

HTML5 and JavaScript
Projects

■ ■ ■

Jeanine Meyer

HTML5 and JavaScript Projects

Copyright © 2011 by Jeanine Meyer

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN 978-1-4302-4032-7

ISBN 978-1-4302-4033-4 (eBook)

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Jonathan Gennick
Technical Reviewer: Andrew Zack
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick,

Jonathan Hassell, Michelle Lowman, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Frank
Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Adam Heath
Copy Editor: Damon Larson
Production Support: Patrick Cunningham
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

To my expanding family, including Annika Lyyli and her parents and brothers;
and Esther, Aviva, and Anne, who take care of me now;

and to my father, who takes care of me still.

iv

Contents at a Glance

About the Author ... xi

About the Technical Reviewer .. xii

Acknowledgments ... xiii

Introduction ... xiv

■Chapter 1: Building the HTML5 Logo – Drawing on Canvas,
 with Scaling, and Semantic Tags ... 1

■Chapter 2: Family Collage: Manipulating Programmer-defined Objects
 on a Canvas .. 19

■Chapter 3: Bouncing Video: Animating and Masking HTML5 Video 53

■Chapter 4: Map Maker: Combining Google Maps and the Canvas 89

■Chapter 5: Map Portal: Using Google Maps to Access Your Media 129

■Chapter 6: Where am I: Using Geolocation, the Google Maps API, and PHP 183

■Chapter 7: Origami Directions: Using Math-Based Line Drawings,
 Photographs, and Videos ... 225

■Chapter 8: Jigsaw Video: Using the Mouse and Touch to Arrange Images 283

■Chapter 9: US States Game: Building a Multiactivity Game 321

■Chapter 10: Web Site Database: Using PHP and MySQL 367

Index ... 425

v

Contents

About the Author ... xi

About the Technical Reviewer .. xii

Acknowledgments ... xiii

Introduction ... xiv

■Chapter 1: Building the HTML5 Logo – Drawing on Canvas, with Scaling,
 and Semantic Tags... 1

Introduction ... 1

Project History and Critical Requirements ... 4

HTML5, CSS, and JavaScript features ... 5

Drawing paths on canvas ... 5

Placing text on canvas and in the body of a document .. 7

Coordinate transformations .. 8

Using the range input element ... 9

Building the application and making it your own .. 11

Testing and uploading the application ... 18

Summary ... 18

■Chapter 2: Family Collage: Manipulating Programmer-defined Objects
 on a Canvas .. 19

Introduction ... 19

Critical Requirements .. 21

■ CONTENTS

vi

HTML5, CSS, and JavaScript features ... 22

JavaScript objects .. 22

User interface ... 31

Saving the canvas to an image .. 34

Building the application and making it your own .. 35

Testing and uploading the application ... 52

Summary ... 52

■Chapter 3: Bouncing Video: Animating and Masking HTML5 Video 53

Introduction ... 53

Project History and Critical Requirements ... 58

HTML5, CSS, and JavaScript Features .. 59

Definition of the Body and the Window Dimensions ... 59

Animation ... 61

Video Drawn on Canvas and As a Movable Element .. 64

Traveling Mask ... 66

User Interface ... 68

Building the Application and Making It Your Own ... 68

Making the Application Your Own .. 85

Testing and Uploading the Application .. 86

Summary ... 87

■Chapter 4: Map Maker: Combining Google Maps and the Canvas 89

Introduction ... 89

Latitude & Longitude and Other Critical Requirements ... 98

HTML5, CSS, and JavaScript Features .. 104

Google Maps API ... 104

Canvas Graphics ... 105

Cursor ... 109

■ CONTENTS

vii

Events ... 109

Calculating Distance and Rounding Values for Display .. 113

Building the Application and Making It Your Own ... 114

Testing and Uploading the Application .. 127

Summary ... 127

■Chapter 5: Map Portal: Using Google Maps to Access Your Media 129

Introduction ... 129

Project History and Critical Requirements ... 137

HTML5, CSS, and JavaScript Features .. 137

Google Maps API for Map Access and Event Handling ... 138

Project Content ... 141

Presentation and Removal of Video, Audio and Images ... 142

Distances and Tolerances .. 144

Regular Expressions ... 145

External Script File ... 146

Dynamic Creation of HTML5 Markup and Positioning .. 147

Hint Button .. 149

Shuffling ... 149

Building the Application and Making It Your Own ... 150

The Mapvideos Application ... 150

The Mapmediabase Application ... 160

The Quiz Application ... 170

Testing and Uploading the Application .. 182

Summary ... 182

■Chapter 6: Where am I: Using Geolocation, the Google Maps API, and PHP 183

Introduction ... 183

Geolocation and Other Critical Requirements .. 194

■ CONTENTS

viii

HTML5, CSS, JavaScript, and PHP Features .. 196

Geolocation ... 196

Reverse Geocoding ... 200

Clicking the Map ... 202

Checking E-mail Address Input and Invoking PHP to send e-mail ... 203

A Brief Introduction to the PHP Language .. 204

Building the Application and Making It Your Own ... 205

Testing and Uploading the Application .. 223

Summary ... 224

■Chapter 7: Origami Directions: Using Math-Based Line Drawings,
 Photographs, and Videos ... 225

Introduction ... 225

Critical Requirements .. 232

HTML5, CSS, JavaScript Features, and Mathematics .. 233

Overall Mechanism for Steps ... 233

User Interface ... 235

Coordinate Values ... 236

Utility Functions for Display .. 237

Utility Functions for Calculation .. 239

Step Line Drawing Functions .. 240

Displaying a Photograph ... 247

Presenting and Removing a Video .. 247

Building the Application and Making It Your Own ... 248

Testing and Uploading the Application .. 282

Summary ... 282

■Chapter 8: Jigsaw Video: Using the Mouse and Touch to Arrange Images 283

Introduction ... 283

Background and Critical Requirements ... 293

■ CONTENTS

ix

HTML5, CSS, JavaScript, and Programming Features ... 294

Acquiring the Images and Data for the Pieces ... 294

Dynamically Created Elements ... 295

Setting Up the Jigsaw Puzzle ... 297

Handling Mouse and Finger Touch Events ... 297

Calculating If the Puzzle Is Complete ... 303

Preparing, Positioning, and Playing the Video and Making It Hidden or Visible 305

Building the Application and Making It Your Own ... 305

Testing and Uploading the Application .. 319

Summary ... 319

■Chapter 9: US States Game: Building a Multiactivity Game 321

Introduction ... 321

Critical Requirements .. 329

HTML5, CSS, JavaScript Features, Programming Techniques, and Image Processing . 329

Acquiring the Image Files for the Pieces and Determining Offsets .. 329

Creating Elements Dynamically .. 335

User Interface Overall ... 336

User Interface for Asking the Player to Click a State .. 336

User Interface for Asking the Player to Name a State .. 337

Spreading Out the Pieces ... 338

Setting Up the Jigsaw Puzzle ... 339

Saving and Recreating the State of the Jigsaw Game and Restoring the Original Map 340

Building the Application and Making It Your Own ... 343

Testing and Uploading the Application .. 364

Summary ... 364

■ CONTENTS

x

■Chapter 10: Web Site Database: Using PHP and MySQL 367

Introduction ... 367

Critical Requirements .. 376

SQL, PHP, HTML5, and JavaScript Features .. 377

Relational Databases .. 377

SQL ... 379

Local Storage .. 381

Hash Function ... 382

Client Side vs. Server Side for Input Validation .. 382

Middleware: PHP .. 383

Building the Application and Making It Your Own ... 390

Testing and Uploading the Application .. 422

Summary ... 423

Index ... 425

xi

About the Author

■Jeanine Meyer is a full professor at Purchase College/State University of New
York. She teaches courses for students majoring in mathematics/computer
science and new media. She developed and teaches a course on understanding
quantitative information for humanities students. The web site for her academic
activities is http://faculty.purchase.edu/jeanine.meyer. Before coming to
academia, she was a research staff member and manager at IBM Research,
focusing on robotics and manufacturing research, and she later worked as a
research consultant at IBM for educational grant programs.

After having a great time in 2010 developing The Essential Guide to HTML5:
Using Games to Learn HTML5 and JavaScript, Jeanine looked forward to a
similar experience doing this book, and her expectations were met. She also
needed to be occupied while awaiting the birth of her granddaughter (see
Chapter 2). Family members also are documented in Chapters 3, 5, and 8. She
continues to enjoy doing crossword puzzles and ken ken, knitting and

crocheting, reading novels and history, gardening, eating Aviva’s extraordinary cooking, listening to her
mother on piano, and playing the flute. She still and again is an active volunteer and letter-to-the-editor
writer for progressive causes and candidates.

xii

About the Technical Reviewer

■Andrew Zack is the CEO of ZTMC (http://ztmc.com), specializing in search engine optimization (SEO)
and Internet marketing strategies. His project background includes almost 20 years of site development
and project management experience and over 15 years as an SEO and Internet marketing expert.

Andrew has also been very active in the publishing industry, having coauthored Flash 5 Studio
(Apress, 2001) and served as a technical reviewer on over ten books and industry publications.

xiii

Acknowledgments

Much appreciation to my students and colleagues at Purchase College/State University of New York. In
particular, for Chapter 5, which covers the map portal, I want to thank Jennifer Douglas, Jeremy
Martinez, and Nik Dedvukaj for the maze video clip produced in my Robotics class in 2008, and my
mother for her piano playing recorded as an audio clip. Thanks also to the LA HTML5 MeetUp group,
especially Samy Kamkar, Matthew Sacks, and Tiffany Brown for their help and also their requests for
help, which gave me ideas. Thanks to Daniel Davis for his HTML5 logo; Mike Taylor for video advice;
David Keefe, who always is an inspiration; Aviva Meyer, Anne Kellerman, John McMullen, and Barbara
McMullen for their testing help on iPhones and iPads; and Palmer Agnew and Daniel Meyer for general
support and helping me better understand geolocation.

Thanks to the crew at Apress/friends of Ed: Ben Renow-Clarke, Adam Heath, Andrew Zack, Damon
Larson, Nancy Wright, Michael Spano and others who made this book much better than I could have on
my own.

xiv

Introduction

This book continues my exploration of HTML5. My approach in developing the projects was to combine
features such as canvas and video; attempt more intricate drawing, making use of mathematics; and
make use of standard programming techniques such as object-oriented programming and separation of
content and logic. I was also interested in building applications combining HTML5 and JavaScript with
other technologies, including Google Maps, geolocation, and server-side programming.

Each chapter in the book is focused on an application or set of related applications. This is because
my experience as a teacher and a learner has shown that concepts and mechanics are best understood in
the context of actual use. The applications start off with drawing the HTML5 official logo. As you will find
out in Chapter 1, the way I developed this application prompted a use of coordinate transformations.
The project in Chapter 2, involving a family collage, was inspired by my growing family and the desire to
teach about object-oriented programming. It is a good application for you to use as a foundation to
create your own, with your own photos and objects of your own invention. Chapter 3, which shows how
to create a bouncing video, was built on other two-dimensional applications I have created, and features
two different ways to combine canvas and video.

Chapters 4, 5, and 6 demonstrate use of the Google Maps API (Application Programming Interface),
a powerful facility that allows you to incorporate access to Google Maps as part of your own projects.
Chapter 4 presents a user interface combining a map and canvas, and includes a custom-designed
cursor and the use of alpha (transparency) in drawing paths. The three applications discussed in
Chapter 5 all demonstrate the use of mapping as a portal to media. The sequence of applications shows
you how to separate content and logic so you can scale up to various applications (e.g., a tour of a region
or a geography quiz with many locations). Chapter 6 features geolocation, technology to determine the
location of your end-user. I combine this with server-side programming using PHP that allows you to
send an e-mail of where you are to someone the end-user chooses.

In Chapter 7, I use the production of directions for origami to show how to combine line drawings,
often using mathematical expressions, and video and photographs. You can use this as a model for your
own set of directions using drawings, video, and images, or let the reading refresh your memory for
topics in algebra and geometry. Chapter 8 was inspired by a project I produced using Adobe Flash, in
which a jigsaw puzzle is transformed into a video. In the project in this chapter, you’ll also learn how to
make this work on an iPod and iPad, including how to incorporate the handling of finger touch events.
Similarly, Chapter 9 was initially inspired by an identify-and-name-the-state game I made using Flash.
This chapter includes the challenge of mixing up the states in the form of a jigsaw puzzle, including the
feature of saving the puzzle-in-progress using localStorage. The resulting educational game presents a
user interface that must handle multiple types of player actions. Chapter 10, the last chapter,
demonstrates use of a database. In this chapter, HTML5 and JavaScript are combined with PHP and
Structured Query Language (SQL), which is the standard language for most databases. The database
featured in the chapter is MySQL. The form validation features of HTML5 along with localStorage
address common requirements of many database applications. The database application also
demonstrates one-way encryption for user passwords and the combination of client-side and server-
side form validation.

■ INTRODUCTION

xv

Who Is This Book For?
I do believe my explanations are complete, but I am not claiming, as I did for my previous book, The
Essential Guide to HTML5, that this book is for the total beginner. This book is for the developer who has
some knowledge of programming and who wants to build (more) substantial applications by combining
basic features and combining JavaScript with other technologies. It also can serve as an idea book for
someone working with programmers to get an understanding of what is possible.

How Is This Book Structured?
This book consists of ten chapters, each organized around an application or type of application. You can
skip around. However, it probably makes sense to read Chapter 4 before 5 or 6. Also, the PHP server-side
language is used in a simple way in Chapter 6 and then more fully in Chapter 10. Other cross-references
are indicated in the text. Each chapter starts with an introduction to the application, with screenshots of
the applications in use. In several cases, the differences between browsers are shown. The chapters
continue with a discussion of the critical requirements, where concepts are introduced before diving
into the technical details. The next sections describe how the requirements are satisfied, with specific
constructs in HTML5, JavaScript, PHP, and/or SQL, and with standard programming techniques. I then
show the application coding line by line with comments. Each chapter ends with instructions and tips
for testing and uploading the application to a server, and a summary of what you learned.

The code (with certain exceptions noted for Chapter 10) is all included as downloads available from
the publisher. In addition, the figures are available as full-color TIFF files. Of course, you will want to use
your own media for the projects shown in Chapters 2, 3, 5, and 8. My media (video, audio, images) is
included with the code and this includes images for the 50 states for the states game in Chapter 9. You
can use the project as a model for a different part of the world or a puzzle based on an image or diagram.
Let’s get started.

C H A P T E R 1

1

Building the HTML5 Logo –
Drawing on Canvas, with Scaling,
and Semantic Tags

In this chapter, we will review

• Drawing paths on a canvas

• Placing text on a canvas

• Coordinate transformations

• Fonts for text drawn on canvas and fonts for text in other elements

• Semantic tags

• The range input element

Introduction
The project for this chapter is a presentation of the official HTML5 logo, with accompanying text. The
shield and letters of the logo are drawn on a canvas element and the accompanying text demonstrates
the use of semantic tags. The viewer can change the size of the logo using a slider input device. It is an
appropriate start to this book, a collection of projects making use of HTML5, JavaScript and other
technologies, because of the subject matter and because it serves as a good review of basic event-driven
programming and other important features in HTML5. The way I developed the project, building on the
work of others, is typical of how most of us work. In particular, the circumstances provide motivation for
the use of coordinate transformations. Lastly, at the time of writing, Firefox does not fully implement the
slider input element. Unfortunately, this also is a common situation and I will discuss the implications.

The approach of this book is to explain HTML5, Cascading Style Sheets and JavaScript chapters in
the context of specific examples. The projects represent a variety of applications and, hopefully, you will
find something in each one that you will learn and adapt for your own purposes.

CHAPTER 1 ■ BUILDING THE HTML5 LOGO - DRAWING ON CANVAS, WITH SCALING, AND SEMANTIC TAGS

2

■ Note If you need an introduction to programming using HTML5 and JavaScript, you can consult my book the
Essential Guide to HTML5 or other books published by Apress or others. There also is considerable material
available online.

Figure 1-1 shows the opening screen for the logo project on the Chrome browser. (Skip ahead to
Figure 1-3 for the appearance on Firefox.)

Figure 1-1. Opening Screen for HTML5 Logo

Notice the slider feature, the accompanying text, which contains what appears to be a hyperlink,
and the text in a footer below a yellow line. The footer also includes a hyperlink. As I will explain later,
the function and the formatting of the footer and any other semantic element is totally up to me, but
providing a reference to the owners of the logo, The World Wide Web Consortium would be deemed an
appropriate use.

The viewer can use the slider to change the size of the logo. FFigure 1-2 shows the application after
the slider has been adjusted to show the logo reduced to about a third in width and in height.

CHAPTER 1 ■ BUILDING THE HTML5 LOGO - DRAWING ON CANVAS, WITH SCALING, AND SEMANTIC TAGS

3

Figure 1-2. Logo scaled down

The implementation of HTML5 is not complete by any browsers and, as it turns out, Firefox treats
all slider inputs as simple text fields. This is termed 'graceful degradation' and it certainly is better than
producing nothing at all. FFigure 1-3 shows the opening screen in Firefox. Notice the initial value is
displayed as 100.

Figure 1-3. Application using Firefox

CHAPTER 1 ■ BUILDING THE HTML5 LOGO - DRAWING ON CANVAS, WITH SCALING, AND SEMANTIC TAGS

4

As will be the practice in each chapter, I now explain the critical requirements of the application,
more or less independent of the fact that the implementation will be in HTML5, and then describe the
features of HTML5, JavaScript, and other technologies as needed that will be used in the
implementation. The Building section includes a table with comments for each line of code and also
guidance for building similar applications. The Testing section provides details for uploading and
testing. This section is more critical for some projects than others. Lastly, there is a Summary that
reviews the programming concepts covered and previews what is next in the book.

Project History and Critical Requirements
The critical requirements for this project are somewhat artificial and not easily stated as something
separate from HTML. For example, I wanted to draw the logo as opposed to copying an image from the
Web. My design objectives always include wanting to practice programming and prepare examples for
my students. The shape of the shield part of the logo seemed amenable to drawing on canvas and the
HTML letters could be done using the draw text feature. In addition, there are practical advantages to
drawing images instead of using image files. Separate files need to be managed, stored, and downloaded.
The image shown in Figure 1-4 is 90KB. The file holding the code for the program is only 4KB. Drawing a
logo or other graphic means that the scale and other attributes can be changed dynamically using code.

Figure 1-4. Image of logo

I looked online and found an example of just the shield done by Daniel Davis, who works for Opera.
This was great because it meant that I did not have to measure a copy of the logo image to get the
coordinates. This begs the question of how he determined the coordinates. I don't know the answer,
even though we had a pleasant exchange of emails. One possibility is to download the image and use the
grid feature of image processing programs such as Adobe Photoshop or Corel Paint Shop Pro. Another
possibility is to use (old-fashioned) transparent graph paper.

However, there was a problem with building on Daniel Davis's work. His application did not include
the HTML letters. The solution to this was to position the letters on the screen and then move down so to
speak to position the drawing of the shield using the coordinates provided in Daniel's example. The
technical term for 'moving down the screen' is performing a coordinate transformation. So the ability to
perform coordinate transformations became a critical requirement for this project.

I chose to write something about the logo and, in particular, give credit and references in the form of
hyperlinks. I made the decision to reference the official source of the logo as brief text at the bottom of

CHAPTER 1 ■ BUILDING THE HTML5 LOGO - DRAWING ON CANVAS, WITH SCALING, AND SEMANTIC TAGS

5

the document below a line. The reference to Daniel Davis was part of the writing in the body. We
exchanged notes on font choices and I will discuss that more in the next section.

In order to give the viewer something to do with the logo, I decided to present a means of changing
the size. A good device for this is a slider with the minimum and maximum values and steps all specified.
So the critical requirements for this application include drawing shapes and letters in a specific font,
coordinate transformations, formatting a document with a main section and a footer section, and
including hyperlinks.

HTML5, CSS, and JavaScript features
I assume that you, the reader, have some experience with HTML and HTML5 documents. One of the
most important new features in HTML5 is the canvas element for drawing. I describe briefly the drawing
of filled-in paths of the appropriate color and filled-in text. Next, I describe coordinate transformations,
used in this project for the two parts of the logo itself and for scaling, changing the size, of the whole
logo. Lastly, I describe the range input element. This produces the slider.

Drawing paths on canvas
Canvas is a type of element introduced in HTML5. All canvas elements have a property (aka attribute)
called the 2D context. Typically, a variable is set to this property after the document is loaded:

ctx = document.getElementById('canvas').getContext('2d');

It is important to understand that canvas is a good name: code applies color to the pixels of the
canvas, just like paint. Code written later can put a different color on the canvas. The old color does not
show through. Even though our code causes rectangles and shapes and letters to appear, these distinct
entities do not retain their identity as objects to be re-positioned.

The shield is produced by drawing six filled-in paths in succession with the accumulated results as
shown in Figure 1-5. You can refer to this picture when examining the code. Keep in mind that in the
coordinates, the first number is the distance from the left edge of the canvas and the second number is
the distance from the top edge of the canvas.

Figure 1-5. Sequence of paths for drawing logo

By the way, I chose to show you the sequence with the accumulated results. If I displayed what is
drawn, you would not see the white parts making up the left side of the five. You can see it because it is
two white filled-in paths on top of the orange.

All drawing is done using methods and properties of the ctx variable holding the 2D context
property of the canvas element. The color for any subsequent fill operation is set by assigning a color to
the fillStyle property of the canvas context.

CHAPTER 1 ■ BUILDING THE HTML5 LOGO - DRAWING ON CANVAS, WITH SCALING, AND SEMANTIC TAGS

6

ctx.fillStyle = "#E34C26";

This particular color, given in the hexadecimal format, where the first two hexadecimal (base 16)
digits represent red, the second two hexadecimal digits represent green and the last two represent blue,
is provided by the W3C website, along with the other colors, as the particular orange for the background
of the shield. It may be counterintuitive, but in this system, white is specified by the value #FFFFFF.
Think of this as all colors together make white. The absence of color is black and specified by #000000.
The pearly gray used for the right hand side of the 5 in the logo has the value #EBEBEB. This is a high
value, close to white. It is not necessary that you memorize any of these values, but it is useful to know
black and white, and that a pure red is #FF0000, a pure green is #00FF00 and a pure blue #0000FF. You
can use the eyedropper/color picker tool in drawing programs such as Adobe Photoshop, Corel Paint
Shop Pro on the on-line tool: http://pixlr.com/ to find out values of colors in images OR you can use
the official designation, when available, for official images.

All drawing is done using the 2 dimensional coordinate systems. Shapes are produced using the
path methods. These assume a current location, which you can think of as the position of a pen or paint
brush over the canvas. The critical methods are moving to a location and setting up a line from the
current location to the indicated location. The following set of statements draws the five sided orange
shape starting at the lower, left corner. The closePath method closes up the path by drawing a line back
to the starting point.

ctx.fillStyle = "#E34C26";
ctx.beginPath();
ctx.moveTo(39, 250);
ctx.lineTo(17, 0);
ctx.lineTo(262, 0);
ctx.lineTo(239, 250);
ctx.lineTo(139, 278);
ctx.closePath();
ctx.fill();

If you haven't done any drawing on canvas, here is the whole HTML script needed to produce the 5-
sided shape. The onLoad attribute in the <body> tag causes the init function to be invoked when the
document is loaded. The init function sets the ctx variable, sets the fillStyle property and then draws
the path.

<!DOCTYPE html>
<html>
<head>
<title>HTML 5 Logo</title>
<meta charset="UTF-8">
<script>
function init() {
 ctx = document.getElementById('canvas').getContext('2d');
 ctx.fillStyle = "#E34C26";
 ctx.beginPath();
 ctx.moveTo(39, 250);
 ctx.lineTo(17, 0);
 ctx.lineTo(262, 0);
 ctx.lineTo(239, 250);
 ctx.lineTo(139, 278);
 ctx.closePath();
 ctx.fill();
}

CHAPTER 1 ■ BUILDING THE HTML5 LOGO - DRAWING ON CANVAS, WITH SCALING, AND SEMANTIC TAGS

7

</script>
</head>
<body onLoad="init();">
<canvas id="canvas" width="600" height="400">
Your browser does not support the canvas element .
</canvas>
</body>
</html>

Do practice and experiment with drawing on the canvas if you haven’t done so before, but I will go
on. The other shapes are produced in a similar manner. By the way, if you see a line down the middle of
the shield, this is an optical illusion.

Placing text on canvas and in the body of a document
Text is drawn on the canvas using methods and attributes of the context. The text can be filled in, using
the fillText method or drawn as an outline using the strokeText method. The color is whatever the
current fillStyle property or strokeStyle property holds. Another property of the context is the font.
This property can contain the size of the text and one or more fonts. The purpose of including more than
one font is to provide options to the browser if the first font is unavailable on the computer running the
browser. For this project, I use

var fontfamily = "65px 'Gill Sans Ultra Bold', sans-serif";

and in the init function

ctx.font = fontfamily;

This directs the browser to use the Gill Sans Ultra Bold font if it is available and if not, use whatever
the default sans-serif font on the computer.

I could have put this all in one statement, but chose to make it a variable. You can decide if my
choice of font was close enough to the official W3C logo.

■ Note There are at least two other approaches to take for this example. One possibility is to NOT use text but to
draw the letters as filled-in paths. The other is to locate and acquire a font and place it on the server holding the
HTML5 document and reference it directly using @font-face.

With the font and color set, the methods for drawing text require a string and a position: x and y
coordinates. The statement in this project to draw the letters is

ctx.fillText("HTML", 31,60);

Formatting text in the rest of the HTML document, that is, outside a canvas element, requires the
same attention to fonts. In this project, I choose to make use of the semantic elements new to HTML5
and follow the practice of putting formatting in the style element. The body of my HTML script contains
two article elements and one footer elements. One article holds the input element with a comment and
the other article holds the rest of the explanation. The footer element contains the reference to W3C.
Formatting and usage of these are up to the developer/programmer. This includes making sure the

CHAPTER 1 ■ BUILDING THE HTML5 LOGO - DRAWING ON CANVAS, WITH SCALING, AND SEMANTIC TAGS

8

footer is the last thing in the document. If I placed the footer before one or both articles, it would no
longer be displayed at the foot, that is, the bottom of the document. The style directives for this project
are the following:

footer {display:block; border-top: 1px solid orange; margin: 10px;�
 font-family: "Trebuchet MS", Arial, Helvetica, sans-serif; font-weight: bold;}
article {display:block; font-family: Georgia, "Times New Roman", Times, serif; margin: 5px;}

The styles each set up all instances of these elements to be displayed as blocks. This puts a line
break before and after. The footer has a border on the top, which produces the line above the text. Both
styles specify a list of four fonts each. So the browser first sees if Trebuchet MS is available, then checks
for Arial, then for Helvetica and then, if still unsuccessful, uses the system default sans-serif font for the
footer element. Similarly, the browser checks for Georgia, then Times New roman, then Times and then,
if unsuccessful, uses the standard serif font. This probably is overkill, but it is the secure way to operate.
The footer text is displayed in bold and the articles each have a margin around them of 5 pixels.

Formatting, including fonts, is important. HTML5 provides many features for formatting and for
separating formatting from structure and content. You do need to treat the text on the canvas differently
than the text in the other elements.

Coordinate transformations
I have given my motivation for using coordinate transformations, specifically to keep using a set of
coordinates. To review, a coordinate system is the way to specify positions on the canvas. Positions are
specified as distances from an origin point. For the two-dimensional canvas, two coordinates are
necessary: the first coordinate, governing the horizontal, often called the x and the second coordinate,
governing the vertical, called the y. A pesky fact is that when drawing to screens the y axis is flipped so
the vertical is measured from the top of the canvas. The horizontal is measured from the left. This means
that the point (100,200) is further down the screen than the point (100,100).

In the logo project, I wrote code to display the letters HTML and then move the origin to draw the
rest of the logo. An analogy would be that I know the location of my house from the center of my town
and so I can give directions to the center of town and then give directions to my house. The situation in
which I draw the letters in the logo and 'move down the screen' requires the translate transformation.
The translation is done just in the vertical. The amount of the translation is stored in a variable I named
offsety:

var offsety = 80;
…
ctx.fillText("HTML", 31, 60);
ctx.translate(0, offsety);

Since I decided to provide a way for the viewer to change the size of the logo, I made use of the scale
transformation. Continuing the analogy of directions, this is equivalent to changing the units. You may
give some directions in miles (or kilometers) and other directions in yards or feet or meters or, maybe,
blocks. The scaling can be done separately for each dimension. In this application, there is a variable
called factorvalue that is set by the function invoked when the input is changed. The statement

ctx.scale(factorvalue, factorvalue);

changes the units for both the horizontal and vertical direction.

CHAPTER 1 ■ BUILDING THE HTML5 LOGO - DRAWING ON CANVAS, WITH SCALING, AND SEMANTIC TAGS

9

HTML5 provides a way to save the current state of the coordinate system and restore what you have
saved. This is important if you need your code to get back to a previous state. The saving and restoring is
done using what is termed a stack: last in first out. Restoring the coordinate state is termed popping the
stack and saving the coordinate state is pushing something onto the stack. My logo project does not use
this in its full power, but it is something to remember to investigate if you are doing more complex
applications. In the logo project, my code saves the original state when the document is first loaded.
Then before drawing the logo, it restores what was saved and then saves it again so it is available the next
time. The code at the start of the function dologo, which draws the logo, starts off as follows:

function dologo() {
var offsety = 80 ;
ctx.restore();
ctx.save();
ctx.clearRect(0,0,600,400);
ctx.scale(factorvalue,factorvalue);
ctx.fillText("HTML", 31,60);
ctx.translate(0,offsety);

// 5 sided orange background
ctx.fillStyle = "#E34C26";
ctx.beginPath();
ctx.moveTo(39, 250);
ctx.lineTo(17, 0);
ctx.lineTo(262, 0);
ctx.lineTo(239, 250);
ctx.lineTo(139, 278);
ctx.closePath();
ctx.fill();

// right hand, lighter orange part of the background
ctx.fillStyle = "#F06529";
ctx.beginPath();
ctx.moveTo(139, 257);
ctx.lineTo(220, 234);
ctx.lineTo(239, 20);
ctx.lineTo(139, 20);
ctx.closePath();
ctx.fill();
…

Note that the canvas is cleared (erased) of anything that was previously drawn.

Using the range input element
The input device, which I call a slider, is the new HTML5 input type range, and is placed in the body of
the HTML document. Mine is placed inside an article element. The attributes of this type and other
input elements provide ways of specifying the initial value, the minimum and maximum values, the
smallest increment adjustment and the action to take if the viewer changes the slider. The code is

<input id="slide" type="range" min="0" max="100" value="100"�
 onChange="changescale(this.value)" step="10"/>

CHAPTER 1 ■ BUILDING THE HTML5 LOGO - DRAWING ON CANVAS, WITH SCALING, AND SEMANTIC TAGS

10

The min, max, (initial) value, and the step can be set to whatever you like. Since I was using
percentage and since I did not want the logo to get bigger than the initial value or deal with negative
values, I used 0 and 100.

In the proper implementation of the slider, the viewer does not see the initial value or the maximum
or minimum. My code uses the input as a percentage. The expression this.value is interpreted as the
value attribute of THIS element, emphasis given in capitals to convey the switch to English! The term
this has special meaning in JavaScript and several other programming languages. The changescale
function takes the value, specified by the parameter given in the assignment to the onChange attribute,
and uses it to set a global variable (a variable declared outside of any function so it persists and is
available to any function).

function changescale(val) {
 factorvalue = val / 100;
 dologo();
}

It is part of the specification of HTML5 that the browsers will provide form validation, that is, check
that the conditions specified by attributes in the input elements are obeyed. This can be a significant
productivity boost in terms of reducing the work programmers need to do and a performance boost
since the checking probably would be faster when done by the browser. We will discuss it more in
Chapter 10 on databases and php. In the HTML5 logo project, an advantage of the slider is that the
viewer does not need to be concerned with values but merely moves the device. There is no way to input
an illegal value. I do not want to disparage the Firefox browser, and, as I indicated, producing a text box
is better than producing nothing, but, at least at the time of writing, it does not display a slider or do any
checking. Figure 1-6 shows the results of entering a value of 200 in the input field.

Figure 1-6. Display in Firefox of scale of 200

CHAPTER 1 ■ BUILDING THE HTML5 LOGO - DRAWING ON CANVAS, WITH SCALING, AND SEMANTIC TAGS

11

The canvas is of fixed width and height and drawing outside the canvas, which is what is done when
the scaling is done to accept numbers and stretch them out to twice the original value, is ignored.

Building the application and making it your own
The project does one thing, draw the logo. A function, dologo, is defined for this purpose. Informally, the
outline of the program is

1. init: initialization

2. dologo: draw the logo starting with the HTML letters and then the shield

3. changescale: change the scale

The function called and calling table shows the relationship of the functions. The dologo function is
invoked when the document is first loaded and then whenever the scale is changed.

Table 1-1. Functions in the HTML5 Logo project

Function Invoked / Called By Calls

init invoked by action of the onLoad attribute in the <body> tag dologo

dologo init and changescale

changescale invoked by action of the onChange attribute in the <input type="range"…> tag dologo

The coding for the dologo function puts together the techniques previously described. In particular,

the code brings back the original coordinate system and clears off the canvas.
The global variables in this application are

var ctx;
var factorvalue = 1;
var fontfamily = "65px 'Gill Sans Ultra Bold', sans-serif";

As indicated earlier, it would be possible to not use the fontfamily but use the string directly in the
code. It is convenient to make ctx and factorvalue global.

Table 1-2 shows the code for the basic application, with comments for each line.

CHAPTER 1 ■ BUILDING THE HTML5 LOGO - DRAWING ON CANVAS, WITH SCALING, AND SEMANTIC TAGS

12

Table 1-2. Complete Code for the HTML5 Logo project

Code Line Description

<!DOCTYPE html> header

<html> opening html tag

<head> opening head tag

<title>HTML5 Logo </title> complete title element

<meta charset="UTF-8"> meta tag

<style> opening style tag

footer {display:block; border-top: 1px solid orange; margin:
10px; font-family: "Trebuchet MS", Arial, Helvetica, sans-
serif; font-weight: bold;}

style for the footer, including the
top border and font family

article {display:block; font-family: Georgia, "Times New
Roman", Times, serif; margin: 5px;}

style for the 2 articles

</style> close the style element

<script language="JavaScript"> opening script tag. Note: case
doesn't matter for the JavaScript.

var ctx; variable to hold the context. Used
in all drawing

var factorvalue = 1; set initial value for scaling

var fontfamily = "65px 'Gill Sans Ultra Bold', sans-serif"; set the fonts for the text drawn on
the canvas

function init() { start of init function

 ctx = document.getElementById('canvas').getContext('2d'); set ctx

 ctx.font = fontfamily; set font for text drawn on canvas

 ctx.save(); save the original coordinate state

 dologo(); invoke function to draw the logo

CHAPTER 1 ■ BUILDING THE HTML5 LOGO - DRAWING ON CANVAS, WITH SCALING, AND SEMANTIC TAGS

13

Code Line Description

} close function

function dologo() { start of dologo function

var offsety = 80 ; specify amount to adjust the
coordinates to draw the shield
part of the logo.

ctx.restore(); restore original state of
coordinates

ctx.save(); save it (push onto stack) so it can
be restored again

ctx.clearRect(0,0,600,400); erase the whole canvas

ctx.scale(factorvalue,factorvalue); scale horizontally and vertically
using value set by slider

ctx.fillText("HTML", 31,60); draw the letters: HTML

 ctx.translate(0,offsety); move down the screen (canvas)

// 5 sided orange background

ctx.fillStyle = "#E34C26"; set to official bright orange

ctx.beginPath(); start a path

ctx.moveTo(39, 250); move to indicated position at
lower left

ctx.lineTo(17, 0); draw line up and more to the left

ctx.lineTo(262, 0); draw line straight over to the
right

ctx.lineTo(239, 250); draw line down and slightly to
the left

ctx.lineTo(139, 278); draw line to the middle, low
point of the shield

ctx.closePath(); close the path

CHAPTER 1 ■ BUILDING THE HTML5 LOGO - DRAWING ON CANVAS, WITH SCALING, AND SEMANTIC TAGS

14

Code Line Description

ctx.fill(); fill in with the indicated color

// right hand, lighter orange part of the // background

ctx.fillStyle = "#F06529"; set color to the official darker
orange

ctx.beginPath(); start the path

ctx.moveTo(139, 257); move to middle point, close to
the top

ctx.lineTo(220, 234); draw line to the right and slightly
up

ctx.lineTo(239, 20); draw line to the right and up

ctx.lineTo(139, 20); draw line to the left (point at the
middle)

ctx.closePath(); close path

ctx.fill(); fill in with the indicated color

//light gray, left hand side part of the //five

ctx.fillStyle = "#EBEBEB"; set color to gray

ctx.beginPath(); start path

ctx.moveTo(139, 113); move to middle horizontally,
midway vertically

ctx.lineTo(98, 113); draw line to the left

ctx.lineTo(96, 82); draw line up and slightly further
left

ctx.lineTo(139, 82); draw line to right

ctx.lineTo(139, 51); draw line up

ctx.lineTo(62, 51); draw line to the left

CHAPTER 1 ■ BUILDING THE HTML5 LOGO - DRAWING ON CANVAS, WITH SCALING, AND SEMANTIC TAGS

15

Code Line Description

ctx.lineTo(70, 144); draw line to the left and down

ctx.lineTo(139, 144); draw line to the right

ctx.closePath(); close path

ctx.fill(); fill in with indicated color

ctx.beginPath(); start a new path

ctx.moveTo(139, 193); move to middle point

ctx.lineTo(105, 184); draw line to the left and up

ctx.lineTo(103, 159); draw line slightly to the left and
up

ctx.lineTo(72, 159); draw line more to the left

ctx.lineTo(76, 207); draw line slightly to the right and
down

ctx.lineTo(139, 225); draw line to the left and down

ctx.closePath(); close path

ctx.fill(); fill in the shape in the indicated
color

// white, right hand side of the 5

ctx.fillStyle = "#FFFFFF"; set color to white

ctx.beginPath(); start path

ctx.moveTo(139, 113); start at middle pint

ctx.lineTo(139, 144); draw line down

ctx.lineTo(177, 144); draw line to the right

ctx.lineTo(173, 184); draw line slightly left and down

CHAPTER 1 ■ BUILDING THE HTML5 LOGO - DRAWING ON CANVAS, WITH SCALING, AND SEMANTIC TAGS

16

Code Line Description

ctx.lineTo(139, 193); draw line more left and down

ctx.lineTo(139, 225); draw line down

ctx.lineTo(202, 207); draw line to the right and up

ctx.lineTo(210, 113); draw line slightly right and up

ctx.closePath(); close path

ctx.fill(); fill in white

ctx.beginPath(); start a new path

ctx.moveTo(139, 51); move to middle point

ctx.lineTo(139, 82); move down

ctx.lineTo(213, 82); move to the right

ctx.lineTo(216, 51); move slightly to the right and up

ctx.closePath(); close path

ctx.fill(); fill in white

} close dologo function

function changescale(val) { open function changevalue with
parameter

 factorvalue = val / 100; set factorvalue to the input
divided by 100

 dologo(); invoke function to draw logo

} close changevalue function

</script> close script element

</head> close head element

CHAPTER 1 ■ BUILDING THE HTML5 LOGO - DRAWING ON CANVAS, WITH SCALING, AND SEMANTIC TAGS

17

Code Line Description

<body onLoad="init();"> body tag with attribute set to
invoke init

<canvas id="canvas" width="600" height="400"> canvas tag setting dimensions
and with id to be used in code

Your browser does not support the canvas element. message to appear if canvas not
supported

</canvas> close canvas tag

<article> article tag

Scale percentage: <input id="slide" type="range" min="0"
max="100" value="100" onChange="changescale(this.value)"
step="10"/>

the slider (range) input with
settings

Note: slider treated as text field in some browsers. Comment to note that slider may
be text field. It is still usable.

</article> article close tag

<article>Built on work
by Daniel Davis, et al, but don't blame them for the
fonts. Check out the use of font-family in the style
element and the fontfamily variable in the script
element for safe ways to do fonts. I did the scaling. Note
also use of semantic elements.</article>

article tag with some text,
including hyperlink

<footer>HTML5 Logo by <abbr
title="World Wide Web Consortium">W3C</abbr>.

footer tag and footer content,
including abbr element

</footer> footer close tag

</body> body close

</html> html close

You can make this application your own by using all or parts of it with your own work. You probably

want to omit the comments about fonts.

CHAPTER 1 ■ BUILDING THE HTML5 LOGO - DRAWING ON CANVAS, WITH SCALING, AND SEMANTIC TAGS

18

Testing and uploading the application
This is a simple application to test and upload (and test) because it is a single file. I am told that the logo
does display on iPhone4 and iPad2, but the slider is a text box in each case. I also tested it on Safari and
Opera on a PC. You can skip ahead to Chapter 8 for a project displaying a jigsaw puzzle turning into a
video that does work with finger touches on the iPhone and iPad as well as mouse moves on computers.

Summary
In this chapter, you learned how make a specific drawing and also steps to take in producing other,
similar, applications. The features used include

• paths

• text on the canvas and text in semantic elements in the body

• the range input element and its associated change event

• coordinate transformations, namely translate and scale

• specification of sets of fonts

• styles for semantic elements, including the border top to make a line to go before
the footer

The next chapter describes how to build a utility application for making compositions or collages of
photographs and shapes. It combines techniques of drawing on canvas and creating HTML elements
with a standard technique in computing, objects. It also makes use of coordinate transformations.

C H A P T E R 2

19

Family Collage:
Manipulating Programmer-defined
Objects on a Canvas

In this chapter, you will learn about

• Creating and manipulating object-oriented programming for drawing on canvas

• Handling mouse events, including double-click

• Saving the canvas to an image

• Using try and catch to trap errors

• Browser differences involving the location of the code

• Using algebra and geometry to construct shapes and determine when the cursor is
over a specific object

• Controlling the icon used for the cursor

Introduction
The project for this chapter is a utility for manipulating objects on a canvas to produce a picture. I call it
a utility because one person does the programming and gathers photographs and designs and then can
offer the program to friends, family members, colleagues and others to produce the compositions /
collages. The result can be anything from an abstract design to a collage of photographs. The objects in
my example include two rectangles, an oval, a circle, a heart, and five family photographs. It is possible
for you, or, perhaps, your end-user/customer/client/player, to make duplicate copies of any of the
objects or to remove any of the objects. The end-user positions the object using drag and drop with the
mouse. When the picture is judged to be complete, it is possible to create an image that can be
downloaded into a file.

Figure 2-1 shows the opening screen for my program. Notice that you start off with ten objects to
arrange.

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

20

Figure 2-1. Opening screen for Family Pictures

Figure 2-2 shows what I, as an end-user, produced as a final product. I have arranged the
photographs to represent my son's family, including my new granddaughter. I deleted the two
rectangles and the oval and made duplicates of the circle to position as decoration in the corners of the
picture.

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

21

Figure 2-2. Sample final product: rearranged objects

I decided on including a heart, not just for sentimental reasons, but because it required me to use
algebra and geometry. Don't be afraid of mathematics. It is very useful. I invented, so to speak, a
canonical heart. For other shapes, you may be able to find a standard definition in terms of
mathematical expressions.

In this situation, I created the set of objects and then I used the program to make a composition.
You can plan your application to take family photographs or photographs categorized by another theme
and some set of circles, ovals, rectangles, and hearts. When you are finished, you can offer this program
to others for them to use. This is analogous to building a game program for players. The end-users for
this application may be family members, friends, or colleagues.

Of course, it certainly is possible to use a drawing program such as Adobe Photoshop or Corel Paint
Shop Pro to create compositions such as these, but this application provides considerable ease-of-use
for its specific purpose. The project also serves as a vehicle to learn important programming techniques
as well as features of HTML5 and JavaScript. And, as will be a continual refrain, there are differences
among the browsers to discuss.

Critical Requirements
The critical requirements for this project include constructing a framework for manipulating objects on
the screen, including detecting mouse events on the objects, deleting objects and creating copies of

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

22

objects. The current framework provides a way to specify rectangles, ovals, hearts and images, but the
approach can accommodate other shapes and this is an important lesson of the chapter.

The objective is for the drag and drop operations to be reasonably precise: not merely moving
something from one region of the window to another. I will re-visit this topic in the Chapters 8 and 9 on
making jigsaw puzzles.

I also made the decision to control the look of the cursor. The cursor when the mouse is not on the
canvas is the standard arrow. When on the canvas element, the cursor will be the cross-hairs. When the
user presses down on the mouse button and drags an object, the cursor changes to a hand with pointer
finger.

When the work is complete, it is a natural desire to save it, perhaps as an image file, so this also is a
requirement for the project.

HTML5, CSS, and JavaScript features
We now explore the features of HTML5 and JavaScript that are used for the Family Collage project. The
idea is to maintain a list of the material on the canvas. This list will be a JavaScript array. The information
will include the position of each item, how it is to be drawn on the canvas and how to determine if the
mouse cursor is on the item.

JavaScript objects
Object oriented programming is a standard of computer science and a critical part of most programming
languages. Objects have attributes, also called properties, and methods. A method is a function. Put
another way, an object has data and code that may make use of the data. HTML and JavaScript have
many built-in objects, such as document and window and also arrays and strings. For the Family Picture
project, I make use of a basic facility in JavaScript (established before HTML5) for defining my own
objects. These sometimes are called user-defined objects, but the term I and others prefer is
programmer-defined objects. This is an important distinction for the Family Collage project in which
you, the programmer, may create an application, with pictures and other shapes you identify and
design, and then offer it to a family member to use.

The objective of this project is to set up a framework for creating and manipulating different shapes
on the canvas, keeping in mind that once something is drawn to the canvas, its identity as a rectangle or
image is lost. The first step for each shape is to define what is called a constructor function that stores the
information that specifies the shape. The next step is to define the methods, code for using the
information to do what needs to be done.

My approach gives the appearance of moving things on the canvas. In fact, information kept in
internal variables is changed and the canvas is cleared and new drawings made each time something
happens to change the look of the canvas.

My strategy is to define new types of objects, each of which will have two methods defined

• draw for drawing the object on the canvas

• overcheck for determining if a given position, specifically the mouse position, is on
the object

These methods reference the attributes of the object and use these values in mathematical
expressions to produce the results. Once the constructor functions are defined, values can be created as
new instances of these objects. An array called stuff holds all the object instances.

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

23

■ Note Object oriented programming in all its glory has a rich and often daunting vocabulary. Classes are what
define objects. I have hinted here at what is called an interface. Classes can be subclasses of other classes and
this may have been useful for pictures and rectangles. I'm aiming for a more casual tone here. For example, I will
speak of objects and object instances.

Let's move away from generalities and show how this works. I created functions I named Rect, Oval,
Picture and Heart. These will be what are called the constructor functions for the Rect, Oval, Picture and
Heart object instances. It is a convention to give such functions names starting with capital letters.

Rect
The definition of the Rect constructor function is

function Rect(x,y,w,h,c) {
 this.x = x;
 this.y = y;
 this.w = w;
 this.h = h;
 this.draw = drawrect;
 this.color = c;
 this.overcheck = overrect;
}

The function is used as follows in the init function invoked when the document is loaded:

var r1 = new Rect(2,10,50,50,"red");

The variable r1 is declared and set to a new object constructed using the function Rect. The built-in
term new does the task of creating a new object. The newly constructed object holds the values 2 and 10
for the initial x and y position, accessed using the attribute names x and y and the values 50 and 50 for
width and height accessed using the attribute names w and h. The term this refers to the object being
constructed. The English meaning and the computer jargon meaning of new and this match. The Rect
function also stores away values for the attributes draw and overcheck. It is not obvious from what you
have seen so far, but these values will be used to invoke functions named drawrect and overrect.
This is the way to specify methods for the programmer-defined objects. Lastly, the color attribute is
set to "red".

Oval
Moving on, the constructor function for Oval is similar.

function Oval(x,y,r,hor,ver,c) {
 this.x = x;
 this.y = y;
 this.r = r;
 this.radsq = r*r;
 this.hor = hor;

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

24

 this.ver = ver;
 this.draw = drawoval;
 this.color = c;
 this.overcheck = overoval;
}

The x and y values refer to the center of the Oval. The hor and ver attributes will be used to scale the
horizontal and vertical axis respectively and, depending on the values, produce an oval that is not a
circle. The radsq attribute is calculated and stored to save time in the overoval function.

■ Note Computers are very fast and I am showing my age by storing away and then using the square of the
radius. Still, making this trade-off of extra storage for savings in computation time may be justified.

In my example,

var oval1 = new Oval(200,30,20,2.0,1.0, "teal");

produces the teal colored oval in Figure 2-1. Notice that it is stretched out in the horizontal
dimension. In contrast, the purple oval is declared in the following declaration:

var cir1 = new Oval(300,30,20,1.0,1.0,"purple");

The purple circle has the hor and ver values the same and so is a circle. You have every right to ask
how or where this information is used to produce an oval or circle. The answer is in the drawoval
function that will be shown later on. Similarly, the checking if a given x,y position is on the oval is
performed by the overoval function.

Picture
The constructor for Picture objects stores away position, width and height, and the name of an Image
object.

function Picture(x,y,w,h,imagename) {
 this.x = x;
 this.y = y;
 this.w = w;
 this.h = h;
 this.imagename = imagename;
 this.draw = drawpic;
 this.overcheck = overrect;
}

My example has four Picture objects. Here is code for setting up one of them:

var dad = new Image();
dad.src = "daniel1.jpg";
var pic1 = new Picture(10,100,100,100,dad);

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

25

Setting up one of the Picture objects takes more work than Rect objects. I need to write the code to
create an Image object. This is a built-in object type in JavaScript. I need to acquire an image file and
move it into the same folder as the HTML file and write code to assign the correct file name to the src
attribute of the Image variable. (Alternatively, you can put all images into a subfolder or several
subfolders. For example, the string for the src would be "images/daniel1.jpg".) Then I write the line of
code that constructs the pic1 variable.

Heart
We have one more of the programmer defined objects to cover. The challenge I set myself was to define
values that specify a heart shape. I came up with the following: a heart shape is defined by the position,
an x, y pair of values that will be the location of the cleft of the heart; the distance from the cleft to the
bottom point, and the radius for the two partial circles representing the curved parts of the heart. You
can think of this as a canonical heart. The critical pieces of information are shown in Figure 2-3. If and
when you add new types of shapes to your application, you will need to invent or discover the data that
defines the shape.

Figure 2-3. Data defining a heart

The constructor function saves the indicated values, along with the color, into any newly
constructed object. You might be suspecting that the drawing and the overcheck will be somewhat more
complicated than the functions for rectangles and you would be correct. The constructor function
resembles the other constructor function.

function Heart(x,y,h,drx,color) {
 this.x = x;
 this.y = y;
 this.h = h;
 this.drx = drx;
 this.radsq = drx*drx;
 this.color = color;
 this.draw = drawheart;
 this.overcheck = overheart;
 this.ang = .25*Math.PI;

}

The ang attribute is a case of my hedging my bets. You notice that it is a constant and I could avoid
making it an attribute. You will see later when I explain drawheart how my coding uses it to make the
heart rounded. I made it an attribute just in case I want to change to allow hearts to have more
variability.

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

26

Drawing
I have the different method functions to explain, but let's go to where the drawing is done in order to
demonstrate how all of this works together. I define an array, initially empty,

var stuff = [];

Then my code adds to this array with statements such as

 stuff.push(pic1);
 stuff.push(pic2);
 stuff.push(pic3);
 stuff.push(pic4);
 stuff.push(r1);
 stuff.push(s1);
 stuff.push(oval1);
 stuff.push(cir1);

At appropriate times, namely after any changes, the function drawstuff is invoked. It works by
erasing the canvas, drawing a rectangle to make a frame, and then iterating over each element in the
stuff array and invoking the draw methods. The function is

function drawstuff() {
 ctx.clearRect(0,0,600,400);
 ctx.strokeStyle = "black";
 ctx.lineWidth = 2;
 ctx.strokeRect(0,0,600,400);
 for (var i=0;i<stuff.length;i++) {
 stuff[i].draw();
 }
}

Notice that there is no coding that asks, is this an oval, if so do this, or is it a picture, if so do that….
Instead, the draw method that has been established for each member of the array does its work! The
same magic happens when checking if a position (the mouse) is on an object. The benefit of this
approach increases as more object types are added.

I did realize that since my code never changes the strokeStyle or the lineWidth, I could move those
statements to the init function and just do them one time. However, it occurred to me that I might have
a shape that does change these values and so to prepare for that possible change in the application at a
later time, I would set strokeStyle and lineWidth in drawstuff.

Now I will explain the methods for drawing and the methods for checking if a position is on the
object. The drawrect function is pretty straight-forward:

function drawrect() {
 ctx.fillStyle = this.color;
 ctx.fillRect(this.x, this.y, this.w, this.h);
}

Remember the term this refers to the object for which drawrect serves as a method. The drawrect
function is the method for rectangles and for pictures.

The drawoval function is slightly, but only slightly, more complex. You need to recall how coordinate
transformations work. HTML5 JavaScript only allows circular arcs but does allow scaling the coordinates
to produce ovals (ellipses) that are not circles. What the coding in the drawoval function does is to save
the current state of the coordinate system and then perform a translation to the center of the object.

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

27

Then a scaling transformation is applied, using the hor and ver properties. Now, after setting the
fillStyle to be the color specified in the color attribute, I use the coding for drawing a path made up of
a circular arc and filling the path. The last step is to restore the original state of the coordinate system.

function drawoval() {
 ctx.save();
 ctx.translate(this.x,this.y);
 ctx.scale(this.hor,this.ver);
 ctx.fillStyle = this.color;
 ctx.beginPath();
 ctx.arc(0,0,this.r,0,2*Math.PI,true);
 ctx.closePath();
 ctx.fill();
 ctx.restore();
}

This is the way ovals that may or may not be circles are drawn on the canvas. Since my code restored
the original state of the coordinate system, this has the effect of undoing the scaling and translation
transformations.

The drawpic function is the easiest one, just one line:

function drawpic() {
 ctx.drawImage(this.imagename,this.x,this.y,this.w,this.h);
}

Again, the terms starting with this followed by a dot and then the attribute names reference the
stored attributes.

■ Note Please keep in mind that I didn't plan and program this whole application all at once. I did the rectangles
and ovals and later added the pictures and much later the heart. I also added the duplication operation and the
deletion operation much later. Working in stages is the way to go. Planning is important and useful, but you do not
have to have all the details complete at the start.

The drawheart function starts by defining variables to be used later. The leftctrx is the x coordinate
of the center of the left arc and the rightctrx is the x coordinate of the center of the right arc. The arcs
are each more than a half circle. How much more? I decided to make this be .25* Math.PI and to store
this value in the ang attribute.

The tricky thing was to determine where the arc stops on the right side. My code uses trig
expressions to set the cx and cy values. The cx, cy position is where the arc meets the straight line. Figure
2-4 indicates the meaning of the variables.

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

28

Figure 2-4. Added pieces of data used in functions

The path will start at what we are calling the cleft or the cleavage (giggle) and draw the arc on the
left, then draw a line to the bottom point, then up to the cx,cy point and then finish with the arc on the
right. The function is the following:

function drawheart() {
 var leftctrx = this.x-this.drx;
 var rightctrx = this.x+this.drx;
 var cx = rightctrx+this.drx*Math.cos(this.ang);
 var cy = this.y + this.drx*Math.sin(this.ang);
 ctx.fillStyle = this.color;
 ctx.beginPath();
 ctx.moveTo(this.x,this.y);
 ctx.arc(leftctrx,this.y,this.drx,0,Math.PI-this.ang,true);
 ctx.lineTo(this.x,this.y+this.h);
 ctx.lineTo(cx,cy);
 ctx.arc(rightctrx,this.y,this.drx,this.ang,Math.PI,true);
 ctx.closePath();
 ctx.fill();
}

Checking for mouse over object
Before describing the functions for the overcheck method, I will preview why it is needed. HTML5 and
JavaScript provide ways to handle (listen for and respond to) mouse events on the canvas and supply the
coordinates of where the event took place. However, our code must do the work of determining what
object was involved. Remember: there are no objects actually on the canvas, just the remains, think of it
as paint, of whatever drawing was done. My code accomplishes this task by looping through the stuff
array and invoking the overcheck method for each object. As soon as there is a hit (and I will explain the
order in which this is done later), my code proceeds with that object as the one selected. The functions
in which this checking occurs are startdragging and makenewitem and will be explained in the next
section.

There are three functions to explain for the overcheck method since Picture and Rect refer to the
same function. Each function takes two parameters. Think of the mx, my as the location of the mouse. The
overrect function checks for four conditions each being true. In English, the question is: Is mx greater
than or equal to this.x AND is mx less than or equal to this.x + this.w AND is my greater than or equal to
this.y AND is my less than or equal to this.y + this.h? The function says this more compactly:

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

29

function overrect (mx,my) {
 if ((mx>=this.x)&&(mx<=(this.x+this.w))&&(my>=this.y)&&(my<=(this.y+this.h)))
 {return true;}
 else {return false;}
}

The function defining the overcheck method for ovals is overoval. The overoval function performs
the operation of checking if something is within a circle, but in a translated and scaled coordinate
system. The check for a point being within a circle could be done by setting the center of the circle to
x1,y1 and the point to x2,y2 and see if the distance between the two is less than the radius. I use a
variation of this to save time and compare the square of the distance to the radius squared. I define a
function distsq that returns the square of the distance. But now I need to figure out how to do this in a
translated and scaled coordinate system. The answer is to set x1,y1 to 0,0. This is the location of the
center of the oval in the translated coordinate system. Then my code sets x2 and y2 as indicated in the
code to what would be the scaled values.

function overoval(mx,my) {
 var x1 = 0;
 var y1 = 0;
 var x2 = (mx-this.x)/this.hor;
 var y2 = (my-this.y)/this.ver;
 if (distsq(x1,y1,x2,y2)<=(this.radsq)){
 return true
 }
 else {return false}
}

This did not come to me instantly. I worked it out trying values for mx and my located in different
positions relative to the oval center. The code does represent what the transformations do in terms of
the translation and then the scaling.

The overheart function consists of several distinct if statements. This is a case of not trying for a
simple expression but thinking about various situations. The function starts off by setting variables to be
used later. The first check made by the function is to determine if the mx,my point is outside the rectangle
that is the bounding rectangle for the heart. I wrote the outside function to return true if the position
specified by the last two parameters was outside the rectangle indicated by the first four parameters. The
qx,qy point is the upper left corner. qwidth is the width at the widest point and qheight is the total
height. I thought of this as a quick check that would return false most of the time. The next two if
statements determine if the mx,my point is contained in either circle. That is, I again use the comparison
of the square of the distance from mx,my to the center of each arc to the stored radsq attribute. At this
point in the function, that is, if the mx,my position was not close enough to the center of either circle and
if my is above (less than) this.y, then the code returns false. Lastly, the code puts the mx value in the
equation for each of the sloping lines and compares the result to my. The equation for a line can be
written using the slope m and a point on the line x2,y2:

y = m * (x – x2) + y2

The code sets m and x2, y2 for the line on the left and then modifies it to work for the line on the
right by changing the sign of m. One possible concern here is whether or not the fact that the screen
coordinate system has upside down vertical values (vertical values increase going down the screen)
causes a problem. I checked out cases and the code works.

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

30

function overheart(mx,my) {
 var leftctrx = this.x-this.drx;
 var rightctrx = this.x+this.drx;
 var qx = this.x-2*this.drx;
 var qy = this.y-this.drx;
 var qwidth = 4*this.drx;
 var qheight = this.drx+this.h;

//quick test if it is in bounding rectangle
 if (outside(qx,qy,qwidth,qheight,mx,my)) {

 return false;}
//compare to two centers

 if (distsq(mx,my,leftctrx,this.y)<this.radsq) return true;
 if (distsq(mx,my,rightctrx,this.y)<this.radsq) return true;
// if outside of circles AND below (higher in the screen) than this.y, return false
 if (my<this.y) return false;

// compare to each slope
 var x2 = this.x
 var y2 = this.y + this.h;
 var m = (this.h)/(2*this.drx);
// left side
 if (mx<=this.x) {
 if (my < (m*(mx-x2)+y2)) {return true;}
 else { return false;}
 }
 else {
 m = -m;

 if (my < (m*(mx-x2)+y2)) { return true}
 else return false;
 }
}

The reasoning underlying the outside function is similar to the overrect function. You need to write
code comparing the mx,my value to the sides of the rectangle. However, for outside I chose to use the OR
operator, ||, and to return its value. This will be true if any of the factors are true and false otherwise.

function outside(x,y,w,h,mx,my) {
 return ((mx<x) || (mx > (x+w)) || (my < y) || (my > (y+h)));
}

Actually, what I said was true, but misses what could be an important consideration if performance
is an issue. The || evaluates each of the conditions starting from the first (leftmost) one. As soon as one of
them is true, it stops evaluating and returns true. The && operator does a similar thing. As soon as one of
the conditions is false, it returns false.

This is the basis for the four types of objects I designed for manipulation on the canvas. You can
look ahead to examine all the code or continue to see how these objects are put in use in the responses
to mouse events.

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

31

■ Note This example does not demonstrate the full power of object-oriented programming. In a language such
as Java (or the variant Processing designed for artists), I could have programmed this in such a way to check that
each additional object was defined properly, that is with the x and y attributes for location and methods for
drawing and checking.

User interface
The application requirements for the user interface include dragging, that is, mouse down, mouse move
and mouse up, for re-positioning items and double clicking for producing a duplicate copy of an item. I
decided to use buttons for the other end-user actions: removing an item from the canvas and creating an
image to be saved. The button action is straight-forward. I write two instances of the HTML5 button
element with the onClick attributes set to the appropriate function.

<button onClick="saveasimage();">Open window with image (which you can save into image file)�
 </button></br>
<button onClick="removeobj();">Remove last object moved </button>

The saveasimage function will be explained in the next section. The removeobj function deletes the
last moved object from the stuff array. The last moved object is the last one in the array. This makes the
coding extremely simple:

function removeobj() {
 stuff.pop();
 drawstuff();
}

A pop for any array deletes the last element. The function then invokes the drawstuff function to
display all but the last element. By the way, if the button is clicked at the start of the application, the last
element pushed on the stuff array will be deleted. If this is unacceptable, you can add a check to prevent
this from happening. The cost is that it needs to be done every time the user clicks on the button.

Fortunately, HTML5 provides the mouse events that we need for this application. In the init
function, I include the following lines:

 canvas1 = document.getElementById('canvas');
 canvas1.onmousedown = function () { return false; };
 canvas1.addEventListener('dblclick',makenewitem,false);
 canvas1.addEventListener('mousedown',startdragging,false);

The first statement sets the canvas1 variable to reference the canvas element. The second statement
is necessary to turn off the default action for the cursor. I also included a style directive for the canvas,
which made the positioning absolute and then positioned the canvas 80 pixels from the top. This is
ample space for the directions and the buttons.

canvas {position:absolute; top:80px;
 cursor:crosshair;
}

The third and fourth statements set up event handling for double click and mouse button down
events. We should appreciate the fact that we as programmers do not have to write code to distinguish
mouse down, click and double click.

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

32

The makenewitem and the startdragging functions start off the same. The code first determines the
mouse cursor coordinates and then loops through the stuff array to determine which, if any, object was
clicked on. You probably have seen the mouse cursor coordinate code before, in the Essential Guide to
HTML5, for example. The looping through the array is done in reverse order. Calls are made to the
overcheck method, defined appropriately for the different types of objects. If there is a hit, then the
makenewitem function calls the clone function to make a copy of that item. The code modifies the x and y
slightly so the new item is not directly on top of the original. The new item is added to the array and
there is a break to leave the for loop.

function makenewitem(ev) {
 var mx;
 var my;
 if (ev.layerX || ev.layerX == 0) {
 mx= ev.layerX;
 my = ev.layerY;
 } else if (ev.offsetX || ev.offsetX == 0) {
 mx = ev.offsetX;
 my = ev.offsetY;
 }
 var endpt = stuff.length-1;
 var item;
 for (var i=endpt;i>=0;i--) { //reverse order
 if (stuff[i].overcheck(mx,my)) {
 item = clone(stuff[i]);
 item.x +=20;
 item.y += 20;
 stuff.push(item);
 break;
 }
 }
 drawstuff();
}

As I indicated earlier, the clone function makes a copy of an element in the stuff array. You may
ask, why not just write

 item = stuff[i];

The answer is that this assignment does not create a new, distinct value. JavaScript merely sets the
item variable to point to the same thing as the ith member of stuff. This is called ‘copy by reference’. We
don’t want that. We want a brand new, separate thing that we can change. The way to copy is
demonstrated in the clone function. A new object is created and then a for-loop is invoked. The for(var
info in obj) says: for every attribute of obj, set an equivalently named attribute in item to the value of
the attribute.

function clone(obj) {
 var item = new Object();
 for (var info in obj) {
 item[info] = obj[info];
 }
 return item;

}

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

33

So the effect of the two functions is to duplicate whatever element is under the mouse cursor. You or
your end-user can then mouse down on the original or the cloned object and move it around.

The startdragged function proceeds as indicated to determine what object was under the mouse.
The code then determines what I (and others) call the offsets in x and y of the mouse coordinates versus
the x, y position of the object. This is because we want the object to move around maintaining the same
relationship between object and mouse. Some folks call this the flypaper effect. It is as if the mouse
cursor came down on the object and stuck like flypaper. The offsetx and offsety are global variables.
Note that the coding works for objects for which the x, y values refer to the upper left corner (pictures
and rectangles), to the center (ovals) and to a specific internal point (hearts).

The coding then performs a series of operations that has the effect of moving this object to the end
of the array. The first statement is a copy by reference operation to set the variable item. The next step
saves the index for the last element of the stuff array to the global variable thingInMotion. This variable
will be used by the function moveit. The splice statement removes the original element and the push
statement adds it to the array at the end. The statement referencing cursor is the way to specify a cursor.
The “pointer” refers to one of the built-in options. The last two statements in the function set up the
event handling for moving the mouse and releasing the button on the mouse. This event handling will
be removed in the dropit function.

function startdragging(ev) {
 var mx;
 var my;
 if (ev.layerX || ev.layerX == 0) {
 mx= ev.layerX;
 my = ev.layerY;
 } else if (ev.offsetX || ev.offsetX == 0) {
 mx = ev.offsetX;
 my = ev.offsetY;
 }
 var endpt = stuff.length-1;
 for (var i=endpt;i>=0;i--) { //reverse order
 if (stuff[i].overcheck(mx,my)) {
 offsetx = mx-stuff[i].x;
 offsety = my-stuff[i].y;
 var item = stuff[i];
 var last = stuff.length-1;
 stuff.splice(i,1);
 stuff.push(item);
 thingInMotion = last;
 canvas1.style.cursor = "pointer"; // change to finger
 canvas1.addEventListener('mousemove',moveit,false);
 canvas1.addEventListener('mouseup',dropit,false);
 break;
 }
 }
}

The moveit function moves the object referenced by thingInMotion and uses the offsetx and
offsety variables to move the object. The drawstuff function is invoked to show the modified canvas.

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

34

function moveit(ev) {
 var mx;
 var my;
 if (ev.layerX || ev.layerX == 0) {
 mx= ev.layerX;
 my = ev.layerY;
 } else if (ev.offsetX || ev.offsetX == 0) {
 mx = ev.offsetX;
 my = ev.offsetY;
 }
 stuff[thingInMotion].x = mx-offsetx; //adjust for flypaper dragging
 stuff[thingInMotion].y = my-offsety;
 drawstuff();
}

A mousemove event is triggered if the mouse moves a single pixel in any direction. If this seems too
much, remember that the computer does it, not you or I. The user gets a smooth response to moving the
mouse.

The dropit function is invoked at a mouseup event. The response is to remove, stop the listening for
moving and releasing the mouse and then changing the cursor back to the crosshairs.

function dropit(ev) {
 canvas1.removeEventListener('mousemove',moveit,false);
 canvas1.removeEventListener('mouseup',dropit,false);
 canvas1.style.cursor = "crosshair"; //change back to crosshair
}

To summarize, the user interface for this application involves two buttons and two types of mouse
actions. The drag and drop operation is implemented using a set of functions.

Saving the canvas to an image
After creating a composition, the user may want to save it to an image file. The Firefox browser makes
this easy. You can right-click on the canvas when using a PC or do the equivalent operation on a MAC
and a pop-up menu will appear with the option to Save Image As... However, Chrome, Safari and Opera
do not provide that facility. If you right-click, the options concern the HTML document. There is,
however, an alternative provided in HTML5.

A canvas element has a method called toDataURL that will produce an image from the canvas. The
method provides a choice of image file types from among png, jpg, or bmp. What I choose to do with the
result of this operation is write code to open a new window with the image as the content. The user then
can save this image as a file either by the save file option or the right-click for the image. However, there
is one more consideration. Chrome and Firefox require that this code run from a server, not on the client
computer. The client computer is the one running the browser program. The server computer would be
the website to which you will upload your finished work. You may or may not have one. Opera and Safari
allow the code to run from the client computer. This has an impact on testing, since, generally speaking,
we test programs locally and then upload to a server. Because of this situation, this is an appropriate
place to use the try/catch facility of JavaScript for catching errors (so to speak) for the programmer to
take action. Here is the code for the saveasimage function. The variable canvas1 has been set to the
canvas element in the init function invoked when the document is loaded.

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

35

function saveasimage() {
 try {
 window.open(canvas1.toDataURL("image/png"));}
 catch(err) {
 alert("You need to change browsers OR upload the file to a server.");
 }
}

Building the application and making it your own
You can make this application your own by identifying your own image files, specifying what rectangles,
ovals and hearts you want to include in the collection of objects to be manipulated and, after you have
something working, adding new object types. The application has many functions but they each are
small and many share attributes with others. An informal summary / outline of the application is

1. init for initialization, including setting up event handling for double click,
mouse down, mouse move and mouse up

2. object definition methods: constructor functions, draw functions and overcheck
functions

3. event handling functions: mouse events and button onClick

More formally, Table 2-1 lists all the functions and indicates how they are invoked and what
functions they invoke. Notice that several functions are invoked as a result of the function being
specified as a method of an object type.

Table 2-1. Functions in the HTML5 Family Card project

Function Invoked / Called By Calls

init invoked by action of the onLoad attribute in the <body> tag Picture, Rect, Oval,
Heart, drawstuff

saveasimage invoked by action of the onClick attribute in a button tag

removeobj invoked by action of the onClick attribute in a button tag drawstuff

Picture invoked in init function

Rect invoked in init function

Oval invoked in init function

Heart invoked in init function

drawheart invoked in drawstuff

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

36

Continued

Function Invoked / Called By Calls

drawrect invoked in drawstuff

drawoval invoked in drawstuff

drawpic invoked in drawstuff

overheart invoked in startdragging and makenewitem distsq, outside

overrect invoked in startdragging and makenewitem

overoval invoked in startdragging and makenewitem distsq

distsq invoked by overheart and overoval

drawstuff invoked by makenewitem, moveit, removeobj, init draw method of each
item in the stuff array

moveit invoked by action set by addEventListener for mousemove set
in startdragging

dropit invoked by action set by addEventListener for mouseup set in
startdragging

outside invoked by overheart

makenewitem invoked by action set by addEventListener for dblclick set in
init

clone

clone invoked by makenewitem

startdragging invoked by action set by addEventListener for mousedown set
in init

Table 2-2 shows the code for the basic application, with comments for each line.

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

37

Table 2-2. Complete Code for the HTML5 Logo project

Code Line Description

<!DOCTYPE html > standard heading for HTML5
documents

<html> html tag

<head> head tag

<title>Build family picture</title> complete title

<meta charset="UTF-8"> meta tag

<style> start of style

canvas {position:absolute; top:80px; directive for canvas, setting its position
as absolute and its location 80 pixels
from the top of the document.

 cursor:crosshair; specifying the cursor icon for when the
mouse is over the canvas

} close directive

</style> close style

<script language="Javascript"> script tag

var ctx; variable to hold the canvas context

var canvas1; variable to hold the canvas element

var stuff = []; array for all the objects on the canvas

var thingInMotion; reference to object being dragged

var offsetx; horizontal offset for object being
dragged

var offsety; vertical offset for object being dragged

function init() { function header for init

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

38

Code Line Description

 canvas1 = document.getElementById('canvas'); sets variable to reference the canvas
element

 canvas1.onmousedown = function () { return false; }
;

prevents change of cursor to default

canvas1.addEventListener('dblclick',makenewitem,false);

sets up the event handling for double
clicks on the canvas

canvas1.addEventListener('mousedown',startdragging,fals
e);

sets up the event handling for mouse
down on the canvas

 ctx = canvas1.getContext("2d"); sets ctx to reference the context of the
canvas. Used for all drawing.

 var r1 = new Rect(2,10,50,50,"red"); constructs a rectangle

 var s1 = new Rect(60,10, 50,50,"blue"); constructs a rectangle

 var oval1 = new Oval(200,30,20,2.0,1.0,
"teal");

constructs an oval

 var cir1 = new
Oval(300,30,20,1.0,1.0,"purple");

constructs an oval (which will be a
circle)

 var dad = new Image(); creates an Image element

 dad.src = "daniel1.jpg"; sets the src to the indicated file

 var mom = new Image(); creates an Image element

 mom.src = "allison1.jpg"; sets the src to the indicated file

 var son1= new Image(); creates an Image element

 son1.src = "liam2.jpg"; sets the src to the indicated file

 var son2 = new Image(); creates an Image element

 son2.src = "grant1.jpg"; sets the src to the indicated file

 var pic1 = new Picture(10,100,100,100,dad); constructs a Picture object

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

39

Code Line Description

 var pic2 = new Picture(120,100,100,100,mom); constructs a Picture object

 var pic3 = new Picture(230,100,100,100,son1); constructs a Picture object

 var pic4 = new Picture(340,100,100,100,son2); constructs a Picture object

 var heart1 = new Heart(400,30,60,20,"pink"); constructs a Heart object

 stuff.push(pic1); adds (pushes) pic1 to stuff array

 stuff.push(pic2); adds pic2

 stuff.push(pic3); adds pic3

 stuff.push(pic4); adds pic4

 stuff.push(r1); adds r1

 stuff.push(s1); adds s1

 stuff.push(oval1); adds oval1

 stuff.push(cir1); adds cir1

 stuff.push(heart1); adds heart1

 drawstuff(); draws all the objects on the canvas

} end init function

function distsq (x1,y1,x2,y2) { function header for distsq. Takes 2
points (2 x 2 values) as parameters

 var xd = x1 - x2; set difference in x

 var yd = y1 - y2; set difference in y

 return ((xd*xd) + (yd*yd)); returns sum of squares. This is the
square of the distance between the two
points.

} end distsq function

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

40

Code Line Description

function Picture(x,y,w,h,imagename) { function header for Picture constructor,
positioned at x, y, with width w and
height h, and the imagename Image
object.

 this.x = x; set attribute

 this.y = y; set attribute

 this.w = w; set attribute

 this.h = h; set attribute

 this.imagename = imagename; set attribute

 this.draw = drawpic; set drawpic function to be the draw
method

 this.overcheck = overrect; set overrect function to be the
overcheck method

} close function

function Heart(x,y,h,drx,color) { function header for Heart constructor,
located with the cleavage at x, y,
distance from x, y to lower tip h, radius
drx and color.

 this.x = x; set attribute

 this.y = y; set attribute

 this.h = h; set attribute

 this.drx = drx; set attribute

 this.radsq = drx*drx; set attribute to avoid doing this
operation repeated times later

 this.color = color; set attribute

 this.draw = drawheart; set drawheart function to be the draw
method

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

41

Code Line Description

 this.overcheck = overheart; set overheart function to be the
overcheck method

 this.ang = .25*Math.PI; set attribute to be this constant value.
May make more general at a later time

} close function

function drawheart() { function header for drawheart

 var leftctrx = this.x-this.drx; calculate and set variable to be x
coordinate of center of left curve

 var rightctrx = this.x+this.drx; calculate and set variable to be x
coordinate of center of right curve

 var cx = rightctrx+this.drx*Math.cos(this.ang); calculate and set variable to be x
coordinate of point where curve on the
right changes to straight line

 var cy = this.y + this.drx*Math.sin(this.ang); calculate and set variable to be y
coordinate of point where curve on the
right changes to straight line

 ctx.fillStyle = this.color; set fillStyle

 ctx.beginPath(); begin path

 ctx.moveTo(this.x,this.y); move to cleft of heart

 ctx.arc(leftctrx,this.y,this.drx,0,Math.PI-
this.ang,true);

draw left curve

 ctx.lineTo(this.x,this.y+this.h); move to bottom point

 ctx.lineTo(cx,cy); move to point where straight line meets
curve

ctx.arc(rightctrx,this.y,this.drx,this.ang,Math.PI,true
);

draw right curve

 ctx.closePath(); close path

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

42

Code Line Description

 ctx.fill(); fill in path

} close function

function overheart(mx,my) { header for overheart function

 var leftctrx = this.x-this.drx; set variable to be x coordinate of center
of left curve

 var rightctrx = this.x+this.drx; set variable to be x coordinate of center
of right curve

 var qx = this.x-2*this.drx; calculate and set variable to be x
coordinate of left of bounding rectangle

 var qy = this.y-this.drx; calculate and set variable to be y
coordinate of top of bounding rectangle

 var qwidth = 4*this.drx; calculate and set variable to be width of
bounding rectangle

 var qheight = this.drx+this.h; calculate and set variable to be height
of bounding rectangle

 if (outside(qx,qy,qwidth,qheight,mx,my)) { quick test if it is in bounding rectangle

 return false;}

 if (distsq(mx,my,leftctrx,this.y)<this.radsq)
return true;

check if inside left curve

 if (distsq(mx,my,rightctrx,this.y)<this.radsq)
return true;

or right curve

 if (my<=this.y) return false; return false if above y on screen (and
not previously determined to be within
curves

 var x2 = this.x start calculations to compare my to
slopes. Set x2 and

 var y2 = this.y + this.h; set y2 to have x2,y2 point on each
sloping line

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

43

Code Line Description

 var m = (this.h)/(2*this.drx); calculate slope of left line

 if (mx<=this.x) { If mx is on the left side…

 if (my < (m*(mx-x2)+y2)) {return true;} compare my to the y value
corresponding to mx. If my is above (on
the screen), then return true

 else { return false;} otherwise return false

 } close if if (mx<=this.x) clause

 else { else

 m = -m; change sign of slope to be slope of the
right line

 if (my < (m*(mx-x2)+y2)) { return true} Compare my to the value
corresponding to mx on the right line
and if less than (further up on the
screen) return true

 else return false; else return false

 } close clause

} close function

function outside(x,y,w,h,mx,my) { function header outside

return ((mx<x) || (mx > (x+w)) || (my < y) || (my >
(y+h)));

returns true if any of factors is true,
indicating the mx, my point is outside
the rectangle

} close function

function drawpic() { function header drawpic

ctx.drawImage(this.imagename,this.x,this.y,this.w,this.
h);

draw indicated image

} close function

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

44

Code Line Description

function Oval(x,y,r,hor,ver,c) { function header for Oval constructor,
position x, y, horizontal scaling hor,
vertical scaling ver, color c.

 this.x = x; set attribute

 this.y = y; set attribute

 this.r = r; set attribute

 this.radsq = r*r; store as attribute to avoid repeated
calculations later

 this.hor = hor; set attribute

 this.ver = ver; set attribute

 this.draw = drawoval; set drawoval as the draw method

 this.color = c; set attribute

 this.overcheck = overoval; set overoval as the overcheck method

} close function

function drawoval() { function header for drawoval

 ctx.save(); save current coordinate state

 ctx.translate(this.x,this.y); move to center

 ctx.scale(this.hor,this.ver); scale as indicated by attributes

 ctx.fillStyle = this.color; set color

 ctx.beginPath(); start path

 ctx.arc(0,0,this.r,0,2*Math.PI,true); draw arc (complete circle)

 ctx.closePath(); close path

 ctx.fill(); fill in

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

45

Code Line Description

 ctx.restore(); restore original coordinate state

} close function

function Rect(x,y,w,h,c) { function header Rect constructor:
position x,y, width w and height h, color
c.

 this.x = x; set attribute

 this.y = y; set attribute

 this.w = w; set attribute

 this.h = h; set attribute

 this.draw = drawrect; set drawrect as the draw method

 this.color = c; set attribute

 this.overcheck = overrect; set overrect as the overcheck method

} close function

function overoval(mx,my) { function header for overovval

 var x1 = 0; set variable to be used in call to distsq.
This represents x coordinate of point at
center of oval

 var y1 = 0; set variable to be used in call to distsq.
This represents y coordinate of point at
center of oval

 var x2 = (mx-this.x)/this.hor; calculate the x2 using input and scaling
factor

 var y2 = (my-this.y)/this.ver; calculate the y2 using input and scaling
factor

 if (distsq(x1,y1,x2,y2)<=(this.radsq)){ if distance squares is less than stored
radius squared….

 return true return true

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

46

Code Line Description

 } end clause

 else {return false} else return false

} close function

function overrect (mx,my) { function header for overrect

 if (
(mx>=this.x)&&(mx<=(this.x+this.w))&&(my>=this.y)
&&(my<=(this.y+this.h)))

If mx, my within bounds (the 4 sides)

 {return true;} return true

 else {return false;} else return false

} close function

function makenewitem(ev) { function header for makenewitem. Has
as a parameter an event ev set by
JavaScript

 var mx; variable will hold x coordinate of mouse

 var my; variable will hold y coordinate of mouse

 if (ev.layerX || ev.layerX == 0) { does this browser use layer…

 mx= ev.layerX; … set mx

 my = ev.layerY; … my

 } else if (ev.offsetX || ev.offsetX ==
0) {

does browser use offset…

 mx = ev.offsetX; …set mx

 my = ev.offsetY; … set my

 } end clause

 var endpt = stuff.length-1; store index of last item in stuff array

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

47

Code Line Description

 var item; will hold the new item

 for (var i=endpt;i>=0;i--) { start search from the end

 if (stuff[i].overcheck(mx,my)) { is the mouse over this member of stuff

 item = clone(stuff[i]); clone (make copy of)

 item.x += 20; move over slightly horizontally

 item.y += 20; and vertically

 stuff.push(item); add newly created item to stuff array

 break; leave for loop

 } end if clause

 } end for loop

 drawstuff(); draw everything

} close function

function clone(obj) { function header for clone

 var item = new Object(); create an Object

 for (var info in obj) { loop over all attributes of the obj passed
as parameter

 item[info] = obj[info]; set an attribute by that name to the
attribute value

 } close for loop

 return item; return the newly created object

} close function

function startdragging(ev) { function header for startdragging. Has
as a parameter an event ev set by
JavaScript

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

48

Code Line Description

 var mx; variable will hold x coordinate of mouse

 var my; variable will hold y coordinate of mouse

 if (ev.layerX || ev.layerX == 0) { //
Firefox, ???

does this browser use layer…

 mx= ev.layerX; … set mx

 my = ev.layerY; … my

 } else if (ev.offsetX || ev.offsetX
== 0) {

does browser use offset…

 mx = ev.offsetX; …set mx

 my = ev.offsetY; … set my

 } end clause

 var endpt = stuff.length-1; store index of last item in stuff array

 for (var i=endpt;i>=0;i--) { start search from the end

 if (stuff[i].overcheck(mx,my)) { is the mouse over this member of stuff

 offsetx = mx-stuff[i].x; calculate how far the mx was from the x
of this object

 offsety = my-stuff[i].y; calculate how far the my was from the y
of this object

 var item = stuff[i]; will now move this item to the end of
the array. Set item

 thingInMotion = stuff.length-1; set global variable to be used in the
dragging

 stuff.splice(i,1); remove this item from its original
location

 stuff.push(item); add item to the end

 canvas1.style.cursor = "pointer"; change cursor to finger when dragging

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

49

Code Line Description

 canvas1.addEventListener('mousemove',
moveit,false);

set up event handling for moving the
mouse

canvas1.addEventListener('mouseup',dropit,
false);

set up event handling for releasing
mouse button

 break; leave the for loop

 } close if clause

 } close for loop

} close function

function dropit(ev) { function header for dropit. Has as a
parameter an event ev set by JavaScript

 canvas1.removeEventListener('mousemove',moveit,false); Remove (stop) event handling for
moving the mouse

 canvas1.removeEventListener('mouseup',dropit,false); Remove (stop) event handling for
releasing the mouse button

 canvas1.style.cursor = "crosshair"; change cursor back to crosshair

} close function

function moveit(ev) { function header for moveit. Has as a
parameter an event ev set by JavaScript

 var mx; variable will hold x coordinate of mouse

 var my; variable will hold y coordinate of mouse

 if (ev.layerX || ev.layerX == 0) { does this browser use layer…

 mx= ev.layerX; … set mx

 my = ev.layerY; … my

 } else if (ev.offsetX || ev.offsetX ==
0) {

does browser use offset…

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

50

Code Line Description

 mx = ev.offsetX; …set mx

 my = ev.offsetY; … set my

 } end clause

 stuff[thingInMotion].x = mx-offsetx; set x for the thingInMotion, adjust for
flypaper dragging

 stuff[thingInMotion].y = my-offsety; set y for the thingInMotion, adjust for
flypaper dragging

 drawstuff(); draw everything

} close function

function drawstuff() { function header for drawstuff

 ctx.clearRect(0,0,600,400); clear (erase) canvas

 ctx.strokeStyle = "black"; set color for frame

 ctx.lineWidth = 2; set lineWidth

 ctx.strokeRect(0,0,600,400); draw frame

 for (var i=0;i<stuff.length;i++) { iterate through the stuff array

 stuff[i].draw(); invoke the draw method for each
member of the array

 } close for

} close function

function drawrect() { function header drawrect

 ctx.fillStyle = this.color; set the color

 ctx.fillRect(this.x, this.y, this.w, this.h); draw a filled rectangle

} close function

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

51

Code Line Description

function saveasimage() { function header for saveasimage

 try { start try clause

 window.open(canvas1.toDataURL("image/png"));} create the image data and use it as
contents of new window

 catch(err) { if that didn't work, that is, threw an
error

 alert("You need to change browsers OR upload
the file
to a server.");

display alert message

 } close catch clause

} close function

function removeobj() { function header for removeobj

 stuff.pop(); remove the last member of the stuff
array

 drawstuff(); draw everything

} close function

</script> close script element

</head> close head element

<body onLoad="init();"> body tag, with onLoad set

Mouse down, move and mouse up to move objects. Double
click for
new object.

Text giving directions

<canvas id="canvas" width="600" height=400"> canvas tag

Your browser doesn't recognize the canvas element message for older browsers

</canvas> ending canvas tag

CHAPTER 2 ■ FAMILY COLLAGE - MANIPULATING PROGRAMMER-DEFINED OBJECTS ON A CANVAS

52

Code Line Description

<button onClick="saveasimage();">Open window with image
(which you can save into image file) </button></br>

button for saving image

<button onClick="removeobj();">Remove last object moved
</button>

button for removing object

</body> close body tag

</html> close html tag

It is obvious how to make this application your own using only the techniques demonstrated in my

example: gather photos of your own family or acquire other photographs and use the Rect, Oval, and
Heart to create your own set of shapes.

You can define your own objects, using the coding here as a model. For example, the Essential Guide to
HTML5 book included coding for displaying polygons. You can make the over check function for the polygon
treat the polygon as a circle, perhaps a circle with smaller radius, and your customers will not object.

The next step could be to build an application that allows the end-user to specify the addresses of
image files. You would need to set up a form for doing this. Another enhancement is to allow the end-
user to enter text, perhaps a greeting, and position it on the canvas. You would create a new object type
and write the draw and overcheck methods. The overcheck method could be overrect, that is, the
program accepts as being on the text anything in the bounding rectangle.

Testing and uploading the application
You need to gather all the image files you want to include in your application. The testing procedure
depends on what browser you are using. Actually, it is a good practice to test with several browsers. If
you are using Firefox or Chrome, you need to upload the application: the html file and all image files, to
a server to test the feature for creating an image. However, the other aspects of the application can be
tested on your own [client] computer.

Summary
In this chapter, you learned how to build an application involving creating and positioning specific
shapes, namely rectangles, ovals and hearts, along with pictures such as photographs on the canvas. The
programming techniques and HTML5 features included

• programming-defined objects

• mouse events on canvas

• try and catch for trapping errors

• algebra and geometry for several functions.

The next chapter describes creating an application showing a video clip bouncing around like a ball
in a box.

C H A P T E R 3

53

Bouncing Video: Animating and
Masking HTML5 Video

In this chapter, you will learn how to do the following:

• Produce a moving video clip by drawing the current frame of the video at different
locations on a canvas

• Produce a moving video clip by repositioning the video element in the document

• Mask the video so it looks like a circle for both situations

• Build an application that will adapt to different window sizes

Introduction
The project for this chapter is a display of a video clip in the shape of a ball bouncing in a box. An
important new feature in HTML5 is the native support of video (and audio). The book The Definitive
Guide to HTML5 Video, by Silvia Pfeiffer (Apress, 2010), is an excellent reference. The challenge in this
project is making the video clip move on the screen. I will describe two different ways to implement the
application. The screenshots do not reveal the differences.

Figure 3-1 shows what the application looks like in the full-window view in Opera. The video is a
standard rectangular video clip. It appears ball-like because of my coding. You can skip ahead to Figure
3-8 to get an idea of the mask created to ride along with the video. All the figures are static screen
captures of animations. You need to take my word for it that the video does move and bounce within
the box.

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

54

Figure 3-1. Screen capture, full window

In all cases, when the virtual ball hits a wall, it appears to bounce off the wall. If, for example, the
virtual ball is moving down the screen and to the right, when it hits the right side of the box, it will head
off to the left but still moving down the screen. When the virtual ball then hits the bottom wall of the box,
it will bounce to the left, heading up the screen. The trajectory is shown in Figure 3-2. To produce this
image, I changed the virtual ball to be a simple circle and did not write code to erase the canvas at each
interval of time. You can think of it as stop-motion photography. Changing the virtual ball was necessary
because of its complexity: an image from a video clip and an all-white mask. I include the code for the
trajectory program in the “Building the Application and Making It Your Own” section.

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

55

Figure 3-2. Trajectory of virtual ball

If I resize the browser window to be a little bit smaller and reload the application, the code will
resize the canvas to produce what is shown in Figure 3-3: a smaller box.

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

56

Figure 3-3. Application in smaller window

If the window is made very small, this forces a change in the size of the video clip itself, as well as the
canvas and the box, as shown in Figure 3-4.

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

57

Figure 3-4. Window resized to very small

The application adapts the box size, and possibly the virtual video ball size, to the window
dimensions at the time that the HTML document is first loaded. If the window is resized by the viewer
later, during the running of the application, the canvas and video clip are not resized. In this case, you
would see something like Figure 3-5, a small box in a big window.

Figure 3-5. Window resized during running to be larger

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

58

Similarly, if you start the application using a full-size window, or any large window, and resize it to
something smaller during the running of the program, you would see something like Figure 3-6, where
the scroll bars are displayed by the browser to indicate that the content of the document is wider and
longer than the window. If you, the viewer, choose not to use the scroll bars, then the video clip will
disappear out of sight periodically for a short period of time before reappearing.

Figure 3-6. Large window resized

The two applications (I named them videobounceC for “video drawn on canvas” and videobounceE
for “video element”) have been tested successfully in Firefox, Chrome, and Opera. The project
demonstrates coding techniques using HTML5, JavaScript, and CSS for manipulating video and using
video together with the canvas for special effects. The project also explains calculations that are helpful
in customizing applications to the dimensions of the browser window.

Project History and Critical Requirements
I have always liked the application of simulating a ball bouncing in a box. Chapter 3 in The Essential
Guide to HTML5 features projects showing a ball produced by a path drawing and a ball produced by an
image, each bouncing in a two-dimensional enclosure. I decided I wanted to make a video clip do the

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

59

same thing. My explanation of the coding is complete in this chapter. However, if the first book is
available to you (shameless plug), you may benefit from seeing what is the same and what is different
among the various versions. In the ball and image applications, the canvas was set to fixed dimensions
and was located with other material in the document. Because I did not want my video clip to be too
small, I decided to use the whole window in this case. This objective produced the challenge of
determining the dimensions of the document window. In the old ball and image applications, I wanted
to demonstrate form validation, so the program provided form elements to change the vertical and
horizontal speed. For the bouncing ball video clip, the application just provides one action for the user: a
button to reverse direction. After studying this chapter, you should be able to add the other interface
operations to the video application.

Since the ability to draw video on canvas is a feature of HTML5, this was the first approach I took for
doing the project. However, my reading indicated that this is considered too much of a computation hog
and is something to be avoided, so I also developed another approach: moving a video element and
moving an element on a canvas on top of it.

Putting off the implementation details, the critical requirements, in addition to determining the
dimensions of the window, are to move—reposition—and animate a video clip simultaneously with a
graphical element that acts as a mask. The effect of the mask is to make the video clip appear as a circle
instead of the standard rectangular shape. The video clip is playing while it is moving. The application is
to simulate a ball-like object bouncing within a box. Therefore, the application must display the walls of
the box and perform calculations so that when the video clip appears to collide with any of the walls, the
direction of motion changes in the appropriate way. A fancy way to describe the change is that the angle
of reflection must equal the angle of incidence. In practical terms, what it means is that when the video
clip virtually hits the bottom or top walls, it keeps going in the same direction horizontally (to the left if it
was traveling to the left and to the right if it was traveling to the right), but switches direction vertically.
When the video clip virtually hits either the left or the right wall, it keeps going in the same direction
vertically (traveling up if it was traveling up and traveling down if it was traveling down), but switches
direction horizontally. If you are interested in simulating real-life physics, you can slow down the
motion at each virtual hit of a wall.

HTML5, CSS, and JavaScript Features
Any order of explanation means something is often discussed before the reason for doing it is clear. In
this section, I will show how certain variables are set that will be shown in use later on. The general plan
is to extract the window dimensions to set variables for the canvas and the video clip that will be
referenced in the coding for drawing the video and the mask.

Definition of the Body and the Window Dimensions
The Document Object Model (DOM) provides information about the window in which the HTML
document is displayed by the browser. In particular, the attributes window.innerWidth and window.
innerHeight indicate the usable dimensions of the window. My code will use these values when it sets
up the application.

Recall that the HTML5 video element can contain as child elements any number of source elements
referencing different video files. At this time, this is necessary because the browsers that recognize the
video element do not accept the same video formats (codecs). The situation may change in the future.
If you know the browser used by all your potential customers, you can determine a single video format.
If that is not the case, you need to make three versions of the same video clip. The Open Source Miro

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

60

Video Converter, downloadable from www.mirovideoconverter.com/, is a good product to convert a video
clip into other formats.

With that reminder, I can present the body element for this application. It contains a video element,
a button, and a canvas element:

<body onLoad="init();">
<video id="vid" loop="loop" preload="auto">
<source src="joshuahomerun.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>
<source src="joshuahomerun.webmvp8.webm" type='video/webm; codec="vp8, vorbis"'>
<source src="joshuahomerun.theora.ogv" type='video/ogg; codecs="theora, vorbis"'>

Your browser does not accept the video tag.
 </video>
<button id="revbtn" onClick="reverse();">Reverse </button>

<canvas id="canvas" >
This browser doesn't support the HTML5 canvas element.
</canvas>
</body>

Style directives will change the location of the three elements: video, canvas, and button.
In the init function invoked when the document is loaded, the following statements set the

dimensions of the canvas to match the dimensions of the window:

 canvas1 = document.getElementById('canvas');
 ctx = canvas1.getContext('2d');
 canvas1.width = window.innerWidth;
 cwidth = canvas1.width;
 canvas1.height = window.innerHeight;
 cheight = canvas1.height;

These statements also set variables that will be used later. So the task of adapting the canvas to the
window is accomplished.

Now the next task takes more thought. How much do I want to adapt the video to the window
dimensions? I decided that I would reduce the video width and height to one-third of the original width
and height in all situations. However, I would reduce it further if the window were very small. The
Math.min method returns the smallest of its operands, so the statements

 v = document.getElementById("vid");
 v.width = Math.min(v.videoWidth/3,.5*cwidth);
 v.height = Math.min(v.videoHeight/3,.5*cheight);

start by setting the variable v to point to the video element, which you can see I have coded in the body
to have the id "vid". It then sets the width of the video to either one-third of the original, intrinsic width
of the video clip or to half the width of the canvas, whichever is less. The next statement does the same
for the height of the video. This approach does not make the video clip proportional to the canvas. When
you are working on this or another application, you will need to decide the approach you want to take.

Certain other variables are set in the init function and used for the drawing of the box and for the
mask. The code is

 videow = v.width;
 videoh = v.height;
 ballrad = Math.min(50,.5*videow,.5*videoh);
 maskrad = .4*Math.min(videow,videoh);
 ctx.lineWidth = ballrad;

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

61

The ballrad variable is inherited from the previous applications. It is the radius of the ball,
assuming the video height and width are equal and less than 50 pixels. Its use in the videobounce
applications is to set the width of the line used to draw the box. The radius of the hole in the mask is set
to .4 of the minimum of the width and height of the video. You certainly can experiment with these
values and also experiment with the shape of the mask.

Animation
Animation is the trick by which still images are presented in succession fast enough so that our eye and
brain interprets what we see as motion. The exact mechanics of how things are drawn will be explained
in the next two sections. Keep in mind that there are two animations going on: the presentation of the
video and the location of the video in the box. In this section, I talk about the location of the video in
the box.

The way to get animation in HTML and JavaScript is to use the setInterval function. This function
is called with two parameters. The first is the name of a function that we want to call and the second
indicates the length of the time interval between each call to the function. The unit of time is
milliseconds.

The following statement, which is in the init function, sets up the animation:

setInterval(drawscene,50);

drawscene refers to a function that will do all the work. The 50 stands for 50 milliseconds. This means
that every 50 milliseconds (or 20 times per second), the drawscene function will be invoked. Presumably,
drawscene will do what needs to be done to display something showing the video clip at a new location.
You can experiment with interval duration.

If you want to enhance this application or build another one in which it makes sense to stop the
animation, you would declare a local variable for the setInterval call (let’s call it tid) and use the
statement

tid = setInterval(drawscene,50);

At the point when you need to stop the animation, or more formally, stop the interval-timing event,
you code

clearInterval(tid);

If you have more than one timing event, you would assign the output for each of them to a new
variable. Be careful not to call setInterval multiple times with the same function. Doing so has the
effect of adding new timing events and invoking the function multiple times.

Much of the details of the drawscene function will be described in the next sections. However, two
critical tasks are erasing the canvas and then determining the next position of the video clip. The
statement for erasing the whole canvas is

ctx.clearRect(0,0,cwidth,cheight);

Notice that it makes use of the cwidth and cheight values calculated based on the window
dimensions.

The simulation of bouncing is performed by a function called moveandcheck. The position of the
virtual ball is defined by the variables ballx and bally. The (ballx,bally) position is the upper-left corner
of the video. The motion, also termed the displacement, is defined by the variables ballvx and ballvy.
These two variables are termed the horizontal and vertical displacements, respectively.

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

62

The objective of the moveandcheck function is to reposition the virtual ball by setting ballx and
bally, and when appropriate, change the signs of ballvx and ballvy. The way the code works is to try out
new values (see nballx and nbally in the function) and then set ballx and bally. Changing the sign of
the displacement values has the effect of making the balls bounce by changing the appropriate
horizontal or vertical adjustment on the next interval.

The task now is to determine when to do the bounce. You need to accept that as far as the
computer’s concerned, there are no balls, bouncing or otherwise, and no walls. There are just
calculations. Moreover, the calculations are done at discrete intervals of time. There is no continuous
motion. The virtual ball jumps from position to position. The trajectory appears smooth because the
jumps are small enough and our eye-brain interprets the pictures as continuous motion. Since the walls
are drawn after the video (that will be explained later), the effect is that the virtual ball touches and goes
slightly behind the wall before changing direction.

My approach is to set up trial or stand-in values for ballx and bally and do calculations based on
these values. You can think of it logically as asking, If the video ball were moved, would it be beyond any
of the walls? If so, readjust to just hit that wall and change the appropriate displacement value. The new
displacement value is not used immediately, but will be part of the calculation made at the next iteration
of time. If the trial value is not at or beyond the wall, keep the trial value as it is and keep the
corresponding displacement value as it is. Then change ballx and bally to the possibly adjusted stand-
in values.

The function definition for the videobounceC program is

function moveandcheck() {
 var nballx = ballx + ballvx +.5*videow;
 var nbally = bally + ballvy +.5*videoh;
 if (nballx > cwidth) {
 ballvx =-ballvx;
 nballx = cwidth;
 }
 if (nballx < 0) {

 nballx = 0;
 ballvx = -ballvx;
 }
 if (nbally > cheight) {
 nbally = cheight;
 ballvy =-ballvy;
 }
 if (nbally < 0) {
 nbally = 0;
 ballvy = -ballvy;
 }
 ballx = nballx-.5*videow;
 bally = nbally-.5*videoh;
}

The moveandcheck function is slightly different for moving a video element because of an issue
involving scrolling, which I will discuss later. The basic concepts are the same. The moveandcheck
function in videobounceE is

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

63

function moveandcheck() {
var nballx = ballx + ballvx;
 var nbally = bally + ballvy;
 if ((nballx+videow) > cwidth) {
 ballvx =-ballvx;
 nballx = cwidth-videow;
 }
 if (nballx < 0) {
 nballx = 0;
 ballvx = -ballvx;
 }
 if ((nbally+videoh) > cheight) {
 nbally = cheight-videoh;
 ballvy =-ballvy;
 }
 if (nbally < 0) {
 nbally = 0;
 ballvy = -ballvy;
 }
 ballx = nballx;
 bally = nbally;
 }

Notice that the videobounceC version compares ballx + ballvx + .5*videow to cwidth, whereas
videobounceE compares ballx + ballvx + videow to cwidth. This means the videobounceE program
will force bouncing sooner—that is, turn around sooner—when compared with the right wall. The same
holds true for the checking against the bottom wall. I did this to avoid a problem involving automatic
scrolling. The video element is not restricted to the canvas, so if it moves out from under the canvas, it is
part of the document and is displayed. Because the new display is bigger than the window, this causes
scrolling. The scroll bars would appear, and though you would not see anything, I did not like the effect.
If you started with a smaller window and made it larger during the program execution, you could see
something like what is shown in Figure 3-7.

Figure 3-7. Video element bouncing with less restrictive checking

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

64

To avoid this, you will see that I changed the checking for the video element application. The
downside to doing this is that the video ball barely touches the right and bottom walls.

The reason why these effects do not happen in the video-drawn-on-canvas application,
videobounceC, is that drawing on canvas with coordinates outside of the canvas has no visible effect.
You can look back to Chapter 1, Figure 1-6, to see an example of drawing “outside the lines” producing
nothing outside the canvas.

■ Note There may be other ways to avoid the scrolling problem. This would not prevent the unsightliness shown
in Figure 3-7.It may be possible to prevent scrolling in the browser. It is possible to stop the user from scrolling,
but automatic scrolling appears to be more of a challenge.

Video Drawn on Canvas and As a Movable Element
I now describe two different implementations: one with material from the video drawn on the canvas
and the other with the video element moved around the document.

Video Drawn on Canvas
As I mentioned previously, HTML5 does provide the facility to draw video on the canvas as one would
draw an image. This actually is a misnomer. Video clips are made up of sequences of still images called
frames. Frame rates vary but typically are 15 to 32 frames per second, so you can understand that video
files tend to be large. Video is stored using different types of encodings, each of which may make
different technical trade-offs in terms of quality and storage size. We do not need to be concerned with
these technicalities, but can think of the video as a sequence of frames. Playing a video involves
presenting the frames in sequence. What happens in the drawImage command is that the current frame
of the video clip is the image drawn on the canvas. If this operation is performed through a timed
interval event, then the viewer will see a frame at each interval of time. There is no guarantee that the
images shown are successive frames from the video clip, but if done fast enough, the frames drawn
will be close enough to the actual sequence that our eye and brain experience it as the live action of the
video clip.

The command in pseudocode is

ctx.drawImage(video element, x position, y position, width, height);

This command, formally a method of the ctx canvas context, extracts the image corresponding to
the current frame of the video and draws it at the x and y values, with the indicated width and height. If
the image does not have the specified width and height, the image is scaled. This will not occur for this
situation.

The goal is to make the traveling video clip resemble a ball. For this application, this means we want
to mask out all but a circle in the center of the rectangular video clip. I accomplish this by creating a
traveling mask. The mask is a drawing in the canvas. Since I want to place the video element on the
canvas element, and also position a shape created by drawing a path on top of the image drawn from the
video clip, I use CSS directives to make both video and canvas be positioned using absolute positioning.
I want the Reverse button to be on top of the canvas. These directives do the trick:

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

65

#vid {position:absolute; display:none; }
#canvas {position:absolute; z-index:10; top:0px; left:0px;}
#revbtn {position:absolute; z-index:20; }

A way to remember how the layering works is to think of the z-axis as coming out of the screen.
Elements set at higher values are on top of elements set at lower values. The top and left properties of
the canvas are each set to 0 pixels to position the upper-left corner of the canvas in the upper-left corner
of the window.

■ Note When the z-index is referenced or modified in JavaScript, its name is zIndex. Hopefully, you appreciate
why the name z-index would not work: the hyphen (-) would be interpreted as a minus operator.

The video element is set in the style directive to have no display. This is because as an element by
itself, it is not supposed to show anything. Instead, the content of the current frame is drawn to the
canvas using the following statement:

ctx.drawImage(v,ballx, bally, videow,videoh);

The ballx and bally values are initialized in the init functions and incremented as described in
the last section. The width and height of the video clip have been modified to be appropriate for the
window size.

One way to understand this is to imagine that the video is being played somewhere offscreen and
the browser has access to the information so it can extract the current frame to use in the drawImage
method.

Movable Video Element
The videobounceE application moves the actual video element on the document. The video element is
not drawn on the canvas, but is a distinct element in the HTML document. However, I need to make sure
that the mask, which is drawn on the canvas, is always in the right place with respect to the video
element. I need to code the style directives to make sure that the video is under the canvas, which in turn
is under the Reverse button. A critical step is to set the positioning to be absolute for all three elements
(video, canvas, and button) and position the canvas so that it is located with its upper-left corner in the
upper-left corner of the window. This is critical for positioning the video element and mask, as we shall
explore later. The style directives are

#vid {position:absolute; display:none; z-index: 1; }
#canvas {position:absolute; z-index:10; top:0px; left:0px;}
#revbtn {position:absolute; z-index:20;}

Moving a video element around requires making the video visible and starting the playing of the
video. It also requires positioning. The video element is positioned through references to style.left and
style.top. Furthermore, the settings for the left and top attributes must be in the form of a character
string representing a number followed by the string "px", standing for pixels. The following code

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

66

 v.style.left = String(ballx)+"px";
 v.style.top = String(bally)+"px";
 v.play();
 v.style.visibility = "visible";
 v.style.display = "block";

is executed in the init function. Notice also that the initial position of the video is changed to the initial
ballx and bally values. The numeric values need to be converted to strings, and then the "px" needs to
be concatenated to the ends of the strings. This is because HTML/JavaScript assumes that style
attributes are strings. I write the same code for setting the video element’s top and left properties to the
values corresponding to ballx and bally in the drawscene function. The statements that replace the
ctx.drawImage statement are

 v.style.left = String(ballx)+"px";
 v.style.top = String(bally)+"px";

All the code for both videobounceC and videobounceE will be listed with comments in the “Building
the Application and Making It Your Own” section.

Looping Video
You may have noticed that the video tag has the attribute setting loop="loop". This indicates that the
video is to loop—that is, start over again—each time the playing of the clip reaches the end. At the time
of writing, this does not work for Firefox, so I use the statement

v.addEventListener("ended",restart,false);

to set up an event to invoke the indicated function when the ended event occurs. The false parameter
means that the event should not be bubbled to any other application. It’s unlikely that another
application is listening for this event, but it doesn’t hurt to stop the bubbling action. I defined the
function called restart.

function restart() {
 v.currentTime=0;
 v.play();
}

Traveling Mask
The objective of the mask is to mask out—that is, cover up—all of the video except for a circle in the
center. The style directives ensure that I can use the same variables—namely ballx and bally—to refer
to the video and mask in both situations: video drawn and video element moved. So now the question is
how to make a mask that is a rectangular donut with a round hole.

I accomplish this by writing code to draw two paths and filling them in with white. Since the shape
of the mask can be difficult to visualize, I have created two figures to show you what it is. Figure 3-8
shows the outline of the two paths.

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

67

Figure 3-8. Outline of paths for the mask

Figure 3-9 shows the outline and the paths filled in.

Figure 3-9. Paths for the mask after a fill and a stroke

Now, the actual path only has the fill, and the fill color is white. You need to imagine these two white
shapes traveling along on top of the video. The effect of the mask is to cover up most of the video clip.
The parts of the canvas that have no paint on them, so to speak, are transparent, and the video clip
content shows through. Putting it another way, the canvas is on top of the video element, but it is
equivalent to a sheet of glass. Each pixel that has nothing drawn in it is transparent.

The code drawing the masks is the same for both video drawn on canvas (videobounceC) and video
element moving on the screen (videobounceE). The first path starts at the upper-left corner, and then
goes over, down to the midway point, and finally back left. The path then is a semicircular arc. The last
parameter indicating the sense of the arc is true for counterclockwise. The path continues with a line to
the left edge and then back up to the start. The second path starts in the middle of the left edge, proceeds
down to the lower-left corner, goes to the lower-right corner, moves up to the middle of the right side,
and then moves to the left. The arc this time has false as the value of the parameter for direction,
indicating the arc is clockwise. The path ends where it started.

 ctx.beginPath();
 ctx.moveTo(ballx,bally);
 ctx.lineTo(ballx+videow,bally);
 ctx.lineTo(ballx+videow,bally+.5*videoh);
 ctx.lineTo(ballx+.5*videow+maskrad, bally+.5*videoh);
 ctx.arc(ballx+.5*videow,bally+.5*videoh,maskrad,0,Math.PI,true);
 ctx.lineTo(ballx,bally+.5*videoh);
 ctx.lineTo(ballx,bally);
 ctx.fill();

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

68

 ctx.moveTo(ballx,bally+.5*videoh);
 ctx.lineTo(ballx,bally+videoh);
 ctx.lineTo(ballx+videow,bally+videoh);
 ctx.lineTo(ballx+videow,bally+.5*videoh);
 ctx.lineTo(ballx+.5*videow+maskrad,bally+.5*videoh);
 ctx.arc(ballx+.5*videow,bally+.5*videoh,maskrad,0,Math.PI,false);
 ctx.lineTo(ballx,bally+.5*videoh);
 ctx.fill();

You can follow along the coding with my “English’” description to see how it works.
By the way, my initial attempt was to draw a path consisting of a four-sided shape representing the

outer rectangle and then a circle in the middle. This worked for some browsers, but not others.
For the videobounceC application, the mask is on top of the video drawn on canvas because the two

white filled-in paths are drawn after the drawImage statement draws a frame from the video. I achieve the
same effect in the videobounceE application by specifying the z-index of the video element to be 0 and
the z-index of the canvas to be 10. Remember that the z-axis is the axis that comes out of the screen.
Higher values are closer to us and on top of lower values. The canvas with the z-index set to 10 is on top
of the video element with the z-index set to 0. The next chapter, which demonstrates a spotlight moving
on top of a map from Google Maps, will feature changing the z-index using JavaScript.

User Interface
The user interface for both versions of the videobounce project only includes one action for the user: the
user can reverse the direction of travel. The button is defined by an element in the body:

<button id="revbtn" onClick="reverse();">Reverse </button>

The effect of the onClick setting is to invoke the function named reverse. This function is defined to
change the signs of the horizontal and vertical displacements:

function reverse() {
 ballvx = -ballvx;
 ballvy = -ballvy;
}

There is one important consideration for any user interface. You need to make sure it is visible. This
is accomplished by the following style directive:

#revbtn {position:absolute; z-index:20; }

The z-index places the button on top of the canvas, which in turn is on top of the video.
Having explained the individual HTML5, CSS, and JavaScript features that can be used to satisfy the

critical requirements for bouncing video, I’ll now show the code in the two videobounce applications
along with the code used to show the trajectory in Figure 3-2.

Building the Application and Making It Your Own
The two applications for simulating the bouncing of a video clip ball in a two-dimensional box contain
similar code, as does the program that produced the picture of the trajectory. A quick summary of the
applications follows. The video applications are summarized by the following:

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

69

1. init: initialization, including adapting to fit the window and setting up the
timed event for invoking drawscene

2. drawscene:

a. Erase the canvas.

b. Determine new location of video (virtual ball) using moveandcheck.

c. Either draw the image from video at a specified location on the canvas or
reposition the video element to a specified position.

d. Draw paths on canvas to act as a mask to the video.

e. Draw the box.

3. moveandcheck: Check if the virtual ball will hit any wall. If so, change the
appropriate displacement value.

The trajectory function also uses init and moveandcheck, but has a simpler drawscene function:

1. Determine the new location of the circle (virtual ball) using moveandcheck.

2. Draw a path that consists of a circle and draw the circle using fill and then
stroke.

3. Draw the box.

The function describing the invoked/called by and calling relationships (shown in Table 3-1) are the
same for all the applications.

Table 3-1. Functions in the Bouncing Video Projects

Function Invoked/Called By Calls

init Invoked by action of the onLoad attribute in the <body> tag

drawscene Invoked by action of the setInterval command issued in init moveandcheck

moveandcheck Invoked in drawscene

reverse Invoked by action of onClick in the button

restart Invoked by action of addEventListener in init (not present in
videobounceTrajectory)

Table 3-2 shows the code for the videobounceC application, which draws the current frame of the

video on the canvas at set intervals of time.

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

70

Table 3-2. Complete Code for the VideobounceC Application

Code Line Description

<!DOCTYPE html> Header

<html> Opening html tag

<head> Opening head tag

<title>Video bounce</title> Complete title

<meta charset="UTF-8"> Meta element

<style> Opening style

#vid {position:absolute; display:none; } Set up positioning of video; set display
to none; video element never appears

#canvas {position:absolute; z-index:10; top:0px;
left:0px;}

Set positioning to absolute and position
to be upper-left corner; set z-index so it
is under the Reverse button

#revbtn {position:absolute; z-index:20; } Set positioning to absolute and z-index
so it is over the canvas

</style> Close style

<script type="text/javascript"> Opening script tag

var ctx; Used to hold canvas context, used for
all drawing

var cwidth ; Used to hold canvas width

var cheight ; Used to hold canvas height

var ballrad = 50; Set ball radius

var ballx = 50; Initial horizontal coordinate for ball

var bally = 60; Initial vertical coordinate for ball

var maskrad; Used for mask radius

var ballvx = 2; Initial ball horizontal displacement

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

71

Code Line Description

var ballvy = 4; Initial ball vertical displacement

var v; Will hold video element

function restart() { Function header for restart

 v.currentTime=0; Reset place in video to the start

 v.play(); Play video

} Close restart function

function init(){ Function header for init

 canvas1 = document.getElementById('canvas'); Set reference for canvas

 ctx = canvas1.getContext('2d'); Set reference for canvas context

 canvas1.width = window.innerWidth; Set canvas width to match current
window width

 cwidth = canvas1.width; Set variable

 canvas1.height = window.innerHeight; Set canvas height to match current
window height

 cheight = canvas1.height; Set variable

 v = document.getElementById("vid"); Set reference to video element

 v.addEventListener("ended",restart,false); Set up event handling when video ends;
done because loop attribute setting in
element header does not work in
Firefox browser

 v.width = Math.min(v.videoWidth/3,.5*cwidth); Set video width

 v.height = Math.min(v.videoHeight/3,.5*cheight); Set video height

 videow = v.width; Set variable

 videoh = v.height; Set variable

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

72

Code Line Description

 ballrad = Math.min(50,.5*videow,.5*videoh); Modify ballrad if there is a very small
video

 maskrad = .4*Math.min(videow,videoh); Set maskrad based on video dimensions

 ctx.lineWidth = ballrad; Set line width for drawing the box

 ctx.strokeStyle ="rgb(200,0,50)"; Set color to reddish

 ctx.fillStyle="white"; Set fill style for mask to be white

 v.play(); Start video

 setInterval(drawscene,50); Set up timed event

} Close init function

function drawscene(){ Function header for drawscene

 ctx.clearRect(0,0,cwidth,cheight); Erase canvas

 moveandcheck(); Check if next move is at a wall, and if so,
adjust displacements and position;
otherwise, just make the move

 ctx.drawImage(v,ballx, bally, videow,videoh); Draw image from video at indicated
position

 ctx.beginPath(); Start the path for the top half of the
mask

 ctx.moveTo(ballx,bally); Move to starting point

 ctx.lineTo(ballx+videow,bally); Move over horizontally

 ctx.lineTo(ballx+videow,bally+.5*videoh); Move down to halfway

 ctx.lineTo(ballx+.5*videow+maskrad, bally+.5*videoh); Move in to the start of where the
opening will be

 ctx.arc(ballx+.5*videow,bally+.5*videoh,maskrad,0,
Math.PI,true);

Make semicircular arc

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

73

Code Line Description

 ctx.lineTo(ballx,bally+.5*videoh); Move to the left

 ctx.lineTo(ballx,bally); Move to start

 ctx.fill(); Fill in the white top of the mask

 ctx.moveTo(ballx,bally+.5*videoh); Move to start the bottom of the mask;
move to point midway down on the left

 ctx.lineTo(ballx,bally+videoh); Move down to the lower left

 ctx.lineTo(ballx+videow,bally+videoh); Move over to the right corner

 ctx.lineTo(ballx+videow,bally+.5*videoh); Move up to the middle on the right

 ctx.lineTo(ballx+.5*videow+maskrad,bally+.5*videoh); Move in to the start of the hole in the
mask

ctx.arc(ballx+.5*videow,bally+.5*videoh,maskrad,0,Math.
PI,false);

Make semicircular arc

 ctx.lineTo(ballx,bally+.5*videoh); Move to the right

 ctx.fill(); Fill in the white bottom of the mask

 ctx.strokeRect(0,0,cwidth,cheight); Draw the box

} Close drawscene function

function moveandcheck() { Header for moveandcheck function

 var nballx = ballx + ballvx+.5*videow; Set up trial values for x

 var nbally = bally +ballvy+.5*videoh; Set up trial values for y

 if (nballx > cwidth) { Compare to right wall, on a hit

 ballvx =-ballvx; Change sign of the horizontal
displacement

 nballx = cwidth; Set trial value to be exactly at the right
wall

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

74

Code Line Description

 } Close clause

 if (nballx < 0) { Compare to left wall, on a hit

 nballx = 0; Set trial value to be exactly at the left
wall

 ballvx = -ballvx; Change sign of the horizontal
displacement

 } Close clause

 if (nbally > cheight) { Compare to bottom wall, on a hit

 nbally = cheight; Set trial value to exact height

 ballvy =-ballvy; Change the sign of the vertical
displacement

 } Close clause

 if (nbally < 0) { Compare to top wall on a hit

 nbally = 0; Change trial value to be exactly at the
top wall

 ballvy = -ballvy; Change the sign of the vertical
displacement

 } Close clause

 ballx = nballx-.5*videow; Set ballx using trial value, and offset to
be the upper-left corner, not the center

 bally = nbally-.5*videoh; Set bally using the trial value, and
offset to be the upper-left corner, not
the center

} Close moveandcheck function

function reverse() { Function header for the button action

 ballvx = -ballvx; Change sign of horizontal displacement

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

75

Code Line Description

 ballvy = -ballvy; Change sign of vertical displacement

} Close reverse function

</script> Closing script tag

</head> Closing head tag

<body onLoad="init();"> Opening body tag; set up call to init

<video id="vid" loop="loop" preload="auto"> Video element header

<source src="joshuahomerun.mp4" type='video/mp4;
codecs="avc1.42E01E, mp4a.40.2"'>

Source for the mp4 video

<source src="joshuahomerun.webmvp8.webm"
type='video/webm; codec="vp8, vorbis"'>

Source for the WEBM video

<source src="joshuahomerun.theora.ogv" type='video/ogg;
codecs="theora, vorbis"'>

Source for the OGG video

Your browser does not accept the video tag. Message for noncompliant browsers

 </video> Close video tag

<button id="revbtn" onClick="reverse();">Reverse
</button>

Button for viewer to reverse direction

<canvas id="canvas" > Opening canvas tag

This browser doesn't support the HTML5 canvas
element.

Message for noncompliant browsers

</canvas> Closing canvas tag

</body> Closing body tag

</html> Closing html tag

The second version of this application moves the video element as opposed to drawing the current

frame of the video on the canvas. My research indicates that this may use less computer resources when
it is executing. All versions have much in common, and I will point this out by only commenting on the
lines that are different.

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

76

Table 3-3. Complete Code for the VideobounceE Program

Code Line Description

<!DOCTYPE html>

<html>

<head>

<title>Video bounce</title>

<meta charset="UTF-8">

<style>

#vid {position:absolute; display:none; z-index: 1; Need to set positioning and z-index
because display setting will be
changed to make element visible

} End directive

#canvas {position:absolute; z-index:10; top:0px;
left:0px;}

This will be on top of video and under
button

#revbtn {position:absolute; z-index:20;}

</style>

<script type="text/javascript">

var ctx;

var cwidth ;

var cheight ;

var ballrad = 50;

var ballx = 80; Starting point is arbitrary

var bally = 80; Starting point is arbitrary

var maskrad;

var ballvx = 2;

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

77

Code Line Description

var ballvy = 4;

var v;

function restart() {

 v.currentTime=0;

 v.play();

}

function init(){

 canvas1 = document.getElementById('canvas');

 ctx = canvas1.getContext('2d');

 canvas1.width = window.innerWidth;

 cwidth = canvas1.width;

 canvas1.height = window.innerHeight;

 cheight = canvas1.height;

 window.onscroll = function () {

 window.scrollTo(0,0);

 };

 v = document.getElementById("vid");

 v.addEventListener("ended",restart,false);

 v.width = Math.min(v.videoWidth/3,.5*cwidth);

 v.height = Math.min(v.videoHeight/3,.5*cheight);

 videow = v.width;

 videoh = v.height;

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

78

Code Line Description

 ballrad = Math.min(50,.5*videow,.5*videoh);

 maskrad = .4*Math.min(videow,videoh);

 ctx.lineWidth = ballrad;

 ctx.strokeStyle ="rgb(200,0,50)";

 ctx.fillStyle="white";

 v.style.left = String(ballx)+"px";

 v.style.top = String(bally)+"px";

 v.play();

 v.style.display = "block"; Make video element visible

 setInterval(drawscene,50);

}

function drawscene(){

 ctx.clearRect(0,0,cwidth,cheight);

 moveandcheck();

 v.style.left = String(ballx)+"px"; Position video horizontally

 v.style.top = String(bally)+"px"; Position video vertically

 ctx.beginPath();

 ctx.moveTo(ballx,bally);

 ctx.lineTo(ballx+videow,bally);

 ctx.lineTo(ballx+videow,bally+.5*videoh);

 ctx.lineTo(ballx+.5*videow+maskrad, bally+.5*videoh);

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

79

Code Line Description

 ctx.arc(ballx+.5*videow,bally+.5*videoh,maskrad,0,
Math.PI,true);

 ctx.lineTo(ballx,bally+.5*videoh);

 ctx.lineTo(ballx,bally);

 ctx.fill();

 ctx.moveTo(ballx,bally+.5*videoh);

 ctx.lineTo(ballx,bally+videoh);

 ctx.lineTo(ballx+videow,bally+videoh);

 ctx.lineTo(ballx+videow,bally+.5*videoh);

 ctx.lineTo(ballx+.5*videow+maskrad,bally+.5*videoh);

 ctx.arc(ballx+.5*videow,bally+.5*videoh,maskrad,0,
Math.PI,false);

 ctx.lineTo(ballx,bally+.5*videoh);

 ctx.fill();

 ctx.strokeRect(0,0,cwidth,cheight); // box

}

function moveandcheck() {

 var nballx = ballx + ballvx; Trial value

 var nbally = bally +ballvy; Trial value

 if ((nballx+videow) > cwidth) { Add total width and compare

 ballvx =-ballvx; Change sign of horizontal
displacement

 nballx = cwidth-videow; Set to exact position

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

80

Code Line Description

 }

 if (nballx < 0) {

 nballx = 0;

 ballvx = -ballvx;

 }

 if ((nbally+videoh) > cheight) { Compare total length

 nbally = cheight-videoh; Set to exact position

 ballvy =-ballvy; Change sign of vertical displacement

 }

 if (nbally < 0) {

 nbally = 0;

 ballvy = -ballvy;

 }

 ballx = nballx; Set to trial position, possibly adjusted

 bally = nbally; Set to trial position, possibly adjusted

}

function reverse() {

 ballvx = -ballvx;

 ballvy = -ballvy;

}

</script>

</head>

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

81

Code Line Description

<body onLoad="init();" >

<video id="vid" loop="loop" preload="auto">

<source src="joshuahomerun.webmvp8.webm"
type='video/webm; codec="vp8, vorbis"'>

<source src="joshuahomerun.mp4" type='video/mp4;
codecs="avc1.42E01E, mp4a.40.2"'>

<source src="joshuahomerun.theora.ogv" type='video/ogg;
codecs="theora, vorbis"'>

Your browser does not accept the video tag.

 </video>

<button id="revbtn" onClick="reverse();">Reverse
</button>

<canvas id="canvas" >

This browser doesn't support the HTML5 canvas element.

</canvas>

</body>

</html>

I made the trajectory function by modifying the drawscene to videobounceC. Since I wanted the

circle to be similar in size to the masked video clip, I added an alert statement temporarily to the
videobounceC function after the video width and height were set, and ran the program using those
values:

 v.width = Math.min(v.videoWidth/3,.5*cwidth);
 v.height = Math.min(v.videoHeight/3,.5*cheight);
 alert("width "+v.width+" height "+v.height);

I then used the values, 106 and 80, to be the videow and videoh values in the trajectory program. The
complete code, with the changed lines annotated, is shown in Table 3-4. Note that the main difference
between this program and the first two is the missing lines.

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

82

Table 3-4. Complete code for VideobounceTrajectory Program

Code Line Description

<!DOCTYPE html>

<html>

<head>

<title>Video bounce</title>

<meta charset="UTF-8">

<style>

#canvas {position:absolute; z-index:10; top:0px;
left:0px;}

#revbtn {position:absolute; z-index:20; }

</style>

<script type="text/javascript">

var ctx;

var cwidth ;

var cheight ;

var ballrad = 50;

var ballx = 50;

var bally = 60;

var ballvx = 2;

var ballvy = 4;

function init(){

 canvas1 = document.getElementById('canvas');

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

83

Code Line Description

 ctx = canvas1.getContext('2d');

 canvas1.width = window.innerWidth;

 cwidth = canvas1.width;

 canvas1.height = window.innerHeight;

 cheight = canvas1.height;

 videow= Math.min(106,.5*cwidth); Use values of actual video width

 videoh = Math.min(80,.5*cheight); Use values of actual video height

 ballrad = Math.min(50,.5*videow,.5*videoh);

 maskrad = .4*Math.min(videow,videoh);

 ctx.lineWidth = ballrad;

 ctx.fillStyle= "white";

 ctx.strokeStyle ="rgb(200,0,50)";

 ctx.strokeRect(0,0,cwidth,cheight);

 setInterval(drawscene,50);

}

function drawscene(){

 moveandcheck();

 ctx.beginPath(); Begin path for circle

 ctx.moveTo(ballx+.5*videow+maskrad, bally+.5*videoh); Move to point on circle at right

 ctx.arc(ballx+.5*videow,bally+.5*videoh,maskrad,0,
2*Math.PI,true);

Draw circle

 ctx.lineWidth=1; Set line width

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

84

Code Line Description

 ctx.fill(); Fill in (this will be white)

 ctx.stroke(); Set red stroke (outline)

 ctx.lineWidth= ballrad; Set line width for the box

 ctx.strokeRect(0,0,cwidth,cheight); Draw the box

}

function moveandcheck() {

 var nballx = ballx + ballvx+.5*videow;

 var nbally = bally +ballvy+.5*videoh;

 if (nballx > cwidth) {

 ballvx =-ballvx;

 nballx = cwidth;

 }

 if (nballx < 0) {

 nballx = 0;

 ballvx = -ballvx;

 }

 if (nbally > cheight) {

 nbally = cheight;

 ballvy =-ballvy;

 }

 if (nbally < 0) {

 nbally = 0;

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

85

Code Line Description

 ballvy = -ballvy;

 }

 ballx = nballx-.5*videow;

 bally = nbally-.5*videoh;

}

function reverse() {

 ballvx = -ballvx;

 ballvy = -ballvy;

}

</script>

</head>

<body onLoad="init();">

<button id="revbtn" onClick="reverse();">Reverse
</button>

<canvas id="canvas" >

This browser doesn't support the HTML5 canvas element.

</canvas>

</body>

</html>

Making the Application Your Own
The first way to make this application your own is to use your own video. You do need to find something
that is acceptable when displayed as a small circle. As mentioned earlier, you need to produce versions
using the different video codecs. A next step is adding other user interface actions, including changing
the horizontal and vertical speeds, as was done in the bouncing ball projects in The Essential Guide to

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

86

HTML5. Another set of enhancements would be to add video controls. Video controls can be part of the
video element, but I don’t think that would work for a video clip that needs to be small and is moving!
However, you could implement your own controls with buttons modeled after the Reverse button. For
example, the statement

v.pause();

does pause the video.
The attribute v.currentTime can be referenced or set to control the position within the video clip.

You saw how the range input type works in Chapter 1, so consider building a slider input element to
adjust the video.

You may decide you want to change my approach to adapting to the window dimensions. One
alternative is to change the video clip dimensions to maintain the aspect ratio. Another alternative is to
change the video dimensions all the time. This means that the video dimensions and the canvas
directions will be in proportion all the time. Yet another alternative, though I think this will be
disconcerting, is to make reference to the window dimensions at each time interval and make changes in
the canvas, and possibly the video, each time. There is an event that can be inserted into the body tag:

<body onresize="changedims();" ... >

This coding assumes that you have defined a function named changedims that includes some of the
statements in the current init function to extract the window.innerWidth and window.innerHeight
attributes to set the dimensions of the canvas and the video.

More generally, the objective of this chapter is to show you ways to incorporate video into your
projects in a dynamic fashion, both in terms of position on the screen and timing. In particular, it is
possible to combine playing of video with drawings on a canvas for exciting effects.

Screen savers exist in which the screen is filled up by a bouncing object similar to the trajectory
program. You can change the drawscene function to produce different shapes. Also, as I mentioned
before, you can apply the techniques explained in The Essential Guide to HTML5 to provide actions by
the viewer. You can refer to Chapter 1 in this book for the use of a range input (slider). Yet another
possibility is to provide the viewer a way to change the color of the circle (or other shape you design)
using the input type of color. The Opera browser provides a color-picker option.

Testing and Uploading the Application
As has been mentioned, but is worth repeating, you need to acquire a suitable video clip. At the time of
writing this book, you then need to use a program such as Miro to produce the WEBM, mp4, and OGG
versions because browsers recognize different video encodings (codecs). This situation may change.
Again, if you are content with implementing this for just one browser, you can check which video
encoding works for that browser and just prepare one video file. The video files and the html file need to
be in the same folder on your computer and in the same folder on your server if and when you upload
this application to your server account. Alternatively, you can use a complete web address or the correct
relative address in the source elements.

CHAPTER 3 ■ BOUNCING VIDEO: ANIMATING AND MASKING HTML5 VIDEO

87

Summary
In this chapter, you learned different ways to manipulate video. These included the following:

• Drawing the current frame of video as an image onto a canvas

• Repositioning of a video element on the screen by changing the left and top style
attributes

• Using style directives to layer a video, a canvas, and a button

• Creating a moving mask on a canvas

• Acquiring information on the dimensions of the window to adapt an application
to different situations

The next chapter will show you how to use the Google Maps Application Programming Interface
(API) in an HTML5 project. The project will involve using a canvas and changing the z-index so that the
canvas is alternatively under and over the material produced by Google Maps.

C H A P T E R 4

89

Map Maker: Combining Google
Maps and the Canvas

In this chapter, you will learn how to do the following:

• Use the Google Maps API to display a map at a specific location

• Draw graphics on a canvas using transparency (also known as the alpha or opacity
level) and a customized cursor icon

• Provide a graphical user interface (GUI) to your users by combining the use of
Google Maps and HTML5 features by managing the events and the z-index levels

• Calculate the distance between two geographical locations

Introduction
The project for this chapter is an application involving a geographic map. Many applications today
involve the use of an Application Programming Interface (API) provided by another person or
organization. This chapter will be an introduction to the use of the Google Maps API, and is the first of
three chapters using the Google Maps JavaScript Version 3 API. Figure 4-1 shows the opening screen.

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

90

Figure 4-1. Opening screen of map spotlight project

Notice the small red (hand-drawn) x located just above and to the left of SoHo. When deciding on
map markers, you face a trade-off. A smaller marker is more difficult to see. A larger and/or more
intricate marker is easier to see but blocks more of the map or distracts from the map. The x marks a
neighborhood in lower Manhattan. It is the address of the friends of ED publishers. For this program, it
is the initial base location. The base location is used to calculate distances.

Moving the mouse over the map is shown in Figure 4-2.

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

91

Figure 4-2. Shadow/spotlight over map

Notice the shadow and spotlight combination now on the map. Most of the map is covered by a
semitransparent shadow. You need to trust me that this screenshot was taken when I had moved the
mouse over the map. There is a circle around the mouse position in which the original map shows
through. The cursor is not the standard, default cursor but one I created using a small image
representing a compact fluorescent lightbulb.

The text on the screen shows the distance from the base to the last spot on the map I clicked to be
5.64 kilometers. The marker for all such locations is a hand-drawn x. The latitude and longitude of this
location is indicated in parentheses.

The general GUI features provided by Google Maps are available to the users of this project. This
includes a vertical slider that controls the scale of the presentation. Figure 4-3 demonstrates the result of
using that slider to zoom in. It is possible to zoom in even further.

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

92

Figure 4-3. Zoomed in to street level

It also is possible to pan the map by clicking the hand in the upper-left corner and then virtually
grabbing the mouse by pressing down on the mouse button and pulling. Figure 4-4 shows the effects of
zooming out and moving north. The screen shows the shadow/spotlight again.

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

93

Figure 4-4. Zooming out and moving north

The program provides a way to change the base location. There are three choices: the location of the
publisher, friends of ED, in New York City; Purchase College (where I teach), located in Purchase, New
York, which is north of New York City; and Illinois Institute of Technology (where my son teaches),
located in Chicago, Illinois. The interface for making this selection is a set of radio buttons—only one
button can be selected at a time—and a button labeled CHANGE to be clicked when the
user/viewer/visitor decides to make a change. Figure 4-5 shows the results of making a change to
Purchase College. Notice the hand-drawn red x marking the base location and the text at the top of the
page indicating the new base location by name.

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

94

Figure 4-5. Purchase College new base location

Next, I switch to Illinois Institute of Technology in Chicago, Illinois, as the base by clicking the third
radio button. The result is shown in Figure 4-6.

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

95

Figure 4-6. Base at Illinois Institute of Technology in Chicago

Again, notice the small red x indicating the base location and the text at the top of the screen with
the name of the new base location.

The location of each base is determined by the latitude and longitude values for each of the three
values that I have determined. My code is not “asking” Google Maps to find these locations by name.
You may get different results if you type the terms “Purchase College, NY” and “Illinois Institute of
Technology” into Google or Google Maps. To make this application your own, you would decide on a set
of base locations and look up the latitude and longitude values. I will suggest ways to do this in the next
section.

Just in case you are curious, zooming out to the farthest out position on the zoom/scale produces
what is shown in Figure 4-7. This projection exhibits what is called the Greenland problem. Greenland is
not bigger than Africa, but actually about 1/14 times the size.

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

96

Figure 4-7. Farthest-out view of map

Figure 4-8 shows the map at close to the closest-in limit. The map has also been changed to the
satellite view using the buttons in the upper-right corner.

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

97

Figure 4-8. Zoomed in to where city blocks can be detected

Notice that the slider on the left is about four notches above the closest setting. Lastly, Figure 4-9
shows the map zoomed in to the limit. This is essentially at the building level, at least for Manhattan.

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

98

Figure 4-9. Zoomed in all the way

By using the interface to zoom out and pan and zoom in again, I can determine the distance from
any of the base locations to any other location in the world! I also can use this application to determine
latitude and longitude values of any location. You need to know the latitude and longitude for changing
or adding to the list of base locations and for determining locations for the project in Chapter 5. I review
latitude and longitude in the next section.

Google Maps by itself is an extremely useful application. This chapter and the next two demonstrate
how to bring that functionality into your own application. That is, we combine the general facilities of
Google Maps with anything, or almost anything, we can develop using HTML5 and JavaScript.

Latitude & Longitude and Other Critical Requirements
The most fundamental requirement for this project, and the ones in the next two chapters, is an
understanding of the coordinate system for geography. Just as a coordinate system is required for
specifying points on a canvas or positions on the screen, it is necessary to use a system for places on

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

99

planet earth. The latitude and longitude system has been developed and standardized over the last
several hundred years. The values are angles, with latitude indicating degrees from the equator and
longitude indicating degrees from the Greenwich prime meridian in the United Kingdom. The latter is
an arbitrary choice that became standard in the late 1800s. There is a northern hemisphere bias here:
latitude values go from 0 degrees at the equator to 90 degrees at the North Pole and –90 degrees at the
South Pole. Similarly, longitude values are positive going east from the Greenwich prime meridian and
negative going west. Latitudes are parallel to the equator and longitudes are perpendicular. Latitudes are
often called parallels and typically appear as horizontal lines, and longitudes are called meridians and
typically appear as verticals. This orientation is arbitrary, but fairly solidly established.

I will use decimal values, which is the default displayed in Google Maps, but you will see
combinations of degree, minute (1/60 of a degree), and second (1/60 of a minute). It is not necessary
that you memorize latitude longitude values, but it is beneficial to develop some intuitive sense of the
system. You can do this by doing what I call “going both ways.” First, identify and compare latitude
longitude values for places you know, and second, pick values and see what they are. For example, the
base values for my version of the project are as follows:

• [40.725592,–74.00495, “friends of ED, NYC”]

• [41.04796,–73.70539, “Purchase College/SUNY”]

• [41.878928,–87.641926, “Illinois Institute of Technology”]

The first thing to notice is that the latitude values are fairly close and the longitude values are
negative and not quite so close. The friends of ED office in New York City is within 1 degree of latitude
and 1 degree of longitude of Purchase College. The distance according to Google Maps is 27.4 miles. The
longitude value for Illinois Institute of Technology is more negative, indicating that it’s more westerly
than the two New York State locations. This all makes sense, but you need to take the time to think it
through.

There are many ways to find the latitude and longitude of a specific location. You can use Google
Maps as follows:

1. Invoke Google Maps (go to www.google.com and click Maps or go to
http://.maps.google.com).

2. At the upper right, click the gear icon for a drop-down menu. Click the Maps
Labs option. A window will appear titled Google Maps Labs. Scroll down to the
LatLng Marker option and click the circle next to Enable. If you sign in, all
settings will remain in force the next time you sign in. Save and close the
window.

3. Type in the location you are interested in into the location field.

4. Right/Ctrl+click the location to get a drop-down menu, as shown in Figure 4-
10.

5. Click Drop LatLng marker to get the result shown in Figure 4-11.

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

100

Figure 4-10. Getting latitude longitude values in Google Maps

After choosing the Drop LatLng Marker option, you will see the latitude and longitude values in a
small box, as shown in Figure 4-11.

Figure 4-11. Box showing latitude and longitude

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

101

Another option is to use Wolfram Alpha (www.wolframalpha.com), as shown in Figure 4-12, which
provides a way to determine latitude and longitude values as well as many other things.

Figure 4-12. Results of query on Wolfram Alpha

Notice the format of the results. This is the degree/minute/second format, with N for north and W
for west. When I click the “Show decimal” button, the program displays what is shown in Figure 4-13.

Figure 4-13. Decimal results for query to Wolfram Alpha

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

102

Notice that the longitude still appears with W for West as opposed to the negative value given by
Google Maps.

Doing what I call “going in the opposite direction,” you can put latitude and longitude values into
Google Maps. Figure 4-14 shows the results of putting in 0.0 and 0.0. It is a point in the ocean south of
Ghana. This is a point on the equator and on the Greenwich prime meridian.

Figure 4-14. The equator at the Greenwich prime meridian

I tried to find a place in England on the Greenwich prime meridian and produced the result shown
in Figure 4-15 when guessing at the latitude of 52.0 degrees.

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

103

Figure 4-15. Results near a place on the Greenwich prime meridian

The A marker indicates the closest place in the Google database to the requested location. I used the
Drop LatLng marker option to reveal the exact latitude and longitude values.

The critical requirements for this project start off with the task of bringing Google Maps into a
HTML5 application using specified latitude and longitude values. An additional requirement is
producing the shadow/spotlight combination on top of the map to track the movements of the mouse. I
also require a change from the default cursor for the mouse to something of my own choosing.

Next, I added a requirement to drop markers on the map, but again, with graphical icons that I
picked, not the upside-down teardrop that is standard in Google Maps. The teardrop marker is nice
enough, but my design objective was to be different to show you how to incorporate your own creativity
into an application.

Beyond the graphics, I wanted the users to be able to make use of the Google Maps devices and any
GUI features I built using HTML5. This all required managing events set up by the Google Maps API and
events set up using HTML5 JavaScript. The responses to events that I wanted to make the user interface
included the following:

• Tracking mouse movement with the shadow/spotlight graphic

• Responding to a click by placing an x on the map

• Retaining the same response to the Google Maps interface (slider, panning
buttons, panning by grabbing the map)

• Treating the radio buttons and CHANGE button in the appropriate manner

Google Maps provides a way to determine distances between locations. Since I wanted to set up this
project to work in terms of the base location, I needed a way to calculate distances directly.

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

104

These are the critical requirements for the map spotlight project. Now I will explain the HTML5
features I used to build the project. The objective is to use Google Maps features and JavaScript features,
including events, and not let them interfere with each other. You can use what you learn for this and
other projects.

HTML5, CSS, and JavaScript Features
The challenges for the map-maker project are bringing in the Google Map and then using the map and
canvas and buttons together in terms of appearance and in the operation of the GUI. I’ll describe the
basic Google Maps API and then explain how HTML5 features provide the partial masking and the event
handling.

Google Maps API
The Google Maps JavaScript API Version 3 Basics has excellent documentation located at
http://code.google.com/apis/maps/documentation/javascript/basics.html. You do not need to refer to
it right now, but it will help you if and when you decide to build your own project. It will be especially
helpful in producing applications for mobile devices.

Most APIs are presented as a collection of related objects, each object having attributes (also known
as properties) and methods. The API also may include events and a method for setting up the event. This
is the situation with the Google Maps API. The important objects are Map, LatLng, and Marker. The
method to set up an event is addListener, and this can be used to set up a response to clicking a map.

The Google Maps API is brought into your HTML5 document with a script element:

<script type="text/javascript" charset="UTF-8"�
 src="http://maps.google.com/maps/api/js?sensor=false"></script>

I will discuss the script tag again, specifically the sensor=false setting, in Chapter 6.
The next step—and this could be all you need if all you want is to bring in a Google Map—is to set

up a call to the Map constructor method. Pseudocode for this is

map = new google.maps.Map(place you are going to put the map, associative array with options);

Note that there is no harm is making the variable have the name map.
Let’s take up the two parameters one at a time. The place to put the map could be a div defined in

the body of the HTML document. However, I chose to create the div dynamically. I did this using code in
an init function invoked in the usual way, by setting the onLoad attribute in the body statement. I also
wrote code to create a canvas element inside the div. The code is

 candiv = document.createElement("div");
 candiv.innerHTML = ("<canvas id='canvas' width='600' height='400'>No canvas�
 </canvas>");
 document.body.appendChild(candiv);
 can = document.getElementById("canvas");
 pl = document.getElementById("place");
 ctx = can.getContext("2d");

can, pl, and ctx are global variables, each available for use by other functions.

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

105

■ Note Though I try to use the language “bring access to Google Maps into the HTML document,” I am guilty of
describing a function that “makes” a map. The Google Maps connection is a dynamic one in which Google Maps
creates what are termed “tiles to be displayed.”

The second parameter to the Map method is an associative array. An associative array has named
elements, not indexed elements. The array for the Map method can indicate the zoom level, the center of
the map, and the map type, among other things. The zoom level can go from 0 to 18. Level 0 is what is
shown in Figure 4-7. Level 18 could show buildings. The types of maps are ROADMAP, SATELLITE,
HYBRID, and TERRAIN. These are indicated using constants from the Google Maps API. The center is
given by a value of type LatLng, constructed, as you may expect, using decimal numbers representing
latitude and longitude values. The use of an associative array means that we don’t have to follow a fixed
order for parameters, and default settings will be applied to any parameter we omit.

The start of my makemap function follows. The function is called with two numbers indicating the
latitude and longitude on which to center the map. My code constructs a LatLng object, sets up the array
holding the specification for the map, and then constructs the map—that is, constructs the portal to
Google Maps.

function makemap(mylat,mylong) {
 var marker;
 blatlng = new google.maps.LatLng(mylat,mylong);

myOptions = {
 zoom: 12,
 center: blatlng,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
map = new google.maps.Map(document.getElementById("place"), myOptions);

The Map method constructs access to Google Maps starting with a map with the indicated options in
the div with the ID place. The makemap function continues, placing a marker at the center of the map.
This is done by setting up an associative array as the parameter for the Marker method. The icon marker
will be an image I created using an image of my own design, a drawn red x.

marker = new google.maps.Marker({
 position: blatlng,
 title: "center",
 icon: rxmarker,
 map: map });

There is one more statement in the makemap function, but I will explain the rest later.

Canvas Graphics
The graphic that we want to move with the mouse over the map is similar to the mask used in Chapter 3
to turn the rectangular video clip into a circular video clip. Both masks can be described as resembling a
rectangular donut: a rectangle with a round hole. We draw the graphics for the shadow/spotlight using
two paths, just like the mask for the video in the previous chapter. There are two distinct differences,
however, between the two situations:

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

106

• The exact shape of this mask varies. The outer boundary is the whole canvas, and
the location of the hole is aligned with the current position of the mouse. The hole
moves around.

• The color of the mask is not solid paint, but a transparent gray.

The canvas starts out on top of the Google Map. I accomplish this by writing style directives that set
the z-index values:

canvas {position:absolute; top: 165px; left:0px; z-index:100;}
#place {position:absolute; top: 165px; left: 0px; z-index:1;}

The first directive refers to all canvas elements. There is only one in this HTML document. Recall
that the z-axis comes out of the screen toward the viewer, so higher values are on top of lower values.
Note also that we use zIndex in the JavaScript code and z-index in the CSS. The JavaScript parser would
treat the – sign as a minus operator, so the change to zIndex is necessary. I will need to write code that
changes the zIndex to get the event handling that I want for this project.

Figure 4-16 shows one example of the shadow mask drawn on the canvas. The canvas is over the
map in terms of the z-index, and the mask is drawn with a gray color that is transparent so the map
underneath is visible.

Figure 4-16. Shadow/spotlight on one place on the map

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

107

Figure 4-17 shows another example of the shadow mask drawn on the same map. This came about
because of movement of the mouse by the user.

Figure 4-17. Shadow mask over another position on the map

Several topics are interlinked here. Let’s assume that the variables mx and my hold the position of the
mouse cursor on the canvas. I will explain how later in this chapter. The function drawshadowmask will
draw the shadow mask. The transparent gray that is the color of the mask is defined in a variable I
named grayshadow and constructed using the built-in function rgba. The rgba stands for red-green-blue-
alpha. The alpha refers to the transparency/opacity. A value of 1 for alpha means that the color is fully
opaque: solid. A value of 0 means that it is fully transparent—the color is not visible. Recall also that the
red, green, and blue values go from 0 to 255, and the combination of 255, 255, and 255 would be white.
This is a time for experimentation. I decided on the following setting for the gray/grayish/ghostlike
shadow:

var grayshadow = "rgba(250,250,250,.8)";

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

108

The function drawshadowmask makes use of several variables that are constants—they never change.
A schematic indicating the values is shown in Figure 4-18.

Figure 4-18. Schematic with variable values indicated for mask

The mask is drawn in two parts as was done for the mask for the bouncing video. You may look back
to Figure 3-8 and Figure 3-9. The coding is similar:

function drawshadowmask(mx,my) {
 ctx.clearRect(0,0,600,400);
 ctx.fillStyle = grayshadow;
 ctx.beginPath();
 ctx.moveTo(canvasAx,canvasAy);
 ctx.lineTo(canvasBx,canvasBy);
 ctx.lineTo(canvasBx,my);
 ctx.lineTo(mx+holerad,my);
 ctx.arc(mx,my,holerad,0,Math.PI,true);
 ctx.lineTo(canvasAx,my);
 ctx.lineTo(canvasAx,canvasAy);
 ctx.closePath();
 ctx.fill();
 ctx.beginPath();
 ctx.moveTo(canvasAx,my);
 ctx.lineTo(canvasDx,canvasDy);
 ctx.lineTo(canvasCx,canvasCy);
 ctx.lineTo(canvasBx,my);
 ctx.lineTo(mx+holerad,my);
 ctx.arc(mx,my,holerad,0,Math.PI,false);

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

109

 ctx.lineTo(canvasAx,my);
 ctx.closePath();
 ctx.fill();
}

Now we move on to the red lightbulb.

Cursor
The cursor—the small graphic that moves on the screen when you move the mouse—can be set in the
style element or in JavaScript. There are several built-in choices for the graphic (e.g., crosshair, pointer),
and we also can refer to our own designs for a custom-made cursor, which is what I demonstrate in this
project. I included the statement

can.onmousedown = function () { return false; } ;

in the init function to prevent a change to the default cursor when pressing down on the mouse. This
may not be necessary since the default may not be triggered.

To change the cursor for moving the mouse to something that conveyed a spotlight, I created a
picture of a red compact fluorescent lightbulb and saved it in the file light.gif. I then used the following
statement in the function showshadow. The showshadow function has been set as the event handler for
mousemove:

can.style.cursor = "url('light.gif'), pointer";

to indicate that JavaScript should use that address for the image for the cursor when on top of the can
element. Furthermore, if the file 'light.gif' is not available, the statement directs JavaScript to use the
built-in pointer icon. This is similar to the way that fonts can be specified with a priority listing of
choices. The variable can has been set to reference the canvas element. The cursor will not be used when
the canvas has been pushed under the Google Map, as will be discussed in the next section.

Events
The handling of events—namely mouse events, but also events for changing the slider on the Google
Map or clicking the radio buttons—seemed the most daunting when I started work on this project.
However, the actual implementation turned out to be straightforward. In the init function, I write code
to set up event handling for movement of the mouse, mouse button down, and mouse button up, all
regarding the canvas element:

 can.onmousedown = function () { return false; } ;
 can.addEventListener('mousemove',showshadow,true);
 can.addEventListener('mousedown',pushcanvasunder,true);
 can.addEventListener("mouseout",clearshadow,true);

The true value for the third parameter indicates that this event is to bubble, meaning that it is to
signal other listeners. However, more work was needed to achieve the event handling I wanted for this
project. I will explain the three functions and then go on to describe one more event.

The showshadow function, as indicated previously, calls the drawshadowmask function. I could have
combined these two functions, but dividing tasks into smaller tasks generally is a good practice. The
showshadow function determines the mouse position, makes an adjustment so the lightbulb base is at the
center of the spotlight, and then makes the call to drawshadowmask:

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

110

function showshadow(ev) {
 var mx;
 var my;
 if (ev.layerX || ev.layerX == 0) {
 mx= ev.layerX;
 my = ev.layerY;
 }
 else if (ev.offsetX || ev.offsetX == 0) {
 mx = ev.offsetX;
 my = ev.offsetY;
 }
 can.style.cursor = "url('light.gif'), pointer";
 mx = mx+10;
 my = my + 12;
 drawshadowmask(mx,my);
}

Now I needed to think what I wanted to do when the user pressed down on the mouse. I decided
that I wanted the shadow to go away and the map to be displayed in its full brightness. In addition to the
appearance of things, I also wanted the Google Maps API to resume control. A critical reason for wanting
the Google Maps API to take over is that I wanted to place a marker on the map, as opposed to the
canvas, to mark a location. This is because I wanted the marker to move with the map, and that would be
very difficult to do by drawing on the canvas. I would need to synchronize the marker on the canvas with
panning and zooming of the map. Instead, the API does all this for me. In addition, I needed the Google
Maps API to produce latitude and longitude values for the location.

The way to put Google Maps back in control, so to speak, was to “push the canvas under.” The
function is

function pushcanvasunder(ev) {
 can.style.zIndex = 1;
 pl.style.zIndex = 100;
}

The operation of pushing the canvas under or bringing it back on top is not instantaneous. I am
open to suggestions on (1) how to define the interface and (2) how to implement what you have defined.
There is room for improvement here.

One more situation to take care of is what I want to occur if and when the user moves the mouse off
from the canvas? The mouseout event is available as something to be listened for, so I wrote the code
setting up the event (see the can.addEventListener statements shown above) to be handled by the
clearshadow function. The clearshadow function accomplishes just that: clearing the whole canvas,
including the shadow:

function clearshadow(ev) {
 ctx.clearRect(0,0,600,400);
}

In the function that brings in the Google Map, I set up an event handler for mouseup for maps.

listener = google.maps.event.addListener(map, 'mouseup', function(event) {
 checkit(event.latLng);
 });

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

111

The call to addListener, a method that is part of the Google Maps API as opposed to JavaScript
proper, sets up the call to the checkit function. The checkit function is invoked using an attribute of the
event object as a parameter. As you can guess, event.latLng is the latitude and longitude values at the
position of the mouse when the mouse button was released on the map object. The checkit function will
use those values to calculate the distance from the base location and to print out the values along with
the distance on the screen. The code invokes a function I wrote that rounds the values. I did this to avoid
displaying a value with many significant digits, more than is appropriate for this project. The Google
Maps API marker method provides a way to use an image of my choosing for the marker, this time a
black ,hand-drawn x, and to include a title with the marker. The title is recommended to make
applications accessible for people using screen readers, though I cannot claim that this project would
satisfy anyone in terms of accessibility. It is possible to produce the screen shown in Figure 4-19.

Figure 4-19. Title indicating distance shown on map

The checkit function, called with a parameter holding the latitude and longitude value, follows:

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

112

function checkit(clatlng) {
 var distance = dist(clatlng,blatlng);
 distance = round(distance,2);
 var distanceString = String(distance)+" km";
 marker = new google.maps.Marker({
 position: clatlng,
 title: distanceString,
 icon: bxmarker,
 map: map });
 var clat = clatlng.lat();
 var clng = clatlng.lng();
 clat = round(clat,4);
 clng = round(clng,4);
 document.getElementById("answer").innerHTML =
 "The distance from base to most recent marker ("+clat+", "+clng+") is "+String(distance)�
 +" km.";
 can.style.zIndex = 100;
 pl.style.zIndex = 1;
}

Notice that the last thing that the function does is put the canvas back on top of the map.
The CHANGE button and the radio buttons are implemented using standard HTML and JavaScript.

The form is produced using the following HTML coding:

<form name="f" onSubmit=" return changebase();">
 <input type="radio" name="loc" /> friends of ED, NYC

 <input type="radio" name="loc" /> Purchase College

 <input type="radio" name="loc" /> Illinois Institute of Technology

<input type="submit" value="CHANGE">
</form>

The function changebase is invoked when the submit button, labeled CHANGE, is clicked. The
changebase function determines which of the radio buttons was checked and uses the Locations table to
pick up the latitude and longitude values. It then makes a call to makemap using these values for
parameters. This way of organizing data is called parallel structures: the locations array elements
correspond to the radio buttons. The last statement sets the innerHTML of the header element to display
text, including the name of the selected base location.

function changebase() {
 var mylat;
 var mylong;
 for(var i=0;i<locations.length;i++) {
 if (document.f.loc[i].checked) {
 mylat = locations[i][0];
 mylong = locations[i][1];
 makemap(mylat,mylong);
 document.getElementById("header").innerHTML =
 "Base location (small red x) is "+locations[i][2];
 }
 }
 return false;
}

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

113

Calculating Distance and Rounding Values for Display
Google Maps, as many of us know, provides information on distances and even distinguishes between
walking and driving. For this application, I needed more control on specifying the two locations for
which I wanted the distance calculated, so I decided to develop a function in JavaScript. Determining the
distance between two points, each representing latitude and longitude values, is done using the
spherical law of cosines. My source was www.movable-type.co.uk/scripts/latlong.html. Here is
the code:

function dist(point1, point2) {
 var R = 6371; // km
 // var R = 3959; // miles
 var lat1 = point1.lat()*Math.PI/180;
 var lat2 = point2.lat()*Math.PI/180 ;
 var lon1 = point1.lng()*Math.PI/180;
 var lon2 = point2.lng()*Math.PI/180;
 var d = Math.acos(Math.sin(lat1)*Math.sin(lat2) +
 Math.cos(lat1)*Math.cos(lat2) *
 Math.cos(lon2-lon1)) * R;
 return d;
 }

■ Caution I don’t include many comments in the code because I include the tables with each line annotated.
However, comments are important. I strongly recommend leaving the comments on km and miles in the dist
function so you can adjust your program as appropriate. Alternatively, you could display both values or give the
user a choice.

The last function is for rounding values. When a quantity is dependent on a person moving a mouse,
you shouldn’t display a value to a great number of decimal places. However, we should keep in mind
that latitude and longitude represent big units. I decided I wanted the distances to be shown with two
decimal places and the latitude and longitude with four.

The function I wrote is quite general. It takes two parameters, one the number num and the other
places, indicating how many decimal places to take the value. You can use it in other circumstances. It
rounds up or down, as appropriate, by adding in the value I call the increment and then calculating the
biggest integer not bigger than the value. So

• round(9.147,2) will produce 9.15; and

• round(9.143, 2) will produce 9.14.

The way the code works is first to determine what I term the factor, 10 raised to the desired number
of places. For 2, this will be 100. I then calculate the increment. For two places, this will be 5 / 100 * 10,
which is 5 / 1,000, which is .005. My code does the following:

1. Adds the increment to the original number

2. Multiplies the result by the factor

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

114

3. Calculates the largest whole number not bigger than the result (this is called
the floor)—producing a whole number

4. Divides the result by the factor

The code follows:

function round (num,places) {
 var factor = Math.pow(10,places);
 var increment = 5/(factor*10);
 return Math.floor((num+increment)*factor)/factor;
}

I use the round function to round off distances to two decimal places and latitude and longitude to
four decimal places.

■ Tip JavaScript has a method called toFixed that essentially performs the task of my round. If num holds a
number—say, 51.5621—then num.toFixed() will produce 51 and num.toFixed(2) will produce 51.56. I’ve read
that there can be inaccuracies with this method, so I chose to create my own function. You may be happy to go
with toFixed() in your own applications, though.

With the explanation of the relevant HTML5 and Google Maps API features, we can now put it all
together.

Building the Application and Making It Your Own
The map spotlight application sets up the combination of Google Maps functionality with HTML5
coding. A quick summary of the application is the following:

1. init: Initialization, including bringing in the map (makemap) and setting up
mouse events with handlers: showshadow, pushcanvasunder, clearshadow

2. makemap: Brings in a map and sets up event handling, including the call to
checkit

3. showshadow: Invokes drawshadowmask

4. pushcanvasunder: Enables events the on map

5. checkit: Calculates distance, adds a custom marker, and displays distance and
rounded latitude and longitude

The function table describing the invoked/called by and calling relationships (Table 4-1) is the same
for all the applications.

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

115

Table 4-1. Functions in the Map Maker Project

Function Invoked/Called By Calls

init Invoked by action of the onLoad attribute in the <body> tag makemap

pushcanvasunder Invoked by action of addEventListener called in init

clearshadow Invoked by action of addEventListener called in init

showshadow Invoked by action of addEventListener called in init drawshadowmask

drawshadowmask Called by showshadow

makemap Called by init

checkit Called by action of addEventListener called in makemap round, dist

round Called by checkit (three times)

dist Called by checkit

changebase Called by action of onSubmit in <form> makemap

Table 4-2 shows the code for the Map Maker application, named mapspotlight.html.

Table 4-2. Complete Code for the mapspotlight.html Application

Code Line Description

<!DOCTYPE html> Header

<html> Opening html tag

<head> Opening head tag

<title>Spotlight </title> Complete title

<meta charset="UTF-8"> Meta tag

<style> Opening of style element

header {font-family:Georgia,"Times New Roman",serif; Set fonts for the heading

 font-size:16px; Font size

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

116

Code Line Description

 display:block; } Line breaks before and after

canvas {position:absolute; top: 165px; left:0px; Style directive for the single
canvas element: position
slightly down the page

z-index:100;} Initial setting for canvas is
on top of map

#place {position:absolute; top: 165px; left: 0px; Style directive for the div
holding the Google Map;
position exactly the same as
the canvas

z-index:1;} Initial setting to be under
canvas

</style> Close style element

<script type="text/javascript" charset="UTF-8"
src="http://maps.google.com/maps/api/js?sensor=false"></script>

Bring in the external script
element holding the Google
Maps API; no attempt to use
sensing for geolocation

<script type="text/javascript" charset="UTF-8"> Opening script tag

var locations = [Define set of base locations

 [40.725592,-74.00495, "Friends of ED, NYC"], Latitude, longitude name for
friends of ED

 [41.04796,-73.70539,"Purchase College/SUNY"], . . . Purchase College

 [41.878928, -87.641926,"Illinois Institute of
Technology"]

. . . Illinois Institute of
Technology

]; Close array of locations

var candiv; Used to hold div holding the
canvas

var can; Reference canvas element

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

117

Code Line Description

var ctx; Reference context of canvas;
used for all drawing

var pl; Reference the div holding
the Google Map

function init() { Function header for init

 var mylat; Will hold latitude value

 var mylong; Will hold longitude value

 candiv = document.createElement("div"); Create a div

 candiv.innerHTML = ("<canvas id='canvas' width='600'
height='400'>No canvas </canvas>");

Set its contents to be a
canvas element

 document.body.appendChild(candiv); Add to the body

 can = document.getElementById("canvas"); Set reference to the canvas

 pl = document.getElementById("place"); Set reference to the div
holding the Google Map

 ctx = can.getContext("2d"); Set the context

 can.onmousedown = function () { return false; } ; Prevents change of cursor to
default

 can.addEventListener('mousemove',showshadow,true); Set event handling for
mouse moving

 can.addEventListener('mousedown',pushcanvasunder,true); Set event handling for
pushing down on mouse
button

 can.addEventListener("mouseout",clearshadow,true); Set event handling for
moving mouse off of the
canvas

 mylat = locations[0][0]; Set the latitude to be the
latitude of the 0th location

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

118

Code Line Description

 mylong = locations[0][1]; Set the longitude to be the
longitude of the 0th location

 makemap(mylat,mylong); Invoke function to make a
map (bring in Google Maps
at specified location)

} Close init function

function pushcanvasunder(ev) { Header for pushcanvas
function, called with
parameter referencing the
event

 can.style.zIndex = 1; Push canvas down

 pl.style.zIndex = 100; Set map div up

} Close pushcanvasunder
function

function clearshadow(ev) { Header for clearshadow
function, called with
parameter referencing the
event

 ctx.clearRect(0,0,600,400); Clear canvas (erase shadow
mask)

} Close clearshadow function

function showshadow(ev) { Header for showshadow
function, called with
parameter referencing the
event

 var mx; Will be used to hold
horizontal position of mouse

 var my; Will be used to hold vertical
position of mouse

 if (ev.layerX || ev.layerX == 0) { Does this browser use
layerX?

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

119

Code Line Description

 mx = ev.layerX; If so, use it to set mx . . .

 my = ev.layerY; . . . and my

 } else if (ev.offsetX || ev.offsetX == 0) { Try offsetX

 mx = ev.offsetX; If so, use it to set mx . . .

 my = ev.offsetY; . . . and my

 } Close clause

 can.style.cursor = "url('light.gif'), pointer"; Set up cursor to be
light.gif if available,
otherwise pointer

 mx = mx+10; Make rough correction to
make center of light at base
of lightbulb horizontally and
. . .

 my = my + 12; . . . vertically

 drawshadowmask(mx,my); Invoke drawshadowmask
function at the modified
(mx,my)

} Close showshadow function

var canvasAx = 0; Constant for mask: Upper-
left x

var canvasAy = 0; Upper-left y

var canvasBx = 600; Upper-right x

var canvasBy = 0; Upper-right y

var canvasCx = 600; Lower-right x

var canvasCy = 400; Lower-right y

var canvasDx = 0; Lower-left x

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

120

Code Line Description

var canvasDy = 400; Lower-left y

var holerad = 50; Constant radius for hole in
shadow (radius of spotlight)

var grayshadow = "rgba(250,250,250,.8)"; Color for faint shadow; note
alpha of .8

function drawshadowmask(mx,my) { Header for drawshadowmask
function; parameters hold
center of donut hole

 ctx.clearRect(0,0,600,400); Erase whole canvas

 ctx.fillStyle = grayshadow; Set color

 ctx.beginPath(); Start first (top) path

 ctx.moveTo(canvasAx,canvasAy); Move to upper-left corner

 ctx.lineTo(canvasBx,canvasBy); Draw over to upper-right
corner

 ctx.lineTo(canvasBx,my); Draw to vertical point
specified by my parameter

 ctx.lineTo(mx+holerad,my); Draw over to the left to edge
of hole

 ctx.arc(mx,my,holerad,0,Math.PI,true); Draw semicircular arc

 ctx.lineTo(canvasAx,my); Draw to left side

 ctx.lineTo(canvasAx,canvasAy); Draw back to start

 ctx.closePath(); Close path

 ctx.fill(); Fill in

 ctx.beginPath(); Start of second (lower) path

 ctx.moveTo(canvasAx,my); Start at point on left side
indicated by my parameter

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

121

Code Line Description

 ctx.lineTo(canvasDx,canvasDy); Draw to lower-left corner

 ctx.lineTo(canvasCx,canvasCy); Draw to lower-right corner

 ctx.lineTo(canvasBx,my); Draw to point on right edge

 ctx.lineTo(mx+holerad,my); Draw to left to edge of hole

 ctx.arc(mx,my,holerad,0,Math.PI,false); Draw semicircular arc

 ctx.lineTo(canvasAx,my); Draw to right edge

 ctx.closePath(); Close path

 ctx.fill(); Fill in

} Close drawshadowmask
function

var listener; Variable set by addListener
call; not used again

var map; Holds map

var blatlng; Holds base latitude
longitude object

var myOptions; Holds associative array used
for map

var rxmarker = "x1.png"; Holds file name for red x
image

var bxmarker = "bx1.png"; Holds file name for black x
image

function makemap(mylat,mylong) { Header for makemap function;
parameters hold location of
center of the map

 var marker; Will hold marker created for
center

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

122

Code Line Description

 blatlng = new google.maps.LatLng(mylat,mylong); Build a LatLng object
(special data type for the
API)

 myOptions = { Set associative array

 zoom: 12, Zoom setting (can be 0 to 18)

 center: blatlng, Center

 mapTypeId: google.maps.MapTypeId.ROADMAP Type of map

 }; Close myOptions array

 map = new google.maps.Map(document.getElementById("place"),
myOptions);

Invoke the API to bring in a
map at indicated place

 marker = new google.maps.Marker(Place marker in center of
map; marker method takes
an associative array as its
parameter

 { Start of associative array

 position: blatlng, Set the position

 title: "center", Set the title

 icon: rxmarker, Set the icon

 map: map Set the map named
parameter to the variable
named map

 } Close the associative array
which is the parameter to
the call to Marker

); Close the call to Marker

 listener = google.maps.event.addListener(Set up event handling (the
three following parameters)

 map, The object, namely the map

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

123

Code Line Description

 'mouseup', The specific event

 function(event) { An autonomous function
(defined directly as a
parameter in addListener)

 checkit(event.latLng); Calling checkit with the
indicated latitude longitude
object

 } Close the function definition

); Close the call to addListener

} Close the makemap function

function checkit(clatlng) { Function header for checkit;
called with the latitude
longitude object

 var distance = dist(clatlng,blatlng); Invoke dist function to
calculate distance between
the clicked position and the
base

 distance = round(distance,2); Round the value

 var distanceString = String(distance)+" km"; Set distanceString to be the
display

 marker = new google.maps.Marker(Invoke the Marker method,
which takes an associative
array as its parameter

 { Start of associative array

 position: clatlng, Set position

 title: distanceString, Set title

 icon: bxmarker, Set icon to be black x

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

124

Code Line Description

 map: map Set map element of
associative array to the value
of the variable named map

 } Close associative array

); Close call to Marker method

 var clat = clatlng.lat(); Extract the latitude value

 var clng = clatlng.lng(); Extract the longitude value

 clat = round(clat,4); Round value to 4 decimal
places

 clng = round(clng,4); Round value to 4 decimal
places

 document.getElementById("answer").innerHTML = Set up text on screen . . .

 "The distance from base to most recent marker ("

 + clat+", "+clng+") is "+String(distance) +" km.";

. . . to be calculated and
formatted information

 can.style.zIndex = 100; Set canvas to be on top

 pl.style.zIndex = 1; Set pl (holding map) to be
underneath

} Close checkit function

function round (num,places) { Header for function to round
values

 var factor = Math.pow(10,places); Determine factor from
number of places

 var increment = 5/(factor*10); Determine the increment to
round up or down

 return Math.floor((num+increment)*factor)/factor; Do calculation

} Close round function

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

125

Code Line Description

function dist(point1, point2) { Function header for dist
(distance) function

 // spherical law of cosines,

 // from

 // http://www.movable- type.co.uk/scripts/latlong.html

Attribution for my source.
This is standard
mathematics

 var R = 6371; // km Factor used to produce
answer in kilometers

 // var R = 3959; // miles Commented out, but keep
just in case you want to give
answer in miles

 var lat1 = point1.lat()*Math.PI/180; Convert value to radians

 var lat2 = point2.lat()*Math.PI/180 ; Convert value to radians

 var lon1 = point1.lng()*Math.PI/180; Convert value to radians

 var lon2 = point2.lng()*Math.PI/180; Convert value to radians

 var d = Calculation . . .

 Math.acos(Math.sin(lat1)*Math.sin(lat2) +
Math.cos(lat1)*Math.cos(lat2) * Math.cos(lon2-lon1)) * R;

Use trigonometry to
determine distance

 return d; Return result

 } Close dist function

function changebase() { Header for changebase
function

 var mylat; Will hold new base location
latitude

 var mylong; Will hold new base location
longitude

 for(var i=0;i<locations.length;i++) { for loop to determine which
radio button is checked

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

126

Code Line Description

 if (document.f.loc[i].checked) { Is this one checked?

 mylat = locations[i][0]; If so, set mylat

 mylong = locations[i][1]; Set mylong

 makemap(mylat,mylong); Invoke makemap

 document.getElementById("header").
innerHTML = "Base location (small red x) is "+locations[i][2];

Change text in header to
show the name

 } Close if true clause

 } Close for loop

 return false; Return false to present
refresh

} Close function

</script> Closing script tag

</head> Closing head tag

<body onLoad="init();"> Opening body tag; include
onLoad to invoke init

<header id="header">Base location (small red x) </header> Semantic header element

<div id="place" style="width:600px; height:400px"></div> Div to hold Google Maps

<div id="answer"></div> Div to hold information on
clicked locations

Change base location:
 Text

<form name="f" onSubmit=" return changebase();"> Start of form for changing
base

 <input type="radio" name="loc" /> Friends of ED, NYC
 Radio button choice

 <input type="radio" name="loc" /> Purchase College
 Radio button choice

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

127

Code Line Description

 <input type="radio" name="loc" /> Illinois Institute of
Technology

Radio button choice

<input type="submit" value="CHANGE"> The button to make the
change

</form> Closing form tag

</body> Closing body tag

</html> Closing html tag

You need to decide on your set of base locations. Again, there is nothing special about three. If your

base list is too large, you may consider using <optgroup> to produce a drop-down list. In any case, you
need to define a set of locations. Each location has two numbers—latitude and longitude—and a string
of text comprising the name. This text is repeated in the HTML coding in the form.

Testing and Uploading the Application
This project consists of the HTML file and three image files. For my version of the project, the image files
were the lightbulb, light.gif; the red x, rxmarker.png; and the black x, bxmarker.png. There is nothing
special about these image file types. You can use whatever you like. It could be argued that my x markers
are too tiny, so think about your customers when deciding on what to do.

This application does require you to be online to test since that is the only way to make contact with
Google Maps.

Summary
In this chapter, you learned how to do the following:

• Use the Google Maps API

• Combine Google Maps with canvas graphics

• Produce a GUI that includes Google Maps events and HTML5 events

• Draw using the alpha setting controlling transparency/opacity

• Change to a custom-made cursor

• Calculate distances between geographic points

• Round off decimal values for suitable display

CHAPTER 4 ■ MAP MAKER: COMBINING GOOGLE MAPS AND THE CANVAS

128

The next chapter describes another project using Google Maps. You will learn how to build an
application in which you can associate a picture, a video clip, or a picture-and-audio-clip combination
with specific geographic locations, and display and play the specified media when a user clicks at or near
the locations on a map.

C H A P T E R 5

129

Map Portal: Using Google Maps
to Access Your Media

In this chapter, you will explore the following:

• Using the Google Maps API to play and display video, audio, and images

• Creating HTML5 markup dynamically

• Separating the program from descriptions of content

• Building a geography game

Introduction
The projects in this chapter make use of the Google Maps API as a way to play video, display images, or
play audio and display an image, all based on geographic locations. You can use these projects as
models to build a study of a geographic area, report on a business or vacation trip, or create a geography
quiz. I will describe three distinct applications. For all three applications, I have acquired media, such as
video files, audio files, and image files, and I have defined in code an association between the files and
specific geographic locations. To give you an idea of what I mean, for my projects, associations between
a target location (which is given in latitude and longitude coordinates in the code) and media are shown
in Table 5-1.

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

130

Table 5-1. Outline of Content

Description of Location Media

Purchase College Video from robotics class

Mount Kisco Picture of Esther and an audio file of her playing piano

Dixon, Illinois Picture of Aviva

Statue of Liberty, New York City Video of fireworks

All three applications proceed smoothly with the different types of media. This is due to the features

of HTML5 and, I say modestly, my programming. The media files are separate and the same for all three
applications. It still is recommended that you supply multiple video and audio formats to make sure
your application will work in the different browsers. The media types recognized by browsers may
change so that fewer types are required, but this is not the case at this time.

The first application, consisting of one HTML file, named mapvideos.html, invites the viewer to click
the map. If the click is close enough to one of the targeted locations, the viewer either sees the
corresponding image, sees the corresponding video playing, or both sees the corresponding image and
hears the corresponding audio file. The program handles all three types of media and media
combinations.

The second application appears to the viewer to be the same as the first, but there is an important
difference in the implementation. This application consists of two html files: mapmediabase.html and
mediacontent.js. The mediacontent.js file holds the information describing the specific media content
of the application. The mapmediabase.html program brings in the mediacontent.js file and creates during
runtime what is necessary to replicate the first application.

I include both the first and second application because the first one is easier to understand, since all
the information is in one place. When you develop your own applications, you can try to go straight to
an implementation that separates coding from content, but don’t feel too bad if you don’t.

The third application is a quiz. Like the second, it consists of two files: mapmediaquiz.html and
mediaquizcontent.js. The mediaquizcontent.js file contains information connecting the media to the
locations and also contains the text for the questions.

The three applications have much of the same coding. The process of creating the second and third
applications will show you how to scale up your applications by separating the details of a specific set of
media (or other things) from the bulk of the programming.

Figure 5-1 shows the opening screen for the first application.

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

131

Figure 5-1. Opening screen

Figure 5-2 shows what happens when I click the screen on the Purchase College campus. A video
clip appears and starts playing. You also can see “Lego robot” in the title position.

Figure 5-2. Result of clicking at Purchase College

Figure 5-3 shows the result of clicking the screen, but not sufficiently close to any of the target
locations. Notice that I have panned the map, moving it to the north.

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

132

Figure 5-3. Click not close to any target

Figure 5-4 shows the result of my clicking near enough to Mt. Kisco to get a reward. I needed to
move further north to get to Mt. Kisco. Notice also the audio control, providing a way to pause and
resume playing and also change the speaker volume. The controls for audio (and video) will be different
in the different browsers, but the functionality is the same.

Figure 5-4. Image-and-audio combination

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

133

Because I know where the locations are, I know to zoom out to get to the next location. Figure 5-5
shows the results of using the Google Maps interface to accomplish this. The audio track continues
playing and I still see the picture.

Figure 5-5. Zooming out in preparation for a pan south

Figure 5-6 shows the result of moving the map to the south and then zooming in to the location of
the Statue of Liberty, the targeted location for the fireworks video clip.

Figure 5-6. Clicking Liberty Island after panning and zooming in

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

134

Again, I know where the pictures are, so I zoom out, pan to the west of Chicago, and click the small
town of Dixon, Illinois. Figure 5-7 shows the image I expected.

Figure 5-7. Panning to the west and zooming in to Dixon, Illinois

It actually took some work (to be explained later) to make the second application resemble the first
with respect to layout.

Now I will show screenshots for the third application, the quiz. Figure 5-8 shows the opening screen.

Figure 5-8. Opening screen of quiz

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

135

The question is, Where does Grandma Esther live? The player must click close to the location
associated with this question. You might be able to guess the answer from the previous screenshots.
Figure 5-9 shows an incorrect response. I just clicked the map near Purchase College.

Figure 5-9. Incorrect response

I know the answer, and furthermore, how to get to it on the map. I move the map north to Mt. Kisco
and click there. Figure 5-10 shows the familiar image and the audio control. Piano music is playing.

Figure 5-10. A correct answer is given, so the image is shown and the audio is played, and the next
question is given.

Notice that the screen shows the next question as soon as the last one is answered correctly.

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

136

When designing a game such as this one, it is best to take pity on a player when they don’t know the
answer. I provide the Hint? button, though it goes beyond just giving a hint. Skipping ahead, I will get the
next two questions correct, and then I will need help on finding Dixon, Illinois. Figure 5-11 shows the
prompt.

Figure 5-11. Prompt concerning flute playing

If I click the Hint? button, the application will bring in a new map, centered at the desired location.
Figure 5-12 shows the screen.

Figure 5-12. Map centered on Dixon, Illinois

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

137

It is still necessary to click the map, hopefully on or near the red x, to complete the question. You
may say that there are better ways of hinting—such as supplying specifically chosen text holding the
name of the place—and I won’t argue with you. This is what I decided to do.

With this introduction, I’ll go on to discuss the project history and the critical requirements.

Project History and Critical Requirements
A senior at Purchase College had collected and made video clips and photographs about the ethnic
neighborhoods of Queens, New York, and wanted a way to present the work. The Google Maps API and
the new facilities in HTML5 seemed perfect for the task. Keep in mind that the student only needed a
way to present the work on a computer she set up at the senior project show, so the issue of
noncompliant browsers was not a concern. The critical requirements include what is supplied by the
Google Maps API. As you learned in the previous chapter, we can write code to access a map centered at
a specified geographic location, set at an initial zoom level, and showing views of roads or satellite or
terrain or a hybrid. In addition, the API provides a way to respond to the event of the viewer clicking the
map. We need a way to define specific locations to be compared with the location corresponding to the
viewer’s click.

My first system for the student just used video and images. I later decided to add the image-and-
audio combination. The critical requirement for the application is displaying and playing the designated
media at the correct time and stopping and removing the media when appropriate, such as when it is
time for the next presentation.

After developing the initial project, I thought of changes. The first one was the addition of the
image-and-audio combination. I decided I did not want audio just by itself. The next change was to
separate the specific content from the general coding. This, in turn, required a way to create markup for
video and audio elements dynamically.

I always like games and lessons, and it seemed like a natural step to build an application with
questions or prompts that the viewer—now best described as player or student. The player gives the
answer by finding the right position on the map. Both the general application and the quiz application
have a requirement to define a tolerance with respect to the answers. The viewer/player/student cannot
be expected to click exactly on the correct spot.

When testing the quiz, I realized I needed some way to help the player get past a particularly difficult
question. Because I am a teacher, I decided to show the player the answer, rather than just skipping the
question. However, as I indicated earlier, you may be able to devise a better way to produce hints.

Games should have some randomness feature, so I decided to shuffle the questions, though I did
this somewhat later in the process.

Having described the critical requirements, the next section will contain explanation of the specific
HTML5 features that can be used to build the projects.

HTML5, CSS, and JavaScript Features
Like the map maker project in Chapter 4, these projects are implemented by combining the use of the
Google Maps API with features of HTML5. The combination for this project is not as tricky. The map
stays on the left side of the window and the media is presented on the right. I will review quickly how to
get access to a map and how to set up the event handling, and then go on to the HTML5, CSS, and
JavaScript features for satisfying the rest of the critical requirements.

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

138

Google Maps API for Map Access and Event Handling
Access to the Google Maps API requires a script element with reference to an external file. For this
application, I used

<script type="text/javascript" charset="UTF-8"�
 src="http://maps.google.com/maps/api/js?sensor=false"></script>

I set up the map using a function I named makemap. It has two parameters: two decimal numbers that
represent the latitude and longitude values:

function makemap(mylat, mylong)

The global variables zoomlevel, holding a number from 0 to 18, and xmarker, holding the address of
an image file, are set before the function makemap is invoked.

The code to bring in a map is an invocation of the google.maps.Map constructor method. It takes two
parameters. The first is the location in the HTML document where the map is to appear. I set up a div
with ID place in the body of the document:

<div id="place" style="float: left;width:50%; height:400px"></div>

The second parameter is an associative array. The following three statements set up the location at
which the map is centered as a Google Maps latitude/longitude object, create the associative array
myOptions, and invoke the Map constructor:

blatlng = new google.maps.LatLng(mylat,mylong);
myOptions = {
 zoom: zoomlevel,
 center: blatlng,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
map = new google.maps.Map(document.getElementById("place"), myOptions);

For completeness sake, here are screenshots with other settings for the map type. These are
TERRAIN, HYBRID, and SATELLITE. Figure 5-13 shows the results of requesting the setting showing the
terrain—that is, colors indicating elevations, water, park, and human-constructed areas:

mapTypeId: google.maps.MapTypeId.TERRAIN

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

139

Figure 5-13. TERRAIN map type

Figure 5-14 shows the results of requesting the HYBRID view, combining satellite and road map
imagery.

mapTypeId: google.maps.MapTypeId.HYBRID

Figure 5-14. HYBRID map type

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

140

By the way, the hybrid map is what is produced by clicking the Satellite option on the interface.
Figure 5-15 shows the results of requesting SATELLITE images.

mapTypeId: google.maps.MapTypeId.SATELLITE

Figure 5-15. SATELLITE map type

Lastly, you may have an application in which you do not want the viewer to change the map. You
can prevent the user from changing the map by disabling the default interface with the use of an
additional option in the myOptions array. Note the comma after ROADMAP.

mapTypeId: google.maps.MapTypeId.ROADMAP,
disableDefaultUI: true

Figure 5-16 shows the results.

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

141

Figure 5-16. Map interface removed

There are two more operations for makemap to carry out. A custom marker is placed on the map at the
indicated center location and event handling is set up for clicking the map:

marker = new google.maps.Marker({
 position: blatlng,
 title: "center",
 icon: xmarker,
 map: map });
listener = google.maps.event.addListener(map, 'click', function(event) {
 checkit(event.latLng);
 });

The xmarker value references an Image object that has its src set to an external file named x1.png.

Project Content
The portal projects all present media connected to a map location. My projects use three types of media:
video, picture, and pictureaudio. Note: these are my terms for the three types I have chosen to include
in the project. The content of the portal projects is specified using an array I named content. Each
element of the array is itself an array five or six elements. The first four elements are the same for all the
types: the latitude, longitude, title, and type. The fifth or the fifth and the sixth point to the specific
media elements. The array

 content = [
 [41.19991,-73.72353,"Esther at home","pictureaudio",esther,aud1],
 [41.05079,-73.70448,"Lego robot ","video",vid1],
 [40.68992,-74.04460,"Fire works ","video",vid2],
 [41.8442,-89.480,"Aviva in Dixon","picture",aviva]
];

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

142

specifies four locations, starting with a picture/audio combination, followed by two videos, followed by
one picture. The element in the array for the picture/audio combination includes, as you would expect,
two additional pieces of information. It is not obvious from just this section of code, but esther refers to
an Image element and aud1 refers to an audio element. Similarly, vid1 and vid2 refer to video elements,
and aviva refers to another Image element.

The content array is referenced by the checkit function (to be described following), and the
appropriate media are presented.

The quiz project has additional content, namely an array of questions, to be shown later.

Presentation and Removal of Video, Audio and Images
I assume you have a basic understanding of the HTML5 features for presenting video and audio and for
drawing images from files on the canvas. The map portal projects require code that presents the media
on demand (i.e., making the media appear and go away). This requirement is similar to the bouncing
video of Chapter 3. In the basic mapvideos application, I included the definitions of the video, audio, and
canvas elements in the body element of the document, all within a div element that I specified as
floating to the right:

<div style="float: right;width:38%;height:400px">
<div id="answer">Title will be placed here.</div>
<p> </p>
<video id="maze" preload="auto" controls="controls" width="400">
<source src="maze.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>
<source src="maze.theora.ogv" type='video/ogg; codecs="theora, vorbis"'>
<source src="maze.webmvp8.webm" type='video/webm; codec="vp8, vorbis"'>
Your browser does not accept the video tag.
</video>
<video id="fire" preload="auto" controls="controls">
<source src="sfire3.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>
<source src="sfire3.theora.ogv" type='video/ogg; codecs="theora, vorbis"'>
<source src="sfire3.webmvp8.webm" type='video/webm; codec="vp8, vorbis"'>
Your browser does not accept the video tag.
</video>
<audio id="mpiano" controls="controls" preload="preload">
<source src="estherT.ogg" type="audio/ogg" />
<source src="estherT.mp3" type="audio/mpeg" />
<source src="estherT.wav" type="audio/wav" />
</audio>
<canvas id="canvas" width="300" height="300" >
Your browser doesn't recognize canvas
</canvas>
</div>

Notice that I did not use the loop attribute in the <video> tag, nor did I put in a call to
addEventListener to a function to restart the video, based on the assumption that loop is not recognized
by some browsers. This is because the video controls are visible, and if the viewer wants to replay the
video, he or she can do it.Similarly, the viewer can re-play the audio clip.

In the style element, I put directives to make all video not display, and for the positioning to be
relative:

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

143

video {display:none; position:relative;
}
audio {display:none; position:relative;}

I did not have to do something analogous for the canvas. The canvas is always present, but if
nothing has been drawn on it or it has been cleared, then nothing is visible.

The critical coding for presenting the media is in a switch statement within the checkit function.
The bestyet variable holds the index of the element in the content array that is the closest to the location
where the viewer/player clicked the map. If it has been determined to be close enough, then it will
proceed with displaying the picture and playing the video or audio.

switch (content[bestyet][3]) {
 case "video":
 answer.innerHTML=content[bestyet][2];
 v = content[bestyet][4];
 v.style.display="block";
 v.currentTime = 0;
 v.play();

 break;
 case "picture":
 case "pictureaudio":
 answer.innerHTML=content[bestyet][2];
 ctx.drawImage(content[bestyet][4],10,10);
 if (content[bestyet][3]=="picture") {
 break;}
 else {
 audioel = content[bestyet][5];
 audioel.style.display="block";
 audioel.currentTime = 0;
 audioel.play();
 break;
 }

 }

Changing the display style to "block" has the effect of displaying the video or audio controls.
Assigning 0 to the currentTime means that the video or audio will play from the start. You can make
use of currentTime to produce other effects—for example, playing different parts of a long audio or
video clip.

There is one more piece of coding that is required. This is removing the last-viewed content:
stopping the video or audio, and stopping the display. The code to do this must take account of the
chance that there is nothing to remove. The code is

 if (v != undefined) {
 v.pause();
 v.style.display = "none";
 }
 if (audioel != undefined) {
 audioel.pause();
 audioel.style.display = "none";
 }
 ctx.clearRect(0,0,300,300);

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

144

Note that there is no harm in clearing the canvas even if there was nothing drawn on it. There would
be an error in the statement v.pause(); if v was not set. For the quiz project, I put this code into its own
function, which I named eraseold, because removing the old material needs to be done at two different
places in the code.

Distances and Tolerances
The calculation of distance between two latitude/longitude points was described in the previous
chapter. The issue to be explained here concerns how to make comparisons of distances. For the portal
application, I need to write code to determine the location specified in the content array that is closest to
the position the viewer clicked. I do this using a for loop. As is typical in these “best so far” calculations, I
start off the process by computing the distance to the 0th (i.e., the first) element in the content array.
This is the best so far. The for loop then proceeds, starting with index 1.

function checkit(clatlng) {
 var i;
 var latlnga =new google.maps.LatLng(content[0][0],content[0][1]);
 var bestyet = 0;
 var closestdistance = dist(clatlng,latlnga);
 var distance;
 for (i=1;i<content.length;i++) {
 latlnga = new google.maps.LatLng(content[i][0],content[i][1]);
 distance = dist(clatlng,latlnga);
 if (distance < closestdistance) {
 closestdistance = distance;
 bestyet = i;
 }
 }

When the for loop is complete, bestyet holds the index to the best yet, meaning the closest, and
closestdisatnce holds the distance to that element, which has been determined to be the closest
(smallest) distance.

I then need to write code that checks if that element—the one with index named in bestyet—is
close enough to proceed. In gaming and other applications, the term tolerance or margin are used. You
can’t expect a person to click exactly on a location. That is not possible when the units are pixels, and it
definitely isn’t possible when the units are latitude and longitude and the exact point may not be
available to the user under the current zoom level. The variable maxdistance holds the value that I
choose to use for this test. Here is the rest of the checkit function (without repeating the whole switch
statement):

 if (distance < maxdistance) {
 marker = new google.maps.Marker({
 position: clatlng,
 title: content[bestyet][2],
 icon: xmarker,
 map: map });
 switch (content[bestyet][3]) {
 ...
 }
 }

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

145

 else {
 answer.innerHTML="Not close enough to any [new] target";
 }

}

Regular Expressions
Regular expressions are a powerful facility for describing patterns of character strings (text) for checking
and for manipulation. It is a whole language for specifying patterns. For example, to give you a flavor of
this large topic, the pattern

/^5[1-5]\d{2}-?\d{4}-?\d{4}-?\d{4}$/

can be used detect MasterCard numbers. These numbers start with 51 to 55, followed by two more
digits, and then three groups of four digits. This pattern accepts the dashes, but does not require them.
The ^ symbol means the pattern must be present at the start of the string, and the $ means it must go to
the end of the string. The forward slashes (/) are delimiters for the pattern and the backslashes are
escape characters. Interpreting this pattern starting at the start goes as follows:

• ^: Start at the start of the string.

• 5: Pattern must contain a 5.

• [1-5]: Pattern must contain one of the numbers 1, 2, 3, 4, or 5.

• \d{2}: Pattern must contain exactly two digits.

• -?: Pattern must contain 0 or 1 -.

• \d{4}: Pattern must contain exactly four digits.

• -?: Pattern must contain 0 or 1 -.

• \d{4}: Pattern must contain exactly four digits.

• -?: Pattern must contain 0 or 1 -.

• \d{4}: Pattern must contain exactly four digits.

• $: End of string.

MasterCard numbers must obey other rules as well, and you can do the research to find out how to
verify them further. Don’t worry, we’ll be using a much simpler regular expression (also known as a
regex) than that.

The use of regular expressions predates HTML. Regular expressions can be used in forms to specify
the format of the input. For this application, we will use the replace method for strings to find all
instances of a specific small piece of text within a long string and replace it with something else. One of
the statements I use is

videomarkup = videomarkup.replace(/XXXX/g,name);

What this does is find all occurrences (this is what the g does) of the string XXXX and replace them
with the value of the variable name.

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

146

I could and probably should have made even more use of regular expressions to verify the data
defining the content of the applications. Maybe that’s something you want to experiment with in your
own applications.

External Script File
For this project and the one in the previous chapter, I demonstrated the use of a script element to bring
in an external script file, namely the Google Maps API. You can also use this facility to bring in your own
external file. My goal is to put all the specific content relating to my project in its own file. For the
mapmediabase case, this is a file I named mediacontent.js. It follows in its entirety:

var base= [41.04796,-73.70539,"Purchase College/SUNY"];
var zoomlevel = 13;
var precontent = [
 [41.19991,-73.72353,"Esther at home","pictureaudio","estherT","esther.jpg"],
 [41.05079,-73.70448,"Lego robot ","video","maze"],
 [40.68992,-74.04460,"Fire works ","video","sfire3"],
 [41.8442,-89.480,"Aviva in Dixon","picture","avivadixon.jpg"]
];
var maxdistance = 5;

■ Tip The next step could be putting the information on the media content in a database.

The base, zoomlevel, and maxdistance variables are all what they seem. The base is the initial center
point for the map. The zoom level specifies the initial zoom. I say initial because the user can use the
Google Maps controls to pan or zoom in or out. The maxdistance is the number I use to check if the user
clicks close enough to one of the locations. You will need to determine what the appropriate distance is
for your application.

I simply moved the variable declarations from the other document into what will be the external,
content-specific document. I must admit that I forgot about zoomlevel and maxdistance, and only moved
them after thinking about what other projects might be. For example, you may decide to build a project
with a very different zoom level. Maybe you want your player to distinguish at the city block level, in
which case the maximum distance might be 1 kilometer or less.

The precontent array resembles but is not the same as the content array. What is different is that the
fields that now have "estherT", "esther.jpg", "maze", "sfire3", and "avivadixon.jpg" are used to create
HTML5 elements or JavaScript elements. Once these are created, then references can be inserted in a
content array. For this to work, I needed to change the names of the video and the audio files so that the
video element coding and the audio element coding all fit a pattern.

For the mapmediaquiz application, I needed to add the questions. I could have added another
element to the inner arrays of the precontent array, but decided against since that would require
changes in the coding. Instead, I defined another array called questions. This is called parallel structures
and is a common technique.

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

147

■ Note At some point, the right decision may be to stop using straight JavaScript arrays, including the use of
parallel structures, and make use of XML or a database. I didn't think it was called for in this application, but I
could be wrong. Note that the use of databases does provide a way to hide the data.

var base= [41.04796,-73.70539,"Purchase College/SUNY"];
var zoomlevel = 13;
var precontent = [
 [41.19991,-73.72353,"Esther at home","pictureaudio","estherT","esther.jpg"],
 [41.05079,-73.70448,"Lego robot ","video","maze"],
 [40.68992,-74.04460,"Fire works ","video","sfire3"],
 [41.8442,-89.480,"Aviva in Dixon","picture","avivadixon.jpg"]
];
var questions = [
 "Where does Grandma Esther live?",
 "Show the Lego robot navigating a maze.",
 "Where are great fireworks?",
 "Find where Aviva played the flute."
];
var maxdistance = 10;

The external scripts are brought into the main document using a script element. For the
mapmediabase program, this is

<script type="text/javascript" src="mediacontent.js"> </script>

and for mapmediaquiz, this is

<script type="text/javascript" src="mediaquizcontent.js"> </script>

Now I will explain how to use the precontent information to build what is required to make the
projects work.

Dynamic Creation of HTML5 Markup and Positioning
The external script statements bring in the information for the base and the quiz applications. Now is
the time to explain how the information is used. In both cases, the init function will invoke a function I
named loadcontent. This function calls makemap to make a map at the indicated base location.

makemap(base[0],base[1]);

The content array starts off as an empty array.

var content = [];

By the way, this is different from

var content;

Your code needs to make content an array.
It then uses a for loop to iterate over all the elements of precontent. The start of the for loop adds

the ith element of precontent to the content array.

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

148

for (var i=0;i<precontent.length;i++) {
 content.push(precontent[i]);
 name = precontent[i][4];

The next line is the header of a switch statement using as the condition the element of the inner
arrays that indicates the type.

switch (precontent[i][3]) {

For video and pictureaudio, the code creates a div element and positions it so that it floats to the
right. It then places inside the div element the right markup for video or audio. What is that markup? I
have what I will describe as dummy strings that have XXXX where the actual names of the video or audio
files would go. These strings are

var videotext1 = "<video id=\"XXXX\" preload=\"auto\" controls=\"controls\"�
 width=\"400\"><source src=\"XXXX.mp4\" type=\'video/mp4; codecs=\"avc1.42E01E,�
 mp4a.40.2\"\'>";
var videotext2="<source src=\"XXXX.theora.ogv\" type=\'video/ogg; codecs=\"theora,�
 vorbis\"\'><source src=\"XXXX.webmvp8.webm\" type=\'video/webm; codec=\"vp8, vorbis\"\'>";
var videotext3="Your browser does not accept the video tag.</video>";
var audiotext1="<audio id=\"XXXX\" controls=\"controls\" preload=\"preload\"><source�
 src=\"XXXX.ogg\" type=\"audio/ogg\" />";
var audiotext2="<source src=\"XXXX.mp3\" type=\"audio/mpeg\" /><source src=\"XXXX.wav\"�
 type=\"audio/wav\" /></audio>";

I divided the strings into sets of three and two just to make it easier for me to check. Notice the use
of the backslash (\) It tells JavaScript to use the next symbol as is, and not interpret it as a special
operator for regular expressions. This is how the quotation marks inside the screen get carried over to be
part of the HTML.

My approach required that I make sure that the names of the video and audio files follow this
pattern. This meant that the mp4 files all needed to contain just the name and no internal dots.

I write code using the regular expression function replace to take information out of the precontent
array and put it in the strings in as many places as necessary. The switch statement in its entirety is

switch (precontent[i][3]) {
 case "video":
 divelement= document.createElement("div");
 divelement.style = "float: right;width:30%;";
 videomarkup = videotext1+videotext2+videotext3;
 videomarkup = videomarkup.replace(/XXXX/g,name);
 divelement.innerHTML = videomarkup;
 document.body.appendChild(divelement);
 videoelementreference = document.getElementById(name);
 content[i][4] = videoelementreference;
 break;
 case "pictureaudio":
 divelement = document.createElement("div");
 divelement.style = "float: right;width:30%;";
 audiomarkup = audiotext1+audiotext2;
 audiomarkup = audiomarkup.replace(/XXXX/g,name);
 divelement.innerHTML = audiomarkup;
 document.body.appendChild(divelement);
 audioreference = document.getElementById(name);

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

149

 savedimagefilename = content[i][5];
 content[i][5] = audioreference;
 imageobj = new Image();
 imageobj.src= savedimagefilename;
 content[i][4] = imageobj;
 break;
 case "picture":
 imageobj = new Image();
 imageobj.src= precontent[i][4];
 content[i][4] = imageobj;
 break;
 }

Notice that the pictureaudio case does some juggling to create the content element with references
to the newly created audio element and the Image element.

However, this was not quite enough to ensure that the video and audio end up on the right-hand
side for all browsers. That is, it worked for some but not others. I decided to position the audio and video
exactly—that is, in absolute terms. This required the following CSS in the style element for all video and
audio elements:

video {display:none; position:absolute; top: 60px; right: 20px; }
audio {display:none; position:absolute; top: 60px; right: 20px;}

The position of the audio is for the audio controls.

Hint Button
You can tell from my coding that I was ambivalent about whether to provide a hint or help a player who
had given up. In the body element, I included

<button onClick="giveup();">Hint? </button>

The giveup function creates a new map. That is, it uses the makemap function to construct access to a
different Google Map in the same place. It also erases the old media and puts directions into the answer
element.

function giveup() {
 makemap(content[nextquestion][0],content[nextquestion][1]);
 eraseold();
 answer.innerHTML="Click at red x to finish this question.";
}

Shuffling
I added a shuffle step to mix up the order of questions. More exactly, the program shuffles the content
array and the questions array, keeping the items in parallel. The shuffle algorithm I used is the same
Fisher-Yates algorithm demonstrated in Chapter 10 of The Essential Guide to HTML5. See also
http://eli.thegreenplace.net/2010/05/28/the-intuition-behind-fisher-yates-shuffling/ for an
explanation on how the shuffling works.

This algorithm determines a random location for each element. Since I need to keep the two arrays
in parallel, the same swap operation must be made for each array. In the code that follows, you see that

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

150

it is determined that the s and i elements are to change locations. Two variables, hold and holdq, are the
extra places used in the swap operation.

function shufflecontent() {
 var i=content.length-1;
 var s;
 var hold;
 var holdq;
 while(i>0) {
 s = Math.floor(Math.random()*(i+1));
 hold = content[s];
 content[s]=content[i];
 content[i] = hold;
 holdq = questions[s];
 questions[s]=questions[i];
 questions[i] = holdq;
 i--;
 }
}

With this explanation of the various parts, I’ll go on in the next section to describe the three
applications.

Building the Application and Making It Your Own
The first and critical step in making the application your own is to decide on the content. You can
choose to not implement the first application, mapvideos, which has the content hard-coded, so to
speak, with all the other coding. Again, I included it because I wrote it first and it is the easiest to
understand. I strongly believe that most people would develop something like it, and then possibly
decide to separate content from coding. You may go straight to mapmediabase or mapmediaquiz if
you like.

The Mapvideos Application
The mapvideos application sets up the combination of Google Maps functionality with HTML5 coding for
video, audio, and pictures on canvas. The canvas is not on top of the map. A quick summary of the
application follows:

1. init: Performs initialization, including invoking makemap for bringing in the
map. The init function constructs the content array using data constructed as
references to elements in the body.

2. makemap: Brings in a map and sets up event handling, including the call to
checkit.

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

151

3. checkit: Compares the clicked location with the locations described in the
content array. If one is close enough, then the associated media is shown and
played.

4. dist: Computes the distance between two locations.

Table 5-2 outlines the functions in the mapvideos project. The function table describing the
invoked/called by and calling relationships is similar for all the applications.

Table 5-2. Functions in the Mapvideos Portal Project

Function Invoked/Called By Calls

init Invoked by action of the onLoad attribute in the <body> tag makemap

makemap Invoked by init

checkit Invoked by addListener call in makemap dist

dist Invoked by checkit

Table 5-3 shows the code for the original portal application, mapvideos.html.

Table 5-3. Complete Code for the Mapvideos Portal Application

Code Line Description

<!DOCTYPE html> Doctype for HTML5

<html> html tag

<head> Head tag

<title>Clickable map </title> Complete title element

<meta charset="UTF-8"> Meta tag, standard for HTML5

<style> Style tag

header {font-family:Georgia,
"Times New Roman",serif;

Set styling for the header, a semantic element;
the font family makes Georgia the first choice,
with Times New Roman a fallback, and the
default serif the next fallback choice of fonts

 font-size:20px; Fairly big font

 display:block; Set line breaks before and afterward

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

152

} Close style directive

video {display:none; position:relative; } Style directive for video

audio {display:none; position:relative;} Style directive for audio; note that this is for the
controls

</style> Closing style tag

<script type="text/javascript" charset="UTF-8"
src="http://maps.google.com/maps/api/js?sensor=
false"></script>

Script element bringing in Google Maps API

<script type="text/javascript" charset="UTF-8"> Starting script tag

var maxdistance = 5; Set maxdistance to be 5, a value I decided was
appropriate; a click needed to be within 5
kilometers of one of the targets to be
considered close enough

var listener; Placeholder for call of addListener

var map; Variable holding the current map

var myOptions; Variable for the associative array holding the
options for a call to the Map constructor

var ctx; Variable holding the context of the canvas

var blatlng; Variable holding the constructed
latitude/longitude object for the base location

var esther = new Image(); Variable holding an Image object

esther.src = "esther.jpg"; Set the src of this Image object to the file
address

var aviva = new Image(); Variable holding an Image object

aviva.src = "avivadixon.jpg"; Set the src of this Image object to the file
address

var vid1; Set in init to one of the video elements

var vid2; Set in init to one of the video elements

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

153

var aud1; Set in init to the audio element

var content; Declared here as global variable; will be set in
init

var answer; Will be set in init to reference a div in the body

var v; reference to current (last) video

var audioel; Reference to current (last) audio

var base= [41.04796,-73.70539,
"Purchase College/SUNY"];

Variable set to the base for my project

function init() { Function header for init

 ctx =
document.getElementById("canvas").getContext('2d
');

Set ctx for use in drawing on canvas

 makemap(base[0],base[1]); Invoke makemap

 answer = document.getElementById("answer"); Set answer

 vid1 = document.getElementById("maze"); Set vid1 for one of the video elements

 vid2 = document.getElementById("fire"); Set vid2 for the other video element

 aud1 = document.getElementById("mpiano"); Set aud1 for the audio element

 content = [Set the setting of the content array

 [41.19991,-73.72353,"Esther at
home","pictureaudio",esther,aud1],

Info for the Esther picture audio combination

 [41.05079,-73.70448,"Lego robot
","video",vid1],

Info for the Lego robot video

 [40.68992,-74.04460,"Fire works
","video",vid2],

Info for the Fireworks video

 [41.8442,-89.480,"Aviva in
Dixon","picture",aviva]

Info for the Aviva picture

]; End of content array

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

154

 } Close init function

var xmarker = "x1.png"; Set file address for marker on the map

function makemap(mylat,mylong) { Header for makemap function; map to be
centered (mylat,mylong)

 var marker; Holds the constructed marker

 blatlng = new google.maps.LatLng(mylat,mylong); Set the latitude/longitude object

myOptions = { Start to set up the options array

 zoom: 13, Zoom set at constant, arrived at after
experimenting

 center: blatlng, Center at blatlng

 mapTypeId: google.maps.MapTypeId.ROADMAP Roadmap type

 }; Close myOptions array

map = new
google.maps.Map(document.getElementById("place")
, myOptions);

Invoke constructor to bring in the Google Maps

 marker = new google.maps.Marker({
 position: blatlng,
 title: "center",
 icon: xmarker,
 map: map });

Mark center

 listener =
google.maps.event.addListener(map, 'click',
function(event) {

Set up event handling for clicking the map

 checkit(event.latLng); The function checkit is invoked with the latLng
attribute of the event as the parameter

 }); Close call to bring in map

} Close makemap function

function checkit(clatlng) { Header for checkit function

 var i; Used for indexing

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

155

 var latlnga =new
google.maps.LatLng(content[0][0],content[0][1]);

Build latitude/longitude object from first
element of content

 var bestyet = 0; Will point to the index determined to be the
best (closest) so far

 var closestdistance =
dist(clatlng,latlnga);

Calculate distance to the first element

 var distance; Used to hold distance

 for (i=1;i<content.length;i++) { Set up iteration over content, starting at the
second (index = 1) element

 latlnga = new
google.maps.LatLng(content[i][0],content[i][1]);

Build latitude/longitude object

 distance =
dist(clatlng,latlnga);

Calculate distance

 if (distance < closestdistance)
{

Compare to the closest so far; if this one is less. .
.

 closestdistance =
distance;

. . . then replace previous candidate for closest
distance . . .

 bestyet = i; and previous index

 } Close if true clause

 } Close for loop

 distance =
Math.floor((closestdistance+.005)*100)/100;

Set distance; note that formatting not needed at
this stage; may choose to use in the future

 if (v != undefined) { Check if there was a previous video

 v.pause(); Pause it

 v.style.display = "none"; Remove from display

 } Close if previous video clause

 if (audioel != undefined) { Check if previous audio

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

156

 audioel.pause(); Pause it

 audioel.style.display = "none"; Erase controls for last audio played

 } Close if audio clause

 ctx.clearRect(0,0,300,300); Clear canvas

 if (distance < maxdistance) { Is this distance close enough?

 marker = new google.maps.Marker({
 position: clatlng,
 title: content[bestyet][2],
 icon: xmarker,
 map: map });

Mark the target position on the map; note that
this is the target location, not the click location

 switch (content[bestyet][3]) { Determine what type of media this is

 case "video": For video

 answer.innerHTML=content[bestyet][2]; Display the title

 v = content[bestyet][4]; Set v to be the video

 v.style.display="block"; Make the video element visible (The previous
setting of style.display was "none".”

 v.currentTime = 0; Set the video time to zero to start playback at
the beginning; this restarts the video, just in
case it has starting playing before

 v.play(); Play the video

 break; Leave the switch statement

 case "picture": For picture

 case "pictureaudio": For pictureaudio

answer.innerHTML=content[bestyet]
[2];

Display the title

 ctx.drawImage(content[bestyet]
[4],10,10);

Draw the image on the canvas

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

157

 if
(content[bestyet][3]=="picture") {

If it is picture . . .

 break;} . . . leave the switch

 else { Else (for the picture/audio combination)

 audioel = content[bestyet][5]; Set audioel to be the audio element

 audioel.style.display="block"; Display the audio—that is, the controls

 audioel.currentTime = 0; Set time to zero

 audioel.play(); Play the audio

 break; Leave the switch

 } Close the picture or pictureaudio clause

 } Close the switch

 } Close the if close enough clause

 else { Else

 answer.innerHTML="Not close
enough to any [new] target";

Display message that click was not close
enough to anything

 } Close clause

} Close checkit function

 function dist(point1, point2) { Header for dist-between-two-points function

 var R = 6371; // km Factor used for kilometers (the radius of the
earth)

 // var R = 3959; // miles Comment in code; leave in just in case you
want to switch to miles

 var lat1 = point1.lat()*Math.PI/180; Change to radians

 var lat2 = point2.lat()*Math.PI/180 ; Change to radians

 var lon1 = point1.lng()*Math.PI/180; Change to radians

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

158

 var lon2 = point2.lng()*Math.PI/180; Change to radians

var d = Math.acos(Math.sin(lat1)*Math.sin(lat2)
+
Math.cos(lat1)*Math.cos(lat2) *
Math.cos(lon2-lon1)) * R;

Calculation based on spherical law of cosines

 return d; Return result

 } Close dist function

</script> Closing script tag

</head> Closing head tag

<body onLoad="init();"> Body tag, invoked init

<header id="header">Click on map.</header> Header for the page

<div id="place" style="float: left;width:60%;
height:400px"></div>

Set up div to float to the left; this will be the
place for the map

<div style="float:
right;width:38%;height:400px">

Set up div to float to the right; it holds the
answer and the media (video, audio, and
canvas)

<div id="answer">Title will be placed
here.</div>

Place for the titles (i.e., text about the location
and the media)

<p> </p> Spacing

<video id="maze" preload="auto"
controls="controls" width="400">

Video tag

<source src="maze.mp4" type='video/mp4;
codecs="avc1.42E01E, mp4a.40.2"'>

Possible source

<source src="maze.theora.ogv" type='video/ogg;
codecs="theora, vorbis"'>

Possible source

<source src="maze.webmvp8.webm"
type='video/webm; codec="vp8, vorbis"'>

Possible source

Your browser does not accept the video tag. Standard text for noncompliant browsers

</video> Closing video tag

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

159

<video id="fire" preload="auto"
controls="controls">

Video tag

<source src="sfire3.mp4" type='video/mp4;
codecs="avc1.42E01E, mp4a.40.2"'>

Possible source

<source src="sfire3.theora.ogv" type='video/ogg;
codecs="theora, vorbis"'>

Possible source

<source src="sfire3.webmvp8.webm"
type='video/webm; codec="vp8, vorbis"'>

Possible source

Your browser does not accept the video tag. Standard text for noncompliant browsers

</video> Closing video tag

<audio id="mpiano" controls="controls"
preload="preload">

Audio tag

<source src="estherT.ogg" type="audio/ogg" /> Possible source

<source src="estherT.mp3" type="audio/mpeg" /> Possible source

<source src="estherT.wav" type="audio/wav" /> Possible source

</audio> Closing tag

<canvas id="canvas" width="300" height="300" > Canvas tag

Your browser doesn't recognize canvas Standard text for noncompliant browsers

</canvas> Closing canvas tag

</div> Closes div that floated from the right

</body> Closing body tag

</html> Closing html tag

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

160

The Mapmediabase Application
The next application, mapmediabase.html, recreates the first application, but uses a separate file for the
content. You can easily make this one your own by changing the content. You need to obtain the
latitude/longitude coordinates for your locations. To do so, you can use the mapspotlight.html
application covered in the last chapter, you can use Google Maps directly, you can use Wolfram Alpha,
or you can look them up in an atlas. A quick summary of the application follows:

1. init: Performs initialization, including the call to loadcontent.

2. loadcontent: Uses the variables, most significantly the precontent array
included in the external script element, to create new markup for the media. It
also invokes makemap.

3. makemap: Brings in the map and sets up event handling, including the call to
checkit.

4. checkit: Compares the clicked location with the locations described in the
content array. If one is close enough, then the associated media is shown and
played.

5. dist: Computes the distance between two locations.

Table 5-4 outlines the functions in the second portal application. The function table describing the
invoked/called by and calling relationships for the mapmediabase.html application is similar for all the
applications.

Table 5-4. Functions in the Second Portal Application

Function Invoked/Called By Calls

init Invoked by action of the onLoad attribute in the <body> tag makemap

makemap Invoked by init

checkit Invoked by addListener call in makemap dist

dist Invoked by checkit

loadcontent Invoked by init

Table 5-5 shows the code for the second portal application, named mapmediabase.html. Please look

back at the “External Script File” section to see the code (all the variable declarations) for the contents of
mediacontent.js.

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

161

Table 5-5. Complete Code for the Second Portal Application

Code Line Description

<!DOCTYPE html>

<html>

<head>

<title>Clickable map </title>

<meta charset="UTF-8">

<style>

header {font-family:Georgia,"Times New Roman",serif;

 font-size:20px;

 display:block;

}

video {display:none; position:absolute; top: 60px;
 right: 20px; }

Required to get video to be on
the right

audio {display:none; position:absolute; top: 60px;
 right: 20px;}

Required to get audio controls
to be on the right

canvas {position:relative; top:60px}

#answer {position:relative; font-family:Georgia,
 "Times New Roman", Times, serif; font-size:16px;}

</style>

<script type="text/javascript" charset="UTF-8"
src="http://maps.google.com/maps/api/js?sensor=false">
</script>

<script type="text/javascript" src="mediacontent.js">
 </script>

Bring in the specific content

<script type="text/javascript" charset="UTF-8">

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

162

Code Line Description

var listener;

var map;

var myOptions;

var ctx;

var blatlng;

var content = [];

var answer;

var v;

var audioel;

var videotext1 = "<video id=\"XXXX\" preload=\"auto\"
controls=\"controls\" width=\"400\"><source src=\"XXXX.mp4\"
type=\'video/mp4; codecs=\"avc1.42E01E, mp4a.40.2\"\'>";

The first dummy (template) text
to be used to create markup for
video element

var videotext2="<source src=\"XXXX.theora.ogv\"
type=\'video/ogg; codecs=\"theora, vorbis\"\'><source
src=\"XXXX.webmvp8.webm\" type=\'video/webm; codec=\"vp8,
vorbis\"\'>";

The second piece of dummy
text to be used to create markup
for video element

var videotext3="Your browser does not accept the video
tag.</video>";

The third piece of dummy text
to be used to create markup for
video element

var audiotext1="<audio id=\"XXXX\" controls=\"controls\"
preload=\"preload\"><source src=\"XXXX.ogg\"
type=\"audio/ogg\" />";

The first piece of dummy text to
be used to create markup for
audio element

var audiotext2="<source src=\"XXXX.mp3\" type=\"audio/mpeg\"
/><source src=\"XXXX.wav\" type=\"audio/wav\" /></audio>";

The second piece of dummy
text to be used to create markup
for audio element

function init() {

 ctx = document.getElementById("canvas").getContext('2d');

 answer = document.getElementById("answer");

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

163

Code Line Description

 loadcontent(); Invoke loadcontent to perform
the rest of the initialization

}

function loadcontent() { Header for loadcontent
function

 var divelement; Used to hold dynamically
created div

 makemap(base[0],base[1]); Bring in the map

 var videomarkup; Used to hold the text string for
the video element HTML
markup

 var videoelementreference; Used to hold the reference to
the newly created video
element

 var audiomarkup; Used to hold the text string for
the audio element HTML
markup

 var audioelementreference; Used to hold the reference to
the newly created audio
element

 var imageobj; Used to hold the newly created
Image object

 var name; Used to hold the name

 var savedimagefilename; Needed to hold the image file
name because slot in inner
array is overwritten

 for (var i=0;i<precontent.length;i++) { Iterate over the precontent
items

 content.push(precontent[i]); Add the item (itself an array) to
the content array

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

164

Code Line Description

 name = precontent[i][4]; Extract the name

 switch (precontent[i][3]) { Switch over the different types
(video, picture, pictureaudio)

 case "video": For the video case

 divelement= document.createElement("div"); Create a new container div

 divelement.style = "float: right;width:30%;"; Style it to float to the right
(though this does not work in all
browsers)

 videomarkup = videotext1+videotext2+videotext3; Create the whole HTML
markup for video elements

 videomarkup = videomarkup.replace(/XXXX/g,name); Change XXXX to the name given
in precontent

 divelement.innerHTML = videomarkup; Set the constructed text to be
the HTML within the div

 document.body.appendChild(divelement); Add the div to the body

videoelementreference = document.getElementById(name); Obtain a reference to the
created video element

 content[i][4] = videoelementreference; Put this value into the content
array

 break; Leave switch

case "pictureaudio": For the pictureaudio case

divelement = document.createElement("div"); Create a new container div

divelement.style = "float: right;width:30%;"; Style it to float to the right
(though this does not work in all
browsers)

audiomarkup = audiotext1+audiotext2; Create the whole HTML
markup for audio elements

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

165

Code Line Description

audiomarkup = audiomarkup.replace(/XXXX/g,name); Change the XXXX to the name
given in precontent

divelement.innerHTML = audiomarkup; Set the constructed text to be
the HTML within the div

document.body.appendChild(divelement); Add the div to the body

audioreference = document.getElementById(name); Obtain a reference to the
created audio element

savedimagefilename = content[i][5]; Save the file name

content[i][5] = audioreference; Overwrite that position to be
the reference to the audio

imageobj = new Image(); Create a new Image object

imageobj.src= savedimagefilename; Set its src to be the file name

content[i][4] = imageobj; Set the content item to be the
Image object

break; Leave the switch

case "picture": In the case of picture

imageobj = new Image(); Create a new Image object

imageobj.src= precontent[i][4]; Set its src to be the file name

content[i][4] = imageobj; Set the content item to be the
Image object

break; Leave the switch (not strictly
necessary, because it is the last
one, but leave in just in case
new media types are added)

 } Close switch

} Close for loop

} Close loadcontent function

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

166

Code Line Description

var xmarker = "x1.png"; Image for marker on map

function makemap(mylat,mylong) {

 var marker;

 blatlng = new google.maps.LatLng(mylat,mylong);

myOptions = {

 zoom: zoomlevel, Pick up this value from the
external file

 center: blatlng,

 mapTypeId: google.maps.MapTypeId.ROADMAP,

 };

map = new google.maps.Map(document.getElementById("place"),
myOptions);

marker = new google.maps.Marker({

 position: blatlng,

 title: "center",

 icon: xmarker,

 map: map });

 listener = google.maps.event.addListener(map, 'click',
function(event) {

 checkit(event.latLng);

 });

}

function checkit(clatlng) {

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

167

Code Line Description

 var i;

 var latlnga =new
google.maps.LatLng(content[0][0],content[0][1]);

 var bestyet = 0;

 var closestdistance = dist(clatlng,latlnga);

 var distance;

 for (i=1;i<content.length;i++) {

 latlnga = new
google.maps.LatLng(content[i][0],content[i][1]);

 distance = dist(clatlng,latlnga);

 if (distance < closestdistance) {

 closestdistance = distance;

 bestyet = i;

 }

 }

 distance = Math.floor((closestdistance+.005)*100)/100;

 if (distance<maxdistance) {

 marker = new google.maps.Marker({
 position: clatlng,
 title: content[bestyet][2],
 icon: xmarker,
 map: map });

 if (v != undefined) {

 v.pause();

 v.style.display = "none";

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

168

Code Line Description

 }

 if (audioel != undefined) {

 audioel.pause();

 audioel.style.display = "none";

 }

 switch (content[bestyet][3]) {

 case "video":

 answer.innerHTML=content[bestyet][2];

 ctx.clearRect(0,0,300,300);

 v = content[bestyet][4];

 v.style.display="block";

 v.currentTime = 0;

 v.play();

 break;

 case "picture":

 case "pictureaudio":

 answer.innerHTML=content[bestyet][2];

 ctx.clearRect(0,0,300,300);

 ctx.drawImage(content[bestyet][4],10,10);

 if (content[bestyet][3]=="picture") {

 break;}

 else {

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

169

Code Line Description

 audioel = content[bestyet][5];

 audioel.style.display="block";

 audioel.currentTime = 0;

 audioel.play();

 break;

 }

 }

 }

 else {

 answer.innerHTML= "Not close enough to any
[new] target.";

 }

}

 function dist(point1, point2) {

 var R = 6371; // km

 // var R = 3959; // miles

 var lat1 = point1.lat()*Math.PI/180;

 var lat2 = point2.lat()*Math.PI/180 ;

 var lon1 = point1.lng()*Math.PI/180;

 var lon2 = point2.lng()*Math.PI/180;

var d = Math.acos(Math.sin(lat1)*Math.sin(lat2) +
Math.cos(lat1)*Math.cos(lat2) * Math.cos(lon2-lon1)) * R;

 return d;

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

170

Code Line Description

 }

</script>

</head>

<body onLoad="init();">

<header id="header">Click on map.</header>

<div id="place" style="float: left;width:50%;
height:400px"></div>

<div style="float: right;width:30%;height:400px">

<div id="answer">Title will be placed here.</div>

<p> </p>

<canvas id="canvas" width="300" height="300" >

Your browser doesn't recognize canvas

</canvas>

</div>

</body>

</html>

The Quiz Application
The third and last application for this chapter was a quiz. The implementation was built on the second
application. It makes use of an external script file. Look back at the “External Script File” section for the
contents. A quick summary of the application follows:

1. init: Performs initialization, including the call to loadcontent.

2. loadcontent: Uses the variables, most significantly the precontent array
included in the external script element, to create new markup for the media. It
also invokes makemap. The questions array does not need any more work.

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

171

3. makemap: Brings in the map and sets up event handling, including the call to
checkit.

4. shufflecontent: Shuffles the content and questions arrays (keeping them in
correspondence).

5. asknewquestion: Displays the questions.

6. checkit: Compares the clicked location with the location for this question.

7. dist: Computes the distance between two locations.

8. giveup: Brings in a new map centered at the location for the current question.

9. eraseold: Removes any currently showing video, audio, or picture.

Table 5-6 outlines the functions in the quiz application. The function table describing the
invoked/called by and calling relationships for the mapmediabase.html application is similar for all
applications.

Table 5-6. Functions in the Quiz Application

Function Invoked/Called By Calls

init Invoked by action of the onLoad attribute in the <body> tag loadcontent,
asknewquestion

makemap Invoked by init

checkit Invoked by addListener call in makemap dist, asknewquestion

dist Invoked by checkit

loadcontent Invoked by init

asknewquestion Invoked by init and checkit

eraseold Invoked by checkit and giveup

giveup Invoked by action of button eraseold

Table 5-7 shows the code for the quiz application, with comments for new or changed statements.

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

172

Table 5-7. Include Table Caption

Code Line Description

<!DOCTYPE html>

<html>

<head>

<title>Map Quiz </title>

<meta charset="UTF-8">

<style>

header {font-family:Georgia,"Times New Roman",serif;

 font-size:20px;

 display:block;

}

video {display:none; position:absolute; top: 60px;
 right: 20px;

}

audio {display:none; position:absolute; top: 60px;
 right: 20px;}

canvas {position:relative; top:60px}

#answer {position:relative; font-family:Georgia,
 "Times New Roman", Times, serif; font-size:16px;}

</style>

<script type="text/javascript" charset="UTF-8"
src="http://maps.google.com/maps/api/js?sensor=false">
</script>

<script type="text/javascript" src="mediaquizcontent.js">
 </script>

Bring in the content in
mediaquizcontent.js

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

173

Code Line Description

<script type="text/javascript" charset="UTF-8">

var listener;

var map;

var myOptions;

var ctx;

var blatlng;

var content = [];

var answer;

var v;

var audioel;

var videotext1 = "<video id=\"XXXX\" preload=\"auto\"
controls=\"controls\" width=\"400\"><source src=\"XXXX.mp4\"
type=\'video/mp4; codecs=\"avc1.42E01E, mp4a.40.2\"\'>";

var videotext2="<source src=\"XXXX.theora.ogv\"
type=\'video/ogg; codecs=\"theora, vorbis\"\'><source
src=\"XXXX.webmvp8.webm\" type=\'video/webm; codec=\"vp8,
vorbis\"\'>";

var videotext3="Your browser does not accept the video
tag.</video>";

var audiotext1="<audio id=\"XXXX\" controls=\"controls\"
preload=\"preload\"><source src=\"XXXX.ogg\"
type=\"audio/ogg\" />";

var audiotext2="<source src=\"XXXX.mp3\" type=\"audio/mpeg\"
/><source src=\"XXXX.wav\" type=\"audio/wav\" /></audio>";

var nextquestion = -1; The question counter needs to
start before the 0th one

function init() {

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

174

Code Line Description

 ctx = document.getElementById("canvas").getContext('2d');

 answer = document.getElementById("answer");

 header = document.getElementById("header");

 loadcontent();

 shufflecontent(); Invoke function to shuffle order
of questions

 asknewquestion(); Invoke function to ask question,
thus starting off the quiz

}

function shufflecontent() { Header for shufflecontent
function; two arrays will be
shuffled

 var i=content.length-1; Start off at end

 var s; Hold the randomly designated
spot

 var hold; For holding the content element,
itself an array

 var holdq; For holding the question
element

 while(i>0) { Start at the end and work down
to zero

 s = Math.floor(Math.random()*(i+1)); Pick a random position

 hold = content[s]; Start with the content array; save
the sth element

 content[s]=content[i]; Swap in the ith element

 content[i] = hold; Put in the saved element

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

175

Code Line Description

 holdq = questions[s]; Now, working on the questions
array, save the sth element

 questions[s]=questions[i]; Swap in the ith element

 questions[i] = holdq; Put in the saved element

 i--; Decrement i

 } Close while loop

} Close shufflecontent function

function asknewquestion() { Header for asknewquestion
function

 nextquestion++; Increment the counter

if (nextquestion<questions.length) { If still more questions

 header.innerHTML=questions[nextquestion]; Show question

 } Close the if-still-more-questions
clause

 else { Else

 header.innerHTML="No more questions."; Display no more questions

 } Close else clause

} Close asknewquestion function

function loadcontent() {

 var divelement;

 makemap(base[0],base[1]);

 var videomarkup;

 var videoreference;

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

176

Code Line Description

 var audiomarkup;

 var audioreference;

 var imageobj;

 var name;

 var savedimagefilename;

 for (var i=0;i<precontent.length;i++) {

 content.push(precontent[i]);

 name = precontent[i][4];

 switch (precontent[i][3]) {

 case "video":

divelement= document.createElement("div");

videomarkup = videotext1+videotext2+videotext3;

videomarkup = videomarkup.replace(/XXXX/g,name);

 divelement.innerHTML = videomarkup;

 document.body.appendChild(divelement);

videoreference = document.getElementById(name);

content[i][4] = videoreference;

break;

case "pictureaudio":

divelement = document.createElement("div");

audiomarkup = audiotext1+audiotext2;

audiomarkup = audiomarkup.replace(/XXXX/g,name);

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

177

Code Line Description

divelement.innerHTML = audiomarkup;

document.body.appendChild(divelement);

audioreference = document.getElementById(name);

savedimagefilename = content[i][5];

content[i][5] = audioreference;

imageobj = new Image();

imageobj.src= savedimagefilename;

content[i][4] = imageobj;

break;

case "picture":

imageobj = new Image();

imageobj.src= precontent[i][4];

content[i][4] = imageobj;

break;

}

}

}

var xmarker = "x1.png";

function makemap(mylat,mylong) {

 var marker;

 blatlng = new google.maps.LatLng(mylat,mylong);

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

178

Code Line Description

myOptions = { zoom: zoomlevel, center: blatlng,
mapTypeId: google.maps.MapTypeId.ROADMAP };

map = new google.maps.Map(document.getElementById("place"),
myOptions);

marker = new google.maps.Marker({
position: blatlng, title: "center", icon: xmarker, map: map
});

 listener = google.maps.event.addListener(map, 'click',
function(event) {

 checkit(event.latLng);

 });

}

function eraseold() { Header for eraseold function
(same code as in previous
example, but now in a function)

 if (v != undefined) { Is there an old v defined?

 v.pause(); Pause it

 v.style.display = "none"; Remove from display

 } Close clause

 if (audioel != undefined) { Is there an old audioel defined?

 audioel.pause(); Pause it

 audioel.style.display = "none"; Erase controls for last audio
played

 } Close clause

 ctx.clearRect(0,0,300,300); Clear canvas

} Close eraseold function

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

179

Code Line Description

function checkit(clatlng) {

 var latlnga =new
google.maps.LatLng(content[nextquestion][0],content[nextquesti
on][1]);

Build the latitude/longitude
object for the answer to this
question

 var distance = dist(clatlng,latlnga); Compute distance

 eraseold(); Invoke the function to erase any
media now on display

if (distance<maxdistance) { Was the user’s click close
enough?

 marker = new google.maps.Marker({position: latlnga,
title: content[nextquestion][2], icon: xmarker, map: map });

Mark the correct location;
function continues as in
previous applications

 switch (content[nextquestion][3]) {

 case "video":

answer.innerHTML=content[nextquestion][2];

 ctx.clearRect(0,0,300,300);

 v = content[nextquestion][4];

 v.style.display="block";

 v.currentTime = 0;

 v.play();

 break;

 case "picture":

 case "pictureaudio":

answer.innerHTML=content[nextquestion][2];

 ctx.clearRect(0,0,300,300);

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

180

Code Line Description

ctx.drawImage(content[nextquestion][4],10,10);

if (content[nextquestion][3]=="picture") {

 break;}

 else {

 audioel = content[nextquestion][5];

 audioel.style.display="block";

 audioel.currentTime = 0;

 audioel.play();

break;

}

 }

 asknewquestion(); Ask a new question (only if the
user’s guess was close enough)

 }

 else {

 answer.innerHTML= "Not close enough to the
answer.";

 }

}

 function dist(point1, point2) {

 var R = 6371; // km

 // var R = 3959; // miles

 var lat1 = point1.lat()*Math.PI/180;

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

181

Code Line Description

 var lat2 = point2.lat()*Math.PI/180 ;

 var lon1 = point1.lng()*Math.PI/180;

 var lon2 = point2.lng()*Math.PI/180;

var d = Math.acos(Math.sin(lat1)*Math.sin(lat2) +
Math.cos(lat1)*Math.cos(lat2) *
Math.cos(lon2-lon1)) * R;

 return d;

 }

function giveup() { Header for the giveup function

makemap(content[nextquestion][0],content[nextquestion][1]);

Bring in new map centered at
the answer

 eraseold(); Erase any old media

 answer.innerHTML="Click at red x to finish this
question.";

Display instructions since player
needs to click to proceed; this
gives the player a way to indicate
that he or she has seen the new
map

}

</script>

</head>

<body onLoad="init();">

<header id="header">Click</header>

<div id="place" style="float: left;width:50%;
height:400px"></div>

<button onClick="giveup();">Hint? </button> Button indicated need for help

<div style="float: right;width:30%;height:400px">

CHAPTER 5 ■ MAP PORTAL: USING GOOGLE MAPS TO ACCESS YOUR MEDIA

182

Code Line Description

<div id="answer">Title will be placed here.</div>

<p> </p>

<canvas id="canvas" width="300" height="300" >

Your browser doesn't recognize canvas

</canvas>

</div>

</body>

</html>

Testing and Uploading the Application
I described three separate applications in this chapter. The mapvideos.html application consists of a
single HTML file. The other two applications were each made up of two HTML files: one with the bulk of
the coding and the other with the content. In all cases, the coding referenced the media. I used the same
video files for the two video clips, the audio files for the single audio clip, and the two image files in all
three cases. I used the image of a small hand-drawn x to mark locations on the map, instead of the
default teardrop shape for markers in Google Maps.

As is the case for the project in the last chapter and the next chapter, this application does require
you to be online to test since that is the only way to make contact with Google Maps.

Summary
In this chapter, you continued using the Google Maps API. You learned how to do the following:

• Program Google Maps API event handling to detect if the user was close to
locations for which you had video, audio, or images

• Separate the definition of media content from the program itself

• Create HTML5 markup dynamically, using a regular expression to produce the
right markup

• Start and stop the display and playing of media

In the next chapter, we will explore the use of geolocation, together with the Google Maps API,
HTML5, and JavaScript and php to perform the sending of email.

C H A P T E R 6

183

Where am I: Using Geolocation,
the Google Maps API, and PHP

In this chapter, you will learn the following:

• How to use geolocation to determine the location of your users/customers/clients

• About reverse geocoding in the Google Maps API to find the address of a given
latitude/longitude

• About the asynchronous nature of certain operations in the Google Maps API

• How to send e-mail by using a server-side function

Introduction
The projects for this chapter involve the Google Maps API, geolocation, and PHP. I will describe two
applications: the first just to show geolocation, a facility in which the browser determines the user’s
location using one of a variety of means. This application lets you find out where the location services
think you are and compare it to where you really are. The second application provides a way for the user
to generate an e-mail using the geolocation information along with other data and send it to someone.
This makes use of a server-side PHP script to send the e-mail, and HTML5 form validation to confirm the
e-mail addresses.

The geolocation specification is under development in parallel with HTML5 and is considered a
distinct specification. It also is different from Google Maps, though Google Location Services is one of
the main sources of geolocation information. An obvious thing to do with the location data is to display a
Google Map, but you can do anything you want with the information.

One important feature of the geolocation specification is that the user—that is, the person on the
client computer browsing the web page—must give approval for the location to be determined. This is
so-called “opt-in.” The exact look of the screen varies with the different browsers. The terminology
varies: a specific address may want to know, to track, or to use. It is all the same thing. Figure 6-1 shows
the opening screen using Firefox.

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

184

Figure 6-1. Opening screen with request for permission to share location (Firefox)

The drop-down menu offers four options: Share Location, Always Share, Never Share, and Not Now.
If you choose the first option, when you refresh the screen or return to the page, the program will
prompt again for a response.

Notice that other material already appears on the screen from my program. The request for
permission is triggered when the code is invoked for the geolocation operation. Figure 6-2 shows the
analogous screen in the Opera browser.

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

185

Figure 6-2. Opening screen with request for permission to share location (Opera)

Notice that Opera gives the option of remembering the choice for this site. Figure 6-3 shows a
follow-on screen that requests another confirmation that the user is opting-in.

Figure 6-3. Additional request from Opera

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

186

Figure 6-4 shows the corresponding screen in Chrome. At this point, I had uploaded the application
to one of my server accounts. The browser uses the domain name of the account in its query.

Figure 6-4. Opening screen with request for permission to share location (Chrome)

Figure 6-5 shows the screen for Safari. I returned again to using a file on my local computer.

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

187

Figure 6-5. Request for permission to share location (Safari)

Notice that Safari provides the user a way to give permission for 24 hours—that is, avoid repeated
requests each day. Note that Safari on my desktop PC does not work, and unfortunately hangs up—does
nothing—rather than trigger the problem handler when the simplest call is made. I will show where it
does work when explaining the different ways that geolocation actually is performed and techniques to
use so that the problem handler will be triggered. For now, I note that the variant of Safari running on
the iPhone does work. Figure 6-6 shows the permission screen for an iPhone. I wanted to test the other
program, so I made use of another server account.

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

188

Figure 6-6. Request to share location (iPhone)

There are many variables, which will be explained following, but in my recent experiment around
my town, the iPhone returned the most accurate results.

The permission is associated with the browser. For example, clicking “Remember my choice for this
site” for Opera will not affect what happens when you use Firefox or any other browser. You also can use
the general settings in the browser for all sites. For example, in Firefox, using Tools/Page
Info/Permissions, you can choose from among Always Allow, Always Block, and Always Ask, the latter
being what is recommended. In Opera, you can right-click (PC) or Ctrl+click (Mac), or choose Edit Site
Preferences ➤ Network, to get the same choices. In Chrome, you start by clicking the wrench symbol in
the upper right. Then choose Options ➤ Under the Hood ➤ Content Settings, and scroll down to
Location. Safari appears to take a different approach. You can click the gear symbol in the upper right
and then click Preferences and choose the Security tab. The choices are to allow sites to ask or not give
permission at all. The iPhone provides similar options in Settings ➤ General ➤ Location Services.

The geolocation standard is moving its way through the recommendation process in the W3C (see
www.w3.org/2008/geolocation/drafts/API/Implementation-Report.html). You need to check and keep
checking with each browser to determine what features work and how.

So, moving on, what does my program do after being given permission to determine the location?
The program, geolocationkmgeo.html, uses the returned coordinate values to bring in a Google Map, and
uses another service, reverse geocoding, to calculate an address. Figure 6-7 shows the result. The
geolocation is termed the base.

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

189

Figure 6-7. Location found in the basic program

The reverse geocoding has returned 100-162 E. Main Street, Mt. Kisco, NY 10549, USA for the
description of the address with accuracy given as 86 meters. That is fairly accurate for the location of the
red x. This screenshot was made while using a laptop at the Borders Café (now closed).That fact is
significant because, as will be demonstrated, the geolocation itself was fairly accurate The official W3C
specification for geolocation supplies little information on how the accuracy is calculated. This project
can be used to make your own analysis of how accurate the geolocation is. The user can use the Google
Maps interface to zoom and/or pan and then click the screen. This is what I did. A black dot will appear,
along with the reverse-geocode address and the distance from the base of the clicked location. This can
serve to check out distances to other locations, or calculate the distance from the geolocation to the
actual location. Figure 6-8 shows the result of clicking the screen at where I determined I actually was.

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

190

Figure 6-8. Screen showing actual location

The reverse geocoding is good: we were on Green Street. The program calculates and displays the
distance from the base (the red x) and where I clicked (the black x). The location was .03 kilometers
(equivalent to 30 meters). This is within the 86 meter accuracy returned by the geolocation function.

The second application demonstrates how you can use geolocation, reverse-geocode information,
and actions you take yourself to compose an e-mail to send to someone else. Of course, many
companies offer such services to facilitate meet-ups, promote restaurants, and so on. This application,
geolocationkme-mail.html, makes use of a small program written in PHP that runs on your server to
send e-mail to a person of your choosing. You will need to confirm that this is possible for your server
account. This is an extra service that your Internet Service Provider may or may not provide. We’ll will
return to PHP in Chapter 10.

After agreeing to allow geolocation, the opening screen of the second application is shown (see
Figure 6-9).

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

191

Figure 6-9. Opening screen for the e-mail program

Notice that there is a form on display with a place to put From and To e-mail addresses. The subject
line has the reverse-geocoding information, and the body of the message refers to the subject line.

Next, I click where I believe I am. This application does require you to be able to find yourself on a
map! Figure 6-10 shows the results.

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

192

Figure 6-10. After clicking the location, the screen with information in the message body

The clicked location now has the default marker used by Google Maps. This actually was an
oversight on my part, but I decided to stick with it to show you that you can use the default upside-down
teardrop icon. Notice that the subject line and the body of the e-mail have been filled. Now is the time to
put in the From and To addresses. You can also change what is in the body of the e-mail or the subject
line. You then click the SEND button. It is not instant, but the message will be sent to your e-mail
account. Figure 6-11 shows the message as it appears in my Gmail account.

Figure 6-11. The received e-mail with location information

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

193

I am satisfied with how this works, but what I have shown you so far appears to assume that my
users/customers/clients will be well behaved and put in proper e-mail addresses. This is a bad
assumption to make. To handle this, I declared form validation as a requirement for this application.
Form validation refers to a set of tests that are done to check if the input is valid. With form validation, if
the user neglects to put in anything before hitting the SEND button, the program will present something
like what is shown in Figure 6-12 (produced using Chrome).

Figure 6-12. Message from Chrome when a required field is empty

If the user puts in something, but that something isn’t a valid e-mail address, to the extent that it
can be ascertained in terms of format alone, the application will present something like what is shown in
Figure 6-13 (also produced using Chrome).

Figure 6-13. Invalid e-mail address as detected by Chrome

Other browsers also support similar form validation. Figure 6-14 shows the response produced by
Firefox for an empty field.

Figure 6-14. Message from Firefox when a required field is empty

Figure 6-15 shows the response produced by Firefox for input that was not the correct format for
e-mail.

Figure 6-15. Invalid e-mail address as detected by Firefox

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

194

One can argue that it would be better if all the form input fields were validated at once, but that
could lead to an overcrowded screen. We hope the user gets the message. If not, the messages will be
repeated for the To field. The user may wonder about the meaning of the From e-mail field. It does not
mean that this message will show up in the SENT folder in the user’s e-mail account. What it does is
make it possible for the receiver to click Reply.

With this introduction to the projects for this chapter, I’ll now provide background on geolocation
and other critical requirements for these applications.

Geolocation and Other Critical Requirements
The main requirement for this application concerns geolocation: determining a latitude and longitude
position for the client computer. In this section I will give a brief introduction to the wide variety of ways
that the task may be accomplished for computers that range from the most mobile smartphone to the
most sedentary desktop. The next section will describe the mechanics of how to use position
information in HTML5 and JavaScript.

If you have a Global Positioning System (GPS) chip in your car, phone, or tablet computer, the
notion of a computer program determining your location is commonplace. A GPS chip uses information
from some of the 24 GPS satellites orbiting the earth to determine its location. A single satellite in the sky
does not send down the information telling us where we are. Instead, the GPS device on the ground
receives signals from multiple satellites. The device uses the current time and the specified time when
each signal left the satellite to compute the travel time of each signal. It uses these travel times to
compute its distances from the satellites and uses these distances along with the locations of the
satellites to make the calculation. Using three satellites determines latitude and longitude; using four
determines latitude, longitude, and altitude. Roughly speaking, the determinations are made by
calculating the intersection of spheres: two spheres intersect in a circle. The software can make
assumptions on the sphere that represents the planet earth, but it may not be accurate, as I know from
one time using my car GPS and being “told” I was under the ramp to the Brooklyn Bridge. The local
device may use signals from even more satellites, often up to ten, to confirm results. The best GPS
applications use information from devices’ accelerometers to update their positions during brief
interruptions in GPS signal reception, a trick that once was restricted to navigating submarines. A
navigation device in a car or an app in a cell phone may also make use of data stored on the device to
convert the position into a street address.

So what happens if your computer does not have a GPS chip inside it, or is in a location from which
it cannot receive satellite signals, but does have a cell phone radio and is in a cell phone service area?
Another way to calculate position is to use the strengths of signals from one or more cell phone towers.
Google Location Services and other geolocation applications have determined where many of the towers
are and have stored that information in databases. If only a single cell phone tower is in range, a very
rough position estimate is the location of that tower. However, if your computer can receive signals from
several towers, then it can compute a much better estimate of your position. It uses the towers’ different
signal strengths instead of GPS satellites’ different signal-travel times to compute your position by using
known distances from known points.

If your computer has no GPS or cell phone radios but does connect by a short wire to a Wi-Fi radio,
then the browser may be able to determine its position using the strengths of signals from other nearby
Wi-Fi radios. It turns out that certain companies, such as Google Location Services, have databases with
the known position of many, many Wi-Fi hot spots. The location of a Wi-Fi hot spot can be determined
even if the hot spot is private and secure. The fact that Google, Apple, and probably other companies
collect this information is controversial. One way of collecting the information has been through the
vans that travel streets to get the images used for the Google Maps Street View service. Another way is to
keep the data used when people use certain apps on their phones and forward it to the companies to

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

195

add to their databases. In any case, these databases are referenced to provide hot spot positions for the
geolocation calculations. Your computer can use the signal strengths of neighboring hot spots to
estimate its distances from them, get their locations from the databases, and compute its own position.
Of course, its position then goes into the databases for other calculations to use!

■ Note Google, Apple, and others claim that data collected is stripped of personal information. I am not
sympathetic to companies gathering information secretly. However, we do need to accept that many services are
supplied for no explicit, per-use charge. To the adage/cliché, “you get what you pay for,” we may add something
like, “The crowd or community bears a burden for what we don’t pay for.”

Lastly, what if your computer has no GPS, cell phone, or Wi-Fi radio? The IP address—the four-
number combination that identifies your computer on the Web—is associated with a latitude and
longitude value. It does not work well—the positions may be way off--if the computer shares an IP
address with many others on a local network. However, this method allows the user of even an isolated
computer to benefit from applications knowing the approximate position of the computer. My
experience has been that the browsers on my desktop computer did not use Wi-Fi, but used the IP
method, or, in the case of Safari, either failed or timed out (see the next section for more on the timeout
option). In contrast, browsers on laptops and iPhones and iPads in my house, making use of the Wi-Fi
network attached to my desktop computer, did make use of Wi-Fi for geolocation, with much better
results.

These are the major technologies for determining position. The geolocation standard under
development by the W3C establishes methods, attributes, and events for the use of programmers to
access the information, if available.

My projects also make use of reverse geocoding, determining a street address or some sort of
descriptive information about the position. Presumably, Google Location Services and other similar
services have extensive databases on geographically descriptive terms associated with latitude and
longitude values—not each value, certainly, but ranges of values. The HTML5 facility described in the
next section provides several results produced by reverse geocoding, and you need to decide what is
appropriate for your application. It will be dependent on the region of the country and the world.

Both projects require a response to the user clicking the map. This includes marking the position in
a way that persists even when the map is moved or scaled. The projects also calculate the distance from
the base location to the marked location.

Sending e-mail requires first of all a way for the user to enter the e-mail address. Sending e-mail is
something beyond normal JavaScript processing, so to fulfill this requirement, it will be necessary to do
something different—namely, to run a program on the server. Recall the basic mechanism of the Web is
that files, including HTML documents, are located on server sites. A browser program, such as Firefox or
Opera, runs on what is called the client computer—my computer or your computer in our house or at the
coffee shop or library. The browser program fetches files from the server and interprets them. To
perform a server operation such as sending e-mail, the browser must invoke a program running on the
server.

Prior to sending the e-mail, the program needs to get the e-mail addresses, the To address to know
where to send the message, and the From address so that reply will work. The program should do some
sort of checking to make sure the addresses are valid. You will see that collecting and validating the
information is done on the client computer, the one right in front of you or your user. Processing the e-
mail and sending it are done by a PHP program running on the server, the computer holding the files for
the project.

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

196

These are the requirements to build the projects demonstrated in the “Introduction” section. In the
next section, I’ll describe the HTML5 and PHP features to implement the projects.

HTML5, CSS, JavaScript, and PHP Features
In this section, I will explain the features used to accomplish the requirements for the basic geolocation
project and the e-mail project.

Geolocation
The W3C standard for geolocation is independent of how or what service actually supplies the
information. It is assumed that the task will take time, so the request is set up as an asynchronous
request. The code I wrote to make the request is

if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(handler, problemhandler, positionopts);
}
else {
 if (document.getElementById("place")) {
 document.getElementById("place").innerHTML = "I'm sorry but geolocation services�
 are not supported by your browser";
 document.getElementById("place").style.color = "#FF0000";
 }
}

The “Introduction” section showed successful examples of geolocation. At this point, I will show
ways to handle problems, which can and do occur, before going on to explain how to use the
information.

The condition for the outer if tests if navigator.geolocation is a recognized object for the browser.
If it is not, then after checking that a div named place exists, the program displays the message starting
with “I’m sorry . . .” When I tried this program in an old version of Internet Explorer, I first had to give
permission to run any scripts, as shown in Figure 6-16.

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

197

Figure 6-16. Internet Explorer request to run scripts

After I gave permission, Internet Explorer showed that geolocation was not available (see
Figure 6-17).

Figure 6-17. Message on absence of geolocation in old Internet Explorer

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

198

If the navigator.geolocation object does exist, then my code invokes the getCurrentPosition
method with three parameters. The first parameter, handler, is the name of a function that will be
invoked if and when the operation is complete. The second parameter, problemhandler, is invoked when
there is a problem. The third parameter, positionopts, is used to specify options. The setting I used for
the options is

var positionopts;
positionopts = {
 enableHighAccuracy: true,
 timeout: 10000};

The interpretation of the enableHighAccuracy setting is not specified by W3C, but the practical
implication for now is to use GPS if it is available. When enabled, more process time may be used, and
the application as a whole may be slower. Setting this item to false, which is the default, also may
preserve battery life on the local device. The timeout setting indicates that the time to perform this
operation is to be limited to 10,000 milliseconds (10 seconds). There are other option settings, so when
you start to use geolocation for production work, do investigate them.

If a problem is detected while performing the geolocation operation, the problemhandler function is
invoked with a parameter containing a code indicating the nature of the problem. The definition of the
problemhandler function includes a switch statement based on this code.

function problemhandler(prob) {
 switch(prob.code) {
 case 1:
 document.getElementById("place").innerHTML = "User declined to share the location�
 information.";
 break;
 case 2:
 document.getElementById("place").innerHTML = "Errors in getting base location.";
 break;
 case 3:
 document.getElementById("place").innerHTML = "Timeout in getting base location.";
 }

 document.getElementById("header").innerHTML = "Base location needs to be set!";
}

Figure 6-18 shows the result of the user denying permission to do geolocation.

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

199

Figure 6-18. Result of the user saying no to geolocation

A subtler problem is the failure to perform the operation in a timely manner. Figure 6-19 shows the
situation alluded to earlier concerning using Safari on a desktop computer.

Figure 6-19. Geolocation taking too long

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

200

Let’s move on now to the successful case: geolocation has worked. My code has caused the function
handler to be invoked with the parameter set by the getCurrentPosition method to hold the calculated
position information. The code extracts the latitude and longitude values and invokes my makemap
function, which sets a global variable named blatlng and brings in the Google Map. The makemap
function is essentially the same one used in the projects covered in the last two chapters. A Google Map
with the full Google Map interface will appear on the screen. The handler function also displays values
and calls reversegeo, the topic of the next section. Here is the code for handler:

function handler(position) {
 var mylat = position.coords.latitude;
 var mylong = position.coords.longitude;
 makemap(mylat,mylong);
 document.coutput.lat.value = mylat;
 document.coutput.lon.value = mylong;
 document.coutput.acc.value = position.coords.accuracy;
 reversegeo(blatlng);
}

The accuracy value is part of the W3C specification. Its exact meaning is not defined in the standard.
One possibility is that it defines the radius of a circle around the returned point within which the actual
position will lie. The value returned when I use my desktop PC has been given as 22,000 meters, when in
fact the actual location is only 610 meters from the returned location. In any case, , you probably would
not share the accuracy information with your user if you were building a production application.

■ Note The navigator.geolocation object has other methods and properties. Most notably, there is a
watchPosition method that sets up monitoring for changes in position or changes in how the position is
calculated.

Reverse Geocoding
Reverse geocoding refers to a facility for obtaining description information, such as street addresses,
from a latitude/longitude position. Keeping in mind garbage-in/garbage-out, if the original
latitude/longitude is in error, then the address returned by a reverse-geolocation operation will also be
in error.

The geocode facility I use is part of the Google Maps API, and includes features for obtaining long
names, short names, postal codes, and so on. In the init function, my code constructs a Geocoder
object and sets the variable geocoder:

geocoder = new google.maps.Geocoder();

The reversegeo function invokes the geocode method of this object. This is an asynchronous
operation. That is, the method initiates an operation that takes time. The geocode method starts the task
of determining the reverse geocoding. Control moves on to the next statement before the task is
complete. Most asynchronous methods work by specifying a function to be invoked when the task is
complete. The call to the geocode method designates a function. The way I designated the function was
to define what is called an anonymous function in the method call itself. The function definition in its
entirety is the second parameter of the call to geocode. The complete reversegeo function is shown next.

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

201

It essentially is one statement, the call to geocode, which contains within the call the definition of a
function.

function reversegeo(latlng) {
 geocoder.geocode({'latLng': latlng}, function(results, status) {
 if (status == google.maps.GeocoderStatus.OK) {
 if (results[0]) {
 addressref.innerHTML = results[0].formatted_address;
 } else {
 alert("No results found");
 }
 }
 else {
 alert("Geocoder failed due to: " + status);
 }
 });
}

The geocode method can be used to find locations using descriptions (addresses), or for reverse
geocoding: determining descriptions from locations. The presence of the 'latlng' coordinate is what
indicates that this is a reverse-geocoding operation. My code specifies the latitude/longitude, and
geocode returns descriptive information such as a street address.

■ Note If instead you specify an address using {'address': locrequest}, where locrequest is a string
variable holding an address, then geocode will return the latitude/longitude. This provides a way for you to bring
into your application the basic capability of Google Maps.

The results parameter is an array that holds the address information, starting with the most exact
and working up. Figure 6-20 shows the alert box produced by this addition to the code:

var out = "";
 for (var i=0;i<results.length;i++) {
 out += results[i].formatted_address +"\n";
 }
 alert(out);

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

202

Figure 6-20. The results array from geocoding

The reason the second and third lines are identical may have to do with the fact that Mt. Kisco is a
coterminous village and town. In any case, you may need to run a program with this sort of display to
determine what you want to use in your specific application. My examples use results[0]. You may
decide it is best to use results[3]. It is up to you and can be viewed as a situation of precision vs.
accuracy.

Clicking the Map
The requirements I have stipulated for these projects allow the user to click the map. As was discussed in
the previous two chapters, the Google Maps API provides a way to set up event handling. In the makemap
function, I include the line

listener = google.maps.event.addListener(map, 'click', function(event) {
 checkit(event.latLng);
 });

The checkit function uses the clicked location to make a marker, calculate an address using
reversegeo, calculate the distance from the base to the clicked location, and display information. In the
basic geolocation application, the definition for checkit is the following:

function checkit(clatlng) {
 var distance = dist(clatlng,blatlng);
 var result;
 distance = Math.floor((distance+.005)*100)/100;
 var distanceString = String(distance);

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

203

 marker = new google.maps.Marker({
 position: clatlng,
 title: distanceString,
 icon: bxmarker,
 map: map });
 markersArray.push(marker);
 reversegeo(clatlng);
 distanceref.innerHTML = "You clicked "+distanceString+" km from base.";
}

The marker used is a custom one, a black x. The title, which is what you see if you move the mouse
to the marker, is the distance, formatted to be a two-decimal number. The sentence starting with “You
clicked . . .” is displayed as part of the body of the document.

The checkit function for the e-mail geolocation project is similar. The objective of this application is
to compose an e-mail relating to the user’s location; look back to Figure 6-10. The definition of the
checkit function for this application uses the default marker and creates a sentence about the distances
for the body of the message.

function checkit(clatlng) {
 var distance = dist(clatlng,blatlng);
 var result;
 distance = Math.floor((distance+.005)*100)/100;
 var distanceString = String(distance)+" km. away.";
 var newcoords = String(clatlng.lat())+" lat. "+String(clatlng.lng())+" lng.";
 distanceString = newcoords+" "+distanceString;
 marker = new google.maps.Marker({
 position: clatlng,
 title: distanceString,
 map: map });
 document.msg.body.value = document.msg.body.value + " However, I really am�
 at "+distanceString;
}

Checking E-mail Address Input and Invoking PHP to send e-mail
As described in the “Introduction” section, any application involving the sending of e-mails based on
user input should attempt to check that the input fits the format for an e-mail address. Fortunately, this
is one of the new features of HTML5. The input elements in forms have a type attribute, and one type is
e-mail. Standard HTML (4 and earlier) provides a way to specify that submission of the form is to cause
invoking of a file on the server. I describe this more in the next section, including the significance of the
method setting. The complete form for e-mail follows:

<form name="msg" action="sendemailp.php" method="post">
 <p>Your email (for reply)
 <input type="email" name="from" required/>
To email
 <input type="email" name="to" required />
</p>

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

204

 Subject: <input type="text" name="subject" size="100" />
 <p>
 Body of message (you may change it)

 <TEXTAREA NAME="body" COLS=40 ROWS=5>
My geolocation is at the address given in the subject line.
</TEXTAREA>
 </p>
 <input type="submit" value="SEND" />
</form>

This code produces the error checking shown in Figures 6-12 to 6-15 (shown previously), and should
be appreciated as removing responsibilities from the programmer.

The action attribute in the form tag specified the php file sendemailp.php. This means that when
the form is submitted, assuming the input is valid, the browser will send a message to the server (the
computer from which it downloaded the HTML document). The message will be to invoke
sendemailp.php. The input data will be passed along. I will now give a brief introduction to php. Chapter
10 on the database project will contain more information.

A Brief Introduction to the PHP Language
The sending of e-mail is a facility provided on servers, not client computers. There are several languages
for writing what are called server-side scripts, and PHP is one of them. It is well-maintained and well-
documents at www.php.net. You will read more about PHP in the description of a database project in
Chapter 10.

The previous section showed how to invoke a PHP script as the result of submission of a form. The
form input can be passed to the script in one of two ways: POST and GET. The GET way makes use of
what is called the query string. The POST way is done using the HTTP headers. I chose to use POST for
this example.

The main purpose of a PHP script is to do something on the server, probably using form input from
an HTML document, and generate an HTML document to be passed back to the browser for display. It is
not the case with the example for this project, but many PHP scripts consist of a mixture of HTML and
PHP. The PHP portions are indicated by the delimiters <?php and ?>. The function echo adds its input to
the HTML document being created.

A feature of PHP is that variables, built in and programmer defined, start with dollar signs. For
example, if the PHP script has been invoked by the action of a form, with the method specified as POST,
and the form had an input element named to, then the line

$to = $_POST['to'];

would access the form input named to and assign it to the variable $to.
As mentioned, PHP scripts compose HTML documents, so a frequent operation is concatenation of

strings. The operator in PHP for this is . (dot). The line

$headers = "From: " . $_POST['from'];

extracts the form input named from and adds it to the literal string "From: " to form a longer string,
which is assigned to the variable $headers.

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

205

Another feature of PHP, which probably is the strangest to experienced programmers, is that
variables can be included in strings. The statement

echo("There was a problem:
the body is $body,
 the to is $to,
 subject is�
 $subject,
 headers is $headers.");

produces the output shown in Figure 6-21.

Figure 6-21. Demonstration of PHP echo of composed string

The values of the variables $body, $to, $subject, and $headers have been extracted and made part of
the string. Notice also that the string contains the HTML markup
.

The sending of e-mail is fairly straightforward. There is a built-in PHP function, mail, that does the
work, using as parameters the To address, the subject, the message body, and any header material. The
function returns true if the sending operation was successful and false otherwise. Note that the sending
operation can be successful and the recipient e-mail service may still reject the address as being
nonexistent. The complete code for sendemailp.php is shown in the next section.

Building the Application and Making It Your Own
You can make these projects your own by combining the geolocation feature with more substantial
applications. Knowing where the visitors to your site are located can help personalize the application,
and perhaps influence the choice of images. An informal summary/outline of the basic geolocation
application follows:

• init: For initialization, including invoking the call for geolocation, which is done
asynchronously

• handler and problemhandler: For completing the geolocation

• makemap: For bringing in the Google Map

• checkit: For responding to clicks on the map and invoking diste

• reversegeo: For determining an address from a latitude/longitude value

Table 6-1 lists all the functions and indicates how they are invoked and what functions they invoke.

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

206

Table 6-1. Functions in the Basic Geolocation Project

Function Invoked/Called By Calls

init Invoked by action of the onLoad attribute in the <body> tag

handler Invoked by action of the getCurrentPosition call in init makemap, reversegeo

reversegeo Invoked in handler

problemhandler Invoked by action of the getCurrentPosition call in init

makemap Invoked by handler

checkit Invoked by action of addListener in makemap dist

dist Invoked by checkit

Table 6-2 shows the code for the basic application, with comments for each line. Much of this code

you have seen in the previous chapters.

Table 6-2. Complete Code for the Geolocation Project

Code Line Description

<!DOCTYPE html> Doctype header for HTML5

<html> html tag

<head> Head tag

<title>Where am I?</title> Complete title element

<meta charset="UTF-8"> Meta tag for character sets

<style> Style tag

header {font-family:Georgia,"Times New Roman",serif; Set up formatting for header
element, including font choices

 font-size:20px; Font size

 display:block; Set up line break before and after

} Close style directive

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

207

Code Line Description

</style> Closing tag for style

<script type="text/javascript" charset="UTF-8"
src="http://maps.google.com/maps/api/js?sensor=false"></script>

Script to bring in Google Map
API

<script type="text/javascript" charset="UTF-8"> Opening script tag

var positionopts; Set up global variable for options
for geolocation

positionopts = { Start definition of associative
array

 enableHighAccuracy: true, Set request to try for high
accuracy

 timeout: 10000}; Set timeout limit

var addressref; Will hold reference to address
div element

var distanceref; Will hold reference to distance
div element

var headerref; Will hold reference to header div
element

var geocoder; Will hold geocoder object

function init() { Header for init function

 addressref = document.getElementById("address"); Set addressref

 headerref = document.getElementById("header"); Set headerref

 distanceref = document.getElementById("distance"); Set distanceref

 geocoder = new google.maps.Geocoder(); Create and set geocoder to be
Geocoder object

if (navigator.geolocation) { Does browser recognize
navigator.geolocation?

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

208

Code Line Description

 navigator.geolocation.getCurrentPosition(handler, problemhandler,
positionopts);

If so, make the call with
parameters as shown

} Close clause

else { Else

 if (document.getElementById("place")) { If there is a place with ID place

 document.getElementById("place").innerHTML = "I'm sorry but
geolocation services are not supported by your browser";

Set its contents to give message

 document.getElementById("place").style.color = "#FF0000"; Turn contents red

 } Close clause

} Close outer else clause

} Close function

var listener; Variable for listener (set but not
used as variable)

var map; Will be used to hold map

var blatlng; Will hold the latitude/longitude
object for the base

var myOptions; Will hold the options used in
bringing in a map

function handler(position) { Header for handler function; if
geolocation successful, it is
invoked with the parameter
position

 var mylat = position.coords.latitude; Set to the latitude

 var mylong = position.coords.longitude; Set to the longitude

 makemap(mylat,mylong); Invoke (my) makemap function

 document.coutput.lat.value = mylat; Display the latitude

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

209

Code Line Description

 document.coutput.lon.value = mylong; Display the longitude

 document.coutput.acc.value = position.coords.accuracy; Display the accuracy

 reversegeo(blatlng); Invoke (my) function reversegeo

} Close handler function

function reversegeo(latlng) { Header for the reversegeo
function

geocoder.geocode({'latLng': latlng}, function(results, status) { Invoke the geocode method with
a latLng object. The second
parameter is an antonymous
function. The function definition
starts in this line and concludes
11 lines down, right before the
closing bracket for the
reversegeo function.

 if (status == google.maps.GeocoderStatus.OK) { If the status returned with a
value equal to the
google.maps.GeocoderStatus.OK
value

 if (results[0]) { If results[0] exists

 addressref.innerHTML = results[0].formatted_address; Display this result

 } else { Otherwise

 alert("No results found"); Issue alert message

 } Close clause

 } Close outer clause

 else { Else (the status was not OK)

 alert("Geocoder failed due to: " + status); Issue alert message

 } Close clause

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

210

Code Line Description

 }); Close function definition, close
Geocode method call

} Close reversegeo function

function problemhandler(prob) { Header for problemhandler
function; prob will have
information on the failure

 switch(prob.code) { switch statement based on
prob.code

 case 1: A code of 1 is returned if the user
declines to share location
information.

 document.getElementById("place").innerHTML = "User declined
to share the location information.";

Issue message

 break; Leave the switch

 case 2: A code of 2 is to be returned if
errors are detected by the
program performing the
geocoding.

 document.getElementById("place").innerHTML = "Errors in
getting base location.";

Issue message

 break; Leave the switch

 case 3: A code of 3 is to be returned if
the geocoding takes too long.
You can specify a time limit in
the original call to the geocode
method.

 document.getElementById("place").innerHTML = "Timeout in
getting base location.";

Issue message

 } Close switch statement

 document.getElementById("header").innerHTML = "Base location
needs to be set!";

In all cases, set contents of
header

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

211

Code Line Description

} Close problemhandler function

var rxmarker = "rx1.png"; Red x; used for the base

var bxmarker = "bx1.png"; Black x; used for clicks

function makemap(mylat,mylong) { Header for makemap function

 var marker; Will hold marker

 blatlng = new google.maps.LatLng(mylat,mylong); Create a LatLng object and set
the global variable blatlng

 myOptions = { Start setup of the associated
array for options for the map

 zoom: 14, Set zoom to constant 14

 center: blatlng, Set the center of the map to be
blatlng

 mapTypeId: google.maps.MapTypeId.ROADMAP Set the map type to be a ROADMAP.
Other possibilities are
SATELLITE, TERRAIN and HYBRID.

 }; Close array

 map = new google.maps.Map(document.getElementById("place"),
myOptions);

Invoke the Map constructor
method to bring in a map with
the indicated options; set the map
variable

 marker = new google.maps.Marker({ Create a marker

 position: blatlng, Position blatlng

 title: "center", Title "center" This is text
that will appear when you use
the mouse to move the cursor
near the marker.

 icon: rxmarker, Icon for marker set to be my
custom rxmarker

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

212

Code Line Description

 map: map }); Marker is on map; close Marker
method call

 listener = google.maps.event.addListener(map, 'click',
function(event) {

Set up event handling for
clicking the map; function is
defined here

 checkit(event.latLng); Function is the line
checkit(event.latLng)

 }); Close definition of function and
call to addListener

} Close makemap

function checkit(clatlng) { Header for checkit function

 var distance = dist(clatlng,blatlng); Calculate distance from the
position given by the input
parameter to the base location
held in blatlng

 distance = Math.floor((distance+.005)*100)/100; Round off the distance to two
decimal places

 var distanceString = String(distance); Convert distance to a string

 marker = new google.maps.Marker({ Create a marker

 position: clatlng, When the user clicks on the map
. . .

 title: distanceString, . . . make the title the formatted
distance

 icon: bxmarker, . . . mark with a black x

 map: map }); . . . mark map; close the array,
close the call to Marker

 reversegeo(clatlng); Invoke reversegeo

 distanceref.innerHTML = "You clicked "+distanceString+" km from
base.";

Display distance information

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

213

Code Line Description

} Close checkit function

 function dist(point1, point2) { Header for distance between two
points

 var R = 6371; // km Factor for kilometers

 // var R = 3959; // miles Factor for miles; keep in code
just in case

 var lat1 = point1.lat()*Math.PI/180; Convert to radians

 var lat2 = point2.lat()*Math.PI/180 ; Convert to radians

 var lon1 = point1.lng()*Math.PI/180; Convert to radians

 var lon2 = point2.lng()*Math.PI/180; Convert to radians

var d = Math.acos(Math.sin(lat1)*Math.sin(lat2) +
Math.cos(lat1)*Math.cos(lat2) * Math.cos(lon2-lon1)) * R;

Calculation based on spherical
law of cosines

 return d; Return distance

 } Close dist function

</script> Closing script tag

</head> Closing head tag

<body onLoad="init();"> Body tag, including setting up
call to init();

<header id="header">Base location (small red x) is your current
geolocation.</header>

Header element

<div id="place" style="width:600px; height:400px"></div> Div with ID place where Google
Maps will go

<form name="coutput"> Form tag

Base Latitude: <input type="text" name="lat"> degrees. Longitude:
<input type="text" name="lon"> degrees. Accuracy: <input type="text"
name="acc"> meters.

Text and input elements (all used
for output/display in this
example)

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

214

Code Line Description

</form> Closing form tag

Last address <div id="address"></div> Div for addresses

Distance <div id="distance"></div> Div for distances

</body> Closing body tag

</html> Closing html tag

You can build on the basic geolocation program in many ways. For example, you can use the

information along with the dist function in a way similar to what was demonstrated in the last chapter
to do something based on how close the user was to any of a set of fixed locations. The e-mail
geolocation project builds on the basic project in another way. It uses the information to send an e-mail
to someone of the user’s choice. An informal summary/outline of the e-mail geolocation application
follows:

• init: For initialization, including invoking the call for geolocation, which is done
asynchronously

• handler and problemhandler: For completing the geolocation

• makemap: For bringing in the Google Map

• checkit: For responding to clicks on the map and invoking dist

• reversegeo: For determining an address from a latitude/longitude value

• sendemailp (a separate program to run on the server): For performing the sending
of e-mail

Table 6-3 lists all the functions and describes how they are invoked and what functions they invoke.
The structure that has served us well in other situations is somewhat lacking now. The sendemailp.php
function is invoked through the action property setting in the second <form> tag in the body element:

<form name="msg" action="sendemailp.php" method="post">

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

215

Table 6-3. Functions in the E-mail Geolocation Project (Same As the Basic Geolocation Project)

Function Invoked/Called By Calls

init Invoked by action of the onLoad attribute in the <body> tag

handler Invoked by action of the getCurrentPosition call in init makemap, reversegeo

reversegeo Invoked in handler

problemhandler Invoked by action of the getCurrentPosition call in init

makemap Invoked by the handler

checkit Invoked by action of addListener in makemap dist

dist Invoked by checkit

Table 6-4 shows the complete code for geolocationkmemail.html. New code statements and

changed code statements have comments.

Table 6-4. Code for the E-mail Geolocation Application

Code Line Description

<!DOCTYPE html>

<html>

<head>

<title>Where am I?</title>

<meta charset="UTF-8">

<style>

header {font-family:Georgia,"Times New Roman",serif;

 font-size:20px;

 display:block;

}

</style>

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

216

Code Line Description

<script type="text/javascript" charset="UTF-8"
src="http://maps.google.com/maps/api/js?sensor=false"></script>

<script type="text/javascript" charset="UTF-8">

var positionopts;

positionopts = {

 enableHighAccuracy: true,

 timeout: 10000} ;

var headerref;

var geocoder;

function init() {

 headerref = document.getElementById("header");

 geocoder = new google.maps.Geocoder();

 if (navigator.geolocation) {

 navigator.geolocation.getCurrentPosition(handler, problemhandler,
positionopts);

 }

else {

 if (document.getElementById("place")) {

 document.getElementById("place").innerHTML = "I'm sorry but
geolocation services are not supported by your browser";

 document.getElementById("place").style.color = "#FF0000";

 }

 }

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

217

Code Line Description

}

var listener;

var map;

var blatlng;

var myOptions;

function handler(position) {

 var mylat = position.coords.latitude;

 var mylong = position.coords.longitude;

 var result;

 makemap(mylat,mylong);

 document.coutput.lat.value = mylat;

 document.coutput.lon.value = mylong;

 document.coutput.acc.value = position.coords.accuracy;

 reversegeo(blatlng);

}

function reversegeo(latlng) {

 geocoder.geocode({'latLng': latlng}, function(results, status)
{

 if (status == google.maps.GeocoderStatus.OK) {

 if (results[0]) {

 document.msg.subject.value =
results[0].formatted_address;

Put value in the subject
input element of the
message form

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

218

Code Line Description

 } else {

 alert("No results found in reverse geocoding.");

 }

 }

 else {

 alert("Geocoder failed due to: " + status);

 }

 });

}

function problemhandler(prob) {

 switch(prob.code) {

 case 1:

 document.getElementById("place").innerHTML = "User declined
to share the location information.";

 break;

 case 2:

 document.getElementById("place").innerHTML = "Errors in
getting base location.";

 break;

 case 3:

 document.getElementById("place").innerHTML = "Timeout in
getting base location.";

 }

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

219

Code Line Description

 document.getElementById("header").innerHTML = "Base location
needs to be set!";

}

var xmarker = "x1.png";

function makemap(mylat,mylong) {

 var marker;

 blatlng = new google.maps.LatLng(mylat,mylong);

 myOptions = {

 zoom: 14,

 center: blatlng,

 mapTypeId: google.maps.MapTypeId.ROADMAP

 };

 map = new google.maps.Map(document.getElementById("place"),
myOptions);

 marker = new google.maps.Marker({

 position: blatlng,

 title: "center",

 icon: xmarker,

 map: map });

 listener = google.maps.event.addListener(map, 'click',
function(event) {

 checkit(event.latLng);

 });

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

220

Code Line Description

}

function checkit(clatlng) {

 var distance = dist(clatlng,blatlng);

 var result;

 distance = Math.floor((distance+.005)*100)/100;

 var distanceString = String(distance)+" km. away.";

 var newcoords = String(clatlng.lat())+" lat.
"+String(clatlng.lng())+" lng.";

Used as part of message
body

 distanceString = newcoords+" "+distanceString; Used as part of message
body

 marker = new google.maps.Marker({ Note that default icon is
used

 position: clatlng,

 title: distanceString,

 map: map });

 document.msg.body.value = document.msg.body.value + "
However, I really am at "+distanceString;

Add to message body

}

 function dist(point1, point2) {

 var R = 6371; // km

 // var R = 3959; // miles

 var lat1 = point1.lat()*Math.PI/180;

 var lat2 = point2.lat()*Math.PI/180 ;

 var lon1 = point1.lng()*Math.PI/180;

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

221

Code Line Description

 var lon2 = point2.lng()*Math.PI/180;

var d = Math.acos(Math.sin(lat1)*Math.sin(lat2) +
Math.cos(lat1)*Math.cos(lat2) * Math.cos(lon2-lon1)) * R;

 return d;

 }

</script>

</head>

<body onLoad="init();">

<header id="header">Base location (small red x) is your current
geolocation.</header>

<div id="place" style="width:600px; height:350px"></div>

<form name="coutput">

Base Latitude: <input type="text" name="lat"> degrees. Longitude:
<input type="text" name="lon"> degrees.

Accuracy: <input type="text" name="acc"> meters.

</form>

<form name="msg" action="sendemailp.php" method="post"> Form tag with
specification of the action
attribute causing
sendemailp.php to be
invoked, and specification
of the method attribute
causing the call to be
made by the POST
method

 <p>Your email (for reply) Label for the From input
field

 <input type="email" name="from" required/> This field is required and
is of type email

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

222

Code Line Description

To email Label for the To input
field

 <input type="email" name="to" required /> This field is required and
is of type email

</p> Force a line break

 Subject: <input type="text" name="subject" size="100" /> Subject will be set by
reversegeo

 <p> Line break

 Body of message (you may change it)
 Label for body of message

 <TEXTAREA NAME="body" COLS=40 ROWS=5> Text area set up for input
consisting of 5 rows and
40 columns,

My geolocation is at the address given in the subject line. Initial text

</TEXTAREA> Close textarea element

 </p> Line break

 <input type="submit" value="SEND" /> Submit button

</form> Closing form tag

</body> Closing body tag

</html> Closing html tag

The e-mail application requires a PHP script to do the actual work of sending the e-mail. My

sendemailp.php program is shown in Table 6-5.

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

223

Table 6-5. Code for the PHP Script for Sending E-mail

Code Line Description

<?php Delimiter for PHP code

 $to = $_POST['to']; Set the variable $to to the value of the form input
with name to

 $subject = $_POST['subject']; Set the variable $variable to the value of the form
input with name subject

 $body = $_POST['body']; Set the variable $body to the value of the form
input with the name body

 $headers = "From: " . $_POST['from']; Set the variable $headers to be a string starting
with From: followed by the value of the form input
with name from

 if (mail($to, $subject, $body,$headers))
{

Invoke the mail function, if it works

 echo("Your message was sent"); Output success message

 } else { Else

 echo("There was a problem:
the body
is $body,
 the to is $to,
 subject is
$subject,
 headers is $headers.");

Output longer message, with the contents of all the
variables

 } Close clause

?> End the PHP

You may find uses for sending e-mail for other applications besides ones using geolocation. You

also can build on this application in other more substantial ways, such as including other information in
the e-mail content.

If you have an application in which you do not want to depend on geolocation exclusively, you may
consider using a form in which the user can type in an address. You can use geocoder.geocode with the
address parameter to obtain the latitude/longitude and bring in a map using that value. Another
alternative is to have a list of places such as I presented in Chapter 4.

Testing and Uploading the Application
You need to be online to test the first application since that is the only way to make contact with Google
Maps, but the HTML file and the files for the marker icons (bx1.png and rx1.png) can be on your local

CHAPTER 6 ■ WHERE AM I: USING GEOLOCATION, THE GOOGLE MAPS API, AND PHP

224

computer. To test the e-mail application, you need to run the program from your server. That is, you
need to upload all the files to the server. My files are geolocationkmemail.html, rx1.png, and
sendemailp.php. Moreover, I’ll repeat what I mentioned earlier: you need to check that the server allows
PHP and allows PHP to send e-mail. To make this concrete, for example, my standard server at my
college allows some use of PHP, but not e-mail. The local IT group set up a special server for my
database course that does the job!

Summary
In this chapter, you continued using the Google Maps API. You learned how to use the following:

• Geolocation

• Google Maps API and geocoding for addresses

• A PHP script to do e-mail

In the next chapter, we leave geography for the smaller but still spatially fascinating world of paper
folding. We will explore how to produce directions for an origami of a talking fish using JavaScript,
HTML5 video, and the drawing of photographs on canvas.

C H A P T E R 7

225

Origami Directions:
Using Math-Based Line Drawings,
Photographs, and Videos

In this chapter, you will learn the following:

• How to use mathematics to write JavaScript functions to produce precise line
drawings

• A methodology for combining line drawings, photographs, and videos, along with
text for sequential instructions

• A methodology that facilitates development by letting you proceed in steps, and
even go back and insert or change previous work

Introduction
The project for this chapter is a sequential set of directions for folding an origami model, a talking fish.
However, you may read it with any topic in mind in which you want to present to your viewer a
sequence of diagrams, including the ability to move forward and back, and with the diagrams consisting
of line drawings or images from files or video clips.

■ Note Origami refers to the art of paper folding. It is commonly associated with Japan, but has roots in China
and Spain as well. Traditional folds include the water bomb, the crane, and the flapping bird. Lillian Oppenheimer
is credited with popularizing origami in the United States and started the organization that became the American
national organization OrigamiUSA. She personally taught me the business card frog in 1972. An HTML5 program
for the business card frog is included in the downloads for this chapter. Origami is a vibrant art form practiced
around the world, as well as a focus of research in mathematics, engineering, and computational complexity.

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

226

Figure 7-1 shows the opening screen of the Talking Fish application, origamifish.html. The screen
shows the standard conventions for origami diagrams, modified by me to include color. The standard
origami paper, called kami, is white on one side and a nonwhite color on the other.

Figure 7-1. Opening screen

■ Note I have reduced the set of origami moves. For example, I omitted the representation for a reverse fold,
which is used to turn the lips inside out. These folds generally are preceded by what are termed preparation folds,
which I describe for the talking fish.

The folder can click “Next step” (at this point in the sequence, “Go back” does nothing) to get to the
first actual step of the instructions, shown in Figure 7-2. Of course, it is possible to add programming to
remove the “Go back” button at the start and the “Next step” button at the end.

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

227

Figure 7-2. First step, showing the square of paper. The instructions say to turn the paper.

Skipping ahead, Figure 7-3 shows a later step in the folding. Notice that the colored side of the paper
is showing. An unfolded fold line is indicated by the skinny vertical line, and the fold to be made next
(folding down the corner) is shown by a colored diagonal of dashes in the upper-right corner.

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

228

Figure 7-3. Folding a corner down to a fold line

Later in the construction of the model, the folder must perform a sink fold. This is considered a
difficult move. Figure 7-4 shows what is called the crease pattern prior to the sink: the folds are indicated
as mountain folds or valley folds.

Figure 7-4. Step with standard diagram for sink

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

229

I decided to supplement the line drawing with a video clip showing the sink step. Figure 7-5 shows a
frame from the video. I (the folder) have used the video controls to pause the action. The folder can
replay the video clip and go back to the crease pattern repeated times.

Figure 7-5. Paused video showing sink step

Sinking is still a challenge, but viewing the video clip can help. The folder can re-play and pause the
video clip. Figure 7-6 shows the next step after the sink. Going from line drawing to video clip to line
drawing is easy for the user/folder, and it will turn out to be straightforward for the developer as well.

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

230

Figure 7-6. Step after sink (first video clip)

The next step requires the folder to fold the triangular flap on the right backward, dividing the angle.
Notice that the angle is indicated by an arc.

Moving on again in the folding, there is a step for which I decided that a photograph or two was the
best way to convey what needs to be done. Figure 7-7 shows a picture of a model in process, viewed from
above (looking into the mouth down the throat of the fish).

Figure 7-7. Photograph showing fish throat

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

231

Figure 7-8 shows the result of moving the folded material to one side, as instructed in the directions
shown in Figure 7-7.

Figure 7-8. Photograph of the fish with the throat fixed

The directions end with another video clip, this one showing the fish talking, performed by the
folder gently pressing on the top and bottom. Figure 7-9 shows a frame in the video.

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

232

Figure 7-9. Video showing talking fish

Critical Requirements
There is a standard format for origami directions, commonly referred to as diagrams, and I built on that
standard. In this approach, each step shows the next fold to be made using a set typography. The most
basic folds either assume a valley shape when unfolded or a mountain shape, and this is indicated by
dashed or dotted and dashed lines. Often, folds are unfolded in the process of making an origami model.
Sometimes the places where there were folds are indicated by thin lines and sometimes they are
indicated by dashes for valley folds and dots and dashes for mountain folds.

My aim was to produce line drawings, similar to those found in books, with calculations for the
coordinate positions of the critical points and lines. I did not want to make drawings by hand and scan
them, nor did I want to use a typical engineering CAD program. I did not want to measure and record
lengths or angles, but have JavaScript do that task for me. This would work even for folds done “to taste,”
as the origami jargon goes, because I could determine the exact positions I chose to use. Using basic
algebra, geometry, and trigonometry provides a way to achieve exact positions for the line drawings by
calculating the coordinates of endpoints of lines.

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

233

Steps for origami typically come with text instructions. Also, arrows are sometimes used. I wanted to
follow the standard while still taking advantage of the fact that these instructions would be delivered on
a computer, with color and the opportunity for other media.

Thinking about the talking fish and some other folds, I decided to make use of photographs and
videos for operations for which line drawings may not be good enough for you.

■ Note The challenge I set myself for the origami diagrams was to follow the standard but also take advantage
of new technology of HTML5. This is typical when moving to a new medium and technology. You do not want to
abandon a standard that your audience may feel is essential, but you also want to use what is available if it solves
real problems.

A subtler requirement is that I wanted to test the application as I developed it. This meant a flexible
but robust way to specify steps.

HTML5, CSS, JavaScript Features, and Mathematics
I will now describe the HTML5 features and the programming techniques used to address the
requirements for the origami directions project. The best approach is to start with the overall
mechanism for presenting steps, and then explain how I derived the first set of values for the positions.
Then I’ll explain the utility functions for drawing the valley, mountain, and arrows, and for calculating
intersection points and proportions. Lastly, I will review briefly the display of images and the playing
of video.

Overall Mechanism for Steps
The steps for the origami directions are specified by an array called steps. Each element of the array is
itself a two-element array holding the name of a function and a piece of text that will appear on the
screen. The final value of the steps array in origamifish.html is the following:

var steps= [
 [directions,"Diagram conventions"],
 [showkami,"Make quarter turn."],
 [diamond1,"Fold top point to bottom point."],
 [triangleM,"Divide line into thirds and make valley folds and unfold "],
 [thirds,"Fold in half to the left."],
 [rttriangle,"Fold down the right corner to the fold marking a third. "],
 [cornerdown,"Unfold everything."],
 [unfolded,"Prepare to sink middle square by reversing folds as indicated ..."],
 [changedfolds,"note middle square sides all valley folds, some other folds changed.�
 Flip over."],
 [precollapse,"Push sides to sink middle square."],
 [playsink,"Sink square, collapse model."],
 [littleguy,"Now fold back the right flap to center valley fold. You are bisecting the�
 indicated angle."],

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

234

 [oneflapup,"Do the same thing to the flap on the left"],
 [bothflapsup,"Make fins by wrapping top of right flap around 1 layer and left around�
 back layer"],
 [finsp,"Now make lips...make preparation folds"],
 [preparelips,"and turn lips inside out. Turn corners in..."],
 [showcleftlip,"...making cleft lips."],
 [lips,"Pick up fish and look down throat..."],
 [showthroat1,"Stick your finger in its mouth and move the inner folded material to one�
 side"],
 [showthroat2,"Throat fixed."],
 [rotatefish,"Squeeze & release top and bottom to make fish's mouth close and open"],
 [playtalk,"Talking fish."]
];

I did not come up with the steps array when I began building the application. Instead, I added to
the steps array as I went along, including inserting new entries and changing the content and/or the
names of the functions. I began with the following definition of the steps array:

var steps= [
 [showkami,"Make quarter turn"],
 [diamond,"Fold top point to bottom point."]
];

It took me some time to get into the rhythm of showing the last stage of folding, with the addition of
markings for the next step. The end result is a presentation using a single HTML page that proceeds
through 21 steps containing vector drawings, photographs, and video, following a similar format to a
PowerPoint presentation—that is, with the ability to go forward or backward.

Going forward and backward are done by the functions donext and goback. But first I need to explain
how the whole thing starts. As has been the case for all the projects so far, a function called init is
invoked by the action of the onLoad attribute in the <body> tag. The code sets global variables and invokes
the function for presenting the next step, donext. The init function is

function init() {
 canvas1 = document.getElementById("canvas");
 ctx = canvas1.getContext("2d");
 cwidth = canvas1.width;
 cheight = canvas1.height;
 ta = document.getElementById("directions");
 nextstep = 0;
 ctx.fillStyle = "white";
 ctx.lineWidth = origwidth;
 origstyle = ctx.strokeStyle;
 ctx.font = "15px Georgia, Times, serif";
 donext();
}

The variable nextstep is the pointer, so to speak, into the steps array. I start it off at zero.
The donext function has the task of presenting the next step in the progression of steps to produce

the origami model. The function starts by checking if it is within range; that is, if it has been incremented
to point beyond the end of the steps array, the value of nextstep is set to the last index. Next, the
function pauses and removes from display the last video. It restores the canvas to its full height, which
my code would have changed when playing a video clip. The function also sets the video variable to
undefined, so the removal statements do not have to be executed again for that video. In all cases, donext

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

235

clears the canvas and resets the linewidth. The donext function then presents the nextstep step. The
display includes parts: a graphic part consisting of a line drawing, video or image and a text part
consisting of the instructions. The donext function invokesg the drawing function indicated by he first
(i.e., 0th) element of the inner array:

steps[nextstep][0]();

and displays the text, using the second (i.e., 1st) element of the inner array:

tx.innerHTML = steps[nextstep][1];

The last statement in the donext function is to increment the pointer. The whole donext function is

function donext() {
 if (nextstep>=steps.length) {
 nextstep=steps.length-1;
 }
 if (v) {
 v.pause();
 v.style.display = "none";
 v = undefined;
 canvas1.height = 480;
 }
 ctx.clearRect(0,0,cwidth,cheight);
 ctx.lineWidth = origwidth;
 steps[nextstep][0]();
 ta.innerHTML = steps[nextstep][1];
 nextstep++;
}

Coding the goback function took much longer in thinking time than its size would suggest. The
nextstep variable holds the index for the next step. This means that going back requires the variable to
be decremented by 2. A check must be made that the pointer is not too low—that is, less than zero.
Lastly, the goback function invokes donext to display what has been set as nextstep. The code is

function goback() {
 nextstep = nextstep -2;
 if (nextstep<0) {
 nextstep = 0;
 }
 donext();
}

User Interface
The user, who I refer to as the folder, has two buttons, labeled “NNext step” and “GGo back.” They are
implemented using the HTML5 button element, and invoke the goback and donext functions,
respectively. My choice of two different colors for the buttons—red for “GGo back” and green for “Next
step”—can be debated, as can the fact that the wording is not consistent. However, it does give me a
chance to remind you of the significance of the word Cascading in the name Cascading Style Sheets. I use
a directive in the style element in the head element and then I also use the following markup in the body
element: The last style directive is what is controlling and gives the buttons the colors.

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

236

<hr/>
<button onClick="goback();" style="color: #F00">Go back </button>
<button onClick="donext();" style="color: #03F">Next step </button>

The color designations, each only three characters, are the equivalent of #FF0000 and #0033FF.
These two sections have described the basic mechanism for sequential directions. It assumes that

each step is represented by a function and text. The next section will show how the coordinate values
are set.

Coordinate Values
The line drawing is accomplished using HTML5 canvas functions and variables, mostly indicating x and
y values. The variables appear in the code as var statements with initializations. I wrote these statements
as I worked through making the model step by step, though in terms of JavaScript, they act as constants,
and the values are set when the program is loaded. Figure 7-10 shows the third step of the sequence,
with annotations for points a, b, c, and d.

Figure 7-10. Labels for corners

How did I determine the coordinates for the four points? As a foundation, I specified the location of
point a. I also specified that the width and height of the paper was four inches and the conversion from
inches to pixels was 72. The variable declarations are

var kamiw = 4;
var kamih = 4;
var i2p = 72;
var ax = 10;
var ay = 220;

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

237

The variable names kamiw and kamih refer to the width and height of the standard square paper for
origami. From now on, everything is calculated. The first value required is the size of the diagonal of the
paper. For a square, using the Pythagorean theorem, the diagonal is the length of a side times the square
root of 2. The following statement setting the variable diag multiples the side (kamiw) by the square root
of 2 and by the factor indicating the inches-to-pixels conversion.

var diag = kamiw* Math.sqrt(2.0)*i2p;

Most other programming languages contain built-in code for many standard mathematical
functions so programmers do not have to reinvent the wheel. In JavaScript, these generally are supplied
as methods of the Math class. You can do online searches to determine the exact names and usage.

With this, the values for the positions b, c, and d are expressions using the existing values.

var bx = ax+ .5*diag;
var by = ay - .5*diag;
var cx = ax + diag;
var cy = ay;
var dx = bx;
var dy = ay + .5*diag;

I developed the expressions for the variables by making the model and determining how new
positions were based on old ones. These variables are used by the functions specified in the steps array
to draw lines indicating the edges of the model, fold lines, arrows, and angles. Some calculations used
general mathematical formulas. The next two sections cover the utility functions: functions used by the
step functions.

Utility Functions for Display
A valley fold is indicated by a line made up of dashes. A mountain fold is indicated by a line made up of
dots and dashes. Either one can be the default color (black) or another color. I need to set up variables
for the basics: dash length, dot length, the gap between two dashes, the gap between the dots, and the
gap between the last dot and a dash. It is easiest to understand what is needed by looking at the
functions first and then defining the necessary values. The valley function is defined as follows:

function valley(x1,y1,x2,y2,color) {
 var px=x2-x1;
 var py = y2-y1;
 var len = dist(x1,y1,x2,y2);
 var nd = Math.floor(len/(dashlen+dgap));
 var xs = px/nd;
 var ys = py/nd;
 if (color) ctx.strokeStyle = color;
 ctx.beginPath();
 for (var n=0;n<nd;n++) {
 ctx.moveTo(x1+n*xs,y1+n*ys);
 ctx.lineTo(x1+n*xs+dratio*xs,y1+n*ys+dratio*ys);
 }
 ctx.closePath();
 ctx.stroke();
 ctx.strokeStyle = origstyle;
}

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

238

The valley function determines how many dashes there will be. This is done by dividing the length
of the valley line by the total length of a dash and the gap between dashes. If this is not a whole number,
the last-and-partial-dash-gap combination is dropped. The Math.floor method accomplished this for
us. Math.floor(4.3) returns 4.

The variables xs and ys are the increments in x and y, respectively. The color parameter may or may
not be present. The if (color) statement changes the stroke color if the parameter is present. The heart
of the function is the for loop that draws each dash.

The mountain function is similar, but more complicated because of the nature of the mountain fold
typography: combinations of dashes followed by a gap equal to a dot, then a dot, and then another gap.
The mountain function is as follows:

function mountain(x1,y1,x2,y2,color) {
 var px=x2-x1;
 var py = y2-y1;
 var len = dist(x1,y1,x2,y2);
 var nd = Math.floor(len/ddtotal);
 var xs = px/nd;
 var ys = py/nd;
 if (color) ctx.strokeStyle = color;
 ctx.beginPath();
 for (var n=0;n<nd;n++) {
 ctx.moveTo(x1+n*xs,y1+n*ys);
 ctx.lineTo(x1+n*xs+ddratio1*xs,y1+n*ys+ddratio1*ys);
 ctx.moveTo(x1+n*xs+ddratio2*xs,y1+n*ys+ddratio2*ys);
 ctx.lineTo(x1+n*xs+ddratio3*xs,y1+n*ys+ddratio3*ys);
 }
 ctx.closePath();
 ctx.stroke();
 ctx.strokeStyle = origstyle;
}

With the statements of the functions in mind, here is how I define the variables used by both
functions:

var dashlen = 8;
var dgap = 2.0;
var ddashlen = 6.0;
var ddot = 2.0;
var dratio = dashlen/(dashlen+dgap);
var ddtotal = ddashlen+3*ddot;
var ddratio1 = ddashlen/ddtotal;
var ddratio2 = (ddashlen+ddot)/ddtotal;
var ddratio3 = (ddashlen+2*ddot)/ddtotal;

Lines are used to show the edges of the paper. I set the width for these lines to be 2. For places in
which the paper has been folded and then unfolded, I use a skinnier line: line width set to 1. I wrote a
function to make skinny lines:

function skinnyline(x1,y1,x2,y2) {
 ctx.lineWidth = 1;
 ctx.beginPath();
 ctx.moveTo(x1,y1);
 ctx.lineTo(x2,y2);

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

239

 ctx.closePath();
 ctx.stroke();
 ctx.lineWidth = origwidth;
}

At one point for the directions for the origami fish, I decided to use short, downward-pointing
arrows. I wrote a general function for it, which you can study in the commented code in the “Building
the Application and Making It Your Own” section. There were two places when I decided to show a long
curved arrow, either horizontal or vertical. This turned out to be the longest function in the project, and I
will not go into more detail here. You can study the function in the complete commented code listing.
Fortify yourself with the drink of your choice. This is a complex function because of the many cases that
need to be handled separately: a vertical arrow going up or down, or a horizontal arrow going left to right
or right to left. The arrow is made as an arc of a circle whose center is calculated to be far away from the
arc, and two little lines indicating the arrow head.

Utility Functions for Calculation
You have seen the first mathematical calculation required for this project in previous chapters. It’s called
dist, and it calculates the distance between two points:

function dist(x1,y1,x2,y2) {
 var x = x2-x1;
 var y = y2-y1;
 return Math.sqrt(x*x+y*y);
}

The next function to discuss is determining the intersection point between two lines. The
intersection is a point that satisfies the equation for both lines. In the origami fish example, look at
Figure 7-14. I (my program) will need to calculate the intersection of the line from k to n and the line
from s to q. Look further along in this chapter to Figure 7-17. The xx point is the intersection. The code
from the program is

var xxa = intersect(sx,sy,qx,qy,kx,ky,nx,ny);
var xxx = xxa[0];
var xxy = xxa[1];

Lines are defined by two points, and each point is defined by two numbers. This means that the
intersect function has 2 × 2 × 2 input parameters. My function is not general; it only works when the
lines are not vertical and when there is indeed an intersection. This is acceptable for my use for the
origami fish, but if you take this for another application, you may need to do more work.

Let’s now focus on the mathematical representation of lines. There are different equations, but the
one I use is called the point slope form. The slope of a line is the change in y divided by the change in x
between any two points. Following convention, the slope is named m. The equation for a line with slope
m going through the point (x1,y1) is

y – y1 = m * (x – x1)

Note that this line is mathematics, not JavaScript. Returning now to programming, I determined the
slopes and equations for each of the lines passed to the intersect function.

The intersect function sets m12 to be the slope of the line going from (x1 y1) to (x2,y2), and m34 to
be the slope of the line going from (x3,y3) to (x4,y4). The code essentially sets the two y values:

y = m12 * (x – x1) + y1 and y = m34 * (x – x3) + y3

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

240

The next step is to set these two expressions equal to each other and solve for x. What this
accomplishes is calculating a value for x that lies on both lines. With that value of x, I use one of the two
equations to get the corresponding y. The pair x,y represents a point—in fact, the only point—that is on
both lines. This is what is meant by intersection. I write the code for the function to return array [x,y].
Here is the complete code:

function intersect(x1,y1,x2,y2,x3,y3,x4,y4) {
 // only works on line segments that do intersect and are not
 // vertical
 var m12 = (y2-y1)/(x2-x1);
 var m34 = (y4-y3)/(x4-x3);
 var m = m34/m12;
 var x = (x1-y1/m12-m*x3+y3/m12)/(1-m);
 var y = m12*(x-x1)+y1;
 return ([x,y]);
}

At this point, you may have had a sudden drop in confidence that whatever you do remember from
high school mathematics classes may not apply because the coordinate system for the screen is upside
down. The vertical values increase moving down the screen. It turns out that these equations still work
(although our interpretation may differ). For example, a line that starts at (0,0) and goes to (100,100) has
a calculated slope of positive 1, even though we may think of it as sloping down. In the upside-down
world, it has positive slope.

Another calculation required for the origami fish is what I have named proportion. This function
takes five input parameters. (x1,y1) and (x2,y2) define a line segment. The fifth parameter is p, indicating
proportion. The task of the function is to calculate the (x,y) position on the line segment that is p of the
way from (x1,y1) to (x2,y2).

function proportion(x1,y1,x2,y2,p) {
 var xs = x2-x1;
 var ys = y2-y1;
 var x = x1+ p*xs;
 var y = y1 + p* ys;
 return ([x,y]);
}

This covers what I term the utility functions of the origami project. The three calculation functions
would be applicable to other applications.

Step Line Drawing Functions
The functions for producing the diagrams for a step in the sequence use the path-drawing facilities of
HTML5 and the variables, which have been set using the calculation utility functions or built-in Math
methods. I won’t cover all of them in this section, but will explain a couple. For example, the function
triangleM (more on this function following) has the task of producing the diagram for the step shown in
Figure 7-11.

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

241

Figure 7-11. Dividing-into-thirds step

■ Note My instructions do not suggest ways to do this. A common way that folders do this is to make a guess
for the point one-third of the way from one end—say, the left. Fold the right point to that point and make a tiny
pinch. Then fold the left end to the pinch, and repeat until you don’t see a change in the pinch marks. This method
demonstrates some nice mathematics, namely limits. Whatever error you make in your initial guess will be
reduced to one-quarter of its original size. If you keep doing this, you’ll quickly get to something acceptable.

Figure 7-12 shows the picture annotated with labels for the critical points e, f, g, and h.

Figure 7-12. Dividing a line into thirds and folding

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

242

The variables defining the four points are

var e = proportion(ax,ay,cx,cy,.333333);
var ex = e[0];
var ey = e[1];
var f = proportion(ax,ay,cx,cy,.666666);
var fx = f[0];
var fy = f[1];
var g = proportion(ax,ay,dx,dy,.666666);
var gx = g[0];
var gy = g[1];

The function triangleM is defined as follows:

function triangleM() {
 triangle();
 shortdownarrow(ex,ey);
 shortdownarrow(fx,fy);
 valley(ex,ey,gx,gy,"orange");
 valley(fx,fy,hx,hy,"orange");
}

The function draws a triangle, and then draws two short downward arrows above e and f, and then
draws two valley lines of color orange.

The triangle function is defined to be

function triangle() {
 ctx.fillStyle="teal";
 ctx.beginPath();
 ctx.moveTo(ax,ay);
 ctx.lineTo(cx,cy);
 ctx.lineTo(dx,dy);
 ctx.lineTo(ax,ay);
 ctx.closePath();
 ctx.fill();
 ctx.stroke();
}

The triangle function is not general, but draws this specific triangle. A general function would be

function generaltriangle(px,py, qx,qy, rx,ry, scolor, fcolor) {
 ctx.fillStyle=fcolor;
 ctx.strokeStyle = scolor;
 ctx.beginPath();
 ctx.moveTo(px,py);
 ctx.lineTo(qx,qy);
 ctx.lineTo(rx,ry);
 ctx.lineTo(px,py);
 ctx.closePath();
 ctx.fill();
 ctx.stroke();

}

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

243

Also, do not assume that I knew to write this function. I probably put this coding into the first
function and then when I got to the next step of the model, realized that I needed a triangle again. I
extracted the code I had written and renamed the first function triangleM (for “triangle marked”). I had
the triangleM function and the thirds function each invoke the function named triangle.

Figure 7-13 shows a step in the model that I will illustrate with a function I named littleguy,
because that is what it looks like to me.

Figure 7-13. After sink, what I call littleguy

Figure 7-14 shows the labeling of the critical points.

Figure 7-14. Labeling of critical points for littleguy

The definitions of the corresponding variables are

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

244

var kx = ax+diag/3;
var ky = ay;
var lx = kx + diag/3;
var ly = ay;
var mx = ax + diag/6;
var innersq = Math.sqrt(2)*diag/6;
var my = ay + innersq*Math.sin(Math.PI/4);
var nx = ax+diag/3+diag/6;
var ny = my;
var px = mx;
var py = dy;
var rx = nx;
var ry = py;
var qx = kx;
var qy = hy;

Notice that I don’t try to be sparing with variables. Yes, rx is the same value as nx, but it is easier for
me to think of them as distinct things.

The code for littleguy follows:

function littleguy() {
 ctx.fillStyle="teal";
 ctx.beginPath();
 ctx.moveTo(ax,ay);
 ctx.lineTo(kx,ky);
 ctx.lineTo(mx,my);
 ctx.lineTo(ax,ay);
 ctx.moveTo(kx,ky);
 ctx.lineTo(lx,ly);
 ctx.lineTo(px,py);
 ctx.lineTo(mx,my);
 ctx.lineTo(kx,ky);
 ctx.moveTo(nx,ny);
 ctx.lineTo(rx,ry);
 ctx.lineTo(qx,qy);
 ctx.lineTo(nx,ny);
 ctx.closePath();
 ctx.fill();
 ctx.stroke();
 skinnyline(qx,qy,kx,ky);
 ctx.beginPath();
 ctx.arc(qx,qy,30,-.5*Math.PI,-.25*Math.PI,false);
 ctx.stroke();
 mountain(qx,qy,sx,sy,"orange")
}

The description of the arc in degrees is that it goes from –90 degrees to –45 degrees. Note that zero
degrees is horizontal and positive degrees go clockwise.

Figures 7-15, 7-16, 7-17, and 7-18 show the locations of the remaining critical positions for the
model.

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

245

Figure 7-15. Labeling at fold in half step

Figure 7-16. Preparing to sink center

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

246

Figure 7-17. After wraparound steps

Figure 7-18. After making lips

Use the figures to help understand the code setting the values of variables. For example, as I
mentioned in describing the intersect function, looking at 0s 7-14 and 7-17, you can see that the point
xx, represented by xxx and xxy, is the intersection of the line from s to q and k to n.

One more of the step functions deserves explanation. The directions right before the end had the
fish with the head pointed down the screen. I wanted to make the diagram right before the last video clip
be oriented horizontally to match the video clip about to be displayed. This is accomplished using the
canvas coordinate transformations of HTML5. The previous function is named lips. The rotatefish
function saves the current, which is the original, coordinate system. It then translates to a point on the
fish, invokes a rotation (90 degrees counterclockwise), and then undoes the translation. The rotatefish
function then invokes the lips function, which draws the fish, but now oriented horizontally. Here is
the code:

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

247

function rotatefish() {
 ctx.save();
 ctx.translate(kx,my);
 ctx.rotate(-Math.PI/2);
 ctx.translate(-kx,-my);
 lips();
 ctx.restore();
}

Displaying a Photograph
The steps that display a photograph in have the same structure as the ones producing a line drawing. For
each image required for the application, I need to define an Image object and set the src property to the
name of the image file. The following statements relate to the picture shown in Figure 7-7:

var throat1 = new Image();
throat1.src = "throat1.jpg";

function showthroat1() {
 ctx.drawImage(throat1,40,40);
}

The techniques shown in Chapter 5 to create a separate file defining the media and generating code
(including HTML markup) automatically may be appropriate here. I wrote functions for each
photograph and, as I explain in the next section, each video clip.

Presenting and Removing a Video
The origamifish.html file has video elements for each of the two video clips, one with the ID sink and
the other with the ID talk. The style element has a directive for all videos to not display:

video {display: none;}

The functions playsink and playtalk each make the video display, set the current time to zero, play
the video, and adjust the canvas height. The definition of playsink follows:

function playsink() {
 v = document.getElementById("sink");
 v.style.display="block";
 v.currentTime = 0;
 v.play();
 canvas1.height = 178;
}

With this discussion of the programming techniques and HTML5 features to use for the origami
directions project, we are now ready to look at the application as a whole.

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

248

Building the Application and Making It Your Own
The quickest way to build on what you have learned in this chapter is to create directions for another
craft project similar to paper folding in the presence of line drawings and the benefits of some
photographs and video clips. You can build it step by step, creating the functions you need. It may turn
out that some functions are what I call utility functions: functions used by other functions. You may also
build up variables indicating positioning as you need them. An informal summary/outline of the origami
fish application follows:

• init : for initialization

• donext and goback for moving forward and back through the steps

• Utility functions for drawing specific types of lines

• Utility functions for calculations

• Step functions (functions cited in the steps array)

Table 7-1 lists functions and groups of functions, and indicates how they are invoked and what
functions they invoke.

Table 7-1. Functions in the Origami Directions Project

Function Invoked/Called By Calls

init Invoked by action of the onLoad attribute in the
<body> tag

donext

donext Invoked by init, goback, and by the onClick
attribute in a button tag

goback Invoked by the onClick attribute in a button tag donext

Utility functions for drawing
(shortdownarrow, valley,
mountain, skinnyline,
curvedarrow)

Invoked by the step functions

Utility functions for
calculations (dist, intersect,
proportion)

Invoked mainly in var statements to set variables
representing critical positions in the model

Step functions Invoked as elements in the steps array in donext.
Some (fins, triangle, diamond, rttriangle,
diamondc, and lips) are called by other step
functions

Utility drawing
functions, the
other step
functions
indicated

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

249

Table 7-2 shows the code for the basic application, with comments for each line. Much of this code
you have seen in previous chapters.

Table 7-2. Insert Table Caption

Code Line Description

<!DOCTYPE html> Header

<html> html tag

<head> Head tag

<title>Origami fish</title> Complete title

<style> Style tag

button {font-size:large; font-family:Georgia, "Times New
Roman", Times, serif;}

Directive for formatting of buttons;
note that color is specified for each
button in the body element

#directions {font-family:"Comic Sans MS", cursive;} Directive for formatting of all
directions

video {display:none; } Turn off display of all video elements
until called on

</style> Closing style tag

<script> Starting script tag

var ctx; Will hold canvas context for all
drawing

var cwidth; Width of canvas

var cheight; Height of canvas

var ta; Will hold element for text part of each
step

var kamiw = 4; Set width of paper

var kamih = 4; Set height of paper

var i2p = 72; Set inches to pixels

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

250

Code Line Description

var dashlen = 8; Set length of dash in valley fold

var dgap = 2.0; Set gap between dashes

var ddashlen = 6.0; Set dash length in mountain fold

var ddot = 2.0; Set dot length in mountain fold

var dratio = dashlen/(dashlen+dgap); Used for mountain line

var ddtotal = ddashlen+3*ddot; Used for mountain line

var ddratio1 = ddashlen/ddtotal; Used for mountain line

var ddratio2 = (ddashlen+ddot)/ddtotal; Used for mountain line

var ddratio3 = (ddashlen+2*ddot)/ddtotal; Used for mountain line; all values
used for calculation of number of
dashes and dots and start and extents
of dashes and dots

var kamix = 10; X position of paper in first step

var kamiy = 10; Y position of paper in first step

var nextstep; Pointer into steps array

function dist(x1,y1,x2,y2) { Header for dist function

 var x = x2-x1; Set difference in x

 var y = y2-y1; Set difference in y

 return Math.sqrt(x*x+y*y); Return square root of sum of squares

} Close dist function

function intersect(x1,y1,x2,y2,x3,y3,x4,y4) { Header for intersect function
between two lines, indicated by 2 × 2
points

 // only works on line segments that do intersection
and

Good comments to keep in code:
assumes there is an intersection . . .

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

251

Code Line Description

 // are not vertical . . . and assumes lines aren’t vertical; if
they were, the code would be dividing
by zero, which would produce an
error

 var m12 = (y2-y1)/(x2-x1); Compute slope

 var m34 = (y4-y3)/(x4-x3); Compute slope

 var m = m34/m12; Used in calculation

 var x = (x1-y1/m12-m*x3+y3/m12)/(1-m); Solve for x

 var y = m12*(x-x1)+y1; Solve for y

 return ([x,y]); Return pair

} Close intersect function

function init() { Header for init function

canvas1 = document.getElementById("canvas"); Set canvas1

ctx = canvas1.getContext("2d"); Set context

cwidth = canvas1.width; Set cwidth

cheight = canvas1.height; Set cheight

ta = document.getElementById("directions"); Set ta to hold the element for the text
directions

nextstep = 0; Initialize nextstep

ctx.fillStyle = "white"; Set fill style; will be used for erasing

ctx.lineWidth = origwidth; Set line width (set earlier)

origstyle = ctx.strokeStyle; Save stroke color

ctx.font = "15px Georgia, Times, serif"; Set font

donext(); Start with 0th step

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

252

Code Line Description

} Close init function

function directions() { Header for directions, the first ‘’“step”
shown

 ctx.fillStyle = "black"; Change fill style, for use in text

 ctx.font = "15px Georgia, Times, serif"; Set font

 ctx.fillText("Make valley fold", 10,20); Output explanation

 valley(200,18,300,18,"orange"); Make sample orange valley line

 ctx.fillText("Make mountain fold",10,50); Output explanation

 mountain(200,48,300,48,"orange"); Make sample orange mountain line

 ctx.fillText("unfolded fold line",10,100); Output explanation

 skinnyline(200,98,300,98); Make sample skinny line for unfolded
fold line

 ctx.fillText("When sense of fold matters:",10,150); Output explanation

 ctx.fillText("unfolded valley fold", 10,180); Continue

 valley(200,178,300,178); Make sample old valley

 ctx.fillText("unfolded mountain fold",10,210); Output explanation

 mountain(200,208,300,208); Make sample old mountain

 ctx.fillStyle = "white"; Change fill style back

} Close directions function

function donext() { Header for donext function

 if (nextstep>=steps.length) { Check if nextstep is too big

 nextstep=steps.length-1; Reset

 } Close clause

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

253

Code Line Description

 if (v) { Check if v is set

 v.pause(); Pause the video

 v.style.display = "none"; Make it not display

 v = undefined; Set v to undefined

 canvas1.height = 480; Restore height

 } Close clause

 ctx.clearRect(0,0,cwidth,cheight); Clear canvas

 ctx.lineWidth = origwidth; Reset line width

 steps[nextstep][0](); Invoke the appropriate step function

 ta.innerHTML = steps[nextstep][1]; Display the accompanying text

 nextstep++; Increment nextstep

} Close donext function

function goback() { Header for goback

 nextstep = nextstep -2; Decrement nextstep by 2 (because it
is already 1 ahead)

 if (nextstep<0) { Check if nextstep is now too low

 nextstep = 0; Reset

 } Close clause

 donext(); Invoke donext

} Close goback function

function shortdownarrow(x,y) { Header for short-downward-arrow
function

 ctx.beginPath(); Start path

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

254

Code Line Description

 ctx.moveTo(x,y-20) Move to right above the (x,y) position

 ctx.lineTo(x,y-7); Draw line to just above the (x,y)

 ctx.moveTo(x-5,y-12); Move to the left and up

 ctx.lineTo(x,y-7); Draw diagonal line

 ctx.moveTo(x+5,y-12); Move to the right and up

 ctx.lineTo(x,y-7); Draw diagonal line

 ctx.closePath(); Close path

 ctx.stroke(); Draw the complete path: a short
arrow

} Close shortdownarrow function

function proportion(x1,y1,x2,y2,p) { header for proportion function

 var xs = x2-x1; Set difference in x

 var ys = y2-y1; Set difference in y

 var x = x1+ p*xs; Calculate new x

 var y = y1 + p* ys; calculate new y

 return ([x,y]); Return pair

} Close proportion function

function skinnyline(x1,y1,x2,y2) { Header for skinnyline function

 ctx.lineWidth = 1; Set line width

 ctx.beginPath(); Start path

 ctx.moveTo(x1,y1); Move to start

 ctx.lineTo(x2,y2); Line to finish

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

255

Code Line Description

 ctx.closePath(); Close path

 ctx.stroke(); Make stroke

 ctx.lineWidth = origwidth; Reset line width

} Close skinnyline

var origstyle; Will hold original color

var origwidth = 2; Set to line width for most lines

function valley(x1,y1,x2,y2,color) { Header for valley function

 var px=x2-x1; Set difference in x

 var py = y2-y1; Set difference in y

 var len = dist(x1,y1,x2,y2); Determine length

 var nd = Math.floor(len/(dashlen+dgap)); How many dashes and gaps

 var xs = px/nd; Call this the x factor

 var ys = py/nd; Call this the y factor

 if (color) ctx.strokeStyle = color; If the color parameter was given, set
stroke color to this value

 ctx.beginPath(); Begin path

 for (var n=0;n<nd;n++) { Loop for number of dashes

 ctx.moveTo(x1+n*xs,y1+n*ys); Move to next position

 ctx.lineTo(x1+n*xs+dratio*xs,y1+n*ys+

dratio*ys);

Draw dash

 } Close for loop

 ctx.closePath(); Close path

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

256

Code Line Description

 ctx.stroke(); Draw the path

 ctx.strokeStyle = origstyle; Reset stroke style

} Close valley function

function mountain(x1,y1,x2,y2,color) { Header for mountain function

 var px=x2-x1; Set difference in x

 var py = y2-y1; Set difference in y

 var len = dist(x1,y1,x2,y2); Determine length

var nd = Math.floor(len/ddtotal); Determine number of dash and dot
combinations

 var xs = px/nd; Set x factor

 var ys = py/nd; Set y factor

if (color) ctx.strokeStyle = color; If the color parameter was given, set
stroke color to this value

 ctx.beginPath(); Begin path

 for (var n=0;n<nd;n++) { Loop for number of combinations

 ctx.moveTo(x1+n*xs,y1+n*ys); Move to next one

 ctx.lineTo(x1+n*xs+ddratio1*xs,y1+n*ys+

 ddratio1*ys);

Draw the dash

 ctx.moveTo(x1+n*xs+ddratio2*xs,y1+n*ys+

 ddratio2*ys);

Move to start of dot

 ctx.lineTo(x1+n*xs+ddratio3*xs,y1+n*ys+

 ddratio3*ys);

Draw the dot

 } Close loop

 ctx.closePath(); Close path

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

257

Code Line Description

 ctx.stroke(); Draw the path

 ctx.strokeStyle = origstyle; Reset stroke style

} Close mountain function

function curvedarrow(x1,y1,x2,y2,px,py){ Header for curvedarrow from (x1,y1)
to (x2,y2) offset by (px,py)

 var arrowanglestart; Start Angle

 var arrowanglefinish; Finish angle

 var d = dist(x1,y1,x2,y2); Distance

 var rad=Math.sqrt(4.25*d*d); The value 4.25 arrived at by
experimentation to get an attractive
curve to the arrow

 var ctrx; X-coordinate of center of arc that is
curved arrow

 var ctry; Y-coordinate

 var ex; For the two little lines that make up
the head of the arrow

 var ey; For the two little lines that make up
the head of the arrow

 var angdel = Math.atan2(d/2,2*d); Angle of the arc

 var fromhorizontal; Angle where arc starts

 ctx.strokeStyle = "red"; Set color

 ctx.beginPath(); Begin path

 if (y1==y2) { Horizontal arrow case

 arrowanglestart = 1.5*Math.PI-angdel; Set starting angle

 arrowanglefinish = 1.5*Math.PI+angdel; Set ending angle

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

258

Code Line Description

 ctrx = .5*(x1+x2) +px; Calculate center x

 ctry = y1+2*d +py; Calculate center y

 if (x1<x2) { For arrows going left to right

 ctx.arc(ctrx,ctry,
rad,arrowanglestart,arrowanglefinish,

false);

Draw arc

 fromhorizontal=2*Math.PI-
arrowanglefinish;

Used in calculation

 ex = ctrx+rad*Math.cos(fromhorizontal); Set x increment

 ey = ctry - rad*Math.sin(fromhorizontal); Set y increment

 ctx.lineTo(ex-8,ey+8); Draw first little line

 ctx.moveTo(ex,ey); Move to other end

 ctx.lineTo(ex-8,ey-8); Draw line

 } Close arrows left to right

else { Right to left

ctx.arc(ctrx,ctry, rad,arrowanglefinish,arrowanglestart,

true);

Draw arc

fromhorizontal=2*Math.PI- arrowanglestart; Calculate for the lines

ex = ctrx+rad*Math.cos(fromhorizontal); Set x for little lines

ey = ctry - rad*Math.sin(fromhorizontal); Set y for little lines

 ctx.lineTo(ex+8,ey+8); Draw first line

 ctx.moveTo(ex,ey); Move to end of other line

 ctx.lineTo(ex+8,ey-8); Draw line

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

259

Code Line Description

 } End clause

 ctx.stroke(); Do the drawing for either case

} End horizontal case

else if (x1==x2) { Vertical line

 arrowanglestart = -angdel; Set starting angle

 arrowanglefinish = angdel; Set finishing angle

 ctrx = x1-2*d+px; Calculate center x

 ctry = .5*(y1+y2) + py; Calculate center y

 if (y1<y2) { If downward arrow

 ctx.arc(ctrx,ctry,rad,arrowanglestart,

 arrowanglefinish,false);

Draw arc

 fromhorizontal=- arrowanglefinish; For calculation

 ex = ctrx+rad*Math.cos(fromhorizontal); Calculate x for little lines

 ey = ctry - rad*Math.sin(fromhorizontal); Calculate y for little lines

 ctx.lineTo(ex-8,ey-8); Draw first little line

 ctx.moveTo(ex,ey); Move to end

 ctx.lineTo(ex+8,ey-8); Draw second little line

 } End downward clause

 else { Upward clause

 ctx.arc(ctrx,ctry,
rad,arrowanglefinish,arrowanglestart,

 true);

Draw arc

fromhorizontal=- arrowanglestart; For calculation

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

260

Code Line Description

ex = ctrx+rad*Math.cos(fromhorizontal); Calculate x for little lines

ey = ctry - rad*Math.sin(fromhorizontal); Calculate y for little lines

ctx.lineTo(ex-8,ey+8); Draw first little line

ctx.moveTo(ex,ey); Move to end of second line

ctx.lineTo(ex+8,ey+8); Draw little line

} End clause

ctx.stroke(); Draw arc

} Close vertical case

 ctx.strokeStyle = "black"; Reset color

}

// specific to fish What follows is specific to the fish
model

var steps= [Instruction steps: Function name and
accompanying text

 [directions,"Diagram conventions"],

 [showkami,"Make quarter turn."],

 [diamond1,"Fold top point to bottom point."],

 [triangleM,"Divide line into thirds and make valley
folds and unfold "],

 [thirds,"Fold in half to the left."],

 [rttriangle,"Fold down the right corner to the fold
marking a third. "],

 [cornerdown,"Unfold everything."],

 [unfolded,"Prepare to sink middle square by reversing

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

261

Code Line Description
folds as indicated ..."],

 [changedfolds,"note middle square sides all valley
folds, some other folds changed. Flip over."],

 [precollapse,"Push sides to sink middle square."],

 [playsink,"Sink square, collapse model."],

 [littleguy,"Now fold back the right flap to center
valley fold. You are bisecting the indicated angle."],

 [oneflapup,"Do the same thing to the flap on the
left"],

 [bothflapsup,"Make fins by wrapping top of right flap
around 1 layer and left around back layer"],

 [finsp,"Now make lips...make preparation folds"],

 [preparelips,"and turn lips inside out. Turn corners
in..."],

 [showcleftlip,"...making cleft lips."],

 [lips,"Pick up fish and look down throat..."],

 [showthroat1,"Stick your finger in its mouth and move
the inner folded material to one side"],

 [showthroat2,"Throat fixed."],

 [rotatefish,"Squeeze & release top and bottom to make
fish's mouth close and open"],

 [playtalk,"Talking fish."]

];

var diag = kamiw* Math.sqrt(2.0)*i2p; Length of diagonal

var ax = 10; Set x for left corner

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

262

Code Line Description

var ay = 220; Set y for left corner

var bx = ax+ .5*diag; Calculate b (top corner)

var by = ay - .5*diag;

var cx = ax + diag; Calculate c (right)

var cy = ay;

var dx = bx; Calculate d (bottom)

var dy = ay + .5*diag;

var e = proportion(ax,ay,cx,cy,.333333); See Figure 7-12 for e through h

var ex = e[0];

var ey = e[1];

var f = proportion(ax,ay,cx,cy,.666666);

var fx = f[0];

var fy = f[1];

var g = proportion(ax,ay,dx,dy,.666666);

var gx = g[0];

var gy = g[1];

var h = proportion(cx,cy,dx,dy,.666666);

var hx = h[0];

var hy = h[1];

var jx = ax + .5*diag; See Figures 7-15 and 7-16

var jy = ay;

var diag6 = diag/6;

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

263

Code Line Description

var gry = ay-(gy-ay);

var kx = ax+diag/3; See Figure 7-14 for k through s

var ky = ay;

var lx = kx + diag/3;

var ly = ay;

var mx = ax + diag/6;

var innersq = Math.sqrt(2)*diag/6;

var my = ay + innersq*Math.sin(Math.PI/4);

var nx = ax+diag/3+diag/6;

var ny = my;

var px = mx;

var py = dy;

var rx = nx;

var ry = py;

var qx = kx;

var qy = hy;

var dkq = qy-ky;

var sx = kx +
(dkq/Math.cos(Math.PI/8))*Math.sin(Math.PI/8);

var sy = ay;

var tx = kx; See Figure 7-17

var ty = qy-dist(qx,qy,lx,ly);

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

264

Code Line Description

var xxa = intersect(sx,sy,qx,qy,kx,ky,nx,ny);

var xxx = xxa[0];

var xxy = xxa[1];

var xxlx = kx-(xxx-kx);

var xxly = xxy;

var slx = kx- (sx-kx);

var sly = sy;

var tlx = tx-5;

var tly = ty;

var dkt=ky-ty;

var finlx = kx-dkt; See Figure 7-18

var finly = ky;

var finrx = kx+dkt;

var finry = ky;

var w = Math.cos(Math.PI/4)*dkt;

var wx = kx-.5*dkt;

var wy = w*Math.sin(Math.PI/4)+ky;

var zx = kx+.5*dkt;

var zy = wy;

var plipx = px;

var plipy = py-10;

var rlipx = rx;

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

265

Code Line Description

var rlipy = ry-10;

var plipex = px - 10;

var plipey = plipy;

var rlipex = rx + 10;

var rlipey = rlipy;

var rclipcleft1 =
proportion(rlipex,rlipey,rlipx,rlipy,.5);

var pclipcleft1 =
proportion(plipex,plipey,plipx,plipy,.5);

var rclipcleft2 = proportion(rlipex,rlipey,qx,qy,.1);

var pclipcleft2 = proportion(plipex,plipey,qx,qy,.1);

var rcx1 = rclipcleft1[0];

var rcy1 = rclipcleft1[1];

var rcx2 = rclipcleft2[0];

var rcy2 = rclipcleft2[1];

var pcx1 = pclipcleft1[0];

var pcy1 = pclipcleft1[1];

var pcx2 = pclipcleft2[0];

var pcy2 = pclipcleft2[1];

var v; Will hold video element

var throat1 = new Image(); Define Image object

throat1.src = "throat1.jpg"; Set src

var throat2 = new Image(); Define Image object

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

266

Code Line Description

throat2.src = "throat2.jpg" Set src

var cleft = new Image(); Define Image object

cleft.src="cleftlip.jpg"; Set src

function showcleftlip() { Header for showcleftlip

 ctx.drawImage(cleft,40,40); Draw image

} close showcleftlip

function showthroat1() { Header for showthroat1

 ctx.drawImage(throat1,40,40); Draw image

} Close showthroat1

function showthroat2() { Header for showthroat2

 ctx.drawImage(throat2,40,40); Draw image

} Close showthroat2

function playtalk() { Header for playtalk

 v = document.getElementById("talk"); Set to the talk video

 v.style.display="block"; Make visible

 v.currentTime = 0; Set at start

 v.play(); Play

 canvas1.height = 126; Adjust for height of video

} Close playtalk

function playsink() { Header for playsink

 v = document.getElementById("sink"); Set to the sink video

 v.style.display="block"; Make visible

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

267

Code Line Description

 v.currentTime = 0; Set at start

 v.play(); Play

 canvas1.height = 178; Adjusts for height of video

} Close playsink

function lips() { Header for lips

 ctx.fillStyle = "teal"; Set color

 ctx.beginPath(); Begin path

 ctx.moveTo(finlx,finly); Move to left corner of left fin

 ctx.lineTo(kx,ky); Draw to center

 ctx.lineTo(wx,wy); Draw back and down

 ctx.lineTo(finlx,finly); Draw up to start (left corner, left fin)

 ctx.moveTo(finrx,finry); Move to right fin

 ctx.lineTo(kx,ky); Draw to center

 ctx.lineTo(zx,zy); Draw down and right

 ctx.lineTo(finrx,finry); Draw up to right corner, right fin

 ctx.moveTo(mx,my); Move to m

 ctx.lineTo(kx,ky); Draw to k

 ctx.lineTo(xxx,xxy); Draw to xx

 ctx.lineTo(qx,qy); Draw down, center to q

 ctx.lineTo(plipx,plipy); Draw down, right

 ctx.lineTo(mx,my); Draw straight up to m

 ctx.moveTo(xxx,xxy); Move to xx

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

268

Code Line Description

 ctx.lineTo(nx,ny); Draw right and down

 ctx.lineTo(rlipx,rlipy); Draw down to rlip

 ctx.lineTo(qx,qy); Draw to center q

 ctx.lineTo(xxx,xxy); Draw back to xx

 ctx.closePath(); Close path

 ctx.fill(); Fill in shape

 ctx.stroke(); Outline shape

 ctx.fillStyle="white"; Set to white

 ctx.beginPath(); Begin path

 ctx.moveTo(qx,qy); Start at lower center

 ctx.lineTo(pcx2,pcy2); Draw to left top of lip

 ctx.lineTo(pcx1,pcy1); Draw to left outer lip

 ctx.lineTo(plipx,plipy); Draw over right slightly to bottom-
corner plip

 ctx.lineTo(qx,qy); Draw back to center

 ctx.lineTo(rcx2,rcy2); Draw to right top of lip

 ctx.lineTo(rcx1,rcy1); Draw to right outer lip

 ctx.lineTo(rlipx,rlipy); Draw to bottom-corner rlip

 ctx.lineTo(qx,qy); Draw back to center

 ctx.closePath(); Close path

 ctx.fill(); Fill in white shape (two parts)

 ctx.stroke(); Outline shapes

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

269

Code Line Description

 skinnyline(kx,ky,qx,qy); Draw vertical center line

 ctx.fillStyle="teal"; Reset to color

} Close lips

function rotatefish() { Header for rotatefish

 ctx.save(); Save current coordinate system

 ctx.translate(kx,my); Move to a center point

 ctx.rotate(-Math.PI/2); Rotate 90 degrees

 ctx.translate(-kx,-my); Undo translation

 lips(); Draw lips (the model up to this point)

 ctx.restore(); Restore old coordinate system

} Close rotatefish

function preparelips() { Header for preparelips

 ctx.fillStyle="teal"; Set color

 fins(); Draw fins

 valley(qx,qy,rlipx,rlipy); Mark valley line

 valley(qx,qy,plipx,plipy); Mark valley line

} Close preparelips

function finsp() { Header for finsp

 ctx.fillStyle="teal"; Set color

 fins(); Draw fins

valley(qx,qy,rlipx,rlipy,"orange"); Draw valley fold

valley(qx,qy,plipx,plipy,"orange"); Draw valley fold

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

270

Code Line Description

} Close finsp

function fins() { Header for fins

 ctx.beginPath(); Begin path

 ctx.moveTo(finlx,finly); Move to left fin

 ctx.lineTo(kx,ky); Draw line to center

 ctx.lineTo(wx,wy); Draw line left and down

 ctx.lineTo(finlx,finly); Draw to left fin

 ctx.moveTo(finrx,finry); Move to right fin

 ctx.lineTo(kx,ky); Draw to center

 ctx.lineTo(zx,zy); Draw right and down

 ctx.lineTo(finrx,finry); Draw back to right fin

 ctx.moveTo(mx,my); Move to m (left and down)

 ctx.lineTo(kx,ky); Draw to center

 ctx.lineTo(xxx,xxy); Draw to xx

 ctx.lineTo(qx,qy); Draw down to q

 ctx.lineTo(px,py); Draw over to p

 ctx.lineTo(mx,my); Draw left to m

 ctx.moveTo(xxx,xxy); Move to xx

 ctx.lineTo(nx,ny); Draw right to n

 ctx.lineTo(rx,ry); Draw down to r

 ctx.lineTo(qx,qy); Draw up and left to center

 ctx.lineTo(xxx,xxy); Draw to xx

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

271

Code Line Description

 ctx.closePath(); Close path

 ctx.fill(); Fill in shape

 ctx.stroke(); Draw outline

 skinnyline(kx,ky,qx,qy); Draw skinny line indicated center fold

} Close fins

function bothflapsup () { Header for bothflapsup

 ctx.fillStyle="teal"; Set color

 ctx.beginPath(); Begin path

 ctx.moveTo(slx,sly); Move to corner

 ctx.lineTo(tlx,tly); Draw line up to tip

 ctx.lineTo(kx,ky); Draw line to center

 ctx.lineTo(xxlx,xxly); Draw line left and down

 ctx.lineTo(slx,sly); Draw back to tip

 ctx.moveTo(mx,my); Move down (on the left)

 ctx.lineTo(kx,ky); Draw line to center

 ctx.lineTo(sx,sy); Draw to right side

 ctx.lineTo(qx,qy); Draw down, left

 ctx.lineTo(px,py); Draw to bottom, left tip

 ctx.lineTo(mx,my); Draw up

 ctx.moveTo(tx,ty); Draw up

 ctx.lineTo(sx,sy); Draw to right

 ctx.lineTo(kx,ky); Draw to center

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

272

Code Line Description

 ctx.lineTo(tx,ty); Draw up

 ctx.moveTo(xxx,xxy); Draw to right

 ctx.lineTo(nx,ny); Draw to right

 ctx.lineTo(rx,ry); Draw down to tip

 ctx.lineTo(qx,qy); Draw to center

 ctx.lineTo(xxx,xxy); Draw back to right

 ctx.closePath(); Close path

 ctx.fill(); Fill in shape

 ctx.stroke(); Outline shape

 skinnyline(kx,ky,qx,qy); Add line indicating fold

} Close bothflapsup

function oneflapup() { Header for oneflapup

 ctx.fillStyle="teal"; Set color

 ctx.beginPath(); Begin path

 ctx.moveTo(ax,ay); Move to left corner

 ctx.lineTo(kx,ky); Draw to middle

 ctx.lineTo(mx,my); Draw down and left

 ctx.lineTo(ax,ay); Draw back to left corner

 ctx.moveTo(kx,ky); Move to middle

 ctx.lineTo(sx,sy); Draw to right

 ctx.lineTo(qx,qy); Draw down, middle

 ctx.lineTo(px,py); Draw left, down

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

273

Code Line Description

 ctx.lineTo(mx,my); Draw up

 ctx.lineTo(kx,ky); Draw (back to) middle top

 ctx.moveTo(xxx,xxy); Draw right, down

 ctx.lineTo(nx,ny); Draw down

 ctx.lineTo(rx,ry); Draw down to right tip

 ctx.lineTo(qx,qy); Draw to center

 ctx.lineTo(xxx,xxy); Draw right, up

 ctx.moveTo(kx,ky); Move to middle

 ctx.lineTo(tx,ty); Draw to top

 ctx.lineTo(sx,sy); Draw down, right

 ctx.lineTo(kx,ky); Draw (back to) top

 ctx.closePath(); Close path

 ctx.fill(); Fill in shape

 ctx.stroke(); Outline shape

 skinnyline(qx,qy,kx,ky); Draw fold line

} Close oneflapup

function littleguy() { Header for littleguy

 ctx.fillStyle="teal"; Set color

 ctx.beginPath(); Begin path

 ctx.moveTo(ax,ay); Move to left corner

 ctx.lineTo(kx,ky); Draw to center

 ctx.lineTo(mx,my); Draw left, down

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

274

Code Line Description

 ctx.lineTo(ax,ay); Draw back to corner

 ctx.moveTo(kx,ky); Move to center

 ctx.lineTo(lx,ly); Draw to right corner

 ctx.lineTo(px,py); Draw down and left

 ctx.lineTo(mx,my); Draw up

 ctx.lineTo(kx,ky); Draw back to center

 ctx.moveTo(nx,ny); Move right and down

 ctx.lineTo(rx,ry); Draw down

 ctx.lineTo(qx,qy); Draw to lower center

 ctx.lineTo(nx,ny); Draw back, right

 ctx.closePath(); Close path

 ctx.fill(); Fill in shape

 ctx.stroke(); Outline shape

 skinnyline(qx,qy,kx,ky); Draw fold line

 ctx.beginPath(); Begin path

 ctx.arc(qx,qy,30,-.5*Math.PI,

-.25*Math.PI,false);

Draw arc to represent angle

 ctx.stroke(); Draw as stroke

 mountain(qx,qy,sx,sy,"orange") Indicate mountain fold

} Close littleguy

function unfolded() { Header for unfolded

 diamond(); Draw diamond shape

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

275

Code Line Description

 valley(ax,ay,cx,cy); Indicate valley across paper

 valley(ex,ey,gx,gy); Indicate valley, midway and down on
left

 valley(fx,fy,hx,hy); Indicate valley, midway and down on
right

 mountain(ex,ey,gx,gry); Indicate mountain, midway and up
on left

 mountain(fx,fy,hx,gry); Indicate mountain, midway and up,
right

 valley(jx,jy,dx,dy); Valley from inner diamond to bottom

 mountain(jx,jy,bx,by); Mountain from inner diamond to top

 valley(ex,ey,jx,jy+diag6); Valley left, upper side of inner
diamond

 valley(jx,jy-diag6,fx,fy); Valley right, lower side of inner
diamong

 mountain(ex,ey,jx,jy-diag6); Mountain, left, lower side of inner
diamond

 mountain(jx,jy+diag6,fx,fy); Mountain, right, top side of inner
diamond

} Close unfolded

function precollapse() { Header for precollapse

 diamondc(); Colored diamond

 mountain(ax,ay,cx,cy); Mountain across paper

 valley(ex,ey,gx,gy); Valley center, down on left

 valley(fx,fy,hx,hy); Valley center, down on right

 valley(ex,ey,gx,gry); Valley center, up on left

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

276

Code Line Description

 valley(fx,fy,hx,gry); Valley center, up on right

 valley(jx,jy-diag6,jx,jy+diag6); Valley in middle of paper, vertical

 mountain(jx,jy-diag6,bx,by); Mountain from inner diamond up

 mountain(jx,jy+diag6,dx,dy); Mountain from inner diamond down

 mountain(ex,ey,jx,jy+diag6); Mountain, top, left side of inner
diamond

 mountain(jx,jy-diag6,fx,fy); Mountain, top, right side of inner
diamond

 mountain(ex,ey,jx,jy-diag6); Mountain, top, left side of inner
diamond

 mountain(jx,jy+diag6,fx,fy); Mountain, top, right side of inner
diamond

} Close precollapse

function changedfolds() { Header for changedfolds; note that
this is the same as unfolded, except
for sense (mountain versus valley) of
some folds

 diamond(); Draw diamond

 valley(ax,ay,cx,cy); Valley across paper

 mountain(ex,ey,gx,gy); Mountain, middle of paper, down on
left

 mountain(fx,fy,hx,hy); Mountain, middle, down on right

 mountain(ex,ey,gx,gry); Mountain, middle, up on left

 mountain(fx,fy,hx,gry); Mountain, middle, up on right

mountain(jx,jy-diag6,jx,jy+diag6); Mountain, middl,e vertical

 valley(jx,jy-diag6,bx,by); valley, inner diamond up

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

277

Code Line Description

 valley(jx,jy+diag6,dx,dy); valley, inner diamond down

 valley(ex,ey,jx,jy+diag6); Valley, top, left side of inner diamond

 valley(jx,jy-diag6,fx,fy); Valley, top, right side of inner
diamond

 valley(ex,ey,jx,jy-diag6); Valley, bottom, left side of inner
diamond

 valley(jx,jy+diag6,fx,fy); Valley, bottom, right side of inner
diamond

} Close changefolds

function triangleM() { Header for triangleM

 triangle(); Draw triangle

 shortdownarrow(ex,ey); Indicate with arrow, one-third point

 shortdownarrow(fx,fy); Indicate with arrow, two-thirds point

 valley(ex,ey,gx,gy,"orange"); Next valley fold

 valley(fx,fy,hx,hy,"orange"); Next valley fold

} Close triangleM

function thirds() { Header for thirds

 triangle(); Draw triangle

 skinnyline(ex,ey,gx,gy); Indicate folded line

 skinnyline(fx,fy,hx,hy); Indicate folded line

 curvedarrow(cx,cy,ax,ay,0,-20); Draw curve right to left, offset
vertically

 valley(jx,jy,dx,dy,"orange"); Draw (next) valley line

} Close thirds

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

278

Code Line Description

function cornerdown() { Header for cornerdown

 rttriangle(); Draw right triangle

 ctx.clearRect(ex,ey, diag6+5,diag6); Erase rectangle covering corner

 ctx.beginPath(); Begin path

 ctx.moveTo(ex,ey); Move to start

 ctx.lineTo(ex+diag6,ey+diag6); Draw right and down

 ctx.lineTo(ex,ey+diag6); Draw straight down

 ctx.lineTo(ex,ey); Draw back to start

 ctx.closePath(); Close path

 ctx.fill(); Fill in triangle shape

 ctx.stroke(); Outline triangle shape

} Close cornerdown

function showkami() { Header for showkami

 ctx.strokeRect(kamix,kamiy,kamiw*i2p,kamih*i2p); Draw a rectangle

 } Close showkami

function diamond1() { Header for diamond1

 diamond(); Draw diamond

 valley(ax,ay,cx,cy,"orange"); Add orange valley

 curvedarrow(bx,by,dx,dy,10,0); Add vertical curved arrow

} Close diamond1

function diamondc() { Header for diamondc

 ctx.beginPath(); Begin path

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

279

Code Line Description

 ctx.moveTo(ax,ay); Move to left corner

 ctx.lineTo(bx,by); Line up and right

 ctx.lineTo(cx,cy); Line down and right

 ctx.lineTo(dx,dy); Line down and to middle

 ctx.lineTo(ax,ay) Line to start

 ctx.closePath(); Close path

 ctx.fillStyle="teal"; Set color

 ctx.fill(); Fill in diamond

 ctx.stroke(); Draw outline

} Close diamondc

function diamond() { Header for diamond

 ctx.beginPath(); Begin path

 ctx.moveTo(ax,ay); Move to left corner

 ctx.lineTo(bx,by); Draw line up and over

 ctx.lineTo(cx,cy); Draw line down and over

 ctx.lineTo(dx,dy); Draw line down to center

 ctx.lineTo(ax,ay) Draw back to start

 ctx.closePath(); Close path

 ctx.stroke(); Draw outline

} Close diamond

function triangle() { Header for triangle function

 ctx.fillStyle="teal"; Set to color

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

280

Code Line Description

 ctx.beginPath(); Begin path

 ctx.moveTo(ax,ay); Move to left corner

 ctx.lineTo(cx,cy); Draw line across

 ctx.lineTo(dx,dy); Draw line down

 ctx.lineTo(ax,ay); Draw line back up

 ctx.closePath(); Close path

 ctx.fill(); Fill in shape

} Close triangle

function rttriangle() { Header for rttriangle

 ctx.fillStyle="teal"; Set color

 ctx.beginPath(); Begin path

 ctx.moveTo(ax,ay); Move to left corner

 ctx.lineTo(jx,jy); Draw line across to middle

 ctx.lineTo(dx,dy); Draw line down

 ctx.lineTo(ax,ay); Draw line back up

 ctx.closePath(); Close path

 ctx.fill(); Fill in right triangle

valley(ex,ey,ex+diag6,ey+diag6,"orange"); Draw diagonal valley

 skinnyline(ex,ey,gx,gy);

} Close rttriangle

</script> Closing script tag

</head> Closing head tag

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

281

Code Line Description

<body onLoad="init();"> Body, with call to init

<video id="sink" loop="loop" preload="auto"
controls="controls" width="400">

Video tag

<source src="sink.mp4video.mp4" type='video/mp4;
codecs="avc1.42E01E, mp4a.40.2"'>

mp4

<source src="sink.theora.ogv" type='video/ogg;
codecs="theora, vorbis"'>

OGG

<source src="sink.webmvp8.webm" type='video/webm;
codec="vp8, vorbis"'>

WEBM

Your browser does not accept the video tag. Message for old browsers

</video> Closing video tag

<video id="talk" loop="loop" preload="auto"
controls="controls">

Video tag

<source src="talk.mp4video.mp4" type='video/mp4;
codecs="avc1.42E01E, mp4a.40.2"'>

mp4

<source src="talk.theora.ogv" type='video/ogg;
codecs="theora, vorbis"'>

OGG

<source src="talk.webmvp8.webm" type='video/webm;
codec="vp8, vorbis"'>

WEBM

Your browser does not accept the video tag. Message for old browsers

</video> Closing video tag

<canvas id="canvas" width="900" height="480"> Set up canvas

Your browser does not recognize the canvas element Message for old browsers

</canvas> Closing canvas tag

 Break

<div id="directions"> Press buttons to advance or go back
</div>

Place to put directions

CHAPTER 7 ■ ORIGAMI DIRECTIONS: USING MATH-BASED LINE DRAWINGS, PHOT0GRAPHS, AND VIDEOS

282

Code Line Description

<hr/> Horizontal rule

<button onClick="goback();" style="color: #F00">Go back
</button>

Set up “Go back” button

<button onClick="donext();" style="color: #03F">Next step
</button>

Set up “Next step” button

</body> Closing body tag

</html> Closing html tag

You can apply this methodology directly to preparing directions for other origami models or similar

construction projects. However, do think more broadly about other topics in which line drawings would
benefit from mathematical calculations and for which line drawings and images and videos could be
used together. You don’t have to know everything at the start. Be prepared to work through the project a
step at a time.

Testing and Uploading the Application
The origamifish.html application can be fully tested on your own computer, assuming you download
the photographs and the video clips. If and when you upload it or your own application to a server, you’ll
need to upload the HTML file, all the image files, and all the video files. Remember, to have an
application work on all browsers, you need multiple formats for each video.

Summary
In this chapter, you learned how to build a substantial application for presenting directions involving
line drawings, photographs, and video clips. The programming techniques included the following:

• The use of mathematics (algebra, geometry, and trigonometry) to make precise
drawings

• The use of an array holding text and function names corresponding to each step

• The integration of photographs and video clips through the use of functions

In the next chapter, we’ll tackle another project integrating photographs and video clips: the
construction of a jigsaw puzzle that turns into a video when the player puts the puzzle together.

C H A P T E R 8

283

Jigsaw Video: Using the Mouse
and Touch to Arrange Images

In this chapter, you will learn the following:

• How to set up mouse and touch events to build an application to work on a variety
of devices

• Ways to break up a picture into pieces and determine the coordinates for those
pieces to produce a jigsaw puzzle

• How to calculate horizontal and vertical coordinates and manipulate left and top
style attributes to reposition elements on the screen

• About the concept of tolerance or margin so your player does not have to be
perfect to solve the puzzle

• How to make the jigsaw turn into a running video

Introduction
The project for this chapter is a jigsaw puzzle that becomes a video when complete. It has been tested on
Chrome, Firefox, Opera, and Safari on computers equipped with a mouse, and on the iPhone and iPad
using finger touch. The jigsaw pieces are positioned randomly on the screen each time the program is
loaded, or the button is clicked to restart the program. Figure 8-1 shows an opening screen when the
program is run on a desktop computer running the Firefox browser.

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

284

Figure 8-1. Opening screen on computer

On a computer, the player uses the mouse to move and reposition pieces. Randomly positioned
pieces may end up on top of each other. Figure 8-2 shows the jigsaw pieces spread out. I did this using
the mouse. My example has six rectangular-shaped pieces.

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

285

Figure 8-2. Pieces spread out

Figure 8-3 shows how I have made progress in putting the puzzle together. I can position the puzzle
anywhere on the screen. Three pieces of the puzzle have been put together.

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

286

Figure 8-3. Progress made on the puzzle

Notice that the box with the label Feedback says to keep working. Figure 8-4 shows the puzzle nearly
complete.

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

287

Figure 8-4. Just one piece left to fit into the jigsaw puzzle

The program allows for a margin of error, which I term the tolerance, when putting the pieces
together. You can see by noticing the white border along the dance floor that the puzzle is not perfectly
put together. When I move in the last piece, Figure 8-5 shows a screen capture shortly after my last
move.

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

288

Figure 8-5. Pieces replaced by a video

Notice that the feedback now reads “GOOD!” A video has begun to play. The picture appears
perfect. In fact, the six jigsaw pieces have been replaced by the video. Figure 8-6 shows the video with
controls showing. The controls do not show automatically, but can be seen if the player puts the mouse
on top of the lower part of the video. The video controls vary across the different browsers.

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

289

Figure 8-6. Video clip with controls

I decided to attempt the task of making the project work for an iPhone and iPad. This meant
constructing a user interface that allows the player to use finger touches. To be more ambitious, I
wanted to produce one program as a web site that would work for both mouse and touch. Figure 8-7
shows the opening screen on an iPhone.

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

290

Figure 8-7. Opening screen on an iPhone

Notice that you and the player cannot see the bottom part of the original screen with the “Do jigsaw
again” button and the feedback. I decided to accept this in order to avoid squeezing the playing area or
reducing the size of the pieces. Figure 8-8 shows the game in progress. The pieces have been moved
using a finger on the screen.

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

291

Figure 8-8. Jigsaw game in progress on an iPhone

Figure 8-9 shows the screen immediately following successful completion of the puzzle.

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

292

Figure 8-9. Video ready to play on an iPhone

The iPhone operating system requires users to click the play button for all videos. This is considered
a feature, not a bug, by the makers of the iPhone. Requiring a click does give the owner of the iPhone a
chance to prevent downloading of a video, which takes time and battery power and may incur fees. For
the jigsaw-to-video project, I would prefer it to be seamless, but I’ll accept it as is. Figure 8-10 shows the
video in play.

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

293

Figure 8-10. Video in play on an iPhone

With this introduction to what can be called the jigsaw-puzzle-with-video-reward project, we can go
on to discuss the requirements for the project and the implementation.

Background and Critical Requirements
Three distinct circumstances inspired me to want to build this particular project. I had built jigsaw
puzzles turning into videos in Adobe Flash for a Programming Games course that I taught, and many
students were happy to use them as models for their own projects. When I was working on a US states
educational game, which is the subject of the next chapter, I decided a jigsaw activity to put the states
together was a good addition to other questions such as asking the player to identify a state by clicking
on the state in a map of the whole USA. Lastly, I had a short video clip on my phone taken by the happy
mother of the groom at her son’s wedding. These circumstances were the motivation to create the jigsaw
turning into video project.

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

294

The requirements for this project start with acquiring the images that will be the jigsaw pieces using
as a base the first frame of a video clip. Next, since it will be necessary to determine if the jigsaw is
complete—that is, if the pieces have been repositioned correctly—we must record the information
showing the correct relative positions.

The main technical requirement is to build the user interface. The user interface consists of the
mouse or finger touch actions, along with a button to do the jigsaw again and feedback provided in a
text field.

The program presents the pieces randomly positioned on the screen. The player then moves the
pieces either by using a mouse (mouse button down, move to drag the piece, and then mouse button up
to release it) or a finger (touch down on the screen, move finger to drag, and then lift finger up). After
each release of a piece, the program performs a calculation to see if the puzzle has been solved. This
calculation must satisfy two requirements. The puzzle can be put together anywhere on the screen, and
there needs to be a tolerance in the positioning of the pieces, since we can’t require the positioning to be
perfect (i.e., to the pixel).

When the puzzle is deemed complete, it turns into a video. More accurately, a video appears where
the pieces were located on the screen.

HTML5, CSS, JavaScript, and Programming Features
The features used for the jigsaw video project are a mixture of HTML5 constructs and general
programming techniques.

Acquiring the Images and Data for the Pieces
I will describe how I acquired the puzzle pieces for this project. What you do depends on the tools you
have and what you feel comfortable using. The first task is to obtain the first frame of the video for use as
the base of the jigsaw puzzle. I use SnagIt, a screen capture tool (www.techsmith.com/snagit/). You also
can press the PC Print Screen key twice to capture the screen, or press Command+Shift+4 to get
crosshairs on the Mac. In either case, you then bring the image into an image-editing package. However,
if you are using video-editing software, it would make sense to use that. The next step is to perform the
digital equivalent of cutting up the base picture with a jigsaw. I used Corel Paint Shop Pro and also
Adobe Flash (more on that in the next chapter). You can use a standard rectangular selection tool, a
freehand lasso, or a cropping tool. In Adobe Flash, you can draw lines to cut up the picture and select the
pieces. An open source tool image editing is available at http://pixlr.com/.

While cutting up the individual pieces and saving each as its own image file, it is necessary to record
the distances to the top-left corner of the piece from the top-left corner of the original picture. You need
to cut up the puzzle to make the pieces and record how the pieces fit together. Figure 8-11 shows the
location of one of the 6 jigsaw pieces, dan5.jpg, outlined on top of the base picture. I added the red
border to this figure to show the individual piece.

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

295

Figure 8-11. Screenshot from Corel Paint Shop Pro

At the bottom of Figure 8-11, the (77,72) indicates the location of the top-left corner of the picture
relative to the original picture. I recorded these values for each individual jigsaw puzzle piece. These
values are what are used to check if the player has put the pieces together. They could be used to present
a complete jigsaw to the player. I did not think that was necessary in this case. You will see this operation
in the next chapter. At this point in the development process, I can write the following lines of JavaScript
code in my program:

var pieces = [
 "dan1.jpg","dan2.jpg","dan3.jpg","dan4.jpg","dan5.jpg","dan6.jpg"
];
var piecesx = [
0,71, 124,0,77,123];

var piecesy = [
 0,0,0,72,72,72
];

I refer to the piecesx and piecesy values as offsets (horizontal and vertical, respectively), for the
pieces. Be aware that the array named pieces holds the names of the image files. The next section will
describe the building of HTML elements for each piece. The array pieceelements will hold references to
each element. To sum up, the application makes use of four arrays with information on the puzzle
pieces.

Dynamically Created Elements
In Chapter 2, you read about the Family Collage project, in which images were repositioned on the
canvas. I will take a somewhat different approach here. Each piece will be its own element, with the
markup created dynamically. There is no canvas element. The markup is created in a function called
setupgame invoked by the init function. The fact that I have three functions, init, setupgame, and
setupjigsaw, is partially an artifact of the history of this project. I reused code created for the US states

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

296

game, in which the jigsaw puzzle was just a part. However, breaking up a function into smaller pieces
generally is a good thing to do. The init function does some work, calls setupgame, and also calls
setupjigsaw. The setupjigsaw function is also invoked from endjigsaw. More generally, the way I wrote
this application is not the only way it could be done. In some situations, here and in other chapters, I
chose to write a function that is more general than needed, and in others I did not.

The setupgame function iterates over the data in three parallel arrays: pieces, which holds the image
file names; piecesx, which holds the horizontal offset values; and piecesy, which holds the vertical offset
values. New elements are created with the programmer-defined (my defined) type piece and positioned
according to piecesx and piecesy values.

function setupgame() {
 var i;
 var x;
 var y;
 var uniqueid;
 var s;

 for(i=0;i<nums;i++) {

 uniqueid = "a"+String(i);
 s = document.createElement('piece');
 s.innerHTML = (
 "");
 document.body.appendChild(s);
 thingelem = document.getElementById(uniqueid);
 x = piecesx[i] +100;
 y = piecesy[i] + 100;
 thingelem.style.top = String(y)+"px";
 thingelem.style.left = String(x)+"px";
 pieceelements.push(thingelem);

 }
 firstpkel = document.getElementById("a0");
 questionfel = document.getElementById("questionform");
 questionfel.style.left = "20px";
 questionfel.style.top = "400px";
 questionfel.feedback.value = " ";

}

This code arranges the pieces so that they resemble the original picture, the first frame of the video
clip. However, the setupjigsaw function is invoked right afterward so the player will not see the puzzle
solution. After the for loop, another initialization is performed. The firstpkel variable points to the
newly created element holding the first piece, the piece with ID a0. The assumption is that that piece is
in the top-left corner, so when you create your puzzle, you are free to cut up the pieces any way you
want. However, make sure the first one (zero index) is the top left, since this is the reference point the
code uses to position the video clip. The calculation that positions the pieces correctly in relation to each
other is independent of the special role of the first piece. The setupgame function also sets the
positioning of the form element that holds the button and the feedback field.

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

297

Setting Up the Jigsaw Puzzle
The work of setting up the jigsaw puzzle starts with stopping the video and making it not display. This
isn’t necessary the very first time, but it is easier to have the code always perform these operations. The
next task is to place the pieces randomly on the screen. The code does this using Math.random and
Math.floor. You may want to experiment with other values for the constants 210 and 240 that I use. The
display attribute is set to inline to make the pieces visible, but not with a line break, which would be the
case if the code used block. When the circumstances occur to play the video, all the pieces are made
invisible by setting the display to none, so this code is necessary.

function setupjigsaw() {
 v.pause();
 v.style.display = "none";
 doingjigsaw = true;
 pieceelements[choice].style.border="";
 var i;
 var x;
 var y;
 var thingelem;
 for (i=0;i<nums;i++) {
 x = 10+Math.floor(Math.random()*210);
 y = 50+Math.floor(Math.random()*240);
 thingelem = pieceelements[i];
 thingelem.style.top = String(y)+"px";
 thingelem.style.left = String(x)+"px";
 thingelem.style.display = "inline";
 }
 ...
}

■ Note If you notice that a certain amount of complexity occurs in the coding to handle the issue of replaying the
jigsaw game, this is typical. Restarting, reinitializing, and so on are more of a challenge than programming
something to happen just once.

The next part of setupjigsaw involves setting up the event handling, which I will address in the next
section.

Handling Mouse and Finger Touch Events
My approach was to implement the mouse events first and get those working. Then, when my ambitions
rose to build an application for certain family members who use iPhones and iPads, I implemented the
finger touch by making a touch event simulate a mouse event. For this reason, I will explain the mouse
events first and then the touch events.

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

298

■ Note The event handling in this program does not make use of the new drag-and-drop features of HTML5.
These features are intended for use when you need to write code that moves elements from one bin-like element
into or onto another. The jigsaw project requires more precise positioning.

Using Mouse Events
The tasks for moving the jigsaw pieces are to

• recognize what piece, if any, is under the mouse cursor when the button has been
pressed down;

• move the piece when the mouse moves, adjusting the location to make sure that
the piece doesn’t jump, but remains as if the cursor were attached to its original
position, perhaps in the middle of the element; and

• release or drop the element when the player has released the mouse button.

You may recall similar operations in Chapter 2. This reasoning suggests that my code will set up at
least three events, and this is what happens. The events are set for the document. The global variable d
has been set to point to the HTML document:

var d = document;

In the setupjigsaw function, the following three statements set up the event handling for the three
events:

d.onmousedown = startdragging;
d.onmousemove = moving;
d.onmouseup = release;

The task of startdragging is to determine what piece, if any, is under the cursor, since all the code
knows, so to speak, at this point is that the mouse button is down somewhere on the document. To
make this determination requires calculations based on information held by the event parameter to the
function. The code uses conditional expressions (? and :) to define each of curX and curY one way if a
global variable named ie is set to true; otherwise, it does something else. Yes, the ie stands for “Internet
Explorer,” but be aware that the application was not tested using Internet Explorer. I included this
coding because it was present in multiple sources that I used for reference, and because I assume it will
be necessary in future versions of Internet Explorer that do support all features of HTML5. The function
starts

function startdragging(e)
{
 var o;
 var j;
 var i;
 curX = ie ? e.clientX+d.body.scrollLeft : e.pageX;
 curY = ie ? e.clientY+d.body.scrollTop : e.pageY;

The code uses a for loop to check if the mouse is over each element of the pieceelements array. It
breaks out of the loop as soon as the test returns true. This means that if one piece is on top of another,

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

299

it is not necessarily the one on top, but the one first in the pieceelements array. This is probably an
opportunity for improvement, to put it in a noncritical light.

for (i=0; i<nums;i++) {
 j = pieceelements[i];
 o = offset(j);
 if (curX >= o.x && curX <= o.x + j.width &&
 curY >= o.y && curY <= o.y + j.height)
 {
 break;
 }
 }

At this point, the for loop either has terminated early or ends when the index variable i is equal to
nums. This corresponds to it being determined whether the mouse is over one of the pieces or not. The
code in startdragging also must determine where exactly the mouse cursor is in terms of the position of
the piece. The variables curX and curY, which give the distances to where the mouse cursor is, and o.x
and o.y, the values set by a function offset, are used to calculate adjustX and adjustY, the values used in
a function draw. Look at Figure 8-12.

Figure 8-12. The long, lower arrow represents curX; the short, upper arrow represents o.x.

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

300

The dot in the piece at the right middle represents where the player has moved the mouse and
pressed down on the button. (The dot does not appear during the game; I put it in the figure for
reference.) The bottom arrow represents curX, the distance from the left side of the document to the
mouse position. The top arrow represents o.x, the distance from the edge to this piece. The statement

adjustX = curX - o.x;

sets adjustX to be used when repositioning the piece to make it be dragged along by the movement of
the mouse.

A global variable named mouseDown, initialized to be false, will be set to true in startdragging,
checked in moving, and reset back to false in release. The rest of the startdragging function is

 if (i<nums) {
 movingobj = pieceelements[i];
 adjustX = curX - o.x;
 adjustY = curY - o.y;
 mouseDown = true;
 }
};

Notice that nothing happens if the mouse is not over a piece when the player presses down on the
mouse button.

The offset function is written to work when an element is a child of another element that may be a
child of another element, and so on, and each element can be offset within its parent. The actual
situation in this program is fairly simple: the piece elements are children of the body, which is zero offset
from the document in each direction.

function offset(obj)
{
 var left = 0;
 var top = 0;
 if (obj.offsetParent)
 do
 {
 left += obj.offsetLeft;
 top += obj.offsetTop;
 } while (obj = obj.offsetParent);
 return {x: left, y: top};
}

Notice that the function returns a single element that is an associative array. Recall that associative
arrays have named elements instead of indexed elements. The array has an x value set to the value left
computed in the function, and a y value set to the value top computed in the function.

If the player uses the mouse to move the cursor on top of a puzzle piece and presses down, the
global variable movingobj will point to the piece element and the global variable mouseDown will be true.
The function moving is invoked when the event of the mouse moving occurs. The function is

function moving(e)
{
 if (!mouseDown) return;
 if (ie)
 draw(e.clientX+d.body.scrollLeft, e.clientY+d.body.scrollTop);

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

301

 else
 draw(e.pageX, e.pageY);
}

The draw function does the work: repositioning the movingobj element:

function draw(x, y)
{
 var js = movingobj.style;
 js.left = (x - adjustX) + "px";
 js.top = (y - adjustY) + "px";
}

The draw function does its work by changing the left and top attributes of the style of the movingobj.
The moving function will be invoked by JavaScript over and over as long as the mouse is in motion.

The release function is invoked when the player releases the mouse button. It is just two
statements:

function release(e){
 mouseDown = false;
 checkpositions();
}

Changing the variable mouseDown to false means that nothing will happen if and when the player
moves the mouse until the player presses down on the mouse button again, invoking the startdragging
function. This completes the mouse event handling. The checkpositions function is explained in the
next section. However, there is one more thing to explain about mouse events before moving on to
touch events. In the setupjigsaw function, I inserted code to create another object that has the effect of
turning off the built-in drag-and-drop activities. The code creates a new element, gives it a name so it
can be referenced in the style section, and appends it to the body. Without this extra element, the ghosts
of the pieces are dragged, but they are not positioned where they are dropped.

 var df = document.createElement('div');
 df.id = "fullpage";
 bodyel.appendChild(df);

In the style element, the created element with id "fullpage" is set to be aligned with the document
and takes up all but the bottom 90 percent, leaving room for the button. The overflow: hidden directive
hides the vertical scroll bar.

#fullpage
{
 display:block;
 position:absolute;
 top:0;
 left:0;
 width:100%;
 height:90%;
 overflow: hidden;
 z-index: 1;

}

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

302

Using Finger Touches
It is time to explain how touch events can be made to mimic mouse events. The basic touch events are
defined as follows by the W3C (see www.w3.org/TR/2011/WD-touch-events-20110505):

• touchstart: This is triggered when a touch is initiated (mouse equivalent:
mouseDown).

• touchmove: This is triggered when a touch moves (mouse equivalent: mouseMove).

• touchend: This is triggered when a touch ends (mouse equivalent: mouseUp). This
one is a bit special on the iPhone; see following.

• touchcancel: A user agent must dispatch this event type to indicate when a touch
point has been disrupted in an implementation-specific manner.

The setupjigsaw function establishes the event handler for four touch events to be a function I
wrote called touchHandler:

 d.addEventListener("touchstart", touchHandler, true);
 d.addEventListener("touchmove", touchHandler, true);
 d.addEventListener("touchend", touchHandler, true);
 d.addEventListener("touchcancel", touchHandler, true);

The touchHandler function takes as a parameter a value set by JavaScript when the event occurs.
Touches can involve more than one finger on the screen. You will be familiar with this if you use an
iPhone and use a two-finger gesture to zoom in on the screen. For this application, my code only
recognizes a single touch, as you can see in the code. If there is more than one touch, the function
returns without doing anything. Note that even when touches is an array with just one member, you
need to use the code touches[0] to get that one member.

If there is just one touch, the code creates a mouse event of the corresponding type. The
touchcancel event does not have a corresponding type, and if that event happens, touchHandler returns
without doing anything.

The initMouseEvent method essentially sends off a mouse event of the corresponding type at the
location passed by the event parameter. There are several other parameters; the settings I indicate work
for this application. The method is documented at
https://developer.mozilla.org/en/DOM/event.initMouseEvent.

The code for touchHandler follows:

function touchHandler(event)
{
 var touches = event.changedTouches;
 if (touches.length>1) {
 return false;
 }
 var first = touches[0];
 var type = "";
 switch(event.type)
 {
 case "touchstart": type = "mousedown"; break;
 case "touchmove": type="mousemove"; break;
 case "touchend": type="mouseup"; break;
 default: return;
 }

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

303

 var simulatedEvent = document.createEvent("MouseEvent");
 simulatedEvent.initMouseEvent(type, true, true, window, 1,
 first.screenX, first.screenY,
 first.clientX, first.clientY, false,
 false, false, false, 0, null);
 first.target.dispatchEvent(simulatedEvent);
 event.preventDefault();
}

The last line of code is pretty important: the default action is prevented. One default action is
scrolling the screen, and we don’t want this to occur.

Calculating If the Puzzle Is Complete
Recall that I set the requirements for calculating if the puzzle is complete to be that the puzzle can be
located anywhere on the screen and that the player does not have to be precise. Another more-or-less
implicit requirement is that the checking be done automatically. After the player releases the mouse or
lifts his or her finger, the release function invokes checkpositions. The checkpositions function is called
after each move. Don’t worry, JavaScript is doing the work, not you.

The checkpositions function computes the horizontal difference between the piecesx value and the
style.left value of each piece element, and the vertical difference between the piecesy value and the
style.top value of each piece element. The style.left and style.top values are character strings, not
numbers, and include "px". The code needs to remove the "px", which stands for “pixels,” and calculate
the numeric value. The differences are stored in the arrays deltax and deltay.

The function calculates the average of these differences (one for x and one for y). If the puzzle were
put together exactly according to the values in the piecesx and piecesy arrays, the differences would
each be zero, and consequently, the averages for x and for y would each be 0. If the puzzle were put
together such that the actual locations were each 100 pixels closer to the left side—that is, more left and
50 pixels further down the page, that is higher value y, then the averages would be 100 and 50. The
puzzle would be put together perfectly, but at a location to the left and below the original location. The
differences for x for all pieces would be 100 and the differences for y for all pieces would be 50. Each of
the differences would have the same value as the corresponding (x or y) average.

The goal is to not require perfection. The tasks of the checkpositions function are to compute the
differences in x and y, compute the two averages, and check if each of the differences is close enough to
the average.

After computing the difference values, the function performs these tasks by iterating over each piece
to compare it with the corresponding average. The check is done using absolute values, because our
code doesn’t care if a piece is a few pixels left or right or up or down. The criteria for being close enough
is the value held in the variable tolerance. If the gap is bigger than tolerance for any piece, the puzzle is
not considered complete. The critical if test is

if ((Math.abs(averagex - deltax[i])>tolerance) || (Math.abs(averagey-deltay[i])>tolerance)) {
 break;
 }

The doaverage function computes and returns the average value of numbers in an array. This is
accomplished in the usual way. The variable sum is called an accumulator. It is initialized to zero. A for
loop iterates over the elements in the array, adding each one to the variable sum.

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

304

function doaverage(arr) {
 var sum;
 var i;
 var n = arr.length;
 sum = 0;
 for(i=0;i<n;i++) {
 sum += arr[i];
 }
 return (sum/n);
}

The first part of checkpositions follows:

function checkpositions() {
 var i;
 var x;
 var y;
 var tolerance = 10;
 var deltax = [];
 var deltay = [];
 var delx;
 var dely;
 for (i=0;i<nums;i++) {
 x = pieceelements[i].style.left;
 y = pieceelements[i].style.top;
 x = x.substr(0,x.length-2);
 y = y.substr(0,y.length-2);
 x = Number(x);
 y = Number(y);
 delx = x - piecesx[i];
 dely = y - piecesy[i];
 deltax.push(delx);
 deltay.push(dely);
 }
 var averagex = doaverage(deltax);
 var averagey = doaverage(deltay);
 // check if any delta (x or y) is more than tolerance from average
 for (i=0;i<nums;i++) {
 if ((Math.abs(averagex - deltax[i])>tolerance) || (Math.abs(averagey-
deltay[i])>tolerance)) {
 break;
 }
 }
 if (i<nums) {
 questionfel.feedback.value = "Keep working.";
 }

I chose to display a message to the player giving feedback on the puzzle. The form element
questionfel holds a reference to the form, and feedback is an input field.

I will describe what happens when the puzzle is deemed complete in the next section.

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

305

Preparing, Positioning, and Playing the Video and Making It
Hidden or Visible
Preparing the video clip is the same as what you have seen for the other projects involving video. You
need to create multiple encodings of the video. Also, as with the other projects, when we do not want the
video to appear until a certain situation occurs, the style section contains the directive to make the video
initially not visible, set it up to be positioned absolutely, and (when it is displayed) put it on top of
everything else:

video {display:none; position:absolute; z-index: 100; }

Now we get to what happens in the checkpositions function when the puzzle is judged complete.
The code writes “GOOD” in the feedback field, makes all the pieces not display, and starts the video. The
video is positioned using the left and top values of firstpkel, set to the first piece. The currentTime of
the video element is set to zero to play the video clip from the start. The play method is invoked. The
code to write out "Good" and start the video is the last part of the checkpositions function. It is the else
clause for the if statement checking on the differences of individual pieces from the average difference,
and making use of the tolerance variable:

else {

 questionfel.feedback.value = "GOOD!";
 for (i=0;i<nums;i++) {
 pieceelements[i].style.display = "none";

 }
 v.style.left = firstpkel.style.left;
 v.style.top = firstpkel.style.top;
 v.style.display="block";
 v.currentTime = 0;
 v.play();
 }
}

You have seen several HTML5 features put to use, as well as programming tricks you can use in
other applications. The next section will show you all the code for the project.

Building the Application and Making It Your Own
You can make these projects your own by using your own video clip. You also can make a jigsaw puzzle
by itself, though you probably should wait to read the next chapter, which describes a more elaborate
jigsaw puzzle and contains pointers on how to cut up more intricate shapes. This chapter also showed
you how to feature touch events in your application. Here is an informal summary/outline of the jigsaw-
to-video project:

• init: For initialization, including invoking calls to setupgame and setupjigsaw

• setupgame: For creating the pieces

• setupjigsaw: For randomly positioning the pieces and setting up event handling

• startdragging, moving, release, and touchhandler: For handling events

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

306

• checkpositions: For determining if the puzzle is complete

• offset: For calculating the position of pieces in motion

• draw: For actually doing the repositioning of pieces

• doaverage: For calculating the average of values in an array

Table 8-1 lists all the functions and indicates how they are invoked and what functions they invoke.

Table 8-1. Functions in the Jigsaw-to-Video Project

Function Invoked/Called By Calls

init Invoked by action of the onLoad attribute in the <body> tag setupgame,
setupjigsaw

setupgame Invoked by init

setupjigsaw Invoked by init and endjigsaw

endjigsaw Invoked by the onSubmit setting in the form in the body setupjigsaw

checkpositions Invoked by release doaverage

doaverage Invoked by checkpositions

touchHandler Invoked by event setting in setupjigsaw

startdragging Invoked by event setting in setupjigsaw and indirectly by
touchHandler

offset

moving Invoked by event setting in setupjigsaw and indirectly by
touchHandler

draw

release Invoked by event setting in setupjigsaw and indirectly by
touchHandler

checkpositions

draw Invoked by moving

offset Invoked by startdragging

Table 8-2 shows the code for the basic application, with comments for each line. Much of this code

you have seen in the previous chapters.

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

307

Table 8-2. Complete Code for the Jigsaw-to-Video Project

Code Line Description

<!DOCTYPE html> Header

<html> html tag

<head> Head tag

 <title>Jigsaw</title> Complete title element

<meta name="viewport" content="width=device-
width, user-scalable=yes, initial-scale=1.0,
minimum-scale=1.0, maximum-scale=2.0" />

Meta tag, necessary for iPhone to prevent browser
from zooming into the page to compensate for a
smaller screen

<style> Style tag

img {position:absolute; border:none; } Set positioning for all img elements to be absolute
and remove borders.

form {position: absolute; z-index: 10;} Set positioning for the form; place on top of
fullpage

body{ height:100%; margin: 30px; } Set body to take of the height of the screen, with
the margin to be 30 pixels.

video {display:none; position:absolute; z-
index: 100; }

Initial display setting for the video element is
none, meaning not visible. Set; layer to be on top
of everything else

#fullpage Directive for the created page

{display:block; position:absolute; top:0;
left:0;

Position absolutely

 width:100%; Take up whole width of screen

 height:90%; Take up most, but not all of height

 overflow: hidden; Stop display of vertical scroll

 z-index: 1; Position underneath

} End directive

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

308

Code Line Description

</style> Closing style tag

<script type="text/javascript"> Script tag

var pieces =
["dan1.jpg","dan2.jpg","dan3.jpg","dan4.jpg",
"dan5.jpg","dan6.jpg"];

Hold names of image files for pieces

var piecesx=[0,71, 124,0,77,123]; Hold x offsets

var piecesy = [0,0,0,72,72,72]; Hold y offsets

var v; Will hold video element

var doingjigsaw = false; Set when doing jigsaw

var firstpkel; Will hold first piece

function init(){ Header for init function

v = document.getElementById("dance"); Get reference to video

 setupgame(); Invoke setupgame

 bodyel = document.getElementById("body"); Get reference to body

 formel =
document.getElementById("questionform");

Get reference to form

 setupjigsaw(); Invoke setupjigsaw

} Close init function

var bodyel; Will hold reference to body

var formel; Will hold reference to form

var nums = pieces.length; Number of pieces

var pieceelements = []; Will hold list of piece elements

var questionfel; Will hold reference to form

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

309

Code Line Description

function setupgame() { Header for setupgame

 var i; For indexing over pieces

 var x; For x value

 var y; For y value

 var uniqueid; Generated, unique ID for the puzzle pieces

 var s; Reference created element

 for(i=0;i<nums;i++) { Iterate over pieces

 uniqueid = "a"+String(i); Create a unique ID

s = document.createElement('piece'); Create an element

s.innerHTML = ("<img
src='"+pieces[i]+"' id='"+uniqueid+"'/>");

Set contents of element

document.body.appendChild(s); Append to body

thingelem =
document.getElementById(uniqueid);

Get reference to newly created image

 x = piecesx[i] +100; Set an x value

 y = piecesy[i] + 100; Set a y value

thingelem.style.top = String(y)+"px"; Use x to position the element

thingelem.style.left = String(x)+"px"; Use y to position the element

pieceelements.push(thingelem); Add this element to pieceelements

 } Close for loop

firstpkel = document.getElementById("a0"); Save reference to first element (in upper-left
corner) to use when positioning the video
element

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

310

Code Line Description

questionfel =
document.getElementById("questionform");

Set reference to form

questionfel.style.left = "20px"; Position form horizontally

questionfel.style.top = "400px"; Position form vertically

questionfel.feedback.value = " "; Set feedback to zero

} Close setupgame function

function endjigsaw() { Header for endjigsaw function

 var df; For the fullpage element.

 if (doingjigsaw) { If doing jigsaw

 doingjigsaw = false; Set to false

 d.onmousedown = ""; Remove event handling for mousedown

 d.onmousemove = ""; Remove event handling for mousemove

 d.onmouseup = ""; Remove event handling for mouseup

df = document.getElementById("fullpage"); Get reference

 bodyel.removeChild(df); Remove this element

 v.pause(); Stop the video

v.style.display = "none"; Stop display of the video

 } Close clause

 setupjigsaw(); Invoke setupjigsaw

 return false; Prevent page refresh

} Close endjigsaw function

function checkpositions() { Header for checkpositions

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

311

Code Line Description

 var i; For indexing

 var x; For x value

 var y; For y value

 var tolerance = 10; Set tolerance for puzzle

 var deltax = []; Will hold all x differences

 var deltay = []; Will hold all y differences

 var delx; Used in calculation

 var dely; Used in calculation

 for (i=0;i<nums;i++) { Iterate over pieces

x = pieceelements[i].style.left; Extract left attribute

 y = pieceelements[i].style.top; Extract top attribute

 x = x.substr(0,x.length-2); Remove px for pixels in style.left

 y = y.substr(0,y.length-2); Remove px for pixels in style.top

 x = Number(x); Convert to number

 y = Number(y); Convert to number

 delx = x - piecesx[i]; Calculate difference from offset

 dely = y - piecesy[i]; Calculate difference from offset

 deltax.push(delx); Add to deltax array

 deltay.push(dely); Add to deltay array

 } Close for loop

 var averagex = doaverage(deltax); compute average

 var averagey = doaverage(deltay); Compute average

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

312

Code Line Description

 for (i=0;i<nums;i++) { Iterate over pieces (again)

 if ((Math.abs(averagex -
deltax[i])>tolerance) || (Math.abs(averagey-
deltay[i])>tolerance)) {

Are any of the delta values too different from the
average?

 break; If so, leave for loop

 } Close clause

 } Close for loop

 if (i<nums) { Did the for loop end early?

 questionfel.feedback.value = "Keep
working.";

Display need to keep working

 } Close clause

 else { Else (no premature break)

questionfel.feedback.value="GOOD!"; Display “GOOD”

for (i=0;i<nums;i++) { Iterate over pieces

pieceelements[i].style.display = "none"; Make pieces not display

} Close for loop

v.style.left = firstpkel.style.left; Set video horitzontal (left) position to where
firstpkel is.

v.style.top = firstpkel.style.top; Set video vertical (top) position to where
firstpkel is.

v.style.display="block"; Make video visible

v.currentTime = 0; Set to start at beginning

v.play(); Play video

 } Close else clause

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

313

Code Line Description

} Close checkpositions function

function doaverage(arr) { Header for doaverage function

 var sum; Will hold sum

 var i; For indexing

 var n = arr.length; The length of the array

 sum = 0; Initialize sum to zero

 for(i=0;i<n;i++) { for loop over array elements

 sum += arr[i]; Add in the ith value

 } Close for loop

 return (sum/n); Return sum divided by n

} Close doaverage function

function setupjigsaw() { Header for setupjigsaw function

 v.pause(); Stop video

 v.style.display = "none"; Make video not display

 doingjigsaw = true; Set flag to true

 var i; For indexing

 var x; For x value

 var y; For y value

 var thingelem; For reference to piece element

 for (i=0;i<nums;i++) { Iterate over pieces

x = 10+Math.floor(Math.random()*210); Calculate a random value for x

y = 50+Math.floor(Math.random()*240); Calculate a random value for y

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

314

Code Line Description

thingelem = pieceelements[i]; Extract ith element

thingelem.style.top = String(y)+"px"; Set its top attribute

thingelem.style.left = String(x)+"px"; Set its left attribute

thingelem.style.display = "inline"; Set display to visible (inline means no line
breaks)

 } Close for loop

 d.onmousedown = startdragging; Set up event handling for mousedown

 d.onmousemove = moving; Set up event handling for mousemove

 d.onmouseup = release; Set up event handling for mouseup

 d.addEventListener("touchstart",
touchHandler, true);

Set up event handling for touchstart

 d.addEventListener("touchmove",
touchHandler, true);

Set up event handling for touchmove

 d.addEventListener("touchend",
touchHandler, true);

Set up event handling for touchend

 d.addEventListener("touchcancel",
touchHandler, true);

Set up event handling for touchcancel (to prevent
default)

 var df = document.createElement('div'); Create a new div

 df.id = "fullpage"; Set ID

 bodyel.appendChild(df); Append to body

 questionfel.submitbut.value = "Do jigsaw
again.";

Display value for label

questionfel.feedback.value = " "; Erase feedback

formel.style.zIndex = 100; Set form to be on top

} Close setjigsaw function

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

315

Code Line Description

function touchHandler(event) { Header for touchHandler

 var touches = event.changedTouches; Extract all the touches

 if (touches.length>1) { If there is more than one

 return false; } Exit function

 var first = touches[0]; Extract the first and only touch

 var type = ""; Set type to empty string

 switch(event.type) { Switch on the event type

 case "touchstart": type =
"mousedown"; break;

Set type

 case "touchmove": type="mousemove";
break;

Set type

 case "touchend": type="mouseup";
break;

Set type

 default: return; Exit function

 } Close switch

 var simulatedEvent =
document.createEvent("MouseEvent");

Create an event

simulatedEvent.initMouseEvent(type, true,
true, window, 1, first.screenX,
first.screenY, first.clientX, first.clientY,
false, false, false, false, 0, null);

Call the initMouseEvent for the created event; pass
the type; indicate bubble, cancellable, window,
coordinates; note that the 0 stands for the
standard (left) button

first.target.dispatchEvent(simulatedEvent);

Dispatch the created event

 event.preventDefault(); Stop default action for the touch event

} Close the touchHandler function

var d = document; Point to the HTML document

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

316

Code Line Description

var ie= d.all; Flag for certain browsers, namely Internet
Explorer

var mouseDown = false; Initialize mouseDown to false

var adjustX; For horizontal adjust value

var adjustY; For vertical adjust value

var movingobj; Will hold the moving element

function release(e){ Header for release function; the parameter is not
used, but must be included

 mouseDown = false; Set mouseDown back to false

 checkpositions(); Invoke checkpositions

}; Close release function

function startdragging(e) { Header for startdragging function

 var o; Will hold offsets

 var j; Will hold the ith element

 var i; For indexing

 var curX = ie ?
e.clientX+d.body.scrollLeft : e.pageX;

Set x-coordinate from e, using conditional
expression

 var curY = ie ? e.clientY+d.body.scrollTop
: e.pageY;

Set y-coordinate from e, using conditional
expression

 for (i=0; i<nums;i++) { Iterate over pieces

 j = pieceelements[i]; Set j to be the ith piece element

 o = offset(j); Calculate the offsets

 if (curX >= o.x && curX <= o.x +
j.width && curY >= o.y && curY <= o.y +
j.height)

Was mouse over this piece?

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

317

Code Line Description

 { Start clause

 break; Leave for loop

 } Close clause

 } Close for loop

 if (i<nums) { Did for loop break early?

 movingobj = pieceelements[i]; . . . set movingobj

 adjustX = curX - o.x; Calculate adjustX

 adjustY = curY - o.y; Calculate adjustY

 mouseDown = true; Set mouseDown to true

 } Close clause

}; Close startdragging function

function moving(e) { Header for moving function

 if (!mouseDown) return; Return immediately if mouse button not down

 if (ie) Is ie set?

draw(e.clientX+d.body.scrollLeft,
e.clientY+d.body.scrollTop);

Draw at this position

 else Else

 draw(e.pageX, e.pageY); Draw using these values

}; Close moving function

function draw(x, y) { Header for draw function

 var js = movingobj.style; Set to style of moving object

js.left = (x - adjustX) + "px"; Set the left to the calculated value, concatenate
the px

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

318

Code Line Description

js.top = (y - adjustY) + "px"; Set the top to the calculated value, concatenate
the px

} Close draw function

function offset(obj) { Header for offset calculation

 var left = 0; Set initial left

 var top = 0; Set initial top

 if (obj.offsetParent) Check if there is any offset from parent

 do{ If so . . .

 left += obj.offsetLeft; Add to the left value

 top += obj.offsetTop; Add to the top value

 } while (obj = obj.offsetParent); Close the do clause; continue if this object has a
parent

 return {x: left, y: top}; Return the calculated left and top as the x and y
values of an associative array

} Close offset function

</script> Closing script tag

</head> Closing head tag

<body id="body" onLoad="init();"> Body tag

<h2> In the tent</h2> Text on the screen

<form id="questionform" name="questionform"
onSubmit="return endjigsaw();" >

Form tag

<input name="submitbut" type="submit" value="
" size="30"/>

Submit button

Feedback: <input name="feedback" value=" "
size="11" />

Feedback label and field

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

319

Code Line Description

</form> Closing form tag

<video id="dance" loop="loop" preload="auto"
controls="controls" autoplay>

Video tag

<source src="dance.webm" type='video/webm;
codec="vp8, vorbis"'>

Source

<source src="dance.mp4"> Source

<source src="dance.ogg" type='video/ogg;
codecs="theora, vorbis"'>

Source

Your browser does not accept the video tag. Message for noncompliant browsers

</video> Closing video tag

</body> Closing body tag

</html> Closing html tag

Testing and Uploading the Application
You can test the application on your local computer. When you upload it, you must upload the HTML
file along with the video files and all the individual image files for the pieces. To test this on an iPad or
iPhone, you need to upload the files to a server. The project is not an app—that is, a program to be
downloaded to your iPad or iPhone—but a web site to be downloaded and run by a browser.

Summary
In this chapter, you learned how to build a jigsaw puzzle that turns into a video clip. The techniques
included the following:

• Dynamically creating HTML markup to create elements

• Defining event handling for mouse events and touch events

• Changing the style.left and style.top attributes to reposition elements on the
screen

• Placing the jigsaw pieces randomly on the screen

CHAPTER 8 ■ JIGSAW VIDEO: USING THE MOUSE AND TOUCH TO ARRANGE IMAGES

320

• Determining the coordinate values that indicated how the pieces fit together and
using those values, along with a defined tolerance, to check if the jigsaw puzzle
was put together adequately

• When appropriate, making the video appear and play

In the next chapter, we tackle another project that includes a jigsaw puzzle, along with other
possible moves by the player. Because my jigsaw puzzle of the United States, and potentially yours, is
challenging, I will explain a way to store the puzzle as a work-in-progress using the localStorage feature
of HTML5.

C H A P T E R 9

321

US States Game: Building a
Multiactivity Game

In this chapter, you will learn the following:

• How to build a user interface for a game involving different types of player moves,
including putting together a jigsaw puzzle

• How to use the mouse to reposition pieces

• How to acquire an image, break it up into pieces, and determine the coordinates
for those pieces to produce a jigsaw puzzle

• How to encode and retrieve the current state of the jigsaw game

• How to use localStorage to store and retrieve the information, including using try
and catch for situations when localStorage is not allowed

Introduction
The project for this chapter is an educational game in which the player/student clicks a state on a map of
the United States in response to a text prompt, names a state that is indicated by a border by typing in
the name, or puts the states that have been randomly positioned on the screen all together again. Figure
9-1 shows the opening screen.

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

322

Figure 9-1. Opening screen of the US states game

I followed the common practice and present a map with Alaska and Hawaii not in correct position
nor proportionally sized. Note also that Rhode Island is bigger than it really is so there’s enough room to
click it. The game presents the player with different possibilities. Figure 9-2 shows the result of clicking
the “Find the state” button.

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

323

Figure 9-2. The prompt is to find Washington.

When I clicked Oregon, I saw what is shown in Figure 9-3.

Figure 9-3. Response to an incorrect choice

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

324

When I clicked the correct choice, the application responded appropriately, as shown in Figure 9-4.

Figure 9-4. Response to a correct answer

I decided that it would be helpful to offer the player the option to spread out all the states. After
clicking the button labeled “Spread out states,” you see what is shown in Figure 9-5.

Figure 9-5. The states spread out

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

325

The player can use the “Restore original/compress map” button or keep playing with the states
spread out. Clicking the “Name the state” button produces a prompt consisting of one randomly
selected state surrounded by a border, as shown in Figure 9-6.

Figure 9-6. Border around the state to be named

Notice the double-line border around Delaware, the very small state on the right-hand side (Atlantic
coast) in the middle. This demonstrates a case in which the states being spread out would make a real
difference for the player. Figure 9-7 shows the response to my typing in the correct answer.

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

326

Figure 9-7. Response after the correct answer is submitted

The application also provides activity for the player in the form of a jigsaw puzzle. After clicking the
“Do jigsaw” button, you will see something like Figure 9-8. I say “something like” because the states are
arranged using pseudorandom processing, so they’ll appear in different arrangements each time.

Figure 9-8. States jumbled for the jigsaw puzzle

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

327

The player can now use the mouse to drag and drop pieces in the same manner (and implemented
the same way) as the jigsaw-to-video puzzle described in Chapter 8. Figure 9-9 shows my work in
progress.

Figure 9-9. Jigsaw puzzle in progress

Observe that I have sorted out Alaska and Hawaii, five states in the West, seven states in the South,
all of New England, and New York and New Jersey. The feedback says that Illinois and maybe more are
out of position. The feedback could be improved, but it is not strictly programming that is the issue.

This was a challenging puzzle for me. In the interests of full disclosure, and also because it
demonstrates a feature of the game, I clicked the “Save & close jigsaw” button, which allowed me to see
the states all back in position. I then clicked “Restore last jigsaw in process” to get back to where I was.
With this facility available to me, I was able to get to what is shown in Figure 9-10.

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

328

Figure 9-10. Not quite correct

The feedback indicates that something is wrong with North Dakota. After cheating—that is, clicking
“Save & close jigsaw” and looking at the completed map—I realized that North Dakota and Kansas, two
similar ectangular shapes, needed to be swapped. Figure 9-11 shows the correct arrangement.

Figure 9-11. Jigsaw puzzle put together correctly

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

329

Notice that the positions of Alaska and Hawaii are not closely examined. The puzzle is deemed
complete.

After this introduction showing the features of this educational game, I will describe the critical
requirements for implementation.

Critical Requirements
The critical requirements for the educational game involve presenting the player with different types of
activities. For the jigsaw puzzle activity, the application provides a save-and-restore feature. This feature
can be used to take a look at the completed puzzle or to put the puzzle aside for a period of time and do
something else. The task for the builder of the game is to provide the features of the user interface and
ways for play to go from one type of activity to another.

The application requires the presentation of a complete map of the United States, with the
individual states clickable. The first type of activity I described in the “Introduction” section was for the
game to display the name of a state and prompt the player to click it. The application must be able to
determine if the response was right or wrong and provide feedback.

The next type of activity I demonstrated is the opposite. A state on the map is marked in some way,
and the player is prompted to type in the name. There are different ways to single out an individual state.
I chose to put a border around the state to be named. The program must read in the player input and
determine if the name was correct.

After implementing these two types of activities, it occurred to me that we have some very small
states. I then decided to provide the spread-out feature and the capability of undoing it. This could be
useful for other maps as well. I also modified the image representing tiny Rhode Island to be bigger.

Lastly, I decided to provide a way to see if people could put the states together. The application
presents a jigsaw puzzle in which the states are randomly positioned on the screen, and the player uses
the mouse to reposition them. It was at this point that I realized that I needed something different from
the drag-and-drop-in-bins feature of HTML5. If you haven’t already, you can now read Chapter 8 for
how to implement a jigsaw puzzle. The US states game has two additional requirements: I need to build
a way to enter jigsaw mode and exit it so that the buttons all work and so the player can click a state. I
also need a way to save an incomplete puzzle. This wasn’t necessary for the wedding dance featured in
the jigsaw-to-video project in Chapter 8, but it is necessary for a jigsaw puzzle with 50 pieces. I also view
this as an educational game, so it is appropriate to give players a chance to look at the completed map,
and also to rest.

HTML5, CSS, JavaScript Features, Programming Techniques,
and Image Processing
The features and techniques to implement the educational states game are, for the most part, things you
have seen before. However, putting them together can be tricky, so there will be some redundancy
between this chapter and the material in previous chapters.

Acquiring the Image Files for the Pieces and Determining Offsets
Image files for each of the 50 states are part of the downloads for this chapter. However, since you may
want to make your own map puzzle, I will describe how to make the puzzle pieces and how to determine
the information for checking positioning and for restoring the completed map.

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

330

The first tasks for making the individual pieces representing the states are to acquire a map of the
United States (or the country or region you pick), and then produce an image file for each state. The
web-based pixlr image-editing tool (http://pixlr.com/), Corel Paint Shop Pro, and other image-
processing programs have a tool, usually called magic wand, for selecting areas of the same color. Figure
9-12 shows the pixlr toolbar with the magic wand tool selected.

Figure 9-12. Toolbar in pixlr

On a map that uses a single color for each state (or country), the magic wand tool can select what is
needed. The imprecise positioning and sizing of Alaska and Hawaii are appropriate trade-offs to make
(and most US maps do this), but you may believe differently. Figure 9-13 shows the magic wand tool on
top of Illinois.

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

331

Figure 9-13. Map of the United States, with the magic wand on Illinois

After clicking the light-green area representing Illinois, Illinois, and only Illinois, becomes selected,
as shown in Figure 9-14. I will be copying and pasting this to save as its own image, but I need to
describe something else first.

Figure 9-14. State of Illinois selected

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

332

The next step is to determine the relative position of each piece representing a state in terms of a
base point. I demonstrated this in Chapter 8 for rectangular shapes. We have the same task here, but the
shapes are, for the most part, not rectangles. One choice for a base location is the upper-right corner of
the base map. Another is the origin of the base location. You will see that in Adobe Flash, this may not be
the upper-left corner.

Consider the bounding box around each piece. You need to calculate the x distance and the y
distance from the base location to the upper-left corner of the bounding box. The upper-left corner of
the bounding box may not be on the state. Look at Illinois. The upper-left corner of its bounding box
appears to be on the border of Iowa and Wisconsin. You will need to write down the information in order
to incorporate the data into the program. I used Adobe Flash to do this, which I will describe. It is
possible but somewhat more tedious to use pixlr. You need to determine the upper-left corner of the
bounding box “by eye” and record the coordinates you see in the Navigator panel (see the upper right in
Figure 9-12). Since pixlr is built on Flash, there may be a better way to do this than eyeballing and
recording the mouse coordinates.

Back to using Flash, as I indicated, I used the magic wand selection tool to select each state. We’ll
continue with Illinois. I copied and then pasted the selection into a new symbol named Illinois. Figure 9-
15 shows the state of Illinois as a symbol in the Flash development environment.

Figure 9-15. Adobe Flash symbol for Illinois

The crosshairs to the left of the green selected area are the base location. Flash has copied over the
selected material with positioning corresponding to the origin of the original picture. The origin could
be in the upper-left corner or anywhere else, but when I brought a map of the USA into Flash, the origin
was closer to the center of the country. The critical factor is that it is the same point for each of the states.
Now, notice in Figure 9-15 the x and y values: X: 88.65 and Y: –26.10. These are the numbers to record.
They will serve as the offsets used to construct the map and to check if the jigsaw puzzle is complete.

The next step is to use Flash to produce a duplicate of each state symbol. Creating duplicate movie
clip symbols is a feature of Flash. For example, I created a duplicate of Illinois, named it illinoisclone,
selected it, and changed the X: and Y: values to 0 and 0. Figure 9-16 shows the results.

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

333

Figure 9-16. Illinois moved to its new origin

Notice that the crosshair (+) is now at the upper-left corner. For comparison, Figure 9-17 shows the
original symbol for Hawaii and Figure 9-18 shows the adjusted image.

Figure 9-17. Hawaii symbol

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

334

Figure 9-18. Hawaii with adjusted origin

If you decide to use Flash, you must use the File � Export � Export Image facility to produce an
image file (see Figure 9-19).

Figure 9-19. Exporting an image in Adobe Flash

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

335

If you use another image-processing program, you save the images in the standard manner as GIFs
or PNGs. You do want the images to have transparent backgrounds, so this may mean more work in an
image-processing program to achieve this. The image elements in HTML are rectangular, so the
transparency is crucial. The areas outside the actual state but within the bounding box must be
transparent. I have included the facility of spreading out the pieces, but when the pieces aren’t spread
out, we want to keep the areas in the bounding box from blocking out other states.

I created arrays holding the names of the image files and the horizontal (x) and vertical (y) offset
data. I also created an array listing the full names of the states. An alternative approach could be to
systematically save the files with an underscore for any internal breaks—for example,
North_Carolina.gif. I could write code to replace the underscore with a blank both for the game to
display and for checking player’s answers. However, I decided to produce the names directly. Having
described the creation of the four parallel arrays holding everything the program needs for the states, it
now is time to review how to create the elements.

Creating Elements Dynamically
Chapter 6 and Chapter 8 each involved generating HTML markup dynamically—that is, during runtime.
The states game and other map games you may create will also feature this technique. The work is done
in the function setupgame.

The code determines how many elements—that is, puzzle pieces, from the nums variable that has
been set to be the length of the states array. If and when you build a puzzle with 10 countries, for
example, nums will be set to 10. A for loop is used to construct an element for each state. Each element
has a generated unique ID value. The attribute innerHTML of any element is set to be the markup. The
code uses the information in the array variables states, statesx, and statesy. As was the case in the last
chapter, the code converts numbers to character strings, and then concatenates the string "px" to make
the values for setting the style.top and style.left attributes of the element. The code follows:

function setupgame() {
 var i;
 var x;
 var y;
 var uniqueid;
 var s;
 for(i=0;i<nums;i++) {
 uniqueid = "a"+String(i);
 s = document.createElement('state');
 s.innerHTML = (
 "");
 document.body.appendChild(s);
 thingelem = document.getElementById(uniqueid);
 x = statesx[i] +310;
 y = statesy[i] + 200;
 thingelem.style.top = String(y)+"px";
 thingelem.style.left = String(x)+"px";
 stateelements.push(thingelem);
 }

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

336

 questionfel = document.getElementById("questionform");
 questionfel.style.left = "100px";
 questionfel.style.top = "500px";
 questionfel.question.value = " ";
 questionfel.feedback.value = " ";
}

The element is created of a custom defined type 'state'. Its innerHTML is set with the appropriate
value. The positioning is done using the offset values in the statesx and statesy arrays (corresponding
to the arrays I named piecesx and piecesy in Chapter 8). The second part of the setupgame function
positions the form already present in the body element. The form will be used for the identifying and
naming activities.

User Interface Overall
It is time to reveal the body element for the application since that will show the buttons for the various
operations:

<body id="body" onLoad="init();">
<button onClick="spread();">Spread out states </button>
<button onClick="restore();">Restore original /compress map </button>
<button onClick="setupfindstate();">Find the state </button>
<button onClick="setupidentifystate();">Name the state</button>
<button onClick="setupjigsaw();">Do jigsaw</button>
<button onClick="restorepreviousjigsaw();">Restore last jigsaw in process </button>
<h1>USA</h1>
<form id="questionform" name="questionform" onSubmit="return checkname();">
State name: <input type="text" name="question" value=" " size="40"/>
<input name="submitbut" type="submit" value=" " size="30"/>
Feedback: <input type="text" name="feedback" value=" " size="40" />
</form>
</body>

The HTML markup produces the six buttons at the top of the screen (refer back to Figure 9-1). The
buttons on top each invoke a function; more detail on each follows in the next few sections. The form at
the bottom is used in distinct ways for each of the three different types of activity. This is a design
decision; I am trying to be efficient with screen real estate, avoiding the clutter of multiple forms at the
possible cost of confusion for the player.

User Interface for Asking the Player to Click a State
After the player clicks “Find the state,” the application generates a question. Before choosing the state,
the program removes any border that may exist around the last state chosen. This situation could arise if
the player had just done the name a state activity. If this is the very first activity by the player, the code
would not produce an error, but would merely set the border of the 0th state to empty, which is what it
already was. It is a good habit to make the start of any activity do this type of housekeeping. It makes the
application easier to change or upgrade in the future. Similarly, if the previous question also was an
identifying question, the code would not produce an error. This transition from activity to activity must
be attended to for the game to work smoothly. We do not want any state to have a border when the
player has moved on to the next activity.

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

337

 The setupfindstate function makes a random choice among the states. The global variable choice
holds value made for the random choice. The function then sets up event handling for each of the
elements corresponding to a state. The prompt for the player is placed in the question field of the form.

function setupfindstate(){
 var i;
 var thingelem;
 stateelements[choice].style.border="";
 choice = Math.floor(Math.random()*nums);
 for (i=0;i<nums;i++) {
 thingelem = stateelements[i];
 thingelem.addEventListener('click',pickstate,false);
 }
 var nameofstate = names[choice];
 questionfel.question.value = "Click on "+nameofstate;
 questionfel.feedback.value = " ";
 questionfel.submitbut.value = "";
}

The appropriate player response for this activity is to click a state on the map. When the player
clicks any state, JavaScript event handling is set up to invoke the pickstate function. The task of this
function is to determine if the player’s pick was the correct one. To do this, my code uses information in
the event information passed to the function and the value in the global variable choice set by
setupfindstate. The code for pickstate is

function pickstate(ev) {
 var picked = Number(ev.target.id.substr(1));
 if (picked == choice) {
 questionfel.feedback.value = "Correct!";
 }
 else {
 questionfel.feedback.value = "Try Again.";
 }
 }

Now I need to remind you of how I set the ID fields for each of the state elements. I used the index
values 0 to 49 and added an a at the beginning. This addition of an a was not strictly necessary. I did it
when I thought I may be creating other sets of elements. The ev parameter to pickstate has a target
attribute referencing the target that received the click event. The ID of that target would be a0, or a1, or
a2, and so forth. The String method substr extracts the substring of a string starting at the parameter, so
substr(1) returns 0, 1, 2, and so on. My code turns the string into a number. It now can be compared to
the value in the global variable choice.

You may decide to limit the number of tries a player can make and/or provide hints.

User Interface for Asking the Player to Name a State
After the player chooses to do the activity of naming a state, the setupidentifystate function is invoked.
The task is to place a border around a state on the map and prompt the player to type in the name. For
this operation, unlike the last one, my code puts in a value for the submit button. The function also
removes the event handling for clicking a state.

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

338

function setupidentifystate(){
 stateelements[choice].style.border="";
 stateelements[choice].style.zIndex = "";
 choice = Math.floor(Math.random()*nums);
 stateelements[choice].style.border="double";
 stateelements[choice].style.zIndex = "20";
 questionfel.question.value = "Type name of state with border HERE";
 questionfel.submitbut.value = "Submit name";
 questionfel.feedback.value = " ";
 var thingelem;
 for (i=0;i<nums;i++) {
 thingelem = stateelements[i];
 thingelem.removeEventListener('click',pickstate,false);
 }
}

The player’s action is examined by the checkname function. This is already set up as the onsubmit
attribute for the form. The function checkname actually does double-duty: if the current activity is doing
the jigsaw, checkname ends that activity. Otherwise, checkname checks whether or not the player has
typed in the correct name for the chosen state. The code in checkname follows:

function checkname() {
 if (doingjigsaw) {
 restore();
 }
 else {
 var correctname = names[choice];
 var guessedname = document.questionform.question.value;

 if (guessedname==correctname) {
 questionfel.feedback.value = "Correct!";
 }
 else {
 questionfel.feedback.value = "Try again.";

 }
 return false;
 }
}

Notice that again I do not limit the number of tries, nor do I give any hint or tolerance for
misspelling.

Spreading Out the Pieces
The task of spreading out the states while maintaining their positional relationships is straightforward,
though I did some experimentation with the constants to get the effect I wanted. The idea is to use the
offset values in a systematic way. The offsets represent distances from a point roughly in the center of
the map. My code stretches those offset values for all the states except Alaska and Hawaii. I have
positioned Alaska and Hawaii to be the last two states. The code follows:

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

339

function spread() {
 var i;
 var x;
 var y;
 var thingelem;
 for (i=0;i<nums-2;i++) { // don't move alaska or hawaii

 x = 2.70*statesx[i] +410;
 y = 2.70*statesy[i] + 250;
 thingelem = stateelements[i];
 thingelem.style.top = String(y)+"px";
 thingelem.style.left = String(x)+"px";
 }
}

Restoring the states is simply a matter of repositioning them at the values indicated in the statesx
and statesy arrays. The restore function will be explained following, in the “Saving and Recreating the
State of the Jigsaw Game and Restoring the Original Map” section.

Setting Up the Jigsaw Puzzle
Setting up the jigsaw activity involves randomly positioning the states on the screen and setting up the
event handling for the mouse operations. It also means turning off the default drag-and-drop event
handling and also turning off the buttons at the top of the screen. The submit button on the question
form at the bottom of the screen will be left operational, and this button will perform the operation of
saving the state of the jigsaw puzzle, as described in the next section. The only way to stop the jigsaw
activity, restore the map, and return to the other activities is to click the button.

The newly created div with ID fullpage, created to prevent the drag-and-drop default action, is set
up in the style section to not cover the bottom of the screen. The CSS is

#fullpage
{
 display:block;
 position:absolute;
 top:0;
 left:0;
 width:100%;
 height:90%;
 overflow: hidden;
 z-index: 1;
}

Recall that in CSS, the layering is done with the attribute z-index. In JavaScript, the attribute is
zIndex. The setupjigsaw function follows:

function setupjigsaw() {
 doingjigsaw = true;
 stateelements[choice].style.border="";
 var i;
 var x;
 var y;
 var thingelem;

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

340

 for (i=0;i<nums;i++) {
 x = 100+Math.floor(Math.random()*600);
 y = 100+Math.floor(Math.random()*320);
 thingelem = stateelements[i];
 thingelem.style.top = String(y)+"px";
 thingelem.style.left = String(x)+"px";
 thingelem.removeEventListener('click',pickstate,false);
 }
 d.onmousedown = startdragging;
 d.onmousemove = moving;
 d.onmouseup = release;
 var df = document.createElement('div');
 df.id = "fullpage";
 bodyel.appendChild(df);
 questionfel.question.value = "";
 questionfel.submitbut.value = "Save & close jigsaw";
 questionfel.feedback.value = " ";
 questionfel.style.zIndex = 100;
}

The player does the jigsaw puzzle by using the mouse to reposition the pieces. Please go back to
Chapter 8 for the full details. The check for completeness is done each time the player lets up on the
mouse button. The release function invokes the function I named checkpositions. The checkpositions
puzzle computes the average difference in x and the average difference in y of the actual positions of the
pieces to the offsets stored in the statesx and statesy arrays. The code then checks if any difference is
more than the tolerance amount from the corresponding average. The function stops iterating over the
pieces as soon as one is found to be out of place. For the very simple six-piece jigsaw puzzle in Chapter 8,
my feedback to the player when this occurs is simply to display “Keep working.” For the US states game,
I wanted to do something more. What I decided to do was to report the first state in which either the x or
the y difference was greater than the average. When most of the pieces are not in place, this information
is not especially helpful, so this is an opportunity for improvement.

Saving and Recreating the State of the Jigsaw Game and Restoring
the Original Map
As I noted previously, the only way to end the jigsaw activity is to click the submit button on the form. If
the global variable doingjigsaw is true, then the restore function is invoked. The restore function will
turn off the event handling for the mouse and remove the fullpage div. I realized that I could not
complete the jigsaw puzzle in a single session and without cheating—that is, looking at the completed
puzzle. I am getting better at it, however. This is what motivated me to implement a save-and-restore
feature.

The next task is to encode the state of the jigsaw puzzle. The issue of defining application states
depends, naturally enough, on the application. For the jigsaw puzzle, what needs to be stored are the
style.top and style.left attributes of each of the elements. The goal is to have one character string
hold all the information. What I do first is combine style.top and style.left into one string by using &
to concatenate them. I then put each of these strings into an array using the following line:

xydata.push(thingelem.style.top+"&"+thingelem.style.left);

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

341

When all 50 strings have been placed in the array, my code uses the join method to combine
everything in one big array, with the delimiter of my choice (;) separating them. This is the string that is
stored using localStorage.

In HTML5, localStorage is a variation on cookies. Values are stored on the player’s (client) computer
as name/value pairs. A localStorage item is associated with the browser. The state of the jigsaw puzzle
stored when using Firefox will not be available when using Chrome. For the name of the localStorage
item, I use the name jigsaw, and for the value, the result of the join operation.

The localStorage facility may not work. For example, the player may have used the browser settings
to prevent any use of localStorage or other, similar features. A localStorage item is associated with a
specific web domain. Chrome allows setting and retrieving from a program on the local computer, but
Firefox throws an error for retrieving data. My code uses try and catch to present an alert statement if
there are problems. Figure 9-20 shows the result of trying to restore a jigsaw puzzle saved using Firefox
when using a file on the local computer.

Figure 9-20. Alert shown when trying to use localStorage locally with Firefox

I repeat: this does not happen with Chrome, nor does it happen when the application is
downloaded from a server when using Firefox.

There are two distinct functions: restore and restorepreviousjigsaw. Remember that the restore
function does double-duty: it restores the original map after the pieces are spread out and it restores the
original map after the player has done the jigsaw activity.

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

342

function restore() {
 var i;
 var x;
 var y;
 var thingelem;
 var df;
 var lsname = "jigsaw";
 var xydata = [];
 var stringdata;
 if (doingjigsaw) {
 doingjigsaw = false;
 d.onmousedown = "";
 d.onmousemove = "";
 d.onmouseup = "";
 df = document.getElementById("fullpage");
 bodyel.removeChild(df);
 for (i=0;i<nums;i++) {
 thingelem = stateelements[i];
 xydata.push(thingelem.style.top+"&"+thingelem.style.left);
 }
 stringdata = xydata.join(";");
 try {
 localStorage.setItem(lsname,stringdata);
 }
 catch(e) {
 alert("data not saved, error given: "+e);
 }
 }
 for (i=0;i<nums;i++) {
 x = statesx[i] +310;
 y = statesy[i] + 200;
 thingelem = stateelements[i];
 thingelem.style.top = String(y)+"px";
 thingelem.style.left = String(x)+"px";
 }
}

The restorepreviousjigsaw function attempts to read in the data stored as one long string in
localStorage under the name jigsaw; decodes the string to be an array of 50 strings, each one holding the
top and left information; and uses that information to position the pieces. The function then sets up
event handling for the mouse events and sets up the fullpage div. Finally, the function sets the label of
the submit button to indicate that this button saves and closes the puzzle. The code follows:

function restorepreviousjigsaw() {
 var i;
 var lsname = "jigsaw";
 var xydata;
 var stringdata;
 var ss; // will hold combined top and left for a state
 var ssarray;
 var thingelem;
 try {

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

343

 stringdata = localStorage.getItem(lsname);
 xydata = stringdata.split(";");
 for (i=0;i<nums;i++) {
 ss = xydata[i];
 ssarray = ss.split("&");
 thingelem = stateelements[i];
 thingelem.style.top = ssarray[0];
 thingelem.style.left = ssarray[1];
 }

 doingjigsaw = true;
 stateelements[choice].style.border="";
 d.onmousedown = startdragging;
 d.onmousemove = moving;
 d.onmouseup = release;
 var df = document.createElement('div');
 df.id = "fullpage";
 bodyel.appendChild(df);
 questionfel.question.value = "";
 questionfel.submitbut.value = "Save & close jigsaw";
 questionfel.feedback.value = " ";
 questionfel.style.zIndex = 100;
 }
 catch(e) {
 alert("Problem in restoring previous puzzle. Click on Do jigsaw.");}
}

Building the Application and Making It Your Own
You can make the project your own by refining and building on the states application, perhaps giving
hints or keeping score, or using the application as a model for a different part of the world. For a
different map, do pay attention to the special handling I use for Alaska and Hawaii. You probably will
want to remove the nums-2 where it occurs. You can add another parallel array with the names of the
capitals and make naming the capital and identifying a state with an indicated capital additional
activities. You also can use this as a model for identifying parts of any diagram or picture (e.g., parts of
the body). Notice that each activity has a function for setting up and a function for checking the
response.

You can use what is described in Chapter 8 to make this project work with finger touches. The US
states seemed too much for an iPhone, but it may work for an iPad. You can use the methods shown in
Chapter 5 to extract the content to an external file. If you’re feeling really brave, you may also want to
experiment with using SVG (scalable vector graphics) to create a vector version of the map.

The application demonstrated individual features that you can use for other projects. An informal
outline/summary of the functions in the states game follows:

• init is for initialization, including invoking setupgame.

• setupgame builds the state elements and positions the form.

• setupfindstate sets up the clicking state function and pickstate checks the
player’s response.

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

344

• setupidentifystate sets up the typing in the name, and checkname checks the
response.

• setupjigsaw sets up the jigsaw puzzle. The functions startdragging, moving, and
release, along with offset and draw, handle the player actions with regard to
using the mouse to move pieces. The checkpositions function, along with
doaverage, checks if the puzzle is complete.

• spread spreads out the pieces and restore restores the pieces to the original map
locations. The restore function also saves the state of the jigsaw puzzle using
localStorage.

• restorepreviousjigsaw extracts the information from localStorage to set up the
puzzle as it was left.

More formally, Table 9-1 lists all the functions, and indicates how they are invoked and what
functions they invoke. Notice that several functions are invoked as a result of the function being
specified as a method of an object type.

Table 9-1. Functions in the US States Game Project

Function Invoked/Called By Calls

init Invoked by action of the onLoad attribute in the <body>
tag

setupgame

setupgame Invoked by init

pickstate Invoked by addEventListener call in setupfindstate

spread Invoked by button

restore Invoked by button and checkname

restorepreviousjigsaw Invoked by button

setupfindstate Invoked by button

setupidentifystate Invoked by button

checkname Invoked as action of onSubmit in the form restore

checkpositions Invoked by release of mouse (mouseup event). doaverage

doaverage Invoked by checkpositions

setupjigsaw Invoked by button

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

345

Function Invoked/Called By Calls

release Invoked by setting up events in restorepreviousjigsaw
and setupjigsaw

checkpositions

startdragging Invoked by setting up events in restorepreviousjigsaw
and setupjigsaw

offset

moving Invoked by setting up events in restorepreviousjigsaw
and setupjigsaw

draw

draw Invoked by moving the mouse (mousemove event)

offset Invoked by startdragging

Table 9-2 shows the code for the basic application, with comments for each line.

Table 9-2. Complete Code for the US States Game Project

Code Line Description

<!DOCTYPE html> Doctype header

<html> html tag

<head> Head tag

 <title>USA States game</title> Complete title

<style> Style tag

img {position:absolute; } All image elements positioned absolutely

form {position: absolute; z-index: 10;} Form positioned absolutely

body{ height:100%; margin: 0; } Body styled to take up whole height

 #fullpage Style directive for the created div

{ display:block; position:absolute; top:0;
left:0; width:100%; height:90%; overflow: hidden;
z-index: 1; }

Take up whole width and nearly whole height; layer
underneath

</style> Closing style tag

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

346

Code Line Description

<script type="text/javascript"> Script tag

var names = [Names of the states; one of many parallel arrays with
information on states; order and grouping here not
important but order must be the same and Alaska and
Hawaii last

"Illinois","Iowa","Missouri","Oregon","Michigan",

 "Indiana","Vermont","New
Hampshire","Maine","South Dakota","North Dakota",

 "Ohio","Wisconsin","Kentucky","Tennessee",

 "North Carolina","South
Carolina","Georgia","Alabama","Mississippi",

 "Virginia","West
Virginia","Maryland","Delaware","Pennsylvania","N
ew Jersey","New York",

 "Rhode Island",
"Connecticut","Massaschusetts","Louisiana","Arkan
sas","Minnesota",

 "Florida","Kansas",

"Arizona","California","Colorado","Idaho","Montan
a","Nebraska",

 "Nevada","New
Mexico","Texas","Oklahoma","Utah","Washington","W
yoming","Hawaii","Alaska"

] End of names array

var states = [Array for addresses of image files

 "illinois.gif",

 "iowa.gif",

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

347

Code Line Description

 "missouri.gif",

 "oregon.gif",

 "michigan.gif",

 "indiana.gif",
"vermont.gif","newhampshire.gif","maine.gif","sou
thdakota.gif","northdakota.gif",

"ohio.gif","wisconsin.gif","kentucky.gif","tennes
see.gif",

"northcarolina.gif","southcarolina.gif","georgia.
gif","alabama.gif","mississippi.gif",

"virginia.gif","westvirginia.gif","maryland.gif",
"delaware.gif",

"pennsylvania.gif","newjersey.gif","newyork.gif",

"rhodeislandbig.gif","connecticut.gif","massachus
etts.gif","louisiana.gif","arkansas.gif","minneso
ta.gif",

 "florida.gif","kansas.gif",

"arizona.gif","california.gif","colorado.gif","id
aho.gif","montana.gif","nebraska.gif",

"nevada.gif","newmexico.gif","texas.gif","oklahom
a.gif","utah.gif","washington.gif","wyoming.gif",
"hawaii.gif","alaska.gif"

]; End of address-of-image-files array

var statesx = [Array of horizontal (x) offsets

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

348

Code Line Description

 88.65,60.15,65.40,

 -81.70,90.40,

 107.40,171.95,181.00,183.00,21.10,22.60,

 121.70,78.90,103.65,99.40,

 132.20,138.95,125.45,110.45,93.90,

138.95,138.95,151.65,171.95,144.20,174.20,147.95,

 187.75,179.35,177.60,77.40,73.65,54.15,

 115.70,32.35,

 -44.95,-86.85,-8.15,-47.20,-32.15,21.10,

 -66.70,-11.15,-4.40,22.60, -36.70,-72.50,-
15.65,-300.95,-230.30

]; End of statesx array

var statesy = [Array of vertical (y) offsets

 -26.10,-29.85,-8.45,

 -64.75,-59.05,

 -22.70,-66.00,-67.30,-85.65,-47.15,-70.30,

 -27.90,-55.30,-3.60,12.90,

 5.20,21.45,26.40,27.90,29.65,

 -13.20,-17.10,-19.85,-20.85,-36.40,-31.35,-
61.30,

 -41.85,-41.85,-50.85,47.10,21.15,-72.70,

 55.45,-2.85,

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

349

Code Line Description

 15.15,-35.75,-11.85,-76.70,-76.30,-23.85,

 -27.60,18.15,22.65,19.65,-22.35,-83.45,-
41.75,31.55,-171.30

]; End of statesy array

var doingjigsaw = false; Flag indicating if doing jigsaw

function init(){ Header for init function

 setupgame(); Invoke setupgame

 bodyel = document.getElementById("body"); Set reference to use to add fullpage div

 questionfel =
document.getElementById("questionform");

Set reference to form

} Close init function

var bodyel; Used to hold reference to body

var nums = states.length; Number of states

var stateelements = []; Will hold the dynamically created elements

var questionfel; Used to hold reference to form

function setupgame() { Header for setupgame function

 var i; For indexing

 var x; For x value

 var y; For y value

 var uniqueid; For the unique ID created for each element

 var s; Hold each newly created element

 for(i=0;i<nums;i++) { Iterate over the states

 uniqueid = "a"+String(i); Define an ID

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

350

Code Line Description

s = document.createElement('state'); Create element

s.innerHTML = (

"<img src='"+states[i]+

"' id='"+uniqueid+"'/>");

Set the HTML markup contents of the newly created
element to be an image with the attributes as indicated

 document.body.appendChild(s); Append to body

thingelem = document.getElementById(uniqueid); Get the reference

 x = statesx[i] +310; Calculate horizontal coordinate

 y = statesy[i] + 200; Calculate vertical coordinate

thingelem.style.top = String(y)+"px"; Set style.top to be x

thingelem.style.left= String(x)+"px"; Set style.left to be y

stateelements.push(thingelem); Add to stateelements array

 } Close for loop

questionfel.style.left = "100px"; Position form horizontally

questionfel.style.top = "500px"; Position form vertically

questionfel.question.value = " "; Clear out question field

questionfel.feedback.value = " "; Clear out feedback field

} Close setupgame function

 function pickstate(ev) { Header for pickstate function

var picked = Number(ev.target.id.substr(1)); Extract and calculate index for the state the player
picked

 if (picked == choice) { Compare to choice

questionfel.feedback.value = "Correct!"; Display feedback as correct

 } Close clause

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

351

Code Line Description

 else { Else

questionfel.feedback.value = "Try Again."; Display feedback to try again

 } Close clause

 } Close pickstate function

function spread() { Header for spread function

 var i; For indexing

 var x; For x value

 var y; For y value

 var thingelem; For element

 for (i=0;i<nums-2;i++) { Iterate over 48 states

 x = 2.70*statesx[i] +410; Stretch out x and add constant

 y = 2.70*statesy[i] + 250; Stretch out y and add constant

 thingelem = stateelements[i]; Get ith element

thingelem.style.top = String(y)+"px"; Set style.top

thingelem.style.left= String(x)+"px"; Set style.left

 } Close for loop

} Close spread function

function restore() { Header for restore function

 var i; For indexing

 var x; For x

 var y; For y

 var thingelem; For element reference

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

352

Code Line Description

 var df; Used to remove fullpage

 var lsname = "jigsaw"; Name for localStorage

 var xydata = []; Used for saving

 var stringdata; Used for saving

 if (doingjigsaw) { Check if doingjigsaw is true

 doingjigsaw = false; Set to false

 d.onmousedown = ""; Remove event handling

 d.onmousemove = ""; Remove event handling

 d.onmouseup = ""; Remove event handling

df=

document.getElementById("fullpage");

Get reference

 bodyel.removeChild(df); Remove df

 for (i=0;i<nums;i++) { Iterate over states

 thingelem = stateelements[i]; Get reference to ith state element

xydata.push(thingelem.style.top+"&"+thingelem.sty
le.left);

Create a string that combines top and left settings and
add this to the xydata array

 } Close for loop

 stringdata = xydata.join(";"); Generate a string from the array

 try { Try (since there may be problems with localStorage)

 localStorage.setItem(lsname,stringdata); Set localStorage item

 } end try clause

 catch(e) { catch clause

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

353

Code Line Description

alert("data not saved, error given: "+e); Error message

 } Close catch clause

 } Close if doingjigsaw

 for (i=0;i<nums;i++) { Iterate over states

 x = statesx[i] +310; Set x to be original x-coordinate

 y = statesy[i] + 200; Set y to be original y-coordinate

 thingelem = stateelements[i]; Get reference to ith state

thingelem.style.top = String(y)+"px"; Set style.top

thingelem.style.left= String(x)+"px"; Set style.left

 } Close for loop

} Close restore function

function restorepreviousjigsaw() { Header for restorepreviousjigsaw function

 var i; For indexing

 var lsname = "jigsaw"; Name used for localStorage

 var xydata; Will be used in extracting the data

 var stringdata; Will be used in extracting the data

 var ss; Will hold combined top and left for a state

 var ssarray; Will be used in extracting the data

 var thingelem; Reference of ith state element

 try { Try

stringdata = localStorage.getItem(lsname); Fetch the data saved in localStorage under the name
"jigsaw"

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

354

Code Line Description

 xydata = stringdata.split(";"); Generate an array from stringdata

 for (i=0;i<nums;i++) { Iterate over states

 ss = xydata[i]; Extract the ith element of xydata

 ssarray = ss.split("&"); Split this string to get two values

 thingelem = stateelements[i]; Get the ith element

thingelem.style.top = ssarray[0]; Set style.top to be the 0th item

thingelem.style.left = ssarray[1]; Set style.left to be the 1st item

 } Close for loop

 doingjigsaw = true; set for doing the jigsaw

stateelements[choice].style.border=""; Remove any border

 d.onmousedown = startdragging; Set up event handling

 d.onmousemove = moving; Set up event handling

 d.onmouseup = release; Set up event handling

 var df = document.createElement('div'); Create a div

 df.id = "fullpage"; Give it an ID of fullpage

 bodyel.appendChild(df); Append to body

questionfel.question.value = ""; Clear out question field

questionfel.submitbut.value = "Save & close
jigsaw";

Set label of the submit button

questionfel.feedback.value = " "; Clear out feedback field

 questionfel.style.zIndex = 100; Set form to be on top

 } Close try clause

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

355

Code Line Description

 catch(e) { Catch

 alert("Problem in restoring previous
puzzle. Click on Do jigsaw.");}

Display alert box

} Close restorepreviousjigsaw function

var choice = 0; Global variable holding right answer

function setupfindstate(){ Header for setupfindstate function

 var i; For indexing

 var thingelem; Reference to element

 stateelements[choice].style.border=""; Remove border of last choice, if there was one

 choice = Math.floor(Math.random()*nums); Make a random choice for the question

 for (i=0;i<nums;i++) { Iterate over the states

 thingelem = stateelements[i]; Set reference to ith element

thingelem.addEventListener('click',pickstate,fals
e);

Set up event handling for this element

 } Close for loop

var nameofstate = names[choice]; Use choice as index to names array

 questionfel.question.value = "Click on
"+nameofstate;

Set the prompt

 questionfel.feedback.value = " "; Clear out feedback

 questionfel.submitbut.value = ""; Submit button not used for this task

} Close setupfindstate function

function setupidentifystate(){ Header for setupidentifystate function

stateelements[choice].style.border=""; Remove previous border

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

356

Code Line Description

stateelements[choice].style.zIndex=""; Put this state underneath what will be the next choice

 choice = Math.floor(Math.random()*nums); Make random choice

 stateelements[choice].style.border="double"; Set border around the choice state

stateelements[choice].style.zIndex="20" Make this element on top of others, so border will be
on top

 questionfel.question.value = "Type name of
state with border HERE";

Set up prompt indicating where to type in answer

 questionfel.submitbut.value = "Submit name"; Set up label for button

questionfel.feedback.value = " "; Clear feedback field

 var thingelem; Used for holding references to elements

 for (i=0;i<nums;i++) { Iterate over states

 thingelem = stateelements[i]; Set to be ith element

thingelem.removeEventListener('click',pickstate,f
alse);

Remove event handling

 } Close for loop

} Close setupidentifystate function

function checkname() { Header for checkname function

 if (doingjigsaw) { If player was doing jigsaw, then . . .

 restore(); . . . invoke restore

 } End clause

 else { Otherwise

 var correctname = names[choice]; This is the correct name

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

357

Code Line Description

 var guessedname =
document.questionform.question.value;

This was what the player typed in

 if (guessedname==correctname) { Was the player correct?

 questionfel.feedback.value = "Correct!"; Display feedback

 } End clause

 else { Else

 questionfel.feedback.value = "Try again."; Display feedback

 } End clause

 return false; Return false to prevent refresh (may not be necessary)

 } End if-not-jigsaw clause

} Close checkname function

function checkpositions() { Header for checkpositions function

 var i; Indexing

 var x; For x

 var y; For y

 var tolerance = 20; Margin allowed for positioning

 var deltax = []; Will hold the x differences

 var deltay = []; Will hold the y differences

 var delx; Used in computation

 var dely; Used in computation

 for (i=0;i<nums-2;i++) { Iterate over first 48 states; doesn’t check Alaska or
Hawaii

x = stateelements[i].style.left; X is this state’s left

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

358

Code Line Description

y = stateelements[i].style.top; Y is this state’s top

 x = x.substr(0,x.length-2); Remove px

 y = y.substr(0,y.length-2); Remove px

 x = Number(x); Convert to number

 y = Number(y); Convert to number

 delx = x - statesx[i]; Calculate difference with the x offset

 dely = y - statesy[i]; Calculate difference with the y offset

 deltax.push(delx); Add to deltax array

 deltay.push(dely); Add to deltay array

 } Close for loop

var averagex = doaverage(deltax); Calculate average of all x differences

var averagey = doaverage(deltay); Calculate average of all y differences

 for (i=0;i<nums;i++) { Iterate

 if ((Math.abs(averagex -
deltax[i])>tolerance) || (Math.abs(averagey-
deltay[i])>tolerance)) {

Check if x difference or y difference is bigger than
tolerance from the respective average

 break; If so, leave loop

 } Close clause

 } Close for loop

 if (i<nums) { Did the loop break prematurely?

 questionfel.feedback.value = names[i]+" and
maybe more out of position";

Set feedback to display the state that was found to be
out of position

 } Close clause

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

359

Code Line Description

 else { Else loop did not end prematurely; could put in check
on Hawaii and Alaska here

questionfel.feedback.value = "GOOD"; Display feedback

 } Close clause

} Close checkpositions function

function doaverage(arr) { Header for doaverage function; parameter is an array

 var sum; Used as accumulator in computation

 var i; For indexing

 var n = arr.length; Length of array

 sum = 0; Initialize to zero

 for(i=0;i<n;i++) { Iterate over elements

 sum += arr[i]; Add in the ith value

 } Close for loop

 return (sum/n); Return sum divided by number n

} Close doaverage function

function setupjigsaw() { Header for setupjigsaw function

 doingjigsaw = true; Set flag to true

 stateelements[choice].style.border=""; Remove any previous border

 var i; For indexing

 var x; For x values

 var y; For y values

 var thingelem; Reference state element

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

360

Code Line Description

 for (i=0;i<nums;i++) { Iterate over states

 x = 100+Math.floor(Math.random()*600); Choose random value for x

 y = 100+Math.floor(Math.random()*320); Choose random value for y

 thingelem = stateelements[i]; Set ith element

thingelem.style.top = String(y)+"px"; Position for top

thingelem.style.left =String(x)+"px"; Position for left

thingelem.removeEventListener('click',pickstate,f
alse);

Remove event handling

 } Close for loop

 d.onmousedown = startdragging; Set up event handling

 d.onmousemove = moving; Set up event handling

 d.onmouseup = release; Set up event handling

 var df = document.createElement('div'); Create div

 df.id = "fullpage"; Give it the ID

 bodyel.appendChild(df); Add to body

questionfel.question.value = ""; Clear out question field

questionfel.submitbut.value = "Save & close
jigsaw";

Change the label on the submit button

questionfel.feedback.value = " "; Clear out feedback field

 questionfel.style.zIndex = 100; Set form on top

} Close setupjigsaw function

var d = document; Holds document

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

361

Code Line Description

var ie= d.all; The Internet Explorer check; note that application has
not been checked for latest Internet Explorer version

var mouseDown = false; Initialize flag to false

var curX; Current x

var curY; Current y

var adjustX; Used for dragging

var adjustY; Used for dragging

var movingobj; The object being dragged

function release(e){ Header for release function

 mouseDown = false; Set flag back to false

 checkpositions(); Invoke check for puzzle being done

}; Close -release function

function startdragging(e) { Header for startdragging function

 var o; Used to calculate offset

 var j; Used to hold reference to element

 var i; For indexing

 curX = ie ? e.clientX+d.body.scrollLeft :
e.pageX;

Compute location of cursor in x

 curY = ie ? e.clientY+d.body.scrollTop :
e.pageY;

Compute location of cursor in y

 for (i=0; i<nums;i++) { Iterate over states

 j = stateelements[i]; Get the ith element

 o = offset(j); Determine offset

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

362

Code Line Description

if (curX >= o.x && curX <= o.x + j.width && curY
>= o.y && curY <= o.y + j.height)

Check if mouse over the ith element

 { break; } If so, leave for loop

 } End of clause

 if (i<nums) { Was for loop exited prematurely?

 movingobj = stateelements[i]; Set up the ith as the moving object

 adjustX = curX- o.x; Amount in x piece is offset from mouse cursor

 adjustY = curY- o.y; Amount in y piece is offset from mouse cursor

 mouseDown = true; Set flag to true: object in motion

 } Close clause for mouse over an object

} Close startdragging function

function moving(e) { Header for moving function

 if (!mouseDown) return; If no object is being moved, return

 if (ie) Check if IE flag set

 draw(e.clientX+d.body.scrollLeft,
e.clientY+d.body.scrollTop);

Draw using these values

 else Else

 draw(e.pageX, e.pageY); Draw using these values

} Close moving function

function draw(x, y) { Header for draw function; this moves/drags the state

 var js = movingobj.style; Extract point to the style

 js.left = (x - adjustX) + "px"; Change the style to new x (left) value

 js.top = (y - adjustY) + "px"; Change the style to new y (top) value

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

363

Code Line Description

} Close draw function

function offset(obj) { Header for offset function; adds in all offsets of obj
from ancestors

 var left = 0; Initialize left

 var top = 0; Initialize top

 if (obj.offsetParent) Is there a parent?

 do { Then

 left += obj.offsetLeft; Increment left

 top += obj.offsetTop; Increment top

 } while (obj = obj.offsetParent); Keep going if there is a parent

 return {x: left, y: top}; Return array with the left and top values

} Close offset function

</script> Closing script tag

</head> Closing head tag

<body id="body" onLoad="init();"> Body tag, with onLoad set to init();

<button onClick="spread();">Spread out states
</button>

Button to spread out states

<button onClick="restore();">Restore original
/compress map </button>

Button to restore original map

<button onClick="setupfindstate();">Find the
state </button>

Button to start Find the state task

<button onClick="setupidentifystate();">Name the
state</button>

Button to start Name the state task

<button onClick="setupjigsaw();">Do
jigsaw</button>

Button to start jigsaw

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

364

Code Line Description

<button
onClick="restorepreviousjigsaw();">Restore last
jigsaw in process </button>

Button to restore saved jigsaw

<h1>USA</h1> heading on screen for the USA puzzle

<form id="questionform" name="questionform"
onSubmit="return checkname();">

Form tag, with onSubmit set to checkname call

State name: <input type="text" name="question"
value=" " size="40"/>

Label and place for state name

<input name="submitbut" type="submit" value="
" size="30"/>

Submit button, value now empty

Feedback: <input type="text" name="feedback"
value=" " size="40" />

Label and place for feedback

</form> Closing form tag

</body> Closing body tag

</html> Closing html tag

Testing and Uploading the Application
The project can be tested locally (on your home computer) using Chrome. However, to test the
localStorage facility for saving the current state of the puzzle, you need to upload the application for it to
work using Firefox (and perhaps other browsers). This application requires the 50 files representing the
states, so be sure and upload them as well (or whatever files correspond to the parts of the map for your
application).

Summary
In this chapter, you learned how to build an educational game that featured different types of questions
for the player. The HTML5 features and programming techniques included the following:

• Building a user interface involving text or visual prompts. Player responses
included clicking elements on the screen and typing in text. After entering jigsaw
mode, player actions were dragging and repositioning elements on the screen.

• How to encode and decode information using split and join methods.

CHAPTER 9 ■ US STATES GAME: BUILDING A MULTIACTIVITY GAME

365

• How to save and restore works-in-progress, including use of the try...catch
construct.

• Reuse of techniques explained in the last chapter:

• Creating HTML markup dynamically to create the piece elements on the
screen

• Placing the jigsaw pieces randomly on the screen

• Determining the coordinate values that indicated how the pieces fit
together, and using those values, along with a defined tolerance, to check if
the puzzle was put together properly

• Manipulating the positioning of the piece elements to spread out the pieces
and restore them to their original locations

In Chapter 10, the final chapter, we’ll explore the use of a MySQL database together with PHP, first
introduced in Chapter 6.

C H A P T E R 1 0

367

Web Site Database: Using PHP
and MySQL

In this chapter, you will do the following:

• Receive an introduction to databases and Structured Query Language (SQL)

• Learn how to create tables in a MySQL database

• Learn how to use PHP to insert, update, delete, and select records in tables in a
database

• Explore the differences between client-side and server-side processing

• Learn techniques to build a basic user login system, including use of localStorage
and the Secure Hash Algorithm for one-way encryption

Introduction
The project for this chapter is a database of information on web sites. Registered users—we’ll call them
finders—may add sites to the database, the site information consisting of the address (URL), along with a
name, category, and description contributed by the finder. Finders are registered with IDs and
passwords, presumably by a system administrator. A registered finder can change his or her password.
Anyone can view the whole list of sites, or, by clicking a drop-down list generated dynamically to be a list
of unique categories in the database, view the sites in a selected category. Finders can delete sites from
the list.

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

368

■ Note I recognize that this is not as exciting as bouncing videos, talking fish, geographic portals to media, and
jigsaw puzzles turning into video clips. Moreover, the application is just a little more than what is available to you
through bookmarks on any browser. However, this application does serve as a good introduction to databases and
the interactions of HTML5, JavaScript, PHP, and SQL—most notably form input validation. When you have a
database to build, what you have learned in this chapter will get you started.

A characteristic of database applications such as this one, which is implemented using HTML5 with
JavaScript, PHP, and MySQL, is that they consist of many separate programs. The programs, called
scripts, are generally fairly short. This is different from the projects described in previous chapters. The
list of scripts and their relationships will be given in the “Building the Application and Making It Your
Own” section. Here I will show the application in use.

I start the presentation of the database application by showing the script to register a user/finder.
This step may not be available to everyone. Figure 10-1 shows the opening screen.

Figure 10-1. Opening screen for registering finders (register.html)

Figure 10-2 shows what I entered. (I often use Larry, Curly, and Moe, or Harpo, Groucho, Zeppo,
and Chico, and I use very simple passwords.)

Figure 10-2. Data entered for a new finder (register.html)

Assuming the passwords match, the script replaces both fields with the encoded password and
invokes another script. Figure 10-3 shows the results.

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

369

Figure 10-3. Successful addition of finder (completereg.php)

A characteristic of a database project is that attention needs to be paid to what can go wrong. For
example, what if the person registering a new finder neglected to enter an e-mail address for the user ID?
Figure 10-4 shows the response.

Figure 10-4. Response when ID wasn’t an e-mail address (register.html)

Another error on the part of the person entering the data can be an incorrect password or the failure
to correctly confirm a password. Figure 10-5 shows the response for this type of user error.

Figure 10-5. Passwords not matching (register.html)

These two types of user error are handled by different mechanisms. I will demonstrate a partial
solution later.

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

370

Finders may change their passwords using the changepassword.html script. Figure 10-6 shows the
opening screen.

Figure 10-6. Opening screen for changing password (changepassword.html)

Figure 10-7 shows data entered. The finder must know the current password, presumably given out
by the system owner, to use the formal term.

Figure 10-7. Data entered (changepassword.html)

Figure 10-8 shows the result.

Figure 10-8. Change accepted (completechangepw.php)

I decided that though a system owner would be accepting of the error response shown in Figure 10-
5, I wanted something more striking and consistent with the other responses for finders—that is, end-
users. Actually, I had another motivation: I wanted to demonstrate that you could use all the new
features of HTML5 in your scripts that invoke PHP scripts or are composed by PHP code. Figure 10-9
shows the results of trying to change the password, but not entering the same password twice.

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

371

Figure 10-9. Response to bad input for changing password

I probably could have made this better—for example, by moving the “Passwords do not match”
bubble closer to the input fields. One approach to doing this would be to use techniques such as shown
in Chapter 4 for changing the zIndex of the canvas. Another possibility would be to reposition elements
on the document. My main goal was to include the use of new HTML5 features in HTML files invoking
PHP scripts.

Moving on, Figure 10-10 shows the opening screen for adding sites to the database.

Figure 10-10. Opening screen for addsite.html

Notice the faint text, termed placeholder text, suggesting what needs to go in the input fields. Notice
also that the finder must enter a username and password. The chance to save this information is offered,
with the default being No. The finder must do something to save the information on the local computer.
Figure 10-11 shows the data entered by the finder.

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

372

Figure 10-11. Form filled in for adding a site (addsite.html)

If the operation is successful, the finder is informed, and another similar form is presented, as
shown in Figure 10-12.

Figure 10-12. Feedback and chance to add another site or see sites (addsite.php)

Notice that the password input field now has a long entry. This is the actual size of the encoded
form of the password. Notice also that the finder is presented with the choices of seeing all web sites in
the database, seeing all web sites in a category, or adding another site. If the finder clicks the first link,
or goes directly to showsites.html, the current contents of the database are displayed, as shown in
Figure 10-13.

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

373

Figure 10-13. Display of all sites (showsites.php)

If you clicked the “Show sites for a category” link or went directly to the showsitesbycategory1.php
script, you would see something like what is shown in Figure 10-14.

Figure 10-14. Screen for picking a category

Clicking the downward arrow causes a drop-down menu to appear holding the list of all categories
currently in the database. Figure 10-15 shows what this looked like when I did it.

Figure 10-15. Drop-down menu (showsitesbycategory1.php)

In fact, I didn’t select “media,” but instead chose “academic.” Figure 10-16 shows the results.

Figure 10-16. Sites marked as “academic” (showsitesbycategory2.php)

By the way, anyone can go to showsites.php or showsitesbycategory1.php and see what is in the
database. It is also possible for anyone to invoke removesites.php. However, actually removing any sites
requires a username and password. An opening screen is shown in Figure 10-17.

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

374

Figure 10-17. Chance to delete (remove) sites (removesites.php)

Note that any registered finder can delete any site. This may be something you want to change.
Figure 10-18 shows how the screen would appear if someone clicked on two sites but neglected to log in.

Figure 10-18. Reminder that user ID and password are required (removesites.php)

If the username and password are not valid, the application responds with feedback, as shown in
Figure 10-19.

Figure 10-19. The username and password must be correct (completeremovesites.php).

If the log-on information is valid, the sites are removed from the database and feedback is given, as
shown in Figure 10-20.

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

375

Figure 10-20. Successful removal of two sites (completeremovesites.php)

Recall that I specified that I wanted the username and password saved on my local computer when
visiting the addsite script using the Firefox browser (see Figure 10-11). At some point, I closed Firefox.
When I returned to this program again using the Firefox browser, I was shown the screen in Figure 10-21.
The saving and retrieving is browser-specific. Notice also that the answer to the question has been
changed to Yes. The opt-in choice has been changed to an opt-out choice. If I change the Yes back to a
No, the information will be erased from local storage.

Figure 10-21. Returning to addsite.html, with stored login info retrieved

The browsers handle input fields specified as dates differently. You can see in Figure 10-22 the
opening screen for addsite.html in Opera.

Figure 10-22. Opening screen in Opera (addsite.html)

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

376

When I click the downward arrow in the input field next to Date:, I see what is shown in
Figure 10-23.

Figure 10-23. Opera browser with date-picker calendar page (addsite.html)

This completes the overview/introduction to the database application. In the next section, I will
describe critical features required to produce the application, and in the following section, I will describe
the different features of HTML5, MySQL, and PHP, along with programming techniques that satisfy the
requirements.

Critical Requirements
The requirements for this project are, at the most fundamental, a way for people to save and share data.
The data must persist—that is, last longer than the browser session of any individual user (i.e., finder or
viewer). The project includes a user ID/password system to provide a basic level of security for the
application. The security protection includes use of the Secure Hash Algorithm, a type of one-way
encryption, for the passwords. This means that the passwords are stored in an encoded form in the
database so that someone looking at the records in the database would not be easily able to determine
the original password.

The project also provides a way for finders to set up persistent information for themselves, allowing
them to conveniently save login information on their own computers. Yes, this is a trade-off of
convenience vs. security.

The information on the sites includes web addresses, and the user ID is assumed to be an e-mail
address. The HTML5 standard includes a specification that input fields of certain types be validated. In
contrast, I pose the requirement that finders can enter any text as a category, and the program generates
a menu of categories.

The database operations include adding, changing, deleting, and querying information. The
changing (termed updating), deleting, and querying involve logical expressions.

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

377

SQL, PHP, HTML5, and JavaScript Features
I will start the explanation of the technical features to support the database project with a general
introduction to databases, and then describe other programming techniques and HTML5, JavaScript,
SQL, and PHP constructs. Keep in mind that you can see how these language features and programming
techniques are used in context in the “Building the Application and Making It Your Own” section.

Relational Databases
The term database is typically reserved for what are called relational databases. Relational databases are
organized into tables, which in turn consist of records, which contain fields. The fields can hold data in
many different data types, including several distinct types for numbers, characters strings, date,
date/time, and so on. When designing a production database, the choices of data types have significant
effects on size and performance. One of the fields in the database may be marked as being a primary key.
This means that it is unique among the values held in this field for the table. The database management
system (DBMS), for example, MySQL, constructs other tables to speed up access.

A record in a table may contain one or more fields other than the primary key field that hold the
primary key for another record, generally in another table. For example, a database for a store can
contain tables for sales, products, and customers. The record for a simple sale typically contains a field
that points into the product table and another field that points into the customer table. Another
standard example is courses at a college. A record representing a course named “HTML5 Projects” can
contain a field that points to another course record representing “Introduction to HTML,” indicating a
prerequisite for the course. Some courses have prerequisites and some do not.

The project for this chapter uses two tables: the sitesfinders table and the finders table. The
sitesfinders table has the following fields:

• sid: Primary key

• stitle: Name of site

• sdate: Date of insertion

• sdescription: Description of site

• scat: Category of site

• surl: Web address

• finderid: ID for the finder who submitted this site

The finders table has the following fields:

• finderid: Primary key

• username: User ID for this finder (specified as an e-mail address)

• epw: Encoded password

There is a relationship between the two tables represented by the finderid field in the sitesfinders
table. Each record for a site indicates which finder added the site to the database. Figure 10-24 shows a
schematic representing the information, in the style of an entity relationship diagram (ERD).

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

378

Figure 10-24. Diagram for the database

The so-called crow’s feet markings on the line connecting the two rectangles indicate the possible
number of records involved. Each record of a site refers to exactly one record in the finders table. The
two short vertical lines indicate at most one and at least one. Putting it another way, each site refers to
exactly one finder. In contrast, a finder can be referenced in any number of site records. There are other
formats for ERDs and there are more complex relationships.

MySQL (www.mysql.com/) is an open source DBMS that supports relational databases. There are
many others, including commercial products such as Oracle and DB2. The different database products
compete on factors such as performance, ease of development and management tools, factors that can
be critical for large, busy databases. The good news, and it is very good news and uncommon in
technology, is how much the products have in common, including the table/record/field structure, the
primary key concept, and SQL (to be described in the next section). The PHP language, also open source,
has many commands defined for use specifically with MySQL, but it can be used for other DBMSs.

Just as I cautioned you in Chapter 6 to confirm that your server permits the use of PHP for sending
e-mail, you will need to confirm that your server provides access to MySQL. Specifically, I will assume
that you have a database assigned to you, a user ID for the database—which may or may not be the same
as the user ID for uploading files to your server space—and a password to be used for accessing the
database. Lastly, you need permissions to use each of the SQL commands discussed in the next section.
Artful use of permissions is an appropriate tool for use in production systems. I (or rather the user ID I
obtained from my local IT organization) had permission to do all operations except drop the whole
database.

For this application, I followed the standard practice of putting the database information in one
script and including that script in all the other scripts that access the database. Here is a censored
version of my opendbo.php file. I have substituted blanks in the assignment statement for $host, $user,
$password, and $DBname where I had information for my database:

?php
global $DBname, $link;
$host = ' ';
$user=" ";
$password=" ";
$DBname=" ";
$link=mysql_connect($host,$user,$password);
mysql_select_db($DBname,$link);
?>

Recall from Chapter 6 that variables in PHP start with dollar signs. Again, you will need to determine
the values for $host, $user, $password, and $DBname based on discussions with your Internet service
provider.

In createresearchtables.php, addsite.php, and the other PHP files, I use the statement

require("opendbo.php");

to bring in this code to establish the connection to MySQL and to select my assigned database.

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

379

SQL
SQL is a language just for database operations. Many online sources exist for SQL. Each statement,
termed a query, invokes what would be considered a program. I introduce SQL by explaining the
statements used in this project. The SQL queries will be constructed by PHP code and sent to the
database as described following in the “Middleware: PHP” section. However, do keep in mind that SQL
works for other database products.

■ Note Databases, and SQL in particular, comprise a much larger topic that what I aim to cover in this chapter.
There are other SQL statements and there also are variations of the statements I will describe. The site
www.mysql.com/ provides considerable information, including tools for database management such as
MySQLWorkbench.

SQL has statements for creating tables and for dropping—that is, removing—tables. A common
practice to prevent errors is to drop a table with a given name before creating it. An example of such a
statement is

DROP TABLE sitesfinders

The DROP statement is pretty powerful, since it deletes the table and all the information in it.
I use the convention of capital letters for SQL terms and lowercase for names specific to my

application. Before writing the CREATE TABLE statement, I need to determine what the fields will be—that
is, the names of the fields and the data types and other specifications. For the table I named
sitesfinders, the field information is

sid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
stitle char(50),
sdate DATE,
surl char(100),
sdescription TEXT,
scategory char(30),
finderid INT

I spread this out on several lines for ease of reading. Let’s start with the first field, named sid. It is set
to be an unsigned integer. It cannot be null. The field will be designated as AUTO_INCREMENT. This means
that MySQL will assign the values. This field is designated as the primary key. The values will be unique
because MySQL will assign them. This is the common practice for fields that have no intrinsic unique
identifiers, like Social Security numbers or ISBNs for books. Moving on, stitle, surl, and scategory are
each set to hold character strings, with the amount of characters specified in parentheses. There are
alternatives to the char data type, including TEXT, used for sdescription. Generally, there is a trade-off of
space vs. time. A data type such as VARCHAR will take less space but require marginally more processing.
The fid field is a simple integer. My PHP coding will ensure that each of these fields are specified each
time a record is inserted, so I did not make the NON NULL designation. The complete SQL statement
would be

CREATE TABLE sitesfinders (sid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY, stitle
char(50), sdate DATE, surl char(100), sdescription TEXT, scategory char(30), finderid INT)

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

380

The statement for the finders table is similar:

CREATE TABLE finders (finderid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY, username
char(50), epw char(64)

I may have been able to make the username a primary key, but I decided to let MySQL do the work.
Having created tables, now I’ll go on to describe how to insert records. The format of the INSERT

statement that I use for this project inserts a new record by listing all the values in the order in which
they were defined in the CREATE statement. An example using constants, which do not appear in any of
my code, would be:

INSERT INTO sitesfinders VALUES ('0','apress','2011-08-01','http://apress.com','my
publisher','media','1');

Two things must be explained for this totally artificial example. The 0 is a placeholder for the
primary key field that MySQL assigns. The title, date, URL, description, and category are simply for
illustration. The 1 at the end would point to the record in the finders table with primary key 1.

SQL provides a way to change one or more fields in a record or more than one record. This will be
demonstrated in the change-password script. For now, consider this example:

UPDATE sitesfinders SET stitle = 'friends of ED' WHERE stitle = 'apress'

If there were multiple records with the stitle field set to apress, they would all be changed.
Notice that the equal sign is used in two different ways in the INSERT statement. The first equal is an

assignment. The second one is a comparison test. There are no instances of == in SQL, unlike JavaScript
and many other programming languages.

The powerhouse statement of SQL is the SELECT statement. This statement extracts what is termed a
recordset from the tables. The statement

SELECT * FROM sitesfinders

extracts the entire table. The * indicates all the fields.
The next example of a SELECT statement is used to prepare the drop-down menu in the script for

showing sites in a category.

SELECT DISTINCT scategory FROM sitesfinders

An artificial example of SELECT would be

SELECT stitle, surl FROM sitefinders WHERE scategory = 'media'

This statement produces a recordset with each row having two elements, the stitle and the surl
fields from the records in which the scategory field was equal to media.

The real power of SELECT is demonstrated in statements involving what are termed joins. The web
sites project makes use of two tables connected by the fact that the records in one table point to records
in another. When displaying the information, I don’t want to show the finderid fields. That is not
meaningful information to anyone. I want to show the usernames that the finders actually entered. Look
back at Figure 10-13, for example. That information is only in the finders table, not the sitesfinders
table. Consider that in production applications, we want such information in one place so it can be
changed easily. The SELECT statement used for the showsites.php script is

SELECT * FROM sitesfinders as s JOIN finders as f WHERE s.finderid = f.finderid ORDER BY sdate
DESC

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

381

The statement takes the two tables and joins them together when the WHERE condition is met. The s
and the f are used to express the condition. The ORDER BY does what it sounds like with the DESC,
indicating the most recent occurs first. The statement produces a table looking pretty much like Figure
10-13, but with each row having four additional fields: the sid holding the primary key for each record in
sitesfinders; the finderid for the record; the same value finderid for the finders record; and the epw
record, a very long string (explained following in the “Hash Function” section) representing the
encoding of the finder password.

The DELETE statement does what it sounds like, and should be used cautiously. For the remove-sites
operation, my PHP code constructs a character string with a list of all the primary keys for the sites to be
removed. Here is an artificial example that would delete the records with keys 1 and 2:

DELETE FROM sitesfinders WHERE sid IN (1, 2)

I have given you a brief introduction to SQL. In the sections that follow, you will read about the
creation of SQL queries from form input passed by the HTML scripts and about how the recordsets
produced by SELECT queries are used to compose HTML pages.

Local Storage
You have read about a more complex use of HTML5 localStorage in Chapter 9. Recall that localStorage
saves key/value pairs. What is saved is a character string that’s under a given name and associated with
the name of the server domain. The localStorage values are associated with a browser. For the US states
project, the location (x- and y-coordinates) of each of the 50 states needed to be combined and encoded
to produce one character string. For this application, my JavaScript code saves two small items: a
username and a password. I had to think about if and when I wanted the code to save something, and
how to communicate the options to the user. The localStorage methods are straightforward. An input
field named saveok holds either No or something else. Anything else is considered a request to save the
information. In the code that follows, references also are made to the un and the pw1 input fields:

if (document.f.saveok.value!="No") {
 try {
 localStorage.setItem("researchun",document.f.un.value);
 localStorage.setItem("researchpw",pw1);
 }
 catch(e) {
 alert("error on local storage "+e);
 }
 }
 else { //no saving, remove anything saved
 try {
 localStorage.removeItem("researchun");
 localStorage.removeItem("researchpw");
 }
 catch(e) {
 //alert("error on local storage "+e);
 }
 }

The first alert("error on local storage "+e) statement would let someone know who had
requested that local storage be used that there was a problem. I commented out the second alert since
this was in response to a user saying that nothing was to be saved.

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

382

Hash Function
A password that is stored as is in a database could be read by anyone with access to the database, and a
password sent through the Internet could be read by anyone with the ability to spy on the packets being
sent over the communication lines. An approach to avoid these problems is to store not the password
itself but an encoded version of it. The encoded version is sometimes called the digest. The encoding can
be done using any of a number of algorithms, or one-way encryption functions. These algorithms have
the property that their inverse function is not known. The SHA256 algorithm is such an algorithm. You
may download a copy of this program from www.webtoolkit.info/javascript-sha256.html. The authors
are given as Angel Marin and Paul Johnston.

When finders type in their passwords, my encode function immediately applies the sha256 function.
The result of this function is what is sent to the database when the finders are first registered or when
passwords are changed. All comparisons are done between encoded versions—the digests—not the
original passwords. This means, as was stated earlier, that even if someone knows the encoded version
that resides in the database, the would-be intruder would not know enough to type in the original.

■ Note Security, including the treatment of passwords, is a large issue. Some people argue against client-side
encoding. If and when you build a production system, you do need to evaluate your security arrangements.

Client Side vs. Server Side for Input Validation
As a reminder, the client computer is the one generally right in front of you, on which you run a browser
program such as Firefox. Server computers are the ones holding the files that are downloaded by your
browser. These files include HTML documents, image files, video files, and audio files. The previous
section brought up the issue of encoding of the passwords using JavaScript in an HTML document to be
run by the browser on the client computer. Another critical activity for database applications is
validation of input. Many modern browsers check if an e-mail address entered into an input field of type
email does indeed obey the formatting rules for e-mail. Look back at Chapter 6 for examples. The same
thing is true for URLs. You also can use special CSS identifiers to reformat invalid input. The advantage
of the browser doing this is that browser code generally is much faster than code we write in JavaScript.
However, as I seem to be saying many times in the chapter, if and when you build a production system,
you may choose not to depend on the HTML5 validation, but perform your own. By the way, MySQL also
performs checks on the data used in INSERT or UPDATE statements. You can use the results of the MySQL
query to determine if there were problems with the data.

Assuming there is validation to be done, the next issue is when and where to do it. I will describe the
role of PHP as being in the middle, between code running on the browser and SQL running on the
MySQL DBMS. The input validation to check if a username/password combination is valid—that is,
belonging to a registered finder—must be done using the database, and so is done on the server.

After this philosophical discussion on input validation, here is how we code the mechanics. A form
tag may have an action attribute and an onsubmit attribute. The addsite.html script contains the
following form tag:

<form name="f" action="addsite.php" onSubmit="return encode();" method="post">

The HTML5 user validation takes place before the encode function is invoked. The encode function,
defined in the script element of this document, runs on the client machine. The addsite.php script, a
separate script, performs the server-side operations. If the encode function issues a return of false, then

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

383

action does not proceed to addsite.php. If the encode function issues a return of true, then action does
proceed. For the addsite task, the client operations include checking if the input has been submitted
and is of the specified type. For the register.html script, a check is made that a password and a
confirming password are identical. The server-side operations include checking if this is a registered
finder—that is, if the username and password are in the database. The addsite.php script goes on to
make the addition to the database.

Middleware: PHP
The PHP language performs the function of working between the browser and the database, hence the
term middleware. A PHP script is often invoked as a result of the setting of the action attribute in a form
tag. The PHP code extracts the form input, which I describe in detail next. Often, the PHP script uses the
information to create an SQL query, which it passes on using special commands to MySQL. In many
cases, the PHP script takes the results returned by MySQL and uses these to build a new HTML
document. The PHP script runs on a server, not directly on the client computer (or more accurately, not
interpreted by a browser on the client computer). The term three-tier model or architecture is used to
describe the situation:

• A user interface operates on the client computer.

• Middleware expresses business rules operating on the server.

• Data or information logic operates on the DBMS.

The user interface (aka presentation layer) typically is programmed using HTML, CSS, and
JavaScript, though there are other possibilities, such as Adobe Flash ActionScript, Java, and Processing.
An alternative to PHP for middleware is ASP.NET. Lastly, as I have stated, there are other DBMSs, though
the use of SQL is standard. The three-tier model is a simplification. Today’s production systems may
involve more layers.

Figure 10-25 shows some typical interactions.

Figure 10-25. Three-tier interactions

The interactions shown in Figure 10-25 could represent what happens in the addsite.html and
addsite.php scripts, or the changepassword.html and completechangepassword.php scripts, or the
register.html and completereg.php scripts. In each of these cases, a pair of programs, one HTML and
one PHP, together perform the tasks. The showsites.php script composes a SQL query “on its own” and
uses the results to create the HTML document to be displayed by the browser. The pair
showsitesbycategory1.php and showsitesbycategory2.php, and the pair removesites.php and
completeremovesites.php each start by using PHP to compose a query, with the result used to compose

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

384

an HTML document containing a form. The second member of the pair acts on the input to the form.
Form action is discussed more in the next section.

Since the tasks of PHP often involve creating character strings representing SQL queries or HTML
markup, the language has special features for text. The one that is the most unusual for me is that
variables can be referenced inside of character strings. That is, if the variable $name holds the string
Jeanine, then after the following statement is executed:

$greeting = "My name is $name.";

the value of the variable $greeting is My name is Jeanine.
The PHP language also accepts single quotes inside of double quotes, and vice versa. Making a small

change in the previous example:

$greeting = "My name is '$name'.";

the value of the variable $greeting is now My name is 'Jeanine'.
Here are two examples from the code. The addsite.php script constructs a SQL query to check if a

finder’s username and password are in the database. The statement is

$query = "SELECT * FROM finders WHERE username='$un' AND epw='$epw'";

The single quotation marks around the value of the variable $un and the value of the variable $epw
will appear in $query. A short while later in addsite.php, the code constructs another SQL query to
perform the insertion of a new record in the database.

$query = "INSERT INTO $tname values ('0','$stitle','$sdate','$surl','$sdesc','$scat','$fid')";

The string concatenation operator is a period (.), not the + used in JavaScript. Because of the feature
of inserting variable references inside strings, the . operator isn’t necessary much of the time, but it has
its uses.

The PHP language includes the join function, similar to the join method of JavaScript. I will show
an example of the join function in the next section.

A PHP task is preparing character strings representing SQL queries. What if someone wanted to
input a site with the title (which I have allowed to be made up by the finder) of “Who’s on First?”. The ’
could prove troublesome when it is made part of a string or when the data is handed over to MySQL. The
PHP language has two ways to handle this. One is that the installation of PHP can be set to do what is
termed escaping or magic-quoting certain characters, including single and double quotes, when they
occur in GET or POST data. That was not the case with my installation, so I needed to do something else.

The PHP language includes a function called addslashes. This function would turn Who's on First?
into Who\'s on First?, and I used it for handling the title, description, and category input in the
addsite.php script.

■ Tip You will need to check out whether you need to use the addslashes function with your server support
staff. It may be available using a command called phpinfo(), which displays considerable information on the PHP
installation. However, some installations do not allow this command.

A PHP script generally is not all written in the PHP language. Because a PHP task composes an
HTML document, a PHP script can contain straight HTML. The PHP is indicated (delimited) by the
presence of <?php and ?>. The following is the complete showsites.php script. Notice that it starts and

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

385

ends with standard HTML5. The code after the <?php and before the ?> will be explained following, in the
“Results from SQL Queries” section. Briefly, the showsites.php script invokes an SQL query and uses the
results to construct an HTML table to be displayed by the browser on the client computer.

<!DOCTYPE html>
<html>
<head>
<title>List sites with finder ids</title>
</head>
<body>
<?php
require("opendbo.php");
$query="SELECT * FROM sitesfinders as s JOIN finders as f where s.finderid = f.finderid ORDER
BY sdate DESC";
$result=mysql_query($query, $link);
print("<table border='1'>");
print("<tr><th>Title</th><th>URL</th><th>Date </th><th>Description </th><th>Category
</th><th>Finder </th></tr>");
while ($row=mysql_fetch_array($result)) {
print("<tr>");
 print("<td> ".$row['stitle']."</td>");
 print ("<td>".$row['surl']."</td>");
 print ("<td>".$row['sdate']."</td>");
 print ("<td>".$row['sdescription']."</td>");
 print ("<td>".$row['scategory']."</td>");
 print ("<td>".$row['username']."</td>");
 print ("</tr>");
}
mysql_close($link);
?>
</table>
</body>
</html>

The document can go into and out of PHP any number of times. In particular, what may seem
especially strange is that you can have a PHP if statement and brackets for the clauses, and go out of
PHP to write straight HTML, and then back into PHP for more PHP statements, including closing up the
brackets. You will see an example of this in the addsite.php script.

Form Action
HTML forms represent a way for users to interact with an application. The user input can be referenced
by validation code built into the browser in the case of HTML5 form validation. The input can also be
referenced and, perhaps, changed by a JavaScript function specified by the onSubmit attribute in the form
tag. Lastly, the input can be passed to a function specified by the action attribute in the form tag. The
passing of data can be done using the GET method or the POST method. Input passed using the GET
method is passed using what is called the query string, and is visible on the web location toolbar. You
probably have noticed a web site address followed by a string like this one:

…..?first=John&last=Doe

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

386

You also can look ahead to Figure 10-26. Checking out the query string can be helpful during
debugging. Information passed using the POST method is not visible, but is passed along as part of the
HTTP protocol. The POST method presents a less cluttered appearance to the user, and this is what I use
for most of the scripts for this project. The form tag for the register.html script, for example, is

<form name="f" action="completereg.php" onSubmit="return encode();" method="post">

In completereg.php, or any of the other scripts that retrieve form input, the code references with the
$_GET or the $_POST associative arrays. For example, to extract the contents of the form input field named
pw, the PHP statement is

$epw = $_POST["pw"];

Forms can contain groups of input fields. Look back at Figures 10-17 and 10-18; the HTML markup
for each of the check boxes has the name group[]. The markup is created using information from the
database, and will be explained in the next section. With this definition of the input field name, the code
to extract the array of input values is the same as a simple variable:

$ids = $_POST['group'];

I spoke about a join function in the previous section. I use it in the completeremovesites.php
function to take the values in the $ids array and create a character string with a separator that has the
value indicated in the first operand. So, if the $ids array contains a 10, 20, and 30, then after these two
lines

$deletelist = join (', ',$ids);
$query = "DELETE FROM sitesfinders WHERE sid IN ($deletelist)";

the $deletelist will be the character string “10,20,30” and the DELETE statement will remove from the
sitesfinders array the three elements with a primary key sid equal to 10, 20, or 30.

■ Note Early versions of PHP allowed developers to refer to POST input, GET input, and cookies one simple way:
just using a dollar sign and the name. This was and is considered a bad practice with respect to security, since a
knowledgeable hacker could jump into a script using the query string without going through prior programs. It is
possible to change the settings of the PHP implementation to continue doing this, but it is not recommended.

I created several pairs of programs:

• register.html and completereg.php

• changepassword.html and completechangepassword.php

• addsite.html and addsite.php

• showsitesbycategory1.php and showsitesbycategory2.php

• removesites.php and completeremovesites.php

The first script in each pair contains a reference to the second in the action attribute of a form tag.
The first script is an HTML file if it does not need access to the database and a PHP file if it does. I could
have combined each pair into one script by checking if a form input field was defined. This is a standard

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

387

practice, described as using self-referential scripts. The benefits are fewer files and, probably, an easier
time making changes, because you do not have to refer to multiple files. However, the negative factors
are that the scripts are more complex.

Results from SQL Queries
An SQL query produces two types of results: an indication on the success or failure of the operation or a
recordset (a table with each row an associative array). The names or keys of the associative array are the
field names in the database tables.

Simple Results

Let’s cover the first type of result. The task of the completereg.php script is to insert a new record into the
finders table. Please accept that the variables $finder and $epw contain the username and the encoded
password. The fact that I assume that the username is an e-mail address is not significant for this part of
the program. The completereg.php script contains the following lines:

$query = "INSERT INTO $tname values ('0','$finder','$epw')";
$result = mysql_query($query, $link);
if ($result) {
 print("The finder was successfully added.
\n");
}
else {
 print ("The finder was NOT successfully added.
\n");
}

The $query variable contains the SQL query. The single quotation marks are required. The 0 is a
placeholder for the primary key field that is assigned by MySQL. The mysql_query function submits the
query and returns a result that my code assigns to the variable $result. The $result is interpreted as
true or false. The print statement makes one of the two strings be part of the HTML document
returned to be displayed by the browser. The true and else clauses each could be larger and contain
more print statements.

Recordset Results

Now we get to the more interesting results from SQL queries. A SELECT query may return a substantial
amount of information, all available to be used to construct an HTML document. Let’s consider what the
showsitescategory1.php script needs to do to produce what is shown in Figure 10-14 and Figure 10-15.
The code makes use of mysql_query as just shown, and also mysql_fetch_array, a PHP function for
extracting the next row of the recordset. The HTML document to be sent to the browser has markup that
is independent of what is returned from the database, including the <form> tag and the <select> tag. The
form tag specifies the GET method. The results with the query string displayed are shown in Figure 10-26.
Notice that pickedcategory is set to be “academic.” Also, the submit input value is part of the query
string. The %21 stands for an exclamation mark.

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

388

Figure 10-26. Showing the query string for the GET method

The material that is dependent on the contents of the database consists of the value attributes of the
option elements and the contents of the option elements. Here is the entire showsitesbycategory1.php
script. Notice the <?php and ?> delimiters.

<!DOCTYPE html>
<html>
<head>
<title>List sites in a category</title>
</head>
<body>
Pick the category you want:

<form action="showsitesbycategory2.php" method="get">
Choices: <select name="pickedcategory">
<?php
require("opendbo.php");
$query="SELECT DISTINCT scategory FROM sitesfinders";
$categories = mysql_query($query, $link);
while ($row=mysql_fetch_array($categories))
{ $cat=$row['scategory'];
 print ("<option value='$cat'>$cat</option>
\n");
}
mysql_close($link);
?>
</select>
<input type=submit name=submit value="Choose!">

</form>
</body>
</html>

The results of the mysql_query call are assigned to the variable $categories. The while state has as
the condition the expression assigning to $row the results of mysql_fetch_array. This PHP function does
what the name applies: it fetches the next row from $categories. An internal index keeps track of the
next row. When there are no more rows, $row is assigned a value that is interpreted as false, and the
while clause is exited.

So, say that $row has a valid value. This value is an associative array. There is only one item per row
since the SELECT DISTINCT query just asked for the scategory values. The line

$cat = $row['scategory'];

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

389

extracts the value and assigns it to $cat. The next line prints a line of HTML. At this point, I need to
remind you (because I often need to remind myself) that PHP extracts the value of variables when the
variable names occur in strings. If the value of $cat is media, then the line

 print ("<option value='$cat'>$cat</option>
\n");

would cause the following line to be printed as part of the HTML document:

<option value='media'>media</option>

The \n would cause a line break to appear in the HTML document. You will often see
 and \n
together. The
 means the browser will include a line break in the display, and the \n means that the
HTML document will have a line break, making it easier for the programmer to read.

After the while statement has caused these lines to be added to the HTML document, the
connection is closed and the PHP coding ends. The rest of the HTML document follows, including the
<input type=submit...> and the closing tags for form, body, and html.

The showsitesbycategory2.php script is similar, but somewhat more complicated; however, the bulk
of the work is done for us by the SQL. The goal is to produce something like what is shown in Figure 10-
16, where the rows are all records of a category that has been specified by the user responding to the user
interface presented by showsitesbycategory1.php. The while loop creates the HTML markup for a row of
a table. The loop is

while ($row=mysql_fetch_array($result)) {
print("<tr>");
 print("<td> ".$row['stitle']."</td>");
 print ("<td>".$row['surl']."</td>");
 print ("<td>".$row['sdate']."</td>");
 print ("<td>".$row['sdescription']."</td>");
 print ("<td>".$row['username']."</td>");
 print ("</tr>");
}

Notice that the first thing printed out is a <tr> tag, and the last thing for each row is a </tr> tag. In
between, the code prints out td elements. The material is from different elements from the $row
associative array. The . operator is used to concatenate strings. The rows of the table include markup for
an a element. The $row['surl'] value occurs twice in the HTML markup: for the href value and for the
contents of the element. I could have chosen to make the $row['stitle'] be the contents—that is, what
starts off being blue and underlined—but I decided to show the URL that had been entered by the finder.
The <a> tag contains a target attribute of '_new', indicating that if someone clicks the link, a new
window is to be opened.

■ Caution The PHP print statements (you also can use the command echo) are intricate things to produce, but
you can do it! Be patient and keep track of the single quotation marks and the HTML opening and closing tags, and
make sure you use the right names for the variables.

With this exposition on the features of HTML5, JavaScript, PHP, and SQL, and how they work on the
client and server computers, it is time to put it all together.

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

390

Building the Application and Making It Your Own
You can make this application your own by using it as is and inserting the web sites that are of interest to
you or a group for which you are building the project. You can also make it your own by building a totally
different database. The task of defining the tables may take time, as it may not be obvious what the
entities and relationships are.

An important consideration for this project is which scripts are intended for end-users and which
are for database administrators. The createresearchtables.php and the register.html scripts may be
things that only the database administrator runs. You may even want to remove them (and
completereg.php) from the web site and only upload for a short time for each use. Similarly,
removesites.php and completeremovesites.php may not for general use, even though they require a
registered finder. Once you decide what is appropriate, you may want to create an HTML file with links
to the scripts you are making available to the world.

The basic web site project demonstrated and discussed in this chapter consists of 15 scripts. One of
them is the sha256.js script that you need to download from the www.webtoolkit.info site yourself.
Another is the opendbo.php script that I showed with several fields empty in the previous section. I have
included the file opendboToBeFixed.php as one of the downloads available from the publisher. You need
to determine the four pieces of information, edit the file, and then save it with the name opendbo.php.
The remaining 13 scripts also are available as downloads, and are given here with annotations.

In the projects described in the previous chapters, I started this section with a brief outline of the
functions, and a table describing the functions invoked and called. The appropriate overview for the
database project is different. Table 10-1 gives the rows corresponding to the distinct tasks. When two
scripts are listed together in a row, the second script is invoked by the first through the mechanism of the
action attribute in a form tag. A file with JavaScript is included in an HTML file through the use of a
script element. This is done for the sha256.js file and the drawroundarrowbox.js file. A similar inclusion
operation is done for PHP scripts. The opendbo.php file is brought into all the PHP files using the require
function, as described previously in the “Relational Databases” section.

Table 10-1. Tasks by Scripts in the Web Site Database Project

Script(s) Task Uses Called or Used

opendbo.php Set up a
connectio
n to the
database

 All scripts accessing the
database (i.e., all the PHP
scripts)

createresesearchtables.php Create
tables

opendbo.php Called directly by the
person setting up the
project; this is invoked
once for production, but
generally several times
during debugging

register.html and
completereg.php

Register
the finder

register.html uses sha256.js

completereg.php includes
opendbo.php

register.html is called
directly by the person
setting up the project to
register finders

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

391

Script(s) Task Uses Called or Used

changepassword.html and
completechangepassword.php

Change
the
password

changepassword.html uses
sha256.js and
drawroundarrowbox.js

completechangepassword.php
includes opendbo.php

changepassword.html is
called directly by the
finders

addsite.html and addsite.php Add a web
site to the
database

addsite.html uses sha256.js

addsite.php includes
opendbo.php

addsite.html is called
directly by the finders

showsites.php Show all
sites

Includes opendbo.php Can be called directly by
anyone; there is a link in
the HTML constructed by
addsite.php

showsitesbycategory1.php and
showsitesbycategory2.php

Show sites
in a
category

Both scripts include
opendbo.php

showsitesbycategory1.ph
p can be called directly by
anyone; there is a link in
the HTML constructed by
addsite.php

removesites.php and
completeremovesites.php

Remove
sites

Both scripts include
opendbo.php

removesites.php uses
sha256.js

removesites.php can be
invoked by anyone, but
only registered finders
will be able to make
deletions

sha256.js Encode
passwords

 Invoked in
register.html,
changepassword.html,
addsite.html, and
removesites.php

drawroundarrowbox.js Draw the
fancy
shape

 Invoked in
changepassword.html

I’ll now present tables with the annotated code for 13 of the 15 scripts. The code for the scripts takes

up many pages, but when you look them over, you will see that there is much repetition of code. An
encode function, for example, appears in several of the scripts. It is not identical across the different files,
but similar. The scripts that create tables to display information on sites (showsites.php,
showsitesbycategory2.php, and removesites.php) also have significant similarities.

Table 10-2 shows the code for createresearchtables.php.

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

392

Table 10-2. Code for createresearchtables.php

Code Line Description

<?php Start PHP

function createtable($tname,$fields) { Header for createtable; used for two
tables

global $DBname, $link; These two variables refer to the ones
set in opendbo.php; the $DBname is not
used

$query = "DROP TABLE $tname"; Delete any existing table with the
name $tname

mysql_ query($query,$link); For the current database and link, do
the query

$query="CREATE TABLE ".$tname."(".$fields.")"; Now create a query to create a new
table with the name held by $tname
and with the fields as defined by the
parameter $fields

if (mysql_query($query,$link)) { Do the query, and if successful . . .

 print ("The table, $tname, was created
successfully.
\n");

. . . print out that the table was created
successfully

 } Close clause

else { Else

 print ("The table, $tname, was not created.
\n"); Print out that the table was not
created

 } Close clause

} Close function

?> Close PHP

<!DOCTYPE html> Standard doctype

<html><head><title>Creating order project tables </title>
</head>

Standard HTML

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

393

Code Line Description

<body> Body tag

<?php Start PHP

require("opendbo.php"); Bring in opendbo.php to make a
connection to the database

$tname = "sitesfinders"; Set the name for the sitesfinders
table

$fields="sid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY
KEY, stitle char(50), sdate DATE, surl char(100),
sdescription TEXT, scategory char(30), finderid INT ";

Set the definition of the fields for the
sitesfinders table

createtable($tname, $fields); Invoke the createtable function to do
the creation

$tname = "finders"; Set the name for the finders table

$fields = "finderid INT UNSIGNED NOT NULL AUTO_INCREMENT
PRIMARY KEY, username char(50), epw char(64)";

Set the definition of fields for the
finders table

createtable($tname,$fields); Invoke the createtable function to do
the creation

mysql_close($link); Close the link to the database

?> Close the PHP

</body> Closing body tag

</html> Closing html tag

I grouped together the five scripts concerning registration and changing passwords: register.html,

completereg.php, changepassword.html, completechangepw.php, and drawroundedarrowbox.js. The last is
only called from changepassword.html and is more general than it needs to be. Table 10-3 shows the
finder registration scripts.

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

394

Table 10-3. Scripts Concerning Finder Registration

Code Line Description

register.html

<!DOCTYPE html> Not strictly necessary, but
this is the standard
header and may be
required in the future; you
can use HTML5 elements
and features

<html> html tag

<head> Head tag

<meta http-equiv="Content-Type" content="text/html; charset=utf-8"
/>

Meta tag (may be required
in the future)

<title>Register</title> Complete title element

<script type="text/javascript" src="sha256.js"></script> Bring in the sha256.js file
holding the function for
one-way encryption

<script type="text/javascript"> Script tag

function encode() { Header for encode
function

 var pw1 = document.f.pw.value; Extract the password

 if ((document.f.un.value.length<1) ||(pw1.length<1)) { Check if both the
username and password
have been entered

 alert("Need to enter User Name and Password. Please
try again.");

Present an error message

 return false; Return false (don’t go on
to PHP)

 } Close clause

 else Else

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

395

Code Line Description

 if (pw1 == document.f.cpw.value) { Check if the password and
confirming password
match

 document.f.pw.value = SHA256(pw1); If so, encode the
password and replace it in
the form

 document.f.cpw.value = document.f.pw.value; Use the same value for the
confirming password

 return true; return true means that
control will go on to the
PHP file cited in the
action attribute

 } Close clause

 else { Else

 alert("passwords do not match. Please try again."); Show the error message
for no match

 return false; Return false, preventing
control from going on to
the PHP

 } Close clause

} Close function

</script> Closing script tag

</head> Closing head tag

<body> Opening body tag

<form name="f" action="completereg.php" onSubmit="return encode();"
method="post">

Form tag setting up the
server-side and client-
side processing; set the
method to post

<table> Table tag for layout

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

396

Code Line Description

<tr> Start row

<td>User id (email address) </td><td><input type="email" name="un"
required /></td></tr>

Display the label
(descriptor) for the un
field and the input field;
specify as type email and
required

<tr><td>Password </td><td><input type="password" name="pw" required
/></td></tr>

Display the label for the
password and the input
field; specify as type
password (dots instead of
characters) and required

<tr><td>Confirm password </td><td><input type="password" name="cpw"
required/></td></tr>

Display the label for the
confirming password and
the input field; same
specifications as the first
password field

</table> End table

<input type="submit" value="Register"/> Submit button

</form> Closing form tag

</body> Closing body tag

</html> Closing html tag

completereg.php

<!DOCTYPE html> Not strictly necessary, but
this is the standard
header and may be
required in the future; you
can use HTML5 elements
and features

<html> html tag

<head> Head tag

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

397

Code Line Description

<title>Complete registering finder</title> Complete title

</head> Closing head tag

<body> Body tag

<?php Start PHP

require("opendbo.php"); Bring in the opendbo.php
script that connects to the
database

$tname = "finders"; Set the table name

$finder = $_POST["un"]; Extract the un input field

$epw = $_POST["pw"]; Extract the password
field; I named the variable
$epw to remind myself
that this is an encoded
password

$query = "INSERT INTO $tname values ('0','$finder','$epw')"; Create a query to add a
new finder—that is,
INSERT a record with the
values as indicated; The 0
is a placeholder for the
primary key field that
MySQL supplies

$result = mysql_query($query, $link); Send the query to MySQL

if ($result) { Check if the result is OK

 print("The finder was successfully added.
\n"); Print the success
message; Include
 to
produce a line break for
the display and \n to
produce a line break in
the HTML source

} Close clause

else { Else

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

398

Code Line Description

 print ("The finder was NOT successfully added.
\n"); Print the not-success
message

} Close clause

?> End PHP

</body> Closing body tag

</html> Closing html tag

changepassword.html

<!DOCTYPE html> Doctype

<html> html tag

<head> Head tag

<meta http-equiv="Content-Type" content="text/html; charset=utf-8"
/>

Meta tag

<title>Change password</title> Complete title

<script type="text/javascript" src="sha256.js"></script> Bring in the sha256.js file
holding the function for
one-way encryption

<script type="text/javascript"
src="drawroundedarrowbox.js"></script>

Bring in the
drawroundedarrowbox.js
function

<script type="text/javascript"> Script tag

function encode() { Header for the encode
function

 var ctx= document.getElementById("canvas").getContext("2d"); Set up ctx for writing on
the canvas

 ctx.clearRect(0,0,600,600); Clear canvas

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

399

Code Line Description

 var pw1 = document.f.oldpw.value; Set password value

 var npw = document.f.newpw.value; Set new password value

 if ((document.f.un.value.length<1) ||(pw1.length<1)) { Check if the password and
username have each
submitted

alert("Need to enter User Name and Password. Please try again."); Display message

 return false; Return false to prevent
going to PHP

 } Close clause

 else Else

 if (npw == document.f.cpw.value) { Is the new password the
same as the confirming
password?

 document.f.oldpw.value = SHA256(pw1); Encode the original
password

 document.f.newpw.value = SHA256(npw); Encode the new password

 document.f.cpw.value = document.f.newpaw.value; Assign that to the cpw
field; this will not be used,
but we want the value to
prevent any default action
if the field is empty

 return true; Return true so control
passes to PHP

 } Close clause (passwords
match)

 else { Else

 drawroundedarrowbox(ctx,10,30,40,300,80,

 "Passwords do not match.",30,"black","pink");

Invoke the function to
draw the fancy box to
indicate the problem

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

400

Code Line Description

 return false; Return false to prevent
action going to PHP

 } Close clause

} Close encode function

</script> Closing script tag

</head> Closing head tag

<body> Body tag

<form name="f" action="completechangepw.php" onSubmit="return
encode();" method="post">

Form tag indicating
server-side action and
what happens before that,
client side, on the submit
button

<table> Table tag; used for layout

<tr> Row tag

<td>User name </td><td><input type="email" name="un" required
/></td></tr>

User name label and
input field (note required
and type email)

<tr><td>Current password </td><td><input type="password"
name="oldpw" required /> </td></tr>

Current password label
and input field (note
required and type
password)

<tr><td>Password </td><td><input type="password" name="newpw"
required /></td></tr>

Place for the new
password; label and input
field (note required and
type password)

<tr><td>Confirm password </td><td><input type="password" name="cpw"
required/></td></tr> </table>

Place for entering the
password again for
confirmation; label and
input field (note required
and type password)

<input type="submit" value="Change pw"/> Submit button

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

401

Code Line Description

</form> Closing form tag

<canvas id="canvas" width="600" height="600"> Canvas element

Your browser does not recognize canvas Message for old browsers

</canvas> Closing canvas tag

</body> Closing body tag

</html> Closing html tag

completechangepw.php

<html> html tag

<head> Head tag

<title>Complete change finder password</title> Complete title

</head> Closing head tag

<body> Body tag

<?php Start PHP

require("opendbo.php"); Bring in file to make a
connection with the
database

$tname = "finders"; Set the name of the file

$finder = $_POST["un"]; Extract the username

$epw1 = $_POST["oldpw"]; Extract the original
password, encoded

$epw2 = $_POST["newpw"]; Extract the new password,
encoded

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

402

Code Line Description

$query = "UPDATE $tname SET epw = '$epw2' WHERE username = '$finder'
AND epw = '$epw1'";

Form the query to UPDATE
(i.e., change) the epw field
of any record with the
indicated username equal
to $finder and epw equal
to $epw1; the query will
make a change if the
username and original
password are present in
the database

$result = mysql_query($query, $link); Send query to MySQL

if ($result) { Check result; If OK . . .

print("The password was changed.
\n");

}

. . . print OK message

else {

 print ("The password was NOT successfully changed.
\n"); }

Else print the message
indicating no success; line
break for display and line
break in the HTML
document

?> End PHP

</body> Closing body tag

</html> Closing html tag

drawroundedarrowbox.js

function
drawroundedarrowbox(ctx,x,y,rad,width,height,text,arrow,colorstroke,
colorfill) {

Header for the
drawroundedarrowbox
function; parameters
indicate the context, the
(x,y) position, the radius
of the curved corners, the
width and height, the text,
the size of the arrow, and
the color of the outline
(stroke) and the fill

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

403

Code Line Description

 ctx.lineWidth = 4; Set the line width

 ctx.strokeStyle = colorstroke; Set the stroke color

 ctx.fillStyle = colorfill; Set the fill color

 ctx.font = "bold 16px sans-serif"; Set the font

 ctx.beginPath(); Start the path

 ctx.moveTo(x+rad,y); Move to just beyond the
upper-left corner

 ctx.lineTo(x+.5*width-arrow,y); Draw line to arrow closer
than the middle

 ctx.lineTo(x+.5*width,y-arrow); Draw a diagonal line
above the box

 ctx.lineTo(x+.5*width+arrow,y); Draw a diagonal line back
down

 ctx.lineTo(x+width-rad,y); Draw to just short of
upper-right corner

 ctx.arc(x+width-rad,y+rad,rad,-.5*Math.PI,0,false); Draw an arc, a quarter of a
circle

 ctx.lineTo(x+width,y+height-rad); Draw a line down to just
short of the lower-right
corner

 ctx.arc(x+width-rad,y+height-rad,rad,0,.5*Math.PI,false); Draw an arc, a quarter of a
circle

 ctx.lineTo(x+rad,y+height); Draw all the way left to
just short of lower-left
corner

 ctx.arc(x+rad,y+height-rad,rad,.5*Math.PI,Math.PI,false); Draw an arc, a quarter of a
circle

 ctx.lineTo(x,y+rad); Draw up to just short of
the upper-left circle

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

404

Code Line Description

 ctx.arc(x+rad,y+rad,rad,Math.PI,-.5*Math.PI,false); Draw an arc, a quarter of a
circle

 ctx.closePath(); Close path

 ctx.fill(); Fill in

 ctx.stroke(); Draw outline

 ctx.fillStyle = colorstroke; Change the fill style to the
outline (stroke) color

 ctx.fillText(text,x+rad,y+rad); Draw the text

} Close function

The group of scripts in Table 10-4 handles the adding and removing of sites by registered finders.

Table 10-4. Adding and Removing Site Records

Code Line Description

addsite.html

<!DOCTYPE html> Doctype

<html> html tag

<head> Head tag

<title>Add website info, login</title> Complete title

<script type="text/javascript" src="sha256.js"></script> Bring in the sha256.js file
holding the function for
one-way encryption

<script type="text/javascript"> Script tag

function encode() { Header for the encode
function

 var pw1 = document.f.pw.value; Set pw1 with the input
value

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

405

Code Line Description

 if (document.f.saveok.value!="No") { Check if the user changed
the saveok field

 try { Try to do localStorage

 localStorage.setItem("researchun",document.f.un.value);

Save the item under the
name researchun with the
value the un value

 localStorage.setItem("researchpw",pw1); Save the item under the
name researchpw with the
value of the password

 } Close the try clause

 catch(e) { If there was an error . . .

 alert("error on local storage "+e); . . . display the error

 } Close the catch clause

 } Close if saveok has
changed

 else { No saving, so remove
anything saved previously

 try { Try

 localStorage.removeItem("researchun"); Remove item

 localStorage.removeItem("researchpw"); Remove item

 } End try

 catch(e) { Catch

 //alert("error on local storage "+e); For now, no message

 } Close catch

 } Close the else for no
saving

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

406

Code Line Description

 if ((document.f.un.value.length<1) ||(pw1.length<1)) { Check if the user did not
enter something for both
un and pw1

 alert("Need to enter User Name and Password. Please
try again.");

Display the message

 return false; Return false to prevent
going to the PHP script

 } Close clause

 else { Else

 document.f.pw.value = SHA256(pw1); Encode the password

 return true; Return true so action does
go to the PHP script

 } Close the else clause

} Close the function

function retrieveinfo() { Header for function that
attempts to retrieve info
from localStorage

 var savedun; Used for the un

 var savedpw; Used for the pw

 try { Try

 savedun = localStorage.getItem("researchun"); Attempt to get
localStorage data named
"researchun"

 savedpw = localStorage.getItem("researchpw"); Attempt to get
localStorage data named
"researchpw"

 if (savedun) { If savedun is not null . . .

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

407

Code Line Description

 document.f.un.value = savedun; . . . then set it as the un
value in the input field

 document.f.pw.value = savedpw; Also assume savedpw is
good, and use it to set the
pw value in the input field

 document.getElementById("greeting").innerHTML="Welcome
Back.";

Fill in “Welcome Back” at
the top of the document

 document.f.saveok.value = "Yes"; Set the saveok to Yes; the
user can change it

 } Close the if (savedun)
clause

 } Close the try clause

 catch(e) {} catch clause; if there are
problems in trying to use
localStorage, do nothing

} Close function

</script> Closing script tag

</head> Closing head tag

<body onLoad="retrieveinfo();"> Body tag; invoke
retrieveinfo after loading

<div id="greeting"></div> Div that is a place to put
the “Welcome Back”
greeting

<form name="f" action="addsite.php" onSubmit="return encode();"
method="post">

Form tag; sets the server-
side action to be
addsite.php; sets the
client-side response to the
submit button to be
return encode(); the
method is post

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

408

Code Line Description

Site: <input name="stitle" placeholder="Your name for site"
required/>

Label and input field for
site name

Date: <input name="sdate" type="date" placeholder="YYYY-MM-DD"
required/>

Label and input field for
date

Site description:
 Label for site description;
line break

<textarea name="sdesc" cols="30" rows="2"> textarea element

</textarea>
 Closing textarea; line
break

URL: <input name="surl" type="url" placeholder="http:// "
required/>

Label and input field for
URL

Category: <input name="scat" type="text" required/><hr/> Label and input field for
category

Username: <input name="un" type="email" required / >
 Label and input field for
username

Password: <input name="pw" type="password" required />
 Label and input field for
password

Save on this computer next time you invoke addsite? <input
name="saveok" value="No" />

Question and input field
for user opt-in to saving
on local computer

<input type="submit" value="Submit Site"/> Submit button

</form> Closing form tag

</body> Closing body tag

</html> Closing html tag

addsite.php

<html> html tag

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

409

Code Line Description

<head> Head tag

<title>Complete adding site to research table</title> Complete title

</head> Closing head tag

<body> Body tag

<?php Start PHP

require("opendbo.php"); Bring in the file to connect
to the database

$tname = "sitesfinders"; Set the variable with the
table name

$stitle=addslashes($_POST["stitle"]); Extract the title and
escape pesky characters
such as '

$sdate= $_POST["sdate"]; Extract the date

$sdesc= addslashes($_POST["sdesc"]); Extract the description
and escape pesky
characters such as '

$surl= $_POST["surl"]; Extract the URL

$scat = addslashes($_POST["scat"]); Extract the category and
escape pesky characters
such as '

$un = $_POST['un']; Extract the username

$epw = $_POST['pw']; Extract the password

$query = "SELECT * FROM finders WHERE username='$un' AND
epw='$epw'";

Form the query to see if
this is a registered finder;
That is, SELECT from the
finders table all records
where username equals $un
and epw equals $epw

$result = mysql_query($query, $link); Send the query to MySQL

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

410

Code Line Description

if ($row=mysql_fetch_array($result)) { If there were any results,
take the first one

 $fid = $row['finderid']; Extract the fid field

 $query = "INSERT INTO $tname values
('0','$stitle','$sdate','$surl','$sdesc','$scat','$fid')";

Form the query to insert a
new record into the
sitesfinders table using
all the data, including the
fid just determined from
the SELECT statement

 $result = mysql_query($query, $link); Send the query to MySQL

 if ($result) { Check if the result is OK

 print("The site was successfully added.
\n"); Print the success message

?> Leave PHP (still in the
success clause)

Add [another] web site?
 Display the invitation to
add another site

<form name="f" action="addsite.php" method="post"> Form, with action to go to
addsite.php

Site: <input name="stitle" placeholder="Your name for site"/>
 Place for title

Date: <input name="sdate" type="date" placeholder="YYYY-MM-DD" />

Place for data

Site description:
 Label for description

<textarea name="sdesc" cols="30" rows="2"> Text area for long(er)
description

</textarea>
 Close textarea; line break

URL: <input name="surl" type="url" placeholder="http://
"/>

Place for URL

Category: <input name="scat" type="text"/><hr/> Place for category

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

411

Code Line Description

<?php Restart PHP section

print ("Username: <input name='un' type='email' value='"); Using data sent

print ($un."' />"); Display username

print ("Password: <input name='pw' type='password' value='$epw'
/>");

Display dots for each
character of encoded
password (this is 32
characters)

?> End PHP

<input type="submit" value="Submit Site"/> Submit button

</form> Close form

Show all websites or Show sites for a category

Hyperlinks to go to
showsites or
showsitesbycategory1.php

<?php Restart PHP

 } Closing } for the if-OK test

 else { Else

 print ("The site was NOT successfully added.
\n"); Print error message

 } Close clause

 } Close clause on no-
problem-with-finder info

else { Else

 print ("Problem with username and/or password and/or
data.");

Print the message for
problem-with-finder info

} Close clause

?> End PHP

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

412

Code Line Description

</body> Closing body tag

</html> Closing html tag

removesites.php

<!DOCTYPE html> Doctype

<html> html tag

<head> Head tag

<title>Delele some sites</title> Complete title

</head> Closing head tag

<script type="text/javascript" src="sha256.js"></script> Bring in the sha256.js file
holding the function for
one-way encryption

<script type="text/javascript"> Script tag

function encode() { Header for the encode
function

 var pw1 = document.f.pw.value; Set pw1 with the password

 if ((document.f.un.value.length<1) ||(pw1.length<1)) { Check if un and pw1 have
not been entered

 alert("Need to enter User Name and Password. Please
try again.");

Display the error message

 return false; Return false to stop
action going to the PHP
script

 } Close clause

 else { Else

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

413

Code Line Description

 document.f.pw.value = SHA256(pw1); Encode password

 return true; Return true to send
control to the PHP script

 } Close clause

} Close the encode function

</script> Closing script tag

<body> Body tag

<?php Start PHP

require("opendbo.php"); Connect to the database

$query="SELECT * FROM sitesfinders as s JOIN finders as f where
s.finderid = f.finderid ORDER BY sdate DESC";

Form the query to get
SELECT all the records
from tables joined where
the finderid values are
equal; order by the sdate
field in descending order,
meaning most recent first

$result=mysql_query($query, $link); Send the query to MySQL

print("<table border='1'>"); Output to the HTML
document table tag

print("<tr><th>Remove?</th><th>Name</th><th>URL</th><th>Date
</th><th>Description </th><th>Category </th><th>Finder
</th></tr>");

Output to the HTML table
column header row

?> Close PHP

<form name="f" action="completeremovesites.php" method="post"
onSubmit="return encode();">

Form tag

<?php Restart PHP

while ($row=mysql_fetch_array($result)) { while based on rows
extracted from the result
of the query

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

414

Code Line Description

print("<tr>"); Print HTML markup to
start row

print ("<td><input type='checkbox' name='group[]'
value='".$row['sid'] . "'/></td>");

Print HTML check box;
the value is the ID for the
site record

 print("<td> ".$row['stitle']."</td>"); Print HTML with the site
title

 print ("<td><a href='".$row['surl'] ."'
target='_new'>".$row['surl']."</td>");

Print HTML with the
hyperlink; the surl date
from the table is used
twice

 print ("<td>".$row['sdate']."</td>"); Print HTML showing the
data

 print ("<td>".$row['sdescription']."</td>"); Print HTML showing the
description

 print ("<td>".$row['scategory']."</td>"); Print HTML showing the
category

 print ("<td>".$row['username']."</td>"); Print HTML showing the
finder name

 print ("</tr>"); Print HTML closing tr tag

} Close the while loop

mysql_close($link); Close the link to the
database

?> End PHP

</table> Closing table tag

Username: <input name="un" type="email" required />
 HTML for finder signing
in

Password: <input name="pw" type="password" required />
 HTML for finder password

<input type="submit" value="Delete selected sites" /> Submit button

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

415

Code Line Description

</form> Closing form tag

</body> Closing body tag

</html> Closing html tag

completeremovesites.php

<!DOCTYPE html> Doctype

<html> html tag

<head> Head tag

<title>Delele some sites</title> Complete title

</head> Closing head tag

<body> Body tag

<?php Start PHP

require("opendbo.php"); Bring in opendbo.php to
connect to the database

$un = $_POST['un']; Extract the un input

$epw = $_POST['pw']; Extract the pw input (it is
the encoded password)

$query = "SELECT * FROM finders WHERE username='$un' AND
epw='$epw'";

Form a query to check if
the finder is registered;
SELECT all records in
which the username
equals $un and the epw
equals $epw

$result = mysql_db_query($DBname,$query, $link); Send to MySQL

if ($row=mysql_fetch_array($result)) { If anything was returned,
take the first (probably
only) row

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

416

Code Line Description

$ids = $_POST['group']; Extract the group input
(this is an array)

$deletelist = join (', ',$ids); Join the array elements
together to form a string
with commas in-between
and assign to $deletelist

$query = "DELETE FROM sitesfinders WHERE sid IN ($deletelist)"; Form a query to delete all
records where the sid is
contained in the
$deletelist; the
$deletelist is a comma-
separated character string

$result=mysql_query($query, $link); Send to MySQL

if ($result) { If true result . . .

 print ("The " . count($ids)." selected sites were
deleted.");

. . . print out the message,
giving the number of sites
deleted

} Close clause

else { Else

 print ("Problem with deletion."); Print out the problem
message

} Close clause

} Close clause for check-on-
finders info

else { Else

 print ("Problem with username and/or password."); Print out the message
indicating the problem-
with-finder info

} Close clause

mysql_close($link); Close connection

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

417

Code Line Description

?> End PHP

</body> Closing body tag

</html> Closing html tag

The last group of scripts, shown in Table 10-5, includes the three for displaying the contents of the

database. Now, I need to be clear as to what is meant by the term table. The PHP code creates HTML
tables. The PHP uses information returned for SELECT statements concerning the MySQL sitesfinders
table and the MySQL finders table. Look back at Figure 10-13 and Figure 10-16 for clarification.

Table 10-5. Displaying Information on Sites in the Database

Code Line Description

showsites.php

<!DOCTYPE html> Doctype

<html> html tag

<head> Head tag

<title>List sites with finder ids</title> Complete title

</head> Closing head tag

<body> Body tag

<?php Start PHP

require("opendbo.php"); Bring in the file to make the
connection to the database

$query="SELECT * FROM sitesfinders as s JOIN finders as f
where s.finderid = f.finderid ORDER BY sdate DESC";

Form query to SELECT all the fields
from all the sites from the
sitesfinders table, joining with it
all the fields from the finders table;
the code will only use the username
from the finders table fields

$result=mysql_query($query, $link); Send to MySQL

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

418

Code Line Description

print("<table border='1'>"); Print the table tag to the HTML
document

print("<tr><th>Title</th><th>URL</th><th>Date
</th><th>Description </th><th>Category </th><th>Finder
</th></tr>");

Print the row with column headings
to the HTML document

while ($row=mysql_fetch_array($result)) { while loop to iterate over the values
returned by the query

print("<tr>"); Print the tr tag to HTML

 print("<td> ".$row['stitle']."</td>"); Print as a td element the stitle
field from the sitesfinders table

 print ("<td><a href='".$row['surl'] ."'
target='_new'>".$row['surl']."</td>");

. . . a hyperlink, with the surl value
present as the href value and as the
visible contents

 print ("<td>".$row['sdate']."</td>"); . . . sdate field

 print ("<td>".$row['sdescription']."</td>"); . . .sdescription field

 print ("<td>".$row['scategory']."</td>"); . . . scategory field

 print ("<td>".$row['username']."</td>"); . . . username field (from the finders
table)

 print ("</tr>"); . . . ending tr tag

} Close the while loop

mysql_close($link); Close the connection to the
database

?> End PHP

</table> Closing table tag

</body> Closing body tag

</html> Closing html tag

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

419

Code Line Description

showsitesbycategory1.php

<!DOCTYPE html> Doctype

<html> html tag

<head> Head tag

<title>List sites in a category</title> Complete title

</head> Closing head tag

<body> Body tag

Pick the category you want: Text instructions

 Line break

<form action="showsitesbycategory2.php" method="get"> Form tag, indicating the action and
the method

Choices: <select name="pickedcategory"> Choices text and select tag

<?php Start the PHP

require("opendbo.php"); Bring in the file to connect to the
database

$query="SELECT DISTINCT scategory FROM sitesfinders"; Form query; this SELECT statement
picks up all the scategory fields, but
reduces the list to the distinct
ones—that is, there are no repeats,
even if a category appears for more
than one record in the table

$categories = mysql_query($query, $link); Send the query to MySQL; the
results are assigned to $categories

while ($row=mysql_fetch_array($categories)) while loop iterating over categories

{ $cat=$row['scategory']; Set $cat

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

420

Code Line Description

 print ("<option value='$cat'>$cat</option>
\n"); Print out to HTML an option
element, with the $cat as the value
and the visible contents

} Close the while loop

mysql_close($link); Close the connection to the
database

?> End PHP

</select> Closing select tag

<input type=submit name=submit value="Choose!"> Submit button

</form> Closing form tag

</body> Closing body tag

</html> Closing html tag

showsitesbycategory2.php

<!DOCTYPE html> Doctype

<html> html tag

<head> Head tag

<title>Show sites in selected category</title> Complete title

</head> Closing head tag

<body> Body tag

<?php Start PHP

$scat = $_GET['pickedcategory']; Extract the pickedcategory input
and assign it to the $scat variable

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

421

Code Line Description

print "Sites in $scat category
"; Print out to HTML text for the
display; line break

require("opendbo.php"); Bring in the file to link to the
database

$query="SELECT * FROM sitesfinders as s JOIN finders as f
WHERE s.finderid = f.finderid AND scategory = '$scat' ORDER
BY sdate DESC";

Form query; this is picking up all
the fields from the sitesfinders
table, joined with the finders table,
when the finderid fields are equal,
where the scategory field is equal to
$scat; order by sdate, descending
(most recent first)

$result=mysql_query($query, $link); Send the query to MySQL; assign
the results to the $result variable

$NoR=mysql_num_rows($result); Set $NoR to be number of rows

if ($NoR==0) { Check if this is zero

 print ("No sites in that category"); } Print the message (this should not
happen because the list of present
categories was just generated)

else { Else

print("<table border='1'>"); Print to HTML the table tag

print("<tr><th>Title</th><th>URL</th><th>Date
</th><th>Description </th><th>Finder </th></tr>");

Print to HTML the column headers

while ($row=mysql_fetch_array($result)) { while loop to iterate over the value
returned

print("<tr>"); Print the tr tag

 print("<td> ".$row['stitle']."</td>"); Print as a td element, the stitle
value

 print ("<td><a href='".$row['surl'] ."'
target='_new'>".$row['surl']."</td>");

Print as td element, a hyperlink with
the surl value appearing as the
value of the href and as the visible
contents

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

422

Code Line Description

 print ("<td>".$row['sdate']."</td>"); . . . sdate

 print ("<td>".$row['sdescription']."</td>"); . . . sdescription

 print ("<td>".$row['username']."</td>"); . . . username

 print ("</tr>"); Print closing tr tag

} Close while

 print ("</table>"); Print closing table tag

} Close the else clause

mysql_close($link); Close the connection to the
database

?> End PHP

</body> Closing body tag

</html> Closing html tag

Testing and Uploading the Application
The project for this chapter requires you to have a server account that supports your use of PHP and
provides access to a MySQL database. Testing a database program is a challenge! First of all, you do need
to upload everything to a server, or perform the intricate process of setting up a server on your own
computer. Second, you need to be aware of the state of the system as a whole. Data persists, which is the
whole point. For example, you may need to remove items added to tables in the database to test a
particular script. If your application involves the use of localStorage, this is part of the system as well,
and you may need to remove saved items. When the project includes a login/password subsystem, you
need to remember the passwords.

Do keep in mind that you need to create your version of the opendbo.php file. Use
opendboToBeFixed.php as a base. You need to consult with your server organization to do this. You also
need to download the sha256.js file from www.webtoolkit.info/javascript-sha256.html or obtain an
equivalent program. If you use a different program, you will need to search for the function named
sha256 and change it to what you included.

CHAPTER 10 ■ WEB SITE DATABASE: USING PHP AND MYSQL

423

Summary
In this chapter, you learned techniques in HTML5, JavaScript, MySQL, and PHP, including the following:

• SQL commands for creating tables for a database

• SQL commands for inserting, updating, selecting, and deleting records

• PHP commands and techniques for composing SQL queries from form inputs and
taking the results of SQL queries to compose HTML pages

• Using localStorage to save and retrieve information

This is the last chapter. I hope you have enjoyed the examples, and you will go on to build exciting
and beautiful projects on your own.

425

Index

■A
Accumulator, 303
addEventListener, 142
addListener function, 111
Adobe Flash, 332

■B
Bouncing video, 53

animation
automatic scrolling, 63
clearInterval(tid), 61
ctx.clearRect(0,0,cwidth,cheight), 61
displacement value, 62
init function, 61
moveandcheck function, 61, 62
setInterval(drawscene,50), 61
setInterval function, 61
tid = setInterval(drawscene,50), 61
videobounceC program, 62
videobounceE program, 62, 63
video element bouncing with less

restrictive checking, 63
application

changedims function, 86
testing and uploading, 86
trajectory function, 69
v.currentTime attribute, 86
videobounceC application code, 69,

70
videobounceE program code, 76
VideobounceTrajectory program

code, 82
window.innerWidth and

window.innerHeight attributes, 86

body definition and window
dimensions

ballrad variable, 61
body element, 60
init function, 60
Math.min method, 60
video element, 59
video formats, 59
window.innerWidth and

window.innerHeight attributes, 59
HTML5, 53
looping video, 66
movable video element, 65, 66
Opera screen capture, 53, 54
project history and critical

requirements, 58, 59
smaller window, 55, 56
stop-motion photography, 54
trajectory of virtual ball, 54, 55
traveling mask, 66–68
user interface, 68
very small window, 57
video drawn on canvas, 64, 65
window resize, running program, 57, 58

■C
changescale function, 10
checkpositions function, 340
clearshadow function, 110
Corel Paint Shop Pro, 330
Crease pattern, 228, 229

■D
Database

building application, 390

■ INDEX

426

adding and removing site records,
404

code for createresearchtables.php,
392

displaying information on sites, 417
end-users and database

administrators, 390
finder registration scripts, 394
tasks by scripts, 390

client side vs. server side processing,
382, 383

critical requirements, 376
finders, 367

adding site, 371, 372
change password, 370, 371
delete site, 374, 375
list of web sites, 372, 373
registration, 368
user error, 369

hash function, 382
local storage, 381
Opera browser, 375, 376
PHP (see PHP)
relational databases, 377, 378
SQL, 379, 381
testing and uploading, 422

Database management system (DBMS),
377, 378

Document object model (DOM), 59
dologo function, 9, 11
Drop LatLng marker option, 100, 103

■E
Entity relationship diagram (ERD), 377

■F
Family collage, 19

Adobe Photoshop, 21
critical requirements, 21

canvas element, 22
drag and drop operation, 22

CSS, JavaScript features, 22
end-user position, 19
final product, rearranged objects, 20, 21
HTML5, 22

image application, 35
event handling functions, 35
HTML5 Family Card project, 35, 36
HTML5 Logo project, 37–52
initialization, 35
object definition methods, 35

JavaScript object, 22
constructor function, 22
family picture project, 22
method function, 22
types of objects, 22

manipulating object, 19
mouse over object, 28

coordinate system, 29
outside function, 30
overcheck method, 28
overheart function, 29
overoval function, 29
overrect function, 28
startdragging and makenewitem, 28

opening screen, family pictures, 20
save canvas image, 34

DataURL, 34
Firefox browser, 34
saveasimage function, 34

test and upload application, 52
user interface, 31

clone function, 32
drawstuff function, 31
dropit function, 34
flypaper effect, 33
mouse cursor coordinates, 32
moveit function, 33
onClick attributes, 31
removeobj function, 31

fillStyle property, 7
Frames, 64

■G
Geolocation, 183

accuracy value, 200
Always Share option, 184
application

e-mail geolocation application code,
215

■ INDEX

427

e-mail geolocation project function,
215

functions, 206
geocoder.geocode, 223
project code, 206
testing and uploading, 223

asynchronous request, 196
base location, 188, 189
checkit function, 202, 203
critical requirements

base location, 195
client computer, 195
Google Maps Street View service,

194
GPS, 194
JavaScript processing, 195
latitude and longitude position, 194
sending e-mail, 195
Wi-Fi hot spot, 194
Wi-Fi radio, 194

default marker, 192
empty field message

Chrome, 193
Firefox, 193

form validation, 193
geolocationkme-mail.html, 190
geolocationkmgeo.html program, 188
getCurrentPosition method, 198
handler function, 200
Internet Explorer scripts run request,

196, 197
invalid e-mail address

Chrome, 193
Firefox, 193

iPhone permission screen, 187, 188
makemap function, 200, 202
message body information, 192
message on absence, 197
navigator.geolocation object, 198, 200
Never Share option, 184
Not Now option, 184
opening screen

Chrome, 186
e-mail program, 191
Firefox, 183, 184

Opera, 184, 185
Safari, 186, 187

Opera follow-on screen, 185
opt-in, 183
PHP

checking e-mail address input, 203,
204

language, 204, 205
positionopts, 198
problemhandler, 198
received e-mail with location

information, 192
reverse geocoding, 189, 190

anonymous function, 200
array, 201, 202
definition, 200
Google Maps API, 200
init function, 200
locrequest, 201
reversegeo function, 200

Share Location option, 184
specification, 183
subtler problem, 199
user denying permission, 198, 199
W3C recommendation process, 188
W3C standard, 196

Global Positioning System (GPS), 194
Google Location Services, 183, 194
Google Maps API

addListener, 104
associative array, 105
HYBRID map, 105
makemap function, 105
Map constructor method, 104
Map, LatLng, and Marker, 104
map portal

associative array, 138
event handling, 141
HTML document location, 138
HYBRID map type, 139
interface removed, 141
latitude and longitude values, 138
makemap function, 138
myOptions array, 140
SATELLITE map type, 140

■ INDEX

428

TERRAIN map type, 138, 139
x1.png file, 141

mobile devices applications, 104
onLoad attribute, 104
portal construction, 105
pseudocode, 104
ROADMAP, 105
SATELLITE map, 105
TERRAIN map, 105

■H
HTML5 logo, 1

body of document, 7, 8
Building section, 4
canvas element, 1
Chrome browser opening screen, 2
coordinate transformation, 8, 9
drawing paths

canvas element, 5
2D context, 5
2D coordinate system, 6
closePath method, 6
hexadecimal format, 6
init function, 6, 7
onLoad attribute, 6
sequence, 5

drawpath, fillStyle property, 5
Firefox opening screen, 3
graceful degradation, 3
implementation, 3
project code, 12
project function, 11
project history and critical

requirements, 4, 5
range input element, 9–11
scaled down, 3
semantic tags, 1
slider feature, 2
testing and uploading, 18
Test section, 4
text placement, 7, 8
World Wide Web Consortium, 2

HYBRID map, 139

■I
initMouseEvent method, 302
innerHTML attribute, 335
intersect function, 239
Intersection, 240

■J
JavaScript arrays, 147
JavaScript object, constructor function

drawing, 26, 28
heart, 25
Oval, 23, 24
picture, 24, 25
Rect, 23

Jigsaw video puzzle, 283
application

jigsaw-to-video project code, 307
jigsaw-to-video project functions,

306
testing and uploading, 319

desktop computer
Feedback label, 286
nearly completed puzzle, 286, 287
opening screen, 283, 284
puzzle progress, 285, 286
replaced pieces, 288
spread out pieces, 284, 285
tolerance, 287
video with controls, 288, 289

display attribute, 297
endjigsaw function, 296
finger touches

accumulator, 303
checkpositions function, 303, 304
deltax and deltay arrays, 303
doaverage function, 303
piecesx and piecesy arrays, 303
questionfel element, 304
release function, 303
setupjigsaw function, 302
tolerance, 303
touchcancel, 302
touchend, 302
touchHandler code, 302, 303
touchmove, 302

■ INDEX

429

touchstart, 302
video preparation, positioning, and

playing, 305
W3C, 302

firstpkel variable, 296
images and data acquisition, 294, 295
init function, 295
iPhone and iPad

critical requirements, 293
game in progress, 291
jigsaw-puzzle-with-video-reward

project, 293
opening screen, 289, 290
ready to play video, 291, 292
user interface construction, 289
video in play, 293

Math.floor, 297
Math.random, 297
mouse events

adjustX, 299, 300
adjustY, 299
checkpositions function, 301
curX, 298–300
curY, 298
draw function, 301
Internet Explorer, 298
mouseDown variable, 300, 301
moving function, 300
moving jigsaw pieces, 298
movingobj element, 301
movingobj variable, 300
offset function, 300
pieceelements array, 298
setupjigsaw function, 298, 301
startdragging function, 298–301
style element, 301
zero offset, 300

piecesx and piecesy values, 296
piecesx file, 296
setupgame function, 295, 296
setupjigsaw function, 296, 297

■K
kamih variable, 237
kamiw variable, 237

■M
Map maker, Google Maps, 89

API (see Google Maps API)
application

functions, 114, 115
mapspotlight.html application code,

115
testing and uploading, 127

base location, 90, 93–95
canvas graphics

drawshadowmask function, 107, 108
grayshadow, 107
mouse movement, masking, 105
schematic with variable values, 108
shadow mask, 106, 107
z-index values, 106

closest-in limit, 96, 97
cursor, 109
distance and rounding values, 113, 114
events

addListener, 111
bubble, 109
changebase function, 112
CHANGE button, 112
checkit function, 111
drawshadowmask function, 109
HTML coding, 112
init function, 109
mouseout event, 110
panning and zooming, 110
parallel structures, 112
pushcanvasunder function, 110
radio buttons, 112
showshadow function, 109
title indicating distance, 111

farthest-out view, 95, 96
Greenland problem, 95
latitude and longitude

coordinate system, 98
distances between locations, 103
Drop LatLng marker option, 100,

103
equator at Greenwich prime

meridian, 102
Greenwich prime meridian, 99

■ INDEX

430

HTML5 application, 103
location, 91, 95
meridians, 99
parallels, 99
teardrop marker, 103
values, 99, 100
Wolfram Alpha, 101

opening screen, 89, 90
satellite view, 96, 97
semitransparent shadow, 91
shadow/spotlight, 90, 91
slider, zoom, 91, 92
zoomed in to limit, 97, 98
zooming out and moving north, 92, 93

Map portal, Google Maps, 129
API (see Google Maps API, map portal)
application testing and uploading, 182
click not close to any target, 131, 132
content outline, 130
distances and tolerances, 144
external script file, 146, 147
hint button, 149
HTML5 markup and positioning, 147,

149
image-and-audio combination, 132
incorrect response, 135
Lego robot, 131
Liberty Island after panning and

zooming in, 133
map centered on Dixon, Illinois, 136
mapmediabase application

functions, 160
latitude/longitude coordinates, 160
mapspotlight.html application, 160
portal code, 161

mapmediabase.html file, 130
mapmediaquiz.html file, 130
mapvideos application

canvas, 150
functions, 151
portal code, 151

mapvideos.html file, 130
mediacontent.js file, 130
media files, 130
mediaquizcontent.js file, 130

opening screen, 130, 131
panning west and zooming in Dixon,

134
piano music play, 135
project content, 141
project history and critical

requirements, 137
prompt concerning flute play, 136
quiz application, 134

code, 171, 172
external script file, 170
functions, 171

regular expressions, 145, 146
shuffling, 149, 150
video, audio, and image files, 129
video, audio and images presentation

and removal
addEventListener, 142
checkit function, 143
display style, 143
div element, 142
last-viewed content removal, 143
media on demand, 142
style element, 142

video play, clicking Purchase College,
131

MasterCard numbers, 145
Math.floor method, 238
Math.min method, 60
mediacontent.js file, 146
Middleware. See PHP
mountain function, 238

■O
onChange attribute, 10
Open Source Miro Video Converter, 60
Origami directions, 225

application
functions, 248
project code, 249
testing and uploading, 282

coordinate values, 236, 237
crease pattern, 228
critical requirements, 232, 233
first instructions, 226, 227

■ INDEX

431

fish throat photograph, 230
fish with throat fixed, 231
kami, 226
line drawings/images, 225
mountain/valley folds, 228
opening screen, 226
origami definition, 225
origamifish.html, 226
paused video, sink step, 229
photograph display, 247
sink fold, 228
skinny vertical line, 227
step after sink, 229, 230
step line drawing functions

after making lips, 246
after wraparound steps, 246
built-in Math methods, 240
canvas coordinate transformations,

246
dividing a line into thirds and

folding, 241
dividing-into-thirds step, 240, 241
HTML5 path-drawing facilities, 240
labeling at fold, half step, 245
labeling critical points, 243
littleguy function, 243, 244
rotatefish function, 246, 247
sink center preparation, 245
triangle function, 242
triangleM function, 240, 242, 243
variables, 243, 244

steps array
definition, 234
donext function, 234, 235
goback function, 234, 235
init function, 234
nextstep, 234
onLoad attribute, 234
origamifish.html, 233, 234

talking fish, 225, 226, 231, 232
unfolded fold line, 227
user interface, 235, 236
utility functions

calculation, 239, 240
display, 237–239

video presentation and removal, 247
origamifish.html application, 226, 282

■P
Parallel structures, 112, 146
PHP, 383

character strings, 384
Form Action, 385, 387
function, 205
language, 384
script, 384, 385
SQL Queries, 387

recordset results, 387, 389
simple results, 387

three-tier model, 383
Pieceelements array, 295
piecesx value, 303
piecesy value, 303
Pixlr, 330, 332
playsink function, 247
playtalk function, 247
Point slope, 239
problemhandler function, 198
Proportion, 240
Pythagorean theorem, 237

■R
Red-green-blue-alpha (rgba), 107
Relational databases, 377, 378
restorepreviousjigsaw function, 341, 342,

343
reversegeo function, 200

■S
SATELLITE map, 140
Set typography, 232
setupgame function, 335
setupjigsaw function, 339
SQL, 379, 381
strokeStyle property, 7
strokeText method, 7
style.left value, 303
style.top value, 303

■ INDEX

432

■T
TERRAIN map, 138, 139
THIS element, 10
toFixed method, 114
touchHandler function, 302

■U
US states game, 321

application
functions, 344
project code, 345
testing and uploading, 364

critical requirements, 329
doingjigsaw variable, 340
educational game, 321
elements creation, 335
Find the state, 322, 323
fullpage div, 342
image files

Adobe Flash symbol, 332
arrays, 335
base location, 332
bounding box, 332
Corel Paint Shop Pro, 330
Flash image export, 334
GIFs/PNGs, 335
Hawaii original symbol, 333
Hawaii with adjusted origin, 333,

334
illinoisclone, 332, 333
image-processing program, 335
imprecise positioning and sizing,

330
magic wand, 330, 331
offsets, 332
pixlr toolbar, 330
puzzle pieces, 329
selected Illinois state, 331
transparent backgrounds, 335
web-based pixlr image-editing tool,

330
jigsaw puzzle

correct arrangement, 328
feedback, 327, 328
pseudorandom processing, 326

Restore last jigsaw in process, 327
Save & close jigsaw, 327, 328
setting up, 339, 340
work in progress, 327

localStorage, 341
Name the state, 325
opening screen, 321, 322
response after correct answer, 325, 326
response to correct answer, 324
response to incorrect choice, 323
restore function, 339–341
Restore original/compress map, 325
restorepreviousjigsaw function, 341,

342, 343
spreading out pieces, 338, 339
Spread out states, 324
statesx and statesy arrays, 339
user interface

body element, 336
checkname function, 338
ev parameter, 337
HTML markup, 336
onsubmit attribute, 338
pickstate function, 337
setupfindstate function, 337
setupidentifystate function, 337
String method, 337

■W
watchPosition method, 200
Web site database, 367
Wi-Fi hot spots, 194
Wi-Fi radios, 194
Wolfram Alpha, 101
World Wide Web Consortium, 2

■X, Y, Z
zIndex, 65, 106, 339

	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Who Is This Book For?
	How Is This Book Structured?

	CHAPTER 1 Building the HTML5 Logo –Drawing on Canvas, with Scaling, and Semantic Tags
	Introduction
	Project History and Critical Requirements
	HTML5, CSS, and JavaScript features
	Drawing paths on canvas
	Placing text on canvas and in the body of a document
	Coordinate transformations
	Using the range input element

	Building the application and making it your own
	Testing and uploading the application
	Summary

	CHAPTER 2 Family Collage:Manipulating Programmer-defined Objects on a Canvas
	Introduction
	Critical Requirements
	HTML5, CSS, and JavaScript features
	JavaScript objects
	Rect
	Oval
	Picture
	Heart
	Drawing
	Checking for mouse over object
	User interface
	Saving the canvas to an image

	Building the application and making it your own
	Testing and uploading the application
	Summary

	CHAPTER 3 Bouncing Video: Animating and Masking HTML5 Video
	Introduction
	Project History and Critical Requirements
	HTML5, CSS, and JavaScript Features
	Definition of the Body and the Window Dimensions
	Animation
	Video Drawn on Canvas and As a Movable Element
	Video Drawn on Canvas
	Movable Video Element
	Looping Video

	Traveling Mask
	User Interface

	Building the Application and Making It Your Own
	Making the Application Your Own

	Testing and Uploading the Application
	Summary

	CHAPTER 4 Map Maker: Combining Google Maps and the Canvas
	Introduction
	Latitude & Longitude and Other Critical Requirements
	HTML5, CSS, and JavaScript Features
	Google Maps API
	Canvas Graphics
	Cursor
	Events
	Calculating Distance and Rounding Values for Display

	Building the Application and Making It Your Own
	Testing and Uploading the Application
	Summary

	CHAPTER 5 Map Portal: Using Google Maps to Access Your Media
	Introduction
	Project History and Critical Requirements
	HTML5, CSS, and JavaScript Features
	Google Maps API for Map Access and Event Handling
	Project Content
	Presentation and Removal of Video, Audio and Images
	Distances and Tolerances
	Regular Expressions
	External Script File
	Dynamic Creation of HTML5 Markup and Positioning
	Hint Button
	Shuffling

	Building the Application and Making It Your Own
	The Mapvideos Application
	The Mapmediabase Application
	The Quiz Application

	Testing and Uploading the Application
	Summary

	CHAPTER 6 Where am I: Using Geolocation, the Google Maps API, and PHP
	Introduction
	Geolocation and Other Critical Requirements
	HTML5, CSS, JavaScript, and PHP Features
	Geolocation
	Reverse Geocoding
	Clicking the Map
	Checking E-mail Address Input and Invoking PHP to send e-mail
	A Brief Introduction to the PHP Language

	Building the Application and Making It Your Own
	Testing and Uploading the Application
	Summary

	CHAPTER 7 Origami Directions: Using Math-Based Line Drawings, Photographs, and Videos
	Introduction
	Critical Requirements
	HTML5, CSS, JavaScript Features, and Mathematics
	Overall Mechanism for Steps
	User Interface
	Coordinate Values
	Utility Functions for Display
	Utility Functions for Calculation
	Step Line Drawing Functions
	Displaying a Photograph
	Presenting and Removing a Video

	Building the Application and Making It Your Own
	Testing and Uploading the Application
	Summary

	CHAPTER 8 Jigsaw Video: Using the Mouse and Touch to Arrange Images
	Introduction
	Background and Critical Requirements
	HTML5, CSS, JavaScript, and Programming Features
	Acquiring the Images and Data for the Pieces
	Dynamically Created Elements
	Setting Up the Jigsaw Puzzle
	Handling Mouse and Finger Touch Events
	Using Mouse Events
	Using Finger Touches

	Calculating If the Puzzle Is Complete
	Preparing, Positioning, and Playing the Video and Making It Hidden or Visible

	Building the Application and Making It Your Own
	Testing and Uploading the Application
	Summary

	CHAPTER 9 US States Game: Building a Multiactivity Game
	Introduction
	Critical Requirements
	HTML5, CSS, JavaScript Features, Programming Techniques, and Image Processing
	Acquiring the Image Files for the Pieces and Determining Offsets
	Creating Elements Dynamically
	User Interface Overall
	User Interface for Asking the Player to Click a State
	User Interface for Asking the Player to Name a State
	Spreading Out the Pieces
	Setting Up the Jigsaw Puzzle
	Saving and Recreating the State of the Jigsaw Game and Restoring the Original Map

	Building the Application and Making It Your Own
	Testing and Uploading the Application
	Summary

	CHAPTER 10 Web Site Database: Using PHP and MySQL
	Introduction
	Critical Requirements
	SQL, PHP, HTML5, and JavaScript Features
	Relational Databases
	SQL
	Local Storage
	Hash Function
	Client Side vs. Server Side for Input Validation
	Middleware: PHP
	Form Action
	Results from SQL Queries
	Simple Results
	Recordset Results

	Building the Application and Making It Your Own
	Testing and Uploading the Application
	Summary

	Index

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Gray Gamma 2.2)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Off

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Perceptual

 /DetectBlends true

 /DetectCurves 0.1000

 /ColorConversionStrategy /sRGB

 /DoThumbnails true

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions false

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams true

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts false

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 150

 /ColorImageMinResolutionPolicy /Warning

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 150

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.40

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 150

 /GrayImageMinResolutionPolicy /Warning

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 150

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.40

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /Warning

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 600

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /PDFA1B:2005

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>

 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>

 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>

 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)

 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>

 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>

 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>

 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>

 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>

 >>

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [595.276 841.890]

>> setpagedevice

