

Pro Web Project
Management

Justin Emond

Chris Steins

Pro Web Project Management

Copyright © 2011 by Justin Emond and Chris Steins

All rights reserved. No part of this work may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying,
recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-4083-9

ISBN-13 (electronic): 978-1-4302-4084-6

Trademarked names, logos, and images may appear in this book. Rather than use
a trademark symbol with every occurrence of a trademarked name, logo, or image
we use the names, logos, and images only in an editorial fashion and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar
terms, even if they are not identified as such, is not to be taken as an expression of
opinion as to whether or not they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Ralph Moore
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary

Cornell, Morgan Ertel, Jonathan Gennick, Jonathan Hassell, Robert
Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff
Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Annie Beck
Copy Editor: Lawrence Hargett
Compositor: Apress Production (Brigid Duffy)
Indexer: SPI Global
Artist: SPI Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media,
NY., 233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax
(201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit
www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate,
or promotional use. eBook versions and licenses are also available for most titles.
For more information, reference our Special Bulk Sales–eBook Licensing web page
at www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty.
Although every precaution has been taken in the preparation of this work, neither
the author(s) nor Apress shall have any liability to any person or entity with
respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

iii

Contents

Contents ... iii

About the Authors ... iv

Acknowledgments ... v

Introduction ... vi

Chapter 1: The Project Life Cycle ... 1

Chapter 2: The Project Definition and Scope of Work 5

Chapter 3: Meetings, Meetings, Meetings 21

Chapter 4: Discovery and Requirements 43

Chapter 5: Project Schedule and Budgeting 59

Chapter 6: Running the Project ... 79

Chapter 7: Technical Documentation .. 89

Chapter 8: Development, Communication, Documentation ... 117

Chapter 9: Quality Assurance and Testing 135

Chapter 10: Deployment .. 151

Chapter 11: Support and Operations .. 163

Appendix .. 179

Index .. 279

iv

About the Authors

Justin Emond is a freelance web technology consultant. Justin
has worked on both sides of the technology world, in internal
technology departments and as an outside consultant delivering
services to those on the inside. Prior to being a freelance web
technology consultant, Justin was a consultant at Pantheon and
a senior project manager at Urban Insight. He has also taught a
variety of technology courses at the USC Viterbi School of

Engineering, from web programming to project management. He occasionally
writes at MissingFeatures.com on topics ranging from usability to interface
design to project management. In addition to his work at Urban Insight and
Pantheon, Justin created Droptor, a web application that helps teams manage
sites powered by the Drupal content management system, and Droptopia, an
online visual portfolio of expert Drupal agencies. Justin has a degree in
psychology from the University of Southern California, and he regularly
reminds Chris that USC is a far better school than UCLA.

Christopher Steins is the chief executive officer of Urban
Insight, Inc., a technology consulting firm based in Los Angeles.
Chris has a decade of experience in technology consulting and
urban planning. He has participated in all aspects of information
systems life cycle development, including user requirements,
project management, system design, development, and
deployment. He has served as a consultant to public sector,

state, county, and local agencies, Fortune 500 private firms, educational
institutions, and nonprofit organizations. Chris is a lecturer at the University
of Southern California, where he teaches a course on technology and public
participation in government. Chris received his master’s degree in urban
planning and development from the USC School of Policy, Planning, and
Development, and his bachelor of arts degree in English from the University
of California, Los Angeles.

Together, Justin and Chris have managed more than 125 distinct web projects
with budgets ranging up to $3 million for more than 60 different clients.

v

Acknowledgments

We would like to thank Danny Krouk, James Carberry, Alex Brazier,
and the Apress editorial team for their help improving this book. Of
course, any errors or oversights are solely our own.

I would like to thank my talented friends and colleagues at Urban
Insight for creating an environment in which we are able to both
innovate and learn from our mistakes. I especially want to thank Mindy
Oliver, Abhijeet Chavan, Chun Wong, and Danny Krouk for their kind
guidance and mentorship over the years.
—Chris Steins

I would like to thank all of my clients, collegeues, friends, and family
for teaching me valuable lessons every day. I would also like to thank
Alex Brazier for her unfailing support.
—Justin Emond

vi

Introduction

Is This Guide for You?
This guide was written for those who will manage or fund technology
projects with budgets between $25,000 and $500,000. Our goal is to
provide a quick-start guide for professional, smart, competent people
who are new to web project management, or who need some
guidance on how to manage a web project.

• This guide offers a practical, step-by-step
project management process. While it is
adapted from best practices in the technology
industry, this guide recognizes the differences in
the size, scope, and cost of projects. Project
management techniques that may work perfectly
for a 3-year, $10 million project may be overly
burdensome for a smaller but still important 6-
month, $500,000 project.

• This guide generally focuses on web
application projects. A web application is a
software application that is accessed using a web
browser over a public network, such as the
Internet, or a private network.

If you are a project manager, this guide provides specific
techniques and methods you can use to make your projects successful.

If you are a project sponsor or funder, this guide helps you plan
for the types of work products you might expect to see during the
course of your project. It also enables you to assist your team in
developing practical and useful documents that keep your project
moving in the right direction.

| Introduction

vii

How Is This Guide Different?
Many books and guides espouse well-documented techniques for
managing larger technology projects with budgets exceeding $1
million. Likewise, there are several excellent how-to guides for
managing small web site development projects with budgets of less
than $25,000.

Most projects, though, fall somewhere in between. The
techniques, documents, and tools recommended for the highly
ambitious projects—while impressive—are often impractical, and
require far more overhead documentation than a midsize project of
more than $25,000 and less than $500,000 is likely to need. In theory,
many of the techniques applicable to small web site development
projects also apply to midsize projects. However, techniques for small
projects tend not to scale well when there are more than two project
team members, and these techniques frequently do not recognize the
complexity involved in a more challenging midsize project.

This guide is about how to manage a technology project with a
budget generally between $25,000 and $500,000. It includes

• Examples from the authors’ personal experiences;

• Examples of documents from real projects; and

• Immediately useful techniques that will translate to
your own projects.

This guide is not an overview of popular project management
methodologies and frameworks such as Agile and Waterfall, although
we do touch on these topics.

Ultimately, we want this guide to serve as a reference that will
help you to solve problems quickly and efficiently—problems that will
inevitably arise in your own projects.

About the Document Examples
All of the example documents in this book are real, created by
the Urban Insight team while working on projects for our clients.

Many examples are taken from a project with USC called the
Annenberg Social News Platform (ASNP). The Annenberg School for

| Introduction

viii

Communication and Journalism at the University of Southern
California in 2009 decided to use the Drupal web content
management system as the infrastructure for school-wide web
publishing, student e-portfolio, and interactive media projects to
provide real-life, hands-on journalism and communications experience
to students.

The pilot news site for the ASNP is Neon Tommy. Neon Tommy
is a web-only, Los Angeles-based news source sponsored by the
Annenberg School for Communication and Journalism via the student-
supported incubator program known as Annenberg Digital News.
Neon Tommy offers news coverage about issues of concern to
Southern California residents, but its audience is worldwide.

C H A P T E R

1

The Project Life
Cycle
In this book, we make reference to various phases in the life of a project.
These are the project phases and elements that are common to many, if not
most, web development projects. The tips and techniques we offer are rele-
vant to many phases in the project life cycle. For example, the section on
how to run a meeting effectively will serve you well through your project,
and perhaps even beyond your web project experience.

Following is a brief description of each phase, and where we discuss it in this
book.

� Planning: This is typically the first phase of most projects, and in-
volves outlining the full scope of the project. In some consulting or-
ganizations, this phase follows the approval of a proposal or scope
of work. In many internal projects, the project begins with the plan-
ning phase. We define the conclusion of the planning phase with the
client’s approval of the wireframes, and requirements document.
We discuss planning in Chapters 4 and 5.

Chapter 1 | The Project Life Cycle

2

� Visual design: This is often the most variable part of a project. In a
web site development project, the design phase is often the area of
the project where nontechnical team members have the most input,
and where many smaller projects run over budget. Your best ap-
proach to keeping the visual design phase on track and on-budget is
to produce an excellent requirements document and wireframes in
phase 1. We discuss the design process in Chapters 5 and 6.

� Development: This is often the largest phase of the project, and
where you have the greatest opportunity to be efficient, focused,
and really allow your development team to stretch their wings.
Conversely, this is also where you have the greatest opportunity to
avoid the most dangerous mistakes from which most web projects
suffer. Depending on the type and size of project, the development
phase may start immediately after the planning phase, and conclude
up to the testing phase. We offer lots of actionable tips and tech-
niques on how to make this phase rewarding in Chapters 6, 7, and
8.

� Content: The content phase of the project often overlaps with de-
velopment and testing. This is the phase where you engage your us-
ers or client to begin populating the system you’re building with
content or data. As part of this phase you also provide training to
your client. Training is critical to the success of your project, but
sadly is one of the most often overlooked areas of web projects.
We discuss the content phase in Chapters 8, 9, and 10.

� Testing: When Chris first started running web projects, he felt
guilty about having a section of the project and budget called “Test-
ing” or “Quality Assurance.” After all, when delivering a quality ser-
vice or product, should it not be perfect? It’s taken him many years
to recognize that any project that does not plan for testing and
quality assurance will not only fail, but fail spectacularly. Depending
on the size of the project, quality assurance and testing can
represent 5%–20% of the project budget. Check out Chapter 9 for
an easy-to-follow guide for testing.

� Launch: Simply completing development or testing of a project
does not define completion. It’s useful to identify explicitly the
discrete steps needed to launch a project successfully. We cover
launching a web site in Chapter 10.

Pro Web Project Management

3

Additional project management responsibilities fall outside of the project
process we outline here. In subsequent chapters, we also cover the following:

� Defining the project: Before a proposal is signed it must first be
created. The task of turning initial, nebulous discussions with a client
about a problem they face into a sensible (for both you and the
client) proposal requires a thoughtful approach. We cover the
process of defining a project in Chapter 2.

� Meetings, meetings, meetings: If there is one common theme
that binds together the activities of a project manager, it is the
meeting. Meetings can keep your project running smoothly as easily
as they can devastate budgets and sap morale. We talk about how
to run focused and efficient meetings that keep everyone happy in
Chapter 3.

� Support and operations: Of course, launching the web site is
only an intermediate step in the life cycle of your project. Now
comes the really hard part: support and operations. Without a
concrete plan for support and operations, even the most successful
project can begin to degrade and cause pain. We cover how to
make support and operations smooth in Chapter 11.

C H A P T E R

2

The Project
Definition
and Scope of Work
Before you have a project, you have a proposal. The project definition is vi-
tal because the proposal sets the tone for the entire life of the project.
From our years of experience in advising clients on projects, we’ve devel-
oped the following simple approach to easily navigate the pre-project phase:

� What is the problem?
� Can we help solve the problem?
� Outlining the solution: the scope of work

Since the proposal is the first work product of yours that the client will see,
it’s vital to set a great first impression. With this in mind, we also cover how
to prepare client documents.

Finally, we cover how to address a common client concern during the
project definition phase: What is customization and what is configuration?

What Is the Problem?
Many years ago, when Chris was gracefully leaving the employment of a
long-time entrepreneur to start his own business, his employer told him
that he would not succeed.

Chapter 2 | The Project Definition and Scope of Work

6

“You won’t make it. You don’t have what it takes to make it on your own.
You need to be able to sell wool blankets at a Dodger game on a hot sum-
mer day.”

That remark hit Chris hard, especially coming from someone with whom he
had worked for many years. But he also saw the fundamental difference in
the way each of them would run a business.

He thought, “I won’t sell blankets; I’ll sell beer.”

Chris often recalls this conversation when meeting with a new client. He
asks himself, am I trying to sell this client something that they don’t need—
the wool blanket on a hot day? So when our team first speaks with a pros-
pective client about a project, we present ourselves as advisors. We don’t
start by trying to sell a product or service. Instead, we learn about the
client, their business, their technology, and their specific technology prob-
lem.

Be a Trusted Advisor
First, be an advisor. This approach will pay off down the road. If you appear
to be a cheerleader for a particular technology or approach, your client will
never be able to heed your advice without wondering if you are trying to
promote your favorite technology. If you begin the project with an objective
evaluation of the various approaches or technologies, you present yourself
as your client’s advisor or advocate. This is a much stronger position than
being a promoter of a specific technology.

 Tip When you hear your client’s idea, rather than initially proposing a particular technology or so-
lution, position yourself as an advisor and try to understand the client’s problem.

Listen to what the client is telling you about his or her problem, and try to
get to the root of that problem. Here is an example of how a conversation
might start:

Client: “We need a better system to print letters
thanking donors for their contributions.”

Consultant: “Why, what’s wrong with the current
system?”

Pro Web Project Management

7

Client: “It’s too manual. We have to retype every-
thing.”

Consultant: “What do you use to track your do-
nors?”

Client: “We keep some of it in a spreadsheet, and
some of it in files.”

If we had tried to solve this (admittedly simple) problem by recommending a
system for printing letters, we would have committed ourselves to a specific
technology without understanding the problem. The problem here is not
about printing letters. That is a byproduct of the real problem: the
lack of a customer relationship management system or database.

Here is another example of trying to use a one-solution-fits-all approach to
problem solving. We know a highly technical and skilled colleague who is an
expert with a programming language called Perl. When asked to complete a
task or project, he will always use Perl. It does not matter if there is a bet-
ter language or way to do the project; he knows Perl, and that is what he
will use to solve the problem.

If we have a programming project for which Perl is a good choice, then he is
an excellent fit. If we have a project where the requirements do not match
what Perl offers, he is the wrong choice. He thinks anything could be done
using Perl. But if Perl is not a good solution, you would not want him work-
ing on your project.

When you consider building a complex system or application, it is often un-
wise to select the system architecture and software based solely on the qua-
lifications of a single person. Often, it is much better to evaluate several op-
tions and select the best fit.

Once we understand the client’s problem, we usually offer three likely tech-
nology solutions, and present the pros and cons of each.

Be Honest. Really.
Being honest actually works very well. No one expects the project to go off
perfectly. If you start the project by being honest about problems and con-
cerns, you will be in a much stronger position to present problems as they
arise during the course of the project.

Chapter 2 | The Project Definition and Scope of Work

8

If there is a less expensive way to do the project, identify it.

Client: “We’re thinking about asking you to imple-
ment enterprise solution X to host and deliver
streaming media from our web site.”

Consultant: “Hmm. That is a very good system, but it
might be more than you need. Have you also consi-
dered option Y?”

Client: “No, I’m not familiar with option Y.”

Consultant: “Let’s compare solutions X and Y, and
see if Y might work you. It’s about 10% of the cost of
enterprise solution X.”

Client: “Great. Now we have plenty of budget to
have you perform the evaluation.”

Beyond the obvious ethical argument, honesty helps build a precious re-
source that is easily lost and painfully gained: credibility. Credibility built at
the start of the project—or even before it has begun—will help you manage
the inevitable challenges you will face later in the project. Even when it
hurts, it pays to be honest.

Can We Help Solve the Problem?
From time to time, when discussing a potential project with a prospective
client, we realize that the solutions we could bring to the table are not the
ideal options for the project. What do we do?

We discuss the most likely project options with the client, and then we tell
the client that we are unlikely to be a good fit because we are not experts
in the solutions that will best serve the project.

We are prepared to lose the business on that project. But, two surprising
things often happen:

� The client hires us anyway. Many clients appreciate the value of
having an honest advisor on the project, so they will hire us to help
specify the project, hire a consultant, or provide project
management oversight.

� The client hires us for another project. Most organizations have
multiple projects. Although you or your company may not be a

Pro Web Project Management

9

good fit for a particular project, the potential client is likely to
remember your candor and engage you on a different project.

Like honesty, knowing when you are not a good fit for a project will help
you build credibility. There is no short supply of vendors and partners ready
to sell something to your client, but there is a shortage of honest people
you can trust.

Outlining the Solution: The Scope of
Work
If the client feels that we are a good fit the project, we’re asked to prepare
a scope of work.

Fundamentally, a scope of work is the statement about what you will do.
Often, the scope of work includes a budget or expected level of effort. The
scope of work sets the bounds on what will be included in the project, and
importantly what will not be included in the project.

Scopes of work take many shapes, but the best of them have common ele-
ments. Your scope of work should almost always include the following:

Project Name
This is often an overlooked opportunity. Create an appealing and useful
name that adds weight to the project. For example, “Admissions Database”
is fine, but boring. Try changing the name slightly to “Admissions Database
for Applicant Management,” or “ADAM.” Now the project has a catchy
name, one that makes it seem more human, approachable, and manageable.

Contacts
Include the name and contacts of the project sponsor for whom you are pre-
paring the scope of work as well as your own name and contact information.

Date and Version
A scope of work may go through several iterations before it is accepted.
Add a date and the version of the scope of work so you know which ver-
sion is current.

Chapter 2 | The Project Definition and Scope of Work

10

Background
Add a few sentences about the high-level business need for the project, as
well as how it originated and other background information. While this in-
formation may be obvious to you and the project sponsor, you should be
aware that a scope of work is often distributed well beyond the immediate
project audience; for example, we know of a scope of work for a small web
application development project that ultimately reached the CEO of a For-
tune 500 company. This background clarifies the usefulness of the project to
someone who is not familiar with the project.

Scope of Work
This is the essence of the project. Identify the different components or
phases of the project separately. For example:

� Discovery and planning
� System architecture design
� Visual design

When we first started writing scopes, we would include one or more para-
graphs about each project component. After observing how people tend to
read scopes of work, however, we changed the way we prepare them. Typi-
cally, we try to include a brief set of bullet points that clearly define the
work that will be performed and the products that will result from each
step.

For example:

Discovery and planning

� Conduct a series of three kickoff meetings to identify requirements.
� Prepare a requirements document.
� Create the application home page wireframe.
� Create five wireframes of key functional pages.
� Update the project budget, if necessary.

In most cases, the project starts with an initial discovery and planning
process (read more about this in Chapter 4). Clearly defining the steps you
will use in each phase of the project and the specific deliverables helps set
the client’s expectations and limits what you will need to provide at each
stage of the project.

Pro Web Project Management

11

This approach also makes it much easier to estimate an initial project budg-
et. For example, it is very difficult to identify accurately how much time is
required for discovery and planning, which encompasses many steps. If you
break this down into discrete tasks, it is much easier to determine the time
required for each component and to total these individual costs to arrive at
a budget.

For example, instead of including a huge item like “development” that in-
cludes everything from design through launch, break up the scope and
budget into smaller pieces that describe specific tasks included in develop-
ment, such as

� Interface Theming
� Installation and Configuration
� Application Development
� Quality Assurance
� Testing and Beta Testing
� Launch

Timeline
Timelines will vary widely depending on the size of the project and the
number of constituents. However, we find it helpful to prepare a genera-
lized schedule as a starting point for discussion with the client. This schedule
can typically be a simple Excel chart with five or six key milestones that cor-
respond to key tasks in your scope of work. We usually include the follow-
ing statement with the schedule:

“The project manager will update the project schedule upon completion of
the discovery and planning phase of the project when the full project details
are known.”

This helps you define a general schedule while allowing you to defer building
a detailed schedule until you have more information about the project.

Investment Budget
This is probably the first section that most people will turn to when looking
at a scope of work. The investment budget section typically reduces the en-
tire scope of work to an easily readable chart that includes each of the steps
and the amount of time involved.

Chapter 2 | The Project Definition and Scope of Work

12

 Tip Our rule of thumb is that if the project is around $7K, you usually present the time required
for each task in hours. If the project is over $7K, you present the time required for each task in
days. Trying to estimate the number of hours required for a project over $7K implies a level of pre-
cision in estimating that seldom exists in reality.

In many cases, your budget will be higher than what your sponsor expects.
(Development is hard work!) If so, it helps to separate the optional tasks
from the required tasks. You can do this easily by creating two budget sec-
tions: core project budget and optional project budget. This way, the
project sponsor or client can immediately identify which aspects of the
project can be moved into a later phase without disrupting the entire
project.

This also helps to avoid having to answer questions like, “Can we move the
discovery and planning task to phase 2?” Obviously the discovery phase
must come before—not after—the start of the project because by defini-
tion, it’s discovery.

Approval
Even in informal or internal scopes of work, include an approval section
with signature blocks for the project manager or representative of the com-
pany, as well as the project sponsor or client. There is a psychological dif-
ference between verbally agreeing to proceed on a project and actually hav-
ing to put your signature and name on a scope of work.

The scope of work should never be a replacement for a formal contract for
services between an organization and a consultant. A contract protects both
the consultant and the organization paying for the project in the unfortunate
case where the project does not work out as intended and needs to be
terminated, or in cases where the sponsoring organization needs to termi-
nate the project due to budget or other considerations.

Don’t Go Chasing Methodologies
Before going any further, we want to mention that this book is not
about a specific methodology. If a project is poorly managed, it is at
risk of failure regardless of whether Agile or Waterfall methodologies

Pro Web Project Management

13

are used. We don’t have a methodology to sell you. We have a
project to complete on schedule, on budget, and according to
your expectations. If anything, we advocate a pragmatic approach
to the use of methodologies.

If you work in a larger organization that has a well-defined project manage-
ment process, you may have little choice about which methodology your
organization will use. However, for many project managers in web applica-
tion projects, little thought is given to which, if any, methodology will be
used. There are loads of software development methodologies floating
around these days. Two of them seem to be exceptionally popular at
present.

In the Agile software development methodology, teams work in short
spurts building just a few features at a time, test and refine often, and gather
feedback from the client frequently. Proponents of the Agile method argue
that this helps to ensure client satisfaction as they are involved with the
project from the start, and development can’t drift away from what the
client wanted.

The polar opposite of Agile development is the Waterfall approach, wherein
you move from one defined step of the project to the next in a deliberate
and orderly way.

Because the Agile approach includes so much more feedback from the client
than the Waterfall approach, Agile development is often considered client-
driven.

Several popular businesses are outspoken about this approach, and so the
Agile methodology is often perceived as hot and young, while the Waterfall
methodology is seen as stuffy and old. Think Facebook (hot, young, and ex-
citing) vs. IBM (staid, fatherly, and predictable).

Hype and popularity are not valuable measures of the merits of a technology.

 Tip Just as you would not select a technology for a project based on its popularity, you should
not use a development method just because it is popular. Use a development methodology be-
cause it fits the requirements for the project.

Chapter 2 | The Project Definition and Scope of Work

14

Still, you will find that the approach we advocate in this guide is oriented
more toward Waterfall.

Here are some pros and cons of each style based on our experiences:

Agile Methodology
Pros

� Fast ramp-up. If you have a tight timeline and a team ready to go,
an Agile process can get you started developing an interim product
within a few days of the project start.

� Immediate results. Agile focuses on providing immediately useful
components during each sprint. If your project will benefit from
being able to interact with and test drive the system quickly, Agile
can work well for you.

Cons

� Client expertise. In a client-driven consulting process, Agile
assumes that the client possesses expertise in areas that would be
useful throughout development. If this is not the case, and the client
is not technologically sophisticated, inconsistent or undirected
feedback can hurt the project. Getting feedback from someone
never involved in a web project before—let alone a consulting
engagement—could prove to be a disaster.

� Project delays are highly disruptive. In our experience, many
small and midsize projects are spread over long periods, and team
members focus intermittently on the project in short bursts of time.
In this case, if Agile is used, you can burn through your project
budget quickly without achieving your project goals.

Waterfall Methodology
Pros

� More structure. The Waterfall methodology often provides a more
structured approach to uncovering requirements at the beginning of a
project. If the project has interrelated complex requirements and needs
to be developed as a complete package, Waterfall tends to work best.

Pro Web Project Management

15

� Manages expectations. Using a well-defined Waterfall process
can help manage the expectations of the client. You make it clear
when feedback will be collected and include time to act on that
feedback, make refinements, and respond to your client’s concerns.

Cons

� Changing requirements. Since there is a defined lag in time
between approval of project requirements and the client’s first
review, it’s possible that new requirements have been identified or
priorities have changed. In Waterfall, these are hard to address.

� Planning time. If you use Waterfall, you will spend significantly
more time in project planning at the beginning of a project. This
contrasts with Agile, in which the client and developer uncover
requirements as the team proceeds with the project.

� Less real-time feedback. Typically, there are longer intervals
between client feedback on a project managed using Waterfall than
on a project managed using Agile. Some project managers mitigate
this concern by demonstrating to the client incremental features or
having guided “walk-throughs” of selected features of the
application.

The Document Formats Rule
There are really three document formats:

� Formal, for documents like a scope of work or a requirements
document;

� Informal, for a recommendations document or technology research
summary; and

� E-mail, for everything else.

A formal document should have your logo, a nicely formatted footer at the
bottom of the page, and a cover page with the client’s name, project name,
client contact, document date, and a document reference code.

Use this format for proposals, scopes, and requirement documents (where
you do formal requirements gathering). But do not overuse this format. For
example, if you are preparing a list of recommendations for server and site
improvements on a project you are now supporting but did not build, the
informal format will work fine.

Chapter 2 | The Project Definition and Scope of Work

16

The informal format is great for documents that are too long for e-mail but
do not need the logo, branding, and client information. Still, these should
have a simple footer with a page number and the document title.

Preparing Client-Ready Documents
Whether it is a requirements document, a scope of work, a list of recom-
mendations, or a feature request list, documents sent to the client must be
treated with care. Like it or not, the content of your e-mails and documents
largely shapes the client’s opinion of you. That is why a spelling mistake in an
e-mail is so embarrassing—or should be. (See the “Tips for Writing E-mails”
section in Chapter 8 for more information.)

Still, it can be painless to prepare client-ready documents. Follow these
guidelines:

Send PDFs
Do not send documents in an editable format unless you specifically want
the client to edit a document, which should happen infrequently. As a PDF,
it looks more finished and works on any operating system or device.

Hand-Edit Your Document
The best way to edit a document is by hand. When you feel the document
is complete on the computer, print out a copy, push your mouse and key-
board away, grab a pen, and edit the entire document, start to finish. When
you find errors, mark them on paper—avoid jumping to the computer to fix
them.

You will catch more errors and the prose will read much better after a hand
edit. Just try it.

Double-Check the Attachment
When you send the document to your client, open the file you attached to
the e-mail and briefly look it over. You will often catch overlooked errors
this way; for example, when you finished editing you might have changed the
orientation to landscape, resulting in an incorrect alignment of the page

Pro Web Project Management

17

numbers in the footer. Then there are the Friday afternoon errors, like at-
taching the wrong file.

Configuration vs. Customization
These two words sound similar enough. However, they can imply a huge
difference in your project’s budget, level of effort, and timeline.

We find that when a current or potential client with a limited budget begins
to outline ambitious plans for a project, explaining the difference between
these two options can be useful.

In the simplest form, from a technical perspective, customization requires
changing source code, while configuration does not.

Let’s dig into the differences a little more deeply.

Configuring Software
You modify the software using the software’s standard interface. For exam-
ple, if you were using a web content management system, configuring the
software would be completed using the web interface. Most good web-
based software today is highly configurable, enabling you to shape the beha-
vior of the software.

Customizing Software
You modify the code that powers the software. Customization can increase
the cost and complexity of a project dramatically:

� You need a developer or engineer who understands the software
and programming language well enough to perform the
modifications.

� You have to test the modifications you have made to the
software to evaluate how they will work with other parts of the
software. If your customizations are extensive or if the software is
very complex, testing can be at least as challenging as the
customizations themselves.

� You have to maintain the customization to the software. When
new versions of the software are updated, you will need to carry
your customizations forward. Maintaining customization requires

Chapter 2 | The Project Definition and Scope of Work

18

you to have good documentation, a system to manage your code,
and a developer who has expertise with the software.

Some types of software plan for customization and provide
architecture to support it. For example, the open source web
content management system, Drupal, provides a modular
architecture in which you can write your own custom modules that
interact with the software. When it comes time to upgrade, you
know that all your code customizations are retained in a specific
custom module.

� Customization projects tend to create consultant lock-in, as those
who make custom refinements are the experts on how to maintain
them.

� Finally, if you customize your software, future development and
maintenance will cost more. For example, when we come into a
project where there has been a lot of customization (particularly if
this customization took place over a span of a year or more and
with several developers), we expect that there will be a variety of
problems with the testing, code, or documentation.

Despite the challenges, however, there are compelling reasons to customize
software:

� Customizing software is typically far less expensive than writing new
software. If an open source software product provides you with
75% of the functionality you need, customizing the software is likely
to be significantly less expensive than writing new software from
scratch.

� Why? Let’s say you decide to rewrite an open source solution that
provides 75% of what you need. You only have to do the work to
recreate that 75%, right? Wrong. You will also need to fix all of the
bugs and architectural issues that will naturally be introduced in the
process of rewriting that code. Like it or not, more time is spent
fixing bugs than writing software.

� From a marketing perspective, if you are supporting your products
anyway, “customization” can make a nontechnical client feel good.
People tend to like the idea of customizing—think about
customizing your car, bike, wardrobe, and so forth. You offer your
client the sense that he is special and you are building something
just for him.

Pro Web Project Management

19

Cost Implications
When a client or potential client understands the difference between cus-
tomization and configuration, she appreciates the features that may be re-
quired in the two types of software. She is much more understanding of the
budget involved when the project requires customization.

 Tip Our rule of thumb is to budget four times as much for customizing software than for configur-
ing it.

Tactically, these cost implications can be used to help clients be sure that
the incremental value they receive from a customization matches the cost.
Some clients will ask for expensive customizations, but fail to notice that, of
their requested customizations, two out of three were nice-to-haves, whe-
reas one was worth many, many times its cost.

Wrapping Up
By this stage in your negotiations you should have a good general sense of
what problem the client faces and whether you are a good fit to help ad-
dress it. You should have all the tools necessary to write a great proposal.
The next stage in the process—discovery and requirements—is to detail all
of the specific features and functions of the project. We cover this in Chap-
ter 4.

However, before we dive into discovery and requirements, we will spend
the next chapter looking at a vital project management activity that occurs
at all stages of the project process: meetings.

If project management is three things, it’s about managing your team, your
client, and your boss. It’s in meetings where a lot of that “people manage-
ment” happens. Bad meetings can be boring, unproductive, and inefficient.
They can also put projects at risk if the client loses confidence in your ability
to lead the project. Running a great meeting is vital to project management.

In the next chapter, we tell you about a disastrous meeting one of your au-
thors attended and we give you real tips and tricks you can use to run effi-
cient meetings that don’t bore and do build client confidence. Read on!

C H A P T E R

3

Meetings,
Meetings,
Meetings
Meetings matter. Your participation in meetings is often the most visible as-
pect of your role as a project manager. Your ability to manage meetings and
use them to your advantage will make a tremendous difference in the suc-
cess of the project.

We’ll start with a cautionary tale about how not to conduct a meeting, and
use the takeaway points from that story to discuss issues related to running
a successful meeting. Beyond general advice, we’ll cover a few specific types
of meetings that you are likely to encounter as a project manager, such as a
project kickoff meeting.

We include tips on how to run a great meeting and how to write an agenda.
To wrap up, we talk about how—wait for it—to wrap up a meeting.

Don’t Do This: A Disastrous Kickoff Meet-
ing
Greg is a client manager for a database consulting firm that won a large con-
tract from a government agency to develop a database system that will track
available jobs in the region. Greg has a decade of previous experience as a
“change management specialist” working for a large telephone monopoly.

Chapter 3 | Meegings, Meetings, Meetings

22

Greg is excited about this first opportunity to flex his project management
muscles for his new employer; he was hired specifically for this project just
a few months ago.

Before the kickoff meeting with the client, he met with the technical staff at
his consulting firm, who gave him a crash course in the pricey database
management software that his firm sells and configures. Greg is ready to
go—ready to manage the client and run the project.

On the day of the kickoff meeting, Greg and his two “technical liaisons”—
who will make sure he can field any technical questions that might get
thrown his way—have trouble finding parking and arrive 15 minutes late.
Fortunately, the meeting has been scheduled for 4 hours, so Greg shrugs off
the lost time as trivial.

Greg makes a good showing introducing himself and his developers to the
eight people from the client’s agency who are attending the meeting. He is
surprised that there are so many people; he anticipated only two or three.
Although Greg did not bring an agenda, he has several company brochures,
which he passes out and advises people to share. Fortunately, he has plenty
of business cards, so he gives everyone one of those, leaving a few extra in
the middle of the table for good measure.

There is some initial confusion about who is running the meeting. Greg is
confident and announces that he is happy to lead the meeting. Since his
background is in change management, he begins the meeting with an im-
promptu discussion about how technology can be an important tool for
change.

After about an hour, Greg decides it is time to have the client begin describ-
ing what they want this new database system to do. Greg loves to talk, and
at various points shows off his new database experience by explaining how
databases work and why some of the client’s ideas may not be so great.

Just when Greg thinks the conversation is really getting going, one of the
client’s representatives, Bill—whom Greg has decided he does not particu-
larly like because he asks a lot of pointed follow-up questions—asks Greg to
define the process that will be used to develop the database system.

This sounds suspiciously like a technology question, so Greg asks one of his
developers to answer. After all, technology is not Greg’s specialty. The de-
veloper launches into a lecture on database management systems, schemas,
triggers, stored procedures, normalizing data, and even database security
and management. Greg thinks this is great stuff and takes a few technical

Pro Web Project Management

23

notes in his leather-bound notepad so that he is more prepared to discuss
the process next time.

After 3 hours, Greg notices that some of the clients are slipping out of the
room and others are checking e-mail on their smartphones. Ah well, Greg
thinks, they cannot be expected to understand all the technical details, or
why would his firm have been hired in the first place? Greg decides that the
group needs a break and interrupts one of the client representatives to an-
nounce that they will take a 10-minute recess before wrapping up the last
portion of the meeting.

After the break, only two of the client’s representatives have returned, and
Greg decides to use the time to plan out the next meeting. He feels as if this
meeting has gone very well and would like to plan another 4-hour meeting
for the following week so they can continue making good progress. The
client’s representatives seem hesitant to commit to another meeting, but
Greg reminds them that change is never easy, and there is still a lot to get
done. Greg says that he will discuss with the developers what they want to
cover in the next meeting, and he will probably set up a demo of the data-
base software they use.

About 30 minutes past the scheduled end of the meeting, Greg tells the
client that they are done for the day, gathers up his developers, and heads
out to the car. He cannot wait to talk with the developers on the ride back
to the office about what a great meeting it was.

When Greg gets back to the office, he rushes into his boss’ office to give
her the exciting news about how well the project is going. Greg is quite
shocked to learn that the client has already called his boss and put the
project on hold pending a discussion about how the project is being ma-
naged.

Although the names have been changed, this is a true account. Greg is a real
person, and this meeting really did happen. Greg is a fine fellow, and some-
one you might enjoy having a beer with after work. However, Greg is totally
unqualified at this stage of his career to be a project manager on a project of
this size, complexity, and magnitude.

What did Greg do wrong?

� He arrived late.
� He failed to run the meeting.
� He let the meeting run too long.
� He didn’t provide focus during the meeting.
� He didn’t set a clear agenda or goals for the meeting.

Chapter 3 | Meegings, Meetings, Meetings

24

This chapter introduces the fundamentals of running a successful meeting—
including critical kickoff meetings and everything Greg did wrong—so that
you can be successful and impress your colleagues and clients.

Project Kickoff
The kickoff meeting sets the tone and expectations for the balance of the
project. Whether the participants are internal stakeholders or clients, this
meeting will demonstrate the level at which the other team members are
expected to perform.

For this reason, preparing well for your kickoff meeting is essential. Our
three rules for running a kickoff meeting are as follows:

� Prepare! This means knowing who is coming to the meeting and
what roles the participants have in the meeting. Be sure you have a
solid agenda, and have the client approve it.

� Start on time; end on time. With a new client, this is very hard
as the relationship is very new. You don’t want to leave an unhelpful
first impression and you do want to be respectful of your client.
However, it is even more important to end the meeting on time.
We find it is more effective to table unresolved issues and stay on
track than to let unresolved issues derail the meeting timeline and
agenda.

� Run the meeting. This is very hard for new project managers.
Running a meeting does not mean that you have to rule with an iron
fist, but it does mean that you have to gently keep everyone focused
and moving forward on the agenda.

Now let’s look at some of the logistics and planning that go into preparing
for a kickoff meeting.

What Should Be Covered?
The goal of a kickoff meeting will vary slightly depending on the client and
how many people are participating. In some cases, the meeting is to intro-
duce the project to key stakeholders and gather high-level feedback. In oth-
er cases, it is to gather specific requirements about the project. Read more
about this phase in the discussion of requirements documents in Chapter 4.

Pro Web Project Management

25

One Hour or Five Days?
The length of your kickoff meeting should correspond to the size of the
project. If you have a large, complex development project, you may need 2
to 5 days. If you have a small web site project, you may only need 2 hours.
You should let the agenda drive the length. However, keep in mind that
people have difficulty concentrating for extended periods of time. Most
people can only sit still for about 90 minutes. Therefore, when we create
our agendas, we make sure that we have a break every 90 to 120 minutes.

For example, if we were organizing a daylong kickoff meeting, we would ar-
range meeting times along the following lines:

 09:30 a.m. – 10:45 a.m. Session 1

 10:45 a.m. – 11:00 a.m. Break

 11:00 a.m. – 12:15 p.m. Session 2

 12:15 p.m. – 01:30 p.m. Lunch

 01:30 p.m. – 02:45 p.m. Session 3

 02:45 p.m. – 03:00 p.m. Break

 03:00 p.m. – 04:15 p.m. Session 4

 04:15 p.m. – 04:30 p.m. Wrap-Up

If you start a meeting at 9:00 a.m., client representatives will almost always
arrive late.

 Tip Most people appreciate starting the meeting a little later so they have time to get into the of-
fice and check e-mail.

This type of schedule naturally breaks up the meeting into chunks, so if one
session falls behind, you can shelve the unresolved topics and move into the
next agenda session. The wrap-up session from 4:15 to 4:30 p.m. enables
you to briefly summarize all the outstanding issues and identify the next
steps. Having a wrap-up period helps everyone to understand that the day
was successful and feel closure, even if there are unresolved issues.

Chapter 3 | Meegings, Meetings, Meetings

26

How Big?
The ideal size for a productive kickoff meeting is two to six people. If more
people participate, your level of productivity will drop. If there are more
than ten people, it is likely that the meeting is more about introducing your
team and capturing very high-level stakeholder feedback. This is OK, but
make sure you know your audience. With ten or more people, you will
want to keep the agenda very simple and focus on high-level feedback. Save
the details for a small, more focused meeting.

Traveling for a Big Project?
If you will be traveling a long distance—for example, to another state—for
your kickoff meeting, then hold one or more—pre-kickoff meeting planning
calls or meetings. The goal of these initial meetings is to reduce the pres-
sure during the formal kickoff meeting by ensuring that you identify the
client’s concerns, understand the key issues, and prepare an appropriate
agenda.

For a major project with a client in Chicago (we are based in Los Angeles),
we had a 2-day kickoff meeting scheduled. However, 2 weeks prior to the
meeting, we held a series of three 1-hour calls with the client’s project man-
ager to go over the proposed agenda and identify several key goals. During
this meeting, we discovered that the client was using two software systems
with which we were unfamiliar. This allowed us to research the technical
details about these systems beforehand, and as a result we were prepared
during the meeting. These calls also helped the client’s project manager feel
more comfortable working with us and made sure that she would not be
surprised during the meeting.

While this would have been inconvenient even if we weren’t traveling such a
distance, at least we could have rescheduled the meeting more easily rather
than have wasted a long trip to do so.

If you are traveling more than 2 hours for a meeting that starts before 10
a.m., you should always drive or fly in the night before and stay in a hotel.
There are simply too many things that can go wrong the morning of your
meeting if you are traveling a long distance. Plus, if you have arrived the
night prior, you will be much more relaxed and calm during the meeting.

Pro Web Project Management

27

Preparing for a Meeting
If you do appropriate planning, your meeting will be much more likely to be
successful. In this section, we give you a checklist of things you would typi-
cally do when planning a meeting.

 Tip Seventy-five percent of the effort involved in the meeting should be completed prior to the
meeting so that very little is left to chance.

� Send a meeting agenda and any materials at least 1 day prior to the
meeting (see the next section, “Don’t Waste Time: Write an Agenda”).

� Clearly identify your goals (ideally at least one, and no more than
three) for the meeting.

� On the evening before or the morning of the meeting, send a brief
reminder, including the agenda and time, date, and location.

� Know who will be attending the meeting, include them on the agen-
da, and know at least a little (title, responsibilities) about each per-
son. Ideally, try to guess what will be important to the other
people in the meeting.

� If you are presenting one or more agenda items, know what point
you will make with each item, and the result you want after present-
ing it.

� Arrive 5 or 10 minutes early to the meeting location to set up, in-
cluding placing the agendas, powering up your laptop, and otherwise
preparing.

� Bring copies of the agendas and all handouts. If five people are slated
to attend the meeting, bring six copies of everything. That way, you
won’t be caught short if an extra person shows up.

� If you are demoing anything on your computer, have it loaded in ad-
vance. For example, if you are showing web sites, the various web
pages should be loaded in different tabs, or your PowerPoint should
already be running before the meeting starts.

� If your demo requires an Internet connection, have a backup pres-
entation—it can be a simple set of screenshots—prepared in case of
Internet problems, because you will have Internet problems.

Chapter 3 | Meegings, Meetings, Meetings

28

� Beyond Internet connectivity, confirm in advance that the facility has
everything you will need for your meeting. Don’t assume anything.

Don’t Waste Time: Write an Agenda
Meetings for small projects need to be efficient because your most scarce
commodity is time to work on the project. In a larger project, however, you
are likely to have more meetings involving more people simply because you
have more stakeholders, a larger scope, and larger technical decisions to
make. But meetings for larger projects—while more frequent and perhaps
longer—need to be just as efficient, focused, and thoroughly planned as
smaller project meetings. With a larger meeting, your stakes are higher.

Too many meetings without clear resolution are a wasted effort because
discussions end up being circular or branching off into unintended areas. In
either case, the discussion never addresses the meeting goals, and the par-
ticipants’ time is wasted.

Why bother running a good meeting? Because the old adage is true: time is
money.

 Tip When you are considering calling for a meeting, remember that in software, time is bugs:
time spent in meetings is time not spent fixing bugs.

Try this little exercise to see just how expensive meetings are.

� At the next meeting you attend, make a mental note of how many
people are involved.

� If you work at a consulting firm, calculate the hourly rate of each
person and total the cost.

� If you work at a traditional software development firm, assign two
bugs per programmer, and one testing document and three e-mails
per project manager or architect at the meeting.

How much did your meeting cost? Was it worth what was achieved? A
2-hour meeting with three .NET developers, a database developer, a project
manager, and a database architect just cost the firm eight bug fixes, two
testing documents, and six e-mails to clients.

If the team bills at $200/hour, that meeting cost $2,400. Ouch.

Pro Web Project Management

29

Meetings are expensive, and most people hate them. Most people hate
meetings because most meetings are not productive and are run poorly. But
meetings do not need to be hated. It is not hard to run a great meeting.
However, it does require planning, an agenda, and clear goals.

Why Do I Need an Agenda?
The whole point of a meeting is simple: to make a decision that involves
more than one person. This decision might be a set of features, a schedule,
an upgrade plan, or a technical outline to solve a problem. Whatever you
might need from the meeting, it is still a decision.

Where does the agenda come in?

In order for a meeting to come to a decision, you need to have a clear goal.
Why?

� A goal makes it clear to all involved what needs to be determined
by the end of the meeting.

� A goal enables all participants to evaluate the success of the meet-
ing.

� Most importantly, the goal leads to a decision.

So what does the agenda do?

The agenda makes the goal clear (by stating it succinctly in the agenda) and
it sets a framework for writing the discussion topics so that they help attain
the ultimate goal of the meeting: the decision.

The Agenda Clothing Rule
There is no set format for an agenda and no hard-and-fast template that you
can apply to every kind of meeting. An agenda can be a simple three-item
list sent to the team in an e-mail, or a full and formal two-page agenda as a
PDF attachment in an e-mail sent to a client.

 Tip The trick to selecting an agenda format is the agenda clothing rule: the format of the agenda
should match the attire of the meeting attendees.

Chapter 3 | Meegings, Meetings, Meetings

30

If you are meeting with clients who are wearing pressed pants and ties, you
need a nicely formatted, formal agenda. If you are meeting with a develop-
ment team wearing flip-flops and wrinkled T-shirts with trite, trendy state-
ments, a simple e-mailed agenda will probably do just fine.

The short agenda—for the informal meeting—is usually written as part of
a meeting reminder e-mail and contains a one-line goal for the meeting and
a short list of two to five discussion items. It is short, sweet, targeted, and
informal.

The long agenda—for the more formal meeting—is usually a full-page
PDF that contains a few parts:

� Document title;
� Meeting location;
� Meeting date and time;
� Meeting goal(s);
� Topics/discussion items; and
� List of participants with titles and affiliations.

If the more formal meeting is meant to be more than an hour, you probably
want to include times for each discussion topic. This helps you end circular
discussions for items that are not making progress toward a decision in or-
der to “respect everyone’s time and move on to the next item.”

If you had listed 30 minutes for the current topic and time is clearly up, it
becomes easier to say, “I want to respect everyone’s time, so I think we re-
ally need to move to the next topic,” without offending anyone.

A long agenda should probably end with a “next steps” topic to allow the
person running the meeting to wrap up and outline what happens now.

Topics, Topics, Topics
The core of any agenda is the discussion topics you outline. These should be
easy to write if you have identified a goal for the meeting.

Here are a few points to keep in mind:

� Items should be very short—usually less than seven words (the
thought process that goes into watering down a complex issue to
just a few words tends to make clear the core issue that should be
discussed);

Pro Web Project Management

31

� Be as specific as possible in each topic (the more vague the topic,
the more vague and unhelpful the discussion will be); and

� Ensure that each topic helps achieve whatever goal you have out-
lined for the meeting.

One trick to determining what topics are achievable in the meeting is to
take a moment and think about all of the immediate decisions you need to
make for the project to continue. Think through the major work tasks you
plan to assign to various members of your team, the next major project
phase (and what you need to get there), and what work product you might
be expected to create soon.

Once the topics are in place, it should be clear who needs to attend to the
meeting. If possible, try to pick the minimum number of people who might
need to attend, as duplicate decision coverage from key stakeholders tends
to be inefficient.

Let the necessity of the project guide you to good meeting topics.

Putting so much thought into an agenda might seem like overkill. But re-
member, a meeting is a lot like what you eat: what you get out of a
meeting can only be as good as what you put in.

Agenda Throwdown
Let’s look at what makes agendas good and bad. Figure 3-1 presents an ex-
ample of a well-thought-out agenda, while Figure 3-2 presents an example of
what to avoid.

Chapter 3 | Meegings, Meetings, Meetings

32

The good:

Figure 3-1. An example of a well-organized agenda for the beta kickoff train-
ing for the editorial team of NeonTommy.com

Pro Web Project Management

33

The bad:

Figure 3-2. An unprofessional and unclear agenda

Why is the “good” agenda better?

� The bad agenda does not list a start and end time, so the expecta-
tion of meeting length is not managed. It will be harder to
force the group to conclude the meeting and arrive at decisions in
light of time pressure.

� The bad agenda does not clearly state the goal of the meeting. If
you have not identified the meeting goal before the meeting starts,
you will not have a strong premise to help you guide the discussion
to resolving what you need resolved to move forward.

� The bad agenda is unprofessional, lacking an attendee list, a
project or client identifier, and a location.

� Several agenda items on the bad agenda are not actionable, like
“Users” and “3 reports.” What is the goal of these items in the
meeting? It cannot be to just talk about reports and users. You like-
ly need to verify report formats and identify a user list or confirm
user roles—but this is not clear.

� The bad agenda items lack specificity, which would help steer the
discussion to the resolution you need to move forward.

� The bad agenda items lack parallel structure. Whenever possible,
agenda items should be formatted the same way by, for example,
starting each item with action verbs like identify, review, and verify.

� There is no final agenda item in the bad agenda to summarize next
steps. A final “next steps” agenda item is helpful to conclude the

Chapter 3 | Meegings, Meetings, Meetings

34

meeting with a brief summary of where things will move following
the meeting.

 Tip A great agenda is specific, has clear goals, and includes actionable items.

You will notice a common theme among all of the criticisms here: maintain-
ing momentum. Momentum in all phases of the project is crucial to keeping
your efforts efficient and completing a project on schedule—two vital pre-
requisites to project success.

Running a Meeting
“If you don’t know where you are going, any road will get you there,” author
Lewis Carroll famously wrote in Alice’s Adventures in Wonderland. The same is
true of running a project.
Most people who do not have experience running meetings tend to make a
similar set of mistakes, which leads to unproductive meetings:

� They lose control of the meeting;
� They let the meeting run on too long; and
� They do not focus the discussion around the agenda.

The participants in your meeting want someone to assert control and run
the meeting well. The participants want to be helpful and want to feel va-
lued. If you run the meeting well and provide participants with a clear
framework on how participants can contribute, the meeting will be success-
ful, and the participants will thank you (sometimes, quite effusively) for run-
ning the meeting.

Take Charge
The key to running a successful meeting is to take charge. Taking charge of the
meeting should happen early, even before the meeting begins.
And remember from the previous section, “Don’t Waste Time: Write an
Agenda,” two important tips:

� You should know what outcome you want from the meeting.
� Take the time to prepare an agenda and distribute it to the partici-

pants several days before the meeting.

Pro Web Project Management

35

 Tip Typically, participants will filter into the room, video, or conference call. To assert your control
over the meeting, it is important that you make eye contact and welcome each participant.

Sometimes, meeting leaders will allow meetings to start late if key people
have not yet arrived. Unless there is a specific reason to do so, avoid this
approach. If you regularly start your meetings late, people will arrive increa-
singly late to your meetings. However, if all participants know that your
meetings start on time, participants will arrive on time because they know
that they will be embarrassed by walking in late or entering a telephone
conference late.

Starting the Meeting
Today’s meetings take place in a variety of formats: videoconference, webi-
nar, telephone conference, in-person meetings, or a combination of formats.
Regardless of the format, you can demonstrate your leadership by opening
the meeting with a phrase like, “Let’s get started. First of all, thank you all
for taking time out of your busy schedules to participate in today’s meet-
ing.” This simple statement establishes your control of the meeting but also
recognizes the value of the participants’ time.

As we have noted, most people do not like meetings. You can quickly win
these skeptics over by recognizing that this meeting will only take as long as
absolutely necessary. It is easy to do this with a statement like, “We have a
full agenda, but I want to ensure that we respect your time today, so I will
keep us moving along on the agenda to ensure that we conclude our meet-
ing on time, or even a little early today.”

Introduce the Agenda
Finally, so that people know where the meeting is headed, start by briefly
reviewing the agenda. This can be as simple as stating the meeting goals and
briefly reading through the three to five items on the agenda. When you
have finished summarizing the agenda, you can ask simply, “Does this agenda
sound appropriate, or does anyone recommend any modifications?” If there
is an obvious senior or key leader in the room, this statement can be ad-
dressed directly to her.

Chapter 3 | Meegings, Meetings, Meetings

36

Ninety-nine percent of the time, if you distributed the agenda several days
prior to the meeting, no one will try to take over your meeting or change
the agenda because they will know that this agenda has been planned for
some time. In the unusual case where someone attempts to insert into the
agenda an entirely irrelevant subject, you can suggest that the new item will
be added to the agenda as a discussion point and then make a point of writ-
ing it down on your own agenda to make that person feel as if her recom-
mendation has been heard. If it turns out that you do not have time to cov-
er this new item during the meeting, recognize the item at the conclusion of
the meeting by suggesting that you will add it as an agenda item to the next
meeting.

If you have more than five items on your agenda, you should break the
items into a series of shorter meetings, even if the meetings have to be con-
ducted one after the other. The problem with having too many items on an
agenda is that people tend to get bogged down on the early items, leaving
you with little time to discuss the later items.

Guiding the Meeting
Once the meeting starts, you have three responsibilities:

� Ensure a smooth and consistent flow to the meeting. This can in-
clude introducing the background for an item on the agenda, and
then asking the responsible person (if it is not you) to discuss the
topic. At some point when the discussion around that item is com-
plete, you can introduce the next item on the agenda.

� Track the action items. Each time there is a specific action (no mat-
ter how small) that is assigned, volunteered, or implied, write it
down as a brief sentence, with the name of the person who will
need to get it done.

� End the meeting on time.

As you complete each item on your agenda, wrap up that item by stating
something like, “Great. Is there any further discussion on this item before
we move onto the next item on our agenda?” This will emphasize to the
participants that even though there has been much discussion from others,
you remain in control and will continue to set the pace of the meeting.
Knowing that you are still in control, even after a heated debate, puts many
participants at ease.

Pro Web Project Management

37

The primary challenge to accomplishing your responsibilities in running the
meeting, of course, is that participants get sidetracked and begin discussing
an issue that is not related to the agenda. This is undoubtedly the hardest
part of running a meeting and requires some finesse.

Here are several quick techniques to help get the meeting back on track:

� When a meeting participant is talking endlessly about a topic, you
can politely interrupt when they take a breath, acknowledge that
what they are discussing is important, and then state you will add it
to the agenda for continued discussion at a later point. Then ask if
there are any other comments about the active agenda item. This is
admittedly hard to do, especially when the person you are inter-
rupting is important. Sometimes, in the interest of politics, there
simply is nothing to be done. In this case, you can try asking the par-
ticipant a question that attempts to bring the topic back to the
meeting at hand.

� When a meeting gets off track, you can quickly restore order by
stating, “This is an important issue, but we won’t be able to respect
your time and resolve this issue during our meeting today. Let’s put
this item on the agenda for a future meeting or follow-up call, and
get back to today’s agenda.” This technique shows that you are
pushing the meeting back on track to respect the participants but, at
the same time, identifying a time when the issue can be addressed.
Participants in the meeting will love you for doing this.

� When you find that you have reached an impasse on an agenda
item, and further discussion will not be productive, you can con-
clude discussion with a phrase like, “It appears that we won’t be
able to resolve this issue during our meeting today. I’ve recorded
where we are on this issue so we can come back to it at some fu-
ture time. Let’s proceed with the next item on the agenda.”

Winding Down the Meeting
If your meeting is still under way and there are only 15 minutes remaining in
the planned meeting time, let the participants know that the meeting needs
to begin winding down: “We only have 15 minutes left for our meeting to-
day. I want to respect your time and ensure that our meeting ends on time.
Let’s put the current discussion on our next meeting agenda, and move on
to our final agenda item.”

Chapter 3 | Meegings, Meetings, Meetings

38

With only 7 minutes left, you need to wrap up the meeting. Typically, the
last item on your agenda should be something like, “Review Action Items.”
You can signal the wrap-up of the meeting with a simple phrase like, “I want
to respect your time and end our meeting on schedule, so we need to wrap
up. Let me just summarize our action items.”

At this point, you should summarize each of the action items you recorded
during the meeting, and look at the person to whom each task is assigned.
When you are done with your list, ask if there are any other action items
you missed.

Finally, with a few minutes remaining, thank the participants for their time,
and adjourn the meeting; “I want to thank each of you again for taking time
out of what I know must be a very busy day to participate in our meeting. I
will be following up via e-mail with the action items we identified during our
meeting.”

Meeting Wrap-Up
The key to a successful meeting is direction, momentum, and decisions. Re-
ally, these are all the same thing: ensure that the meeting moves the project
from point A to B, no matter how small or large that might be. The key is
progress toward completing your project. The goal of the meeting
wrap-up is then the same: take the progress you made during the meeting
and move forward.

The simplest way to move forward from a meeting is to identify the next
steps, decisions, and deliverables needed from the project team in the form
of action items. A deliverable is a document you provide to the client. An ac-
tion item is simple: it’s something you need someone to do. This is a specif-
ic, individual, attainable task that needs to be completed for the project
to move forward.

This task could be work product (for example, identifying primary navigation
items) or a decision (for example, deciding whether to use a fixed or fluid-
width design).

An e-mail is a great format for a meeting wrap-up. Here are some tips:

� Brevity is important. Keep the e-mail and individual action items as
short as possible.

� Thank everyone for taking the time to participate in the meeting.
� Identify and list each action item identified in the meeting.

Pro Web Project Management

39

� Label each item with initials to clearly name the person who is
responsible for completing that item. (Items assigned to a group or
to no one will never be completed because no one is responsible
for them.)

� Clearly identify the next steps from the meeting (commonly an
updated document following feedback, some other kind of delivera-
ble, or the decision to proceed with the next phase of the project).

Your Monday morning checklist (see Chapter 6) is a great time to review
any meeting follow-up e-mails you sent out in the previous week and “ping”
people on tasks assigned to them to prod some work product out of your
client. You can forward the meeting follow-up e-mail from your Sent folder
with a short note that says something like this:

Hi {client first name},

I just wanted to check in on the {action items}.

If there is anything I can do to help, please don’t hesi-
tate to let me know.

Thanks,
{call sign}

A quick e-mail like this is a polite way to guilt the client into action on the
task they promised to complete. A little guilt can go a long way. Some
people may regard the forwarding of an unanswered e-mail to be aggressive.
However, if you wait a reasonable amount of a time for a reply (3 business
days) and do not receive one, then the recipient may feel too guilty about
not replying to feel overly managed.

 Tip If you use a project management tool (see the Appendix for a list of tools), action items are
perfectly suited to become tasks that you can assign to project and client team members.

What About Minutes?
Frequently, the act of taking or sending meeting minutes is rather pointless.
In most cases, the only notes that ought to be taken during a meeting are
action items, because action items represent decisions and progress toward
project completion that are discussed during the meeting.

Chapter 3 | Meegings, Meetings, Meetings

40

Meetings are not about remembering discussion (that is what minutes are
great for), they are about deciding action. This is why action items are useful
because they are specific, individual, attainable tasks that move the project
toward completion.

Wrap-Up E-mail Example
Here is a sample e-mail that summarizes a meeting where the client re-
viewed the first draft of wireframes we prepared.

Hi Team,

Thanks for taking the time today to chat about the
draft wireframes for the new {project name} web
site. I collected great feedback during our call.

Here are the action items I collected during our
meeting:

1. Confirm primary navigation items (Wendy)

2. Provide three example images from existing site (Wendy)

3. Research options for using Flash in the navigation (Justin)

4. Determine fixed vs. fluid width (Gabe)

5. Prepare a set of refined wireframes (Justin)

6. Approve updated wireframes (Wendy)

I’ll take all of the comments I collected today and
prepare a new set of wireframes. I expect to have to
the updated wireframes to you by the end of next
week.

If there is anything else you need or if you have any
questions, kindly let me know.

Thanks,
{call sign}

Pro Web Project Management

41

Wrapping Up
Hopefully by this point you have a good sense of how disastrous to the
health of the project Greg’s approach to meetings is. It is no surprise his
project was put on hold by the client. He didn’t plan ahead, didn’t take con-
trol of the meeting, and didn’t build confidence with his client.

Preparing agendas and paying attention to the clock sound pretty dry,
but a well-executed, well-planned meeting can keep the project running
smoothly and everyone involved happy.

Meetings are especially vital during the first real phase of the project
when you conduct discovery. It is during discovery that you clearly de-
fine exactly what the project will entail. What you define in discovery
defines what you do for the rest of the project lifecycle. In Chapter 4,
we go into detail on how to manage this crucial phase.

C H A P T E R

4

Discovery and
Requirements
By now you should have a signed scope of work with the client and be
ready to actually start the project. Where to begin? That’s easy: discovery.
Discovery is a vital first step in your project. In discovery, you turn the va-
gue feature outlines in the proposal into detailed, actionable lists of features
that will be built.

Discovery is vital for a variety of reasons, so we start with a clear explana-
tion of why we think it’s so important. We then look at the two main kinds
of documents that get created in this phase: sitemaps and requirements
documents. We show you how to gather requirements, how to format the
document, and some guiding principles on what makes a good requirement.

To wrap up, we also cover the importance of getting the client to approve
the requirements for the project and dealing with out-of-scope requests (a
challenge on almost any project).

Why Discovery?
Discovery is the process by which you identify exactly what you and your
team are going to build.

The goal of the discovery phase is to help manage the client’s expectations
by making it very clear what exact features the project will contain. The first
document in a project is usually the scope of work (see Chapter 2). The
scope of work is nebulous by design; you do not have time at this phase of
the project to invest in identifying all of the requirements of the system, and

Chapter 4 | Discovery and Requirements

44

it is not necessary to have this precise list to create a proposed project
budget.

Consider the difference between the scope of work and discovery as
“what” vs. “how.” The scope of work might include, “Develop a web inter-
face for importing contact records in an external file.” That’s the “what.”
The discovery process gets into details—the “how.” How the file will be
formatted, with what frequency will the file be imported, and what should
happen when errors are encountered.

For the project to be successful, it must be crystal clear to the project man-
ager—and thus the project team—and the client exactly what the system
will do. For example, in a scope of work, the sentence, “The web site will
contain a blog,” can mean one thing to a client and an entirely different thing
to a project manager. The client might envision a blog that allows users to
create podcast posts that integrate with iTunes automatically and include a
one-click method to embed uploaded video, while the project manager
might simply picture a blog limited to user posts with a title, body, and date
of publication, and nothing else. The whole point of discovery is to ask ques-
tions like, “What do you need the blog to do?”

Identifying the requirements for a project will help reveal any disconnect be-
tween the client’s expectations and yours. It is in this phase when those
disparities will appear and when they can be addressed at the low-
est cost. (For handling out-of-scope requirements, see “Dealing with Out-
of-Scope Requirements” later in this chapter.)

Discovery is a clear critical path item. You absolutely should not pro-
ceed with design or development until you have a discovery document fina-
lized and approved by the client.

Depending on the project type, there are two kinds of documents you can
create to complete project discovery. For a web site redesign project, a
sitemap is sufficient. A web site redesign tends to focus less on custom
application development and the features that come with it and more on
capturing the configuration of the new version of a public web site. A public
web site has a set number of ways that it tends to behave, while an applica-
tion is an entirely customized experience.

For custom application development, then, a more robust process is in or-
der: the requirements document. Read on for more about sitemaps and re-
quirements documents.

Pro Web Project Management

45

The Sitemap Document
A sitemap document is typically a large checklist of questions separated into
logical sections that cover all of the decision points in creating a web site.

The components that make up a modern, standards-driven web site are
common, so you can keep a sitemap template document for use when start-
ing a new project. Some questions in our sitemap template are mundane,
some are obvious, and some are deliberately qualitative.

Typically, our sitemap document has the following sections:

� Web site purpose: Explicitly covers simple details like the official
name of the web site, the URL, and primary goals with redesigning
the web site

� Features: Identifies the precise components of the web site (like e-
mail newsletter integration and social icons)

� Design brief: Captures nebulous client thoughts on how the design
should look

� Information architecture: Identifies page-level features such as
navigation, home page components, and footer

� Technical brief: Identifies the technology stack that will be used to
power the site

Example Questions
Here are some questions from our sitemap template:

� What is the official name of the web site?
� What are the business and marketing objectives of the project (for

example, to increase membership, promote content, increase sales)?
� Who are the primary audiences? Identify a few unique

characteristics about each audience.
� How many non-HTML document files of what type will be included

on the site (.pdf, .doc, .xls, etc.)?
� Will the navigation system include breadcrumbs?
� Will there be a signup feature?
� Please select three to five designs that you like and describe what

you like about them.

Chapter 4 | Discovery and Requirements

46

� Please identify by name and URL the web sites of three
competitors, and identify what you like or dislike about these web
sites.

� Use at least three adjectives to describe the overall feeling or
perception the web site should convey. (Examples: conservative,
green, progressive, friendly, formal, casual, professional, energetic,
etc.)

� What colors do you prefer? What colors should not be used?
� What are the additional branding or content elements that should

appear on the home page?
� What are the top-level navigation categories that will appear on

every page?
� Should navigation appear horizontally across the top or vertically

down the left side?
� What content management system will be used?
� How many web site authors will be updating the web site? (Identify

by name.)
� What are the various administrative functions, and what level of

authority will each function need? What will be the process for
developing content, submitting content, and approving content
before it is published?

� What are the various types of content (news, events, newsletters,
reports, etc.) on the web site?

� How should your content be organized? (Geography, topic, etc.)
� Who is your domain registrar, and who has the

username/password?
� Will the web site include video or audio? How should this content

be delivered?
� Are any additional security precautions warranted?

Sitemap Workflow
Prior to the initial project kickoff meeting, you should be able to make a
first pass at the sitemap workflow document and fill in everything that you
know already about the client or can identify from the existing site. What
you fill in on this first draft will allow you to frame the discussion of the
questions raised in this document. A first pass also allows you to identify any

Pro Web Project Management

47

potential complications that might arise from the client’s goals of the web
site and give you time to mitigate them in your draft answers.

A completed draft pass on this document can serve as the main task of your
project kickoff meeting. You can share this draft prior to the meeting and
spend the time in the meeting reviewing each proposed answer and ad-
dressing questions that were not possible to answer on your first pass. The
discussion that ensues in obtaining these answers will be illustrative and
should foster any major missing features or goals from the client. Addition-
ally, the goal is clear in such a meeting: obtain answers to every question in
the document.

Following the meeting review of this document, you should be able to pro-
duce a near-final version for circulation and review by the team. Typically,
you would produce one or two additional minor revisions of the document
following the major review meeting and the major second version. Most im-
portantly, be clear when you first e-mail the document for review that the
project cannot proceed until this version is approved by the client.

About Requirements
For a web application development project, a requirements document is a
more suitable discovery document than a site map for cataloging features.

A requirement is a specific and concise summary of a feature that
the project must contain. Here are some examples from real requirements
documents we have prepared:

� System will track campaign name and up to a 12-campaign touch-
step sequence Next action date will be calculated by adding in the
days after value for the next unapplied step in the campaign
sequence to the current date

� System will allow search results to be exported to CSV format,
which will include the same fields as the search

� System will include a screen to upload specifically formatted lists of
prospects into the system

� System will run on server-class hardware
� System interface will run inside of a web browser (Microsoft

Internet Explorer version 7 or above or Mozilla Firefox version 2 or
above)

Chapter 4 | Discovery and Requirements

48

The requirements document turns into a great checklist that the project
manager can use to easily verify task completion from the developers on the
project. The individual requirements on a printed copy of the requirements
document can be ticked off as progress is made throughout the entire
project to track progress and completion.

 Tip Be careful: you don’t need to document everything. A requirement that has no alternative or
is redundant to another requirement probably doesn’t need much clarifying.

The requirements document also serves as a reference during discussions in
later phases of the project to protect against scope creep. If the re-
quirements are clearly laid out at the start of the project, then the project
manager can more easily determine (and explain to the client) if new re-
quests fall inside or outside of the scope of the project.

Here are some common requirements that tend to appear in projects:

� User accounts and roles (How many and how granular?)
� System or audit logging
� Settings screens for drop-down menus and lookup tables
� Server hardware, security, and backup requirements (for clients that

will provide their own hardware for the application)
� Record search and filter controls
� Data import utility
� E-mail integration (Will the system send e-mail? Will the system

export e-mail lists to an external newsletter system?)
� Specifics on the technology stack (What database software is

needed? Reporting software? Backups?)
� Bulk editing
� Duplicate data or record management

How to Gather Requirements for Fun and
Profit
The best ways to gather the requirements of a project are to—wait for it—
hold a requirements gathering meeting. Prepare an agenda for the meeting

Pro Web Project Management

49

in which the items to be addressed are the major sections of the project as
identified in the scope of work.

In general, the goal of the project kickoff meeting should be to

� Introduce your process;
� Identify or confirm the key project goals, requirements, and risks;

and
� Identify future meetings that will need to be conducted on specific

topics.

In most cases, we find it useful to prepare a draft discovery and require-
ments questionnaire for the kickoff meeting. This document organizes ques-
tions about the project in logical categories that will correspond to the
agenda. For example, if we were discussing the visual design, we would ask ques-
tions such as

� What do you like about your current web site?
� What are three web sites that represent the visual look you seek?
� What logo and branding identity requirements does your organization

have?
� For what size interface should the design be optimized?

Here are a few additional questions that are common to ask in require-
ments gathering meetings:

� How many users are there?
� How many user roles?
� What user actions should be audited?
� What are the primary web site navigation items?

Having all these questions in one place makes us feel more comfortable
about the meeting because there is less to remember. It also makes it
easy for us to record notes during the meeting, and it helps the client
stay on track.

We like to distribute the draft document prior to the meeting so that
everyone knows what we will cover. However, different project manag-
ers have different styles; some prefer to keep this document as a per-
sonal reference.

The key to the requirements document meeting is to touch upon every
part of the project scope and ask questions until you feel confident that
you understand what the client expects each piece to do.

Chapter 4 | Discovery and Requirements

50

 Tip Think of it this way: you are building the specific module or feature in question, and you are
going through the process of putting the feature set together with whatever tools will be used. In
doing this, you will occasionally come across implementation gaps where it is not clear how a piece
should work. This is a great question to then immediately raise with the client.

You will have to turn the notes you take during this meeting into the re-
quirements document.

TAKING NOTES

Justin was never taught how to take notes in high school. Consequently, when he
started college, he used the same note-taking strategy that worked well in high
school: write everything down. Although this was manageable in high school, where
teachers meander from topic to topic, it was downright painful in college. There is
simply too much information to write down in the compressed class times, because
they usually met only twice per week.

One day, as he sat with a cramped hand in class struggling to keep up, a thought
occurred to him: why not only write down what I will need later (read: the final
exam)? It is a simple but powerful thought: do not take notes for the sake of notes;
instead, have a clear goal in mind about why you are taking notes, and let that goal
guide your approach.

The same tip applies for a meeting: have a clear goal in mind for what you need
to do after the meeting, and take notes accordingly. If this is a requirements
gathering meeting, then your post-meeting goal is clear: write the requirements
document.

This style of note taking has another benefit: you will likely think of other questions
that have not been answered. This is the perfect time to ask those questions and get
clarification.

When it comes time to turn your notes into the requirements document, you are
ahead of the game because you already have the core requirements right there, in
your notes.

Pro Web Project Management

51

 Tip While in the meeting, try to imagine that you are writing the requirements document at that
very moment. Do you need notes on every detail of what was discussed? No, you simply need to
jot down requirements as you hear them, in the same format you will use when preparing the ac-
tual document.

The Requirements Document Structure
At this point, you have—hopefully—had a good requirements gathering
meeting and have a sense of what the project needs to do. If you took good
notes in earlier meetings, then writing the actual requirements document
should be easy.

Here are a few general tips for the requirements document format:

� Make this a formal client document. Include a title page with your
logo, author name, name of the project, client name, preparation
date, version number, and filename.

� Split the document into major sections covering the major
modules of the project.

� Use a clear file naming convention, like “20110924-client-code-
requirements-document-v1” (the “v” stands for version number and
should be incremented each time the document is sent to the
client).

� Assign each requirement a unique identifier. The easiest way to
do this is to use your text editor’s built-in number list tool.

� Modify the number format of your requirements to be R#.#,
where the first number is automatically the section number and the
second number is the item number. Examples: R2.13, 8.3 and 11.12.

� Start the requirements by copying a previous document. You will
end up discarding most of the old document, but you can preserve
the document fidelity, layout, style, and numbering format (which
are a pain to set up the first time around in Microsoft Word).

Requirements should be concise and specific. This way, the require-
ments document protects both you and the client: the document manages
the client’s expectations, reduces the chance of misunderstandings, and pro-
tects you throughout the project against scope creep. Figure 4-1 presents
an excerpt from a requirements document from one of our projects.

Chapter 4 | Discovery and Requirements

52

Figure 4-1. An excerpt from a requirements document for NeonTommy.com

Pro Web Project Management

53

Requirements-Writing Principles
We’ve identified five requirements-writing principles and created examples
that demonstrate those principles. In this section, we’ll walk through these
principles, and conclude with some additional tips for completing the re-
quirements document.

Principle #1: Protect the Scope of the Project
Example requirement: System will track up to 25 user profile fields, includ-
ing first name, middle name, last name, e-mail address, phone number, title,
and short note.

This example demonstrates two important concepts:

� Be as specific as possible where imagination can run free.
The client might imagine tracking 150 fields for a user profile,
thinking that the system is a customer relationship management
tool, where you might imagine a few simple fields.

� Protect the scope of the project. You might not know all of the
profile fields the system will track at the time of writing of this
document, and that is fine. Include the fields you have identified, and
set an upper boundary that limits how far this feature can be taken.

Principle #2: Mention Every Settings Screen
Example requirement: System will include a screen to add and modify to the
standard list of prospect sources.

If a drop-down menu, lookup table, or other value used in the system will
be managed in a settings screen accessible to the user, mention it. Make it
clear what kinds of settings the user will be able to edit and what kinds are
built into the system.

Principle #3: Mention the Audit Logging
Example requirement: System will include a system log to track major sys-
tem events (such as file imports and duplicate merges).

If the system includes any kind of audit logging (that is, logging of events that
happen in the system), specify it in the requirements document.

Chapter 4 | Discovery and Requirements

54

Principle #4: Be Clear What the Search Will and
Will Not Do
Example requirement: System will enable users to enter multiple ZIP codes
for a filter.

In this example, we specify that the ZIP code field will allow a user to enter
in multiple ZIP codes to perform an OR search on multiple locations.

Search is a big, hard, complex problem. If your application will include a
search tool, be very specific on how the search will work, what kinds of ad-
vanced search options are possible, and exactly how queries will work.

When you say search to the client, you might think of a simple screen with
two filter fields, but the client might want something like the advanced
query screen in their e-mail client. The client will have his own conception
of what search is. Make it clear.

Principle #5: Specify the Compatible Browsers
Example: System interface will run inside of a web browser (Microsoft In-
ternet Explorer version 7 or above or Mozilla Firefox version 2 or above).

There are three major operating systems (Windows, Linux, and Mac OS X)
and more than six major browsers with various levels of compatibility
across each platform. Although it is likely that your project will work well in
most browsers, it is important to specify up front what platforms will have
your focus. This will also help reveal at the start of the project if the client’s
desktop technology is not what you are assuming.

Here are some additional tips for writing the requirements document:

� Take a few moments to visualize the application in your head,
and specifically the screens that you can imagine the application will
have. Is there anything you are missing? Imagine you are working on
those screens. Is there anything missing you might need?

� Ambiguity will haunt you later. Throughout the process of
writing the requirements document, there will inevitably be
decisions that have yet to be made and open issues to resolve. You
will be tempted to leave these unanswered. Don’t. When you leave
something unspecified, it will rear its ugly head at the least
opportune moment.

Pro Web Project Management

55

� If you have a lengthy piece of information—like a data import
schema—add this as an appendix to the document and reference
the appendix in the appropriate requirement.

� It is likely that you will go through several iterations of the
requirements document during this process of preparation and
client review. For ease of review, consider underlining the
requirements that you add or change on the version 2 or
later copies of the document. This will make it very clear to the
client exactly what changed and exactly what she needs to review.

� Do not fret! Once you have written several of these documents,
you will already know what 25%-30% of the requirements need to
be without the need for notes. They will get easier to write over
time.

The 80/20 Rule
In 1906, an economist named Vilfredo Pareto noticed that 80% of the land
in his native Italy was owned by 20% of the population. When he looked at
land ownership in other countries, he found the same ratio. In the United
States, 20% of the population uses about 80% of the health care resources.
Microsoft noted that by fixing 20% of the bugs in Windows they could fix
80% of the crashes.

What all of these figures have in common is that these ratios break at the
80/20 divide. Generally speaking, 80% of your issue is caused by 20% of your
population—be that elite land owners, bugs, or sick people. This 80/20 rule
appears in other disciplines, like computer science and electrical engineer-
ing, where you often solve most (80%) of your performance problems by
looking at the least optimum part (20%).

The principle to apply to project management relates specifically to re-
quirements gathering. No matter how feature-rich, no customized or out-
of-the-box solution will ever serve 100% of your client’s requirements.
Some requirements will contradict others on the way to 100% coverage;
some will be more time-consuming than entire modules of your project.
Abraham Lincoln famously said that you cannot please all the people all the
time. This is true in project management, too. You cannot meet all the
requirements all the time.

The lesson from the 80/20 rule in project management, then, is to focus on
meeting 80% of the client’s requirements and letting the client understand

Chapter 4 | Discovery and Requirements

56

the cost and effort implication of the other 20%. That way, the client can
decide if the effort required for implementing this additional 20% is worth
the budget. Trying to build or find a solution to meet near 100% of client
requirements will make the project dramatically more expensive (either for
the client if properly budgeted or for you if not) and very long. By focusing
on the major requirements and features that best serve the overall goals of
the project, you reduce the cost to the client and reduce the risk to the
project itself.

But more importantly, it is that 80% or so of requirements that the client
probably really needs. There are always things a client might request that
are unnecessary or really unhelpful to their workflow. This ratio will never
be perfectly 80/20, but there will always be some additional requirements
that, given some perspective, do not add value to the project or benefit
your client.

Getting the Requirements Approved
Once the document is complete, you can send a draft to the client for re-
view and, if needed, set up another call with the client to go over their
feedback and answer any questions. If you have an active client who takes
the time to really read the document, this call will likely yield some great
questions relating to how their workflow will fit into the new system. The
needed refinements to the requirements document will be easy to make.

More often than not, however, getting the client to actually review a docu-
ment—instead of just glancing at the e-mail with the attachment—can be a
challenge.

The best way to force your client to review the document is to state very
clearly that they must sign off on the requirements document before the
project can continue.

Here are a few tips:

� As a first step, send the first version of the client-ready
requirements document but call it a draft. This sets the tone for
the client to know they can suggest changes.

� Set up a meeting to review the first draft of the requirements
document. This should force them to review the document before
the meeting.

� In the meeting, identify any missing requirements.

Pro Web Project Management

57

� Add in the missing requirements, send the updated draft to the
client, and ask them pointedly if this is ready for approval. Gently
remind them that the project cannot proceed until they sign off on
the document.

Be sure to resist any requests from the client to proceed with development
before the requirements document is approved. Should you proceed, you
will lose any leverage you have to get the document accepted formally. The
client will respect your polite but stern insistence that approval is a critical
step before proceeding further.

Dealing with Out-of-Scope Requirements
When preparing a requirements document, be sure to collect all the re-
quirements the client articulates, not just the requirements that you deem
to be in scope. When you prepare the requirements document, you will be
able to identify the requirements that are out of scope in the document.
This approach helps the client understand that that not everything they re-
quested is part of the scope—and budget. This approach also helps set the
client’s expectations that future requests will need to be evaluated and bud-
geted and that your development effort is not an unlimited resource.

 Tip When you identify just one or two items that are out of scope, there is a temptation to just in-
clude these items in the project so you do not disappoint your client. As you collect a larger number
of out-of-scope requirements, however, it becomes more obvious that the large number of out-of-
scope items quickly accumulates into a significant effort.

Wrapping Up
By now you should (hopefully) have a good grasp of the importance of dis-
covery and be ready to accurately detail all of the intended functionality of
your project. By conducting a strong discovery phase, you position your
project well for every later phase of the life cycle. Well-managed expecta-
tions and well-managed detail at this phase will protect your project budget
and your sanity.

Broadly speaking, when you complete discovery, you proceed with devel-
opment. This is likely to be the longest phase of your project, using the

Chapter 4 | Discovery and Requirements

58

most project hours. Additionally, once you complete requirements gather-
ing, you should be able to schedule out the remainder of the project with
confidence. With this in mind, in the next chapter we look at all of the ins
and outs of scheduling and budgeting your project.

We talk about estimating time (never an easy task), how to keep a close eye
on things without making your team feel micromanaged, and more details
on dealing with the inevitable out-of-scope requests that come in from the
client.

C H A P T E R

5

Project Schedule
and Budgeting
Oh, the Horror of Just One More Delay
Mary is a public relations manager for a nonprofit agency. She is charged
with redesigning the organization’s web site and integrating it with a new fi-
nancial system the organization is implementing. Although Mary does not
have any experience with web site development, she is a regular user of e-
mail and sometimes reads popular news web sites and makes online pur-
chases. Mary writes down all the things she wants the new web site to do
and then asks her friends for recommendations for consultants and firms.
Over the next several months, she gets ten different proposals, from 2 pag-
es to more than 50 pages, ranging from a few hundred dollars to over
$30,000. With such a wide range of proposals, Mary takes nearly a month
to select the two firms that she likes best and schedules interviews with
them. Although the proposals are very different and seem to propose dif-
ferent technologies, Mary selects the firm that seems to do the most work
with nonprofits and signs the contract for services.

Mary needs to move fast because she had only budgeted 2 weeks to select a
proposal and 2 months to develop the web site in order to meet the dead-
line she was given by her boss. She schedules the kickoff meeting the same
day the contract is signed.

The day of the kickoff meeting, Mary’s boss, Susan, is called away to handle
an emergency and cannot participate in the meeting. The development man-
ager is not interested in the project and will not participate either. Only the

Chapter 5 | Project Schedule and Budgeting

60

CFO of the nonprofit is able to attend. The kickoff meeting goes very well,
but toward the end of the meeting, it becomes clear that the CFO has not
yet approved the project budget and has some problems with the contract
Mary signed.

The consulting firm is ready to get started on the project, but Mary asks
them to hold off while the nonprofit updates the contract and secures the
funds. Mary and the CFO decide to review all of the proposals a second
time and then rewrite the contract for the firm they selected. The new con-
tract includes some requirements that were not part of the nonprofit’s re-
quest for proposal (RFP) or the consulting firm’s. Consequently, the con-
sulting firm provides a change order for the additional work.

Finally, 3 months after the kickoff meeting, the project is ready to move
forward, and Mary asks the consulting firm to prepare the designs in just a
week. The consulting firm moves quickly. In just a few weeks it completes
three rounds of design and Mary approves the final version. Development
begins, but after a week, the nonprofit’s CEO sees the designs for the first
time. She halts the project while she revisits the designs.

Seeing the designs makes the CEO realize that she really needs to proceed
with that rebranding effort that had been on hold for over a year, including
a new logo and corporate color scheme. Mary is put in charge of writing an
RFP to hire a branding firm to come up with the logo. The consulting firm is
asked to put the project on hold for a month while the nonprofit goes
through a rebranding effort. One month stretches into two, then three.

Fast-forward six months. It is now over a year since the project began.
While the project is now 75% over budget, development of the web site
based on a new set of designs is complete. The CEO and CTO are fru-
strated with the web site consulting firm and the branding firm because they
believe both projects have taken far too long and both are over budget.

Protecting the schedule to avoid these situations is vital to project success.
This chapter offers guidance on preparing a practical schedule and budget
that enable you to stay on track and track your progress.

Estimating Time (It’s Hard!)
One of the most critical tasks a project manager will undertake is estimating
budgets. This is critical because task estimation will set the project scope,
define the resources that need to be allocated for the project, and impact
the proposed project schedule.

Pro Web Project Management

61

Because estimating is a hard task and is as much art as science, task estima-
tion has a bit of a bad reputation. But fear not, intrepid reader, for you need
not be so leery. Here are some tips to make estimating easier.

Principle #1: Account for Unknowns
It is impossible to accurately predict everything that might happen during a
project task. There is always going to be the chance for an unexpected
event to increase the time needed for a task. Consider adding a small
amount of time on top of your estimate to account for this.

Principle #2: Break the Task into Parts
When thinking about a task for a project, break it down into pieces. Do not
estimate the whole, just the parts. For example, say you are estimating the
Drupal theming task for a modest web site (Drupal is a content manage-
ment system). You might break this task down into splicing up the mock-up
from the designer, creating the CSS and HTML, setting up the template files,
and programming the views and blocks.

Principle #3: A Task is More Than
Development
This idea might seem simple, but it is worth mentioning: the time to com-
plete a task is only partly developer time. Do not forget about additional
time for quality assurance (QA), meetings with the developer to discuss the
technical specification, time to collect feedback from the client or internal
stakeholders, and time to deploy the project to a staging server (and, if rele-
vant, a production server).

Principle #4: Ask a Developer (But Add Time)
If you are estimating a task that you have not actually done in your past
work life, stop. Find a developer in the office, provide a simple summary of
the task (describe the task generically, but do mention any parts of the task
that you consider to be challenging, difficult, or nonstandard work), and ask
them how long it would take.

Chapter 5 | Project Schedule and Budgeting

62

Now, take their estimate and add 50%, along with their developer bias (see
Principle #5).

Wait, why should you add 50%? Because a developer is likely to estimate
how long it will take them to sit down and knock the task out. They do not
tend to think about the several rounds of refinements they are likely to do,
nor do they think to include general project management and quality assur-
ance time for a task. All of the time spent beyond what they do is likely to
be a mystery to them, and so it simply will not appear in the estimate.

Principle #5: Know Your Bias (or, Review Your
Actuals)
Providing good estimates for projects is an ongoing learning experience. It is
important to take a moment at the end of a project phase, or at the end of
a project, and check how long a task actually took. Compare the actual
time the task took to complete with your original estimate. A pattern—or
bias—will quickly emerge. You will likely be consistently incorrect in one
manner or another, be that too high or, more typically, too low in your es-
timates.

Once you start to see your bias, be proactive and adjust your initial esti-
mate by enough to counteract it. For example, if you think a task is going to
take 3 days, and you typically underestimate by 50%, then estimate the task
as 6 days.

Principle #6: Use Software to Help Report on
Your Estimation Performance
There are many different project management software vendors. Several of
them (see the Appendix) include reports that can detail the estimation ac-
curacy history of individual team members. This makes it easy to track real-
time data on estimation bias, which will help improve your estimates.

Principle #7: Resist the Temptation to
Underestimate
There are many reasons why a project manager might feel pressure to
compress an estimate. This pressure could come from a client with a re-

Pro Web Project Management

63

stricted budget or a superior unwilling to allocate resources sufficient to
complete the project.

Resist this temptation. Compressed estimates greatly risk project success
and client happiness. A task takes a set time to complete. It does not
take less or more; it takes the time it takes. Having a tighter budget
means that the project manager will feel pressured to complete the task in
less time. This pressure gets passed to the developer. Nobody likes to work
under this kind of pressure.

An underestimated task will deliver pain to either the client or your supe-
riors: if you complete the task to spec, the client will be happy but your
project will be over budget. If you cut corners, the client will be (justifiably)
unhappy.

Insist that if less time has to be spent on a task, then features have to be
removed from the task requirements. Reducing the time spent should re-
duce the scope accordingly. This way, you can complete the task on budget
and meet the expectations of the client.

 Tip Meeting lowered expectations is far better for your relationship with your client than failing to
meet greater expectations.

Preparing the Project Schedule
The goal of the project schedule is to set the project delivery expectations
with the client. A good schedule has two components: a reasonable esti-
mate for project completion and clearly identified milestones for critical de-
liverables.

Creating a project schedule is another frustrating part of project manage-
ment that is based in estimates (read: guesses). Although it becomes easier
to write schedules as you learn how long similar phases tend to take in oth-
er projects, here are some pointers that can help you write the schedule.

Chapter 5 | Project Schedule and Budgeting

64

Principle #1: Identify Each Major Phase (but Be
Concise)
Schedules should be simple to read, painless to update, and easy to e-mail.
You do not need every minor project phase on a schedule. You do not
need a giant ugly GANNT chart (they might seem like essential project
management tools, but they really might only be applicable to projects larger
than those we discuss here). You are not building a building; you are build-
ing a web site.

For a typical two- to three-month project with a budget of around $55,000,
a ten-item schedule will be fine. For a four- to five-month project with a
budget of $100,000 or more, you should have a project timeline with speci-
ficity and deliverables week-by-week.

Principle #2: Identify Critical Deliverables
A project schedule is most helpful to you when it can be used to clearly
demonstrate to the client where delays can occur and who is re-
sponsible for critical deliverables. Make these clear on the first draft of
the schedule and point them out to the client when you review the schedule
together.

For example: if you have a project where the client is providing their own
design, then you should have a step on your schedule that clearly states
when the design must be completed, approved, signed, sealed, and deli-
vered. When that date arrives—and passes—it will be very simple to alert
the client that the project schedule is delayed.

We often label a critical deliverable “Critical Pathway,” so a schedule item
of “Provide logo and branding guidelines” becomes “Critical Pathway: Pro-
vide logo and branding guidelines.”

Principle #3: Add Some Padding
There will be a delay in the project on your end. Something will go
wrong. Just accept it. Maybe a team member will leave, or there will be a
death in the family of a developer who will need time off, or maybe a high-
profile support project will implode, requiring lots of unexpected attention
to fix. Another project could appear that upper management deems higher
priority.

Pro Web Project Management

65

The lesson is here is to embrace an old adage: assume the best, plan for the
worst. Add some padding to the schedule.

 Tip An estimate from a developer is probably off by 50%-100%. Why? Two reasons. First, pro-
grammers are eternal optimists, and second, estimates tend only to include the time for that first,
great working draft of a module. They do not include time for testing, refinement, adjustments, art
reviews, and so forth.

Principle #4: Learn Your Team’s Bias
Because you rely so heavily on the estimates of your team (as their smaller es-
timates trickle up into your own larger estimates), it’s vital to take an active
role in learning and helping to improve their ability to make accurate estimates.

Principle #5: Alert the Client to Deadlines
If a critical deadline for a project deliverable is approaching, send a short,
polite reminder to “check in on the status.” Some project management
tools (see the Appendix) do this for you automatically.

Principle #6: Include the Client’s Critical Path
Deadlines
Call out any key delivery dates that the client has identified clearly, which
may or may not be project-specific.

Formatting the Schedule
If you use a project management tool (see the Appendix), the schedule is
likely to be provided for you in a clean and professional manner. In these
cases, assuming your clients have accounts, you can simply send a link to
your client to access the schedule in that tool for review and discussion.

If you are preparing a schedule manually and want to send it to the client,
you will need to format it yourself. A simple schedule of around 12 to 15
items can be presented cleanly in an e-mail. Anything longer would look bet-
ter in a software tool. For example:

Chapter 5 | Project Schedule and Budgeting

66

Hi Team,

I’ve prepared a draft project schedule for the devel-
opment of the web site.

Kindly take a look and let me know if you have any
questions, changes, or concerns. I would be happy to
setup a conference call to discuss further if you like.

Draft Project Schedule

==================

4/1: Project schedule and requirements document
ready

4/10: Server specs provided

4/10: Critical Pathway: Provide style guide, logo

4/15: Critical Pathway: Approve requirements docu-
ment

5/5: Design Mock-up Ready

5/12: Critical Pathway: Design feedback

5/20: Critical Pathway: Provide existing content

5/20: Critical pathway: Provide GAC photos

5/20: Critical Pathway: Design approved

5/20: Critical Pathway: Server hardware, SSL cert
ready

6/20: Content migration complete

6/25: Site ready for ICANN review

6/30: Drupal training, part 1

6/31: Drupal training, part 2

7/15: Site ready for launch

Cheers,

{call sign}

Pro Web Project Management

67

Keeping a Close Eye on the Project
(without Micromanaging)
Maybe, like us, you have had the experience of trying to straighten up a clo-
set and getting distracted. While you are organizing a shelf, you discover
that box of networking cables you had been meaning to sort through. Then
you come across that broken webcam and you remember you now have
the missing part, and start to fix it, but you cannot find the cable. Then you
discover another box with cables that need to be sorted and cleaned out. . .
Before long, you are 2 hours into a task on which you had planned to spend
only 10 minutes.

Development can be like this. Even really great developers can get dis-
tracted with tangential work. What started out as a 1-day project can quick-
ly explode into a weeklong project if not planned and managed well.

An example: a project manager asks a developer to participate in a meeting
with several other team members to discuss a new client project that needs
to be scoped out—a web application optimized for delivery on mobile de-
vices. During the meeting, the team decides to look around at the existing
products to see if one might be a good fit. The project manager asks a de-
veloper to check out three products that might provide a good starting
point for the mobile application. The project manager thinks this is a 1- to
2-hour task. The developer thinks that this sounds like great fun. Three days
later, the project manager checks in with the developer and finds that the
developer has put 16 hours into evaluating, downloading, installing, and pro-
totyping each of the tools. Now, the project is 2 days over budget before it
has even been officially approved.

Most developers like technology, and many good developers are good at
what they do because they like to push the boundaries and discover new
applications and new approaches to solving problems.

Your challenge as a project manager is to guide this creative energy to en-
sure that it remains productive for your client. So how do you do this? No
one—especially a developer—likes to be micromanaged.

You need to be able to keep developers on task and on schedule without
having the appearance of looking over the developer’s shoulder. Here are
some techniques for managing a developer’s time without making it look like
you are sitting behind them while they code.

Chapter 5 | Project Schedule and Budgeting

68

� Check in: Ask the developer to check in with you after spending X
hours on the project, regardless of where they are with the project.
This request is explicit and will provide you with a way to ensure
that the he is heading in the right direction. For example, “check in
with me after you have spent 4 hours on this task so we can review
your code and the approach you have selected.” If the developer is
on the right track, create the next check-in for 8 hours, and so on.
If the developer is not headed in the right direction, create the next
check-in for 2 hours so you can confirm that he is back on track.
Consider having developers revalidate (or adjust) their estimates
when you check in. Eventually, most developers will begin to feel
bad when it is clear that their poor estimates are responsible for a
large percentage of slippage. Recognizing the problem is the first
step toward dealing with it.

� Milestones: Chunk the task into a series of discrete milestones.
Have each milestone be a 4- to 8-hour task. After each milestone,
have the developer check back with you so you can evaluate his
progress and provide feedback. As the project gets further along
and you have more confidence in the direction he is taking, increase
the size of the milestones. For example, if you are building a web
application, have the developer implement a single screen that will
display data from your data source.

� Peer review: If you do not have the technical expertise to be
confident the developer is headed in the right direction, recruit a
more senior developer you trust, and set up a peer-to-peer review.
In some cases, you may prefer not to be in these meetings so that
your senior developer can give the project developer feedback
without having the developer feel like he is not performing. Peer
reviews are also a great tool to help developers learn and improve.
If you have a new project, try having a peer review after the first
two days of development and again after the first week.

� When can you demo it for me? If the developer is resistant to
other techniques, you can always try the old standby, “When can
you demo it for me?” This causes the developer to provide you
with and buy into their time estimate while recognizing that you will
be evaluating some functional aspect of the project. So, if you are
working on a new search filter, and the developer says he will be
able to demo it by the end of the day Thursday, set up a meeting for

Pro Web Project Management

69

Friday at 9 a.m. right then and there to review the completed
search filter with your developer.

So, with these techniques in mind, what would have been the right way to
handle the vignette described in the beginning of this section?

� When outlining the task, the project manager should have specified
that the developer spend no more than 2 hours on the project
before checking in with him. If the company was using a task-
tracking system, 2 hours should have been set as the initial
maximum time.

� In addition, the project manager should have talked with the
developer after the meeting, and been explicit about his
expectations. If the developer thought that 2 hours was unrealistic,
he would have had the opportunity to request more time for the
project.

� If it was necessary to install and test each of the tools, the project
manager could have created a line item in the budget for Existing
Product Research and Evaluation. This way, the client would be able
to appreciate the testing effort, and review the results with the
project team to determine which, if any, of the three tools might be
a good fit.

Handling Out-of-Scope Client Requests
No matter how well you gather requirements and identify the features of
the project, new ideas will always come up during development. This is nat-
ural and impossible to avoid. The occurrence of these ideas does not mean
that you failed to identify key requirements (though it can); rather, it is
merely an organic part of the project development process.

It is unlikely that your client has ever gone through a thorough require-
ments gathering process before. Once they experience this process and be-
gin to really spend time thinking about their project, other ideas will mate-
rialize. As the client talks about the project with colleagues and partners,
other similar projects are likely to be mentioned, leading to still more ideas.

Your goal as the project manager is to ensure the project succeeds. The
most common threat to a project is scope creep. If scope creep occurs,
your project may fail. But, if you manage scope creep well, you can save

Chapter 5 | Project Schedule and Budgeting

70

your project’s schedule, budget, and quality while keeping the client ulti-
mately happy.

Here are the eight tricks to managing client requests like a hero.

Principle #1: Be Clear from the Start
It is vital to set the tone for how out-of-scope requests will be handled the
first time the client makes such a request. Manage this correctly the first
time, and every later request will be easy to handle.

Principle #2: Don’t Stifle Enthusiasm
You do not want to stifle a client’s enthusiasm when they have a new idea.
So, respond positively and honestly. Be interested in the idea.

Principle #3: Don’t Let Them Sit
There will likely be two kinds of requests. The first is for a modest change
(1 to 4 hours) to an existing feature. The second will be far more complex
and likely represent a new module, page or section. It is important to en-
sure that the feature request goes somewhere and does not sit unad-
dressed. For small changes, see Principle #4. For larger changes, see Prin-
ciple #5.

Principle #4: Maintain a Feature Request List
When the first modest out-of-scope item comes in, take this opportunity to
start the feature request list. This can be a simple spreadsheet that lists a
short description of the request, who made the request, the date the re-
quest came in, and any reference to your internal issue tracking system (like
a case number).

Your e-mail response should be clear that the feature request list is for out-
of-scope requests that will be evaluated toward the end of the project if the
budget allows. Once you start this list with one item, you can easily shephe-
rd other out-of-scope requests to this document by simply writing, “I’ll add
this to the feature request list.”

Pro Web Project Management

71

Principle #5: Do Not Be Afraid to Use Change
Orders
Handle larger (more than 4 to 8 hours) out-of-scope requests with a change
order. A change order is a simple document you use after a project has
started to detail the cost of adding an out-of-scope feature to the project.
When a feature request comes, respond with interest, but mention that it is
a nontrivial modification, and ask if the client would like to see an estimate
of the cost to implement this change.

A clear change order representing the cost of implementing an out-of-scope
request allows the client to decide just how much they think this feature is
worth. When it is free, the feature is always a good idea. When it has a
price tag, things change.

For more information on change orders, see the next section,
“Understanding Change Orders.”

Principle #6: Resist the Urge to Do Everything
If you are the kind of person who likes to just take care of things (many call
this type A), be aware that this will make it harder for you to manage scope
creep.

Principle #7: It Will Not Be the Last Request
Our fearless project manager might find the urge to complete a modest re-
finement because he feels that this has to be the last request in the project.
Do not do this, because it will not be the last. The moment you feel like
you just heard the last request is the moment the client decided
to create ten more.

Principle #8: Do Not Feel Bad
When the scope creeps in a project, you lose, the client loses, and the
project loses. You might feel like you are being unhelpful by pushing away all
requests, but a project free of creep tends to finish on time and on budget.

Chapter 5 | Project Schedule and Budgeting

72

Understanding Change Orders
It is important to address four key points in a change order:

� The Change Description offers in plain English a concise
description of the new features to be added to the project. A
concise bullet-list would work as well.

� The Schedule Impact makes clear any changes to the project
schedule.

� The Design Impact outlines any changes to the database or
application architecture.

� The Cost Impact states the cost, usually in days of effort with
your daily rate specified.

Most change orders can be short or, at most, two to three pages, and in-
clude these elements:

� A standard cover page you use for other documents, like scopes of
work and requirements documents;

� The change description, and schedule, design, and cost impact
section; and,

� The signature lines.

The change order serves several important purposes at this point:

� The change order documents exactly what tasks you and your client
have agreed to, which will invariably be forgotten in a few weeks as
the project progresses.

� The change order emphasizes that these changes really were out-of-
scope.

� The change order emphasizes your team’s contribution to the
project, and clarifies any additional funds that your client needs to
invest.

� Your client will likely be impressed that you are so methodical in
your approach, especially if she has never seen a change order
before.

Figure 5-1 details a real change order we prepared for NeonTommy.com, a
Drupal development project to create an online news portal.

Pro Web Project Management

73

Figure 5-1. A change order detailing refinements to NeonTommy.com

Chapter 5 | Project Schedule and Budgeting

74

Negotiating Out-of-Scope Changes
If you do everything you can during the planning phase to manage the
project team’s expectations, document the project requirements, develop
an appropriate budget, and allocate sufficient resources, the project should
come in on time and on budget.

However, despite your best efforts, some aspects of the project can be in-
terpreted differently by the client and consultant.

A Wretched Experience
We were building a custom web application that imported data on a nightly
basis from the client’s data management system, which we’ll call
WRETCHED. During the requirements gathering phase, we were told by
the IT manager for WRETCHED that we would receive data in any format
we specified. We priced the data import aspect of the project accordingly.
However, during implementation of the project, the client’s IT manager had
moved on, and the new IT manager was only willing to export the data in
the default system format. This change meant that instead of simply reading
in the data file, we had to perform extensive preprocessing and data clean-
sing during the automated data import process. This effectively doubled the
budget for this aspect of the project. From our perspective, this
represented an out-of-scope change in the project. From the client’s pers-
pective, we had agreed to perform data import as part of the original
project budget, and so it was in scope.

What did we do? We took a data sample from a similar project and a data
sample from the client’s WRETCHED data management system. To simplify
the process for the client, we showed the client how one data set could be
imported into Excel in a few steps. However, performing the same opera-
tion on the WRETCHED data set caused the import to fail. In the end, the
client required her IT manager to provide data from WRETCHED in a stan-
dardized format or fund the additional work from the IT manager’s budget.

Be Transparent
In our experience, the best approach is to be transparent and forthright
about these issues when they emerge. Treating out-of-scope issues openly
will ultimately build confidence with your client, as they realize that you are

Pro Web Project Management

75

addressing matters head-on and not trying to just make them go away or
cutting corners to get them done.

One of the recurring challenges with out-of-scope items is that the changes
frequently come up throughout the course of a project. The temptation is
to simply do the work, and move on. No one likes to disappoint a client by
saying that something is out of scope. However, the better approach is to
set aside tasks that you perceive to be out of scope, and tell the client that
you will come back to that task at the end of the project. This way, you stay
focused on completing the in-scope items on time and on budget.

As you near the end of the project, you will likely have a list (hopefully
short) of out-of-scope items for discussion. However, by consolidating all of
your out-of-scope items, you are in a stronger position to negotiate with
your client.

Negotiating
Before you begin a conversation with your client, prepare a comprehensive
list of all of the out-of-scope items that you have identified. Debating with
your client about an 8-hour task on a $100K project might seem like you
are nickel-and-diming your client. However, if you assemble a set of ten out-
of-scope changes that represent 40 to 80 hours of additional work, this is a
more sizable issue to discuss.

Addressing these issues with your client requires patience and finesse.

 Tip The more calmly and professionally you approach negotiating unresolved out-of-scope
changes, the more calmly and professionally your client is likely to respond.

You might explain to the client that it is in your team’s best interest to
maintain a positive relationship with them so that you can continue to bene-
fit from working together in the long term. However, your development
team also needs to remain profitable in order to continue to provide the
services to all of your clients.

� First, try to figure out what seems equitable to you, and what fits in
your budget. For example, if you have 80 hours of out-of-scope
items on a project, and you propose to complete only 4 hours of
the work, that is not likely to go over well with your client.

Chapter 5 | Project Schedule and Budgeting

76

However, if you offer to complete 25% of the changes (20 hours),
this might seem like a major concession to the client.

� You can either propose to take on those tasks that seem most
important to you or you can let your client decide how to allocate
those additional hours. If you let the client identify the top-priority
tasks, you might be surprised to find that the items that you thought
were most important to your client in the early part of the project
actually turn out to be far less important by the end.

� You might also suggest that your client pay half the cost.
� Finally, you can suggest that any unresolved out-of-scope items can

serve as the foundation for phase 2 of the project, which can begin
as soon as phase 1 is done.

We find that this collaborative approach to negotiating out-of-scope
changes works 90% of the time. The vast majority of clients understand that
not all aspects of a project can be perfectly defined at the beginning—as an-
yone who has ever remodeled their kitchen or had their car repaired can
attest.

What to Do in the Worst Case?
In the worst-case scenario, if your client simply refuses to negotiate and ar-
gues that all of the out-of-scope changes are, in fact, in scope, you have a
difficult decision to make.

We find that conceding on the scope of work is a poor business decision. It
leads your client to believe that they will always be able to push you to do
extra work. Conceding the scope of work will also likely cause your project
to be over budget. On the other hand, we take pride in leaving a project in
the best possible state when we complete our work, and if there is still a lot
of unbilled work, there may be considerable funds still on the table.

If you or your management team decide that you have to wind down the
project at this point, we firmly believe that it is in your best interest to do
this as gracefully and professionally as possible. First, meet with your team
and explain the issue. Then, document the out-of-scope changes in a change
order. Complete any remaining work, and let your client know that you
have completed the current phase of the project and that you will need to
wind down the project in an orderly manner at this point until the out-of-
scope issues are negotiated. You can send along the change order and your
project documentation. This act will signal to your client that you are acting

Pro Web Project Management

77

professionally, despite the disagreement regarding the out-of-scope changes.
This approach leaves the door open for future work or renegotiation.

Wrapping Up
Scheduling a project and managing out-of-scope client requests are vital to
ensuring a successful project. You should now have a good sense of how
manage these processes. In our next chapter, we look at how to overcome
obstacles that often cause project delays.

We start off with the tale of an IT manager that fails to take ownership
and subsequently loses control of resources. We then look at how to
use a weekly checklist to maintain project momentum over the long
weeks and months of a project. We wrap up the chapter by covering
several techniques you can use to improve your interactions with and
to facilitate the decision-making process of indecisive clients.

C H A P T E R

6

Running the
Project
The Blindsided IT Manager
Todd is the IT manager for a department of 150 people within a Fortune
1,000 company. Like many IT managers, Todd feels that he and his five-
member team are overworked, underappreciated, and underpaid, all of
which might well be true. Todd is responsible for all IT purchases and
projects in his department.

Three months ago, he was called into a meeting with one of the division di-
rectors (one of several bosses to whom Todd reports), and was asked to
provide technical leadership on a new web-based application being worked
on by another team of five staff members. The project had been approved
by management to help track customers more efficiently. At the end of the
meeting, Todd agreed to help define the project specifications and deter-
mine if the application should be hosted in-house or outsourced.

Of course, many more urgent projects had come up since then, and the cus-
tomer-tracking system had been pushed down on his list. Although Todd
had been quick to answer a few random questions from the project team
via e-mail last month, he never found the time to schedule a follow-up
meeting. In fact, the project sounded quite open-ended, so Todd was not
entirely sure where to start. The lack of project definition made it easy for
Todd to keep pushing this project down on his list.

Today, Todd was asked to attend a second project meeting. Expecting to be
asked some technical questions, he reviewed the previous meeting agenda

Chapter 6 | Running the Project

80

and his notes, and printed out the pricing for an online customer relation-
ship management system he had heard positive things about at a recent
technology conference.

During the meeting with the customer tracking team and the division man-
ager, Todd feels blindsided as the team informs him that they have hired a
consultant to develop the system and have already acquired the hardware.
Todd will be responsible for getting the hardware set up in the division’s da-
ta center and for supporting the hardware.

Todd is both embarrassed and angry. He had no warning that the team was
moving forward without his advice. Further, the hardware that had been
purchased was different from the type that Todd’s division typically sup-
ported. Also, Todd noted defensively, the operating system and platform
specified by the consultant would be totally new to the division, and he did
not have anyone to support this system.

Todd is understandably upset, and he becomes increasingly defensive during
the meeting. He knows from previous experience how to throw up techie-
sounding roadblocks to a project, such as concerns about the scalability of a
database technology. However, the team and the division director are pa-
tient and persistent. They offer to outsource the project hosting to the con-
sultant and suggest that Todd can pay the hosting fees out of his IT budget.

By the time the meeting is over, Todd recognizes that he has lost control of
this project. He had no idea that this project was so important and needed
to move quickly, but he still finds it unconscionable that his director would
move ahead without his advice. Todd decides that the best he can do now is
provide the bare minimum support that has been requested of him while fo-
cusing his energies on more important and interesting projects.

Todd’s biggest mistake was that he didn’t take control of the situation after
the initial project meeting. In the first meeting the leadership made it clear
the project had funding and support and was moving ahead. At this point,
Todd could have exerted more control over the destiny of his department
by taking the lead on defining the project and hosting requirements.

His inaction left a vacuum of power that by necessity had to be filled by
another person. It’s unfortunate that others decided Todd’s fate without
consulting him, but by abdicating responsibility he is largely to blame. Indeed,
had Todd spent a few moments after the initial meeting to think through
what might happen, he may have guessed that losing control of his re-
sources was a real risk and could have acted to stop that from happening.

Pro Web Project Management

81

In this chapter, we will introduce a series of techniques you can use to
maintain project momentum, force answers from reluctant clients, and an-
ticipate problems before they happen.

Maintaining Project Momentum
Momentum is critical in running a project. One reason projects slow down
or stall is a lack of consistently applied attention to the project. It is easy to
let a day go by when you do not move a project forward. The problem is
that those days stack up because every additional day you do not give a
project the attention that is needed, it gets easier to neglect. Before you
know it, it has been weeks, work is piling up, and the real schedule for the
project is behind.

The key to overcoming this challenge is applying momentum. We have
two techniques for maintaining project momentum: one-a-day productivity
and the Monday morning checklist.

Technique #1: One-a-day Productivity
The idea is simple: no matter how big the task or how many work hours it
might take, simply complete one modest but measurable task each day that
brings you one step closer to project completion. This task can be anything;
just ensure that it is easy to quantify as a single unit of work. Maybe it is
adding five testing checklist items to your quality assurance document, or
quality assurance testing and verifying one new feature the developers com-
pleted. It does not matter, as long as it is one unit of work that brings you
one step closer to completion.

When you start, it might seem like doing one modest unit of work will nev-
er have any impact on the massive task that is your project. But the old
clichés—about how a journey is really just 10,000 steps, or how you can
move a mountain by yourself if you are patient and move just one pebble
each and every day—are true.

Take a recent personal project: Justin recently converted his modest DVD
collection (about 250 discs). Digitizing a DVD does not take much effort—
you put the DVD in the drive and click a few times on your computer—but
you can only do one DVD at a time, and it takes your computer several
hours to extract and transcode the movie to a computer-friendly video
format. This was not a job he could knock out on a productive Saturday.

Chapter 6 | Running the Project

82

For several weeks, no DVDs got encoded. Why bother with one when
there are so many to do? There is no hope!

Justin came up with a simple rule: encode one DVD a day. He was hesitant
at first, as basic math shows this approach would take the better part of a
year, but he persisted. Something funny happened right away. The easily at-
tainable daily goal provided frequent motivation to “overachieve” and en-
code two or three DVDs per day. The DVDs got encoded in 3 months, and
the daunting project went from overwhelming to complete.

When working on a project, a one-a-day approach fits in nicely with situa-
tions like working down a pile of bug fixes that need testing, verification, and
review. A stack of 30 to 40 bug fixes is probably too much to do in a day,
but if you set a goal of testing and verifying just two or three bugs a day, you
can work down this list with speed. Or, set a goal to review one completed
feature per day on a large project so that completed features from your de-
velopers do not overwhelm your Inbox.

The goal is simple: Doing several modest tasks consistently each day or
week translates into a lot of progress over time.

Technique #2: The Monday Morning Checklist
The Monday morning checklist is likewise simple: it is merely a short list of
tasks you complete each and every Monday morning. Why Monday? Monday
is the best time to plan your and your team’s priorities for the upcoming
week. By identifying issues on Monday, you can allocate resources during
the rest of the week to address those issues and solve any problems.

Monday is also the best time to look at the week’s calendar and make sure
that you are prepped and ready for upcoming meetings. (For all the same
reasons, Monday is the best day to have individual team member meetings
with your programmers, testers, designers, etc. Completing the checklist
before these meetings is even better: you will have a good sense of where
things stand and can set priorities for your team for the week.)

Justin first used the Monday morning checklist for a rather large project that
lasted several months. The checklist itself was straightforward and included
items such as the following:

� Are there any outstanding client action items that need follow-up?
� Are there any meetings this week that need prep?
� Review any completed features.
� Review and update the project schedule.

Pro Web Project Management

83

In all, there were about a dozen items that he could run through in under
1 hour. He ran through this checklist every Monday morning, and several
benefits became clear:

� Meeting reminders went out and agendas were always ready for any
upcoming meetings that week. There were no surprises, and the
team was always prepared for meetings with the client.

� Any threats to the project schedule became apparent early.
� Feature review work did not pile up.
� Deliverables from the client were more consistently forthcoming

(due to polite but persistent nagging).

The checklist forced him to prod the project forward each week and to
keep chipping away in little pieces at the mountain of work it contained to
keep the project moving forward.

It is likely you will have several smaller projects on your plate at any time,
so you do not need a checklist for each one. In fact, the simpler your check-
list, the better. Try putting together a single checklist that you run through
each Monday that includes items for all of your ongoing projects.

Here are few tips for putting together a Monday morning checklist:

� Keep your checklist short. You need to complete this on Monday, a
day when unexpected work tends to appear more frequently than
the rest of the week. Include no more than 12 to 15 items.

� To reduce the chance you will gloss over a task, try to keep each
checklist item specific and achievable. Do not include anything
nebulous; only items with a clear path to completion belong on the
checklist. You want to feel good after completing each one.

� Print it out, if possible. For whatever reason, crossing out items
with a pen feels good. It is also harder to ignore a paper on your
desk than a task item in Microsoft Outlook.

As an example, here is a Monday morning checklist Justin has been using re-
cently (some specifics removed):

� Verify system administration checklist was completed last week.
Review for any problems.

� Check on any past-due tickets.
� Review status of support tasks for {support project 1}, {support

project 2}, {support project 3}.

Chapter 6 | Running the Project

84

� Schedule sanity checks. (In this context a sanity check is a checklist
of things to review on a web application, such as server
configuration, reviewing the log files, and targeting quality assurance
tests.)

� Review billing report.
� Monthly: Send monthly summary to {client}.
� Review project schedule for {major project}.

Put Yourself in Your Client’s Shoes
It’s a powerful yet simple way to do good work: put yourself in your client’s
shoes. Most people do not do this—or think to do it—because our brains
are not wired for it. But it is easy. When you are finished writing an e-mail
but have not sent it, take your hands off the keyboard, take a deep breath
and think, “OK, I’m the client. How does this read?”

You can also do this with the help of a colleague. I call it playing the devil’s
advocate.

Grab a colleague and say, “OK, I want you to be {client name}. Read this.
What are your biggest concerns?” Guessing what people think is a fuzzy art.
You will never be 100% accurate, but just the act of putting yourself in their
shoes will work wonders for your perspective.

It is a great way to make sure you send decent e-mails. Try it for a week,
and I promise that by Friday, you can look in your Sent box and notice the
difference.

Proactive Project Management
From our experience, if clients are not responsive, their projects are behind
schedule.

E-mails are an example. Responsive clients answer your e-mails quickly.
They are probably the same clients that are easy to work with because they
are comfortable making decisions.

By contrast, unresponsive clients do not make decisions, reply to your e-
mails, answer your questions, or offer feedback. So, how can we persuade
these clients to respond on their own initiative?

You cannot. There just is not a way to do this. That is where proactive
project management comes in. Proactive management forces the client to

Pro Web Project Management

85

decide. You tell the client you have evaluated an option and state very clear-
ly that you will proceed with your option unless you hear back otherwise
from him by a set deadline.

Here is a sample e-mail:

Hi {client name},

I’m happy to report that development of the new
survey is going well. However, an issue has come up
that I need your help with.

We currently have the survey spread across 4 pages,
as you outlined in your document. However, the
questions on the third page of the survey are really
short so the page looks out of place. I suggest we
combine the questions from pages 2 and 3 and short-
en the survey to just 3 pages (page 4 becomes 3).

If I don’t hear back from you by Friday I’ll assume this
works and we will proceed.

Thanks,
{call sign}

This approach is so very simple and so very effective because the client
must decide whether to

� Not say anything, allowing you to proceed when you want and how
you want;

� Give you a decision by your deadline so you can proceed; or,
� Say, “Hold on.”

In our experience, option 3 happens rarely. Most of the time, the client will
be silent, the project can proceed, and you can stay on time.

This is not a strategy to use on all clients, but it is helpful for many of them.

What Defensive Driving Teaches Us
About Project Management
When Justin was a teenager and learning to drive, his mother offered him a
single piece of very valuable advice: “Always assume everyone on the road is
about to hit you. Look around at the cars and imagine ways that could hap-

Chapter 6 | Running the Project

86

pen. And then imagine what you would do to avoid it. That way, you can ac-
tively work to avoid it happening and be ready if it does.”

This advice helps you drive more safely. When you think about the danger
that other drivers pose, you start to develop safe driving habits; for exam-
ple, looking in your mirror and deciding whether you have the clearance to
suddenly stop or swerve to avoid something. In fast-moving cars, every
second matters.

Project management may not be as fast-paced as driving, but the principle is
the same. And this does not just apply to projects. It is the same advice that
can help make everyone from butlers to chiefs of staff effective: try to plan
for what is likely to occur and be ready for it before it happens. Whether
being ready means making a cup of hot tea before being asked or having
read a brief for a topic that might come up during a meeting, the result is the
same: you are better able to handle a situation when you are prepared than
when you are not.

In project management, being defensive means identifying what is likely to go
wrong during and toward the end of the project. This is probably the origi-
nal reason that all big project management tomes talk about creating mas-
sive risk assessment reports for documenting in detail all of the challenges a
project might face (a veritable sea of pages and numbered outlines and in-
dents and footnotes). But the problem with huge documents is just that:
who has time to read a huge document?

You do not need to create a risk assessment document for your projects.
However, you will benefit from taking a moment at the start of the
project—and throughout—to think, “What is the biggest risk here, and
what can I do right now to protect myself against it?”

� Try imagining what each of the stakeholders is going to say
when you show them the finished project; not just your client
sponsor, but the actual people who attend most of the meetings
during the course of the project. These people are the driving force
behind key features and sections. How do they think? Did they have
a pet feature that did not fall within the scope?

� Try thinking about where in the project the client might want
changes. This is probably going to be in one of the more complex
features in the project.

� Try thinking back to previous similar projects, and recall what the
main challenges were. Do any past lessons apply here?

Pro Web Project Management

87

� Were there any team members during requirements gathering and
early scope discussions who proposed features that his or her
internal organization ultimately decided against? This team member
could feel resentment, which could poison their feedback and
attitude in later phases of the project.

Hope for the best, prepare for the worst. Be defensive in your plan-
ning (but never in your composure to the client). Know that there will be
some issue at the end of the project that you need to take care of, and
make sure you have the capacity to do it. You have nothing to lose by plan-
ning ahead to handle an eventuality that has a real chance of coming to pass.

Planning ahead serves the interest of the client as much as it does the
project manager and the firm for which you work; your project team will be
ready to handle the situation, and the client’s budget will be protected as
well.

Quick Tips for Getting Work from Clients
Given that many clients tend to juggle lots of different projects simulta-
neously and with various different stakeholders (you are likely to be just one
of many), it is sometimes hard to get the decisions and work product you
need from your clients to move your project forward.

Here are some quick pointers to help mitigate this challenge:

� Use proactive project management (see “Proactive Project
Management” earlier in this chapter).

� Do not be afraid to send a polite reminder to clients who have
outstanding action item deliverables (see “Meeting Wrap-Up” in
Chapter 3).

� Make deadlines and any delays to the schedule clear to the client in
a polite way. When a deadline approaches, send a polite reminder
that the project is going to be delayed if a deliverable or decision is
not provided.

Be willing to accept a project delay from a client, but clearly state that the
budget will be impacted to restart a project. Hopefully, your contract clearly
states that restarting a project after a delay of a specific timeframe will incur
project restart fees. If it does, you can gently mention that you really want
to avoid having to put the project on hold and incurring those fees.

Chapter 6 | Running the Project

88

Wrapping Up
Maintaining project momentum is a major responsibility of any project man-
ager. It’s at the heart of what a project manager is meant to do: clear ob-
stacles so others may get work done. Projects large and small need conti-
nual attention to move forward, step by step, toward a goal. Even if the step
is small, the contribution to momentum is real. With what you’ve learned
thus far, you now have a variety of techniques in your arsenal to address
situations in your projects that can impact momentum.

In the next chapter, we look at an important step in the project planning
process: the technical documentation. Where the requirements document
outlines every feature that your project will contain, technical documenta-
tion details how each of those features will be implemented by your engi-
neering team. While not every project needs technical documentation—and
their length and density can often lead them to being underutilized—in pre-
paring technical documentation you will encounter many of the technology
challenges you would have encountered during development while still in
planning.

As we have said many times already (and will continue to say), the earlier
you are aware of the problem, the more cheaply (in hours or dollars) that
problem can be addressed. Read on for guidance on when and how to write
technical documentation.

C H A P T E R

7

Technical
Documentation
By this time in the project, you should have a good set of requirements and
a clear sense of the project features. You should also be able to confidently
maintain project momentum and address common situations that cause de-
lay. Now that you know what to build and how to keep the project moving,
it’s a good idea to first document the technical aspects of what your team is
building.

Some technical documentation is meant to be shared with the client, and
some is meant only for consumption by your project team. There are also
many flavors of technical documentation—wireframes, design mock-ups,
HTML mock-ups, and technical specifications, to name a few—so it’s impor-
tant to understand which documents are helpful when. What each format
has in common is that they unify the concepts of what the project will be in
a more visual and holistic manner than a dry bullet list of requirements
could ever convey.

Technical documentation should not become a time sink. Ideally, it is anoth-
er efficient step to help manage the expectations of the client and your
team. In this chapter, we detail the most common types of technical docu-
mentation and guide you through how to create them.

In addition, we cover tips for how best to share work with your client, how
to manage a design process that doesn’t break the budget, and even how to
create and document a database for a project.

Chapter 7 | Technical Documentation

90

Picking the Right Format
The first step in preparing technical documentation is identifying exactly
what kind of documentation you need for your project. Let’s start by look-
ing at how you can pick the right format.

Design Mock-Up, Wireframes, and HTML
Mock-Ups
A technical specification will assume different forms depending on the kind
of project you are working on:

� In a public web site project, you are designing or redesigning the
online presence of a company, organization, school, effort, project,
or other group. In a public design project, the client will be anxious
to see and provide feedback on the general look and feel and the
branding of the site.

� In a custom software project, you are creating a web- or
desktop-based application from scratch. In custom software, it will
be critical to see how key screens will work, such as search tools,
data input forms, and profile screens.

There are many different kinds of mock-ups you can prepare; these include
the following:

� A traditional design mock-up is an image that shows how the
project will look when finished, complete with the branding, colors,
fonts, styles, visual flourishes, and sample content that will reflect
the final project.

� A wireframe is a non-design structural mock-up that shows the
visual order of elements on the page and how they relate to each
other spatially. Wireframes do not include design elements like
color, fonts, or images.

� A set of HTML mock-ups is a visual representation of how the
site will look and flow. Links between the pages will work, form
elements will generally be populated with typical values, colors and
branding are present, and the main features of the site are shown.

In both a public website project and a custom software project, it is best to
prepare a set of wireframes and seek client approval before you
prepare some kind of mock-up. A visual mock-up (design or HTML

Pro Web Project Management

91

mock-up) will take more time to create and more time to refine from client
feedback than a wireframe, so it is helpful to nail down the core layout be-
fore the design phase.

A wireframe will also set the structure that the design mock-ups will need
to follow, meaning the designer can focus on presenting the same structure
visually in different ways. The client will be able to focus easily on the visual
differences in the mock-ups, rather than the structural elements (which
should already be set by the wireframes).

What is the difference between a visual mock-up and a wireframe?
Take this example: a visual mock-up for a web site redesign project would
include the logo being used for the project in the header of the mock-up.
On a wireframe, the logo would likely be a square box labeled, “logo.” See
“Preparing Screen Mock-Ups” later in this chapter for some examples of
wireframes and their resulting mock-ups.

Don’t Mock Me Up
For a public web site project that does not involve much custom devel-
opment, you can prepare a set of wireframes for client review. Once refined
and approved, you can hand these wireframes and the requirements over to
the designer, who can prepare the design mock-ups.

For a custom software project, there usually is not as much of a design
component (beyond meeting the client’s basic branding requirements) so
much as an interactive design process. It is vital at this phase to show how
the application will work, how the interaction between the user and the ap-
plication will function, and how the screens will connect the workflow logi-
cally in the application. A set of HTML mock-ups will work best in this situa-
tion.

In a custom software project, the difference between individual pages will be
much greater than the differences between individual pages in a public web
site project, where the basic layout of content pages tends to be more con-
sistent. Because of this, in a custom project you will need to create many
more HTML mock-ups than traditional wireframes or design mock-ups.

For smaller custom software projects, a set of HTML mock-up screens (and
the database schema, discussed later) are probably all you need for technical
documentation. The developer will happily take the screens you prepared
and start building the business logic to support the implied functionality. A good
set of HTML mock-up screens for a smaller custom project can be so in-

Chapter 7 | Technical Documentation

92

structive that your developers might never open the requirements docu-
ment during development.

The amount of detail you will need will vary. For wireframes and design
mock-ups, prepare a home page and a sample content page. For HTML
mock-ups, prepare a mock-up of every page, every form, every filter, and
every control in the application.

Figure 7-1 details the HTML mock-up of a student database listing and
search screen. Looking at the mock-up, you would not know that none of
the functionality is present.

A clear set of mock-up screens has many benefits:

� The client probably will not understand fully what the project entails
until seeing it rendered visually.

� Creating the mock-up screens makes preparing the database
schema in tandem a snap (if applicable).

� The thought process that goes into the mock-ups will help expose
any upcoming project challenges you have not yet anticipated, which
will be easier to deal with before development has started.

� You can get the client to sign off on the visual representation of the
application to help manage expectations.

Pro Web Project Management

93

Figure 7-1. An HTML mock-up for the home page of a custom web application. The mock-
up is just HTML; there is no functionality in the links and UI elements. (All data shown is ran-
dom.)

When to Write a Technical Specification
For a more complex custom software project, you will need to prepare a
technical specification. A technical specification is actually quite simple. It

Chapter 7 | Technical Documentation

94

is a written description of your HTML mock-ups and of all of your project’s
features, and is intended to serve as a development guide to your project
team.

A technical specification describes everything that goes on behind the scenes
or that is not immediately apparent in your HTML mock-ups. A spec is most
helpful for complex or larger custom software projects. A good way to find
out if you need a technical specification is to look at your requirements.

Ask yourself these questions:

� Is there business logic that is required as a foundation to certain
requirements that is not explicitly called out as its own
requirement? Or is there business logic that supports certain
requirements, but is not a requirement itself?

� Are there requirements that could be reasonably achieved with
vastly different technical approaches?

� Are there requirements that affect other project decisions, such as
the server configuration needed to support the finished project?

� Is there functionality in the project that is unfamiliar to your
development team or unlike previous work your team has done?

� Is this project generally larger and more complex than projects
completed successfully, on schedule and on budget, in the past?

� Will the project take more than a week of time, or involve more
than one programmer?1

If you answered yes to any of these questions, then you probably need a
technical specification. Let’s look at an example.

Say you have a project to build a series of web forms for editing structured
data such as contact records. The HTML mock-up screens you prepare will
make it clear where fields go, how the forms are laid out, and how the
workflow will work. Additionally, there is really only one way (in a specific
technical platform) to create a web form that allows users to edit data.
There is not much in the way of discussion or possibilities of “gotchas” in
building this kind of project.

However, if you also have a series of requirements to build an e-mail new-
sletter system into the contact database then you need a technical specifica-
tion. Why? Because there will be many technical decisions that your

1 Joel Spolsky, “Painless Functional Specifications,”
www.joelonsoftware.com/articles/fog0000000036.html, October 2, 2000.

Pro Web Project Management

95

programmers will have to make in order to build an e-mail newsletter
system that would not be addressed in the requirements document.

Here are just a few questions: How will e-mails be sent? Will they be
queued and sent by an automated process, or sent immediately? Will the
process run hourly, daily, every 10 minutes? How will we handle the
processes running over each other? How will the process be set up on the
server? Do we need a separate machine for handling the queue? How will
we handle bounces? Prunes? Unsubscribe requests? Do we need to make
any DNS changes so our e-mails do not get flagged as spam?

Too many unanswered questions are deadly to a project. Leaving
the wrong kind of decisions to your programmers (and not answering them
up front) will likely cause problems of budget, scope creep, schedule, scala-
bility, and fault tolerance (often a challenge in e-mail systems) in your
project.

Figure 7-2 is a real technical specification for a large, internal, custom
ASP.NET project for a major university.

Chapter 7 | Technical Documentation

96

Figure 7-2. A page from a technical specification detailing how a key user interface
element will work

Pro Web Project Management

97

All Together Now
To bring it all together, here is what to use when and where and how:

� A design mock-up is an image that shows exactly how a typical page
will look. Best used for public web design projects.

� A wireframe is a non-styled mock-up of how the major elements of a
web page will be arranged and positioned in relation to each other.
Good for most projects before design mock-ups or HTML mock-ups
are created.

� An HTML mock-up is a clickable set of screens that work in a
browser and look exactly how the application will look. Best used for
custom software development.

� A technical specification is a plain-language document that describes
in detail what every part of every page will do and typically contains
screen shots of the HTML mock-ups. Best for larger custom software
projects.

For a typical public design web project, the process would be

1. Collect requirements

2. Prepare wireframes

3. Collect feedback and refine

4. Prepare design mock-ups

For a typical midsize custom software project, the process would be

1. Collect requirements

2. Prepare wireframes

3. Collect feedback and refine

4. Prepare HTML mock-ups

For a typical larger custom software project, the process would be

1. Collect requirements

2. Prepare wireframes (optional)

3. Collect feedback and refine

4. Prepare HTML mock-ups

Chapter 7 | Technical Documentation

98

5. Collect feedback and refine

6. Prepare technical specification

7. Prepare database schema (see “Creating a Database” later in this
chapter)

Preparing Screen Mock-Ups
This guide is not about the design process, so we will not delve into tips on
the art of design (which is a good thing, because we do not have any). How-
ever, here are some general pointers that will help make the mock-up phase
a breeze.

For custom software projects:

� Focus on the workflow. When conceptualizing what screens
need to be in the application, try to think in terms of what needs to
get done, rather than thinking about what screens might need to
exist. Let the workflow of the user guide you.

� Show any key screens, such as search forms and input forms,
complete with all of the fields you expect to include. This will make
the workflow very clear to the client and will help catch any
misconceptions.

� Imagine yourself in the office of your client trying to get some work
done. How is this tool going to fit into your workflow and make it
faster?

� Find a great design to inspire you. There is nothing wrong with
starting the mock-up process by finding an application interface that
you feel does a great job solving a problem similar to the one your
project hopes to solve. Start by building up your first screen by
copying the design, and then let it evolve.

� In each project where you design custom interfaces, try to make
one specific, measurable improvement in this mock-up over
your previous projects. This might be taking an element you often
include and making it better by trying something new. This might
mean changing the paradigm under which you define the navigation
of the application. Whatever it means is not important, as long as
you are trying with each project to do something new, which, in the
process, becomes something better.

Pro Web Project Management

99

� Run some informal usability tests (sometimes called “hallway
usability tests”). Grab a nontechnical member of your organization
and put them in front of the mock-up. Point to an area on the
mock-up and say, “What will this do if you click here?” Or ask
questions about how to do a certain workflow, like, “Where do you
go to search by last name?” The answers will be revealing.

For public web site design projects, it is most helpful to have a great
checklist of questions to ask in the requirements gathering phase about de-
sign, such as

� What are some examples of web sites with designs you like?
� What are some examples of web sites you don’t like?
� What colors should we use and not use?
� Do you have existing logos and designs we can use as a basis for the

design?
� Do you have any branding or identity requirements?
� Do you want the navigation to appear horizontally across the top or

vertically down the left side?
� Do you want a fixed or fluid layout?

When the wireframes are ready, send them to the client to review and set
up a meeting to discuss them. Begin the meeting by explaining what each
element in the wireframe represents. This helps ensure that everything is
clear to the client.

Let’s look at several examples. The wireframe in Figure 7-3 was for a dash-
board for nonpublic users on a news-driven site. This is really a web applica-
tion design exercise and not a public web site design exercise, and this page
was part of a larger suite of tools to facilitate running a news site. This wire-
frame was created using Balsamiq Mockups, a wireframing software tool.
Figure 7-4 shows the real web page that resulted from this initial wireframe.

Chapter 7 | Technical Documentation

100

Figure 7-3. A wireframe for the editor’s site activity dashboard in NeonTommy.com

Pro Web Project Management

101

Figure 7-4. The wireframe in Figure 7-3 was turned into this real web page, called the
Zeitgeist Dashboard.

The wireframe in Figure 7-5 was for a web development project whose
goal was to encourage public participation in the McHenry County, Illi-
nois, 2040 Long Range Transportation Plan. This wireframe was created
by Urban Insight project manager Chris Loos using Mockups. Figure 7-6
shows the homepage.

Chapter 7 | Technical Documentation

102

Figure 7-5. A sample homepage wireframe for a web site to encourage public participation

Pro Web Project Management

103

Figure 7-6. A sample design for the McHenry County, Illinois, 2040 Long Range Transporta-
tion Plan created based on the wireframe

Chapter 7 | Technical Documentation

104

The wireframe in Figure 7-7 was created to specify a web-based video gal-
lery for the Los Angeles County Museum of Art. This wireframe was
created by Urban Insight project manager Kurt Rademakers, PMP, using Mi-
crosoft Visio, which is often favored by project managers who have to
create many wireframes that share common elements. The web page is
shown in Figure 7-8.

Figure 7-7. A sample wireframe for a web site to present a video library

Pro Web Project Management

105

Figure 7-8. The implemented video library page based on the wireframe

In this case, because a clearly defined design for the web site already ex-
isted, the project team went directly from wireframes to implementation.

Sharing Your Work with the Client
It is important to present the wireframes and mock-ups to the client in a
professional manner:

Chapter 7 | Technical Documentation

106

� Mock-ups are typically exported by a designer in an image format.
Consider posting a simple but clean page on your web site (with a
private URL) to post them.

� As they are produced, you can post newer versions of the mock-
ups at the top of your private page, pushing the older comps down
the page chronologically. This provides an easy way to see the
progress of refinements and make it clear which is the most current
design.

� Show a large thumbnail of each comp that links to a nice, crisp, full-
size image.

� Label each mock-up to provide names that can be used by your
clients when discussing specific mock-ups.

When preparing wireframes to share with the client, consider the following:

� Export the wireframe as a PDF, not a PNG. PDFs open and display
reliably in Adobe Reader, which is widely available on most
platforms. PNGs do not reliably open in an application that offers
easy review.

� Clean up any extra attributes your wireframe software adds to the
PDF. Anything that is not directly related to the wireframe and that
might confuse your client should be removed.

� Change the properties of the PDF so that the document opens to
show the entire first page.

� Add a header to the PDF with the project title, wireframe title,
date, and version number.

� For multiple-page wireframes, add the page number in the footer.

 NOTE See the Appendix for neat wireframe and mock-up tools that we have found helpful.

The Design Process
The visual design aspect of a web site development project tends to be the
most fun for both you and your client, but it also has the potential to throw
the project off track. Let’s face it: design is subjective. We have seen per-
fectly professional and usable designs destroyed by a committee of non-

Pro Web Project Management

107

design professionals who all wanted to add their own signature touches dur-
ing the design review process.

Here are several subtle tactics for keeping the visual design aspect of your
project on track.

� Try to remove some of the subjectivity in design by creating two
sample home page wireframes before you create the design, so
clients can focus on the placement of elements first.

� Include a “design brief” in your requirements gathering process.
Recall that a design brief captures the key design requirements
about the project, and determines the known design constraints
such as the use of logos, whether the page width is fluid or fixed,
and other design requirements.

� Review a series of ten preselected designs (not necessarily yours) of
well-designed sites, and spend time discussing them. In the process,
the client learns something about site design and you learn what
they like.

� If you are working with a committee, perform this design discussion
with the committee and ask them to reach consensus on the
elements they do and do not like. The committee will perceive
design development as a collaborative process. Otherwise, if you
develop the design without their participation, you increase the risk
they will reject it when you present it.

Because it is subjective, the design process can go on for a long time unless
you constrain it. The best way to do this is to be explicit about what the de-
sign process will include and associate a cost with continued design revi-
sions. Here is a model that we have found can work well:

� Agree to prepare three different initial design mock-ups. These will
be based on the client’s design goals, wireframes, and a review of
other well-designed web sites.

� In addition to the initial design, conduct two rounds of design
review and modification based on client feedback.

� State that each round of design review can be replaced by another
new or fresh design if the client does not like one of the original
three.

� After the home page design is set, create one or two content page
designs, which typically reflect the design of the home page.

Chapter 7 | Technical Documentation

108

� Perform one round of design review and modification of the
content page designs.

� State that further design refinements will be subject to a time-and-
materials fee. Obviously, you can decide to be more lenient and
waive the fee for additional designs or rounds of design, but at least
you have clearly defined the expected process.

After you have created the initial set of three designs, it is often useful to
schedule at least one and probably two design review meetings with your
client to carefully walk through each of the designs. Most designers create
the initial designs as images using Photoshop or Illustrator, with the mock-
ups presented as images on a web page, emulating the look of the finished
web site. This presentation can confuse clients, leading them to believe that
the application or web site is already completed.

During your design meeting, it is useful to cover the following points:

� Remind the client of the process you used to get here. For example,
“These designs are based on the wireframes, design brief
requirements, and the review of ten selected designs.”

� Explain that the designs are images, not actual web pages.
� Walk through the header and navigation placement in each design.
� Identify and discuss how each interactive feature is envisioned to

work on the finished application. Many web-savvy project managers
gloss over elements of the design that seem obvious to them, but
which the client may not understand. For example, a series of social
media icons may imply to you that these icons link to social media
sites, but unless you state this explicitly, the client may not
understand why the icons appear on the design.

Here are a few additional things we have learned over the years:

� Don’t be defensive. Or, if you have your visual designer or team
participating in the meeting, be sure to alert them not be defensive.
Clearly explain each and every aspect of the design, but if the client
is negative about some aspect of a design, simply note that. Try hard
not to argue with the client about the designs. This puts you in a
defensive position, instead of being the client’s advocate through the
design process.

� Unless you happen to be a design expert (many project managers
are not), try to withhold your subjective opinions about the designs

Pro Web Project Management

109

unless explicitly asked. Instead, try to point out differences among
the designs that the client should notice.

� As you proceed through the design meeting, collect the feedback in
a written form, so you can present the feedback to your visual
designer or team.

� As you wrap up your design meeting, be certain to summarize the
feedback you have collected, and briefly explain the next step in the
design process. This will help to build confidence with your client
that you have understood the feedback, but that the design review
is still proceeding inside the overall design process that you already
have defined.

Be patient, positive, clear, and concise, and with a little luck, your design
process will move ahead flawlessly.

Creating a Database
Creating the database for your custom project should be a very satisfying
phase for three important reasons:

� It feels like an accomplishment;
� It looks impressive when printed; and,
� It gives you a strong sense of how the entire application will work at

a technical level.

Some technical project managers may be up to the task of creating a data-
base schema for the project on their own. However, database design is not
likely to be part of the skill set of most project managers.

If you have limited or no experience with database design, you may want to
work alongside a developer to create the database schema or delegate this
task to an experienced developer, and have her walk you through the
schema she creates.

We do find that project managers should be involved in the database design
phase, as it provides three unique benefits:

� It makes the project manager acutely aware of how requirements
relate to database design.

� He gets a much deeper understanding of the application you are
building.

Chapter 7 | Technical Documentation

110

� He can offer greater insight about how the requirements relate to
the data structure.

In most cases, it is easiest to build the database schema after you complete
and refine the HTML mock-ups. The mock-ups will go through several revi-
sions, following internal and external feedback, so starting the schema too
early may waste time with needed revisions. Once the mock-ups are com-
pleted, you can design the database alone or in tandem with writing the
technical specification (if you are writing one).

For a project that will not have a technical specification, you can simply go
through the HTML mock-ups one at a time and create the necessary data-
base structure for each page in the application. If you are writing a technical
specification for the project, write the database schema at the same time.
This will help you conceptualize the technical architecture of the application.

As when designing the schema for a project with just mock-ups, try building
the parts of the database needed to support each section as you write the
technical specification.

Here are some general tips that can help with the database phase, whether
you are doing it yourself or working with a developer:

� Create the database schema in the same database being
used for the project. Written schemas on paper do not evoke the
same thought process as creating it in reality. Besides, in most
database management systems, it is less time consuming to do it this
way.

� Think in terms of how the database will support a feature during
requirements gathering. This will speed up the process of database
design and help shape the technical architecture of the project in
your head.

� Think or talk through a feature completely, start to finish, and
identify every piece of schema needed.

� Seek out problems in how the schema will support a feature. You
will likely find problems that can be solved much more cheaply now
than later in the development process.

� Identify whether your application is more read-heavy or write-
heavy, and structure your data accordingly.

Why bother creating the database schema before you start devel-
opment? As with writing a technical specification, creating the actual data-
base needed to support all features in the site will likely reveal technical is-

Pro Web Project Management

111

sues you need to discuss with your team and solve now, before develop-
ment starts. Fixing a problem during development takes more programming
hours and costs more money than if it had been fixed earlier. The most ex-
pensive line item in your project budget is likely human hours; guard them
jealously.

Writing a Specification
A technical specification describes everything that goes on behind the scenes
or is not immediately apparent in your HTML mock-ups. The spec should
include screenshots of the prototype screens you prepared. This is impor-
tant when you have a more complex interface with lots of business logic.

This is also a good place to set the tone for the technical architecture and
basis from which your developers will write code. Before any coding starts,
you can protect the project development from going down paths that are
likely to lead to scope creep, poor performance, or scalability issues.

The technical specification document is a companion document to your da-
tabase schema and your HTML mock-ups, and it typically should include
both the schema and mock-ups. It should restate any features mentioned in
the requirements document and any functionality implied in the HTML
mock-ups, such that the entire set of project requirements exists in the
technical specification. Why? Because your developers—no matter how
hard you try—will only begrudgingly read one document. You want it to be
the technical specification.

The Meat and Potatoes
A basic technical specification includes the following elements:

� Functional description for each module (the meat and potatoes)
� The database schema
� Lots of screen shots of your HTML mock-ups

The pieces of a basic specification are straightforward and include the big-
gest section by far: the functional description. The functional description
should be littered with screen shots from your HTML mock-ups and refer-
ences to the database schema.

Essentially, this section should step through each major part of the applica-
tion and describe, in plain language, every little thing the application will do.

Chapter 7 | Technical Documentation

112

Just pick the first page of the application, paste in a screen shot, and start
describing everything on this page.

� Describe everything that is left unsaid, even the components you
assume are implied by the mock-ups, but are not clearly visible. The
less ambiguity, the better.

� Use the principles of good web writing in your spec: clarity and
brevity, lots of bullet points, and selective bolding.

� Mention the specific database tables and fields that will supply data
to various parts of the application.

� Carefully explain the logic that manages the state of a multi-
state object, such as context-based buttons, rich data display tables,
and drop-down menus.

� Look for logic patterns in the application that will lend easily to
creating centralized logic for common routines. The principle of
DRY—Don’t Repeat Yourself—is often a valuable timesaver.

The full database schema can appear at the end of the specification, in an
appendix. For example, Microsoft SQL Server Management Studio includes a
handy tool to visually define the primary-foreign key relationships between
tables. Screenshots of these diagrams clearly convey how the schema sup-
ports the project’s functionality.

Think Through a Feature
Consider the entire life cycle of a feature by thinking through all of its impli-
cations. This helps you identify any potential “gotchas” that will impact the
schedule, scope, and challenge of a task.

Some questions you might ask:

� Does this feature impact search?
� Will the data captured by this feature accumulate over time and

need to be trimmed?
� How is this feature used in other (secondary) areas of the

application? Will the current method of implementation cause a
reduction in performance?

� What might this screen look like after 6 months of data? A year?
Three?

� How could this feature be used incorrectly?

Pro Web Project Management

113

� Does this involve a fixed list of values? If so, where are they defined,
how are they stored, and how might these values change over time?

Be Specific: An Example
The single most important task in writing a technical specification is to en-
sure specificity.

The following is an extract from a technical specification for a web site
project that involved a complex custom events registration system. This
section describes an information box at the top of the user profile page, re-
ferencing the specific fields in the database where this information resides:

The user homepage for registered members includes a small information
block at the top of the page and an events listing below. The information
block displays

� General eligibility status
� CAP eligibility status
� CAP certification status

� Indicates whether a user has attended a CAP orientation event
� Checks whether person actually attended event

� Last CAP workshop date (from Attendee and Event table)
� Next available CAP workshop date
� Number of events missed in last 12 months
� A link on the homepage takes the member to a page to view and

update all information from the member registration form (see
above)

This next example is from the same project and describes the logic that de-
fines what appears in an RSVP column of a table of upcoming events pre-
sented to a logged-in user:

The Status/RSVP column:

� Shows an RSVP button for events that member is eligible for and
that are not full

� Shows an “Add to wait list” button when the user is eligible and an
event is full

� Shows “RSVP’ed” if the member is RSVP’ed for the event

Chapter 7 | Technical Documentation

114

� A Cancel button appears next to RSVP’ed if the current time is
before midnight of the night before the event
� When a user presses Cancel, the next available wait list
attendee (based on the date and time added to the wait list) is
changed to attendee and sent an e-mail alert:

Congratulations! Due to a cancellation, you have been moved from
the wait list to an attendee for [EVENT NAME] on [EVENT DATE
AND TIME].

Login at http://example.org for complete event details.

� Changes to CAP eligibility (see outlined Event Eligibility section)
- If an attendee is being added to a CAP workshop-type

event, then a CAP ineligibility date is added to the
member record for 90 days after the date of the event.

- If the attendee is being added to a CAP orientation-type
 event, a CAP eligibility date is set to the date of the
 event.

� When the event is within 24 hours, system outputs, “Please call
to cancel your reservation.”

� Shows “Wait list” if the member is on the wait list
� Shows “Ineligible” if the user is not eligible for the event, and the

reason why
� Shows “Call to book” if a user is eligible for the event, the event is

not full, the user is not RSVP’ed or on the wait list, and the event
date is within 24 hours

The Status/RSVP button uses eligibility logic outlined in the Event Eligibility
section to control for which events the member may register.

The detail in these examples may look excessive, but these questions need
to be asked and answered before the project starts, as part of the require-
ments document (See “About Requirements” in Chapter 4). If they are not,
then programmer hours will be spent fixing these issues after primary de-
velopment is complete, when it is much more time-consuming to make
changes.

Pro Web Project Management

115

The Side Dishes
The additional sections of your technical specification will likely be defined
by the requirements of the project and might include sections like the fol-
lowing:

� Data imports (if relevant)2
� Application architecture
� Server/hardware infrastructure
� Development/coding standards (sometimes useful if new employees

are on the project team)
� Security considerations

For a larger custom development project, it is helpful to talk a little about
the application architecture:

� How will you approach organizing the various elements of whatever
language you choose, like functions, methods, classes, and objects?

� Where will the business logic reside?
� Will you use an existing application framework?
� How will you set up a testing environment to support development

of tricky features like e-mail or billing systems?

The servers supporting the project will also impact development and should
be stated clearly:

� How many servers?
� What will be the software and hardware stack of each server?
� Will they all be behind the same firewall in the same network, or

will they be separate?
� Will they be physically separated, with the Internet in between?

If your team has new members, clearly (and briefly) explain how your shop
develops software. An experienced team will have made the mistakes that
less-experienced programmers tend to make, and will avoid them. But you
cannot assume that new members will have had the same experiences.

Finally, consider if there are any security implications in your application:

2 Data imports are almost always harder than you expect. Protect your project budget by
throwing a lot of detail and planning into the data import before development starts on any
part of the application.

Chapter 7 | Technical Documentation

116

� Are there privacy laws (like HIPAA or FERPA in the United States)
that impact your application?

� Do you have data in your database that should never make it into
log files or debugging routines?

� Do you need to encrypt the login credentials stored in your code?
� Do you need to encrypt the database?

More Reading
See the Appendix for some great additional reading on writing a technical
specification. If you have time to read only one additional article, read Joel
Spolsky’s “Painless Functional Specifications.”

Wrapping Up
Your planning is done. By now you should have a strong sense of all of the
documentation you need for your project, be it requirements documents,
HTML mock-ups, wireframes, designs, technical specifications, or database
schemas. It’s now time—at long last!—to cash in all of your hard work and
begin development.

In the next chapter, we cover everything you need to know to keep your
sanity during the development phase. We start with a horror story about a
developer going rogue. We cover guidance on how to keep your client in
the loop, tips for writing professional e-mails, and easy ways to maintain do-
cumentation.

We go over the simple but powerful method of using checklists to maintain
quality and show you how to avoid the crippling nature of no-win-scenario
bugs. We wrap up the chapter by detailing how to conduct weekly develop-
er meetings that keep your team happy and your project on track.

C H A P T E R

8

Development,
Communication,
Documentation
A Developer Out of Control
Jack is a web developer for a ten-person consulting firm. Although he has no
formal training in computer science, he has 5 years of development expe-
rience with a range of open source tools and is passionate about his work.
Jack is tasked with building a new web application to accept advertisements
for an online publication. Because the client’s contact is familiar with web
development technologies, Jack tells his project manager he is willing to
serve as the client liaison and work directly with the client on a daily basis.
As usual, he will check in with his project manager each week to provide a
status update.

The project starts out very well. Jack is on budget, and the client is happy.
The consulting firm’s project manager begins to give Jack more leeway be-
cause everything is moving along so smoothly, and decides to have meetings
every other week.

Jack really likes the application he is developing and decides to try a new de-
velopment framework. Because this is really a technical decision, he does
not feel that he needs to get clearance. Jack is off and running. About a
month into the project, he notices a couple of features that could really im-

Chapter 8 | Development, Communication, Documentation

118

prove the user experience and suggests them to the client. The client is ex-
cited about the improvements and makes a few recommendations of his
own. Jack means to make a note of these changes and tell his project man-
ager about them, but on the day of their regular progress meeting—which
now takes place every 2 weeks—the project manager was away at a training
session. However, the changes are not that big, so he decides he can re-
member them all.

Jack keeps plugging away. Some minor technical glitches crop up between
the framework he decided to use and a few of the improvements he and the
client agreed to implement. However, he finds a workaround with only a
couple of days’ worth of extra effort.

One afternoon, the client calls Jack and excitedly tells him that the proto-
type system is so popular that two new clients have signed onto the project,
so they will need to extend the application to enable clients from multiple
magazines to use the system. Initially, Jack is nervous about this new tech-
nical direction because some of the previous modifications, combined with
this new requirement and his selection of a new framework, are causing
some technical problems.

Jack lets deadlines on other projects slip by as he tackles one problem after
another. He always feels like he is just a day or two from being done until a
new problem or bug creeps in.

Jack’s project manager hastily calls a meeting to discuss the missed deadlines
on several other projects; it has now been nearly 4 weeks since their last
meeting. Jack proudly demonstrates all of the new features and increased
functionality he has built into the system—including a few graphical flourish-
es of his own—and explains that he is very close to solving his latest tech-
nical issue. Finally, he discloses that the new coding framework he selected
is causing a few problems.

He notices that his project manager is becoming increasingly agitated. The
project manager explains that Jack is already 20% over budget on the
project and cannot understand why he has adopted a new development
framework on his own—one that no one else at the consulting firm uses—
which means that Jack is effectively the only person who can continue work-
ing on this project. To Jack’s surprise, the project manager tells him to stop
work on the project while he calls a meeting with the company’s manage-
ment to determine how to proceed.

In this case Jack and the project manager are both at fault. Jack overstepped
his role as a developer, and the project manager allowed this to happen. It is
exceptionally hard for a developer who is deeply involved in the details of

Pro Web Project Management

119

programming a system to clearly understand the broad context into which
his work will fit. This is an important role for the project manager. When
the project manager and developer don’t clearly and consistently communi-
cate, problems can emerge rapidly.

This chapter offers guidance on keeping the project team on track and en-
suring that documentation is being prepared as the team progresses.

Keeping the Client Updated
It is likely that the bulk of the project schedule will be taken up by the de-
velopment phase, which involves little communication between you and the
client. This is normal if it happens, but it is essential to provide regular up-
dates to the client during this period.

A simple e-mail, sent once a week, is sufficient to keep the client
updated on the status of the project. Keep the e-mail brief and men-
tion a few specific milestones that have been completed, the major upcom-
ing milestones, and reconfirm the launch date of the project (if it is still on
track).

It is also likely that during the development phase you will hit upon an issue
that requires some client input to resolve. This is an opportune time to
bring the client into the decision process. To protect against the unex-
pected or the unwise suggestion, be sure to frame possible solutions as spe-
cific options in an e-mail, and request a decision on the option the client
feels is best. You might consider scheduling a brief conference call to discuss
the issue at hand, beginning the call with a quick project status update.

Bringing the client into a guided decision has several benefits:

� The client feels like part of the project process.
� The client gets to buy into the decision. This helps to manage

expectations about the issue at a later date, as they were part of the
decision-making process.

� The project is protected by defining the possible solutions from the
start. This helps ensure that no options do more harm than good
overall.

Chapter 8 | Development, Communication, Documentation

120

Replying Quickly
An easy way to keep a client satisfied and confident in the project process is
to reply to e-mails in a timely manner. If the client sends a note about a
problem, reply quickly that your team is investigating the issue and identify
when you will update them next. A quick reply will be appreciated and alle-
viates any pressure on the sender (say, if she is receiving pressure about the
issue from her own internal team).

Because people usually are slow to respond to e-mails, your client will ap-
preciate a prompt reply. It is an easy, low-cost way to make a positive im-
pact on your client.

For more details, see “Be Responsive” in Chapter 11.

Tips for Writing E-mails
Love it or hate it, e-mail has become the dominant mode of communication
among teams in business. Like any tool, an e-mail can be used well or poor-
ly. Let’s look at how to use e-mail effectively.

Professionalism
Because e-mails have such low cost (easy to write, free to deliver, instant
arrival), the written quality of e-mail tends to degrade to simple, curt mes-
sages. Resist this temptation. An e-mail to a client should be complete,
spelled correctly, short, and relevant.

Here are our e-mail tips:

� Start the e-mail with a friendly “Hi {Name}” or “Hi Team” when
addressed to several people.

� Be polite; for example, use “kindly” and “thanks for your note.”
� Limit the e-mail to three or four paragraphs.
� Limit paragraphs to three or four sentences.
� Take time to write a simple, respectful and professional e-mail—

even in response to one-line e-mails. In doing so, you maintain a
professional demeanor and make clients appreciative.

Pro Web Project Management

121

What’s in a CC?
A CC on an e-mail is one of two things:

� A way to keep a team member informed; or,
� A handy way to lend weight to an e-mail by keeping the boss

informed.

While a BCC is a soft notification (in that you let the boss know something
without the recipient’s knowledge), a CC is a hard notification in that it
adds authoritative weight to any e-mail sent. A BCC is used to let a valued
employee save face while still keeping the boss in the loop. A CC is used to
reinforce the e-mail with the superior authority of the person CC’ed.

When used correctly, a CC can say, “Hey! This is important, as I am letting
the boss know I told you this.”

Don’t Be Rude
Do not be rude in e-mails. Do not place blame, and do not write something
to make your wounded self feel better. Try to be unflappable.

If you are writing to check in on a client who has not responded or who has
dropped the ball on something, say something like, “I just wanted to check
in on the {whatever project}. If there is anything I can do to help, kindly let
me know.”

Your Vacation Auto-Response Message Is
Probably Wrong
Most people do not set up e-mail vacation auto-replies correctly and typical-
ly commit a few usability gaffes in these auto-responders.

Here are few helpful guidelines when configuring your auto-response:

1. Be absolutely clear to the reader exactly what date you are back at
your desk reading e-mail.

2. Recipients should only receive a repeat response once every 5 days.

3. Include coverage contact information: who can the reader contact
while you are away if they need help?

4. Always include the original subject line in the auto-response e-mail.

Chapter 8 | Development, Communication, Documentation

122

5. Avoid stating when you started your vacation; focus on when you
will return and be available.

Guidelines 1 through 3 are a simple matter of professional manners and
responsibility.

Guideline 4 is important for two reasons: including the original subject line
reminds the recipient of the source e-mail that generated the message (and
thus roughly what date they discovered you were on vacation). In addition,
including the subject line decreases spam when vacation responses are sent
to e-mail addresses that feed into issue-tracking systems.

Guideline 5 keeps the client focused on when they might expect a reply, ra-
ther than thinking about your wonderful vacation.

The Power of Checklists
A checklist is a simple little thing: a list of items written in a meaningful or-
der. Beyond your own lists for the grocery store and for preparing for tra-
vel, you are surrounded by a variety of invisible checklists that keep you
safe, secure, and happy.

For example, say you are taking a two-hour flight from Boston to Washing-
ton, DC. This trip seems routine from the passenger’s perspective, with a
short flight, nice flight attendants (maybe), and an easy landing. But this is
made possible by trained professionals piloting a marvel of engineering that
took decades to design, billions of dollars to build, and requires thousands
of small mechanical components to work in concert. The complexity of a
commercial airliner is made abundantly clear to us lay people if we catch of
glimpse of the cockpit control deck, complete with hundreds of dials, knobs,
switches, readouts, and gauges. And yet at the end of a flight, you are still
alive and the pilots do not seem all that stressed while standing in the cock-
pit door and saying goodbye to deplaning passengers.

How is all of this possible? A myriad of factors, really: government regula-
tions, the wide use of safety technologies, modern computers, and increa-
singly sophisticated airplanes. And, of course, one more important piece of
safety is the preflight checklist. If you ever saw the pilot looking at a clip-
board before the plane departed, she was probably running through the
preflight checklist.

This checklist includes steps to verify everything from having enough fuel to
the right oil levels to testing critical components. These checks might seem
obvious, but there are dozens of them, and one or two can be easily over-

Pro Web Project Management

123

looked. Most often, the checklist does not find any problems, but pilots re-
peat the checks before every flight, every day, for their entire aviation ca-
reer. Over and over again, they run this same checklist.

Why? First, it is important to recall the 80/20 rule. (See “The 80/20 Rule” in
Chapter 4 for a more complete explanation.) Put simply, the 80/20 rule
states that often, in an engineering system, the ratio of 80/20 appears.

 Tip This common ratio occurs when 80% of your problems can be addressed by focusing on the
right 20%. But finishing the last 20% of the project will require the remaining 80% of effort.

The 80/20 rule is as much about a sort of engineering golden ratio as it
about learning to examine solutions to a problem by assessing how much
impact an individual solution offers to addressing your problem.

There are thousands of ways that an airplane can crash. Some are possible
to check before a flight, and some are not. However, by checking explicitly
for problems that cause a greater proportion of crashes, you can substan-
tially reduce risk while only looking at a small subset of the overall number
of accident causes. Resources are never unlimited, whether that is time,
money, or expertise. When you only have time to check 20 components,
you want to be checking the right 20 components that prevent the
most possible points of failure.

And this is what the preflight checklist is designed to do. Because of the
wide use of checklists in aviation, airplane disasters in the West tend to be
caused by outlier situations that are hard or impossible to screen out before
they happen—rare weather phenomena, acute mechanical component fail-
ure, acts of terrorism—and not by the more detectable, common failures
that plagued aviation in the early years of powered flight.

A checklist thrives in situations where the 80/20 rule thrives. The
goal of the checklist is simple: improve the stability of a system by checking
the most common detectable causes of failure frequently.

Checklists are widely used in commercial aviation and the military, and are
becoming more widely used in hospitals, where they are showing early but

Chapter 8 | Development, Communication, Documentation

124

dramatic results in improving care.1 The checklist has utility for project
management in software and web design as well.

Here are a few ways you can use checklists in your own projects:

A sanity health checklist: this is a set of checks that assesses the health
of a web application, looking at common causes of failure on the entire
stack, from the server or operating system level to the application level.
Items might include the following:

� Does the server have enough free disk space?
� Are there any security patches for the operating system pending

installation?
� Does a port scan reveal any unexpected open ports (indicating a

firewall failure)?
� In the past 24 hours, have there been any log messages of concern?
� Did the last backup succeed?
� Is e-mail successfully sending from the server?

This checklist touches upon the common areas where an application can fail,
such as dependent component failure (e-mail, backups, firewall) or operating
system problems (lack of disk space from runaway log files, missing patches,
error log entries).

A patch checklist: these are the steps that outline the process of applying
a patch to a live production site. Steps might include

� E-mailing the client to alert them the patch has started
� Putting the application into offline mode for the patch
� Making a manual backup of the database and code before the patch
� A few specific tests to run on different parts of the application to

validate the patch is not causing major issues (could be the separate
upgrade checklist mentioned next)

� E-mailing the client to alert them the patch is complete

An upgrade checklist: this is a series of checks on the most fragile parts
of the application that you run after you patch new features or issue fixes
into the production system. It is a form of a testing checklist that your de-
veloper should conduct as the last step in the patch process.

1 See reading list item for “The Checklist” in the Appendix.

Pro Web Project Management

125

A testing checklist: this is a guide for those doing quality assurance testing
on your application. See “Creating a Testing Checklist” in Chapter 9 for
more information.

A launch checklist: this is a list of important launch-time configuration ad-
justments to apply to ensure a smooth, professional launch of a project. See
“The Launch Checklist” in Chapter 9 for details.

Here are some general tips for creating checklists:

� When creating a new checklist, start from the last one you
prepared for another project. You will not keep every item you had,
but it will be a good starting point.

� Ask different team members what they think are the most likely
three or four points of failure.

� When a problem occurs that your checklist did not catch, take a
moment to consider if there is a check that can be added while
keeping the checklist efficient.

� Think back to the major problems you have had with other
applications in the past. There are likely good checks in these painful
memories.

� Parts of your system that rely on third-party components are likely
to be fragile (by design; if you do not control it, you cannot
trust it). Check those.

Investing a small amount of time to create and use an efficient, targeted
checklist will help prevent major system problems that might otherwise
consume a far greater amount of your already scarce resources.

Don’t Avoid the Pain; Go Toward It
Let’s talk about the no-win-scenario (NWS) bug. You know this bug. You
have no time left in the budget to troubleshoot this issue. The programmers
insist there is no quick option, it will just take time. Meaning hours. Hours
that are no longer available in the project budget. So the bug report sits in
your queue as you are hamstrung by indecision. With no good choice to
make, who wants to commit to the least bad option?

We struggle with the NWS bugs, often obsessing that there must be a clev-
er, time-beating solution to the issue. But there is not. If you have great
programmers around you and your initial questions and discussion did not
produce any insight, then there likely isn’t any to be found.

Chapter 8 | Development, Communication, Documentation

126

Just accept that the least bad option is the best option, make a decision, and
move on. Do not ignore the issue. If you do, it will start to affect new mod-
ules developed in your application. Your programmers will (naturally) forget
the intricacies of the issue, and so will you. You will need more time later to
relearn the issue.

Open decisions in your queue are a drag on your own morale, as you can
feel their burden and feel your brain nagging at you to make a decision.

Do not avoid the pain. If you have pain right there in front of you, it should
be an indicator to move toward a decision. You should want to be rid of the
pain by dealing with it, embracing it, and moving forward. Do not ignore it.
A little pain now saves you a lot of pain later.

Keeping Documentation
Documentation is hard—mostly because very few people enjoy writing
down what they are doing.

There are several kinds of documentation that you will need to ensure the
success of your project. Most projects that are $100K or higher will need
each of these types of documentation.

The key here is to ensure that reliable systems are in place to track the sys-
tem documentation. As we review each type of documentation that you
need for a successful project, we will offer our hands-on observations about
some of our favorite systems for tracking these changes.

Documenting Code
When a developer writes custom code, he needs to add comments
throughout explaining what he is doing. This makes it significantly easier for
someone (including the same developer) to revisit the code later and make
changes. It’s tempting to think that you will never need to revise your cus-
tom code, but 90% of the time, you would be wrong. Here is an example of
some simple commenting that you would expect to see in a developer’s
code:
 /**
 * AJAX callback function. Returns the state after one step or
initialization
 */

Pro Web Project Management

127

This kind of documentation should always appear in your development files,
inline with the code. Many developers provide very few comments on their
code, or none at all, unless they know that someone is reviewing the code.
The best way to ensure that your code is well-commented is to have regu-
lar code reviews where a technical project manager or another developer
reads through the code and make recommendations.

Recommendation: perform monthly code reviews to ensure that developer code
is well-commented.

Documenting the System Architecture
The system architecture is typically developed early in the project. If you
have followed our advice, you will most likely have a technical specification
that outlines the system architecture. However, if you do not have this, you
need to capture the relevant details so that developers understand the full
scope of the system and so that when you come back to the project later,
you can remember the specifics.

Sometimes the simplest way to do this is to create a graphic with a visual
representation of how the different parts of the system work together. This
does not have to be highly technical, but it should convey at a glance how
the system operates. See Figure 8-1 for an example.

Recommendation: document the system architecture in the technical specifica-
tion, or in a separate graphical document.

Chapter 8 | Development, Communication, Documentation

128

Figure 8-1. A system architecture for a cluster to power a widely-used web
application.

Documenting System Administration Settings
Team members can waste a lot of time trying to find usernames, passwords,
and other system administration settings. If there is no centralized location
to store this information, individual team members will begin keeping “cheat
sheets” with the information on a piece of paper in their desk or in a file on
their computer. Not only is this not secure, but it also complicates changing
settings or passwords.

Wikis are an excellent way to store system administration information. A
wiki is a series of shared web pages. Each change is tracked, so it is easy to
see what information has changed. Individual team members can be granted
access to view or edit pages, based on their needs. When you have configu-
ration changes—for example, if you create a new development site—you
simply add the details to the wiki. All team members who need access can
then access the wiki to obtain this information.

Figure 8-2 shows a screenshot of the template we use for client pages on
the Urban Insight wiki.

Pro Web Project Management

129

Figure 8-2. A screenshot of a sample wiki page based on a fictional client,
with all confidential information removed.

Recommendation: track system administration details using a wiki.

Chapter 8 | Development, Communication, Documentation

130

Documenting Changes over Time
Most successful web applications change over time as the application is re-
fined and upgraded and as new features are added. Documenting the
changes that occur over the life a system is one of the most challenging as-
pects of documentation.

For example, say you finish a modest project and have the developer deploy
the changes to the production server. The correct code is launched, and the
project is successful. Six months later, you ask another developer to make
some modest refinements requested by the client. However, unbeknownst
to the current developer, the initial developer made some changes on pro-
duction that he failed to make on the local development copy. The pro-
grammer making refinements is working on the development copy of the
application, not production, and when she pushes her refinements they will
inadvertently overwrite the working code that’s already there.

Version control is an elegant solution this problem. Changes to code are
usually identified by a number or letter code, termed the “revision.” For ex-
ample, an initial set of files is “revision 1.” When the first change is made,
the resulting set is “revision 2,” and so on. Each revision is associated with a
timestamp and the person making the change. Revisions can be compared,
restored, and with some types of files, merged. Version control makes it
possible to see previous changes made to a file, and also to view the com-
ments that the developer provided when committing the change.

Use Version Control
A version control system provides a system for your development team to
track the changes to the source code of your project over time. A great
version control system can provide a reference for every past version of a
file (so nothing is lost), and keep a record of every code change. This can be
helpful to understand what the thinking was when an engineer made a
change.

Figure 8-3 shows the note left by a developer when he completed work on
a routine to show receipts.

Pro Web Project Management

131

Figure 8-3. A log entry from a single code submission from a developer in
Beanstalk

Case Tracking
Tracking individual requests for changes on a system is an important aspect
of documentation. Often, tracking these changes goes hand-in-hand with the
code changes that you will track in a version control system. Let’s use the
word case to refer to a specific and definable set of requested changes to a
system. For example, say that your client asks you to modify your system to
include a new screen that tracks changes in addresses over time.

If you were using a case tracking system, you would use the system to
create a case, which would be assigned a number—say Case #1. Any com-
munication about this particular request would be stored in the case track-
ing system so that you have a repository where all communications about
this request are stored. For example, if you and your client discussed the
specifications in an e-mail, you might send a copy of the e-mail to your case
tracking system, so that e-mail becomes part of the permanent record of
discussion. When you finally decide what to develop, your wireframes
would be uploaded and attached to the case. When you are ready to begin
development, you might create subcases—for example, Case #2 for devel-
opment of the interface and Case #3 for testing. Both of these cases would
be related to Case #1, so you could later identify the work that was per-
formed.

Case tracking systems also can record the amount of time involved on a
project and help you to plan your schedule based on available development
capacity. Figure 8-4 shows the task view screen of an issue tracker that de-
tails a feature for a public web site.

Recommendation: use a case tracking system to document requests and changes
over time. (See the Appendix for suggestions.)

Chapter 8 | Development, Communication, Documentation

132

Figure 8-4. The ticket view screen in FogBugz, a popular issue tracking system

The Weekly Developer Meeting
The relationship between a project manager and a developer is much like
that of a parent and a teenager: there is very little you can do as a parent to
change what a teenager thinks or does. Your job is to try and nudge them in
a slightly different direction when they are careening headlong off a cliff
edge. (This in no way means to disparage programmers. It is program-
mers—not project managers—who make a great project great. However, in
our experience, programmers tend not to take the big picture into consid-
eration, but focus instead on the immediate problem at hand.)

Pro Web Project Management

133

Micromanagement is an ineffective project management technique for a va-
riety of reasons:

� People will be frustrated that you do not trust their abilities.
� You do not like working under a micromanager, so why would

anyone else?
� It takes too much time. Your time is at a premium, so spend it

where it will have the most positive impact on the project.
� If a team member really needs constant supervision to be effective,

you have a personnel issue, not a management issue.

The key is to maintain oversight and control of your team, but give them
enough breathing room. We recommend a one-on-one weekly meeting.

The weekly meeting can be short, maybe 30 minutes. In this meeting, you
have three main goals:

� Review the status of every outstanding project.
� Set a Clear priority order for what needs to get done this week.
� Discuss any complex tasks that would benefit from planning discus-

sion.

When you review the status of every ongoing project, you can see if
the developer has run into any issues that are making the task more com-
plex or are requiring more time than expected. Focus on these hiccups in
your meeting and be determined to find solutions.

Set a clear priority order, making it clear to the developer what you need
accomplished over the coming week. This is also your main tool to manage
the schedules of your various promises to clients about when tasks will be
complete. Limit this to just two or three tasks. Anything more just will not
be possible in a week (because something always unexpected happens with
a client).

Lastly, use the weekly meeting to review any complex tasks that the de-
veloper will work on that week. This is a good time to do a “gut check” and
see how the developer might approach the task. Most of the time their pro-
grammer instincts will serve them well, but it is important to make sure you
know the general approach they are taking. Sometimes, you can identify and
remove any mitigating factors they might not be aware of, and steer their
work in a different direction.

Monday is a great day to have the weekly meeting. Team members will be
fresh from a restful weekend and you can frame the week as a distinct unit.

Chapter 8 | Development, Communication, Documentation

134

Once you lose the developer for a weekend of fun, they will not remember
what they were talking about the week before.

Finally, there are two additional benefits to a weekly one-on-one meeting.
First, this is a setting that encourages frank feedback because others are not
watching. And second, taking the time to meet individually helps make team
members feel valued.2

Wrapping Up
In this chapter we looked at how to manage the development process, keep
the client updated, and use checklists to ensure consistent quality. As devel-
opment winds down, you will need to begin to validate your project with
testing.

No one really likes testing, but it’s vital to ensuring that you produce a high-
quality product. Bugs in software are not a reflection of mistakes or poor
programming skills. They are a reflection of the reality that technology is a
hard, complicated game that involves subtle interactions with many inde-
pendent systems (such as other code modules you have written, third-party
applications you integrate with, and hardware you run on). Software bugs
indicate a failure of project management, not of development.

Naturally, the next chapter focuses on testing. We cover the different kinds
of testing that a project can involve, how to write a testing checklist (which
gets your client to do some of testing work for you), and how to manage a
client beta test. We wrap up with guidance on how to conduct useful but
easy usability tests and share a war story about a beta test gone horribly
wrong.

2 Although a discussion of what motivates people is beyond the scope of this book, most mod-
ern research confirms that having a sense of worth and accomplishment in one’s work is more
motivating than money.

C H A P T E R

9

Quality Assurance
and Testing
The Developer Who Refused to Test
Cathy is a programmer for a five-person web development firm. She enjoys
her work, although she feels that often there is too little time allocated for
her to complete her work.

Cathy has noticed in the past several months that the company’s lead devel-
oper has been asking her to come up with estimates for specific tasks, and
then includes another 20% of her time for “testing.” Cathy is often optimis-
tic about writing code—it is fun, after all—and does not always guess the
appropriate amount of time a task will take.

This week Cathy estimated it would take her 3 days to develop a new fea-
ture for an existing web application. The lead developer had allocated 4
days, plus a day for testing, for a total of 5 days. Cathy felt sure that she
would have no problem finishing the work in that length of time.

The project started off well, and Cathy finished the first half in just a day.
She knew that she should do some testing before moving on, but Cathy—
like most developers—despises testing, although she recognizes that it must
be done. The next morning, she decides to move into the second half of the
task now and do the testing later. While working on the second half—which
is a little more complex than she had expected—she identifies a few issues
in the original application that are causing problems for her. She invests a
few hours fixing the original application, which quickly turns into a full day of

Chapter 9 | Quality Assurance and Testing

136

work because she has to fully understand the original web application. She
gets bogged down for still another day before giving up on trying to fix the
original problem. She is now in her fourth day of work and struggling to
finish the second half of the task. The lead developer checks in midway
through the fourth day to see how things are progressing. Cathy is confi-
dent she will be able to finish the work soon, so she reports no problems.

Sure enough, Cathy finishes the second component around the middle of
the fifth day. Cathy feels that she has done a great job, and for the first time
in her work pushes the code onto a staging server, where she can begin
testing. Of course, the new module breaks as soon as it hits the develop-
ment server, and it takes until the end of the day to fix the code so it works
on the staging server. By the time she is ready to leave work, she quickly
browses through the application to make sure all the pages are working,
then resolves the case for her boss to review and heads out for a well-
deserved beer.

Midway into her second beer, she gets a text message from the lead devel-
oper asking her to check her e-mail. She sees a flood of bug reports filed by
the lead developer. Each bug report shows an increasing level of frustration.
Sure, she had not exactly tested each field in her application, but anyone can
see that she finished building it. Little bugs in field display and validation, or
minor issues with workflow are easy to fix. She cannot understand at all
when the lead developer sends her a visibly upset e-mail asking her to come
in this weekend to finish development.

This chapter explains how to create a realistic testing plan and perform test-
ing early in the development process, with an eye on preventing episodes
like the one we just described.

About Testing
Testing is vital for any project you manage. Every project needs some kind
of testing, careful review, and quality assurance (QA). Typically, you will
have several phases of testing:

� Developer testing: when a developer completes a task, he should
conduct his own testing to confirm it is working.

� Project manager review: when a developer reports a task is
complete, the project manager should review the feature for
completeness and do some testing.

Pro Web Project Management

137

� QA testing: this is when a person runs through a module or the
entire application against your testing checklist (see “Creating a
Testing Checklist” later in this chapter).

� Beta testing: when testing internally is complete, the client can
beta test the project before launch (see ”How to Manage a Beta
Test with a Client” later in this chapter for some great tips).

Developer and project manager testing happen throughout the development
process as different modules and features of the project are completed. This
is also the perfect time for the project manager to be appending the latest
feature’s components to a growing testing checklist. Putting this checklist
together a piece at a time helps ensure that nothing is left out, making the
QA testing phase much easier.

Phases of QA testing tend to occur at the end of the project, before beta
testing and before launch. A QA test is also a good time to get outsider
feedback on the project. For consulting engagement projects, the QA tester
is likely not familiar with the project yet, which is good. Their perspective
will be very different from yours and your development team’s, so the ques-
tions they ask or the problems they have will often be telling. Listen close-
ly to what they do, what they cannot do, what they ask about, and
what confuses them. Listen less to what they say.

Your Software Is Only as Good as Your
Testing
In the process of designing and managing the development of several web-
based applications, we have come to learn a critical lesson in software de-
velopment (which many others in the software industry likely already
know):

Your software is only as good as the testing you perform.

Take a real example.

Justin worked on a team that recently released a web-based chat tool. Po-
wered by jQuery, the tool enables college and university admissions recrui-
ters to easily host web chats for talking with prospective students.

Chapter 9 | Quality Assurance and Testing

138

The Bug
The application worked great during beta testing, until more than 20 chat-
ters joined a room. Then odd things started to happen: chatters were
dropped from the room, some could not join the room at all, and others
just got an endless “connection waiting” message when trying to load the
room URL.

But none of these issues happened consistently, only intermittently. We
could not regularly reproduce the issue, so it was impossible to fix. We fo-
cused on other bugs.

A few weeks went by and we still had no luck in finding the cause of the is-
sue. Then we decided to really test out the application by hosting a high-
profile chat where we expected more than 75 participants.

What a difference a little pressure makes. We were forced to take a differ-
ent approach to debugging the issue. So we ran a more complex test on the
bug and dug a bit into how Apache, a LAMP application, works. Eventually,
we found the source of the bug, fixed the issue, and felt confident that the
application would support 80 chatters in one room.

Test, Debug, Refine, and Repeat
If we had not been forced to test the application harder, the true source of
the bug would never have been identified, the software would not scale as
well as we needed it to, and (worst of all) customers would have had
problems with our software.

Your software will not get better on its own; you have to force it to be-
come better with great developers, useful features, and—most of all—hard
testing. Over and over again. From different angles and vectors. From dif-
ferent computers, networks, browsers, operating systems, locations, moni-
tors, and processors.

This is not a new revelation, but it is an important one.

Creating a Testing Checklist
Creating testing checklists is actually pretty simple. Start by opening up your
application to the home screen. For each screen, try to imagine all of the
things a user can do and all of the ways a user can mess things up.
You want to test for both.

Pro Web Project Management

139

 Tip In essence, your testing checklist is a just a to-do list that should force the tester eventual-
ly to visit every part of your application. Your ultimate goal is to point out all of the things
that need testing and any special cases.

For example, here are some real entries from a web content management
project:

� Use the “forgot password” link and confirm you can login and
reset your password.

� In the attendees listing table, sort by various columns and confirm
the sorting works.

� Edit a page and confirm editing works.
� Upload and add an attachment to a content page.
� Filter the events management listing screen by various criteria and

verify they work.
� View the user home page and verify all upcoming events are listed.

Generally, you want to balance specificity—trying to touch upon every
feature of the application—with brevity. You should not need to specify
exactly how to test each feature. For example, you should not need to tell
a QA tester what kinds of values to use in a text search box to see if
there are encoding issues with the form. (If you do need to mention this,
you have an inexperienced tester.)

In addition to touching upon each part of the application, be sure to men-
tion in the testing checklist any non-obvious relationships between actions
in one section that should impact another section. These are special cases
that you want to call out.

For example, imagine you have a filter feature on a search screen. You will
have a testing checklist item like, “Perform a variety of different filters
with various criteria, and verify the results are consistent with the crite-
ria.” If the system logs these filters and shows them in the log screen of
the application, you should mention in your testing document not only the
steps to access and use the log screen, but also specifically that verification
is needed to confirm that the tester’s earlier filter activities are logged
here.

Finally, as you become more experienced, you will find there is a (grow-
ing) set of actions that tend to be problematic and need to be checked for
in the kinds of projects you tend to manage. You do not need to write

Chapter 9 | Quality Assurance and Testing

140

these down, as a moment spent thinking of past projects should recall
these.

Here are a few examples from web-based content management systems:

� Uploading files from a client PC to the system
� Embedding media, like video from YouTube or Blip.tv
� Encoding and escaping issues with HTML1
� Character encoding issues with non-Latin alphabets
� Pasting content from a Microsoft Word document

Here are few additional tips for creating testing checklists:

� Think about problems from similar past projects. Many of
these are likely to happen again, so test for them.

� When you start a project, start a blank testing checklist
somewhere. A text file, a Word document, your internal wiki
documentation; it does not matter where. What is important is
that it is written down somewhere. During development—as you
review a completed module, section, or feature—you now have a
handy place to quickly jot down items that need to be tested,
before you forget about them.

� Do not get lost in the testing instruction details. Touch upon
every feature, but let the testers do their jobs.

� In the testing document, be clear whether the tester needs to
check with a programmer or developer before testing an external-
facing component (like an e-mail system).

� When considering a checklist item to test a component, ignore
any thought of “this is too obvious to mention.” Something
obvious to you is not necessarily obvious to others.

� Do not forget to test for size. If your system has a search feature
and you only have ten sample rows in the database, then be sure
to have a step that includes testing a search with 10,000 rows.
How large? Imagine how much data the client will accumulate
using your application over the next 5 years. Multiply that by ten
and you have your dataset size.

1 Proper encoding is necessary to protect against cross-site scripting attacks, which are an im-
portant security vulnerability.

Pro Web Project Management

141

Testing Checklist Format
The testing document format can be very simple:

� It should have a brief introduction section to state the critical
details, such as where to log in to start testing and a two- to three-
sentence explanation of the system.

� It should have any testing notes, such as instructions to alert a
developer before they begin testing, or any special considerations.

� The testing checklist can be in the form of a table, with three
columns:

� Column 1 should be a sequential number. It is helpful to have a
way to reference specific items in a long list.
� Column 2 should be the testing checklist item, the task at hand.
� Column 3 should be a small blank box for either checking off
the task or including a reference to an issue/case/ticket number if a
bug report was filed.

If the testing checklist is long, you can use rows to break up sections, with
just a section name in the row. The format of this document is not critical,
but a small amount of effort up front means that later in the project, during
beta testing, you can share this document with the client to assist them in
testing the application thoroughly (a frequent challenge for even the best
clients). Figure 9-1 presents a sample testing checklist.

Chapter 9 | Quality Assurance and Testing

142

Figure 9-1. A testing checklist for NeonTommy.com

Pro Web Project Management

143

How to Manage a Beta Test with a Client
Eventually, you will show your project to the client and conduct some beta
testing. A successful beta testing phase will reveal context-specific bugs that
are obvious only to those intimate with the workflow and data in question,
as well as obscure bugs that require several conditions to exist in parallel to
appear.

A great way to start your beta testing is with a kickoff training meeting
where you demo the application to the client team and discuss how beta
testing will work. When introducing beta testing to the client, it is important
to discuss a few things:

� Recap where the project is in the schedule and what will be the
next steps after beta testing is complete.

� State the goals of beta testing plainly: find issues we are not aware
of, and fix them.

� If a user breaks the application, the application is at fault, not the
user. The client cannot damage anything permanently. Breaking the
system is a good thing.

� A beta system has been tested and refined, but there are likely to
be issues. That is why we are beta testing.

� Make it clear to the client that more time spent beta testing now
will reduce the investment needed to further refine the application
after launch, when those refinements will not be in scope.

� Explain that any data entered in the beta system will be wiped and
reset.

There are a variety of challenges to client beta testing that often make it
hard to capture meaningful feedback:

� Most clients will only spend a trivial amount of time testing. A lack
of client engagement is likely to be your biggest challenge.

� Clients find it discouraging that because the beta system will be
wiped, any work they do seems to be a wasted effort.

� Clients may not know how to test or what to do with the
application.

Here are some tips to improve the chance of success:

� Have the beta run on production hardware with real data. You
will wipe the data after testing (be clear about this to the client), but

Chapter 9 | Quality Assurance and Testing

144

real data makes the application more meaningful to the client, which
in turn should make their feedback more meaningful.

� Be up front with the client and tell them that most beta testing fails
because a lack of client engagement.

� Identify a good candidate on the client team to be the internal
evangelist. An internal evangelist is a computer-literate power user
(though not a programmer or technical expert) who is both likely
to be a user of the application and happy to help people on his or
her team use it. Doing some one-on-one training with the evangelist
can ease the amount of questions you get during testing and
empower this user to become the office expert.

� Give homework.

 Tip Identifying a strong internal evangelist on your client’s team is a great way to empower a
member of your client’s team to help with training and project acceptance.

Homework Is for the Little People
While homework can be a reviled tool for educating young minds, it can be
a great method to increase client engagement and force real testing to oc-
cur in the beta review period. Beta testing homework can be just a list of
specific tasks that need to be completed.

For example, here are a few homework items for a back-end university ad-
missions system:

� Create a report of all students who meet the criteria for three
different academic scholarships, for review by the scholarship
committee.

� Capture the data needed for a report you regularly turn in to your
superior.

� Fully prepare the admissions letters for five random students.
Complete the process as you would normally: print the letter, get it
signed, and seal it in the real envelopes you use.

Stress the following when assigning the beta testing homework to the client:
if you complete each of these tasks, the beta test will be successful. If you
do not, it is likely to fail.

Pro Web Project Management

145

The goals should be clear, but also should encourage the real workflow to
be carried out from start to finish, even if that means leaving the application
itself. You want to capture these “edge” conditions. (In the above example,
the third goal helps catch any problems with the aligning text in window-
pane envelopes.)

You can create these goals by reviewing your testing checklist and picturing
how the various checklist items relate to specific workflows that you can
call out as homework tasks.

Horror Story: Who Is the Real Client?
An easy way to turn a bad situation into a positive one is to make it a teach-
able moment. A teachable moment is an opportunity to reflect on an incident
and extract a valuable lesson. And so it was with our project, the topic of
our horror story.

The project started off well enough. The exploration meeting (see “Project
Kickoff” in Chapter 3) was attended by our project sponsor (the IT manag-
er) and a group of higher-level stakeholders. There were no actual users of
the application at this meeting. At the time, this seemed normal; in hind-
sight, this should have been the first indication of a problem.

The initial requirements gathering meeting was attended by our project
sponsor and a group of lower-level stakeholders than the initial meeting.
This group was more opinionated and outspoken than the group at the ini-
tial meeting and provided more specific details on how the system should
work. This is a generally a great sign because it usually denotes understand-
ing of the problem. We had our users. . . . or so we thought.

A new group of people was asked to attend the follow-up requirements ga-
thering meetings, where we reviewed and refined the draft requirements
document. They attended these meetings along with their supervisors, but
were not outspoken and did not provide much feedback. It was not imme-
diately clear, but these new folks had never participated in a project devel-
opment process before and had likely never seen anything resembling a re-
quirements document. Although it was clear they were a sharp bunch, they
were essentially interns at the organization, so we assumed they were not
the real stakeholders.

We entered the development phase of the project and happily developed
the application over the next several months. Then it came time to schedule
the beta test. That was when the problems started.

Chapter 9 | Quality Assurance and Testing

146

Based on our explanation of what a beta test is, the client invited back the
entire group of interns that were represented by their leadership in the ear-
lier requirements meetings. Unbeknownst to us, the leadership of this group
had changed during development, so we were dealing with a leadership
team that had not attended the earlier requirements gathering meetings and
had not been involved with the entire process.

The feedback was significant during the beta kickoff meeting, and the ques-
tions and changes kept coming in during the testing process. Although we
responded as quickly and completely as possible to the client, the questions
kept coming. We made loads of refinements to the system and answered
hundreds of questions by e-mail on functionality in the first week of testing
alone. The problems continued after beta testing. Because of all of these
challenges, our initial launch attempt was aborted and rescheduled for a
week later.

Although the project launched with only a slight delay and is now in success-
ful production use, it was a challenging process toward the end of the
project. And challenges at the end of a project are even more frustrating
because at that point, your energy level is lower and you just want to be fi-
nished.

Though the client never directed frustration toward us, the tone of the e-
mails made it clear that the intern team was frustrated at the “surprises” in
how the application worked and at not being involved during the decision-
making process. You have probably seen this before in your own work: the
group felt like this “thing” had been dropped on them by the higher-ups.
The issue here was not that something was forced onto this group, but the
process by which the system was delivered.

So what went wrong with the project? The main answer is that we did not
know who the real users were. At first, we thought the client sponsor was
our user. When it was clear that was not the case, we thought the next
group—the higher-level supervisors—were our real users. Not until beta
testing did it become clear that the real users were the interns who had un-
dergone their own leadership change during the course of development.
We entered development with the wrong users in mind!

Only in beta testing—with a new group of interns in place actually using the
application—did it become clear who the real users were. Had we focused
on this group from the start of the project, the beta testing phase would
have been much easier, the feedback level much lower, the number of re-
finements needed reduced, and the training-based questions fewer.

We learned a few important takeaways from this experience:

Pro Web Project Management

147

� Explicitly ask—even when you are certain you are correct—who
the actual users are. If there is some resistance from the client to
bring these users to table, then find out why immediately. You need
this group involved from the start.

� Ask the client to help you identify who is likely to become the
internal client expert on the forthcoming application. This is
likely someone to whom members of the client’s team go for help
and guidance. Ensuring this person feels involved and empowered
and well-trained before the rest of the team will help reduce the
“surprises” during beta testing and launch.

� If we had known the interns were the actual user base and were
told of the leadership change (it was planned), it may have been
possible to have the future team leader attend the earlier
requirements meetings prior to her leaving that position.

Usability Testing
The goal of usability testing is to make software easier to use by making it a
more intuitive experience. From the perspective of a project budget, the en-
tire goal of a usability test is to identify issues in the interaction of
your application with people that will be less expensive to fix the
earlier they are caught.

The return on investment of usability testing is well-documented. Com-
merce-driven projects that have never done any usability testing can expect
to double conversion rates and other key revenue-centric business metrics
by applying the results of the first test.2

For a consulting-driven process, the savings are real, too. If you catch a na-
vigation issue during the screen prototyping phase, it takes a few minutes
for that navigation to be changed in the mock-ups. When the application is
fully built, it will take a developer more time to fix, test, and deploy modifi-
cations to the navigation. Remember the rule of project avoidance:
the later a change is made, the more expensive it becomes to complete.

2 Jakob Nielsen, “Return on Investment for Usability,”
www.useit.com/alertbox/roi-first-study.html, January 7, 2003.

Chapter 9 | Quality Assurance and Testing

148

The great news about usability testing is that it does not take much time,
you do not need formal training,3 and you do not need expensive equip-
ment. Research even shows that you can find out most usability problems
with as few as five users.4

So What Do You Test?
Your usability test should ask users to complete the kind of tasks users
would normally do when using your application. If you have an information-
driven site, this might include asking users to find out specific facts that you
built your site to disseminate. If you have an e-commerce site, focus your
tests on product search, comparison, and purchase. If you are building a
web application, focus on the workflow goals you are attempting to stream-
line in your software.

Watching a real user get stuck, go the wrong way, or misunderstand your
interface is very insightful. Indeed, having your development team watch this
process is a great way to remind the programmers that humans are even-
tually going to use this thing you are building.

The different kinds of usability tests available to you are defined by where in
the project you would normally use them:

� Paper prototyping. In paper prototyping, you take a piece of
paper and quickly draw up how a page in your application might
look. You can use cutouts for navigation elements or just draw
them with a black marker. It does not matter. Grab someone in the
office who is not working on the project, drop the paper in front of
them, and watch what they do as you ask questions like, “Using
your finger, show me where you would click to do a search,” or,
“What do you expect to find when clicking each button?”

� Hallway usability testing. Coined by software blogger Joel
Spolsky, this test works very well during development or the screen
mock-up phase. As you complete a screen or section of the
interface, grab someone walking by your office and have them try it

3 Jakob Nielsen, “Anybody Can Do Usability,”
http://www.useit.com/alertbox/anybody-usability.html, December 21, 2009.
4 Jakob Nielsen, “Why You Only Need to Test with 5 Users,”
http://www.useit.com/alertbox/20000319.html, March 19, 2000.

Pro Web Project Management

149

out. You can ask questions similar to those for paper prototyping
and just watch what they do.

� Classic usability test. In a classic usability test, you work with an
application that is more or less fully functional (a beta is fine). The
most effective method is to have the user alone in an office with a
computer and a list of tasks they need to complete. It is best to
record the screen and the reaction of the user during this process
(there are cheap software applications that can do this for you with
just a webcam) and to leave the room after a brief introduction.

You can also obtain valuable insights by evaluating your interface against es-
tablished usability guidelines. It is easy to find good lists of things to check if
you do some simple searching. An added benefit of this process is that it can
be instructive for you and your team to learn about the common traps in
user interface design that are best avoided in future projects.

For your first classic usability test, start small. Set a goal to recruit and test
with five users, use a simple setup (commandeer an office with a computer
for a day and purchase a $20 webcam), and have a modest list of tests to
conduct. Run the test, review your results, and consider your next steps.

Usability testing is very helpful for iterative design. If you only have time for
one or two usability tests, then iterate. Run the first test with five users, re-
fine your application from your findings, and conduct a follow-up test with a
site that includes the refinements. This will allow you to both validate the
fixes you implemented for the previously identified design flaws, and—if you
successfully addressed these earlier design flaws—to identify the next major
set of issues that need attention. One or two rounds of iteration will allow
you to address all of the low-hanging fruit that will offer the most return on
investment for your time.

There is a great amount of reading online about usability testing that goes
far deeper into the topic than is appropriate here. A great place to start is
Jakob Nielsen’s Alertbox (see the reading list in the Appendix), a one-stop
shop for everything you need to know to conduct successful usability tests
and design amazing, intuitive, and clear interfaces. Also take a look at the
reading list at the end of the book for some additional articles we think you
will find especially helpful.

Do not be put off by the perceived complexity and cost. Usability testing
can be a fun, cheap way to catch problems early on. Good luck and good
testing!

Chapter 9 | Quality Assurance and Testing

150

Wrapping Up
Once you have completed testing and making refinements to the system, it
will be time to deploy your project. By this point, your project budget is
nearly depleted and the morale and energy of the team can be low, especial-
ly if you had a challenging testing period.

It will be tempting to not apply the same amount of planning rigor to dep-
loyment as you did in earlier phases of the project. Resist this urge! Regard-
less of the quality of the project, a client will judge the entire process nega-
tively if the deployment isn’t smooth.

In the next chapter, we look at deployment in detail. We provide real tips
you can use when planning deployment, explain the importance of training,
and detail a comprehensive launch checklist you can use with your team to
become a deployment rock star.

We finish out the chapter by covering the often neglected but vital step of
defining post-launch support.

C H A P T E R

10

Deployment
A Failed Deployment
Josh was ready for the project to be over. He had written many change or-
ders and handled lots out-of-scope requests from the client. Worse, the
project was behind schedule and the budget was depleted. Josh wanted to
launch the web site and put this project behind him. The quicker this
project became a memory, the better.

The launch involved importing a large data set and user accounts and up-
grading a live, production web site. The development team had done the
import once during testing. Although they had hit a few bugs, they had up-
dated the script so that it would work better during the next import. How-
ever, due to the tight budget, they had not actually tested the new import
script. Josh figured it would be a breeze and didn’t worry about it. He sche-
duled the launch date and time with the client, met briefly with the lead
programmer the day before launch to make sure everything was ready, and
went to bed the night before hoping everything would go well.

When they started the launch the next morning, the situation started off
poorly, and quickly got worse. Transferring several gigabytes of legacy data
between the legacy network and the new server took much longer than an-
ticipated. The data import failed during the first attempt, and the import
script had to be updated and run again. This put pressure on the launch
schedule for every subsequent item. Then, during the legacy user import,
the system “accidentally” generated an unexpected e-mail to each user.

By the time the new site was scheduled to be live, the data import had yet
to be completed and users were calling the client to ask about the e-mail
notifications they received. An hour after the scheduled launch time, the

Chapter 10 | Deployment

152

client called off the launch and the old site was put back online. The launch
failed and the client was frustrated.

Josh made a lot of mistakes here. First, and probably most damaging, is how
the client will evaluate the project. Like it or not, the client will judge much
of the project’s success on how the launch went. A failed launch is embar-
rassing to you as a project manager, but it’s likewise embarrassing for the
client who has to answer to his superiors.

Secondly, Josh’s preparations for the launch were inadequate. Launches are
complex events that require planning and coordination among many parties,
systems, and processes. A good launch is planned ahead of time and prac-
ticed, so the client and development team know exactly what to expect.

Josh’s last mistake was failing to perform a full test of the data import. Data
imports are fickle affairs that rely heavily on the network conditions be-
tween the two systems involved. The best way to ensure a smooth data im-
port is to test the entire import process—every step, not just the actual
import step—ahead of time, until you have it running smoothly.

In previous chapters we covered the steps and stages of a project in devel-
opment, from idea to deliverable. Since deployments are so vital, we focus
on this topic exclusively in this chapter. We provide a clear outline of how
to prepare for a launch and share in detail the launch checklist we use to
make sure that new sites go live smoothly.

Deployment Process and Planning
Launch day is an exciting (an end to a bleeding budget! Yay!) and stressful
(what do you mean you need 12 hours to run the import?) event. With a little
preparation, you can reduce the stress and increase the chances of a suc-
cessful launch.

The launch event merits planning time, not only because you want it to be a
success, but also because this is a time in the project when the client will be
watching closely. A smooth launch builds credibility, trust, and faith. A dis-
astrous launch is a source of frustration. (Remember: your client has to tell
his or her boss why the thing did not go live.)

This often-used but rarely heeded advice is relevant for launch planning: plan
for the worst, hope for the best. Everyone likes a secretly prepared
optimist. No matter the planning, something bad will happen on launch day.
The more of these potential “gotchas” you eliminate well in advance of the
launch, the more time you have to address the hiccups when time is tight.

Pro Web Project Management

153

Here are some pointers for improving launch:

Pointer #1: Create a Launch-day Checklist
Not to be confused with the web site launch checklist we outline later, a
launch-day checklist is really a step-by-step schedule of what needs to hap-
pen during the actual launch process. You can start this early in the project,
the moment you come across something that will need to happen at launch
(do this no matter how distant launch may seem or how simple the task
might be). Once you have this document, it will be easy for you to add
items to it over time.

This does not need to be a long formal document. It should be a simple list
of concise steps for launch. Consider adding the initials of the team member
responsible for completing the task at the end of each step. If a task re-
quires more than one person, just pick one and assign them.

 Tip Remember: a task assigned to two people will be completed by no one.

The launch-day checklist should include every discrete step needed for
launch, including steps for

� Configuration changes
� Data imports
� Backups
� Code updates
� DNS changes
� Hosting changes
� Version control refinements
� E-mails to clients and team members (see “Tips for Writing E-mails”

in Chapter 8)
� Scheduling new tasks for post-launch marketing
� QA testing (see Pointer #8)

Chapter 10 | Deployment

154

Pointer #2: Double Your Estimate for the Time
Needed to Launch
When telling the client how long a launch will take, be sure to double your
estimate. Problems will occur; give yourself a bit of breathing room.

Pointer #3: When Possible, Perform a Soft
Launch
A soft launch is when you make an application live ahead of when it will first
be seen or used by a larger audience. If you are launching a new site or ap-
plication and not replacing an existing tool in production use, you can likely
roll out the project a day in advance of when it is advertised to be ready.
This will ensure that if there is a problem, there will be time to address it. If
your client is planning a marketing blitz for a new site, launch in the after-
noon the day before the “marketing launch day.”

Pointer #4: Be Leery of Time Estimates for Data
Imports
If your launch includes a data import step, be sure to run a complete test on
the import well ahead of the launch to confirm that it will run in a reasona-
ble amount of time. Ensure that your test uses both the same amount of da-
ta and the same transmission path as the launch import will to check for
network-induced delays.

Pointer #5: Meet with the Development Team
Several Days Before Launch
No matter how straightforward you expect the launch to be, have a meet-
ing with the development team that will be launching the project. Bring your
draft launch-day checklist, and spend the meeting going over the steps you
will use to launch the site. Ideally, this will help your team identify any po-
tential issues you have not thought of, giving you time to plan out how to
mitigate them.

Additionally, use this meeting to make clear what you expect from each
team member on launch day and how you will communicate. For example, if

Pro Web Project Management

155

you are launching on Sunday morning and everyone is working from home,
you can agree to meet over instant messaging and invite them to a group
chat.

Pointer #6: Update the Client When You Start
and Complete the Launch
Be sure to send a quick note to the client when you start the launch and
when you finish it. This will make them feel involved and reduce ambiguity
over how the process is going.

Pointer #7: Double-Check Your Third-Party
Integration
Your site likely has some dependence on third-party tools, be it a simple
newsletter sign-up form or a more complex centralized authentication me-
chanism. Launches involve big configuration changes, so double-check that
nothing needs to be updated in your project for the external integration to
continue to work (like different credentials intended for production use).

Pointer #8: Test!
Once the actual launch is complete—but before you have told anyone so—
you should perform testing on the site. Ideally, your launch-day checklist
should have a series of quick tests that you and the team can perform on
the site to check for any issues.

Here are some general tips:

� Breadth over depth: make sure you hit every major section of the
application, rather than test every detail.

� If you need ideas for what to test, review your testing checklist for
the project.

� Try to keep the list short (10 to 25 items).
� Ensure that each testing item can be easily validated.
� Speed up testing by dividing the checklist items throughout the

launch team.

Only after you have tested the site should you feel confident about an-
nouncing the launch is complete.

Chapter 10 | Deployment

156

Training
Training is a key step in the successful launch of a project, both because it
prepares users to properly beta test the application and because users will
be unaware of features they will think are missing.

Here are some tips for delivering training:

� Have a clear training agenda. Like a normal meeting, it is
important to have a clear agenda of the topics you will cover. This
has two benefits: trainees will have a sense of what to expect in the
training, and you will likely remember to include topics in your
agenda that you might normally gloss over.

� Do not assume that something is obvious. As a project
manager for a web project, your own history of using, developing,
and enjoying web applications means that you have a catalog of
knowledge about how various interface mechanisms work. You
might think the client has this knowledge, but they do not.

� When you start the training, make it clear that questions
are welcome. The client team in your training is likely to include
people who have not been on the project team. These people do
not know you and are often more junior than the core client team.
They need to know you are friendly and happy to answer questions
or go over something again.

� Don’t show, do. It is more helpful to a trainee to see how you do
something than to hear how it’s done.

� Have the users try, too. Showing is great, doing is better. If you
have the facilities for each team member to be online, consider
showing a feature and then having the client try what you just
showed. You do not need to do this for every feature, but focusing
on a core set will produce some good questions from the client.

� Practice makes less bad. Be sure to run through your training
agenda before you deliver the training. You want to catch any
embarrassing bugs or configuration issues that could impact training
before you are in front of the client.

� Make training the beta kickoff. There is not much to be gained
from training the users on the system without a clear goal or next
step. Make the training session the kickoff for the beta testing. This
way, you will follow up a training session with an immediate reason

Pro Web Project Management

157

for the client to actually use the application, helping to increase
retention.

� Take notes. Because the training session is likely the first time you
are showing the client a functioning application, be sure to capture
any misconceptions in design from feedback. You will not have time
to do anything with these now, but have them written down so they
can be included in the post-beta wrap-up.

� Have your materials ready. During training you are likely to
need media assets, such as images, when demoing features. Have
these ready before your training and, if possible, make them
relevant to the project. (For example, you can pull images from the
client’s web site.)

The Launch Checklist
We have already discussed the power of checklists. Used effectively, a
simple, targeted checklist can be very effective in reducing errors and
decreasing the likelihood of future issues in a project. A checklist is es-
pecially vital when launching a web site because the project will be eva-
luated in the first 5 minutes the client spends reviewing the site once it is
live. For better or worse, there is a very limited window when the
impression of your work quality is formed.

To help ensure the smooth launch of web site projects, we run this
checklist against a site shortly before launch. Although not every element
in our list will be appropriate for your projects, this should help you to
write your own checklist.

The Web Site Launch Checklist
This Launch Checklist is not a replacement for quality assurance testing.
Rather, this Launch Checklist is a final opportunity for you to ensure that
you have taken care of the many important details that are sometimes
overlooked in the rush to launch a web site.

Chapter 10 | Deployment

158

� Cross-Browser Check
Test the site in the three most common browsers in use1 (double-
check that your list includes the browsers you know to be in use at
the client’s office) and ensure the visual layout is consistent.

� Basic or Advanced Web Accessibility Measures
If the project includes Section 508 accessibility compliance, make sure
that the site still meets these criteria by using an automated
assessment tool available on the web.

� Forms Check
Fill out a form on the site (like a “contact us” form), and ensure the
form submission works and the spam protection is active.

� Graceful Degradation
Turn off JavaScript in your browser, click-browse through five pages,
and verify that the site is still usable.

� Print Style Sheet
Print the homepage and ensure that unnecessary elements are hidden
(such as side navigation).

� Install an SSL Certificate
If the site has any kind of login, purchase and install a valid certificate2
and ensure the login page forces connections over SSL.

� Domain Standardization
Ensure that requests without the “www” are redirected to the
same page with the “www,” and that by default the web server
is compressing all text files (like CSS, JavaScript, and HTML
pages).

� Analytics
Update the analytics settings for your site to use the profile
associated with the production domain name. If available in your
analytics software, set up a monthly report to be e-mailed to the client.

� Custom 404 Error Page
Check that the site has a nice 404 (not found) page. Search the web
for “cool 404 pages” for some ideas.

1 As of this writing the most common browsers are Internet Explorer (6, 7, and 8), Firefox (2 and
3), and Chrome.
2 SSL certificates are no longer expensive. Domain verification certificates (perfectly adequate
for non–e-commerce sites) are inexpensive, easily available from vendors such as GoDaddy,
and register as valid in all browsers.

Pro Web Project Management

159

� Page Titles
Ensure that every top-level category page has a different clear and
concise page title.

� Home Page Meta Description
Add a one-sentence description of the site in a META tag in the
header.

� CMS Refinements
It is likely you are using some kind of content management system for
the site. Ensure the settings for your CMS match the requirements
provided by the vendor for production web sites.

� CMS Accounts
If your project uses a content management system, ensure that an
account for the client has been created and that the permissions
assigned to that account are sufficient for all client needs, but do not
include super-user level access.

� Automated Site Link Check
Use the W3C Link Checker tool to quickly identify and fix any dead
links.

� Broadcast E-mail Integration
If your project includes integration with a third-party e-mail system,
verify that the subscription form correctly subscribes people to the
desired mailing list, the list is sensibly named, and the subscribe and
unsubscribe pages are branded with the client’s logo.

� Favicon
Ensure the web browser favicon is loading correctly.

� QA Review
Being involved with a project for a long time often blinds you to
problems that might be present. Ask a team member who did not work
on the project to spend 30 minutes performing some basic tests of the
site and provide feedback on possible bugs and sections that do not
make sense.

� Review Proposal, Amendments, Requirements
Double-check the project proposal and requirements documents to
ensure that all site components have been addressed.

� Send Launch E-mail
Usually, the launch of a site will trigger a new phase in the project
(such as a 30-day post-launch support window). Send a friendly note to

Chapter 10 | Deployment

160

the client congratulating them on the launch, alerting them the site is
officially active, and documenting that support has begun.

� Send a Gift!
The client has worked hard over the past several months to help you
launch the site. Commemorate their achievement by sending a gift
basket.

� Marketing
Consider mentioning the project launch on the company blog, the
company Twitter account, to colleagues that might be interested in the
project, and as an article or case study in the articles section on your
site.

The characteristics of your own projects will define what kind of launch
checklist is most appropriate, but do take the time to create and document
one. The benefits will become quickly apparent.

The Importance of Defining Post-Launch
Support
It is a truth universally acknowledged that a project, once launched, must be
in want of a set of a bug fixes. Creating software is hard, complicated work.
Though you and your team worked diligently to ensure a product of high
quality, there will always be issues that you cannot identify during testing,
refinement, and launch.

Less experienced clients may expect you to support the software you
created indefinitely, but this is impractical for all involved. It is fair that the
time your team spends making refinements is compensated, and post-launch
support cannot go on forever. However, you want to be sure to balance
protection of your budget with showing that you are dedicated to the suc-
cessful launch of the project.

If you are not up front about how post-launch support will work, then the
client will be left with only their own expectations to guide their behavior.
Those expectations will inevitably be at odds with your own.

The best way to achieve this is to define well ahead of time a specific cut-off
time for post-launch support. You can and should put this in your scope of
work. You can also clearly state how post-launch support will work when
you are sending an e-mail update to the client about the upcoming launch.

Be explicit. Here is an example:

Pro Web Project Management

161

Hi Team,

I wanted to write to give you an update on the launch
schedule.

The web site launch will kick off a 30-day support
window. We will address any issues reported during
the 30 days after launch under the original scope of
work. Any issues identified after the support window
will be addressed on a time-and-materials basis or
under a separate support plan (if you prefer to set
one up).

Kindly let me know if you have any questions, con-
cerns, or wish to discuss further. I’m happy to set up
a conference call if you like. Just let me know.

Thanks,

{call sign}

By clearly stating how the process will work, there should not be any fru-
strations or surprises when, a month after launch, support is a new cost.

Wrapping Up
Hopefully this chapter will help guide you through a successful deployment
for your project. A properly planned and tested launch will ensure a positive
capstone to what we expect was an otherwise successful project, a happy
client, and a satisfied project team. However, launching is not the end.

An important client expectation to manage is how the project will be ma-
naged and supported by your team after launch. You can’t support a project
forever under the existing scope that defined the creation of the project,
but you can ease the transition by making it clear how support will work.

In the next chapter, we cover the topic of post-launch support in detail. We
start with a look at a challenging support client, discuss the different kinds of
support you can provide, outline the key topics for an effective support
orientation, and argue the importance of being responsive. We also provide
tips you can use to deal with a common problem faced by project managers:
supporting a project your team did not build. We conclude by outlining an
easy technique you can use to provide effective proactive support.

C H A P T E R

11

Support and
Operations
Sam the Entrepreneur
Sam is an entrepreneur who runs a small business that sells a variety of spe-
cialty computer components from a busy web site. He has two staff mem-
bers who help run the business out of Sam’s garage, handling fulfillment.
Sam’s business has very tight margins, and he is accustomed to running a no-
frills operation.

For years, Sam has run his web site using individual consultants who help
handle development and support. The consultants all have regular jobs and
support Sam’s company on the side to earn extra money. As Sam’s web site
has grown in complexity, he finds that the part-time consultants are not able
to keep up with his demands—and importantly—provide support when he
demands it.

A few months ago, Sam hired an offshore firm that promised to have two
developers working full-time on his web site for only a little more than he
was paying his last consultant. This worked out well for a month, until Sam
noticed that various parts of his web site stopped working and he had
trouble communicating clearly with the developers on the project.

Finally, Sam decided to hire a local web consulting firm to manage his web
site. He was surprised at how much more the firm charged than his pre-
vious consultants. He decided that it might be worth it if the firm could

Chapter 11 | Support and Operations

164

solve some of his recurring problems and implement several new features
that had been stalled for months.

Sam was dismayed when the firm required an initial audit of the web site.
The audit was expensive and turned up more than 20 security and perfor-
mance problems. Sam initially thought that the consulting firm was trying to
take advantage of him and sent the audit to his previous consultant, who va-
lidated the majority of the issues and reminded Sam that he had also warned
him about these problems.

Sam agreed to implement the most critical security fixes, but refused to ad-
dress some of the others. He wanted the new firm to focus on a few stalled
projects. The new relationship worked out well, and Sam was very happy
with the new consulting firm—especially the project manager—who pro-
vided regular progress reports and communicated clearly.

Sam increasingly relied on the new firm—including calling for emergency af-
ter-hours support—whenever he had an issue that needed to be resolved.
After all, what else is emergency support for?

As project costs continued to increase, Sam felt that he had become an im-
portant client. Sam used a technique that had been successful for him with
other service providers. He became more demanding and began refusing to
pay certain costs for which he did not think he should be responsible. After
all, he was in business to make money—not pay a consulting firm. And since
he needed to keep his margins thin, so did the consulting firm.

Sometimes the company would run into problems with the low-cost soft-
ware or approach Sam requested the firm use to save money. Sam would
hold firm on these cost overruns. After a particularly egregious problem—
where a new module that the firm was building conflicted with a component
of the server that Sam had earlier refused to upgrade—Sam pushed back
and refused to pay for the work. “I’m keeping these guys in line,” he
thought.

Sam was startled and angry to receive a letter from his consulting firm advis-
ing him that they would be discontinuing services within 60 days. “I can’t be-
lieve that these jerks don’t want my business,” Sam thinks.

The primary challenge with Sam the Entrepreneur was that the true cost of
support was not made clear. When the security-and-performance audit was
presented to Sam, it was clear that he was not ready to invest in the level of
support that the firm needed to provide. This mismatched expectation fore-
shadowed the issues to come, and it may have been better for the two par-
ties not to have made a support agreement in the first place.

Pro Web Project Management

165

The transition from completed project to support is a delicate one that re-
quires careful management of expectations. In addition to outlining how to
make the transition into support, in this chapter we also look in detail at
how to effectively provide support on projects you did not develop. We al-
so discuss the importance of support orientations and providing quick res-
ponses to your clients. Finally, we wrap up with a simple technique you can
use to provide proactive support to your client.

Providing Support
Hopefully, your projects will launch successfully, be used and leveraged by
the client, and thrive for years. No matter how well-designed and docu-
mented and implemented and tested, however, an application in active use
will always need periodic enhancements. This is natural. Businesses change,
workflows change, personnel changes. Your client may want to move more
workflows than were originally intended onto your platform once it proves
stable and easy to use.

After managing a project from development through launch, you will often
be asked to take the lead on providing ongoing support. There are really
two ways support work can be arranged:

� Ad hoc. In this model, the client e-mails you asking for a
modification and they are billed for the time it takes to make the
refinement. There is no task queue, regular patch schedule, or
predictable rate of requests. A better name for this kind of support
might be “Inbox triage.”

� Monthly support. With regular support, your client has access to
a set amount of time (often a set number of hours per month, or
one large retainer) from which to draw when working on
refinements. For anything beyond 4 hours a month or 16 hours in a
single retainer, you likely will have a laundry list of refinements to
work on.

Generally, the most important component to providing great support is to
enjoy the process of providing great customer service. The phrase “customer
service” has become a loaded statement because some companies think that
hanging a sign with “provide great customer service” on the office wall will
actually make their employees care.

As any trip to a dilapidated rental car office will tell you, this is decidedly
not true. What does help is if you enjoy taking care of clients and take

Chapter 11 | Support and Operations

166

pride in your work. If you get a little smile in your mind when you think
about the last time you made a client happy, then you do not need this tip. If
you find that you do not enjoy working with clients, being a project manager
may be exceptionally challenging.

Beyond learning to enjoy taking care of your customers, here are some spe-
cific tips for providing great ad hoc support:

� Be responsive (see “Be Responsive,” later in this chapter).
� Fix everything two ways. Software blogger Joel Spolsky coined

this phrase in his excellent article, “Seven Steps to Remarkable
Customer Service” (see the reading list provided in the Appendix).
Fixing everything two ways is pretty simple: Fix the issue that
happened (immediate) and fix what caused the issue to happen in
the first place (deeper issue). When you get an ad hoc support
request, take a moment to think, “What else can we do to prevent
this or something similar from happening again?” Ask the developer
this question if you are stuck. Fixing it completely when the first
issue report comes in might take longer than just addressing the
immediate issue, but it will take less time than dealing with it when
it happens again (and it will).

� Be honest. If this issue was something you or the team did wrong,
admit as much clearly and succinctly. Then move on.

Long-term Support
In a long-term support environment, you likely have a list of feature re-
quests and issues provided by the client for the project. You likely will also
have some sense from the client and your own knowledge of the project on
which tasks are a priority.

One of the best ways to improve monthly/retainer support is through patch
management. Instead of completing and pushing each refinement individually
to production, bundle several refinements into a single patch that is installed
as a unit to the production server. You can push individual completed fea-
tures to a staging server (see tips later in this section) as you complete tasks
for the forthcoming patch.

This has several benefits:

Pro Web Project Management

167

� You will move the client away from always wanting just one more
change pushed this afternoon. That kind of hectic patch schedule is
stressful to your developers, inefficient, and inaccurate.

� You will save the client time by having to perform the patch process
once for several features, rather than once per feature.

� You can maintain momentum and force client decisions by using a
patch schedule. Pick a set date—say, the third Monday of every
month—to automatically kick off bundling of all completed tasks in
the past month into a patch for review and deployment.

We have used this patch schedule successfully with many clients:

1. On the third Monday of the month, bundle up all completed tasks
into a patch.

2. Deploy the patch to the staging server.

3. Send a patch summary e-mail to the client with a list of the com-
pleted items in the patch and links to the staging server for their re-
view. State that you will need final feedback by Tuesday at close of
business and that the patch will be installed live on Thursday.

4. On Thursday, deploy the patch.

5. Send a summary e-mail to the client that the patch was successful.

6. The following week, prepare a summary e-mail to the client outlin-
ing what is to be included in the next patch and what items remain
in the hold queue. (See the following additional tips.)

Here are some additional tips for providing outstanding monthly/retainer
support:

� Use a staging server. You should always deploy a refinement to a
staging server first for proper testing and client review. A staging
server is a system set up as similar to production as possible
(hardware, location, network connection, real and recent data,
installed components, configuration, etc.) and that has access limited
to just your team and the client’s team.

� Keep your patches small. Even with a month between patches,
you will only have time for four or five refinements. Just accept that
higher priority items will appear from the client without warning
and that tasks will take longer than anticipated. Keep your initial
patch list small.

Chapter 11 | Support and Operations

168

� Develop a checklist for deploying patches to production to
ensure that a consistent, high-quality deployment process is
maintained over time.

� Send a summary e-mail when you start working on a new patch.
Prepare an e-mail to the client that clearly lists the four or five
items you have put into the next patch and all of the remaining
items in the hold queue when you start a patch. State that you will
proceed with these items unless you hear otherwise. This gives
your client a chance to alter priorities, but also ensures that you
have a decision preloaded into the interaction to move forward.
Momentum and onward!

� Be proactive. With a limited set of support, your client may often
be reluctant to make decisions because those decisions have a
measurable impact on how much support time they have left. Help
them make decisions by using proactive project management (see
“Proactive Project Management” in Chapter 6 for more
information).

� Leave a little extra time. If you have a monthly retainer it will be
helpful to leave a small chunk of time unused to deal with
unexpected support issues that tend to arise.

Support Orientation
Regardless of the type of support you will provide, consider holding a brief
support orientation call with your client. This call can serve many purposes:

� It makes explicit the level of support you will be providing;
� It clearly marks the shift from development to support; and
� It makes sure your client knows how to request support.

Consider preparing a brief outline of the major topics you want to discuss.
These might include

� How to request support (e-mail, telephone, ticketing system, etc.)
� Expected response time
� Financial details of the support plan (for example, if there is a

maintenance plan or if it is hourly)
� What support does (and does not) include
� What to do in an emergency if the site goes down

Pro Web Project Management

169

Urban Insight (see Figure 11-1) has achieved a 90% 5-year client retention
rate. We have found that support orientations can dramatically improve
your long-term ability to support your clients by making sure that clients
understand what to expect.

Chapter 11 | Support and Operations

170

Figure 11-1. A support orientation template (detail; shows first of two pages)

Pro Web Project Management

171

Be Responsive
Over all of the projects, challenges, successes, failures, mistakes, oversights,
miscommunications, and badly handled expectations, there is one central
trick that will help maintain a positive relationship with the client time and
time again: be responsive.

If you take one thing from this entire book, it should be this: being available
and responsive always generates appreciation from the client and sets your
interactions with them apart from the others with whom they deal.

Remember, to the client you are just a vendor, like a plumber or an electri-
cian. You have promised to do some task that they do not know how to do
themselves and for which you charge a lot of money. Anyone would feel
powerless in this relationship. Being responsive and available will make the
client feel more in control of the situation and more confident in the out-
come.

Why?

Because when things go badly, being responsive makes it easy for the client
to handle internal questions about the problem. Say the client e-mails you
about an issue and you reply within half an hour that you are aware of the
issue and you have someone looking into it. Your client can happily answer
a call from his or her boss and say, “Yes, I’ve let the consultants know about
it and they said they are looking into it right now.” That is a much better
answer than, “I let them know but I haven’t heard back.”

Uncertainty breeds doubt, confusion, and anger. Constant updates, respon-
siveness, and easy access alleviate most concerns. Since checking your e-mail
can reduce your productivity, consider spending 10 or so minutes each hour
checking your e-mail so you can quickly respond to clients, put out fires,
and nudge developers in the right direction.

Supporting Projects Developed by
Someone Else
It is challenging to provide ongoing support (issue fixes, new features, train-
ing, etc.) on a project that your team did not develop. The project is unfami-
liar, it was not developed to your standards, and you might be blamed later
on for poor decisions made by the initial developers.

Chapter 11 | Support and Operations

172

Here are the top five challenges in providing client support, complete with
tips to help mitigate them:

Challenge #1: The Project Is a Mess
The greatest challenge to taking on support for any project is the quality of
the project itself. The fact that the original developers were not selected to
provide support probably indicates that the relationship with the client was
not positive. If the relationship was not handled well, the development of
the software probably was not either.

Challenge #2: The Client Has Unrealistic
Expectations About the Schedule
By the time you take over support, the client has likely been building a large
wish list of feature requests and issues, all of which appear to be urgent to
the client.

Challenge #3: The Development Workflow is
Not Set Up Correctly
To support a project properly, you need a production system and a staging
system, which lives in the same place as the production system and uses
similar hardware and software. This often does not exist in projects you
take over.

Challenge #4: The Site Lacks Stability
The site is generally unstable and critical issues occur at least once a month
with no decrease in frequency. These could be problems with the hardware,
the network, the software itself, the design of the interface, or a combina-
tion of these factors.

Challenge #5: The Client is Not Well Informed
If the client is coming to you for support, then the relationship with the
original developers has probably soured. If this is the case, then it is likely

Pro Web Project Management

173

that the client has not had assistance with the site for some time, and when
they did, they did not feel informed or updated of progress.

Pointer #1: Start Support with a Project Review
and Recommendations Document
A great way to protect your team against starting support on a problematic
project is to perform a review of the application and prepare a summary
recommendations document. The summary recommendations document is
a listing of all of the problems with the project, complete with a short de-
scription of what to do to address each issue. You can organize the recom-
mendations into three sections: high priority, medium priority, and low
priority.

When you deliver the document to the client, clearly state that you will be-
gin working down this list of recommendations in tandem with whatever
new features and issue refinements the client has requested.

A recommendations document has many advantages:

� It provides your team time to get acquainted with the application.
� The review should identify all of the problems in the site so you are

not surprised later.
� You can clearly state all of the site’s problems ahead of time should

a more serious problem develop later.
� The review offers the opportunity to make additional

recommendations to further bring the project to your own
standards.

Pointer #2: Don’t Overtly Blame the Previous
Development Team
Focus on addressing the issue with the client’s best interests in mind. If the
client asks, you can state that this was a mistake of the previous developers.
But you do not want to get in the habit of blaming the previous team for
two important reasons:

� The client selected the previous team. Reminders of any mistakes of
this team may be taken personally by the client.

Chapter 11 | Support and Operations

174

� Placing blame is unseemly and reduces your credibility. Take
responsibility and move forward.

Pointer #3: Use Regular Patches to Maintain
Momentum, but Save Time on Deployment
Patches let you queue up several refinements together so that you can re-
lease them to production as a group, which is more efficient than releasing
them one at a time. If you start using the patch language with the client you
can schedule regular releases (read: monthly), which has the effect of main-
taining momentum with development and keeping the client focused by hav-
ing a release date to share with colleagues.

Pointer #4: Take the Time to Set Up the Right
Workflow
At the start of the project, take the extra time to set up the proper devel-
opment workflow. This likely includes

� A password-protected staging server
� A way to easily sync the data from production to staging
� Bringing the code under version control
� Bringing the staging and production sites under version control
� Bringing the database under version control

Pointer #5: Provide Regular Updates
Communication is vital and builds confidence between you and your client.
Take the time to write a detailed but clear1 summary of all outstanding
tasks, regardless of whether they are in development, on hold, queued for
the next release, or complete.

1 Clarity first, concise often.

Pro Web Project Management

175

Bonus Pointer: Use a Monthly Checklist to
Proactively Identify Issues
A great way to increase the stability of a project is to put together a check-
list that you can run each month on the system to look for common indica-
tors that will cause more serious problems throughout the entire stack of
the project. See “The Launch Checklist” in Chapter 10 for more informa-
tion.

Pretend You’re Leaving
Justin occasionally spends a few moments thinking to himself, “If I was leav-
ing tomorrow and showing my replacement everything they had to know to
take over, what would I be embarrassed about handing over? What project
or site or module just isn’t where it should be?”

It’s likely that something—some project, module, web site, section, or con-
figuration—is going to come to mind, something that was not finished right,
was not completed to your own standards or those of your organization, or
something that is just so slapdash that you need to finish it the right way.

This situation commonly happens when a project is in support, and not in
active development. While developing a project is a proactive task—you
lead the team that is seeking out what needs to be built and are building it—
support is often a reactive process, in that you and your team act only when
there is something that needs to be fixed or the client asks for something
new.

In such a reactive environment, it’s easy for non-critical tasks to be consis-
tently deprioritized over incoming support requests. But this sort of “cruft”
does build up over time and could eventually impact your project. If possi-
ble, it’s best to address these items as quickly as you reasonably can, to pre-
vent any pile from forming.

Whatever does come to mind, fix it. This little embarrassment gnawing at
the back of your head is the most likely topic to come up without warning
in a meeting (thus requiring embarrassing answers) or to have some kind of
system issue that interrupts the client’s ability to do work.

You do not need to do this often, but when you do, it is revealing.

Chapter 11 | Support and Operations

176

Wrapping Up
We’ve come to the end of the road, both for our book and our sample
project. It is our hope that the hard-earned lessons in this book will in-
crease your effectiveness as a project manager, and save you a little pain in
the process. We’ve shown you how to move a project from an idea into a
signed scope of work, from a set of requirements to a working beta, and
from a launched project to post-project support.

Not every project will neatly follow this process. Many projects will not use
every step we outlined, or you may only be involved in specific stages. We
also tried to provide specific advice on common tasks in the life of a web
project manager, including writing professional e-mails, creating checklists to
ensure consistent quality, running effective meetings, and extracting what is
needed from your client to ensure a successful project.

We’ve covered the mundane but critical tasks, such as how to write an
agenda, how to gather requirements, how to prepare a project schedule,
and how to take notes. We’ve talked about difficult situations, like handling
out-of-scope requests, getting answers from reluctant clients, and keeping
an eye on your team without micromanaging.

In some ways, the job of the project manager is unglamorous. You schedule
meetings, you take notes, you keep the project moving, and you watch the
project budget like a cheap father obsessing over the thermostat.

A great day for a project manager ends with sending a clear summary from
an effective meeting and a quick glance at an on-schedule project budget. It
is the developers and the designers and the wireframers and the technical
architects who get to exercise their creativity. It is you, the project manag-
er, who “herds cats” and makes the project successful.

Without effective project management, designers and developers and archi-
tects would have far fewer projects to work on, far fewer interesting prob-
lems to solve, and far fewer opportunities for creation.

Project management is sometimes a bit like roadwork. As long as you keep
the potholes filled and traffic moving, your team takes your work for
granted. But as soon as someone hits a pothole, well…

However, those clients who have experienced poor project management
(and many have) will quickly recognize your project management acumen,
and you will become a sought-after team member because people will re-
member your calm efficiency and competence.

Pro Web Project Management

177

If it was possible to have a project free of problems, there would be no
need for project management. While we believe that the advice in this book
will serve you well in your future endeavors, we know that your challenges
will be unique and varied. We would like to leave you with some parting ad-
vice that we hope will be helpful in your professional life, be it project man-
agement or otherwise.

Be unflappable, positive, and persistent.

APPENDIX

A

Appendix
Project Management Software
New products are coming out all the time to help with project communica-
tion, collaboration, and general management. At the time of this writing,
here are several notable tools that we use and like:

� FogBugz (Fog Creek Software): A web-based project management
tool featuring robust support for issue tracking, scheduling, and
estimating accuracy history. About $25 per person per month. Very
powerful, if a bit complex.

� ZenDesk.com – A web-based issue-tracking tool. Around $29 per
month per user.

� Basecamp (37signals): An elegantly designed, web-based team
collaboration tool focused on ease of use and simplicity. Robust
support for team communication, milestone scheduling, and to-do
items. About $100 per month for ateam. Your clients who like to use
the web will love this tool.

� Balsamiq Mockups (Balsamiq Studios): An easy-to-use
wireframing software. $79 per user, one-time. Makes wire framing
fun again.

� Visio (Microsoft): A tool for creating diagrams and flow charts,
which you can use for wire frames. About $100 per user.

� MockFlow: A web-based (with offline support) collaborative wire-
framing tool. $79 per year for a team.

� OmniGraffle: A Mac-only desktop tool for diagraming. $99 per
user.

Appendix

180

� UserTesting.com: An online tool to outsource usability testing to
the crowd. $39 per test.

� Google Docs (Google): For sharing and collaboratively editing
documents, checklists, and project management documents
informally (and sometimes formally), Google Docs has emerged as a
favorite. Free.

Reading List
There is a lot of great writing that expands on the topics in this book. We
recommend the following:

� “Alertbox,” by Jakob Neilson
www.useit.com/alertbox/

� “Seven Steps to Remarkable Customer Service,” by Joel
Spolsky
www.joelonsoftware.com/articles/customerservice.html

� “Painless Functional Specifications,” parts 1, 2, 3, and 4, by Joel
Spolsky
www.joelonsoftware.com/articles/fog0000000036.html

� “The Iceberg Secret, Revealed,” by Joel Spolsky
www.joelonsoftware.com/articles/fog0000000356.html

� “Usability Testing with Morae,” by Joel Spolsky
www.joelonsoftware.com/articles/UsabilityTestingwithM
orae.html

� “The Project Aardvark Spec,” by Joel Spolsky
www.joelonsoftware.com/articles/AardvarkSpec.html

� “Usability 101: Introduction to Usability,” by Jakob Nielsen
www.useit.com/alertbox/20030825.html

� “The Checklist,” by Atul Gawande, The New Yorker
www.newyorker.com/reporting/2007/12/10/071210fa_fact_
gawande

� Getting Things Done, by David Allen
https://secure.davidco.com/store/catalog/GETTING-
THINGS-DONE-PAPERBACK-p-16175.php

� “The Mythical Man Month: Essays on Software Engineering,”
 by Fred Brooks

Appendix

181

Document Templates
Here you will find a series of document templates for the different kinds of
client-facing documents we discussed in the book. We tried to make them
descriptive enough to be instructive but generic enough to be usable.

Web Site Kick-Off Meeting Agenda

Client Name

PROJECT NAME
9:00 am–11:00 am PT
Monday, January 24, 2013
Address, City, State, ZIP

AGENDA
� Meeting Purpose: Understand the project requirements

1. Introductions (5 min)

2. Confirm Project Scope (5 min)

3. Review Process (5 min)

4. Discuss Project Requirements (60 min)

� General Information
� Web Site Purpose
� Features
� Creative Brief
� Information Architecture Brief
� Technical Brief

 5. Create Initial Wireframes (30 min)

6. Next Steps, Wrap-up (5 min)

Participants:

� Name, Affiliation

Appendix

182

Web Site Requirements Document

Client Name

PROJECT NAME

Prepared
for:

Client Name (client@email.com)
Another Client Name (client@email.edu)

Prepared
by:

Your Name (you@name.com)
Another Author (another@name.com)

Prepared
on:

January 1, 2013

Version: 1.0 / January 1, 2013

File name:

Document
Approvals:

02-web-requirements-document.docx

Client Name Date
Client Organization

 Author Name Date
Author Organization

ge Control Author Version Change Reference

ary 1, 2013 Author Name 0.1 No previous document. Created initial draft based
on current understanding of project as template for
kick-off meeting.

Appendix

183

Section 1: Purpose of Web Site

Official Web Site Name

What is the official name of the
web site?

Objectives

What are the business and market-
ing objectives of the project (for
example, to increase membership,
promote content, increase sales)?

Target Audiences & Characteris-
tics

Who are the primary audiences?
Identify a few unique characteris-
tics about each audience.

Key Target Actions

What is the primary action (or ac-
tions) you want the user to take
from the main page of your web
site? (Examples: Sign up, purchase,
download, move along a specific
path, call.)

Key Target Audience Insight

What is the most compelling thing
you want the target audience to
think after they experience the web
site?

Appendix

184

Subject

Question or issue summary.

Add additional questions necessary to define
your project.

Section 2: Features
[Note: Specific features and functionality identified in the scope or contract should
be listed here.]

Web Pages

How many unique pages will be
developed for the site?

For how many of those will the
content be transferred from a leg-
acy web site?

Data

What specific database content
will be imported into the system
(accounts, data, articles, transac-
tions, etc.)?

Navigation

How will the navigation be pre-
sented (horizontal, vertical, drop-
down, etc.)?

Breadcrumbs

Will the navigation system in-
clude breadcrumbs?

Appendix

185

Event List and Calendar

Which format will be used for
identifying event dates, a grid ca-
lendar or event list?

How frequently will events occur?

Newsletters

How will users sign up on the web
site?

What data will we collect for sub-
scribers?

How many lists will be created?

Web Site Search

What search service or engine will
be used?

Contact Form Fields

What fields should be collected
on the contact form?

� Name

� E-mail address

Images

What is the source for images?

Web Analytics

What Web analytics system will
be used?

Appendix

186

Subject

Question or issue summary.

Add additional questions necessary to define
your project.

Section 3: Creative Brief

Creative Deliverable

What will be delivered based on
this brief?

� Three home page designs

� Two rounds of home page design

� Three typical content page designs

� One round of content page design

Tagline

Do you have a tagline that should
appear on the web site?

�

Design Comparison

Identify 3–5 designs that you like
and discuss what you like about
them.

1.

2.

3.

4.

5.

Appendix

187

Competitive Landscape

Identify by name and URL the
web sites of three competitors,
and identify what you like or dis-
like about their web sites.

1.

2.

3.

Browser Orientation

What is the expected browser
size?

Will the design be fluid or fixed
width?

�

�

Design Feel

Describe the overall feeling or
perception the web site should
convey. (Examples: conservative,
green, progressive, friendly, for-
mal, casual, professional, energet-
ic.)

Required Branding

What are the branding elements
that should appear on every page?
(Examples: organization name,
tagline, logo.)

�

�

�

Logo / Identity Design

Do you have an identity style-
sheet, guidelines, or require-
ments? If so, please attach a copy
to this brief.

Appendix

188

Colors

What colors do you prefer?

What colors should not be used?

Preferred Colors

�

Colors not to be used

�

Fonts

Do you have preferred or required
fonts?

Images

Identify by name three images
that should/could appear on the
home page.

1.

2.

3.

Assets to Be Provided

What assets will be provided to
create the web site design?
(Examples: logo image file, photo
images, sample text.)

Who will provide these assets?

� Logo

�

Subject

Question or issue summary.

� Add additional questions necessary to de-
fine your project.

Appendix

189

Section 4: Information Architecture Brief

Home Page Elements

What are the additional branding
or content elements that should
appear on the home page?

� Logo

� Tagline

� Organization title

� Primary navigation

� Rotating image set

� News items

� Featured news item

� Event listing

Content Page Header Elements

� Search

� E-mail Signup

� Login/Registration (Logout/My Ac-
count)

Navigation Categories

What are the top-level navigation
categories that will appear on
every page?

�

Sub-Navigation

Will the site require sub-
navigation menus?

�

Footer

What should appear on page foo-
ters?

© 2013 Organization Name

Terms of Service | Privacy Policy | Contact Us |
Accessibility

Appendix

190

Tagging

How will content be tagged?

Information Categories (Tax-
onomies)

Identify terms that represent
standard groupings of informa-
tion that would be useful to site
visitors and organization staff.

�

Types of Content

Identify the unique types of con-
tent that will be created on the
web site. (Examples: news,
events, articles, biographies.)

�

Internationalization

What languages will the web site
support?

Will all pages be translated into
all languages?

Who will provide translations?

�

Subject

Question or issue summary.

� Add additional questions necessary to
define your project.

Appendix

191

Section 5: Technical Brief

Content Management System

What content management sys-
tem will be used?

Technical Requirements

What technology platform will be
used?

�

Internal Users

How many web site authors will
be updating the web site?

Roles

What are the various administra-
tive functions, and what level of
authority will each function
need?

� Administrator

Workflow Process

What will the process be for de-
veloping content, submitting
content, and approving content
before it is published?

�

Appendix

192

Public User Accounts with Lo-
gin

Will public or registered mem-
bers need to log in to the web site
to comment on articles or partic-
ipate in discussion forums?

�

Section 508

Will the web site comply with
Section 508 accessibility re-
quirements?

Domain Names

What are the domain names in-
volved in this project?

Domain Registrar

Who is your domain registrar?

Who controls access to your regi-
stry account?

Website Hosting

Who will be providing web site
hosting?

Who will provide development
and staging servers?

�

Support Program

Who will be providing ongoing
support?

�

Appendix

193

Security Considerations

Describe any special security
precautions warranted.

Subject

Question or issue summary.

� Add additional questions necessary to de-
fine your project.

Section 6: Search Engine Optimization Brief

Website Description for Search
Engines

In 150 characters, describe the pur-
pose of your web site as you would
like it to appear in search engine re-
sults listing.

Twitter

What is your Twitter account?

How will we integrate with Twitter?

�

Facebook

What is your Facebook
page/account/app?

How will we integrate with Face-
book?

�

�

Appendix

194

Yelp, LinkedIn, etc.

What other social media accounts
should we know about?

�

Legacy Analytics/Web Master Ac-
counts?

Are there existing analytics or web
master accounts that we should pre-
serve?

�

Keywords and Phrases

What are the top keywords and
phrases you wish to appear in search
engines?

�

Market Areas

What are the primary market areas in
which you wish to be recognized?

�

Page Titles

Should we auto-set page titles on
content creation?

�

Automatic URLs

Should we auto-set URLs on content
creation?

�

Inbound Links

Identify a few sites and contacts that
are likely to link to your new web
site.

�

Appendix

195

Directories/References

Identify a few industry-specific di-
rectories or sites that are likely to in-
clude a link to your web site.

�

Domain Name Standardization

Multiple forms of domains names
are penalized. Do you prefer
www.domain.com or domain.com,
or some other variant?

�

Subject

Question or issue summary.

� Add additional questions necessary to
define your project.

Section 7: Other Considerations

Organizational Decision-Making
Team

Who will the decision-making
team include?

What decisions will require execu-
tive or board sign-off?

How must the decision-making
process be factored into the
project schedule?

�

Subject

Question or issue summary.

� Add additional questions necessary to de-
fine your project.

Appendix

196

Technical Requirements Document

Client Name

PROJECT NAME

Prepared
for:

Client Name (client@email.com)
Another Client Name (client@email.edu)

Prepared
by:

Your Name (you@name.com)
Another Author (another@name.com)

Prepared
on:

January 1, 2013

Version:

1.0 / January 1, 2013

Filename:

Document
Approvals:

 03-tech-requirements-document.doc

Client Name Date
Client Organization

Author Name Date
Author Organization

Appendix

197

1. Project Overview and Goals
If this project has high-level goals that the client would appreciate seeing
called out, list them here. Otherwise, remove this section.

2. Functional Requirements—Core System

A short introduction can be included, but only if necessary.

hange Control Author Version Change Reference

nuary 1, 2013 Author Name 0.1 No previous document. Created initial draft based
on current understanding of project as template for

kick-off meeting.

Reqmt
ID

Description Custom D

R1.1 List every feature. n/a

R1.2 Each line should call out a specific requirement. n/a

R1.3 For ease of review and reference, group the requirements by project compo-
nent. n/a

R1.4 EXAMPLE: System interface will run inside of a web browser (Microsoft Inter-
net Explorer version 8 or above or Mozilla Firefox version 3 or above). n/a

R1.5 EXAMPLE: System will use latest stable release of Drupal. n/a

R1.6 EXAMPLE: System will include up to five content types, including story (for all
articles/posts), wiki, blog (for individual user blogs), and page (for static con-
tent).

n/a

R1.7 EXAMPLE: System will automatically generate friendly URLs. n/a

Appendix

198

4. Function Requirements—Home and Story

4. Function Requirements—Rich Media

Reqmt
ID

Description Custom Dev

R1.10 EXAMPLE: System will include a rich text editor, for using complex formatting
in the creation of body text. n/a

4. Function Requirements—Editor Control
Panel

Reqmt
ID

Description Custom Dev

R1.11 EXAMPLE: System will include a rich text editor for using complex formatting in
the creation of body text. n/a

R1.12 EXAMPLE: Editor Control Panel (ECP) will store presentation information in cus-
tom fields on story nodes. � High

6. Function Requirements—Mobile Integration

Reqmt
ID

Description

R1.13 The “Custom Dev” column is not always necessary. The column was added to this project to call
out to the client features that would require custom development effort to achieve. This was
used to help manage expectations about scope.

Reqmt
ID

Description Custom Dev

R1.8 This is another section. Underline changes after the first version for ease of re-
view. n/a

R1.9 EXAMPLE: Story node will include a custom field for identifying one or more au-
thors of a story. � Medium

Appendix

199

R1.14 EXAMPLE: System will allow users to contribute content via MMS.

7. Function Requirements—E-mail Newsletters

Reqmt
ID

Description

R1.15 EXAMPLE: System will support plain text and HTML e-mail newsletters.

R1.16 EXAMPLE: System will allow users to create reusable templates for composing and sending e
mail newsletters.

8. Function Requirements—SEO Optimization

Reqmt
ID

Description

R1.17 EXAMPLE: System will integrate with Google Webmaster tools.

R1.18 EXAMPLE: System will include automatic Google sitemap integration.

9. Function Requirements—Permissions and
Roles

Reqmt
ID

Description

R1.19 Understanding how system permissions should be set up is vital to building client creditabilit
Mistakes in system permissions can lead to frustrating client surprises.

R1.20 EXAMPLE: System will include roles for student contributors, student editors, and site admin
trators.

10. Function Requirements—Content
Migration

Reqmt
ID

Description

Appendix

200

R1.21 Migrations can be very complex. It’s wise to put clear boundaries here to manage complexity
creep in the import task during development and launch.

R1.22 EXAMPLE: System will migrate existing site user accounts (but not passwords).

R1.23 EXAMPLE: Content migration will include up to 250 stories, 100 videos, and 100 audio files.

11. Technology Requirements
[Your Firm] assumes that the server hardware and all software licenses will
be provided by [Client Name], and the [Client] IT staff will install and confi-
gure all necessary software required for application functionality.

Reqmt
ID

Description

R1.24 Assumptions are dangerous. Spell everything out.

R1.25 EXAMPLE: System will run on server class hardware.

R1.26 EXAMPLE: System will be built using the LAMP platform: Linux, Apache, MySQL, and PHP.

3. Security Requirements
 (Recommendations)

The following requirements are recommendations for the [Client] IT staff
based on our shared goal of providing a highly secure application.

Reqmt
ID

Description

R1.27 This is an important section to clearly spell out expectations for security. While you can’t force
these on the client, it’s important to be on the record about these items should a security
breach occur later. The authors take security very seriously.

R1.28 EXAMPLE: A minimum number of local machine accounts will be established, and only for sys-
tem administration purposes.

R1.29 EXAMPLE: A hardware firewall will restrict access to the system by IP and port.

R1.30 EXAMPLE: A software firewall will restrict access to the system by IP and port.

Appendix

201

R1.31 EXAMPLE: Default firewall policies will be to deny all access, enabling only specific access as
needed.

R1.32 EXAMPLE: Remote access (via SSH) will be restricted by IP address to specific hosts, and will
connect via a non-standard port.

R1.33 EXAMPLE: Physical server hardware will be located in a secured location.

R1.34 EXAMPLE: Operating system security logging will be enabled.

R1.35 EXAMPLE: [Client] IT staff will review server security log and application log at least monthly
and preferably weekly.

R1.36 EXAMPLE: [Client] IT staff will regularly apply all security patches for major systems compo-
nents (OS, Apache, MySQL, PHP, SSH).

R1.37 EXAMPLE: [Your Firm] will develop a weekly security and system health evaluation checklist
proactively monitor the system.

4. Project Risks
Sometimes it’s helpful to clearly call out the risks of the project.

Any technology development project entails certain risks. During the re-
quirements gathering process, [Your Firm] asked various stakeholders about
what risks they could foresee in rolling out Drupal as a core technology
component for support of academic programs. This risk analysis section is a
summary of those findings.

[Your Firm] has worked to formulate a strategy to help mitigate these risks
from the outset of the project. By recognizing the risks from the start of the
project, the project team can act to control these risks during the develop-
ment process and operations and thus reduce their impact on the quality of
the system.

Risk: The University funding and hiring freeze creates budget con-
strains for the project.

By design, Drupal is very modular. It is possible to build out the core
system and key, critical, and internal components first and roll out addi-
tional functionality in later phases, as funding permits.

Risk: Scope creep and a lack of project focus creates delays in
development and deployment.

Appendix

202

Scope creep can best be mitigated by conducting robust requirements
gathering and creating a specific, thorough, and detailed outline of all
project requirements prior to development. While additional modifica-
tions identified after development has started can be worked into the
project, they are best left to a follow-up phase after launch.

In addition, [Your Firm] suggests using the Basecamp project manage-
ment tool, which helps streamline communication from stakeholders,
track key schedule milestones, and assign action items and follow-ups to
stakeholders.

5. Appendix
Any items for reference can be included here.

Appendix

203

Web Site Technical Specification

Client Name

PROJECT NAME

Prepared
for:

Client Name (client@email.com)
Another Client Name (client@email.edu)

Prepared
by:

Your Name (you@name.com)
Another Author (another@name.com)

Prepared
on:

January 1, 2013

Version:

1.0 / January 1, 2013

Filename:

Document
Approvals:

04-tech-spec.docx

Client Name Date
Client Organization

 Author Name Date
Author Organization

Change Control Author Version Change Reference

January 1, 2013 Author Name 0.1 No previous document. Created initial draft
based on current understanding of project as
template for kick-off meeting.

Appendix

204

Overview
The editorial control panel (ECP) tool allows users to manage the content
of the site. Using the ECP tool site editors create home pages to expose as
the site home page or as section home pages.

There are three key concepts of the ECP system:

1. Templates are built-in, pre-designed layouts that define the ar-
rangement of visual elements on the page, but do not offer specifics,
such as individual story placement.

2. Storyboards define the specific story position and selection for a
specific template. The system tracks an unlimited number of story-
boards and each storyboard is based on one template.

3. Storyboards are made up of customizable box types that allow the
user to customize content. The placement and arrangement of these
boxes is saved to the template, but the specific content and customi-
zation of the boxes are tied to storyboards.

The ECP is a custom module in Drupal. Using this module editors, you can:

� Create new storyboards
� Edit existing storyboards
� Delete storyboards
� Set the active site home page storyboard
� Set the active section home page storyboards
� Define the time frame for the most ready stories and most

commented stories box

The ECP is agnostic to section home pages and the site home page; the edi-
tor simply always has one storyboard assigned to the site home page and
one to each section home page. For a preview function in the system, we
can simply create a section called "preview" that isn't linked to the public
site, and editors can set the storyboard they are working on to that section
for reviewing.

The basic workflow of editorial actions on the site is:

1. Editor creates a new storyboard.

2. Editor refines new storyboard, adjusting story layout, selection, etc.

Appendix

205

3. Editor saves the storyboard while working.

4. Editor then closes the storyboard and chooses which story
board is on the home page and which is on the section home
pages.

Homepage Templates and Box Types
The homepage templates1 are:

� Template 1: Typical Day—Lead story, two features
� Template 2: Breaking News—One lead story package
� Template 3: Slow Day— Carousel and Promo Box
� Template 4: Section Front Page2
� Template 5: Breaking News— One lead story package with large

image

� This template is the same as the "T2: Breaking News" template,
 with the difference that the top story box allows for wide
 image.
� The wide image box uses "Custom text lead story box" box
 type.

In addition to these five templates, there is a special template used for all
blog home pages.

Each of these templates is composed of a unique arrangement of 14 stan-
dard box types. Each box is edited in the ECP by the same method, but
templates have varying numbers of each box type and not all of them are
used on each template.

When working on a storyboard, the editor will really be working on each of
the specific standard box types that make up the template used in the sto-
ryboard.

1. Box Type 1: Single lead story (M)

a. Used on T1 and T4

1 See wire frames version 4.
2 Although called section front page, this template, like all other home page templates, is avail-
able for section home pages or the site home page.

Appendix

206

 b. Editor selects a single story; ECP automatically
sets the title, author, teaser, related links

 c. Editor selects which piece of rich media will ap-
pear: image, video, slide show, MP3

2. Box Type 2: Large single lead story (M)

 a. Used on T2

 b. Same as "Single lead story" but this box is wider
and the media piece is larger

3. Box Type 3: Lead story gallery (H)

 a. Used on T3

 b. Editor selects one or more stories; ECP automati-
cally sets title, author, teaser, and image thumbnail

 c. OPEN ISSUE: What do we do if the story has no
image?

 d. Gallery controls only appear if two or more sto-
ries selected

4. Box Type 4: Single story mini box (M)

 a. Used on T1, T2, T3, T4, and T%

 b. Editor selects story; ECP automatically sets title,
author, teaser and thumbnail

 c. OPEN ISSUE: What do we do if the story has no image?

 d. Editor sets box display title; if blank, this is filled in
with name of story section

5. Box Type 5: Wide single story mini box (M)

 a. Used on T1, T2, T3, and T5

 b. Same as "Single story mini box" but wider, with
different image placement

 c. Includes "Showcase links" automatically displayed
under story

Appendix

207

i. Selected by matching stories of boxes story cate-
gory

ii. Sort by Story.Rank, Story.Published, Story.Title

iii. Show three stories

iv. Only show these stories when the storyboard is
active and being used; during editing; just include a
box that says "Showcases links will appear here"

d. Includes an editor-selectable toggle to "Show blogs
drop-down"

i. When checked, box will show a drop-down menu
that includes the name of each blog hosted on site

ii. The blog drop-down will take the user to that
blog when selected

6. Box Type 6: Wide two-story mini box (L)

 a. Used on T1

 b. Same as "Wide single story mini box," but includes
two stories instead of one and does not include
Showcase links

7. Box Type 7: Multimedia player gallery box (H)

 a. Used on T1, T2, T3, T4, and T5

 b. Editor selects one or more stories and specific
media for each story; editor sets one story as the
primary story

 c. If more than one story, selected box will show gal-
lery controls to move between story media

 d. Box displays the media selected one at a time, be
it a video, a slide show, or an MP3

 e. Gallery is ordered by primary story first, then by
Story.Published

 f. OPEN ISSUE: Does video auto play? Do slide-
shows auto play?

Appendix

208

Additional box editing storyboard management features:

� If a box has no content selected, it will not appear on the live view
at all

� Auto-populate buttons

� Used for filling in stories in parts of boxes
� Pulls stories sorted by Story.Published, Story.Rank matching the
 category of primary story in box

� Story selection: The field for selecting a story should be an auto-
suggest tool

� Suggest should match on title
� Suggestions should be ordered by Story.Published, Story.Rank
� User can also enter in the NID directly and the system will
 associate to the correct story
� Users can drag and drop stories between the story selection
 areas of different boxes on the storyboard

Working with Storyboards
General features:

� Storyboards have the following:

� Name, used by the editorial team, shown internally
� User last edited by
� Last edited by date
� Template

� Users can create new storyboards from scratch or by starting from
an existing storyboard

Create from:

� When starting from existing storyboard, pre-fill in all stories
 from the copy from storyboard as applicable, based on box type
� Any stories that don't fit into the new storyboard are dropped
� The user must specify a new name for the storyboard

Appendix

209

Scratch:

� Users must enter a name and select a built-in template
� After selection, they are taken to the storyboard editing screen

� Global auto-populate button

� The global auto-populate button will allow a user to pre-fill in all
available story selection fields based on the standard selection
criteria

� Pressing this button will fill in all empty story selection fields, in
order from top to bottom, left to right, on the template, for
box types that have story selection fields

� Saving

� At the top of the storyboard edit screen is a Save button
 Manual saves are done in the background, via Ajax

� Below the Save button is a text string that reports the last time
 it was saved
� Storyboards should save automatically every five minutes in the
 background

� Publish Now button

� The Publish Now button appears next to the Save button
� Clicking this button opens up a pop-up with a drop-down and
 confirmation buttons
� The drop-down includes the site home page and the section

home pages, allowing the user to publish this storyboard at any
time

� If the currently edited storyboard is live, then the Publish Now
 button is disabled and text next to the button says "This
 storyboard is [live]." "Live" links to the public URL of the page
 using this storyboard and opens the link in a new window.
� Storyboards cannot use template 6, which is a custom
 storyboard for blog home pages

The main ECP screen is a listing of all storyboards:

� List is sorted by live, then by storyboard last edited date
� Columns

� Storyboard name

Appendix

210

� Last updated
� Template
� Status—For setting new storyboards live
� Actions—Links for edit, clone, and preview

iQUESTOR

;COUNT

'PROVED BY

lSCRIPTION

Change Order Request #1

Client Name

PROJECT NAME

Prepared
on:

Version:

January 1, 2013

1.0/ January 1, 2013

CLIENT NAME

Attn: Client Contact

Address

City, State, ZIP

E-mail Address: email@domain.com

Telephone: 555-555-5555

Account Number / Name

CONSULTANT NAME

Attn: Project Manager

Address

Address

City, State, ZIP

E-mail Address: email@domain.com

Telephone: 555-555-5555

Appendix w::c:::

Based on a series of two phone calls, and a screen sharing session to review the aI
tion, the project team requests the addition of the following features to the projec
of work:

212 I Appendix

[MPACT

Description of change #1 (8 hours)

Description of change #2 (8 hours)

Description of change #3 (16 hours)

Etc.

Total: 32 hours

The project cost will increase by $xx,xxx (32 hours @ $xxx/hour) to a total of $xxx,xxx

lULEIMPACT The project schedule may be extended by two weeks to accommodate this new task.

TIVEDATE Change order is effective as of January 14, 2014.

Approvals:

Change Approved by: Change Approved by:
CLIENT NAME CONSULTANT NAME

Authorized Signature Authorized Signature

Name Name

Title I Affiliation Title I Affiliation

Date Date

Appendix

213

Project Training Agenda

Client Name

PROJECT NAME

1. Submitting Issues
If you encounter any kind of issue or problem, kindly send an e-mail to
[your-issue-queue-intake@name.com].

If possible, include steps to reproduce the issue and a screen shot (you
can paste a screen shot into Microsoft Word and attach that file to the e-
mail).

2. Getting Help
The [Your Firm] team is here to help you with any questions you have dur-
ing testing:

� [Your Name], email@name.com, 323-555-6901 x 100
� [Backup Person Name], email2@name.com, 323-555-6901 x 105

3. Accessing the Site
Main URL http://stage.projecturl.com/

Pop-up username [Project code or name shortened]

Pop-up password apple (Something easy to remember)

Web site login URL http://stage.projecturl.com/user

Web site username E-mailed to you shortly after training

Web site password E-mailed to you shortly after training

Appendix

214

4. Training Outline
1. Site overview

2. Logging in

3. The current system

a. Roles: Student editors, student contributors

b. A Drupal node

c. Inactive components

4. Administration navigation & user home page

5. Creating a basic story

6. How to edit a story

7. Advanced story posting

a. Changing the path

b. Tracking revisions

c. Posting to Twitter

d. Posting to Facebook

8. Adding a pod cast

9. Adding a map

 10. Adding a slide show

 11. Adding a video

 12. Creating a blog post

 13. Editorial Control Panel

a. About the ECP

b. Understanding storyboards and templates

c. Creating a storyboard

d. Making a storyboard live

e. Auto-populate

10. Additional features

Appendix

215

a. Wiki pages

b. Zeitgeist Dashboard

11. Questions?

12. Wrap-up & Next Steps

Appendix

216

Testing Document

Client Name

PROJECT NAME

About the System
[Project Name] is a student-run online news media site that features original
student-created content covering major news events. Think Huffington Post
or Daily Beast.

URL: http://www.domain.com/

Username: [Project code or name shortened]

Password: apple (Something easy to remember)

(Include any additional log-in information needed by the tester.)

Important testing notes:

� For each item, enter either a ticket number or “COMPLETE” in the
status column.

� Try to break the application with random input and unexpected
behavior.

� Remember: If the system fails, it’s the system’s fault, not yours.
� Confirm with [Project Team members] that the e-mail

tool is in testing mode before sending any emails.

Testing Checklist
Reference Test Status

 General
1. Create an account.
2. Use the Forgot Password link and confirm you can log

in and reset your password.

Appendix

217

3. Edit all parts of your registration information and
confirm all data is saved correctly.

4. Create three new stories with long, multi-paragraph
text.

5. Confirm line breaks are appearing correctly.
6. Confirm an automatic URL was created.
7. Insert a teaser break into a story and confirm the en-

tered teaser is displayed on the home page.

8. Change the story title and confirm the URL does not
change.

9. Manually change the URL for the story and confirm
it's set.

10. Confirm that date-based URLs show a listing of sto-
ries (example: /news/2009/12/).

11. Confirm date-based URL pages are paginated.
12. Create several new discussion forum postings and

confirm they appear.

13. Reply to several forum postings and confirm they ap-
pear.

14. Post several comments to a node and rate them as a
logged-in user.

15. As an anonymous user, rate those comments you just
rated and confirm the averages and rate counts ap-
pear correctly.

16. Verify that Google Analytics is tracking data on the
stage site and production sites.

17. Submit a comment to a node that intentionally looks
like spam. Confirm that CAPTCHA appears with the
message "We're sorry, but the spam filter thinks your
submission could be spam. Please complete the
CAPTCHA."

18. For the spam test, confirm you can submit the com-
ment with the correct CAPTCHA and you can't submit
it with incorrect CAPTCHA.

19. Create a WordPress blog post and make a test post.
Then create a story and blog entry on the site that

Appendix

218

links to your blog post and confirm a pingback is re-
ceived on your WordPress blog.

20. Confirm that Google Analytics is tracking data for the
site.

21. Post several stories and confirm posts appear as ex-
pected and the URL is aliased by date
(/yyyy/mm/title).

22. Confirm that you have a user blog home page that
lists your newly created content.

23. Create some content and verify you can set specific
keywords that appear in the source code of the node
when created.

24. Subscribe to a specific piece of content, an author,
and a type of content. Make edits contact matching
all three and confirm you get alerts about change.

25. Post a story and confirm that a Tweet is created.
26. Confirm you don't see Facebook or Twitter options

on any content type except Story.

27. Confirm that links for news categories and news tags
are /news/categoryname and /tags/tagname.

28. Confirm you can save information for custom profile
fields like title and USC ID.

29. "Watch" several nodes and make changes to them.
Confirm you get alerts for the changes when you veri-
fy wanting e-mail notifications.

30. Repeat the previous as an anonymous user.
31. Create several posts with different MP3 files for pod

casts. Confirm each MP3 attachment appears in a
Flash pod cast player and works.

32. Create and embed several Google Maps into stories.
Be sure to set all of the properties for each map, and
vary what you do. Confirm the maps appear correctly
when the node is output.

33. Create several event nodes. Confirm that each node’s
URL is hackable, showing the correct events for the
date.

Appendix

219

34. Create several different kinds of nodes and upload
images to use in each node. Verify only the "uploads"
directory is accessible, and not its parent directory.

35. Create a story on the site and a blog post on the test-
ing blog (see project wiki page), and include bi-
directional links to verify outbound and inbound
pingbacks are working.

36. Create a story, and have it posted to Facebook (log in
using the Facebook icon using your own FB account).
Confirm the post goes to the wall of the page the
module is set to.

37. Create several discussion forums and confirm post-
ings work as expected.

38. Log in as a user of the role “student contributor” and
create several blog posts. Confirm you can publish
them and they appear in the blog home page for
anonymous visitors.

 Zeitgeist Dashboard
39. Identify a story in the Zeitgeist Dashboard “Most

talked about stories” section that is not at the top,
add enough comments to the story to make it move
up a position, and reload the dashboard to confirm
this is reflected.

40. Pick a term not in the “Top Searches” box and search
for it 10 times. Confirm the term now appears on this
box.

41. Click on several random tag, story, and Twitter links
and confirm everything loads as expected.

42. Confirm each chart loads without error.
43. Log in and out of the site as several different users

and confirm “Recently logged-in users” reflects this
activity.

 Rich Media
44. Create a Google Map, complete with custom shapes,

position, and zoom, and embed it into a node. Create
two additional nodes with two additional (different)

Appendix

220

maps.
45. Create several wiki pages. Verify wiki syntax (Creole

style) works (see
http://www.wikicreole.org/wiki/EditPageHelp).

46. Create several stories and verify each of the format-
ting options available in the editor for the BODY field
are preserved when the node is saved and viewed.

 Editorial Control Panel
47. Using the stories you have created so far, set up a

blank storyboard, populate every box, and make the
storyboard live on the home page. Verify home page
formatting, links, and media are correct.

48. Set up a new storyboard with a different template
and complete the task described in the previous step.
Set this as a new, live section home page.

49. Set up a new storyboard with a different template
and complete the task described in the previous step.
Set this as a new, live section home page.

50. Duplicate an existing template to create a new one,
change three boxes, and post live. Confirm changes
are set.

51. Set a RANK of 1 on several recent stories you added.
Create a new blank storyboard and use the auto-
populate feature. Confirm all stories are recent, and
ones ranked 1 appear first.

 Permissions Testing
52. Log in as a site editor and confirm you can only

access ECP, user management, and blocks.

53. As a site editor, verify you cannot access any other
Drupal admin functions.

54. Verify that anonymous cannot register on the site.
55. Log in as a contributor and confirm you cannot pub-

lish nodes and cannot access any Drupal administra-
tion page.

Appendix

221

 Tested by (print name)

 Signed Date

Appendix

222

Launch Checklist

Client Name

PROJECT NAME

Document Purpose: This document helps to ensure that the client's web
site is launched according to best practices, and that all the little details that
tend to get lost in the launch process are tracked and addressed.

Pre-Launch

1. Cross-Browser Check
Check all the top-level category pages and key secondary pages in the mod-
ern versions and one previous version of Firefox, IE, Safari, Chrome.

2. Basic or Advanced Web Accessibility Measures
By default, we perform basic accessibility enhancements, because it is the
right thing to do. If the client has selected Section 508-compliance as part of
Urban Insight's scope of services, then perform the advanced steps.

Appendix

223

3. Forms Check
Confirm that some form of spam protection was installed during the initial
site setup.

Confirm with the project manager who should receive e-mail notifications
from the forms on the web site.

Test each form on the web site by submitting your own real and relevant
contact information and asking the recipient to confirm receipt of the result
form e-mail.

4. Graceful Degradation
The web site should work with JavaScript turned off. Using the Firefox de-
veloper toolbar, turn off JavaScript, and browse through five pages on the
web site to ensure that it is still usable.

5. Print Style Sheet
We always now create a CSS print style for printing pages. If a user wants
to print a page from a web site, she will typically only want the main content
and not the navigation or extra design elements. A print-specific style sheet
enables this printing style. Certain CSS elements, such as floats, do not print
well.

6. Custom 404 Error Page
Build and configure a custom error page to display when pages are not
found.

Appendix

224

7. Favicon
A favicon brands the tab or window in which your web site is open in the
user's browser. It is also saved with the bookmark so that users can easily
identify pages from your web site. Design the icon that appears in the
browser bar that appears when the site loads.

8. Page Titles
Ensure that web site pages have relevant and SEO-optimized page titles.

9. Home Page Meta Description
Ensure that the home page has a useful and SEO-optimized description.

10. Editor Control Panel
Ensure that the "control panel" that editors will see is usable, friendly, and
includes all key functions editors will need.

11. Broadcast E-mail Integration
Ensure that your integration with third-party broadcast e-mail systems
works and is configured correctly.

12. QA Review
Perform a final detailed Q/A review using your testing checklist. Get a new
pair of eyes to browse through the web site.

Appendix

225

13. Review Scope, Amendments, Change Orders
Review all the project documents and confirm that you have done every-
thing you agreed to do, or schedule any remaining work so the client knows
it is scheduled for after the launch.

14. Confirm Accounts
Confirm that all necessary accounts are created, and that accounts have the
correct permissions.

Launch

15. DNS
Update DNS to point to the live site and/or switch the URL from the legacy
site to the production site.

16. Send Launch E-mail
Send your client an e-mail confirming and congratulating them on the web
site launch and next steps.

The launch of the web site may trigger a support period where you provide
support for bug fixes and other issues related to the web site. For this rea-
son, it is important to document the date the web site launched and reite-
rate this support window.

Appendix

226

17. Domain and SSL Standardization
It is good practice to ensure that the web site has a single, uniform URL for
every page, such as the domain.com forwards to www.domain.com. Ensure
that SSL pages redirect to their non-SSL equivalent if you use a common
Web root to prevent having two URLs for each page (https and http).

18. Analytics
Ensure that your analytics software is set up, configured, and working.

Set up automated monthly reports to be e-mailed to project contacts.

19. CMS Refinements
If you are using a content management system, such as WordPress, Drupal,
etc., there are a number of post-launch optimizations and refinements that
need to be made. For example, for launching a Drupal web site, there are
20 specific refinements that should be made for production web sites.

20. Automated Site Link Check
Run an automated check of all links on the web site.

21. Set Up Monitoring
If you are proactively monitoring your web site, set up your monitoring
software/system, and determine who should be notified if there are prob-
lems.

Appendix

227

22. Install SSL Certificate
If the site requires logins, install and configure an SSL certificate.

Confirm that there are no "errors" caused by displaying non-secure items
on the page.

Post-Launch

23. Automated Processes/Cron
If your site requires automated processes to run to keep the site in good
health, set up and configure these automated processes now.

24. Register for Maintenance
Create all documentation required for ongoing maintenance, and notify
whoever performs maintenance that the site is now in production opera-
tions state. (For example, we have a different support team from our devel-
opment team.)

25. Set Up Support Orientation
Set up a support orientation with your client.

26. Order Muffin Basket
Consider sending your client a small gift to congratulate them on the suc-
cessful launch of their web site.

Appendix

228

27. VIP Refinements
Some web sites require special handling, refinements, or optimizations. You
can include those here. For example, maybe you will benchmark SEO
placement or web site load performance, or perform some custom tuning.

28. Marketing
Go through your marketing checklist to make sure the world knows about
your new web site.

Appendix

229

Support Subscription Orientation

Client Name

PROJECT NAME

Purpose

� Introduce you to how Urban Insight provides ongoing support for
your web site.

How to Request Support

� E-mail us (Preferred): support@yoursite.com
� Call us: 877-867-5309
� Fax us: 877-867-5310

What Happens Next?

� Request goes into our Case tracking system.
� Within four hours, a team member evaluates the request.
� If request can be resolved in less than two hours, we perform the

work.
� Within eight business hours, request is completed.
� If more information is required, or the request requires more than

two hours, we contact you with an estimate and timeline for
completion.

� Case number and description appears on your monthly invoice.

Appendix

230

How to Report a Bug or Problem

� What were you trying to do?
� What did you expect to happen?
� What actually happened?
� What browser, browser version, and operating system are you

using? (For example: Firefox 4 on Mac OSX 10.6 or Internet
Explorer 9 on Windows 7)

Introducing Your Support Team

� Bob Support
� Delyte Support

Authorized Callers

� Who is authorized to call on your behalf?
� Up to two contacts
� We need for each: Name, e-mail, telephone
� We need one security passphrase for your organization (Example:

“The dog is in Kansas”).

Software Support Subscription

� We perform security patches, other updates, and schedule patches.
� We schedule updates to be performed Monday through Thursday at

an agreed-upon time between 9am and 4pm PT (to ensure
maximum availability of [Your Firm] and client staff for 24 hours in
the unlikely need of maximum support).

� We notify you when we will perform the update.
� We estimate two hours to perform the update.
� We perform the update and perform QA testing.

Appendix

231

� We notify you when the update is complete.
� We encourage you to perform testing after each upgrade.

Let's Create Your Quality Assurance Plan

� Action 1: Visit the home page, confirm it loads.
� Action 2:
� Action 3:
� Action 4:
� Action 5:

Review Your Support Plan

Plan

Monthly fee

Support hours/month

Drupal hosting

Drupal updates

Rate, additional hours

Initial response time

Web site monitoring

24x7 Emergency coverage

Web Site Monitoring (Optional)

� Would you like us to provide web site monitoring?

Appendix

232

� We monitor the home page.
� Who should be notified (up to three emails)?
� By default, we will notify the authorized caller(s).

Emergency Support Options (Optional)

� Response on emergency events, 24x7, within 1 hour.
� Would you like us to provide emergency support?
� If so, let’s define the emergency support steps. For example:

� Step 1: Verify web site is down; attempt to log in to Drupal.
� Step 2: Notify authorized callers via e-mail web site is offline.
� Step 3: Contact hosting company to evaluate problem.
� Step 4: Determine problem and recover web site.
� Step 5: Perform quality-assurance checklist steps.
� Step 6: Notify authorized callers via e-mail when web site is
 online.

Questions?

Appendix

233

Weekly Checklist
This can be a simple text list in a recurring calendar item in a calendaring
application or a to-do list in a checklist application.

1. Are there any outstanding client action items from last week that
need follow-up?

2. Are there any meetings this week that need prep?

3. Check [Developer A]’s and [Developer B]’s previous week’s
hours allocation.

4. [Project A]: Review budget, update the project schedule, and
schedule tasks for week.

5. [Project B]: Review budget, update the project schedule, and
schedule tasks for week.

6. [Project C]: Review budget, update the project schedule, and
schedule tasks for week.

7. Review tasks for [Developer A]; prep for check-in meeting.

8. Review tasks for [Developer B]; prep for check-in meeting.

9. Monthly: Send check-in e-mail to [Support Client A].

 10. Monthly: Send check-in e-mail to [Support Client B].

 11. Monthly: Recognize one team member for outstanding work with
Amazon.com GiftCard.

I

Index
A

Agenda clothing rule, 29–30
Agile methodology, 14

B
Balsamiq mockups, 177
Basecamp, 177
Beta testing, 137
Blindsided IT manager, 79–81

C
Change description, 72
Change order request, 209
Change orders, 71, 72
Checklist

definition, 122
80/20 rule, 123
launch checklist, 125
patch checklist, 124
sanity health checklist, 124
testing checklist, 125
upgrade checklist, 124

Classic usability test, 149
Client management, 84, 87
Cost impact, 72
Custom software project

larger project, 97
midsize project, 97
vs.public web site project, 91
screen mock-ups, 98–105

smaller project, 91
technical specification, 90

D
Daylong kickoff meeting, 25
Design impact, 72
Design mock-up, 90–91, 97
Developer testing, 136
Development, 117

checklists, 122–125
documentation

case tracking, 131–132
changes over time, 130
custom code, 126–127
definition, 126
system administration settings,

128–129
system architecture, 127–128
version control system, 130–

131
e-mails writing

auto-response message, 121–
122

CC on e-mail, 121
politeness, 121
professionalism, 120

no-win-scenario (NWS) bug, 125–
126

updating client, 119
web developer out of control, 117
weekly developer meeting, 132–

134
Discovery

 | Index

236

definition, 43
goal, 43–44
vs. scope of work, 44
sitemap

document, 45
template, 45–46
workflow document, 46–47

Document templates, 179

E
Editorial control panel (ECP) tool,

202
80/20 rule, 55–56, 123

F
FogBugz, 177

G
Google Docs, 178

H
Hallway usability testing, 148
HTML mock-up, 90–93, 97

K
Kickoff meeting

example, 21–24
goal, 24
meetings at long distance, 26
participants, 26
pre-kickoff meeting planning

calls, 26
rules for running this meeting, 24
time limit, 25

L
Launch checklist, 220–224, 226
Launch-day checklist, 153
Long agenda, 30

M
Meetings

action items instead of minutes,
39–40

cost, 28–29
kickoff meeting

example, 21
goal, 24
meetings at long distance, 26
participants, 26
rules for running this meeting,

24
time limit, 25

preparation
agenda clothing rule, 29–30
agenda necessity, 29
agenda preparation, 28
planning checklist, 27–28
topics to be discussed, 30–34
unprofessional and unclear

agenda, 33
well-organised agenda, 31, 32

running a meeting
agenda

introduction, 35–36
closing, 37–38
responsibilities, 36
starting the meeting, 35
taking charge, 34–35

wrap-up, 38–39
wrap-up e-mail example, 40

Micromanagement, 132
MockFlow, 177
Monday morning checklist, 82–84

N
No-win-scenario (NWS) bug, 125–126

O
OmniGraffle, 177
One-a-day productivity, 81–82

P
Paper prototyping, 148

Pro Web Project Management

237

Proactive project management, 84–
85

Project definition, 5
agile methodology, 14
client-ready documents

preparation, 16–17
cost implications, 19
document formats rule, 15–16
pre-project phase

analysis of our fitness to this
project, 8–9

honesty, 7–8
problem definition, 5–6
trusted advisor, 6–7

scope of work
approval, 12
background, 10
components/phases

identification, 10
contacts, 9
date and version, 9
investment budget, 11–12
project name, 9
timeline, 11

software configuration, 17
software customization, 17–18
Waterfall methodology, 14–15

Project deployment
data imports, 154
development team, meating with,

154
estimation, 154
launch-day checklist, 153
post-launch support, 160–161
soft launch, 154
testing, 155
third-party integration, 155
training, 156–157
update the client, 155
website launch checklist, 157–160

Project life cycle, 1–3
Project management software, 177
Project momentum maintenance

Monday morning checklist, 82–84
one-a-day productivity, 81–82

Project scheduling and budgeting
change orders, 72
estimation

accounting unexpected events,
61

additional time, 61–62
breaking down the task, 61
consulting a developer, 61
reports, performance

estimation, 62
resisting temptation to

underestimate, 62–63
review of actual time vs.

estimated time, 62
formatting, 65–66
handling out-of-scope client

requests
change order usage, 71
feature request tobe addressed,

70
maintenance of feature request

list, 70
managing from the beginning,

70
not the last request, 71
not to stifle client’s

enthusiasm, 70
managing developer’s time, 67–69
negotiating out-of-scope changes,

74
negotiation, 75–76
preparation

adding some padding, 64–65
alerting client to deadlines, 65
identifying critical deliverables,

64
identifying each major phase,

64
including client’s critical path

deadlines, 65
learning and helping team’s bias,

65
transparency, 74–75
worst-case scenario, 76–77
wretched experience, 74

Project training agenda, 211
Public web site design project

process, 97
screen mockups, 99
technical specification, 90
wireframes, 91

 | Index

238

Q
Quality assurance (QA) and testing

beta test
challenges, 143
kickoff training meeting, 143
success tips, 143–145

checklist
creation, 140
document format, 141
web content management

project, 139
web-based content

management systems, 140
phases of testing, 136–137
real client, 145–147
software testing

bug, 138
test, debug, refine, and repeat,

138
usability testing

classic usability test, 149
goal, 147–148
Hallway usability testing, 148
paper prototyping, 148

without testing, 135–136

R
Reading list, 178
Requirements

80/20 rule, 55–56
approval, 56–57
definition, 47
document structure, 51–52
gathering meeting, 48–51
out-of-scope requirements, 57
writing principles

mentioning audit logging, 53
mentioning every settings

screen, 53
protecting scope of project, 53
searching option, 54
specifying compatible

browsers, 54–55
Risk assessment, 85

S
Schedule impact, 72
Scope of work

approval, 12
background, 10
components/phases

identification, 10
contacts, 9
date and version, 9
investment budget, 11–12
project name, 9
timeline, 11

Short agenda, 30
Sitemap document, 45
Support

ad hoc support, 165, 166
be responsive, 170
client support

blaming, development team,
172

challenges, 171–172
checklist, 174
communication, 173
development workflow, 173
patches, 173
project review, 172
recommendations document,

172
long-term support, 166

benefits, 166
monthly/retainer support, 167
patch schedule, 167

monthly support, 165
replacement, 174
support orientation, 168–169

Support orientation template, 169
Support Subscription Orientation,

227–230

T
Technical documentation, 89

database creation, 109–111
design mock-up, wireframes, and

HTML mock-ups, 90–91
design process, 106–109

Pro Web Project Management

239

presentation before client, 105–
106

screen mock-ups, 98–105
technical specification

elements, 111
for web site project, 113
requirements, 115
Status/RSVP column, 113
writing, 93–96, 111

Technical requirements document
client name, 194
functional requirements

content migration, 197
core system, 195
editor control panel, 196
e-mail newsletters, 197
home and story, 196
mobile integration, 196
Permissions and roles, 197
rich media, 196
SEO optimization, 197

project goals, 195
Project Risks, 199
security requirements, 198
technology requirements, 198

Technical specification
definition, 93, 97
elements, 111
for large, internal, custom

ASP.NET project, 96
for web site project, 113
requirements, 115
Status/RSVP column, 113
writing, 93–96, 111

Testing Document, 214

U
Unprofessional and unclear agenda,

33
UserTesting.com, 178

V
Version control system, 130–131
Visio, 177
Visual mock-up, 90, 91

W
Waterfall methodology, 14–15
Web development. See Development
Web Site Kick-Off Meeting Agenda,

179
Web Site Requirements Document

client name, 180
creative brief, 184
decision-making team, 193
features, 182
information architecture, 187
purpose of web site, 181
search engine optimization, 191
technical brief, 189

Web Site technical specification
box types, 203, 205, 206
client name, 201
ECP system, 202
homepage templates, 203
storyboards, 206, 207

Weekly checklist, 231
Weekly developer meeting, 132–134
Well-organised agenda, 31, 32
Wireframe, 90–91

definition, 97
for dashboard for nonpublic users,

99, 100
for McHenry County, Illinois, 103
preparation guide, 106
presentation, 105
sample to encourage public

participation, 102
video library page, 105
web-based video gallery for Los

Angeles County Museum of Art,
104

Zeitgeist Dashboard, 101

Z
ZenDesk.com, 177

	Title Page

	Copyright Page

	Table of Contents

	About the Authors
	Acknowledgments
	Introduction
	CHAPTER 1 The Project Life Cycle
	CHAPTER 2 The Project Definition and Scope of Work

	What Is the Problem?
	Be a Trusted Advisor
	Be Honest. Really.
	Can We Help Solve the Problem?
	Outlining the Solution: The Scope of Work

	Project Name
	Contacts
	Date and Version
	Background
	Scope of Work
	Timeline
	Investment Budget
	Approval
	Don’t Go Chasing Methodologies
	Agile Methodology
	Waterfall Methodology
	The Document Formats Rule
	Preparing Client-Ready Documents
	Send PDFs
	Hand-Edit Your Document
	Double-Check the Attachment
	Configuration vs. Customization
	Configuring Software
	Customizing Software
	Cost Implications
	Wrapping Up

	CHAPTER 3 Meetings,
Meetings,
Meetings

	Don’t Do This: A Disastrous Kickoff Meeting
	Project Kickoff
	What Should Be Covered?
	One Hour or Five Days?
	How Big?
	Traveling for a Big Project?
	Preparing for a Meeting
	Don’t Waste Time: Write an Agenda
	Why Do I Need an Agenda?
	The Agenda Clothing Rule
	Topics, Topics, Topics
	Agenda Throwdown
	Running a Meeting
	Take Charge
	Starting the Meeting
	Introduce the Agenda
	Guiding the Meeting
	Winding Down the Meeting
	Meeting Wrap-Up
	What About Minutes?
	Wrap-Up E-mail Example
	Wrapping Up

	CHAPTER 4 Discovery and
Requirements

	Why Discovery?
	The Sitemap Document
	Example Questions
	Sitemap Workflow
	About Requirements
	How to Gather Requirements for Fun and Profit

	The Requirements Document Structure
	Requirements-Writing Principles
	Principle #1: Protect the Scope of the Project
	Principle #2: Mention Every Settings Screen
	Principle #3: Mention the Audit Logging
	Principle #4: Be Clear What the Search Will and Will Not Do

	Principle #5: Specify the Compatible Browsers
	The 80/20 Rule
	Getting the Requirements Approved
	Dealing with Out-of-Scope Requirements
	Wrapping Up

	CHAPTER 5 Project Schedule
and Budgeting

	Oh, the Horror of Just One More Delay
	Estimating Time (It’s Hard!)
	Principle #1: Account for Unknowns
	Principle #2: Break the Task into Parts
	Principle #3: A Task is More Than Development
	Principle #4: Ask a Developer (But Add Time)
	Principle #5: Know Your Bias (or, Review Your Actuals)

	Principle #6: Use Software to Help Report on Your Estimation Performance
	Principle #7: Resist the Temptation to Underestimate

	Preparing the Project Schedule
	Principle #1: Identify Each Major Phase (but Be Concise)

	Principle #2: Identify Critical Deliverables
	Principle #3: Add Some Padding
	Principle #4: Learn Your Team’s Bias
	Principle #5: Alert the Client to Deadlines
	Principle #6: Include the Client’s Critical Path Deadlines
	Formatting the Schedule
	Keeping a Close Eye on the Project
(without Micromanaging)
	Handling Out-of-Scope Client Requests
	Principle #1: Be Clear from the Start
	Principle #2: Don’t Stifle Enthusiasm
	Principle #3: Don’t Let Them Sit
	Principle #4: Maintain a Feature Request List
	Principle #5: Do Not Be Afraid to Use Change Orders

	Principle #6: Resist the Urge to Do Everything
	Principle #7: It Will Not Be the Last Request
	Principle #8: Do Not Feel Bad
	Understanding Change Orders
	Negotiating Out-of-Scope Changes
	A Wretched Experience
	Be Transparent
	Negotiating
	What to Do in the Worst Case?
	Wrapping Up

	CHAPTER 6 Running the
Project

	The Blindsided IT Manager
	Maintaining Project Momentum
	Technique #1: One-a-day Productivity
	Technique #2: The Monday Morning Checklist
	Put Yourself in Your Client’s Shoes
	Proactive Project Management
	What Defensive Driving Teaches Us About Project Management
	Quick Tips for Getting Work from Clients
	Wrapping Up

	CHAPTER 7 Technical
Documentation

	Picking the Right Format
	Design Mock-Up, Wireframes, and HTMLMock-Ups
	Don’t Mock Me Up
	When to Write a Technical Specification
	All Together Now
	Preparing Screen Mock-Ups
	Sharing Your Work with the Client
	The Design Process
	Creating a Database
	Writing a Specification
	The Meat and Potatoes
	Think Through a Feature
	Be Specific: An Example
	The Side Dishes
	More Reading
	Wrapping Up

	CHAPTER 8 Development,
Communication,
Documentation

	A Developer Out of Control
	Keeping the Client Updated
	Replying Quickly
	Tips for Writing E-mails
	Professionalism
	What’s in a CC?
	Don’t Be Rude
	Your Vacation Auto-Response Message Is Probably Wrong

	The Power of Checklists
	Don’t Avoid the Pain; Go Toward It
	Keeping Documentation
	Documenting Code
	Documenting the System Architecture
	Documenting System Administration Settings
	Documenting Changes over Time
	Use Version Control
	Case Tracking
	The Weekly Developer Meeting
	Wrapping Up

	CHAPTER 9 Quality Assurance
and Testing

	The Developer Who Refused to Test
	About Testing
	Your Software Is Only as Good as YourTesting

	The Bug
	Test, Debug, Refine, and Repeat
	Creating a Testing Checklist
	Testing Checklist Format
	How to Manage a Beta Test with a Client
	Homework Is for the Little People
	Horror Story: Who Is the Real Client?
	Usability Testing
	So What Do You Test?
	Wrapping Up

	CHAPTER 10 Deployment

	A Failed Deployment
	Deployment Process and Planning
	Pointer #1: Create a Launch-day Checklist
	Pointer #2: Double Your Estimate for the Time Needed to Launch

	Pointer #3: When Possible, Perform a Soft Launch

	Pointer #4: Be Leery of Time Estimates for Data Imports
	Pointer #5: Meet with the Development Team Several Days Before Launch
	Pointer #6: Update the Client When You Start and Complete the Launch

	Pointer #7: Double-Check Your Third-Party Integration

	Pointer #8: Test!
	Training
	The Launch Checklist
	The Web Site Launch Checklist
	The Importance of Defining Post-Launch Support

	Wrapping Up

	CHAPTER 11 Support and
Operations

	Sam the Entrepreneur
	Providing Support
	Long-term Support
	Support Orientation
	Be Responsive
	Supporting Projects Developed by Someone Else

	Challenge #1: The Project Is a Mess
	Challenge #2: The Client Has Unrealistic Expectations About the Schedule
	Challenge #3: The Development Workflow is Not Set Up Correctly
	Challenge #4: The Site Lacks Stability
	Challenge #5: The Client is Not Well Informed
	Pointer #1: Start Support with a Project Review and Recommendations Document
	Pointer #2: Don’t Overtly Blame the Previous Development Team
	Pointer #3: Use Regular Patches to Maintain Momentum, but Save Time on Deployment
	Pointer #4: Take the Time to Set Up the Right Workflow
	Pointer #5: Provide Regular Updates
	Bonus Pointer: Use a Monthly Checklist to Proactively Identify Issues
	Pretend You’re Leaving
	Wrapping Up

	APPENDIX A
	Project Management Software
	Reading List
	Document Templates
	Web Site Kick-Off Meeting Agenda
	Web Site Requirements Document
	Technical Requirements Document
	Web Site Technical Specification
	Change Order Request #1
	Project Training Agenda
	Testing Document
	Launch Checklist
	Support Subscription Orientation

	Index

