (a, Q

(14)
0 , λ)del, 1

)
, for all a ∈ A. If

Q
(14)
0 is deleted before all state symbols simulating r14 are, some of these symbols

will stay stuck in the string, because Q
(14)
0 cannot be inserted. Therefore, the

only way to proceed is to erase Q
(14)
0 after the simulation of r14 is successfully

finished.
In the case of rules r22 and r23, the additional symbols introduced by the

simulation will have to be erased before the system moves into state 1, because
otherwise they will not be deleted and will block r28, which requires R′′′

i to be
immediately to the right of B. Rule r28 itself will be replaced by the following
four rules:

(
1, (R′′′

i , X
(28)
i , λ)ins, {1}

)
,

(
2, (B, R′′′

i , λ)del, {2}
)
,

(
1, (X(28)

i , Ri, λ)ins, {2}
)
,

(
2, (B, X

(28)
i , λ)del, {1}

)
,

where X
(28)
i is a new symbol.

For the rest of the rules, usual simulation of regular contexts works correctly.
Indeed, a simulation of the rule r31 happens in the middle portion of the string,
which cannot be altered by rules other than r32 or another simulation of r31.
In the case of r34, Pi may be inserted even though the string does not have the
correct form, moving the system into state 2, and initiating another deletion
at the left end. In this situation, however, Z must have been deleted for r38 to
become applicable, so the string has the form B̄BA∗Z ′(ZZ ′)∗F . Since the next
signal symbol Rj cannot interact with Z ′, this means that the sequence Z ′(ZZ ′)∗

will never be deleted. A similar argument is true for r35: if the system switches
into state 2 before Z ′ can be erased, it eventually blocks. As to the simulation of
r37, if the system switches away from state 1 before the context is fully verified,
the next signal symbol will not be able to insert another Pj , because the state
symbols verifying the context of r37 will block it on its way to the right end of
the string.

Universality of Graph-controlled Leftist Insertion-deletion Systems 91

Finally, suppose that the simulation of r42 erases F at an early stage. Remark
that, for this simulation to start at all, F has to be preceded by a symbol from
A, which means that the system cannot switch into state 2 while the context
of r42 is being verified. Therefore, if the string still contains other non-terminals
than those simulating r24 or B̄, the system blocks. Our observations imply the
truth of the following statement.

Theorem 5. For every tag system TS, there exists a two-state graph-controlled
insertion-deletion system Π of size (1, 1, 0; 1, 2, 0) and a recursive coding φ such
that the following conditions hold:

– Π(φ(w)) = {TS(w)}, if TS halts on w, and
– Π(φ(w)) = ∅, if TS does not halt on w.

4 Conclusions

In this paper, we continued the study of leftist insertion-deletion systems intro-
duced in [9], and showed that systems of sizes (1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0)
equipped with a two-state graph control mechanism can simulate any 2-tag sys-
tem, and are therefore universal. This contributes to the study of the computa-
tional power of leftist systems started in [9].

The proofs shown in the present work are based on an extension to the
conventional insertion and deletion rules, whereby specifying the contexts is done
by regular expressions instead of fixed words. We proved that two-state graph-
controlled leftist insertion-deletion systems with regular contexts can simulate
any 2-tag system.

It turned out that, in the case of leftist insertion-deletion systems without
control, considering regular contexts does not increase the expressive power:
rules of sizes (1, 2, 0; 1, 1, 0) or (1, 1, 0; 1, 2, 0) can simulate the language of any
system of size (1, REG, 0; 1, REG, 0). Even though this statement is not gen-
erally transposable to the graph-controlled case, the specific construction from
Theorem 1 can be simulated by conventional leftist rules, which yielded the main
result of this paper: two-state graph-controlled insertion-deletion systems of sizes
(1, 2, 0; 1, 1, 0) and (1, 1, 0; 1, 2, 0) can simulate any 2-tag system.

An important question left open is whether insertion-deletion systems of sizes
(1, 2, 0; 1, 1, 0) or (1, 1, 0; 1, 2, 0) are universal or even computationally complete.
We conjecture that this is not the case, because one-symbol one-sided rules can
only assure transmission of information in one direction in the string.

The second important open question, which may serve as an intermediate
step to solving the previous one, is whether two-state graph-controlled left-
ist insertion-deletion systems are computationally complete, i.e. whether they
can generate all recursively enumerable languages directly, without any coding.
Again, our conjecture is negative, because two states only provide a very lim-
ited kind of control, which does not seem sufficient for simulating an arbitrary
grammar or a Turing machine.

92 S. Ivanov and S. Verlan

Acknowledgments. The authors would like to acknowledge the support of ANR
project SynBioTIC.

References

1. Benne, R.: RNA Editing: The Alteration of Protein Coding Sequences of RNA.
Ellis Horwood, Chichester, West Sussex (1993)

2. Biegler, F., Burrell, M.J., Daley, M.: Regulated RNA rewriting: modelling RNA
editing with guided insertion. Theoret. Comput. Sci. 387(2), 103–112 (2007)

3. Cocke, J., Minsky, M.: Universality of tag systems with P = 2. J. ACM 11(1),
15–20 (1964)

4. Daley, M., Kari, L., Gloor, G., Siromoney, R.: Circular contextual insertions/
deletions with applications to biomolecular computation. In: SPIRE/CRIWG,
pp. 47–54 (1999)

5. Freund, R., Kogler, M., Rogozhin, Y., Verlan, S.: Graph-controlled insertion-
deletion systems. In: McQuillan, I., Pighizzini, G. (eds.) Proceedings of the Twelfth
Annual Workshop on Descriptional Complexity of Formal Systems, vol. 31 of
EPTCS, pp. 88–98 (2010)

6. Galiukschov, B.: Semicontextual grammars. Matematicheskaya Logica i Matem-
aticheskaya Lingvistika, pp. 38–50. Tallin University, Russian (1981)

7. Haussler, D.: Insertion and Iterated Insertion as Operations on Formal Languages.
PhD thesis, University of Colorado at Boulder (1982)

8. Haussler, D.: Insertion languages. Inf. Sci. 31(1), 77–89 (1983)
9. Ivanov, S., Verlan, S.: On the lower bounds for leftist insertion-deletion languages.

Submitted
10. Ivanov, S., Verlan, S.: Random context and semi-conditional insertion-deletion sys-

tems. CoRR, abs/1112.5947 (2011)
11. Ivanov, S., Verlan, S.: About one-sided one-symbol insertion-deletion P systems. In:

Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa,
A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 225–237. Springer, Heidelberg (2014)

12. Kari, L.: On insertion and deletion in formal languages. PhD thesis, University of
Turku (1991)

13. Kari, L., Păun, G., Thierrin, G., Yu, S.: At the crossroads of DNA computing and
formal languages: characterizing RE using insertion-deletion systems. In: Proceed-
ings of 3rd DIMACS Workshop on DNA Based Computing, pp. 318–333. Philadel-
phia (1997)

14. Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf.
Comput. 131(1), 47–61 (1996)

15. Kleene, S.C.: Representation of events in nerve nets and finite automata. In:
Shannon, C., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton Uni-
versity Press, Princeton, NJ (1956)

16. Krassovitskiy, A.: Complexity and Modeling Power of Insertion-Deletion Systems.
PhD thesis, Departament de Filologies Romániques, Universitat Rovira and Virgili
(2011)

17. Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Further results on insertion-deletion
systems with one-sided contexts. In: Mart́ın-Vide, C., Otto, F., Fernau, H. (eds.)
LATA 2008. LNCS, vol. 5196, pp. 333–344. Springer, Heidelberg (2008)

18. Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Computational power of insertion dele-
tion (P) systems with rules of size two. Nat. Comput. 10(2), 835–852 (2011)

Universality of Graph-controlled Leftist Insertion-deletion Systems 93

19. Marcus, S.: Contextual grammars. Revue Roumaine de Mathématiques Pures et
Appliquées 14, 1525–1534 (1969)

20. Margenstern, M., Păun, G., Rogozhin, Y., Verlan, S.: Context-free insertion-
deletion systems. Theoret. Comput. Sci. 330(2), 339–348 (2005)

21. Matveevici, A., Rogozhin, Y., Verlan, S.: Insertion-deletion systems with one-sided
contexts. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664,
pp. 205–217. Springer, Heidelberg (2007)

22. Minsky, M.: Computations: Finite and Infinite Machines. Prentice Hall, Englewood
Cliffts, NJ (1967)

23. Petre, I., Verlan, S.: Matrix insertion-deletion systems. Theoret. Comput. Sci. 456,
80–88 (2012)

24. Păun, G.: Marcus Contextual Grammars. Kluwer Academic Publishers, Norwell,
MA, USA (1997)

25. Păun, G., My, N.X.: On the inner contextual grammars. Revue Roumaine de
Mathématiques Pures et Appliquées 25, 641–651 (1980)

26. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Para-
digms. Springer, Heidelberg (1998)

27. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer-
Verlag, Berlin (1997)

28. Takahara, A., Yokomori, T.: On the computational power of insertion-deletion
systems. In: Hagiya, M., Ohuchi, A. (eds.) DNA8 Sapporo. LNCS, vol. 2568,
pp. 269–280. Springer, Heidelberg (2002)

29. Verlan, S.: On minimal context-free insertion-deletion systems. J. Automata, Lan-
guages Comb. 12(1–2), 317–328 (2007)

30. Verlan, S.: Study of language-theoretic computational paradigms inspired by biol-
ogy. Habilitation thesis, Université Paris Est (2010)

Tinput-Driven Pushdown Automata

Martin Kutrib(B), Andreas Malcher, and Matthias Wendlandt

Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany

{kutrib,malcher,matthias.wendlandt}@informatik.uni-giessen.de

Abstract. In input-driven pushdown automata (IDPDA) the input
alphabet is divided into three distinct classes and the actions on the
pushdown store (push, pop, nothing) are solely governed by the input
symbols. Here, this model is extended in such a way that the input of an
IDPDA is preprocessed by a deterministic sequential transducer. These
automata are called tinput-driven pushdown automata (TDPDA) and
it turns out that TDPDAs are more powerful than IDPDAs but still
not as powerful as real-time deterministic pushdown automata. Never-
theless, even this stronger model has still good closure and decidability
properties. In detail, it is shown that TDPDAs are closed under the
Boolean operations union, intersection, and complementation. Further-
more, decidability procedures for the inclusion problem as well as for
the questions of whether a given automaton is a TDPDA or an IDPDA
are developed. Finally, representation theorems for the context-free lan-
guages using IDPDAs and TDPDAs are established.

Keywords: Input driven pushdown automata · Sequential trans-
ducers · Real-time deterministic context-free languages · Closure prop-
erties · Decidability questions

1 Introduction

In order to describe and to analyze “real-life” problems it is desirable to pos-
sess theoretical models which have on the one hand a large expressive power to
model a large amount of features of the problems. On the other hand, the models
should also be manageable in the sense that the commonly studied decidability
issues such as emptiness, inclusion, or equivalence are decidable. With regard
to the Chomsky hierarchy, two extremes are the regular languages, represented
for example by deterministic or nondeterministic finite automata, and the recur-
sively enumerable languages, represented for example by Turing machines. While
the latter class is very powerful and allows to describe almost all practical prob-
lems one may think of, it is known owing to the Theorem of Rice that almost
nothing is decidable for this class. On the other hand, almost all commonly
studied problems are decidable for the former class, but the expressive power
of regular languages is often not sufficient. Thus, one has to find an agreement
in such a way that the expressive power of a model increases at the expense of
losing some decidable properties.
c© Springer International Publishing Switzerland 2015
J. Durand-Lose and B. Nagy (Eds.): MCU 2015, LNCS 9288, pp. 94–112, 2015.
DOI: 10.1007/978-3-319-23111-2 7

Tinput-Driven Pushdown Automata 95

One such extension are pushdown automata (PDA) which are finite automata
enlarged with the storage medium of a pushdown store. An interesting subclass
of PDAs is represented by input-driven PDAs. The essential idea here is that
for such devices the operations on the storage medium are dictated by the input
symbols. The first references of input-driven PDAs may be found in [5,14], where
input-driven PDAs are introduced as classical PDAs in which the input symbols
define whether a push operation, a pop operation, or no operation on the push-
down store has to be performed. The main results obtained there show that the
membership problem for input-driven PDAs can be solved in logarithmic space,
and that the nondeterministic model can be determinized. More on the mem-
bership problem has been shown in [8] where the problem is classified to belong
to the parallel complexity class NC1.

The investigation of input-driven PDAs has been revisited in [1,2], where such
devices are called visibly PDA or nested word automata. Some of the results are
the classification of the language family described by input-driven PDAs to lie
properly in between the regular and the deterministic context-free languages, the
investigation of closure properties and decidable questions which turn out to be
similar to those of regular languages, and descriptional complexity results for the
trade-off occurring when nondeterminism is removed from input-driven PDAs.
A recent survey with many valuable references on complexity aspects of input-
driven PDAs may be found in [16]. Further aspects such as the minimization
of input-driven PDAs and a comparison with other subclasses of deterministic
context-free languages have been studied in [6,7] while extensions of the model
with respect to multiple pushdown stores or more general auxiliary storages
are introduced in [12,13]. Recently, the computational power of input-driven
automata using the storage medium of a stack and a queue, respectively, have
been investigated in [3,11].

The edge between deterministic context-free languages that are accepted by
an IDPDA or not is very small. For example, language { an$bn | n ≥ 1 } is
accepted by an IDPDA where an a means a push-operation, b means a pop-
operation, and a $ leaves the pushdown store unchanged. On the other hand,
the very similar language { an$an | n ≥ 1 } is not accepted by any IDPDA.
Similarly, the language {w$wR | w ∈ {a, b}+ }, where wR denotes the reversal
of w, is not accepted by any IDPDA, but if wR is written down with some marked
alphabet {â, b̂}, then language {w$ŵR | w ∈ {a, b}+ } is accepted by an IDPDA.
To overcome these obstacles we consider a sequential transducer that translates
some input to some output which in turn is the input for an IDPDA. In the
above first example such a transducer translates every a before reading $ to a
and after reading $ to b. In the second example a and b are translated to a, b or
â, b̂, respectively, depending on whether or not $ has been read. We call such a
pair of a sequential transducer and an IDPDA tinput-driven PDA (TDPDA). To
implement the idea without giving the transducers too much power for the overall
computation, essentially, we will consider only deterministic injective and length-
preserving transducers. The detailed definition of a TDPDA is in Sect. 2. Results
on the computational capacity of TDPDAs are obtained in Sect. 3. It turns out

96 M. Kutrib et al.

that TDPDAs are more powerful than IDPDAs, but less powerful than real-time
deterministic pushdown automata. Thus, TDPDAs are a proper generalization
of IDPDAs. Moreover, the determinization of TDPDAs is possible for IDPDAs
as long as the corresponding sequential transducer is deterministic. IDPDAs
have nice closure properties and decidability questions. In Sects. 4 and 5, we
show similar results for TDPDAs. In detail, constructions for the closure under
the union, intersection, complementation, and inverse homomorphism are given
as well as a decidability procedure for inclusion. It should be noted that the
constructions are possible as long as the underlying automata have compatible
signatures, that is, an identical pushdown behavior on the input symbols. We
show that IDPDAs and TDPDAs are not closed under union and intersection,
and inclusion becomes undecidable in case of incompatible signatures. Finally,
we present in Sect. 6 a construction that proves that IDPDAs and TDPDAs are
sufficient to represent all context-free languages under λ-free homomorphism.

2 Preliminaries

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and Σ+ = Σ∗ \ {λ}. The set of words of length at most n ≥ 0
is denoted by Σ≤n. The reversal of a word w is denoted by wR. For the length
of w we write |w|. We use ⊆ for inclusions and ⊂ for strict inclusions.

A classical deterministic pushdown automaton is called input-driven if the
next input symbol defines the next action on the pushdown store, that is, pushing
a symbol onto the pushdown store, popping a symbol from the pushdown store,
or changing the state without modifying the pushdown store. To this end, we
assume the input alphabet Σ to be partitioned into the sets ΣN , ΣD, and ΣR,
that control the actions state change only (N), push (D), and pop (R). A formal
definition is:

Definition 1. A deterministic input-driven pushdown automaton (IDPDA) is
a system M = 〈Q,Σ, Γ, q0, F,⊥, δD, δR, δN 〉, where

1. Q is the finite set of internal states,
2. Σ is the finite set of input symbols partitioned into the sets ΣD, ΣR, and

ΣN ,
3. Γ is the finite set of pushdown symbols,
4. q0 ∈ Q is the initial state,
5. F ⊆ Q is the set of accepting states,
6. ⊥ /∈ Γ is the empty pushdown symbol,
7. δD is the partial transition function mapping from Q × ΣD × (Γ ∪ {⊥}) to

Q × Γ ,
8. δR is the partial transition function mapping from Q × ΣR × (Γ ∪ {⊥}) to Q,
9. δN is the partial transition function mapping from Q×ΣN × (Γ ∪{⊥}) to Q.

A configuration of an IDPDA M = 〈Q,Σ, Γ, q0, F,⊥, δD, δR, δN 〉 is a triple
(q, w, s), where q ∈ Q is the current state, w ∈ Σ∗ is the unread part of the

Tinput-Driven Pushdown Automata 97

input, and s ∈ Γ ∗ denotes the current pushdown content, where the leftmost
symbol is at the top of the pushdown store. The initial configuration for an
input string w is set to (q0, w, λ). During the course of its computation, M runs
through a sequence of configurations. One step from a configuration to its suc-
cessor configuration is denoted by
. Let a ∈ Σ, w ∈ Σ∗, z, z′ ∈ Γ , and s ∈ Γ ∗.
We set

1. (q, aw, zs)
 (q′, w, z′zs), if a ∈ ΣD and (q′, z′) ∈ δD(q, a, z),
2. (q, aw, λ)
 (q′, w, z′), if a ∈ ΣD and (q′, z′) ∈ δD(q, a,⊥),
3. (q, aw, zs)
 (q′, w, s), if a ∈ ΣR and q′ ∈ δR(q, a, z),
4. (q, aw, λ)
 (q′, w, λ), if a ∈ ΣR and q′ ∈ δR(q, a,⊥),
5. (q, aw, zs)
 (q′, w, zs), if a ∈ ΣN and q′ ∈ δN (q, a, z),
6. (q, aw, λ)
 (q′, w, λ), if a ∈ ΣN and q′ ∈ δN (q, a,⊥).

So, whenever the pushdown store is empty, the successor configuration is com-
puted by the transition functions with the special empty pushdown symbol ⊥.
As usual, we define the reflexive and transitive closure of
 by
∗. The language
accepted by the IDPDA M is the set L(M) of words for which there exists some
computation beginning in the initial configuration and ending in a configuration
in which the whole input is read and an accepting state is entered. Formally:

L(M) = {w ∈ Σ∗ | (q0, w, λ)
∗ (q, λ, s) with q ∈ F, s ∈ Γ ∗ }.

The difference between an IDPDA and a classical deterministic pushdown automa-
ton (DPDA) is that the latter makes no distinction on the types of the input sym-
bols, and may perform λ-moves. However, in all cases, there must not be more
than one choice of action for any possible configuration. So, the transition func-
tion is defined to be a (partial) mapping from Q × (Σ ∪ {λ}) × (Γ ∪ {⊥}) to
Q×(Γ ∪{pop, top}), where it is understood that popmeans removing the topmost
symbol from the pushdown store, top means letting the content of the pushdown
store unchanged, and a symbol of Γ means entering this symbol at the top of the
pushdown store. In general, the family of all languages accepted by an automaton
of some type X will be denoted by L (X).

For the definition of tinput-driven pushdown automata we need the notion of
deterministic one-way sequential transducers (DST) which are basically deter-
ministic finite automata equipped with an initially empty output tape. In every
transition a DST appends a string over the output alphabet to the output tape.
The transduction defined by a DST is the set of all pairs (w, v), where w is the
input and v is the output produced after having read w completely. Formally,
a DST is a system T = 〈Q,Σ,Δ, q0, δ〉, where Q is the finite set of internal
states, Σ is the finite set of input symbols, Δ is the finite set of output sym-
bols, q0 ∈ Q is the initial state, and δ is the partial transition function mapping
Q × Σ to Q × Δ∗. By T (w) ∈ Δ∗ we denote the output produced by T on input
w ∈ Σ∗. In the following, we will consider only injective and length-preserving
DSTs which are also known as injective Mealy machines. The general definition
is given with an eye towards possible extensions of the following model.

LetM be an IDPDAandT be an injective and length-preservingDST.Further-
more, the output alphabet of T is the input alphabet of M . Then, the pair (M,T) is

98 M. Kutrib et al.

called a tinput-driven pushdown automaton (TDPDA) and the language accepted
by (M,T) is defined as L(M,T) = {w ∈ Σ∗ | T (w) ∈ L(M) }.

In order to clarify this notion we continue with an example.

Example 2. Language L1 = { an$an | n ≥ 1 } is accepted by a TDPDA. Before
reading symbol $ the transducer maps an a to an a, and after reading $ it maps
an a to a b. Thus, L1 is translated to { an$bn | n ≥ 1 } which is accepted by
some IDPDA.

Similarly, L2 = {w$wR | w ∈ {a, b}∗ } can be accepted by some TDPDA.
Here, the transducer maps any a, b to a, b before reading $ and to â, b̂ after
reading $. This gives the language {w$ŵR | w ∈ {a, b}∗ } which clearly belongs
to L (IDPDA).

Finally, consider L3 = { anb2n | n ≥ 1 }. Here, the transducer maps an a to a
and every b alternately to b and c. This gives language { an(bc)n | n ≥ 1 } which
is accepted by some IDPDA: every a implies a push-operation, every b implies
a pop, and every c leaves the pushdown store unchanged. �

3 Computational Capacity

It is known that the language class accepted by IDPDAs is a proper subset of the
deterministic context-free languages [1]. In a TDPDA, the input of the IDPDA
is preprocessed by a sequential transducer. We have already seen that TDPDAs
are strictly more powerful than IDPDAs. Now the question arises whether a
TDPDA can accept languages which are not real-time deterministic context-
free. The following theorem answers the question negatively.

Theorem 3. The family L (TDPDA) is effectively included in the family of
real-time deterministic context-free languages.

Proof. Given a TDPDA (M,T) where M = 〈Q,Σ, Γ, q0, F,⊥, δD, δR, δN 〉 is an
IDPDA and T = 〈Q′, A,Σ, q′

0, δ〉 is an injective length-preserving DST, we will
construct a deterministic pushdown automaton M ′ = 〈S′, A, Γ, s′

0, F
′,⊥, δ′〉 such

that L(M ′) = L(M,T).
The basic idea is that M ′ first computes the output of the DST T internally

and then simulates the IDPDA M . To this end, M ′ needs to keep track of
the states of M and T . Thus, we define S′ = Q × Q′ and s′

0 = (q0, q′
0). The

automaton M ′ accepts, if the input is read completely and M would be in an
accepting state. Hence, F ′ = F ×Q′. The transition function is defined as follows
for p, p′ ∈ Q, q, q′ ∈ Q′, a ∈ A, a′ ∈ Σ, and z, z′ ∈ Γ .

δ′((p, q), a, z) =

⎧
⎪⎨

⎪⎩

((p′, q′), λ) if δ(q, a) = (q′, a′) and δR(p, a′, z) = p′,
((p′, q′), z) if δ(q, a) = (q′, a′) and δN (p, a′, z) = p′,
((p′, q′), zz′) if δ(q, a) = (q′, a′) and δD(p, a′, z) = (p′, z′).

By construction, a word w is accepted by (M,T) if and only if w is accepted
by M ′. Inspecting δ′ shows that M ′ is indeed a deterministic PDA working in
real time. ��

Tinput-Driven Pushdown Automata 99

The previous theorem gives that the family of languages accepted by tinput-
driven automata is a subset of the deterministic context-free languages accepted
in real time. The next result shows that this inclusion is proper.

Lemma 4. The family L (TDPDA) is a proper subset of the real-time deter-
ministic context-free languages.

Proof. The language L = { anbn+mam | n,m ≥ 0 } is clearly accepted by a
deterministic PDA. We will show that L is not accepted by any TDPDA.

In contrast to the assertion, assume that L is accepted by a TDPDA (M,T)
with M = 〈Q,Σ, Γ, q0, F,⊥, δD, δR, δN 〉 and T = 〈Q′, A,Σ, s0, δ〉, where T has n
states, that is, |Q′| = n. Let w = w′

0w
′
1w

′
2 ∈ L be a word with w′

0, w
′
2 ∈ {a}∗

and w′
1 ∈ {b}∗. Then the output of T on input w is denoted by w0w1w2 where

|wi| = |w′
i| for 0 ≤ i ≤ 2.

When T processes w′
0, it has to enter a cycle after at most n steps. The cycle

cannot be left before the first b appears in the input. Similar arguments hold
for w′

1 and w′
2. Since T is length-preserving, each wi, 0 ≤ i ≤ 2, has the form

yi,0yi,1 · · · yi,li(xi,0xi,1 · · · xi,mi
)tixi,0 · · · xi,ni

, with li,mi ≤ n, ni < mi, ti ≥ 0.

Now we turn to the computation of M on w0w1w2, where the length of each of
the three subwords is at least n, and analyze the possible pushdown heights while
processing the subwords wi. Since the lengths of the initial parts yi,0yi,1 · · · yi,li
are at most n, the pushdown height after processing it increases or decreases by
at most n symbols. In total, during one input cycle xi,0xi,1 · · · xi,mi

automaton M
may increase the height of the pushdown store, leave it as it is, or decrease it.

Subword w0: Assume that, in total, during a cycle of w0 the pushdown height
is not increased. Then the total height of the pushdown store is at most n after
processing w0. Moreover, there are two different prefixes w′

0 and ŵ′
0 so that M has

the same pushdown content and is in the same state after processing w0 = T (w′
0)

and ŵ0 = T (ŵ′
0). Now we can always choose some w′

1 ∈ {b}∗ and w′
2 ∈ {a}∗

so that w′
0w

′
1w

′
2 belongs to L and, thus, is accepted. Since then ŵ′

0w
′
1w

′
2 /∈ L is

accepted as well, we obtain a contradiction and conclude that the total pushdown
height is increased during a cycle of w0.

Subword w1: Next, we assume that during a cycle of w1 the pushdown height
is decreased. Then we can choose some w′

1 so that |T (w′
1)| > n · |T (w′

0)|. So, the
height of the pushdown store is at most n after processing T (w′

0w
′
1). Arguing

similarly as above, there must be two words w′
1 and ŵ′

1 so that M has the same
pushdown content and is in the same state after processing w0w1 = T (w′

0w
′
1)

and w0ŵ1 = T (w′
0ŵ

′
1). There is a unique w′

2 ∈ {a}∗ so that w′
0w

′
1w

′
2 belongs

to L and, thus, is accepted. Since w′
0ŵ

′
1w

′
2 /∈ L is accepted as well, we obtain

a contradiction and conclude that the total pushdown height is not decreased
during a cycle of w1.

Now, assume that a cycle of w1 leaves the total pushdown height unchanged.
Then, by providing more b’s in the input, the cycle can be passed through arbi-
trarily often. In particular, there must be two words w′

1 and ŵ′
1 so that M has

100 M. Kutrib et al.

the same pushdown content and is in the same state after processing the two
prefixes w0w1 = T (w′

0w
′
1) and w0ŵ1 = T (w′

0ŵ
′
1). Now the contradiction follows

as before. We conclude that the total pushdown height is increased during a
cycle of w1.

Subword w2: If the pushdown height is not decreased during a cycle of w2, then
its total height is never reduced by more then a constant number of symbols
while processing the subword w2 entirely. Since we know already that the same
is true for the subwords w0 and w1, the IDPDA M can be simulated by a
finite automaton that stores the finite number of accessible symbols at the top
of the pushdown store in its state. Since L is not a regular language this is a
contradiction. We conclude that the total pushdown height is decreased during
a cycle of w2.

Now we choose two long and different words w′
0 and ŵ′

0 so that M is in
the same state and has the same 2n symbols on top of the pushdown store
after processing T (w′

0) and T (ŵ′
0). The prefix w′

0 is completed by w′
1 and w′

2,
where w′

0w
′
1w

′
2 ∈ L and |w′

2| < |w′
1|/n. So, w′

2 is such short in comparison to w′
1

that the pushdown content pushed while processing T (w′
0) is untouched by the

computation on T (w′
2). It follows that ŵ′

0w
′
1w

′
2 /∈ L is accepted as well. So, we

have a contradiction and obtain that L is not accepted by any TDPDA. ��

Determinization

In the previous part we considered a tinput-driven pushdown automaton as a
pair of a deterministic sequential transducer and a deterministic input-driven
pushdown automaton. The related model of input-driven automata was also
investigated in the nondeterministic case [1]. It is shown there that every nonde-
terministic input-driven pushdown automaton can be transformed into an equiv-
alent deterministic one.

Now, the question arises whether the nondeterministic version of a tinput-
driven pushdown automaton can be determinized as well. There are four dif-
ferent working modes for a tinput-driven pushdown automaton. The sequential
transducer can be deterministic or nondeterministic and also the input-driven
pushdown automaton may be deterministic or nondeterministic. We use the
notation TDPDAx,y with x, y ∈ {d, n} where x stands for the working mode of
the transducer and y for the mode of the input-driven pushdown automaton.
For example, TDPDAn,d is a tinput-driven pushdown automaton with a non-
deterministic sequential transducer and a deterministic input-driven pushdown
automaton.

Theorem 5. The family of languages accepted by TDPDAd,d’s is properly
included in the family of languages accepted by TDPDAn,d’s.

Proof. By definition we know that every TDPDAd,d is in particular a TDPDAn,d.
It remains to be shown that there is a language accepted by a TDPDAn,d, but

not by any TDPDAd,d. We will use the language L = { anbn+mam | n,m ≥ 0 }
from Lemma 4 and prove that L is accepted by a TDPDAn,d M . This can be

Tinput-Driven Pushdown Automata 101

done as follows. The nondeterministic sequential transducer writes for every a
of the first a-sequence an a as output. Then it writes for every b a b as output
until it nondeterministically decides that it has already written as many b’s as
a’s. It continues and writes now for every b an a as output until the first a of the
second sequence of a’s is reached. Then, for every a a b is output. Subsequently,
an IDPDA tests whether its input is of the form anbnambm for some m,n ≥ 0.
If this is the case, then the input is accepted. Otherwise, it is rejected.

On the other hand, it has been shown in Lemma 4 that L is not accepted by
any TDPDAd,d. ��

Thus, we can conclude that it is not possible to determinize TDPDAn,d’s
as well as TDPDAn,n’s. It remains for us to consider the determinization of
TDPDAd,n’s.

Theorem 6. The family of languages accepted by TDPDAd,n’s and TDPDAd,d’s
coincide.

Proof. It has been shown in [1] that IDPDAs can be determinized. Applying
this construction to the IDPDA belonging to a TDPDAd,n, we obtain that every
TDPDAd,n can be converted to an equivalent TDPDAd,d. ��

4 Closure Properties

In this section, we investigate the closure properties of tinput-driven pushdown
automata. For input-driven pushdown automata, strong closure properties have
been derived in [1] provided that all automata involved share the same partition
of the input alphabet. Here we distinguish this important special case from
the general one. For easier writing, we call the partition of an input alphabet a
signature, and say that two signatures Σ = ΣD∪ΣR∪ΣN and Σ′ = Σ′

D∪Σ′
R∪Σ′

N

are compatible if and only if
⋃

j∈{D,R,N}
(Σj \ Σ′

j) ∩ Σ′ = ∅ and
⋃

j∈{D,R,N}
(Σ′

j \ Σj) ∩ Σ = ∅.

We consider first TDPDAs having compatible signatures and identical trans-
lations. Later, we will see that IDPDAs and TDPDAs lose some positive closure
properties if the signatures are no longer compatible.

Lemma 7. Let (M,T) and (M ′, T) be two TDPDAs with compatible signatures.
Then TDPDAs accepting the intersection L(M,T) ∩ L(M ′, T), the complement
L(M,T), and the union L(M,T) ∪ L(M ′, T) can effectively be constructed.

Proof. Let us first consider the closure under intersection. Since (M,T) and
(M ′, T) have compatible signatures and both TDPDAs apply the sequential
transducer T , the closure under intersection follows from the standard con-
struction using the Cartesian product. In detail, we consider the two IDPDAs
M = 〈Q,Σ, Γ, q0, F,⊥, δD, δR, δN 〉 and M ′ = 〈Q′, Σ′, Γ ′, q′

0, F
′,⊥, δ′

D, δ′
R, δ′

N 〉

102 M. Kutrib et al.

and define M ′′ = 〈Q × Q′, Σ ∪ Σ′, Γ × Γ ′, (q0, q′
0), F × F ′, (⊥,⊥), δ′′

D, δ′′
R, δ′′

N 〉
assuming that Σ and Σ′ are compatible. The transition functions are defined
as follows. Let q, q̂ ∈ Q, q′, q̂′ ∈ Q′, Z ∈ Γ ∪ {⊥}, Ẑ ∈ Γ , Z ′ ∈ Γ ′ ∪ {⊥}, and
Ẑ ′ ∈ Γ ′. For a ∈ ΣD ∩ Σ′

D, we define δ′′
D((q, q′), a, (Z,Z ′)) = ((q̂, q̂′), (Ẑ, Ẑ ′))

with δD(q, a, Z) = (q̂, Ẑ) and δ′
D(q′, a, Z ′) = (q̂′, Ẑ ′). For a ∈ ΣR ∩Σ′

R, we define
δ′′
R((q, q′), a, (Z,Z ′)) = ((q̂, q̂′)) with δR(q, a, Z) = q̂ and δ′

R(q′, a, Z ′) = q̂′. For
a ∈ ΣN ∩ Σ′

N , we define δ′′
N ((q, q′), a, (Z,Z ′)) = ((q̂, q̂′)) with δN (q, a, Z) = q̂

and δ′
N (q′, a, Z ′) = q̂′. For all remaining input symbols a ∈ Σ ∪ Σ′, M ′′ enters a

non-accepting sink state which can never be left once entered. Clearly, (M ′′, T)
is a TDPDA accepting L(M,T) ∩ L(M ′, T).

Next, we consider the closure under complementation. The classical construc-
tion for a DPDA is to interchange accepting and non-accepting states. Before
doing that two problems have to be overcome. First, the given DPDA may not
read its input completely, since some moves are undefined or an infinite λ-loop is
entered. Second, it may happen that the given DPDA performs λ-moves leading
from an accepting state to a non-accepting state and vice versa. For a TDPDA it
is clear from the definition that no λ-moves are performed. Thus, it is sufficient
to add a non-accepting state which is entered for so far undefined configurations.
This new state cannot be left. It drives the IDPDA component of the TDPDA
over the rest of the input obeying the pushdown operations. Finally, accepting
and non-accepting states are interchanged.

The effective closure under union follows from the effective closure under
intersection and complementation. ��

The next result shows that TDPDAs are closed under inverse homomorphism
which is in contrast to IDPDAs.

Lemma 8. Let (M,T) be a TDPDA and h be a homomorphism. Then a
TDPDA accepting h−1(L(M,T)) can effectively be constructed.

Proof. For the construction we will need the following mapping which assigns
an integer value to each sequence of input symbols. Let Σ = ΣD ∪ΣR ∪ΣN and
ϕ : Σ∗ → Z be a mapping such that ϕ(λ) = 0 and ϕ(x1x2 · · · xn) =

∑n
i=1 v(xi)

setting, for x ∈ Σ, v(x) = 1 if x ∈ ΣD, v(x) = −1 if x ∈ ΣR, and v(x) = 0
otherwise.

Now, we will consider an IDPDA M = 〈Q,Σ, Γ, q0, F,⊥, δD, δR, δN 〉, an injec-
tive and length-preserving DST T = 〈P,Δ,Σ, δ, p0〉, and an arbitrary homomor-
phism h : Λ∗ → Δ∗. We have to construct a TDPDA (M ′, T ′) which accepts
h−1(T (L(M)) = {w ∈ Λ∗ | h(w) ∈ T (L(M)) }. The idea of the construction is
first to define T ′ in such a way that T ′ simulates T and h in its state set and out-
puts T (h(w)) on given input w ∈ Λ∗. Since h may map one symbol to a sequence
of symbols, but T ′ has to be length-preserving, the output alphabet of T ′ will
consist of compressed symbols. In a second step we will construct an IDPDA M ′

working on an alphabet of compressed symbols and accepting all inputs which
are originally and uncompressed accepted by M . Since M ′ works on compressed
input symbols, it will have to work on compressed pushdown symbols as well.

Tinput-Driven Pushdown Automata 103

Let m = max{ |h(a)| | a ∈ Λ } be the maximum length of the image of h.
Each (compressed) output symbol will comprise at most m symbols from Δ and
two other components ensuring the injectivity of the translation. We now define
the DST T ′ = 〈P ′, Λ,Σ′, δ′, p′

0〉 as follows. We set ΛN = { aN | a ∈ Λ } and

P ′ = P × Σ≤m−1 × {−m + 1,−m + 2, . . . , m − 1},

p′
0 = (p0, λ, 0),

Σ′ = ΛN ∪
⋃

X∈{D,N,R}

(
Σ≤m × Λ × Δ≤m

)

X
.

For the transition function δ′ we differentiate two cases:

Case 1: If a ∈ Λ such that h(a) = λ, then we add

δ′((p, d1d2 · · · dr,), a) = ((p, d1d2 · · · dr,), aN),

for all p ∈ P , d1d2 · · · dr ∈ Σ≤m−1, and −m < 	 < m. In this case, we just
output a symbol aN which will be ignored by the IDPDA.

Case 2: We have a ∈ Λ such that h(a) = b1b2 · · · bn with n ≥ 1. For p ∈ P , we
compute by δ(p, b1b2 · · · bn) = (p′, c1c2 · · · cn) the state reached and the output
produced in T from p on input b1b2 · · · bn.

To compute the correct index D, R, or N for the output alphabet, we have to
check whether the (compressed) symbols c1, c2, . . . , cn eventually imply a pop-,
top-, or push-action in M . To this end, we calculate the value V = ϕ(c1c2 · · · cn).
If this value is exactly −m or m, we know that a pop- or push-action, respectively,
has to take place. If −m < V < m, then the pushdown remains unchanged,
but V is stored in the state set. If V < −m or V > m, then a pop- or push-
action, respectively, has to take place, but not all symbols to be output can be
compressed into one symbol. Thus, the remaining symbols and their value are
stored in the state set. Formally, let (p, d1d2 · · · dr,) be a state in P ′ with p ∈ P ,
d1d2 · · · dr ∈ Σ≤m−1, and −m < 	 < m. To compute in T ′ the next state s and
the output o on input a, that is, δ′((p, d1d2 · · · dr,), a) = (s, o), we distinguish
five subcases for K = 	 + ϕ(c1c2 · · · cn) as follows:

1. If K = −m, then s = (p′, λ, 0) and o = (d1d2 · · · drc1c2 · · · cn, a, h(a))R.
2. If K = m, then s = (p′, λ, 0) and o = (d1d2 · · · drc1c2 · · · cn, a, h(a))D.
3. If −m < K < m, then we define s = (p′, λ, 	 + ϕ(c1c2 · · · cn)) and o =

(d1d2 · · · drc1c2 · · · cn, a, h(a))N .
4. If K < −m, then we determine the maximal integer 1 ≤ i ≤ n such that

	 + ϕ(c1c2 · · · ci) = −m and we set s = (p′, ci+1ci+2 · · · cn, ϕ(ci+1ci+2 · · · cn))
and o = (d1d2 · · · drc1c2 · · · ci, a, h(a))R.

5. If K > m, then we determine the maximal integer 1 ≤ i ≤ n such that
	 + ϕ(c1c2 · · · ci) = m and we set s = (p′, ci+1ci+2 · · · cn, ϕ(ci+1ci+2 · · · cn))
and o = (d1d2 · · · drc1c2 · · · ci, a, h(a))D.

We observe that T ′ is injective due to the second and third component of
the output and length-preserving. On input w ∈ Λ∗, T ′ outputs a compressed

104 M. Kutrib et al.

version of T (h(w)) where up to m symbols are compressed and the index D,
R, or N determines the actions on the compressed pushdown of the following
IDPDA M ′ which is defined to work with a compressed pushdown alphabet com-
prising exactly m symbols. Additionally, the two topmost (compressed) push-
down symbols are simulated in the state set and not in the pushdown store.
To realize this, we need an additional dummy pushdown symbol ⊥D. Formally,
we define M ′ = 〈Q′, Σ′, Γ ′, (q0, λ), F ′,⊥, δ′

D, δ′
R, δ′

N 〉 with Γ ′ = Γm∪{⊥D}, state
set Q′ = Q × (Γ≤m−1 ∪ Γ≤m−1 × Γm), and F ′ = F × (Γ≤m−1 ∪ Γ≤m−1 × Γm).

Case 1: We have a ∈ ΛN .
A: Let (q, Z) with q ∈ Q and Z ∈ Γ≤m−1 be a state in Q′. Then, we set

δ′
N ((q, Z), a, Z ′) = (q, Z) for all Z ′ ∈ Γ ′ ∪ {⊥}.

B: Let (q, Z, Z ′) with q ∈ Q, Z ∈ Γ≤m−1, and Z ′ ∈ Γm be a state in Q′.
Then, we set δ′

N ((q, Z, Z ′), a, Z ′′) = (q, Z, Z ′) for all Z ′′ ∈ Γ ′ ∪ {⊥}.

Case 2: We have (a1a2 · · · an, b, d) ∈ (Σ≤m × Λ × Δ≤m)X with X ∈ {D,N,R}.
A: Let (q, c1c2 · · · cr) with q ∈ Q and c1c2 · · · cr ∈ Γ≤m−1 be a state in Q′.

Consider the computation (q, a1a2 · · · an, c1c2 · · · cr)
n (q′, λ, Y1Y2 · · · Yk) in the
IDPDA M with q′ ∈ Q and Yi ∈ Γ for 1 ≤ i ≤ k.

1. If X = N , then we know that k ≤ m − 1 due to the definition of T ′ and we
set δ′

N ((q, c1c2 · · · cr), (a1a2 · · · an, b, d),⊥) = (q′, Y1Y2 · · · Yk).
2. If X = D, then we know that m ≤ k ≤ m + r and we set

δ′
D((q, c1c2 · · · cr), (a1a2 · · · an, b, d),⊥) =

((q′, Y1Y2 · · · Yk−m), Yk−m+1 · · · Yk),⊥D).

3. The case X = R does not occur, since the pushdown height is less than m.

B: Let (q, c1c2 · · · cr, Z1Z2 · · · Zm) with q ∈ Q, c1c2 · · · cr ∈ Γ≤m−1, and
Z1Z2 · · · Zm ∈ Γm be a state in Q′. Let us consider the following computation
in M : (q, a1a2 · · · an, c1c2 · · · crZ1Z2 · · · Zm)
n (q′, λ, Y1Y2 · · · Yk) with q′ ∈ Q
and Yi ∈ Γ for 1 ≤ i ≤ k.

1. If X = N , then we know that m ≤ k ≤ m + r and we set, for Z ∈ Γ ′,

δ′
N ((q, c1c2 · · · cr, Z1Z2 · · · Zm), (a1a2 · · · an, b, d), Z) =

(q′, Y1Y2 · · · Yk−m, Yk−m+1 · · · Yk).

2. If X = D, then we know that 2m ≤ k ≤ 2m + r and we set, for Z ∈ Γ ′,

δ′
D((q, c1c2 · · · cr, Z1Z2 · · · Zm), (a1a2 · · · an, b, d), Z) =

((q′, Y1Y2 · · · Yk−2m, Yk−2m+1 · · · Yk−m), Yk−m+1 · · · Yk).

3. If X = R, then we know that k ≤ m − 1 and we set, for Z ∈ Γ ′ \ {⊥D},

δ′
R((q, c1c2 · · · cr, Z1Z2 · · · Zm), (a1a2 · · · an, b, d), Z) =

(q′, Y1Y2 · · · Yk, Z).

For Z = ⊥D, we set δ′
R((q, c1c2 · · · cr, Z1Z2 · · · Zm), (a1a2 · · · an, b, d),⊥D) =

(q′, Y1Y2 · · · Yk).

Tinput-Driven Pushdown Automata 105

For w ∈ Λ∗, M ′ accepts a compressed version of T (h(w)) if and only if T (h(w))
is accepted by M . Thus, (M ′, T ′) accepts the inverse homomorphic image of
L(M,T). ��

Next, we turn to non-closure results for TDPDAs even if the signatures are
compatible and the transducers are identical.

Lemma 9. L (TDPDA) is not closed under concatenation, Kleene star, rever-
sal, and length-preserving homomorphism.

Proof. Let L = { anbn | n ≥ 1 } ∪ { bmam | m ≥ 1 }. Language L can easily be
accepted by a TDPDA (M,T). The sequential transducer T first maps a to a
and then b to b if the first symbol read is an a. Otherwise, reading a b first,
the transducer maps first b to a and then a to b. In any case, the language
output by the transducer is { anbn | n ≥ 1 } which can be accepted by an
IDPDA M . Now, let us consider the concatenation of L(M,T) and assume that
a TDPDA for L(M,T)2 can be constructed. Since a TDPDA can simulate a
deterministic finite automaton in a second component of its state set, we obtain
that L(M,T)2 ∩ a+b+a+ = { anbn+mam | n,m ≥ 1 } belongs to L (TDPDA).
This is a contradiction to the proof of Lemma 4. Thus, L (TDPDA) is not closed
under concatenation even if the TDPDAs have compatible signatures.

The non-closure under Kleene star and length-preserving homomorphism can
be shown similarly observing that L∗ ∩ a+b+a+ = { anbn+mam | n,m ≥ 1 } and
h(L′) = L for L′ = { anbncmdm | n,m ≥ 1 }, which is accepted by some IDPDA,
and homomorphism h such that h(a) = h(d) = a and h(b) = h(c) = b.

Finally, consider language { cn$1bman | n,m ≥ 0 } ∪ { dm$2bman | n,m ≥ 0 }
which is accepted by some IDPDA. On the other hand, its reversal is not even
a real-time deterministic context-free language. ��

Remark 10. We would like to remark that the language classes L (TDPDA) and
L (IDPDA) are not closed under intersection, union, and concatenation in case of
incompatible signatures. It suffices to consider the intersection of the languages
{ anbncm | n,m ≥ 1 } and { anbmcm | n,m ≥ 1 } each of which is accepted by
some IDPDA. However, the intersection leads to { anbncn | n ≥ 1 } which is
not context free. Due to the closure under complementation, both classes cannot
be closed under union. For non-closure under concatenation we consider the
languages { anbn | n ≥ 1 } and { bmam | m ≥ 1 } each of which is accepted by
an IDPDA, but their concatenation is not even accepted by any TDPDA due to
Lemma 4.

The closure properties discussed in this section are summarized in the fol-
lowing Table 1.

5 Decidability Questions

We recall (see, for example, [10]) that a decidability problem is semidecidable
(decidable) if and only if the set of all instances for which the answer is ‘yes’ is

106 M. Kutrib et al.

Table 1. Closure properties of the language classes discussed. Symbols ∪c, ∩c, and ·c
denote union, intersection, and concatenation with compatible signatures. Such oper-
ations are not defined for DPDAs and marked with ‘—’.

∪ ∩ ∪c ∩c · ·c ∗ hl.p. h
−1 REV

DFA yes yes yes yes yes yes yes yes yes yes yes

IDPDA yes no no yes yes no yes yes no no yes

TDPDA yes no no yes yes no no no no yes no

DPDA yes no no — — no — no no yes no

recursively enumerable (recursive). Clearly, any decidable problem is also semide-
cidable, while the converse does not generally hold. An immediate consequence of
the effective construction of an equivalent DPDA from a given TDPDA shown in
Theorem 3 is the decidability of the decidable problems for deterministic context-
free languages. Since an IDPDA is a DPDA by definition, the decidability carries
over to the family L (IDPDA) as well.

Lemma 11. The problems of equivalence, emptiness, universality, finiteness,
infiniteness, and regularity are decidable for TDPDAs and IDPDAs.

It is known that the inclusion problem for deterministic context-free lan-
guages is undecidable. However, for TDPDAs with compatible signatures it is
decidable.

Theorem 12. Let (M,T) and (M ′, T) be two TDPDAs with compatible signa-
tures. Then the inclusion of both TDPDAs is decidable.

Proof. The inclusion L(M,T) ⊆ L(M ′, T) can equivalently be expressed by
L(M,T) ∩ L(M ′, T) = ∅. Since by Lemma 7 the family L (TDPDA) is closed
under complementation, we obtain that L(M ′, T) is accepted by some TDPDA
(M ′′, T) having the same signature as M ′. Since L (TDPDA) is closed under
intersection with compatible signatures by Lemma 7, we obtain a TDPDA
(M ′′′, T) which accepts L(M,T) ∩ L(M ′, T) and whose emptiness can be tested
by Lemma 11. We conclude that the inclusion L(M,T) ⊆ L(M ′, T) is decidable.

��

The role played by the compatibility of the signatures is once more empha-
sized by the following theorem which states that the inclusion problem becomes
even non-semidecidable for incompatible signatures.

The non-semidecidability of the inclusion problem is shown by reduction of
the emptiness problem of Turing machines. It is well known that emptiness for
such machines is not semidecidable (see, for example, [10]).

In [9] complex Turing machine computations have been encoded in small
grammars. Basically, we consider valid computations of Turing machines. It suf-
fices to consider deterministic Turing machines with one single tape and one
single read-write head. Without loss of generality and for technical reasons,

Tinput-Driven Pushdown Automata 107

we assume that the Turing machines can halt only after an odd number of
moves, accept by halting, make at least three moves, and cannot print a blank.
A valid computation is a string built from a sequence of configurations passed
through during an accepting computation.

Let Q be the state set of some Turing machine M , where q0 is the initial
state, T ∩ Q = ∅ is the tape alphabet containing the blank symbol, Σ ⊂ T
is the input alphabet, and F ⊆ Q is the set of accepting states. Then a
configuration of M can be written as a word of the form T ∗QT ∗ such that
t1 · · · tiqti+1 · · · tn is used to express that M is in state q, scanning tape symbol
ti+1, and t1 to tn is the support of the tape inscription. For our purpose the
valid computations VALC(M) of M are now defined to be the set of strings of
the form $w̄1$wR

2 $w̄3$wR
4 $ · · · $w̄2n−1$wR

2n$, where T̄ and Q̄ are disjoint copies
of T and Q, $ /∈ T ∪ Q ∪ T̄ ∪ Q̄, w2i ∈ T ∗QT ∗ and w2i−1 ∈ T̄ ∗Q̄T̄ ∗ are con-
figurations of M , 1 ≤ i ≤ n, w̄1 is an initial configuration of the form q̄0Σ̄

∗,
w2n is an accepting configuration of the form T ∗FT ∗, and wi+1 is the successor
configuration of wi, 1 ≤ i ≤ 2n − 1.

The valid computations can be decomposed into VALC1(M) which is the set
of strings of the form $w̄1$wR

2 $w̄3$wR
4 $ · · · $w̄2n−1$wR

2n$, where w̄1 is an initial
and w2n is an accepting configuration, and w̄2i+1 is the successor configuration
of w2i, 1 ≤ i ≤ n − 1, and VALC2(M) which is the set of strings of the form
$w̄1$wR

2 $w̄3$wR
4 $ · · · $w̄2n−1$wR

2n$, where w̄1 is an initial and w2n is an accept-
ing configuration, and w2i is the successor configuration of w̄2i−1, 1 ≤ i ≤ n.
Clearly, the intersection VALC1(M) ∩ VALC2(M) is exactly VALC(M). The
next lemma gives a construction of an IDPDA accepting VALC(M).

Lemma 13. Let M be a Turing machine. Then IDPDAs accepting VALC1(M)
and VALC2(M) can effectively be constructed from M .

Proof. The IDPDA M1 accepting VALC1(M) uses the input symbols ΣN = {$},
ΣD = Q̄ ∪ T̄ , ΣR = Q ∪ T . Whenever it starts to read a configuration with odd
number, it pushes all symbols read. In addition it remembers the last three
symbols read in its finite control until the state symbol of that configuration is
the middle one of these three. When the $ appears in the input, M1 changes
its mode. Now it pops a symbol for every symbol read, thus, verifying that the
current configuration is the reversal of the successor configuration of the previous
one. Both configurations differ only locally at the state symbol. But from the
information remembered in the finite control, the differences can be computed
and verified. In addition M1 checks in its finite control whether w̄1 is an initial
configuration, and whether the last configuration is an accepting one.

The IDPDA M2 accepting VALC2(M) works similarly. It uses the input
symbols ΣN = {$}, ΣD = Q ∪ T , and ΣR = Q̄ ∪ T̄ instead. In addition it just
reads w̄1 (popping from the empty pushdown). ��

Now we are prepared to prove the undecidability of the inclusion. Since it
is shown for IDPDAs, the result carries over to TDPDAs even if the associated
transducers are the same.

108 M. Kutrib et al.

Theorem 14. Let (M,T) and (M ′, T) be two TDPDAs. Then the inclusion
L(M,T) ⊆ L(M ′, T) is not semidecidable. Let M and M ′ be two IDPDAs. Then
the inclusion L(M) ⊆ L(M ′) is not semidecidable.

Proof. We have to show the assertion for IDPDAs only, since IDPDAs are par-
ticular TDPDAs. Let M be a Turing machine. From M the two IDPDAs M1

and M2 accepting VALC1(M) and VALC2(M) are constructed according to
Lemma 13. Since the family L (IDPDA) is closed under complementation, an
IDPDA M ′ accepting L(M2) can be constructed.

In contrast to the assertion, assume that the inclusion problem is semide-
cidable. Then the inclusion L(M1) ⊆ L(M ′) = L(M2) is semidecidable. This is
equivalent to semidecide L(M1) ∩ L(M2) = ∅ which implies that the emptiness
of VALC(M), and hence of L(M), is semidecidable. This is a contradiction. ��

We conclude this section with another decidability problem. Given a deter-
ministic pushdown automaton M and a sequential transducer T , is (M,T) a
TDPDA or not? Essentially, this question reduces to the question of whether M
is an IDPDA or not. If the output alphabet of T is equal to the input alphabet
of M and T is injective and length-preserving, then (M,T) is a TDPDA if and
only if M is an IDPDA.

First we present an algorithm which tests whether a given DPDA is an
IDPDA.

Theorem 15. Let M be a DPDA. It is decidable whether M is an IDPDA.

Proof. In order to decide whether a given deterministic pushdown automaton
M = 〈Q,Σ, Γ, q0, F,⊥, δ〉 is input driven, in general, it is not sufficient to inspect
the transition function since it may contain surplus transitions for situations
that never appear in any computation. These could be transitions with λ-moves
or transitions that perform conflicting pushdown operations on the same input
symbol.

So, essentially, it remains to be tested whether a transition is applied in some
computation or whether it is surplus. To this end, we label the transitions of δ
uniquely, say by the set of labels R = {r1, r2, . . . , rm}, for some m ≥ 0. Then
we consider words over the alphabet R. On input u ∈ R∗ a DPDA M̃ with all
states final tries to imitate a computation of M by applying in every step the
transition whose label is currently read. If M̃ accepts some input u1u2 · · · un, then
there is a computation (not necessarily accepting) of M that uses the transitions
u1u2 · · · un in this order. If conversely there is a computation of M that uses the
transitions u1u2 · · · un in this order, then u1u2 · · · un is accepted by M̃ . So, in
order to determine whether a transition with label ri of M is useful, it suffices
to decide whether M̃ accepts an input containing the letter ri. This decision
can be done by testing the emptiness of the deterministic context-free language
L(M̃) ∩ R∗riR∗.

Assume that M ′ is constructed from M by deleting all surplus transitions.
Clearly, M ′ and M are equivalent. Now, it is checked that there is no transition
with a λ-move, and for any input symbol we consider all transitions on this

Tinput-Driven Pushdown Automata 109

symbol and check whether the pushdown operations are identical. If and only if
this is true for all symbols, M is an IDPDA. ��

To decide the general question of whether (M,T) is a TDPDA it is now
sufficient to polish the transducer a little bit.

Theorem 16. Let M be a DPDA and T be a DST. It is decidable whether
(M,T) is a TDPDA.

Proof. By applying Theorem 15 it is first checked that M is an IDPDA. Second,
it has to be verified that the output alphabet of T equals the input alphabet
of M . Since after the first step all surplus transitions of M are removed, its input
alphabet can be determined by inspection of the remaining transitions. Surplus
transitions can be removed from T along the lines of the proof of Theorem 15.
It should be noted that the emptiness of the output of a DST can be tested the
same way as emptiness is tested for deterministic finite automata. After having
removed surplus transitions from T , its output alphabet and the question of
whether T is length-preserving can be determined by inspection of the remain-
ing transitions. To conclude the proof it suffices to decide the injectivity of T .
To this end, we use the result that the functionality of nondeterministic sequen-
tial transducers is decidable (see, for example, [17]). Furthermore, it is known
(see, for example, [4,18]) that nondeterministic sequential transducers are closed
under inversion. To decide the injectivity of T , we construct from T its inverse
transducer T−1 and test its functionality. Now, T is injective if and only if T−1

is functional. ��

The previous decidability problem concerns devices. For the languages rep-
resented by the devices, the decidability status is an open problem: Let M be
a deterministic pushdown automaton and T be a sequential transducer. Does
L(M,T) belong to L (TDPDA)?

6 Representation Theorems

In [15] Myhill has proved that the regular languages are exactly the closure
of the finite languages under union, concatenation and iteration. Such results
open the possibility to characterize certain language families by, in some sense,
simpler ones and some kind of operations. Besides they shed some light on the
structure of the family itself that may be used as powerful reduction tool in
order to simplify some proofs or constructions.

Here we turn to characterize the context-free languages by the closure of the
deterministic (t)input-driven pushdown automata languages under λ-free homo-
morphism. Thus replacing the nondeterminism and free pushdown operations
on the input symbols by λ-free homomorphisms and vice versa.

Theorem 17. (a) Let L be a language belonging to L (IDPDA) and h be a
λ-free homomorphism. Then h(L) is a context-free language.

110 M. Kutrib et al.

(b) Let L be a context-free language. Then there exist a λ-free homomorphism h
and an IDPDA M so that L = h(L(M)).

Proof. (a) Since L (IDPDA) is included in the context-free languages and the
latter are closed under λ-free homomorphisms, the assertion follows immediately.

(b) Let the context-free language L be given as L(M ′) for some nonde-
terministic pushdown automaton (NPDA) M ′ = 〈Q′, Σ′, Γ ′, q′

0, F
′,⊥, δ′〉, where

the transition function maps Q′×Σ′×(Γ ′∪{⊥}) to the finite subsets of Q′×Γ ′∗.
We may assume that M ′ never pushes more than one symbol and that – except
for pop moves – it never modifies the symbol read at the top of the pushdown
store. Clearly, any NPDA can be transformed into such a normal form. Now, the
transition function δ′ can be represented as finite list of transitions of the form
Q′ × Σ′ × (Γ ′ ∪ {⊥}) → Q′ × (Γ ′ ∪ {pop, top}). We fix an arbitrary list T of
these transitions and number the elements t1, t2, . . . , tm, for some m ≥ 0.

The IDPDA M = 〈Q,Σ, Γ, q0, F,⊥, δN , δD, δR〉 is defined by Q = Q′, Γ = Γ ′,
q0 = q′

0, F = F ′. Furthermore, the input alphabet is given through

ΣN = { [a, t,N] | a ∈ Σ′, t ∈ T },

ΣD = { [a, t,D] | a ∈ Σ′, t ∈ T }, and
ΣR = { [a, t, R] | a ∈ Σ′, t ∈ T }.

To conclude the definition of M , for a ∈ Σ′, p, q ∈ Q, z, z′ ∈ Γ , the transition
functions are set as

δN (p, [a, t,N], z) = q if δ(p, a, z) = (q, top) is transition t in T,

δD(p, [a, t,D], z) = (q, z′) if δ(p, a, z) = (q, z′) is transition t in T, and
δR(p, [a, t, R], z) = q if δ(p, a, z) = (q, pop) is transition t in T.

The λ-free homomorphism h maps the input triples to their first component,
that is, h([a, t, S]) = a, for a ∈ Σ′, t ∈ T , and S ∈ {N,D,R}.

In order to show that h(L(M)) = L = L(M ′) we encode accepting computa-
tions of M ′ as follows. Let w = a1a2 · · · an ∈ Σ′∗ be an input from L(M ′). Then
the set ϕ(w) contains the word

[a1, t1, S1][a2, t2, S2] · · · [an, tn, Sn]

if and only if there is an accepting computation of M ′ so that, for 1 ≤ i ≤ n,

(q′
0, a1a2 · · · an, λ)
∗ (p, aiai+1 · · · an, zγ)
 (q, ai+1 · · · an, γ1γ)

and δ′(p, ai, z) = (q, op) is transition ti in T and Si = N , γ1 = z if op = top,
Si = D, γ1 = z′z if op = z′ ∈ Γ , Si = R, γ1 = λ if op = pop.

Next we consider the language accepted by M . The idea of the construction
is that M simulates M ′. To this end, it gets some information on the transition
chosen by M ′ as well as on the type of pushdown operation. This information is
provided as second and third component of the input symbols. So, being in some
state p on input symbol [a, t, S], automaton M tries to simulate transition t of M ′.

Tinput-Driven Pushdown Automata 111

If this transition fits to state p, input symbol a, and the type of the pushdown
operation S, then it is simulated by M ; otherwise the transition functions δ′ are
undefined and the simulation blocks rejecting. So, for all w ∈ L(M ′) the set ϕ(w)
is accepted by M . We conclude L(M) ⊇ ϕ(L(M ′)).

Now let w′ = [a1, t1, S1][a2, t2, S2] · · · [an, tn, Sn] ∈ L(M). By construction
this implies that M ′ accepts w = a1a2 · · · an in a computation that uses the
sequence of transitions t1t2 · · · tn. Therefore, w′ ∈ ϕ(w) and, thus, L(M) ⊆
ϕ(L(M ′)).

Together we have ϕ(L(M ′)) = L(M). Furthermore, since the homomor-
phism h simply removes the last two components of the input triple, we obtain
h(ϕ(L(M ′))) = L(M ′) and, thus, h(L(M)) = L(M ′). ��

The proof of the previous theorem reveals immediately that the homomorphic
characterization of the context-free languages is also by tinput-driven pushdown
automata.

Corollary 18. A language L is context free if and only if there is a λ-free
homomorphism h and a TDPDA M so that L = h(L(M)).

7 Conclusion

In this paper, we have introduced a generalization of input-driven automata in
such a way that the input is preprocessed by an injective and length-preserving
deterministic sequential transducer. We obtained that almost all positive clo-
sure and decidability results for IDPDAs with respect to compatible signatures
could be carried over to TDPDAs. It would be interesting to know how these
results vary when the properties of the underlying transducer are weakened or
strengthened. Possible generalizations would be, for example, non-injective or
nondeterministic sequential transducers.

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Babai, L. (ed.) Sym-
posium on Theory of Computing (STOC 2004), pp. 202–211. ACM (2004)

2. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56, 16
(2009)

3. Bensch, S., Holzer, M., Kutrib, M., Malcher, A.: Input-driven stack automata. In:
Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp.
28–42. Springer, Heidelberg (2012)

4. Bordihn, H., Holzer, M., Kutrib, M.: Economy of description for basic constructions
on rational transductions. J. Autom. Lang. Comb. 9, 175–188 (2004)

5. von Braunmühl, B., Verbeek, R.: Input-driven languages are recognized in log n
space. In: Karpinski, M., van Leeuwen, J. (eds.) Topics in the Theory of Compu-
tation, Mathematics Studies, vol. 102, pp. 1–19. North-Holland (1985)

6. Chervet, P., Walukiewicz, I.: Minimizing variants of visibly pushdown automata.
In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 135–146.
Springer, Heidelberg (2007)

112 M. Kutrib et al.

7. Crespi-Reghizzi, S., Mandrioli, D.: Operator precedence and the visibly pushdown
property. J. Comput. Syst. Sci. 78, 1837–1867 (2012)

8. Dymond, P.W.: Input-driven languages are in log n depth. Inform. Process. Lett.
26, 247–250 (1988)

9. Hartmanis, J.: Context-free languages and turing machine computations. Proc.
Symposia in Applied Mathematics 19, 42–51 (1967)

10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

11. Kutrib, M., Malcher, A., Mereghetti, C., Palano, B., Wendlandt, M.: Determinis-
tic input-driven queue automata: finite turns, decidability, and closure properties.
Theor. Comput. Sci. 578, 58–71 (2015)

12. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive lan-
guages. In: Logic in Computer Science (LICS 2007), pp. 161–170. IEEE Computer
Society (2007)

13. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: Ball, T.,
Sagiv, M. (eds.) Principles of Programming Languages (POPL 2011), pp. 283–294.
ACM (2011)

14. Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition.
In: de Bakker, J.W., van Leeuwen, J. (eds.) Automata, Languages and Program-
ming. LNCS, vol. 85, pp. 422–435. Springer, Heidelberg (1980)

15. Myhill, J.: Finite automata and the representation of events. Technical Report TR
57–624, WADC (1957)

16. Okhotin, A., Salomaa, K.: Complexity of input-driven pushdown automata.
SIGACT News 45, 47–67 (2014)

17. Schützenberger, M.P.: Sur les relations rationnelles. In: Brakhage, H. (ed.)
Automata Theory and Formal Languages. LNCS, vol. 33, pp. 209–213. Springer,
Heidelberg (1975)

18. Sheng, Y.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. 1, pp. 41–110. Springer, Heidelberg (1997)

Reversible Limited Automata

Martin Kutrib(B) and Matthias Wendlandt

Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany

{kutrib,matthias.wendlandt}@informatik.uni-giessen.de

Abstract. A k-limited automaton is a linear bounded automaton that
may rewrite each tape square only in the first k visits, where k ≥ 0
is a fixed constant. It is known that these automata accept context-free
languages only. We investigate deterministic k-limited automata towards
their ability to perform reversible computations, that is, computations in
which every configuration has at most one predecessor. A first result is
that, for all k ≥ 0, sweeping k-limited automata accept regular languages
only. In contrast to reversible finite automata, all regular languages are
accepted by sweeping 0-limited automata. Then we study the computa-
tional power gained in the number k of possible rewrite operations. It is
shown that the reversible 2-limited automata accept regular languages
only and, thus, are strictly weaker than general 2-limited automata. Fur-
thermore, a proper inclusion between reversible 3-limited and 4-limited
automata languages is obtained. The next levels of the hierarchy are sep-
arated between every k and k+3 rewrite operations. Finally, it turns out
that all k-limited automata accept Church-Rosser languages only, that is,
the intersection between context-free and Church-Rosser languages con-
tains an infinite hierarchy of language families beyond the deterministic
context-free languages.

1 Introduction

Automata working on a tape so that the possible rewrite operations are limited
have been studied for a long time. A famous result obtained in [6] considers linear
bounded Turing machines. If any tape square may be visited only a constant
number of times, it is shown that even linear-time computations cannot accept
non-regular languages. This result has been improved to O(n log n) time in [5].
Recent results [29] show that the upper as well as the lower bound for the size
trade-off is double exponential when a machine of this type is converted into a
deterministic finite automaton. A generalization of the machines studied in [6]
are introduced by Hibbard [7]. He investigated linear bounded automata that
may rewrite each tape square only in the first k visits, where k is a fixed constant.
However, afterwards the squares can still be visited any number of times (but
without rewriting their contents). It is shown in [7] that the nondeterministic
variant characterizes the context-free languages provided k ≥ 2, while there is a
tight and strict hierarchy of language classes depending on k for the deterministic
variant. One-limited automata, deterministic and nondeterministic, can accept
only regular languages.
c© Springer International Publishing Switzerland 2015
J. Durand-Lose and B. Nagy (Eds.): MCU 2015, LNCS 9288, pp. 113–128, 2015.
DOI: 10.1007/978-3-319-23111-2 8

114 M. Kutrib and M. Wendlandt

Recently, the study of limited automata from the descriptional complexity
point of view has been initiated by Pighizzini and Pisoni [26,27]. In [27] it has
been shown that the deterministic 2-limited automata characterize the determin-
istic context-free languages which complements the result on nondeterministic
machines. Furthermore, conversions between 2-limited automata and pushdown
automata are investigated. For the deterministic case the upper bound for the
conversion from 2-limited automata to pushdown automata is double exponen-
tial. Conversely the trade-off is shown to be polynomial. Comparisons between
1-limited automata and finite automata are done in [26]. The unary case has
recently been studied in [17].

Here we investigate reversible k-limited automata. Reversible computations
and reversible versions of computational devices have gained much interest in the
recent years. For a reversible computational device it is essential that for every
configuration which the device may enter there is both a uniquely defined suc-
cessor and a uniquely defined predecessor configuration. Thus, reversible devices
show a forward and backward deterministic behavior. One motivation for study-
ing such devices is given by the physical observation that the loss of informa-
tion in irreversible computations results in heat dissipation [3,19]. On the other
hand, it is also of great theoretical interest how information is processed in com-
putational devices and in which way, if possible, computations can be made
information preserving.

Reversible regular languages are studied in [1,8,9,18,28]. However, reversibil-
ity is a property of machines and not a property of languages. So, notions as “the
family of reversible regular languages” are meaningless unless the reversibility
of a regular language is defined by the reversibility of a certain type of device
that accepts it. For example, it turned out that reversible one-way determin-
istic finite automata are less powerful than general (possibly irreversible) finite
automata. On the other hand, in [9] it has been shown that reversible two-
way deterministic finite automata characterize the regular languages. Reversible
pushdown automata are investigated in [13] where it is shown that their corre-
sponding language family lies properly in between the regular and the determinis-
tic context-free languages. Thus, every regular language can be accepted by some
reversible pushdown automaton, but the deterministic context-free language
{ anbn | n ≥ 1 } cannot be accepted by any reversible pushdown automaton.
Reversibility has been studied also in other computational devices such as space-
bounded Turing machines [20], multi-head finite automata [2,14,23,24], queue
automata [15] and the massively parallel model of cellular automata [12,22].
Different aspects of reversibility for classical automata are discussed in [10].

Here, we consider the computational capacity of reversible k-limited automata.
After a formal definition in the next section, we give meaningful examples. The first
shows that the context-free language { anbn | n ≥ 1 } is accepted by a reversible
4-limited automaton. Later it turns out that 3 rewrite operations are not suffi-
cient and, thus, the two language families are separated. Section 3 is devoted to
sweeping k-limited automata. In particular, it is shown that these automata, inde-
pendently of k, even if they are irreversible accept regular languages only. In con-

Reversible Limited Automata 115

trast to reversible finite automata, all regular languages are accepted already by
sweeping 0-limited automata. In Sect. 4 an infinite hierarchy of language classes
defined by reversible limited automata is obtained, where the hierarchy depends
on the number of rewrite operations allowed. For general 2-limited automata it
is known [27] that they characterize the family of deterministic context-free
languages. It turns out that reversible 2-limited automata are much weaker.
In fact, it is shown that they accept regular languages only. Furthermore, the
proper inclusion mentioned between reversible 3-limited and 4-limited automata
languages is obtained. Higher levels of the hierarchy are separated between every
k and k + 3 rewrite operations. Finally, in Sect. 5 it turns out that all k-limited
automata accept Church-Rosser languages only, that is, the intersection between
context-free and Church-Rosser languages contains an infinite hierarchy of lan-
guage families beyond the deterministic context-free languages.

2 Preliminaries

We write Σ∗ for the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and we set Σ+ = Σ∗ \ {λ}. The reversal of a word w is denoted
by wR, and for the length of w we write |w|. We use ⊆ for inclusions and ⊂ for
strict inclusions. Let k ≥ 0 be an integer. A deterministic k-limited automaton
is a restricted linear bounded automaton. It consists of a finite state control
and a read-write tape whose initial inscription is the input word in between two
endmarkers. At the outset of a computation the automaton is in the designated
initial state and the head of the tape scans the left endmarker. Dependent on
the current state and the currently scanned symbol on the tape the automaton
changes its state, rewrites the current symbol on the tape, and moves the head
one cell to the left or one cell to the right. However, the rewriting is restricted
so that the machine may rewrite each tape square only in the first k visits.
Subsequently, the square can still be scanned but the content cannot be changed
anymore. So, a deterministic 0-limited automaton is a two-way deterministic
finite automaton. An input is accepted if the machine reaches an accepting state
and halts.

The original definition of such devices in [7] is based on string rewriting
systems whose sentential forms are seen as configurations of automata. Let
u1u2 · · · ui−1suiui+1 · · · un be a sentential form that represents the tape inscrip-
tion u1u2 · · · un, the current state s and the head scanning the symbol ui. Basi-
cally, in [7] rewriting rules of the forms sui → u′

is
′, which mean that the state

changes from s to s′, the current tape square is rewritten from ui to u′
i, and

the head is moved to the right, and ui−1s → s′u′
i−1, which mean that the state

changes from s to s′, the current tape square is rewritten from ui−1 to u′
i−1, and

the head is moved to the left, are provided. In this context, an automaton that
changes its head direction on a square scans the square twice. In [26,27] and
below limited automata are defined in a way that reflects this behavior.

Formally, a deterministic k-limited automaton (k-DLA, for short) is a system
M = 〈S,Σ, Γ, δ,�,�, s0, F 〉, where S is the finite, nonempty set of internal

116 M. Kutrib and M. Wendlandt

states, Σ is the finite set of input symbols, Γ is the finite set of tape symbols
partitioned into Γk ∪Γk−1 ∪ · · · ∪Γ0 where Γ0 = Σ, � /∈ Γ is the left and � /∈ Γ
is the right endmarker, s0 ∈ S is the initial state, F ⊆ S is the set of accepting
states, and δ : S × (Γ ∪ {�,�}) → S × (Γ ∪ {�,�}) × {−1, 1} is the partial
transition function, where −1 means to move the head one square to the left, 1
means to move it one square to the right, and whenever (s′, y, d) = δ(s,�) is
defined then y = �, d = 1 and whenever (s′, y, d) = δ(s,�) is defined then
y = �, d = −1.

In order to implement the limited number of rewrite operations, δ is required
to satisfy the following condition. For each (s′, y, d) = δ(s, x) with x ∈ Γi, (1) if
i = k then x = y, (2) if i < k and d = 1 then y ∈ Γj with j = min{
 i

2� ·2+1, k},
and (3) if i < k and d = −1 then y ∈ Γj with j = min{
 i+1

2 � · 2, k}.
It is worth mentioning that these conditions make the a priori global con-

dition of a head turn on some square local. The clever transformation of the
original definition to the automata world used in [26,27] gives that, if a square
content is from Γi then the head position is always to the right of that square
if i is odd, and it is to the left of the square if i is even, as long as i < k.

A configuration of the k-DLA M is a triple (s, v, h), where s ∈ S is the
current state, v ∈ �Γ ∗� is the current tape inscription, and h ∈ {0, 1, . . . , |w| +
1} gives the current head position. If h is 0 the head scans the symbol �, if
it satisfies 1 ≤ i ≤ |w|, then the head scans the ith letter of w, and if it is
|w| + 1, then the head scans the symbol �. The initial configuration for input
w is set to (s0,�w�, 0). During the course of its computation, M runs through
a sequence of configurations. One step from a configuration to its successor
configuration is denoted by
. Let a0 = � and an+1 = �, for n ≥ 0, then
we set (s,�a1a2 · · · ah · · · an�, h)
 (s′,�a1a2 · · · a′

h · · · an�, h + d) if and only if
(s′, a′

h, d) = δ(s, ah).
A k-DLA halts, if the transition function is undefined for the current configu-

ration. An input is accepted if the automaton halts at some time in an accepting
state, otherwise it is rejected.

The language accepted by M is L(M) = {w ∈ Σ∗ | w is accepted by M }.
Now we turn to reversible deterministic k-limited automata. Basically,

reversibility is meant with respect to the possibility of stepping the compu-
tation back and forth. So, the automata have also to be backward deterministic.
That is, any configuration must have at most one predecessor which, in addi-
tion, is computable by a k-DLA. For reverse computation steps the head of the
input tape is always moved to the opposite direction before the tape square is
read. Therefore, the automaton rereads the input symbol which has been read
or written in a preceding forward step.

A k-DLA is said to be reversible, abbreviated as k-REVLA, if for any two
distinct transitions

δ(s, x) = (q, y, d) and
δ(s′, x′) = (q′, y′, d′),

if q = q′, then d = d′ and y �= y′.

Reversible Limited Automata 117

The first condition means that transitions yielding the same state all have
to move the head the same way. The second condition says that for any config-
uration the predecessor state is uniquely determined by the state (which then
implies the head movement) and the work tape symbol read.

A limited automaton is said to be sweeping if the direction of the head
movement changes only on the endmarkers.

In order to clarify the notions we continue with an example that is later used
to separate the computational capacity of 4-REVLA from 3-REVLA.

Example 1. The linear language { anbn | n ≥ 1 } is accepted by the 4-REVLA
M = 〈S,Σ, Γ, δ,�,�, s0, F 〉 with S = {s0, s1, s2, s+, sa, pa, sb, pb, qb, rb}, tape
symbols Γ1 = {a1}, Γ2 = {b2, b

′
2}, Γ3 = {a3}, Γ4 = {a4, b4, b

′
4}, and F = {s+}.

The principal and natural idea of the construction is that M moves back and
forth over the tape whereby in each cycle one a and one b are marked ‘already
compared’. However, in order to implement this behavior reversibly, we have to
overcome some particularities when the symbols are marked.

At the beginning, M moves in state s0 across the a’s and rewrites them
to a1’s. When it arrives at the first b, the tape square is marked (to identify it
in backward computations).

δ(s0,�) = (s0,�, 1)
δ(s0, a) = (s0, a1, 1)
δ(s0, b) = (pa, b′

2,−1)

In the following cycles, M computes tape inscriptions of the form

a1 · · · a1a3a4 · · · a4b
′
4b4 · · · b4b2b · · · b.

The states sa, pa are used to move the head leftwards across the a3, a4, b4, b
′
4

symbols and to handle the reversible behavior at the left when another a1 is
compared.

δ(pa, a1) = (sb, a3, 1)
δ(sa, a4) = (sa, a4,−1)
δ(sa, b4) = (sa, b4,−1)

δ(sa, b′
4) = (sa, b′

4,−1)
δ(sa, a3) = (pa, a4,−1)

So, at the end of such a movement the form of the tape inscription is as before,
but the a3 has been rewritten to a4 and the neighboring a1 has been rewritten
to a3. Now M is in state sb. Similarly, the states sb, pb, qb, rb are used to move the
head rightwards across the a4, b4, b

′
4, b2, b

′
2 symbols and to handle the reversible

behavior at the right when another b is compared.

δ(sb, a4) = (sb, a4, 1)
δ(sb, b

′
4) = (sb, b

′
4, 1)

δ(sb, b4) = (sb, b4, 1)

δ(sb, b
′
2) = (pb, b

′
4,−1)

δ(sb, b2) = (pb, b4,−1)

After these transitions the tape inscription has the form

a1 · · · a1a3a4 · · · a4b
′
4b4 · · · b4b4b · · · b

118 M. Kutrib and M. Wendlandt

where the head scans the second b4 from the right (or a3 in the first cycle),
and M is in state pb.

δ(pb, b4) = (qb, b4, 1)
δ(pb, a3) = (qb, a3, 1)
δ(qb, b

′
4) = (rb, b

′
4, 1)

δ(qb, b4) = (rb, b4, 1)
δ(rb, b) = (sa, b2,−1)

After these transitions, at the end of such rightward movement the form of
the tape inscription is as before, but the b2 has been rewritten to b4 and the
neighboring b has been rewritten to b2. Now M is in state sa again.

When all b’s are rewritten, M arrives at the right endmarker in state rb. Now
it has to be verified that there are no more a1’s at the left. To this end, the head
is moved across the tape in state s1 until the a3 at the left is reached. If the
following left move places the head on the left endmarker, there are no more
symbols a1 and the input is accepted by a final move in state s+.

δ(rb,�) = (s1,�,−1)
δ(s1, b4) = (s1, b4,−1)
δ(s1, b′

4) = (s1, b′
4,−1)

δ(s1, a4) = (s1, a4,−1)
δ(s1, a3) = (s2, a4,−1)
δ(s2,�) = (s+,�, 1)

The construction shows that all words from { anbn | n ≥ 1 } are accepted. If the
input does not have the form a+b+, the computation blocks rejecting either in
state s0 or rb. If the number of a’s exceeds the number of b’s, the computation
blocks rejecting in state s2, and if the number of b’s exceeds the number of a’s,
the computation blocks rejecting in state pa. So, only words from { anbn | n ≥ 1 }
are accepted. The reversibility of M is verified by an inspection of the transition
function. It meets the condition for reversibility. �
Example 2. Example 1 can be extended with slight modifications to a 4-REVLA
that accepts the still deterministic linear context-free language

{xa�##bm#cn | x ∈ {a, b}, �,m, n ≥ 1, if x = a then � = m else � = n }.

To this end, a 4-REVLA M first checks and rewrites the first symbol. For
each possibility an extra set of states is used. If x = a the computation is almost
the same as in Example 1. Now the initially rewritten a plays the role of the
left endmarker and the third # the role of the right endmarker. When at the
end of the initial rewriting of the a’s to a1’s the head arrives at the first #, in
a sequence of alternating right and left moves the two # symbols are rewritten
at least four times to some symbol #4. To this end, different states are used.
Subsequently, the head simply passes through these squares. The final sweep of
the input beginning in state s1 is now replaced by a sweep to the right that
checks whether there are only c’s to the right of the third # and a subsequent
sweep to the left that checks whether there are no a1’s left as before.

In the other case, again the initially rewritten b plays the role of the left
endmarker. When at the end of the initial rewriting of the a’s to a1’s the head
arrives at the first #, in a sequence of alternating right and left sweeps across the
infix ##bm# the infix is rewritten to #4#4bm

4 #4 and subsequently simply passed
through by the head. �

Reversible Limited Automata 119

3 Sweeping Reversible k-Limited Automata

Limited automata that are restricted to change the direction of the head move-
ment on the endmarkers only, so-called sweeping limited automata, are inves-
tigated from a descriptional complexity viewpoint in [17]. Since any k-limited
automaton accept context-free languages only [7], all unary languages accepted
are regular. In [17] the size trade-offs between unary sweeping k-DLA and finite
automata are studied. Here we reconsider sweeping k-DLA over arbitrary alpha-
bets and show first that, for any k ≥ 0, reversible and even irreversible devices
accept only regular languages.

Lemma 3. Let k ≥ 0, n ≥ 1, and M be an n-state sweeping k-DLA. Then
another sweeping k-DLA accepting L(M) with at most k + n + 1 sweeps can
effectively be constructed.

Proof. Any sweeping k-DLA visits every tape square exactly once during each
sweep. So, the tape content is fixed after the kth sweep. For the remaining sweeps,
if some tape square is entered in the same state twice, automaton M is in a loop
and the input cannot be accepted. We conclude that there are at most n further
productive sweeps. Now a k-DLA M ′ is constructed so that it simulates M and
counts the number of sweeps up to k + n, additionally. If M wants to start the
(k + n + 1)st sweep, M ′ enters a non-accepting state, completes the sweep, and
halts rejecting at the opposite endmarker. In this way, M ′ accepts L(M) with
at most k + n + 1 sweeps. ��

In contrast to several other automata models, Lemma 3 reveals that the
restriction to being sweeping is a hard one even for irreversible limited automata.

Theorem 4. Let k ≥ 0. The family of languages accepted by sweeping k-DLA
is equal to the family of regular languages.

Proof. Lemma 3 shows that any language accepted by some sweeping k-DLA can
be accepted by some k-DLA whose number of sweeps is bounded by a constant.
So, any tape square may be visited only a constant number of times. Therefore,
the k-DLA works in linear time. It is shown in [6] that even linear-time one-tape
one-head Turing machines cannot accept non-regular languages.

Since a sweeping 0-limited automaton can be seen as sweeping two-way finite
automaton, every regular language is accepted by some sweeping k-DLA. ��

An immediate consequence is that sweeping reversible k-limited automata
can accept only regular languages. However, with one sweep and one rewrite
operation per square they can accept all regular languages reversibly.

Theorem 5. Let k ≥ 1. The family of languages accepted by sweeping k-REVLA
is equal to the family of regular languages.

Proof. Let a regular language L ⊆ Σ∗ be given through a DFA M with state
set S, initial state s0, accepting states F , and transition function δ.

120 M. Kutrib and M. Wendlandt

The apparent idea of the construction of a sweeping reversible 1-limited
automaton M ′ = 〈S,Σ, Γ, δ′,�,�, s0, F 〉 accepting L is to simulate M while
the sequence of states passed through is written on the tape.

Accordingly, we set Γ1 = S × Σ. The 1-REVLA M ′ starts the computation
by moving the head from the left endmarker and keeping state s0.

δ′(s0,�) = (s0,�, 1)

Subsequently, M ′ sweeps over the tape, whereby in each step the current state
is written to the current tape square.

δ′(si, a) = (sj , (si, a), 1) if δ(si, a) = (sj) for si, sj ∈ S, a ∈ Σ

The transition δ′ is not defined for the right endmarker. Therefore, the compu-
tation necessarily halts after the first sweep. It is accepting if and only if it halts
in an accepting state. So, M ′ accepts L. The reversibility of M ′ is verified by an
inspection of the transition function. ��

Recall that the regular language a∗b∗ is not accepted by any reversible one-
way DFA, whereas in [9] it has been shown that reversible two-way deterministic
finite automata characterize the regular languages. This raises the question for
the computational capacity of sweeping reversible two-way deterministic finite
automata, that is, the computational capacity of sweeping 0-REVLA.

Theorem 6. The family of languages accepted by sweeping 0-REVLA is prop-
erly included in the family of regular languages.

Proof. As for one-way DFA, the regular language a∗b∗ can be used as witness
for the assertion. In any accepting computation, a sweeping 0-REVLA has to
change its state in the first sweep (unless the sweep is useless). Moreover, its
behavior must become cyclic on the b-block. So, it must have a state with two
incoming edges which are labeled by the same input symbol and, thus, cannot
be reversible. ��

4 A Hierarchy of Reversible Limited Automata

This section is devoted to an infinite hierarchy of language classes defined
by reversible limited automata, where the hierarchy depends on the number
of rewrite operations allowed. We know already that the reversible 1-limited
automata characterize the regular languages. For general 2-limited automata
it is known [27] that they characterize the family of deterministic context-free
languages. It turns out that reversible 2-limited automata are much weaker.

Theorem 7. The family of languages accepted by 2-REVLA is equal to the fam-
ily of regular languages.

Reversible Limited Automata 121

Proof. Let M = 〈S,Σ, Γ, δ,�,�, s0, F 〉 be an arbitrary reversible 2-limited
automaton with n states. We consider the computation on an input word w.
For any tape square cj , 1 ≤ j ≤ |w|, let tj be the time step at which cj is
visited the second time (thus, cannot be rewritten anymore). We define two sets
of tape squares associated to cj as follows. Whenever at some time not before
tj the head is moved from cj to the right and eventually back to cj without
visiting cj in between, the rightmost square, say c�, that is overwritten during
this subcomputation is put into set Rj . If no square is overwritten nothing is put
into the set Rj for this subcomputation. In the same way, the set Lj is defined
for subcomputations from cj to the left.

Let Rj = {cj1 , cj2 , . . . , cjr}, r ≥ 0, where the squares are ordered according
to their positions, that is, cj < cj1 < cj2 < · · · < cjr (see Fig. 1). After the
subcomputation that returns the head from c� to cj all squares in between and
including cj and c� have been visited at least twice and, thus, their contents
are fixed (recall that an automaton that changes its head direction on a square
scans the square twice). Denote the time step at which the head changes its
direction on c� by t(c�). So, from the positional order of the squares we derive
tj < t(cj1) < t(cj2) < · · · < t(cjr). Similarly, Lj = {c′

j1
, c′

j2
, . . . , c′

jl
}, l ≥ 0, where

cj > c′
j1

> c′
j2

> · · · > c′
jl

and tj < t(c′
j1

) < t(c′
j2

) < · · · < t(c′
jl

).
Now assume that there is at least one cell cj so that at least one of the sets Rj

or Lj , say Rj , contains at least n + 1 squares. Let s� be the state in which tape
square cj is reentered after the subcomputation that returns the head from c�.
Since M is reversible, a reverse computation starting in state s� on square cj would
rewrite square c� to its predecessor inscription, whereby all squares to the right of
c� are not touched. Since |Rj | ≥ n+1 there are two identical states sji = sji′ with
cji < cji′ . But this implies that a reverse computation starting in state sji′ on
square cj would rewrite square cji to its predecessor inscription whereby square
sji′ is not touched. This is a contradiction to the reversibility of M .

We conclude that for all squares cj both sets Rj and Lj contain at most n
elements. Let (c′

ji′
, cji) be a pair from Lj × Rj and let t(c′

ji′
) < t(cji). When the

head returns to cj after time step t(cji) the head can move freely in between the
squares c′

ji′
and cji but the tape content in this area is already fixed. So, without

leaving the area the head can visit cj at most n times. Otherwise it would be
in an infinite rejecting loop. Leaving the area means to visit another square
from Lj or Rj , thus, extending the area, or to touch the endmarker, which does
not help. The same argumentation applies if t(c′

ji′
) > t(cji). So, the cardinality

of Lj and Rj implies that, in any accepting computation, cj can be visited at
most 2+2n ·n times. Since this is true for all squares, M accepts always in linear
time. With the result in [6] that one-tape one-head Turing machines working in
linear time accept only regular languages it can be deduced that M accepts a
regular language. ��

The next level of the hierarchy is built by the reversible 3-limited automata.
Here we have an open problem. It is not known whether these automata are able
to accept some non-regular language. However, there is a deterministic and linear
context-free language not accepted by any reversible 3-limited automaton. So,

122 M. Kutrib and M. Wendlandt

Fig. 1. The head trajectory of an example computation of a 2-REVLA. The states sj1
and sj2 must be different. Otherwise the reverse computation starting in sj1 (red/dark
line) applies also for sj2 since the tape content between cj and cj1 is permanent
after t(cj1) (Color figure online).

even with three rewrite operations the unrestricted 2-limited automata cannot
be simulated.

Lemma 8. The real-time deterministic linear language { anbn | n ≥ 0 } is not
accepted by any 3-REVLA.

Proof. In contrast to the assertion, we assume that there is a 3-REVLA M with
state set S that accepts L = { anbn | n ≥ 0 }.

For easier writing we call tape squares that have not been visited three times
writable.

First we consider accepting computations of M and, in particular, the sub-
computations so that the input head is moved from the right half of the tape
to the left half and back. We claim that the number of such subcomputations
where the head moves on writable squares of the left half is not bounded by any
constant.

Contrarily assume that there is a constant c so that this number is bounded by
c for all inputs anbn with n ≥ 0. Then, after c subcomputations, the behavior of
M on the left half can entirely be described by a table that lists for every state in
which M enters the left half what happens. This can either be halting rejecting or
accepting or leaving the left half in some state. Since M does not move on writable
squares anymore, this behavior cannot change. There are only finitely many of
such tables. Furthermore, for any of the first c subcomputations a similar table
exists, where these tables may change from subcomputation to subcomputation.
However, again there are only finitely many of such tables for all n.

We conclude that there are two numbers n1 and n2 so that for the accepting
computations on an1bn1 and an2bn2 the state in which M enters the right half

Reversible Limited Automata 123

for the first time and all these c + 1 tables are the same. Therefore, M accepts
an1bn2 as well. The contradiction shows the claim.

Now we choose some n large enough so that there are at least m = |S| + 2
subcomputations of the accepting computation on anbn. Let us denote the sub-
computations in chronological order by C1, C2, . . . , Cm. If ti denotes the leftmost
writable tape square that is overwritten in the subcomputation Ci, 1 ≤ i ≤ m,
then we have tm < tm−1 < · · · < t1. Moreover, at the end of subcomputation Ci

all tape squares x of the left half with x ≥ ti have been visited at least three
times and, thus, their inscriptions are permanent.

Next, we fix some tape square r that is crossed in all of these subcompu-
tations, say r is the rightmost square of the left half. At latest after C2 the
inscription of r is permanent. Let si be the state in which tape square r is
entered at the end of subcomputation Ci.

Since M is reversible, a reverse computation starting in state s2 on square r
would rewrite square t2 to its predecessor inscription, whereby the squares ti
with i ≥ 3 are not touched. Assume now s2 = si for some 3 ≤ i ≤ m. Since the
tape inscription between t2 and r does not change after subcomputation C2, this
equality would cause a reverse computation started on r in state si to rewrite t2
whereby the square ti is not touched. This contradicts the reversibility. So, we
conclude that all the states si with i ≥ 3 have to be different from s2. The same
argumentation shows that s3 has to be different from all the states si with i ≥ 4
and, in general, that sj has to be different from all states si with i ≥ j + 1.
Therefore all states s2, . . . , sm have to be different. Since m = |S| + 2 we derive
a contradiction to the assumption that M accepts L. ��

Example 1 and Lemma 8 separate two levels of the hierarchy. So far, we have

REG = L (1-REVLA) = L (2-REVLA) ⊆ L (3-REVLA) ⊂ L (4-REVLA).

In order to obtain an infinite hierarchy of language classes we exploit the infor-
mally presented witness languages used in [7] to argue towards an infinite hierar-
chy of general k-DLA beyond the deterministic context-free languages. We define
the languages formally whereby new separator symbols are introduced and sub-
words are mirrored which does not change the argumentation in the general case.

For k ≥ 1, the witness language Lk ⊂ {a, b, c, #, $}∗ consists of words of the
form

$wR
1 $$w

R
3 $$ · · · $$wR

k−1$$wk$$ · · · $$w4$$w2$x,

if k is even, and words of the form

$wR
1 $$w

R
3 $$ · · · $$wR

k−2$$w
R
k $$wk−1$$ · · · $$w4$$w2$x,

if k is odd, where x ∈ {a, b} and wi = a�i##bmi#cni , �i,mi, ni ≥ 1, 1 ≤ i ≤ k.
The words wi are called subwords in the following.

Whether a word of this form belongs to Lk depends on conditions that are
expressed by predicates P, Pab and Pac as follows. In particular, a word of this
form belongs to Lk if and only if P (wk) = true, where

Pab(wi) = true, iff �i = mi, Pac(wi) = true, iff �i = ni

124 M. Kutrib and M. Wendlandt

and P (wi) = true, iff (Pab(wi) and P (wi−1)) or (Pac(wi) and not P (wi−1)) for
i > 1, with P (w1) = true, iff (Pab(w1) and x = a) or (Pac(w1) and x = b).

Lemma 9. Let k ≥ 1. Then language Lk is accepted by some (k + 4)-REVLA.

Proof. In the following we will exploit the constructions from Examples 1 and 2.
To this end, assume for a moment that the input word has the correct form. Tak-
ing a close look at the constructions in the examples shows that the endmarkers
are visited at most twice. Moreover, the constructions can easily be extended
such that in case of non-matching numbers of symbols the 4-REVLA does not
get stuck somewhere on the input, but in a well-defined state s− entered only
once at the left endmarker. If the original machines get stuck, now a new state
is entered that drives the head to the left endmarker. Since all squares that
have to be passed through in this situation have not been visited four times, the
reversibility is ensured by writing the current state to the current tape square.
We mean this modified machine whenever we refer to the examples.

Next we describe the construction of a (k + 4)-REVLA Mk accepting Lk.
The principal idea is to compute the predicates P (wi) successively in increasing
order. The conditions on the subwords are checked with the machines from the
examples, where on the left half of the input mirrored versions of the construc-
tions are used.

In more detail, let w be a given input to Mk. We may consider the tape
squares to have k + 4 initially blank registers each, that may be filled with
information during the visits.

At the beginning, Mk sweeps over the tape whereby it checks the correct for-
mat of the input. This can be done by simulating a deterministic finite automa-
ton. The reversibility is ensured by writing the history of the computation into
the first registers of the squares. Then the x at the right end is read and remem-
bered in the state while Mk sweeps back to the $ immediately to the right of
wR

1 . Since k is a constant this can be done. Again, the reversibility is ensured by
writing the history of the computation to the second registers.

Now a mirrored version of the algorithm of Example 2 is applied, where
the information from the initial x is already known. For the simulation the four
registers k+1 to k+4 are used. At the end of the algorithm the head of Mk is on
the first $ following w1. It simulates now a state transition to the state s+ or s−
for the first time. Here we may safely assume that the head is moved to the right
since the left step of the original algorithm was just caused by the endmarker. So,
the simulation ends on the second $ following w1, and P (w1) is computed. The
subword w1 and its immediate surrounding $ are never visited again. Since the
endmarkers are visited at most twice in the original algorithm, the reversibility
of the constructions in the examples carries over to the reversibility of Mk, since
the $ playing the roles of the endmarkers can be rewritten whenever they are
visited. Moreover, by the reversibility preserving modifications explained, Mk

works reversible so far.
Next, Mk sweeps to the right until it reaches the $ in front of w2. The

reversibility is once again ensured by writing the history of the computation into

Reversible Limited Automata 125

the third registers of the squares. From here another copy, that means a copy of
the state set, of the algorithm of Example 2 is applied, where the information
from the initial x is already known from P (w1). As for the computation on w1,
the four registers k + 1 to k + 4 are used during the simulation. At the end of
the algorithm the head of Mk is on the first $ in front of w2. It simulates now a
state transition to the (copy of the) state s+ or s− for the first time, where the
head is moved to the left. So, the simulation ends on the left $ in front of w2,
and P (w2) is computed. The subword w2 and its immediate surrounding $ are
never visited again.

Now, the behavior of Mk continues as before. In the next stage its head
sweeps back to the $ immediately to the right of wR

3 , whereby the reversibility
is ensured by writing the history of the computation into the fourth registers
of the squares. Again, a new copy of the mirrored version of the algorithm of
Example 2 is applied, where the information from the initial x is already known
from P (w2), and so on.

Finally, after having simulated the algorithm from Example 2 on subword wk,
the predicate P (wk) is known and, correspondingly, Mk can halt accepting or
rejecting. Since the subword wk is checked at latest, it is passed through by
previous sweeps most frequently. In particular, this is the very first sweep and
one sweep for every subword wi with i < k. So, every cell is visited at most k
times. Additionally, 4 visits are used by the algorithm of Example 2. Since Mk

is reversible by construction it is in fact a (k + 4)-REVLA. ��

Now the infinite strict hierarchy follows with the results in [7] where, in
essence, it is shown that language Lk is not accepted by any (k + 1)-DLA. In
fact, our witness languages Lk differ from the original ones by the new separa-
tor symbols and by mirroring the subwords on the left. However, thereby the
argumentation of [7] is not affected.

Theorem 10. Let k ≥ 2. The family of languages accepted by k-REVLA is
properly included in the family of (k + 3)-REVLA.

5 Limited Automata and Church-Rosser Languages

In the previous section we derived an infinite hierarchy of reversible k-limited
automata. On one hand, all languages accepted by (even nondeterministic) k-
limited automata are context free. On the other hand, the hierarchy of reversible
k-limited automata includes an infinite language family beyond the determinis-
tic context-free languages. In order to qualify these languages furthermore, we
consider the Church-Rosser languages (CRL) that are another popular language
family lying properly in between the regular and the context-sensitive languages.
Church-Rosser languages have been introduced in [21] via finite, confluent, and
length-reducing Thue systems. They are incomparable to the context-free lan-
guages [4] and have neat properties. In particular, they contain the deterministic
context-free languages as well as their reversals properly [21]. So a natural ques-
tion is whether they also include the languages accepted by (reversible) k-limited

126 M. Kutrib and M. Wendlandt

automata. Or with other words, whether the infinite language family beyond
the deterministic context-free languages defined by the deterministic k-limited
automata belongs still to the intersection of Church-Rosser and context-free lan-
guages (see [11] for further results on the intersection).

To answer this question in the affirmative, we exploit the automata char-
acterization of Church-Rosser languages derived in [25], where it is shown that
shrinking as well as length-reducing deterministic two-pushdown automata char-
acterize the Church-Rosser languages. This characterization remains valid even
for the stateless variant of these automata [16].

A deterministic two-pushdown automaton (DTPDA) is a deterministic
automaton with two pushdown stores. There is no input tape but the input
is provided as the initial contents of the second pushdown store. In general, in
every step the DTPDA has access to the topmost k pushdown symbols of both
pushdown stores. An input is accepted if and only if the DTPDA halts in an
accepting state with empty pushdown stores. Since here we only need DTPDA
with k = 1, we simplify the following formal definition accordingly. A DTPDA
is defined as a system M = 〈S,Σ, Γ, δ,⊥, s0, F 〉, where S is the finite, nonempty
set of internal states, Σ is the finite set of input symbols, Γ ⊃ Σ is the finite
set of pushdown symbols, s0 ∈ S is the initial state, ⊥ ∈ Γ \ Σ is the bot-
tom marker of the pushdown stores, F ⊂ S is the set of accepting states, and
δ : S × Γ × Γ → Q × Γ ∗ × Γ ∗ is the partial transition function. In addition, we
require that the special symbol ⊥ can only occur at the bottom of a pushdown
store, and that no other letter can occur at that place.

A DTPDA is called shrinking if there exists a weight function ϕ : S ∪Γ → N

such that, for all p ∈ S and all u, v ∈ Γ , (q, u′, v′) ∈ δ(p, u, v) implies that
ϕ(q) + ϕ(u′) + ϕ(v′) < ϕ(p) + ϕ(u) + ϕ(v). For a simpler presentation we set
ϕ(λ) = 0.

Theorem 11. Let k ≥ 0. The family of languages accepted by k-DLA is properly
included in the family of Church-Rosser languages.

Proof. Let M = 〈S,Σ, Γ, δ,�,�, s0, F 〉 be an arbitrary reversible k-limited
automaton. In the following a shrinking DTPDA M ′ = 〈S′, Σ, Γ ′, δ′,⊥, s′

0, F
′〉

with weight function ϕ is constructed that accepts L(M).
The principal idea of the simulation is to store the current state and the

current tape square content of M in the current state of M ′. The left pushdown
store of M ′ contains the tape inscription to the left and the right pushdown
store the tape inscription to the right of the current square. In this way, a move
of M can be simulated by a move of M ′ in a straightforward manner. However,
the construction is more involved as M ′ has to be shrinking.

Consider an adjacent block of tape squares that cannot be rewritten anymore.
The behavior of M on this block can entirely be described by a table that maps
any pair of a state and side of entry to the state and side where the block is left
again, or to accept or reject if the computation is accepting or rejecting within
the block. The finite set of such tables derived from M is denoted by T . For
convenience the empty word (table) is also included in T . Let tv, tw ∈ T be

Reversible Limited Automata 127

the two tables for tape inscriptions v and w. If v and w are adjacent, then the
tables can easily be merged to the unique table tvw. The empty table is denoted
by tλ. During the simulation of M , tape inscriptions that cannot be rewritten
anymore are replaced by such tables. Now it may happen that M ′ sees tables on
top of its pushdown stores that have to be stored as part of its state. Moreover,
it may happen that this happens for both pushdown stores, so that two tables
have to be stored as part of the state. For such a situation we provide states
(of M ′) of the form (tu, p,

−→
tv) which means the simulated state (of M) is p, to

the left of the current square is the tape inscription u, followed immediately by
the tape inscription v, and M has entered the right block in state p. Here u may
be the empty word so that tu = tλ. Symmetrically, we use states of the form
(
←−
tu , p, tv). Finally, 2k + 2 copies of every table are used to maintain the weights

1, 2, . . . , 2k + 2 that ϕ associates to tables. So, a symbol t
(i)
u stands for the table

of the tape inscription u so that ϕ(t(i)u) = i, 1 ≤ i ≤ 2k + 2. ��

References

1. Angluin, D.: Inference of reversible languages. J. ACM 29, 741–765 (1982)
2. Axelsen, H.B.: Reversible multi-head finite automata characterize reversible log-

arithmic space. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol.
7183, pp. 95–105. Springer, Heidelberg (2012)

3. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532
(1973)

4. Buntrock, G., Otto, F.: Growing context-sensitive languages and Church-Rosser
languages. Inform. Comput. 141, 1–36 (1998)

5. Hartmanis, J.: Computational complexity of one-tape Turing machine computa-
tions. J. ACM 15, 325–339 (1968)

6. Hennie, F.C.: One-tape, off-line Turing machine computations. Inform. Control 8,
553–578 (1965)

7. Hibbard, T.N.: A generalization of context-free determinism. Inform. Control 11,
196–238 (1967)

8. Holzer, M., Jakobi, S., Kutrib, M.: Minimal reversible deterministic finite
automata. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 276–287. Springer,
Heidelberg (2015)

9. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In:
Foundations of Computer Science (FOCS 1997), pp. 66–75. IEEE Computer
Society (1997)

10. Kutrib, M.: Aspects of reversibility for classical automata. In: Calude, C.S.,
Freivalds, R., Kazuo, I. (eds.) Computing with New Resources. LNCS, vol. 8808,
pp. 83–98. Springer, Heidelberg (2014)

11. Kutrib, M., Malcher, A.: When Church-Rosser becomes context free. Int. J. Found.
Comput. Sci. 18, 1293–1302 (2007)

12. Kutrib, M., Malcher, A.: Fast reversible language recognition using cellular
automata. Inform. Comput. 206(9–10), 1142–1151 (2008)

13. Kutrib, M., Malcher, A.: Reversible pushdown automata. J. Comput. Syst. Sci.
78, 1814–1827 (2012)

14. Kutrib, M., Malcher, A.: One-way reversible multi-head finite automata. In:
Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 14–28. Springer,
Heidelberg (2013)

128 M. Kutrib and M. Wendlandt

15. Kutrib, M., Malcher, A., Wendlandt, M.: Reversible queue automata. In: Non-
Classical Models of Automata and Applications (NCMA 2014), vol. 304, pp. 163–
178. Austrian Computer Society, Vienna (2014). books@ocg.at

16. Kutrib, M., Messerschmidt, H., Otto, F.: On stateless two-pushdown automata
and restarting automata. Int. J. Found. Comput. Sci. 21, 781–798 (2010)

17. Kutrib, M., Wendlandt, M.: On simulation costs of unary limited automata. In:
Descriptional Complexity of Formal Systems (DCFS 2015). LNCS. Springer (2015,
to appear)

18. Kutrib, M., Worsch, T.: Degrees of reversibility for DFA and DPDA. In:
Yamashita, S., Minato, S. (eds.) RC 2014. LNCS, vol. 8507, pp. 40–53. Springer,
Heidelberg (2014)

19. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5, 183–191 (1961)

20. Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space.
J. Comput. System Sci. 60, 354–367 (2000)

21. McNaughton, R., Narendran, P., Otto, F.: Church-Rosser Thue systems and formal
languages. J. ACM 35, 324–344 (1988)

22. Morita, K.: Reversible computing and cellular automata - a survey. Theoret. Com-
put. Sci. 395, 101–131 (2008)

23. Morita, K.: Two-way reversible multi-head finite automata. Fund. Inform. 110,
241–254 (2011)

24. Morita, K.: A deterministic two-way multi-head finite automaton can be converted
into a reversible one with the same number of heads. In: Glück, R., Yokoyama, T.
(eds.) RC 2012. LNCS, vol. 7581, pp. 29–43. Springer, Heidelberg (2013)

25. Niemann, G., Otto, F.: The Church-Rosser languages are the deterministic variants
of the growing context-sensitive languages. Inform. Comput. 197, 1–21 (2005)

26. Pighizzini, G., Pisoni, A.: Limited automata and regular languages. Int. J. Found.
Comput. Sci. 25, 897–916 (2014)

27. Pighizzini, G., Pisoni, A.: Limited automata and context-free languages. Fund.
Inform. 136, 157–176 (2015)

28. Pin, J.E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol.
583, pp. 401–416. Springer, Heidelberg (1992)

29. Pr̊uša, D.: Weight-reducing Hennie machines and their descriptional complexity.
In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA
2014. LNCS, vol. 8370, pp. 553–564. Springer, Heidelberg (2014)

An Intrinsically Universal Family of Causal
Graph Dynamics

Simon Martiel(B) and Bruno Martin

University of Nice Sophia Antipolis, I3S-CNRS, UMR 7271,
BP121, 06903 Sophia Antipolis, France

simon.martiel@gmail.com, Bruno.Martin@unice.fr

Abstract. Causal Graph Dynamics generalize Cellular Automata,
extending them to bounded degree, time varying graphs. The dynamics
rewrites the graph in discrete time-steps, with respect to two physics-like
symmetries: causality (there exists a bounded speed of information prop-
agation) and shift-invariance (the rewriting acts everywhere the same).
Intrinsic universality is the ability of the instance of a model to simulate
all other instances, while preserving the structure of the computation. We
present here an intrinsically universal family of Causal Graph Dynamics,
and give insight on why it seems impossible to improve this result to the
existence of a unique intrinsically universal instance.

1 Introduction

Cellular Automata (CA) consist in an array of cells, each of them taking a state
in a finite set. The array evolves in discrete time-steps with respect to certain
physics-like symmetries: causality (there exists a bounded speed of information
propagation) and shift-invariance (the evolution acts everywhere the same). It
can be shown that these transformations can be described by a local rule, updat-
ing the state of a cell according to the states of its neighbours, applied simul-
taneously on every cell. Eventhough their origin lie in physics, CA have been
studied in many fashions as a model of distributed computation (self-replicating
machines, synchronization problems, . . .), as well as a variety of multi-agent
systems (traffic jam, demographics, . . .). Various generalization of this model
have been studied: stochastic, asynchronous or non-uniform CA, CA over Cay-
ley graphs, over fixed graphs, Quantum Cellular Automata.

All these generalizations are based on a fixed topology for the configura-
tion’s space of the automata. There are many situations, however, in which the
notion of ‘who is next to whom’ also varies in time (e.g. agents become physically
connected, get to exchange contact details, move around, etc.). In the literature,
several models (of physical systems, self-replication, biochemical agents, econom-
ical agents, social networks. . .) feature such neighbour-to-neighbour interactions
with time-varying neighbourhood, thereby generalizing CA to their specific sake.
Recently, CA have been generalized to arbitrary, bounded-degree, time-varying
graphs which have been studied for their own sake, under the name of Causal
Graph Dynamics (CGD). See [1,5] for theoretical foundations of CGD.
c© Springer International Publishing Switzerland 2015
J. Durand-Lose and B. Nagy (Eds.): MCU 2015, LNCS 9288, pp. 129–148, 2015.
DOI: 10.1007/978-3-319-23111-2 9

130 S. Martiel and B. Martin

Intrinsic universality is the property of having one instance of the model of
computation able to simulate all other instances while preserving the structure
of the computation. This notion of preserving the structure of the computation
has a precise meaning when studying models where a notion of space exists and
has already been intensively studied in the cases of CA [6,8,10] or quantum
CA [2,3]. In a previous work [7], the authors already proved a preliminary result
of intrinsical universality of CGD, namely that, given a description of a graph
and a local rule, one can describe an instance of the model constructing the
graph and simulating the rule. In this paper, the authors present a family of
intrinsically universal local rules, such that, given any local rule on any set of
configurations, there exists a rule in this family intrinsically simulating it.

The paper is organized as follows. In Sect. 2, graphs and causal graphs dynam-
ics are introduced, together with some examples. In Sect. 3, a definition of intrin-
sic universality is proposed. Section 4, offers some preliminary results to facilitate
the construction of the family of intrinsically universal rules. Section 5 describes
the two encodings used to encode local rule and graphs, and the construction of
the family of intrinsically universal rule. In the last section, a discussion of the
result and a conclusion are provided.

2 Graphs and Localizable Dynamics

Graphs. Our CGD are over certain kinds of graphs, referred to as generalized
Cayley graphs which, basically, correspond to the usual, connected, undirected,
countable size, bounded-degree graphs, with five added twists:

• Edges are between ports of vertices, rather than between vertices themselves,
so that each vertex can distinguish its different neighbours, via the port that
connects to it.

• There is a privileged pointed vertex playing the role of an origin, so that any
vertex can be referred to relative to the origin, via a sequence of ports leading
to it.

• The graphs are considered modulo isomorphism, so that only the relative
position of the vertices can matter.

• The vertices and edges are given labels taken in finite sets, so that they may
carry an internal state just like the cells of a CA.

• The labelling functions are partial, so that we may express our partial knowl-
edge about part of a graph. For instance is common that a local function may
yield a vertex, its internal state, its neighbours, and yet have no opinion about
the internal state of those neighbours.

See [5] for a proper formalization of generalized Cayley graphs. Figure 1 shows
the differences between graphs, pointed graphs, and generalized Cayley graphs.

Some notations. The vertices of the graphs (Fig. 1(a)) we consider in this paper
are uniquely identified by a name like u. They may also be labelled with a state
σ(u) in Σ, a finite set. Each vertex has ports in a finite set π. A vertex and its port
are written u :a. An edge is an unordered pair {u :a, v :b}. Such an edge connects

An Intrinsically Universal Family of Causal Graph Dynamics 131

Fig. 1. The different types of graphs. (a) A graph G. (b) A pointed graph (G, u). (c) A
pointed graph modulo or “Generalized Cayley graph”. These are anonymous: vertices
have no name and can only be distinguished using the graph structure.

vertices u and v; we shall consider connected graphs only. Because the port of a
vertex can only appear in one edge, the degree of the graphs is bounded by |π|.
Edges may also be labelled with a state δ({u :a, v :b}) in Δ, a finite set. The set
of all generalized Cayley graphs (see Fig. 1(c)) of ports π, vertices labels Σ and
edge labels Δ is denoted Xπ,Σ,Δ. The set of all classical graphs (see Fig. 1(a)) of
ports π, vertices labels Σ and edge labels Δ is denoted Gπ,Σ,Δ.

Paths and Vertices. A Generalized Cayley Graph X ∈ Xπ,Σ,Δ is such that any
vertex of the graph is identified by the set of paths from the origin to this vertex:
for any u, v ∈ V (X), there is an edge e = {u : a, v : b} between u and v if and
only if u.ab ⊆ v, i.e. any path from the origin to u augmented with the edge e
is a path from the origin to v. As a consequence, the origin is the only vertex
which contains ε (the empty word). Notice that each vertex can be identified
by a particular path from the origin rather than all paths from the origin, for
instance by the smallest path according to the lexicographic order. According to
this convention the origin would identified by ε. For convenience, from now on,
a vertex, i.e. a set of paths, and a path representing this vertex will no longer
be distinguished. I.e. we shall speak of “vertex” u in V (X) (or simply u ∈ X).

Operations. For a generalized Cayley graph X (see [5] for details):

• the neighbours of radius r are just those vertices which can be reached with
a path of length r starting from the origin,

• the disk of radius r, written Xr, is the subgraph induced by the neighbours
of radius r + 1, with labellings restricted to the neighbours of radius r and
the edges between them.

We denote by Xu the graph whose vertices are named relatively to some other
vertex u as the origin. Formally, this is obtained by taking a pointed graph non-
modulo the equivalence class X, moving the pointer to u, and then considering
the equivalence class again. This graph is referred to as X shifted by u.

The composition of a shift, followed by a restriction, applied on X, will simply
be written Xr

u. Given a generalized Cayley graph X, and a vertex u ∈ X, we
call u the inverse path to u. We have Xu.u = X.

Moreover, we need a prefixing operation acting on graphs from the set Gπ,Σ,Δ.
In the following definitions, u.G with u ∈ π∗ and G a graph, stands for the graph
G where names of vertices are prefixed with u.

132 S. Martiel and B. Martin

Fig. 2. A generalized Cayley graph and its disk of radius 0. Notice that the set of paths
describing vertices in X0 are strict subsets of those in X, even though their shortest
representative is the same. For instance the path ca.cb is in the set whose shortest
representative is da in X but is not a path in X0.

Fig. 3. (a) A generalized Cayley graph X. (b) Xab the generalized Cayley graph X
shifted on vertex ab. (c) Xab.ca the generalized Cayley graph X shifted on vertex ab.ca,
which also corresponds to the graph Xab shifted on vertex ca.

Once given two graphs G and H from the set Gπ,Σ,Δ, it is possible to check
if their labelling and ports do not contradict, and to compute their union. If G
and H agree on their intersection we say that they are consistent and we denote
their union by G ∪ H. We say that G and H are trivially consistent if their
intersection is empty. All these notations are rigorously formalized in [5] (Figs. 2
and 3).

We can now introduce our notion of local rule. In a graph generated by a
local rule f , names of vertices have a particular meaning. When applied on a
disk Xr

u ∈ Xr
π,Σ, f produces a graph f(Xr

u) such that the names of its vertices
are sets of elements of the form u.z with u a path of Xr

u and z a suffix in a set
S = {ε, 1, . . . , b}. The conventions taken are such that the integer z stands for the
‘successor numbered z’. Hence the vertices designated by ε, 1, 2 . . . are successors
of the vertex ε, whereas those designated by u, u.1, u.2 . . . are successors of its
neighbour u ∈ Xr. For instance a vertex named {1, ab.2} is understood to be
both the first successor of vertex ε and the second successor of the vertex attained
by the path ab. Such a vertex can be designated by 1, ab.2 or {1, ab.2}.

Definition 1 (Local rule). A (possibly partial) function f from Xr
π,Σ to Gπ,Σ,Δ

is a local rule if and only if:

• For every X, the vertices of f(X) are disjoint subsets of V (X).S and ε ∈
f(X),

• There exists a bound b such that for all disks Xr+1, |V (f(Xr+1))| ≤ b,

An Intrinsically Universal Family of Causal Graph Dynamics 133

Fig. 4. Naming convention in the image graph of a local rule. The first vertex in the
image graph (bottom graph) is both the direct continuation of the first vertex ε and
the first successor of the second vertex ab. The second vertex of the image graph is
the continuation of both the second vertex ab and the third vertex ab.aa. Continuation
relation is represented by plain arrows, while successor relation by dashed arrows.

• For every disk Xr+1 and every u ∈ X0 we have that f(Xr) and u.f(Xr
u) are

non-trivially consistent,
• For every disk X3r+2 and every u ∈ X2r+1 we have that f(Xr) and u.f(Xr

u)
are consistent (Fig. 4).

The conditions of consistency are here to ensure that if the local rule is applied
on two “close” vertices of the same graph, the two resulting subgraphs will be
intersecting and consistent.

A local rule is a mathematical object which can be characterized by:

– |π| the degree of the graphs it is applied on,
– Σ the set of vertex labels,
– r the radius of the disks it is applied on,
– b the maximal size of its images.

The set of local rules of parameters (|π|,Σ, r, b) is denoted Fπ,Σ,r,b.
Finally, the definition of localizable function describes how these local rules

can be used to induce a global function that acts on graphs of arbitrary size.

Definition 2 (Localizable function). A (global) function F from XΣ,π to
XΣ,π is localizable if and only if there exists a radius r and a local rule f from
Xr

Σ,π to GΣ,π such that for all X, F (X) is given by the equivalence class, with ε
taken as the pointer vertex, of the graph

∼
⋃

u∈X

u.f(Xr
u).

where ∼ G constructs the generalized Cayley graph having the same structure as
G, with pointer the vertex with name ε.

We now provide two examples of local rules.
The turtle. This transformation is defined over graphs of degree 1. It switches
between the two different graphs of degree one. The corresponding local rule is
depicted in Fig. 5.

134 S. Martiel and B. Martin

Fig. 5. The turtle local rule. The induced dynamics simply switches between the two
existing graphs of ports {0}. In the first case, two vertices are generated with two
“fresh” names. In the second case, a single vertex is generated with name {00, ε}. In
total two vertices will be generated by the two different disks present in the graph will
be identified thanks to the graph union.

Fig. 6. The inflating line local rule. There are 9 different disks of radius 0 and degree 2.
For each of these disks, the local rule generates between 2 and 4 vertices. The vertices
named ε and ε.1 are the two direct “descendant” of the center of the disk (the pointed
vertex). The other vertices are descendant of the neighbour(s) of the pointed vertex,
and are present to allow the recomposition of the image graph through the graph union.

Inflating Line. This transformation is defined over graphs of degree 2, i.e. with
ports {0, 1}. It replaces each vertex by two vertices, doubling the length of the
graph. Figure 6 describes the 9 different neighbourhoods of radius 0 and their
respective image through a local rule inducing this transformation.

3 Intrinsic Simulation and Universality

When considering the problem of intrinsic simulation inside a model or in-
between models, the problem of qualifying the structure of the computation
arises. Indeed, intrinsic simulation is about simulating another instance of a
model while preserving the structure of the computation. In the case of CA, it is
required that one must be able to obtain the simulated configuration by grouping
cells of the simulating configuration [11]. In our case, we would like to state that
the simulating graph has, somehow, the same topology as the simulated graph.
This is done by using the two notions of continuity and shift-invariance.

In [4], it was shown that localizable dynamics introduced in Sect. 2 can also
be described in a very axiomatic way by endowing the set of graphs with a
compact metric and by defining a notion of shift-invariance for functions over
graphs. These definitions can be slightly altered to characterize continuity and
shift-invariance for a transformation from a set Xπ1,Σ1,Δ2 to a set Xπ2,Σ2,Δ2 .

An Intrinsically Universal Family of Causal Graph Dynamics 135

Definition 3 (Intrinsic simulation). A localizable dynamics (Xπ1,Σ1 , f1)
intrinsically simulates another localizable dynamics (Xπ2,Σ2 , f2) if and only if
there exists a continuous, shift-invariant, bounded, injective, locally computable
function E : Xπ2,Σ2 → Xπ1,Σ1 and a constant δ such that, for all graph X ∈
Xπ2,Σ2 :

E ◦ F2(X) = F δ
1 ◦ E(X)

Remark on the Notion of Locally Computable Transformations. In [5], it is proved
that the application of a continuous shift-invariant transformation, i.e. a CGD,
on a finite graph is computable. This property naturally extends to continuous
shift-invariant transformations from a set Xπ1,Σ1,Δ2 to a set Xπ2,Σ2,Δ2 . This is in
fact our notion of locally computable function. Thus, in the previous definition,
the condition that E is locally computable is already verified when requiring its
continuity and shift-invariance.

Now the definition of intrinsic universality comes naturally:

Definition 4 (Intrinsic universality). A localizable dynamics (Xπ,Σ, f) is
intrinsically universal if and only if, it instrinsically simulates any other localiz-
able dynamics (Xπ′,Σ′ , f ′).

Claim 1 (A family of intrinsically universal instances). There exists a
family (Xπu,Σu

, fd)d∈N such that for all localizable dynamics (Xπ,Σ,Δ, f) there
exists an index d such that (Xπu,Σu

, fd) intrinsically simulates (Xπ,Σ,Δ, f).

Notice that we will not give a proof of this result. The complexity of the con-
struction we present prevents any formal result on its properties. Instead, we
will sketch the construction in the following sections.

4 Preliminary Results

Lemmas 1 and 2 are used to limit the set of local rules we need to simulate.

Lemma 1 (Radius 1 is universal). Let f be a local rule of radius r = 2� over
Xπ,Σ,Δ. There exists a local rule f ′ over Xπr,Σ�+1,Δ∪{�} of radius 1 such that
(Xπr,Σ×{1,...,�},Δ∪{�}, f ′) simulates (Xπ,Σ,Δ, f).

Proof. Outline. Over the first i = 1, . . . , � steps, each vertex will grow some
ancillary edges to, in the end, reach all neighbours in its neighbourhood of radius
r. More precisely, states of vertices are kept identical, whereas an ancillary edge
with state � is added between any two vertices at distance 2. Moreover, the
vertices count until stage �. At this point, the neighbours that were initially at
distance r have become visible at distance one. The local rule f can be applied,
all ancillary edges are dropped, and all counters are reset.

Lemma 2 (Label free is universal). Let f be a local rule of radius r over
Xπ,Σ,Δ. There exists a local rule f ′ over Xπ∪|Σ|×|Δ|,∅,∅ such that (Xπ′,∅,∅, f ′)
simulates (Xπ,Σ,Δ, f), where π′ = π 	 Σ 	 Δ|π|.

136 S. Martiel and B. Martin

Proof. Outline. The presence of a label i ∈ Σ on a vertex will be encoded by
the presence of a dangling vertex on port i of this vertex. In the same fashion,
if an edge labelled with j ∈ Δ connects two ports u : a and v : b, then vertex u
will have a dangling vertex on port j in its ath port component and v a dangling
vertex in its bth port component. Notice that not all graphs are valid encoding,
e.g. if a vertex has a dangling vertex on port i ∈ Σ and on port j ∈ Σ at the
same time. Nevertheless this encoding verify all the require properties as it is
injective, continuous and shift-invariant.

Notice that these two constructions are not incompatible. Composing the
two in the right order leads to the fact that any local rule can be intrinsically
simulated by a local rule of radius one with no labels. In other words, the subset
of localizable dynamics of radius one with no labels is intrinsically universal.

Corollary 1 (Radius 1 label free is universal). Let f be a local rule of
radius r over Xπ,Σ,Δ. There exists a local rule f ′ over Xπ′∅,∅ of radius 1 such
that (Xπ′,∅,∅, f ′) simulates (Xπ,Σ,Δ, f).

5 A Family of Intrinsically Universal Local Rules

We now describe a family of intrinsically universal local rules (fd,Xπu,Σu,Δu
)d

such that fd simulates all rules over Xπ,∅,∅ with |π| = d. More precisely, all of
these universal rules will act upon the same set of graphs Xπu,Σu,Δu

, and only
differ in their radius. To define these rules, we are faced with several problems:

• Our universal rules all act upon a given set of graphs of bounded degree |πu|.
We need to be able to encode any graphs of bounded degree into our set of
graphs Xπu,Σu,Δu

. Section 5.1 tackles this issue and introduces an encoding of
any graph of bounded degree in a graph of degree 3.

• There is an unbounded number of local rules of radius 1 with no labels. Hence,
the information of which local rule is to be simulated cannot be stored as a
label in Σu. Section 5.2 offers an encoding of any local rule in a subgraph
whose purpose is to be attached to every simulated vertex.

• In order to simulate more than a single time step of the local rule, we must
be able to create several instances of the graph containing its encoding and
transmit these instances to the descendants of the simulated vertex. Section 5.3
offers a way to duplicate a subgraph describing a local rule, together with some
synchronization tools.

A description of the functioning of the universal local rule is given in Sub-
sect. 5.3. In this section we might refer to simulated vertices as “meta”-vertices
since each of these vertices will be encoded in a graph structure.

5.1 Graph Encoding

We choose the following encoding to represent any graph of bounded degree π
in a graph of degree 3. For readability, we will give explicit names to the three

An Intrinsically Universal Family of Causal Graph Dynamics 137

Fig. 7. Here, π = {0, 1, 2}. (a) depicts a graph composed of two vertices connected
through ports 2 and 0. (b) represents the encoding of this graph. Each vertex is repre-
sented by 4 vertices forming a ring. The darkest vertices have label VERTEX while the
grey vertices have label PORT. The ports used in the ring are (N)ext and (P)revious.
The edge linking the two vertices is represented by an edge between the third vertex
of the first ring (representing port 2 of the first vertex) and the first vertex of the
second ring (representing port 0 of the second vertex). Finally, (c) presents a lighter
representation of the same encoding where an arrow indicates the orientation of the
rings. For the sake of clarity, this latter representation will be used in the following
figures.

ports used in the following definition. The set of ports in the encoding can be
assimilated to {0, 1, 2}. The three port are: previous, next and neighbour. The
set containing those three ports will be referred to as πgraph. We define the set
of labels Σgraph as the set {VERTEX,PORT}.

Definition 5 (Graph encoding). Given a set of ports π, consider the trans-
formation Egraph

π : Xπ → Xπgraph,Σgraph
defined as follows:

– To each vertex v in X, corresponds π +1 vertices v0, . . . , vπ in Egraph
π (X) and

the following edges: for all i ∈ {0, . . . , |π|}, {vi : next, vi+1 : previous}. vi has
label PORT for i < |π| and v|π| has label VERTEX.

– To each edge {u : i, v : j} in X corresponds an edge {ui : neighbour, vj :
neighbour}.

The idea is to split the encoded vertex into |π| + 1 vertices and arrange them
into a ring. Each vertex vi (i < |π|) represents a port of the encoded vertex. The
last vertex vπ marks the start of the ring (the vertex representing port 0 will be
found on its port next). Figure 7 describes the encoding for graphs with |π| = 3.

Lemma 3 (Egraph
π is a good encoding). Given π, Egraph

π is continuous, shift-
invariant and injective.

Proof. The proof of this result is pretty straightforward. As Egraph
π acts locally

on the graph, continuity and shift-invariance are instantaneous. Moreover, any
change in the original graph will result in a change in the encoded graph as all
information on the topology is preserved.

138 S. Martiel and B. Martin

5.2 Local Rule Encoding

[General structure]. We need to encode any local rule of radius 1 without
label into a subgraph. A rule of degree |π| can be seen as an array of fixed length
(the number of possible neighbourhoods) containing all the possible outputs of
the local rule. We choose to arrange all these outputs along a line graph together
with a description of the corresponding neighbourhood. The description of the
neighbourhoods is detailed in Subsect. 5.3. Figure 8 represents such an encoding
for the local rule inducing the turtle dynamics.

[Addresses and Identification]. We also need to identify a meta-vertex of
an output to another meta-vertex in another output, in order to proceed to a
graph union. This is done by adding to each vertex labelled by VERTEX a
line graph containing a path towards the other vertex. Figure 9 represents the
graph encoding the turtle local rule with these addresses. Figure 10 represents
the graph encoding the inflating line local rule.

[Inheritors and Disowned Vertices]. Inside an output subgraph, there are
two types of meta-vertices: the ones that need to receive a copy of the local rule
graph and the others. We use a product label to mark the meta-vertices that will
inherit of a copy of the local rule. In the example of the turtle, all meta-vertices
are marked while in the example of the inflating line, only the meta-vertices
having an empty address are marked.

5.3 Description of an Intrinsically Universal Rule

Applying a local rule to every vertex in a graph consists in several stages:

(i) Each vertex observes its neighbourhood
(ii) Each vertex deduces the output subgraph it has to produce according to the

local rule
(iii) A graph union of all these subgraphs is computed to produce the final graph.

Fig. 8. Encoding of the turtle rule. Black vertices are vertices labelled by VERTEX,
dark grey vertices are labelled by PORT. Light grey vertices are part of line structure
onto which all outputs are attached. Vertices on the left of the vertical line are labelled
by bits corresponding to the number of the outputs in an enumeration of all possible
neighbourhoods. We choose not to use the neighbourhood encoding used in Sect. 5.3,
as there are only 2 different neighbourhoods. The square vertex represents the top of
the line structure.

An Intrinsically Universal Family of Causal Graph Dynamics 139

Fig. 9. Encoding of the turtle rule including the addresses. The empty set label is used
to specify that the meta-vertex does not need to be identified to another meta-vertex.
When the address is not empty, it is encoded in a line graph using 4 different labels: ↑,
→, ↓ and |. ↑ indicates to move on the father meta-vertex. ↓ indicates to go down from
a father meta-vertex to its output. → indicates to travel along the port NEXT in a
meta-vertex. | indicates to travel along the port neighbour between two meta-vertices.

The universal local rule implements those three stages, with an additional stage:

(ii*) The encoding of the local rule is duplicated into each meta vertex of the
chosen output subgraph.

Moreover, a universal local rule must synchronise the simulation in every meta-
vertex in order to perform the graph union only when all subgraphs are chosen
and all duplications are over.

We detail how each of these stages are performed by the universal local rule.

[neighbourhood Observation] First the meta-vertex proceeds to generate a
matrix of vertices of size |π|+1 to store the connectivity of its neighbourhood. A
new vertex is attached to the vertex labelled VERTEX and starts moving along
the ring of vertices labelled PORT growing the matrix in 2 passes. Figure 11
describes this growing process on a meta-vertex of degree 9.

Once the matrix is built, the machine vertex starts a depth first search (DFS)
of depth 1 on the meta vertex it is attached on. It grows 2 edges (or arms) that
will travel in the graph and 4 unary counters to keep track of the DFS status.
The unary counters are line graphs of lengths |π| + 1 and |π|. The two counters
of length |π| + 1 keep track of which meta-vertex can be found at the end of
each arm while the two counters of length π keep track of the ports currently
considered. Figure 13 represents the structure of a counter, and Fig. 14 describes
the structure used to store the current state of the DFS. While visiting a vertex
ui, its port pj and a vertex uk and its port pl, an edge is created between cells
(i, j) and (k, l) of the matrix if the edge {ui : pj , uk : pl} is present in the graph.
Once the DFS is over, the matrix contains enough information to determine the
neighbourhood of the vertex. Figure 12 presents the two different matrices for
neighbourhoods in graphs of degree 1.

Note on the Description of the Neighbourhood. The usage of a matrix to
encode the neighbourhood of a meta-vertex is the most general solution we can
implement. However, in most of the cases, we do not need that much information.
In the two examples we develop in this paper (the turtle and the inflating line),
it is only required to test for the existence of a potential neighbour on each port

140 S. Martiel and B. Martin

Fig. 10. Encoding of the inflating line rule including the addresses. There exist 9
different neighbourhoods of radius 0 on graphs of degree 2, thus the presence of 9
different outputs in the encoding. Numbering of the possible outputs are neglected
here as they do not bring any information to the understanding of this encoding.

An Intrinsically Universal Family of Causal Graph Dynamics 141

Fig. 11. Growth of the connectivity matrix. A “machine” vertex starts to run along
the ring and for each vertex it passes, adds a new vertex to a line graph: (a) At first
the line graph is empty and the machine vertex is attached on the VERTEX vertex.
(b) After three steps. (c) After 10 steps, the machine vertex is back on the first vertex
and start the second pass. d,e,f,g represent the 4 first steps of the second pass. The
machine sends a signal (in grey) that triggers the growth of each column while moving
along the ring. (h) represents the 11th step where the signal reaches the last column and
the machine arrives at the VERTEX label again. The machine sends an “end” signal
to stop the growth of the columns. (i) represents the final matrix (after 20 steps).

Fig. 12. The two matrices encoding resp. the neighbourhood where no neighbour is
present, and the neighbourhood where another vertex is present on the only port. In
the first graph, the bottom right vertex is crossed to indicate that there is no “second”
vertex in the neighbourhood.

of the meta-vertex, and the local rule does not require to know their complete
connectivity. Hence, in both local rule encodings, we will use an ad hoc encoding
of the neighbourhoods. For the turtle rule, we will use a single bit to represent
the two possible neighbourhoods. For the inflating line, a string of bits is used.
For each port of the vertex we proceed as follows: if there is no neighbour on
this port we add a 0 to the string. If there is a neighbour on the port, we add a
1 to the string, followed by a 0 or a 1 depending on the port and the other end
of the edge.

[Choosing the Output Subgraph]. After recording the local connectivity, the
machine vertex starts to travel down the local rule encoding and compare this

142 S. Martiel and B. Martin

Fig. 13. A counter structure. It consists in a line graph of the appropriate length. The
origin of the line can grow an arm to read the counter, one vertex at a time. It is
easy for an automaton to grow a counter of the appropriate size by running along a
meta-vertex and generating a new vertex for each visited port (see matrix generation).
All vertices composing the counter have the same label.

Fig. 14. DFS structure for the neighbourhood exploration of a vertex of degree |π| = 4.
At the top: 4 unary counters structure. The DFS explores the neighbourhood of the
center vertex by considering every possible pair of vertices (including the center vertex,
as there might be loops the graph). The two center counters are used to keep track of
which vertices are currently being visited. The two smaller counters are here to keep
track of which port is currently considered in each of these vertices. Here, the currently
considered pair is composed of the “center” vertex and its neighbour of port :0 and
their ports :3 and :2.

recording to the information attached to each output, stopping when the two
are matching.

An Intrinsically Universal Family of Causal Graph Dynamics 143

[Duplicating the Local Rule Encoding]. The machine then initiates a DFS
on the chosen output graph. The purpose of this DFS is to search for marked
meta-vertices. During the DFS, every time a marked meta-vertex is met, the
DFS is paused and a new DFS starts from the root of the local rule encoding.
This new DFS will explore the local rule encoding while constructing a new
copy of it. This can be done by maintaining a stack structure containing the
path followed in the graph during the DFS. When the machine encounters an
edge leading toward a previously visited vertex, it uses this stack to backtrack
and find the right edge to create in the new version of the graph. These two
DFS act on graphs of degree 3 and 4 and thus do not require the same counter
structures as the DFS in the neighbourhood observation stage, as everything can
be stored using a bounded number of labels in the vertices. This new version of
the local rule encoding is then attached to the marked meta-vertex and the first
DFS is resumed.

[Graph Union and Vertex Identification]. Once the DFS is over, meta-
vertices of the output graph start moving in the graph according to the addresses
attached to them. Meanwhile, the local rule encoding is reduced to get rid of all
the unused outputs, leaving the only chosen output attached to the simulated
meta-vertex.

[Merging Two Meta-Vertices]. After moving according to its address, a meta-
vertex will meet its target meta-vertex and they will try to merge. Notice that
the target meta-vertex might also try to merge with a third vertex, and so on,
forming a sequence of meta-vertices that must be merged in a single meta-vertex.
This can lead to two very distinct situation: either the sequence is not cyclic or
the sequence forms a cycle. In the first case, the first vertex of the sequence
will perform the merging, followed by the second and so on until all the meta-
vertices are merged as a single meta-vertex. In the second case, no meta-vertex
can decide to start the merging process as every meta-vertex sees itself in the
middle of the sequence. Meta-vertices can easily decide whether this is the case
by growing a new edge whose extremity will travel along the sequence. If the
edge reaches the end of the sequence, then the merging process will start. If not,
a synchronization process will start.

[Synchronization Process]. If synchronization is required during the merging
process, then we can assume that these meta-vertices are synchronized (i.e. they
decide to start the merging process exactly at the same time). Indeed, if they were
not synchronized, then the symmetry could have been broken in the local rule
encoding, as only the neighbourhood of simulated meta-vertex has an influence
on the time step at which meta-vertices of its local rule encoding decide to merge.
Two problems now arise:

• In order for the cycle to collapse in a single meta-vertex in a single time step,
the universal local rule must be able to “see” the whole cycle, hence its radius
must be of at least half the length of the larger possible identification cycle.

• Meta-vertices are not composed of a single vertex. They contain at least |π|+1
vertices and might also contain a local rule encoding. All these vertices need

144 S. Martiel and B. Martin

to be simultaneously merged with their corresponding vertices in the previous
and next meta-vertices in the merging cycle.

The first problem is easy to solve as we are constructing a family of intrinsi-
cally universal local rules. A given local rule can only produce merging cycles of
bounded lengths, hence will be simulated by one of our universal local rule.

The second problem can be solved using a solution of a problem known as
the Firing Squad Synchronisation Problem (FSSP) over graph automata [9,12].
The construction uses labels on the vertices of a graph in order to synchronize
all the vertices using only local communications between vertices. Moreover, the
solution only depends on the degree of the graph to synchronize. In our case, we
need to synchronize meta-vertices and their local rule encodings, which are of
bounded degree 4. The identification process will be performed as follow:

• Meta-vertices will detect that they are in a cycle of identification
• Meta-vertices start a FSSP on their main vertex
• The FSSP synchronizes every vertex composing the meta-vertex and its poten-

tial local rule encoding
• While propagating the FSSP, new edges are built between vertices of the

meta-vertex and their corresponding vertices in the previous and next meta-
vertices

• When all vertices are synchronized, the universal local rule performs a merging
of the vertices, leading to a single meta-vertex and its local rule encoding.

Figures 16 and 15 describe the different possible cases of merging sequences and
the synchronization process. When all mergings are performed, the original meta-
vertices are destroyed, leaving only the new graph and can be restarted to sim-
ulate the next time-step. Figures 17 and 18 describe the complete simulation of
one time step of the turtle dynamics over the graph containing two vertices.

Fig. 15. Synchronization process of three meta-vertices and their local rule encodings.
All meta-vertices start a FSSP on their vertices. At the beginning, only the “main”
vertex is connected along the merging cycle to the others “main” vertices (top graph).
As the FSSP is propagated, the vertices connect themselves to their corresponding
vertices in the previous and next vertices. The bottom graph describes the same graph,
two propagation steps later. When the FSSP is completed, all vertices “fire” exactly
at the same time and perform a merging along all the built cycles, resulting in a single
meta-vertex and its local rule encoding.

An Intrinsically Universal Family of Causal Graph Dynamics 145

Fig. 16. Different types of merging sequences. The two top cases are solved by ordering
the vertices according to the sequence, and then having the first one merge to the second
one, and so on. In the last case, the sequence forms a cycle, and a synchronization is
necessary to perform the simultaneous merging of the cycle.

Fig. 17. A graph of degree |π| = 1 and its encoding together with turtle local rule
encodings. Each of the two meta-vertices receive a version the local rule encoding.
Once again, the description of the different neighbourhoods in the local rule encoding
is not made using matrices, as there are only two possible cases, instead we used single
digits. Here the neighbourhood with only one single vertex is encoded by a 0 while the
neighbourhood with two vertices is encoded by a 1.

5.4 On the (non) Existence of a Single Universal Rule

The construction presented in this paper describes a family of intrinsically uni-
versal local rules, and not an universal local rule. All local rules in this family
act on the same set of graphs, and only differ in their radius. Having universal
local rules with arbitrary large radius is only required in the last part of the
construction, for the merging process. When meta-vertices decide to merge into
a single meta-vertex, and the merging sequence forms a cycle, the local rule must
be able to either order the meta-vertices and proceed to merge them one-by-one
according to that order, or “see” all the meta-vertices, synchronize them, and
proceed to the merging in one time step. The latter is only possible if the radius
of the local rule is large enough, and that is the solution we adopted here. In the

146 S. Martiel and B. Martin

Fig. 18. Steps of the simulation of the turtle local rule. (a) After the neighbourhood
exploration. The two automata attached to each meta-vertices have detected the pres-
ence of another meta-vertex in the neighbourhood, and thus generated a vertex labelled
1. (b) The automata travelled down the local rule and chose the second output sub-
graph. They will then start a DFS on the chosen subgraph. (c) the DFS detected a
meta-vertex and decided to duplicate the local rule and attach a copy to it. (d) The
DFS is over, the local rule is destroyed and the identification process is running. The
automata is on his way to reach the meta-vertex at the end of the address attached
to the meta-vertex of the output subgrah. 2 symbols of the address have been read: ↑
and →. (e) After reading the address the two meta-vertices are pointing toward each
other and start the merging process. (f) After synchronization, the two meta-vertices
and their local rule encodings are merged, and the simulation is over. To restart the
simulation a new automaton can be attached to the meta-vertex.

former however, we must order meta-vertices that are descendant of different
vertices of the simulated graph. This requires to be able to unambiguously order
the meta-vertices in any disk of radius 1 of our simulated graph. This is equiv-
alent to have a clean colouring of the simulated graph. The colouring will then

An Intrinsically Universal Family of Causal Graph Dynamics 147

give us a way to totally order the descendants of the meta-vertices, and hence
gives us a way to proceed to the merging without requiring any synchronization.

However, to use a clean colouring, we must prove that any local rule can be
modified to take the colouring into account and maintain it over time. This, in
turn, requires to be able to locally break the symmetries in the image graph,
which might be impossible for some graphs.

Hence, it seems impossible to construct a unique intrinsically universal rule,
at least using this type of constructions.

6 Conclusion

In this work, we provide a definition of intrinsical simulation and intrinsical uni-
versality for causal graph dynamics. We then construct a family of intrinsically
universal instances of this model. All the local rule of this family act on the same
set of graphs and only differ in their radius.

This construction is not optimal, and can still be optimized in various ways:

• One could achieve a similar result with a construction on graphs of smaller
degree, and with a smaller label set

• The time-complexity of the simulation can probably be decreased by opti-
mizing the structure of the graph encoding and the local rule encoding. For
instance one could imagine using a set structure to encode the local rule,
changing a linear access time (in the number of possible neighbourhoods) to
the chosen output graphs in a logarithmic access time.

Moreover, it seems that this is the best result we can achieve with this kind of
construction, as it seems impossible to construct a unique intrinsically universal
rule. Notice that, although we need a family of instances to simulate all the
possible instances, most of the “natural” instances can be simulated by the
universal rule that allows merging sequence of arbitrary length and only forbids
merging cycles of length greater that 4, i.e. the universal local rule of radius 2.

References

1. Arrighi, P., Dowek, G.: Causal graph dynamics. In: Czumaj, A., Mehlhorn, K.,
Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 54–
66. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31585-5 9

2. Arrighi, P., Fargetton, R., Wang, Z.: Intrinsically universal one-dimensional quan-
tum cellular automata in two flavours. Fundam. Inform. 21, 1001–1035 (2009).
doi:10.3233/FI-2009-0041

3. Arrighi, P., Grattage, J.: Partitioned quantum cellular automata are intrinsically
universal. Nat. Comput. 11, 13–22 (2012). doi:10.1007/s11047-011-9277-6

4. Arrighi, P., Martiel, S.: Generalized Cayley graphs and cellular automata over
them. In: Proceedings of GCM 2012, pp. 129–143, Bremen, September 2012.
arXiv:1212.0027

5. Arrighi, P. Martiel, S. Nesme, V.: Generalized Cayley graphs and cellular automata
over them. submitted (long version) (2013). arXiv:1212.0027

http://dx.doi.org/10.1007/978-3-642-3158-5_9
http://dx.doi.org/10.3233/FI-2009-0041
http://dx.doi.org/10.1007/s11047-011-9277-6
http://arxiv.org/abs/1212.0027
http://arxiv.org/abs/1212.0027

148 S. Martiel and B. Martin

6. Durand-Lose, J.O.: Intrinsic universality of a 1-dimensional reversible cellular
automaton. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200,
pp. 439–450. Springer, Heidelberg (1997). doi:10.1007/BFb0023479

7. Martiel, S., Martin, B.: Intrinsic universality of causal graph dynamics. In:
Neary, T., Cook, M. (eds.) Proceedings, Machines, Computations and Universality
2013, pp. 137–149, Zürich, Switzerland, 09 September 2013–11 September 2013,
Electronic Proceedings in Theoretical Computer Science 128. Open Publishing
Association (2013). doi:10.4204/EPTCS.128.19

8. Martin, B.: Cellular automata universality revisited. In: Chlebus, B.S., Czaja, L.
(eds.) FCT 1997. LNCS, vol. 1279, pp. 329–339. Springer, Heidelberg (1997)

9. Mazoyer, J.: An overview of the firing squad synchronization problem. In:
Choffrut, C. (ed.) LITP 1986. LNCS, vol. 316, pp. 82–94. Springer, Heidelberg
(1988)

10. Ollinger, N.: Intrinsically universal cellular automata. In: Neary, T., Woods, D.,
Seda, A.K., Murphy, N. (eds.) CSP, pp. 259–266. Cork University Press (2008).
doi:10.4204/EPTCS.1.19

11. Ollinger, N.: Intrinsically universal cellular automata. In: Neary, T.,
Woods, D., Seda, A.K., Murphy, N. (eds.) CSP, EPTCS 1, pp. 199–204.
http://arxiv.org/abs/0906.3213

12. Rosenstiehl, P., Fiksel, J.R., Holliger, A., et al.: Intelligent graphs: networks of
finite automata capable of solving graph problems. In: Read, R.C. (Ed.) Graph
Theory and Computing, pp. 219–265. Academic Press, Edinburg (1972)

http://dx.doi.org/10.1007/BFb0023479
http://dx.doi.org/10.4204/EPTCS.128.19
http://dx.doi.org/10.4204/EPTCS.1.19
http://arxiv.org/abs/0906.3213

The Simulation Powers and Limitations
of Hierarchical Self-Assembly Systems

Jacob Hendricks(B), Matthew J. Patitz, and Trent A. Rogers

Deptartment of Computer Science and Computer Engineering,
University of Arkansas, Fayetteville, AR, USA

{jhendric,patitz,tar003}@uark.edu

Abstract. In this paper, we extend existing results about simulation
and intrinsic universality in a model of tile-based self-assembly. Namely,
we work within the 2-Handed Assembly Model (2HAM), which is a model
of self-assembly in which assemblies are formed by square tiles that are
allowed to combine, using glues along their edges, individually or as pairs
of arbitrarily large assemblies in a hierarchical manner, and we explore
the abilities of these systems to simulate each other when the simulating
systems have a higher “temperature” parameter, which is a system wide
threshold dictating how many glue bonds must be formed between two
assemblies to allow them to combine. It has previously been shown that
systems with lower temperatures cannot simulate arbitrary systems with
higher temperatures, and also that systems at some higher temperatures
can simulate those at particular lower temperatures, creating an infi-
nite set of infinite hierarchies of 2HAM systems with strictly increasing
simulation power within each hierarchy. These previous results relied on
two different definitions of simulation, one (strong simulation) seemingly
more restrictive than the other (standard simulation), but which have
previously not been proven to be distinct. Here we prove distinctions
between them by first fully characterizing the set of pairs of tempera-
tures such that the high temperature systems are intrinsically universal
for the lower temperature systems (i.e. one tile set at the higher tempera-
ture can simulate any at the lower) using strong simulation. This includes
the first impossibility result for simulation downward in temperature. We
then show that lower temperature systems which cannot be simulated
by higher temperature systems using the strong definition, can in fact be
simulated using the standard definition, proving the distinction between
the types of simulation.

1 Introduction

In computational theory, a powerful and widely used tool for determining the
relative powers of systems is simulation. For instance, in order to prove the

J. Hendricks, M.J. Patitz, and T.A. Rogers—Supported in part by National Science
Foundation Grant CCF-1422152.
T.A. Rogers—This author’s research was supported by the National Science Foun-
dation Graduate Research Fellowship Program under Grant No. DGE-1450079.

c© Springer International Publishing Switzerland 2015
J. Durand-Lose and B. Nagy (Eds.): MCU 2015, LNCS 9288, pp. 149–163, 2015.
DOI: 10.1007/978-3-319-23111-2 10

150 J. Hendricks et al.

equivalence (in terms of computational power) of Turing machines and various
abstract models (such as tag systems, counter machines, cellular automata, and
tile-based self-assembly models), systems have been developed in each which
demonstrate their abilities to simulate arbitrary Turing machines, and vice versa.
This has been used to prove that whatever can be computed by a system within
one model can also be computed by a system in another. Additionally, the notion
of a universal Turing machine is based upon the fact that there exist Turing
machines which can simulate others.

The methods of simulation which are typically employed involve mappings of
behaviors and states in one model or system to those in another, often following
some “natural” mapping function, and also often in such a way that the simu-
lation is guaranteed to generate the same final result as the simulated system,
and maybe even some or all of its intermediate states. Nonetheless, there is usu-
ally no requirement that the simulator “do it the same way,” i.e. the dynamical
behavior of the simulator need not mirror that of the simulated. For instance,
as one Turing machine A simulates another, B, its head movements may be in
a significantly different pattern than B’s since, for instance, it may frequently
move to a special portion of the tape which encodes B’s transition table, then
back to the “data” section.

While such types of simulation can be informative when asking questions
about the equivalence of computational powers of systems, oftentimes it is the
behavior of a system which is of interest, not just its “output.” Self-assembling
systems, which are those composed of large numbers of relatively simple com-
ponents which autonomously combine to form structures using only local inter-
actions, often fall into this category since the actual ways in which they evolve
and build structures are of key importance. In this paper, we focus our attention
on tile-based self-assembling systems in a model known as the 2-Handed Assem-
bly Model (2HAM) [3], which is a generalization of the abstract Tile Assembly
Model (aTAM) [19] in which the basic components are square tiles which are able
to bind to each other when they possess matching glues on their edges. In the
aTAM, assembly occurs as tiles autonomously combine, with one tile at a time
attaching to a growing assembly. In the 2HAM, similar growth can occur, but it
is possible for pairs of arbitrarily large assemblies (a.k.a. supertiles) to combine
as well. Because the dynamical behaviors of these systems are of such impor-
tance, work in these models (e.g. [8,9,12,13,16,20]) has turned to a notion of
simulation developed within the domain of cellular automata, whose dynamical
behaviors are also often of central importance. This notion of simulation, called
intrinsic universality (see [1,2,5,6,10,11,15,17,18] for some examples related to
various models such as cellular automata), is defined in such a way that the
simulations performed are essentially “in place” simulations which mirror the
dynamics of the simulated systems, modulo a scale factor allowed the simulator.
Intrinsic universality has been used to show the existence of “universal” systems,
somewhat analogous to universal Turing machines, which can simulate all other
systems within a given model or class of systems, but in a dynamics-preserving
way. Previous work [9] has shown that there exists a single aTAM tile set which
is capable of simulating any arbitrary aTAM system, and thus that tile set is

The Simulation Powers and Limitations 151

intrinsically universal (IU) for the aTAM (and we also say that the aTAM is IU).
Further work in [8] showed that the 2HAM is much more complicated in terms
of IU, with there existing hierarchies of 2HAM systems with strictly-increasing
power of simulation. These simulations are performed by scaled blocks of tiles
known as macrotiles in the simulator used to simulate individual tiles in the
simulated systems. The simulation hierarchy in the 2HAM is based on a classi-
fication of systems separated by a system parameter known as the temperature,
which is the global threshold that specifies the minimum strength of glue bind-
ings required for pairs of tiles or supertiles to combine. It was proven in [8] that
for every temperature τ ≥ 2, there exists a system at temperature τ such that
no system at temperature τ ′ < τ can simulate it. However, they also showed
that for each τ ≥ 2, the class of 2HAM systems at τ is IU.

The motivation of the current paper is to extend and further develop the
results of [8], especially Theorem 4 which states: “There exists an infinite number
of infinite hierarchies of 2HAM systems with strictly-increasing power (and tem-
perature) that can simulate downward within their own hierarchy.” Our results
elucidate more details about this hierarchy, including proving important differ-
ences between different notions of simulation used to characterize intrinsically
universal systems. More specifically, different definitions of simulation have been
used even within the IU results of [8], with one referred to as strong simula-
tion and one as (standard) simulation. Strong simulation is a stricter notion
essentially stating that whenever two supertiles in the simulated system T can
combine, every pair of macrotiles that represents them in the simulator S must
be able to (eventually) combine. However, standard simulation simply requires
that for each half of such a pair in the simulator, there must exist some mate
with which it can eventually combine. While both notions of simulation were
utilized in [8], no concrete distinction was proven in terms of what is or isn’t
possible between them. Here, we first prove that higher temperature systems can
strongly simulate lower temperature systems if and only if there is a relationship
between the temperature values which we call a uniform mapping. We show that
it is easy to find whether such a mapping exists between two temperatures and,
if so, what one is, and prove that for each pair of temperatures 2 < τ < τ ′ where
a uniform mapping exists from τ to τ ′, that there exists a tile set which, at tem-
perature τ ′, is IU for the class of 2HAM systems at τ . We then prove that if no
uniform mapping exists from τ to τ ′, then there exist systems at τ which cannot
be strongly simulated by any system at τ ′, which is the first impossibility result
for simulating downward in temperature that we are aware of, and is of interest
because a natural intuition is that higher temperature systems are strictly more
powerful. (However, we also show that for any given τ there are only a finite
number of τ ′ > τ to which a uniform mapping does not exist.) Finally, we show
that some systems which cannot be strongly simulated by higher temperature
systems when no uniform mapping exists between temperatures can in fact be
simulated from the higher temperature using the standard definition of simula-
tion. This shows the first clear distinction between what is possible under the
various definitions, and that the notion of strong simulation is provably more

152 J. Hendricks et al.

restrictive than that of (standard) simulation since the set of systems which can
be simulated by a higher temperature system is strictly greater than that which
can be strongly simulated.

In the next section we provide the definitions of the model and framework
for our results, then provide an overview of our results in the following sections.
Please note that due to space constraints, proofs can be found in an extend
version of the paper [14].

2 Definitions

2.1 Informal Definition of the 2HAM

Here we give a brief, informal, sketch of the 2HAM. Please see [14] for a more
formal definition. The 2HAM [4,7] is a generalization of the aTAM [19], and
in both the basic components are “tiles”. A tile type is a unit square with four
sides, each having a glue consisting of a label (a finite string) and strength (a
non-negative integer). We assume a finite set T of tile types, but an infinite
number of copies of each tile type, each copy referred to as a tile. A supertile
is (the set of all translations of) a positioning of tiles on the integer lattice Z

2.
Two adjacent tiles in a supertile interact if the glues on their abutting sides are
equal and have positive strength. Each supertile induces a binding graph, a grid
graph whose vertices are tiles, with an edge between two tiles if they interact.
The supertile is τ -stable if every cut of its binding graph has strength at least
τ , where the weight of an edge is the strength of the glue it represents. That is,
the supertile is stable if at least energy τ is required to separate the supertile
into two parts. A 2HAM tile assembly system (TAS) is a triple T = (T, S, τ),
where T is a finite tile set, S is a set of seed supertiles over T , and τ is the
temperature, usually 1 or 2. When S is solely an infinite number of each of the
singleton tiles of T , we call that the default initial state, and for shorthand notion
refer to a TAS with a default initial state simply as a pair T = (T, τ). Given
a TAS T = (T, S, τ), a supertile is producible, written as α ∈ A[T] if either
it is a (super)tile in S, or it is the τ -stable result of translating two producible
assemblies without overlap. That is, any τ -stable supertile which can result from
some positioning of two producible supertiles, so that they do not overlap and
they bind with at least strength τ , is itself a producible supertile. This potentially
allows for the combination of pairs of arbitrary large supertiles. A supertile α
is terminal, written as α ∈ A�[T] if for every producible supertile β, α and β
cannot be τ -stably attached.

2.2 Definitions for Simulation

In this subsection, we formally define what it means for one 2HAM TAS to
“simulate” another 2HAM TAS. The definitions presented in this (and the next)
subsection are based on the simulation definitions from [3,9,16] and are included
here for the sake of completeness. We will be describing how the assembly process

The Simulation Powers and Limitations 153

followed by a system T is simulated by a system U , which we will call the
simulator. The simulation performed by U will be such that the assembly process
followed by U mirrors that of the simulated system T , but with the individual
tiles of T represented by (potentially large) square blocks of tiles in U called
macrotiles. We now provide the definitions necessary to define U as a valid
simulator of T . For a tileset T , let AT and ÃT denote the set of all assemblies
over T and all supertiles over T respectively. Let AT

<∞ and ÃT
<∞ denote the set

of all finite assemblies over T and all finite supertiles over T respectively.
In what follows, let U be a tile set. An m-block assembly, or macrotile, over tile

set U is a partial function γ : Zm ×Zm ��� U , where Zm = {0, 1, . . . m − 1}. Let
BU

m be the set of all m-block assemblies over U . The m-block with no domain
is said to be empty. For an arbitrary assembly α ∈ AU define αm

x,y to be the
m-block defined by αm

x,y(i, j) = α(mx + i,my + j) for 0 ≤ i, j < m.
For a partial function R : BU

m ��� T , define the assembly representation
function R∗ : AU ��� AT such that R∗(α) = β if and only if β(x, y) = R(αm

x,y)
for all x, y ∈ Z

2. Further, α is said to map cleanly to β under R∗ if either (1) for
all non empty blocks αm

x,y, (x+u, y + v) ∈ dom β for some u, v ∈ {−1, 0, 1} such
that u2 + v2 < 2, or (2) α has at most one non-empty m-block αm

x,y. In other
words, we allow for the existence of simulator “fuzz” directly north, south, east
or west of a simulator macrotile, but we exclude the possibility of diagonal fuzz.

For a given assembly representation function R∗, define the supertile repre-
sentation function R̃ : ÃU ��� P(AT) such that R̃(α̃) = {R∗(α)|α ∈ α̃}. α̃ is
said to map cleanly to R̃(α̃) if R̃(α̃) ∈ ÃT and α maps cleanly to R∗(α) for
all α ∈ α̃.

In the following definitions, let T = (T, S, τ) be a 2HAM TAS and, for some
initial configuration ST , that depends on T , let U = (U, ST , τ ′) be a 2HAM
TAS, and let R be an m-block representation function R : BU

m ��� T .

Definition 1. We say that U and T have equivalent productions (at scale factor
m), and we write U ⇔R T if the following conditions hold:

1.
{

R̃(α̃)|α̃ ∈ A[U]
}

= A[T].

2.
{

R̃(α̃)|α̃ ∈ A�[U]
}

= A�[T].

3. For all α̃ ∈ A[U], α̃ maps cleanly to R̃(α̃)

Equivalent production tells us that a simulating system U produces exactly
the same set of assemblies as the simulated system T , modulo scale factor (with
the representation function providing the mapping of assemblies between the
systems). While this is a powerful set of conditions ensuring that the simulator
makes the same assemblies, it does not provide a guarantee that the simulator
makes them in the same way. Namely, we desire a simulator to make the same
assemblies, but also by following the same assembly sequences (again modulo
scale and application of the representation function). We call this the dynamics
of the systems and capture the necessary equivalence in the next few definitions.
It is notable that the conditions required for the dynamics of the systems to be

154 J. Hendricks et al.

equivalent, following and modeling, are strong enough that equivalent production
follows in a straightforward way from them, and therefore is redundant. However,
we include it for completeness and clarity. We require some notation pertaining
to assembly sequences.

For two supertiles α̃ and β̃, and temperature τ ∈ N, define the combination
set Cτ

α̃,β̃
to be the set of all supertiles γ̃ such that there exist α ∈ α̃ and β ∈ β̃

such that (1) α and β are disjoint (steric protection), (2) γ ≡ α ∪ β is τ -stable,
and (3) γ ∈ γ̃. That is, Cτ

α̃,β̃
is the set of all τ -stable supertiles that can be

obtained by “attaching” α̃ to β̃ stably, with |Cτ
α̃,β̃

| > 1 if there is more than one
position at which β could attach stably to α.

Given a TAS T = (T, S, τ), define an assembly sequence of T to be a sequence
of states S = (Si | 0 ≤ i < k) (where k = ∞ if S is an infinite assembly
sequence), and Si+1 is constrained based on Si in the following way: There
exist supertiles α̃, β̃, γ̃ such that (1) γ̃ ∈ Cτ

α̃,β̃
, (2) Si+1(γ̃) = Si(γ̃) + 1,1 (3) if

α̃ 	= β̃, then Si+1(α̃) = Si(α̃) − 1, Si+1(β̃) = Si(β̃) − 1, otherwise if α̃ = β̃, then
Si+1(α̃) = Si(α̃) − 2, and (4) Si+1(ω̃) = Si(ω̃) for all ω̃ 	∈ {α̃, β̃, γ̃}. That is,
Si+1 is obtained from Si by picking two supertiles from Si that can attach to
each other, and attaching them, thereby decreasing the count of the two reactant
supertiles and increasing the count of the product supertile.

The result of a supertile assembly sequence α̃ is the unique supertile res(α̃)
such that there exist an assembly α ∈ res(α̃) and, for each 0 ≤ i < k, assemblies
αi ∈ α̃i such that dom α =

⋃
0≤i<k dom αi and, for each 0 ≤ i < k, αi
 α. For

all supertiles α̃, β̃, we write α̃ →T β̃ (or α̃ → β̃ when T is clear from context)
to denote that there is a supertile assembly sequence α̃ = (α̃i | 0 ≤ i < k) such
that α̃0 = α̃ and res(α̃) = β̃. We write α̃ →1

T β̃ (α̃ →1 β̃) to denote an assembly
sequence of length 1 from α̃ to β̃ and α̃ →≤1

T β̃ (α̃ →≤1 β̃) to denote an assembly
sequence of length 1 from α̃ to β̃ if α̃ 	= β̃ and an assembly sequence of length 0
otherwise.

Definition 2. We say that T follows U (at scale factor m), and we write T �R

U if, for any α̃, β̃ ∈ A[U] such that α̃ →1
U β̃, R̃(α̃) →≤1

T R̃
(
β̃
)
.

Definition 3. We say that U weakly models T (at scale factor m), and we
write U |=−

R T if, for any α̃, β̃ ∈ A[T] such that α̃ →1
T β̃, for all α̃′ ∈ A[U] such

that R̃(α̃′) = α̃, there exists an α̃′′ ∈ A[U] such that R̃(α̃′′) = α̃, α̃′ →U α̃′′, and
α̃′′ →1

U β̃′ for some β̃′ ∈ A[U] with R̃
(
β̃′

)
= β̃.

Definition 4. We say that U strongly models T (at scale factor m), and we
write U |=+

R T if for any α̃, β̃ ∈ A[T] such that γ̃ ∈ Cτ
α̃,β̃

, then for all α̃′, β̃′ ∈

A[U] such that R̃(α̃′) = α̃ and R̃
(
β̃′

)
= β̃, it must be that there exist α̃′′, β̃′′, γ̃′ ∈

A[U], such that α̃′ →U α̃′′, β̃′ →U β̃′′, R̃(α̃′′) = α̃, R̃
(
β̃′′

)
= β̃, R̃(γ̃′) = γ̃, and

γ̃′ ∈ Cτ ′

α̃′′,β̃′′ .

1 with the convention that ∞ = ∞ + 1 = ∞ − 1.

The Simulation Powers and Limitations 155

Definition 5. Let U ⇔R T and T �R U .

1. U simulates T (at scale factor m) if U |=−
R T .

2. U strongly simulates T (at scale factor m) if U |=+
R T .

For simulation, we require that when a simulated supertile α̃ may grow, via one
combination attachment, into a second supertile β̃, then any simulator supertile
that maps to α̃ must also grow into a simulator supertile that maps to β̃. The
converse should also be true. For strong simulation, in addition to requiring that
all supertiles mapping to α̃ must be capable of growing into a supertile mapping
to β̃ when α̃ can grow into β̃ in the simulated system, we further require that
this growth can take place by the attachment of any supertile mapping to γ̃,
where γ̃ is the supertile that attaches to α̃ to get β̃.

Note that, by these definitions, strong simulation implies simulation. That
is, if system T1 strongly simulates T2, then it also simulates T2.

2.3 Intrinsic Universality

Let REPR denote the set of all m-block (or macrotile) representation functions.
Let C be a class of tile assembly systems, and let U be a tile set. We say U is
intrinsically universal for C if there are computable functions R : C → REPR and
S : C →

(
AU

<∞ → N ∪ {∞}
)
, and a τ ′ ∈ Z

+ such that, for each T = (T, S, τ) ∈ C,
there is a constant m ∈ N such that, letting R = R(T), ST = S(T), and
UT = (U, ST , τ ′), UT simulates T at scale m and using macrotile representation
function R. That is, R(T) gives a representation function R that interprets
macrotiles (or m-blocks) of UT as assemblies of T , and S(T) gives the initial
state used to create the necessary macrotiles from U to represent T subject to
the constraint that no macrotile in ST can be larger than a single m×m square.

3 Uniform Mappings

In this section, we define uniform mapping and almost linear uniform mapping,
which will provide the basis for our results related to strong simulation. We
then prove a set of facts about pairs of temperatures and these mappings, most
notably that it is “easy” to find a uniform mapping between temperatures if one
exists.

Definition 6. Let E = {n|n ∈ N andn ≤ Q} and F = {n|n ∈ N andn ≤ R} for
some Q,R ∈ Z

+ with Q ≤ R. Let S be a multiset consisting of members from
E. Then we say that there is a uniform mapping M from E to F if there exists
a function M : E → F such that

∑

x∈S

M(x) ≥ R if and only if
∑

x∈S

x ≥ Q.

We say that there is a uniform mapping from τ to τ ′ provided that there
exists a uniform mapping from {1, 2, ..., τ} to {1, 2, ..., τ ′}.

156 J. Hendricks et al.

Definition 7. Let E = {n|n ∈ N and n ≤ Q} and F = {n|n ∈ N and n ≤ R}
for some Q,R ∈ Z

+ with Q ≤ R, and let M : E → F be a uniform mapping
from E to F . We say that M is almost linear if there exists a c ∈ N such that
for all e ∈ (E − {Q}), M(e) = ce, and M(Q) = R.

If a uniform mapping is almost linear, that means that other than for the
greatest value in the domain of the mapping, the mapping of a number x is
simply x times some constant c, where c is constant for the mapping.

Lemma 1. There exists a uniform mapping from E = {1, ..., τ} to F ={1, ..., τ ′}
if and only if there exists an almost linear uniform mapping from E to F .

Corollary 1. For τ, τ ′ ∈ Z
+ where τ ≤ τ ′, a uniform mapping from τ to τ ′

exists if and only if there exists a constant c ∈ N such that c(τ − 1) < τ ′ ≤ cτ .

Corollary 2. Let τ ∈ Z
+ and suppose that τ < τ ′ < 2τ − 1 for some τ ′ ∈ Z

+.
Then there does not exist a uniform mapping from {1, 2, ...τ} to {1, 2, ..., τ ′}.

Corollary 3. For any τ ∈ Z
+, there are a finite number of τ ′ ∈ Z

+ with τ ′ > τ
such that a uniform mapping cannot be found from τ to τ ′.

Theorem 1. Given τ, τ ′ ∈ Z
+ with τ ≤ τ ′, there exists an algorithm which runs

in time O(log2 τ ′) and (1) determines whether or not a uniform mapping from
τ to τ ′ exists, and (2) if so, produces that mapping.

The following corollary will be used later in the proof of Lemma3.

Corollary 4. Given τ, τ ′ ∈ N such that 1 < τ < τ ′, if no uniform mapping
exists from τ to τ ′, then (τ − 1)
 τ ′

τ � ≥ τ ′.

4 Strong Simulation via Uniform Mappings

In this section, we provide positive results showing that for any pair of temper-
atures τ, τ ′ ∈ Z

+ such that τ < τ ′ and there is a uniform mapping from τ to τ ′,
then there exists a tile set Uτ ′ which is intrinsically universal at temperature τ ′

for the class of all 2HAM systems at temperature τ .

Lemma 2. Let τ, τ ′ ∈ Z
+ with τ < τ ′, such that there exists a uniform mapping

M from τ to τ ′, and let T = (T, S, τ), be an arbitrary 2HAM system at temperature
τ . Then, there exists T ′ = (T ′, S′, τ ′) such that T ′ strongly simulates T .

To prove Lemma 2, we show how to create T ′ from T by using the mapping
M . T ′ is essentially identical to T , but for each glue g on a tile in T , if its strength
is given by the function str(g), then the strength of that glue in T ′ is equal to
M(str(g)). Due to the properties of a uniform mapping, we show that if and
only if a multiset of glues on a pair of supertiles over T allow those supertiles
to bind in T , the mapped glues over supertiles in T ′ will allow the equivalent
supertiles in T ′ to bind. Thus, T ′ will correctly strongly simulate T .

The Simulation Powers and Limitations 157

Lemma 2 shows that as long as there is a uniform mapping between two tem-
peratures, for each system at the lower temperature there exists a system at the
higher temperature which can strongly simulate it. Furthermore, Corollaries 2
and 3 show us that there are only a very few temperatures greater than a given
τ for which a uniform mapping does not exist. Theorem1 tells us that we can
efficiently find a uniform mapping M if one exists, and by the proof of Lemma2
we can also see that the generation of the simulating system merely requires M
and time linear in the size of the system to be simulated. We now show that
such a strongly simulating system can be created for a tile set which is intrinsi-
cally universal for systems at τ , resulting in a tile set which is IU for systems at
temperature τ while strongly simulating them at τ ′.

Theorem 2. Let τ, τ ′ ∈ Z
+ with 1 < τ < τ ′, such that there exists a uniform

mapping M from τ to τ ′. Then there exists a tile set Uτ ′ which is intrinsically
universal for the class of all 2HAM systems at temperature τ , such that the
simulating systems using Uτ ′ are at temperature τ ′.

The proof of Theorem2 simply makes use of the result of [8] showing that for
the class of systems at each temperature τ ≥ 2, there exists a tile set which is IU
for that class. That IU tile set simulates at temperature τ , so we use Lemma 2
to show that for τ ′ > τ where a uniform mapping exists from τ to τ ′, we can
make a strongly simulating tile set at temperature τ ′ for the tile set which is IU
for τ systems.

Note that the results of [8] provide for a variety of tile sets for each τ > 1
such that each is IU for that τ . These tile sets provide for a variety of tradeoffs in
scale factor, tile set size, and number of seed assemblies. Any such tile set Uτ can
be used to create the tile set Uτ ′ from Theorem 2 to achieve the same tradeoffs
since the simulation of Uτ by Uτ ′ is at scale factor 1 and there is a bijective
mapping of tile types from Uτ ′ to whichever Uτ is chosen. Furthermore, an IU
tile set at temperature τ can be chosen which is IU in terms of either strong
simulation or standard simulation, and by those definitions the result still holds.

5 Impossibility of Strong Simulation at Higher
Temperatures

Intuitively, it may appear that the class of systems at higher temperatures is
more “powerful” than the class of systems at lower temperatures. In this section,
we show that this is not strictly the case. Here we present a sketch of the proof by
giving an example of a tile set U such that there exists a 2HAM TAS T = (T, S, 3)
such that for any initial configuration ST over U , the 2HAM TAS U = (U, ST , 4)
does not strongly simulate T . This gives an intuitive idea of the general proof
which can be found in [14].

Theorem 3. Let τ, τ ′ ∈ N be such that (1) 2 < τ < τ ′ and (2) there does not
exist a uniform mapping from τ to τ ′. For every tile set U , there exists a 2HAM
TAS T = (T, S, τ) such that for any initial configuration ST over U , the 2HAM
TAS U = (U, ST , τ ′) does not strongly simulate T .

158 J. Hendricks et al.

Fig. 1. The tile set for the proof of Theorem 3. Black rectangles represent strength-τ
glues (labeled 1–8), and black squares represent the strength-1 glue (labeled 0).

Proof: As in [8], the idea behind this proof is to use Definitions 2 and 4 in order
to show two producible supertiles in T which cannot bind due to insufficient
strength, but whose simulating supertiles in U can combine. This will contradict
the definition of simulation. A large part of the terminology and notation in this
proof are borrowed from [8].

Our proof is by contradiction. Therefore, suppose, for the sake of obtaining
a contradiction, that there exists an intrinsically universal tile set U such that,
for any 2HAM TAS T = (T, S, τ), there exists an initial configuration ST and
τ ′ ≥ τ , such that U = (U, ST , τ ′) strongly simulates T and there does not exist a
uniform mapping from τ to τ ′. Define T = (T, τ) where T is the tile set defined
in Fig. 1, the default initial state is used, and τ > 2. Let U = (U, ST , τ ′) be the
temperature τ ′ ≥ τ 2HAM system, which uses tile set U and initial configuration
ST (depending on T) to strongly simulate T at scale factor m. Let R̃ denote
the supertile representation function that testifies to the fact that U strongly
simulates T .

We say that a supertile l̃ ∈ A[T] is a d-rung left half-ladder of height h ∈ N if
it contains h tiles of the type A2 and h − 1 tiles of type A3, arranged in a vertical
column, plus d tiles each of the types A1 and A0 for d ∈ N. (An example of a τ -
rung left half-ladder is shown on the left in Fig. 2a. The dotted lines show positions
at which tiles of type A1 and A0 could potentially attach, but since a τ -rung half-
ladder has exactly τ of each, only τ such locations have tiles.) Essentially, a d-rung
left half-ladder consists of a single-tile-wide vertical column of height 2h − 1 with
an A2 tile at the bottom and top, and those in between alternating between A2,
A3, and A4 tiles. To the east of exactly d of the A2 tiles an A1 tile is attached and
to the east of each A1 tile an A0 tile is attached. These A1-A0 pairs, collectively,
form the τ rungs of the left half-ladder. We enumerate the A2 tiles appearing in
l̃ from north to south and denote the ith A2 tile by A2,i. Thus, A2,0 denotes the
northernmost A2 tile in l̃ and A2,(d−1) denotes the southernmost tile in l̃. We can
define d-rung right half-ladders similarly. A d-rung right half-ladder of height h is
defined exactly the same way but using the tile types B3, B2, B1, and B0 and with
rungs growing to the left of the vertical column. The east glue of A0 is a strength-1
glue matching the west glue of B0.

We say that a supertile consisting only of tiles of type A2, A3, and A4 is
a left bar provided that the northernmost tile in the supertile is A4 and the
southernmost tile in the supertile is A3. The height of a bar is the number of
A2 tiles appearing in the bar. We define a right bar similarly. In the case where
τ = 3 and τ ′ = 4, note that there does not exist a uniform mapping from τ to
τ ′. Also, in this case, Fig. 2 shows the main idea of the proof of Theorem3.

The Simulation Powers and Limitations 159

Fig. 2. (a) gives an example half-ladders with τ rungs. The squares in (b) and (c)
depict macrotiles which assemble in U and simulate tiles T when τ ′ = 4 and τ = 3.

160 J. Hendricks et al.

Consider the left half-ladder shown in Fig. 2b. We show that for sufficiently
many rungs, some macrotile (labeled x) must repeat an arbitrary number of
times. Therefore, for strong simulation, there must be a left half-ladder, l̃′, with
rungs that contain these macrotiles. l̃′ is depicted by yellow tiles. By assumption,
T is strongly simulated by U , therefore, there must be a 3 rung right half-ladder
which we call r′

p that binds to exactly three of the rungs of l̃′. r̃p
′ is depicted by

red tiles. Note that because τ ′ > τ , it must be the case that some rung binds
with strength at least
 τ ′

τ � (we say that such a rung “over-binds”.) Moreover,
we show that we can choose x such that x belongs to an “over-binding” rung
and such that the distance between each consecutive macrotile x is increasing.
Then, as depicted in Fig. 2c, we use the assumption of strong simulation to
construct a right half-ladder which we call r̃′

bar that consists of τ − 1 copies of
the supertile r̃′

p bound to spacer macrotiles such that each copy of r̃′
p is precisely

and appropriately spaced. The tiles which bind between copies of r̃′
p supertiles

are depicted by blue tiles. Note that each r̃′
p contains an “over-binding” rung.

Then, the spacings of the r̃′
p supertiles of r̃′

bar are chosen so that only “over-
binding” rungs attach to l̃′ and each “over-binding” rung attaches to a rung of
l̃′ with at least strength
 τ ′

τ �. Finally, given the assumption that there is not a
uniform mapping from τ to τ ′, it follows from Corollary 4 that (τ − 1)
 τ ′

τ � ≥ τ ′.
We then show that this implies that l̃′ and r̃′

bar can bind in U , but that R̃(l̃′)
cannot stably bind to R̃(r̃′

bar). Thus, we arrive at a contradiction. It should be
noted that the proof is not merely combinatorial and relies on arguing about the
dynamics of U , though we have not indicated that here. Please see [14] for more
detail.

6 Simulating Arbitrary Lower Temperature Ladder
Systems

We now prove that, even though higher temperature systems can only strongly
simulate lower temperature ladder systems (the 2HAM system described in
Sect. 5 consisting of the tile depicted in Fig. 1) if a uniform mapping exists
between the temperatures, a uniform mapping is not required for (standard)
simulation.

Theorem 4. For τ, τ ′ ∈ N where 1 < τ < τ ′, let T be the ladder system at
temperature τ . Then, there exists a system S at temperature τ ′ which simulates T .

At a high-level, the construction which proves Theorem4 works by leverag-
ing nondeterminism and the fact that for each pair of supertiles α̃, β̃ ∈ A[T]
which are able to τ -stably combine, for each α̃′ ∈ A[S] where R̃(α̃′) = α̃, there
simply must exist some β̃′ ∈ A[S] where R̃(β̃′) = β̃ and α̃′ and β̃′ can τ ′-stably
combine, but there may be many other β̃′′ ∈ A[S] where R̃(β̃′′) = β̃ such that α̃′

and β̃′′ cannot τ ′-stably combine. Specifically, for each side of half-ladder, there
are multiple types which can form, each with exactly 0 or 1 “special” rungs.

The Simulation Powers and Limitations 161

Fig. 3. Intuitive sketch of the set of half-ladders possible in the high temperature
system S which simulates a low temperature ladder system T , shown without scaling.
Yellow: B-type half-ladders, Blue: C-type half-ladders, Red: A-type half-ladders, Green:
D-type half-ladders. Each type of half-ladder is shown once with no special rung and
once with one special rung (the most possible), and each is paired with the type of
half-ladder with which it could bind if each had at least τ rungs in matching locations
(after translating appropriately). Note that the spacing and ordering of rungs can be
arbitrary, and also that spacing tiles are left out for compactness, so rungs are closer
together and shorter than they would actually be. All pairs of rungs of different types
bind with each other with strength 1 (due to the H glues on their bottom tiles - not
shown), and all pairs of rungs of the same type bind with strength τ ′ − τ + 1 due to
the sum of the H glue (strength 1) and “type” glue (strength τ ′ − τ) bindings (Color
figue online).

(See Fig. 3 for a schematic example.) All rungs on a left half-ladder can com-
bine with all rungs on a right half-ladder with strength 1, but whenever rungs
of the same type combine, they do so with strength τ ′ − τ + 1. The forma-
tion of all half-ladder supertiles guarantees that any pair of oppositely facing
half-ladders can have no more than one pair of rungs with matching types, and
for each half-ladder with τ or more rungs there exists a producible oppositely
facing half-ladder with rungs in matching locations and one of them matching
in type. (Note that S simulates at scale factor 2.) In such a way, τ rungs in
matching locations of two oppositely facing half-ladders all guaranteed to be

162 J. Hendricks et al.

sufficient and necessary to form a ladder, and all possible half-ladder and ladder
representing supertiles are producible, making S correctly simulate T .

References

1. Arrighi, P., Grattage, J.: Intrinsically universal n-dimensional quantum cellular
automata. J. Comput. Syst. Sci. 78(6), 1883–1898 (2012)

2. Arrighi, P., Schabanel, N., Theyssier, G.: Intrinsic simulations between stochastic
cellular automata. Technical report 1208.2763, Computing Research Repository
(2012)

3. Cannon, S., Demaine, E.D., Demaine, M.L., Eisenstat, S., Patitz, M.J., Schweller,
R., Summers, S.M., Winslow, A.: Two hands are better than one (up to constant
factors). Technical report 1201.1650, Computing Research Repository (2012)

4. Cheng, Q., Aggarwal, G., Goldwasser, M.H., Kao, M.-Y., Schweller, R.T., de
Espanés, P.M.: Complexities for generalized models of self-assembly. SIAM J. Com-
put. 34, 1493–1515 (2005)

5. Delorme, M., Mazoyer, J., Ollinger, N., Theyssier, G.: Bulking I: an abstract theory
of bulking. Theo. Comput. Sci. 412(30), 3866–3880 (2011)

6. Delorme, M., Mazoyer, J., Ollinger, N., Theyssier, G.: Bulking II: classifications of
cellular automata. Theo. Comput. Sci. 412(30), 3881–3905 (2011)

7. Demaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque, M., Rafalin, E., Schweller,
R.T., Souvaine, D.L.: Staged self-assembly: nanomanufacture of arbitrary shapes
with O(1) glues. Nat. Comput. 7(3), 347–370 (2008)

8. Demaine, E.D., Patitz, M.J., Rogers, T.A., Schweller, R.T., Summers, S.M.,
Woods, D.: The two-handed tile assembly model is not intrinsically universal. In:
Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part
I. LNCS, vol. 7965, pp. 400–412. Springer, Heidelberg (2013)

9. Doty, D., Lutz, J.H., Patitz, M.J., Schweller, R.T., Summers, S.M., Woods, D.: The
tile assembly model is intrinsically universal. In: Proceedings of the 53rd Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2012, pp. 302–310
(2012)

10. Durand, B., Róka, Z.: The game of life: universality revisited. In: Delorme, M.,
Mazoyer, J. (eds.) Cellular Automata. Kluwer, Alphen aan den Rijn (1999)

11. Ch, E.H., Meunier, P.-E., Rapaport, I., Theyssier, G.: Communication complexity
and intrinsic universality in cellular automata. Theo. Comput. Sci. 412(1–2), 2–21
(2011)

12. Hendricks, J., Padilla, J.E., Patitz, M.J., Rogers, T.A.: Signal transmission across
tile assemblies: 3D static tiles simulate active self-assembly by 2D signal-passing
tiles. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 90–104.
Springer, Heidelberg (2013)

13. Hendricks, J., Patitz, M.J.: On the equivalence of cellular automata and the tile
assembly model. In: Neary, T., Cook, M. (eds.) Proceedings Machines, Computa-
tions and Universality 2013, vol. 128, pp. 167–189. Open Publishing Association,
New York (2013)

14. Hendricks, J., Patitz, M.J., Rogers, T.A.: The simulation powers and limitations
of higher temperature hierarchical self-assembly systems. CoRR, abs/1503.04502
(2015)

15. Mazoyer, J., Rapaport, I.: Inducing an order on cellular automata by a group-
ing operation. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373.
Springer, Heidelberg (1998)

The Simulation Powers and Limitations 163

16. Meunier, P.E., Patitz, M.J., Summers, S.M., Theyssier, G., Winslow, A., Woods,
D.: Intrinsic universality in tile self-assembly requires cooperation. In: Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms (SODA 2014), (Portland,
OR, USA, January 5-7, 2014), pp. 752–771 (2014)

17. Ollinger, N.: Intrinsically universal cellular automata. In: The Complexity of Sim-
ple Programs, in Electronic Proceedings in Theoretical Computer Science, vol. 1,
pp. 199–204 (2008)

18. Ollinger, N., Richard, G.: Four states are enough!. Theo. Comput. Sci. 412(1),
22–32 (2011)

19. Winfree, E., Algorithmic self-assembly of DNA. Ph.D. thesis, California Institute
of Technology (June 1998)

20. Woods, D.: Intrinsic universality and the computational power of self-assembly.
In: MCU: Proceedings of Machines, Computations and Universality, vol. 128, pp.
16–22, University of Zürich, Switzerland. Open Publishing Association, 9–12 Sep-
tember 2013. doi:10.4204/EPTCS.128.5

http://dx.doi.org/10.4204/EPTCS.128.5

A Characterization of NP Within
Interval-Valued Computing

Benedek Nagy1,2 and Sándor Vályi3(B)

1 Department of Mathematics, Faculty of Arts and Sciences,
Eastern Mediterranean University,

Famagusta, North Cyprus, Mersin-10, Turkey
nbenedek.inf@gmail.com

2 Department of Computer Science, Faculty of Informatics,
University of Debrecen, Debrecen, Hungary

3 Institute of Mathematics and Informatics, College of Nýıregyháza,
Nýıregyháza, Hungary

valyis@nyf.hu

Abstract. In this paper, a syntactic subclass of polynomial size interval-
valued computations is given that characterizes NP, that is, exactly lan-
guages with non-deterministically polynomial time complexity can be
decided by interval-valued computations of this subclass. This subclass
refrains from using product and shift operators aside from a starting
section of the computation.

Keywords: Unconventional computing · Interval-valued computing ·
Complexity · NP · coNP · Deterministic computing

1 Introduction

Computations are important parts of our lives. Nowadays, computers are used
everywhere and algorithms (programs) are executed not only on computers, but
on almost all types of electronic devices. For efficient usage of these devices, we
need efficient algorithms. Thus, the theory of computations is also an important
field. Several types of abstract computing devices are developed, described and
analyzed, such as Turing machines [2]. Turing machines play an essential role
in the theory of computing, by the Church–Turing thesis they are believed to
be a universal model of computation. The first question about a new abstract
model of computation is its universality, i.e., whether all the functions/languages
can be computed/recognized by this new model as with Turing machines. There
are several universal models known, e.g., Markov normal algorithms, genera-
tive grammars. Various non universal models are known and used as well, e.g.,
finite automata, pushdown automata. Unfortunately, with universal models of
computing one needs to face some undecidable problems, e.g., the halting prob-
lem of Turing machines. Regarding a restricted class of problems, the recursive
problems/languages (or partially recursive functions), their each instance can be
solved, i.e., there is a Turing machine that halts for any input of such a prob-
lem and gives the correct answer. Then, an important question is with which
c© Springer International Publishing Switzerland 2015
J. Durand-Lose and B. Nagy (Eds.): MCU 2015, LNCS 9288, pp. 164–179, 2015.
DOI: 10.1007/978-3-319-23111-2 11

A Characterization of NP Within Interval-Valued Computing 165

complexity one can obtain a solution, or decide if a particular word (instance)
belongs to the language. Various classes of problems are known depending on
the complexity of the algorithms that provide solutions/decisions. Well known
complexity classes are P , NP , PSPACE etc. For readers who are not familiar
with basic notions of complexity theory, the book [13] is advised.

The following part of the introduction is broken to two subsections, in the
next subsection some motivations are given for new computational paradigms.
Then a brief summary is provided about the interval-valued computing paradigm
including motivations and connections to other paradigms.

1.1 Computing Paradigms

Various paradigms of computations are known, the traditional Turing machine
and the classical von Neumann type computers are/were widely used. However,
the nature of computation is changing, in the past 10 years it tends to the direc-
tion of parallel computing. Actually, a fixed size of parallelism was present at
von Neumann architectures, the ALU used a fixed number of bits, and logical
operations are executed in parallel on the bits of a byte. The size of this byte,
i.e., the number of bits that are used together during a computation step was
a measure of the architecture. While 8-bit computers were widespread in the
1980’s, nowadays 64-bit computers are standards.

There are plenty of intractable problems known, and we cannot solve their
large instances by using the classical paradigm. One of the main aims and
promises of the new paradigms is that they could break or push out the border
of problems that can be solved efficiently. Of course to do this, these new para-
digms throw away one or more principle of Neumann type computations. Most
of these models allow a kind of massive parallelism during the computation.

New, unconventional methods of computations are developed a lot in the
last 20 years. In quantum computing, by entanglement, one can compute by
exponential amount (on the number of used qubits) of information in a paral-
lel manner. The major drawback(?) of these systems is that this mixed state
information cannot be copied (no cloning in quantum computing). Moreover, it
is collapsing by measuring it, i.e., usually, we need to have the decision by only
one measurement on the system at the end of the computation, and we cannot
check the partial results during the computation. Thus, we do not have (condi-
tional) branching in our algorithms. In optical computing, the data is encoded
using images and the computation is going by transforming such images. The
continuous space machine, as a model belonging to this paradigm, is used in
characterizations of various complexity classes [18]. At the field of bio-related
computations, the DNA computing [14] and the membrane computing [15] have
started and become fruitful branches of theoretical computer science, and also,
they have various applications in related disciplines, e.g., in medicine and bioin-
formatics. One may read more about these new paradigms in [1,6,16].

Interval-valued computing is also a new, unconventional paradigm that has
appeared 10 years ago. We give a brief overview in the next subsection about
this paradigm also mentioning connections to other paradigms.

166 B. Nagy and S. Vályi

1.2 A Brief History of Interval-Valued Computing

Interval-valued logic, introduced by B. Nagy, is a general many valued logic that
is able to graphically represent various fuzzy logical systems, including Gödel-
type, �Lukasiewicz-type and product logics underlining also their differences (see,
e.g., [4]). In [5], a new computing paradigm, namely, interval-valued computing
was introduced based on the interval-valued logic by adding shift operators to
the system and showing how the work of classical computers’ ALU can be sim-
ulated. This paradigm uses finite unions of subintervals of [0,1) as basic data
processing units. While Turing machines are abstractions whose memory size
can be arbitrarily extended in its length, this system assumes the unlimited
density of data units. In [10], the notion of interval-valued computations was
formalized. A computation is a sequence of operator applications on general-
ized intervals (interval-values). Operators are the usual Boolean ones, two shifts
(left and right) and a so-called product which works as zooming. A discrete lan-
guage L is decidable by (linear, polynomial, etc.) interval-valued computation
if and only if there is a classical logspace algorithm that for any input word w
constructs an interval-valued computation (of a size that linearly, polynomially
depends on the length of w) that ends with a nonempty interval-value if and
only if w is in L. This tastes like Boolean circuit computing style, the difference
being that interval-valued computing works not on discrete bit sequences but
on full interval-values. In the same paper we showed that QSAT (the language
of true quantified Boolean formulae) can be decided by a linear interval-valued
computation and that PSPACE coincides with the languages decidable by a
polynomial size restricted interval-valued computations where restricted means
that the product operator may occur only as a product by [0,1/2) which is a
special starting interval-value of any computation.

The interval-valued computing has various relations to other computing para-
digms. It is closely related to the classical paradigm, in the sense that the oper-
ations are somewhat similar to the classical bit-operations, but, as we will see,
one can change the number of bits in the data unit dynamically during the com-
putation. From another point of view, the interval-valued computing is similar
to quantum computing in the sense that a large degree of (inner) parallelism
is allowed, and there are no branching, the computation goes in a linear way
(sequential and deterministic applications of the operations). The parallelism is
hidden in the operations themselves, as the interval-values can be used as data
units. In optical computing, transformations allowing to copy more images to a
single image do a kind of compression of the information, in this way, the amount
of information stored in a cell sized image of the grid, can be raised unlimitedly.
In interval-valued computing the data is represented on 1-dimensional intervals,
and the product operator can be used in a somewhat analogous manner, to
zooming out, and thus, compressing information. Connections of 1-dimensional
cellular automata and the interval-valued paradigm are presented in [7]. In [9],
the connections of interval-valued systems to visual computing is demonstrated.
In [11] and in [12] the notion of computable function by interval-valued compu-
ting is defined, and two functions were shown to be computable by polynomial

A Characterization of NP Within Interval-Valued Computing 167

length interval-valued computations which were interesting for the cryptography
audience. The methods of these papers are relatively simple and a summarizing
result as conclusion can be drawn: exactly the languages in NP can be decided
by a specific type of interval-valued computations, which is characterized by the
following conditions:

– the computation starts with generation of all the possible witnesses,
– and continues only with Boolean operators.

This observation is the interval-valued counterpart of the characterization of NP
by languages having polynomially checkable witnesses and will be proven in this
paper.

This paper is organized as follows. After some preliminaries including some
important complexity classes and Boolean circuits (Sect. 2), the basic definitions
of interval-valued computations are given (Sect. 3). In Sect. 4 our main theorem is
stated and proven, while in Sect. 5 a brief example is shown. Finally, conclusions
with some open questions close the paper.

2 Preliminaries

In this section we recall some basic concepts of the computational complexity.
As source for this summary, any standard textbook on complexity theory can
be considered, for example, [13] or [17].

Let Σ be a finite alphabet. Σ∗ is the set of finite words over Σ. The notation
|w| is used for the length of a word w ∈ Σ∗. A language L over Σ is just a
subset of Σ∗. It is decidable by a Turing machine M in polynomial time if there
exist c ∈ R

+ and k ∈ N
+ such that for each w ∈ Σ∗, the run of M starting on

input w takes no more steps than c|w|k and w ∈ L if and only if M accepts w.
PΣ is the set of languages over Σ that can be decidable by a Turing machine in
polynomial time. Further, P represents the class of all languages over any finite
alphabet Φ being in PΦ. Similarly, by definition, a language L ⊂ Σ∗ is in NPΣ if
there exists a nondeterministic Turing machine M such that there exist c ∈ R

+

and k ∈ N
+ that for each w ∈ Σ∗, all runs of M starting on input w take no

more steps than c|w|k and w ∈ L if and only if M has an accepting run on w.
The notation NP is used for the class of all languages over any finite alphabet Φ
being in NPΦ. One of the most known and most challenging unsolved problems
of complexity theory is to prove or disprove the class equation P = NP . It is
highly believed that P �= NP .

The witness theorem for NP states that the following two conditions are
equivalent [17]:

– L ∈ NP .
– There exist polynomials p and q, and a deterministic Turing machine M , such

that
• for all x and y, the machine M runs in time p(|x|) on input (y, x);
• for all x in L, there exists a string y of length q(|x|) such that M accepts (y, x);

168 B. Nagy and S. Vályi

• for all x not in L and all strings y of length q(|x|), M rejects (y, x).

coNP is the class of languages whose complements are in NP .
A logspace Turing machine is a Turing machine M using only a logarithmic

amount of space on each of its tapes except the read-only input tape and write-
only output tape. More exactly, there exist c and d ∈ R

+ such that the number
of used working tape cells does not exceed d log2(c|w|), for each possible input
word w. We say that an algorithm is logspace if it can be implemented by a
logspace Turing machine.

In the next part, a traditional, memoryless model of computation is recalled.
The Boolean circuit model of computation is given as follows. A Boolean circuit
is a finite directed acyclic graph (V,E) equipped by a labeling o of the non-leaf
vertices into the operator set {AND,OR,NOT} and by a bijective labeling v
of the leaf vertices onto the variable set {x1, . . . , xn} satisfying the followings:

– Any vertices have out-degree 1 except of the root vertex (it has 0 out-degree),
– Any non-leaf vertices of label AND or OR have in-degree 2, while NOT -

vertices have in-degree 1.

Since a Boolean circuit in this variation has only one zero-out-degree vertex,
we can use this variation only to decide languages by a yes/no answer. If more
complex output is needed, then more output vertices are needed. In this paper,
only these restricted versions are used and we do not use more complex versions.

Instead of graph representation, we will write a Boolean circuit over a variable
set {x1, . . . , xn} in a sequential form. The sequential description of a Boolean
circuit is a sequence satisfying the following conditions:

– The first n elements of the sequence are x1, . . . , xn,
– the other elements are of form (op, i, j) where op is AND, OR or NOT and

i, j are nonnegative integers less than the index of the actual element.

The meaning of this description of Boolean circuits in this variation is obvi-
ous. The output of the circuit on the input bit sequence b1, . . . , bn is the value of
the last element of the description of the circuit assuming that input variables
x1, . . . , xn take values of b1, . . . , bn, respectively, and the Boolean operators work
as usual. We remark that if the first element of (op, i, j) is NOT , then j is super-
ficial, the second operand is not used.

We note here that Boolean circuits can be extended in various way, e.g.,
by computing not only on bits, but on natural numbers [3]. In this paper, our
computations can also be viewed as a kind of extension of Boolean circuits using
interval-values. In the next section we give the formal definitions of our model.

3 Interval-Valued Computations: Definitions

With the aim of keeping this paper self-contained, we recall the definitions
describing interval-valued computations coined in [5]. This was formulated first
in mathematical precision in [8].

A Characterization of NP Within Interval-Valued Computing 169

An interval-value is a subset of interval [0,1) which is a finite union of subin-
tervals. The set of interval-values is denoted by V.

The maximal subintervals of an interval-value are called its components.
Operators of interval-valued computation are Boolean set operators AND,

OR, NOT , and three other: PRODUCT , RSHIFT , LSHIFT . NOT is a unary
operator, all the others are binary. For the sake of denotational simplicity, we
consider also NOT as a binary operator where the second operand is superfluous.

A computation sequence is a finite sequence whose first element is the con-
stant FIRSTHALF and every other element consists of a triplet (op, i, j) where
op is an operator and i, j are positive integers less than the index of the actual
element.

The value of an interval-valued computation is defined by induction of
the length of the computation. Let S denote an interval-valued computation
sequence, its value, denoted by ‖S‖ is the interval-value that is obtained by the
last operation of the sequence S. Let S→k denote the k-length prefix of S.

First ‖FIRSTHALF‖ is fixed to
[
0, 1

2

)
. If the last element of S is (op, i, j),

containing a Boolean operator, then

– ‖S‖ = ‖S→i‖ ∪ ‖S→j‖ if op is OR,
– ‖S‖ = ‖S→i‖ ∩ ‖S→j‖ if op is AND,
– ‖S‖ = [0, 1) \ ‖S→i‖ if op is NOT .

Before we define the meaning of the remaining operators, we introduce an
assisting function. It returns the length of the left-most component (included
maximal subinterval) of an interval-value A.

The function Flength : V → R can be defined as follows. If there exist a, b ∈
[0, 1] satisfying [a, b) ⊆ A, [0, a) ∩ A = ∅ and [a, b′) �⊆ A for all b′ ∈ (b, 1], then
Flength(A) = b − a, otherwise Flength(A) = 0.

Flength helps us to define the binary shift operators on V. The left-shift
operator will shift the first interval-value to the left by the first-length of the
second operand and remove the part which is shifted out of the interval [0, 1). As
opposed to this, the right-shift operator is defined in a circular way, i.e., the parts
shifted above 1 will appear at the lower end of [0, 1). In this definition we write
interval-values in their “characteristic function” notation instead of the above

subset notation. That is, for any A ∈ V and x ∈ [0, 1], A(x) =

{
1, if x ∈ A,

0, otherwise.
The binary operators Lshift and Rshift on V are defined in the following

way. If x ∈ [0, 1] and A,B ∈ V, then

Lshift(A,B)(x) =
{

A(x + Flength(B)), if 0 ≤ x + Flength(B) ≤ 1,
0, in other cases.

Rshift(A,B)(x) =
{

A(frac(x − Flength(B))), if x < 1,
0, if x = 1.

Here the function frac gives the fractional part of a real number, i.e., frac(x) =
x − �x
, where �x
 is the greatest integer which is not greater than x.
Let A and B be interval-values and x ∈ [0, 1). Then the product A ∗ B includes
x if and only if B(x) = 1 and A

(
x−xB

xB−xB

)
= 1, where xB denotes the lower

170 B. Nagy and S. Vályi

end-point of the B-component including x and xB denotes the upper end-point
of this component, that is, [xB , xB) is the maximal subinterval of B containing
x. The product A ∗ B is zooming out the interval-value A onto the components
of B.

Now, we are ready to continue the definition of the semantics of the compu-
tation sequence. If the last element in the interval-valued computation sequence
S is

= (RSHIFT, i, j), then its value ‖S‖ is Rshift(‖S→i‖, ‖S→j‖)
and the other cases (shift to the left, product) are defined in a similar way,
that is,
= (LSHIFT, i, j), then its value ‖S‖ is Lshift(‖S→i‖, ‖S→j‖) and
= (PRODUCT, i, j), then its value ‖S‖ is Product(‖S→i‖, ‖S→j‖).

We say that a language L ⊆ Σ∗ is decidable by a linear interval-valued com-
putation if and only if there is a positive constant c and a logarithmic space
algorithm A with the following properties. For each input word w ∈ Σ∗, A
constructs an appropriate interval-valued computation sequence A(w) such that
|A(w)| is not greater than c|w| and w ∈ L if and only if ‖A(w)‖ is nonempty.

We say that a language L ⊆ Σ∗ is decidable by a polynomial interval-valued
computation if and only if there is a positive constant c, an integer k ≥ 0 and
a logarithmic space algorithm A with the following properties. For each input
word w ∈ Σ∗, A constructs an appropriate interval-valued computation sequence
A(w) such that |A(w)| is not greater than c|w|k and w ∈ L if and only if ‖A(w)‖
is nonempty.

Note that only [a, b) type interval components are used in these computations,
where both a and b is of the form x

2m for some m ≥ 1. Actually, the largest value
m that is needed to express all interval-values of the computation sequence,
gives a kind of resolution of the actual computation. This resolution is connected
to the number of used PRODUCT operations: by multiplying FIRSTHALF
by an interval-value, usually m is increased by 1, in this way, doubling the
number of stored bits in an interval-value. This measure, the bit-hight of a
computation was introduced in [10]. In this way, an interval-valued computation
uses a dynamically changing amount of information in an interval-value, i.e.,
growing number of bits can be coded into an interval-value as the computation
proceeds. We note that in other possible variations of interval-valued computing,
not only this kind of interval-values can occur.

4 Results

Without significant loss of generality, it is assumed that Σ = {0, 1}.

Theorem 1. For any L ⊂ Σ∗, condition (X) is equivalent with the condition
L ∈ NPΣ.
(X): There exist c, d > 0, k, p > 0 and a logspace algorithm A mapping an
interval-valued computation sequence A(w) to any word w ∈ Σ∗ in such a way
that

A Characterization of NP Within Interval-Valued Computing 171

(I) for each word w ∈ Σ∗, w belongs to L if and only if ‖A(w)‖ is nonempty,
(II) the length of A(w) is less than c|w|k,
(III) the (3d|w|p + 1)-length prefix of A(w) depends only on |w| and is exactly

the following sequence:
K1 is FIRSTHALF ,
K2 is (RSHIFT, 1, 1),
K3 is (OR, 1, 2) and
K4 is (OR, 1, 1).
For all positive integers 2 ≤ k ≤ d|w|p,
K3k−1 = (PRODUCT, 1, 3k − 2),
K3k = (RSHIFT, 3k − 1, 3k − 2) and
K3k+1 = (OR, 3k, 3k − 1).

(IV) the remaining part of A(w) involves only Boolean operators.

If an interval-valued computation have the given prefix, then the following
statements can be established by induction on k:

Lemma 1. For all positive integer k, if k ≤ d|w|p, then

‖K→3k+1‖ =
2k−1−1⋃

l=0

[
2l

2k
,
2l + 1

2k

)

.

Lemma 2. Let n = d|w|p. For each bit sequence y1, . . . , yn, with the choice

r =
n∑

i=1

1 − yi

2i
,

the following holds for any k ∈ {1, . . . , n}:

r ∈ ‖K→3k+1‖

if and only if
yk = 1.

Now, we are ready to prove our main theorem.

Proof. Direction (⇒) of Theorem 1.
If L ∈ NP then, by the witness theorem for NP , there exist e > 1, q ∈ N

+

and W ⊂ Σ∗ × Σ∗ such that the followings hold.

– W is in P , that is, W is decidable in polynomial time,
– for each pair (y, w) ∈ W , |y| ≤ e|w|q holds,
– for each w ∈ Σ∗, w ∈ L if and only if (∃y ∈ Σ∗)(y, w) ∈ W .

We set d in condition (X) to e and let p = q.
Since W is in P , there exists a uniform polynomial size Boolean circuit family

that accepts W [13], that is, there exists a logspace algorithm B and there exist
f > 0 and t > 0, so that from any unary encoded positive integer m, B can

172 B. Nagy and S. Vályi

construct a description of a Boolean circuit of size f · mt that accepts exactly
the m-length elements of W .

Let c = fdt and let k = tp.
We give a logspace algorithm A satisfying (I)–(IV) with respect to the just

defined constants c,d,k and p. The input of A is w ∈ Σ∗. A should respond to w
by an interval-valued computation sequence. The answer begins with the given
prefix with the just defined d and p, that is, the (3d|w|p + 1)-length prefix of
A(w) is exactly the prescribed sequence in (III).

Lemma 2 makes it possible to represent all the possible witnesses for w.
After that, A continues its work based on the bits wi in the input word w

(i = 1, . . . , |w|).
K3d|w|p+1+i =

{
OR(1, 2), if wi = 1,
AND(1, 2), in the other case.

Next, we can establish the following statement as a part of the proof.

Lemma 3. Let w ∈ Σ∗ be an input word. For every possible witness y
no longer than d|w|p, there is r ∈ [0, 1) such that r ∈ ‖K4‖ ⇔ y1 =
1, . . . , r ∈ ‖K3d|w|p+1‖ ⇔ yd|w|p = 1, furthermore, w1 = 1 ⇔ r ∈
‖K3d|w|p+1+1‖, . . . , w|w| = 1 ⇔ r ∈ ‖K3d|w|p+1+|w|‖. Further, r can be chosen
by the same formula as in Lemma2.

In the closing section, A follows the calculation of the Boolean circuit BC
created by B to the input word 1d|w|p+|w| step-by-step, Boolean operator by
Boolean operator. The number of input bits of BC is d|w|p + |w|, d|w|p pieces
for the witness and |w| for the original input word. If BC accesses the k-th
bit of the witness, then the interval-valued computation sequence constructed
by A accesses operand 3k + 1 while if BC accesses the i-th bit of the original
input word w, then the sequence created by A accesses operand with an index
d|w|p +1+ i. It is clear that if B works with logarithmic space, then A can work
with the same amount of space, as well.

Direction (⇐) of Theorem 1.
Let us assume that there exist c, d, k, p and a logspace algorithm A creating

an interval-valued computation sequence A(w) to each input word w ∈ Σ∗ with
the four properties:

(i) (∀w ∈ Σ∗)(w ∈ L ⇔ ‖A(w)‖ is nonempty)
(ii) (∀w ∈ Σ∗)|A(w)| < c|w|k
(iii) A(w) has the prescribed prefix and
(iv) the remaining operators are Boolean operators.

Let W be the set
⎧
⎨

⎩
(y, w)

∣
∣
∣
∣
∣
∣

w ∈ L, y ∈ Σ∗, |y| = d|w|p,
d|w|p∑

i=1

1 − yi

2i
∈ ‖A(w)‖

⎫
⎬

⎭
.

It is clear that for each (y, w) ∈ W , |y| ≤ d|w|p holds. It can also be shown
by Lemma 1 and 2, that for each w ∈ Σ∗, w ∈ L holds if and only if (∃y ∈

A Characterization of NP Within Interval-Valued Computing 173

Σ∗)(y, w) ∈ W . If we prove that W is decidable in polynomial time, then, by
the witness theorem, L ∈ NP is also demonstrated.

W ∈ P can be proven based on the following argument. We give a logspace
algorithm B that constructs a Boolean circuit Bw of size c|w|k to every input
word w ∈ Σ∗ such that for all (y, w) ∈ Σ∗ × Σ∗, the equivalence

Bw//y = 1 ⇔ (y, w) ∈ W

holds, where C//x means the result of the computation of a Boolean circuit C on
input x, where x is a bit sequence of appropriate size. Bw have input size d|w|p.

Bw can be constructed (by B) in the following way. It deletes the prescribed
3d|w|p+1-length prefix of A(w) and substitutes it by accessing the d|w|p number
of the negated input bits, in the order 1 − y1, . . . , 1 − yd|w|p . These inputs are
fixed by y. The remaining (Boolean) part of A(w) is transformed as follows. The
Boolean operators will be kept in Bw but their operands will be adjusted in the
appropriate way according to the index shift caused by the substitution. Also
the following changes will be applied in Bw.

– whenever A accesses K1, Bw uses 1 − y1,
– whenever A accesses K2, Bw uses y1,
– whenever A accesses K3, Bw uses 1,
– whenever A accesses K3i+1, Bw uses 1 − yi, for each i ∈ {1, . . . , d|w|p},
– whenever A accesses K3i+2, Bw

uses (1 − yi) ∧ (1 − yi+1), for each i ∈ {1, . . . , d|w|p − 1},
– whenever A accesses K3i+3, Bw

uses yi ∧ (1 − yi+1), for each i ∈ {1, . . . , d|w|p − 1}.

We note that in this way, all input variables of Bw will be fixed to a constant
depending only on input y.

If we denote the result of the i-th step of the computation sequence of a
Boolean circuit C by C→i//x, then we can establish the followings. Here r(y)
denotes

d|w|p∑

i=1

1 − yi

2i
.

– If i ∈ {1, . . . , d|w|p}, then

(Bw)→i//y = 1 − yi = (r(y) ∈ ‖K3i+1‖);

– if i ∈ {1, . . . , |A(w)| − (3d|w|p + 1)}, then

(Bw)→d|w|p+i//y = (r(y) ∈ ‖A(w)→3d|w|p+1+i‖).

The last case of the last item describes the last operation of Bw and shows
that

Bw//y = 1

if and only if
r(y) ∈ ‖A(w)‖,

174 B. Nagy and S. Vályi

in other words,
(y, w) ∈ W.

In Bw, all input variables are fixed by y, so to decide (y, w) ∈ W , it is enough to
evaluate this Boolean circuit. (Only evaluation, no search for truth valuations
making true the output of that circuit.) It can be achieved in linear time accord-
ing to the size of the circuit – and this size is polynomial according to the size
(y, w) because it is built by a logspace algorithm having input size |w|.

We have finished both directions of the proof for Theorem1. ��
The following theorem is analogous to the previous theorem.

Theorem 2. For any L ⊂ Σ∗, the following condition is equivalent to the con-
dition L ∈ coNPΣ.
There exist c, d > 0, k, p > 0 and a logspace algorithm A mapping an interval-
valued computation sequence A(w) to any word w ∈ Σ∗ in such a way that

– for each word w ∈ Σ∗, w belongs to L if and only if ‖A(w)‖ is empty,
– the length of A(w) is less than c|w|k,
– the (3d|w|p + 1)-length prefix of A(w) depends only on |w| and is exactly the

following sequence:
K1 is FIRSTHALF ,
K2 is (RSHIFT, 1, 1),
K3 is (OR, 1, 2) and
K4 is (OR, 1, 1).
For all positive integers 2 ≤ k ≤ d|w|p,
K3k−1 = (PRODUCT, 1, 3k − 2),
K3k = (RSHIFT, 3k − 1, 3k − 2) and
K3k+1 = (OR, 3k, 3k − 1).

– the remaining part of A(w) involves only Boolean operators.

Proof (Outline). L ∈ coNP means by definition that L ∈ NP . By a well-known
theorem for coNP [17], what is analogous to the witness theorem for NP, L ∈
coNP is equivalent to the existence of c > 0 and k ∈ N

+ and a language
R ⊆ Σ∗ × Σ∗ that the followings hold:

– ∀(y, x) ∈ R : |y| < c|x|k,
– ∀x ∈ Σ∗ : (x ∈ L ⇔ (∀y ∈ Σ∗)(y, x) ∈ R),
– R ∈ PΣ .

Based on this characterization, the proof of Theorem2 can be achieved in an
analogous way to the proof of Theorem1. ��

5 Example

We use the Hamiltonian path problem for finite directed graphs as an example.
It is a well-known NP-complete problem. A Boolean circuit family is defined that
checks the binary encoded graph and that a path is Hamiltonian with respect

A Characterization of NP Within Interval-Valued Computing 175

to the given graph, then we give the details for a specific graph, including the
interval-values computed by the given computation.

Let G = (V,E) be a finite directed graph. Without loss of generality, V =
{1, . . . , n} can be assumed, for a positive integer n. The graph can be encoded
by its neighborhood matrix. That is, the code for G is the doubly indexed bit
sequence 〈eij | 1 ≤ i, j ≤ n〉, where eij is either 0 or 1 and eij = 1 if and only if
(i, j) ∈ E.

Let l be �log2(n)�. {0, 1}l denotes, as usual, the set of l-length binary
sequences. Let c : {0, 1}l → {1, . . . , 2l} be defined by

c(w) = 1 +
|w|∑

i=1

wi2|w|−i,

where c is a bijection (a shift of the decoding function of the binary number
system), so its inverse is a function and also bijective. The restriction of this
inverse to {1, . . . , n} will be denoted by c−1. Then, c−1 is used as an encoding
of vertices of the graph into l-length bit sequences.

A witness will encode a path v1, . . . , vn as a concatenated bit sequence

c−1(v1) . . . c−1(vn).

We denote the bits of this nl-length sequence by a double indexing

〈yij | 1 ≤ i ≤ n, 1 ≤ j ≤ l〉.

The formula verifying the witness works as follows. It has an input bit
sequence concatenated from

y11, . . . , y1l, . . . , yn1, . . . , ynl

for the witness path (each vertex on the path is encoded by l bits, (yi1 . . . yil) =
c−1(vi), for each i = 1, . . . , n) and

e11, . . . , e1n, . . . , en1, . . . , enn

for the input neighborhood matrix. The Boolean circuit can be constructed from
the formula in the usual way.

The formula has the following subformulae, connected by conjunction:

(1) (Yi ≡ C(j)) ∧ (Yi+1 ≡ C(k)) → ejk,
where i = 1, . . . , n − 1, {j, k} ⊂ {1, . . . , n} and j �= k

(2) ¬(Yi = Yj), where 1 ≤ i < j ≤ n
(3) (Yi ≡ C(1)) ∨ (Yi ≡ C(2)) ∨ ... ∨ (Yi ≡ C(n)), where 1 ≤ i ≤ n

where (Yi = Yj) is just an abbreviation for

(yi1 ↔ yj1) ∧ . . . ∧ (yil ↔ yjl),

176 B. Nagy and S. Vályi

and (Yi ≡ C(j)) is also an abbreviation for

Zi1 ∧ . . . ∧ Zil,

where Zik = yik if the k-th bit of c−1(j) is 1 and Zik = ¬yij if that bit is 0, for
k ∈ {1, . . . , l}.

Item (1) expresses that the vertices (c(yi1 . . . yil), c(y(i+1)1 . . . y(i+1)l)) consti-
tute an edge in G and the instances of (2) together express that no vertex repeats
in the sequence c(y11 . . . y1l),. . . , c(yn1 . . . ynl). Item (2) requires that there is no
repeating vertex in the path. Item (3) says that non-code bit sequences cannot
occur as vertices.

The size of this formula is O(n3 log(n)), it is subquadratic (so polynomial)
according to the fact that the size of the input is n2. Also the size of the corre-
sponding Boolean circuit does not exceed this limit, of course.

In the example the existence of Hamiltonian path in the graph

G = ({1, 2, 3}, {(1, 2), (2, 3), (2, 1)})

is decided by an interval-valued computation. The code of G is

010101000,

l = �log2(n)� = 2,

and
c−1(1) = 00, c−1(2) = 01, c−1(3) = 10.

The possible witnesses for a Hamiltonian path in G with n vertices have
length ln = 6. Let y11y12y21y22y31y32 denote a possible witness.

The formula testing the witness against G is the conjunction of the following
formulae. They are written in an implication- and equivalence-free form and so
are suitable to direct circuit implementation.

y11 ∨ y12 ∨ y21 ∨ ¬y22 ∨ e12

y11 ∨ y12 ∨ ¬y21 ∨ y22 ∨ e13

y11 ∨ ¬y12 ∨ y21 ∨ y22 ∨ e21

y11 ∨ ¬y12 ∨ ¬y21 ∨ y22 ∨ e23

¬y11 ∨ y12 ∨ y21 ∨ y22 ∨ e31

¬y11 ∨ y12 ∨ y21 ∨ ¬y22 ∨ e32

y21 ∨ y22 ∨ y31 ∨ ¬y32 ∨ e12

y21 ∨ y22 ∨ ¬y31 ∨ y32 ∨ e13

y21 ∨ ¬y22 ∨ y31 ∨ y32 ∨ e21

y21 ∨ ¬y22 ∨ ¬y31 ∨ y32 ∨ e23

¬y21 ∨ y22 ∨ y31 ∨ y32 ∨ e31

¬y21 ∨ y22 ∨ y31 ∨ ¬y32 ∨ e32

(y11 ∧ ¬y21) ∨ (¬y11 ∧ y21) ∨ (y12 ∧ ¬y22) ∨ (¬y12 ∧ y22)

A Characterization of NP Within Interval-Valued Computing 177

Fig. 1. First part of the interval-valued computation of the example.

Fig. 2. Some of the interval-values in the second part of the computation of the exam-
ple, including the final result.

(y11 ∧ ¬y31) ∨ (¬y11 ∧ y31) ∨ (y12 ∧ ¬y32) ∨ (¬y12 ∧ y32)
(y21 ∧ ¬y31) ∨ (¬y21 ∧ y31) ∨ (y22 ∧ ¬y32) ∨ (¬y22 ∧ y32)
(¬y11 ∧ ¬y12) ∨ (¬y11 ∧ y12) ∨ (y11 ∧ ¬y12)
(¬y21 ∧ ¬y22) ∨ (¬y21 ∧ y22) ∨ (y21 ∧ ¬y22)
(¬y31 ∧ ¬y32) ∨ (¬y31 ∧ y32) ∨ (y31 ∧ ¬y32)

In the followings, the constructed interval-valued computation is drawn in
some details. In Fig. 1 the fixed but size-dependent part is displayed. In Fig. 2,
however, only the listed subformulae are presented together with interval-values
belonging to these formulae. The final result is nonempty according to witness
y11 = 0, y12 = 0, y21 = 0, y22 = 1, y31 = 1, y32 = 0, that is, to path 123.

6 Conclusions, Further Remarks

Observe that left-shift operator was not used in our characterization. Moreover,
according to a remark of an anonymous referee, the given characterization can
be strengthened in the following sense. The first phase of the interval-value

178 B. Nagy and S. Vályi

computation sequences given in the characterization of NP uses originally both
right shifts and product operations, besides Boolean ones. The usage of shifts can
be excluded obtaining an optimal solution in the sense of minimal instruction set:
computations using only Boolean operators and shifts obviously cannot result
the interval-values needed in the second phase.

The interval-valued computing is a theoretical, deterministic, massive par-
allel universal model of computation. Several bits of information/data can be
stored in an interval-value, in a similar manner as the entanglement of quantum
computing. But here we can easily manipulate the interval-values, we can copy
them, we can reuse them etc. Finally, by the end of the computation we give the
answer by one measurement on the final interval-value, if it is empty or not. It
is a question of future studies to establish more concrete connections between
interval-valued and other paradigms, e.g., quantum, optical or membrane com-
puting.

As an open problem within interval-valued computing, we ask, what is the
complexity class of the languages decided by polynomial length interval-valued
computations allowing arbitrary products not only products by

[
0, 1

2

)
.

Acknowledgments. Reviewers’ remarks and advices are gratefully acknowledged.

References

1. Calude, C.S., Păun, G.: Computing with Cells and Atoms: An Introduction
to Quantum, DNA and Membrane Computing. Taylor & Francis/Hemisphere,
London, Bristol (2001)

2. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

3. McKenzie, P., Wagner, K.W.: The complexity of membership problems for circuits
over sets of natural numbers. Comput. complex. 16(3), 211–244 (2007)

4. Nagy, B.: A general fuzzy logic using intervals, In: HUCI 2005: 6th International
Symposium of Hungarian Researchers on Computational Intelligence, Budapest,
Hungary, pp. 613–624 (2005)

5. Nagy, B.: An interval-valued computing device. In: CiE 2005, Computability in
Europe: New Computational Paradigms, Amsterdam, Netherlands, pp. 166–177
(2005)

6. Nagy, B.: Új Számı́tási Paradigmák: Bevezetés az Intervallum-értékű, a DNS-, a
Membrán- és a Kvantumszámı́tógépek elméletébe (New Computing Paradigms:
Introduction to Interval-Valued, DNA, Membrane and Quantum Computing, in
Hungarian). Typotex, Budapest (2014)

7. Nagy, B., Major, S.R.: Connection between interval-valued computing and cellular
automata. In: CINTI 2013: 14th IEEE International Symposium on Computational
Intelligence and Informatics, Budapest, Hungary, pp. 225–230 (2013)

8. Nagy, B., Vályi, S.: Solving a PSPACE-complete problem by a linear interval-
valued computation. In: CiE 2006, Computability in Europe: Logical Approaches
to Computational Barriers. University of Wales, Swansea, UK, pp. 216–225 (2006)

9. Nagy, B., Vályi, S.: Visual reasoning by generalized interval-values and interval
temporal logic. In: CEUR Workshop Proceedings, vol. 274, pp. 13–26 (2007)

A Characterization of NP Within Interval-Valued Computing 179

10. Nagy, B., Vályi, S.: Interval-valued computations and their connection with
PSPACE. Theor. Comput. Sci. 394, 208–222 (2008)

11. Nagy, B., Vályi, S.: Prime factorization by interval-valued computing. Publica-
tiones Mathematicae Debrecen 79, 539–551 (2011)

12. Nagy, B., Vályi, S.: Computing discrete logarithm by interval-valued paradigm.
Electron. Proc. Theor. Comput. Sci. 143, 76–86 (2014)

13. Papadimitriou, C.: Computational Complexity. Addison Wesley, Reading (1994)
14. Păun, Gh., Rozenberg, G., Salomaa, A.: DNA Computing: New computing para-

digms. Springer, Berlin (1998)
15. Păun, G., Rozenberg, G., Salomaa, A. (eds.): Handbook of Membrane Computing.

Oxford University Press, Oxford (2010)
16. Rozenberg, G., Bäck, T., Kok, J.N. (eds.): Handbook of Natural Computing.

Springer, Heidelberg (2012)
17. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, Boston

(2012)
18. Woods, D., Naughton, T.J.: Optical computing. Appl. Math. Comput. 215, 1417–

1430 (2009)

Universality in Infinite Petri Nets

Dmitry A. Zaitsev(B)

Faculty of Computer Science, Vistula University,
St. Stoklosy, 3, 02-787 Warsaw, Poland

d.zaitsev@vistula.edu.pl

http://member.acm.org/∼daze

Abstract. Finite classical Petri nets are non-Turing-complete. Two infi-
nite Petri nets are constructed which simulate the linear cellular automa-
ton Rule 110 via expanding traversals of the cell array. One net is
obtained via direct simulation of the cellular automaton while the other
net simulates a Turing machine, which simulates the cellular automa-
ton. They use cell models of 21 and 14 nodes, respectively, and simulate
the cellular automaton in polynomial time. Based on known results we
conclude that these Petri nets are Turing-complete and run in polyno-
mial time. We employ an induction proof technique that is applicable for
the formal proof of Rule 110 ether and gliders properties further to the
constructs presented by Matthew Cook.

Keywords: Universal Petri net · Infinite Petri net · Linear cellular
automaton · Turing machine · Simulation · Complexity

1 Introduction

Recently, small polynomial time universal extended Petri nets [22] have been
constructed in the class of inhibitor multichannel Petri nets, where an inhibitor
net [16] implements a check on a place to determine whether or not it has a zero
marking, and a multichannel transition [20] allows the firing in a few instances
at a step. Universal nets were obtained via simulation of Neary and Woods’
small weakly universal Turing machine [12]. These nets simulate the linear cel-
lular automaton Rule 110, for which universality was proven by Matthew Cook
[4]. Earlier constructed inhibitor universal Petri nets run in exponential time
[21], while extending them with the multichannel transitions concept allowed
an efficient simulation with polynomial time complexity [22]. Another approach
[8] is based on simulating small register machines of Ivan Korec [9] by inhibitor
Petri nets; however, register machines are known to be exponentially slower than
Turing machine [7]. Note that, an analog of multichannel transitions [20], called
“exhaustive use of rules” allowed the construction of the small universal extended
spiking neural P systems running in polynomial time [13].

Finite classical Petri nets are known to be non-Turing-complete [16].
Tilak Agerwala has proven Turing-completeness of inhibitor Petri nets [1]; in
c© Springer International Publishing Switzerland 2015
J. Durand-Lose and B. Nagy (Eds.): MCU 2015, LNCS 9288, pp. 180–197, 2015.
DOI: 10.1007/978-3-319-23111-2 12

Universality in Infinite Petri Nets 181

[3,10,16] it was shown that priority and synchronous nets are Turing-complete
as well. James Peterson [16] presented a sketch of proof that colored Petri nets
with infinite number of colors are Turing-complete and mentioned that it con-
cerns also infinite Petri nets obtained as a result of the colored net conversion
(unfolding [14]). As far as register machines were assumed, someone can conclude
that universal nets, constructed using Peterson’s approach run in exponential
time.

In the present paper, we apply the notation of infinite Petri nets with regular
structure, studied in [23] for modeling computing grids, to the simulation of
the linear cellular automaton Rule 110. We prefer parametric expressions [23]
before high-level (colored) Petri nets [18] because they specify the structure (flow
relation) of an infinite net directly and do not require additional abstractions of
unfolding and folding.

As a result, an infinite classical Petri net is built, which simulates the cellular
automaton [4] in polynomial time. In addition, a net with even smaller blocks is
constructed via simulation of a Turing machine [12] which simulates the cellular
automaton Rule 110. Note that, constructed nets are 1-bounded and their nodes
have finite number of incidental arcs.

When proving Turing-completeness of a Petri net we suppose that it accepts
as its input a given encoded Turing machine with an initial word written on
the tape and produces as an output a word, which is read from the tape of the
machine. When considering a universal Petri net we assume that it accepts as
its input a given encoded Petri net with an initial marking and produces as an
output a marking, which is read from places of the net. Since all nets in the
paper simulate Rule 110, the computations never halt and the time instant for
reading output data could be estimated using time complexity bounds. Thus,
supplied with a simulation of a Petri net by Turing machines, constructed nets
are thought of as universal ones.

2 Petri Nets and Linear Cellular Automata

A Petri net (PN) is a directed bipartite graph on which a dynamical process
is defined. Usually, PN graph is represented as a triple G = (P, T, F), where
P is a set of nodes called places, T is a set of nodes called transitions, and
F ⊆ (P ×T)∪(T ×P) is a flow relation. Places are depicted as circles, transitions
– as rectangles (bars); arcs connect nodes according to the flow relation F .

Dynamic elements, named tokens and depicted as dots, are situated inside
places and move within Petri nets as a result of the transitions firing; the location
of a token within a place is called a marking. The behavior of a Petri net is a
step-by-step process. A transition is permitted (firable) if all its input places
contain at least one token. Only one (chosen in nondeterministic way) firable
transition fires at a step in a classical PN. When firing, a transition removes
a token from each of its input places and puts a token into each of its output

182 D.A. Zaitsev

places. Usually, the place marking is represented with a mapping of the places
set P into the set of nonnegative integer numbers; for brevity we omit a sign of
this mapping writing p = x when the place p marking is equal to x.

In sequel, we call the above defined PN a classical PN. We come from min-
imalistic principle as PNs with multiple arcs are known equivalent to PNs [16]
without arcs’ multiplicity. When sets P and T are finite ones we say that PN
is finite; for infinite PNs studied in the paper, P and T are countable sets.
Besides, all the nets constructed in the paper are 1-bounded having place mark-
ing in {0,1}.

A finite classical PN is known to be more powerful than a finite automaton
and less powerful than a Turing machine according to [10,16] where subclasses
and extensions of PNs are introduced and studied as well.

A binary linear cellular automaton (CA) is an infinite to both sides linear
array of cells ci, i = ... − 2,−1, 0, 1, 2, ..., where each cell has one of two valid
states ci ∈ {0, 1}. The behavior of a CA is a step-by-step process. All the cells
change their state simultaneously depending on their current state ci and the cur-
rent state of their closest neighbors ci−1 and ci+1 according to a given transition
function R(ci−1, ci, ci+1). There are 8 possible combinations of a cell neighbor-
hood and thus 256 different CA (rules of work); eight sequentially written binary
digits of the transition function values compose the rule number. For instance,
a transition function of Rule 110 (decimal) is represented as follows:

R(0, 0, 0) = 0 R(1, 0, 0) = 0
R(0, 0, 1) = 1 R(1, 0, 1) = 1
R(0, 1, 0) = 1 R(1, 1, 0) = 1
R(0, 1, 1) = 1 R(1, 1, 1) = 0

(1)

Matthew Cook [4] has proven that Rule 110 is a computationally universal
(Turing-complete) system; examples of Rule 110 computation are studied in [5].

3 Simulating Separate Cell

Each CA cell ci is simulated via a pair of complementary [16] places zi and ui;
the state ci = 0 is represented via the marking zi = 1, ui = 0 and the state
ci = 1 is represented via the marking zi = 0, ui = 1. The Petri net transitions
are organized in such a way that there are no other valid markings that provides
an invariant zi + ui = 1. In the description of the infinite to both sides line of
cells, we start from a central cell having an index equal to zero and proceed to
the left with the indices −1,−2, ... and to the right with the indices 1, 2,

The simplest way to simulate a cell of Rule 110 is shown in Fig. 1. For drawing
and simulating Petri nets, we use a modeling system, Tina [2], which does not
support indices. Therefore, a TeX-like notation is used for names where indices
are written after an underline symbol and complex indices are parenthesized with
curly brackets. An arc with arrows on both its ends denotes an abbreviation of

Universality in Infinite Petri Nets 183

a pair of arcs with opposite direction (a self-loop): the transition firing does not
change the place marking as a result of decrement-increment sequence but a
transition is firable when the place marking is greater than zero. Each transition
directly corresponds to an item of the rule 110 description (1). At a step, only
one of eight transitions t000i, t001i, t010i, t011i, t100i, t101i, t110i, t111i fires,
changing the current cell ci state according to the rule 110 (1). CAs with other
rules are simulated in the same way. To provide a place check on zero without
inhibitor arcs, we check that the complementary place marking is grater than
zero (using a regular arc) instead.

Fig. 1. Model of a Rule 110 cell. A cell state is described with a pair of places zi and ui.
Eight transitions directly correspond to the items of the rule 110 description (1). They
change the current cell state using its state and states of its left and right neighbors.

Statement 1. The Petri net shown in Fig. 1 simulates Rule 110 cell work in a
single step.

Really, since conditions defined by input arcs of transitions are mutually
exclusive and cover all possible combinations of input data, exactly one transition
is permitted at a step, which fires preserving rules (1).

We can compose an infinite to both sides array of the cell models, merging
places with the same name, and obtain an infinite Petri net. However, it will not
simulate CA work properly because only one, chosen in nondeterministic way,
transition fires at a step. Thus, some control is needed to ensure that cell models
start in proper order, which is studied in the next section.

184 D.A. Zaitsev

Note that the above mentioned straightforward composition of the cell models
works properly when considered in the class of synchronous Petri nets with read
arcs [24]. At a step, a maximal subset of the permitted transitions fires [3,10].
Self-loops are replaced by read arcs [19] which only check the token presence;
a read arc is usually depicted with a filled-in circle at the arc’s end instead
an arrow. The net simulates a CA step in a single step: since there are no
conflicts, all of the permitted transitions fire at a step. The number of transitions
that simulate a cell can be reduced to 3 by removing transitions which do not
change the current cell state. Note that, finite synchronous Petri nets are Turing-
complete [3,10].

4 Simulating Cellular Automaton

In a classical PN, a single transition fires at a step, hampering its ability to
simulate a CA where an infinite number of cells change their state simultaneously.
In sequel, an approach similar to simulating CA via Turing machines (TMs)
[4,12] is applied. The PN work is organized as a sequence of cell array traversals,
where a traversal simulates a step of a CA. At each traversal, only a finite
number of cells is processed but the area (a working zone) is expanded after
each traversal.

Suppose that the first part of the CA initial configuration occupies m cells to
the left and n cells to the right with respect to an abstract zero point situated
to the left regarding the central cell c0. At the first traversal, we process these
m + n cells and extend the borders m cells to the left and n cells to the right
and so on. Thus, at a passage k, we process k · (m + n) cells.

Since only one transition fires at a step in a classical PN, we need to construct
a sequential process of the cell area traversals. In a sequential process, we need
to store separately a newly calculated state of a cell before its previous state has
been used for the calculating a new state of the next neighbour cell.

We modify the cell model, shown in Fig. 1, dividing it into two stages. At
the first stage, implemented via subnet DSi, we calculate the difference of cell
ci states and store the result with one of the intermediate places: d01i – change
from 0 to 1, d10i – change from 1 to 0, and dxxi – no change. At the second
stage, implemented via subnet CSi, we apply the state difference to the actual
state of a cell. Subnet DSi is shown in Fig. 2 and subnet CSi is shown in Fig. 3.

For finite specification of infinite Petri nets we use parametric expressions
[23] which directly describe the PN flow relation F on infinite countable sets
P and T using their certain indexation. They are straightforward and simple
comparing to high-level (colored) Petri nets [18] which employ additional con-
cepts of unfolding [14,15] (folding) for transformation to (from) the classical PN.
Besides, parametric expressions directly yield infinite linear systems of equations
and solving them in parametric form allows us to draw conclusions on properties
of infinite nets [23].

Universality in Infinite Petri Nets 185

Fig. 2. Subnet DSi calculating the cell state difference. It is obtained from Fig. 1; the
cell state is not changed but the difference between the current and the next state is
stored with places d01i, d10i, and dxxi.

A parametric expression (PE) represents a sparse PN incidence matrix [16]
description by columns (transitions); a dual description by rows (places) can
be constructed as well. In a PE, a row is labelled with a transition, then, after
a colon symbol, its input places follow and, after an arrow symbol, its output
places follow. When indices are used, an extra expression, written after a colon
symbol, may define the indices range; brackets group descriptions. In the present
paper, it is supposed that indices belong to the set of integer numbers. PE (2)
represents subnet DSi.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t000i : zi−1, zi, zi+1 → zi−1, zi, zi+1, dxxi,
t001i : zi−1, zi, ui+1 → zi−1, zi, ui+1, d01i,
t010i : zi−1, ui, zi+1 → zi−1, ui, zi+1, dxxi,
t011i : zi−1, ui, ui+1 → zi−1, ui, ui+1, dxxi,
t100i : ui−1, zi, zi+1 → ui−1, zi, zi+1, dxxi,
t101i : ui−1, zi, ui+1 → ui−1, zi, ui+1, d01i,
t110i : ui−1, ui, zi+1 → ui−1, ui, zi+1, dxxi,
t111i : ui−1, ui, ui+1 → ui−1, ui, ui+1, d10i

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2)

PE (3) represents subnet CSi.
⎛

⎝
t01i : d01i, zi → ui,
t10i : d10i, ui → zi,
txxi : dxxi →

⎞

⎠ (3)

186 D.A. Zaitsev

Fig. 3. Subnet CSi changing the cell state. It applies the state difference, calculated via
subnet DSi and stored with places d01i, d10i, and dxxi, to the cell state represented
with places zi and ui.

To provide the required order of the launching subnets DSi and CSi, we
compose a control flow net NBB (boomerang and barriers net), of which a
fragment is shown in Fig. 4; subnets are drawn as double border rectangles.
Parametric expression (4) specifies net NBB completely. The shape of running
control flow, which simulates a CA step, resembles the infinity symbol “∞”
getting wider after each step.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

DS0 : p0 → p−1,
CS0 : q1 → p0,
y : q−1 → p1,
p0 = 1,(

DSi : pi → pi+d(i),
CSi : qi+d(i) → qi,

)

:

i = −1 ∨ (i < −1 ∧ |i + 1| mod m 	= 0) ∨ (i > 0 ∧ i mod n 	= 0),⎛

⎜
⎜
⎝

DSi : pi, xi → pi+d(i), xi,
CSi : qi+d(i),→ qi,
ri : si, pi → xi, qi,
si = 1,

⎞

⎟
⎟
⎠ :

(i < −1 ∧ |i + 1| mod m = 0) ∨ (i > 0 ∧ i mod n = 0),

d(i) =
{

−1, i < 0,
1, i ≥ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4)

To understand how NBB works, we imagine a person with a boomerang
standing at the zero mark of a tape measure. To the left and to the right of
him barriers are situated; the distance from the person to the first left (right)
barrier as well as between each of the left (right) barriers is m (n, respectively).
He repeats throwing the boomerang first to the left and then to the right. At
the first pass, the boomerang reaches the left mark −m, overturns the barrier,
and returns; then the boomerang reaches the right mark n − 1, overturns the

Universality in Infinite Petri Nets 187

barrier, and returns. At the second pass, the boomerang reaches marks −2 · m
and 2 ·n−1 and so on. We include the zero cell in the right throw which explains
the decrement on positive magnitudes.

PE (4) is rather sophisticated because it describes the left and right parts
(regarding zero cell) with the same expressions using the difference of indices
denoted as a function d(i). PE (4) is composed of three parts: zero cell, regular
cells, and reverse-before-me cells. A regular cell model consists of two transitions:
DSi situated in the lower row (direct flight of a boomerang) and CSi situated
in the upper row (return flight of a boomerang). A reverse-before-me cell model
contains, besides transitions DSi and CSi, a one-time closer of a loop (barrier)
represented with transition ri and place si containing a single token in the initial
marking. It closes the loop only once (reverses a boomerang and overturns a
barrier) supplying place xi with a token that permits the firing of transition
DSi on the further passages of the loop (throws of boomerang). The case i = −1
is processed separately because we included c0 into the right part. Transition
y switches from the left part of the current traversal to its right part (from
the left to the right throw of the boomerang); it was added for the description
regularity only and can be replaced (with removal of q−1) by a direct arc from
CS−1 to p1. A net fragment induced by nodes si, xi, and ri could be perceived
as a self-destructor; after firing ri once, the net behavior is the same as in case
of its absence: ri is dead and xi does not restrict DSi firing.

Fig. 4. Control flow net NBB; an example for m = 1, n = 2. A control flow runs
from the zero cell to the left, calculating the state differences with DSi; the flow is
reversed with transition ri, which fires only once. Then subnets CSi change the cell
states while the control flow returns and proceed with the similar actions to the right
of the zero cell; firing CS0 finishes simulation of the current traversal. The fragment
shown represents 8 cells.

When composing the resulting net N1 from NBB via substitution of transi-
tions DSi and CSi, the following composition rules are assumed: each incidental
place of either DSi or CSi is an incidental place for each of its internal transi-
tion, and places with the same name are merged. Graphical representation of the
resulting net N1, obtained after substitution of subnets DSi and CSi into NBB,
looks rather tangled. Parametric expression (5) specifies net N1 completely.

188 D.A. Zaitsev

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t0000 : p0, z−1, z0, z1 → z−1, z0, z1, dxx0, p−1,
t0010 : p0, z−1, zi, u1 → z−1, z0, u1, d010, p−1,
t0100 : p0, z−1, ui, z1 → z−1, u0, z1, dxx0, p−1,
t0110 : p0, z−1, ui, u1 → z−1, u0, u1, dxx0, p−1,
t1000 : p0, u−1, zi, z1 → u−1, z0, z1, dxx0, p−1,
t1010 : p0, u−1, z0, u1 → u−1, z0, u1, d010, p−1,
t1100 : p0, u−1, u0, z1 → u−1, u0, z1, dxx0, p−1,
t1110 : p0, u−1, u0, u1 → u−1, u0, u1, d100, p−1,
t010 : q1, d010, z0 → u0, p0,
t100 : q1, d100, u0 → z0, p0,
txx0 : q1, dxx0 → p0,
y : q−1 → p1,
x0 = 1,

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t000i : pi, zi−1, zi, zi+1 → zi−1, zi, zi+1, dxxi, pi+d(i),
t001i : pi, zi−1, zi, ui+1 → zi−1, zi, ui+1, d01i, pi+d(i),
t010i : pi, zi−1, ui, zi+1 → zi−1, ui, zi+1, dxxi, pi+d(i),
t011i : pi, zi−1, ui, ui+1 → zi−1, ui, ui+1, dxxi, pi+d(i),
t100i : pi, ui−1, zi, zi+1 → ui−1, zi, zi+1, dxxi, pi+d(i),
t101i : pi, ui−1, zi, ui+1 → ui−1, zi, ui+1, d01i, pi+d(i),
t110i : pi, ui−1, ui, zi+1 → ui−1, ui, zi+1, dxxi, pi+d(i),
t111i : pi, ui−1, ui, ui+1 → ui−1, ui, ui+1, d10i, pi+d(i),
t01i : qi+d(i), d01i, zi → ui, qi,
t10i : qi+d(i), d10i, ui → zi, qi,
txxi : qi+d(i), dxxi → qi

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

:

i = −1 ∨ (i < −1 ∧ |i + 1| mod m 	= 0) ∨ (i > 0 ∧ i mod n 	= 0),⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t000i : pi, xi, zi−1, zi, zi+1 → zi−1, zi, zi+1, dxxi, pi+d(i), xi,
t001i : pi, xi, zi−1, zi, ui+1 → zi−1, zi, ui+1, d01i, pi+d(i), xi,
t010i : pi, xi, zi−1, ui, zi+1 → zi−1, ui, zi+1, dxxi, pi+d(i), xi,
t011i : pi, xi, zi−1, ui, ui+1 → zi−1, ui, ui+1, dxxi, pi+d(i), xi,
t100i : pi, xi, ui−1, zi, zi+1 → ui−1, zi, zi+1, dxxi, pi+d(i), xi,
t101i : pi, xi, ui−1, zi, ui+1 → ui−1, zi, ui+1, d01i, pi+d(i), xi,
t110i : pi, xi, ui−1, ui, zi+1 → ui−1, ui, zi+1, dxxi, pi+d(i), xi,
t111i : pi, xi, ui−1, ui, ui+1 → ui−1, ui, ui+1, d10i, pi+d(i), xi,
t01i : qi+d(i), d01i, zi → ui, qi,
t10i : qi+d(i), d10i, ui → zi, qi,
txxi : qi+d(i), dxxi → qi,
ri : si, pi → xi, qi,
si = 1,

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

:

(i < −1 ∧ |i + 1| mod m = 0) ∨ (i > 0 ∧ i mod n = 0),

di =
{

−1, i < 0,
1, i ≥ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5)

Lemma 1. Net N1 defined with (5) simulates Rule 110 work on a finite section
of the cell array which expands by m cells to the left and n cells to the right at
each Rule 110 step. Moreover, the time complexity of the simulation is quadratic.

Universality in Infinite Petri Nets 189

Proof. We prove the following propositions separately:

(a) the sequence DSi, CSi simulates the work of a separate cell ci properly;
(b) each transition ri fires only once, switching the control flow from DSi−d(i),

to CSi−d(i);
(c) the traversal k simulation runs km cells to the left, and then kn − 1 cells to

the right with respect to the zero cell;
(d) each subnet CSi starts only after its neghbor cell subnets DSi−1, DSi, and

DSi+1 have finished their work; for the cells on the left (right) borders of
the current traversal, subnes DSi−1, (DSi+1) are not required to fire.

Finally, we compose the general form of the firable transitions sequence to
accomplish the proof. Note that proposition (d) prevents using a new calculated
cell state by the cell neighbors during the current traversal simulation.

Proof of (a). As it follows from the way of construction, the sequence DSi,
CSi simulates the work of a separate cell ci. According to the composition rules,
for each transition of DSi there is an incoming arc from pi and an outgoing arc
to pi+d(i). Thus a transition, chosen according to Rule 110 (1) is firable only
when the control flow token is present in place pi; when it fires, it moves a token
from pi to pi+d(i). The cell state stored in places ui and zi is preserved; the
state difference regarding a new state is stored in places d01i, d10i, and dxxi.
Similarly, in CSi a transition fires and moves a token from qi+d(i) to qi. A new
state is written into the pair of places ui and zi; marking of places d01i, d10i,
and dxxi equals to zero which allows correct simulation of the next traversal.

Proof of (b). In the initial marking, each place si contains a token. When
a control flow token is put to the place pi for the first time, only transition ri
becomes firable since DSi is not firable because xi does not contain a token in
the initial marking. When ri fires it takes a tokens from each of places si and pi
and puts a token into each of places xi and qi. Thus CSi−d(i) becomes the only
firable transition. Besides, removal of a token from place si, having no incoming
arcs, makes transition ri dead; and putting a token into place xi, having no
outgoing arcs, makes transition DSi firability conditions dependent on the place
pi marking only.

Proof of (c). It is true for the first traversal simulation. For a proof by induc-
tion, suppose it is true for the traversal k−1 simulation. Then we show that it is
true for the traversal k simulation. For the left part, the simulation of the traver-
sal k −1 has disabled the transition r−(k−1)m and at the token presence in place
p−(k−1)m the transition DS−(k−1)m fires as well as the next transitions DSi to
the left of it till the control flow token is put into place pkm. Then according to
(b) the net is switched to the reverse sequence of CSi till a token is put in place
q−1 and moved by transition y into place p1. Similar reasoning is valid for the
right part of the traversal k and the control flow token arrives to the place q1
and then, after firing CS0, returns to p0.

Thus, for the traversal k simulation, only the following sequence of transitions
(subnets) fire:

σ = DS0σ−yσ+CS0, where
σ− = DS−1...DS−kmr−km−1CS−km...CS−1 and

190 D.A. Zaitsev

σ+ = DS1...DSkn−1rknCSkn−1...CS1.
Only one control flow token is present, marking of si is reset, marking of xi

set to one and since then does not changed, places zi and ui are complementary
with a single token in them, and places d01i, d10i, and dxxi are zero initially
(and after CSi firing) or one of them has a token after DSi firing. Thus, NBB
represents a 1-bounded Petri net.

Proof of (d). Considering σ we conclude that: each CSi fires after DSi; each
CSi (save for borders) fires only after subnets DSi−1, DSi, and DSi+1 have
fired; the left (right) border CSi fires only after subnets DSi and DSi+1 (DSi−1

and DSi, respectively) have fired. We consider separately CSi of σ−, σ+, and
CS0. On σ− (σ+), subnets CSi fire after DSi and besides DS0, which begins σ,
provides the missing right (left) neighbor for CS−1 (CS1, respectively). When
CS0 fires, all DSi of the current traversal simulation have fired (including DS−1,
DS0, and DS1).

Thus, the specified sequence σ ensures correct recalculation of Rule 110 states
on a finite section of the cell array.

The time complexity of the simulation is estimated as a sum of arithmetic
progression O(k2(m + n)/2) ≈ O(k2) where k is the number of Rule 110 steps.

�

Note that more permissive variant of NBB, obtained via removal of transi-
tion y and adding two arcs connecting q−1 with CS0 and DS0 with p1, is valid
as well. But the consideration of the two sequences σ− and σ+ interleaving com-
plicates the proof. It could be thought of as throwing two boomerangs (to the
left and to the right) simultaneously.

Net N1 is also denoted as UPN(9,12,inf) since a separate cell model contains
9 places and 12 transitions including the control flow nodes which extend the
working zone.

Fig. 5. Simulating Rule 110 ether with N1 using an initial pattern represented with
the left word “1001” and the right word “1011111000”; m = 4 and n = 10. Each row
represents a state before the next traversal.

Theorem 1. Net N1, denoted as UPN(9,12,inf), is Turing-complete and runs
in time O(t4log2t), where t is the number of steps of an input TM.

Proof. Taking into consideration Lemma 1, it remains to be shown that the
simulation of a finitely expanding section of a CA implies simulation of the CA.
According to [4,5,12], we need to supply UPN(9,12,inf) with a pattern that
leads to simulating Rule 110 ether γ = 10011011111000 pattern, shifting by
4 characters to the left (by 10 character to the right) on each step, on which

Universality in Infinite Petri Nets 191

Matthew Cook evinced a system of gliders to encode algorithms. It is explicitly
demonstrated in Fig. 5 for a finite stretch of the cell and is proven by induction
that UPN(9, 12, inf), supplied with the infinite pattern of the left word α = 1001
and the right word β = 1011111000, produces ether for m = 4 and n = 10
correspondingly; note that γ = αβ.

We prove that on a step k the cell area is described by the following expression

α∞(βα)kβ∞ (6)

To start the induction, we check that it is true on the first step k = 1 then,
supposing that it is true for a k > 1, we prove that it is true for k + 1. Based
on the Rule 110 given with (1), we recalculate the value of the traversal on step
k + 1. Thus we prove that application of Rule 110 to

α(βα)kβ = (αβ)k+1 (7)

yields
(βα)k+1. (8)

Taking into account (6), the following edge conditions are meant for (7):
“1” to the left and “1” to the right, i.e. the last character of word α and the
first character of word β, respectively. Thus, there are three kinds of the two
word sequences αβ: on the left edge, internal, and on the right edge. The edge
conditions for the first and third cases coincide and are represented with “1αβ1”
while for the second case we have “0αβ1”. Supposing the mapping R, defined
with (1), is extended on sequences of characters, we have

R(1, αβ, 1) = R(1, 10011011111000, 1) = 10111110001001 = βα

and

R(0, αβ, 1) = R(0, 10011011111000, 1) = 10111110001001 = βα

which means that (7) is transformed to (8) that proves (6).
When running an input TM on UPN(9,12,inf), we have the following chain of

simulations (with omitted intermediate auxiliary systems): TM → Rule 110 →
PN . The simulation TM → Rule 110 has the time complexity q = O(t2 log t)
[11]. Lemma 1 states that the simulation Rule 110 → PN runs in time O(q2).
Thus, we obtain the resulting complexity evaluation via a substitution of the
above expressions. �

In our proof, we composed an initial state of the cell array of only two words
(left and right) that allowed for the simulation of Rule 110 ether. In general,
an initial array of cells has three parts: a central word, and the left and right
words infinitely repeated to the left and right of the central word respectively.
When implementing algorithms with Rule 110 [4,5], the right word represents
an encoded program, the central word – encoded input data, and the left word –
a pattern to store the obtained result (output data) respectively. Note that the

192 D.A. Zaitsev

Fig. 6. Simulating Rule 110 ether with N1 using an initial pattern represented with
the left word “0001”, central word “01110”, and right word “111110”; m = 4 and n = 0
interchanges with n = 6. Each row represents a state before the next traversal.

same induction technique, as in Theorem 1 proof, could be applied for detailed
formal proof of the Rule 110 ether and gliders properties further to [4,5] where
examples for a finite stretch of the cell area were presented.

It occurs that even more sophisticated arrangements are required. For exam-
ple, based on a TM with 4 states and 3 symbols that simulates Rule 110 [5],
we build the following pattern for computing the ether. The left, central, and
right words are “0001”, “01110”, and “111110” respectively; m = 4, n = 0 for
even traversals and n = 6 for odd traversals. The results of simulation for a
finite stretch of the cell area are shown in Fig. 6. To simulate a zero offset we
use a dummy cell represented with elementary transitions tdsi and tcsi; thus,
the control flow goes further but does not involve the next cell.

5 Simulating TMs Which Simulate Rule 110

To simulate TMs which simulate Rule 110 [4,12], we construct an infinite classical
PN composed of a block which contains even fewer nodes than UPN(9,12,inf)
constructed in the previous section. Note that the first attempts on simulating
TM tape originate in the dissertation [17] where Carl Petri introduced his nets.
Comparing to the simulation [6] of a linearly bounded automaton (a TM with
finite tape) by a Petri net, the number of places is reduced by one per cell, the
number of incidental arcs for each transition is reduced by 2, and besides infinite
tape is simulated.

The peculiarity of the present simulation compared to [21,22] is the applica-
tion of a classical PN with arc multiplicity equal to one. Moreover, the resulting
net is a safe PN with place marking belonging to the set {0,1}, though the
obtained net is infinite.

Source information for the simulation is a transition function of the Neary
and Woods’ [12] weakly universal TM with 2 states and 4 symbols (belonging
to the set {0, 1, 0/ , 1/ }) which is denoted as WUTM(2,4) and given by Table 1.
In WUTM(2,4), an infinite repetition of definite blank words is written on its
tape: wl = 000/ 1 to the left and wr = 01/ 0/ 0/ 01/ to the right of an initial (input)
word. WUTM(2,4) simulates Rule 110 work via finite length traversals of the
cell array. To terminate a traversal, the blank words have a special form that
turns the direction of the control head so that it moves in the opposite direction
and prevents this turning on the next traversal; thus, on the next traversal the
control head goes to the next blank word and so on.

Universality in Infinite Petri Nets 193

In our simulation, each TM tape cell is represented with 4 dedicated places
x0i, x1i, x0′

i, x1′
i which correspond to the TM tape alphabet symbols 0, 1, 0/ , 1/

respectively; only one of them contains a token indicating the current cell symbol;
thus, an invariant x0i + x1i + x0′

i + x1′
i = 1 holds. The approach of having only

one copy of the TM transition function fails because it requires infinitely many
arcs incidental to a PN node and tangles the resulting net logic. Actually, we
represent each TM tape cell together with the TM transition function and the
control head internal state.

For each tape cell, the control head state is represented with 2 dedicated
places u1i, u2i. For the entire tape, only one state place has a token indicating
both the TM’s current cell and the TM’s control head state; thus, an invariant∑

i (u1i + u2i) = 1 holds. The TM’s moves are simulated via moving a token
into a state place of a neighbor cell.

For each tape cell, the TM transition function is simulated via 8 dedicated
transitions which directly correspond to the items of the WUTM(4,2) transition
function represented in Table 1.

The obtained PN model of a WUTM(2,4) cell is shown in Fig. 7.
A composition of the resulting net UPN(6,8,inf) is done via merging the state

places of the neighbor cell models. A fragment of the resulting net is shown in
Fig. 8. PE (9) represents a formal description of the obtained net N2 and PE
(10) specifies its initial marking corresponding to the Neary and Woods’ blank
words simulating Rule 110 ether.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t(0, 1)i : x0i, u1i → x0/ i, u1i−1,
t(0, 2)i : x0i, u2i → x1/ i, u1i+1,
t(1, 1)i : x1i, u1i → x1/ i, u2i−1,
t(1, 2)i : x1i, u2i → x0/ i, u2i−1,
t(0/ , 1)i : x0/ i, u1i → x1/ i, u1i−1,
t(0/ , 2)i : x0/ i, u2i → x0i, u2i+1,
t(1/ , 1)i : x1/ i, u1i → x1/ i, u1i−1,
t(1/ , 2)i : x1/ i, u2i → x1i, u2i+1,

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(9)

Table 1. WUTM(2,4) behavior [12]. TM tape symbols are headings of the rows while
TM internal states are headings of the columns. Each item contains a sequence, which
defines a new symbol, a control head move, and a new state.

u1 u2

0 0/ L u1 1/ R u1

1 1/ L u2 0/ L u2

0/ 1/ L u1 0 R u2

1/ 1/ L u1 1 R u2

194 D.A. Zaitsev

Fig. 7. Petri net model N24 of a WUTM(2,4) cell. A cell symbol is indicated with
places x0i, x1i, x0′

i, and x1′
i. A control head state is indicated with places u1i and u2i

for the current cell. Eight transitions directly encode Table 1. A move is implemented
via putting a token into state places of neighbor cells.

Fig. 8. Petri Net N2 simulating Rule 110 via WUTM(2,4). In an array of cells, rep-
resented with Fig. 7, places with the same name were merged. The fragment shown
contains 5 cells.

⎛

⎜
⎜
⎝

(xi−3 = 0, xi−2 = 0, xi−1 = 0/ , xi = 1):
i < 0 ∧ |i| mod 4 = 0,
(xi = 0, xi+1 = 1/ , xi+2 = 0/ , xi+3 = 0/ , xi+4 = 0, xi+5 = 1/):
i ≥ 0 ∧ i − 1 mod 6 = 0

⎞

⎟
⎟
⎠ (10)

Lemma 2. Net N2 simulates WUTM(2, 4) in constant (unitary) time.

A proof immediately follows from the fact that only one transition is firable
and its action completely corresponds to the WUTM(2, 4) work given by Table 1.
Insofar as WUTM(2, 4) simulates Rule 110 in a quadratic time [12] (the same
as N1) the complexity evaluations coincide and are formulated in the following
theorem.

Theorem 2. Net N2, denoted as UPN(6, 8, inf), is Turing-complete and runs
in time O(t4log2t) in the number of steps t of an input TM.

6 Some Remarks on Universal Constructs

Often the term universality implies that a system is a computationally universal.
I.e. it can implement any algorithm. Besides, Ivan Korec [9] offered to distinguish

Universality in Infinite Petri Nets 195

the strong and weak universality based on the complexity of the data encoding.
As far as a concept of an algorithm was formalized as a Turing machine, we need
to prove that a system executes a given TM; namely, it is Turing-complete.

Just as a universal TM executes a given TM, it is of some interest to construct
a universal system X which accepts as its input a given system X and executes
it. Examples include a universal PN which accepts a given PN, a universal CA
which accepts a given CA, etc.

But a concept of a universal construct needs some compulsory encoding of a
given input system otherwise an empty system is a universal one. A given system
runs itself according to its definition and we could perceive an empty system as
an empty universal system that runs it. Though the above reasoning represents
a kind of sophism, it justifies compulsory encoding and throws out an empty
universal construct suitable for any system.

A universal TM encodes a given TM in a finite part of its tape, and a uni-
versal PN encodes a given PN as markings of dedicated places. Both contain an
unlimited element: a tape and marking size, respectively. However, only finitely
given TMs and PNs are encoded. More precisely, for a TM, its initial non-empty
part of the tape (working zone) is encoded. We only imply infinite stretches of
blank symbols (blank words) on its tape.

As far as a TM specification contains an infinite element – its tape, pure
consideration does not allow us to draw the conclusion that a universal TM has
ever been constructed. Because for an arbitrary given infinite tape we can not
implement its encoding. Usually we provide some kind of emulation for abstract
infinite stretches of blank words i.e. some finite representation of infinite systems
having some regular structure. The same with a universal construct for CA.

Among systems having “pure” universal constructs we mention register
machines [7,9] and finite PNs [8,22] because we have definite, though unlim-
ited, numbers in their registers and places, respectively.

As for the Turing-complete infinite Petri nets constructed in the present
paper, we only prove that they can execute a given finite PN, considering that
the simulation PN → TM has the time complexity t = O(k6) [21], where k is
the number of steps of an input PN .

Statement 2. Nets N1, N2 represent a universal PN and run in time
O(k24 log2 k6) in the number of steps k of an input PN.

It is a future research direction to construct an encoding of infinite Petri
nets, having some finite specification, acceptable by an infinite universal Petri
net. Note that strictly “pure” infinite universal constructs are impossible due to
an inability to encode an arbitrary given infinite system.

7 Conclusions

Thus, two universal infinite Petri nets with polynomial time complexity were
built via simulation of Rule 110 and a TM which simulates Rule 110. They
represent a classical Petri net without multiple arcs and simulate Rule 110 via

196 D.A. Zaitsev

finite traversals. Moreover, the nets are 1-bounded having place marking no
greater than one and contain a finite number of arcs incidental to each node.

The induction proof technique presented in the paper is applicable for
detailed formal proof of the Rule 110 ether and gliders properties further to
[4,5] where examples for a finite stretch of the cell area were presented.

Finite classical Petri nets are known to be less powerful than Turing machines
(not Turing-complete) [10,16]. We have explicitly proven that infinite classical
Petri nets are Turing-complete because they simulate Rule 110, which is known
to be a computationally universal system.

Acknowledgement. The author would like to thank reviewers whose comments
allowed the refinement of the presentation and Jacob Hendricks for his help in
improving the readability of the paper.

References

1. Agerwala, T.: A complete model for representing the coordination of asynchro-
nous processes, John Hopkins University, Hopkins Computer Science Program,
Baltimore, MD, Research Report no. 32, July 1974

2. Berthomieu, B., Ribet, O.-P., Vernadat, F.: The tool TINA-construction of abstract
state space for Petri nets and time Petri nets. Int. J. Prod. Res. 42(14), 2741–2756
(2004)

3. Burkhard, H.-D.: On priorities of parallelism: Petri nets under the maximum firing
strategy. In: Salwicki, A. (ed.) Logics of Programs and Their Applications. LNCS,
vol. 148, pp. 86–97. Springer, Heidelberg (1983)

4. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15(1), 1–40
(2004). http://www.complex-systems.com/pdf/15-1-1.pdf

5. Cook, M.: A Concrete View of Rule 110 Computation. In: Neary, T., Woods, D.,
Seda, A.K., Murphy, N. (eds.) The Complexity of Simple Programs 2008, EPTCS
1, pp. 31–55 (2009). doi:10.4204/EPTCS.1.4

6. Esparza, J.: Decidability and complexity of PN problems. In: Reisig, W., Rozen-
berg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 374–428. Springer, Heidelberg
(1998)

7. Fischer, P.C., Meyer, A.R., Rosenberg, A.L.: Counter machines and counter
languages. Math. Syst. Theory 2(3), 265–283 (1968). http://dx.doi.org/
10.1007/BF01694011

8. Ivanov, S., Pelz, E., Verlan, S.: Small Universal Petri Nets with Inhibitor
Arcs. In: Computability in Europe, pp. 23–27, Budapest, Hungary, June 2014.
(http://arxiv.org/abs/arXiv:1312.4414)

9. Korec, I.: Small universal register machines. Theoret. Comput. Sci. 168(2), 267–
301 (1996)

10. Kotov, V.E.: Seti Petri. Nauka, Moscow (1984)
11. Neary, T.: Small universal Turing machines. PhD thesis, Department of Computer

Science, National University of Ireland, Maynooth (2008)
12. Neary, T., Woods, D.: Small weakly universal turing machines. In: Kuty�lowski,

M., Charatonik, W., G ↪ebala, M. (eds.) FCT 2009. LNCS, vol. 5699,
pp. 262–273. Springer, Heidelberg (2009). http://www.ini.uzh.ch/∼tneary/
NearyWoods FCT2009.pdf

http://www.complex-systems.com/pdf/15-1-1.pdf
http://dx.doi.org/10.4204/EPTCS.1.4
http://dx.doi.org/10.1007/BF01694011
http://dx.doi.org/10.1007/BF01694011
http://arxiv.org/abs/arXiv:1312.4414
http://www.ini.uzh.ch/~tneary/NearyWoods_FCT2009.pdf
http://www.ini.uzh.ch/~tneary/NearyWoods_FCT2009.pdf

Universality in Infinite Petri Nets 197

13. Neary, T.: On the computational complexity of spiking neural P systems. Nat.
Comput. 9(4), 831–851 (2010)

14. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains,
part i. Theoretical Computer Science 13, 85–108 (1981)

15. Peterson, J.: A note on colored petri nets. Inf. Proces. Lett. 11(1), 40–43 (1980)
16. Peterson, J.: Petri Net Theory and the Modelling of Systems, Prentice-Hall (1981)
17. Petri, C.: Kommunikation mit Automaten. Bonn: Institut fur Instrumentelle Math-

ematik, Schriften des IIM, Nr. 2 (1962)
18. Smith, E.: Principles of high-level net theory. In: Reisig, W., Rozenberg, G. (eds.)

APN 1998. LNCS, vol. 1491, pp. 174–210. Springer, Heidelberg (1998)
19. Winkowski, J.: Reachability in contextual nets. In: Fundamenta Informaticae -

Concurrency Specification and Programming Workshop (CSP 2001), vol. 51(1–2),
pp. 235–250 (2002)

20. Zaitsev, D.A., Sleptsov, A.I.: State equations and equivalent transformations
for timed petri nets. Cybern. Syst. Anal. 33(5), 659–672 (1997). doi:10.1007/
BF02667189

21. Zaitsev, D.A.: A Small universal Petri net. In: Neary, T., Cook, M. (eds.) Proceed-
ings Machines, Computations and Universality 2013 (MCU 2013), Zurich, Switzer-
land, September 9–11, Electronic Proceedings in Theoretical Computer Science
128, 190–202 (2013). doi:10.4204/EPTCS.128.22

22. Zaitsev, D.A.: Small polynomial time universal petri nets, September 2013.
arXiv:1309.7288

23. Zaitsev D.A., Zaitsev I.D., Shmeleva T.R.: Infinite Petri Nets as Models of Grids.
In: Khosrow-Pour, M. (ed.) Encyclopedia of Information Science and Technology,
3rd edn., vol. 10, Chap. 19, pp. 187–204. IGI-Global USA (2014)

24. Zaitsev, D.A.: Simulating cellular automata by infinite synchronous Petri nets.
In: 21st Annual International Workshop on Cellular Automata and Discrete Com-
plex Systems (AUTOMATA 2015) Exploratory papers, vol. 24, pp. 91–100. TUCS
Lecture Notes, Turku, Finland, 8–10 June 2015

http://dx.doi.org/10.1007/BF02667189
http://dx.doi.org/10.1007/BF02667189
http://dx.doi.org/10.4204/EPTCS.128.22
http://arxiv.org/abs/1309.7288

Author Index

Csuhaj-Varjú, Erzsébet 31

Drewes, Frank 45

Fernau, Henning 61
Freund, Rudolf 31, 61

Hendricks, Jacob 149
Holzer, Markus 45

Ivanov, Sergiu 79

Jakobi, Sebastian 45
Jolivet, Timo 3

Kutrib, Martin 94, 113

Malcher, Andreas 94
Martiel, Simon 129
Martin, Bruno 129

Nagy, Benedek 164

Patitz, Matthew J. 149

Rogers, Trent A. 149

Siegel, Anne 3
Siromoney, Rani 61
Stannett, Mike 17
Subramanian, K.G. 61

Vályi, Sándor 164
van der Merwe, Brink 45
Vaszil, György 31
Verlan, Sergey 79

Wendlandt, Matthias 94, 113

Zaitsev, Dmitry A. 180

	Preface
	Organization
	Invited Talks
	Decidability Problems for Self-induced Systems
Generated by a Substitution
	Concurrency, Histories, and Nets
	Spiking Neural P Systems: A Class of Parallel
Computing Models Inspired by Neurons
	Towards Formal Verification of Computations
and Hypercomputations in Relativistic Physics

	Contents
	Invited Papers
	Decidability Problems for Self-induced Systems Generated by a Substitution
	1 Substitutions Among Mathematics and Computer Science
	2 The Geometry of One-Dimensional Substitutions
	3 Undecidability of GIFS Topological Properties
	4 Decidability of Rauzy Fractals Properties
	5 Extending the Framework of Rauzy Fractals
	References

	Towards Formal Verification of Computations and Hypercomputations in Relativistic Physics
	1 Introduction
	1.1 Geometrical Boosting of Computational Power
	1.2 Geometrical Reduction of Computational Power
	1.3 Geometrical Effects on Computational Complexity

	2 Modelling Relativity Theory in Isabelle/HOL
	2.1 First-Order Relativity Theory
	2.2 Generating Verifiable Proofs

	3 Next Steps
	References

	Regular Papers
	A Connection Between Red-Green Turing Machines and Watson-Crick T0L Systems
	1 Introduction
	2 Preliminaries
	2.1 Red-Green Turing Machines
	2.2 Watson-Crick L Systems

	3 Results
	4 Conclusions
	References

	Tight Bounds for Cut-Operations on Deterministic Finite Automata
	1 Introduction
	2 Preliminaries
	3 The Descriptional Complexity of the Cut Operation
	4 The Descriptional Complexity of the Iterated-Cut Operation
	5 Conclusions
	References

	Non-isometric Contextual Array Grammars with Regular Control and Local Selectors
	1 Introduction
	2 Definitions
	3 Isometric Contextual Array Grammars
	3.1 The Basic Variant
	3.2 Contextual Array Grammars with Regular Control

	4 Non-isometric Contextual Array Grammars
	4.1 Non-isometric Contextual Array Grammars with Regular Control
	4.2 Non-isometric Contextual Array Grammars with Regular Control and Local Selectors

	5 A Characterization of Linear String Languages
	6 More-Dimensional Non-isometric Contextual Array Grammars with Regular Control and Local Selectors
	7 Conclusions
	References

	Universality of Graph-controlled Leftist Insertion-deletion Systems with Two States
	1 Introduction
	2 Preliminaries
	3 Universality Results
	4 Conclusions
	References

	Tinput-Driven Pushdown Automata
	1 Introduction
	2 Preliminaries
	3 Computational Capacity
	4 Closure Properties
	5 Decidability Questions
	6 Representation Theorems
	7 Conclusion
	References

	Reversible Limited Automata
	1 Introduction
	2 Preliminaries
	3 Sweeping Reversible k-Limited Automata
	4 A Hierarchy of Reversible Limited Automata
	5 Limited Automata and Church-Rosser Languages
	References

	An Intrinsically Universal Family of Causal Graph Dynamics
	1 Introduction
	2 Graphs and Localizable Dynamics
	3 Intrinsic Simulation and Universality
	4 Preliminary Results
	5 A Family of Intrinsically Universal Local Rules
	5.1 Graph Encoding
	5.2 Local Rule Encoding
	5.3 Description of an Intrinsically Universal Rule
	5.4 On the (non) Existence of a Single Universal Rule

	6 Conclusion
	References

	The Simulation Powers and Limitations of Hierarchical Self-Assembly Systems
	1 Introduction
	2 Definitions
	2.1 Informal Definition of the 2HAM
	2.2 Definitions for Simulation
	2.3 Intrinsic Universality

	3 Uniform Mappings
	4 Strong Simulation via Uniform Mappings
	5 Impossibility of Strong Simulation at Higher Temperatures
	6 Simulating Arbitrary Lower Temperature Ladder Systems
	References

	A Characterization of NP Within Interval-Valued Computing
	1 Introduction
	1.1 Computing Paradigms
	1.2 A Brief History of Interval-Valued Computing

	2 Preliminaries
	3 Interval-Valued Computations: Definitions
	4 Results
	5 Example
	6 Conclusions, Further Remarks
	References

	Universality in Infinite Petri Nets
	1 Introduction
	2 Petri Nets and Linear Cellular Automata
	3 Simulating Separate Cell
	4 Simulating Cellular Automaton
	5 Simulating TMs Which Simulate Rule 110
	6 Some Remarks on Universal Constructs
	7 Conclusions
	References

	Author Index

