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Preface

Recently, there has been considerable progress in the construction and applica-
tion of cardiac atlases and computational models which integrate heart shape,
function, and physiology. Several major initiatives have identified computational
and morphological atlases as a major infrastructural platform, for instance the
Physiome project and the European Virtual Physiological Human project. Non-
invasive cardiovascular imaging plays an important role in defining the compu-
tational domain, the boundary/initial conditions, and tissue function and prop-
erties. Hence, one of the most important current challenges in the field is the
development of robust and effective methods for the parameterization and per-
sonalization of these computational models using only minimally-invasive clinical
imaging. However, in order to evaluate the model output and achieve clinical im-
pact, such personalized models have to be both augmented with and compared
to generic knowledge on the healthy and pathological heart. This knowledge
can be acquired through the building of statistical models of the heart. Several
efforts are now established to provide web-accessible structural and functional
atlases of the normal and pathological heart for clinical, research, and educa-
tional purposes. We believe all these approaches will only be effectively developed
through collaboration across the full research scope of the imaging and modeling
communities.

Integrative models of cardiac function are important for understanding dis-
ease, evaluating treatment, and planning intervention. To provide a focus for the
developing array of techniques which underpin the application of these models in
the clinic a simulation challenge was included in the workshop. The goal of this
challenge was to compare strategies for the personaliszation of different cardiac
computational models with experimental data. A complete dataset was provided
in advance, containing the cardiac geometry and fibre orientations from MRI as
well as epicardial transmembrane potentials from optical mapping. Participants
submitted personalized models and resulting isochrones, in order to allow a dis-
cussion on the different personalization strategies and results.

This workshop provides a forum for the discussion of the latest developments
in the areas of heart mapping, including atlas construction, statistical model-
ing of cardiac function across patient groups, cardiac computational physiology,
model personalization, ontological schemata for data and results, atlas-based
functional analysis, and integrated functional/structural analyses. It also brings
together experts in cardiology, radiology, biology, and physiology. Through this
workshop we would also particularly like to engage a new generation of early-
career researchers in working at this interface.

September 2010 Oscar Camara, Mihaela Pop
Kawal Rhode, Maxime Sermesant

Nic Smith, Alistair Young
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Corné Hoogendoorn, Gemma Piella, Nicolas Duchateau,
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Atlas Construction and Image Analysis Using

Statistical Cardiac Models

Mathieu De Craene1,2, Federico M. Sukno2,1, Catalina Tobon-Gomez1,2,
Constantine Butakoff1,2, Rosa M. Figueras i Ventura1,2, Corné Hoogendoorn1,2,

Gemma Piella1,2, Nicolas Duchateau1,2, Emma Muñoz-Moreno1,2,
Rafael Sebastian3, Oscar Camara1,2, and Alejandro F. Frangi1,2,4

1 Center for Computational Imaging & Simulation Technologies in Biomedicine;
Department of Information and Communication Technologies, Universitat Pompeu

Fabra, Barcelona, Spain
2 Biomedical Research Networking Center in Bioengineering, Biomaterials and

Nanomedicine (CIBER-BBN), Barcelona, Spain
3 Department of Computer Science, Universitat de Valencia, Valencia, Spain

4 Institució Catalana de Recerca i Estudis Avançats (ICREA), Spain

Abstract. This paper presents a brief overview of current trends in the
construction of population and multi-modal heart atlases in our group and
their application to atlas-based cardiac image analysis. The technical chal-
lenges around the construction of these atlases are organized around two
main axes: groupwise image registration of anatomical, motion and fiber
images and construction of statistical shape models. Application-wise, this
paper focuses on the extraction of atlas-based biomarkers for the detection
of local shape or motion abnormalities, addressing several cardiac applica-
tions where the extracted information is used to study and grade different
pathologies. The paper is concluded with a discussion about the role of
statistical atlases in the integration of multiple information sources and
the potential this can bring to in-silico simulations.

1 Introduction

Four dimensional medical images become ubiquitous as routine diagnostic tool.
They also are very important research instruments that allow understanding
normal and diseased conditions, and grading the severity or stages of a disease.
The variety of clinically available image modalities base their acquisition on
wide physical phenomena. Hence, each modality offers the possibility to observe
the object of interest from a distinct perspective, sometimes unique, sometimes
complementary to other related imaging examinations. Clinicians extract and
complement information from different studies to form a mental model, in three
or four dimensions, which may allow them to classify each patient’s pathology.
Nonetheless, parameter values can not be regarded as comparable since each of
them is measured under distinct principles. Ideally, information should be ex-
tracted from the various sources through the application of methodologies that
minimize the bias towards the specific processing chain and, instead, enhance the

O. Camara et al. (Eds.): STACOM-CESC 2010, LNCS 6364, pp. 1–13, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 M. De Craene et al.

fact that there is a physical or physiological complementarity of the underlying
information sources. Statistical atlases and models are a recognized paradigm to
integrate observations into quantitative, self-consistent and comprehensive de-
scriptions [52]. This is particularly challenging in the context of cardiac imaging,
since both shape and motion variability must be taken into account.

1.1 Atlas Challenges and Evolution

Historically, anatomical atlases aimed at providing a standard reference frame
for comparing patients in a common space. They were obtained through the de-
tailed segmentation of a single subject, considering this subject to be represen-
tative of the standard anatomy. Over the years, atlases have evolved to encode,
on top of the template anatomy, the variability within a population. In this
context, groupwise alignment of a population generated considerable research
interest [6, 14, 50]. Several challenges were tackled to extend atlas construction
algorithms to large populations, such as the automatic detection of cases with
incorrectly parameterized anatomy (outliers) [8,4], the design of flexible registra-
tion techniques that can solve for small and large transformations and produce
smooth and invertible transformations without compromising registration accu-
racy [42,51] and the appropriate selection of the reference instance(s) [6]. Recent
advances on this latter issue are presented together with some of our recent work
on this matter in Section 2.1.

In parallel to extending traditional atlases towards population atlases, an ad-
ditional challenge is to integrate multi-scale and heterogeneous information. In
cardiac studies, this information can consist of myocardial motion and deforma-
tion, perfusion, and fiber orientation, to name just a few. Issues related to the
construction of motion and fiber atlases are discussed in Sections 2.2 and 2.3.

After bringing into correspondence multi-modal data from all subjects, the
anatomical variability captured in the population needs to be projected on a
set of basis functions, giving a more compact representation of this variability.
A widespread option is to construct a statistical shape model [10, 9] based on
Principal Component Analysis (PCA). Statistical shape models have been ap-
plied to all major cardiac imaging modalities, with encouraging results for the
quantification of cardiac function [21, 47, 36] (Section 3).

Alternatives to the PCA representation focus on localized components such
as Independent Component Analysis (ICA) [45], sparse component analysis [44],
or physiologically inspired modes like thickening or twisting [41].

1.2 Some Applications of Cardiac Atlases

The application of atlases to cardiac studies can be articulated around three
main axes: (1) the automatic extraction of patient-specific biomarkers, (2) the
integration of multi-modal data into a unified space for visualization purposes
and (3) the generation of patient-specific models for personalized simulation of
alternative treatment scenarios.
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Section 4 presents three possible strategies for extracting probabilistic biomark-
ers detecting and quantifying pathological shape or motion abnormalities. By
probabilistic biomarkers, we mean indexes that compare the value of a given pa-
rameter representing local anatomy and function towards a population atlas and
output a statistical significance test of observing this same value within the pop-
ulation. The first example of biomarker we describe in this paper focus on local
myocardial thickness for differentiating hypertrophic myopathy and hypertensive
diseases (Section 4.1). Another example of biomarker concerns the local quantifi-
cation of abnormality in myocardial velocities, and their application to the quan-
tification of cardiac dyssynchrony in the context of cardiac resynchronization ther-
apy (Section 4.2). The last example of biomarker presented in this paper integrates
local shape and motion information using bilinear models for the integrated detec-
tion of shape and motion abnormalities (Section 4.3). Perspectives in the second
and third axes are briefly given in Section 5.

2 Image Registration for Automated Construction of
Cardiac Atlases

Image-based inter-subject registration has established itself as a corner stone for
populational atlas construction. Its main function is to bring into correspondence
the anatomy of large databases of 3D or 3D+t acquisitions. This is a prerequisite
for further statistical modeling of the variability included in the population under
study.

From the group-wise alignment procedure, the entire population can be en-
coded in the form of an average exemplar of the anatomy, and a representation
of the anatomical variability obtained by analysis of the deformation fields that
warp the atlas image to all the sample images in the population [31].

Obtaining the atlas anatomy from large populations has been a central question
for ensuring reproducibility and robustness of the atlas construction pipeline. In-
corporating the computation of the atlas within the groupwise registration guar-
antees that the same reference will be obtained by different operators, if there
exists a unique solution to the problem (Section 2.1).

The obtained atlas anatomy defines a basic structural layer on which all pa-
tients from the population can be mapped and compared. This layer can be
seen as a skeleton on which relevant pathological descriptors will be projected.
Possible descriptors include, but are not limited to, motion (Section 2.2), strain,
perfusion, fibers (Section 2.3) etc.

2.1 Atlases of Cardiac Anatomy

The construction of a statistical atlas of the heart first requires the joint align-
ment of a population into a Normalized Coordinate System (NCS). In our previ-
ous work [19,31], a registration pipeline was proposed to efficiently register large
populations and compute the NCS simultaneously.
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The complete procedure iterates between registering each subject to the cur-
rent estimate of the NCS, averaging the set of obtained non-rigid transforma-
tions and applying the inverse of this average transformation to the current NCS
estimate, as originally proposed by Guimond [20]. The reason for updating iter-
atively the reference is to remove a potential bias towards an atypical choice of
reference within the input population.

Indeed, if the constructed atlas is biased and depicts peculiar anatomical fea-
tures for the population being studied, there is a risk that when normalizing
an individual sample to this space, systematic shape difference to the template
anatomy could arise. This, in turn, could further influence statistical analy-
sis [14]. Alternatives for choosing an initial reference include ranking based on
groupwise mutual information, where the histograms used are those of the candi-
date image and the aggregate histogram of the remainder of the population [23];
minimizing the mean square TPS bending energy [32]; and manual selection [33].

2.2 Atlas of Myocardial Motion

The construction of statistical atlases of motion requires to generalize the con-
cepts of aligning large populations of 3D data to handle the temporal dimen-
sionality of this data, so that motion within each sequence can be integrated in
the registration and statistical analysis pipeline. This process can be divided in
two steps.

The first step consists in extracting motion from cardiac sequences. Tradition-
ally, this has been estimated by decomposing the problem as a sequential set of
pairwise registrations [7], which can be made diffeomorphic (continuous, differ-
entiable and with continuous inverse [49]) in space so that the topology and the
orientation of anatomical structures are preserved. However, such a strategy does
not enforce temporal consistency, particularly critical when handling spatiotem-
poral sequences. This constraint was partially addressed by the introduction of a
time-continuous transformation [27], although the temporal causality of motion
is not completely represented by such a scheme. This can be achieved by extend-
ing pairwise diffeomorphic registration approaches as proposed in [11,12,17]. In
such cases, the total motion field is obtained as the composition of smooth and
continuous velocity fields over time, which ensures that motion depends on all
previous time points, and is diffeomorphic in both time and space.

The second step addresses normalization of the different sequences to a ref-
erence anatomy. A first pipeline adapted to cardiac image sequences was pro-
posed by [35]. The use of diffeomorphic paths was recently proposed for the
alignment and the comparison of longitudinal datasets, using parallel transport
techniques [28, 39], but has not been applied to cardiac images yet. The accu-
racy of the computed paths can be increased by coupling the inter- and intra-
subject registration, as described in [38]. In any of these normalization meth-
ods, the transport of the locally computed motion fields to a reference anatomy
requires their local reorientation. This operation is generally achieved using a
push-forward action on vector fields [40], based on the Jacobian of the mapping
to the reference.
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2.3 Atlas of Myocardial Fibers

The use of Diffusion Tensor Imaging (DTI) opens the possibility to extend
anatomical atlases to model the myocardial fiber structure, which is essential
for building realistic models of the electro-mechanical contraction of the heart.
Traditionally, models of the muscle tissue have been based on histological stud-
ies, but in recent years, DTI has been used to analyze fiber orientation [2]. This
image modality measures the molecular diffusion in tissues, by the estimation of
a diffusion tensor (DT) at each voxel, that describes direction, magnitude and
anisotropy of the diffusion [5]. Since molecular diffusion is constrained by the
cell membranes, the principal direction of diffusion provides an estimation of the
fiber orientation. From the eigen analysis of the DT, the principal direction can
be computed (Fig. 1.a) and tractography algorithms [29] can be applied to DTI
data sets to visualize fibers in 3D, as shown in Fig. 1.

(a) (b)

Fig. 1. a) Detail of the fiber orientation in the septal wall of the left ventricle; b) 3D
reconstruction of fibers in the myocardium computed from DTI

To remove individual variation and to build models of the fiber distribution,
images are aligned to a reference and then averaged. This spatial normalization
must be performed with DTI-specific registration methods, as the use of algo-
rithms proposed for other modalities require their adaptation to deal with the
tensorial nature of the data. The main issues are the definition of the similar-
ity metric that is optimized along the registration procedure, and the need for
warping tensors coherently with the geometrical transformation of the image. In
Muoz-Moreno & Frangi [30], we propose a similarity metric related to different
features of the diffusion as orientation, shape and magnitude to perform the reg-
istration. Initial results point out the advantages of these specific metrics. Since
tensors are related to the fiber orientation, if this orientation changes due to a
rotation of the registered volume, tensors should be reoriented to remain aligned
with the fiber structures [1].

On the other hand, since atlas construction involves averaging and statistical
analysis over the aligned data, the definition of tensor calculus frameworks for
averaging the DT is another challenging topic. In [30], a framework to compute
the averagebetween tensors is also described to obtain more accurate fiber models.
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3 Automatic Construction of Statistical Shape Models

A very extended strategy to represent objects in medical imaging and other
fields, where there is a necessity to extract the geometry of objects from an
image, is to employ several keypoints or landmarks distributed along the ob-
ject’s boundary [15]. Among techniques using such representation we are espe-
cially interested in Active Shape Models (ASMs) [10], as they allow for a highly
automated processing. They constitute a generative model-based approach in
which a priori information of the class of objects of interest is encoded into a
Point Distribution Model (PDM), which is constructed by applying Principal
Component Analysis (PCA) to the set of aligned training shapes. As it can be
identified from the name of PDM, it characterizes the distribution of landmarks,
therefore it is imperative that the shapes in the training set have a consistent
landmarking strategy so that every landmark is placed in the same spot in all
the instances of the object. This is often obtained through manual annotation.
While this task is possible in 2D, where a hundred landmarks are usually more
than enough, its extension to volumetric 3D data is nearly unfeasible. The possi-
bility to construct large population atlases (Section 2), which relate every image
to the template through invertible deformation fields can drastically simplify the
task: it is enough to annotate the template image and propagate the annotations
to the remaining dataset using the inverse transform [19, 31]. As a result, this
framework can provide highly consistent annotations for large sets of images
with minimal amount of manual labor.

To extract the geometry from an image, the PDM has to be fit to it. This is
taken care of by the other component of the ASM – local intensity models. As
opposed to the cardiac geometry, that is the same independently of the image
modality, the intensity models do depend on the imaging technique. Extracting
the geometry from these modalities would require creating a training set for each
of them. To overcome this difficulty in an automatic manner, we investigated the
possibility of using synthetic datasets training intensity models [47].

A number of medical image acquisition simulation tools have been developed
for virtually all major medical image modalities [24, 25, 43]. They usually re-
quire as input a 3D labeled image, which provides the anatomy and the tissue
properties. The labeled image can be generated from the PDM itself, or from
computer phantoms like 4D-XCAT [43], with the enormous advantage of an
accurate knowledge of the geometry that will be embedded in the generated
images. This approach to train the intensity model, eliminates the costly and
expert dependent process of manual delineation, and allows constructing arbi-
trarily large training sets, wherefrom the intensity models can be learned in a
completely automatic manner.

4 Identification and Analysis of Abnormal Patterns

4.1 Morphological Analysis of the Left Ventricle

Although most of the contemporary cardiac imaging modalities provide high
resolution 3D images, cardiac morphological analysis at clinical level is performed
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with a few 2D distance measurements. These distance measurements are used
to categorize the pathology of the patient. For instance, an infarcted patient
presents a localized thin wall; a dilated patient presents increased left ventricular
diameter and overall thin walls; a hypertrophic patient presents either localized
or overall thick walls. Recent studies have explored the use of novel geometric
indices for diagnosis [3, 26]. Ardekani et al. [3] used PCA to analyze shape
differences between a test subject and an average heart to classify ischemic versus
non-ischemic dilated cardiomyopathy. Kown et al. [26] analyzed the relationship
between the aortic root angle and the degree of left ventricular outflow tract
obstruction in hypertrophic patients.

An atlas based segmentation approach allows for this sort of 3D morphological
analysis. However, the optimal descriptor that characterizes a pathology (or a
phenotype) must be identified. For instance, for left ventricular hypertrophy the
expected optimal descriptor is wall thickness (WT). Unfortunately, WT values
may vary greatly from normal (WT ≤ 12mm), to mild hypertrophy (WT ≤
16mm), to severe hypertrophy (WT ≤ 30mm). This creates a phenotypic overlap,
which clearly complicates the characterization of each condition [37].

A proper analysis of the spatial distribution of the hypertrophy can shed some
light on this issue. Such an analysis can be performed thanks to the 3D atlas-
based segmentation, which assures topology consistency among all datasets.
Therefore, we can compute wall thickness measurements per vertex and patient
and analyze the thickness variability in our population. In a recent study, we
investigated this possibility [48]. The methodology was tested in fifty three sub-
jects: 18 patients with hypertrophic cardiomyopathy, 13 patients with hyperten-
sive heart disease and 22 sedentary subjects. Control subjects were successfully
classified in 96% of the cases. The classification of each hypertrophic phenotype
was correct in 90% of the cases.

4.2 Atlas-Based Motion Indexes for the Characterization of Septal
Flash in CRT Patients

In Duchateau et al. [16], we proposed an atlas-based pipeline for the analysis
of abnormal septal motion patterns in cardiac resynchronization therapy (CRT)
patients from 2D echocardiographic images. A motion atlas was built from a
population of 21 volunteers and locally represents the average septal velocity in
the atlas space of coordinates. The variability around this average is encoded
by the covariance matrix of the local velocity distribution. This gives a compact
representation of healthy motion and allows for the computation of a local in-
dex of abnormality based on a statistical distance from the atlas (Mahalanobis
distance and associated p-value). This index encodes the probability of locally
observing a motion pattern on an individual, given the variability expected from
a healthy population. Low p-values indicate high degree of abnormality.

These p-values are available at any point in time and space, which allows con-
venient representation for clinical studies: an abnormality map can be plotted on
top of the gray level image at each time point for accurately relating the local-
ization of motion abnormalities with the cardiac anatomy. A second alternative
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Fig. 2. Abnormality maps for septal motion, before CRT and at 12 months follow-
up. The correction of the septal flash pattern (black arrows) is accurately located and
quantified through this mode of representation.

consists in representing a spatiotemporal map of abnormality, as illustrated in
Fig. 2. The horizontal axis represents time and the position in the septum (basal
inferoseptal [BI], mid inferoseptal [MI], and apical septal [AS]) is used as vertical
axis. In this figure, the p-value is displayed in logarithmic scale and multiplied by
the sign of the radial velocity to enlighten abnormal inward and outward motion
patterns.

The potential of this new index is directly visible in this figure for quantify-
ing changes in myocardial motion induced by CRT. Before the therapy, a fast
inward-outward motion pattern known in the literature as septal flash (SF) [34]
is observed during the isovolumic contraction period, as indicated by the two
arrows. At 12 months follow-up, the spatiotemporal map shows that the abnor-
mality has been totally corrected, which correlates with the clinical response of
this patient to therapy. It was demonstrated in [34] that the correction of the
SF mechanism was highly predictive of a positive clinical response to CRT.

4.3 Dimensionality Reduction in Spatio-Temporal Cardiac
Morphological Analysis

Motion analysis is a key element to deal with certain moving organs (such as
heart or arterial flow) since many pathologies cannot be identified with static
anatomical analysis. This has caused a growing interest in moving sequences of
4D medical data (3D+time), and the need to develop proper tools to analyze
these sequences. While traditional shape modeling methods may still be used in
these settings (e.g. by processing every temporal frame), they are not designed
to handle (nor to take advantage of) the temporal component.

The ideal model should result from one single modeling step, where the two
different sources of variation (patient anatomy and motion) are recognized and
incorporated in a compact, meaningful way. In a recent work [22], we used bi-
linear models to establish an anatomy/motion factorization on cardiac shapes.

Bilinear and multilinear models [46,13] are multi-dimensional generalizations
of singular value decomposition, where two different types of information can
be represented in a bilinear basis through two sets of coefficients. These models
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allow to create one set of coefficients for changes due to motion and one set of
coefficients for changes due to patient anatomy, but where all the coefficients are
related to the same basis and obtained simultaneously. They have been effectively
used to separate anatomical information of a patient from its motion behavior,
giving very compact representation of both anatomy and motion [18, 22]. This
kind of models can be applied to the template mesh, obtained with an automated
segmentation approach based on atlases or using a statistical method. Its direct
use in image segmentation has also been demonstrated [53].

The compact and independent representation of anatomical and motion vari-
ations in bilinear models can be used to efficiently apply movement of a given
patient, obtained through a dynamic modality such as magnetic resonance (MRI)
or ultrasound (US), to still images, as shown in the experiments performed
in [18, 22], where motion is extrapolated from only the first images of the se-
quence. This can be used as interventional aid, giving the possibility of moving
the reference image used to implant devices in the heart according to specific
patient motion coefficients, and thus improving their precision in localizing the
implant zone.

5 Other Applications of Statistical Cardiac Models:
Multimodal Integration of Structural, Sub-structural
and Functional Information

Multimodal imaging can help clinicians by providing integrated information, be-
yond the limitations of single modalities. On the other hand, multimodal data
provides different (and often incomplete) information layers from the same or-
gan. Hence, the data fusion is often complicated and many times is performed
implicitly in the clinician’s mind, with evident shortcomings. In this context,
methods based on statistical atlases provide a natural way of integration. The
presence of a reference anatomy serves as a template where information can be
mapped. As explained in the previous sections, multimodal information can in-
clude geometric measurements, deformation/motion patterns, myocardial fiber
structure, tissue elastic and activation properties, etc.

Fig. 3 illustrates this concept: a four chamber model of the heart in which
multimodal information has been reconstructed and integrated from the most
appropriate modality (CT for atrial geometry; structural MRI for ventricular
geometry; DT-MRI for fiber orientation; and electroanatomical mapping, EPM
for electrical activation). The integration of multiple sources of information into
the same anatomical reference will allow the investigation of the interplay among
various parameters associated with a disease condition. Key elements for data
integration are the accuracy of the correspondences, identified either by registra-
tion (Section 2) or by model-to-image adaptation (Section 3), the repeatability
of the measurements and the degree of automation. However, none of this can
be considered solved problems, except for very specific situations.
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Fig. 3. A four chamber model of the heart in which multimodal information has been
reconstructed and integrated from the most appropriate modality

Besides its value for image analysis and image-based diagnosis, the integration
of multimodal information is required for the personalization and validation of
computational physiology models. The use of simulations to model the multi-
physics (mechanics, electrophysiology, fluid) mechanisms that govern the heart
behaviour can help to better understand pathological processes affecting the
heart function as well as providing additional information to the clinician for
improved diagnosis and optimized interventional planning. Hence, the resulting
in silico simulations are more realistic when considering multi-scale data that
could be available in a statistical atlas, including information extracted from
images or models of substructural information such as myocardial fibres or the
semi-automatic generation of Purkinje networks generated semi-automatically
as proposed by Zimmerman et al. [54]. Finally, simulation results can also be
incorporated into the statistical atlas as a new layer of information since compu-
tational models can provide insights about non-observable parameters such as
contractility or apparent conductivity maps.

6 Conclusions

Computer-aided diagnosis can be thought of as finding measurements or patterns
that significantly deviate from normality and exhibit good correlation with patho-
logical states. Statistical atlases build upon this paradigm and aim at establishing
a common coordinate frame to facilitate comparison and statistical analysis across
populations. The key element is that atlas construction allows to establish dense
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correspondences between the reference and all datasets involved in the process.
Therefore, it is possible to perform measurements that are consistent for a pop-
ulation of individuals, or even fuse the information provided by different image
modalities to obtain an augmented representation. This augmented representa-
tion is expected to aid the diagnosis, by providing a holistic vision of the patient’s
condition and ease the prediction of the likely treatment outcome.
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Abstract. As decisions in cardiology increasingly rely on non-invasive
methods, fast and precise image analysis tools have become a crucial
component of the clinical workflow. Especially when dealing with com-
plex cardiovascular disorders, such as valvular heart disease, advanced
imaging techniques have the potential to significantly improve treat-
ment outcome as well as to reduce procedure risks and related costs.
We are developing patient-specific cardiac models, estimated from avail-
able multi-modal images, to enable advanced clinical applications for the
management of cardiovascular disease. In particular, a novel physiolog-
ical model of the complete heart, including the chambers and valvular
apparatus is introduced, which captures a large spectrum of morphologi-
cal, dynamic and pathological variations. To estimate the patient-specific
model parameters from four-dimensional cardiac images, we have de-
veloped a robust learning-based framework. The model-driven approach
enables a multitude of advanced clinical applications. Gold standard clin-
ical methods, which manually process 2D images, can be replaced with
fast, precise, and comprehensive model-based quantification to enhance
cardiac analysis. For emerging percutaneous and minimal invasive valve
interventions, cardiac surgeons and interventional cardiologists can sub-
stantially benefit from automated patient selection and virtual valve im-
plantation techniques. Furthermore, the complete cardiac model enables
for patient-specific hemodynamic simulations and blood flow analysis.
Extensive experiments demonstrated the potential of these technologies
to improve treatment of cardiovascular disease.

1 Introduction

Decisions in cardiovascular disease management increasingly rely on non-invasive
imaging, with echocardiography currently regarded as the key evaluation
technique. Precise morphological and functional knowledge about the cardiac
apparatus is highly appreciated today and considered as a prerequisite for the en-
tire clinical workflow including diagnosis, therapy-planning, surgery or percuta-
neous intervention as well as patient monitoring and follow-up [1]. Nevertheless,
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most non-invasive investigations to date are based on two-dimensional images,
user-dependent processing and manually performed, potentially inaccurate
measurements [2].

The quality of acquired information, as well as the accessibility and cost ef-
fectiveness of each medical imaging modality has radically improved over the
past decades. Techniques like Transesophageal Echocardiography (TEE), cardiac
Computed Tomography (CT) and Cardiovascular Magnetic Resonance (CMR)
imaging, enable dynamic four dimensional scanning of a beating heart over the
whole cardiac cycle. Such volumetric time-resolved data encode rich structural
and dynamic information, which however is barely exploited in clinical practice,
due to its size and complexity as well as the lack of appropriate medical systems.

We developed a novel patient-specific modeling framework of the complete
heart from multi-modal cardiac images to facilitate the management of cardio-
vascular disease. Our methodology relies on a physiological model of the cardiac
apparatus, which includes an explicit representation of the heart valves, and
captures anatomical, dynamical and pathological variations. To extract patient-
specific parameters from four-dimensional data, we developed a robust and ef-
ficient discriminative learning-based system. The estimation is formulated as a
multi-scale problem through which models of increasing complexity are progres-
sively learned. Based on the patient-specific cardiac modeling techniques, we
developed applications that support the clinical workflow including: comprehen-
sive quantitative analysis, automated patient selection and risk stratification,
therapy simulation for percutaneous procedures, and computational fluid dy-
namics for blood flow analysis. The developed machine learning algorithms and
performed clinical experiments are backed by a large database of medical images
acquired with CT, Ultrasound and MRI scanners, from 476 patients affected by
a large spectrum of cardiovascular diseases.

2 Physiological Modeling and Parametrization

We developed a comprehensive model of the heart, which includes the cham-
bers (left ventricle, left atrium, right ventricle and right atrium) [3] and the
heart valves (aortic, mitral, tricuspid and pulmonary valves) [4,5] to capture a
large variety of morphological, functional and pathological variations. A modular
and hierarchical approach was used to reduce anatomical complexity and facil-
itate an effective and flexible estimation of individual anatomies. Our model is
anatomically-compliant and maintains a consistent parameterization across the
cardiac cycle and different patients by utilizing physiological-driven constraints
and sampling schemes.

2.1 Parametrization

The global dynamic variation of each heart chamber and valve is parameterized
as a temporal dependent similarity transform, which defines the translation, the
quaternion representation of the rotation, the similarity transform scaling fac-
tors, and the temporal position in the cardiac cycle. A set of 152 anatomical
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landmarks for the heart chambers and 33 for the valves, described in the next
paragraph, are used to parameterize the complex and synchronized motion pat-
tern of all heart anatomies. Thereby, each landmark is described by a trajectory
in a three dimensional space, normalized by the temporal dependent similarity
transform. The final model is completed with a set of 9 dense surface meshes
to represent the chambers and an additional set of 13 structures for the valves.
Each mesh is sampled along anatomical grids of vertices defined through the
landmarks [3,4].

2.2 Anatomical Definition

Left ventricle and atrium: The left ventricle is constructed from 78 land-
marks (16 mitral lateral, 15 mitral septum, 16 left ventricle output tract and
32 aortic valve control points) and four surface geometries (LV epicardium, LV
endocardium and LV output tract). The left atrial surface is connected to it’s
ventricle via the aortic valve control points (Fig. 1(a)) [3].
Right ventricle and atrium: The right ventricle is composed of 74 landmarks
(16 tricuspid lateral, 15 tricuspid septum, 28 tricuspid valve and 18 pulmonary
valve control points) and four surface geometries (RV apex, RV output tract
and RV inflow tract). The right atrial surface is constrained by 28 tricuspid
valve control points and links to the right ventricle (Fig. 1(b)) [3].

(a) (b) (c)

(d) (e) (f)

Fig. 1. Cardiac model components: (a) the left heart (left ventricle and left atrium),
(b) right heart (right ventricle and right atrium), (c) aortic valve, (d) mitral valve, (e)
pulmonary valve and (f) tricuspid valve.
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Aortic valve: The aortic valve consists of 11 landmarks (3 commissures, 3
hinges, 3 leaflet tips and 2 ostias) and four surface structures (aortic root, N-,
L- and R-leaflet). The aortic root is constrained by the hinge and commissure
plane and each leaflet is spanned between two commissures and one hinge (Fig.
1(c)) [4].
Mitral valve: The mitral valve is composed of 7 landmarks (3 trigones, 2 com-
missures and 2 leafleat tips). The anterior leaflet is defined by two trigones, one
leaflet tip and two commissures and the posterior leaflet by three trigones, one
leaflet tip and one commissure (Fig. 1(d)) [4].
Pulmonary valve: The pulmonary valve is consisting of 9 landmarks (3 com-
missures, 3 hinges and 3 leaflet tips) and four surface structures (pulmonary
root, N-, L- and R-leafet) (Fig. 1(e)) [6].
Tricuspid valve: The tricuspid valve is constructed from four surface geome-
tries (annulus, septal-, anterior- and posterior leaflet) and six anatomical land-
marks (three commissures and three leaflet tips) (Fig. 1(f)) [5].

Fig. 2. Examples of personalized model estimated from a multiphase CT sequence.

3 Patient-Specific Parameter Estimation

We developed a robust learning-based framework to estimate the patient-specific
parameters of the previously introduced heart model from four-dimensional
data. To guarantee robustness against image artifacts and handle the shape
and appearance variations encountered in cardiac images, our approach relies on
boosting techniques, in particular the Probabilistic Boosting Tree (PBT) [7].
Computation speed is essential to qualify novel technologies for clinical practice.
Thus, we developed search space marginalization methods, such as the Marginal
Space Learning (MSL) [3] and Trajectory Spectrum Learning (TSL) [8,4], to
efficiently perform optimization in multi-dimensional parameter domains.

To handle the problem complexity, the estimation is following a coarse-to-
fine strategy based on the natural level of detail of the underlining anatomies.
The input data is a temporal sequence of volumetric scans acquired with one
of the three modalities: CT, Ultrasound or MRI. The natural first step is to
recover the pose and corresponding motion parameters of each model compo-
nent from the input cardiac data. Through a novel approach, which combines
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MSL [3] with RANSAC techniques, we obtained robust and time-coherent object
localization [4]. In the second step, the anatomical landmarks’ location and mo-
tion are simultaneously estimated using the TSL algorithm [8], which employs
trajectory-based features and strong trajectory spectrum classifiers. The final
stage tackles the boundary delineation of the complete heart surfaces over the
entire cardiac cycle. Our method leverages robust boundary detectors together
with collaborative trackers and motion manifolds [9].

On average, the precision of the patient-specific estimation is 1.73mm at a
speed of 4.8sec per volume for the valvular model and 1.13-1.57mm at a speed
of 4.0sec for the chambers. We demonstrated that our automated method is
robust with respect to different image modalities and the obtained accuracy is
within the inter-user variability.

4 Clinical Applications

In the remainder of this paper we leveraged the patient-specific cardiac model
obtained from multiple image modalities to demonstrate a variety of non-invasive
analysis procedures, which can lead to reduced therapeutical costs and compli-
cation risks, as well as improved treatment outcome.

4.1 Quantitative and Qualitative Analysis

Precise quantification of the anatomy and function is fundamental in the medical
management of cardiovascular disease. The clinical gold standard still processes
2D images and performs manual measurements which are tedious to obtain and
moreover known to be affected by inaccuracies [2].

We proposed a paradigm shift in the clinical evaluation of the cardiac appara-
tus, which aims to replace manual analysis based on 2D images with automated
model-based quantification from 4D data. The explicit mathematical model is
exploited to express a wide-ranging collection of quantitative parameters that
support the overall clinical decision making process. In the following we present
a selection of clinical experiments.

Valves Analysis: Table 1 presents the system-precision for various dimensions of
the aortic-mitral coupling: diameters of the ventricular-arterial junction (VAJ),
sinus of valsalva (SV) and sinotubular junction (SJ), aortic valve area (AV area),
mitral valve area (MV area), mitral annular circumference (AC) , anteroposterior
diameter (APD), anterolateral-posteromedial diameter (AL-PM-D) [4].

Chambers Analysis: The motion pattern of a chamber during a cardiac cycle
provides many important clinical measurements of its functionality, e.g., the ven-
tricular ejection fraction, myocardium wall thickness, and dissynchrony within
a chamber or between different chambers [3].

The benefits of the proposed model-based analysis are: Precision - increased
by robust modeling and measuring the natural three-dimensional valve anatomy,
Efficiency - by automated quantification that outperforms manual measuring
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Table 1. Precision for various dimensions of the aortic-mitral coupling along with
Bland- Altman plots for the aortic valve area and mitral annular area. The aortic valve
experiments were performed on CT data from 36 patients, while the mitral valve was
evaluated on TEE data from 10 patients, based on the input of expert cardiologists.

Mean STD

VAJ (cm) 0.137 0.017

SV (cm) 0.166 0.043

STJ (cm) 0.098 0.029

AC (cm) 0.846 0.3

APD (cm) 0.325 0.219

AL-PM-D(cm) 0.509 0.37

in terms of required analysis time, and Comprehensiveness - through analysis
that includes four-dimensional information of the morphology and function of
the entire cardiac apparatus.

4.2 Computer Aided Diagnosis and Case Retrieval

Clinical decisions are largely based on generic information and rule sets from
clinical guidelines and publications, and personal experience of clinicians. Be-
sides investigating the quantitative capabilities of our cardiac models, we also
proposed a generic method on how to automatically derive high-level clinical
information using learning-based discriminative distance functions [10]. We for-
mulate inference in a comprehensive feature space, which incorporates the com-
plex morphologic and functional information. Generally we address two tasks:
retrieval of similar cases using a learned distance function, which measures the
similarity of two particular cardiac shapes, and a binary classification problem,
based on geometric models and derived features.

For distance learning we considered two techniques, namely learning from
equivalence constraints and the intrinsic Random Forest distance. Equivalence
constraints are represented using triplets of two model instances’ feature vectors

(a) (b) (c) (d) (e)

Fig. 3. Types of pulmonary trunk morphologies: (a) pyramidal shape, (b) constant
diameter, (c) inverted pyramidal shape, (d) narrowed centrally but wide proximally
and distally, (e) wide centrally but narrowed proximally and distally.
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Fig. 4. Classification accuracy for the different learning techniques applied to Aortic
Valve Disease classification and PPVI suitability selection.

and a label indicating whether the two instances are similar or dissimilar. Learn-
ing from these triplets is often called learning in the product space and demon-
strated to be effective for high dimensional data with many correlated, weakly
relevant and irrelevant features [10]. The signed margin of models constructed
using boosting or Random Forests is used as the required distance function for
our experiments with equivalence constraints.

The generic approach enables learning arbitrary user-defined concepts of
similarity depending on the application. This is demonstrated with two
applications: 1) diagnosis and severity assessment of aortic valves and 2) pa-
tient selection for Percutaneous Pulmonary Valve Implantation (PPVI), where
classification rates of up to 88.9% and 85.9% could be observed on a set of valve
models from 288 and 102 patients respectively (Fig. 4). The morphology of the
pulmonary trunk is a major determinant of suitability for PPVI [6]. Intervention
in unsuitable patients exposes them to unnecessary invasive catherization. In the
classification scheme depicted in Fig. 3 patients from type (a) are considered to
be unsuitable for PPVI due to the narrow artery and high probability of device
migration. Shape features extracted from the estimated pulmonary trunk are
used to learn a discriminative distance function to discriminating anatomies of
type (a) from other classes.

4.3 Computational Decision Support for Percutaneous Procedures

Percutaneous approaches are becoming increasingly popular, due to reduced pro-
cedural complications and lower follow-up rates [1]. The prosthetic implants are
delivered through catheters using transvenous, transarterial or transapical tech-
niques, which obstructs clinicians from a direct view and access to the affected
anatomies. Thus, the success of the intervention relies to a large portion on intra-
operative images, and the experience and skills of the operator, while a suboptimal
deployment location can result in poor hemodynamic performance with severe
paravalvular leakages and/or high gradients and suboptimal effective orifice.

We proposed a novel framework for preoperative planning, intraoperative guid-
ance and post-operative assessment of percutaneous aortic valve replacement
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Fig. 5. Schematic description of the proposed computational decision support workflow
for percutaneous aortic valve implantation.

procedures with stent mounted devices (Fig. 5) [11]. Our model of the aortic
valvular complex including aortic valve and aorta ascendens is used to perform
an in-silico delivery of the valve implant based on deformable simplex meshes and
geometrical constraints. The device is modeled out of the stent mesh, which pre-
cisely mimics the geometry of the prosthesis and the computational mesh, a super-
imposed 2-simplex mesh, which is used to guide the expansion. The expansion of
the device is modeled by balancing external and internal forces as encountered in
the actual procedure, using iterative optimization methods Fig. 6). The deforma-
tion is described by a finite difference discretization of a second order differential
equation.[12].

The predictive power of the model-based in-silico valve replacement was eval-
uated on 20 patients with pre- and postoperative 3D cardiac CT scans, each by
comparing the preoperative prediction result with a ground truth model manu-
ally fitted to the real device imaged in the postoperative data (Fig. 5). With an
accuracy bellow 2mm at the annular level, we demonstrated the potential of this
approach to support preoperative planning by finding the best implant type, size
and deployment location and orientation via in-silico implantation under various
treatment hypotheses until optimal predicted performance is observed.

(a) (b) (c)

Fig. 6. Forces acting on the model on deployment to converge to the observed geomet-
ric properties: (a) fangle enforces the charateristic angles at the strut joints (green),
(b) flength maintains the strut lengths. (c) fcirc enforces the circumference (green),
while fext dampens and eliminates the all forces acting along the stent mesh normal
wheighted by the fraction of distances of strut joint and vessel wall (red) to the stent
centroid (magenta/yellow). Please note that (c) shows a short axis cross section of the
stent mesh.
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4.4 Computational Hemodynamics in the Human Heart

By using the patient-specific cardiac model presented in the previous sections
as an input to a 3D Navier-Stokes solver, we derive realistic hemodynamics,
constrained by the local anatomy, along the entire heart cycle. This enables
us to advance the state-of-the-art in two ways: first, we obtain realistic cardiac
blood flow computations for the entire heart, and second, we present a differential
assessment of the flow dynamics corresponding to specific heart conditions. The
flow computations presented here differ in an essential manner from other works:
the realistic patient-specific valve models modulate the blood flow significantly,
in accordance to the presence of various cardiac pathologies.

For the computations presented here we essentially enforce a one-way transfer
of the heart mesh kinematics to the cardiac blood flow, using the framework
presented in [13,14]. The Navier-Stokes equations with viscous terms are solved
in a level set formulation, using a fractional step combined with an approximate
projection method for the pressure. The equations are discretized on a uniform
grid, using finite difference and finite volume techniques. The heart mesh is
immersed in the computational domain with the help of a level set function
that effectively ”thickens” the original triangle mesh by the grid spacing. The
interface location is used to impose no-slip boundary conditions to the fluid
region. The mesh velocity, which is known at each time step, is extrapolated to
the interfacial nodes using extrapolation kernels.

Fig. 7. Left images: visualization of the blood flow vorticity magnitude for whole
heart during systole (top) and diastole (bottom). Right images: comparison of diseased
hearts. Top: normal heart; Middle: heart with dilated aorta; Bottom: heart with bi-
cuspid valve. First column: peak diastole; Second column: peak systole; Third column:
end systole.
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The blood flow computations inside both the left and right sides of the heart
[14] produced flow curve data qualitatively similar to the flow curves presented in
the literature. Very interesting was the comparison of the results of the diseased
hearts with the normal one (Fig. 7) [13]. The normal heart displayed strong
systolic and diastolic fluxes, with blood jets directed toward the center of the
aorta, respectively the center of the left ventricle. The two diseased hearts - one
with a dilated aortic root and one with a bicuspid aortic valve - displayed quite
different flow characteristics. For the heart with a heavily enlarged aorta the
aortic valve never closed, leading to massive aortic regurgitation during diastole
and a systolic flow directed straight toward the abnormally enlarged region of
the aorta. The bicuspid aortic valve also produced a very strong regurgitation
at the beginning of the diastole toward the left ventricle, while a sclerotic mitral
valve directed the diastolic jet straight toward the posterior ventricular wall.

The flow computations we performed underline the importance of the patient-
specific cardiac geometry and especially of the valve apparatus in determining
the hemodynamic characteristics. Our first validation efforts for hemodynamics
computations [14], which qualitatively compare the flow curves with measured
ultrasound ones, will be augmented with direct comparisons of velocity fields
determined using phase-contrast MRI.

5 Conclusion

We described our comprehensive heart model, which includes an explicit rep-
resentation of the valvular apparatus, and parameterizes morphological, func-
tional and pathological variations of the cardiac apparatus. Subsequently, we
presented a robust and efficient learning-based framework to estimate patient-
specific model parameters from multi-modal cardiac images. Based on several
clinical applications, we demonstrated the relevance of the developed technolo-
gies to advance the management of cardiovascular disease. Nevertheless, exten-
sions of the model to include tissue and other biomechanical properties, and
further anatomical details, such as papillary muscles, chordae tendineae and
trabeculations are necessary future developments.
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Abstract. A framework for the automatic extraction and generation of patient-
specific organ models from different image modalities is presented. These mod-
els can be used to extract and represent diagnostic information about the heart 
and its function. Furthermore, the models can be used for treatment planning 
and an overlay of the models onto X-ray fluoroscopy images can support navi-
gation when performing an intervention in the CathLab. 

1   Introduction 

Today’s imaging devices such as computed tomography (CT) and magnetic resonance 
(MR) scanners provide an enormous amount of high-quality images with high resolution 
in space and time. From these images a wealth of patient-specific information can be 
obtained that is both diagnostically and therapeutically relevant. For example, for a pa-
tient with ischemia and infarction induced by coronary-artery stenosis, information about 
the heart function, myocardial perfusion and scar tissue can be derived from imaging 
studies. With the additional information, the therapy can then become more targeted and 
better adapted to the patient’s individual needs and risks. The provision of the patient-
specific information during the actual treatment is also beneficial. This applies in particu-
lar to interventional procedures in the catheterization laboratory (CathLab) since the 
anatomical details of the heart are not clearly visible with X-ray imaging. 

Even though critical anatomical information is contained in these high resolution 
CT and MR images, sophisticated image processing techniques are needed to extract 
the information to make them readily available to benefit routine clinical use. Numer-
ous methods have been developed for this purpose [1]. Time consuming manual ap-
proaches pose a serious hurdle in routine clinical practice and the need for an efficient 
clinical workflow drives the development of automated methods. Also, a suitable 
representation is needed that allows, for instance, integration of complementary in-
formation from different scans as well as the intuitive display of the information dur-
ing an intervention. We propose to generate a digital patient-specific heart model and 
integrate all the required information into this model. While the model represents the 
relevant aspects of the patient’s anatomy and associated function, it is independent of 
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the actual imaging protocols and modality. To generate the patient-specific heart 
model, we match a generic heart model to 3-D images of the patient [2]. While previ-
ous approaches have been tailored to specific imaging techniques, our framework can 
be applied across a wide variety of imaging protocols and modalities. This is achieved 
by separating knowledge about the organ shape from knowledge about image appear-
ance and algorithmic considerations. In this paper, we investigate the generality and 
portability of our technology by applying it to three different image analysis tasks, 1) 
the adaptation of a whole heart model with attached major vascular structures to con-
trast-enhanced CT data, 2) the adaptation of a whole heart model to non-contrast-
enhanced MR data, and 3) the adaptation of an accurate model of the aortic valve to 
contrast-enhanced CT data.  

Furthermore, we illustrate the use of our technology for diagnostic and interven-
tional applications. By segmenting time-series of CT images, we can assess the vol-
umes of all four heart chambers over time and provide information about local wall 
motion. For the guidance of ablation procedures for atrial fibrillation, models of the 
left atrium and pulmonary veins can be generated from CT, MR and rotational X-ray 
and used for interventional guidance. Finally, application of the aortic valve model for 
the guidance of percutaneous aortic valve treatment is outlined. 

2   Generation of Patient-Specific Organ Models 

As mentioned in the introduction, we generate patient-specific models by adapting 
generic models to images of a patient. Fig. 1 shows the overall architecture of our 
framework. The central component of this architecture is a generic organ model, to 
which a wealth of information can be attached. This generic organ model describes 
the organ shape, its variability and its appearance for an imaging modality or protocol. 
The framework separates knowledge about the organ shape from knowledge about  
 
 

 
Fig. 1. Diagram illustrating the architecture of our framework for the automatic generation of 
personalized organ models 
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image appearance, which facilitates adaptation to new imaging modalities or proto-
cols. In addition, the generic model includes information that controls the sequence 
and parameters of the steps for model adaptation. 

2.1   Generic Model Shape and Variability 

To create the generic model shape a representative image is selected and the organ of 
interest is manually annotated, i.e. each voxel of the image is assigned a label  
corresponding to the anatomical part of the organ. Based on the annotation a multi-
compartment triangular surface mesh is generated. Once annotations of multiple  
images based on the same mesh topology are available the mean shape of the organ 
can be generated. For complex models, meshes may also be generated for individual 
parts and fused in a second step. 

Fig. 2 shows the models used in the following sections. The whole heart model com-
prises the endocardial surfaces of both ventricles and both atria, the epicardial surface of 
the left ventricular myocardium and the trunks of the great vessels (aorta, pulmonary ar-
tery and pulmonary veins). This model has been extended and the major vascular struc-
tures (aorta, pulmonary veins, coronary sinus, inferior vena cava, superior vena cava) have 
been added. The model of the left atrium and pulmonary veins represents a part of this 
model. The last model represents the detailed anatomy of the aortic valve. 

For model adaptation, a parametric model of shape variability is beneficial. We as-
sign for that purpose separate linear transformations (e.g. rigid with scaling, affine) to 
suitable anatomic sub-regions. To ensure smooth connections between the sub-
regions, we linearly interpolate the individual transformations in pre-defined transi-
tion regions. For the whole heart model, this description of shape variability turned 
out to be better than statistical shape models derived from principal component analy-
sis [2]. At the same time, this description can be used to model bending and diameter 
variations of vascular structures [3].  

 
 

 
 

Fig. 2. Whole heart model, whole heart model with major attached vascular structures, model 
of the left atrium and pulmonary veins, and aortic valve model (from left to right). 

<, 

2.2   Appearance Model 

During model adaptation, the boundaries of the target organ must be detected in the 
image. Boundary detection is supported by appearance information that is learned  
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from a set of annotated reference images and corresponding meshes. During a training 
phase, the images and meshes are used in a first step to create a large number (500 – 
10,000) of boundary detection functions which use gradient information and gray 
value information on one or both sides of the mesh. For gray-value calibration, also 
information about global gray-value statistics can be used [4]. In a second step, 
“Simulated Search” assigns an optimal boundary detection function to each triangle 
[5]. The selection process works as follows for each triangle independently: 
 

1. The pose of the triangles in the reference meshes is slightly disturbed. 
2. The boundary detection process using the given boundary detection function 

is performed. 
3. The residual error between the detected point and the reference position is  

recorded for all tested displacements and all functions candidates. 
4. The candidate with the smallest simulated residual error is finally selected  

 

We create the annotated images and corresponding meshes by the following ap-
proach. In a first step the mesh is adapted to very few (1-3) manually annotated im-
ages. The resulting reference meshes are sufficient to train a first set of boundary 
detection functions by “Simulated Search”. This initial model is then adapted to a 
larger set of images and the result is thoroughly refined, e.g. by a clinical expert. With 
the new reference images and meshes, we train a second set of boundary detection 
functions. The process of automatic adaptation, manual refinement, training of new 
boundary detection functions is continued until sufficient reference images and 
meshes are available. 

2.3   Adaptation Control 

Automatic adaptation of the generic shape model to an image is typically achieved in 
several steps [2]. Firstly, we use the generalized Hough transform (GHT) to roughly 
localize the organ in the image and adapt the size. Secondly, the location, orientation 
and scaling are refined. To this end, boundary detection is performed for each mesh 
triangle and the parameters of the similarity transformation are modified to minimize 
the sum of squared distances between the mesh triangles and the detected boundary 
points. Boundary detection and parameter refinement are iterated until no major 
changes are observed. Thirdly, the parameters of the combined linear transformations 
that characterize the shape variability (Section 2.1) are adapted by iterating boundary 
detection and parameter refinement. Finally, a deformable adaptation is performed. 
Again boundary detection and mesh refinement are iterated until convergence. In this 
phase, the locations of all mesh vertices are optimized during mesh refinement until a 
balance is reached between the geometric constraints defined by the generic shape 
model and the forces attracting the mesh to the detected boundary points. The process 
of model adaptation can be modified in various ways. To speed up model adaptation, 
the adaptation process described above may be done with a low resolution mesh 
model and a final deformable adaptation step with a high resolution mesh model may 
be added. Reliable adaptation of vascular structure can, for instance, be achieved by 
adapting the four heart chambers first and successively activating the tubular seg-
ments representing the vascular structures. The information about the adaptation steps 
that are actually carried out, the mesh resolution or other parameters related to the 
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different steps as well as information about the adaptation order of different model 
parts is contained in a control file of the generic organ model. 

2.4   Examples 

Generation of a generic organ model for a specific imaging modality or protocol re-
quires experience and time. Once available, adaptation to an image and generation of 
a patient-specific model is normally fully automatic and requires about 10-15s on a 
standard state-of-the-art workstation. We show results for three examples. First, we 
show results for the whole heart model with the major attached vascular structures. 35 
Computed Tomography Angiography (CTA) data sets from 20 patients (reconstructed 
at various cardiac phases) were used for building the generic model, while 37 addi-
tional data sets from 17 patients have been used for testing model adaptation. Second, 
we present results for the whole heart model and adaptation to MR images. Here, we 
used 42 steady-state free-precession MR end-diastolic breathing compensated “whole 
heart” images, acquired to inspect the coronary arteries. Third, we show results for the 
aortic valve model based on 16 CTA data sets acquired with scanners from different 
manufacturers. 

The accuracy of model adaptation is assessed by measuring the symmetrized mean 
Euclidean “surface-to-patch” distance, i.e., the mean distance between the triangle 
centers of the adapted mesh to an anatomically corresponding patch of maximum 
geodesic radius r = 10 mm of the “ground truth” reference mesh and vice versa. This 
distance is averaged over triangles and test images. For the whole heart model with 
major vascular structures, the distal parts of the coronary sinus and inferior vena cava 
are excluded. These structures are not contrasted in many images and no “ground 
truth” could be defined. Furthermore, the triangle positions near the artificial cut 
planes of the truncated vessels in the whole heart models are excluded from the error 
measurement, since the cut planes do not relate to actual anatomy. For the aortic valve 
model only the mesh elements representing the aortic bulbus, the aortic valve, and the 
outflow tract have been evaluated. For whole heart adaptation to MR images and 
aortic valve adaptation to CT images, we used the same data sets for training the ge-
neric model and model adaptation. To avoid a bias we used a cross-validation ap-
proach. We divided the MR images into four clusters of 10/11 images, used 3 clusters 
for training, 1 cluster for accuracy measurements, and repeated this process for the 
four clusters. On the CT data, we used a leaving-one-out approach, i.e., we trained the 
model on all images except the one for testing and repeated this for all images. 

Table 1. Accuracy of model adaptation for three examples 
 

Model/Modality 
εmean 

(mm) 

Whole Heart & major 
vascular structures / CT 

0.67 

Whole Heart / MR 0.76 
Aortic Valve / CT 0.47 
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Fig. 3. Typical results of model adaptation for the whole heart with major vascular structures in 
CT, the whole heart in MR and the aortic valve model in CT (left to right). 

Fig. 3 shows typical results and allows visual comparison of the contours of the 
adapted model with the image structures. Numerical accuracies of model adaptation 
are between 0.5-0.8mm (see Tab. 1). 

2.5   Framework Extensions 

The heart models as shown in Fig. 2 are of fixed vascular topology. For the left atrium 
(LA), the standard case of two by two pulmonary veins (PV) on left and right side is 
modeled, which represents about 68% of patients [5]. The remaining 32% have three, 
four, or sometimes five PVs at the right side of the left atrium. To cover these cases, 
respective LA variant models have been created, that can be attached to the rest of the 
whole heart model in a modular way. For the selection of the patient specific variant, 
a hybrid method has been developed, combining model based with a guided region 
growing based approach. First, a simplified LA model with no right PVs at all, is 
adapted to the patient. For the subsequent region growing, the simplified model car-
ries marked triangles from which a seed point and a cone-like grow-restriction is 
defined to prevent leakage. The region growing is prioritized with the seed distance, 
leading to a spherical grow front. The front splits in case of bifurcations, which is 
used to detect position and number of PV ostia. Based on this information, the ana-
tomical variant of the patient can be determined and the proper LA variant model can 
be selected, positioned and adapted to the patient. The procedure is outlined in Fig. 4.     

3   Diagnostic and Interventional Applications 

On the one hand, patient-specific heart models can be used to extract and represent 
diagnostic information. This is illustrated for the characterization of the heart function 
from cardiac CTA images. On the other hand, interventions can be supported by gen-
erating models for the specific application and visualizing them in combination with 
X-ray images in the CathLab.  

3.1   Heart Function from CTA 
Once, a patient-specific heart model has been derived from an image with sufficient 
accuracy, volume measurements of the heart chambers are straight forward. Applying  
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(a) (b) (c) 

 (d)        

Fig. 4. (a) Simplified triangulated surface model of the left atrium without right pulmonary 
veins. Marked triangles allow set-up of the region grower. (b) Definition of the seed point and 
cone-like grow restriction. (c) Detection of the right pulmonary vein ostia. (d) Results for a 
patient case with 4 pulmonary veins at the right side of the LA. 

 

  

Fig. 5. Volume of the four heart chambers over the heart beat for a patient with a slowly
beating heart (53bpm, left) and a patient with an irregularly beating heart (> 80bpm) and small
ejection fraction (right). 

the method to images of different heart phases enables, therefore, the automatic char-
acterization of global heart function (see Fig. 5). This is confirmed by initial clinical 
investigations for cardiac CTA [5][8], where our method has been compared to three 
manual and semi-automatic tools for the assessment of left ventricular volumes and   
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, 

 
Fig. 6. Velocities over time mapped on a static personalized heart model of a patient for phases 
at 10% intervals of the heart beat (purple = 0.0, red = 1.5mm/%RR) 

 

related measures. A further clinical study [9] evaluates the use of our method for the 
assessment of four-chamber cardiac function. 

With slight modifications [10] that enhance the consistency of heart model adapta-
tion over the cardiac cycle, the method can also derive information about local heart 
wall motion from retrospectively gated cardiac CTA images. For that purpose, images 
have been reconstructed with phase increments of 2% of the RR interval using a gating 
window width of approximately 15%, an image resolution in the axial plane of 0.86 
mm and a slice thickness of 2mm. Fig. 6 shows an example where the local surface 
velocities have been mapped onto the patient-specific heart model for different heart 
phases. This information may, for instance, support CT-based asynchrony assessment. 

3.2   Atrial Fibrillation Treatment 

For patients with recurrent atrial fibrillation radiofrequency ablation has proven to be 
an effective treatment. Thereby abnormal electrical pathways, in particular those origi-
nating from the pulmonary veins, are destroyed using a radiofrequency energy emitting 
probe. The probe is positioned with the help of a catheter at different sites on the left 
atrial wall under fluoroscopy guidance. Accurate probe placement is, however, difficult 
since the atrial wall is hardly visible in X-ray fluoroscopy images. To improve probe 
placement and support the generation of a continuous line of ablation points, a patient-
specific model of the left atrium can be geometrically aligned with the fluoroscopy 
images and displayed e.g. as an image overlay [11] (Fig. 7, extreme right). 

 

 
Fig. 7. CTA, MRA and rotational X-ray image with the anatomy of the left atrium and pulmonary 
veins outlined and an overlay of a patient-specific LAPV model onto fluoroscopy data (left to right) 
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The patient-specific model may be generated from pre-interventional CTA or 
MRA images. Recently, we also developed an approach to derive a patient-specific 
model of the left atrium and pulmonary veins by a rotational X-ray imaging technique 
during the intervention [12] (Fig. 7).  

3.3   Percutaneous Aortic Valve Therapy 

Conventional treatment of patients with dysfunctional aortic valves is a highly  
invasive procedure involving considerable mortality and morbidity risks. To enable 
treatment of fragile patients, who currently remain largely untreated, new minimally 
invasive procedures are developed that are carried out under X-ray guidance in the 
CathLab. During such a procedure, a compressed tissue heart valve is inserted 
through the femoral artery, positioned over the diseased aortic valve, unfolded and 
fixed by inflating a balloon. As in the case of radiofrequency ablation for the treat-
ment of atrial fibrillation, the procedure is complicated by the fact that the heart anat-
omy itself is not clearly visible in the X-ray images. 

A patient-specific heart model for this application could accurately model the aor-
tic bulbus, the aortic valve, the outflow tract, the left ventricle and the coronary ostia. 
Accurate valve placement may then be supported by overlaying the properly aligned 
model onto X-ray fluoroscopy images (Fig. 8). 

 

 

Fig. 8. Overlay of a patient-specific aortic valve model onto an X-ray fluoroscopy image 

4   Conclusion and Outlook 

A framework for the automatic extraction and generation of patient-specific organ 
models from different image modalities has been presented. These models can be 
used to extract and represent diagnostic information about the heart and its function. 
Furthermore, the models can be used for treatment planning and an overlay of the 
models onto X-ray fluoroscopy images can support navigation when performing an 
intervention in the CathLab. In the future, the technology will be extended to other 
imaging modalities such as ultrasound and complemented by methods for the integra-
tion of information from different imaging studies into a single model. The integration 
of information about scar tissue into a patient-specific heart model illustrates the first 
step in this direction [13]. Within the EU-funded euHeart project [14], use of the 
models for biophysical and physiologic simulations that predict the patient’s heart 
function is also being investigated. 
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Abstract. The Cardiac Atlas Project (CAP) is a NIH sponsored international col-
laboration to establish a web-accessible structural and functional atlas of the nor-
mal and pathological heart as a resource for the clinical, research and educational 
communities. An initial goal of the atlas is to facilitate statistical analysis of  
regional heart shape and wall motion characteristics, and characterization of re-
modeling, between and within population groups. The two main early contributing 
studies are the Multi Ethnic Study of Atherosclerosis (MESA) and the Defibrilla-
tors to Reduce Risk by Magnetic Resonance Imaging Evaluation  (DETERMINE) 
clinical trial. De-identified image and text data from 2864 asymptomatic volunteers 
from MESA, and 470 myocardial infarction cases from DETERMINE, are cur-
rently available in the CAP database. DICOM images were de-identified using 
HIPAA compliant software based on tools provided by the Center for Computa-
tional Biology at UCLA. Only those cases with informed consent and IRB ap-
proval compatible with the CAP were included. Researchers requesting permission 
to access CAP data can apply through the CAP website (www.cardiacatlas.org). 
All proposals for data access must be approved by the data contributors, and appli-
cants must sign a data transfer agreement with each study from which data is re-
quested. Software to visualize cardiac images and create 3D mathematical models, 
developed in the CAP, is available open-source from the website.  

Keywords: Computational Atlas, Database, Cardiac, Mapping.  
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1   Introduction 

Cardiac performance in health and disease is defined across multiple levels of structure 
and function from molecular and cellular organization to gross anatomy, and can be 
studied using a diversity of both imaging techniques (MRI, CT, echocardiography, 
coronary angiography) and non-imaging tools (ECG, blood pressure and cholesterol 
measurements). Mathematical and computer models can be used to integrate data on 
various aspects of cardiac performance, obtained from a variety of sources, in a stan-
dardized way. This approach provides an invaluable, highly detailed and dynamic map 
of the heart that clinicians can use to characterize a particular patient’s function against 
the range of functional characteristics derived from large populations of patients, with 
the objective of allowing more precise evaluation of disease and targeting of therapies. 

Computational modeling techniques are already being applied in various biomedi-
cal projects around the globe, including the Physiome Project [1] which describes 
whole-body physiology, the International Consortium for Brain Mapping (ICBM) [2], 
Informatics for Integrating Biology and the Bedside (i2b2) [3], and the Integrative Bi-
ology Project [4], to name a few. The Center for Computational Biology (CCB) [5] at 
UCLA, which hosts the ICBM, provides a number of infrastructural and middleware 
tools, mainly in the area of brain mapping. In the cardiac domain, the Cardiovascular 
Research Grid (CVRG) at Johns Hopkins University [6] provides grid computing in-
frastructure for cardiac research, inspired by the Cancer Bioinformatic Grid (caBIG) 
[7] and the Biomedical Informatics Research network (BIRN) [8].  

The Cardiac Atlas Project (CAP) is a NIH sponsored, international, multi-
institutional endeavor which aims to facilitate large scale statistical analysis of heart 
shape, structure, function and wall motion characteristics across various population 
groups, using parametric mathematical modeling tools.  The initial goals of the Pro-
ject are i) to develop a database of cardiac Magnetic Resonance Images (MRI) and as-
sociated patient data, ii) to develop standardized procedures for the contribution, cura-
tion, archival, classification, and sharing of data and derived analyses, and iii) to 
provide open source software for the mapping and analysis of cardiac morphometry, 
with particular emphasis on the spatio-temporal characteristics of regional heart wall 
motion. In collaboration with the CCB, infrastructure created for brain mapping re-
search is being translated to the cardiac domain. The CAP is also developing software 
tools for accessing and analyzing cardiovascular imaging data, as well as procedures 
and policies for secure, ethical and efficient data and resource sharing. This paper 
provides an overview of the design and goals of the CAP, and describes the complex 
administrative and procedural issues related to the contribution of data to the CAP, 
standardization and sharing of data and software tools, and the protection of the rights 
of participants, contributors and users of the database.  

2   Data 

The CAP database currently includes image and text data of approximately 3000 sub-
jects from two main early contributing studies: the Multi Ethnic Study of Atheroscle-
rosis (MESA) [9] and the Defibrillators to Reduce Risk by Magnetic Resonance Im-
aging Evaluation (DETERMINE) [10] clinical trial. Several other smaller research 
studies are also contributing data. 
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Fig. 1. Routine Cardiac MR images: 1) Cine image of long-axis view of the heart (LV = Left 
Ventricle) showing planned short-axis imaging planes (yellow lines); 2) Mid ventricular short-
axis image; 3) Image analysis contours drawn around the inner (red) and outer (green) borders 
of the LV wall. 

Individual datasets comprise cardiac MR images in DICOM format, together with 
image analysis files in the form of contours already drawn around the inner and outer 
borders of the left ventricle by the contributing study (Figure 1). Cases from all stud-
ies include cine image series acquired in the short and long axis planes of the heart. 
The DETERMINE cases also include delayed enhancement viability MR images used 
for detection and quantification of myocardial infarct.  

Text data from the image DICOM headers (e.g. MRI pulse sequence type, image 
position and orientation, and other MR scan parameters) are automatically extracted 
and stored in the CAP database.  Some limited clinical information is also contrib-
uted, including: age (years), gender (M/F), height (cm), weight (kg), systolic and dia-
stolic blood pressure (mmHg), hypertension (y/n), heart rate (bpm), race/ethnicity 
(class), and classifications for hypertension, diabetes, smoking (Y/N), alcohol (Y/N), 
angina (y/n), ECG and NYHA classification.  

These data are currently stored in two main databases within the CAP: a produc-
tion database hosted by the CCB at UCLA, and a research database hosted by the 
University of Auckland, New Zealand.  

3   Regulatory and IRB Requirements 

Only data that were originally acquired with the approval of a local Institutional Re-
view Board or Ethics Committee, and with informed consent from the participant 
compatible with data-sharing, may be contributed to the CAP.  In observance of the 
USA HIPAA (Health Insurance Portability and Accountability Act) laws which pro-
tect participants’ private health information, data must be de-identified at source be-
fore upload to the CAP database. Any data that can be used to identify an individual, 
e.g. names, dates (except for year), social security or medical record numbers, loca-
tions or device identifiers, are deleted. At no stage is any identifiable data read, ana-
lyzed or stored on any CAP computers.  

Some contributing studies, such as DETERMINE, include a section in their own 
participant information sheet and consent form on the contribution of de-identified 
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data into the CAP. Participants can give or withhold consent to contribute their data to 
CAP independent of participation in the contributing study.  

Other studies, such as MESA, are inherently designed for data-sharing and have an 
IRB approved informed consent process compatible with contribution to de-
identification and sharing in the CAP project. In the case of MESA, explicit amend-
ments were obtained from each field center’s local IRB for the contribution of image 
and text data to CAP. Only data from those field centers with IRB approval, and those 
participants with informed consent compatible with CAP, were included in the CAP 
database.   

The Cardiac Atlas Project Investigators themselves obtained the necessary IRB and 
Ethics Committee approvals to undertake the project at the two CAP centers- the Uni-
versity of Auckland, New Zealand, and the University of California Los Angeles, 
USA.  

4   CAP Policies and Procedures 

In order to ensure that all data provided to CAP are managed according to well defined 
principles, in accordance with the regulatory and ethical requirements associated with 
de-identified human image and clinical data, a number of policies and procedures re-
lated to data ownership, control and sharing have been developed. These policies apply 
to participants from whom the data is obtained, contributing studies which originally 
collected and have contributed the data, the CAP investigators and third-party Users 
who wish to access CAP data. The flow of data in CAP is shown in Figure 2.  

4.1   Participants 

Participants consent to contribute their de-identified image and text data to the heart 
disease research community now and in the future. All data are de-identified in a 
manner compatible with the HIPAA privacy rule, using the CCB’s de-identification 
software with customized mappings [11] where original study identifiers, and private 
health information are replaced by CAP codes. This occurs at the site of the Contrib-
uting Study before upload to the CAP data servers, so the CAP does not receive or re-
tain the original identifiers. There is, therefore, no possibility that CAP investigators, 
or third party Users of CAP data, can identify individuals, and all researchers must 
agree not to attempt to identify participants. The key linking CAP codes with original 
identifiers is retained by the Contributing Study, so that investigators of the Contribut-
ing Study could link results from CAP back to the original study if desired. Partici-
pants can request withdrawal of their data from the database at any time by requesting 
removal either via the CAP or directly to the Contributing Study. In this case the Con-
tributing Study must notify CAP of which CAP codes must be deleted. 

4.2   Contributors 

Each Contributing Study has made substantial monetary, intellectual, and time in-
vestments for the collection of the data in a well-controlled manner (viz. original 
study design, recruitment, quality control, analysis, etc.), which represents a valuable 
scientific resource. Data contributed to CAP is therefore considered the property of  
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Fig. 2. CAP work-flow diagram visualizing 1) Data Acquisition; 2) Data Processing; 3) Data 
Analysis and 4) Public Data Access. 

the Contributing Study. The Contributing Study Steering Committee controls all use 
of their data through data distribution agreements, on a case by case basis, as de-
scribed below. 

4.3   Users 

Potential CAP users are required to submit a Research Proposal, outlining the ration-
ale and goals of the project, term, and data storage, to the CAP Steering Committee. If 
acceptable, CAP will liaise with each of the Contributing Studies whose data is re-
quired for the Research Project. Each Contributing Study (or nominee) will then re-
view the proposal and assess its eligibility with respect to the goals of the Contribut-
ing Study. If the proposal is approved, the User will be required to sign and abide by a 
Data Distribution (DDA) agreement for each of the Contributing Studies involved. 
Separate DDA’s are required because terms and conditions governing data use are 
specific to the goals and rationale of each Contributing Study. The DDA defines 
terms and conditions of the use of the data, including publication policy, acknowl-
edgements, security and intellectual property. 
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4.4   Intellectual Property 

All software produced by the Cardiac Atlas Project (CAP) is freely available, via the 
CAP website, to researchers and educators in the non-profit sector, such as educa-
tional institutions, research institutes, and government laboratories. 

CAP database and heart modeling tools, comprising database management, up-
loading and downloading of images, web browser interface, conversion of data for-
mats, visualization, and parametric modeling of shape and motion, developed using 
CMGUI (the open source finite element modeling package developed by the Univer-
sity of Auckland Bioengineering Institute) [12], are being made available using the 
Mozilla Public License (MPL). 

Commercialization of enhanced or customized versions of the software, or incor-
poration of the software or pieces of it into other software packages, is permitted sub-
ject to the terms of the license. Researchers are permitted to modify the source code 
and are strongly encouraged to share modifications with other researchers as well as 
with the CAP. Intellectual Property pertaining to the endpoints or specific aims of a 
Contributing Study, for example evaluation of a therapeutic drug or device which 
formed the primary hypothesis of the Contributing Study, will in general remain the 
property of the Contributing Study.  

Intellectual property developed by third party researchers using CAP data, not re-
lating to the specific character of the Contributing Studies, should remain the property 
of the developers. 

5   End User Tools 

5.1   Database 

The CAP Database (Figure 3), hosted by the CCB at UCLA, builds upon existing brain 
mapping infrastructure, which has been modified for cardiac images. Access to the da-
tabase is secure and privileges are assigned based on the User’s needs and intent. 

 

Browsing: The user will be able to browse the data in the CAP database. Data will 
be sortable by a few key fields, such as Research Group (e.g. DETERMINE), imaging 
protocol series description (e.g. TruFISP), age, etc. 

Searching: The user will be able to perform simple and advanced queries in order 
to search for data. A simple query might be based on two or three fields (e.g. male + 
MESA + diabetic) or may contain a ‘wildcard’ field. (e.g. diabetic).  An advanced 
query would allow the user to search for cases more specifically (e.g. male + MESA + 
diabetic + 25 < age < 45 years + acquisition date > 2003). 

Downloading:  Once the User has decided which data s/he would like to use, s/he 
would need to submit a Research Proposal to CAP for approval. Data may be down-
loaded only upon the execution of a completed Data Distribution Agreement. 

5.2   CAP Client 

MRI data may be visualized and patient specific mathematical models created using 
the open source (Mozilla tri-license) CAP client [13] which can be freely downloaded 
at the Project website. 
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Fig. 3. Example of Search results for the CAP Database hosted by the CCB at the UCLA Labo-
ratory of Neuro Imaging (LONI) 

The CAP client provides: 
 

- Retrieval of MRI data from the database across the network and the capability to 
upload models generated from such data to the database. 

- Visualization of 2D CMR images, 3D visualization of the mathematical model 
constructed from the CMR images, and 4D Visualization (3D Visualization with the 
temporal dimension as the 4th dimension). 

- Fitting of a mathematical model to a series of CMR images with minimal human 
intervention, enabling a large set of data to be automatically fitted to appropriate 
models and parameters. The Client software will also provide a means for the human 
user to be able to interactively and graphically modify the relevant model parameters. 

- Tools necessary for the statistical analysis of the data. This will be used for the 
generation of the parametric distribution models. 

 

The CAP Client is developed in C++ and runs on the Windows, Mac OS X and  
Linux platforms.  
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6   Data Analysis 

Atlas based methods are now well established for the statistical classification and 
quantification of shape and wall motion characteristics [14]. These methods enable 
standardized analysis of statistical variations present within and among patient 
groups, and enable classification of individual phenotypes within known population 
distributions. In almost all cases contributed to the CAP, contours are contributed in 
association with the images and clinical information. These contours can be used in a 
standardized model-based analysis to establish shape and motion with respect to a 
standard coordinate system, similar to the Talairach coordinate system used in the 
brain. Since shape and motion are mathematically mapped, statistical tools such as 
principal component analysis can be used to quantify the significant modes of varia-
tion present in a population. In a preliminary analysis, major modes of variation with-
in the DETERMINE cohort were associated with size, sphericity and mitral valve ge-
ometry, each of which are known indices of geometric remodeling. Projection of an 
individual’s shape and motion onto these modes (e.g. sphericity) provides a standard-
ized method for quantifying the amount of each mode present.  

7   Future Directions 

In accordance with the goals of standardized classification and sharing of data and re-
sources, the CAP is developing and building upon currently available ontological 
schema to describe the data and will federate cardiovascular modeling software and 
data to make them available to the cardiovascular research community via the Car-
diovascular Research Grid (CVRG) [6].  

The CAP database will be interfaced with the CVRG-Core, and modified to im-
plement interfaces and mechanisms compatible with CVRG enabled analysis tools. 
The CAP client software will also be grid-enabled, in order to be used in standard 
CVRG workflows, including a portal component to enable interaction with other re-
sources on the grid. The parametric modeling tools and associated ontological schema 
that are being developed by CAP will be designed to facilitate data fusion between 
different imaging protocols and modalities as well as other data sources.  

The standardized classification and description of CAP data elements (CV images 
and derived morphological information including contours and parametric geometry 
descriptions) will occur through registration of an information model and associated 
semantic annotations, expressed in the Web Ontology Language (OWL) [15], at the 
National Center for Biomedical Ontologies (NCBO) [16]. This will allow grid-enabled 
tools to query and access data of the correct type, and databases to declare what type of 
data are available. Data and derived results from several studies can be labeled and col-
lated in a standardized manner to achieve meta or subgroup analyses via the use of ex-
isting domain ontologies, such as the Foundational Model of Anatomy (FMA) for ana-
tomical data [17] and the Systematized Nomenclature of Medicine - Clinical Terms 
(SNOMED CT) for clinical terms [18]. Where gaps occur, suggested terms will be 
proposed based on feedback from the radiological and cardiological communities via 
online resources such as the NCBO BioPortal [16] and WebProtégé [19].  



44 C.G. Fonseca et al. 

8   Conclusions 

The CAP currently hosts approximately 3000 cardiac MRI studies, derived functional 
analyses and associated subject characteristics data which represents a substantial and 
valuable resource.  Tools for the de-identification of data were developed and vali-
dated. These tools were provided to the Contributing studies and were used success-
fully. The necessary IRB and Ethics Committee approvals were obtained and policies 
were developed to protect the rights of subject participants, contributors and users of 
the database. Applications to use the data can now be submitted to the CAP. Appli-
cants who are granted access can browse and query the database as well as view the 
images therein, and can download the data upon completion of a Data Distribution 
Agreement. The CAP client, which allows model generation, is also available for 
download at the Project’s website. 
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Abstract. The Cardiac Atlas Project seeks to establish a standardized
database of cardiovascular imaging examinations, together with derived
analyses, for the purposes of statistical characterization of global and re-
gional heart function abnormalities. We present preliminary results from
a subset of cases contributed from the Defibrillators to Reduce Risk by
Magnetic Resonance Imaging Evaluation (DETERMINE) study of pa-
tients with myocardial infarction. Finite element models were fitted to
the epicardial and endocardial surfaces throughout the cardiac cycle in
200 patients using a standardized procedure. The control points of the
shape model were used in a principal component analysis of shape and
motion. The modes were associated with well-known clinical indices of
adverse remodeling in heart disease, including heart size, sphericity and
mitral valve geometry. These results therefore show promise for the clin-
ical application of a statistical analysis of shape and motion in patients
with myocardial infarction.

Keywords: Statistical Shape Model, Principal Component Analysis,
Cardiac Magnetic Resonance Imaging (MRI), Finite Element Modeling.

1 Introduction

Cardiac magnetic resonance (CMR) imaging provides an abundant source of
detailed, quantitative data on heart structure and function. Model-based im-
age analysis procedures provide a powerful mechanism for the fast, accurate
assessment of cardiac MRI data and lend themselves to biophysical analysis and
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standardized functional mapping procedures. The theory of statistical analysis
of cardiac shape and motion has been well developed and applied to the heart
for at least a decade [Augenstein and Young, 2001, Frangi et al., 2002]. Princi-
pal component analysis (PCA) and independent component analysis (ICA) are
the main statistical tools for the study of the variability of function and shape
of the heart among and within patient groups [Üzümcü et al., 2003]. The PCA
represents a global linear analysis of the major components of variation assum-
ing a multidimensional Gaussian distribution, while the ICA does not require a
Gaussian distribution of the data, and allows analysis of more localized shape
variations.

Most studies have focused on the left ventricle (LV) due to the prevalence
of LV disease, but more comprehensive approaches have also been researched
[Lötjönen et al., 2003]. Few studies have examined the shape and motion of the
LV from a global 4-D perspective [Papademetris et al., 2002,Remme et al., 2004].

There has been extensive research into modeling cardiac function
(see [Frangi et al., 2001] for a review); however, the analysis of large datasets
has been limited by the lack of available population studies. Although recent
studies have reported findings of up to 100 cases [Ordas et al., 2007], it is well
known that these procedures require significantly more cases to achieve robust
clinical application.

The Cardiac Atlas Project (CAP) is an international collaboration which aims
to facilitate large scale statistical analysis of heart shape, structure, function
and wall motion characteristics across various population groups via parametric
mathematical modeling tools. One major study contributing data to the CAP
is the Defibrillators to Reduce Risk by Magnetic Resonance Imaging Evaluation
(DETERMINE) study [Kadish et al., 2009]. The DETERMINE trial is a mul-
ticenter, randomized study of patients with coronary artery disease and mild
to moderate left ventricular impairment. The primary objective of the study
is to test the hypothesis that implantable cardioverter defibrillator (ICD) ther-
apy in combination with medical therapy, in patients with myocardial infarct
greater than or equal to 10% of the LV muscle mass (as measured by CMR),
improves long term survival compared to medical therapy alone. The baseline
CMR examinations were contributed to the CAP, along with associated clinical
information. This represents a valuable resource for the study of regional wall
motion abnormalities in patients with myocardial infarction.

In this paper we report preliminary results from a subset of 200 cases from the
DETERMINE cohort. PCA and ICA were performed and the major components
of variation within the dataset were determined using a variety of methods. These
components were compared with known clinical characteristics of LV remodeling
due to myocardial infarction.

2 Methods

A total of 200 cases were chosen at random from the DETERMINE cohort. The
images were acquired using Steady-State Free Precession imaging (SSFP) and
the number of frames per case ranges from 20 to 30 [Kadish et al., 2009].
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A standardized mathematical model of the LV was customized to each case
using guide-point modeling [Young et al., 2000]. Briefly, a 3D finite element
model was adaptively optimized to fit each subject’s image dataset, using lin-
ear least squares optimization. Guide points placed on the images were fit-
ted by a geometric model including epicardial and endocardial surfaces. This
method has previously been validated in animals against autopsy LV mass, in
patients with regional wall motion abnormalities against manually drawn con-
tours, and in healthy volunteers against flow-derived measurements of cardiac
output [Young et al., 2000]. Papillary muscles were included in the blood pool.
Fiducial markers were placed by the user on the LV central axis, the mitral valve,
and insertions of the right ventricular free wall to the interventricular septum.
These markers were used to calculate a pose and scale for the model, and orient a
standard coordinate system. In addition, the insertion points of the mitral valve
leaflets were marked in all available long axis images, in order to define the basal
extent of the LV [Young et al., 2000].

The mathematical model was described in a prolate spheroidal coordinate
system [Nielsen, 1987] giving a radial (λ) function of two angular coordinates
(μ and θ in eqn. 1). The interpolation of control points used bicubic Hermite
functions — in element coordinates (ξ1, ξ2, ξ3) giving C1 continuity (eqn. 2). This
yields an intuitive node parametrization of (λ, μ, θ) with respect to the shape of
the heart. The focal length (f) defined the overall scale of the coordinate heart.
The radial location of the guide points λg was fitted by minimizing eqn. 3 with
respect to the nodal parameters.

x = f cosh(λ)cos(μ)
y = f sinh(λ)sin(μ)cos(θ)
z = f sinh(λ)sin(μ)sin(θ)

(1)

λ(ξ1, ξ2, ξ3) =
∑

n

Ψ(ξ1, ξ2, ξ3)λn (2)

E(λ) = S(λ) +
∑

g

(λ(ξg) − λg)2 (3)

The smoothing term S(λ) was included to regularize the problem, which can be
ill-posed due to the sparse location of the data.

The shape parameters of the model were then analyzed with the Modu-
lar Data Processing Toolkit [Zito et al., 2008]. Principal Component Analysis
(PCA) and an Independent Component Analysis (ICA using the JADE algo-
rithm [Cardoso, 1999]) was applied to 3 different shape vector configurations,
which defined three different shape spaces. Firstly, a rectangular Cartesian shape
vector (RC ) was formed from a subdivision of the finite element model. Secondly,
a prolate spheroidal shape space (Prolate) was formed using the focal length
and the (λ, μ, θ) nodal model parameterization. Finally, just the λ parameters
(Lambda) were considered in a separate shape vector, using average values for
focal length, μ and θ.
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In order to compute the PCA analysis, the data was mean-removed and stan-
dardized as in [Young and Frangi, 2009]. The modes were computed to reach a
cumulative representation of 95% (±2σ) of the variability. In the case of ICA,
modes were ranked according to the size of the standard deviations (σ) present
for each mode in the 200 cases. This paper only considers analysis of the end-
diastolic shape; a full temporal analysis of shape and motion is in progress.

3 Results

Figure 1 shows the first six modes for each of the shape spaces (RC, Prolate,
Lambda) investigated. The number of modes required to represent 95% of the to-
tal variation were 19 for RC, 6 for Prolate and 31 for Lambda. For each mode, the
±2σ shapes are represented and the relative power of the mode is noted at the
bottom of each pair. The modes are ordered according to their relative power.

A close inspection of figures 1 and 2, reveals that common modes appear in
all three shape spaces, in both PCA and ICA analysis. This implies that the
statistical shape analysis results in a robust signal decomposition.

For example, Mode 1 (size) from the PCA Prolate is also found as Mode 1
in the RC space, whereas in the ICA, it is found in both the Prolate and RC
spaces with different but consistently dominant power. It is not present in the
Lambda space since the effect of focal length (size) has been removed. Mode 2
(sphericity) in the PCA Prolate analysis is present in Mode 3 and Mode 4 in
RC, and Mode 1 in Lambda, whereas in the ICA, it appears in Mode 2 and Mode
4 in RC, Mode 2 in Prolate and is still present, but decreasingly so, in Mode 1
in Lambda. This could be related to the fact that ICA does not separate signals
well when there is more than one signal with a Gaussian distribution. Finally,
Mode 3 in PCA Prolate (mitral valve insertion plane) can be found in all spaces
but Lambda where it has been removed.

4 Discussion

The three modes present in the statistical shape analysis are also known to be
important descriptors of the remodelling of the LV due to myocardial infarction.
LV size, sphericity and mitral valve geometry are all recognized clinical indicators
of disease, with larger more spherical hearts being indicative of more progressed
disease.

The advantage of the rectangular Cartesian analysis is that all data in the
shape vector have the same physical meaning (i.e. mm). The quantification of
effect size in terms of shape variation is therefore unambiguous. In the Prolate
case, however, the focal length has very different scale to the (λ, μ, θ) nodal
parameters, so it is therefore unsurprising that the focal length should comprise
over 80% of the shape variation in this space. By decoupling size and mitral
valve orientation from the shape vector, as in the Lambda space, we see the
effects due solely to radial distance from the LV center. In this space sphericity
is the dominant mode of variation. The amount of this shape mode present in
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52 P. Medrano-Gracia et al.

any individual heart could therefore serve as an important quantitative clinical
index of disease.

The literature reports more accuracy using ICA in relation to standard error
measurements. However, determination of the optimal methodology is highly
contingent on the particular application.

5 Future Work

This paper only considered the shape of the LV at end-diastole. A full analysis of
shape and motion is in progress. Also, analysis of both right and left ventricular
geometry is of interest in cases of congenital heart disease. To this end, this analy-
sis could be extended to include more complicated geometries [Lam et al., 2010].

One limitation of these methods is the lack of precisely identifiable landmarks
which presents an interesting area for future research, e.g. [Mansi et al., 2009].

Another topic for research is the comparison of the statistical modes aris-
ing from the DETERMINE study with those arising from another study which
has contributed data to the CAP — the Multi Ethnic Study of Atherosclerosis
(MESA), which comprises asymptomatic volunteers. To date, 2450 MESA cases
have been contributed to the CAP, facilitating comparison between “normal
volunteers” and patient groups.

6 Conclusion

A statistical analysis of LV shape using a variety of shape measures, and analysis
methods, yields consistent major modes of variation, which are known indicators
of the severity of disease. This method enables quantification of these modes in
a standard way, which will facilitate detailed and precise evaluation of patients.
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Abstract. We describe the software design, architecture and infrastruc-
ture employed in the Cardiac Atlas Project (CAP), an international col-
laboration to establish a web-accessible structural and functional atlas of
the normal and pathological heart. Cardiac imaging data is de-identified
in a HIPAA compliant manner using the LONI Debabeler with cus-
tomized DICOM mappings. A production database and web-interface
were employed based on existing tools developed by LONI. A new open-
source database and web interface have been developed for research pur-
poses. After consideration and evaluation of several software frameworks,
the research database has been implemented based on a 3-tier architec-
ture utilizing MySQL, JBoss and Dcm4chee. Parts of Dcm4chee have
been extended to enable access to MRI specific attributes and arbitrary
search parameters. An XML schema has been designed representing the
elements associated with the creation and curation of volumetric shape
models. The research database is implemented compliant to the DICOM
standard, thus providing compatibility with existing clinical networks
and devices. A modeling tool, the CAP client, has been developed to
enable browsing of 3D image data and creation and modification of vol-
umetric shape models. All software components developed by the CAP
are open source and are freely available under the Mozilla license.

Keywords: Computational Atlas, Database, Parametric Shape Models.

1 Introduction

Cardiovascular diseases (CVDs) are the number one cause of death globally:
more people die annually from CVDs than from any other cause. By 2030, al-
most 23.6 million people will die from CVDs, mainly from heart disease and
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stroke [39]. To help with understanding the disease and planning intervention,
integrative models of cardiac physiology are important. Anatomical, functional
and clinical data must be integrated across many scales, from molecular interac-
tions to organ system function [2]. The CAP aims to provide access to Cardiac
Magnetic Resonance (CMR) images and derived data for the clinical, research
and educational communities. The data and tools provided will assist the sci-
entific community with large scale studies for a better understanding of CVDs.
The proposed research has three primary objectives.

1. Establish a database of CMR examinations. The two main contributing
studies, MESA and DETERMINE, provide CMR image and text data from
2864 cases representing asymptomatic volunteers (MESA), and 470 cases rep-
resenting patients with myocardial infarction (DETERMINE). Upon upload
to the CAP, cardiac magnetic resonance (CMR) images are de-identified and
stored in a database with advanced MRI search options.

2. Develop open source software for the mapping and analysis of cardiac
morphometry. A client software is used to generate volumetric models. CMR
Images can be loaded into the software and visualized in 3D over time. A
finite element model of the heart can be customized to the images using
markers placed by an analyst or contour information contributed from the
original studies. The models are stored with the CMR images in the CAP
database.

3. Develop standardized procedures for the contribution, curation, archival,
classification, and sharing of CMR data and derived analyses, These methods
are used to facilitate statistical analysis of regional heart shape and wall mo-
tion characteristics, and characterization of remodeling, between and within
population groups. CMR images and models are labeled and classified using
ontological terms and contribute to a publicly accessible knowledge base of
cardiac images and models.

The following sections describe the developed software and procedures imple-
mented to satisfy the research objectives. For details about the work-flow for
users and contributing studies please refer to [23].

2 Data De-identification

2.1 Privacy and Security

The Health Insurance Portability and Accountability Act (HIPAA) Privacy and
Security Rules [29] regulate the use and disclosure of patient information. They
define requirements and conditions which control secure data access and transfer,
as well as Protected Health Information (PHI). PHI are any data that can be
used to identify an individual, and must be replaced or removed (de-identified) to
protect the identity of patients. The HIPAA allows a limited data set for research
purposes which may contain elements of dates related to a person. Having IRB
approval for use of a limited data set, the CAP retains the patient age and year
of scan in the database.
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2.2 DICOM Data Elements

Medical images used by the CAP are acquired in the Magnetic Resonance Imag-
ing (MRI) modality type and stored as DICOM Objects. These objects contain
Data Elements (DE) representing information associated with the scanned ob-
ject. The DICOM Standard defines 27 Value Representations (VR) [26] as valid
data types for DEs. The VR of each DE is listed in the DICOM Data Dictionary
[26]. The dictionary further defines an Attribute Name (AN) and Value Multi-
plicity (VM) per DE. The current DICOM Standard (v2009) contains more than
2800 DEs, also known as public attributes or tags. In addition, many manufac-
turers of medical devices encode proprietary information in private attributes.

2.3 De-identification

The CAP uses the UCLA Laboratory for Neurological Imaging (LONI) Deba-
beler [1], a HIPAA compliant software tool, for the de-identification of DICOM
images. The Debabeler is used to create and customize translations between
medical image file formats. We have created a CAP specific Debabeler transla-
tion with rules to encrypt or replace attributes that could potentially contain
PHI. The de-identification works in the following manner:

1. Split by tag: DICOM tags that are known to be safe are left unchanged.
2. Split by VR: DICOM tags not selected in step 1. are left unchanged if they

have allowed VRs.
3. Discard: DICOM tags not selected in step 2. are discarded.
4. Replace: Out of all the DICOM tags in steps 1., 2., and 3., the values of

specified tags are replaced.

The output of the Debabbler includes a key linking CAP case codes to the
original identifiers, which is kept by the contributing study. CAP personnel,
and third party CAP users, are prohibited from accessing this key. The CAP
Debabeler mapping is available from the subversion repository at the sourceforge
project site [30].

3 Database

3.1 Production Database

The CAP production database is hosted by the LONI as an extension of ex-
isting brain mapping infrastructure. The purpose of this database is to provide
a mechanism by which approved third party users can access the de-identified
data and derived information. The LONI Image Data Archive (IDA) is a server
farm consisting of Linux computers running the MySQL database engine and
Tomcat web application servers with a built-in load balancer that manages the
requests to the web servers. The IDA database has been extended to enable the
storage and browsing of time-resolved cardiovascular MRI data.
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3.2 Research Database

A goal of the CAP is to establish an open source web accessible structural and
functional atlas of the heart [9]. The project requirements include storage and
retrieval of medical images, ontological mappings and volumetric shape models.

Framework Evaluation. Based on a confidentiality and integrity evaluation
of the CAP requirements, the atlas framework had to be developed using a
3-tier architecture (web-, application- and database-server) including secure au-
thentication and monitoring. Several frameworks have been evaluated regarding
features like security, database connectivity, web-services, testing frameworks,
etc. In order to evaluate development efforts and extensibility, 3 prototypes were
implemented using the most suitable frameworks.

1. Prototype A based on MySQL [7] / Zope [31] / Plone [32]
Pro: User control management, Integration with the Physiome Model Repos-
itory [33];
Con: No native web-service support; limited documentation; small develop-
ers group; low maintenance;

2. Prototype B based on MySQL / GlassFish [8] / Liferay [10]
Pro: User control management; Java Portlets [11] supported by a variety of
application servers and CMSs;
Con: Limited Ajax support for Portlets (JSR168);

3. Prototype C based on MySQL / JBoss [34] / Dcm4chee [6]
Pro: Mature architecture and code basis; active development, maintenance
and support; DICOM compliant implementation; compatibility with other
Java APIs; compatibility with other international research projects [5][37];
Con: Large code base.

Due to its advantages and compatibility with other research projects, Prototype
C was chosen as the software framework for the development of the CAP research
database.

Image Archive. Dcm4chee is a clinical data manager system based on a J2EE
[12] and JMX [13] software architecture and is deployed within the JBoss Ap-
plication Server. It provides a number of clinical services of which the most
important for the CAP are:

1. DICOM Interfaces - Acting as an archive, Dcm4chee is able to store,
query, and retrieve any type of DICOM object;

2. WADO and RID Interfaces - WADO (Web Access to DICOM Objects)
and RID (IHE Retrieve Information for Display) interfaces enable access to
the archived content from the Web;

3. Web-based User Interface - Dcm4chee contains a robust user interface
which runs entirely in a Web browser;

4. Audit Record Repository - IHE ATNA audit logging [16].

ExtendedDICOMQueries. TheDcm4chee application logic, database schema
and web-application have been extended to provide access to MRI specific
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Fig. 1. CAP web-application, based on Dcm4chee, providing extended MRI search
options

attributes as defined in theDICOMStandardMRImageModule [26]. Further, ven-
dor and model of the scanner used to record the images are stored. The database
fields are populated at image import using extended methods from the Dcm4chee
Enterprise Java Beans (EJBs).

The web-application extension provides the ability to include all added at-
tributes as search options (see Fig. 1). Using the web-front-end for querying the
CAP database, a researcher might be interested in specific studies, cine series or
individual images that satisfy the search parameters. For this purpose, a search
filter has been added to generate a result-set providing direct access to Patient,
Study, Series or Instance data.

To be able to search for arbitrary (including private) DICOM attributes, an
XPath query [28] has been implemented. An XML tree [14] representing the DI-
COM structure of the imported images is generated, stripped of binary and large
values (but keeping the DICOM tag) and stored in the database. Using MySQL
XML Functions [27], an XPath query on 600,000 images, searching for instances
with the scanning sequence ”Spin Echo” stored in tag ”0018,0020”, takes several
minutes to complete (depending on the speed of the storage system). For com-
parison, the same query in a relational database on an indexed text field takes
only seconds to complete. The XPath query time can be significantly improved
by limiting the search space, e.g. through specification of a Patient ID. However,
this shows the limitations of querying large XML data-sets without the ability
to specify indices on values. This limitation could be overcome by moving the
XPath query functionality to an optimized XML database (e.g. eXist [3]).
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Model Storage. In order to store volumetric models generated with the CAP
client application, an XML schema has been designed representing the elements
associated with volumetric shape model creation and curation. This includes input
parameters, such as images, contours and markers, calculated output parameters,
mesh files representing the model, as well as provenance information (see Fig. 2).

CAP models are stored by serializing the XML model and mesh files. The
models are imported to the CAP database, where they are de-serialized and

Fig. 2. CAP model structure diagram visualizing the basic model components

Fig. 3. 3-tier architecture of the CAP Model Implementation based on Dcm4chee. Blue
boxes represent basic Dcm4chee classes, yellow boxes represent CAP specific model
extensions.
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checked for consistency of referenced file-associations. A simple versioning im-
plementation stores models with incremental version numbers allowing reversion
to earlier versions. The XML model files are stored in the eXist XML database,
which provides core database features, such as indexing and transaction recov-
ery, allowing for fast search and retrieval of model related data. The consistency
check and versioning methods, as well as import and export of models, are imple-
mented as extensions to the Dcm4chee architecture (see Fig. 3). This provides a
tight integration with the solid code structure and logging facilities of Dcm4chee,
as well as model accessibility via DICOM network interfaces WADO and SCP.

Download. The download functionality of the Dcm4chee web-application has
been extended to allow the download of complete DICOM studies and series.
Further, models can be downloaded with optional referenced data. This func-
tionality is achieved by implementing a servlet that collects requested data and
provides it in a compressed archive to the user.

4 CAP Client

4.1 Overview

The CAP Client is the client side software tool for the visualization and the
analysis of the MRI cases stored in the CAP database. Given a set of CMR
images, the CAP client can be used to perform:

1. Image Browse and Labeling - Reading the DICOM header information
of all images and presenting the information in a graphical user interface on
which the user can browse through, select and label the images for further
use in model fitting;

2. Visualization - Display cine images in their correct position and orientation
in 3D+time;

Fig. 4. Screenshot of the CAP Client running on Mac OS X
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3. Model Fitting - A finite element model of the left ventricle is fitted to a
set of images using fiducial markers and data points;

4. Data Export - Fitted model parameters along with images and contour
information are stored in an XML file format (see Section 3.2).

4.2 Design and Implementation

The development of the CAP Client has been greatly influenced by the use of
the CMGUI library [35], an advanced visualization software library developed
at the Auckland Bioengineering Institute (ABI). Other software considered was
GIMIAS [24] and CardioViz3D [25]. Through the use of CMGUI, we can refer
to existing knowledge at the ABI about using the finite element method for the
model fitting and the involved computational complexity and graphical visual-
ization. Important objectives for the software development include:

1. Performance - To allow the user to view and manipulate large sets of CMR
images in 3D and fit models to them in an interactive manner, performance
is a critical design factor. In order to meet the real-time requirements regard-
ing the 3D graphics and numerical computation, the C++ programming lan-
guage was chosen for its superior time efficiency and the availability of high
performance numerical libraries. The CAP client uses hardware-accelerated
OpenGL API for graphics rendering and the GMM++ linear algebra library
[36] for the model fitting.

2. Ease of Use - The CAP client is expected to be used by non-technical users
for educational and research purposes, therefore ease of use is an important
design goal. All features of the CAP client are accessible through an intuitive
graphical user interface.

3. Extensibility and Maintainability - In order to encourage external de-
velopers to extend the CAP client to suit their needs, the source code is
structured to easily accommodate such extensions. Various object oriented
techniques were adopted to increase the extensibility of the software. For
example, the abstract factory design pattern [22] and the adaptor design
pattern [21] were used to ease the possible replacement of the linear algebra
library.

4. Portability - The CAP client was designed to be portable across different
platforms and currently runs on Microsoft Windows, Mac OS X and Linux.
This portability is achieved using cross-platform libraries such as wxWidgets
[17], boost [38] and GMM++, as well as build and testing tools such as
CMake and Google Test.

The CAP client is open source under the Mozilla tri-license and the source code is
available from the mercurial repository at the CAP sourceforge project site [30].

5 Future Work

Ontologies: For classification and standardization purposes, the CAP frame-
work will be extended to allow labeling of 2D and 3D regions of interest using
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anatomical terms from the Foundational Model of Anatomy (FMA) [18] and clin-
ical terms from Systematized Nomenclature of Medicine (SNOMED-CT) [19].
The ontological annotations will be expressed using the web ontology language
(OWL) [20].

Grid enabling: The CAP seeks to federate cardiovascular modeling software and
data resources to make them available to the cardiovascular research commu-
nity via the Cardiovascular Research Grid (CVRG) [37]. CVRG provides in-
frastructure tools in the cardiovascular domain to enable researchers to easily
access distributed resources through standardized interfaces, based on tools de-
veloped in the BIRN [4] and caBIG [5] projects. The CAP research database will
be interfaced with the CVRG-Core, and modified to implement interfaces and
mechanisms compatible with CVRG enabled analysis tools.

CAP Client database access: The CAP Client will be enabled to interface with
the CAP research database using the DICOM SCP, SCU, and WADO protocol
(cf. Fig. 3).

6 Conclusion

We designed and implemented procedures and tools to facilitate a workflow from
the acquisition of CMR images towards a statistical analysis of volumetric mod-
els. CMR images used within the CAP are de-identified in a HIPAA compliant
manner and are accessible to the scientific community via the CAP database.
The database is compliant to the DICOM standard and provides sophisticated
image attribute search options. The CAP Client software allows the user to im-
port images from the database and fit a finite element model using markers and
contour information. Volumetric shape models are stored in XML and CMGUI
specific file formats and are available to the research community via the CAP
database.
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Corné Hoogendoorn1, Etelvino Silva2, Adelina Doltra2, Llúıs Mont2,
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Abstract. In this paper, we present the use of atlas-based indexes of
abnormality for the quantification of cardiac resynchronization therapy
(CRT) outcome in terms of motion. We build an atlas of normal motion
from 21 healthy volunteers to which we compare 88 CRT candidates
before and after the therapy. Abnormal motion is quantified locally in
time and space using a statistical distance to normality, and changes
induced by the therapy are related with clinical measurements of CRT
outcome. Results correlate with recent clinical hypothesis about CRT
response, namely that the correction of specific mechanisms responsible
for cardiac dyssynchrony conditions the response to the therapy.

1 Introduction

Cardiac resynchronization therapy (CRT) has become one of the main treat-
ments for improving the condition of patients with advanced heart failure [1].
However, around 30% of the patients implanted with a CRT device fail to clini-
cally respond (around 50% concerning echocardiographic response) [2]. Measur-
ing mechanical dyssynchrony was recently targeted by a large number of trials,
looking for a better selection parameter that could outperform the criteria cur-
rently used in clinical practice (symptomatic heart failure with long QRS length
and low ejection fraction) [3].

Single dyssynchrony indexes based on echocardiographic images showed low
predictive value, mainly due to their poor reproducibility in a multi-center context
[4]. In addition, the choice of a single parametric approach discards the complex-
ity of the mechanisms responsible for the dyssynchrony of each patient, which ex-
plains such a low predictive value [5]. A mechanism-based patient selection strat-
egy has recently been proposed in [6], and contrasts with the previous approaches.
The authors first classified patients into specific etiologies of mechanical dyssyn-
chrony, and then studied the response of each class. They concluded that CRT
response mainly depends on the ability to correct these specific abnormal mecha-
nisms. Such a strategy also confirmed that understanding the patho-physiological
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mechanisms amenable to CRT may result more optimal for patient selection than
arbitrarily relying on the currently established selection criteria.

Despite these conclusions, the classification of patients and the observations
made after the therapy largely relied on visual observations, which questions
their reproducibility. More novel methods based on myocardial deformation have
also been proposed to study abnormal patterns associated with dyssynchrony [7]
[8], but their use in a CRT context is also limited by the reproducibility of the
measurements. Higher reproducibility can be achieved by accurately synchro-
nizing patient data to a common spatiotemporal reference anatomy. Patient
comparison in terms of cardiac motion and deformation was proposed in [9], [10]
and [11], using the framework of statistical atlases. In particular, an atlas-based
pipeline for the quantification of myocardial motion abnormalities has recently
been described in [12]. This pipeline characterized myocardial velocities of the
studied patients according to their distance to normality, in a similar fashion
than proposed in [13] for the detection of brain abnormalities. The technique
was evaluated in the context of CRT, using a reduced set of patients with one
clear specific pattern related to left ventricle (LV) dyssynchrony, namely septal
flash (SF) [6].

In this work, we apply this framework to a large database of CRT candidates
with a wide spectrum of ventricular dyssynchrony. Our aim is to demonstrate
the added value of such an atlas-based distance to normality for the study of
response to CRT. We use the local abnormality indexes proposed in [12] to
accurately quantify improvements in wall motion induced by CRT. We finally
relate the changes in local abnormalities with information about CRT outcome,
in order to understand the causes of non-response to the therapy.

2 Methods

2.1 Patient Population

For the present study, data was collected from 21 healthy volunteers, and 88
patients that were candidates for CRT based on current international clinical
guidelines (ejection fraction < 35%, QRS duration > 120ms, and NYHA classi-
fication III-IV). The study protocol was approved by our local ethics committee
and written informed consent was obtained from all patients. The baseline char-
acteristics for these subjects are summarized in Tab. 1. Clinical response was
defined at follow-up, as an increase ≥ 10% in the 6 min walking test as com-
pared to baseline, or a NYHA functional class reduction ≥ 1 point, in alive
patients without heart transplantation. Echocardiographic response was defined
as a reduction ≥ 15% in the LV end-systolic volume [2], as measured by one
experienced observer. Patients who died or had heart transplantation during the
study were considered as non-responders.

Echocardiographic (2D US) sequences in a zoomed-in 4-chamber view were
acquired for all these subjects, using a commercially available system (Vivid
7, General Electric, Milwaukee, WI, USA). The examination was performed at
baseline (OFF), 24-72 hours after device implantation (ON) and at follow-up
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Table 1. Clinical and echocardiographic characteristics for the population of CRT
candidates and for the set of volunteers

CRT candidates Volunteers

Baseline Follow-up

Age (years) 68 ± 9 30 ± 5
Male gender 64 (73 %) 14 (67 %)
QRS width (ms) 178 ± 29 . 81 ± 10
6 min walking test (m) 289 ± 82 399 ± 130 .
NYHA funcional class I 0 15 (17 %) 21 (100 %)

II 23 (26 %) 49 (56 %) 0
III 56 (64 %) 19 (22 %) 0
IV 7 (8 %) 0 0

LV end-diastolic volume (mL) 247 ± 88 212 ± 78 104 ± 27
LV end-systolic volume (mL) 186 ± 76 147 ± 66 41 ± 9
LV ejection fraction (%) 25 ± 8 33 ± 9 60 ± 5

(FU), which corresponded in average to 11 ± 2 months after the implant. The
sequences were acquired with a breath-hold constraint to minimize the influence
of respiratory motion. Resolution was optimized during the acquisition of healthy
subjects sequences, and corresponds to an average frame rate of 60 frames/s and
a pixel size of 0.24×0.24 mm2. The temporal resolution of the sequences is lower
for the set of CRT candidates (around half the frame rate), as they have dilated
hearts and therefore require the use of a broader US sector. Their average pixel
size is 0.26 × 0.26 mm2.

The choice of using 2D US and in particular the 4-chamber view was lead by
the fact that this view is the one used in clinical routine for the assessment of
fast abnormal motion patterns related to LV dyssynchrony, as described in [6].
However, the concepts developed in this paper could readily be applied to 3D US
and other imaging modalities once the required temporal resolution is available in
standard clinical acquisition protocols. The use of real-time 3D echocardiography
[14] [15] is particularly of interest to capture out-of-plane motion, which may
increase the accuracy of the proposed analysis, and extend it to specific 3D
motion patterns currently not captured by our method, such as torsion.

2.2 Atlas-Based Abnormality Indexes

The atlas pipeline described in [12] was applied on the 4-chamber sequences of
the two populations described in Sec. 2.1. The choice of a reference among the
set of healthy volunteers was addressed using the group-wise normalized mutual
information metric proposed in [16], and criteria based on image quality (LV fully
visible along the whole sequence, and low heart rate to achieve a higher temporal
resolution of the atlas). Statistics on myocardial velocities were computed locally
in time and space, at every anatomical location (x, t) of the reference anatomy.
Normal motion was first quantified by computing the average and covariance
of myocardial velocities for the set of healthy volunteers. Motion abnormalities
were then computed for each individual (both volunteers [using leave-one-out
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cross-correlation] and CRT candidates) by calculating a statistical distance to
the velocity distribution of the atlas population (Hotelling’s T -square statistic).
This computation returned a p-value at every location (x, t) of the myocardial
wall, low p-value meaning high degree of abnormality. As these abnormality
maps are defined on a 2D+t space, one way of visualizing them is to unfold
the LV wall around its medial line and to use time as a second dimension. The
representation of the p-value in this space is similar to M-mode echocardiographic
images, classically used to visualize wall motion over time. Examples of this
representation are given in Fig. 2, focusing on the septum region.

3 Relevance of the Atlas Population

The computation of a distance to normality assumes that we can trust the atlas
population as being representative of normality. In this study, the atlas popula-
tion has non-dilated hearts, no antecedent of cardiac dysfunction, and its baseline
characteristics match with the values found in the literature for a population of
patients with normal cardiac function [17]. In addition, this population is rela-
tively young (age 30 ± 5 years), which means its cardiac function is preserved
from lower efficiency raising up when subjects become older.

Number of subjects. To justify that the statistics are not biased due to the
number of subjects in the atlas population (N = 21), we computed the evolution
of the abnormality index (p-value) depending on the number of subjects Ns < N
involved in its computation. This experiment is summarized in Fig. 1, in which
the indexes were computed for a reduced set of 14 CRT candidates at each
spatiotemporal location (x, t). These values were normalized towards the value
obtained for the largest atlas population, so that the evolution is represented in
the same magnitude scale (%). The plot on the left represents this evolution for
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Fig. 1. Left: Normalized evolution of the abnormality indexes of one CRT candidate,
versus the size of the atlas population. Average over the cardiac cycle and the septal
segments (basal inferoseptal [BI], mid inferoseptal [MI], and apical septal [AS]). Er-
ror bars represent the standard deviation over 100 random combinations of Ns < N
subjects. Right: values above which this evolution stabilizes to its final value ±5%
(dashed line), per cardiac segment and temporal window of the cardiac cycle. Average
± standard deviation values over a set of 14 CRT candidates.
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Table 2. Shapiro-Wilk (SW) and Lilliefors (LF) tests for the distribution of myocardial
velocities from 21 healthy volunteers, at each septal segment. Both components of
velocities (radial vρ and longitudinal vθ) were treated independently. Bottom line:
generation of 21 normally distributed random numbers, repeated 10000 times.

(%) Segment SW LF

vρ

BI 89.6 ± 7.4 17.2 ± 5.0
MI 90.2 ± 7.4 17.0 ± 5.3
AS 90.3 ± 7.3 16.8 ± 5.0

vθ

BI 90.9 ± 7.5 15.9 ± 4.7
MI 91.2 ± 7.3 15.6 ± 4.7
AS 90.2 ± 7.4 16.7 ± 5.2

randn(21, 10000) 95.2 ± 0.3 13.1 ± 3.1

the three septal segments of one CRT candidate. For each value of Ns < N , the
experiment was repeated for 100 random combinations of Ns subjects (vertical
error bars). In each spatiotemporal region, the number of subjects above which
this evolution stabilizes to its final value ±5% is summarized in the table on the
right (average ± standard deviation over the set of 14 CRT candidates). Based
on these values, we can reasonably trust an atlas built with all the available
population of subjects (21 volunteers).

Statistical distribution assumptions. The p-value used for the quantification of
motion abnormalities is computed from the Hotelling’s T -square statistic, under
the assumption that the distribution of myocardial velocities over the set of the
21 volunteers is gaussian. We computed the Shapiro-Wilk and the Lilliefors tests
at each location (x, t) to justify this assumption. The results are summarized in
Tab. 2, which shows the average values and standard deviation of these tests
over the three septal segments, for both components of the velocities treated
independently. The last line presents the values of these tests for the generation
of 21 normally distributed random numbers, repeated 10000 times. Based on
these values, we can reasonably consider that the distribution of velocities is
gaussian at each point (x, t).

4 Clinical Outcome After CRT

4.1 Atlas-Based Quantification of CRT Outcome

We computed p-value maps of abnormality for the set of 88 CRT candidates, as
described in Sec. 2.2. These maps are illustrated in Fig. 2 at baseline and follow-
up, focusing on the septum region for three candidates. The p-value is represented
in logarithmic scale, and pondered by the sign of radial velocity vρ at the same lo-
cation (x, t). This mode of representation highlights inward and outward motion
of the septum: blue color represents high abnormality with inward motion of the
septum, red color being high abnormality for an outward motion. Characteristic
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Fig. 2. Abnormality maps in the septal region (vertical axis) for three CRT candidates,
at baseline and follow-up: two with SF (top and middle, inward and outward events of
SF being indicated by the black arrows), and one with left-right interaction (bottom).
The color scale encodes the amount of p-value in logarithmic scale, pondered by the
sign of the radial velocity. The vertical line indicates the end of the IVC period.

abnormality patterns are visible on these three patients before the therapy, and
can be related to specific types of dyssynchrony: the patients at top and middle
rows show a fast succession of blue/red color during the IVC period, correspond-
ing to the inward/outward events of SF. This pattern is not visible anymore on
the maps at follow-up. In contrast, the bottom row patient has only inward ab-
normality during the IVC, corresponding to a left-right interaction dyssynchrony.
This pattern, despite a slight reduction, is still visible at follow-up.

4.2 Relation between Abnormality Reduction and CRT Outcome

The follow-up parameters for the set of CRT candidates are displayed in Tab. 1.
One patient died during the study, and was therefore considered as non-
responder. This patient had SF. Among the 87 remaining patients, experimented
clinicians visually detected SF at baseline for 58 of them (67%). This pattern
was still present after the therapy for 7 patients (8%). The amount of responders
and non-responders for these populations is summarized in Tab. 3.

Regional abnormalities were then compared to CRT outcome for the whole
set of CRT candidates, looking for differences between responders and non-
responders. Boxplots in Fig. 3 represent the average of the abnormality indexes
over temporal intervals of the cardiac cycle and the three septal segments. The
indexes were computed at baseline (OFF), after implant (ON), and at follow-up
(FU). Indexes for the atlas population are displayed in gray. In this figure, we
mainly observe a reduction of systolic abnormalities (IVC and Systole\IVC),
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Table 3. Clinical and echocardiographic responders (R) and non-responders (NR)
among the set of 88 CRT candidates, the set of 59 patients with SF detected at baseline
(58 survived), and the 7 patients for which SF is still present after the therapy

Clinical
R NR

Echo
R 42 7

NR 30 9

Clinical
R NR

Echo
R 36 5

NR 15 3

Clinical
R NR

Echo
R 3 2

NR 2 0

88 CRT candidates 59 SF (OFF) 7 SF (FU)

0 0

0 0 0

0 0 0

0
IVC Systole \ IVC Diastole

AS

MI

BI

OFF
ON
FU

Atlas R NR Atlas R NR Atlas R NR
CRT candidates - Clinical response 

log(p)

Fig. 3. Comparison of regional abnormality indexes (p-value in logarithmic scale) at
baseline (OFF), after implant (ON), and at follow-up (FU). Clustering between re-
sponders (R) and non-responders (NR). Average over specific temporal intervals of the
cardiac cycle (columns) and septal segments (rows).

at basal inferoseptal and mid inferoseptal levels. Responders show a slightly
higher reduction of abnormalities at mid inferoseptal level during the IVC. How-
ever, abnormality changes before and after CRT are similar for both responders
and non-responders at the other spatiotemporal regions, showing that the ther-
apy improves the motion and the coordination of the cardiac chambers in both
groups. This also suggests that global computations of abnormality and in gen-
eral of dyssynchrony cannot distinguish between responders and non-responders.
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SF unresolved

SF patients
Clinical response 

OFF FU OFF FU
Responders Non-responders

IN INOUT OUTIN INOUT OUTlog(p)

Fig. 4. Comparison of abnormality indexes (p-value in logarithmic scale) for the inward
(IN) and outward (OUT) events of SF, at baseline (OFF) and follow-up (FU). Average
over the IVC period and the whole septum. Cross symbols indicate patients for which
SF is still observed at FU.

Such a conclusion echoes the clinical scepticism about the limited value of single
dyssynchrony indexes for the study of CRT response [4] [5].

As a consequence, we specifically looked at the evolution of abnormalities
corresponding to SF, with the underlying objective of confirming the hypothesis
that the reduction of specific abnormal patterns may be a better predictor of
CRT response. This comparison is illustrated in Fig. 4, for the set of 58 patients
who were visually diagnosed as SF at baseline, and for which FU information
is available. The displayed points represent the average of the abnormality over
the whole septum, and over the temporal windows corresponding to the inward
(IN ) and outward (OUT ) events of SF, defined as:

IN =
{
t ∈ IV C

∣∣ vρ(t) < 0 , t < OUT
}

OUT =
{
t ∈ IV C

∣∣ vρ(t) > 0 , t > IN
}

In this figure, we observe a large reduction of SF abnormalities for the whole
set of responders, confirming that a correction of this specific pattern stands for
a good predictor of CRT response. As a comparison, in [6], all the patients for
which SF was corrected by CRT were responders.

In our study, there were 7 non-responders among the SF population (12 %),
for which a case by case examination helps understanding the reasons for non-
response: 2 conserved the SF pattern after the therapy (cross symbols on Fig.4);
1 had still highly abnormal dyssynchronous motion, even if SF was resolved;
1 had ambiguous SF at baseline; 2 showed an increase in the 6 min walking
test that was not enough to pass the threshold for being considered as clinical
responder; and 1 fails to respond without any of these reasons.

Limitations. Myocardial velocities were computed under a small displacements
hypothesis and assuming stationarity between the acquired frames, as justified
in [12]. This partially limits artifacts resulting from differences in temporal res-
olution between the set of healthy volunteers and CRT candidates respectively.
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The use of 2D+t diffeomorphic tracking of the anatomy [15] will be included
to our pipeline in further work to reach better accuracy along the continuous
timescale.

In this study, results are displayed against clinical response. The observa-
tions made with echocardiographic response lead to less conclusions. This can
be interpreted by the fact that CRT is able to correct motion abnormalities
and therefore improving patient condition (clinical response), without necessar-
ily reversing cardiac remodelling (echocardiographic response). Complementary
details discussing the relevance of clinical and echocardiographic response can
be found in [2].

5 Conclusion

In this paper, we demonstrated the use of atlas-based abnormality indexes for
the local quantification of cardiac motion improvements induced by CRT, which
is particularly relevant for the understanding of CRT outcome. The conclusions
from this work correlate with the hypothesis demonstrated in recent clinical tri-
als, namely that the reduction of specific patterns of dyssynchrony conditions the
response to CRT. The prediction of response based on baseline data will be stud-
ied in further work, and will include the comparison of individuals to groups of
patients for which response is known. Future work will also extend the analysis to
strain measurements, as the presence of local infarction might affectCRT response,
and is not currently taken into account by indexes focusing on motion only.
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Abstract. Increased resolution in cardiac Magnetic Resonance Imaging
(MRI) and growing interest in the effect of small structures in electro-
physiology of the heart pose new challenges for cardiac atlases. In this
paper we discuss the limitations of current atlas-building models when
trying to incorporate cardiac small structure and argue for the need of
developing a standard coordinate system for the heart that separates
this from the macro-structure common to all individual hearts, in a way
analogous to the stereotactic coordinate system from brain atlases. With
this goal, we propose a set of methods to obtain two descriptors of the
ventricular macro-structure that can be used to build a standardized
reference frame: the central curve on the Left Ventricle cavity and the
smoothed internal envelope of the Right Ventricle crest (i.e. the curve in
the endocardial surface marking the junction between the right ventric-
ular free wall and the septum).

Keywords: computational biology, cardiac atlas.

1 Introduction

Modern work on atlases in medical imaging can arguably be traced back to the
identification of anatomical areas in the brain associated to language function
by Paul Broca and Carl Wernicke in the second half of the 19th century.

The first brain anatomical atlas was published over a century later [19]. Ta-
lairach and Tournoux made two fundamental contributions. First, they proposed
a standard coordinate system or reference frame for the brain (the Talairach
stereotactic or stereotaxic proportional grid); this coordinate system is uniquely
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determined by 3 anatomical features: the anterior commissure and posterior com-
missure points, and the vertical midsagittal plane. Second, they approximately
segmented Brodmann areas by visual inspection on each slice of the atlas. While
this approach has been very valuable, in particular to analyze information from
low-resolution imaging modalities, single-subject or target anatomical atlases
have limited ability to generalize, do not allow evaluation of morphometric vari-
ability and rely on tedious and error-prone visual segmentation of anatomical
structures by experts.

To produce a multi-subject or reference probabilistic atlas, the Montreal Neu-
rological Institute (MNI) 305 atlas automatically registered 55 Magnetic Reso-
nance Imaging (MRI) brains to the MNI 250 atlas. The MNI 250 atlas was built
from 250 normal MRI scans, hand segmented and registered to the Talairach and
Tournoux atlas [9]. This atlas was an average of all 305 registered MRI volumes
to produce a blurred-out image of the brain’s macro-structure.

Building on these approaches, the International Consortium for Brain Map-
ping (ICBM) was formed in 1993 to develop a probabilistic reference system for
the human brain. It has produced to date1 a target brain from a single subject,
the reference ICBM 452 T1 Atlas brain (a probabilistic atlas that is both an
average of intensities and shape), and cytoarchitectonic maps registered to the
ICBM 452 reference atlas.

Cardiac reference or probabilistic atlas research followed in the steps of brain
atlases from the late 1990s. For example, Lelieveldt et al. [14] constructed a
very coarse scale three-dimensional (3D) model of heart surfaces (and other
thorax organs) from 11 subjects using a hyperquadric implicit shape model and
using fuzzy boundary templates for variability. Frangi et al. [11] proposed a
probabilistic atlas of ventricular shape truncated at the base, using 3D point
distribution models (14 normal subjects). Lorenzo-Valdés et al. [15] extended
this work with an intensity probabilistic atlas. A coarse division of the LV in
segments (the 16- or 17-segment models [8]) is routinely used in clinical practice,
and a prolate spheroid standard coordinate system was proposed in [13].

For a recent review of the field, see Young and Frangi [21], who noted that
“probabilistic maps of heart and motion in health and disease, is now an ac-
tive area of research”. Yet, cardiac research is arguably still catching up with
some areas of brain research. For example, the ICBM’s target brain is labelled
and segmented, while the Auckland 2D MRI Cardiac Atlas2 is labelled but not
segmented. Also, the ICBM has scanned thousands of subjects (normal persons,
aged 18 to 90 years, with a wide ethnic and racial distribution) [16], compared
to the 100 subjects of one of the largest-scale statistical atlases built so far [21].

A challenge for statistical descriptions of anatomy is the distinction between
common macro-structure features (e.g. the number of main cavities in the heart)
and small details that vary between individuals (e.g. papillary muscles or vessel
trees). This becomes more important as advances in imaging and computational
models allow studying the effects of microstructure. For the brain, the Zuse

1 http://www.loni.ucla.edu/ICBM/Downloads/Downloads_Atlases.shtml
2 http://atlas.scmr.org/

http://www.loni.ucla.edu/ICBM/Downloads/Downloads_Atlases.shtml
http://atlas.scmr.org/
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Institute Berlin released a Honeybee Standard Brain atlas3, that consists of a
reference mean shape with the macro-structure of the bee brain, onto which
small stochastic structures (e.g. neurons) and function can be mapped [4]. In
the heart, this approach has not yet been attempted.

Current shape models typically build on the Point Distribution Model (PDM)
paradigm based on Principal Component Analysis (PCA) introduced by Cootes
et al. [10] in computer vision in the early 1990s (see e.g. [6] sec. 4.5 for an
overview). These models have considered smoothed out versions of cardiac sur-
faces, possibly for several reasons. First, shapes are built mostly from MRI and
Computed Tomography (CT) images, and to date these modalities cannot pro-
vide resolutions fine enough in vivo to visualize small structures like trabecu-
lae, vessels or the free-running Purkinje System. Second, even if available, high
resolution modalities, like histology, produce amounts of data and registration
challenges that are at the boundaries of what is feasible computationally and in
the wet-lab today. Third, PDMs require a one-to-one correspondence between
landmarks and are thus ill-suited to represent small structures that have no cor-
respondence between subjects. Fourth, “Models should be as simple as possible,
yet as complex as necessary to address a given question” [12], and clinical global
and local function evaluation have historically used measurements that are ei-
ther qualitative or quantitative at a macro scale, precluding the need for very
fine structures (see e.g. [6] Ch. 3 for a detailed review).

While with current technology it is not possible to obtain high resolution
in vivo images of the whole heart, state of the art wet-lab and ex vivo image
acquisition techniques make it possible to obtain MRI volumes with paracel-
lular resolution [5,18,20], as illustrated by Fig. 1. Recent results suggest that
trabeculae and intramural vessels may affect excitation wavefronts in ways not
present in coarser scale models and relevant to arrhythmia induction [1], a wide
anatomical variability for the free-running Purkinje System [3], and the role of
the intramuscular Purkinje System in the synchronization of activation times in
ventricular walls [17]. For most of these structures, their typical distribution and
variability within a species and between species is unknown. Hence, it is of great
interest to gain a better understanding of this variability from high resolution
ex vivo images and eventually build mathematical small structure models that
can be used to enhance resolution-limited clinical scans improving the realism
of computational models.

Current methods to build cardiac probabilistic atlases typically register the
images in the training data set to optimize a measure (e.g. sum of squared errors,
mutual information) between the voxel intensities or derived features from the
images. While these methods have been proven useful in low-resolution analysis,
they cannot tackle highly detailed models since, in general, small structures have
no anatomical correspondence between images (see Fig. 1). Adding a regular-
ization term to the registration algorithm or downsampling the images removes
the small structure information blindly, and thus is not a solution for the given
problem.

3 http://www.neurobiologie.fu-berlin.de/beebrain/

http://www.neurobiologie.fu-berlin.de/beebrain/
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Fig. 1. Structure details in similar short-axis slices in two different MRI rat hearts
from our data set: Right Ventricle (RV) crest trabeculae (red rectangle), Left Ventricle
(LV) papillary muscle (green pentagon), left descending coronary artery (yellow circle),
free running Purkinje network branch (blue semi-ellipse, only in left image)

We propose to find some macro-structure features or descriptors, as in the
Talairach stereotactic system, to span a standard coordinate system that allows
one to make comparisons between subjects, quantify variability and establish
anatomical correspondences. We also propose to follow an approach similar to the
Honeybee Standard Brain atlas [4] in the sense of separating the macro-structure
of the heart from small anatomical structures. We consider macro-structure the
deterministic scaffolding of the heart and main landmarks. All hearts have four
chambers (left and right atria and ventricles), four main valves (aortic, mitral,
pulmonary and tricuspid) and an apex. Smaller structures (including trabeculae,
vessels, the Purkinje System and papillary muscles) are found also in all hearts,
but with different topologies and a stochastic distribution. In this paper we
present methods for the definition of macro-structure descriptors. We propose
two structures present in all hearts, with a clear, simple geometrical definition,
anatomically relevant and, most importantly, sufficient to define a coordinate
reference system for the two ventricles: the central curve in the Left Ventricle
(LV) cavity and the smoothed internal envelope of the RV crest (i.e. the curve
on the endocardial surface marking the junction between the right ventricular
free wall and the septum), and we propose a sequence of methods to compute
them on any heart. Initial results show the ability of the method to detect these
structures in high-resolution rat MRI data sets.

2 Wet-Lab Methods and Anatomical Imaging

All investigations reported in this study conformed to the UK Home Office guid-
ance on the Operation of Animals (Scientific Procedures) Act of 1986. Sprague
Dowley rat (≈300g, n = 14) hearts were excised and swiftly mounted to a Lan-
gendorff system for coronary perfusion with normal tyrode [5]. The hearts were
cardioplegically arrested with high K+ (20mM) solution in their slack (resting)
state and fixed via coronary perfusion. Fixation was achieved by perfusing the
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heart with Karnovsky fixative [5], being careful to avoid excessive pressure gra-
dients, which have been seen to cause volume overload in the ventricles. Hearts
were left overnight in fixative containing 4 mM gadodiamide contrast agent, then
washed for 30 min in sodium cacodylate buffer, and embedded in bubble-free 2%
low melting agar (containing 4mM gadodiamide).

Anatomical MRI scans were performed using a Varian 9.4 T (400 MHz) MR
system (Varian Inc, Palo Alto, CA), and a birdcage coil with an inner diameter of
28mm (Rapid Biomedical, Wurzburg, Germany) to transmit / receive the NMR
signals. A 3D gradient echo pulse sequence was used for data acquisition [18,20],
with a total scan time of 12 hours. Data were acquired at a typical experimental
resolution of 43 × 43 × 19 μm, which was zero filled and written to a stack of
TIFF images with a final resolution of 25.4 μm in-plane, 12.7 μm inter-plane.

3 Method for Reference Frame Descriptors

In this section we present a method to obtain two macro-structure descriptors
sufficient to establish a standard reference frame of rat ventricle anatomy. In
brief, the method produces a central curve in the LV cavity, and an envelope
for the RV crest, and it involves a minimum amount of user interaction. Image
analysis methods were written using a combination of Matlab functions, and the
open source platform Seg3D 4.

1) Cardiac tissue segmentation. The MRI volumes obtained as described
above showed a clear tissue/background differentiation and low bias field. We
used a threshold, followed by a morphological closing and a subsequent identifi-
cation of the largest connected component to extract cardiac tissue. A final hole
filling algorithm was applied.

2)Computer-assisted hand segmentation of the four ventricular valve
annulae. The four main valve annulae were segmented by two experts using the
Spline Tool in Seg3D [7], specifically developed for this purpose. The experts
scrolled through the MRI volume placing landmarks on each annulus, aided by
real-time visualisation of the interpolated curve provided by the tool [7].

3) Ventriculo-atrial surface interpolation. Anatomically, the four annu-
lae belong in a connective tissue layer that electrically insulates the atria from
the ventricles. Interpolation of the valve annulae with a smooth surface provides
an approximation to the connective tissue layer and a natural boundary between
the ventricle and atrium cavities, and the ventricle cavities and pulmonary/aortic
arteries. Similar to the method described in [7], PCA was applied to the cloud
of annulus landmarks to obtain the three eigenvectors v1, v2, v3 where the cor-
responding eigenvalues λ1 ≥ λ2 ≥ λ3. The valve plane was made horizontal
by computing s̃′i = [v1 v2 v3]� s̃i, for each centered annulus landmark s̃i, thus
avoiding the presence of folds on the valve plane. The rotated annulus points
were interpolated using a f : (xi, yi) �→ zi thin-plate spline (TPS) [2]. Surface
points were computed with the TPS, rotated back to span the whole MRI image,
and used to segment ventricles from atria (Fig. 2).
4 http://www.seg3d.org

http://www.seg3d.org
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Fig. 2. Detail of interpolated ventriculo-atrial surface in two orthogonal planes. Left
ventricle (LV), right ventricle (RV), right atrium (RA), papillary muscle (PM).

4)Ventricle cavities segmentation.The segmented background was eroded
by 2 voxels so that it did not touch the external wall of the heart. The ventriculo-
atrial surface segmentation was loaded and dilated by 4 voxels. The Connected
Component Filter was seeded on the background near the apex to segment the
space external to the heart, and dilated by 2 voxels so that it touched the cardiac
wall again. This segmentation was combined with the ventriculo-atrial surface us-
ing a logical OR operation, producing a boundary for the cavities. Finally, the
inverse of the tissue segmentation was loaded again, and the LV and RV cavities
segmented using the Connected Component Filter, as illustrated by Fig. 3.

Fig. 3. Segmentation of LV (red) surrounded by RV (blue) cavities. Right image shows
the RV outflow tract.

5) Initial calculation of LV reference frame. PCA was computed sep-
arately on the coordinates of segmented tissue and LV voxels, to obtain the
orthogonal bases of eigenvectors {v1, v2, v3} and {w1, w2, w3}, respectively,
such that the largest eigenvalue corresponds to v3, w3 and the basis is right-hand
oriented. A new non-orthogonal basis {v2, v3, w1} was orthogonalized applying
Gram-Schmidt with w1 fixed, i.e. computing matrix Q in a QR decomposition
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of [w1, v2, v3]. In this way, the vertical orientation is determined by the LV
segmentation (making the LV long axis aligned with the z axis), and the XY-
plane orientation is determined by the whole tissue segmentation (making the
axis from LV to RV aligned with the X axis). The Q matrix represents a 3D
rotation; the centre of rotation m was chosen to be the LV segmentation cen-
troid. The MRI volume and segmentations were centered around m and rotated
by Q� leaving the heart in a normalised orientation.

6) Papillary muscles segmentation. The middle slice of the LV segmenta-
tion was selected, and the regions between the convex hull and the cavity found
with an XOR operator. Connected components were computed, and those with
large areas were assumed to belong to papillary muscles. Each component was
eroded by 25% r voxel, where a = πr2, a the component’s area in voxel2, and
dilated by 50% r. The resulting area was propagated to the next slice to con-
strain the search region for papillary muscle voxels. This process iterated slices
until the papillary muscle component had no voxels left. An example is provided
in Fig. 4.

Fig. 4. Segmentation of two papillary muscles (depicted in red and blue) in LV. While
small errors in the segmentation are visible in some slices (top white arrow: segmen-
tation beyond chordae tendineae; bottom white arrow: segmentation overflow), for our
purpose only an approximate delineation was required to “fill the gaps” in the LV
segmentation.

7) Calculation of final coordinate reference frame. The coordinate ref-
erence frame calculated in step 5 is affected by the presence of papillary muscles,
and thus we recomputed it after eliminating these from the segmented object.

8) Centroid curve from LV cavity extraction. A centroid was computed
for each LV segmentation slice. All centroids were interpolated with an approx-
imating natural cubic spline with centripetal parametrisation with smoothing
factor p = 0.999.

9) RV crest segmentation. The centroid mRV for each RV segmentation
slice was computed. Azimuth values were computed for each RV voxel with
respect to the LV centroid mLV closest to mRV . The voxels with the most
negative and positive values were identified as belonging to the RV crest, i.e. the
curve at the junction between the LV and RV. Crest points were replaced by
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part of the tricuspid annulus when the azimuth method did not produce a good
result in that region.

10) Internal envelope of RV crest computation. The crest segmenta-
tion from step 9 is affected by inter-individual variability in the location of RV
trabeculae, which is precisely what we want to avoid as explained in detail in the
Introduction. Smoothing the crest with a spline is similar to computing a local
mean, or downsampling the MRI volume, and is thus not a suitable solution.
Instead, we compute the internal envelope of the crest from the point of view of
the LV centroids.

The shortest distance d from each crest point to the LV centroid curve was
computed. The resulting function was extended on both ends to make it cyclic.
Local minima were computed in d, and linearly interpolated to a curve dmin. In
order to remove local oscillations, the dmin curve was filtered removing dmin(i) if
dmin(i) > dmin(i−1) and dmin(i) > dmin(i+1). The remaining points were inter-
polated with a shape-preserving piecewise cubic curve denv (function interp1
(...,’cubic’) in Matlab) to avoid ringing. The envelope points were com-
puted as an intermediate point at denv on the straight line connecting the crest
point and its corresponding LV centroid. The resulting envelope is smooth in the
radial direction, but follows the trabeculae in the azimuth direction. Azimuth
variations were smoothed out using an approximating natural cubic spline with
centripetal parametrisation and smoothing factor 0.90 ≤ p ≤ 0.99. The results
are displayed for three rat hearts in Fig. 5.

Fig. 5. Reference frame for three rat hearts. RV cavity (red), LV centroid curve (vertical
black), RV crest (rugged blue), RV crest envelope (smooth green).

4 Results and Discussion

The methods above were applied to three high-resolution MRI scans of rat hearts
acquired as described above. Results of ventriculo-atrial surface interpolation,
ventricular cavities segmentation and definition of the reference structures are
shown in Figures 2-5. The similarity between the results for three rat hearts



Ventricular Anatomy Descriptors 83

suggests that the descriptors are able to remove the variability caused by small
structures while retaining enough information about the macro-structure of the
ventricles. Remarkably, the crest envelope produces a corner at the apex, a struc-
ture whose reliable discrimination has been a challenge so far. The descriptors
also highlight the need to take into consideration the RV outflow tract and the
base of the LV in anatomical modelling. These features have usually been ignored
in the literature by truncating the ventricles at the base (see e.g. [21]).

There are fundamental difficulties for a quantitative validation since ground
truth is not well defined; further validation will arrive with the application of this
framework to all 14 hearts available and the study of specific small structures.
Also, the robustness of the steps involving manual interaction will be evaluated
with inter- and intra-observer variability studies.

The descriptors are sufficient to form the basis of a reference frame for both LV
and RV coordinates. As illustrated in Fig. 5, we can define a coordinate reference
frame using ideas similar to the prolate spheroidal one described e.g. in [13],
extended to include the RV. Similarly to the honey bee project, future work will
extract smooth surface boundaries for the inside and outside of the LV and RV.
Unlike the honey bee project, though, said surfaces will not be computed from
average probabilistic maps, but from surface envelopes (analogous to the RV
crest envelope) that separate macro-structure from small details like trabeculae.
Mapping the hearts to the reference system will allow one to evaluate and model
both macro and small structure variability.
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Abstract. Automatic segmentation of the heart’s left atrium offers
great benefits for planning and outcome evaluation of atrial ablation
procedures. However, the high anatomical variability of the left atrium
presents significant challenges for atlas-guided segmentation. In this pa-
per, we demonstrate an automatic method for left atrium segmentation
using weighted voting label fusion and a variant of the demons registra-
tion algorithm adapted to handle images with different intensity distri-
butions. We achieve accurate automatic segmentation that is robust to
the high anatomical variations in the shape of the left atrium in a clinical
dataset of MRA images.

Keywords: Atlas-based segmentation, left atrium segmentation, car-
diac segmentation, label fusion, non-rigid registration.

1 Introduction

The high anatomical variability of the heart’s left atrium makes its segmentation
a particularly difficult problem. Specifically, the shape of the left atrium cavity,
as well as the number and locations of the pulmonary veins connecting to it, vary
substantially across subjects (Fig. 1). In this paper, we propose and demonstrate
a robust atlas-based method for automatic segmentation of the left atrium in
contrast-enhanced magnetic resonance angiography (MRA) images.

Clinically, left atrium segmentation is a highly relevant problem. Atrial fib-
rillation is known to be one of the most common heart conditions. It manifests
itself by causing irregular contractions of the heart’s atria and can have seri-
ous consequences such as stroke and heart failure [1,2]. Catheter-based radio-
frequency ablation has recently emerged as a treatment for this condition. It
involves burning the cardiac tissue that is responsible for the re-entry electrical
currents that cause fibrillation. The high anatomical variability of the left atrium
shape and the pulmonary veins that enter it presents significant difficulties for
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Fig. 1. Manual segmentations of the left atrium in three different subjects, illustrating
the variability of the anatomy

cardiac ablation since it is commonly performed at the junction of the atrial
body and pulmonary veins. Consequently, accurate visualization of the patient’s
left atrium promises to substantially improve intervention planning. The knowl-
edge of the shape of the left atrium can also aid in the subsequent segmentation
of the resulting ablation scars and thus in the evaluation of the outcome of the
procedure [3].

One approach to segment the left atrium is whole heart segmentation, where
all of the heart chambers, and sometimes other structures, are included in a single
model and segmented simultaneously. Unfortunately, most whole heart segmen-
tation methods do not model the pulmonary veins of the left atrium [4,5]. An
exception is [6], where the geometrical model of the heart constructed from CT
images includes the pulmonary veins. However, the approach involves building
a mean shape model that will face considerable challenges in the presence of
topological differences in anatomy.

An alternative approach is to focus on segmentation of the left atrium by first
extracting the whole blood pool by intensity thresholding and then separating it
into different heart chambers by making cuts at narrowings [7]. This work was
extended to allow tracking of centerlines of the pulmonary veins entering the
atrium [8,9]. The method however suffers from requiring several thresholds to
be set manually because of varying intensity distributions and anatomies of the
left atrium across patients.

In this work, we perform the segmentation via a label fusion algorithm [10,11]
that uses a training set of MRA images of different patients with corresponding
manual segmentations. We first align the training images to the test subject im-
age to be segmented and apply the resulting deformations to the corresponding
manual segmentation label maps to yield a set of left atrium segmentations in
the coordinate space of the test subject. These form a non-parametric subject-
specific statistical atlas. We then use a weighted voting algorithm to assign every
voxel to the left atrium or to the background. A similar approach was demon-
strated in [12] for segmentation of the aorta and heart extent in CT images.
In contrast, we aim to delineate the considerably more complex structure of the
left atrium. This requires more powerful label fusion and registration algorithms.
Notably, we use a weighted label fusion scheme that assigns higher weights to
voxels in training segmentations that are located deeper within the structure of
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interest and that have similar intensities in training and test images [11]. We also
handle varying intensity distributions between images by incorporating iterative
intensity equalization in a variant of the demons registration algorithm [13,14]
used for the registration of the training images to the novel test image.

We demonstrate fully automatic, accurate segmentations of both the atrial
body and pulmonary veins connected to it on a set of 16 clinical MRA images.
Our method captures all of the pulmonary veins in all patients in our dataset.
Comparison to traditional atlas-based segmentation and majority voting non-
parametric segmentation demonstrates the advantage of the proposed method
for this problem.

2 Methods

In this section we describe the registration and segmentation algorithms we
employ in this work. We let {Ii} be the set of N training images, {Li} be the
set of corresponding expert manual segmentations and {Φi} be the warps from
the training images {Ii} to the test image I. Our goal is to estimate the label
map L of the test image I.

2.1 Diffeomorphic Demons Registration with Intensity Equalization

We perform pairwise registrations by first aligning the images affinely using a
mutual information metric [15], then using a diffeomorphic variant of the demons
registration algorithm [16]. The method represents warps Φ with a smooth
and stationary velocity field v using a one-parameter subgroup of diffeomor-
phisms [17]. In this formulation, Φ(x) = exp(v)(x), i.e., the flow of the velocity
field at time one is equal to its equivalent deformation. In addition to guarantee-
ing diffeomorphic registration, this parametrization is computationally efficient
and offers convenient access to the inverse deformation Φ−1(x) = exp(−v)(x).
At each iteration, the incremental update velocity field u is found by minimizing
the energy function [13]:

E(IF , IM , Φ, u) = ||IF − IM ◦ Φ ◦ exp(u)||2 + ||u||2, (1)

where IF and IM are the fixed and moving images respectively, and Φ is the
warp at the current iteration. The new updated velocity field is then smoothed
to optimize a regularization constraint.

One disadvantage of demons registration algorithms is that they are driven
by intensity differences between images IF and IM . Although the MRA images
we work with are of the same modality, the intensity distribution varies from
one image to the next. To address this problem, we introduce an intensity trans-
formation:

ĨM (x) =
K∑

k=1

θkbk(IM (x)) = B(IM (x)) θ, (2)
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where {b1(·) . . . bK(·)} is the set of basis functions and θ = {θ1 . . . θK} is the
vector of corresponding coefficients. This transformation effectively modifies the
energy function we are optimizing:

E(IF , IM , Φ, u) = ||IF − B[IM ◦ Φ ◦ exp(u)] θ||2 + ||u||2. (3)

Similar to [18], we use polynomial basis functions up to degree K. For a fixed
velocity field u, Eq. (3) reduces to a standard linear least squares problem.
We thus alternate between estimating coefficients {θi} from corresponding voxel
pairs in IM ◦ Φ and IF (using robust least squares with outlier detection) and
performing the standard demons iteration.

2.2 Label Fusion Segmentation

Rather than summarize the training set through average statistics, label fusion
algorithms keep the atlas in the form of the original training images with their
expert manual segmentations. After registering the training images {Ii} to the
test image I, we obtain a non-parametric subject-specific atlas composed of N
warped images and corresponding label maps.

To perform the segmentation, we use a weighted voting scheme at each voxel,
taking into account not only the number of occurrences of each label, but also
their locations in the manually segmented structures and the similarity between
the intensities of corresponding voxels in the training and test images, similar
to [11]. Formally, we compute the maximum a posteriori (MAP) estimate of the
label map:

L̂ = argmax
L

p(L|I, {Li, Ii, Φi}) = arg max
L

p(L, I|{Li, Ii, Φi}). (4)

We make a simplifying assumption that each voxel is generated from the train-
ing set independently from all other voxels. Furthermore, we assume that each
training image is equally likely to generate any particular voxel a priori. The
MAP estimation then reduces to an independent decision at each voxel:

L̂(x) = arg max
l∈1,...,L

N∑
i=1

p(L(x) = l, I(x)|Li, Ii, Φi) (5)

= arg max
l∈1,...,L

N∑
i=1

p(L(x) = l|Li, Φi)p(I(x)|Ii, Φi), (6)

where L is the total number of possible labels (L = 2 in our case). Eq. (6)
assumes that the label and intensity values at each voxel of the test image
are conditionally independent given the warp Φi and the fact that they were
generated from training subject i. This decision rule can be viewed as weighted
soft voting with p(L(x) = l|Li, Φi) providing the vote and p(I(x)|Ii, Φi) serving
as a weight. We set weights using a Gaussian image likelihood:

p(I(x)|Ii, Φi) =
1√

2πσ2
e−

1
2σ2 (I(x)−Ĩi(Φi(x)))2 , (7)
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where Ĩi (Φi(·)) is the training image Ii, registered to the test image I and
intensity equalized by applying the intensity transformation estimated during
the registration step. The weight is higher when the two corresponding voxels
in the aligned images have similar intensities. We define the votes through the
label likelihood term:

p(L(x) = l|Li, Φi) ∝ eρDl
i(Φi(x)), (8)

where Dl
i (Φi(·)) is the signed Euclidean distance map of the manual segmenta-

tion of the training subject i in the coordinate space of the test subject and ρ is
the slope parameter. Voxels that are inside the structure and farther from the
boundary are assigned higher votes.

3 Results

We validate our method on a set of 16 electro-cardiogram gated Gadolinium-
DTPA (0.2 mmol/kg) contrast-enhanced MRA images (CIDA sequence, TR=
4.3ms, TE=2.0ms, T=40°, in-plane resolution varying from 0.51mm to 0.68mm,
slice thickness varying from 1.2mm to 1.7mm, ±80 kHz bandwidth, atrial dias-
tolic ECG timing to counteract considerable volume changes of the left atrium).
We perform leave-one-out experiments by treating one subject as the test image
and the remaining 15 as the training set, and repeating for each subject in the
dataset. We use the Dice overlap score [19] between the automatic and expert
manual segmentations as a quantitative measure of segmentation quality. Dice
scores vary from 0 to 1, with 1 corresponding to perfect overlap.

In the label fusion segmentation algorithm, we set σ = 100 and ρ = 1.5. We
explored the parameter space by varying σ between 50 and 500, and ρ between
0.3 and 2.5. During this process, we confirmed that our method is in fact robust
to the choice of the parameters. The difference between the best and the worst
Dice scores obtained for each subject while varying the parameters was 0.05 ±
0.03. We also explored different values for the polynomial degree of the intensity
transformation in the registration algorithm. We varied the degree from 1 to 5
and found that it had similarly little effect on the results, with a 0.008 ± 0.007
difference between the best and worst overlap scores for each subject. We chose
a degree of 3 because it provided the highest overall Dice scores.

We compare our method of weighed voting (WV) label fusion to three alter-
native atlas-based approaches: majority voting (MV) label fusion, parametric
atlas thresholding (AT) and atlas-based EM-segmentation (EM). The majority
voting label fusion is similar to weighted voting, except it assigns each voxel
to the label that occurs most frequently in the registered training set at this
voxel [10,20]. We also construct a parametric atlas that summarizes all 16 sub-
jects in a single template image and a probabilistic label map by performing
group-wise registration to an average space. After registering this new atlas to
the test subject, we segment the left atrium using two different approaches. In
atlas thresholding, we simply threshold the warped probabilistic label map at 0.5
to obtain the segmentation. We also use this parametric atlas as a spatial prior
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Fig. 2. Example segmentations of four different subjects: (a) expert manual segmen-
tation, (b) weighted voting label fusion (WV), (c) majority voting label fusion (MV),
(d) parametric atlas thresholding (AT) and (e) EM-segmentation using the parametric
atlas as a spatial prior (EM)

in a traditional model-based EM-segmentation [21]. Note that this construction
favors the baseline algorithms as it includes the test image in the registration of
all subjects into a single coordinate frame.

In our application, correctly segmenting all of the pulmonary veins of the
left atrium is crucial. Therefore it is important to visually inspect the result-
ing segmentations to fully evaluate them. Fig. 2 shows segmentation outlines of
expert manual segmentations and the four methods we compare on correspond-
ing slices of four different subjects. In the first row, majority voting and atlas
thresholding miss a pulmonary vein that is correctly identified by our approach.
EM-segmentation segments that vein only partially while at the same time pro-
ducing false positives in the aorta and atrial body. The second and third rows
show similar situations. In the last row, all methods correctly segment the pul-
monary veins, but our method produces the most accurate outlines. Detailed
analysis of all subjects shows that our method does not miss a single pulmonary
vein in the whole dataset, in spite of the high anatomical variability.

Fig. 3 reports the segmentation accuracy for each method, as measured by the
volumeoverlapDice scores.Wealso report thedifferences in segmentationaccuracy
between our method and the benchmark algorithms. To compute the difference
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Fig. 3. Dice scores of results for weighted voting label fusion (WV), majority voting la-
bel fusion (MV), parametric atlas thresholding (AT) and atlas-based EM-segmentation
(EM). For each box plot, the central red line indicates the median, the boxes extend
to the 25th and 75th percentiles, and the whiskers extend to the most extreme val-
ues not considered outliers, which are plotted as red crosses. Stars indicate that the
weighted label fusion method achieves significantly more accurate segmentation than
the baseline method (single-sided paired t-test, ∗: p < 0.05, ∗∗: p < 0.01).

between two methods, we subtract the Dice score of the second method from the
score of the first for each subject. Our approach clearly outperforms other algo-
rithms (WV vs. MV: p < 10−9, WV vs. AT: p < 0.002, WV vs. EM: p < 0.003;
single-sided paired t-test). To focus the evaluation on the critical part of the struc-
ture, we manually isolate the pulmonary veins in each of the manual and auto-
matic segmentations, and compare the Dice scores for these limited label maps.
Again, we observe consistent improvements offered by our approach (WV vs. MV:
p < 10−7, WV vs. AT: p < 10−7, WV vs. EM: p < 0.03; single-sided paired
t-test). Since atlas-based EM-segmentation is an intensity based method, it per-
forms relatively well in segmenting pulmonary veins, but suffers from numerous
false positives in other areas, which lower its overall Dice scores.

In Table 1, we present the computational cost for the different methods. The
computation time consists of the time needed to perform the registrations and the
time required by the segmentation step. We use an ITK implementation of the dif-
feomorphic demons registration algorithm [14] and implement the segmentation
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Table 1. Computation times for different methods

Method Registration Segmentation Total

WV 8 min × 15 5 min 125 min

MV 8 min × 15 0.5 min 120.5 min

AT 8 min 0.1 min 8.1 min

EM 8 min 15 min 23 min

step in MATLAB. The weighted voting and majority voting label fusion methods
register all of the training images (15 in our case) to the test subject. Each registra-
tion takes on average 8 minutes. The parametric atlas can be computed without
any knowledge about the test image. Therefore, the parametric atlas threshold-
ing and the atlas-based EM-segmentation require only a single registration of the
atlas to the test subject.

4 Discussion and Conclusions

We demonstrated a non-parametric atlas-based method for automatic left atrium
segmentation. This label fusion style approach first registers the whole training
set to the test subject and then combines weighted votes from training subjects
to make decisions. These votes are computed independently at each voxel and de-
pend on the intensity similarity between the training and test images, as well as
the voxel’s location in the structure of interest. To handle global shifts in the inten-
sity distribution across images, we modified the diffeomorphic demons registration
algorithm to perform iterative intensity equalization during registration.

Experimental results illustrate the capacity of our method to handle high
anatomical variability, yielding accurate segmentation and detecting all pul-
monary veins in all subjects. By explicitly modeling the anatomical variability
represented in the label maps and the corresponding training images, the pro-
posed method outperforms traditional atlas-based segmentation algorithms and
a simple label fusion benchmark.

This increased accuracy however comes at the cost of additional computation
time since the whole training set needs to be registered to every test subject
that is being segmented. Although the weighted voting label fusion approach is
more computationally expensive than the other methods, this requirement does
not pose a problem in our application because the left atrium segmentation does
not need to be produced in real-time. The computation time can be substan-
tially reduced by parallelizing the registration step since the registrations are
independent from each other. Moreover, clustering training images, similar to
the approach in [22], and using cluster centers as training templates can further
reduce the number of necessary registrations. The registration algorithm itself
also clearly affects the overall segmentation results and a careful study will be
necessary to inform future development of the method.
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We found that there was no clear relationship between our method’s perfor-
mance on a specific subject and the number of similar examples in the training
set. For example, one subject in our dataset had a pulmonary vein that was not
present in any of the other patients. Our method still produced an accurate seg-
mentation of that vein, even with no similar left atrium anatomy in the training
set. A more detailed analysis of the effects of sub-populations in the training set on
the quality of the resulting segmentations is an interesting future research topic.

In addition to the benefits automatic segmentation offers for the planning
stages of cardiac ablation, our method can also assist in the evaluation of the
procedure outcome. Segmentation of the ablation scars in post-procedure images
is a clinically relevant but difficult problem. Using left atrium segmentation as a
prior for scar location is a promising future direction of research we will pursue.
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Abstract. Model-based interpretation of the complex clinical data now
available (shape, motion, flow) can provide quantitative information for
diagnosis as well as predictions. However such models can be extremely
time consuming, which does not always fit with the clinical time con-
straints. The aim of this work is to propose a model reduction technique
to perform faster patient-specific simulations with prior knowledge built
from simulations on an average anatomy. Rather than simulating a full
fluid problem on individual patients, we create a representative ‘tem-
plate’ of the artery shape. A full flow simulation is carried out only on
this template, and a reduced model is built from the results. Then this
reduced model can be transported to the individual geometries, allowing
faster computational analysis. Here we propose a preliminary validation
of this idea. A well-posed framework based on currents representation of
shapes is used to create an unbiased template of the pulmonary artery
for 4 patients with Tetralogy of Fallot. Then, a reduced computational
fluid dynamics model is built on this template. Finally, we demonstrate
that this reduced model can represent a specific patient simulation.

1 Introduction

When considering a large set of patient geometries, full flow simulations can be
rather costly if they need to be carried out individually on each patient. However,
often relevant information about the fluid solution can be extracted from reduced
models. We present a method which combines an atlas-based technique and
model reduction approaches, in order to create a database of pre-computed flow
characteristics, which enables fast patient-specific flow simulations. This work
investigates the validity of applying reduced models and atlas-based methods
to decrease flow computational cost, and in particular to examine under which
conditions these methods can be useful for obtaining clinically relevant features.

Let us assume to be given a set of individual patient geometries. We construct a
template (also called an ‘atlas’) of the pulmonary artery based on the “currents”
approach, as described in detail in [1,2]. In [1], a “forward” model is proposed
where the set of shapes (in this case surfaces) are considered as random deforma-
tions of an unknown “ideal” template plus some residuals. A key advantage of this
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framework is that the template is unbiased. Our idea is to perform a full fluid simu-
lation, later called a direct simulation, only on an atlas of the population. Results
can be used to extract a reduced model which, opportunely mapped back onto
particular geometries, can be used to perform faster reduced simulations. In par-
ticular, the reduced model is based on a Proper OrthogonalDecomposition (POD)
of the fluid solution, i.e. a description of the flow field in a lower dimensional space,
with a considerably lower number of degrees of freedom.

To illustrate the approach, we applied this method to Tetralogy of Fallot (ToF)
patients. ToF is a severe congenital heart defect that requires open heart surgical
repair within the first year of life. Understanding the shape of the pulmonary
artery and the flow of blood through the artery is crucial for follow-up treatment
planning. A fast and effective method to retrieve relevant information about the
patient-specific blood flow in the pulmonary artery of ToF patients is motivated
by the need of assisting cardiologists in determining the optimal placement and
size for valve replacement. But CFD simulations are known to be very time
consuming. A model reduction approach could therefore be useful in this context.

Here, considering a data set of 4 ToF patients, we present a preliminary a
posteriori validation of the model reduction method, comparing the full solution
on individual patients with its projection on the POD basis mapped from the
template.

2 Model Reduction with Atlas-Based Methods

The pulmonary artery of each patient was segmented from MR angiography as
described in Sec. 3.1. Initially, an unbiased template of the artery shape was
constructed to serve as a reference atlas for the population.

Blood flow inside the template was simulated numerically, and a proper or-
thogonal decomposition (POD) of the solution was derived. This decomposition,
transported to the individual geometries, may allow to reduce the computational
expenses of individual flow simulations. This method is summarized in fig. 1.

2.1 Unbiased Template of the Pulmonary Artery in ToF Patients

The pulmonary artery template is created using the forward strategy proposed
in [1]. This approach is particularly suited for our purposes as it is non-parametric
since shapes are represented by currents, so that the framework can be used for
meshes that initially have no point correspondences. However, when the template
is mapped to an individual, a one-to-one correspondence between points is estab-
lished between the template and the mapped individual, which is a useful feature
for later applying reduced models that necessitate such a parameterization. Also,
the framework has the advantage in that the template is unbiased with respect
to the population used to create it. What this means is that adding new patients
drawn from the same population at the template creation step will have little ef-
fect to the final template.
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Fig. 1. Left column: the standard method for individual fluid flow simulation. Centre
column: pre-computed Computational Fluid Dynamic (CFD) simulation using atlas-
based methods, with model reduction using Proper Orthogonal Decomposition (POD).
Right column: using the pre-computed fluid simulation and model reduction, fluid
simulation can be applied to a new patient quickly, by first registering the template to
the patient, then deforming the POD modes using the inverse of this deformation.

The pulmonary artery surfaces Ti, or shapes, are modelled as the sum of a
diffeomorphic deformation ϕi of the template T̂ and a residual term εi stand-
ing for the shape features that cannot be represented by the template (topol-
ogy changes, acquisition artefacts, etc.): Ti = ϕi(T̂) + εi. Currents are used to
represent the shapes, the residuals and the deformations in the same common
framework. They enable the usual operations (mean, variance...) on shapes as
they form a vector space. Intuitively, currents can be seen as objects that give
the flux of any vector field ω ∈ W across the shapes. W is a Reproducing Ker-
nel Hilbert Space, RKHS, of infinite dimension generated by a Gaussian kernel
KW (x,y) = exp(−‖x − y‖2/λ2

W ) that defines an inner product in W (and also
in the dual space of W , W ∗). W ∗ is therefore a vector space of linear mappings
from W to R, which is defined as the space of currents.

More precisely, a triangle centred at x with normal α is represented by the
Dirac delta current δα

x . Therefore, a discrete mesh is encoded by the sum of

the currents of its triangles Ti =
∑

k δ
αi

k

xi
k

. The residuals εi are modelled as a

Gaussian distribution on the αi
k. The deformation ϕi that registers the template

T̂ to the current Ti is estimated using the Large Deformation Diffeomorphic
Mappings (LDDMM) framework [3]. ϕi is parameterised by a smooth initial
vector speed vi

0, which also belongs to a Gaussian RKHS V with variance λ2
V .

Moreover, this initial speed vector field is completely defined by the moment
vectors βi centred at the same point location as the template moments: vi

0(x) =∑
k KV (xk,x)βi

0(xk). Finally, the template T̂ and the deformations ϕi towards



98 K. McLeod et al.

each patient are estimated by means of an alternate two-step strategy, initialised
with the mean current of the population.

2.2 Blood Flow Simulation on the Reference Geometry

Let us denote with Ω̂ the three dimensional domain defined by the template
surface T̂. This domain is discretized using a tetrahedral mesh Ω̂h (h being the
level of refinement of this discretization, see fig. 2, right). Blood flow is sim-
ulated solving numerically the incompressible Navier-Stokes equations with a
Lagrangian P1 finite element (FE) formulation. In the following, (v̂1, . . . , v̂M )
denotes the finite element basis, and (ûh, p̂h) denote the velocity and pressure
fields computed on the reference domain. For example, the pressure field is de-
composed as p̂h(x) =

∑M
j=1 pj v̂j(x), where pj is the value of ph at node j. A

similar decomposition is used for the velocity.
A flow rate is prescribed at the inlet, with a mean value of 4.2L.min−1. At

the outlet a Windkessel model (zero-dimensional model) was coupled to the
three-dimensional model to represent the impedance of the distal pulmonary
vasculature [4]. Values of the proximal resistance, capacitance and distal resis-
tance are chosen so that the average pressure is 10mmHg and that the pressure
ranges from 0mmHg to 25mmHg (since at this stage, these patients have no
functioning valve).

Proper Orthogonal Decomposition (POD). A proper orthogonal decom-
position (POD) of a numerical solution (or, in general, of a given set of data,
see, e.g., [5,6,7]) consists of finding a set of basis functions (orthogonal w.r.t. a
given scalar product) which, even containing a small number of elements, can
represent sufficiently well the numerical solution. This approach, besides reduc-
ing the data size without losing relevant information, allows to perform faster
numerical simulations, by restricting the space of the solution to the subspace
generated by the POD basis functions.

We computed a POD basis
{
φ̂

u

i , φ̂p
i

}Nm

i=1
containing Nm modes, with φ̂

u

i :
Ω̂ → R3 (velocity POD basis functions) and φ̂p

i : Ω̂ → R (pressure POD ba-
sis functions), for i = 1, . . . , Nm. For example, a pressure POD basis function
φ̂p

i is known through its decomposition on the finite element basis: φ̂p
i (x) =∑M

j=1 φp
i,jvj(x), where φp

i,j denotes the value of φp
i at node j.

2.3 Mapping POD on Individual Geometries

POD provides a reduced description of the flow solution on the template shape.
In order to obtain in further studies a suitable representation of the flow in
individual patient geometries, with a reduced computational cost, our aim is to
transport the template POD on the individual geometry.

Deformation of the Reference Domain. To fix the notation, let us denote
with Ω a particular patient geometry, and with T its external surface. As for the
template, we will call Ωh and Th the discretizations of, respectively, Ω and T
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(see fig. 2, right). We consider the individual geometry as a deformation of the
template, assuming to be given a deformation map‘

A : Ω̂ → Ω (1)

which maps the reference template onto the individual (deformed) domain. Let
F = ∇A be the deformation gradient and J = detF its Jacobian.

Reference POD Transported to Individual Geometries. Through A we
can define a change of variables between the template Ω̂ and the particular ge-
ometry Ω. Hence, the transported pressure POD basis function φp

i is defined as

φp
i (x) = φ̂p

i

(
A−1(x)

)
(2)

for all x ∈ Ω. Yet, for solenoidal vector fields like φ̂
u

i , the simple change of
variables (2) is no longer appropriate. Instead, following [8], we transport the
velocity POD basis using the relation

φu
i (x) =

1∣∣J(
A−1(x)

)∣∣F (
A−1(x)

)
φ̂

u

i

(
A−1(x)

)
(3)

for all x ∈ Ω. Equation (3) is known as the (inverse) Piola transform (see, e.g.,
[9]). It has the remarkable property that the transform of a divergence free vector
field, in Ω̂, is also divergence free, in Ω.

Computation of the deformation gradient. In practice, information about
geometries is only based on a discretization of the surfaces. However, knowing
A|T , even if only on a discretization of the surface, will be sufficient for our
purposes. Indeed, in case of moderate deformations, the map A in the complete
volume can be generated as a harmonic extension of A|T . Next, from the discrete
form of A, one can compute an approximation Fh of the deformation gradient,

Fαβ
h (x̂) =

M∑
i=1

Fαβ
i v̂i(x̂),

by projecting (for the L2 norm) ∇A on the finite element basis. This can be
done solving the linear systems

M̂
[
Fαβ

i

]
i=1,...,M

=
[∫

Ω̂

∂βAα(x̂)v̂i(x̂) dx̂
]

i=1,...,M

,

for each coordinate α, β = x, y, z, with M̂ =
[∫

Ω̂
v̂iv̂j

]
i,j=1,...,M

the so-called
mass matrix. Note that this procedure is convenient to easily get a nodal defini-
tion of the deformation gradient (but other options are also possible).
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3 Experiments and Results

3.1 Data Collection

Subjects and Image Preparation. We selected 4 young adult patients. MRI angiog-
raphy of the heart were acquired with a 1.5T MR scanner (Signa HDx, GE Medical
Systems). Images were acquired in the short-axis view covering entirely both ven-
tricles and the pulmonary artery (isotropic in-plane resolution: 0.78 × 0.78mm2

to 1.7 × 1.7mm2; slice thickness: 2mm; spacing between slices 1mm).

Surface Meshes Preparation. We segmented the pulmonary artery from MR
angiography through image thresholding and manual corrections. The artery was
segmented from the pulmonary valve annulus, which connects the artery to the
right ventricle, to about 1-2cm after the pulmonary branches, which go towards
the lungs. From the resulting binary mask, meshes were extracted using marching
cubes algorithm. The meshes were then pre-processed for CFD simulations with
3-MATIC1 to impose more easily usable boundary conditions. Inlet and outlets
were cut by a plane and extended by approximately 1cm (see fig. 2).

Fig. 2. Left: The raw image before segmentation. Centre: The pre-processed segmented
mesh. Right: The same mesh after processing.

3.2 Statistical Shape Model of the Pulmonary Arteries

To estimate the template T̂, two parameters must be set (Sec. 2.1): λV , which
defines the “stiffness” of the non-linear deformations (larger λV values give more
global transformations, i.e. rigid body); and λW , which characterises the reso-
lution of the currents representation (for lower λW values more subtle shape
features can be analysed). As we were mainly interested in the regional ToF al-
terations (dilation, valve enlargement, regional bulging), these parameters were
set to λW = 30mm, λV = 5mm for the template.

Four iterations of the alternate minimisation for the shape template were
needed to reach convergence. The resulting template T̂ was well centred (mean
over standard deviation of the deformations was 0.42575, see fig. 3). Creation of
the template took under 16 hours using parallel implementation of the algorithm
on Xeon 2.66Ghz cores. In this way, patient-to-template registration is imple-
mented simultaneously, which means that the template creation is minimally

1 www.materialise.com
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Fig. 3. The four segmented (processed) patient meshes (top row) used to create the
template (bottom row)

dependent of the number of patients used to create it. The initialized template
creation took under 15 minutes, each parallel implementation of the template-
to-patient registration took under 15 minutes, and each template update took
between 4 − 6 hours.

3.3 Validation of Atlas-Based Flow Simulations on the Pulmonary
Artery

To verify that the template is unbiased, we created a template with the four
patient meshes from this study plus an extra mesh not used in this study, and
compared that with template created with four patients. The meshes are shown
in fig. 4. As we can see, the templates are very close. The main goal of POD

Fig. 4. Left: the template created using five patients (blue) compared to the template
created with four patients (red) Right: the extra patient mesh included in the template
creation with five patients



102 K. McLeod et al.

is that, once having reduced the number of degrees of freedom of the discrete
problem, one can look for a reduced numerical solution belonging to the subspace
spanned by the POD basis. Hence, POD basis on each individual geometry could
be extremely useful to perform fast fluid simulations, without the need of solving
a full problem on each new patient geometry. However, it is not assured that
the basis computed from the template geometry can represent well the fluid
solution on a particular shape. Actually, it is even likely that the transported
basis is in general unable to represent correctly the solution in the new geometry.
Nevertheless, in the case of Tetralogy of Fallot, we may hope that the variability
is sufficiently moderate so that the proposed approach is reasonably accurate.

To assess this conjecture, we performed direct numerical simulations of the
flow on the template (fig. 5) and on the four particular geometries, with the same
boundary conditions. These numerical solutions (uh, ph) are then L2-projected
onto the spaces

U = span{φu
i }Nm

i=1, P = span{φp
i }

Nm
i=1

spanned by the transported POD basis (given by (3) and (2)). For comparison
purposes, the following quantities were computed:

– instantaneous L2-norm difference in velocity and pressure :∥∥uh − ΠU (uh)
∥∥

L2(Ω)

maxt

∥∥uh‖L2(Ω)

,

∥∥ph − ΠP (ph)
∥∥

L2(Ω)

maxt

∥∥ph‖L2(Ω)

;

– instantaneous difference in mean inlet and outlet pressures:

maxi=1,2

{∣∣ph|inlet − ph|outleti −
(
ΠP (ph)|inlet − ΠP (ph)|outleti

)∣∣∣∣ph|inlet − ph|outleti

∣∣
}

,

Fig. 5. Flow simulation on the template. Left: velocity (absolute value) on different
cutting planes. Right: pressure on the external wall. The curve on top shows the outlet
pressure.
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where ΠU (resp. ΠP ) stands for the L2-projection onto U (resp. P ), given by∫
Ω

(
ΠU (uh)

)
(x) · φu

i (x) dx =
∫

Ω

uh(x) · φu
i (x) dx i = 1, . . . , Nm

and similarly for the pressure.
The length of time to compute the flow simulations were between 15−20 mins

for a blood cycle. The obtained error curves for the four patients are shown in
fig. 6. In three of the four cases, we obtained encouraging results. Taking into
account a relatively small number of POD basis functions, relative errors for the
fluid solution were below 30%. Here, we chose 20 modes for a time dependent
solution represented by 100 snapshots, based on the fact that taking more modes
did not significantly decrease the error. One shall remark that the worst behaving
case was also the one with largest deformation. Similarly, comparing pressure
difference we obtained relatively small errors (from 5% to 20%, for the most
deformed geometry).

Fig. 6. Error in velocity (norm L2) and pressure (difference between inlet and outlet)
between the full fluid solution on the patient meshes (1,2,3,4) and their projections on
the deformed POD basis

4 Discussion and Future Work

The idea proposed in this paper consists of using an atlas of geometries to build
reduced order models based on POD. In this preliminary study, we have only
tested the approximation properties of the transported POD bases. Owing to
the well-known sensitivity of the flow to the geometry, it was not expected to
get a high accuracy for details of the flow. Nevertheless, in the case of Tetral-
ogy of Fallot, we have illustrated that it may be possible to get a reasonable
accuracy for some quantities of interest like the pressure drop between inlet and
outlet. For the template creation, four iterations were required to satisfy the
conditions for convergence, therefore the total time to create the template was
lengthy. However, visual inspection of the corresponding meshes showed very
small changes along these iterations. In future work it may be interesting to
investigate further the best convergence conditions for the template update to
optimize the template creation time while preserving the necessary features of
the shape for flow simulation. The quality of the results could also be improved
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by computing the template POD basis for more snapshots, coming from differ-
ent template geometries and different physiological situations. The transported
bases will then be used to actually discretize the model and run reduced order
simulations, with patient specific boundary conditions.
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Abstract. Cardiac resynchronization therapy (CRT) can be an effective proce-
dure for patients with heart failure but 30% of patients do not respond. This may 
be partially caused by the sub-optimal placement of the left ventricular (LV) 
lead. Detailed cardiac anatomy and dyssynchrony information could improve op-
timal LV lead placement. As a pre-interventional imaging modality, cardiac 
magnetic resonance (MR) imaging has the potential to provide all the relevant 
information. Whole heart MR image data can be processed to yield detailed ana-
tomical models including the coronary veins. Cine MR data can be used to 
measure the motion of the LV to determine which regions are late-activating. Fi-
nally, late Gadolinium enhancement imaging can be used to detect regions of 
scarring. This paper presents a complete software solution for the guidance of 
CRT using pre-procedural MR data combined with live X-ray fluoroscopy. The 
platform was evaluated using 7 live CRT cases. For each patient, a detailed car-
diac model was generated and registered to the X-ray fluoroscopy using multiple 
views of a catheter looped in the right atrium. There was complete freedom of 
movement of the X-ray system and respiratory motion compensation was 
achieved by tracking the diaphragm. The registration was validated using balloon 
occlusion coronary venograms. The mean 2D target registration error for 7 pa-
tients was 1.3 ± 0.68 mm. All patients had a successful left lead implant. 

Keywords: cardiac resynchronization therapy, fluoroscopy overlay, motion 
compensation, interventional guidance. 

1   Introduction 

Cardiac resynchronization therapy (CRT) can be an effective procedure for patients 
with heart failure but more than 30% of patients do not respond [1]. X-ray imaging 
alone is used to guide placement of pacemaker leads for CRT, but this modality pro-
vides little functional or anatomical information to the cardiologist. Lead placement is 
performed by steering relatively "blindly" which contributes to procedural failure 
                                                           
* Corresponding author. 
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rates of 5 to 12%. Furthermore, leads placed in sub-optimal positions may contribute 
to the high non-response rate [2]. Previous work with overlay technology has demon-
strated that fusion of computed tomography and fluoroscopy may support electro-
physiologists in more accurate delivery of therapy during atrial fibrillation ablation 
[3]. Recent examples [4, 5] have demonstrated that a similar overlay approach using 
magnetic resonance imaging (MRI) fused to X-ray fluoroscopy is a powerful combi-
nation for CRT procedure guidance. MRI offers unique soft tissue contrast without 
the use of ionizing radiation for depicting coronary vein morphology, quantifying 
myocardial dyssynchrony, and identifying scar tissue. It is widely believed that these 
elements are key determinants of clinical outcomes for CRT and that they should be 
used for patient selection, procedural planning, and guidance. 

Cardiac magnetic resonance (CMR) imaging provides a potential complete imag-
ing solution for CRT patients. Whole heart MRI can provide knowledge of the anat-
omy of the coronary veins which is increasingly important in CRT. Failure to implant 
a left ventricular (LV) lead is often due to inability to cannulate the coronary sinus 
(CS) or unfavorable venous anatomy resulting in the inability to find a stable lead 
position [6]. In addition, the whole heart MRI data can be processed with automatic 
segmentation tools to produce patient-specific ventricular and atrial anatomical mod-
els [7]. The combination of the chamber and coronary venous models can then be 
used as a 3D roadmap for procedure guidance. Furthermore, cine MRI can provide 
information about the motion of the LV. Automatic motion analysis software, such as 
the TomTec 4D LV Analysis tool (TomTec Imaging Systems, Munich, Germany), 
can give information about the latest activating regions, thought to be important tar-
gets for lead delivery. This functional information is often provided to the cardiologist 
using the standard 16 segment American Heart Association (AHA) model of the LV. 
CMR also allows assessment of myocardial scar using late Gadolinium enhancement. 
It is known that positioning an LV lead within areas of scar reduces response to CRT. 
Segmenting and registering the position and extent of myocardial scar and overlaying 
this information on to X-ray fluoroscopy could assist the cardiologist during the im-
plant to avoid these areas. 

The fusion of anatomical and functional data from CMR to X-fluoroscopy is not 
only useful for the guidance of CRT procedures but also provides rich data for the 
validation and testing of patient-specific cardiac biophysical models [8]. The fusion 
environment allows the mapping of catheter-based measurements to the CMR data 
[9], providing more data for in-silico modelling. 

In this paper, a complete software solution for the guidance of CRT by using pre-
procedural MRI data combined with live X-ray fluoroscopy is presented. The proposed 
solution explores all the ideas described above and has been tested on 7 live clinical 
CRT cases. This patient cohort was used to evaluate the performance of the software in 
terms of registration accuracy and robustness to the clinical workflow, with the aim 
that the software will be used at a later stage for a large scale randomized clinical study 
looking at the clinical outcomes of image-guided versus non-guided implantation. 

2   Methods 

All patients fulfilled the criteria for CRT. Prior to their implants, they all underwent CMR 
(Philips 1.5T Achieva, Phillips Healthcare, Best, The Netherlands)). All image-guided 
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CRT procedures were performed using a single plane flat-panel cardiac X-ray system 
(Philips Allura Xper FD10) in the catheterization laboratory by a single experienced op-
erator. The overall workflow of the CRT overlay is shown in figure 1. 

 

 
Fig. 1. The overall workflow of the CRT overlay 

2.1   MR Imaging and Anatomical Model Generation 

For all patients both respiratory- and cardiac-gated CMR images were acquired prior to 
the implant on a Philips Achieva 1.5T MR system. Cardiac synchronization was per-
formed with vector electrocardiography (VECG). After localization and coil sensitivity 
reference scans, an interactive real-time scan was performed to determine the geometry 
of the short axis (SA), four (4CH), three (3CH) and two chamber (2CH) views. A 
multiple slice (M2D) cine steady state free precession (SSFP) scan was performed in 
SA orientation to assess the ventricular function (FA=60°, TR/TE=2.9/1.5ms, resolu-
tion 2.2x2.2x10mm, 30 heart phases). Visual assessment of the 3Ch view (FA=60°, 
TR/TE=3.0/1.5ms, 60 heart phases) was used to determine end-systole. For contrast 
enhanced MRI of the coronary veins, dimeglumine-gadobenate (Gd-BOPTA) (Bracco 
Imaging SpA, Milan, Italy) was infused with subsequent saline flushing as proposed by 
Bi et al. [10] for coronary arteries. In order to determine the optimal start point of the 
whole heart coronary vein MR-scan, a dynamic ECG-triggered 2D-scan with inversion 
recovery (IR) preparation (TI=300ms) was used. For coronary vein visualization, an 
ECG-triggered respiratory navigated 3D IR-SSFP MR-scan was applied to acquire the 
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whole-heart during a short interval (60-80ms) in end-systole using the following pa-
rameters: FA=50°, TI=300ms, TR/TE=4.25/1.44ms, resolution was 1.5 x 1.5 x 2mm 
(contiguous slices). A SA stack of late Gadolinium enhancement imaging was per-
formed after the 3D whole heart imaging.  

The endocardial surfaces of the right ventricle, left atrium and right atrium and the 
epicardial surface of the LV were extracted automatically by using a model-based 
segmentation algorithm [7] from the 3D IR-SSFP whole heart image data. The reason 
for using the epicardial surface of the LV is that the implanted left lead is placed on 
the epicardial surface through the coronary veins. All segmentations allowed for 
manual adjustments when required. In addition, the CS was manually segmented from 
whole heart image data by a clinical expert using ITK-SNAP [11] to yield a highly 
detailed anatomical model, which included the CS main branch and three sub-
branches (figure 2). 

LV
RV

C

RA

RV

RA

CS

LA
LA

B

RA

A

CS

LV

 

Fig. 2. Whole heart segmentation using a model-based segmentation algorithm. There were 
some manual corrections to the LV and right atrium (RA). The CS was manually segmented. 
LA = left atrium. RV = right ventricle. (A) Color labeled whole heart segmentation. (B)(C) 3D 
anatomical models. 

2.2   LV Motion Analysis 

TomTec 4D LV Analysis is a software solution to analyze and visualize LV function 
and LV dyssynchrony in cardiac cine MR image data. As shown in figure 3A, the LV 
surface has been divided into 16 segments according to the definition of the AHA 
model (figure 3B). Based on regional volume, 16 mechanical delay motion curves are 
generated (figure 3C). Prior to the CRT procedure, the cardiologist chooses the seg-
ment which has the latest activation according to the motion analysis. As the TomTec 
software does not support export of the 16 segment model, functionality to generate 
the AHA model from the MR image data was added to the guidance software solution 
and the latest activating segment was marked. 

2.3   Scar Processing 

In patients with myocardial scarring, the position and extent was determined from the 
late Gadolinium enhanced MR images. These image data were registered to the whole  
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Fig. 3. (A) 16 segment AHA model generated from whole heart MR image data. (B) Bull’s eye 
definition. (C) 4D LV mechanical delay motion curves. 
 

A B C

 

Fig. 4. (A) Original MR late Gadolinium enhancement image. (B) Manual segmentation of 
myocardial scar. Scar tissue is labeled in white. (C) The 3D scar was presented as a binary map 
on the LV surface. Scar tissue is labeled in red on the LV surface. 

heart MRI data. The scar information was transferred to the anatomical models in 2 
ways: firstly, the 3D myocardial scar was manually segmented by a clinical expert 
using ITK-SNAP. The scar was then visualized as a 3D entity as part of the anatomi-
cal model; secondly, a more automated approach was taken as described in [12]. In 
this approach, the scar information is projected on to the LV epicardial surface using a 
maximum intensity projection. This data is then binarised to give a regional distribu-
tion of scar on the LV epicardial surface (figure 4). Both methods were used and the 
cardiologist was able to select either type of visualisation during the implant. 

2.4   Fluoroscopy Overlay 

An overlay platform was developed based on the Philips EP Navigator environment 
and as an extension to our guidance system for cardiac electrophysiology procedures 
[13, 14]. This platform allows for the manual registration of pre-procedural anatomi-
cal data to live X-ray images. For each patient, the anatomical model was imported 
and overlaid on to the live X-ray images to guide the procedure. The registration of 
the MRI and the X-ray data was achieved using multiple views (at least 3) of a cathe-
ter looped in the right atrium as a feature for manual registration (figure 5A), taking  
 
 



110 Y. Ma et al. 

B

Catheter
Loop

LV

RV lead

RV

A

Catheter
Loop

CS

RV lead

LV lead

C

RV lead

D

CS
LV lead

RV lead

LAO 30

CS

 

Fig. 5. (A) Using a catheter loop to register the 3D anatomical model with the X-ray fluoro-
scopic images. (B) The clinical overlay screenshot shows RV (right ventricle), RA (right 
atrium) and CS. (C) This screenshot shows the CS overlay in LAO (left anterior oblique) 30 
view. (D) Using the 16 segment AHA model to show latest activating region. Grey spheres are 
the 3D LV lead positions (current and previous), which have been projected to the LV surface. 

less than 5 minutes. As the guidance platform received the live X-ray stream from the 
Philips Allura X-ray system and the positions of the C-arm and X-ray table during the 
implant procedure, alignment between the anatomical model and the live X-ray im-
ages was automatically maintained throughout the procedure as long as the patient did 
not move on the X-ray table. To compensate respiratory motion in real-time, the left 
or right hemi-diaphragm was tracked in the 2D X-ray images using mean squared 
difference between a current image and a reference image within a pre-defined region 
of interest (figure 6A). The 1D translation along the long axis of the region of interest 
was calculated. A simple translational model similar to the one commonly employed  
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Fig. 6. Anatomical models derived from 3D cardiac whole heart MR images registered as an 
overlay to real-time fluoroscopy. This patient had myocardial scar which has been registered to 
the LV and is depicted as the red region on the overlay. (A) to (C) LAO projections showing 
the overlay being used for implantation of the LV lead. The left marginal vein (LMV) is being 
used and it can be seen that this is close to an area of scar. In figures (B) and (C) the arrow 
shows the position of the LV lead. AIV=Anterior inter-ventricular vein. 

in MRI image acquisition [15] was used to apply the 1D displacement of diaphragm 
to the 3D anatomical roadmap. The 1D motion correlation factor between diaphragm 
and heart was 0.6. The 3D heart roadmap was translated along the head to foot vector 
of the patient. 

2.5   Validation of 2D-3D Registration 

During the procedures, several screenshots of the guidance platform software were taken 
when venography was performed with an occlusion balloon catheter (figure 7A, 7B). 
Those screenshots were used to evaluate the accuracy of registration between the 3D 
anatomical models and the live X-ray fluoroscopy. The distance errors between the cen-
tre line of the main branch of the CS in the 3D anatomical models and the occlusive 
venogram in the 2D X-ray images were calculated (figure 7C). The centre line of 
main branch of CS was determined from the venogram as well as a centre line  
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Fig. 7. (A) shows an occlusive venogram. (B) shows how the overlaid coronary veins appeared 
to the operator during an implant. (C) shows the overlay of the 3D CS segmentation from the 
CMR data with a centre line for both the venogram and the CS. This was used to determine the 
registration error.  
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for the overlay in a fluoroscopic overlay. The error was defined as the root mean 
squared distance error between 10 points on the centre line of CS overlay geometry 
and the 10 nearest points on the centre line of the CS venogram.  

3   Results 

For all 7 patients, the CMR data was of sufficient quality to allow the generation of 
clinically useable anatomical models of the cardiac chambers and the coronary venous 
system. Scar information was added when present and the models were registered 
successfully to the X-ray fluoroscopic data is all 7 cases during the implantation pro-
cedure. The mean distance error between the centre lines of the CS on the overlays 
and the venograms was 1.3 ± 0.68mm, showing accurate registration with low vari-
ability. The guidance platform was used to guide the pacemaker lead positioning and 
all patients had successful CS cannulation and left lead deployment. 

4   Discussion and Conclusions 

The overlay guidance platform for CRT procedures described in this paper allows the 
real-time visualization of the cardiac chamber & coronary vein morphology, myocar-
dial scar distribution, and functional information overlaid onto X-ray fluoroscopy to 
guide the implanter. It can achieve high 2D-3D registration accuracy and facilitated 
successful LV lead implants in all 7 of the patients in this study. It was of particular 
help in a patient with a persistent left-sided superior vena cava in which balloon oc-
clusion CS angiography was not possible due to CS dilatation. In this case, the over-
lay guidance platform offered a potentially unique method of displaying the branches 
of the CS to guide LV lead implantation. Such techniques therefore may offer the 
potential to reduce procedure time, contrast dose, X-Ray exposure and complication 
rates, particularly with inexperienced operators. Also, displaying myocardial scars on 
the LV model as well as motion information may allow more appropriate targeting for 
the LV lead. The fused data produced by the guidance platform will be invaluable 
when validating and testing in-silico cardiac biophysical models for CRT, which may 
provide patient-specific predictive optimal LV lead positions in the future. 
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Abstract. Management and follow-up of chronic aortic dissections continues to 
be a clinical challenge due to progressive aortic dilatation. To predict dilatation, 
guidelines suggest follow-up of the aortic diameter. However, dilatation is trig-
gered by haemodynamic parameters (pressure and wall shear stresses (WSS)), 
and geometry of false (FL) and true lumen (TL). We aimed at a better under-
standing of TL and FL haemodynamics by performing in-silico (CFD) and in-
vitro studies on an idealized dissected aorta and compared this to a typical pa-
tient. We observed an increase in diastolic pressure and wall stress in the FL 
and the presence of diastolic retrograde flow. The inflow jet increased WSS at 
the proximal FL while a large variability in WSS was induced distally, all being 
risk factors for wall weakening. In-silico, in-vitro and in-vivo findings were 
very similar and complementary, showing that their combination can help in a 
more integrated and extensive assessment of aortic dissections, improving un-
derstanding of the haemodynamic conditions and related clinical evolution. 

Keywords: Aortic dissection, Computational Fluid Dynamics, In-vitro phan-
toms, Aortic diseases. 

1   Introduction 

Aortic pathologies represent an important subgroup within cardiovascular diseases, 
and while their prevalence is limited, they are associated with a very high morbidity 
and mortality (>50% in the acute phase). Despite improved diagnostic and therapeutic 
techniques, the management and follow-up of aortic dissections continue being a 
challenge in clinical practice. 

Classic aortic dissection is believed to begin with the formation of a tear in the aor-
tic intima that exposes an underlying media layer to the pulsatile pressure of the in-
traluminal blood (Fig. 1) leading to a longitudinal cleaving of the media layer along 
the aortic wall, causing the dissection. The dissection process extends typically ante-
grade (driven by the forward force of the aortic blood flow) but sometimes retrograde 
from the site of the intimal tear. The lumen will be divided into two parts, the true 
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(TL) and the false lumen (FL). In 90% of cases TL and FL are communicated through 
entry and exit sites in the dissection flap. The distension of FL during the pulsatile 
pressure inside the lumina can cause intimal flap movement, distorting the TL shape 
and narrowing its calibre, potentially leading to TL collapse obstructing side branches 
and inducing visceral ischemia.  

 

 

 

 
 

Fig. 1. A classic dissection 
of the descending aorta 
(Left). The typical clinical 
appearance on magnetic 
resonance (middle) and 
computed tomography 
(right) images. TL: True 
Lumen; FL: False Lumen. 

 
While acute ascending aortic dissections require immediate surgery, descending 

aortic dissections are often treated medically and persist in the chronic phase [1].  
However, these patients still have high mid/long term mortality during the chronic 
phase, mainly due to the progressive dilatation of the aorta and subsequent rupture. 

In current clinical practice, prediction of outcome is mainly based on maximum to-
tal aortic diameter, which is compared with guidelines for deciding the best therapeu-
tic approach. However, previous work has shown that maximum diameter is not a 
reliable determinant of rupture and progression [1-4]. In addition to it, haemodynamic 
parameters (intra-luminal pressure and flow conditions/wall shear stresses), geometric 
factors (such as the shape and curvature of the aorta and the communications between 
FL and TL), and intrinsic wall properties, all play an important role in the progress of 
dilatation and risk of rupture. 

Whereas an integrated clinical approach towards the biomechanics and haemody-
namics of the dissected aorta is still lacking, based on clinical observations and pa-
tient registries, several markers have been suggested to assist in the prediction of 
dilatation. The patency of the descending aorta FL may be responsible for progressive 
aortic dilation [1] and partial thrombosis of the FL has been found as a predictor of 
post-discharge mortality in patients with type B acute aortic dissection [5].  

It was also observed that prognosis of patients with open communication between 
TL and FL is poorer than in those without such communication, and free communica-
tion with high flow rates carries a higher risk for reoperation because of the high flow 
pressure and wall stress. Nevertheless, complete obliteration of the FL can occur 
despite open communication and is possibly related to the size of communication [6].  
Poor inflow in the TL and lack of outflow in the FL may have impact in FL dilation 
and rupture during follow-up period [7].  

Therefore, from clinical observations, the importance of tear size and location is 
clear. However, the contradictory findings on which situations are leading to further 
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dilatation of the FL show that there is still a lack of understanding of the interplay of 
all variables. 

Another factor that could affect the dilation of the FL is the compliance or mechani-
cal strength of the dissected aortic wall. Arteries respond to changes in blood pressure 
and flow conditions by remodelling. Wall shear stress (WSS) is the tangential force 
resulting from the friction that the flowing blood exerts on the luminal surface. It has 
been shown that WSS can change the morphology and orientation of the endothelial 
cell layer [8]. Prolonged high WSS is known to cause vessel dilation and internal elas-
tic lamina fragmentation, and may be the responsible for dissection initiation [9]. On 
the other hand, inflammatory and atherosclerotic pathways, triggered by low WSS, 
could also play an important role in dissection pathogenesis. Excessively low WSS 
could lead to atherosclerotic inflammatory infiltration and thereby cause deterioration 
of the aortic wall that could lead to mechanical weakening and rupture [10].  

Therefore, it is expected that better aortic morphologic and hemodynamic analysis 
will be much more predictive for aortic dilatation and will improve the clinical strati-
fication of the risk of these patients, facilitating a better therapeutic management. 

The aim of this study is to assess whether an integrated approach towards TL and 
FL haemodynamics will allow us to define risk markers of severe aortic enlargement. 
For this, in-silico and in vitro studies were performed to investigate the impact of 
morphological characteristics on the haemodynamics of the TL and FL and the find-
ings were compared to a typical patient from our hospital. 

2   Methods 

2.1   In-Vivo 

In our hospital, chronic aortic dissection patients undergo regular follow-up with 
trans-thoracic and trans-oesophageal echocardiography for the quantification of 
changes in aortic size. Additionally, an MRI study, including short-axis phase-
contrast acquisition of blood flow in the distal FL and TL (Fig. 2) is performed and 
when clinically indicated, a CT study is additionally done. 

 
Fig. 2. Typical results from a clinical MRI phase-contrast study. Left: instantaneous volume 
flow in FL (blue) and TL (red); Middle: measurements in TL; Right: measurements in FL 

2.2   In-Silico  

Idealized geometry. A Computational 3D model of typical type B aortic dissections 
was constructed with the CAD software GID (CIMNE, Barcelona) (Fig. 3) [11]. The  
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Fig. 3. Left: Idealized 
geometry of an aortic 
dissection including the 
dissected section (A) 
and the non-dissected 
aortic section (B); 
Right: The result of the 
CFD simulations, 
showing the velocities 
at the longitudinal mid-
plane of the dissection. 

 
dimensions of the model, including the aortic arch and the ascending aorta, were selected 
based on anatomical measurements [12,13]. These are: aortic diameter: 20 mm; dissected 
segment diameter: 40 mm; FL length: 160 mm; TL thickness: 3 mm; dissection flap 
thickness: 2 mm; and FL thickness: 1 mm. A proximal and distal tear was included with 
10 mm diameter, corresponding to 25% of the dissected segment diameter.  

 

Computational fluid dynamics (CFD) simulation. The computational mesh con-
sisted of approximately 1.1 million tetrahedral elements with a size range of 0.5-1.0 
mm and was created with GID (CIMNE, Barcelona). The CFD simulation was per-
formed using CFD-Tdyn (CompassIS, Barcelona), solving the Navier Stokes equa-
tions. The no-slip wall of the dissection model was assumed to be rigid, assuming that 
in chronic dissection there is reduced flap motion, so that a rigid flap is a good first 
approximation. Additionally, several studies suggested that the difference in flow 
induced pressure variations and consequent wall stress between rigid and elastic aortic 
models is negligible [14,15]. Realistic time dependent velocity and pressure wave-
forms (adapted from [16]) were applied at the inlet and outlet of the fluid domain 
respectively. We assessed intra-luminal pressure and instantaneous volume flow in 
the FL and TL at the distal and proximal descending aorta, respectively. The WSS 
distribution at the TL and FL surface was calculated and the velocity vectors at the 
mid-plane of the dissected geometries were analyzed. 

2.3   In-Vitro 

Phantom. A simplified physical phantom (without the aortic arch), similar to the 3D 
geometry used for the in-silico approach, was made from a compliant and flexible 
material to meet the tensile strength of the aorta. The model was constructed from two 
individual parts to simulate the dissection: the TL and the FL. These parts were joined 
together to form the final model. The TL consisted of a silicone tube of 16mm inner 
diameter and 2mm wall thickness in which holes were made to create the tears. 

The FL part was custom made by first creating the geometry using modelling clay 
and PVC tubes. Next, from this, a two-part silicone (RTV) mould is made, which can 
be used to create multiple wax casts of the FL. Both halves of the mould are held 
together for casting a replica from beeswax. After solidifying, any mould marks re-
maining on the wax were carefully polished away.  The wax replica was used in a 
lost-wax technique to create a latex (Kryolan) phantom by dipping the replica in  
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Fig. 4. Experimental set 
up for the in-vitro meas-
urements. Right: dia-
gram of the circuit. Left: 
different components of 
the circuit (top left: 
pulsatile pump; top right: 
latex phantom; bottom: 
portable ultrasound 
machine and phantom in 
a water tank). 

 
 
liquid latex many times at intervals of 1 hour. Once the coating was finished, the 
model was heated, to remove the wax. 

 

Experimental set up. A dynamic flow circuit, mimicking the human circulatory 
system, was set up to evaluate flow and morphological characteristics under con-
trolled conditions (Fig. 4). The circuit consisted of a pulsatile pump, a compliance 
chamber, the dissection model, and a collecting system, connected in series. The flow 
pump (Harvard Apparatus) was programmed to simulate pulsatile left ventricle output 
with a heart rate=70bpm; stroke volume=70ml; and systolic/diastolic phase ra-
tio=30/70. Peripheral resistance and systemic pressure were adjusted with the use of 
resistors (adjustable valves) placed proximal and distal from the phantom. 

 

Measurements/Imaging. TL and FL pressure waveforms were measured with a fluid 
filled catheter at the distal and proximal sections. Flow was measured using an ultra-
sonic flow meter (Transonic Systems Inc).  Pressure and flow waveforms were digi-
tized using a PowerLab 16/30 with LabChart Pro acquisition and analysis software 
(ADInstruments, Colorado Springs, CO, USA). Phantom geometry as well as fluid 
appearance and velocities within the phantom were assessed by two-dimensional and 
Doppler ultrasound using a high-end portable clinical ultrasound scanner (Vivid Q - 
GE Healthcare) (Fig. 7). 

3   Results 

3.1   CFD Simulations 

At the distal tear, higher FL pressures were observed at the onset of the cycle, result-
ing in an antegrade jet through the tear, whereas the FL/TL pressure gradient inverted 
at the end of the cycle leading to deceleration and inversion of the velocities and re-
sulting in retrograde flow through the distal tear.  

Fig. 5 shows the resulting absolute volumetric flows. FL flow variations are re-
markably different from the TL, with a biphasic pattern and high early systolic flow. 

Fig. 6 shows the normalized velocities during the cycle, obtained at different posi-
tions in the model. As can be observed, flow direction in the TL is dominantly ante-
grade (positive), except at the proximal section were its direction slightly reverses 
during early diastole. However, in the FL, fluid velocities begin to be retrograde from   

 

late systole, resulting in the reverse flow shown in the flow pattern plots (Fig. 7).  
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Fig. 5. The instan-
taneous flow 
(modulus) in the 
TL and FL at 
proximal (left) and 
distal (right) sec-
tions 

 

 

Fig. 6. Normalized mean veloci-
ties changes of TL and FL, at 
different positions of the phantom, 
and in the entry and exit tears. 

 

 
Through the entry tear, we can observe a clear inflow during systole and outflow 
during diastole, while there is outflow during systole and inflow during diastole 
through the exit tear. The magnitudes of the velocities at both tears are similar. How-
ever, there is a shift in the time course indicating the propagation of the fluid wave. 

From the assessment of the flow pattern in the dissected region (Fig. 7), we observe 
a bidirectional flow in the FL with a prominent retrograde during diastole. The most 
significant elevation in WSS is seen at the impact zone of the entry jet at end-systole, 
whereas during diastole there was a high variability of WSS in the distal zone. 

 
Fig. 7. Top: flow patterns at beginning and end-systole and end-diastole. The zoomed area 
shows the presence of FL diastolic retrograde flow at the exit tear. Bottom: WSS distributions 
at the FL surface. Left: the entry tear at end-systole; right: the exit area at end-diastole. 
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3.2   In-Vitro Measurements 

Fig. 8 shows the echocardiographic image and measured Doppler flows for the in-vitro 
setup. The morphology of TL, FL and exit-tear can be easily recognised and the Dop-
pler traces show the systolic forward flow and diastolic retrograde flow. 

 

 

Fig. 8. Echocardiography of 
the in-vitro setup. Left: lon-
gitudinal cut of the phantom 
at the distal part and colour 
flow Doppler. Top right: 
pulsed Doppler velocity 
waveform at the entry tear; 
bottom right: colour Doppler 
velocity waveforms at the 
exit tear: Red: velocity 
through the exit tear; Pink: 
TL velocity distal from the 
exit tear; Cyan: TL velocity 
proximal to the exit tear. 

 
Fig. 9 shows the pressure measurements at distal and proximal section in TL and 

FL. Distal pressures were higher than proximal pressures, also coinciding with the 
high WSS area detected in the CFD simulations. Comparing pressures between 
lumina, diastolic pressures in the FL were higher than in the TL. A high pressure 
gradient between TL and FL is measured at the distal section, which explains the 
presence of a remarkable reverse flow at the distal tear of the phantom. 

 
 
 
 
 
 

Fig. 9. Measured pressure profiles at proxi-
mal and distal sections of TL and FL. 

 
 

 
3.3   Comparison of In-Silico and In-Vivo Data 

Fig. 10 shows the comparison of the instantaneous flow profiles of the simulated ge-
ometry and from one of the patients in our clinic (obtained from MRI phase-contrast 
velocity measurements). This patient had a large entry tear (12mm) and showed rapid 
dilatation of the FL over the course of the follow-up (10%/year over 10 years). As can  
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Fig. 10. Com-
parison of the 
in-silico  
instantaneous 
flow with the 
measurements 
from a typical 
patient 

 
be seen, the observed profiles are remarkably similar, illustrating the usefulness of the 
in-silico approach to study the haemodynamics of typical patients. 

4   Discussion 

The dilatation of the dissected aorta depends on multiple factors. The cyclic wall 
stress in the FL is determined by the blood pressure changes, in interaction with the 
wall properties. Wall properties themselves are related to genetics, chronic pressure 
levels and flow (in particular WSS). 

In our findings, the diastolic pressure in the FL was higher than in the TL, expos-
ing the already weak and thin FL wall to higher wall stress. Additionally, pressures 
are higher at the distal section than at the proximal section, explaining the distal 
propagation of dissections.  

Complex flow patterns have been thought to increase inflammatory cell infiltration 
in artery wall, increasing risk rupture [17,18]. We show both in-silico and in-vitro that 
the entry-jet and flow reversals result in complex flow patterns in the FL. A concen-
trated, jet-like flow is noted, directly impinging on the FL wall at the proximal and 
distal site during peak systole and diastole, respectively. This fast proximal jet might 
explain the eccentric dilatation of the proximal FL observed in a subset of patients.  

An important hemodynamic factor that influences vascular remodelling, aortic ex-
pansion and rupture is WSS.  WSS influences the morphology and orientation of 
endothelial cells [8]. An acute increase in WSS leads to an increase of the aortic di-
ameter and weakening of the aortic wall because of loss of elastic tissue, change of 
muscle cell orientation, and acceleration of cell deterioration. On the other hand, the 
exposure of the arterial wall to low or variable WSS may increase intercellular per-
meability and increase the vulnerability of these regions of the vessel to atherosclero-
sis and weakening that could ultimately lead to rupture. 

The cumulative effect of increases in pressure (wall stress) and changes in elastic prop-
erties, initiated by altered WSS, results in increased risk of further dilatation and rupture.  
 

Limitations: There are many limitations in both in-silico and in vitro studies of an 
aortic dissection. We used a flexible dissection phantom to mimic the aortic wall 
compliance. Despite being an idealized model, its dimensions are based on clinical 
measurements and this generic model is ideal for parametric studies.  

Whereas the overall flow and pressure waveforms were very similar, we had some 
differences of values between the results obtained with the in-silico and in-vitro mod-
els. It was mainly because we compared a flexible physical phantom with a rigid 
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computational model, and boundary conditions did not correspond exactly to the ones 
of the in-vitro model. Furthermore, the resistance and compliance of the experimental 
set up was not perfect, resulting in rather flat velocities when pressure waveforms 
were adjust to mimic human measurements.  

Despite these mentioned differences, in-silico and in-vitro results follow a similar be-
haviour and are thus useful and complementary as a first validation of our results and in 
helping to explain clinical observations. Additionally, a wider range of dissection geome-
tries, corresponding to the variety of patients’ appearances in clinical practice, should be 
studied to obtain a full understanding of the haemodynamics in aortic dissection.  
 

Clinical relevance. At present, follow-up and treatment of patients with aortic dissec-
tion seem to be non-ideal and it remains difficult to balance the high morbidity and 
mortality rates registered during the chronic phase of the disease with the severe side 
effects and risks of surgical or endovascular interventions. In current clinical practice, 
prediction of outcome in aortic dissections is mainly based on maximum total aortic 
diameter, which is compared to clinical guidelines for deciding the best therapy. 
However, this has proven to show severe limitations in assessing the genesis and 
evolution of aortic dissection [3,4]. So, the need for better predictors of the evolution 
of aortic dissection is evident, especially to assess FL dilatation and to evaluate and 
titrate a better pharmacological management.  

Our study provides a methodology to assess haemodynamic and WSS differences 
originating from different geometrical configuration. Understanding these differences 
and assessing them in clinical practice with imaging modalities such as Magnetic 
Resonance Imaging (MRI), Transesophageal Echocardiography (TEE) and Computed 
Tomography (CT), will play an important role in the diagnosis and follow-up of aortic 
dissections. Combining measurements from imaging together with computational 
flow analysis using patient-specific geometries and boundary conditions could addi-
tionally enable to obtain a much more detailed view on the haemodynamic and wall 
stress conditions in aortic dissections, thus helping to provide an integrated view on 
the patient and enable the prediction of local remodelling that could be induced.  

5   Conclusion 

We evaluated haemodynamic parameters in the TL and FL of a chronic aortic dissec-
tion. For this, we have constructed a model of a type B dissection which allows study-
ing aortic geometries, including different tear locations and sizes, both using in-silico 
computer simulations and in-vitro phantom measurements and if which the results can 
be directly compared to clinical patients. From one of these experimental in-vitro and 
in-silico models we showed the flow dynamics in the FL, contributing to novel ways 
for a better understanding of the haemodynamic conditions and related clinical evolu-
tion in patients with a chronic aortic dissection. 
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Abstract. In this paper, we show that canonical (shape-based) geome-
tries can be endowed to cardiac structures using tubular coordinates
defined over their medial axis. We give an analytic formulation of these
geometries by means of B-Splines. Since B-Splines present vector space
structure PCA can be applied to their control points and statistical mod-
els relating boundaries and the interior of the anatomical structures can
be derived. We demonstrate the applicability in two cardiac structures,
the 3D Left Ventricular volume, and the 2D Left-Right ventricle set in
2D Short Axis view.

1 Introduction

The Myocardium presents two main attributes when seen in medical images:
shape and appearance. The shape of the volume enclosed by myocardial walls
is an intrinsic attribute that represents its anatomy and is easily captured by
different anatomical imaging modalities such as CT or MR. In contrast, the
appearance is image-dependent given that different modalities and/or acquisition
protocols yield different (complementary) physiological information(perfusion,
motion or fiber architecture). Statistical analysis of both attributes is a powerful
tool that provides good indicators for disease diagnosis, progression and therapy
planning and should handle complementary information coming from different
sources.

First attempts to relate shape and appearance features were pioneered by
Cootes et al. in order to improve their Active Shape Model (ASM) search [1].
They considered appearance patterns by sampling image intensities along fixed-
length profiles projected orthogonally from the boundary. However, this ap-
proach was not able to capture the whole appearance contained inside the object
boundaries. In order to solve this, the same authors later introduced Active Ap-
pearance Models (AAM) [2], that relate the whole object appearance and its
boundary. However, since AAMs are based on warps registering images, they do
not provide a canonical way of performing this relation.
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A natural way of associating shape and appearance attributes on the whole
anatomic domain is by means of a parametrization (in the manifold sense) pro-
viding coordinates, inside the object, related to the boundary anatomy. Endow-
ing geometry to shape models is achieved by using representations explicitly de-
scribing the structure geometry, like medial axis representations [3, 4, 5] or shape
parametrizations [6]. Medial axis representations (m-reps [5]) describe geometry
using the centres and radius of osculating spheres. Since osculating spheres are
those interior spheres having more than one point tangent to the object bound-
ary, they describe geometry by means of the structure boundary principal cur-
vatures. However, m-reps present two main inconveniences. On one hand, they
are discrete representations which might decrease accuracy of the model [7]. On
the other hand, they do not provide a direct description of geometry and have a
non-vectorial structure, which requires statistics in Riemmanian spaces [4].

The framework of differential geometry provides suitable tools for describing
shape geometry by means of object parametrization in the manifold sense. A
main shortcoming is that parametric maps are an infinite dimensional space
without vector structure. Although there are a number of authors who have
contributed to statistical analysis on Riemmanian manifolds [8], in the infinite
case, computation of descriptive statistics is a delicate step not thoroughly solved
[9]. A practical way of approaching parametrization of anatomical structures for
shape analysis is by using basis functions for the formulation of the parametric
map. In this manner, the space of parametric maps is vectorized and PDM
approaches serve to compute statistical models. One of the first works is the
spherical harmonic (SPHARM) parametrization for the hippocampus modelling
used in [6]. The framework is suitable for structures diffeomorphic to spheres
(i.e. admitting angular parameters), but the methodology does not generalize to
more complex cardiac structures (like the right-left ventricle set, homeomorf to
a double torus).

A more recent approach are cm-reps models [10] which are continuous ex-
plicit generalizations of m-reps. The parametrization of the shape is based on a
parametrization of the medial axis which is extended to the whole domain by an
inverse skeletonization process. In this manner, shape-based (”natural”) coordi-
nates are consistently defined over the anatomical structures. These coordinates
allow to establish correspondences between structures across different subjects,
and also allows to map intensities in these structures into a canonical (fixed
for all subjects) reference frame in which shape differences between subjects
have been effectively removed. Since these coordinates are defined by finding
an analytical relationship between the structure medial axis (skeleton) and its
boundaries, the framework naturally handles the combined analysis of shape
and appearance. In its current formulation, the methods has two shortcomings.
The inverse skeletonization requires solving a biharmonic PDE with nonlinear
boundary conditions, which implies a high computational cost. In addition, this
approach only provides well defined coordinates along the radial direction, but
not in the medial surface manifold, which is represented as a mesh. We consider,
that endowing shape based coordinates to a biological structure should apply
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to the whole anatomy, especially in the cardiac context where 3 main directions
naturally arise: circumferential, radial and, in the 3D case, longitudinal.

In this work, we transfer the philosophy of the combined analysis of shape and
appearance hold in cm-reps to cardiac imaging. That is, we define shape-based
coordinates to 2D and 3D cardiac structures by endowing them with a canonical
geometry. This geometry is obtained using tubular coordinates given by nor-
mal sections to the medial axis of the structure that, in turn, is parametrized
in a consistent manner, taking into account anatomical features. We show the
potential of the proposed framework by modelling the shape of the left ventri-
cle including the basal ring and the right and left ventricle joined geometry in
2D short axis views. In this last case, the left-right ventricles set, that is not a
”simple object”.

2 Differential Geometry Background

An n−dimensional differential manifold, M, can be thought as the result of
doing patchwork. That is, it can be made by ”cutting” pieces of Rn, ”deforming”
them and smoothly ”gluing” them together until the geometric shape is covered.
Mathematically, this states that there exists an open covering of the manifold,
(Uα)α∈A homeomorphic to Rn via bijective continuous maps:

Φα : Uα −→ Uα ⊂ R
n

x = (x1, . . . , xn) �−→ u(x) = (u1(x), . . . , un(x))

such that, for any two indexes α, β, the composition Φα ◦ Φ−1
β is differentiable.

The pair (Uα, Φα) is called local chart or local coordinate system, Uα = Φ(Uα) is
called parametric domain and Ψα = Φ−1

α parametrization.
The set of local charts endows the manifold with a topology (i.e., neighbours).

The geometry arises with the definition of directions (e.g., left-right, up-down) in
each open neighbourhood. Directions in differentiable manifolds are given at each
point x by its tangent space. The elements of the tangent space are called tangent
vectors at x and, intuitively, they describe all possible ”directions” through x.

The tangent space is given by the columns of the Jacobian matrix and has
dimension n. The vectors perpendicular to tangent vectors are a vector bundle
of dimension d = m − n called normal space.

The normal space of a differentiable manifold defines tubular coordinates in
Rm around M by means of normal sections. If we denote −→n x the normal space
at x, tubular coordinates are defined as:

Uα × Vβ ∈ Rn × Rd −→ Rm

(u, r) �−→ Ψ(u) + r−→n Ψ(u)

for r−→n Ψ(u) :=
∑d

i=1 ri
−→n Ψ(u). That is, for each point Ψ(u) we can move on

its normal direction along radial coordinate. It follows that, by means of radial
coordinates, we have a distance map to Ψ(u).
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3 Canonical Coordinates over Anatomical Manifolds

Anatomical structures define volumetric domains in the ambient space which
admit tubular coordinates by means of their medial axis. The medial axis is given
by interior points equidistant to two or more boundary points [3]. It follows that
its associated tubular coordinates parameterize the anatomical volume.

In the case of anatomical structures, their medial axis is a compact manifold
that might be parametrized in angular coordinates. It follows that, by periodicity,
the tubular coordinates change is given in a single chart covering the whole
structure volume.

In order to provide a canonical geometry, tubular coordinates might be defined
such that two manifolds, M1,M2, representing the same anatomical structure,
share a common (fixed) parametric domain.

Anatomical structures present several landmarks common to any subject and
easily identifiable. The implicit registration is achieved by assigning to anatomi-
cal landmarks normalized tubular coordinates codifying their position relatively
to the geometry of the organ. We note that, in this manner, parametric coordi-
nates have an anatomical meaning.

The parametrization map Ψ can be analitically approximated by means of
basis functions. In our case we choose m-dimensional B-Splines since they are
easy to implement and computationally efficient:

Ψ(u, r) =
MJ∑
J

MI∑
I

BI(u) · BJ(r) · PIJ (1)

Here, u and r are the medial axis and the tubular parameters respectively.
Although B-Splines are not as general as, for instance, NURBS, they provide

enough flexibility for the biological structures considered in this work.
Parametrizations expressed in terms of basis functions present vector space

structure. Thus, the components in the chosen basis can be statistically analysed
by means of standard PCA. In our case, PCA is applied to the control points of
the B-Spline.

The tubular parametric map given by (1) is computed in two steps:

1. Medial axis parametrization. It corresponds to setting r = 0 in equation
(1). Therefore, it is defined as soon as anatomical coordinates ensuring implicit
registration are assigned to points on the medial axis. Such requirement is ful-
filled by assigning given angular ranges to curvature extremum and junctions
on the medial axis. Once we have pairs (x,u) of points and their corresponding
parameters, the B-spline parametrization is obtained by minimizing:

N∑
i=1

‖Ψ(ui, 0) − xi‖2 (2)

2. Volume parametrization. The parametric map for r > 0 is defined by
extending the coordinate u along radial directions. Since radial coordinates
correspond to the distance to the medial axis, Ψ(ui, 0) is extended by means
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of the distance map to the medial axis. By definition of medial axis, this is
equivalent to deforming a B-spline snake to fit the structure boundaries. In
order to ensure the implicit registration requirement, unitary radial param-
eters (‖r‖ = 1) are assigned to points on the structure boundaries.

4 Application to Cardiac Structures

We apply our framework to provide a canonical geometry in two cardiac struc-
tures of interest, the Left-Right Ventricle set (LV/RV) seen in 2D Short Axis
(SA) slices, and the 3D LV volume. In both cases we use LV-RV junctions as
landmarks and, in the 3D case, we also consider the apical cap and the basal ring.
These landmarks are used to define an affine anatomic reference {O; Vx, Vy , Vz}
in order to remove variability in subject-device relative position as follows:

Vz is defined as the tangent vector to the line passing through the apical cap,
A, and the centroid of the endocardial basal ring, B: Vz = (B − A)/‖B − A‖.
The positions of A and B manually are determined in Long Axis (LA) views.
The origin is defined along Vz-axis as: O = A + 2/3(B − A) in order to account
for any translation among different subjects. The vector Vx, is a unitary vector
starting at O and pointing to the junction of the right and left ventricles the
septum and the inferior walls. Since Vx points the same anatomical location
for any LV, by setting Vx as the origin of angles, we handle any rotational
disparity among different subjects. The vector Vy is chosen to make {Vx, Vy , Vz}
a negatively oriented orthonormal system. Figure 1 illustrates the orientation of
the anatomical affine reference and the anatomical landmarks. Stars indicate the
right and left ventricle junctions used to orient the reference in short axis views.

4.1 3D Left Ventricle Including the Basal Ring

The medial axis of the left ventricle volume is a surface that it is diffeomorphic to
the sphere. Thus, it can be parametrized using circumferential and longitudinal

Fig. 1. Anatomical Affine Reference and Landmarks of the Myocardium
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coordinates. We note (u, v, r) the parametric coordinates standing for the circum-
ferential, longitudinal and radial directions.

Parameter directions on the medial axis are assigned as follows. The circum-
ferential parameter u is assigned by mapping the same circumferential range
[0, uS] to non-septal segments and the complementary [uS, 2π] to the septal one:

u =

⎧⎨⎩
uS

θS
θ, θ ≤ θS

2π−uS

2π−θS
θ + 2π θS−uS

2π−θS
θ ≥ θS

(3)

for θ the angle in the anatomical reference system {O; Vx, Vy, Vz} and θS the
angle between Vy and Vx. The septum angular proportion, uS, is computed as
the average of septal angular ranges. The longitudinal parameter v is the angle
between a medial axis point and the Vz axis:

v = π − arccos
(

Vz · x
‖x‖

)
(4)

for · the scalar product. Apical points are assigned v ≡ 0 and the basal ring
v ≡ π. Finally, the radial parameter r is defined by enforcing that epicardium is
given by r ≡ −1, endocardium by r ≡ 1 and the medial axis by r ≡ 0.

Canonical coordinates have been obtained parametrizing the LV volume with
cubic blending functions for the angular parameters and linear for the radial
one. The number of considered control points is 17 × 7 × 2. Figure 2 (a) shows
canonical geometry inside the LV volume.

4.2 LV-RV Set in 2D SA View

Since short axis views are given by perpendicular planes to LV LA, in this case,
the medial axis is a curve, γ, that is homeomorph to a double torus. Inspired

a) b)

Fig. 2. a) Canonical coordinates over the LV volume. b) Canonical coordinates over
the LV-RV set.
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by dissection methods [11], we use a clock-wise circumferential coordinate, u,
starting at Vy and parameterizing first the right ventricle and then the left one.
In order to completely unfold the left and right ventricles, the angular coordinate
must account for the number of loops, nl, of the medial axis around the origin
O. That is, the angular coordinate is given by the lift of the medial axis path
on its universal covering R

1. For each p ∈ γ, the lifted angular coordinate,
θl, is computed by adding 2π(nl − 1) to the angle, θ, measured from Vy to p:
θl = θ+2π(nl−1), for the number of loops nl given by the number of intersections
between the radius through the point p and γ. The circumferential parameter
is assigned by mapping the right ventricle and the septal segments to the same
angular range [0, uS] in the parametric domain:

u =

⎧⎨⎩
uS

θS
θ + 2π(nl − 1), θ ≤ θS

2π−θS

2π−uS
θ + 2π θS−uS

2π−uS
θ ≥ θS

(5)

for θS the angle between Vy and Vx and the angular proportion uS computed
as the average of septal angular ranges [12]. Finally we reverse u in order to
follow the medial path from right to left ventricle: u → 2π + us − u. Again,
the radial parameter, r, is defined by assigning r ≡ −1 to epicardium, r ≡ 1 to
endocardium and r ≡ 0 to the medial axis.

Figure 3 shows an example of the parametrization of the myocardium in short
axis view using tubular coordinates. The assignment of the circumferential pa-
rameter following the dissection path is given in fig. 3(a). The modelling of
endocardial (green solid line) and epicardial (red solid line) walls together with
the medial axis (black dashed line) is shown in fig.3(b).

Canonical coordinates have been obtained parametrizing the LV-RV set with
cubic blending functions for the angular parameter and linear for the radial
one. Since the joined geometry of both ventricles is more complex than the left

Fig. 3. Parametrization of the joined geometry of the right and left ventricles: circum-
ferential parameter for the medial axis, (a), and tubular parametrization, (b)
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ventricle alone, the number of control points has increased to 25 × 2. Figure 2
(b) shows canonical geometry over the LV-RV set.

5 Statistical Models

In both, the 2D and 3D cases, we use the analytical formulations of the canonical
coordinates, given by B-Spline parametrizations and apply PCA to their control
points. This provides an statistical model codifying the relation between the
object boundaries and its interior.

Regarding LV volume we considered, as training set, N = 8 DTI unwaighted
volumes belonging to normal canine hearts, freely available at web of The Center
for Cardiovascular Bioinformatics and Modeling (www.ccbm.jhu.edu). Since the
number of instances in the training set is smaller than the space dimension, at
most N eigenvectors (spanning the subspace generated by the elements in the
training set) can be obtained. In this case we have taken the first 6 modes of
variation (which explain a 99.25% of the total shape variability). The variability
associated to the first 5 modes is shown in figure 4 (above).

Regarding LV-RV structure we considered, as training set, 45 standard MR SA
slices belonging to both, Basal and Mid levels. For the statistical model we have
taken the first 5 modes of variation (which explain a 95.6% of the total shape vari-
ability). The variability associated to the first 5 modes is shown in figure 4 (be-
low). Each row corresponds to a mode of variation (from left to right) in the range
±2

√
λn (for

√
λn the standard deviation associated to the mode).

6 Final Remarks

We have presented a mathematical framework for endowing canonical geome-
tries to anatomical structures, by means of tubular coordinates. This establishes
correspondences between subjects allowing the combined analysis of shape and
appearance. This framework facilitates moving over the target structure and
is suitable for defining regular meshes, facilitating further simulation or finite
differences schemes.

Analytical formulation of the geometry is given using B-Splines. Since they
have vector space structure, statistical analysis measuring the variability in the
relations between boundaries and their interior, are obtained applying PCA to
the control points.

We have applied our methodology to two challenging cardiac imaging applica-
tions. On one hand, we have provided a model of the left ventricle including the
basal ring, which cannot be easily modelled using regular meshes or diffeomor-
phic maps. On the other hand, we have approached the geometry of the right
and left ventricles, which, by their loop distribution, is a delicate step. Currently
we are extending the methodology to the 3D LV-RV set and preliminary results
are promising, however the extension to the whole heart (including atria) seems
unfeasible so far.
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Fig. 4. First 5 Modes of variation performed over the control points of the B-Spline
parametric maps that endow a canonical geometry to the LV volume (above) and to
the 2D SA LV-RV set (below)

The proposed methodology is easy to implement and computationally is more
efficient than other proposed approaches based on PDE. The framework is fed
by a ROI enclosing the object under study: the LV in the 3D case and the LV-RV
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set in the 2D case. Thus, the speed of the whole process mostly depends on the
chosen segmentation method (which is out of the scope of this work). Regarding
landmarks, Apical Cap and Basal Ring points can be automatically detected
from the 3D ROI, whereas LV-RV junctions require manual intervention. In the
2D case, junction points are directly selected from the MR image and in the 3D
case these 2 landmarks are selected over the image obtained after considering
the mean along the Z-direction of the unweighted DTI volume.
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Abstract. Left atrium segmentation and the extraction of its geome-
try remains a challenging problem despite of existing approaches. It is a
clinically-relevant important problem with an increasing interest as more
research into the mechanism of atrial fibrillation and its recurrence pro-
cess is undertaken. Contrast-Enhanced (CE) Magnetic Resonance An-
giography (MRA) produces excellent images for extracting the atrial
geometry. Nevertheless, the variable anatomy of the atrium poses signif-
icant challenge for segmentation. To overcome the inherent difficulties
with this segmentation, we propose a technique that utilizes the Voronoi
subdivision framework for the segmentation. In addition, the segmen-
tation is based on the minimization of a Markov Random Field based
energy functional defined within the Voronoi framework. The method
also incorporates anatomical priors in the form of a probabilistic atlas.
We show how the model is efficient in segmenting atrium images by
comparing results from manual segmentations.

Keywords: Segmentation, Left atrium, Graph Cuts, Magnetic Reso-
nance Angiography.

1 Introduction

Atrial fibrillation (AF) is a clinically challenging cardiac arrhythmia that oc-
curs in epidemic proportions with an increasing prevalence worldwide even after
accounting for the aging population [10]. The electrical isolation of AF-causing
circuits with catheter ablation has emerged as an interventional treatment for
AF. High radiofrequency energy inducing thermal damage creates lesions or scars
in the left atrium, whereby the electrical conduction pathways of abnormal cir-
cuits are disrupted. AF recurrence is not uncommon in patients who underwent
ablation treatment and is generally caused by the rejuvenation of scarred tis-
sues. Understanding the temporal process of scar formation and whether scar
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reduces or expands over time has become important in determining whether
some patients are more susceptible to AF recurrence than others [11].

The quantification of the extent of left atrial scar tissue has now become
possible due to recent advancements in imaging techniques. However, for as-
sessing scar information it is important to visualize them on the atrial geome-
try. Contrast-enhanced Magnetic Resonance Angiography provides good quality
imaging data for segmenting the atrial anatomy. Previous work on the segmen-
tation of the left atrium include segmentation from MRA/CTA [1,4], CT [7] and
X-ray angiography [8]. Our proposed method adopts the Voronoi framework of
[1,4]. However, the segmentation method is based on the minimization of an
energy functional with a spatial and intensity prior. With a high degree of vari-
ability in the anatomy of the atrium, a probabilistic atlas created from training
images makes the segmentation approach more robust.

2 Building a 3D Probabilistic Atlas of the Atrium

2.1 Segmentation of Training Images

The variability of atrial anatomy is documented in the clinical literature [5]. The
number and branching patterns of pulmonary vein drainages to the left atrium
are known to vary across patient subjects. For modelling this variable anatomy,
20 left atrium images were manually segmented from contrast-enhanced Mag-
netic Resonance Angiography (MRA) images. Noting the possible anatomical
variations from [5], we classified our training left atrium images into the differ-
ent anatomical groups. The most common anatomical variations found were: 1)
two drainages to the right and left sides (4-drainage), and 2) a single drainage
to the left and two drainages to the right sides (3-drainage). After segmenting
the images, shape based interpolation [12] was used to resample the images to
isotropic voxels of size 1 mm × 1 mm × 1 mm.

2.2 Registration of Training Images

The training images from each anatomical group were registered to a common
co-ordinate frame. A left atrium image from each anatomical group was selected
as the target image for that group. It was ensured that the atrium selected as
reference was a good representative of the anatomy, based on an expert radiolo-
gist’s opinion. Each training image was then registered to its respective group’s
reference image. For registration, landmark points were selected on each train-
ing atrium: 3 or 4 points, depending on the anatomy, selected at the centre
of the opening of the pulmonary drainage and a single point at the centre of
the atrial chamber. An affine registration allowing 9 degrees of freedom were
used to align the atria and initialize the final registration process. Using the
marching cubes algorithm [2], a dense triangulation (pseudo-landmarks) of the
boundary surfaces of each segmented atria were generated. The correspondence
between each pseudo-landmark was then achieved using a surface based regis-
tration method using B-Splines [9]. This aligned all atria images to its respective
reference anatomical shape.
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2.3 Atlas Construction

A probabilistic atlas for each anatomical group is constructed from the aligned
atria images. The atlas is formed by averaging segmentations for each group.
A blurring of the segmentations with a Gaussian kernel prior to averaging is
needed. With a relatively small population of training images, Gaussian blurring
compensates by alleviating undesirable sharp transitions in the probability map.
We selected a Gaussian kernel with width 10.0. Too small a kernel creates sharp
transitions in foreground probabilities and too large a kernel can suppress the
drainage networks in the atlas. Fig. 1 shows the probabilistic atlas for the 4-
drainage network.

Fig. 1. The probabilistic atlas for the 4-drainage showing transverse (left), sagittal
(middle) and coronal (right) planes

3 The Segmentation Framework

3.1 Voronoi Tessellation of the Distance Transform Space

The left atrium in CE-MRA images is connected to neighbouring structures
via narrow junctions. These junctions were exploited in [1,4] by making the
appropriate cuts and separating the atrium from the rest of the image. For
finding narrow junctions within a binary image, a Voronoi Tessellation of the
Euclidean Distance Transform (EDT) image is computed.

Each Voronoi cell is analogous to a maximally inscribed sphere, where a nar-
row junction between two structures is analogous to a smaller sphere between
two larger spheres. Although the technique performs well on contrast-enhanced
images of the atrium, with no anatomical priors incorporated into the model,
this rather ad-hoc approach is unable to segment images that are not contrast-
enhanced. In addition to this, it requires manual interaction as it relies heavily
on a merging-threshold parameter. We adopt the same Voronoi framework for
segmentation. However, we incorporate an anatomical prior with the probabilis-
tic atlas. In addition to this, we use a MRF based energy function which is
optimized using graph-cuts.

The left atrium blood pool in the CE-MRA consists of structures other than
the atrium, such as the aorta and pulmonary arteries. This blood pool is ex-
tracted using a region-growing technique with automatic Otsu thresholding [13].
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The EDT of this blood pool is computed. Thus, each pixel in the distance trans-
form is assigned the shortest distance to the left atrium blood pool boundary.
Local maxima in this EDT image are assigned centres of the Voronoi cells and
thus form the basis of our Voronoi tessellation. By definition, each Voronoi cell
only comprise of voxels that are closest to its centre. As in [1], each Voronoi cell
has a size and the separating surface between cells are also given a size. The
separating surface are shared borders with a neighbouring cell and illustrated in
Fig. 3. The sizes of the cells and separating surfaces are simply the computed
EDT values of their inner-most point (i.e. centre). Every voxel in the atrium
blood pool is assigned a Voronoi cell of which it is a member; this is its closest
Voronoi cell. Thus the closest Voronoi cells for each voxel (i.e. cell memberships)
can be computed using gradient ascent on the distance transform.

Fig. 2. The blood pool image (left) subdivided into its Voronoi cells (middle), with each
cell assigned a random colouring. Right image: Adjacent Voronoi cells are analogous
to maximally inscribed circles with a diameter D(p) and D(q). The separating surface
also has a diameter D(S)

Fig. 3. A left atrium with each Voronoi cell uniquely coloured (left). A close-up of the
surface showing shared borders of adjacent or neighbouring cells (right). As cells are
3D entities, these shared borders are surfaces in 3D.

3.2 Energy-Based Formulation

With the image subdivided into Voronoi cells p, segmenting the left atrium is equiv-
alent to assigning a label fp ∈ {0, 1} to every cell in the image P . The segmentation
is based on the observed intensities in the image and the anatomical prior. MRF
provides a sound background to model context dependent image segmentation
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in which segmentation is formulated as an energy minimization problem. Utilizing
our Voronoi framework, an MRF-based energy function is given by:

EP (f) = λ
∑
p∈P

Dp(fp) +
∑

p,q∈N
Vp,q(fp, fq) (1)

where the data term Dp(fp) is a function of the observed image data and explains
how well label fp can be assigned to the Voronoi cell p based on a probabilistic
model. Vp,q(fp, fq) is a smoothness term penalizing discontinuities in a neigh-
bourhood system of Voronoi cells N . As The parameter λ weighs the influence
of the data and smoothness terms.

3.3 The Data and Smoothness Terms

The data term in the MRF model is a combination of the spatial and intensity
priors. The probabilistic atlas constructed from pre-segmented training images
provides each voxel a prior probability of its label being foreground or back-
ground. However, as the MRF model is built over the Voronoi framework, the
mean probability over all voxels within a Voronoi cell is used as an estimate of its
prior probability. The intensity model is derived from the unseen target image.
To model the foreground, a Gaussian distribution is used where the mean and
variance are determined from the image intensities of voxels (of the unseen tar-
get) labelled as foreground by at least 90% of the training images. In CE-MRA
images of good quality, the perfusion of contrast into pulmonary arteries is not
as evident as it is in the atrial blood pool. Thus the signal intensity is expected
to be higher in the blood pool than in the arteries, thereby making a Gaussian
intensity foreground model sensible. The data term for each Voronoi cell is thus
given by:

Dp(fp) = μ
1
N

∑
np∈p

p(fp) + P (I|fp) (2)

where p(fp) is the spatial prior from the atlas averaged over all voxels np of the
Voronoi cell and P (I|fp) is the intensity model. Parameter μ weighs the influence
of the two terms.

The regularizer or the smoothness term in the image relates two adjacent
Voronoi cells and allows appropriate cuts to be made in the image. As cuts
are sought within narrowing regions in the image, the relative sizes of adjacent
Voronoi cells are incorporated into the smoothness term. The relative sizes η of
two adjacent Voronoi cells p and q is given by η = min{D(p), D(q)} − D(Sp,q).
where D(·) is the diameter function of a Voronoi cell and S is the separating
surface or interface between two adjacent cells. Following [1] and [4], we use
D(·) as the EDT value of the cell and surface centres. Larger values of η indicate
a Voronoi neighbourhood with a narrowing. The smoothness term Vp,q is thus
set to a monotonically decreasing function of the relative diameter such as its
reciprocal:

Vp,q = 1/(1 + η) (3)
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3.4 Optimization

The MRF energy model defined in Eq. 1 over the Voronoi framework is a complex
functional of the segmentation f . Local optimization methods like simulated
annealing are not guaranteed to find a global minimum in polynomial time.
However, for MRF functionals of the form defined (Eq. 1) it is possible to find the
global optimum using graph cuts [6]. In this method, the functional is converted
to a graph G = 〈V , E〉 with two special s, t terminal nodes representing the
foreground and background labels. The segmentation labelling problem is solved
by computing the minimum s-t cut.

As each Voronoi cell must be marked as foreground or background in the seg-
mentation problem, a node v ∈ V is assigned for each Voronoi cell p in image P .
Neighbouring cells and thus their nodes are connected by edges e ∈ E enforcing
continuity in the segmentation. Every node vertex also has edges to the terminal
s and t nodes representing the fact that they may be marked either as foreground
or background. Edge weights are given by the data term (Eq. 2) for node-to-node
connections and by the smoothness term (Eq. 3) for node-to-terminal connections.
See Fig. 4 for an illustration. By determining the minimum s-t cut in G, the seg-
mentation problem is solved by assigning a label to each node [3].

Fig. 4. The Voronoi cells in a segmented left atrium (left). A subset of the graph
constructed for optimizing the MRF energy model (right). Note the terminal nodes s
and t. Only Voronoi cell nodes A, B and C are shown here as an example. Note also
that there is a path from A to B, excluded in the diagram for maintaining clarity.

4 Experiments

4.1 Image Acquisition

We acquired 30 CE-MRA images of the left atrium from different subjects for our
study. All subjects were diagnosed for AF and imaged prior to their ablation. We
selected 20 images for our training data, as described in section 2.1. Out of the 20
images, 11 atria images had a 4-drainage network and 9 images with a 3-drainage
network. The rest of the images were used for validating our proposed model.
All images were acquired at 1.5T using a Siemens Avanto scanner. The image
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size ranges between 250× 250× 30 to 380× 380× 100 voxels. The slice thickness
ranges between 1.0-3.0 mm. Gadovist was used as the contrasting agent.

4.2 Comparison with Manually Outlined Data

Segmentations of the atrium were generated using the proposed model on 10
images of the left atrium CE-MRA data. The probabilistic atlas was registered
to the unseen instance using affine registration and the minimum graph cut pro-
duced the segmentation with no manual intervention. For manual segmentations,
for each of the images, 5 slices through the data were selected at equally spaced
intervals and the outline of atrium manually delineated in each slice. These slices
were selected from the most interesting areas of the image, i.e. in and around the
atrial chamber and including the drainages. It is worth noting that the network
of veins emanating from the atrium has little clinical importance in the context
of ablation procedures, and thus has been excluded from our manual segmen-
tations. Each slice is compared against segmentations from the proposed model
using an overlap measure Os defined over the manual M and computer-assisted
segmentation C as:

Os =
Area(M

⋂
C)

Area(M)
(4)

In addition to this, surface visualizations of the segmented left atrial geometry
were generated to allow an assessment of whether segmentations included all
the drainages to the atrium only as far as the first bifurcation. In visualizing
scars that are only made in and around the atrial chamber and drainage open-
ings, this is more clinically relevant than achieving a voxel-wise accuracy of the
segmentations.

4.3 Results

The results of evaluating the segmentations obtained from the proposed method
against manual segmentations are given in Table 1 for each selected slice of
image data. Figure 5 compares the mean overlaps found for each subject. The
proportion of overlap is between 0 and 1, where an overlap of 1.0 represents
complete agreement with the manual segmentation. Note the occasional low
overlap values, for example: patient 1 slice 1, patient 8 slice 1, patient 8 slice
3. This is primarily for slices with the atrium-ventricle junction at the mitral
valve, which is not particularly visible in CE-MRA images. The algorithm relies
on the atlas for finding the mitral valve junction and with no explicit model
of the valve, this often is an approximation based on the mean atrial shape.
However, it is clear from the segmentations that the probabilistic atlas allows the
exclusion of the extensive vessel drainage network in angiography images. This
produces vessel-free segmentations allowing a clear visualization of the anatomy
(see Fig. 6). All segmentations were computed in under 5 secs on a 2 Ghz PC.



Automatic Segmentation of Left Atrial Geometry 141

Table 1. Overlap between manual segmentation and the proposed method. A value of
1.0 represents complete overlap.

Subjects

1 2 3 4 5 6 7 8 9 10

slice 1 0.50 0.00 0.84 0.99 0.78 0.99 0.85 0.31 0.68 0.66

slice 2 0.98 0.99 0.99 0.99 0.99 0.97 0.94 0.97 0.90 0.97

slice 3 0.98 0.99 0.99 0.98 0.99 0.97 0.99 0.25 0.99 0.90

slice 4 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99

slice 5 0.98 0.99 0.92 0.99 0.99 0.89 0.99 0.99 0.97 0.97

mean 0.89 0.80 0.95 0.99 0.95 0.97 0.96 0.70 0.91 0.90

Fig. 5. The mean overlap (between manual and our segmentation) over the selected 5
slices for each of the 10 subjects

Fig. 6. (Top row) 3D surface rendering of segmented atria obtained from the proposed
approach. (Bottom row) The outlines of the segmentations on the angiography images

5 Discussion

This paper describes a new and novel approach for segmenting the left atrium from
CE-MRA images via an energy minimization approach. Existing approaches for
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segmentation [4,7,1]mostly use ad-hocmethods for separating the atrium fromsur-
rounding structures. The exclusion of the ventricle, the extensive vessel
drainage network and the pulmonary arteries makes our approach unique. With-
out prior information of the anatomy, it is difficult to compute a segmentation that
only obtains the clinically relevant structures which are the atrial chamber and the
drainages as far as the first bifurcation. Our segmentations have shown that only
structures of interest can be obtained for different anatomical configurations. In
all the cases the ventricle, pulmonary arteries and the drainage networks were ex-
cluded.The incorporationof aprobabilistic spatial atlas provides themodelwithan
effective prior. Comparison with manual segmentations indicate positive results.

The atrial geometry obtained from the segmentations are important for Elec-
trophysiology (EP) mapping systems such as Ensite NavX and Biosense CARTO.
The MRI segmentations can be loaded during a procedure to provide a more de-
tailed anatomy than the one constructed on-site using a catheter. Also, new
research into atrial fibrosis and scarring has made it essential to map scar
(from pre-procedural imaging) and intra-procedural voltage information to the
anatomy (see Fig. 7). Studying the temporal process of scar formation is pro-
viding new insights into the progression and recovery of the disease process [11].
With a better atlas, the method is promising and has the potential of being
applied to other imaging modalities such as free-breathing non-contrast MRA,
a new recent technique in imaging.

Fig. 7. Left atrial scar information can be mapped and fused to the extracted atrial
geometry (left). Endocardial view (right)
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Abstract. We developed an interactive tool for biventricular function
analysis from cardiac magnetic resonance (MR) images based on the
guide point modelling (GPM) approach [1]. First we built a deformable
model of both ventricles of the human heart which consisted of 138 nodes
and 82 hexahedral elements, each with bicubic-Bézier-linear interpola-
tion. The model was fitted to a digitized human data set for use as the
prior shape in the GPM scheme, which we modified to have a ‘predictor’
step that used a host mesh fitting algorithm [2] to generate predicted
points (PPs) based on the user-defined guide points (GPs). Then the
model was fitted towards both GPs and PPs through linear least square
minimization. The inclusion of the PPs significantly improved the nu-
merical stability of the linear least square fit and significantly acceler-
ated the solution time. This methodology requires further validation for
future application in clinical biventricular analysis.

Keywords: biventricular function, right ventricle, guide point mod-
elling, host mesh fitting.

1 Introduction

Over the years, the role of the right ventricle (RV) of the heart in interventricular
dependence and maintaining normal overall haemodynamics has become much
more recognized. Measurements of cavity volume, mass and shape of not only
the left ventricle (LV), but also the RV, are essential for quantifying normal and
impaired cardiac function. In particular, RV volume and function are important
indicators when monitoring patients with valvular heart disease [3] and also
those with congenital heart disease, where eight out of every thousand infants
are affected [4].

A variety of automated image segmentation algorithms such as [5] and [6] for
cardiac magnetic resonance (MR) images had been applied to segment both ven-
tricles. Only a few of them were capable of 4D (3D+time) analysis. Moreover,
segmentation of the RV endocardium is prone to errors due to the relatively
coarse trabeculation of the RV and the unpredictability of RV shape variations
under pathological conditions. Also, many of these algorithms only segmented
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the cavity volume (i.e. the ventricles’ blood pool volumes) because segmentation
of the epicardium is more problematic. Compared to these image segmenta-
tion algorithms, model-based analysis, which has been adopted by a number of
studies [1,7,8,9,10] on cardiac image analysis, generally yielded more successful
outcomes. The guide point modelling (GPM) technique [1] is one of the model-
based analysis methods that enables rapid visualization and analysis of cardiac
MR images for the LV in 3D space and through time. It allows minimal yet
efficient user interaction to aid the fitting of a deformable finite element (FE)
model of the LV to cardiac MR images. The mass, volume and ejection fraction
of the LV throughout the cardiac cycle can be obtained.

In this paper, we propose a modelling tool for analysing biventricular function
from cardiac MR images based on the GPM approach. Sections 2.1 to 2.4 describe
how we developed a biventricular model of the human heart. Then Sect. 2.5
describes how the GPM approach was modified to perform faster by including
an extra step of host mesh fitting [2]. The modified GPM was applied to a normal
volunteer data set as described in Sect. 3 and we conclude with a discussion in
the last section.

2 Method

2.1 Digitization of Human Heart Geometry

We used a set of MR images of a healthy male human volunteer acquired at end-
diastole provided by the Centre for Advanced MRI (Auckland, New Zealand).
The acquisition parameters were: navigator-gated whole heart 3D sequence with
a T2 preparation pulse, 50 short-axis images and 30 long-axis images, each with
192×192 voxels of dimension 0.94×0.94×1.30mm3 and 1.35×1.35×1.30mm3 re-
spectively, on a 1.5T Siemens MRI scanner (MAGNETOM Avanto System). Man-
ual segmentations were drawn on the endocardial surfaces of the left and right ven-
tricles, the epicardial surface of the whole heart, and around the four valve orifices
(namely, the mitral, aortic, tricuspid and pulmonary valves) of the heart.

2.2 Initial Geometry

A porcine FE model [11] was used as the initial approximation of the anatomical
geometry of the human heart. It consisted of 88 hexahedral elements with 156
nodes, encompassing both LV and RV. This biventricular model also contained
the four valve orifices of the heart, which was the main reason why we chose it
among a number of other biventricular models (e.g. for dog [7,12,13,14], rabbit
[15], etc.) as the initial geometry.

The model was defined in rectangular Cartesian coordinates, with z-axis point-
ing from the base towards the apex, y-axis pointing from the centre of the LV
towards the centre of the RV and x-axis pointing from posterior to anterior of the
heart. Within each element, cubic Hermite basis functions were used to interpo-
late the element coordinates, ξ1, ξ2 and ξ3, which were aligned approximately in
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the circumferential, longitudinal, and transmural directions of the heart, respec-
tively. The position at a given ξ position within an element can be calculated as
a weighted average of nodal positions xn by

x (ξ) =
N∑

n=1

Ψn(ξ)xn (1)

where Ψn is the basis function n evaluated at ξ and ξ ∈ [0, 1].

2.3 Modifications

Several modifications were done to minimize the number of degrees of freedom
(DOFs) of the porcine model to enable fast clinical analysis. The major modifi-
cations made to the model are described in the following paragraphs.

Coordinate System. The porcine model was transformed to be in a standard
cardiac coordinate system, where the x-axis was oriented along the LV central
axis and directed towards the LV apex, the y-axis directed from the LV centre
towards the RV centre and the z-axis directed from anterior towards posterior of
the heart. The origin of this coordinate system was placed on the LV central axis
one third of the distance from the base to the apex. This was done so that the
model would be in the same coordinate system convention as previously used
for GPM [1].

Interpolation Scheme. We changed the interpolation scheme in the ξ3 di-
rection (i.e. transmural direction) to be linear. As a result of this, the nodal
derivatives with respect to ξ3 were no longer needed. Secondly, when the ξ1 or
ξ2 direction of an element coincided with a ξ3 direction of an adjacent element,
the ξ1 or ξ2 direction of the first element would need to be constrained to be
linearly interpolated. For example, this was done for the elements at the RV
insertion. Also, we changed the model’s cubic Hermite interpolation to be cubic
Bézier basis functions in ξ1 and ξ2 directions (i.e. circumferential and longitudi-
nal directions respectively). Bézier basis functions provide derivative continuity
between the elements without the need of nodal derivatives to be specified. To
achieve derivative continuity at the nodes, a global-to-local parameter mapping
[16] was used.

RV Apex Geometry. In the original porcine model, the RV apex had a thicker
wall than the LV apex as shown in Fig. 1(a), where there were two layers of
elements beneath the RV cavity. However, human hearts usually have approxi-
mately equal thickness at both LV and RV apexes from observation. Therefore we
extended the RV cavity by splitting apart the layer of initially adjacent elements
which were directly below the RV cavity (see Fig. 1(a)).

Basal Geometry. We simplified the complicated basal geometry of the model
by removing the 6 basal elements which originally surrounded the inner side of
the valves. Then we collapsed the ξ2 = 1 face of the 12 basal elements which
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surrounded the outer side of the valves. This ensured all endocardial surfaces
were smoothly interpolated by cubic Bézier polynomials, without any inconsis-
tency of ξ directions between adjacent elements. Also, the element between the
LV inflow and outflow tract was being collapsed in the ξ3 direction at every node
such that it became a surface element. (See Fig. 1(b).)

Gap removal. The original porcine model had hanging nodes at the LV and RV
outflow tracts, which resulted in gaps in some element boundaries due to different
level of subdivision between adjacent elements at their common boundary. As
some basal elements were removed as described in the previous paragraph, the
hanging node at the LV outflow tract no longer exists in the model. For the
remaining hanging nodes on the RV outflow tract, we adjusted the position of
each hanging node to lie half way along the boundary of the bigger element by
assigning its position to be the average of its nearest vertices [16]. This constraint
was enforced in the global-to-local map of the model.

2.4 Final Geometry

After all the modifications, the simplified biventricular model consisted of 82
bicubic-Bézier-linear elements and 138 nodes. The total number of geometric
DOFs in the model was reduced from 5981 to 1791.

Fitting to Human Data. Before fitting to the digitized human data set, the
surfaces of the simplified biventricular model was triangulated such that there
were 32 triangles on each element surface that formed the endocardial or the
epicardial surface. Also, the model was translated, rotated and uniformly scaled
so that it was well-positioned within the data cloud prior to fitting. We used
linear least square minimization to penalize the observed (zd) and the predicted
(u(ξd)) data displacements. The objective function to be minimized is given by

E(un) =
D∑

d=1

‖wd (u(ξd) − zd)‖2 + Es(un) (2)

u(ξd) = xfinal(ξd) − xinitial(ξd) (3)
zd = hd − xinitial(ξd) (4)

where D is the total number of data points, wd is the weight for each data point
which is generally kept at 1.0 for geometric fitting, hd is the global coordinates of
the data points, and xinitial(ξd) and xfinal(ξd) are the positions of the vertices on
the model surface closest to the data points before and after the fit, respectively.
Since u(ξd) =

∑N
n=1 Ψn(ξd)un according to (1), (2) can be rewritten as

E(un) =
D∑

d=1

‖wd (Ψn(ξd)un − zd)‖2 + Es(un) (5)

The second term in the objective function is a Sobelov smoothing penalty func-
tion which helps to maintain the smoothness of the model.
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Minimizing (5) and equating that to zero would result in a linear system
of equations in the form of Ax = b, where A is a square matrix and consists
of two terms A = Ad + As. These two terms correspond to those two in the
objection function, i.e. the first relates to the data points to be fitted and the
second one relates to the smoothing. Solving this system of equations would give
the displacements un and hence u(ξd) could be obtained. Then, the positions
of the closest vertices after each fit was found by substituting u(ξd) into (3).
Due to the geometric complexity of the heart, the fitted model was slightly
manually adjusted at places where necessary. The resultant fitted model is shown
in Fig. 1(d), with a root mean squared error of 0.99 mm (2 s.f.).

Fig. 1. (a) A horizontal long-axis view of the porcine model. To allow the RV cavity
to extend further towards the apex, the shaded elements were split apart along the
edge highlighted in red. (b) The original porcine model with elements colored in light
orange to be removed, those colored in white to have their ξ2 = 1 face collapsed and
the element in dark red to be collapsed into a surface element. (c) The biventricular
model before fitting to the human data (green points). (d) The fitted model. Note that
the triangles shown are not elements but act as visualization aids and their vertices
were used in the fitting process.

2.5 Implementation of Human Heart Model to Modified GPM

Figure 2 gives a summary of the modified GPM. The biventricular model is inter-
actively fitted to guide points (GPs), predicted points (PPs) and image-derived
data. The model updates in real-time accordingly, where mass and volume are
also recalculated. Each step is summarized in the following paragraphs.

Initialization. We implemented the biventricular model obtained in the pre-
vious section into the GPM framework as the prior shape to be customized for
different patient data. For biventricular function analysis, the user needed to
define a set of fiducial markers which includes: (i) the centres of the LV cav-
ity on apical and basal short-axis images; (ii) the centre of the RV cavity on
a basal short-axis image; (iii) the RV insertion points which are located at the
intersection of the endocardial RV free wall with the interventricular septum
on all appropriate short-axis images; (iv) (optional) the centroids of the four
valve orifices on appropriate long-axis images and (v) the LV epicardial apex
on a long-axis image. A scale factor for the heart model was obtained based on
the distance between the most basal marker (usually one of the valve centroid
markers) and the most apical marker (the LV epicardial apex).
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Customization. An interactive environment was provided for the user to place
GPs sparsely on the endocardial surfaces of the left and right ventricles, the epi-
cardial surfaces of the whole heart and the four valve orifices of the heart. GPs
were generally placed on the end-diastolic, end-systolic and end of rapid-filling
phases, before placing them on other phases as needed. A non-rigid registration
algorithm [17] was employed to track the contours (model-image intersections)
throughout each phase of the cardiac cycle. Also, an automatic image segmenta-
tion algorithm [18] was implemented to obtain edge information but the usage
of this algorithm is optional.

Solution. The fitting algorithm of GPM was basically the same as the lin-
ear least square minimization approach described in Sect. 2.4, except that pre-
conditioning was also employed when solving the linear system of equations
Ax = b. Preconditioning is a process that transforms the Ax = b system into
M−1Ax = M−1b, where M is called the preconditioner. If M is well chosen,
M−1Ax = M−1b would have more favourable properties for iterative solution to
have a faster convergence [19]. Thus, we would like to construct a preconditioner
M that is close enough to A but also attempts to reduce the condition number
of the coefficient matrix. As mentioned in the previous section, A = Ad + As.
The second term, As, can be pre-calculated before the iterative solution process
commences. However, the first term, Ad, cannot be pre-calculated. This is be-
cause Ad depends on ξd, the local coordinates of the model surface vertices that
are closest to the GPs, which vary according to the user input. For simplicity,
the original GPM scheme took As to be the preconditioner, i.e. M−1 = A−1

s .
However, it was found that using As as the preconditioner performed poorly for
biventricular analysis.

Predictor Step. To circumvent this poor preconditioning and to add a more in-
tuitive interactivity to the model, we added an extra ‘predictor’ step, which took
place before the actual linear least square minimization, to the GPM scheme. In
this step, we introduced computer-generated data points which we call ‘predicted
points’ (PPs). Their initial positions were defined to be the nodal positions xn

of our biventricular model, thus there were a total of 138 PPs. When GPs were
added or edited during the interactive GPM analysis, model surface vertices
closest to the GPs would be calculated. Then a host mesh consisting of a single
hexahedral trilinear element would be constructed to encompass the closest sur-
face vertices, the GPs and the PPs. The element coordinates (ξ) of the closest
surface vertices and PPs within the host mesh were calculated. The host mesh
would be deformed to minimize the distances between the GPs and their cor-
responding surface vertices in a similar fashion as in Sect. 2.4, but with nodal
parameters in (5) corresponding to the nodes of the host mesh. When the mesh
deformed, since a unique material point is always identified by the same local
coordinate value, the PPs would undergo the same deformation as the mesh.
Therefore the updated PPs provide information on how the model would de-
form and thus we could fit our model to the GPs as well as the updated PPs,
along with other image-derived data. But lower weights were applied on the PPs
than the GPs to ensure that the model would be fitted closely to the user inputs.
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With the addition of PPs, Ad, the first term of the A matrix of the linear
system, becomes dependent on the ξ coordinates of the model surface vertices
which correspond to the GPs as well as those of the nodal vertices which corre-
spond to the PPs. This means that Ad = Ag +Ap, where Ag refers to the part of
Ad that depends on the GPs and Ap is related to PPs. Hence, A = Ag +Ap +As.
Since the PPs would always exist in the model fit and always correspond to the
same nodal vertices, the preconditioner could be set up as M = Ap + As.

There is a second advantage with the introduction of PPs to the GPM scheme
for biventricular analysis. The valve centroids are landmarks that can be eas-
ily located on images that cross through the inflow and outflow tracts of the
ventricles. Hence it would be advantageous to make use of them when fitting
the biventricular model where possible. However the valve centroids do not re-
side within any elements of the biventricular model, therefore it is impossible
to incorporate GPs placed at the valve centroids into the model fit. But we can
incorporate the GPs for the valve centroids into the host mesh fit because they
can be embedded into the same host mesh in which all PPs and the closest sur-
face vertices are also embedded within. Hence, when user defines a GP for one
of the valve centroids, the model would be fitted implicitly to that GP by fitting
towards the PPs that would have been updated based on the valve centroid GP.

3 Results

We fitted our biventricular model to a set of 9 user-defined fiducial GPs placed
on cine MR images of a normal volunteer at end-diastole (cardiac-gated spin
echo, 8 short-axis images and 2 long-axis images, each with 192 × 256 voxels of
dimension 1.41×1.41×5.00 mm3), using the original GPM and also the modified
GPM approach.

Table 1 shows that the solution time was significantly faster and the accuracy
significantly improved using the modified GPM method. Without PPs and us-
ing only the smoothing terms in the preconditioner, the solution still had not
converged after 200 conjugate gradient iterations. Figure 3 shows the model af-
ter being fitted to endocardial and epicardial GPs, as well as the first 9 GPs
mentioned above using the modified GPM approach.

Table 1. Comparison between the original and the modified GPM technique when the
model was fitted to 9 user-defined fiducial GPs (1 for LV epicardial apex, 6 for RV
insertion positions, 1 for mitral valve and 1 for tricuspid valve). The maximum number
of iterations was pre-defined to be 200 and the tolerance was set to be 10−6.

Model Fit Only Host Mesh Fit + Model Fit
X Y Z X Y Z

Number of Iterations 200 200 200 8 7 8
Time taken (s) 0.92 0.92 0.92 0.047 0.032 0.047
Residual (mm) 0.095 0.12 0.047 2.2 × 10−11 4.7 × 10−7 4.0 × 10−11
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Fig. 2. An overview of the modified GPM for biventricular function analysis. The box
surrounded by dotted line is an optional routine.

Fig. 3. Application of the modified interactive GPM to image data of a normal vol-
unteer (only GPs are shown) at (a) end-diastole and (b) end-systole. (c) The fitted
biventricular model in 3D with short and long axis MR images.

4 Conclusions and Discussions

The relatively thin wall of the RV, and also its complicated, asymmetric geometry
has made it much more difficult than the LV to model its geometry and motion.
Thus we developed a biventricular model for the human heart and implemented
that into the 4D spatial-temporal interactive GPM technique. We modified the
GPM technique such that there was an extra step of host mesh fitting and the
result of that was fed into the next step where the actual model fit was performed.
The host mesh fit acted to give a rough prediction how the model would deform
according to the user-defined GPs and this information was incorporated as some
constraints in the system of linear equations of the model fit. This significantly
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improved the stability of the system of linear equations to be solved, hence a
significant improvement in the speed of convergence. The interactive modelling
technique developed here could be adapted to work with other biventricular
models such as those mentioned in Sect. 2.2. Also, it would not be difficult to
include myocardial fibre orientation into the human-customized model since the
original porcine model had myocardial fibre orientation incorporated.

In conclusion, we demonstrated the capability of our interactive biventricular
modelling tool on a normal volunteer study. The result so far is promising but
certainly requires validation before clinical application can be done. Another
possible future work includes optimizing the values of smoothing weights.
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Abstract. To regularize cardiac motion recovery from medical images,
electromechanical models are increasingly popular for providing a pri-
ori physiological motion information. Although these models are macro-
scopic, there are still many parameters to be specified for accurate and
robust recovery. In this paper, we provide a sensitivity analysis of a pro-
active electromechanical model-based cardiac motion tracking framework
by studying the impacts of its model parameters. Our sensitivity analy-
sis differs from other works by evaluating the motion recovery through a
synthetic image sequence with known displacement field as well as cine
and tagged MRI sequences. This analysis helps to identify which param-
eters should be estimated from patient-specific data and which ones can
have their values set from the literature.

1 Introduction

Cardiac motion recovery has been an active research area for decades, aiming
at accurate and robust estimation of patient-specific myocardial motions from
cardiac images. Although medical image modalities, such as magnetic resonance
images (MRI), can provide observations of cardiac anatomy and apparent mo-
tion, the motion information is often sparse, spatially and temporally noisy, and
leads to qualitative rather than quantitative estimations. Therefore, a priori mo-
tion information is often required to regularize the motion estimation. To this
end, electromechanical models have been increasingly popular because of their
physiological meaningfulness [1,2,3].

Macroscopic electromechanical models applied to cardiac image analysis usu-
ally consist of three key components: transmembrane potential wave propagation,
active contraction forces, and passive biomechanics. Although these models are
somewhat simplified compared to cellular cardiac models, they still have many
parameters to be specified for clinically relevant recovery. Some authors [4,5] have
already published some sensitivity analyses in which the effects of model param-
eter variations were quantified on simulated cardiac functions. These studies are
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useful to assess the relative impact of those parameters, however, without any val-
idation on in vivo patient data, the analyses cannot provide any hints about the
validity of the model for a given patient.

In this paper, we present a sensitivity analysis of electromechanical model
parameters for patient-specific cardiac motion recovery from medical images.
Through synthetic images for which the ground truth is available, and patient
cine MRI for which the corresponding cardiac motion was estimated by experts
from tagged MRI, we studied the sensitivity of the motion recovery framework
proposed in [1] with respect to the model parameters. This analysis can aid
finding which parameters should be estimated from patient-specific measure-
ments and which can have their values set from the literature. It also evaluates
the physiological plausibility of the adopted cardiac electromechanical model by
comparing the simulated displacements with the expert-estimated motions from
the tagged MRI.

2 Motion Recovery with Electromechanical Model

The cardiac motion recovery framework in [1] was tested, which uses the ProAc-
tive Deformable Model whose dynamics equation is:

MÜ + CU̇ + KU = Fb + αFc + βFimg (1)

with M, C, and K the mass, damping, and stiffness matrices respectively. Fb

comprises different external loads from boundary conditions. Fc and Fimg are
the vectors for active contraction forces and image-derived forces respectively. α
and β are scaling parameters involved in the sensitivity analysis.

To obtain the contraction force vector Fc, the electrical activation times com-
puted using a multi-front anisotropic Eikonal approach were used to provide the
contraction forces along given fiber orientations [6]. The blood pressures on the
ventricular walls were provided by prescribed atrial pressures in the filling phase,
a three-element Windkessel model in the ejection phase, and ventricular volu-
metric constraints in the isovolumetric phases. The image force vector Fimg was
computed using a correlation-based 3D block-matching algorithm [7] combined
with image intensity gradients, tracking the motions of the salient cardiac fea-
tures on the heart surfaces. The linear and anisotropic biomechanical properties
are included in K, whose stiffness is specified by the Young’s moduli along and
across the fibers (Ef , Ecf ). The sensitivity analysis of cardiac motion recovery
can be performed by solving (1) with varying parameters.

3 Experiments

3.1 Experimental Setup

The sensitivity analysis is focused on parameters related to biomechanics. For
each data set, we first obtained a simulation which is similar to the apparent
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(a) Synthetic data.

(b) Patient data set 1.

Fig. 1. Data used in the experiments. Left to right: heart geometry segmented from
patient MRI with synthetic fiber orientations, image frame at the end of diastole, and
image frame at the end of systole. For (a), both images were synthesized from the MRI
at the mid-diastole with the simulated deformation.

cardiac motion in the images, then we performed cardiac motion recovery with
(1) by varying different parameters. The tested parameters include the active
force scaling parameter (α = 0, 0.6, 0.8, 1.0, 1.2) which controls the amount of
myocardial contraction, the image force scaling parameter (β = 0, 5, 15, 25, 45)
which controls the amount of image forces, the Young’s modulus across the fiber
direction (Ecf = 25, 50, 75 kPa, with Ef = 75kPa, i.e. from transversely isotropic
to isotropic), and with or without ventricular blood pressures as boundary con-
ditions. Different sets of fiber orientations (epicardium to endocardium: −θ to
+θ, θ = 20o, 40o, 60o, 80o for both left and right ventricles) were also tested. We
varied only one parameter at a time for each test.

To analyze the sensitivity of the motion recovery framework corresponding
to the above parameters, experiments were performed on one synthetic image
sequence and two patient cine MRI sequences. No patient electrophysiological
data were used during the recoveries.

Synthetic Data. The synthetic image sequence was obtained through a sim-
ulation using the measurements of a patient diagnosed with left bundle branch
block. The electromechanical model used in the simulation is highly nonlinear
compared with the ProActive Deformable Model used in this analysis. This non-
linear model uses the Ciarlet-Geymonat material as the nonlinear passive me-
chanical model and the Bestel-Clement-Sorine model as the active stress model
with the consideration of actin-myosin interactions [8]. The anatomical MRI at
the mid-diastole was segmented using the semi-automatic segmentation in Car-
dioViz3D [9] to provide the heart geometry including the four basal valvular
rings of the ventricles (Fig. 1(a)), with the synthetic fiber orientations generated
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according to the literature (−70o to +70o for the left ventricle, and −50o to
+50o for the right ventricle). The myocardial electrical activation was simulated
using the Eikonal model with the patient electrophysiological data from the LV
endocardium. A cycle of cardiac deformation of 1.054 s was simulated. By ex-
trapolating the obtained deformation field to the whole image space, the image
from which the heart geometry was segmented was warped into a synthetic im-
age sequence, with 34 ms/frame, and isotropic spatial resolution resolution of
1.5625 mm/voxel. In the sensitivity analysis, the models and pathological situa-
tions were assumed to be unknown, thus the parameters used in the ProActive
Deformable Model were nominal as described in [1].

Patient Data. Two cine MRI sequences from patients with dilated cardiomy-
opathy were used in the experiments. Data set 1 contains a cardiac cycle in
0.87 s, with temporal resolution 29 ms/frame, 10 mm inter-slice spacing, and
in-plane resolution 1.42 mm/pixel (Fig. 1(b)). Data set 2 contains a cardiac
cycle in 0.73 s, with temporal resolution 25 ms/frame, 10 mm inter-slice spac-
ing, and in-plane resolution 1.45 mm/pixel. Both data sets have corresponding
tagged MRI sequences collected at similar time instants, therefore experts could
perform manual tracking of the tag plane intersections to extract the short-
axis myocardial displacements as references. Furthermore, the expert-estimated
ejection fractions of data set 1 and 2 are 25% and 15% respectively.

3.2 Results and Discussions

The results of the synthetic and patient data were evaluated with the same
approach for consistency. For the patient data, as the tagged MRI were not well-
registered with the cine MRI, and the tag plane intersections were too sparse
to provide meaningful strains from the manually tracked displacements, direct
point-to-point comparisons between the recovered deformation and the reference
tag motions could not be performed. To cope with this, we compared the regional
displacements using the 17 AHA segments [10]. For both recovered and reference
motions, the mean radial and circumferential displacements of each segment were
computed, which were used to compute the displacement difference magnitude:∑

i ‖ūrecovery(i) − ūreference(i)‖
n

(2)

with ūrecovery(i) and ūreference(i) the mean displacement vectors (radial or cir-
cumferential) of the recovered and reference motions in segment i respectively,
and n the number of segments utilized. As the short-axis tagged MRI cannot
provide accurate motions around the apex, only segments 1 to 12 corresponding
to the basal and the mid-ventricular levels were used. The results of the synthetic
data were evaluated similarly with the reference motions from the displacement
field of the simulated ground truth.

Fig. 2 shows the recovered geometries at the end of systole. For the synthetic
data, the heart geometry recovered without image forces (i.e. pure simulation
with the ProActive Deformable Model) is quite far from the ground truth, but
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(a) Synthetic data.

(b) Patient data set 1.

Fig. 2. Recovered geometries at the end of systole. Left to right: short-axis and long-
axis views of recovered geometries overlapped with images. (a) Yellow line represents
the ground truth, and red and cyan lines represent the recovered geometries with the
image force scaling parameter β = 0 and 45 respectively. (b) Red, blue, and cyan lines
represent the recovered geometries with the image force scaling parameter β = 0, 15,
and 45 respectively.

the one recovered with large image forces is much closer. Interestingly, in some
locations such as the endocardium of the left ventricle, the recovered geometry
with large image forces is even closer to the apparent heart surfaces than the
simulated ground truth. This shows that the recovery framework is capable of
correcting imperfectness of initial segmentation by using image intensity gradi-
ents. Similarly, for the patient data sets, the larger the image forces, the more
subject-specific the recovered geometries.

Fig. 3, 4, 5, and 7 show the changes of the displacement difference magnitude
versus the changes of model parameters under different image forces. Similar to
the observations in Fig. 2, in all tests, the larger the image forces, the closer
the recovered motions to the reference motions. Furthermore, in most cases, the
image forces show greater influences on the radial displacements rather than the
circumferential displacements. This is reasonable as cine MRI, different from
tagged MRI, can mainly provide apparent radial motions of the myocardium
instead of circumferential motions.

Comparing the sensitivities between parameters, the anisotropy of mechanical
stiffness is the least sensitive (Fig. 3, 4, and 5). The displacement difference mag-
nitudes show relatively small changes when changing from anisotropy to isotropy
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Fig. 3. Synthetic data. Displacement difference magnitude versus the change of model
parameters at the end of systole. (a) Active force scaling parameter α. (b) Fiber orien-
tations θ. (c) Cross-fiber Young’s modulus Ecf . Different colors encode different values
of the image force scaling parameter β.
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Fig. 4. Patient data set 1. Displacement difference magnitude versus the change of
model parameters at the end of systole. (a) Active force scaling parameter α. (b) Fiber
orientations θ. (c) Cross-fiber Young’s modulus Ecf . Different colors encode different
values of the image force scaling parameter β.

with fixed fiber distributions described in the literature. On the other hand, the
recovery framework is more sensitive to the active forces and the fiber orienta-
tions. In fact, the fiber orientations mainly impact two aspects of the model: the
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Fig. 5. Patient data set 2. Displacement difference magnitude versus the change of
model parameters at the end of systole. (a) Active force scaling parameter α. (b) Fiber
orientations θ. (c) Cross-fiber Young’s modulus Ecf . Different colors encode different
values of the image force scaling parameter β.
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Fig. 6. Displacement difference magnitude versus the change of fiber orientations at
the end of systole, with the active force scaling parameter α = 0. (a) Synthetic data.
(b) Patient data set 1. (c) Patient data set 2. Different colors encode different values
of the image force scaling parameter β.

active contraction forces and the passive anisotropic mechanical properties. Al-
though the results already showed that the ProActive Deformable Model is less
sensitive to the stiffness anisotropy, we performed additional experiments with
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Fig. 7. Displacement difference magnitude versus with or without blood pressures, at
the end of systole. (a) Synthetic data. (b) Patient data set 1. (c) Patient data set 2.
Different colors encode different values of the image force scaling parameter β.

different fiber orientations without active forces. As it is meaningless to perform
tests without both image and active forces, tests with β = 0 (no image forces)
were not performed. Fig. 6 shows that without active forces, the changes of the
recovery results versus the changes of fiber orientations are ignorable. Thus if
active forces are not used, passive isotropic mechanical models might be enough
for motion estimation. Furthermore, the ranges of the displacement difference
magnitudes are larger when using active forces, which means that proper active
forces are very important for accurate motion recovery.

Fig. 7 shows the test results with or without using blood pressures as bound-
ary conditions. The absence of blood pressures can lead to large deviations in
the radial direction, but these deviations decrease with the increase of the image
forces. On the other hand, the effects of the blood pressures are less obvious in
the circumferential direction. This shows that blood pressure constraints are im-
portant when image information is not reliable, but strong image information as
boundary conditions can compensate for improper blood pressure specifications.

The red lines in the plots correspond to the absence of image forces, so they
provide an objective evaluation of the simulation accuracy of the ProActive De-
formable Model through the in vivo patient data. As the in-plane resolutions are
between 1.42 and 1.56 mm/pixel, the minimum displacement difference magni-
tudes in the pure simulations are between one and two pixels. This shows that the
model can reproduce patient-specific cardiac deformation when the parameters
are properly adjusted.
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4 Conclusion

From the above discussions, we conclude that the cardiac motion recovery frame-
work is less sensitive to the anisotropy of the passive biomechanical model, and
is more sensitive to active forces, fiber orientations, and blood pressures, espe-
cially when image information does not provide strong constraints. Therefore, if
reliable image information can be extracted, the framework can correctly track
cardiac motion up to pixel size even with parameters taken from the literature
(cyan lines). On the other hand, if image quality is low, a priori information
from the electromechanical model is crucial and subject-specific fiber orientations
and blood pressures should be estimated from available measurements. Recent
progress on in vivo diffusion tensor imaging of the heart and pressure estima-
tion from flow data can complement very well such approaches. Furthermore,
the cardiac motions recovered from the synthetic images using the ProActive
Deformable Model are very close to the simulated ground truth of the nonlinear
electromechanical model. This means that even the biomechanical model used
is linear, the recovery framework can provide useful patient-specific cardiac mo-
tions for parameter estimations of nonlinear models, which can help to predict
patient-specific cardiac functions for surgical planning or treatments.
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Abstract. It is well-established that ventricular hypertrophy is a transitional 
phase through the development of heart failure. A hypertrophic heart can re-
model to compensate the loss of pump function, but it eventually becomes inca-
pable of working efficiently, leading to heart failure. Many heart failure patients 
have preserved pump function (e.g. normal ejection fraction), but increased LV 
wall thickness and sometimes increased LV mass, which can mask a decrease in 
contractility. Alterations in the myofibre structure and myocardial material 
properties can potentially account for the progression of heart failure. We have 
developed a canine LV finite element model to investigate the effect of ven-
tricular size, myocardial passive material properties, and cardiac contractility on 
the LV mechanical performance. By comparing mechanical function of normal 
and abnormal LVs, due to dilation and/or loss of anisotropy and/or reduced con-
tractility, we found that dilation and compromised muscle contractility de-
creased most indices of cardiac performance. This modelling framework pro-
vides insight into the underlying mechanisms of heart failure.  

Keywords: Hypertrophy, Heart failure, Finite Element (FE) Modelling, Left 
Ventricular (LV) mechanics, tissue remodelling, muscle contractility.  

1   Introduction 

Impaired diastolic function (e.g. increased LV wall thickness and wall mass) with 
normal systolic function (i.e. normal ejection fraction) has been found in many heart 
failure (HF) patients [1], and they have a similar disorder as people with impaired 
emptying function (systolic HF). Ventricular dilation, characterised by increased 
ventricular mass and wall thinning, is the primary alteration found in systolic HF 
patients. Generally, the disturbances in physiological, geometrical and/or haemody-
namic loading conditions are considered as a main trigger of changes in wall thick-
ness. This can directly result in a remodelling process in the myocytes to alter both 
passive stress (diastolic filling) and active stress (systolic contraction), and thus mus-
cle performance during the cardiac cycle.  



 Investigating Heart Failure Using Ventricular Imaging and Modelling 165 

Changes in ventricular chamber size and wall thickness are believed to originate 
from reorganisation of myocardial structure. The occurrence of structural remodelling 
through the progression from diastolic HF [2] to decompensated HF has been exten-
sively studied [3]. Detailed morphometric measurements of 3D cardiac tissue archi-
tecture showed that the myocytes surrounded by endomysial collagen are arranged in 
layers or sheets of 3 to 5 cells thick [3]. The branched bundles of myocytes enclosed 
by perimysial collagen are loosely-coupled to adjacent layers with little direct cou-
pling between cells. The perimysial collagen critically determines the organisation 
and network of myofibre structure, which affect its electrical and mechanical proper-
ties [4], [5], [6].  

Discovery of loss of the 3D laminar structure in HF animal studies have brought 
the understanding of this disease to a new level. Significant growth of endomysial has 
been reported in [7] and gradual formation of thick sheets from perimysial collagen 
and the long perimysial cords that connect those layers in rats with hypertensive heart 
failure has also been revealed [2]. It is concluded that the tissue remodelling process 
alters the mechanical function of the myocardium by enhancing the transmural cou-
pling, but preventing shearing and sliding of adjacent layers. The consequent myocar-
dial rearrangement leads to LV wall thickening or thinning. Myocardial mechanical 
properties can also undergo changes [7], leading to compromised pump function. 

This study utilised a FE model of a canine LV to simulate ventricular mechanics of 
the entire cardiac cycle under both normal and HF pathologic conditions. We focused 
on investigating the effect of altering ventricular size, material properties and muscle 
contractility on the mechanical function of the LV.  

2   Methods 

2.1   Anatomical Model 

Development of the FE LV model used in this study has been previous described in 
[8] and this model was treated as the control case. Briefly, a FE LV model was cre-
ated based on the LV geometry of a healthy canine heart that was imaged using in 
vivo high resolution tagged magnetic resonance imaging (MRI) experiments to obtain 
detailed non-invasive measurements of cardiac motion. The same heart was also im-
aged using ex vivo diffusion tensor MRI (DTMRI) to reconstruct the local fibre orien-
tations of the entire heart. Imaging parameters and protocols are summarised in [9]. 
DTMRI provides information on the preferred direction of the local self-diffusion 
(maximum principle eigenvector of the measured tensor at each voxel) of water mole-
cules, which has been shown to correlate with the local myofibre orientation of bio-
logical tissue [10]. However, the possibility of discerning sheet and sheet-normal 
orientations from the DTMRI still remains unclear. Therefore, only fibre orientations 
were incorporated into this FE model.  

The anatomical FE model consisted of 16-element with surfaces fitted to the endo-
cardial and epicardial contours segmented from the tagged MR images using nonlinear 
least squares fitting [11]. The nodal parameters were interpolated using cubic-Hermite 
basis functions. The surface contours of the DTMR images were also identified to ex-
tract myofibre orientation information within the LV myocardium. The change in heart 
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shape between the tagged MRI and DTMRI experiments was accounted for by trans-
forming the fibre orientations derived from the DTMRI to the tagged FE model using a 
free-form deformation approach [12]. At each voxel, a local fibre angle was defined as 
the elevation angle with respect to the local circumferential direction in the short-axis 
plane. Fibre angles were fitted into the FE model using nonlinear optimisation. 

2.2   Mechanics Model 

The integrative model introduced above provides us with a platform whereby me-
chanical analysis of cardiac motion can be analysed using finite deformation elasticity 
and FE methods [11]. To simulate cardiac motion for the entire cycle, we have di-
vided the simulation into two major phases: a passive phase that encompasses diasta-
sis and diastolic inflation during which the LV relaxes from the previous cycle and 
begins to be filled with oxygenated blood; and an active phase that spans isovolumic 
contraction, ejection and isovolumic relaxation. Myocardial mechanics is governed by 
fundamental laws of physics (Newton’s laws) with passive and active material rela-
tions specific to ventricular muscle.  

In our previous study, we used this framework to combine displacement and mo-
tion information from in vivo MRI tagging with concurrent pressure recordings to 
estimate passive material properties of myocardium modelled using a transversely-
isotropic material relation in Eq. 1[12]. The choice of transversely-isotropic over 
orthotropic mechanics was made due to lack of sheet orientation data for this study. 
The material parameters in Eq. 1 were tuned to best match the diastolic LV motion 
obtained from the tagged MR images and the simultaneously recorded LV cavity 
pressures.  
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where W is the hyperelastic strain energy function expressed in terms of the compo-
nents of the Green-Lagrange strain tensor 

MNE , and 
41 CC − are the passive material 

constants estimated in [12]. 
To drive the muscle contraction through ventricular systole, myofibre shortening 

was modulated by a time-dependent description of the active contractile stress ( CaT ) 

to represent the isometric tension at resting sarcomere length. The contractile stress 

aT generated by the muscle fibres was described using a quasi-static function of the 

sarcomere extension ratio ( λ ) and the time-varying CaT  using:  

[ ])1(1),( −+×= λβλ CaCaa TTT  . (2) 

with β = 1.45 [13]. This contractile stress component was incorporated into the stress-
strain relationship (Eq. 3) that appears in the stress equilibrium equations, which are 
derived from the equations of continuum mechanics, and were solved using a nonlin-
ear finite element method [11].    



 Investigating Heart Failure Using Ventricular Imaging and Modelling 167 

NM
a

k

N

k

M

NMMN

MN T
x

X

x

X
p

E

W

E

W
T 112

1 δδ+
∂

∂
∂

∂−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂+

∂
∂=  . (3) 

where p is the hydrostatic pressure field arising from the incompressible nature of the 

myocardial tissue, and 11 =Mδ  when 1=M  is the Kronecker delta. 

The tension transient, CaT , was prescribed based on reported measurements in ca-

nine [14]. During isovolumic contraction, CaT was gradually increased to initiate fibre 

shortening whilst the cavity volume was kept constant by altering the pressure applied 
to the LV endocardial surface. Once the LV cavity pressure reached the given after-
load (12 kPa, observed from the recorded pressure trace), the LV was allowed to 
contract indicating the start of ventricular ejection. The end of the ejection phase was 
determined by the peak contractile stress, which was set at 65 kPa to provide a typical 
ejection fraction for the normal case. During isovolumic relaxation, the cavity volume 
was again maintained constant while the pressure was decremented to zero. The elas-
tic energy was released allowing the LV wall to return to its stress-free state before 
the onset of the next cardiac cycle. Throughout the whole cycle, the basal position of 
the LV was fixed, whereas the apex was not constrained.      

2.3   Mechanical Modelling of Heart Failure 

Among the factors that may contribute to the development of HF, we have chosen to 
investigate the variations in LV geometry and myocardial mechanical properties. The 
detailed pathological scenarios are summarised as follows: 

 

1) ventricular dilation, simulated by increasing the size of the LV cavity by 25%, 
50%, 75% and 100% (Fig. 1). The enlarged LV cavity mimicked the wall thin-
ning and the more spherical shape of the LV observed in HF patients. Note that 
the resting sarcomere length and reference fibre orientation among these enlarged 
models was held constant.  

2) isotropic passive material properties by modifying the passive parameters of 
the control transversely-isotropic material relation. This variation increased the 
cross-fibre stiffness to reproduce the effect of growth of endomysial collagen, 
hence tighter coupling between fibres.  The overall stiffness of the LV was held 
constant by reducing the constitutive parameter C1 to match the diastolic pres-
sure-volume curve of the control case.  

3) reduced contractility where the maximum isometric tension at resting sar-
comere length was decreased by 20% from 65 kPa to 52 kPa, while the rate of 
change in active tension was similar to the control case.  

The combined effect of dilation, material isotropy and reduced contractility were 
explored in the following case studies: 

a) Case 1 : Transversely-isotropic stiffness with normal contractility; 
b) Case 2 : Isotropic stiffness with normal contractility; 
c) Case 3: Transversely-isotropic stiffness with reduced contractility; 
d) Case 4: Isotropic stiffness with reduced contractility.  

 

To assess LV mechanical functions, a series of global cardiac indices (see Table 1) 
and regional mechanical index were analysed. While the global indices can be readily 
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compared with studies undertaken using other technologies such as echocardiography 
and MRI, measurement of regional stress can provide more detailed insight into the 
underlying mechanisms of this dysfunction at the localised scale.  

 

 

Fig. 1. Anterior view of FE representation of the normal LV (left), the 50% dilated LV (middle) 
and 100% dilated LV (right).  Endocardial surfaces are shaded with the epicardial surfaces 
delineated with lines. Rotating rods illustrate the transmural rotation of the fibre orientations 
across the LV wall. 

Table 1. Summary of global indices used to compare ventricular mechanics across the case 
studies 

Cardiac Index Description Equation 
Ejection Fraction 

(EF, [%]) 
Measures fraction of blood 

pumped out of the LV ventricle 
with each heart beat 

EDV

ESVEDV
EF

)( −=  

Stroke Volume 
(SV, [ml]) 

Measures amount of blood 
ejected by the LV with each heart 

beat 

ESVEDVSV −=  

Average Fractional Short-
ening in the short-axis 

plane 
(AFSS, [%]) 

Measures changes in LV dimen-
sion in the short-axis plane at the 

equator between end-diastolic 
(ED) and end-systolic (ES) states 

( )
LVEDD

LVESDLVEDD
FS

−=  

Average Wall Thickening  
(AWT, [%]) 

Measures the changes in wall 
thickness between the (ED) and 

(ES) states 

( )
EDWT

EDWTESWT
WT

−=  

 
For the calculation of AFSS, the fractional shortening (FS) for each of the short-

axes (FSY & FSZ) was calculated (using the equation shown in Table.1 where 
LVEDD and LVESD are the LV dimensions at ED and ES states respectively), then 
the average of FSY and FSZ were taken to represent the AFSS. For the calculation of 
AWT, the Euclidean distances between adjacent endocardial and epicardial nodes at 
four locations around the LV (anterior, free-wall, posterior and septum) were calcu-
lated at ED and ES, then used to calculate the wall thickening (WT) at each region 
using the equation provided in the table above. The average of the four wall thicken-
ing values represented the average wall thickening (AWT). To investigate regional 
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mechanical behaviours, we examined the total fibre stress developed at the ED and 
ES states between the normal and 100% dilated LVs.  

3   Results 

Effect of dilation 
The effect of LV dilation at different levels on the global cardiac performances is 
illustrated in Fig. 2. The influence on each of the global cardiac indices was not uni-
form. For example, dilating the control LV model resulted in reduction of the ejection 
fraction (EF) by 25%, 11%, 46% and 34% for Cases 1, 2, 3 and 4 respectively. More-
over, the stroke volume (SV) increased for all Cases with 25% and 50% LV dilation, 
but decreased as the LV was dilated further for Cases 1, 3 and 4. Trends in AFSS and 
AWT were similar to that of EF with a steady reduction with LV dilation for Case 1, 
3 and 4, whilst the trend was more gradual for Case 2.  

 

 
Fig. 2. Changes in cardiac indices: ejection fraction (EF); stroke volume (SV); average frac-
tional shortening in the short-axis plane (AFSS); and average wall thickening (AWT) with 
changes in LV dilation. Dashed lines correspond to transversely-isotropy cases with 100% 
contractility (case 1: diamonds) and 80% contractility (case 3: triangles) whereas solid lines 
represent the isotropic cases with 100% contractility (case 2: squares) and 80% contractility 
(case 4: circles).   

Effect of tissue remodelling (loss of anisotropy) 
The effect of loss of tissue anisotropy due to remodelling is demonstrated by Cases 2 
and 4 (dashed lines in Fig. 2). For EF and SV, the remodelling in fibre structure had 
little impact for the control LV. This was primarily due to the fact that the overall 
stiffness of the LV was similar despite the changes in the relative stiffness between 
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the fibre and cross-fibre directions. On the other hand, the AFSS and AWT were all 
altered by +4% and -4% respectively in response to tissue remodelling. At all dilation 
levels, isotropy resulted in better mechanical behaviour (larger EF, SV and AFSS) 
compared to the transversely-isotropic models (Case 1 and 3, solid lines in Fig. 2) 
regardless of muscle contractility. The implication of this observation may be coincid-
ing with the compensated work LV was striving to carry out during the early stage of 
HF, but eventually leading to more severe microstructural remodelling that occurs 
during decompensated HF.  

 

 

Fig. 3. (a) Anterior views of the spatial distributions of the Cauchy stresses evaluated at each 
Gauss point of the Control LV. (Top-left) Passive fibre stress at end-diastole. (Top-right) Pas-
sive component of fibre stress at end-systole. (Bottom-left) Active component of fibre stress at 
end-systole. (Bottom-right) Total fibre stress at end-systole. (b) Anterior views of total fibre 
stress at end-systole evaluated at each Gauss point of the dilated LV for the transversely-
isotropic myocardium (top-left), isotropic myocardium (top–right), transversely-isotropic and 
reduced contractility (bottom-left) and isotropic and reduced contractility (bottom-right). 

Effect of reduced contractility 
Compromised contractility had significantly reduced the global LV performance for 
both transversely-isotropic elasticity and isotropic elasticity cases. The decrease in 
EF, AFSS and AWT for case 3 had the largest gradient with respect to LV dilation. 
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Therefore, the combined effect of dilation and reduced contractility (case 3) severely 
affected the mechanical behaviour of the LV with transversely-isotropic elasticity and 
slight improvements were found for the isotropic elasticity case (case 4) for the same 
reason described above. 
 
Analysis of myocardial fibre stress   
We also evaluated the fibre component of the Cauchy stress tensor at each Gauss point 
at end-diastole and end-systole for both the control and dilated (100%) LV models. 
Fig. 3(a) illustrates spatial variations of the fibre stress for a homogeneous activation of 
TCa. At end-diastole, there was significant variation with highest fibre stress near the 
endocardial surface (due to pressure loading), and lowest near the epicardial surface. 
The stress distribution also varied longitudinally, which is consistent with the hetero-
geneous fibre orientations within the LV.  The total fibre stress at end-systole for the 
dilated LV under different pathological conditions is illustrated in Fig. 3(b) for com-
parison. With diminished contractility (case 3 and 4), the end-systolic volume appeared 
to be larger than that with normal contractility (case 1 and 2). 

4   Discussion 

A FE model of the LV, combining geometric information from in vivo tagged MRI 
and fibre orientations from ex vivo diffusion tensor MRI, was used to investigate LV 
mechanical behaviour subject to alternations of cardiac structure, such as changes in 
geometry and material properties initiated by tissue remodelling, ultimately giving 
rise to decompensated heart failure. This non-invasive approach to study whole ven-
tricular mechanics with accurate geometry and tissue architecture information is es-
sential to address some of the problems we face nowadays regarding the roots of this 
disease. Whilst we are able to mimick the pathological scenarios suggested by ex-
perimental studies and successfully simulate the heart beat, the current model suffers 
a few limitations summarised as follows: 

 

1. Current analyses focus on the LV only. Lack of right ventricle (RV) means that 
some of the key boundary conditions exerted by the RV are missing in the cur-
rent mechanics analysis. And inclusion of the RV is a necessity when we are 
moving toward to bi-ventricular modelling. RV is not the only anatomical struc-
ture that poses substantial boundary conditions for reproducing physiologically 
realistic mechanical motion. Absence of papillary muscles, pericardium and the 
ventricular valves explains the longitudinal stretch see in the current simulations 
which is contrary to clinical observation. To circumvent this, these key struc-
tures should be incorporated into this FE model for future study.  

2. The fibre structures used for both normal and pathological cases are constant due 
to lack of data on failed heart. However, with more and more experimental data 
become available, patient-specific geometry and myofibre structures will defi-
nitely be attainable and ideal for this kind of analysis.   

3. Characterising subject-specific material properties is also critical to determine 
the global and regional cardiac functions. The use of appropriate material laws to 
describe the material responses are of equal importance. In this time-course 
study, transversely-isotropic constitutive relation was chosen to represent the 
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material behaviour while it is obvious, based on extensive tissue structure stud-
ies, that the myocardium deformed orthotropically. To introduce orthotropy, 
more material parameters will need to be customised and information on the 
sheet and sheet-normal orientations are also required. However, given the ad-
vances in DTMRI technology and the validation of the correlation between the 
third eigenvector with sheet-normal direction is already underway, incorporating 
these orientations to this biophysical model will definitely be feasible.  

4. These analyses were carried out assuming there was no change in the active ten-
sion that drives contraction and its timing between the healthy and diseased condi-
tions. The rationale behind this assumption is mainly due to insufficient informa-
tion on in vivo measurement of the activation levels for HF case. The next stage of 
this study will closely look into these assumptions and gradually address them. 

5   Conclusions and Future Work 

In this paper, we used a FE modelling framework to investigate the contributions of 
some factors, identified via several imaging studies (i.e. cardiac MRI and confocal 
microscope), towards causing LV mechanical dysfunction and eventual HF. This 
model allowed us to simulate three common pathological cases found in patients 
suffering from HF: 1) LV dilation; 2) loss of anisotropy due to tissue remodelling and 
3) reduced contractility. By simulating the cardiac motion over a complete cardiac 
cycle, the individual effects of the pathologies and their combined influences on LV 
mechanical performance were explored by comparing the global performance as well 
as regional fibre stress distributions between the normal and diseased cases. Better 
customisation of material properties and activation sequence can lead to more accu-
rate 3D motion recovery with this kind of biophysical model. This framework can 
also be extended to include more factors such as alternations of calcium levels at 
cellular levels. Further extension of this model to incorporate electrical activation 
with mechanics will enable us to systematically characterise the other major mecha-
nisms (i.e. electrical dis-synchrony) responsible for this dysfunction.   
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Abstract. We have recently presented the dynamic deformable elastic
template (DET) model for the retrieval of personalised anatomical and
functional models of the heart from dynamic cardiac image sequences.
The dynamic DET model is a finite element deformable model, for which
the minimum of the energy must satisfy a simplified equation of Dynam-
ics. It yielded fairly accurate results during our valuation process on
a 45 patients cine MRI database. However, it experienced difficulties
when dealing with very large thickening throughout the cardiac cycle,
or on highly pathological cases. In this paper, we introduce prescribed
displacements as low level constraints to locally drive the model. Non
prescribed contour nodes are displaced according to a combination of
forces extracted from prescribed points and image gradient. Prescrib-
ing a few points in a whole sequence allows us to retrieve much better
segmentations on rather difficult cases.

1 Introduction

Retrieving personalized anatomical and functional models from clinical cardiac
images remains a challenge. Magnetic resonance imaging (MRI) is a versatile
imaging modality, able to provide the required data to reconstruct patient spe-
cific models. A few papers have targeted the spatio-temporal analysis of the
heart function from dynamic image sequences. Montagnat proposed a dynamic
framework based on simplex meshes to analyze 4D SPECT data [1], treating the
temporal dimension geometrically. Sermesant proposed a bio-inspired electrome-
chanical model of the heart designed both for the simulation of its electrical and
mechanical activity, as well as for the segmentation of time series of medical
images [2]. Billet extended this approach to cardiac motion recovery using the
adjustment of the previous electromechanical model of the heart to cine MR
images [3]. Recently, Lynch proposed a parametric motion model, using a priori
knowledge about the temporal deformation of the myocardium that is embedded
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in a level-set scheme [4]. In a previous paper [5], we introduced the dynamic de-
formable elastic template model (Dynamic DET) for the automatic segmentation
and tracking of the heart in dynamic cine MRI sequences. This spatio-temporal
approach imposes temporal smoothness and periodicity constraints to improve
the regularity and continuity of the extracted contours throughout the cardiac
cycle.

The performance of the Dynamic DET was assessed in the context of the
MICCAI 2009 LV Segmentation Challenge (http://smial.sri.utoronto.ca/
LV_Challenge/Home.html). In the present study, we propose to improve the
robustness and accuracy of the obtained models by introducing prescribed dis-
placements to some contour nodes. Attraction of the model by wrong borders
can be avoided by introducing a limited number of imposed ”passage” points
(which are manually designated by the user). Moreover, such point prescription
could be provided by a pre-processing step, e.g. extraction of a displacement
field from tagged MRI.

First, the principle of the Dynamic DET model is recalled. Then, the proposed
methodologies to impose prescribed displacements into Dynamic DET are intro-
duced. In the last section, preliminary results on real pathological human MRI
sequences are presented.

2 Dynamic DET Model

In this section, we briefly expose the dynamic DET model which is fully detailed
in [5].

2.1 Model Main Equations

We assume the data is available as sequences of N -2D or -3D images, sampling
the cardiac cycle. To simplify the mathematical treatment of the problem, we
assume that the cardiac cycle is parameterized by t ∈ [0, 1[.

The DET model is a deformable volumetric model submitted to external con-
straints imposed by the image. The equilibrium of the model is obtained through
the minimization of an energy E which is the sum of an elastic deformation en-
ergy EElastic and energy Edata due to the action of external image forces f :

Eelastic =
1
2

∫
Ω

tr(σεT ) dΩ, Edata(u) = −
∫

∂Ω

f(u) dγ

where σ and ε are the 3D strain and deformation tensors and Ω is the a priori
model domain at rest. The a priori left ventricular (LV) model is an annulus in
2D (a half-ellipsoid in 3D)(Figure 1). The material is considered to be isotropic,
homogenous and completely defined by its Young modulus and its Poisson coef-
ficient. ∂Ω is the border of the object domain Ω.

These energy terms can be approximated by discretizing the displacement u
and the force f , using the finite element method (FEM). The displacement is
approximated by linear functions on these elements, while the forces are sampled

http://smial.sri.utoronto.ca/LV_Challenge/Home.html
http://smial.sri.utoronto.ca/LV_Challenge/Home.html
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Fig. 1. Sample ring mesh used as initial template for 2D short-axis cardiac MR seg-
mentation tracking

at nodal points. Under this approximation, the minimum of the energy must
satisfy the following equation:

KU = F(U) (1)

where K is the stiffness matrix corresponding to the response of the elastic
material, and U and F are respectively the displacement and force vectors on
mesh nodes.

The model resulting from equation 1 is purely static. Extending this method
to Dynamics [5], the heart dynamics is controlled by the simplified Dynamics
equation (where acceleration is neglected):

DU̇ + KU = F(U, t) (2)

We consider the matrix D to be a multiple of identity. It can thus be replaced
by a single scalar α.

2.2 Function Basis

Solutions to equation (2) do not neceassarily satisfy the periodicity and smooth-
ness constraints. Hence, we look for solutions in a finite-dimensional subspace F
generated by a set of Fourier harmonics.

The frames represent a collection of uniformly-spaced noisy samples of a
smooth and periodic phenomenon. Thus, we can assume the force fields Fn

derived from the images to be samples of an element of F . One and only one ele-
ment of F satisfies F( n

N ) = Fn , ∀n, 0 ≤ n < N . The discrete Fourier Transform
of the Fn samples is defined as [6] (with N even):

F(t) =
N/2∑

l=−N/2

fle2πilt

with fl =

⎧⎨⎩
dft[l], ∀l, 0 ≤ l < N

2

dft[l + N ], ∀l, −N
2 < l < 0

1
2dft[N

2 ], ∀l, l = ±N
2

and dft[l] = 1
N

∑N−1
n=0 Fne

−2πiln
N

In order to reduce the noise impact and to enforce smoothness of the motion,
either data or the computed solution are filtered. In the Fourier basis, filtering
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the high frequencies can be achieved by setting fl = f−l = 0 for l > a, where a
is the highest admissible frequency.

2.3 Algorithm Implementation

Solution to equation (2) is achieved through a pseudo-instationary process [7].
Roughly speaking, it consists in introducing a parameter τ , and considering a
pseudo-instationary problem with respect to τ derived from the original problem.
Let’s define the operator A = α d

dτ + K and consider,{
dU
dτ = F(U) − AU
U(0) = 0.

(3)

If U converges when τ → +∞, then it tends towards a limit which is a solution
of the nonlinear time dependent problem. Discretizing the previous equation with
finite differences to solve the temporal equation leads to (see [5] for details):

(
1

Δτ
+

α

Δn
+ K)Uτ

n = F(Uτ−1
n ) +

1
Δτ

Uτ−1
n +

α

Δn
Uτ

n−1 (4)

which is a linear system and thus straightforward to solve.

3 Displacement Constraints Applied to the Model

In the previous section, the model was driven only by image based forces, which
are generated with the following sequence of operations:

– Preprocess image with a median filter (5x5 kernel).
– Extract the contours with a Sobel edge detector.
– Compute a Gaussian smoothed gradient of the contours (σ = 0.5) to obtain

a vector field.
– Ensure that forces are null on the contours by applying a Geman-McClure

function to the vector norms.

While this approach allows to obtain fairly accurate results in most cases, the
method experiences difficulties when dealing with very large thickening through-
out the cardiac cycle, or highly pathological cases (ellipsoidal shape on short axis
images). Therefore, to obtain better segmentations, we introduce prescribed dis-
placements to locally drive the model with several methods. Prescribed displace-
ments have been used notably in parameter-free elastic deformation for 2D and
3D registrations [8]. With such a method, non prescribed contour nodes are dis-
placed according to a combination of forces extracted from prescribed points and
image gradient. In the next subsections, two methods to integrate prescribed
displacements as low level constraints to the DET model are described and
discussed.
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3.1 Peckar’s Method

We consider the static case, for which the theory is simpler to apprehend. Let’s
consider equation 1. The incorporation of prescribed displacements requires a
modification of the previous system of equations. Let’s suppose that a known
subset Ũ of the solution is prescribed on a fixed number of domain points (the
contours of the heart in our case). In the abscence of external image-based forces,
the vector F in the original system is set to zero. We will obtain our solution
from the modified system:

K̃U = F̃ (5)

where K̃ is a modified stiffness matrix, and F̃ contains contributions from the
known subset Ũ of the solution.

For example, to incorporate the prescribed displacement value ũi to the sys-
tem, we would put ũi to the ith position in F, and leave the other elements of
F to zero. Then, we transform the matrix K by filling its ith row with 0 and
setting the element Kii to 1. Note that if all values of the solution are prescribed,
we obtain K̃ = I and F̃ = Ũ, as we would expect.

This process is adapted to the dynamic case, and we can prescribe the value
of any subset of the solution, at any given time point. Mainly, it consists in
prescribing displacement of some points during initialization. These points are
then considered as static points, for which the speed u̇i is equal to zero.

3.2 Payne’s Method

Here again, we consider only the static case for the theoretical explanation. The
complete system of equations for equation 1 can be written:⎧⎨⎩K11u1 + K12u2 + ... + K1nun = Fn

K21u1 + K22u2 + ... + K2nun = Fn

etc.

If we want to fix the displacement of a node, for example ui = ũi, we can
add a large value βI to the coefficient Kii and replace the second member of the
equation by βũi. If β is much larger than the other coefficients of the stiffness
matrix, this modification is equivalent to replacing the initial equation by:

βui = βũi

Thus, we have correctly fixed the displacement of the node with the required
value. Moreover, the global system is still symmetric, and very few modifications
to the program are necessary (see [9] for more details). This process can be
extended to the dynamical scheme, and we can fix the displacement of any node
at any given time point of the sequence. Mainly, the stiffness matrix K being a
constant and identical at each time of the sequence, adding a large value βI to
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the coefficient Kii and replacing the second member of the equation (in equation
2) by our prescribed value at the given time will ensure a correct displacement
of the considered node.

3.3 Hybrid Methods

In the above subsection, we presented two methods to prescribe the displace-
ment of points at selected locations. As can be seen, both methods don’t take
into account external image-based forces. Therefore, the model evolution is only
driven by the prescribed point displacements. This is not what we want, since the
non prescribed nodes of the model must follow the contours of the myocardium.
To this aim, non prescribed nodes are displaced using a combination of forces
extracted from both prescribed points and image based forces.

With both methods, we operate as follow:

– Compute prescribed displacements, for end-diastolic (ED) and end-systolic
(ES) phases, by selecting a few points.

– Modify the stiffness matrix.
– Interpolate the displacement of the nodes which were prescribed at ED or

ES phases to the other phases, by averaging.
– Compute image-based forces.

With Peckar’s method, we then substitute image-based force by prescribed-
based force for points which were prescribed.

With Payne’s method, for points which were prescribed, we then substitute
image-based force by a linear combination of image-based force and prescribed-
based force.

The way both methods act for dynamic segmentation of the heart will be
discussed in Section 6.

4 Method Parameters and User Interaction

The parameters of the algorithms can be divided into the following categories:

– Initial Template: In 2D spatial dimension, the initial template is an annu-
lus representing both endocardium and epicardium. It is defined with three
geometrical parameters: the center of the annulus, the radius and the thick-
ness. These parameters are manually defined by the user on the ED frame.
The template is meshed by dividing the ring into triangles from a regular
partition of the LV into sectors and concentric rings (see Figure 1).

– Mechanical parameters: The Young modulus represents the rigidity of the
model, while the Poisson coefficient characterizes the ability of the material
to be compressed.

– Algorithm parameters: The stopping criterion defines when the algorithm
has converged. We can also choose the number of resolution levels with which
the sequence images are processed. The number of harmonics used in Fourier
filtering is usually fixed to 5.
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A contraction parameter (CP) has also been introduced, to initialize the tem-
plate correctly at the end-systolic (ES) phase, by making the ring thicker. CP is
set automatically during the initialization, based on a priori learning to auto-
matically identify endocardial points and fit a circle at ED as well as ES phase.

Finally, at the launching of the algorithm, an interactive window allows the
selection of points in the images which will be prescribed using either Peckar’s
or Payne’s method. It consists in choosing some outter and inner contour points
of the myocardium, at ED and ES phases, in order to drive the model closer to
the solution. When using Payne’s method, an additional parameter β allows to
balance image-based and prescribed-based forces (see section 6).

5 Results

The experiments were conducted on 17 2D Cine MRI sequences of MICCAI’09
Segmentation Challenge [10] to study the impact on the segmentation results
of prescribed displacements with both methods. The Young modulus was set to
0.15 and the Poisson coefficient to 0.2 (this is to cope with the adaptation of
the initial template to the data and the myocardial area variation during the
cardiac cycle, in 2D). The center of the annulus and its radius were found using
a semi-automatic initialization, and CP was automatically set depending on the
initialization on both ED and ES phases. The thickness was set to 8 pixels. The
annulus was generated with 3 rings and divided into 20 sectors. The number of
resolution levels was set to 3, and the stopping criterion to 10−5.

Table 1. Mean Average perpendicular distance for the inner (Avg Dist I) and outer
(Avg Dist O) contours. Mean Dice metric for the inner (Avg DM I) and outer (Avg
DM O) contours, for HF-NI-15, HF-I-06, HYP-37 and N-05 datasets.

Method Avg Dist I (mm) Avg Dist O (mm) Avg DM I Avg DM O

No prescription 3.51 3.11 0.84 0.92

Peckar 3.41 2.67 0.84 0.93

Payne 3.10 2.07 0.86 0.95

Figure 2 shows the results of a LV segmentation on a patient affected by heart
failure with no ischemia (4th slice level of the HF-NI-15 dataset), at ED, ES and
mid-diastolic phases, for segmentation with no prescription, and with prescribed
displacements with Peckar’s and Payne’s methods. Prescription was done us-
ing 2 to 5 points for inner and outter contours, at ES and ED phases. Table
1 references Dice metric and average perpendicular distance between estimated
and reference contours, for each method, averaged over 4 complicated cases be-
longing to different classes (heart failure with or without ischemia, hypertrophy,
normal). Note that these quantitative results have been evaluated based on ED
and ES phases only.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. DET model superimposed onto the images of HF-NI-15 sequence at a median
slice of the heart, at ED (left), ES (middle) and mid-diastolic (right) phase. The pink
mesh is the model. It is translucent so that correspondance between model and image
contours can be appreciated. Figures (a), (b) and (c) correspond to a segmentation with
no prescription. Figures (d), (e) and (f) correspond to a segmentation with Peckar’s
method. Figures (g), (h) and (i) correspond to a segmentation with Payne’s method
(β = 50).
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6 Discussion

The main advantage of our method is that it allows for the simultaneous segmen-
tation of both endocardium and epicardium over a whole dynamic sequence of
images, after the initialization of the templace at the ED phase, and optionally,
the prescription of a few points. The results shown in figure 2 demonstrate the
advantages of using prescribed displacements. The method experiences difficul-
ties on highly pathological cases, as seen on subfigures (a), (b) and (c). While
the segmentation is good at the ED phase, the model cannot correctly follow
the epicardium at ES phase, yielding inaccurate results.

Subfigures (d), (e) and (f) show the results obtained using Peckar’s method.
This method ensures perfect placement of the prescribed points, but at the
detriment of regularity (see the lower left part of each images).

Subfigures (g), (h) and (i) give the results obtained using Payne’s method.
This method leads to the best results among the three. It generates accurate
results without sacrificing contour regularity. The value β presented in section
3.2 represents the balance between image-based and prescribed-based forces. If
set too low, only the image-based forces will be taken into account. If set too
high, prescribed-based forces will be too strong compared to image-based ones,
and we will lose regularity. Using an intermediate value allows the model to
be attracted correctly towards the prescribed points, while still allowing some
slight displacements of prescribed nodes due to image-based forces, which results
in better regularity and overall better segmentation. With values of β ranging
from 0 to 500, an intermediate value of 50 appeared as a good compromise be-
tween image-based and prescribed-based forces. Using an interactive prescription
method, we are not sure that the selected points are perfectly placed onto the
contours of the myocardium, hence it is necessary to allow prescribed nodes to
be slightly displaced. For this reason, Payne’s method appears to be the most
suited in the case of segmentation of Cine MRI image sequences.

7 Conclusion

We have presented an improved dynamic DET, for the segmentation and tracking
of the heart from MRI sequences, and more generally, for the analysis of soft
deformable structures in periodic motion. Experiments on rather difficult cases
show a very good overall ability of the model to track the heart borders using
a few prescribed points to improve accuracy and robustness. Payne’s method is
the best one to extract accurate contours.

Based on these results, one could use motion information from MRI tagging
to drive the deformation.

Finally, extending DET model to track heart borders and motion in 3D, from
both Cine and tagged MR image sequences, is very appealing. It should be noted
that such extension does not require any further theoretical developments, since
the equations remain valid for the 3D case. However, 3D MR image processing
poses a number of purely technical problems, such as inter-slice alignement, 3D
interpolation and data visualization. This is the purpose of our future work.
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Abstract. Global and regional cardiac deformation provides important
information on myocardial (dys-)function in a variety of clinical settings.
Recent developments in the field of echocardiography have allowed the
cardiologist to quantify cardiac deformation in a non-invasive manner.
Unstitched volumetric data can be captured in a high frame rate by
real-time ultrasound imaging. However, most existing methods for mea-
suring myocardial mechanics are often limited to measurements in one
or two dimensions. Since myocardial tissue is virtually incompressible,
the ventricular wall contains the same volume during the cardiac cycle
and, thus, deforms in three dimensions. In this paper, we propose an
automatic method to estimate the regional 3D myocardial mechanics on
ultrasound images by recovering the 3D non-rigid deformation of the my-
ocardium. The key advantage of our method is fusing multiple informa-
tion, such as speckle patterns, image gradients, boundary detection, and
motion prediction, to achieve a robust tracking on 3D+t ultrasound data.
Preliminary results in both in-vitro and in-vivo experiments confirmed
these findings in a quantitative manner, as the motion and mechanical
parameters, such as displacement and strain, estimated by our method
are close to both the ground-truth data and the clinical evaluation. The
proposed method is efficient and achieves high speed performance of less
than 1 second per frame for volumetric ultrasound data.

1 Introduction

The estimation and analysis of cardiac motion provides important information
for the quantification of the elasticity and contractility of the myocardium. Al-
though visual wall motion scoring is the clinically established method for the
assessment of regional myocardial function, this methodology has been proven
to be highly variable between observers [1]. Tissue Doppler imaging (TDI) is
another alternative used in clinical studies to compute strain and strain rate.
However, the measurement of regional myocardial velocities is not independent
from the overall motion of the heart and suffers from tethering induced by collat-
eral segments [2]. It has been shown that TDI-based dyssynchrony parameters
are not reliable enough to predict response to cardiac resynchronization therapy
(CRT) when investigated in the PROSPECT trial, a multicenter study [3].

O. Camara et al. (Eds.): STACOM-CESC 2010, LNCS 6364, pp. 184–193, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Volumetric Data Detection Motion Tracking Myocardial Mechanics

Fig. 1. The outline of our automatic framework

Given the recent progress on real-time ultrasound imaging, unstitched volu-
metric data can be captured in a high volume rate, which allows to quantify
cardiac strain in a non-invasive manner. However, most existing methods for
measuring myocardial strain are often limited to measurements in one or two di-
mensions, including speckle tracking [4,5] and image registration approaches [6].
A few studies have carried out to analyze the change of myocardium mass during
a cardiac cycle [7]. The common conclusion is that the mass of the ventricular
wall remains relatively consistent during the cardiac cycle and the change is less
than 5% [8]. Since myocardial tissue is virtually incompressible, it deforms in all
three dimensions simultaneously [9,10,11]. Therefore, it is important to compute
the cardiac deformation (strain) in three-dimensional space.

In this paper we propose a new approach to estimate the 3D non-rigid defor-
mation of the ventricular wall and compute myocardial mechanics from 3D+t
ultrasound images. Compared to the existing methods, such as image registra-
tion [12,13,14] and optical flow [15], our framework has the following advantages:

1. Information from multiple cues, including speckle patterns, image gradients,
boundary detection, and motion prediction, are fused into a single Bayesian
objective function to improve tracking accuracy and robustness.

2. Efficient optimization is proposed to achieve high speed performance.
3. Image quality measurements based on image intensities and speckleness

scores are integrated in a non-orthogonal projection to handle noise and
signal dropouts in the ultrasound data.

4. This system provides a fully automatic solution to track and quantify the
myocardial deformation and to estimate myocardial mechanics.

To demonstrate the performance, we evaluated the proposed method on in-
vitro data taken from animals, as well as in-vivo data taken from both normal
and cardiomyopathy subjects. Preliminary results confirmed these findings in a
quantitative manner, as the estimated motion and mechanical values are close
to both the ground-truth data and the clinical evaluation.

2 Framework

In this section, we present the new framework to estimate 3D myocardial me-
chanics. Fig. 1 illustrates the main steps of our system: automatic initialization,
dense myocardium tracking, and 3D myocardial mechanics computation.
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2.1 Initialization

In the starting frame (typically the end-systole or end-diastole cardiac phase), we
initialize the tracking process automatically by detecting the myocardial bound-
aries of the left ventricle (LV), as shown in Fig. 2, and tessellate the whole
myocardium into a 3D mesh. To estimate the pose (i.e., position, orientation,
and scale) and shape of the LV, a 3D detector is learned on a pre-annotated
database of 668 volumetric ultrasound images using the marginal space learning
(MSL) approach [16], and a boundary detector using the steerable features and
the probabilistic boosting-tree (PBT) [17]. The training database was manually
annotated by clinical experts to provide the ground-truth segmentation. During
the testing stage, given an input volume we first align the mean LV shape to
the detected pose, and then deform the model to find the best boundary candi-
date using the trained boundary detector for each point of the model along the
normal directions.

(a)A4C (b)A3C (c)A2C (d)Short Axis (e)3D Mesh

Fig. 2. Example detection results of both the endocardial and epicardial boundaries of
the left ventricle (LV). The volumetric ultrasound data is acquired from a cardiomy-
opathy patient. Automatically detected multi-planar reformatted planes (MPRs): (a)
apical four chamber plane, (b) apical three chamber plane, (c) apical two chamber
plane, and (d) short axis middle plane. (e) shows the resulting 3D mesh.

2.2 3D Motion Tracking

In order to estimate myocardium strain, dense tracking of the cardiac motion is
required to establish the inter-frame correspondences for each point on the 3D
mesh initialized in Sec. 2.1. This task is particularly challenging for the ultra-
sound data because of the noise and missing data [15]. Instead of removing the
speckle noise, which might potentially lose discriminative features, we propose to
fuse information from multiple cues into a single Bayesian framework as in [18],

argmax
Xt

p(Xt|Y 0:t) = arg max
Xt

p(Y t|Xt)︸ ︷︷ ︸
likelihood

∫
p(Xt|Xt−1)︸ ︷︷ ︸

prediction

p(Xt−1|Y 0:t−1) (1)

where Y 0:t = Y 0, . . . , Y t are the measurements from the input image sequence
I0:t = I0, . . . , It. For clarity, we use Xt to denote a concatenation of the mesh
point positions, Xt = [X1, . . . , Xn], which need to be estimated at the current
time instant t and n is the total number of points in the mesh model.
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To maximize the accuracy and robustness of the tracking performance, the
likelihood term p(Y t|Xt) is computed from both boundary detection and
speckle template matching as follows, p(Y t|Xt) = (1−λk)p(yb|Xt)+λkp(Tt|Xt),
where Tt is the speckle pattern template and λk is the weighting coefficient of
the matching term. In the first term p(yb|Xt) is the posterior distribution of the
myocardial boundaries learned in Sec. 2.1, using the steerable features and the
probabilistic boosting-tree (PBT) [17]. The second term p(Tt|Xt) is obtained by
a logistic function, 1

1+e−‖It(Xt)−Tt‖2 , based on speckle matching:

‖It(Xt) − Tt‖2 =
∑
i,j,k

(It(Xt + (i, j, k)) − Tt(i, j, k))2 (2)

where i, j, and k are the pixel-wise shift in the x, y, and z directions, respectively.
λk is computed based on the speckleness measure as follows,

λk =
1

1 + e−fc(It(Xt),Tt)
, fc(It(Xt), Tt) =

cov(It(Xt), Tt)
σ(It(Xt))σ(Tt)

(3)

cov(It(Xt), Tt) is the intensity covariance between the image block It(Xt) cen-
tered at Xt and the speckle template Tt. σ(It(Xt)) and σ(Tt) are the intensity
variance of the image block It(Xt) and the speckle template Tt, respectively. In
our experiments, the typical image block size is 11 × 11 × 11, while the typical
search range is 7 × 7 × 7. To handle the temporal image variation, the speckle
template Tt is also updated online using the image intensities It(Xt−1) from the
previous frame t − 1.

The prediction term in Eqn. 1, p(Xt|Xt−1), is the transition probabil-
ity function p̂(Xt|Xt−1) augmented by an incompressibility constraint, i.e.,
p(Xt|Xt−1) = p̂(Xt|Xt−1)p(fV (Xt) − fV (Xt−1)), where fV (X) is the vol-
ume enclosed by the mesh X and p̂(Xt|Xt−1) can be learned directly from
the training data set [19]. p(fV (Xt) − fV (Xt−1)) is modeled as a zero mean
Gaussian distribution N (0, σV ) based on the training data.

Computational Efficiency. It has been shown that the 3D correlation in
Eqn. 2 is computationally expensive [20]. To achieve a fast processing it is de-
sirable to speed up the estimation of Eqn. 2, i.e.,

‖It(Xt) − Tt‖2 = ‖It(Xt−1 + ΔX) − Tt‖2 (4)

where ΔX is the point displacement between two frames. Let Dt = It(Xt−1)−Tt

be the concatenation of the intensity difference at each point between the current
image It and the template Tt, and Gt = ∂It(Xt−1)

∂X be the image gradients of It

at Xt−1. We can then rewrite Eqn. 4 using the first order Taylor expansion

‖Dt + GtΔX‖2 = DT
t Dt + 2DT

t GtΔX + ΔXT GT
t GtΔX (5)

Furthermore, because of the acquisition nature of the ultrasound data, it is
important to handle noise and signal dropouts [15,21]. Therefore, we introduce
a regularization term based on a non-orthogonal projection as follows,

X̂ = X̄ + V
√

Cq, q =
√

CV T (X − X̄) (6)
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where X̄ is the mean shape, V is the matrix of concatenated eigenvectors, and
q is a parametric vector describing the non-rigid warp. C is a diagonal weight-
ing matrix whose diagonal entries are defined by a logistic function: C(i, i) =

1
1+e−λiIt(Xt(i)) , where each weight λi can be learned from the training data. Since
each diagonal element in the weighting matrix C has a small value on low in-
tensity values, it gives a small weight on the regions with missing data and
signal drop-outs in the volumetric ultrasound images. In our experiments The
shape model in Eqn. 6 is computed from 668 manually annotated volumetric
ultrasound images, which were acquired by a Siemens SC2000 system.

Consequently, the objective function (1) can be rewritten as,

arg max
qt

p(qt|Y 0:t) = argmax
qt

p(Y t|qt)
∫

p(qt|qt−1)p(qt−1|Y 0:t−1) (7)

which can be solved recursively as in [22]. The 3D correlation in Eqn. 5 can be
computed as follows,

‖Dt + GtΔX‖2 = DT
t Dt + 2DT

t GtΔq + ΔqT
G

T
t GtΔq (8)

where Gt = GtV
√

C. Because DT
t Dt, DT

t Gt, and GT
t Gt are independent of

Δq, they can be pre-computed to speed up the computation.
In practice the number of warp parameters, nq, is much less than the number

of mesh points n, e.g., in our experiments a typical value of nq is 150 while
n is 771. Thus, the computational cost to solve Eqn. 7 is much less than the
original objective function in Eqn. 1. The 3D correlation in Eqn. 2 is an O

(
m3n

)
operation where m (typically 7 in our experiments) is the search range in the
x, y, and z directions, while Eqn. 8 has a complexity of O (nnq) only. Therefore,
our proposed method is computationally efficient and can achieve a high speed
performance. In our experiments, the average processing time on a 3.0GHz PC
machine is less than 1 second per frame for a 3D+t ultrasound sequence with
the volume size of 200 × 200 × 140.

2.3 Mechanical Analysis

Given the tracking result X from Sec. 2.2, various mechanical parameters can
be computed, such as displacements, velocities, and strain. In order to describe
the 3D deformation of the LV, a local heart coordinate system has been in-
troduced [1]. As illustrated in Figure 3, the three local axes are defined as the
longitudinal (meridional) DL, radial (transmural) DR, and circumferential DC

directions. Each point position X is then projected from the Cartesian coordi-
nate system to the local cardiac coordinate system, X ′ = (X(L), X(R), X(C)).
Please note that the LV apex point is excluded from analysis, because of the
ambiguity of the longitudinal and circumferential directions at the tip point.

The longitudinal and radial displacements can then be computed as Z
(L)
t =

X
(L)
t − X

(L)
t−1 and Z

(R)
t = X

(R)
t − X

(R)
t−1, respectively. The circumferential dis-

placement is computed as the rotation angle, Z
(C)
t = arccos(< DRt , DRt−1 >),
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where <, > denotes the dot product. Z
(C)
t is defined as positive if the rotation is

counter-clockwise viewed from the apex, and negative if clockwise. The velocity
can be computed as dividing the displacements by the acquisition time step tf
of the input 3D+t ultrasound sequence.

Longitudinal 

Radial

Circumferential 

(a) (b)

Fig. 3. Local heart coordinate system. (a) The local coordinate system is defined by
the longitudinal (DL), circumferential (DC), and radial (DR) axes. (b) The analysis
results are reported on the apical, middle, and basal segments.

To measure the myocardial strain, longitudinal, radial and circumferential
tensor values are computed at each mesh point. For each point i and its ni

neighbors in the three-dimensional space, we concatenate the corresponding po-
sitions into a 3 × (ni + 1) matrix, Y ′ =

[
X

′T
i , X

′T
1 , . . . , X

′T
ni

]
. Given the initial

positions Y ′
0 in a sequence, the Lagrangian strain tensor can be computed as

F =
1
2
(JT J − Λ), J = Y ′

t · Y ′
0
T (Y ′

t · Y ′
0
T )−1 (9)

where Λ is a 3 × 3 identity matrix and J is a deformation gradient tensor.
The longitudinal, radial, and circumferential strain values are reported as the
diagonal elements of F , i.e., F (0, 0), F (1, 1), and F (2, 2), respectively. Example
results along with their mapping to the left ventricle surface are shown in Fig. 4.

3 Experimental Results

In this section, we demonstrate the performance of our automatic detection
and tracking method as well as the myocardial mechanics estimation. In our
experiments, high frame-rate 3D+t ultrasound sequences were acquired by a
Siemens SC2000 system with the average volume size of 200 × 200 × 140. The
average spatial resolution is 1mm in the x, y, and z directions, and the average
temporal resolution is 44 frames per second.

In-Vitro Study: To evaluate the accuracy of our automatic tracking method,
we performed an in-vitro experiment on animals. The ground-truth motion was
generated by a rotation device and a water pump controlling the stroke volume.
Two crystals were implanted in the apical and middle regions of the left ven-
tricle, respectively, to measure the myocardial movement. The average distance
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(a) longitudinal strain (b) radial velocity (c) circumferential displacement

Fig. 4. Examples of myocardial mechanics estimation: (a) strain, (b) velocity, and (c)
displacement values in the longitudinal, radial, and circumferential direction respec-
tively. In the top row, the left picture in each pair shows the estimated values mapped
to the endocardial boundary of the left ventricle, while the right one shows the direc-
tion and magnitude of the dense velocity field. The apical, middle, and basal regions
are marked in red, green, and blue, respectively. The bottom row shows the plot on
each region, where the horizontal axis is time and the vertical axis is the estimated me-
chanical parameter value. The vertical blue bar indicates the time stamp of the frame
displayed in the top row. Please note that in (c) the recovered rotation motion in the
apical and basal regions are in opposite directions, which shows that our method can
recover the twist motion of the left ventricle.

between two crystals is 30mm. 4 volumetric ultrasound sequences were acquired
with 10, 15, 20, and 25 rotation degrees, respectively, and 3 sequences with dif-
ferent stroke volumes. As reported in Table 1, our tracking results are consistent
with the ground-truth measurements on both rotation and displacement data.

Furthermore, to evaluate the results of our myocardial strain estimation, we
compare them against the crystal measurements for the same subjects in the in-
vitro study. The ground-truth longitudinal Lagrangian strain can be computed
based on the displacement reported in Table 1(b), where the two crystals were
implanted in the apical and middle regions of the left ventricle, respectively.
Table 2 reports the comparison between our estimated strain values and the ones

Table 1. In-vitro experiments on both (a) rotation and (b) displacement data. The
ground-truth motion was generated by a rotation device and a water pump controlling
the stroke volume. Two crystals were implanted in the apical and middle regions of the
left ventricle respectively to measure the myocardial movement. The displacements in
(b) were computed based on a 30mm reference length.

Rotation(degrees) 10 15 20 25

Estimation 9.3 13.5 18.1 21.8

Accuracy 93% 90% 91% 87%

Displacement(mm) 0.82 1.29 2.02

Estimation 0.9 1.54 2.31

Accuracy 90% 81% 91%
(a) Rotation Data (b) Displacement Data
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Table 2. Comparison of the longitudinal strain estimation between our method and
the crystal measurements in the in-vitro study. The two crystals were implanted in the
apical and middle regions of the left ventricle, such that the longitudinal Lagrangian
strain can be computed based on the displacement as the ground-truth measurement
in the top row. The estimation results in the middle row are computed from the 3D
strain tensor using our method. The low difference values in the bottom row show
clearly that our estimation is consistent with the clinical measurements.

Longitudinal Strain 2.63% 4.11% 6.68%

Estimation 3.43% 5.19% 8.25%

Difference 0.8% 1.08% 1.57%

Table 3. Performance analysis on a large data set including 503 3D+t ultrasound
sequences. In the first experiment, the data set was evenly split into a training set
with 239 sequences and a testing set with the remaining 264 sequences, while in the
second experiment the training set (434) and the testing set (69) were not balanced.
The error measurements were computed as the average point distance between our
estimated mesh and the ground-truth annotations by experts on both the end-diastolic
and end-systolic frames. The consistent evaluation results demonstrate the robustness
of our proposed method.

measure(mm) training (239) testing (264) training (434) testing (69)

mean/std 2.21/1.57 2.68/2.63 2.26/1.42 2.64/2.23

from crystal measurements. The low difference values in Table 2 show clearly that
the results from our method are consistent with the clinical measurements.

In-Vivo Study: To evaluate the robustness of our learning-based detection
and tracking method, we tested it on a large data set including 503 volumetric
ultrasound sequences from human subjects. The data set was randomly split
into a training set and a testing set, where the training set was used to learn
the detectors in Sec. 2.1 and the shape model and prior distributions in Sec. 2.2,
while the testing set reflected the performance for unseen data. The results on
both the training and testing sets are reported in Table 3. The low error values
on both the training and testing data demonstrate the high accuracy and robust
performance of our learning-based method on both seen and unseen data.

4 Conclusion

In this paper, we proposed an automatic framework to estimate the regional 3D
myocardial mechanics on ultrasound images by recovering the 3D non-rigid de-
formation of the ventricular wall. The advantages of our new method include: (1)
fusing information from multiple cues into a single Bayesian objective function
to achieve accurate and robust tracking, (2) providing an efficient optimization
approach to achieve high speed performance, (3) integrating image quality mea-
surements based on image intensities and speckleness scores in a non-orthogonal
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projection to handle noise and missing data, and (4) providing a fully automatic
solution to track and quantify the myocardial deformation and to estimate my-
ocardial mechanics. Preliminary results on both in-vitro and in-vivo clinical data
demonstrated a strong agreement with the ground-truth values and expert mea-
surements.

Acknowledgement

The authors would like to thank Dr. Sahn and Dr. Ashraf at OHSU for providing
the volumetric ultrasound sequences and sonomicrometry data in the in-vitro
animal study.

References

1. D’hooge, J., Heimdal, A., Jamal, F., Kukulski, T., Bijnens, B., Rademakers, F.,
Hatle, L., Suetens, P., Sutherland, G.R.: Regional strain and strain rate measure-
ments by cardiac ultrasound: Principles, implementation and limitations. Eur. J.
Echocardiogr. 1(3), 154–170 (2000)

2. Hatle, L., Sutherland, G.: Regional myocardial function a new approach. Eur. Heart
J. 21, 1337–1357 (2000)

3. Chung, E., Leon, A., Tavazzi, L., Sun, J., Nihoyannopoulos, P., Merlino, J., Abra-
ham, W.T., Ghio, S., Leclercq, C., Bax, J., Yu, C., Gorcsan III, J., St. John Sut-
ton, M., De Sutter, J., Murillo, J.: Results of the predictors of response to crt
(PROSPECT) trial. Circulation 117, 2608–2616 (2008)

4. Kaluzynski, K., Chen, X., Emelianov, S., Skovoroda, A., O’Donnell, M.: Strain
rate imaging using two-dimensional speckle tracking. Transactions on Ultrasonics,
Ferroelectrics and Frequency Control 48(4), 1111–1123 (2001)

5. Suffoletto, M., Dohi, K., Cannesson, M., Saba, S., Gorcsan, J.: Novel speckle-
tracking radial strain from routine black-and-white echocardiographic images to
quantify dyssynchrony and predict response to cardiac resynchronization therapy.
Circulation 113(7), 960–968 (2006)

6. Ledesma-Carbayo, M.J., Kybic, J., Desco, M., Santos, A., Suhling, M., Hunziker,
P., Unser, M.: Spatio-temporal nonrigid registration for ultrasound cardiac motion
estimation. IEEE Trans. Medical Imaging 24(9), 1113–1126 (2005)

7. Yin, F.C.P., Chan, C.C.H., Judd, R.M.: Compressibility of perfused passive my-
ocardium. American journal of physiology. Heart and circulatory physiology 271(5),
1864–1870 (1996)

8. Zhu, Y., Papademetris, X., Duncan, J.S., Sinusas, A.J.: Cardiac MR image seg-
mentation with incompressibility constraint. In: ISBI, pp. 185–188 (2007)

9. Glass, L., Hunter, P., McCulloch, A.: Theory of Heart: Biomechanics, Biophysics,
and Nonlinear Dynamics of Cardiac Function. Springer, New York (1991)

10. Amini, A., Chen, Y., Curwen, R., Manu, V., Sun, J.: Coupled b-snake grides and
constrained thin-plate splines for analysis of 2d tissue deformations from tagged
mri. TMI 17(3), 344–356 (1998)

11. Leung, K.Y.E., van Stralen, M., van Burken, G., de Jong, N., Bosch, J.G.: Auto-
matic active appearance model segmentation of 3D echocardiograms. In: ISBI, pp.
320–323 (2010)



Volumetric Myocardial Mechanics from 3D+t Ultrasound Data 193

12. Grau, V., Becher, H., Noble, J.: Registration of multiview real-time 3-D echocar-
diographic sequences. TMI 26(9), 1154–1165 (2007)

13. Elen, A., Choi, H.F., Loeckx, D., Gao, H., Claus, P., Suetens, P., Maes, F., D’hooge,
J.: Three-dimensional cardiac strain estimation using spatio-temporal elastic reg-
istration of ultrasound images: A feasibility study. TMI 27(11), 1580–1591 (2008)

14. Craene, M.D., Camara, O., Bijnens, B.H., Frangi, A.F.: Large diffeomorphic FFD
registration for motion and strain quantification from 3D-US sequences. In: Ayache,
N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 437–446.
Springer, Heidelberg (2009)

15. Duan, Q., Parker, K.M., Lorsakul, A., Angelini, E.D., Hyodo, E., Homma, S.,
Holmes, J.W., Laine, A.F.: Quantitative validation of optical flow based myocardial
strain measures using sonomicrometry. In: ISBI, pp. 454–457 (2009)

16. Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber
heart modeling and automatic segmentation for 3-D cardiac CT volumes using
marginal space learning and steerable features. TMI 27(11), 1668–1681 (2008)

17. Tu, Z.: Probabilistic boosting-tree: Learning discriminative models for classifica-
tion, recognition, and clustering. In: ICCV, pp. II: 1589–1596 (2005)

18. Zhu, Y., Papademetris, X., Sinusas, A.J., Duncan, J.S.: A dynamical shape prior
for LV segmentation from RT3D echocardiography. In: Yang, G.-Z., Hawkes, D.,
Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp.
206–213. Springer, Heidelberg (2009)

19. Yang, L., Georgescu, B., Zheng, Y., Foran, D.J., Comaniciu, D.: A fast and accurate
tracking algorithm of left ventricles in 3D echocardiography. In: ISBI (2008)

20. Chen, X., Xie, H., Erkamp, R., Kim, K., Jia, C., Rubin, J.M., O’Donnell, M.: 3-D
correlation-based speckle tracking. Ultrasonic Imaging 27, 21–36 (2005)

21. Wang, X., Chen, T., Zhang, S., Metaxas, D., Axel, L.: LV motion and strain com-
putation from tMRI based on meshless deformable models. In: Metaxas, D., Axel,
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Abstract. Impaired systolic ventricular function is common in patients diag-
nosed with heart failure (HF) or ischaemic heart disease. The diminished con-
tractile performance with impaired contractility (systolic HF) can be induced by 
impaired filling function (diastolic HF) and the wall stress (both passive and ac-
tive) may indicate the progression from diastolic HF to systolic HF. In order to 
better understand the distribution of active stress during ventricular contraction, 
a left ventricular (LV) finite element (FE) model incorporating LV fibre geome-
try and function was developed to parameterise a time-varying model of myo-
cardial contraction by simulating LV mechanics. During systole, the isometric 
active stress monotonically increased to 95 kPa, and rapidly recovered during 
isovolumic relaxation. We also observed regional variations of the fibre length 
dependent contractile stress throughout the LV. The time-varying active stress 
curve thereby obtained enabled quantification of heart muscle performance. 
This type of integrative modelling enables the investigation of LV mechanics 
on an individualised basis.  

Keywords: Magnetic Resonance Imaging (MRI), Diffusion Tensor MRI 
(DTMRI), Left Ventricular (LV) mechanics, Finite Element Modelling, Passive 
Material Parameter estimation, Contractile stress. 

1   Introduction 

Ventricular hypertrophy is a transitional phase during the development of heart failure 
(HF). A hypertrophic heart has undergone compensatory remodelling, but eventually 
becomes incapable of working efficiently. Many HF patients exhibit preserved systolic 
pump function (e.g. normal ejection fraction), but have increased LV wall thickness 
and a correspondingly increased LV mass, which masks a decreased contractility. The 
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changes in wall thickness can be triggered by the disturbance in physiological, geomet-
rical and/or haemodynamic loading conditions. A series of remodelling processes oc-
cur in the myocytes to alter force/tension relationships, material properties, and hence 
muscle performance during the whole cardiac cycle. Since diastolic HF occurs at an 
early stage, the passive material responses have been the centre of cardiac mechanics 
modelling research. The changes in passive material properties give rise to diastolic 
dysfunction and can potentially influence the active process of ventricular relaxation. 
Moreover, the remodelling of the myocardium can be initiated by changes in the con-
tractile force generated by the myofibrils during systole [1].  

Heart wall stress, during both diastolic inflation and systolic contraction [2], has 
been identified as a factor accounting for different patterns of hypertrophy [3]. It has 
been suggested that patients suffering from either concentric hypertrophy or eccentric 
hypertrophy exhibit normal peak systolic stress despite elevated end-systolic pressure 
or elevated end-diastolic stress. To explain the normal wall stress, they proposed that 
an enlarged chamber leads to increased peak systolic stress, which again leads to an 
increase in wall thickness, and eventually normalised systolic stress. These observa-
tions along with other experimental findings [4] all indicate that systolic wall ten-
sion/stress initiates and drives the progression of hypertrophy.  

Not only has systolic wall stress been considered as a stimulus to ventricular hy-
pertrophy, but it has also been used by clinicians to assess preoperative and postop-
erative LV function in patients with mitral valve regurgitation. For patients who have 
had mitral valve replacement, a rather misleading reduction in EF has been reported. 
Ejection fraction can also be normalised by hypertrophy. To avoid these problems, the 
ratio of end-systolic wall stress (ESWS) and end-systolic volume (ESV) has become 
widely used to better evaluate LV function. Compared to a normal person, an elevated 
ESWS/ESV ratio indicates a better LV contraction for a given afterload, whereas, 
worsened LV contractility is defined by a lower ESWS/ESV ratio [5]. 

Since stress cannot be directly measured in vivo like strain and ventricular myocar-
dium has a complicated three-dimensional (3D) structure, which gives rise to anisot-
ropic, nonlinear, time-dependent [6] and hyperelastic material behaviour [7]. This 
simple one-dimensional stress calculated using theoretical equations is therefore not 
physiologically realistic for making clinically relevant observations. Moreover, the 
stress generated by the myofibres is largely dependent on the material properties of 
the underlying myocardium. Finite element (FE) modelling enables direct computa-
tion of the stress field based on the realistic geometry and strain field together with 
knowledge of the mechanical properties of the myocardium. With the development of 
cardiac MRI, we can also validate the stress calculation and estimate myocardial me-
chanical properties by matching myocardial deformation (strains) measured non-
invasively using tagged MRI. In our previous study [8], we established a FE model 
incorporating in vivo tagging and concurrent pressure recordings with ex vivo DTMRI 
in a normal canine heart. This biophysical model was then used to simulate the dia-
stolic inflation using a transversely-isotropic constitutive relation. Passive constitutive 
parameters were tuned by matching the predicted localised motion of a large set of 
embedded material points with those derived from tagged MRI [9].  

In this study, we have extended the estimation process to model the systolic me-
chanics and optimise the activation parameters by matching the pressure-volume  
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relation established from the pressure recordings during ventricular contraction and 
relaxation. This integrative FE model-based framework enables us to assess the stress 
development throughout the systole which can facilitate investigating the effect of 
changing passive material properties on active contraction and effect of changing wall 
stress on wall thickening – the critical point for the start of remodelling.  

2   Methods 

2.1   Model Creation 

The anatomical model used in this study based the geometric information on in vivo
tagged magnetic resonance imaging (MRI) of a canine left ventricle (LV) and myo-
cardial fibre structure information on ex vivo diffusion tensor MRI of the same LV. 
The imaging and data acquisition was performed at the NIH Laboratory of Cardiac 
Energetics. A summary of imaging protocols and parameters are presented in [9].    

From the short-axis tagged MRI images, surface contours of the LV were seg-
mented at the end of isovolumic relaxation (assumed to be the unloaded, zero pressure 
reference state) using Zinc Digitiser1. The surface contours of the DTMRI images 
were also digitised in the 2D imaging coordinate system using same digitisation soft-
ware. The segmented surface contour for each short-axis slice was used to create a 
mask to exclude the pixels outside of the LV myocardium. Concurrent pressure re-
cordings were achieved by inserting a MR compatible Millar transducer into the left 
ventricular cavity before tagged MRI data were acquired. Illustration of the synchro-
nisation of pressure recording with imaging trigger and right atrial pacing can be 
found in [9].  

The in vivo geometric information (tagged MRI) and ex vivo microstructural in-
formation (DTMRI) of the same heart were combined using a mathematical model. 
We created a LV FE model using nonlinear geometric fitting to match segmented 
contours of the MR tagged images. The geometric model consisted of 16 smoothly 
continuous tri-cubic Hermite hexahedral elements, arranged with 4 circumferential 
elements, 4 longitudinal elements and 1 transmural element (Fig. 1a). The endocardial 
and epicardial surfaces of FE model were fitted to the corresponding segmented sur-
face data using a nonlinear least squares approach [10] implemented in CMISS2.

Directions of maximum diffusion (principle eigenvectors) obtained from the 
DTMRI data were transformed into the above LV FE model using free-form deforma-
tion techniques (host mesh fitting) as described previously in [9]. To incorporate the 
fibre orientations to the FE model, the fibre angle (defined as positive for an elevation 
angle above the short-axis plane) was calculated for each vector prior to fitting. It was 
assumed that fibre vectors lay parallel to the epi/endo wall planes. Imbrication (trans-
verse) angles and sheet angles were neglected in this study. Myofibre orientations were 
incorporated into the geometric model as a fibre angle field (interpolated using tri-
cubic Hermite basis functions), which was fitted using nonlinear least squares. Fig. 1b 
illustrates the LV model with the fitted fibre orientation field and demonstrates the 
transmural variation throughout the LV wall.  

1 http://www.cmiss.org/cmgui/zinc.  
2 http://www.cmiss.org/.  
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                                            (a)                                                       (b) 

Fig. 1. Endocardial surface of the model fitted to the segmented epicardial and endocardial data 
from tagged MRI (endo RMSE = 0.31mm; epi RMSE = 0.33mm); (b) Anterior view of the LV 
model superimposed with the fibre orientation field fitted to the transformed DTMRI data.  

2.2   Mechanics Model 

The stress-strain relationship characterises the material properties of individual mate-
rials that play major roles in determining the mechanical function. The following 
equation expresses the second Piola-Kirchhoff stress tensor (T ) in terms of the La-
grangian Green strain tensor ( E ) (which defines the kinematic relationship between 
the reference coordinates X, and the deformed coordinates x of a material point) via 
the strain energy density function (W ) which defines the passive material properties.  
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The variable p is a reaction stress (also known as the hydrostatic pressure), which 
arises due to the incompressible nature of the tissue, and was interpolated using a tri-

linear Lagrange scheme; M
1δ is the Kronecker delta and Ta is the active stress gener-

ated by myocytes. In the absence of body forces and rigid body acceleration, the stress 
equilibrium equation (Eq. 1) can be expressed in terms of the microstructural material 
coordinates [11] and solved using nonlinear Galerkin finite element techniques to de-
termine the deformed state of the body under specified boundary conditions.  

In this study, two sets of two-state quasi-static analyses were considered: 1) defor-
mation from the reference LV state (zero-pressure / unloaded state) to the passively 
inflated (end-diastolic) state due to LV endocardial pressure loading; 2) deformation 
from the end-diastolic state to the fully contracted (end-systolic) state. In each case, 
the equations of motion formed a set of nonlinear residuals that were solved using 
Newton’s method to linearise the equations. This resulting linear system was solved 
using LU decomposition. The initial solution for the finite elasticity equations was 
chosen to be the reference geometry modified by any kinematic constraints.  

To reproduce the experimental LV deformation, physiologically realistic loading 
constraints must be defined. The in vivo LV cavity pressure recordings, which were 
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temporally synchronised with the tagged MRI data, allowed us to apply the appropri-
ate endocardial surface constraints required to inflate the LV during diastole, resist 
systolic contraction during isovolumic contraction until the afterload was reached and 
guide the LV contraction during ejection phase by matching the pressure recordings. 
By analysing the long-axis tagged MRI images, we derived the kinematic constraints 
for the base of the LV model throughout the cardiac cycle. To simulate the passive 
ventricular mechanics, the end-diastolic LV pressure load of 0.5 kPa was applied to 
the endocardial surface of the model in incremental steps of 0.1 kPa. The long-axis 
(x) positions of the basal plane were prescribed to match the tag plane movements 
tracked from the long-axis images. The passive stress-strain behaviour of the ven-
tricular myocardium in this study was modelled using the transversely-isotropic ex-
ponential constitutive [12] relation in Eq. 2.  
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where E  are the components of Green’s (Lagrange) strain tensor referred to fibre (f),
cross-fibre (c) and radial (r) coordinates. C1 - C4 are the myocardial constitutive pa-
rameters and have been tuned to match the model predicted motions of the set of 3D 
material points derived from MRI tagging, as described in [9]. At the reference state, 
the material points were embedded in the reference FE model. As the model was 
passively inflated, the motions of the embedded material points were tracked to pre-
dict their positions at end-diastole. A detailed description of the constitutive parame-
ter estimation technique is provided in [9]. The passive parameters used for this study 
are summarised in Table 1.  

The contraction of the LV myocardium is driven by activation of myocytes initi-
ated by an electrical wave propagating through the heart. The contractile stress gener-
ated by the myocytes is combined with the passive stress-strain relation to simulate 
the isovolumic contraction and ejection phases of the cardiac cycle. We assume that 
contractile tension is only generated along the axes of the myocytes. In this study, we 
have used a steady-state active tension model:   

[ ])1(1),( −+×= λβλ CaCaa TTT  . (3)

where TCa the time-varying isometric tension at resting sarcomere length, which is 
modified by a linear function of the sarcomere extension ratio ( ), where the constant 

 = 1.45 [13].  
We estimated the TCa using the pressure-volume relationship customised to data 

from this particular animal (Fig. 2). This was achieved using the following approach: 
1) all short-axis tagged MR images between the end-diastolic frame and the end-
systolic frame and 4 frames during isovolumic relaxation were segmented using the 
Zinc Digitiser; 2) an anatomical FE model was created for each frame using the seg-
mented surface contours; 3) a cavity mesh was created for each of the FE models to 
evaluate the cavity volume at each frame; 4) a pressure-volume loop was created by 
combining these data together with the concurrent in vivo pressure measurement at 
each frame. 
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Table 1. Passive myocardial constitutive parameters [11] 

Passive Parameters C1(kPa) C2 C3 C4

Values 0.831   14.3 4.49 0.762 

Following the end of passive inflation, the value of TCa was gradually increased 
from zero to simulate the onset of isovolumic contraction. The cavity volume during 
this phase was kept constant by altering the pressure applied to the LV endocardial 
surface for each tension increment. The end of isovolumic contraction was deter-
mined when the endocardial pressure first exceeded the LV afterload (obtained from 
the concurrent pressure recordings). This marked the onset of ejection, during which 
the basal plane motion of the ventricular base was prescribed (as recorded from the 
long axis images) whilst the position of the apex was fixed. For each time point dur-
ing ejection, the LV cavity pressure was set to the recorded value, and TCa was itera-
tively altered until the cavity volume matched (to within 0.5%) the volume of the 
associated fitted cavity mesh. Closing of the mitral valve marked the onset of the 
isovolumic relaxation phase, during which the endocardial pressure was decremented 
(according to the recorded value) and TCa was iteratively reduced in order to maintain 
a constant cavity volume as the LV relaxed.  

3   Results 

Figure 2 illustrates the relationship between LV cavity pressure and volume for the 
entire cardiac cycle with values derived from the tagged MRI data and concurrent pres-
sure recordings. We have also analysed a selection of image frames during relaxation, 
diastasis and passive inflation to complete the cardiac cycle. The temporal step between  

Fig. 2. LV pressure-volume loop derived from the concurrent in vivo pressure recording and 
tagged MR images. Labels 1-5 indicate the different phases of the cardiac cycle (see text for 
details) as determined from the mitral valve activity in the long-axis MRI. 
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each recording was 8 ms and the afterload was approximately 78 mmHg (12 kPa). The 
end-diastolic and end-systolic cavity volumes were 22 ml and 4.5 ml, respectively. As 
illustrated, the LV cavity volume during phase 2 remained relatively constant (iso-
volumic contraction), while the cavity pressure increased dramatically. During ejection 
(phase 3), the LV cavity pressure remained relatively constant until end-systole, but the 
cavity volume decreased as blood was pumped out of the LV. During phase 4, the endo-
cardial pressure rapidly decreased whilst cavity volume slightly increased - this slight 
discrepancy during the so-called isovolumic relaxation phase was possibly due to sur-
face contour segmentation error. The recoil phase (phase 5) restored the cavity to its 
reference state before the onset of passive filling (phase 1). 

Fig. 3. Estimated value of TCa and the model predicted cavity volume versus tracked cavity 
volume during the heart cycle. ED: end-diastole; IVC: isovolumic contraction; ES: end-systole; 
IVR: isovolumic relaxation.

As illustrated in Fig. 3, TCa was initially set to zero at end-diastole but steadily in-
creased throughout isovolumic contraction and ejection to a maximum of 95 kPa at 
end-systole. This was followed by a decrease back to zero by the end of isovolumic 
relaxation. The comparison between the LV cavity volume determined from MRI 
(Vtracked: triangles) and that predicted using the FE model (Vmodel: squares) is also 
shown in Fig. 3. With the rise in active tension, the LV cavity volume remained rela-
tively constant during isovolumic contraction, then decreased rapidly as the LV emp-
tied during ejection. The simulated end-systolic cavity volume was approximately 7.8 
ml, which was slightly greater than that calculated from the tagged MRI data (4.8 ml). 
This slight discrepancy was possibly due to an assumption(s) of the model breaking 
down near end-systole. During the subsequent isovolumic relaxation phase, the pre-
dicted cavity volume remained relatively constant, but rose when the active tension 
reduced to zero signifying the start of filling.  
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We have also evaluated the active contractile stress at end-systole throughout the LV. 
Even though a homogeneous activation TCa, was determined, the stresses evaluated at 
each of the Gauss points varies due to the linear length dependence term in Eq. 3. The 
models at end-diastole and ejection are illustrated in Fig. 4a and Fig. 4b&c respectively. 
As illustrated, fibres in most of regions of the LV are under compression at end-systole.

                        (a)            (b)   (c)

Fig. 4. (a) Anterior view of the end-diastolic model; (b) Anterior and (c) posterior views of the 
maximum active fibre stress evaluated at each Gauss point 

4   Discussion 

In this study, we have extended the integrative FE model analysis developed in [9] to 
analyse the systolic mechanics of a healthy canine LV. This is the first study to esti-
mate in vivo myocytes contractile stress based on concurrent measures of LV motion 
from MRI and endocardial pressure. We have previously estimated the parameters of 
a passive transversely-isotropic constitutive relation to match the recorded LV kine-
matics. Here, we have investigated the mechanical behaviour of the LV during sys-
tolic contraction (isovolumic contraction, ejection) and the isovolumic relaxation 
phase of the heart cycle. We prescribed the basal motion observed from long-axis 
tagged MR images, and the LV endocardial pressure as boundary constraints to realis-
tically reproduce the ventricular mechanics. Using this integrative modelling ap-
proach, we show the time-varying active stresses generated by the myocytes, which 
cannot be measured directly in vivo. To achieve this, we iteratively estimated the level 
of active stress to match the LV cavity volume. This differs from other researchers 
who have investigated systolic mechanical properties of sheep hearts [14] using 
strains and a time-varying elastance model, combined with pressure recordings taken 
at a different point in time.  

There are several limitations of this LV model: 1) lack of a right ventricle and 
other structural features, such as the pericardium, valves and papillary muscles;  
2) only short-axis tagged MR images were used to create FE models for volume  
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calculations (the inclusion of long-axis tagged MR images may provide a more accu-
rate volume evaluation); 3) the isometric tension at resting length (TCa) was con-
strained to be spatially homogeneous, but it is likely to vary throughout the LV due, 
for example, to the spreading wave of excitation leading to spatially heterogeneous 
calcium transients. This limitation may explain the small discrepancy in the cavity 
volume predicted by the FE model near end-systole and through IVR (Fig. 4). An-
other limitation relates to the quasi-static assumption of the contraction model. The 
timing of the peak in the tension trace (Fig. 4) coincided with end-systole; however 
this may not be the case if the dynamics of calcium binding were taken into account 
using a more detailed time-dependent description of contractile stress [15]. This sim-
plification may also affect the estimated rate of rise and decay of contractile stress. 
We are presently working on estimating the active tension based on matching the 
regional LV deformation using the same set of 3D material points as were used for the 
estimation of passive material properties in [9]. To be able to reliably match the local-
ised motion, a heterogeneous distribution of material properties may be required. 
Sensitivity and convergence analyses will also be necessary to investigate the unique-
ness of the estimated active parameter.  

5   Conclusions 

We have developed and demonstrated a FE modelling technique to determine the first 
in vivo estimates of myocardial contractile stress throughout the heart cycle using 
time-varying LV cavity volume changes derived from cardiac MRI with concurrent 
LV endocardial pressure recordings to parameterise a contraction model. Isometric 
tension monotonically increased to 95 kPa during systole, and rapidly recovered dur-
ing isovolumic relaxation, and we observed regional variations of the length depend-
ent contractile stress throughout the LV. The long-term goals of this research are to 
gain a better understanding of the underlying pathophysiological basis of ventricular 
mechanics, and to apply these techniques to medical images in order to assist clini-
cians with the diagnosis and treatment of patients suffering from heart failure.  
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Abstract. Because of the intrinsic physiological coupling between the
motion and the electrical activity of human heart and available higher
resolution imaging sequences, we believe that image-derived cardiac kine-
matic measurement should be able to reflect patient-specific propagation
of cardiac transmembrane potential (TMP). Therefore, in this paper we
developed a model-based filter framework, which can recover cardiac
electrical activity from MR image sequences. In this particular imple-
mentation, the cardiac electro-mechanical coupling process will be prop-
erly modelled over a meshfree particle representation of cardiac volume
and its fiber structure, and then a model-based unscented Kalman fil-
ter (UKF) will be created to incorporate an electro-mechanical coupling
model into the state space equation to estimate cardiac electrical activ-
ity from MR image sequences. At the end, we not only investigate the
performance of our algorithm through two synthetic motion data sets,
which are generated by healthy and diseased propagation patterns in an
authentical cardiac geometry respectively, but also show the potential
usage of our algorithm in clinical diagnosis through a test of one clinical
MR image sequence.

1 Introduction

Current non-invasive functional imaging of cardiac electrical activity is aimed to
compute cardiac TMP on the epicardium or inside myocardium from body sur-
face potentials (BSPs), or even electrocardiograms (ECGs). Such non-invasive
functional imaging problems are ill-posed, so that a regularization term or a
model constraint will be introduced to overcame the illness [1,2,3]. Though a
recent effort has demonstrated its promising results [4], current non-invasive
functional imaging techniques are still in the infancy. In the same time, a dif-
ferent approach has been gradually developed in medical image community to
provide a novel angle of view to understand cardiac electrical activity using avail-
able dense cardiac motion descriptions (displacement, stress or strain) extracted
from cardiac images, through inverting the electro-mechanical coupling process.
In this paper, we can call this approach as inverse electro-mechanical coupling
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approach/problem. A probabilistic measure of the onset of regional myocardial
activation, derived from 3D motion field obtained by tracking tagged MR image
sequence with non-rigid registration [5], and regularized optimization using the
law of force equilibrium [6] are two recent efforts to solve this inverse approach.
Though these two approaches of non-invasive functional imaging and inverse
electro-mechanical coupling are developed separately in different scientific com-
munities, we believe that a framework to integrate these two approaches will
become the trend to compute cardiac electrical activities.

Our work in this paper is inspired by the encouraging performance of phys-
iological models in recent cardiac image analysis works [7,8]. In our implemen-
tation, a simple electro-mechanical coupling model [7,8] is first adopted into the
stochastic state space, and the active stress then becomes the state variables.
Since the active stress is only driven by cardiac TMP, we just need to compute
the active stress to obtain the propagation pattern of cardiac TMP. Because
of non-linear coupling process between the active stress and cardiac movement,
we apply UKF algorithm [9] to inverse this coupling process. So the inverse ap-
proach from medical images to cardiac electrical activity is finally interpreted
into a multi-frame model-based filter framework. This framework is verified in
Auckland Heart Model 1 under different physiological conditions with favorable
results, and its potential usage is also shown in one set of clinical data.

2 Meshfree Particle Representation

In our framework, we adopt the meshfree particle representation, which has been
well explored in medical image community [6,2,8], to represent the heart by a set
of unstructured sample nodes inside and in its boundaries. In Fig. 1, meshfree
particle representation is illustrated in Auckland Heart Model. Let u(x), u̇(x)
and ü(x) be the displacement, velocity and acceleration of the myocardial tissue
at point x. The approximated displacement, velocity and acceleration uh(x),
u̇h(x) and üh(x) are then given: uh(x) =

∑N
I=1 φ(x)uI , u̇h(x) =

∑N
I=1 φ(x)u̇I

and üh(x) =
∑N

I=1 φ(x)üI where φ(x) is the meshfree shape function [10] of
node I, N is the total number of sample nodes used for local support, uI is
the nodal displacement value, u̇I is the nodal velocity value and üI is the nodal
acceleration value.

3 Stochastic State Space Equation

In our framework, the electro-mechanical coupling model in Equation (1),

σ̇c + σc = ueσ0 (1)

describes the relation between cardiac TMP, ue, and the active stress, σc, which is
an one-dimensional variable along the local fiber orientation and only determined
1 http://www.bioeng.auckland.ac.nz/cmiss/cmiss.php
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Fig. 1. Anisotropic cardiac fiber structure

by ue [7]. The reasons to choose this simple model are: the performance of this
electro-mechanical model have been tested in cardiac image analysis [7,8], and
fewer parameters can help to reduce the complexity of inverse approach. Our
proposed algorithm will combine electro-mechanical coupling model and patient-
specific loading (external loading) through UKF to recover the waveform of
active stress in the heart. After the waveform of active stress is available, the
temporal changing of cardiac TMP can be obtained, too (Equation (1)).

However the coupling process is continuous, and mapping between external
loading and active stress is nonlinear. Though the extended Kalman filter (EKF)
has been applied extensively to nonlinear estimation [11], but the inherent flaws
of the EKF are due to its linearization approach for calculating the mean and
covariance of a random variable which undergoes a nonlinear transformation.
UKF addresses these flaws by utilizing a deterministic ”sampling” approach to
calculate the mean and covariance terms [9]. Essentially, 2L + 1, sigma points
(L is the state dimension), are chosen based on a square-root decomposition
of the prior covariance. These sigma points are propagated through the true
nonlinearity, without approximation, and then a weighted mean and covariance
is taken. UKF approaches results in approximations that are accurate to the
third order (Taylor series expansion) for Gaussian inputs for all nonlinearities.
For non-Gaussian inputs, approximations are accurate to at least the second-
order [9]. In contrast, the linearization approach of the EKF results only in first
order accuracy.

3.1 State Space Model

The electro-mechanical coupling model in Equation (1) is transformed into a
continuous stochastic equation with deterministic input:

˙σc(t) = −σc(t) + ue(t)σ0 + np(t) (2)

where σc(t) is the active stress and np(t) the additive, zero-mean, white noise
(E[np(t)] = 0; E[np(t)np(s)′] = Qv(t)δts). The deterministic input, ue(t), is
cardiac TMP, which can be estimated from BSPs [1,2,3] or calculated from a
computational model [12]. The Equations (2) has continuous dynamics, thus
further temporal discretization is demanded because the sigma points of UKF
have to propagate through the electro-mechanical model numerically. A Runge-
Kutta method [13] that can automatically and adaptively select the size of time
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step is embedded in our implementation to fulfil the discretization implicitly for
the sake of reasonable accuracy and numeric stability.

An associated measurement equation, which describes the mapping between
external loading and active stress, can be expressed in this form:

R(t) = HΣ + no(t) (3)

where R(t) external loading, H the measurement matrix and Σ active stress
vector. no(t) is the measurement noise which is additive, zero mean, and white
(E[no(t)] = 0; E[no(t)no(s)′] = Qn(t)δts), independent of np(t). The main com-
ponent of external loading, active force, is always considered as body force, which
is the only force inside myocardium. This is closed to reality since other forces,
such as blood pressures and fixed boundaries, always exist in the cardiac surface.
Hence R(t) could be modelled as a noisy active force loading inside myocardium.
The active force can be calculated from active stress [7,8]:

R =
∫

V

div(σcffiber ⊗ ffiber)dV

=
∫

V

⎡⎢⎣
d(σcfxfx)

dx + d(σcfxfy)
dy + d(σcfxfz)

dz
d(σcfyfx)

dx + d(σcfyfy)
dy + d(σcfzfz)

dz
d(σcfzfx)

dx + d(σcfzfy)
dy + d(σcfzfz)

dz

⎤⎥⎦ dV (4)

with ffiber = [fx, fy, fy]T a fiber vector, V volume of the heart and σc active
stress.

After discretizing Equation (4), the meshfree shape function is applied here
again to construct the H in Equation (3):

R =
∫

V

div(σcffiber ⊗ ffiber)dv = CR(
∫

ΦT
RBRdV )ARΣ = HΣ (5)

The state vector Σ is built from the active stress:

Σ =
[
σc1 · · · σcn

]T (6)

where σci, i = 1, . . . , n is the active stress in the each sample node.
CR is used to remove effect of boundary nodes in measurement vector and

constructed in a very simple way by deleting corresponding rows according the
index of boundary nodes. We also can get:

AR =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 · · · 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 · · · 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

. . .
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 0 · · · 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 · · · 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. From (a) to (d) the ground truth of normal propagation in frame 2, 12, 22, 32;
From (e) to (h) the estimated results of normal propagation in frame 2, 12, 22, 32; The
color bar is scale mapping of transmembrane potentials

ΦR =

⎡⎣φ1 0 0 · · · φn 0 0
0 φ1 0 · · · 0 φn 0
0 0 φ1 · · · 0 0 φn

⎤⎦ ; BR =

⎡⎣ b1,1 0 0 · · · bn,1 0 0
0 b1,2 0 · · · 0 bn,2 0
0 0 b1,3 · · · 0 0 bn,3

⎤⎦ (8)

bi,1 = φi,xfxfx + φi,yfxfy + φi,zfxfz + φi(
d(fxfx)

dx
+

d(fxfy)
dy

+
d(fxfz)

dz
)

bi,2 = φi,xfyfx + φi,yfyfy + φi,zfyfz + φi(
d(fyfx)

dx
+

d(fyfy)
dy

+
d(fyfz)

dz
)

bi,3 = φi,xfzfx + φi,yfzfy + φi,zfzfz + φi(
d(fzfx)

dx
+

d(fzfy)
dy

+
d(fzfz)

dz
)

where φi meshfree shape functions, φi,x, φi,y and φi,z the derivatives of the
meshfree shape function with respect to x, y and z, and BR the differential
matrix. AR is used to extend the 1D active stress vector into 3D space vector.
ΦR and BR are transferred matrices, which build a mapping between active
stress and external loading.

3.2 Measurements

Another major challenge in our approach is how to obtain meaningful measure-
ments, R(t), from noisy image data. Assuming the cardiac motion field has been
estimated from medical image sequences (quite a lot works in medical image
community could accomplish [7,8,14,15]), and the material property of heart is
a prior knowledge, we can calculate R(t) through the law of force equilibrium
[16]:

MmÜm(t) + CmU̇m(t) + KmUm(t) = R(t) (9)

with Mm, Cm and Km the mass, damping and stiffness matrices where R
the load vector, and Um the displacement vector. Mm is a known function of
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. From (a) to (d) the ground truth of RBBB propagation in frame 2, 12, 22, 32;
From (e) to (h) the estimated results of RBBB propagation in frame 2, 12, 22, 32; The
color bar is scale mapping of transmembrane potentials

material density and is assumed temporally constant for incompressible mate-
rial. Km is a function of material constitutive law, and is related to the Young’s
modulus and Poisson’s ratio which are again assumed constant. Cm is frequency
dependent, and Rayleigh damping with Cm = αMm+βKm is assumed here [16].
However, there is not information of the external loadings in the boundary, which
means that they could contain potentially larger error. Those poential error re-
sulted from unknown boundary conditions will increase unknown factors into our
UKF framework, so the effect of the boundary nodes are removed from measure-
ment vector in our current approach, which is accomplished by CR in section 3.1.

4 Experiments

Our approach is first tested under two different cardiac conditions: normal case
and right bundle branch block (RBBB)2. In each case with 2081 sample nodes,
40 frames are generated respectively, and used as the ground truth. Then noisy
external loadings are generated in this way: A) calculate the active stress from
cardiac TMP using Equation (1); B) calculate the external loading using Equa-
tion (4); C) add 10dB gaussian noise into the external loading, R. As we dis-
cussed above, the external loading in the boundary nodes are corrupted by the
other forces. Therefore, we remove those boundary nodes from measurement vec-
tor in both cases. After two kinds of noisy measurements are ready, they are put
into our model-based filter frame by frame. The initial covariance matrix are set
to large enough to guarantee fast convergence. Estimated results in both cases
are compared to the ground truths in Fig. 2(normal case) and Fig. 3 (RBBB
case) respectively.

2 RBBB is the right bundle branch of cardiac conduction system no longer conducts
electricity. Therefore, as the electrical impulse leaves the His bundle, it enters left
bundle branch only, and is carried to the left ventricle.
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(a) (b) (c) (d) (e) (f)

(g) (h)

Fig. 4. From (a) to (d), MR image sequence of a normal human heart during systole
(frame 1, 3, 5 and 6); From (e) to (h) the estimated propagation results of human
data (frame 1, 3, 5 and 6, again); The color bar is scale mapping of transmembrane
potentials

One experiment on a cardiac MR image sequence of normal human has been
conducted to show the practical potentials of our framework. The image se-
quence contains 20 frames of a cardiac cycle. Each 3D image frame contains
8 image slices (Fig. 4), with 10mm inter-slice spacing, in-plane resolution of
1.56mm/pixel, and temporal resolution of 43ms/frame. The initial geometry of
the heart is obtained by segmentation of the first image frame, and fibers are
mapped from the fiber architecture of the Auckland heart model. Since the BSPs
are not available yet, simulation of cardiac TMP propagation in this human ge-
ometry is currently applied as deterministic input to our framework again. The
external loading is calculated using image-derived motion field, which has been
described in section 3.2. Experiment is conducted in the first 7 frames using our
framework, and the results are shown in Fig. 4. Further experiments on diseased
human and animal hearts are ongoing for further verifications.

5 Discussion

In this work, cardiac electrical activity is estimated through a recursive model-
based filter from image data. It is first done in our approach to adopt the electro-
mechanical coupling model to recover patient-specific cardiac electrical activity
from medical image data. The available higher resolution image data and more
powerful motion tracking algorithm will be able to provide much better input
data for us, and help to understand cardiac electrical activity from a different
way. However, the inverse approach from the medical image data to cardiac TMP
is still very difficult due to complicated coupling process between cardiac electri-
cal activities and cardiac mechanical behaviors, which introduce great difficul-
ties in establishing the inverse approach and running computation. Therefore, a
model with more physiological meanings should be sought to guide the recovery
work more efficiently. However, the computational load resulted from adopting
complicated model into UFK is still quite heavy (large state vector and large
covariance matrix). Hence, a sub-optimal algorithm, which can achieve simi-
lar accuracy in a fast convergence speed, should be considered in the future
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works. Furthermore, real BSPs should be applied to provide better input into
our framework.
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Pascal Allain3, Pascal Cathier3, Patrick Etyngier3,

Nicolas Villain3, and Nicholas Ayache1

1 Asclepios Research Project, INRIA Sophia-Antipolis, France
2 Service de Cardiologie CHU Caen, France

3 Medisys, Philips Healthcare Suresnes, France

Abstract. Despite advances in both medical image analysis and in-
tracardiac electrophysiological mapping technology, the understanding of
cardiac mechano-electrical coupling is still incomplete. This knowledge is
of high interest since it would help estimating the cardiac electrophysiol-
ogy function from the analysis of widely available cardiac images, such as
3D echocardiography. This is important, for example, in the evaluation
of the cardiac resynchronization therapy (CRT) where the placement
and tuning of the pacemaker leads plays a crucial role in the outcome
of the therapy. This paper proposes a method to estimate activation
times of myocardium using a cardiac electromechanical model. We use
Kernel Ridge Regression to find the relationship between the kinematic
descriptors (strain and displacement) and the contraction force caused
by the action potential propagation. This regression model is then ap-
plied to two 3D echocardiographic sequences from a patient, one in sinus
rhythm and the other one with left ventricle pacing, for which strains
and displacements have been estimated using incompressible diffeomor-
phic demons for non-rigid registration.

Keywords: cardiac electrical mapping, Kernel Ridge Regression, 3D
echocardiography.

1 Introduction

The wide availability of cardiac imaging modalities especially 3D echocardiog-
raphy allows clinicians to estimate some geometrical characteristics of the my-
ocardium motion such as displacement, strain or strain rate. However, these
quantities are only related to the kinematics of the heart whereas in many cases
it is important to also obtain information about the patient’s cardiac electri-
cal propagation. Indeed contact or non-contact intracardiac electrical mappings
are invasive procedures which are not classically used for diagnosis but rather
for applying a therapy. Electrocardiographic imaging[1] (a.k.a. body surface po-
tential mapping) is a non-invasive technique for imaging activation times of the
myocardium but still remains to be validated thoroughly and is not widely avail-
able in clinical centers. Therefore there is a strong need to quantitatively assess a
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patient electrophysiological condition from non-invasive imaging modalities such
as 3D echocardiography. This is especially valid in the context of cardiac resyn-
chronization therapy (CRT) for which up to 30% of the patients with pacemaker
leads show no benefit[2]. Providing activation maps from a 3D echocardiography
for instance, would be of great interest to select patients responding to the ther-
apy and to optimize the lead placements and delays during and after therapy.
More fundamentally, understanding the relationship between cardiac mechan-
ics and electrophysiology is essential to improve the diagnosis and therapy of
patients suffering from heart failure.

A study on the relation between cardiac magnetic resonance (MR) motion
tracking and the electrical activation pattern has been published by Sanchez-
Ortiz et al.[3] which combines some cardiac motion descriptors in order to obtain
the electrical activation time. However, in this study, the weights were assigned
manually to get an estimation of the activation. McVeigh et al.[4] also consider
only the circumferential strain estimated from tagged MR images as the mechan-
ical activation measure. Very high frame rate ultrasound in electromechanical
imaging (EWI), which could map the electromechanical wave (EMW) correlated
with cardiac electrical activation in 2D echocardiography, has been published by
Provost et al.[5]. However, understanding the 3D cardiac electrical propagation
is still very important for clinicians.

In this paper, our main objective is to find a relationship between the different
kinematic parameters obtained from cardiac image analysis and the activation
times of the myocardium using a machine learning method. The activation times
are defined as moments at which the activation forces at a given point sharply
increase. Activation times are strongly correlated with the action potential signal
through the mechano-electrical coupling.

The training stage is based on motion and contraction forces estimated from
an electromechanical model of the heart. This in silico cardiac model serves as
a reference model in the absence of reliable intracardiac mapping information.
Several pathologies and pacing scenarios are considered in this training phase.
Based on this learning process, we can predict the cardiac electrical propagation
from kinematic parameters estimated from cardiac image analysis. This approach
has been evaluated on synthetic cases as well as on one patient. The results are
thoroughly discussed and perspectives of this work are provided in a final section.

2 3D Echocardiography Image Registration and Motion
Estimation

We use 3D echocardiography images provided by the University Hospital of
Caen, Normandy - France. This data was acquired from patients under CRT
with two implanted electrodes, one in the left ventricle and the other in the right
ventricle. Two different pacemaker stimulation modes were imaged and analysed.
The first mode corresponds to the sinus rhythm mode when no pacemaker lead
is activated. In the second mode, the left ventricle is stimulated. Left ventricle
segmentation along whole cardiac sequence was provided by the Medisys Group
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Fig. 1. 3D echocardiography myocardium motion estimation. Myocardium mo-
tion is tracked and then strains and displacements with respect to the first reference
image in the cardiac cycle are computed and projected in a local frame representing the
radial, longitudinal and circumferential directions. The different colors in the curves
show the 17 different AHA zones. The strain and displacement curves shown are from
a patient with LBBB and without any pacemaker stimulation. The strain vertical axis
is dimensionless while the displacement vertical axis is in millimeters. The horizontal
axis shows the image frame number in the cardiac cycle.

of Philips Healthcare, Suresnes - France. The 3D echocardiography sequence
begins at the end-diastolic phase of the cardiac cycle.

2.1 Incompressible Diffeomorphic Demons

Cardiac motion is estimated through a non-linear image registration algorithm
applied between consecutive frames of the same cardiac cycle. The purpose of
applying this non-linear image registration is to find the displacement vector
field u(x) associated with the transformation φ(x) = x + u(x) which aligns
a template image T(x) to a reference image R(x), where x ∈ R3 is the space
coordinate (voxel (x,y,z)). This displacement vector field u(x) is considered as
the cardiac displacement field. All images in the cardiac sequence are registered
to the same reference image which is the first image of the 3D echocardiography
sequence, corresponding to the end-diastolic phase.

We take into account the myocardium near-incompressibility assumption
(maximum 5 to 7% of volume variation during the cardiac cycle) by relying
on the incompressible demons algorithm proposed by Mansi et al.[6] to estimate
cardiac motion. This algorithm improves the diffeomorphic demons algorithm[7]
by adding 2 constraints: the myocardium near-incompressibility and linear elastic
regularization of velocity fields. This method has been developed and evaluated
for cardiac motion estimation on cine MRI images [6].

A 3D myocardium segmentation for the first frame of the sequence is used as
the incompressible region. The 3D echocardiography sequence starts at the end-
diastolic phase of a cardiac cycle. All image frames in the 3D echocardiography
sequence are being registered to this end-diastolic frame.
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The recovered displacement vector field is projected in the radial, circumfer-
ential and longitudinal directions using the heart local coordinate system.

2.2 Strain Estimation

The displacement vector field u(x) which recovers the cardiac motion φ(x) =
x+u(x) is then used to compute the Lagrangian finite strain tensor E = 1

2 (∇u+
∇uT +∇uT∇u). The strain is calculated by using the end-diastolic frame as the
reference image R(x). Similarly for the displacement vector field, the obtained
strain is projected in the radial, circumferential and longitudinal directions (cf.
Fig. 1).

3 Inverse Mechano-Electrical Coupling

3.1 Electromechanical Model

In order to learn how the cardiac kinematics are related to the cardiac electro-
physiology it is necessary to get for the same patient descriptors of the cardiac
motion and electrical wave propagation. This could be provided by 3D echocar-
diography and intracardiac electrophysiological mapping acquired on the same
patient. To merge both information, the patient must be in the same stimulation
mode and endocardial surfaces reconstructed from intracardiac mappings must
match those segmented in 3D US. However, such joint acquisition was not avail-
able in our study. Therefore, we proposed to use an electromechanical model of
the heart [8] to simulate patient cases. From those simulated cases, we could
obtain both electrophysiological and kinematic measurements. To be realistic,
this model uses the cardiac anatomy extracted from echocardiography images
as a priori information about the shape of the left ventricle (LV). We simu-
lated four cardiac cases using the electromechanical model to create a training
database. First, we simulate the cardiac propagation and contraction in normal
sinus rhythm where the electrical simulation is coming from the left and right
ventricle endocardium. In the second simulation, we simulate a left bundle branch
block (LBBB) where the stimulation is coming only from the right ventricle en-
docardium while the third simulation is the right bundle branch block (RBBB)
case where stimulation is coming only from the left ventricle endocardium. The
last case is the bi-ventricular pacing case where we initiate the electrical propa-
gation from a zone in the lateral freewall and a zone in the right ventricle apex
in order to simulate the pacemaker bi-ventricular pacing (cf. Fig. 2).

The simulation gives the deformation of the cardiac mesh along with the con-
traction value and the potential value for each point in the mesh. We perform a
thresholding in order to obtain the time at which the contraction value increases.
We also compute the displacement vector field which maps the myocardium at
a given time point to the end-diastolic image of the sequence. Kinematic de-
scriptors extracted from the obtained displacement vector field are the displace-
ment and the strain projected in the radial, longitudinal and circumferential
directions.
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Fig. 2. Electromechanical simulation. 4 cardiac cases simulated using the elec-
tromechanical model. (1) normal case, (2) LBBB case, (3) RBBB case and (4) bi-
ventricular pacing case. (a), (b) and (c) are the contraction force isochrone. (c) is the
isochrone for the LV divided to 17 AHA zones. (d), (e), (f) are the radial, longitudinal
and circumferential strains respectively and (g), (h), (i) are the radial, longitudinal
and circumferential displacements. Axis units are as explained in Fig. 1. These strains
and displacements are extracted from the deformation of the mesh simulated by the
electromechanical model.

3.2 Kernel Ridge Regression as a Learning Method

Using an electromechanical model of the heart, we learn the relationship between
the kinematic descriptors and the electrical activation. We use Kernel Ridge
Regression to find a relationship between these 2 quantities.

Ridge Regression searches a linear function y = wTx that models the de-
pendencies between the descriptor vectors xi ∈ Rd and the response vec-
tors yi ∈ R

r (all vectors are column vectors) from a set of T examples
(x1,y1), (x2,y2), ..., (xT ,yT ). Classically, we need to minimize the quadratic
cost C(w) = 1

2

∑T
i (yi − wTxi)2, where w is a d × r matrix. Regularizing this

equation, the total cost function which needs to be minimized hence becomes
C(w) = 1

2

∑T
i (yi −wT xi)2 + 1

2λ ‖w‖2, where λ > 0 is the regularization param-
eter. Introducing a T ×d matrix X = (x1,x2, ...,xT )T which contains the vectors
xi in its row and a T × r matrix Y = (y1, y2, ..., yT )T which contains the vectors
yi in its row, the equation can be written as C(w) = 1

2 ‖Y − Xw‖2 + 1
2λ ‖w‖2.
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Minimizing this function by taking its derivative with respect to w and setting
it equal to zero gives −XT Y + XT Xw + λw = 0 ⇒ w =

(
λI + XT X

)−1
XT Y .

Ridge Regression can be extended to Kernel Ridge Regression by rewriting the

solution y = wTx =
((

λI + XT X
)−1

XT Y
)T

x = Y T
(
λI + XXT

)−1
Xx =

Y T (λI + K)−1 k with K = XXT and k = Xx. We choose to use Radial Basis

Function as a Kernel function K(xi, xj) = e−
|xi−xj|

σ2 with i, j = {1, ..., T}.

Parameter Optimization. The chosen λ and σ parameters are optimized by
using leave-one-out estimates which train the model with all members of the
training set but one and test the performance on the singleton. The process
is repeated for all the singletons in the training set. We use Allen’s PRESS
(predicted residual sum of squares) statistic for this process, PRESS =

∑T
i e2

(i)

[9], where e(i) = yi−ŷ(i) is the residual for the ith example with the ith example
excluded from the training process and ŷ(i) is the predicted response for the ith
example based on the training process. Fortunately, we have e(i) = ei

1−hii
where

ei = yi − ŷi is the residual for the ith example in the training process which
includes all examples and ŷi is the fitted response based on this training. hii is the
ith element of the leading diagonal of the hat matrix H = X(λI+XT X)−1XT =
XXT (λI+XXT ) = K(λI+K)−1. Therefore, in the end, we can have the PRESS
for the chosen parameters λ and σ in one iteration. We use the downhill simplex
search method in MATLAB in order to optimize these parameters to have the
smallest PRESS.

With this approach, we learn a non-linear relationship (due to the choice of
Radial Basis Function as the Kernel function) between the kinematic descriptors
and the activation force caused by the action potential. We take the radial,
longitudinal and circumferential strains (Er,El,Ec ∈ Rtd) and also the radial,
longitudinal and circumferential displacements (ur,ul,uc ∈ Rtd) from points
in the myocardium as the components of the kinematic descriptor vector xi ∈
Rd=6×td , where td is the number of each descriptor sampling time in a cardiac
sequence. The contraction force along a cardiac cycle tr is set as the response
vector yi ∈ Rr=tr . The descriptor sampling time td is taken for 20 time instances
in order to follow the temporal resolution of the real patient data. However, the
response vector sampling time tr is chosen as 100 time instances in order to have
high temporal resolution of the contraction force along a cardiac cycle, starting
before the beginning of the P wave of the ECG. The examples in the training
set consist of the different points in the myocardium. We take 30 points from
each of the American Heart Association (AHA) 17 zones so we have 510 learning
points along a cardiac cycle. We separate the value σ for the displacement and

the strain used in the Kernel K(xi, xj) = e
−|ui−uj |

σ2
u

−|Ei−Ej |
σ2

E . Once the learning
process is done, we obtain the optimal values for λ, σu and σE . We use these
parameters to predict the other points in the myocardium in order to obtain the
cardiac contraction force mapping caused by the potential.
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Fig. 3. Prediction of contraction forces from synthetic data. (a), (b) are the
whole contraction force isochrones (activation times) obtained after applying the learn-
ing method on the whole points in the myocardium for case (1) (sinus rhythm), (2)
(LBBB), (3) (RBBB) and (4) (bi-ventricular pacing) whereas (c) is the whole contrac-
tion force isochrone only for the left ventricle. (d) is the contraction force curve along a
cardiac cycle which predicted by the learning method whereas (e) is the ground truth
contraction force curve as produced by the electromechanical model. The vertical axis
unit is in MPa. The horizontal axis shows the frame number in the cardiac cycle.

4 Results

4.1 Evaluation on Simulated Data

First, we tested our machine learning method using the simulated motion from
the electromechanical model for which we have a ground truth to compare to.
The first 3 cases which have been described in section 3.1 are included in our
training set, whereas the fourth case has not been included. The optimal pa-
rameters of the regression have been found as λ = 0.0004, σu = 107.1030 and
σE = 9.0276 which yield the root mean squared error (RMSE) value between
the predicted and the ground truth value 0.0016 MPa. This seems to imply that
strains are more correlated with activation times than displacements since their
variances are smaller (for a similar range of values). We applied the regression
method to all points of the first, second and third cases producing quite smooth
predicted contraction force curves (see Fig. 3). Note that the training stage only
included a very small subset of those points thus showing that the kernel ridge
regression is able to generalize the correlations between strains and forces to the
whole myocardium.
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Fig. 4. Kinematic descriptors extracted from patient’s 3D echocardiography.
(a) (b) and (c) are the radial, circumferential and longitudinal strains whereas (d), (e)
and (f) are the radial, circumferential and longitudinal displacements. Axis units are
as explained in Fig. 1.

In the fourth case, the predicted force values are not as smooth as expected.
However the predicted and the ground truth value of the fourth case have the
same global bell shape where up and down slopes can be detected using thresh-
olding. The bull’s eyes plot computed from the estimated activation times also
correspond to their expected value. In the second case (LBBB) we clearly have
an early activation from the septal wall whereas in the third case (RBBB) the
early activation originated from the endocardial wall of the left ventricle. In the
fourth case (bi-ventricular pacing), not included in the training set, the delays
between right and left ventricles are slightly decreased. The left ventricle RMSE
value between the predicted and the ground truth activation time is 7 ms for
the first 3 cases and 37 ms for the fourth case.

4.2 Application to Clinical Data

From the time series of 3D echocardiography images, we segmented the my-
ocardium and then estimated the cardiac motion using the incompressible demons
algorithm. The myocardium segmentation is used to specify the region where the
incompressibility constraint must be satisfied. From the knowledge of the left ven-
tricle axis, we can define the 3 local directions and then project strain tensors and
displacements along those three directions (cf. Fig. 4). These values are then used
as input descriptors in the regression method.

5 Discussion

The estimation of contraction forces for each AHA segment and for the two sim-
ulation modes are shown in Fig. 5. The estimated curves of contraction forces
are noisy as in the case of simulated data but also no longer have a bell shape. In
particular, those curves have negative parts at the beginning of systole whereas
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Fig. 5. Patient contraction force prediction. Predicted contraction force time and
activation time isochrone (bull’s eyes) for two different pacemaker stimulation mode
from the same patient. Axis units are as explained in Fig. 3.

they have been trained to be positive. Those curves have been thresholded (value
chosen as 0.03) to obtain two bull’s eyes plot of activation times for the sinus
rhythm and left ventricular pacing. It should be noticed that the late activation
in green on the lateral wall of the left ventricle at sinus rhythm has been activated
much earlier after pacing in the left ventricle which is expected.

From the preliminary results obtained on one patient with 2 stimulation
modes, the estimation of activation times seems to correspond to the expected
values. However, the shape and negative values of the estimated contraction
forces indicate that the regression model does not capture well the observations.
This may originate from several factors. First of all, there may be a difference of
patterns between the simulated strains and displacement and the ones estimated
by the non-linear registration. Second, there is a slight error when choosing the
reference end diastolic image which produces significant errors in the estimation
of strains. One could cope with those errors by having several regression meth-
ods corresponding to several choices of reference images. Finally, it should be
noted that the electromechanical model involved for training the method used
the anatomy of the left ventricle of the patient (see section 3.1) on which it was
evaluated. Further evaluation on more patient images should indicate whether
the learning method is sensitive to the patient anatomy.

6 Conclusion

We presented in this paper a method to estimate contraction forces and acti-
vation times from echocardiographic images. A supervised learning method has
been proposed which relies on synthetic measurements from an electromechani-
cal model of the heart for the training stage. The method has been evaluated on
synthetic data and a patient case. Further work will test the proposed method
on a larger sets of patients with various stimulation protocols. Sensitivity of
our approach to the estimation of strains and the choice of the reference image
will be studied. Learning from intracardiac electrophysiological mapping and 3D
echocardiography of the same patient should improve the result and will be done
as soon as the data is acquired.
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Abstract. The use of anti-arrhythmic drugs is common to treat heart
rhythm disorders. Computational modeling and simulation are power-
ful tools that can be used to investigate the effects of specific drugs
on cardiac electrophysiology. In this work a patient-specific anatomical
heart model is built to study the effects of dofetilide, a drug that affects
IKr current in cardiac cells. We study the multi-scale effects of the drug,
from cellular to organ level, by simulating electrical propagation on tissue
coupled cellular ion kinetics for several heart beats. Different cell popu-
lations configurations namely endocardial, midmyocardial and epicardial
are used to test the effect of tissue heterogeneity. Results confirmed the
expected effects of dofetilide at cellular level, increasing the action po-
tential duration. Pseudo-ECGs obtained for each heart beat correlated
well with cellular results showing prolongation of QT segment. These
techniques can be applied over the development of more complex drugs
that affect multiple cellular currents.

Keywords: Cardiac electrophysiology, multi-scale modeling, simulation,
drug modeling, therapy planning, drug cardio-toxicity.

1 Introduction

The use of anti-arrhythmic drugs is common to treat heart rhythm disorders.
Compounds of those drugs are known to interact with cell ionic channels al-
tering their physiological properties, e.g., prolonging action potential duration
(APD), which has a global electrophysiological effect at organ level. Prolonged
repolarization might be beneficial during ventricular tachycardia because of the
subsequent increase in the refractory period, which also prevents the formation of
potentially fatal re-entrant circuits. However, the same drugs can induce certain
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arrhythmias, increasing the risk of mortality under specific conditions[1]. Drug-
induced increase of action potential repolarization and QT interval prolongation
and its proarrhythmic effect are major concerns for the pharmaceutical indus-
try. The QT interval prolongation is associated with a form of acquired long
QT syndrome (LQTS) which can induce a polymorphic ventricular arrhythmia
called Torsades de Pointes (TdP). There are a number of experimental models
(in vivo and in vitro) for assessing the QT prolongation and proarrhythmic po-
tential effects[2,3], but in most cases these are inadequate ECG biomarkers of
drug-induced arrhythmias in human.

The repolarization phase in cardiac cells is a complex physiological process
which depends on many membrane currents, including potassium and calcium
currents. Among them, the rapid component of the delayed rectifier potassium
current (IKr) plays a determinant role. The pore protein of the (IKr) current
(encoded by the human Ether-a-go-go-Related Gene or hERG) is a target for
compounds that prolongs ventricular repolarization. IKr is considered to be the
most widely targeted K+ channel linked to potential arrythmogenesis. Currently,
the potential risk of a drug is estimated by testing the ability of the drug to re-
duce hERG current, and the calculation of the IC50 value, i.e. the concentration
of the drug that blocks hERG current to 50%, which implies a significant impact
on cellular repolarization. Although the IC50 can be used as a proxy indicator
in the early stages of the drug development, it is not sufficient to clearly predict
the proarrhythmic potential of a compound. For some drugs involved in TdP in
humans, there is a poor correlation between IC50 values obtained using hERG
assay and the results obtained using tissue preparations and in clinical routine.

The identification of accurate and robust biomarkers is complex since there
are many possible complex scenarios, such as multiple ion channel block exerted
by many compounds, different expression between tissues and species of several
currents, different electrical activity in isolated cells as opposed to multicellular
preparations or the influence of patient risk factors, among others. Due to the
multiscale and highly coupled nature of the problem, computer models could
bring new insights into the interaction of compounds with multiple ionic chan-
nels. Furthermore, computational cardiac electrophysiology is today a mature
discipline that allows the study of heart rhythm mechanisms.

The main objective of this paper is to present a computational study of in silico
modeling and assessing of specific drug compounds in a realistic 3D human heart.
The effect of dofetilide, a specific and potent blocker of the rapid component of
the delayed rectifier K+ current (IKr), is studied on a personalized 3D human
heart model. The geometrical model and its main characteristics such as fiber
orientation are extracted from a clinical imaging dataset and included in com-
plete anatomical model. A complex human biophysical model [4] that includes
a large number ionic currents is used to simulate the cell ion kinetics and the ef-
fects of dofetilide for different concentrations. Electrical propagation on tissue is
simulated considering different cell populations, endocardial, M and epicardial
and two different heterogeneity configurations for those populations through-
out the wall. This is important since ion channel properties varies between cell
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populations and might affect the ECG complex. Study of 3D simulations allows
us to characterize activation and repolarization dispersion in a large number of
locations. Pseudo-ECGs are also calculated to analyze the global effect of the
drug and correlate it to cell level results.

2 Material and Methods

2.1 Ventricular Model

A 3D volumetric human heart model was used to study the electrical sequences of
activation. The geometry was segmented from a MRI data set acquired at John
Hopkins University [5]. The MRI volume stack has a resolution of 0, 4297 ×
0, 4297×1, 0mm3 and was segmented by using a simple threshold. From the seg-
mented volume, a regular hexahedral mesh was constructed with a resolution of
0, 5× 0, 5× 0, 5mm3, which gave rise to 1.43 million nodes and 1.29 million hex-
ahedra [6] (Fig.1(a)). In order to improve the numerical accuracy of the model,
enriched finite elements with second order bubble functions were used for the
simulations. This formulation greatly improves the numerical efficiency of the
algorithm while keeping numerical accuracy [6]. The model was labeled to dif-
ferentiate regions with different electrical properties, and included endocardium,
midmyocardium and epicardial regions. The percentage of the wall given to each
regions was varied to take into account the effect of the channel heterogeneity.

V5

V2

V3

V4

V6

V1

(a) (b) (c)

Fig. 1. Anatomo-functional human heart model built from a DTMRI stack.
(a) Right and left ventricles were segmented and meshed with hexahedral elements.
Endocardial, midmyocardial and epicardial layers were identified and labeled for each
model taking into account different transmural heterogeneity configurations. Stimula-
tion points used to initiate the tissue activation are displayed as small spheres on the
endocardium. Color indicates time of activation, which ranged from 0ms to 50ms. (b)
the myocardial fiber orientation was obtained from DTMRI [5]. Orientation is repre-
sented by small vectors which rotate transmurally from endocardium to epicardium.
(c) Ventricular model inserted in a human torso to calculate the approximate location
of precordial points V1-V6 for the pseudo-ECG.
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Fiber Orientation. The fiber orientation was integrated in the model by us-
ing DTMRI (Diffusion Tensor Magnetic Resonance Imaging), which allowed to
quantify the anisotropy of the different tissues throughout the ventricular wall
[5]. That is a relevant part of heart microstructure since the electrical activation
depends on the spatial distribution of fibers. Fiber direction was given by the
three eigenvectors associated with eigenvalues of the diffusion tensor. This infor-
mation was incorporated into the finite element model by defining an averaged
fiber direction for element.

The heart was considered transversely isotropic. Transmural variation of the
angle in fibers direction ranged from−60◦ on the epicardial surface to [+40◦, +60◦]
on the endocardium. Fig. 1(b) shows fiber orientation in the epicardial layer of the
heart.

Heterogeneity. Several studies have shown that ventricular myocardium is
formed by three types of cells: epicardial, midmyocardial and endocardial [7,8,9].
However, it is not clear the real volume percentages of the different types of
cells that cannot be differentiated in-vivo. These cells differ in the morphology
of the action potential, especially in the spike-and-dome action potentials of
midmyocardial and epicardial cells due to the transient outward current, Ito.
Midmyocardial cells can be distinguished from other types of cells because they
have a short and slow delayed rectifier current, Iks, a strong Ito current and
a relatively large Na-Ca exchange current, INaCa. These differences result in
a longer APD relative to epicardial and endocardial cells (336ms in midmy-
ocardial cells v. 276ms and 282ms in epicardial and endocardial cells respec-
tively) for BCL=1000ms [10]. We modeled two different heterogeneity cases
with the following distributions for each cell population, (1) 0% endocardium,
67.5% midmyocardium and 32.5% epicardium; and (2) 17% endocardium, 41%
midmyocardium and 42% epicardium. The scenario with 0 percentage endo was
considered in order to compensate for the lack of Purkinje fibers which should
elongate the APD of subendocardial cells rendering a more realistic pseudo-ecg
from the simulations.

2.2 Electrophysiology Simulation

Cardiac electrophysiology was modeled and simulated with the finite element
solver ELVIRA [11]. The ten Tusscher model [10] was chosen to represent ion
kinetics at cellular level. This model allowed us to alter specific currents that can
be affected by drugs, such as IKr and still obtain physiological responses for the
activation and repolarization of the different cells. Electrical activation through-
out the ventricular tissue was simulated using the reaction-diffusion monodomain
equation [12,13]. The monodomain equation is formulated as,

∇ · (D∇V ) = Cm
∂V

∂t
+ Iion (1)

The ODEs from the ionic model were solved using a forward method with an
adaptive time step from 20μs to 100μs. Using a homogeneous discretization of
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500μm with enriched finite elements [6] and longitudinal conductivity of 0.0016
cm2/s and transverse conductivity of 0.0006 cm2/s. The resulting conduction
velocities along the fibers and in the direction perpendicular to the fibers were
0.7m/s and 0.4m/s respectively.

Drug modeling. The effect of dofetilide was modeled by introducing the factor
(1−b) in the IKr formulation (where b is the fraction of channels blocked by the
drug). Thus, the new formulation of the rapid component of the delayed rectifier
K+ current taking into account the effect of dofetilide is:

Ikr(D) = Ikr(1 − b) (2)
Ikr(D)

Ikr
=

1

1 + [D]
IC50

= 1 − b (3)

with IC50 = 7nmol/l.

Calculation of pseudo-ECG. Electrical potentials obtained from the solution
of monodomain equation can be used to approximate the extracellular potential.
Equation (4) is used to calculate the extracellular potential at a given position r,

Ve(r) = − γ

4π

σi

σe

∫
Ω

∇V (r′) · ∇
[

1
|r′ − r|

]
dΩ (4)

where σi and σe are the intracellular and extracellular conductivities, V is the
membrane potential and r is the position at which we are calculating the extra-
cellular potential. Fig. 1 (c) shows the points at which the extracellular potential
(pseudo-ECG) is calculated. In order to approximate the position of those points,
the heart was inserted into a segmented human torso and properly oriented.

3 Results

A simulation study was carried out on the computational hexahedral mesh built
from the segmented human DTMRI sequence. Axisymmetric anisotropy was ex-
tracted from the DTMRI sequence and included for each element. In order to
obtain meaningful simulations and due to the lack of a Purkinje system in our
model we defined the following protocol to stimulate the ventricles. Firstly, the
isochronal maps and descriptions for right (RV) and left ventricle (LV) given by
Durrer [14] were analyzed. Secondly, we randomly choose 100 locations from the
RV endocardium and 150 locations from the LV endocardium. The activation
time for each stimulation point is dictated by a variable that depends on the
distance of each point to the apex, and was bounded to 40ms for the furthest
stimulus. Activation time followed an apex-to-base, and endo-to-epicardium se-
quence. Fig. 1 (a) shows the disposition of the activation points on the endocar-
dial regions. Colors correspond to the time in milliseconds at which each stimulus
was given. Five consecutive pulses of 2ms were given to all stimuli with a fre-
quency of 1Hz (BCL = 1000 ms) to stabilize the ionic channels and reach an
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steady state. Action potentials (APs) and pseudo-ECG during the last pacing
beat were analyzed.

In order to examine differences in response to changes in IKr several simu-
lations were conducted with different drug doses. In particular 6 scenarios were
tested combining normal and different dofetilide concentrations, 10 nM and 100
nM (complete IKr block), together with two different tissue configurations in
which percentage of endocardial, midmyocardial and epicardial cells through
the wall were changed.

For each simulated scenario we analyzed the activation sequence, extracted
the local activation time isochronal maps (LATs) and action potential duration
(APD) isochronal maps. Fig. 2 (a) shows the isochronal maps of a normal se-
quence (without any drug) and tissue configuration type (1). No significative
changes in the activation sequence were observed between simulations with and
without IKr block as expected, since it does not contributes to the activation
phase. Subtle differences were noticed in the the activation wavefront orienta-
tion between tissue configurations at the epicardial region. Total activation time
was around 90ms where activation of the endocardial region took around 50ms,
producing and endocardial to epicardial activation, which was considered phys-
iological. The analysis of the repolarization sequences showed a big difference
between cell populations. Fig. 2 (b) shows the isochronal map of local APDs
where the APD heterogeneity is visible through the wall. Fig. 3 (a) shows the
intrinsic differences between APD cell durations for the fifth stimulus on each
cell type.

In all the scenarios in which IKr was blocked the APDs were greatly increased
for all cell populations (see Fig. 3 and table 1 (b)). Table 2 summarizes the av-
erage APD90 obtained for each cell type and a given dofetilide dose, together
with the APD90 increment compared with the physiological case. It is remark-
able the effect that cell-to-cell electrotonic interactions produced in the APD
distribution. APD prolongation was almost double for configuration type (1)

(a) (b)

Fig. 2. Activation and repolarization sequence without dofetilide and het-
erogeneous scenario (1). The local activation times and local action potential du-
rations are obtained at each element of the model. Colormap shows in millisecond (a)
the activation time and (b) the time to repolarization.



228 R. Sebastian et al.

(a) (b)

(c) (d)

Fig. 3. Different behavior of epicardial, endocardial, and midmyocardial cell types. (a)
Steady-state action potentials for BCL of 1000 for endocardial, midmyocardial and
epicardial cells in normal conditions. (b) prolongation of the APD for midmyocardial
cells as a function of the dofetilide dose. Equivalent increments were obtained for all
three cell populations. (c) and (d) show the dispersion in APD as a function of the
dofetilide concentration for heterogeneity types (1) and (2), respectively.

than type (2) for both midmyocardial and epicardial cells. The lack of endocar-
dial cells in configuration type (1) only left one border for interaction between
epicardial and midmyocardial (which accounted for 66% of the wall). Figs. 3 (c)
and (d) present changes in dispersion of APD for different IKr block degrees
and wall heterogeneity. Again cell heterogeneity played an important role and
changed the dispersion of APD shifting the average and tail of the distribution.
Dofetilide prolonged the APD for all cell types, although it had a greater global
effect for configuration (1), since midmyocardial cells were more abundant in
case (1) and showed the most affected by dofetilide.

Table 1. Differences in activation and repolarization times

Dofetilide Heterogeneity Activation (ms) Repolarization (ms) QT (ms)

0 nM (1)/(2) 90/88 460/460 450/439

10 nM (1)/(2) 89/88 500/480 500/505

100 nM (1)/(2) 89/88 540/520 544/537
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Table 2. Average APD90 and APD90 prolongation for different cell types and
dofetilide doses for heterogeneity (1)/(2)

Dofetilide ENDO (ms) M (ms) EPI (ms)

0 nM -/320 330/300 320/300

10 nM -/340 (-/6.3% ) 385/320 (16.7%/6.7% ) 355/320 (10.9%/6.7% )

100 nM -/380 (-/18.8% ) 410/340 (24.2%/13.3% ) 380/340 (18.8%/13.3% )

Pseudo-ECGs were calculate at the six precordial points (see Fig. 1 (c)),
and were consistent with results obtained at cellular level. A QT interval of
440ms was measured under normal conditions which was longer than expected,
probably due to a slow activation time. Prolongation of QT for total IKr block
(D = 100nM) increased the QT interval up to 100ms in lead V5 for both
scenarios. Second scenario was consistent with results obtained by ten Tusscher
[15] at cellular level. Different experimental studiers have demonstrated the key
importance of spatial dispersion of repolarization in LQTS arrhythmia [16]. The
increase of QT interval (22%) is in agreement to the clinical recorded degree of
QT prolongation induced by the effect of dofetilide (15%) [17].

(a) (b)

Fig. 4. Pseudo-ECGs for lead V3. Effect of dofetilide in pseudo-ECG for (a) het-
erogeneity type (1) and (b) type (2). Prolongation of the QT interval is clearly visible
and coherent with APD prolongation.

4 Conclusions

We have built a 3D model of a human subject and included the main anatomical
and functional components required to perform in-silico electrophysiology stud-
ies. We designed a simulation study to simulate the multi-scale effects of drug-
induced ion channel block in ventricular electrophysiology at the cellular, tissue
and whole ventricular levels for different ventricular cell heterogeneity scenar-
ios. A well known drug called dofetilide which affects specifically IKr channels
was chosen to study the effect of current block in a 3D heart model. Results
showed the effect of dofetilide in cardiac cells, a prolongation of APD and QT.
Average APD and APD distributions were obtained for each drug concentra-
tion and each scenario. The scenario that included endocardial, midmyocardial
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and epicardial cells produced the more realistic results. Pseudo-ECG confirmed
the results observed at cellular level regarding the prolongation of repolarization
phase. Results confirmed the importance of structural personalization since the
response to the drug block varies as a function of the cell type. The overall ge-
ometry should not have a great impact on the results or the overall effects of the
drug beyond subtle changes in the ECG. Nonetheless, differentiated models for
dilated, normal or hypertrophied hearts might have an impact. Computational
modelling and simulation tools might help in the understanding of complex drug
to cell and organ interactions, as well as help for the assessment of drug safety
pharmacology.
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Abstract. Noninvasive cardiac electrophysiological imaging (IECG),
the effort to use body surface potential measurement to estimate subject-
specific electrophysiological activity of the heart, traditionally is per-
formed on detailed heart-torso models that are completely reconstructed
from a large amount of images. This geometrical modeling brings high de-
mands of operational time and data acquisition, rendering current IECG
techniques clinically impractical. In this study, we investigate the feasi-
bility to use an alternative geometrical model that excludes local details
but captures subject-specific global geometrical parameters that have
been regarded essential for reliable IECG solutions. This is done by using
limited images and image metadata to customize a pre-defined, generic
ventricle and electrode-array representation to subject-specific ventricle
size, position, orientation and electrode position on the body surface.
We apply this simplified geometrical modeling in IECG studies of post
myocardial infarction patients; the results of transmembrane potential
imaging and infarct quantitation are compared with the gold standard
and results from the same IECG approach using traditional, detailed
heart-torso model. This study shows that local geometrical details do
not have significant impact on IECG solutions and excluding them from
geometrical modeling might be of potential to drive cardiac electrophys-
iological imaging closer towards clinical practicability.

Keywords: Cardiac electrophysiological imaging, Geometrical model-
ing, Myocardial infarction.

1 Introduction

Noninvasive cardiac electrophysiological imaging, also known as the inverse prob-
lem of electrocardiography (IECG), seeks to computationally reconstruct elec-
trophysiological activity of the heart from electrical potential measurements on
the body surface. It has been a common practice to solve this problem on a

O. Camara et al. (Eds.): STACOM-CESC 2010, LNCS 6364, pp. 232–241, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



How Much Geometrical Detail Is Needed in IECG 233

realistic heart-torso geometrical model that is built, as in detail as possible,
from tomographic images of individual subjects [1,2]. This, however, renders
the current IECG techniques clinically impracticable and unfavorable: on one
hand, it requires a serial operations such as image registration, segmentation,
and surface-/volume-mesh generation to construct a detailed geometrical model
entirely from images; each step per se often involves a non-automatic task that
is nontrivial, labor-intensive, time-consuming and associated with intricate, am-
biguous errors; on the other hand, while advanced algorithms might expedite
the modeling procedure [3], large amount of heart and whole-body images al-
ways have to be collected for each subject of interest. This inconveniently high
demand on operational time and data acquisition is one of the major obstacles
to the clinical practicability of cardiac electrophysiological imaging.

Impact of geometrical modeling on IECG solutions has long been studied,
including geometrical errors caused during modeling [4,5,6], heart motion [7]
and respiratory [8]. The consensus is that, for reliable IECG solutions, a fixed,
standard geometrical model is insufficient [4] and important global geometrical
parameters, including heart orientation, position, size and electrode positioning
on the body surface [4,5,6], have to be accurately captured. Nevertheless, no
study has examined the role of local heart-torso geometrical details in IECG
problem. This raises the question that, in order to improve the efficiency and
practicability of current IECG techniques, is it feasible to replace the traditional
fully-detailed geometrical model with a simplified one that accurately incorpo-
rates global geometrical parameters known to be crucial to IECG solutions, but
neglects local complex geometrical details of individual subjects?

In this paper, we develop and apply a customizable, generic representation
of ventricle-torso geometry in the reconstruction of subject-specific volumetric
transmembrane potential (TMP) dynamics from body surface potential (BSP)
data, an IECG approach developed in [1]. This generic ventricular representation
takes shape from four standard concentric ellipsoids, while the torso representa-
tion defines a schematic description of electrode array setup in any given BSP
mapping system. In IECG study of individual subjects, instead of gradually re-
constructing a fully-detailed ventricle-torso model from large amounts of images,
we use limited images and image metadata to quickly customize the pre-defined
abstract ventricle-torso representation to subject-specific ventricular size, posi-
tion, orientation and electrode positions. This is tested in IECG studies of post
myocardial infarction (MI) patients. Results of 3D TMP imaging and infarct
quantitation are validated with the gold standard provided by cardiologists, and
are compared to the results obtained from the same IECG approach using tra-
ditional fully-detailed heart-torso model [1].

2 Methodology

2.1 Generic Representation of Ventricle-Torso Geometry

Ventricular Representation. Instead of describing in detail the intricate
ventricular shape for individual subjects, the generic ventricular representation
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(a) (b)

Fig. 1. (a) Surface mesh of the generic ventricular representation in {ε, η, ζ} coordinate
system. (b) Example of a short-axis view of the generic ventricular representation
(base); color implies which ellipsoid each part of the contour belongs to.

offers a standard, abstract description of ventricular shape. As shown in Fig 1,
in a Cartesian coordinate system {ε, η, ζ}, the generic description of ventricular
geometry is mathematically defined by the surfaces (in negative-ζ space) of four
concentric, intersecting ellipsoids, of which the center locates at the origin and
the semi-principal axes corresponds to the ε, η and ζ axes:

(
ε

ai
)2 + (

η

bi
)2 + (

ζ

ci
)2 = 1 i ∈ {li, lo, ri, ro} (1)

where {ai, bi, ci} represent equatorial and polar radii of the four ellipsoids labeled
by subscript i. Ellipsoids li and lo are prolate spheroids with equal equatorial
radii smaller than polar radius (ai = bi < ci, i ∈ {li, lo}): li surface represents LV
endocardium (green in Fig 1 (b)); lo surface on +ε direction to lo−ro intersection
represents part of epicardium (black), and lo surface on −ε direction to lo − ri
intersection represents the septal part of RV endocardium (yellow). Ellipsoids
ri and ro have equatorial radius bi and polar radius ci equal to those of li and
lo, respectively, but equatorial radius ai larger than alo (aj > alo; bj = bi; cj =
ci.(j, i) ∈ {(ro, lo), (ri, li)}) so that they both intersect with lo: ro surface on
−ε direction to lo − ro intersection represents part of the epicardium (blue); ri
surface on −ε direction to lo− ri intersection represents the free-wall part of RV
endocardium (red). This ventricular representation is rendered in surface mesh
with alo = 50, clo = 60, ali = 40, cli = 50, aro = 70 and ari = 80, with fiber
orientation mapped from the mathematical ventricular fibrous model in [9].

Torso Representation. Because the relative position between heart and
recording electrodes is the major determinant of IECG solutions [4,6], the torso
representation is designed to describe the electrode positioning instead of com-
plete torso geometry. Since when a given BSP mapping system is applied to
individual subjects, only a few electrodes are located to landmarks while the
remaining ones are arranged in keeping with the pre-specified setup of electrode
array, it is sensible to construct a schematic representation of the electrode array
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(a) (b)

Fig. 2. (a) Dalhousie 123-lead body surface potential mapping system, with 120 torso
leads (blue) and 3 limb leads (green); the 6 chest electrodes used in standard 12-lead
electrocardiograms are marked as green. (b) The schematic representation of Dalhousie
123-lead mapping system; 120 torso leads are marked as red, and 3 limb leads are
marked as green. The view direction is from the front to the back of the body.

for each given BSP mapping system, which can be customized to each subject
according to subject-specific landmarks located in images.

As an example, this paper elaborates on the Dalhousie 123-lead mapping
system [10] used in our real data experiments. Fig 2 (a) shows the standard
arrangement of electrode sites in this mapping system, including 120 torso leads
(blue) and 3 limb leads (yellow); Fig 2 (b) shows the schematic representation
(surface mesh) of the electrode array, taking into account the following rules:
the electrodes are mounted 5cm apart in flexible rubber strips; columns B’ to G’
are structurally-spaced array (spaced as in Fig 2 (a)) on the front of the torso
with column E to be located over the sternum, and column I and column A to
be located in the right and left axillary line (sides of the body), respectively;
column B and P are to be located in the anterior and posterior axillary lines
on the left side of the body; columns K to O are evenly-spaced electrode array
on the back of the torso, with column O, N and M are to be located directly
posterior to column C, D and E on torso front, respectively. Absolute position
of the electrodes are not relevant in this schematic representation because it is
the mesh and relative positioning among electrodes that is of interest.

2.2 Fast Subject-Specific Geometry Customization from Images

In application to individual IECG studies, the predefined ventricle and electrode-
array representation are quickly customized to the electrode positioning and ven-
tricular orientation, position and size of individual subjects using limited images
and image metadata. The customized ventricle-torso models are described in the
patient-based Cartesian coordinate system (x, y, z) that is used as standards in
medical images, where the x-axis increases from the right to the left hand side
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of the patient, the y-axis increases from the anterior to the posterior part of the
patient, and the z-axis increases from the feet toward the head of the patient.

In the generic ventricular representation in local {ε, η, ζ} coordinate system,
ventricular size is reflected in ellipsoidal radii: four equatorial radii ai charac-
terize the left- and right-ventricular cavity radii as well as wall thickness; polar
radii clo and cli define ventricular long-axis length. The origin corresponds to the
center of LV base, and the ε-, η-, and ζ- axes correspond to the vertical long axis
(vLA), horizontal long axis (hLA) and short axis (SA) views of standard cardiac
imaging, respectively. As a result, customization of ventricular model is simpli-
fied into the straightforward practice of coordinate transformation: 1) Scaling:
approximate LV and RV endocardial radii (ali, ari) and epicardial radii (alo, aro)
from base-slice SA cardiac image; calculate LV long-axis epicardial and endocar-
dial length (cli, clo) from the position of base- and apex-slice SA cardiac images
with respect to the patient-based coordinate system (defined by Image Position
(Patient) in image metadata); scale the four standard ellipsoids by these six
parameters. 2) Translation: locate the center of LV base Oc in base-slice SA
cardiac image; translate the origin of the {ε, η, ζ} coordinate to Oc. 3) Rota-
tion: calculate the SA, hLA, and/or vLA view direction from the orientation of
SA-, hLA-, and/or vLA-view images with respect to the patient-based coordi-
nate system (defined in Image Orientation (Patient) in image metadata); rotate
the {ε, η, ζ} coordinate system to the (vLA, hLA, SA) view directions.

With the above transformation between the local {ε, η, ζ} and global (x, y, z)
coordinate system, the generic ventricular representation is customized to the
correct position inside individual subject’s torso with orientation and size as in-
dicated by images; the associated surface fiber orientation is rotated accordingly.
A cloud of meshfree points, with flexible spatial resolution suitable for different
applications, is then generated inside the subject-specific ventricular surfaces
for the volume representation of ventricular wall; to account for myocardial
anisotropy, fiber structure associated with the three-dimensionally distributed
points is interpolated from surface fiber orientation based on the knowledge that
ventricular fibers are spirally arranged and fiber orientations change from epi-
to endo-cardium in a counterclockwise manner [11].

Customization of torso model involves locating the schematic electrode array
to the following landmarks: from whole body sagittal plane (SAG) image, the
forth row of electrodes from the bottom is determined by the fourth intercostal
space parasternally as the reference for the z-direction positioning for the entire
electrode array and for the y-direction positioning of the front electrodes; from
whole body coronal plane (COR) image, columns E, E’ and D’ are located by
the sternum, V 1 position and V 2 position1, respectively, as the reference for
x-direction positioning of the entire array except on the body sides; from whole
body transversal plane (TRA) image, column M is located from the dorsal spine
to determine the y-position of all back electrodes, and x- and y-positions of
columns I, A, B and P (sides of the body) are located by the right mid-, left
mid-, left anterior and left posterior axiliary lines, respectively. The remaining

1 V 1, V 2 are chest leads in standard electrocardiograms.
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(a) (b)

Fig. 3. (a) Simplified torso model customized from 123-electrode array mesh (Fig 2
(b)) to the electrode positioning on the body surface of patient 3 (the mesh is high-
lighted with thicker edge and the electrodes are marked as red), superimposed with the
detailed, complete torso model. (b) Example slice of the generic ventricular model in
Fig 1 (red contour) customized to the ventricle position, orientation and size of patient
3, superimposed with the detailed ventricular model (blue contour) and MRI.

electrodes fall into place in keeping with the prespecified array setup. By us-
ing the same landmarks used in locating the electrode strips during mapping
practice [10], this customization process replicates the electrode positioning pro-
cess and thus offers an accurate description of subject-specific electrode positions
on the body surface. Note that y-direction (anterior to posterior) customization
of electrodes on body front and back is less certain because of the lack of land-
marks and the following simplification is made based on the characteristic of
torso shape: for body back, we assume the same y position for all the electrodes
as the dorsal spine located from TRA plane image; for body front, we further
locate the first and last rows of electrodes from whole body SAG image and
interpolate y-positions of the remaining electrodes in between.

In summary, by examining four images (cardiac base-slice SA image, whole-
body COR-, SAG-, and TRA-plane images), and using image metadata to obtain
the position and orientation of four images (cardiac base-slice and apex-slice SA
image, hLA and/or vLA image), we efficiently obtain a ventricle-torso represen-
tation that ignores local geometrical details of the ventricles or the torso, but
accurately captures subject-specific electrode positions, ventricular orientation,
position and size, which are global geometrical parameters regarded most crucial
to cardiac electrophysiological imaging.

3 Experiments

We apply the proposed geometrical modeling in the IECG approach presented in
[1], where a priori knowledge of normal cardiac electrophysiology is incorporated
through monodomain FitzHugh-Nagumo models to constrain the IECG solu-
tion, and a rigorous statistical framework of state-space filtering is formulated to
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(a) Simulated healthy TMP dynamics.

(b) Estimated patient-specific TMP dynamics.

Fig. 4. Time sequence of volumetric TMP dynamics for patient 3 on simplified geome-
try. Color encodes normalized TMP magnitude (0− 1); black contour represents TMP
isochrones. Left to right: 9.1ms, 12.2ms, 121.7ms, 128.3ms after QRS onset. During de-
polarization (left two figures), patient-specific TMP conduction delay appears around
mid-basal LV and lateral part of mid-apical LV that coincides with true infarct loca-
tion; during repolarization (right two figures), shorter activation duration and lower
resting potential appears around the same location.

obtain the maximum a posteriori estimation of volumetric TMP dynamics from
subject-specific BSP data. Experiments are performed on MRI and BSP data
of three post-MI patients provided in 2007 PhysioNet / CinC Challenge [12].
Cardiac SA, hLA and vLA MRI of patients are provided with 1.33mm/pixel in-
plane resolution; whole body SAG, COR, and TRA plane MRI are provided with
1.41mm/pixel in-plane resolution. BSP is recorded at 2k Hz by the Dalhousie
123-lead system introduced in section 2.1. From Gd-enhanced MRI, cardiologists
identified the center (CE), extent (EP ) and segments of infarct for each patient
(based on AHA 17-segment LV division [13]); Tab 1 and Fig 5 (a) lists this gold
standard of infarct quantitation and the corresponding visualization.

As an example, Fig 3 shows a superimposed comparison of the ventricle (a)
and torso model (b) between that is customized from the generic representation
and that is fully reconstructed from images, respectively, for patient 3. Fig 4
compares the results of volumetric TMP dynamics obtained on the simplified
geometrical model (b) to the simulated healthy TMP dynamics on the same
geometry (a): it is evident that the estimated patient-specific TMP dynamics
exhibits distinct conduction delay during ventricular depolarization, and shorter
activation duration and lower resting potential during repolarization; these ir-
regular behaviors collect around the inferior mid-basal LV and lateral mid-apical
LV that coincides with true infarct location of the patient (Fig 5 (a)).

Using the method described in [1], infarct quantitation is performed based
on two prominent features, activation time and action potential duration, of
patient-specific TMP dynamics. Fig 5 shows the 3D infarct imaging as a result
of MI quantitation on the simplified geometry (c), compared to those obtained
with traditional detailed geometry [1] (b) and gold standard (a); Table 1 lists
the corresponding quantitative comparison. As shown, the overall accuracy of
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Table 1. MI quantitation results obtained with simplified geometry (SG), compared to
the gold standard (GS) and results with detailed geometry (DG) [1]. Infarct center and
location are labelled by segment number as defined by AHA 17-segment LV division.
False-positive identification is highlighted by color blue. Infarct extent measures the
percentage of infarct in the ventricular mass. Segment overlap measures the percentage
of true positive identification in estimation results.

Extent (EP) Center (CE) Location Segment Overlap (SO)

Case 1
GS 31% 8 1,2,3,8,9,13,14,15 NA
DG 28% 8 1, 2,9, 13, 14, 15, 17 76%
SG 41% 8 1, 2, 3, 6, 8, 9, 13, 14, 16 84%

Case 2
GS 30% 3/4/9/10 3, 4, 9, 10 NA
DG 24% 9 3, 8, 9, 10, 14, 15 56%
SG 27% 9 2, 3, 4, 8, 9, 10 76%

Case 3
GS 52% 10/11 3,4,5,9,10,11,12,15,16 NA
DG 43% 9 2,3,4,5, 8, 11,12,16, 17 56%
SG 43% 9 2, 3,5, 8,9,10,11,15,16 61%

(a) Gold standard (on detailed geometrical model)

(b) Results obtained with fully-detailed geometrical model

(c) Results obtained with customized simplified geometrical model

Fig. 5. 3D Infarct Imaging. (a): Infarct segments are highlighted as green with the
center as red. (b) and (c): Color encodes the value of infarct metric as defined in
[1], where larger value corresponds to larger difference from normal TMP activity.
Because of the difference in geometry, identical visual appearance is not expected. For
quantitative comparison refer to Table 1.

MI quantitation is not negatively impacted by replacing the fully-detailed geo-
metrical model with the simplified one: the localization of infarct center in not
affected in any case; slightly different false-positive and true-positive identifi-
cation of infarct location are given with the simplified geometry but the over-
all performance is similar; more interestingly, the same or better accuracy is
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obtained on the percentage of true-positive identification (SO) with the simpli-
fied geometry. This could be explained by the fact that, because the simplified
ventricular model is of more regular shape, it gives rise to less uncertainty in
the 17-segment LV division and, as a result, leads to improvement in the accu-
racy of 17-segment based MI quantitation. Nevertheless experiments on a larger
datasets are needed for any conclusive remark.

4 Discussion and Conclusion

As the first step in investigating the role of local heart-torso geometrical details
in IECG solutions, this feasibility study shows that, as long as global geomet-
rical parameters are accurately captured, local geometrical details do not have
significant impact on IECG solutions. Therefore, in place of the traditional fully-
detailed geometrical models, an alternative, which excludes local shape details
but allows fast, accurate customization of global geometrical parameters, might
be of the potential to drive cardiac electrophysiological imaging closer towards
clinical practicability. In comparison, a fully-detailed geometrical model requires
complete SA scans from apex to the base of the heart ( ∼10 images), and COR-,
SAG-, TRA-plane scans of whole body at different depths (∼ 30-50 images for
each plane); the simplified model needs only 6 images (base- and apex-slice SA,
hLA/vLA image, COR-, SAG-, TRA-plane image). Furthermore, detailed heart
and body modeling often involves non-automatic task that requires expertise at
image processing; customization of the presented geometrical model, while still
requires user interaction with the images, does not require image-proessing ex-
pertise and can be quickly performed in clinical practice. This could largely ease
one of the major challenges to the clinical practicability of cardiac electrophys-
iological imaging. Because these manual interaction steps determine the global
geometrical parameters that are crucial to IECG solutions, it is important to
assure their accuracy as well as to further develop the simplified geometrical
model to employ minimum manual interaction.

Experiments in this study only consider myocardial infarction in left ventricle.
As shown in Fig 3 (b), compared to LV, the simplified RV model shows relatively
larger discrepancy from the realistic RV shape, the impact of which should be
investigated in a larger variety of cardiac conditions in future study. While this
paper demonstrates that local geometrical details do not have significant impact
on the specific IECG approach presented in [1], conclusion regarding general
IECG methodologies can only be given with a more comprehensive study in
the future. Furthermore, at this initial stage, the presented simplified geomet-
rical model could expedite and therefore improve the applicability of noninva-
sive TMP imaging in guiding diagnosing, detecting and approximately localizing
electrophysiologically-altered tissue in the 3D myocardium; future development
of this geometrical model should extend its applicability to scenarios where de-
tailed heart surface or transmural geometry are needed, for example, through
the addition of post-processing step that interpolates or deforms the ellipsoid
surface to patient’s cardiac images [14].
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It is a difficult problem to estimate electrophysiological information inside the
3D myocardium from electrode recordings on the body surface: while the results
of MI quantitation presented in [1] appear to noticeably differ from the gold
standard provided by cardiologists, they showed evident improvement over other
existing IECG results on the same data sets. Though further methodological
development is much needed for IECG approaches, it is out of the scope of this
study which focus on how to reduce the cost of operational time and image
acquisition of IECG approaches.
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Corné Hoogendoorn1,2, Ali Pashaei1,2, Rafael Sebastián3,
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Abstract. We present the fully automated pipeline we have developed
to obtain electrophysiological simulations of the heart on a large atlas-
based virtual population. This virtual population was generated from a
statistical model of left ventricular geometry, represented by a surface
model. Correspondence between tetrahedralized volumetric meshes was
obtained using Thin Plate Spline warps. Simulations are based on the
fast solving of Eikonal equations, and stimulation sites correspond to
physiological activation. We report variations of total activation time
introduced by geometry, as well as variations in the location of last ac-
tivation. The obtained results suggest that the total activation time has
a strong dependence on LV geometrical variation such as dilation-to-
hypertrophy.

1 Introduction

In order to improve the understanding of the physiological phenomena underly-
ing the clinical observations relating to particular pathologies, it is imperative
that large amounts of multimodal data are collected and analyzed. Challenges
to achieve this goal lie mainly in the processing of this data in a consistent way,
with feasible processing times and levels of interaction.

Regarding the heart, in silico models are used to study electrophysiology.
Electrical activation patterns obtained through simulations show the impact
of pathology on cardiac function, and should consequently shed light on the
open issues surrounding therapy options. One example of a treatment option
with strong potential but with an as of yet poorly defined responder profile is
Cardiac Resynchronization Therapy (CRT) [1,2]. A better understanding of what
compromises CRT efficacy is expected to lead to improvement of the current
response rate of 70%.

In this work, we use a large virtual population derived from a surface Point
Distribution Model (PDM) of the left ventricle (LV) to demonstrate our pipeline

O. Camara et al. (Eds.): STACOM-CESC 2010, LNCS 6364, pp. 242–251, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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for large scale personalized cardiac electrophysiological simulations. This corre-
sponds to using the output of an automated image segmentation algorithm,
after which the steps of volumetric meshing, definition of fiber orientation and
Purkinje terminals, execution of electrophysiological simulation, and analysis of
the activation pattern are fully automated. The total running time of these five
steps is on the order of minutes, although mesh resolutions –both surface and
volumetric– have a strong influence on this.

2 Atlas-Based Virtual Population

We create a virtual population of left ventricular geometries based on the prin-
cipal modes of variation observed in a sample of 80 subjects, both healthy and
pathological.

2.1 Point Distribution Model

Our statistical model of the geometry is a PDM as used in Active Shape Model
(ASM) based segmentation [3]. Each shape in the training set is represented by
a number of corresponding points –landmarks– which in our case are all located
on the LV epi- and endocardial surface.

Represented by nl landmarks, Procrustes alignment [4] is used to remove
pose and size variations from the set of surfaces. Then, each of the ns aligned
shapes is represented by a single 3nl-dimensional shape vector si, 0 ≤ i < ns,
by concatenating the coordinates of the landmarks. From these, we compute the
mean shape vector:

s̄ =
1
ns

∑
i

si, (1)

and we compose the data matrix S:

S =

⎛⎜⎜⎜⎝
s0 − s̄
s1 − s̄

...
sns−1 − s̄

⎞⎟⎟⎟⎠ (2)

By applying Principal Component Analysis (PCA) [5] to the sample covari-
ance matrix C = 1

ns
ST S, we obtain the reoriented coordinate system Φ which

is best aligned to the principal modes of variation of the shape set in a least
squares sense, as well as the observed variances λi, 0 ≤ i < ns along each of
these components. It is within this reoriented coordinate system that we sample
our virtual population.

The coefficient vector corresponding to a shape is denoted b; new shapes are
generated using the equation snew = s̄ + bΦ, and scaled using the mean scaling
factor obtained at the Procrustes alignment step. Note that our use of PCA does
not imply that the segmentation has to be done using a PCA-based model.

The left panel of Fig. 1 illustrates the distribution of our input shapes.



244 C. Hoogendoorn et al.

Fig. 1. Left: Input shapes in 3-dimensional shape space; right: Shapes sampled on
the grid in 3-dimensional shape space (also overlaid left as small glyphs). The large
transparent ellipsoids illustrate isoprobability associated with 1, 2 and 3 standard devi-
ations from the mean, under the assumption that the input shapes follow a multivariate
Gaussian distribution.

2.2 Sampling Strategy

As we assume a Gaussian distribution underlying our shapes, the λi we obtain
correspond to the variances of this multivariate Gaussian distribution [6]. Using
this information, we sample up to 3 standard deviations from the mean in each
of the first three principal directions, to study the extremes we should expect
based on our input shape set. Three standard deviations is the amount of varia-
tion usually allowed in ASM-based segmentation tasks, although the number of
components used is typically greater than our three [7].

Our sampling frequency is 0.5 standard deviations, leading to a virtual pop-
ulation of nm = 133 = 2197 meshes, as illustrated in the right panel of Fig. 1.
This number can be increased with more modes of variation and finer sampling,
but we chose this for ease of visualization. The mean shape and shapes on the
main axes are shown in Fig. 2 in the left panel, illustrating the main modes of
variation. Combinations of these modes lead to the ‘extreme’ shapes shown in
Fig. 2 in the right panel, corresponding to the corners of our sampling grid.

3 Volumetric Population

The meshes produced by the sampling in PCA coefficient space are surfaces
only; to obtain correspondence between tetrahedron-based volumetric meshes,
only the mean shape surface is tetrahedralized. This is done using Tetgen1. While
the accuracy of the solver used is not sensitive to mesh coarseness, we needed a
sufficiently fine mesh to define transmural variations in fiber orientation. On the

1 Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany. Web-
site: http://tetgen.berlios.de

http://tetgen.berlios.de
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vectors b.

other hand the simulation time increases with the number of nodes, therefore
we increased the resolution until the simulation result on the mean geometry
stabilized, which occurred at a target tetrahedron volume of 1.5 mm3, while the
target aspect ratio (Hmax/(2rin

√
6): Hmax is the length of the longest edge, rin is

the radius of the insphere; the optimum value is 1) was fixed throughout at 1.2.
The resulting mesh contained 20300 nodes and 112815 tetrahedrals. The actual
mean tetrahedron volume was 1.14 mm3, respectively.

3.1 TPS Registration of Point Sets

To generate the volumetric meshes corresponding to the other 2196 meshes, we
use the correspondence between surface points to derive a Thin Plate Spline
(TPS) warp [8]. To reduce the load of computing the warp, which involves the
inversion of a (nk +3)× (nk +3)-sized matrix, with nk the number of landmarks
used to define it, the mean surface was first decimated to a subset of the original
landmarks, vectorized into s̄′. Then, the displacements s̄′− s′i are used to obtain
the TPS warps.

The correspondence that already existed on the surface meshes is then trans-
ferred to the volumetric meshes by applying the TPS warp to each of the nodes
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of the mean volumetric mesh. This strategy degrades the quality of the volu-
metric mesh, measured by the maximum aspect ratio and mean tetra volume we
report in Fig. 3. However, we placed more importance on node correspondence
to be able to compare results throughout our population.

Fig. 3. Quality measures of the volumetric meshes generated through Thin Plate Spline
warping of a mean volumetric mesh. Left: maximum tetrahedron aspect ratio; right:
mean tetrahedron volume (mm3).

4 Electrophysiological Simulation

4.1 Substructure Modeling

Histological studies have been instrumental in better understanding the geo-
metrical microstructure of cardiac tissue [9]. However, obtaining information on
patient specific arrangement of myocytes is still challenging. It requires specific
imaging techniques such as diffusion tensor magnetic resonance imaging (DT-
MRI), which currently can only be used on ex-vivo hearts. Therefore, since no
patient-specific data are available, a simpler approach to include the myocardial
fiber orientation is used. It consists in calculating the myofiber orientation at
every node on the deformed volumetric mesh, according to the histological re-
sults obtained by Streeter [10]. The left panel of Fig. 4 shows the change in fiber
orientation from endocardium to epicardium.

We have set conduction velocities in cardiac tissue according to the values
obtained by Caldwell et al. [11] on recent experimental models. Along the fiber
direction it is set to 0.67 m/s; however, perpendicular to these, Caldwell found
velocities of 0.30 m/s parallel to the myocyte layers and 0.17 m/s in the trans-
mural direction. Since we do not have these two perpendicular directions defined
with the fiber direction, we set the conduction velocity perpendicular to the fiber
direction to the mean of the parallel and transmural velocities, at 0.24 m/s.

To palliate the absence of a complete conduction system yet still produce
realistic activation sequences of the ventricle, we defined a simple stimulation
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protocol. We randomly chose np points in the LV wall. The activation time for
those stimuli were set by measuring their distances to the apex, and bounding the
maximum activation time of the endocardium. Absolute numbers where bounded
by studying endocardial activation maps given by Durrer et al. in human hearts
[12], producing apex-to-base and endo-to-epicardial activations as reported in
literature. The stimuli network was consistent between different hearts, as illus-
trated in Fig. 4’s right panel, yet absolute activation times were recomputed for
each case. In the figure, the activation times are for the mean geometry.

Fig. 4. Left: transmural variation of fiber orientation. Right: Purkinje terminals and
their activation delays, up to 39 ms (in red, at the basal level).

4.2 Propagation Model

There exist several models with different degree of complexity to simulate cardiac
electrical activation. The complexity is usually selected as a function of the final
application and has a great impact on computation times. In this work, we use
a simplified electrical propagation model that uses a Purkinje terminal model
as described in the previous section. It is a simple wave propagation model
[13,14] that takes into account the myocardial fiber orientation, and is based
on the assumption that propagation speed varies more slowly and over larger
spatial scales than the transmembrane potential. The model used here is based
on the Hamilton-Jacobi Equation (HJE), a formulation of mechanics in which
the motion of a particle can be represented as a wave. The static HJE equation
is of the form

∀xi ∈ Ω : H(xi,
∂φ

∂xi
) = 0, with ∀xi ∈ ∂Ω : φ(xi) = φ0(xi). (3)

Here φ is the seed value, xi is the coordinate component, and Ω and ∂Ω the do-
main and domain boundary, respectively. The Eikonal equation is an important
member of the family of HJEs, which can be described in anisotropic format as

∀xi ∈ Ω : aij
∂φ

∂xi

∂φ

∂xj
− f2(xi) = 0, with ∀xi ∈ ∂Ω : φ(xi) = φ0(xi). (4)

where aij is the anisotropy coefficient, and f(x) a positive function. To solve
Eq. (4), we used the Fast Marching Method (FMM) introduced by Sethian [15].
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5 Experiments and Results

We simulated physiological activation by using a stimulation point at the location
where the insulating sheath around the His bundles is expected to end. This
corresponds to one node of the volumetric mesh, and it is this same node that is
used in all simulations. Similarly, the set of nodes at which we define Purkinje
terminals is kept equal throughout the population.

The outcome of the simulations that are analyzed are the Local Activation
Times (LAT); Fig. 5 illustrates how the total activation time and varies through-
out the population, as well as the variability in last activated nodes (the nodes
whose LATs define the total activation times). A more spherical geometry leads
to a longer total activation time. Figure 6 shows the LAT pattern observed; to-
gether with Fig. 7 it shows that this pattern is much the same throughout the
population, with only absolute values varying. This would be according to expec-
tation, as no other variation but geometry is introduced. Further investigation
is required to study how the location of the last activated node varies.

Fig. 5. Left: The sample grid with total activation times. Each sphere corresponds
to a shape, as in Fig. 1, and its total activation time is color-coded from 81.7 ms
(blue) to 95.9 ms (red). The greatest difference is observed between the spheres in
the third row of Fig. 2’s right panel, which are depicted near their respective corners.
Right: Epicardial views, on which sphere size and color indicate in how many of the
2197 simulations the last activated node was there (max: 374); the box indicates the
stimulation point, the geometry is that of the mean shape.

Running times per generated shape are on the order of minutes; the simulation
takes up the vast majority of this time. On a high-end desktop PC (Intel Core
i7 at 2.67 GHz, 6 Gb of RAM), the TPS warping takes about 2 seconds, which
includes the decimation of the mean mesh. Subsequently the generation of the
fiber orientation and computation of Purkinje terminal activation delays take up
another second. Finally, the simulation takes up around 50 seconds.



Influence of Geometric Variations on LV Activation Times 249

−3σ mean +3σ

Fig. 6. Local Activation Time maps, mean and plus and minus three standard devia-
tions on each node, shown on the mean shape. The color map ranges from 0 to 119 ms
(blue to red).

Fig. 7. Local Activation Time maps, depicting intramural activation for the two most
extreme shapes, with the septal wall removed. As the cuts are equal with respect to
the coordinate system, they do not coincide anatomically. However, there is evidence
of equality in the activation patterns.

6 Conclusions and Discussion

We have presented an implementation of the pipeline from image segmentation
to electrophysiological simulation, and used it to demonstrate high-throughput
simulation studies on a large virtual population. This shows the feasibility of
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doing simular studies on large real populations, to ensure sufficient statistical
power of the simulation results, whose variations may not be correctly observed
in small studies.

The greatest variation was observed along a space diagonal of our sampling
grid, corresponding to a variation of the LV’s elongation, together with a wall
thickening. We would argue, however, that the normalization of the LV size in
the set of training surfaces has a damping effect on this variation; an isotropic
scaling of the more spherical ventricle to more closely match the length of the
more elongated ventricle would only serve to increase internodal distances, and
consequently the activation times.

The strategy of deforming a volumetric atlas mesh seems to have little influ-
ence on the simulation quality, yet when more complex propagation models are
employed this could become an issue. Such propagation models would also call
for a mean volumetric mesh of one order of magnitude higher resolution.

Extension of this work would involve the generation of a larger population with
biventricular or full heart models as well as exploring different pacing strategies
such as CRT, LV epicardial or endocardial pacing under particular conditions
such as the presence of scar. For the latter condition, automated identification
and delineation of scar tissue will be required; this step will probably be placed in
the pipeline during or immediately after segmentation of the cardiac geometry.
Subsequently different propagation speeds are to be asigned to the associated
nodes. Different pacing strategies would amount to the selection of different
nodes or pairs of nodes to serve as stimulation points.
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Abstract. Model customisation to represent specific experimental or clinical 
cases is becoming increasingly important as simulations aim to characterise in-
dividual variability under physiological and pathological conditions. This study 
presents a new methodology to customise and regularise heart shape and fibres 
using imaging data (MRI and DT-MRI). The effect of using generic conductiv-
ity tensor values in electrophysiology simulations on these customised meshes 
is investigated. Simulation results demonstrate the ability of generic parameters 
to approximate epicardial activation patterns in healthy porcine hearts. Results 
also show a limited sensitivity of electrical activation times to the anisotropy of 
these parameters.  

Keywords: model customization, cubic Hermite mesh, electrophysiological 
simulation.  

1   Introduction 

Simulations of cardiac activation offer the ability to integrate multimodal data ena-
bling the characterization and prediction of cardiac electophysiological function. 
Central to the effective application of cardiac electophysiology models in a clinical 
context is their ability to capture an individual patient’s cardiac function. The need for 
such personalisation is motivated by both the wide spectrum of physiological variabil-
ity in individual cardiac patients and the sensitivity of electrical activity, and heart 
function in general, to this variability.  

To simulate patient specific electrical activation requires multiple elements that 
constitute the model that are available, either directly or via inference, from specific 
diagnostic modalities. These model elements include the cardiac geometry, cardiac 
microstructural orientation, material heterogeneities, fast conducting Purkinje net-
work, cellular homeostasis and material conductivity. The anatomical geometry of the 
                                                           
* Both authors share the main authorship of the work.  
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heart is readily provided in patients through the use of MRI, CT or 3D electrocardi-
ography. The use of late enhancement imaging complements these anatomical de-
scriptions by identifying volumes of scar within the myocardium. Finally, while cur-
rently mapped from animal or cadaveric studies, continuing advances in DT-MRI 
suggest that patient specific fibre orientations will also be obtainable in cardiac pa-
tients in the near future.  

The assimilation of the data from these imaging modalities means that many of the 
necessary components required to develop patient specific models of cardiac electro-
physiology will soon be available through non-invasive methods. However, at present 
obtaining detailed spatial information on the spread of electrical activation across the 
heart requires an invasive procedure. 

If cardiac models are to be developed based solely on non-invasive diagnostic mo-
dalities then a method for defining the myocardial conductivities is required. It is 
possible that aspects of cardiac physiology are either consistent within a pathology or, 
while significantly altered by disease, only have a limited impact on the sensitivity of 
model predictions of clinical relevant indices.  Specifically if myocardial conductivity 
does not change significantly across a specific class of cardiac disease, compared 
with, for example, heart geometry scaring or failure of the Purkinje network, then it is 
possible that using generic conductivity tensors derived from animal or human meas-
urements may enable a sufficient representation of cardiac conductance to allow for 
the simulation of realistic activation patterns. 

This study describes the application of a new automated method to create personal-
ised geometric and microstructure orientation models. Using anatomically personal-
ised meshes we investigate the repercussions of using generic conductivity tensor 
values from the literature in a model of ex-vivo porcine hearts. Simulations are then 
performed in two porcine geometries for three different pacing configurations using 
the mono domain equations with three generic conduction tensors [1]. The differences 
between the measured and simulated activation times are then compared. 

2   Material and Methods 

The model geometry was created through personalisation of a template cubic Hermite 
mesh in order to efficiently represent the cardiac ventricular anatomy. A second high 
resolution linear tetrahedral mesh was embedded in the domain described by the cubic 
Hermite geometry mesh. The high resolution mesh was used for the simulation of 
cardiac electrophysiology, where a smaller spatial scale is necessary to capture the 
high spatial gradients in the membrane potential. Each of these steps is summarized in 
further detail in the following sections.  

2.1   Data 

The models are based on DT-MRI, MRI and epicardial activation times from two 
porcine datasets [2]. Model construction uses a binary segmentation of the anatomy 
derived from MRI, and three images, one for each of the fibre vector components, 
from DT-MRI. Epicardial activation times are only used to be compared to model 
simulations, and not to fit any conductivity property.  
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Fig. 1. Cubic Hermite idealized biventricular template 

 

  
A) B) 

Fig. 2. Geometrical personalisation results. The idealised biventricular cubic Hermite template 
was customized to both porcine anatomies. Segmented voxelised anatomy from medical images 
was represented by its isosurface, and the resulting mesh as a smooth surface. 

2.2   Geometrical Fitting 

Cubic Hermite meshes are a useful and popular choice for the representation of car-
diac anatomy [3-5]. A new automated personalisation strategy was applied here, 
which uses medical image registration techniques to warp an idealized cubic Hermite 
template mesh onto the desired geometry [6]. This method provides a fast and robust 
option when compared to existing alternatives, including the "host mesh fitting" tech-
nique or mesh generation by fitting Hermite surfaces from a linear scaffold [7].  

The binary representation of each heart anatomy after segmentation was used as 
the target shape for the cubic Hermite personalisation process. An idealized template 
of a biventricular model was generated by the union of two ellipsoids with a total of 
168 elements and 264 nodes, see Fig. 1. The number of elements in this mesh was 
chosen to achieve an accurate and efficient representation of the geometry. The tem-
plate has second versions of derivatives in nodes at the joint between right and left 
ventricles, allowing C1 discontinuities across these joints.  
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The mesh warping process involves two major computation steps, a fast binary im-
age registration [8], and the fitting of the warping field into the cubic Hermite mesh 
by solving three linear systems of equations. This process took approximately 15 
minutes in a desktop machine (processor AMD5200 at 2.69GHz) with images consist-
ing of 0.75 million voxels and meshes with 6,000 degrees of freedom. The final result 
is illustrated in Fig. 2. The average error in the fitting was 0.95 mm RMS. 

No further registration is needed between this cubic Hermite mesh, built from the 
anatomical MRI study, and the DT-MRI datasets as described for in-vivo conditions [9].  

2.3   Fibre Anatomical Fitting 

Fibre orientation obtained from DT-MRI images was fitted within the material space 
of the geometric domain defined by the cubic Hermite geometry mesh. The same 
variational formulation used in the anatomical fitting was applied to find the fit the 
three fields (one for each of the fibre vector components) using cubic Hermite basis 
functions. 

The representation of fibres as vectors necessitates the introduction of a pre-
processing step to align the polarity of adjacent fibres, see Fig. 3. While DT-MRI 
images provide information about fibre direction, this direction has no vector sense  

 

 
A) 

 
B) 

 
C) 

Fig. 3. Reorientation of fibre vector sense in case 1 and cubic Hermite fitting. (a) Original fibre 
x, y, z component images, showing abrupt and apparently random changes. (b) Fibre compo-
nent images after reorientation. (c) Cross section of fitted model fibre components. Grayscale 
black – white is -1 to 1. 
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A) B) 

Fig. 4. Cubic Hermite description of fibres personalised to case 1 (a) and case 2 (b). Models are 
oriented in the same position where electrical activation fluorescence images were acquired, 
and show the outer layer of elements in the left ventricle.   

(polarity), producing 180 degree discontinuities in extracted fibre vector fields. This 
causes an apparent noisy distribution of fibre vector components, because adjacent 
voxels have the opposite sense. On the other hand, any field fitted using a finite ele-
ment with cubic basis functions is constrained to have a smooth variation. A vector 
realignment step was therefore introduced to swap the sense of each fibre vector 
pointing in the opposite direction (negative dot product) with respect to a predefined 
reference vector. This reference vector is defined at each point as the unitary vector in 
the material circumferential direction, which is obtained directly from the cubic Her-
mite representation of the shape. The final result of fibre anatomical fitting in both 
cases is illustrated in Fig. 4. 

2.4   Electrophysiological Mesh 

An equivalent description of the geometry domain with a high resolution linear tetra-
hedral mesh was generated using Tarantula (CAE Software Solutions, Eggenburg, 
Austria) from a binary image of the cubic Hermite geometry model (0.18mm isotropic 
voxel size). The meshes have a mean edge length of ~0.24mm, ~11million nodes and 
~65million elements each. Fibres are defined by a unit vector for each element that 
was evaluated from the fitted fibre field described above. 

2.5   Electrophysiological Simulations 

All simulations were performed using the CARP implementation of the mono-
domain equations [10] run on 128 processors on SAL or REDQUEEN at the Ox-
ford Supercomputing Centre. All models had homogenous material parameters. 
Results were visualised in a down sampled hexahedral mesh in cmGUI 
(www.cmiss.org/cmgui). Due to the scarcity of porcine cardiac electrophysiology 
models a human cell model was used in all simulations [11]. This is expected to 
have a nominal impact on activation times as both pigs and human have compara-
ble conduction velocities [12] and maximum action potential upstroke rates [13]. 
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3   Results 

Generic bi-domain conductivity parameters from [1] were converted to mono-domain 
conductivities (see Table 1) as described by Keener and Sneyd [14]. 

Figure 5 compares the predicted activation times against the measured activation 
times for epicardial pacing at 1.1Hz in case 1. The model results are significantly 
different from the recorded activation times. Two characteristics in the experimental 
data of this case suggest that this is not a healthy subject. It shows two cases of elec-
trical block at physiological pacing frequencies (1.1Hz), as indicated by the bunching 
of isochrones (see Fig.5A), and an extremely long electrical activation time of 280ms 
from apex to base. Despite significant differences in the conduction parameters and 
anisotropy in the model parameters the three sets of parameters tested resulted in 
similar predictions (Fig.5B-D). A decrease in the conductivity of parameter set 1 by a 
factor of 3 slowed the activation times resulting in Fig. 5E. This result shows that the 
model was capable of replicating the bulk activation pattern, although failing to cap-
ture the activation blocks, through a simple scaling of the conductivities. 

Table 1. Mono-domain conductivity parameter sets 

Parameter Set Fibre Conductivity (S/m) Transverse Conductivity (S/m) Anisotropy 
1 0.1334 0.0176 7.58 
2 0.1232 0.0217 5.69 
3 0.0887 0.0343 2.59 

 
Fig. 5. A) Recorded epicardial activation pattern at 1Hz pacing for case 1. Note that not coloured 
regions illustrate the lack of data due to limitations during acquisition [2]. B) –D) simulated 
activation patterns using generic conductivity parameter sets1-3, respectively, from Table 1.  
E) Simulated activation times using generic conduction parameter set 1 from Table 1 divided  
by 3. Colour scale shows activation times with red – blue as 0 to 300ms in 50ms bands. 

 

Fig. 6. A) Recorded activation pattern in case 2 with left ventricle endocardium apex pacing.  
B) –D) simulated activation patterns using generic conductivity parameters 1-3, respectively, 
from Table 1. Colour scale shows activation times with red – blue as 0 to 180ms in 30ms bands. 
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Fig. 7. A) Recorded activation pattern in case 2 with right ventricle epicardium apex pacing.  
B) –D) simulated activation patterns using generic conductivity parameters 1-3, respectively, 
from Table 1. Colour scale shows activation times with red – blue as 0 to 180ms in 30ms bands. 

Activation times in case 2 (Fig.6 and Fig.7) again show limited variation between 
the three generic conduction parameter sets. However, unlike case 1 the generic pa-
rameters were able to reproduce a reasonable approximation of the recorded activa-
tion pattern without the need for rescaling. Isochrones from the left ventricle (LV) 
apical endocardial pacing site (Figure 6) show activation reaching the heart base dur-
ing the same 30ms time band in simulations, whereas in the experimental data propa-
gation is faster in the RV free wall. The model results are consistent with the fibre 
orientations, showing slower conduction on the RV free wall, where fibres are primar-
ily circumferential and perpendicular to the direction of propagation (Fig.4B). A simi-
lar inconsistency between model and experimental results is found at the isochrones 
from the right ventricle (RV) apical epicardial activation pacing site (Fig.7), this time 
in the region of the apex. Again simulation results, not experimental recordings, are 
consistent with fibre orientation. 

4   Discussion 

The quality of the computational mesh has a significant impact in the convergence 
and accuracy of simulation results. Smoothing the DT-MRI data in order to obtain a 
continuous representation of fibres can potentially lead to a better fit of isochronal 
maps [2]. A cubic Hermite description of shape and fibre orientation, as proposed in 
this work, enables the smoothing of the information provided by medical images 
resulting in better posed models. 

The mesh development process proposed here results in two meshes, a hexahedral 
cubic Hermite and a linear tetrahedral mesh. These two meshes have two different 
spatial resolutions but represent the same geometric domain and fibre fields. While 
the high resolution tetrahedral mesh is well suited for simulating electrical activation 
the cubic Hermite mesh is well posed for the simulation of deformation. Describing 
mapping functions between these two meshes enables the simulation of the coupled 
electrical and mechanical function of the heart. Capturing both of these physical sys-
tems is essential to provide a realistic and relevant representation of many cardiac 
pathologies and clinical treatments, and to link electrophysiology activation patterns 
to pump function.   

Electrophysiology simulations using a personalised anatomy and generic conduc-
tion parameters have been able to qualitatively reproduce two of the three experimen-
tal conditions investigated. The model was unable to represent the regions of block 
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observed in case 1 (Fig.5), and to a lesser degree the model was unable to capture 
apparent regions of high conduction in case 2 (Fig.6 and Fig.7). These differences can 
be attributed to the model assumptions. Specifically the model assumes that the heart 
was healthy and has homogenous conductivity and ion channel densities, and neglects 
the Purkinje fibre network, fibroblasts and deformation, which are known to contrib-
ute to electrophysiological function. 

The simulated activation patterns were not sensitive to either the anisotropy or the 
magnitude of the conduction parameters with nominal changes in the activation pat-
terns with 50% and 3 fold variation in the magnitude and anisotropy ratio, respec-
tively (Table 1). This insensitivity of the epicardial activation times to conduction 
parameters will impede identifying a unique homogenous conduction tensor. How-
ever, these initial simulation results do show that the use of generic species non-
specific mono-domain conduction parameters could potentially offer a viable ap-
proximation for healthy heart simulations. 

5   Conclusion 

Generic species non-specific mono-domain conduction parameters, combined with a 
customised anatomy of the model, are, in specific cases, able to approximate the 
epicardial activation patterns of healthy hearts. Results also suggest the insensitivity 
of model simulations to the anisotropy of conduction parameters.  
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Abstract. Computational imaging of personalized cardiac electrophys-
iology has attracted increasing research interest because of its clinical
relevance in aiding in the diagnosis and prediction of cardiac electri-
cal malfunctions of individual subjects. We have developed a statistical
physiological-model-constrained framework that, rather than delivering a
personalized cardiac electrophysiological model with customized parame-
ters, uses simple standard electrophysiological models as constraints and
produces maximum a posteriori estimation of three-dimensionally dis-
tributed transmembrane potential (TMP) dynamics inside the ventricu-
lar myocardium of individual subjects [1]. Taking part in 2010 Cardiac
Electrophysiological Simulation Challenge (CESC’10), we modify this
framework to use epicardial optical mapping data to estimate subject-
specific TMP dynamics inside the 3D myocardium. Results of estimated
dynamics are compared to the simulations by the same electrophysio-
logical model with standard or adjusted parameters. As shown, while
it is rather challenging to personalize the parameters of a cardiac elec-
trophysiological model for the entire 3D myocardium, because of the
drastically simplified model structure and limited subject’s data, the
presented approach of TMP estimation is able to computationally repro-
duce subject-specific electrical functions inside the 3D myocardium with
simple standard model as constraints.

Keywords: Cardiac electrophysiological imaging, transmembrane po-
tential, tissue excitability, optical imaging, MRI.

1 Introduction

Much interest has been put in computational imaging of subject-specific cardiac
electrophysiology, of which the fundamental goal is to use individual subject’s
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electrical mapping and imaging data to personalize a cardiac electrophysiological
model that can be used to aid in diagnosis, treatment planning and prediction
of cardiac electrical malfunctions of that subject. This is commonly done by
adjusting model parameters to minimize the difference between model output
and subject’s electrical mapping data [2,3].

As an inverse problem that involves using a partial (such as the optical map-
ping data on a local region of epicardium) or indirect (such as electrode recording
on the body surface) observation to conjecture the underlying quantity of inter-
est, the level of details to be estimated, in this case the model parameters to be
adjusted, is restricted by its identifiability given the limited quantity and qual-
ity of observation. As a result, in solving this problem, simplified macroscopic
electrophysiological models are often favored because they offer 1) identifiabil-
ity given limited data; and 2) computational feasibility. However, this leads to
modeling error not only in model parameters but also in model structures that
are substantially simplified compared to the underlying electrophysiology. Fur-
thermore, unknown initial-condition in practice, such as the pacing location and
frequency, adds to another source of model uncertainty. Therefore it is chal-
lenging to pursue a personalized cardiac electrophysiological model for the en-
tire 3D myocardium by attributing all these uncertainties to model parameters,
particularly when the available data is limited to a local area of the heart.

We present a different approach that, instead of delivering a personalized car-
diac electrophysiological model with customized parameters, produces Bayesian
maximum a posteriori estimation of subject-specific electrical activity: a simple
electrophysiological model is used as constraints and can be standardly param-
eterized; the estimation is performed in a statistical formulation to allow for
modeling error caused by parameters, structures and initial conditions; given
electrical mapping data of an individual subject, the output is the correspond-
ing transmembrane potential (TMP) dynamics inside the 3D myocardium. We
have developed this statistical physiological-model-constrained framework that
uses noninvasive body surface potential data and tomographic images to esti-
mate subject-specific TMP dynamics inside the 3D myocardium [1].

In this challenge, we modify the framework to use local epicardial, optical
mapping data to reconstruct TMP dynamics that is three-dimensionally dis-
tributed inside the ventricular myocardium. To test the impact of the constrain-
ing model in this approach, we perform and compare TMP estimation under
three type of constraints: 1), standardly-parameterized models with known pac-
ing locations; 2), standardly-parameterized models with unknown pacing loca-
tions, where first-excited ventricular sites are determined according to [4]; and
3), models with unknown parameters, where TMP dynamics and model param-
eter are simultaneously estimated. While TMP dynamics simulated with the
same conditions are nothing similar to subject-specific conditions, the estima-
tion results are positively validated by the optical mapping data on epicardium.
It shows that, with constraints from simple, standard model, the presented
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approach of TMP estimation is able to computationally reproduce subject-
specific electrical functions inside the 3D myocardium given any set of electrical
measurements from the subject. This approach is particularly of clinical rele-
vance when the input is noninvasive electrode recording on the body surface.

To explore the possibility of parameter personalization with this type of sim-
plified model, we also investigate simulation with parameters adjusted from sub-
ject’s data (via dual TMP-parameter estimation, respectively); while the sim-
ulated TMP dynamics are significantly closer to subject’s epicardial mapping
data compared to simulations with standard parameters, it is substantially less
accurate than the results of TMP estimation. This confirms our earlier analy-
sis that, at the current stage, it is rather challenging to produce a personalized
cardiac electrophysiological model through parameter adjustment because of the
drastically simplified model structure. Issues on model personalization is worthy
of much future investigation.

2 Methodology

2.1 Review and Revision of the Framework

As illustrated in Fig 1, in this framework we introduced a priori physiologi-
cal models of normal cardiac electrical activity to constrain TMP solution, and
developed a rigorous statistical scheme that obtains Bayesian maximum a poste-
riori estimation of subject-specific TMP dynamics by coupling prior model and
personal data with respect to their uncertainties.

In the context of a dynamic system, TMP activity is the underlying sys-
tem dynamics three-dimensionally distributed inside the heart wall, and optical
mapping on epicardium is the partial measurement of system dynamics. This
physiological system is modeled on personalized 3D ventricular model repre-
sented by unconnected, mesh-free points with anisotropic electrical conduction.
To balance between physiological plausibility of the models and algorithmic /
computational feasibility of TMP estimation, we select the monodomain two-
variable Aliev-Panfilov model (1) [5] to describe myocardial TMP dynamics and
develop it into the volumetric TMP activity model (2) on the personalized heart
structure with meshfree method [6]. In the original framework [1], the available
observations are in terms of noninvasive electrode recordings on the body sur-
face. In this challenge, we are provided with a more direct type of observations:
mapping of TMP dynamics on a local subregion of epicardium. The observation
process, therefore, is a straightforward, partial mapping from the state space of
3D ventricular mass to the data space of a fraction of epicardial surface (the
data space is a small subset of the state space) as formulated in (3) in Fig 1.

As explained earlier, a general cardiac electrophysiological model like (2) in-
volves modeling errors from parameters, structures and initial conditions when
applied to subject-specific conditions. On the other hand, data error is always
present in optical mapping. Existence of all these uncertainties makes it challeng-
ing to use deterministic optimization of model parameters to fit model output
to subject’s observations. Therefore, we take a statistical approach to combine
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Fig. 1. Overview of the physiological-model-constrained statistical framework for per-
sonalized cardiac electrophysiology. This diagram outlines the input, output and the
major components of the framework: system modeling and TMP estimation. Notations:
(1): u stands for TMP; v stands for recovery current; D is the diffusion tensor related
to myocardial electrical conductivity; ∇ · (D∇u) accounts for intercellular electrical
propagation; parameters e, k and a determine individual TMP shapes; particularly,
a represents myocardial tissue excitability. (2): vectors U and V consist of u and v
from all meshfree points; matrices M and K encode the 3D structure and conductive
anisotropy of heart wall. (3): Ud stands for epicardial optical mapping data; H repre-
sents the partial mapping from 3D ventricular myocardium to local epicardium with

valid optical mapping data. (4)−(6): state vector X =
(
UT VT

)T
; measurement vector

Y = Ud; Ψ includes unknown parameter a from all meshfree nodes, if necessary. ω, ν
represent modeling and data errors.

prior models and subject’s data for Bayesian maximum a posteriori estimation of
subject-specific TMP dynamics. To explicitly account for model and data uncer-
tainty, the original physiological system (2, 3) is transformed and discretized into
a stochastic state space representation (4, 6) with fixed parameters or (4, 5, 6)
when parameter estimation is activated (Fig 1); at current stage, model and
data uncertainty are assumed to be zero-mean Gaussian noises with predefined
covariance matrices. To accommodate the nonlinear dynamics and large-scale,
high dimensionality of the system (4, 6), we develop the TMP and parameter
estimator based on the unscented Kalman filter (UKF) [7]. Because of space
limit, algorithmic details are omitted and can be found in [8].

2.2 Experimental Setup and Procedure

From the dataset provided by CESC’10, we perform the following processing to
prepare input for the framework:
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1. Using the provided FEM model of the ventricle mass, we distribute evenly-
spaced points inside the volume mesh to generate meshfree representation
of the same ventricles. As explained in [1], spatial resolution of the meshfree
points is restricted by the algorithmic and computational feasibility of the
estimation problem. Specifically, ventricles for case 1 are represented with
1555 points; ventricles for case 2 are represented with 1045 points. Fiber ori-
entation associated with each point is interpolated from its nearest neighbor
in the FEM mesh. Unknown TMP or tissue excitability associated with each
point in the ventricles constitutes the state space in the estimation problem.

2. From the filtered optical mapping data on the reconstructed stereoscopic
surface, we identify locations with valid TMP signals and project them onto
the meshfree representation of the ventricles. Meshfree points with projected
TMP signals constitute the data space in the estimation problem.

3. Because of computational issue, we only consider one action potential (AP)
cycle; as a result, we do not consider pacing with different frequencies. For
case 1, we consider the 2rd AP cycle from the 0.7Hz pacing data; for case
2, we consider the 2rd AP cycle for both the left-side and right-side LV
apex pacing. Furthermore, because of the coarse spatial resolution of the
ventricular model, high temporal resolution is needed for solving the TMP
activity model (1). Specifically, Runge-Kutta method is used to implicitly
discretize (2) in time with fine and adaptive temporal resolution, to which
the input optical mapping data is temporally scaled and interpolated.

4. From the provided 26-segment division of the FEM model, the correspond-
ing segment indices of all meshfree points are identified according to which
tetrahedron they belong to in the FEM mesh. These segment indices are
used to locate regular first-excited endocardial sites as determined in [4]. In
addition, ventricular pacing sites are determined as the meshfree points that
are the closest neighbors to the given pacing locations in the FEM mesh.

To investigate the effect of constraining model (2) on TMP estimation, we per-
form the following experiments for each case: 1), TMP estimation with standard
model (2) and known pacing locations; 2) TMP estimation with standard model
(2) and pacing locations unknown; electrical stimuli are applied on regular first-
excited ventricular sites; and 3) TMP estimation with simultaneous parameter
estimation. Results of TMP estimation are compared to simulations with 1)
standard models and known pacing locations; 2) standard models and pacing at
regular first-excited sites; 3), models with adjusted parameters obtained in dual
TMP-parameter estimation. In all experiments, the longitudinal and transverse
component of D is equal to 4.0 and 1.0, respectively [9]; e and k are fixed at 0.01
and 8[5]; a is fixed at 0.15 except in dual TMP-parameter estimation. We carry
out each TMP estimation, unless otherwise stated, with U = 0 and Pu = 0.01In

where In is an n×n identity matrix; Qω is set to be a constant diagonal matrix
0.01In and Rν is set to be time-invariant but spatially inhomogeneous, each di-
agonal component of which equal to the noise power calculated from 20dB SNR
and time-averaged power of optical mapping TMP signal at the corresponding



266 L. Wang et al.

(a) Estimated TMP dynamics for pacing at left side of LV apex.

(b) Estimated TMP dynamics for pacing at right side of LV apex.

Fig. 2. Time sequence of TMP dynamics inside the 3D myocardium. Color encodes
normalized TMP magnitude (0− 1); black contour represents TMP isochrones. Left to
right: 13.9ms, 23.2ms, 32.5ms, 41.8ms, 51.2ms, and 60.7ms with pacing starting at
0ms and the complete AP sequence scaled between 0 − 150ms.

meshfree point. When parameter estimation is involved, we initialize homoge-
neous a = 0.15 for all meshfree points and Pu = 1e-004In; QωΨ

k
is set to be a

constant diagonal matrix 0.01In and Rν is the same as described in TMP es-
timation. Electrical stimuli are applied with 5ms duration. All the estimations
and simulations are compared to the optical mapping data for evaluating the
accuracy of TMP dynamics and activation time, where activation time is cal-
culated as the time instant with maximum first derivative of the AP upstroke;
we implemented our own method for extracting activation time and apply it to
both the optical mapping data and our results.

3 Results

Because of the high computational requirement, so far we only have results for
case 2, including pacing at left side and right side of LV apex epicardium. Table
1 lists the accuracy of the aforementioned 3 types of TMP estimations and 3
types of TMP simulations compared to the optical mapping data, including the
absolute error of activation time, relative root mean squared error and correlation
coefficient of TMP sequence, respectively. As shown, because of the simplicity of
the model (2), simulations with standard parameters (known or unknown pacing
locations) are far away from subject-specific TMP mapping data; in comparison,
while these models are used as constraints in our framework, the results of TMP
estimation are in good accordance with the subject’s measurement. Furthermore,
estimations with the 3 type of constraints deliver similar accuracy, with dual
TMP-parameter estimation in general showing the highest accuracy. Fig 2 shows
the results of TMP dynamics inside the 3D myocardium for left and right side
pacing in case 2, obtained with simultaneous parameter estimation. Fig 3 shows
the corresponding activation isochrones on the epicardium compared to that
extracted from optical mapping.

As to the possibility of parameter personalization for a predictive cardiac
electrophysiological model, as shown in Table 1, compared to simulations with
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Table 1. Difference of TMP estimations and simulations from optical mapping. EP :
Estimation with standard parameters and known pacing locations; EE: Estimation
with standard parameters and regular first-excited sites; ED: Estimation with simul-
taneous parameter estimation. SP : Simulation with standard parameters and known
pacing locations; SE: Simulation with standard parameters and regular first-excited
sites; SD: Simulation with parameter estimated from ED. Err(AT): absolute error of
activation time in ms; RRMSE(TMP) and CC(TMP): relative root mean squared error
and correlation coefficient of TMP signals. Best results highlighted with blue among
estimations and simulations, respectively.

Left Side EP EE ED SP SE SD

Err(AT) 9.84 ± 10.04 9.44 ± 8.80 9.68 ± 9.56 64.44 ± 32.59 84.13 ± 39.10 53.04 ± 31.89
RRMSE(TMP) 0.10 ± 0.03 0.09 ± 0.02 0.08 ± 0.03 0.7 ± 0.18 0.74 ± 0.18 0.54 ± 0.18

CC(TMP) 0.55 ± 0.07 0.56 ± 0.07 0.57 ± 0.08 0.24 ± 0.05 0.21 ± 0.07 0.38 ± 0.13

Right Side EP EE ED SP SE SD

Err(AT) 6.72 ± 17.71 7.66 ± 20.11 7.38 ± 20.11 125.18 ± 37.27 131.18 ± 41.46 109.30 ± 40.52
RRMSE(TMP) 0.11 ± 0.04 0.09 ± 0.03 0.08 ± 0.03 1.01 ± 0.23 1.03 ± 0.24 0.94 ± 0.21

CC(TMP) 0.62 ± 0.08 0.62 ± 0.08 0.63 ± 0.08 0.16 ± 0.05 0.15 ± 0.06 0.19 ± 0.14

(a.1) (a.2)

Fig. 3. Estimated activation isochrone (a.1, b.1) compared to that extracted from
(a.2, b.2). Color encodes scaled activation time (0 − 150ms); black contour represents
activation time isochrones. (a) Pacing at left side of LV apex. (b) Pacing at right side
of LV apex.

standard parameters, simulations with parameters adjusted from optical map-
ping data do show substantially smaller difference from subject’s data. However,
they are still much further away from real subject-specific conditions compared
to the results of TMP estimation. This agrees with our earlier analysis that it is
challenging to produce a personalized cardiac electrophysiological model through
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parameter adjustment, because of the existence of other modeling errors such as
the simplified structure and unknown initial conditions.

4 Conclusion and Discussion

In this paper, we present an approach to estimate subject-specific TMP dynam-
ics inside the 3D myocardium using optical mapping data on local epicardium.
Rather than pursuing a personalized cardiac electrophysiological model by pa-
rameter adjustment, this approach uses simple, standard models as constraints
to estimate three-dimensionally distributed TMP dynamics for individual sub-
jects from a partial observation. While these simplified models per se produce
TMP dynamics that are drastically different from subject-specific conditions,
under their constraints, our approach is able to reconstruct valid TMP dynam-
ics for individual subjects under different conditions. We also investigate the
possibility of parameter estimation for the cardiac electrophysiological model:
while simulations with the estimated parameter show evident improvement over
the standardly-parameterized model, future investigation is needed in order to
achieve accuracy as high as those obtained in TMP estimation.

As the electrophysiological model (1) in use is simplified from the original
model presented in [5], it involves not only parameter errors but also, maybe
more importantly, errors from simplified structure and unknown initial condi-
tions. As a result, as explained earlier, it would be rather challenging to person-
alize the electrophysiological model by attributing all the uncertainties to model
parameters. Instead, the current approach uses this type of simplified models as
a tool, to guide the extraction of subject-specific information from data. Using
only partial observation, in this case the optical mapping on a local region of
epicardium, this approach is able to reconstruct the TMP dynamics not only on
the epicardium but also inside the 3D myocardium. With a more advanced and
sophisticated model, parameter estimation might produce a better personalized
model. Given limited data, however, the identifiability of model parameters re-
mains a critical issue, particularly for details inside the 3D myocardium where
measurement is not usually available.

In the provided datasets, optical mapping data is provided at 3.7ms sampling
rate with 1023 sampling points. As explained earlier, because of the relatively
coarse spatial resolution of the meshfree model of the ventricles, temporal res-
olution needed for discretizing (1) is often one or two orders smaller (tsd at the
order of 10−1 − 10−3). Therefore, on average 103 steps of filtering steps need to
be executed for one AP cycle. This leads to a high cost of computational time for
the current experiment: on a MacPro desktop with 2 × 3GHz Quad-Core Intel
Xeon processor, each complete filtering step requires ∼ 2 minutes to execute and
therefore each TMP estimation experiment requires ∼ 60 hours. As a result, it
is computational impractical for us to consider the complete sequence of optical
mapping data with three or four AP cycles. At the current stage we only consider
one AP cycle for estimation. In consequence, if the pacing is applied at the same
location for the same subject, we are not able to utilize the extra information
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from different pacing frequencies. For case 1, because the optical mapping is
provided with the same pacing locations at three different frequencies, we only
consider the dataset obtained at 0.7Hz pacing. For case 2, we consider data from
the two different pacing locations.

On additional factor contributing to the error of TMP estimations and sim-
ulations might come from the value of parameter a, which is set to be 0.15 in
the current study. We are currently performing a new set of experiments with
a = 0.1 according to [10]. These experiments as well as those for case 1 are still
in computation. The feasibility of applying high performance computing to the
current approach is one major direction of ongoing research, the fulfillment of
which could largely improve the clinical applicability of the presented framework.
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Abstract. Personalisation, i.e. parameter estimation of a cardiac Elec-
troPhysiology (EP) model is needed to build patient-specific models,
which could then be used to understand the true complex dynamics in-
volved in patient’s pathology. In this paper, we present a personalisation
method for a simplified ionic 3D EP model, the Mitchell-Schaeffer model.
The personalisation is performed by optimising the 3D model parame-
ters, which represent the tissue conductivity, Action Potential Duration
(APD) and restitution for APD and conduction velocity, using only 2D
epicardial surface data obtained ex-vivo from optical imaging of large
porcine healthy hearts. We are also able to estimate all of the model pa-
rameters, thus resulting in a total heart-specific 3D EP model. Finally,
we also test the sensitivity of the described personalisation results with
respect to different pacing locations.

1 Introduction

Modelling of the cardiac electrophysiology has been an important research in-
terest for the last decades, but in order to translate this work into clinical ap-
plications, there is an important need for personalisation of such models, i.e.
estimation of the model parameters which best fit the simulation to the clini-
cal data. Cardiac model personalisation is required to develop predictive mod-
els that can be used to improve therapy planning and guidance. For instance,
RadioFrequency (RF) ablation therapy on patients suffering from Ventricular
Tachycardia (VT) has a success rate of only 50% due to non availability of a
clinical consensus on the optimum RF ablation patterns [1]. Thus the procedure
is a trial and error process and highly dependent on cardiologist’s experience.
Personalised cardiac models can provide a way to test in silico different RF
ablation patterns, consecutively increasing the success rate of RF therapy.

A variety of mathematical models describing the cardiac electrophysiology
have been developed and simulated at various scales. These models can be
broadly categorised into three main categories: Ionic Models (IM), Phenomeno-
logical Models (PM) and Eikonal Models (EM). IM [2] characterise ionic cur-
rents flowing through the cardiac cell membrane and have a lot of parameters

O. Camara et al. (Eds.): STACOM-CESC 2010, LNCS 6364, pp. 270–280, 2010.
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and variables, thus are not well suited to solve the inverse problem. EM [3] are
very simple, describing only the time at which a depolarisation wave reaches a
given point without precisely modelling the action potential. At the intermediate
level are PM [4], which describe the action potential generation and propagation
along the cell membrane. Here, we personalise a simplified generic ionic model,
the Mitchell-Schaeffer (MS) model [5], modelling the action potential as a combi-
nation of sodium (Na+), calcium (Ca2+) and potassium (K+) phenomenological
ionic currents.

In the past years, authors have focused on the parameter estimation of the
PM and MS model on 3D volumes [6,7,8,9] using optical and MR data. In these
works, the tissue conductivity parameter was estimated only on 17 American
Heart Association (AHA) subdivisions of the bi-ventricular myocardium. Also
not all model parameters were estimated. The two main contributions of this
paper are: 1) Estimation of the tissue conductivity parameter using a multi-
resolution technique, and 2) Estimation of all model parameters, simulating tis-
sue features such as local Conduction Velocity (CV), Action Potential Duration
(APD) and APD and CV restitutions. Thus resulting in a total heart-specific
3D electrophysiology model.

2 3D Electrophysiology Model Simulation

The MS model [5] is a generic simplified ionic model and is described by the
following system of Partial Differential Equations (PDE):⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tu = div(D∇u) + zu2(1 − u)
τin

− u
τout

+ Jstim(t)

∂tz =

⎧⎨⎩ (1 − z)
τopen

if z < zgate

−z
τclose

if z > zgate

(1)

where u is the normalised action potential variable, and z is the gating variable
for Na+ influx, which depicts the repolarisation phase. Jin = (zu2(1 − u))/τin

represents the combination of inward Na+ & Ca2+ phenomenological ionic cur-
rents and Jout = −u/τout represents the outward K+ phenomenological ionic
current. Jstim is the stimulation current at the pacing location. The parameter
τin mostly depicts the cardiac tissue conductivity for the model reaction part.
τin and τout jointly controls the shape of CV and APD restitutions. The param-
eter τopen mainly controls the slope of the APD restitution curves and τclose is
directly related to the asymptotic value of the APD restitution curves.

The diffusion term in the model is controlled by the diffusion tensor D. This
spatial diffusion can be related to a pseudo-conductivity of the cardiac tissue.
In the longitudinal direction of the fiber, this pseudo-conductivity is set to a
parameter d and to d/2.52 in the transverse directions [4]. The MS model is
spatially integrated using a linear tetrahedral mesh of the bi-ventricular my-
ocardium, taking into account the fiber orientation as well, and is temporally
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Fig. 1. (a) A snapshot from 2D+t optical mapping data recorded for the electrical
activity (antero-lateral view), (b) A slice from DT-MRI volume acquired for geometry
and fiber orientations, (c) The optical and MR fusion showing the stereoscopic surface
(transparent) fused with the volumetric mesh along with projection of the extracted
features (here depolarisation time isochrones) from the optical data to the volumetric
mesh, (d) Tracking of fibers from DT-MRI, (e) The filtered optical signals for a pixel
of dataset 1 showing the APD − DI pairs for various pacing frequencies.

integrated using an optimum time integration scheme (MCNAB), which was
tested in details in [10,7]. The electrical time-step used here is δt = 0.1ms on a
mesh with a mean edge length of h = 1.5mm.

3 Optical and MR Dataset Processing

In this paper, we performed the adjustments on a healthy porcine heart model.
The experimental set-up is described in details in [11]. The acquired data consists
of Diffusion Tensor MRI (DT-MRI) representing geometry and fiber orientation
(Fig 1(b & d)), and epicardial optical recordings (Fig 1(a & e)), from which
we compute features (such as the Depolarisation Time (DT) isochrones, the
APD maps and the CV and APD restitution). The features are then projected
on the volumetric myocardial mesh derived from the DT-MRI (Fig 1(c)) as
explained in [6]. This results in features on the epicardial surface of the 3D bi-
ventricular model. Here, we used 2 ex-vivo hearts, which were MR and optically
imaged for steady state cycles. The datasets were prepared as follows: one heart
was optically imaged to produce 3 different optical datasets, all paced at one
location (at the apex of the LV epicardium), but for 3 different pacing frequencies
(Fig 1(e) & Fig 2):

– Dataset 1 : 0.7 Hz, 1.1 Hz and 1.2 Hz

Second heart was optically imaged to produce 2 different optical datasets, paced
at a frequency of 1.1 Hz, but obtained using 2 different pacing locations (Fig 2)
Near the apex of:

– Dataset 2 : Right Ventricle Epicardium (RV-Epi) and Left Ventricle
Endocardium (LV-Endo).
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Fig. 2. The first row shows epicardial DT isochrones, second row shows the APD
maps and third row shows the estimated local conduction velocity depicting the tissue
conductivity. First two columns are for dataset 2 and remaining three columns are for
dataset 1. Arrows and white dotted contours highlight the pacing locations and black
dashed contours highlight areas of low tissue conductivity.

Although these were healthy hearts, we could identify discrete areas of low con-
ductivity (see black dashed contour in Fig 2). This was most likely due to tissue
becoming ischemic around a small collateral blood vessel, partially occluded by
an air bubble accidentally trapped into the perfusion line, resulting in oxygen
deprivation of the tissue and further installation of acute ischemia and cellular
uncoupling.

4 Personalisation Method

Estimation of the model parameters that result in a simulation which is similar
to the measured data is defined as personalisation. Here, we perform model
personalisation by matching features such as the DT isochrones, the APD maps
and the CV and APD restitution all derived from the optical data. Dataset 2
was used for personalisation using DT isochrones and APD maps only, whereas
the dataset 1 was used for personalisation using additional features such as APD
and CV restitutions.

4.1 Feature: Depolarisation Times

The epicardial DT isochrones show variations in CV of the propagating action
potential wave over the epicardial surface.The local conduction velocity CV msd
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is estimated from the spatial gradient of these measured DT isochrones T on the
epicardial surface as, 1/CV msd = ‖∇Tx‖ [4]. Due to the imaging and registration
errors, the DT isochrones could present local variations. To avoid the amplifi-
cation of this noise by the spatial derivatives of the DT, we smooth CV msd

by averaging it over a neighbouring area, weighted by the Euclidean distance
between the vertices and the point where the speed is computed. This feature
is used for estimation of parameter d, which is achieved in the following two
successive phases:

Calibration: This step is used to initialise the model parameter values using
analytical relationships between the measures and the parameters. The calibra-
tion function used here is similar to [7] and is given as c(d) = α

√
d+β, where c is

the CV and the constants α and β are determined by performing several model
simulations for a range of d values and computing the corresponding c, and then
fitting the function in a non-linear least squares sense to the measures c. Once
the relationship is estimated, it is used to determine the initial parameter value
d for the median value of c computed for the actual reference data.

Iterative Adjustment: This step is used to optimise the parameter d locally
in space, using a multi-resolution technique, with calibration result as an initial
guess. In order to start the domain decomposition, we divide the left ventricle
into 17 zones as defined by AHA and a similar division of 9 zones for the right
ventricle is performed. The algorithm used here is a trust region method [12] and
is implemented using the Trilinos solver package1. Here we use an objective func-
tion that minimises the sum of squared differences (SSD) between the simulated
and the measured depolarisation times by iteratively adjusting the d parameter
value for each zone. Thereafter, when the SSD error remains stagnant, we per-
form another domain decomposition level where zones of higher error are divided
into 4 (Fig 4)and so on. In order to have smoother connectivity between zone
parameters and to avoid piecewise parameter functions, we estimate parameter
d on the zonal barycenter and perform a diffusive parameter regularisation as
explained in the next subsection.

4.2 Feature: Action Potential Duration

For τclose, the maximum APD for a single cardiac cycle is directly given by
the model [5] as follows: APD = τcloseln(1/hmin) where hmin = 4τin/τout. For
dataset 2, we only have one measured APD available from the data, we chose to
adjust τclose, while keeping the other parameter values from the literature [5].
It is defined by the model that c has no relationship with τclose, which provides
no coupling between the APD and the CV. Thus we can simultaneously adjust
parameter d and τclose. The defined relationship between τclose and APD remains
valid also in 3D thus allowing us to directly estimate it locally at each vertex.
The parameter τclose is estimated on the epicardial surface having measures. To
propagate the τclose values from the epi to endocardium, we diffuse the τclose

1 http://trilinos.sandia.gov/
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Fig. 3. For dataset 1, (a) shows the fitting of the model restitution to the extracted
APD restitution points from different pacing frequency data for a few number of pixels.
(b) is the same but for CV restitution. Lower row shows the estimated parameter
vector θ, with parameter d estimated using multi-resolution.

spatially in the myocardium using div(∇P ) = 0 in myocardium with P = τclose

estimated on epicardium. The same is done to diffuse parameter d with P = d
estimated at the zonal barycenter as explained before.

4.3 Feature: CV and APD Restitution

Restitution defines the dependency of the next cycle APD (resp. CV) on the
previous cycle Diastolic Interval (DI). For a constant pacing frequency f , a steady
state Basic Cycle Length (BCL) remains constant : BCL = 1/f = APD + DI
and thus APD − DI relationship remains constant. In order to extract the
observed macroscopic restitution, we need to have the heart optically imaged
for multiple pacing frequencies, thus resulting in multiple BCL (Fig 1(e)) and
multiple APD − DI pairs for a spatial point (pixel). Thus this personalisation
step was performed only on Dataset 1. APD restitution curve for MS model is
explicitly formulated [5] as

f(DI) = APD = τclose ln
(

h(DI)
hmin

)
(2)

where h(DI) = 1 − (1 − hmin) e−DI/τopen , with f(DI) = APD is the succeed-
ing APD and DI is the preceding DI. Similarly also CV restitution curve is
derived [5] as

g(DI) =

(
1
4

(
1 +

√
1 − hmin

h(DI)

)
− 1

2

(
1 −

√
1 − hmin

h(DI)

))√
2dh(DI)

τin
(3)

with g(DI) = CV as the succeeding CV. From Eq 2 & Eq 3, we can observe
parameter ratio (h(DI)) controlling both APD & CV restitution. This shows a
coupling between both restitutions. Thus we chose to estimate the parameters
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Fig. 4. For dataset 2, (a) is the final domain decomposition for parameter d after
personalisation for RV-Epi and (b) parameter d after diffusive regularisation, whereas
(c) & (d) are the same but for LV-Endo, (e) & (f) levels for the multi-resolution method
(Level 0 represents the AHA subdivision, Level I is the subdivision of a zone into 4),
(g) & (h) are the parameter τclose maps for RV-Epi and LV-Endo (respectively).

for CV restitution (hmin, τin, d) and APD restitution (hmin, τopen, τclose) in a
joint manner, by having a cost function Cr which minimises the error on both
restitution curves. Cr is given as

Cr = min
θ

N∑
j=1

((f(DIj , θ) − APDj)2 + (g(DIj , θ) − CV j)2) (4)

where N is the total number of frequency data, APDj (resp. CV j) is the mea-
sured APD (resp. CV ) for the preceding measured DI at the optical data pixel,
and θ = [τclose, hmin, τopen, τin] is the estimated parameter vector. θ is estimated
locally at each pixel of the optical data and then a mean value for each AHA
zone is computed and set to the zonal barycenter in the mesh. The parameter
optimisation used here is a constrained Active-Set Algorithm, which uses a se-
quential quadratic programming method. The parameter d is then adjusted using
iterative adjustment for a single cycle at the lowest pacing frequency (f = 0.7
Hz), since it represents the asymptotic value of the CV restitution curve. This
is done in order to have the parameter d take into account the CV due to the
wave front curvature on the volumetric mesh.

5 Results

5.1 Application to Dataset 1

The model is personalised to dataset 1 by estimating the parameter vector θ
(explained in section 4.3), using restitution defined with steady state cycles from
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Fig. 5. For dataset 2, first row stands for LV-Endo and the second row for RV-Epi. DT
error maps before (a,g) and after (b,h) personalisation. APD error maps before (d,j)
and after (e,k) personalisation.

different pacing frequencies. Before personalisation, the model is simulated using
standard parameter values [5]. The absolute mean square error Cr (Eq 4), before
personalisation is 20.35 reduced to 0.54 after personalisation, which implies a
good fit of the both APD and CV restitution curves to the data, as shown in
Fig 3(a & b). The zonal parameters estimated show clear differences in values of
τin & τout for LV and RV. τclose shows lower values at the pacing location and
RV zones, thus showing APD heterogeneity between the LV and RV. τopen, a
parameter controlling the APD restitution slope, shows lower values (flat slope)
near the pacing and basal regions compared to the remaining epicardium. The
parameters depicting the tissue conductivity from the diffusion term (d) and
reaction term (τin), are also able to locate the low conductivity area observed in
the dataset 1 (see black dashed contour in Fig 2 & 3). Also parameter d shows
an overall map of low conductivity over the heart, compared to dataset 2 (see
Fig. 3 & 4), which is confirmed by higher total activation time (≈ 250 ms) for
this dataset.

5.2 Application to Dataset 2

The model is personalised to dataset 2 using DT isochrones and APD maps for
two different pacing locations as explained before. A comparison of the estimated
parameter values and APD and DT errors after personalisation for both pacing
locations, helps us also evaluate the sensitivity of the described personalisation
method. As the electrophysiology personalisation is performed on the same heart
but under different pacing scenarios, we should expect the personalisation results
to be similar, showing low sensitivity of the personalisation method to different
pacing locations.
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Fig. 6. For dataset 2, simulated volumetric DT isochrones (a,b,c) and APD maps (d)
for LV-Endo, after personalisation. Similarly for RV-Epi (e,f,g & h) after personalisa-
tion. (For true experimental DT & APD values refer Fig 2)

Comparison of the Estimated Parameter Values and Errors: From DT
error maps of two different pacing locations (Fig.5(b) and 5(h)), we can observe
that the personalisation method does reduce the overall error with both pacing
locations. It is also able to locate the areas of low CV irrespective of the pacing
location (black dashed contour in Fig 2 & 5). APD error maps also show less error
with both pacing locations (Fig.5(e) and 5(k)). This demonstrates low sensitivity
of the personalisation method application to different pacing locations. Fig.4
and Table.1 show a qualitative and quantitative comparison of the estimated
parameter d for both pacing locations. Here we can observe that the parameter
values are mostly similar for both pacing locations, except for pacing location LV
endocardium, where the low conductivity area is moved more towards the base
as probably the purkinje system is recruited (activated) using the endocardial
pacing location thus increasing the conduction velocity. On the other hand, the
locally estimated parameter τclose for both pacing locations is very similar as
shown in Fig.4 and Table.1. This analysis does confirms the low sensitivity of
the estimated parameter values to various pacing locations.

Table 1. Comparison of the estimated parameter values and the mean errors for per-
sonalisation using dataset 2. (Mean-Δ, Standard Deviation-σ)

Pacing
Location

Parameter d ±σ (s−1)
DT Error

Δ ± σ
(ms)

Parameter
τclose ± σ × 10−4

(ms)

APD
Error
Δ ± σ
(ms)

LV RV LV RV

LV-Endo 0.95 ± 0.03 1.36 ± 0.16 4.22 ± 6.75 0.22 ± 1.25 0.20 ± 4.90 4.98 ± 8.89
RV-Epi 0.96 ± 0.03 1.38 ± 0.11 2.54 ± 5.12 0.22 ± 3.04 0.21 ± 6.81 4.73 ± 5.57
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6 Discussion and Conclusion

In this work, we described a personalisation method for a simplified ionic MS
model in 3D, using epicardial activation maps obtained with optical imaging. The
model personalisation is done using the measured CV, APD and their restitution
properties. The estimated pseudo-conductivity parameter d map is able to lo-
cate low conductivity areas for both datasets, using a multi-resolution technique.
All the model parameters can be estimated when data is acquired at multiple
frequencies and thus exhibits the restitution properties. Next, we evaluated the
sensitivity of our personalisation method to different pacing scenarios and ob-
served the reproduction of the same estimated parameter values irrespective of
the pacing location. Such fairly robust cardiac electrophysiology personalisation
with different pacing locations from epi- or endocardium opens up possibilities
for clinical applications, where typically only the endocardial surface can be
mapped and with often an ambiguity on the pacing location. Nevertheless, we
also need to validate the model predictions, at different heart rates and pacing
locations, which is important in arrhythmias. This is the topic which will be
addressed in the next step.
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Part I. LNCS, vol. 5241, pp. 678–685. Springer, Heidelberg (2008)

7. Relan, J., Sermesant, M., Delingette, H., Pop, M., Wright, G.A., Ayache, N.: Quan-
titative comparison of two cardiac electrophysiology models using personalisation
to optical and mr data. In: ISBI, pp. 1027–1030 (2009)



280 J. Relan et al.

8. Relan, J., Sermesant, M., Pop, M., Delingette, H., Sorine, M., Wright, G., Ayache,
N.: Parameter estimation of a 3d cardiac electrophysiology model including the
restitution curve using optical and mr data. In: IFMBE Proceedings of World
Congress on Medical Physics and Biomedical Engineering, pp. 1716–1719 (2009)

9. Relan, J., Sermesant, M., Pop, M., Delingette, H., Sorine, M., Wright, G., Ayache,
N.: Volumetric prediction of cardiac electrophysiology using a heart model per-
sonalised to surface data. In: MICCAI Workshop on Cardiovascular Interventional
Imaging and Biophysical Modelling - CI2BM 2009, pp. 19–27 (2009)

10. Ethier, M., Bourgault, Y.: Semi-implicit time discretization schemes for the bido-
main model. Siam J. Numer. Anal. 46(5), 2443–2468 (2008)

11. Pop, M., Sermesant, M., Lepiller, D., Truong, M.V., McVeigh, E.R., Crystal, E.,
Dick, A., Delingette, H., Ayache, N., Wright, G.A.: Fusion of optical imaging and
mri for the evaluation and adjustment of macroscopic models of cardiac electro-
physiology: A feasibility study. Med. Image Anal. (July 2008)

12. Conn, A.R., Gould, N.I.M., Toint, P.: Trust Region Methods. SIAM, Philadelphia
(2000)



Personalization of Fast Conduction Purkinje

System in Eikonal-Based Electrophysiological
Models with Optical Mapping Data

Oscar Camara1,2, Ali Pashaei1,2, Rafael Sebastian3,
and Alejandro F. Frangi1,2,4

1 Center for Computational Imaging and Simulation Technologies in Biomedicine
(CISTIB), Universitat Pompeu Fabra, Barcelona, Spain

oscar.camara@upf.edu
2 Networking Biomedical Research Center on Bioengineering,

Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
3 Computational Multi-Scale Physiology Lab, Universitat de València,
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Abstract. We present a pipeline for the personalization of model-based
Purkinje fast conduction system using fast electrophysiological models
and optical mapping data acquired from ex-vivo porcine hearts. The
regional density of the Purkinje terminals as well as the latest endo-
cardial activation time were the parameters personalized in an iterative
procedure maximizing the similarity between the outcome of the elec-
trophysiological simulations and measurements obtained from optical
mapping data. We used a fast wave-front Eikonal-based electrophysi-
ological model that generated the depolarization time maps that were
subsequently compared with measurements at each iteration of the opti-
mization stage. The pacing site given by the experimental data and the
optimized Purkinje system were introduced into the electrophysiological
model. We obtained a regional distribution of Purkinje end-terminals in
agreement with findings in the literature. Nevertheless, remaining differ-
ences between simulations and measurements after personalization sug-
gest that epicardial data obtained from optical mapping data might not
be sufficient to optimize the Purkinje system, which is basically located
at the endocardium. On the other hand, the developed pipeline could
also be used with endocardial data on electrical activation provided by
non-contact or contact mapping system.

Keywords: Purkinje fast conduction system, personalization, electro-
physiological models, optical mapping.

1 Introduction

Advances in computational physiology of the heart in recent years have im-
proved our understanding of the patho-physiological mechanisms underlying
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heart failure, advancing towards a more patient-specific diagnosis as well as
pre-operative in silico interventional planning [1].

The personalization of these computational models with patient data such
as ventricular geometries derived from images, it substantially improves the re-
alism of the resulting electromechanical simulations [2,3]. However, there are
some parameters that cannot currently be measured in vivo such as myocardial
fibre orientation or Purkinje fibres, which have strong influence on the elec-
tromechanical behaviour of the heart. In general, this type of non-observable
data is incorporated into computational models in the form of analytical models
that are tuned to better fit measurements obtained from experimental mod-
els. For instance, Streeter [4] performed some experiments with canine hearts
to model myocardial fibre distribution, represented by the helix and transver-
sal fibre angles, varying from the epicardium to the endocardium. The Streeter
model is currently the most popular strategy to incorporate fibre orientation
into the electromechanical models, although some improvements have also been
suggested [5,6,7].

In addition to fibre orientation, other sub-structural information which is
very critical for the outcome of the electrophysiological simulations include the
presence of the fast conduction system involving Purkinje fibres. In Romero
et al. [8], a consistent overestimation of the degree of electrical dyssynchrony
was found when assessing Cardiac Resynchronization Therapy (CRT) scenarios
when omitting the Purkinje system (PS). In a recent work [9], we developed a
methodology to generate Purkinje trees specific to a given biventricular geometry
and following some rules to visually reproduce the activation sequence reported
experimentally by Durrer et al. [10]. However, several parameters of the Purkinje
tree generation such as the density of end terminals were not personalized and
were chosen according to literature.

In this work, we present a pipeline for the personalization of model-based
Purkinje fast conduction systems using fast electrophysiological models and op-
tical mapping data acquired from ex-vivo porcine hearts. The regional density
of the Purkinje terminals as well as the latest endocardial activation time were
the parameters personalized in an iterative procedure maximizing the similarity
between the outcome of the electrophysiological simulations and measurements
obtained from optical mapping data.

2 Experimental Data

Pop et al. [11] designed an experimental model on healthy ex-vivo porcine hearts,
containing cardiac geometry and fibre orientations from MRI as well as epicar-
dial transmembrane potential from optical mapping. The available electrophys-
iological data comprised depolarization/repolarization times and isochrones as
well as action potential duration maps for different pacing locations and differ-
ent pacing frequencies, defined at the epicardium of some regions in two differ-
ent biventricular geometries, as illustrated in Fig. 1. This data was provided to
the participants of the MICCAI STACOM-CESC’10 challenge (http://cilab2.
upf.edu\stacom_cesc10) for personalization purposes. The interested reader is

http://cilab2.upf.edu stacom_cesc10
http://cilab2.upf.edu stacom_cesc10
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Fig. 1. Experimental data and sub-structural information. From left to right: optical
mapping data (left) showing the action potential wave (black); depolarization times
computed from the optical mapping data; fibre orientation extracted from DT-MRI;
end-terminals of Purkinje showing the fast conduction system.

referred to Pop et al. [11] for a complete description of the data. In addition, bi-
nary segmentations and geometrical meshes as well as processed optical mapping
and fibre orientation data was provided by INRIA researchers, who previously
worked with this data [12].

We selected one of the two available datasets in the challenge, corresponding
to two different ex-vivo porcine hearts, and used the available tetrahedral mesh
with a coarse resolution, having 37923 nodes and 204841 elements rather than the
fine mesh (460693 nodes and 2597710 elements). This choice was justified by the
need of running a considerable number of simulations in the iterative procedure
to optimize the Purkinje tree parameters. Measurements obtained with the left
ventricular endocardial pacing location and with a pacing frequency of 1.1Hz
was used in this work.

3 Methods

3.1 Generation of Purkinje Fast Conduction System

Due to the lack of patient-specific data on the Purkinje system of the sub-
jects we defined a strategy to activate the heart in a realistic fashion. There
are several ways to model the fast conduction system in electrophysiological
simulations, varying the degree of model complexity and going from the most
complete cellular-to-cellular interaction and cable models with Purkinje tree-
like geometrical models [8] to just simulate the macroscopic effect in electrical
wave propagation by selecting a set of endocardium points with earlier activa-
tion points and faster conduction velocities [13]. The most appropriate model
will be different for different applications. In this work, we were interested on
developing a personalization framework to assess the possibility of personalizing
some of the most relevant parameters of the fast conduction system with optical
mapping data. This means that we focused on simple and fast models that al-
lowed us to embed the parameter optimization in an iterative procedure. Hence,
in this work, the most important parameters to personalize were the number of
end-terminals of the Purkinje system in different heart regions as well as the
latest endocardial activation time.
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Anatomical surface models for each subject were labeled to differentiate,
endocardium and epicardium of LV and RV. In addition, the LV was divided
into 17 zones as defined by American Heart Association and a similar division
of 9 zones for the right ventricle was used. Subsequently, for a given number of
Purkinje end-terminals per each of these 26 heart regions, they were spatially
distributed within these regions using a random algorithm. Therefore, the den-
sity of end-terminals for the LV and RV regions were parameters introduced into
the optimization procedure.

Since the activation times of the nodes would be imposed by the Purkinje
structure, we choose not to optimize them. Instead we considered an apex to
base, and endocardial to epicardial activation similar to the one observed by
Durrer [10]. Following Durrer’s observations, the last activated endocardial stim-
ulus should be set to around 40ms and from this, the activation for the remaining
stimuli could be computed as a function to the distance to the apex. Nevertheless,
we introduced into the personalization procedure the last activated endocardial
stimulus since the available experimental data had a very long total activation
time (170ms) compared to Durrer’s experiments. Finally, we took into account
that measurements were acquired on pacing conditions by setting to 0ms the
activation time of the nodes corresponding to pacing locations. Then, the activa-
tion time of the Purkinje terminal closest to the pacing nodes was estimated from
their distance and the tissue conduction velocity. Fig. 2 shows two exemplary
stimuli map generated for the biventricular geometry from the experimental data
in a pacing scenario (left) and in normal sinus rhythm (right). We can observe
in the figure that the earlier activated points are located in pacing site (the
RV epicardium) in the pacing scenario (left) while they are found in the LV
endocardium in normal sinus rhythm. The total activation time is substantially
longer (124ms) in the pacing scenario compared to the non-pacing configuration
(39ms) due to the large amount of ”slow” tissue between the pacing site and the
RV endocardium.

Finally, the conduction velocities along and transverse to the myocardial fi-
bres were set to values found in the literature, in particular based on findings
recently reported by Caldwell et al. [14] . Hence, a value of 0.67m/s was taken
as conduction velocity along the myofibre axis and 0.24m/s transverse to this,
which was an average between the maximum conduction velocities parallel to
the myocyte layers, 0.30m/s, and normal to them, 0.17m/s. Finally, the conduc-
tion velocity of the Purkinje system was set to 1.59m/s, according to Rawling
et al. [15].

3.2 Fast Eikonal-Based Electrophysiological Models

There exist several models with different degree of complexity to simulate car-
diac electrical activation. The complexity is usually selected as a function of
the final application and has a great impact in computational times. In this
work, we used a simplified electrical propagation model that is solved on the ex-
vivo porcine anatomical model, including the myocardial fibre orientation pro-
vided by the available Diffusion Tensor Imaging (DTI) data and the Purkinje
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Fig. 2. Purkinje terminal maps with (left) and without (right) pacing. Spheres corre-
spond to the Purkinje terminals and are color-coded with respect to their activation
times

terminals given by the algorithm described above. These simple wave propaga-
tion models [16,17,18] are based on the assumption that the speed of propagation
varies more slowly and over much larger spatial scales than the transmembrane
potential. The model that is used in this study is based on the Hamilton-Jacobi
Equation (HJE) that is a formulation of mechanics in which the motion of a
particle can be represented as a wave. This equation can be represented in its
static form as the following:{

H(xi,
∂φ
∂xi

) = 0 for xi ∈ Ω

φ(xi) = φ0(xi) for xi ∈ ∂Ω
(1)

Here φ is the seed value and xi is the coordinate components. The Eikonal
equation is an important member of the Hamilton-Jacobi equations, which can
be described in anisotropic format as:{

aij
∂φ
∂xi

∂φ
∂xj

− f2(xi) = 0 for xi ∈ Ω

φ(xi) = φ0(xi) for xi ∈ ∂Ω
(2)

where aij is the anisotropy coefficient which is related to the conduction ve-
locity in the tissue, being f(x) a positive function. In order to solve Equation
(2), we used the Fast Marching Method (FMM), introduced by Sethian [19], to
Hamilton-Jacobi equations of Eikonal type by a finite difference discretization
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up-wind scheme. This method allows speeding up the convergence of the
classical iterative finite difference scheme for electrophysiological simulations
for the heart [20]. It computes the approximate solution in a finite number of
steps and the complexity behaves as O(N ln N) where N is the total number of
nodes [21].

3.3 Optimization Procedure

The main objective of the optimization procedure was to find the parameters
(number of Purkinje end-terminals per region and the latest endocardial time)
that minimized the difference between simulation results and measurements. The
cost function guiding the optimization step used in this work was the absolute
mean error, integrated over all heart regions with available measurements, be-
tween the depolarization time maps provided by the fast electrophysiological
models and by the optical mapping data.

Due to the discrete nature of the parameters to optimize and the random-
ness of the location of a particular Purkinje end-terminal within a region, the
estimation of reliable enough and computationally reasonable Jacobians with
the proposed cost function was difficult. For this reason, we choose to use a
classical genetic algorithm for the personalization of regional density of Purk-
inje end-terminals and for the latest endocardial time. In a genetic algorithm,
a population of strings (genotype of the genome), which encode candidate so-
lutions (called individuals) to an optimization problem, evolves toward better
solutions. Different steps in the procedure need to be defined for each particular
problem: initialization; selection; reproduction including crossover and mutation;
and termination.

In this work, each individual is basically a string composed of the number of
Purkinje end-terminals per region and the latest endocardial activation time (27
parameters). Furthermore, according to observations by Durrer et al. [10], we did
not allow the presence of Purkinje end-terminals in some regions (mainly basal
regions) and we forced the presence of at least one end-terminal in the remaining
regions, as can be deduced from Fig. 3 . In order to be more robust with respect
to the randomness of terminal locations given by the Purkinje tree generation,
we run 50 simulations per each individual in order to compute the corresponding
latest endocardial activation time (average of the 50 simulations) and the value
of the cost function (error given by the average of the 50 simulations).

In the initialization step, we choose 45 individuals per each iteration of the
procedure, having 10 individuals surviving at each iteration according to a prob-
ability function depending on the corresponding error. At the following iteration,
the missing 35 individuals were generated at the reproduction phase. First, for
couple of individuals, we randomly recombine (crossover) each of the parameters
(50% for each individual). then for each individual, we mutate each parameter
according to a Gaussian probability centered at the parameter value obtained in
the previous iteration. Finally, the algorithm is manually stopped when there is
no substantial improvement in the error cost function for several iterations.
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Fig. 3. Convergence of the optimization procedure (left) and the obtained total number
(centre) and density (right) Purkinje end-terminal maps.

Fig. 4. Depolarization time measurements and simulated. Top (from left to right): de-
polarization time measurements from optical mapping data; simulated depolarization
times without Purkinje; simulated depolarization times with Purkinje and initial pa-
rameters; simulated depolarization times with Purkinje and personalized parameters.
Bottom (from left to right): depolarization time error maps for simulations without
Purkinje; depolarization time error maps for simulations with Purkinje and initial
parameters; depolarization time error maps for simulations with Purkinje and person-
alized parameters.

4 Results

Fig. 3 shows the convergence obtained with the personalization of the parameters
of the Purkinje structural model, as well as the resulting number of terminal and
terminal density maps. We can easily observe that the convergence is reached
after around 50 iterations, having an initial absolute mean error of 24ms (1
terminal in 14 regions) and a final value of 17ms. The set of parameters providing
lower error values included a total number of 58 Purkinje end-terminals (with a
maximum of 9 terminals, found in 1 region, and a minimum of 1 terminal, found
in 6 regions) in the whole heart and a latest endocardial activation time of 72ms.
From a visual inspection of Fig. 3, the distribution of the Purkinje end-terminals
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agrees with findings in the literature [10], having more terminals in the apical
heart and less in the basal part.

Fig. 4 illustrates the depolarization times given by the analysis of the experi-
mental data as well as the ones obtained with the electrophysiological models in
three different parameter scenarios: without Purkinje conduction system; with a
Purkinje model with non-personalized parameters; with a Purkinje model with
personalized parameters. Error maps of the measured and simulated depolariza-
tion maps are also included in the figure. Several aspects need to be pointed out
from the visual inspection of this figure. First, the absolute mean error of the
simulation result without Purkinje was larger (21ms) than with the personalized
Purkinje model. We can observe large errors in the basal part without Purkinje
that are minimized when including Purkinje, in particular at the right ventricle.
In fact, the total activation time was closer to the ground truth (170ms) when
personalizing Purkinje (172ms) than without Purkinje (190ms). It also looks like
the incorporation of Purkinje is beneficial mostly for the RV, while it does not
improve or even slightly increase errors in the LV, in particular if the Purkinje
model is not personalized.

5 Discussion and Conclusions

We presented a pipeline for the optimization of some relevant parameters in
the modelling of the Purkinje system in electrophysiological simulations. Even
though simulations with personalized parameters provided lower depolarization
time errors with respect to baseline parameters, there were still substantial differ-
ences between simulation results and measurements. The optimization of these
Purkinje model parameters was achieved using the optical mapping data ob-
tained from experiments on ex-vivo porcine hearts, which were available just
in some regions of the epicardium. The modelled fast conduction system was
located at the endocardial wall as it is found in humans, even if it is known
that in some species Purkinje terminals such as pigs can be found transmurally.
After analyzing the obtained results, we reckon that endocardial electrophys-
iological measurements, that could be acquired in vivo either with contact or
non-contact mapping systems, might be more appropriate than epicardial opti-
cal mapping data for the study of the fast conduction system. Once personalized,
these Purkinje models optimized with fast electrophysiological simulations could
be subsequently used as initialization of more detailed models.
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