

Lecture Notes
in Business Information Processing 80

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands

John Mylopoulos
University of Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, Qld, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

Björn Regnell
Inge van de Weerd
Olga De Troyer (Eds.)

Software
Business

Second International Conference, ICSOB 2011
Brussels, Belgium June 8-10, 2011
Proceedings

13

Volume Editors

Björn Regnell
Lund University
Department of Computer Science
221 00 Lund, Sweden
E-mail: bjorn.regnell@cs.lth.se

Inge van de Weerd
Utrecht University
Department of Information and Computing Sciences
3508 TB Utrecht, The Netherlands
E-mail: i.vandeweerd@cs.uu.nl

Olga De Troyer
Free University of Brussels
Department of Computer Science
1050 Brussels, Belgium
E-mail: Olga.DeTroyer@vub.ac.be

ISSN 1865-1348 e-ISSN 1865-1356
ISBN 978-3-642-21543-8 e-ISBN 978-3-642-21544-5
DOI 10.1007/978-3-642-21544-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011928548

ACM Computing Classification (1998): K.6, D.2

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The Second International Conference on Software Business (ICSOB 2011) was
organized in Brussels, Belgium: the heart of Europe and administrative center
of the European Union. The conference theme “Managing Software Innovation
for Tomorrow’s Business” reflects the specific challenges in the research domain
of software business. Although the software business shares common features
with other international knowledge-intensive businesses, it carries many inherent
features making it a challenging domain for research. The goal of the ICSOB
conference series is to bring together researchers with a specific focus on this
domain.

We received 27 scientific paper submissions in various categories. Each sub-
mission was reviewed by at least three members from the Program Committee.
During the Program Committee meeting, held in Utrecht, The Netherlands, 12
participants from various countries discussed the papers and their reviews. The
committee decided to accept 14 papers, yielding an overall acceptance rate of
48%.

We scheduled three days with scientific paper sessions. These sessions were
complemented with an Industry Track, containing best-practice presentations
and discussions with practitioners from the software industry. Furthermore, each
day started with an excellent keynote speaker to challenge us with new perspec-
tives. The conference was preceded by two workshops: one focusing on software
Ecosystems (IWSECO 2011) and the other one on leveraging empirical research
results for software business success (EPIC 2011).

ICSOB 2011 was created by the hard work of the different committees and
chairs. As the Program Chairs for ICSOB 2011, we thank all members of these
committees and chairs for their dedication and effort and our corporate sponsors
for their support. A special thanks goes to the members of the Program Com-
mittee for their careful and timely reviews, in particular those who attended the
Program Committee meeting in Utrecht, physically or virtually, and those who
volunteered as shepherds to help improve promising papers.

April 2011 Björn Regnell
Inge van de Weerd

Organization

Chairs and Committees

Program Chairs

Björn Regnell Lund University, Sweden
Inge van de Weerd Utrecht University, The Netherlands

Local Organizing Chair

Olga De Troyer Vrije Universiteit Brussel, Belgium

Industry Track Chair

Sjaak Brinkkemper Utrecht University, The Netherlands

Review and Publication Chair

Kevin Vlaanderen Utrecht University, The Netherlands

Publicity Chair

Eetu Luoma University of Jyväskylä, Finland
Oleksiy Mazhelis University of Jyväskylä, Finland

Steering Committee

Kalle Lyytinen Case Western Reserve University, USA
Sjaak Brinkkemper Utrecht University, The Netherlands
Pekka Abrahamsson University of Helsinki, Finland
Pasi Tyrväinen University of Jyväskylä, Finland
Slinger Jansen Utrecht University, The Netherlands

Program Committee

Aybuke Aurum University of New South Wales, Australia
Jan Bosch Intuit, USA
Peter Buxmann Darmstadt University of Technology, Germany
David Callele University of Saskatchewan, Canada
Erran Carmel American University, USA
Michel Chaudron Leiden University, The Netherlands
Michael Cusumano MIT Sloan School of Management, USA
Daniela Damian University of Victoria, Canada

VIII Organization

Ernesto Damiani University of Milan, Italy
Christof Ebert Vector Consulting, Germany
Joao Falcao E Cunha Universidade do Porto, Portugal
Jaelson Freire De Castro Universidade Federal de Pernambuco, Brazil
Samuel Fricker Blekinge Institute of Technology, Sweden
Frederik Gailly Vrije Universiteit Brussel, Belgium
Leah Goldin Shenkar College of Engineering and Design, Israel
Tony Gorschek Blekinge Institute of Technology, Sweden
Volker Gruhn Paluno, Germany
Thomas Hess University of Munich, Germany
Patrick Heymans University of Namur, Belgium
Martin Höst Lund University, Sweden
Slinger Jansen Utrecht University, The Netherlands
Epaminondas Kapetanios University of Westminster, UK
Lena Karlsson Sony Ericsson, Sweden
Marjo Kauppinen Aalto University, Finland
Olli Kuivalainen Lappeenranta University of Technology, Finland
Patricia Lago VU University Amsterdam, The Netherlands
Casper Lassenius Helsinki University of Technology, Finland
Nazim Madhavji University of Western Ontario, Canada
Michele Marchesi University of Cagliari, Italy
Rod Mcnaughton University of Waterloo, Canada
Sten Minör Software Innovation and Engineering Institute,

Sweden
Peter Axel Nielsen Aalborg University, Denmark
Oscar Pastor Technical University of Valencia, Spain
Jan Pawlowski University of Jyväskylä, Finland
Klaus Pohl Paluno, Germany
Karl-Michael Popp SAP AG, Germany
Austen Rainer University of Hertfordshire, UK
Per Runeson Lund University, Sweden
Motoshi Saeki Tokyo Institute of Technology, Japan
Camile Salinesi Université Paris 1 Panthéon - Sorbonne, France
Pete Sawyer Lancaster University, UK
Steve Sawyer Syracuse University, USA
Kari Smolander Lappeenranta University of Technology, Finland
Dan Stan University of Cluj-Napoca, Romania
Pasi Tyrväınen University of Jyväskylä, Finland
Marko Van Eekelen Radboud University Nijmegen, The Netherlands
Hans Van Vliet VU University Amsterdam, The Netherlands
Vasudeva Varma IIIT Hyderabad, India
Tony Wasserman Carnegie Mellon - Silicon Valley, USA
Claudia Werner Universidade Federal do Rio de Janeiro, Brazil
Claes Wohlin Blekinge Institute of Technology, Sweden
Stan Wrycza University of Gdansk, Poland

Organization IX

Additional Reviewers

B

Barrios Albornoz, Judith
Boucher, Quentin

F

Ferrari, Remo

K

Khadka, Ravi
Khurum, Mahvish

M

Metzger, Andreas

S

Santos, Rodrigo

T

Tamburri, Damian Andrew

Table of Contents

Part 1

Keynote

Keynote: Engineering Challenges of New Business Models in
Software . 1

Anthony Finkelstein

Part 2

Research Papers

How to Sell SaaS: A Model for Main Factors of Marketing and Selling
Software-as-a-Service . 2

Pasi Tyrväinen and Joona Selin

Business Continuity Solutions for SaaS Customers . 17
Tommy van de Zande and Slinger Jansen

Software Ecosystems: A Set of Management Practices for Platform
Integrators in the Telecom Industry . 32

Martti Viljainen and Marjo Kauppinen

Steering Insight: An Exploration of the Ruby Software Ecosystem 44
Jaap Kabbedijk and Slinger Jansen

Study of the Competition between Proprietary Software Firms and
Free/Libre Open Source Software Firms Using a Simulation Model 56

Luisanna Cocco, Katiuscia Mannaro, Giulio Concas, and
Michele Marchesi

Adoption of Open Source Software and Software-as-a-Service Models in
the Telecommunication Industry . 70

Eetu Luoma, Nina Helander, and Lauri Frank

Examining the Effects of Agile Methods and Process Maturity on
Software Product Development Performance . 85

Mikko Rönkkö, Juhana Peltonen, and Christian Frühwirth

Online Distribution of Packaged Software . 98
Shuangzeng Hu and Rod B. McNaughton

XII Table of Contents

Scenarios on Adoption of Open Source Software in the Communications
Software Industry . 110

Eetu Luoma, Mikko Riepula, and Lauri Frank

Improving Quality and Cost-Effectiveness in Enterprise Software
Application Development: An Open, Holistic Approach for Project
Monitoring and Control . 125

Luigi Buglione, Ernesto Damiani, Fulvio Frati, Sergio Oltolina, and
Gabriele Ruffatti

Transformations of a Solution Strategy: A Case Study 140
Marko Komssi, Marjo Kauppinen, Matti Ropponen, and
Pirkka Palomäki

The Sun Also Sets: Ending the Life of a Software Product 154
Slinger Jansen, Karl Michael Popp, and Peter Buxmann

Requirements Scoping Visualization for Project Management 168
Krzysztof Wnuk and David Callele

Variability-Based Release Planning . 181
Samuel Fricker and Susanne Schumacher

Part 3

Workshops

EPIC 2011: Third Workshop on Leveraging Empirical Research Results
for Software Business Success . 187

Maya Daneva and Andrea Herrmann

IWSECO 2011: Third International Workshop on Software
Ecosystems . 188

Slinger Jansen, Jan Bosch, Faheem Ahmed, and Piers Campbell

Author Index . 189

B. Regnell, I. van de Weerd, and O. De Troyer (Eds.): ICSOB 2011, LNBIP 80, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Keynote: Engineering Challenges of
New Business Models in Software

Anthony Finkelstein

Computer Science, University College London
London, UK

The software engineering research agenda has largely emerged from experience of
software development in the context of established software business models. Thus,
principally bespoke software development or more rarely 'product' software develop-
ment - unitary software delivered under a product licensing agreement to a market.
The reshaping of the software business through the introduction of new ways of 'de-
livering' software with associated business models must necessarily lead us to recon-
sider the software engineering agenda. Thus applications offered 'as a service', 'apps'
with associated 'channels', 'appliances', fine-grain software services and so on each
have associated with them unique engineering challenges which need to be addressed.

In this talk I will examine the prospects of each of these approaches, review the as-
sociated challenges and set them in the context of broader research directions for
software engineering. I will suggest that not only will the content of software engi-
neering research need to change but that the way in which software engineering re-
search is conducted will need to change also. I will introduce the idea, drawn from
biomedicine of the 'translational pipeline' and explain how such a pipeline can be
implemented. I will describe particular experience with the development of an 'appli-
cation as a service' offering and highlight some contrasts between that experience and
that of developing software within a more conventional product business model.

B. Regnell, I. van de Weerd, and O. De Troyer (Eds.): ICSOB 2011, LNBIP 80, pp. 2–16, 2011.
© Springer-Verlag Berlin Heidelberg 2011

How to Sell SaaS:
A Model for Main Factors of Marketing and Selling

Software-as-a-Service

Pasi Tyrväinen and Joona Selin

Department of Computer Science and Information Systems
Agora, P.O. Box 35

FIN-40014 University of Jyväskylä, Finland
{pasi.tyrvainen,joona.v.selin}@jyu.fi

Abstract. Software-as-a-Service providers have been growing fast while the
contemporary research literature has neglected analysis of their business-critical
marketing and sales processes. In this paper we collect the key factors
characterizing how to market and sell SaaS to business customers into an eight
dimensional model. We also use an explorative multi-case study to observe six
SaaS providers and validate the model. The interviewed providers emphasized
use of the Internet for marketing communication while personal direct sale was
the dominating sales approach. Customer acquisition cost was the key
performance indicator for marketing and sales while customer lifetime value
and churn were the KPIs in customer relationship management.

Keywords: Sales and marketing models, business models, software business,
Software-as-a-Service, SaaS, key performance indicators, KPI.

1 Introduction

Youseff, Butrico and Da Silva [1] defined Cloud computing as services used on
demand through networks. They divide cloud services into five layers: cloud
applications, cloud software environment, cloud infrastructure, software kernel and
firmware/hardware. The most commonly known form of cloud applications is
Software-as-a-Service (SaaS), where an application is used cross the network without
installing it into the user device [2]. According to Gartner [3], the SaaS market will
grow annually 17.7% till year 2013. For software firms this will mean new business
opportunities as well challenges in adapting to the new business environment.

A transition from a packaged software business provider to a SaaS provider following
the best practices of the SaaS model will set new challenges to strategic management, but
also to marketing and sales. So far the research literature has not addressed this problem
while practitioners have published a volume of related material in the Web. Kaplan [4]
and Mallya [5] have focused on the differences between marketing and selling traditional
software and SaaS. An alternative approach emphasizes providing a solution to the
customer rather than selling SaaS as such [6]. Domergue [7] focuses on providing value
to the customer when selling SaaS. In general, some of the previous studies emphasize
ease of selling SaaS [8] while others speak about difficulty [9].

 How to Sell SaaS 3

Our purpose is to initiate academic research on marketing and selling SaaS by
presenting a model of the key factors for marketing and selling SaaS and related key
performance indicators (KPI). In this paper we describe, how software products can
be marketed and sold as services in business-to-business (B2B) markets according to
the SaaS model. Later research can focus on the individual factors as well as to study
the relationships between the factors. In section 2 of this paper we summarize shortly
a literature review of the related background theories on marketing, software business
and SaaS. In section 3 we construct the model for the main factors determining how a
firm markets and sells a SaaS offering based on the literature. Empirical research in
section 4 is used for exploring the field and for validating the model in a multi-case
study of six companies selling SaaS. In the end, we present a revised mode adopting
the changes implied by the empirical observations.

2 Marketing and Sales in Software Business

Kotler and Keller [10] define marketing as a function and process of the organization,
which creates, communicates and delivers value to customers and maintains customer
relationships by means profitable to the firm and interest groups. One of the functions
included is selling aiming at completing the sales case [11]. At the same time,
marketing tries to make sales unnecessary by providing self-selling products, which
the customers are willing to buy [10].

The two main approaches to marketing are transactional marketing and relationship
marketing. From the transactional marketing viewpoint the firm can compete with four
Ps, product, price, place, and promotion [12]. According to the relationship marketing
approach, marketing is an interactive process, which builds, maintains and develops
relationships, which comply with the goals of the participants [13]. Kotler and Keller
[10] present a holistic view, which integrates the transactional view under the tile
integrated marketing with the relationship view, and in addition, internal marketing and
performance marketing. The integrated marketing addresses questions related to
products and services, delivery channels as well as communication. Relationship
marketing includes customers, partners and delivery channel related questions. Internal
marketing focuses on firm internal marketing between the marketing department, other
department and top management. Performance marketing focuses on revenue, brand
value and ethical and legal operating environment. In this study we focus on questions
related to integrated marketing which will match the expected low transaction costs of
SaaS offerings as well as relationship marketing.

Customers have traditionally been divided into consumers and businesses, out of
which we focus only on businesses in this study. Each firm can create applicable
means to divide target customers into market segments sharing similar needs [11].
Criteria used can include demographic factors, such as vertical industry [14], firm size
and location. Also technologies and practices used, purchasing practices and firm-
specific characteristics can be used for segmenting [10] as well as customer lifetime
value [15]. Following Berger and Nasr [16] we define customer lifetime value as the
surplus of long-term income from customer reduced by customer relationship
maintenance costs. This can be used for identifying profitable relationships but also
for evaluating potential future customer base [17].

4 P. Tyrväinen and J. Selin

Software business includes segments with rather different characteristics with
respect to marketing and sales. Embedded software is usually developed for a single
company either as professional services or in-house. IT firms providing professional
services implement bespoken systems as well as deploy and tailor enterprise systems
for the customer. In professional service business trust is important as the software to
be delivered does not yet exist [18]. The number of customers is small while
transaction costs and the revenue per customer are high [19], which require investing
on customer relationship management [18]. Instead, standardized and packaged
software products with relatively low prices are examples of offerings of Internet-
generation firms with strong brand marketing and marketing alliances [18]. The
customer-base is large and the users are distant to the vendors [19]. For these software
product firms the marketing costs are a major share of the budget [20].

The relevant marketing means for software service business include relationship
management, seminars, fairs and other form related to personal communication,
software product business relies more on advertising and direct sales while both use
Internet as a marketing channel [19]. Personal selling, representatives and value-
added-resellers (VAR) are typical sales channels for software service business. A
network of software service firms can also co-produce a service offering for
customers in process of value co-creation following the service-dominant logic.
Instead, software product businesses use more wholesale and resale organizations as
well as Internet as a sales channel [19]. In the international markets software service
firms cooperating closely with customers tend to use representatives in the market,
whereas firms developing semi-standardized enterprise solutions prefer sales
subsidiaries of their own and firms offering mass-market products to consumers tend
to choose cooperative entry modes where local organizations possess deep knowledge
about the target market [21].

Software-as-a-Service (SaaS) can be characterized as a standard software product
operated by the SaaS provider, delivered using standard Internet protocols and
consumed as on-demand services by the customers, typically using Web browsers as
the user interface. For the purposes of the empirical study we combined the following
criteria for compliance with the SaaS model from multiple sources (including [1] [2]
[22] [23]):

1. Software is used with a Web browser or other thin client making use of
standard internet protocol.

2. A standardized software product is provided with no customization.
3. There is no need to install software to the customer site.
4. Deployment requires no major integration or installation.
5. Customers pay for use of the software rather than licenses.
6. The same multitenant installation is provided for several customers.

From the user viewpoint low entry cost and pay-as-you-go pricing make adoption and
use of SaaS attractive. From customer’s perspective SaaS can be seen as outsourcing
IT back-end management activities to the provider. From SaaS vendor viewpoint
SaaS can be viewed as a software delivery and deployment model. It can also be seen
as a business model sharing characteristics with software product business with high
number of customers and low transaction costs. From this perspective the multitenant

 How to Sell SaaS 5

software can be seen as a cost-efficient model to provide services to new, underserved
market segments, such as small enterprises [22]. SaaS shares also some characteristics
of software services business with a need to avoid churn and invest on customer
relationship management to retain customers.

3 Marketing and Sales Model for SaaS

Based on the literature it seems that providing SaaS services is technically cost
efficient, but controlling the marketing and sales costs will be a major challenge for
profitability of SaaS providers. The main factors of marketing and selling SaaS
collected from the literature have been collected to the model presented in Figure 1.
The model consists of eight dimensions representing eight variables; service provider
size, service and implementation model, customer size, market communication
channel, sales channel, role of buyer, entry transaction size, and customer life-cycle
value. Based on the literature we expect the categories in the middle of the diagram
are likely to co-occur and the categories in the outer rings are likely to co-occur. For
example, a small SaaS service provider would be more likely to provide self-services
through the internet to end users with small entry cost while a large service provider is
likely to provide added value services to large customers.

Provider size and customer size dimensions in this model are categorize based on
firm headcount to micro (less than 10 persons), small (10-49), mid-size (50-249) and
large enterprises. According to Moore [24] firm size has major impact to the markets
it will operate. The target market of a provider is defined by the target customer
group, which is strongly related to the offering of the provider [19]. Zoltners, Sinha
and Lorimer [25] state further, that a firm has to be able to organize the sales
according to the status of the market including appropriate resourcing and size of the
sales organization.

Service and implementation model describes the product strategy of the firm and
the role of services and implementation in the business model. It also reflects the
share of sources of income in the business. The categories in this dimension are self
service and professional services including deployment, integration, tailoring, as well
as training and consulting (adopted from [26]).

Customer size dimension in this model reflects the group of target customers. The
categories follow the categories of the providers. According to Choudhary [27] and
Sääksjärvi et al. [28] the target customer groups of SaaS providers span the full range
from small enterprises to large ones. The chosen target customer group will impact
the product strategy [19], the channels of market communication [11] as well as the
sales channels [22].

Market communication channel represent the means of a SaaS provider to deliver
information about the service to the customer [19] providing the means to increase the
sales [11]. The marketing and sales channel solutions are thus tightly interconnected.
Software product companies have typically high costs for creating brand awareness
and recognition due to aggressive advertising, promotion and relationship building
activities [18]. Use of Internet has been emphasized as a means to replace these
traditional channels for SaaS firms [29] potentially providing some relief to the costs.

6 P. Tyrväinen and J. Selin

Fig. 1. The main factors of marketing and selling SaaS collected from the literature

Sales channel dimension describes the sales solutions of a SaaS firm. That is, how
the firm aims to complete the sales transactions. Chong and Carraro [22] mention use
of Internet and direct personal sales as a sales channel for SaaS while Weobong
[30] adds resellers, VAR and other channel partners, which are here referred to as
“representatives”.

Role of buyer of SaaS is shifting from technical buyers to business directors [31].
Moore [32] divides roles of buyers into top management, business management,
technical buyers, and end users. He further states that the role of buyer shifts
according to the life cycle of the product.

Entry transaction size will have major impact to adoption of SaaS in many cases.
On one hand, the low cost of first transaction compared to traditional software
licenses has commonly been referred as one of the customer benefits of SaaS [33]. On
the other, the mismatch of cash flows is one of the challenges of SaaS providers [34].
By this Gardner refers to a situation, where the sales and marketing costs materialize
at the sales event while the income realizes monthly during the contract period.

Customer lifetime value dimension represents two roles in this model. It can be used
for value of existing and potential customer relationships. The costs of marketing
communication and sales allocated to the new customers will have major impact to the
lifetime value of a customer. Thus the transaction costs will set constraints to
marketing communications and sales. [16] The categories for this dimension are based
on the categories of Tähtinen and Parvinen [19].

 How to Sell SaaS 7

4 Multi-case Study

The primary goals of this empirical work are to explore the target domain, which has
not been researched earlier as well as to evaluate the marketing and sales model for
SaaS constructed based on the literature. We first describe the methodology chosen,
next, present the results, and finally, analyze the model. Based on the analysis we
present an updated model adopting the changes implied by this empirical part.

4.1 Research Process and Methods

Due to explorative nature of the research we chose multi-case study as the research
method. Case study match well with research of processes and provides detailed and
intensive data from small set of relate cases [35]. We chose thematic interviews as the
main data collection method due to the new and unexplored nature of the topic. This
enables also refining the questions and answers if needed. Validity of interview data
can be verified from complementary data sources and interviews can be used for
exploring relationships of phenomena and for creation of new hypothesis [36].
Complementary data was collected from the Web pages and annual statements of the
interviewed companies to verify and complement the interview data.

The target group of interviewees was sales and marketing managers representing
SaaS providers in Finland. Within this target group we aimed at finding as
heterogeneous set of firms as possible to include firms with a variety of SaaS business
models. We used the National Software Industry Survey [23] and Web pages of the
Cloud Software Program [37] as sources of potential SaaS providers. With the
resources available, we chose seven firms providing SaaS in B2B markets. We
determined the managers representing the firms after approaching them by email
followed by a phone call. One of the firms did not answer to our contacts, thus the
final set of interviewees included persons from six firms. The roles of the six
interviewees include CEO, service manager, sales director, product manager and
executive advisor. All the interviewees had the deep understanding of SaaS business
needed for carrying out the interviews.

We sent an introductory letter to the interviewees with a 1.5 pages questioner
annex prior to the interviews to give the persons a chance to get familiar with the
questions. The questioner annex contained a listing of the topic areas and 3-5
interview questions under each topic area. The topic areas were formed from the
dimensions of the model and the required background data: background information
of the interviewed firm and person (summarized in Table 1), SaaS offering
(compliance with the SaaS criteria in section 2, implementation and delivery model,
networks), customers, sales process, marketing communication, sales financials,
customer lifetime value, and summary questions.

We tested the use of the interview questions in a pre-interview and on this basis
implemented minor modifications to improve the fluency of the later interviews.
These changes have no major impact to the results and thus the results of the pre-
interview are included in the results. All the interviews took place during August-
September 2010, four in firm premises, two were conducted by phone. The average
duration of the interviews was 1 hour and 11 minutes. The interviews were digitally
recorded. Chosen segments of the recordings were transcript to written documents on
the first pass and verified on the second pass soon after the interviews. The written

8 P. Tyrväinen and J. Selin

documents were sent for interviewees for comments, corrections and additions. The
collected data was classified thematically based on the model presented in Figure 1.

4.2 Characteristics of the Case Firms

Table 1 presents characteristics of the firms whose representatives we interviewed.
The headcount figures represent the number of employees in Finland. Number of
years the firm has conducted SaaS business is reflected in their business model. Firms
A, B, and C have conducted SaaS business since they were established while firms D,
E, and F have started providing SaaS later on. The annual revenue 2009 refers to the
total business revenue including both SaaS and other business. SaaS revenue share
includes revenue from SaaS service fees and related added value services for five
firms. This share was not recorded and could not be estimated by firm D. Similarly,
firm B did not disclose profitability data, but is still in early phase, like firm A.
Compliance with SaaS model is estimated based on the criteria presented earlier.

Table 1. Firm characteristics and background information of the firms

Firms Firm A Firm B Firm C Firm D Firm E Firm F

Business model ASP /
SaaS

SaaS SaaS Profession
al SW
services

Profession
al SW
services

Software
product

Interviewee role Managing
Director

Sales
Director

Managing
Director

Executive
Advisor

Service
Director

Product
Manager

Headcount /
in sales

<10
20%

<10
25%

10-49
52%

>250
3,5%

50-250
7,5%

>250
42%

Years in
SaaS business

2 1 11 5 1 3

Revenue 2009
(change from prev)

<1M€€
(+40%)

<1M€€
(N/A)

1-10M€€
(+7%)

>1000M€€
(-9%)

11-100M€€
(N/A)

101-
1000M€€
(+11%)

SaaS share from
revenue

93% 100% 100% na. 15% 50%

Profit 2009
(change from prev)

-90%
(na.)

na. 21%
(+19%)

12%
(-2%)

13%
(na.)

23%
(-1%)

Compliance with
SaaS definition

3/6 6/6 6/6 4/6 6/6 5/6

Marketing & sales
cost per revenue

50% 40% 60% na. na. 41%

4.3 Detailed Results

This sub-section presents the results organized according to the factors impacting
marketing and selling SaaS presented in the model in section 3. Table 2 summarizes
the results representing the factors and their values in rows. Each column from A to F
represents the results of one firm.

The first set of rows represents the alternative components of service and
implementation models. Half of the firms – A, B and F – deliver SaaS as self-service

 How to Sell SaaS 9

while others provide some level of deployment, training and other services. Firm D
has positioned itself as a provider of high added value services. Firm E embeds the
SaaS offering in a bundle provided for a single fee, but not as a self-service package.

“We do not want to consult ourselves, we want our partners to do it.” –
Sales Director, Firm B.

The second set of rows describes service and implementation model of the
interviewed SaaS providers by presenting the split of revenue between SaaS fees and
professional services. The use of self-service is visible as a high share of revenue
from SaaS in Firms B, C and F. Firm D did not provide an estimate share of the share
of SaaS fees from the total revenue. The content of professional services provided
varies according to the firm. Firm A provides specification, deployment and
consulting services and these form 75% of their revenue. Firm B gets only 5% from
services containing mainly training. Firm C divides services into training, deployment
projects and after sales support. There are also differences between the firms in using
external resources. Firms D and F do not use partners for service creation while A, B
and C use technology partners for providing hosting services and platforms for
providing SaaS services. Firms B and E use also external R&D resources.

Customer and provider sizes are represented in the same set of rows with “C”
denoting size of the Customer organizations in the main customer groups and “P”
denoting Provider size. The sizes of customer follow nicely the provider sizes. The
small SaaS Firms A and B targeted small customers with less than 50 employees
while the larger providers have targeted mid size and large customers. For Firm F the
size of customer is less relevant while for others it pays an important role.

“In this kind of services the main common factor in firm purchase
behavior is the number of employees.” – CEO, Firm C.

The buyer in small firms is usually a top management. In medium and large
companies the business managers buy SaaS services matching their needs and
departmental budgets.

“Business is more interested in SaaS... customer’s IT organization feels
threatened by new solutions.” – Executive advisor, Firm D.

The next set of rows is the market communication channels of the interviewed
SaaS providers. In addition to traditional marketing means all the interviewees used
Internet for marketing their SaaS offering, e.g. using Web pages, targeted e-mail
campaigns, newsletters, search marketing, viral campaigns, banners etc.

“We have tried to live in the world, that when purchases are made in the
Web then also visibility will be in the Web.” – Sales director, Firm B.

The rows representing sales channels of the interviewed SaaS providers follow the
rows representing the marketing channels. All the interviewed firms use personal
selling and for Firms D and E this is the only sales channel. Other four firm use also
value added resellers. Firm F used early Internet sales but gave up and uses now
strongly resellers. Firm B is the only one using Internet as a sales channel, although
self-service was the only service and implementation model for Firms B, C and F.

10 P. Tyrväinen and J. Selin

Table 2. Summary of the interview results. Each column with title from A to F represents a
firm. A set of rows represents alternative categories in one dimension of the model. “X”
denotes that this category applies to the firm. Customer and provider sizes are represented in
the same rows with “P” denoting Provider. There are also two sets of rows for service and
implementation modes, and customer lifetime value is excluded from this table.

Firms A B C D E F

Service components
Self service X X X X
Deployment service X X X
Integration X X
Tailoring X X
Training and consulting X X X

Revenue split
SaaS fees (%) 25% 95% 87% na. 80% 98%
Professional services (%) 75% 5% 13% na. 20% 2%

Customer and Provider sizes
< 10 C P P C
10-49 C C P C
50-250 C C C P C
> 250 C P C C P

Buyer roles
End user
Technical buyer X
Business management X X X
Top management X X

Market communication
Internet X X X X X X
Personal marketing X X X X X
Relationships X X X X
Promotion X X X X
Advertising

Sales channels
Internet X
Reseller X
VAR X X X X
Representative
Personal selling X X X X X X

Entry transaction size
< 1 K€€ X
1-10 K€€ X X X X
10-100 K€€ X
> 100 K€€

 How to Sell SaaS 11

 “The market is not mature enough for self-service [through the Internet]
to be an effective, rational and scalable alternative.” – CEO, Firm C.

For the companies using personal selling personal direct marketing was also
important means for marketing. In addition to the sales channels listed in the
literature, the interviewees mentioned new marketing and sales models, such as use of
trusted recommenders or sales agents forwarding leads to the SaaS provider sales
personnel. The high level of sales provisions and channel management costs were
seen to prohibit use of external resellers. Typically the external resellers receive 10-
50% of the first year revenue from the new customer, from the total value of the
agreement or from the sales transaction.

Next set of rows presents the entry transaction sizes of the interviewed SaaS
providers categorized based on the order of magnitude. Most of the revenue is
realized soon after the sales while fees form a continuous cash-flow, which can
increase based on additional users or training fees. Contract periods used include
annual and three-year contracts charged typically in the beginning while continuous
contracts are charged monthly.

The interviews included multiple themes related to customer lifetime value;
customer potential evaluation, customer categorization based on the relationship and
estimation of customer lifetime value. The interviews indicated that the approach
created based on literature is insufficient for estimating customer lifetime value. Most
of the firms used the number of potential customers as the main metrics in evaluating
the potential. However,

“Unfortunately we cannot classify the customers to high-potential or non-
potential beforehand rather than after starting the discussion” – Sales
Director, Firm B.

Customers were not classified in Firm A, while Firm B assigned points to the
customers based on the market segment and target group and firm D focused on
strategic customers included in a ranking list. Various metrics were used for
estimating business and sales performance related to customer lifetime value. Firm A
evaluated customers based on time spent and revenue. Firm C used multiple metrics:
new sales per salesman, outbound calls, conversations, scheduled sales meetings,
inbound customer contacts, and number of new licenses sold. Firm D did not bring up
tools for estimating customer lifetime value or customer potential. Firm B defined a
clear goal for the first year customer lifetime value:

“Customer acquisition cost should be less than customer relationship
value of the first year. It would be a great ratio, if the customer would pay
[us] during the first year half of what it costs us.” – Sales Director, Firm B.

4.4 Updated Model

Based on the empirical results, we found it useful to revise the model somewhat. The
eight dimensions were clustered into four internally interconnected areas represented
as the leaves of a four-leaf clover in Figure 2. We added the key performance
indicators (KPI) to the four areas taking into account both short and long term success
of the firm. These KPIs are presented next to the area outside the clover.

12 P. Tyrväinen and J. Selin

Fig. 2. The updated clover model for marketing and selling SaaS

Out of the eight dimensions two were converted into KPIs, namely entry transaction
size as a KPI of Sales Process and customer life-time value as a KPI of new area
Customer Relationship. This new area contains two new dimensions related to
development and maintenance of customer relationship. The scales of the old
dimensions are mainly the same as in Figure 1 and due to simplicity they are not
presented in Figure 2. The four areas containing the updated dimensions are as follows.

• Business connects the dimensions Service and implementation model and
Provider size. The scales of these dimensions are the same as in Figure 1. For
example, Service and implementation model has values Self service,
Development, Integration, Tailoring, as well as Training and Consulting. A
typical SaaS firm in the empirical study was a small growth venture
established especially for SaaS business. In this case the typical service and
implementation model is self-service. Based on the empirical study the key
performance indicators measuring best the success in business area include
revenue and headcount growth, cash-flow and committed monthly recurring
revenue (CMRR) from current customer base.

 How to Sell SaaS 13

• Target customers area connects together the two interconnected dimensions
of Customer size and Buyer role. The scales of these dimensions are the same
as in Figure 1. As observed in the interviews, in large customer organizations
SaaS is purchased by business managers while in small organizations the top
management does the decisions related to purchases. The number of potential
users was found to be the critical indicator when defining target markets
while the number of customers was key indicator of long-term success.

• Sales process includes the interconnected dimensions of Sales channel and
Market communication channel. Unlike expected in the original model the
common practice to use of Internet marketing did not imply use of Internet as
a sales channel for business customers. Instead, use of personal marketing
and personal selling were connected in the empirical study. For this reason
the ordering of the values in Market and communication channel dimension
needs to be updated accordingly positioning personal marketing along with
personal direct sales in the outer ring representing high unit costs per
customer. Based on the empirical study customer acquisition cost is the most
important performance indicator of sales process, as also suggested in [38].
Interviews indicate also, that entry transaction size is directly related with
cash-flow and should be treated as a performance indicator of the sales
process rather than as a separate dimension of the model.

• Customer relationship area includes two new dimensions, Development
referring to new sales and Maintenance referring to after sales. The
maintenance of customer relationship is important to avoid churn and
guarantee continuous cash-flow from the customer base. After sales support
enables also development of the relationship and generation of new sales from
the same customer organization. The two key performance indicators in SaaS
customer relationship management are churn and customer lifetime value.

This revised model can be utilised in design of marketing and sales strategy for SaaS
services as it brings together the key dimensions and their interconnections. The form
of a four-leaf clover emphasizes the interconnectedness of the factors within and in
between the areas. Especially, customer lifetime value cannot be discussed outside a
wider context of a customer relationship. The model also provides key performance
indicators for following progress in the main areas.

From research perspective the customer relationship area of the updated model
rising up from the empirical study has most development potential. This study has
been focusing on the activities needed to make a customer to buy SaaS while the after
sales activity gained less attention. Thus work is needed to deepen the understanding
of the KPI – churn and customer lifetime value – in forthcoming research.

5 Summary and Conclusions

This paper presented a model for the main factors of marketing and selling SaaS
constructed based on the literature. To our knowledge, such has not been presented in
research literature prior to this paper. An explorative multi-case study was used for
collecting empirical data and for validating the model. In general, the literature and
the empirical observations were rather well in line although some changes were
implemented into the updated model.

14 P. Tyrväinen and J. Selin

Based on the empirical results it seems that SaaS providers include small, medium
size and large enterprises. The pure-player SaaS providers in our target group were
small growth ventures, whose business model is based on providing SaaS services
mainly for small enterprises based on customer self-service.

In general, the interviewed firms provided SaaS services for a wide range of firms
from large corporations to small micro firms in the long tail. The dominant factor to
determine the target group of customers was the number of potential users, which is
directly related to the headcount of the customer organization.

The main sales channel was direct personal sales supported with Internet-based
marketing communication. Internet as such was not much used as a sales channel, and
advertising was not used in marketing communication.

The most important performance indicator for marketing and sales was customer
acquisition cost. Customer lifetime value and churn were the key performance
indicators for customer relationship management. There seems to be a need for better
tools for estimating the customer lifetime value, which would be a fruitful target for
further research. In addition, studying the impact of service platforms to marketing
and selling SaaS would be a useful direction for further research.

In general, the studied SaaS providers resemble software product firms in having a
high number of customers, small revenue per customer and high marketing and sales
costs. They also share the problem of delay in cash flow between software
development and revenue. The SaaS providers also share challenges of professional
service providers in maintaining customer relationships and avoiding customer churn.
Finding a marketing and sales approach matching these combined challenges
originating from of both software product and professional services business will be
critical to success of any SaaS firm in the near future.

Acknowledgments. This work was supported by TEKES (the Finnish Funding
Agency for Technology and Innovation) as part of the Cloud Software Program of
TIVIT (Finnish Strategic Centre for Science, Technology and Innovation in the field
of ICT).

References

1. Youseff, L., Butrico, M., Da Silva, D.: Toward a Unified Ontology of Cloud Computing.
In: Grid Computing Environments Workshop, pp. 1–10 (2008)

2. Vaquero, L.M., Rodero-Merino, L., Caceres, J., et al.: A Break in the Clouds: Towards a
Cloud Definition. ACM SIGCOMM Computer Communication Review 39, 50–55 (2008)

3. Pettey, C., Stevens, H.: Gartner Says Worldwide SaaS Revenue to Grow 18 Percent in
2009 (2009), http://www.gartner.com/it/page.jsp?id=%201223818

4. Kaplan, J.M.: Software-as-a-Service Myths,
http://www.businessweek.com/technology/content/apr2006/
tc20060417_996365.htm

5. Mallya, S.: SaaS Sales Strategy, http://www.prudentcloud.com/saas/
saas-sales-strategy-25062009/

6. Jamcracker: When Selling SaaS, Don’t Sell SaaS,
http://www.jamcracker.com/When-Selling-SaaS-Dont-Sell-SaaS-0

 How to Sell SaaS 15

7. Domergue, D.: PrudentCloudSaaS: Value Based Selling,
http://www.prudentcloud.com/saas/
saas-value-based-selling-03082009/

8. Cone, L.: The SaaS Model - Easy to Sell, http://it.toolbox.com/blogs/
coneblog/the-saas-model-easy-to-sell-18333

9. Radizeski, P.: Top 3 Reasons its Hard to Sell SAAS, http://blog.tmcnet.com/
on-rads-radar/2009/03/top-3-reasons-its-hard-to-sell-saas.html

10. Kotler, P., Keller, K.L.: Marketing management. Pearson/Prentice Hall, Upper Saddle
River, NJ, USA (2009)

11. Jobber, D., Lancaster, G.: Selling and sales management. Prentice Hall/Financial Times,
Harlow (2003)

12. Kotler, P.: Megamarketing. Harvard Business Review 64, 117–124 (1986)
13. Grönroos, C.: Keynote Paper from Marketing Mix to Relationship Marketing-Towards a

Paradigm Shift in Marketing. Management Decision 35, 322–339 (1997)
14. Tyrväinen, P.: Model for evolution of a vertical software industry. In: Tyrväinen, P.,

Mazhelis, O. (eds.) Vertical Software Industry Evolution Analysis of Telecom Operator
Software, pp. 25–33. Springer, Heidelberg (2009)

15. Gupta, S., Hanssens, D., Hardie, B., et al.: Modeling Customer Lifetime Value. Journal of
Service Research 9, 139 (2006)

16. Berger, P.D., Nasr, N.I.: Customer Lifetime Value: Marketing Models and Applications.
Journal of Interactive Marketing 12, 17–30 (1998)

17. Venkatesan, R., Kumar, V.: A Customer Lifetime Value Framework for Customer
Selection and Resource Allocation Strategy. J. Market. 68, 106–125 (2004)

18. Hoch, D.J., Roeding, C., Lindner, S.K., et al.: Secrets of software success. Harvard
Business School Press, Boston (2000)

19. Tähtinen, J., Parvinen, P.: Ohjelmistojen markkinointi. In: Hyvönen, E. (ed.) WSOY,
Vantaa, Finland, pp. 41–76 (2003)

20. Cusumano, M. A.: The business of software: What every manager, programmer, and
entrepreneur must know to thrive and survive in good times and bad. Free Press, New
York (2004)

21. Ojala, A., Tyrväinen, P.: Business Models and Market Entry Mode Choice of Small
Software Firms. Journal of International Entrepreneurship 4, 69–81 (2006)

22. Chong, F., Carraro, G.: Architecture Strategies for Catching the Long Tail. MSDN
Library, Microsoft Corporation (2006)

23. Rönkkö, M., Ylitalo, J., Peltonen, J., Koivisto, N., Mutanen, O., Autere, J., Valtakoski, A.,
Pentikäinen, P.: National Software Industry Survey 2009. Helsinki University of
Technology, Espoo (2009)

24. Moore, G.A.: Inside the tornado: Marketing strategies from silicon valley’s cutting edge.
HarperBusiness (1999)

25. Zoltners, A.A., Sinha, P., Lorimer, S.E.: Match Your Sales Force Structure to Your Busi-
ness Life Cycle. Harv. Bus. Rev. 84, 80 (2006)

26. Rajala, R., Rossi, M., Tuunainen, V. K.: A Framework for Analyzing Software Business
Models (2003)

27. Choudhary, V.: Comparison of Software Quality Under Perpetual Licensing and Software
as a Service. J. Manage. Inf. Syst. 24, 141–165 (2007)

28. Sääksjärvi, M., Lassila, A., Nordström, H.: Evaluating the Software as a Service Business
Model: From CPU Time-Sharing to Online Innovation Sharing, pp. 177–186 (2005)

16 P. Tyrväinen and J. Selin

29. Anonymous SoftwareMarketingAdvisor.comTips for SaaS Marketing,
http://www.software-marketing-advisor.com/
saas-marketing.html

30. Weobong, D.: How to Sell SaaS, http://howtosellsaas.com/
31. Burrell, C.: SaaS New Engagement Approach in Europe by Fujitsu Services. Fujitsu Sci.

Tech. J. 45, 275–282 (2009)
32. Moore, G.A.: Living on the fault line, revised edition: Managing for shareholder value in

any economy. HarperBusiness, New York (2002)
33. Anonymous THINKstrategiesCIO’s Guide to Software-as-a-Service,

http://thinkstrategies.icentera.com/portals/default.asp
34. Gardner, T.: Financial Implications of the SaaS Business Model,

http://www.sterlinghoffman.com/newsletter/articles/
article339.html

35. Hirsijärvi, S., Remes, P., Sajavaara, P.: Tutki ja kirjoita, 13th edn., Tammi (2007)
36. Hirsjärvi, S., Hurme, H.: Tutkimushaastattelu: Teemahaastattelun teoria ja käytäntö.

Yliopistopaino (2001)
37. Anonymous Cloud Software Program,

http://www.cloudsoftwareprogram.org/
38. Deeter, B., Cowan, D., Goodman, B., et al.: Bessemer Venture PartnersBessemer’s

Top 10 Laws for Being “SaaS-y”, http://www.bvp.com/downloads/saas/
BVPs_10_Laws_of_Cloud_SaaS_Winter_2010_Release.pdf

Business Continuity Solutions for SaaS

Customers

Tommy van de Zande and Slinger Jansen

Dept. of Information and Computing Sciences,
Utrecht University

{T.JacobusmeergenaamdvandeZande,R.L.Jansen}@uu.nl

Abstract. Organizations are increasingly adopting SaaS-solutions in
favor of traditional on-premise solutions, because of the advantages in
terms of cost reduction, implementation time and scalability. Business
continuity of these SaaS-solutions is often neglected, even when business
processes that depend on the SaaS-solution are critical. This paper ad-
dresses business continuity for SaaS-solutions by identifying and evaluat-
ing different business continuity solutions to protect customers from the
risk of their SaaS-provider going bankrupt. Two solutions; ‘SaaS-escrow’
and the ‘SaaS-guarantee-fund’, are evaluated in expert interviews and
a survey. The conclusions of this research are that there is a need for
SaaS business continuity solutions, SaaS continuity solutions are not fre-
quently employed, and that the two solutions presented here are favored
equally by a panel of business managers.

Keywords: Business Continuity, SaaS, Escrow.

1 Introduction

Software as a service (SaaS) is a form of software deployment, that delivers
software on a subscription basis through the internet. With SaaS, companies no
longer have to buy or develop a complete software solution up front, instead they
rent it. Pricing models can vary, but generally customers pay on a subscription-
basis or on a usage volume-basis [1]. SaaS is rapidly growing in popularity.
Recent developments in Internet technology and broadband adoption enabled
online software to serve as a true desktop software replacement. Also the recent
economic and financial crises have played their part in showing the advantages
of SaaS, because of its low upfront investment and high scalability. Because of
these advantages in comparison to traditional software licensing models, a large
number of small businesses and start-ups are already using SaaS solutions for
some time now, and even large institutions and corporations are migrating their
data from on-premises software to externally developed and hosted software.

Service Level Agreements are legal documents where customer and provider
agree on the quality of service, by quantifying minimum quality of service [2].
For SaaS, these mostly discuss availability and response time. There are some
problems that are generally neglected, like what happens when a SaaS-provider

B. Regnell, I. van de Weerd, and O. De Troyer (Eds.): ICSOB 2011, LNBIP 80, pp. 17–31, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

18 T. van de Zande and S. Jansen

goes out of business. If a company is using mission-critical software that is hosted
off-premises, it could get into big problems when the provider decides to pull the
plug. The business continuity risks include (in order of importance):

R1: Lose access to data
R2: Lose access to the application itself
R3: Lose support and maintenance

These problems are considered deal breakers by decision makers and counter
measures need to be taken to assure continuity, before SaaS can truly serve as a
replacement for offline software.

For shrink-wrapped software, business continuity can be arranged using a
source-code escrow [3]. With source-code escrow, the developer stores its source
code with a trusted third party, the escrow agent. If this developer goes bankrupt
or otherwise defaults on his support and maintenance obligations, the customer
requests the escrow agent to release the source-code. If the escrow-agent confirms
that a valid release condition has been met, he will transfer the source-code to
the customer.

In the late 90s of the previous century, application service providers started
hosting applications off-site, offering some of the same advantages that current
SaaS-providers offer. In the end those traditional ASPs were not able to de-
liver reliability and quality standards demanded by business customers [4]. The
business models of most traditional Application Service Providers (ASPs) were
fundamentally different from current SaaS business models; traditional ASPs
repackaged existing legacy software and offered it off-site, so customers still had
to buy a license to use the software [5,1]. After the burst of the dot-com bubble in
the year 2000, many of those traditional ASPs faced financial problems, and some
even bankruptcy, leaving their clients with no access to their software [6,7]. The
new generation of ASPs, who offer true SaaS-solutions, differ in a way that they
do not resell usage rights for existing enterprise applications. They develop their
own web-based applications on a new multi-tenancy design paradigm, which
makes serving multiple clients more scalable and cost-effective [5].

If SaaS is going to serve as a more cost effective and flexible replacement
for shrink-wrapped software, it is imperative that there is a clear way for both
customers and providers to arrange a viable continuity solution. Several scholars
identify the need for research attention to the business aspects of SaaS, and
mention the risk of SaaS-providers going bankrupt as a serious issue [8,9].

The goal of this paper is to give a state-of-the-art report on available conti-
nuity solutions for SaaS. We discuss the necessity of such continuity solutions
and compare different initiatives. Since there is no clear solution to the afore-
mentioned problem, the research is explorative. First the requirements needed
for a successful SaaS business continuity solution are identified. The identified
requirements are based on the results of five semi-structured interviews: four
interviews with CEOs from several Dutch SaaS vendors and one interview with
the CEO of a Dutch Escrow agent. During these interviews, we distinguished two
different SaaS continuity solution. These solutions are described and compared
with each other. We also compare these existing solutions with the requirements

Business Continuity Solutions for SaaS Customers 19

that have been identified. Then we discuss the necessity of SaaS continuity ar-
rangements. And finally, a small survey is carried out among SaaS providers and
customers.

The paper is built up as follows; Section 2 describes the interviews and
presents some initial findings. Section 3 discusses what risks should be covered
to provide SaaS continuity, and presents the requirements for a SaaS continuity
solution. In section 4 we discuss what solutions are currently being offered. Sec-
tion 5 discusses the necessity of business continuity solutions for SaaS. Section 6
presents the results of the survey. In section 7 we conclude the paper.

2 Interviews

Because SaaS Business Continuity is a new and unknown topic, we started our
research by conducting five semi-structured interviews with several people in
the SaaS and continuity business. These interviews provided data for both the
requirements for a continuity solution as well as details of the two existing con-
tinuity solutions.

2.1 Interview Design

The five interviews were conducted with four CEOs of several (small) Dutch
SaaS-providers and the CEO of one Dutch escrow-agent. The interview partici-
pants were selected pragmatically. Two were approached within the network of
the authors. Two others were found at a conference on SaaS and cloud comput-
ing. They were all approached because their SaaS-services targeted other busi-
nesses. The interviewed escrow-agent was referred by one of the SaaS-providers.
The interviewee selection process threatens the validity of the research, in that
the participants were selected based on availability and willingness to participate.
However, due to the method used to find participants we dare say with some
certainty that the interviewees’ responses were relevant, on-topic, and addressed
the topic with sufficient experience (avg. 5 years) and insight. The SaaS-provider
interviews discussed themes such as customer demand for business continuity so-
lutions, use of business continuity solutions, what business continuity solution
they would prefer and what would happen to their customers if the provider sud-
denly disappeared, what problems they would face and what data they would
lose. We also asked the interviewee’s if there were any other solutions to pro-
vide business continuity. The interview with the escrow-agent was conducted
to gather detailed information about how their SaaS-escrow solution works. All
the interviews took approximately one hour and data was recorded by taking
notes. The notes were later transcribed and sent to the interviewees for veri-
fication. Three of the SaaS-provider interviews and the escrow-agent interview
were conducted on locations at the companies. One SaaS-provider interview was
conducted by phone. All interviews took place during March-June 2010. Table 1
shows some characteristics of the different companies where we conducted the
interviews.

20 T. van de Zande and S. Jansen

Table 1. Overview of the interviewed companies along with the type of product they
offer and the approx. number of customers

Company Product Customers Business Continuity Solution
Provider 1 SaaS CRM 100 None
Provider 2 SaaS Planning suite 39 Escrow for specifc customer
Provider 3 Several solutions 60 None
Provider 4 SaaS ERP software 80 Escrow (optional)
Escrow agent Saas-Escrow 20 N.A.

2.2 Initial Results

Two of the interviewed SaaS-providers (Provider 1 and 3) explained that they
have thought about business continuity solutions, but in the end did not go
through with it, because almost none of their customers demanded such a so-
lution. They stated that a lot of customers do not worry about the financial
stability of their SaaS-provider, but that it was also possible that they didn’t
understand the risks. Provider 2 did use an escrow-solution, but only with one
of their customers, because they were the only one demanding such a solution.
Provider 4 offered escrow as an extra service, but none of their current customers
actually applied for it.

According to the SaaS-providers, there is not much demand for SaaS busi-
ness continuity from the customers. Some of the SaaS-providers believed that
customers do not fear the continuity risks because of the following fact; a SaaS-
provider, like any other subscription-based service, has clear vision and control
over its finances. A SaaS-provider can predict with a high amount of certainty
what his revenue will be over a certain period of time. When the SaaS-provider
uses one-year contracts, then he knows how much revenue he will make for the
next 12 months at any given moment. So the only way that he could get into
trouble is if his costs will go up unexpectedly, which is rare because most of his
costs are also on a subscription-basis. Added to those clear costs is the trust
that, when bankruptcy does occur, a Bankruptcy Trustee will keep the software
running for as long as possible because it is a revenue producing part of the
company. Section 5 elaborates on this assumption.

The clear and stable financial situation of SaaS-providers might explain the
absence of business continuity worries among SaaS-customers. However, demand
for business continuity solutions does exist. The escrow-agent stated that he cur-
rently sees an increase of demand for their SaaS coninuity solution. The expla-
nation of SaaS-providers that their customers do not have to fear bankruptcy
might be true for most customers, but some simply can not bear the risk.

3 Guaranteeing Business Continuity for SaaS

In this section, we explain the business continuity risks and requirements for a
successful business continuity solution. These risks and requirements are based

Business Continuity Solutions for SaaS Customers 21

on the interview data. The risks and list of requirements were created during
the first interview. These risks and requirements did not change throughout the
further interviews, although they were reformulated and reshaped during the
second and third interview. The fourth interview corroborated the results from
the previous interviews.

The SaaS-model is fundamentally different from the traditional software-
licensing model. The difference is that the customer does not possess the object-
code on-premises but, instead, accesses the application on a remote server, using
the internet. This remote server is managed by the SaaS-provider, either on-
site or by using a hosting-provider. The actual hardware where the software
and data reside is out of the customer’s reach and control. Some SaaS-solutions
even include content from third-party content providers in their SaaS-software.
A customer does not have anything to do with all those external parties, and
commonly they do not even know that external parties are being employed. The
customer pays its SaaS-provider for access to the software, the SaaS-provider
in his turn pays the different parties involved to deliver its service. Together
with the interviewed experts, we identified several requirements for a business
continuity solution.

The main goal with a business continuity arrangement is the assurance that
the customer continues to have access to his SaaS application and data, even
if the SaaS-provider disappears. To make the continuation of access and data
work several key elements should be covered. The most important element is the
customer’s data. Even if access to the application has been suspended, with a
recent backup a customer at least does not have to worry about losing his data,
and he can start migrating towards an alternative solution, and only lose access
to his application for a couple of days or weeks, depending on the size of the
data and type of application. Losing access to the application would still be a
major problem for any organization, but without access to (a recent backup of)
the data, problems would be much worse; imagine a company losing all its data
that resided in their CRM system. The company would not be able to service
their current customers or process new leads. Losing access to CRM data could
be disastrous for a lot of companies. So the first step towards business continuity
would be the ability to acquire regular backups of the data.

The next step towards a more complete business continuity agreement would
be an agreement with the hosting-provider, in such a way that they ensure
they will continue hosting the application even when the SaaS-provider gets into
financial difficulties. Such an agreement could be arranged by a SaaS-customer
itself, but that would not work if there are more customers hosted on the same
server, which is generally the case with SaaS. Therefore, a logical step would
be to arrange this hosting continuity agreement with a separate legal entity.
This legal entity can either be a commercial escrow-agent, or a foundation/fund
founded by the customer(s) or SaaS-provider themselves. Such a separate entity
can also provide some additional services next to simply continuing hosting (and
providing the funds to do so). They could offer support for the application when
the SaaS-provider fails to do so. This hosting continuity is a kind of insurance,

22 T. van de Zande and S. Jansen

and will be cheaper if arranged with multiple SaaS-providers at the same time,
because the chance that all of the SaaS-providers fail at the same time is lower
than the chance that one of them fails. Some SaaS-providers also use third
party content or services in their applications. Sometimes this content is free,
but frequently the SaaS-provider pays the content provider for the content. For
better continuity these third party providers also have to be included in the
business continuity arrangement. The last step for complete business continuity
is continuing support and maintenance for the application, to help customers
with possible problems and keep the application running.

To summarize, the requirements for a complete SaaS business continuity so-
lution are (in order of importance):

1. Own Backup: Every SaaS customers should be able to download all of its
data.

2. Hosting Insurance: A third party should create an arrangement with the
hosting provider to continue hosting even if the SaaS provider fails.

3. Arrangement with content providers: If the SaaS application contains
(paid) content from third parties, they should also continue providing the
content.

4. Support and maintenance for the application: If the SaaS provider dis-
appears, the customer also loses support. A third party could try to continue
support for the application.

A solution that meets these requirements, should be able to effectively protect
customers of a SaaS-provider when it goes bankrupt or otherwise out of business.
Two solutions that were identified during the interviews are presented in the next
section.

4 Available Solutions

Even though SaaS business continuity guarantees are not common, several com-
panies, like the escrow-agent we interviewed, are already offering solutions. In
this section these solutions are discussed, and compared with the requirements
we identified for a successful business continuity guarantee. Data about the SaaS-
escrow solution came from the interviewed escrow-agent, completed with data
from websites of several escrow-agents. Data concerning the SaaS Guarantee
fund came from the interviewed CEOs of Provider 1 and 4. The SaaS-providers
also pointed out the downsides for both solutions.

4.1 SaaS-escrow

A common solution for SaaS business continuity, SaaS-escrow, is offered by ex-
isting escrow-agents, who already offered source-code escrow for traditional soft-
ware. As the interviewed escrow-agent pointed out, most escrow-agents have
added a ‘SaaS-escrow’ service to their product portfolio. SaaS-escrow usually is
a modified version of the regular source-code escrow of the escrow-agent. The

Business Continuity Solutions for SaaS Customers 23

modification generally consists of the addition of a data back-up with the de-
posit of source-code. More complete escrow solutions also provide ‘continuation
of hosting’, where they arrange an agreement with the hosting provider, that
whenever the SaaS-provider gets into problems, the escrow-agent takes over the
financial obligation towards the hosting-provider. The hosting provider in return
promises that they will continue hosting the SaaS-application and data under
any circumstance. Escrow-agents differentiate their solution by offering different
extra services for SaaS-escrow, like delivering support and maintenance of the
escrowed application when the escrow is released. The escrow-agent takes over
support and maintenance for a predetermined amount of time. During this time,
customers have the ability to migrate their data to another more permanent
solution. SaaS-escrow solutions can be arranged on two different levels. The first
one is a three-party arrangement with the SaaS-provider, the SaaS-customer
and the escrow agent. In this arrangement the individual customer is the only
customer who is able to access the application when the escrow is released. But
when multiple customers demand an escrow-arrangement, the second arrange-
ment makes more sense; a two party ‘master-contract’ arrangement between the
SaaS-provider and the escrow-agent. In this arrangement there is no limit on
how many customers become a beneficiary of the escrow-arrangement, to bene-
fit from the arrangement only depends on each individual customer if they want
to sign up for it (and pay the price of course). Such a master-contract arrange-
ment is initially more expensive than a single three-party arrangement, but as
an advantage it is much easier to add new customers to the arrangement, and
spread the costs over all the participating customers.

With SaaS-escrow, as opposed to traditional escrow services, the initial pur-
pose of storing the source-code and releasing it to the customer on certain release-
events is less important than the continuation of application access. Most SaaS-
customers would not have any use for the source-code, because they probably
do not have the hardware and infrastructure to deploy the software applica-
tion on-premises. As an added value, the escrow company can offer support and
maintenance for the SaaS application, by storing documentation and remaining
in contact with key-persons involved with the software-maintenance at the SaaS-
provider. So with SaaS-escrow, the escrow-agency acts more like an insurance
company for hosting costs than a storage facility for sensitive information. This
also creates a possible risk for the business continuity of the escrow-company it-
self. If the SaaS-provider grows in size, the cost for hosting the application grows
accordingly. That way, it could become too expensive for the escrow-company
to take over hosting-costs if a big SaaS-provider goes bankrupt.

Another possible problem with SaaS-escrowarrangements is that the solution is
general and standardized, so for some specific SaaS-solutions the escrow-solution
simply would not work or only cover a part of the business continuity problems.
For example, typical escrow solutions do not offer support for SaaS-applications,
which use a lot of third-party content in their application, because they only cover
continuation of payment towards the hosting provider, but not the payment to-
wards third-party content providers.Another example is a SaaS-providerwho uses

24 T. van de Zande and S. Jansen

a lot of different hosting-providers to host their application, for example to provide
better reliability and speed for customers around the world. The escrow-company
then should sign a contract with every single one of those hosting-providers to be
able to continue hosting the application for every customer.

4.2 SaaS Guarantee Fund

The CEOs of Provider 1 and Provider 4 both explained another possible solution
to guarantee business continuity: a SaaS Guarantee fund. The SaaS Guarantee
Fund is based on the idea of the so-called Travel Guarantee Fund, which exists
in several countries. Such a Travel Guarantee Fund covers the risk for travelers
who book a trip with a travel-agency or tour-operator which goes bankrupt
before or during the actual trip. The Fund provides customers of a participating
travel-agency with (financial) protection against such risks, so that customers
are guaranteed that their trip is paid-for even though the travel-agency defaults.
An adaption of such a fund could function as a business-continuity guarantee
solution for SaaS-providers. SaaS-providers have a clear image of their financial
situation over the coming months. They know what their costs will be to pay
every third-party involved in running the SaaS application for upcoming months.
With this financial forecast in mind, they could set up a fund with a budget
large enough to cover those costs for several months. The fund then arranges
an agreement with all those third-parties, to continue their services towards the
SaaS-provider under any circumstance. Since the fund is a different legal entity
than the provider itself, it is not affected by financial problems or bankruptcy
of the provider. In case of bankruptcy or severe financial problems, the fund
can take over the payment towards all third-parties for a few months, during
which customers have time to migrate their data towards another solution, or
during which the SaaS-provider can make a new start again “Storing the code
and data at a third party could be dangerous regarding theft of IP and setting up
a guarantee-fund is not that hard to achieve and has the advantage of (expected)
lower costs.” is what one of the survey respondents answered when asked which
arrangement he thinks works best.

The guarantee fund could initially be small and only support one single SaaS-
provider, so it can be perfectly tailored to support that single solution (and its
customers of course) on all (business continuity) aspects. To lower costs and ef-
forts, multiple SaaS-providers could set-up a fund together, lowering the required
cash-deposit per provider because it is unlikely that the fund has to cover for all
the participating providers at the same time. But a fund for multiple providers
also has its disadvantages, for example: the fund will be less customizable to-
wards every specific SaaS-solution. Another disadvantage is that when one of
the participating SaaS-providers fail, then the others feel that they pay for its
failure.

Currently, there are no known SaaS-guarantee funds with multiple participa-
tors. The problem probably lies in the initial start-up of such a fund. Who takes
the initiative and invests the initial time and money in it? SaaS-providers are
commercial companies, and they justify their investments and projects with a

Business Continuity Solutions for SaaS Customers 25

business case which predicts a profitable outcome. A SaaS-guarantee-fund for
multiple providers does not have any apparent extra benefits for the SaaS-
provider who initiates the fund. Some companies have started a SaaS-guarantee-
fund for their own solution though. An apparent party to set up and manage a
multiple SaaS fund would be a (software) trade association. They can provide
the fund along with possible certification for participating SaaS-providers.

4.3 Comparison

An advantage of the SaaS-escrow solution is that it is easy to set up, because
the solution is an existing package for which providers only have to sign up
once. Most escrow-companies already exist for several years, and have the re-
quired legal and technical knowledge to provide a reliable business-continuity
solution. Another advantage are its transparent costs. Because escrow solutions
are relatively standard, the costs are known in advance. A downside is that
SaaS-escrow is a standard solution with less customizability than a custom SaaS-
guarantee-fund, a SaaS-provider who uses a lot of different hosting parties and
content providers would have a hard time finding a suitable escrow-solution. Also,
escrow-solutions are more expensive than SaaS-guarantee-funds because of over-
head costs and the for-profit nature of escrow-companies. Survey respondents
who preferred the escrow-arrangement used arguments as: “The SaaS Escrow
guarantees that the source code and data are stored and will be given to the cus-
tomer when things go wrong, whereas a Guarantee Fund will only give help to
customers (missing the actual ‘guarantee’ as given by the other arrangement)”,
“They [The escrow company] have the legal expertise available” and “Because it
is easier to set up and can be arranged on forehand”.

An advantage of a SaaS-fund is that it can be set-up for a single SaaS-solution,
so the provider remains completely in control of who has access to its source-
code and other intellectual property, while still providing a workable business-
continuity guarantee. Also, because of its non-profit nature and low overhead
costs, all of its income will be used to serve its core activity; provide continuity,
instead of overhead costs like marketing and management. Arguments favoring
the SaaS-fund were: “Without the capital knowledge of the technical staff, the
code/data is of very little use.”, “Storing the code and data at a third party could
be dangerous regarding theft of IP and setting up a guarantee-fund is not that
hard to achieve and has the advantage of (expected) lower costs.” and “It is the
only option that can cover the complete infrastructure, including all third parties
and resellers.” Table 2 summarizes the possible advantages and disadvantages.

When we compare both solutions to the previously mentioned requirements on
how a complete business continuity solution should work, we conclude that both
solutions can cover the basics: they both offer data backups and continuation of
hosting. SaaS-escrow does not offer extra continuity agreements for other third-
parties like content providers or extra hosting-partners. The SaaS-fund could
contain all of those options, but in the end the features of a SaaS-fund depend
on how the fund is implemented.

26 T. van de Zande and S. Jansen

Table 2. Overview the advantages and disadvantages of the different solutions

SaaS-escrow Guarantee Fund

Advantages

Easy to arrange Complete control
Legal knowledge Customizable for specific solution
Clear costs (Expected) lower costs
Experience

Disadvantages
Expensive Requires more effort from provider
External party Responsibility stays with the provider

No prior experience

5 Necessity of SaaS Continuity Arrangements

There are several ways to ensure business continuity with SaaS. The only ques-
tion that remains is: is it necessary? This question has to be answered by each
(potential) SaaS-customer individually. Several authors doubt the necessity of
the traditional source-code escrow [10,11,12] for shrink-wrapped software, be-
cause few escrows are actually released. So it is only logical to doubt the neces-
sity of SaaS business continuity solutions as well. Of course, the model of SaaS
versus that of shrink-wrapped software is completely different, and so are the
risks at stake. With SaaS, if things go wrong, they could have disastrous con-
sequences for some customers, because they could lose access to their software
as well as their data. But the chances of a SaaS-provider going bankrupt and
leaving its customers without any access to their application or data from one
day to another is in fact small, when for example considering the interests of a
bankruptcy trustee.“A great deal depends on the application itself – how critical
is the data in the application? What are the workarounds I can use to back up
my information without incurring a lot more work?” one respondent answered
on how he thinks about business continuity arrangements.

5.1 The Bankruptcy Trustee

The interview results show that many SaaS-customers have not given much
thought to business continuity risks, and frequently rely on a SaaS solutions
without proper business continuity guarantees. Others, as pointed out by the
CEO of Provider 4, simply did not worry that they lose access to their application
because they believe in a simple yet effective assumption, that is based on the
SaaS business model itself; the SaaS model consists of a constant revenue stream.
When a SaaS-provider files for bankruptcy, a Bankruptcy Trustee will always
keep that constant stream of revenue flowing because it can be used to pay off
creditors. To keep the revenue flowing, he will have to keep the SaaS application
running. The Bankruptcy Trustee would cut off departments like marketing and
R&D, but will keep the core services running.

Business Continuity Solutions for SaaS Customers 27

The danger is that this trust in the bankruptcy trustee is based on an assump-
tion, albeit a logical one. A Bankruptcy Trustee is not obliged to keep the service
running, and could decide to liquidate all assets instead, leaving its customers
without their software. Also, a SaaS-provider can stop its services even though it
did not go bankrupt. For example, the Californian-based Platform-as-a-Service
provider Coghead, which provided an online hosted platform to create enter-
prise database applications, announced in February of 2009 that their intellec-
tual property assets were acquired by SAP, and that they would stop supporting
the platform within the next month [13]. Customers had one month to develop
a new application on another hosted platform and migrate their data towards
it. Some companies see these risks as an ultimate downside for outsourcing their
IT to an external service provider [14], and use it as an argument to stick to the
traditional on-premises software.

6 Survey

To gain some insights in customer preference, and in an attempt to verify the iden-
tified requirements, we carried out a small survey. The survey focussed on gaining
insight in the number of companies who utilize business continuity solutions and
tries to identify a preference for one of the two different continuity solutions.

6.1 Survey Design

In an online survey, we asked several IT decision-makers and SaaS providers
about their thoughts on business continuity with SaaS. We asked them if their
SaaS-provider provided a solution for business continuity, how important they
think such a continuity solution is, and which of the previously presented con-
tinuity alternatives they think is best. The survey results are based on 20 re-
spondents. We selected participants by posting a message in several SaaS-user
and provider groups on LinkedIn. We also asked the members of the Dutch CIO
platform to participate. The survey first asked respondents wether they were a
customer or provider of a SaaS provider. Then the respondents were asked if
their SaaS-solution already offered a business continuity solution. Respondents
who indicated that they are a customers of a SaaS-solution were asked wether
they would consider a SaaS-solution if it did not provide a business continuity
solution. Then the survey asked respondents to rate several aspects of SaaS-
products/providers on a scale of importance ranging from “not important” (de-
picted as 0 in the graph) to “extremely important” (depicted as 3.0 in the graph).
The different aspects were: size of the company, location of the company, price
of the SaaS-solution, financial situation of the SaaS provider, technical continu-
ity solutions, business continuity solutions and data export abilities. Finally, we
presented a short description of the two business continuity solutions discussed
in this paper; the SaaS escrow solution and the SaaS guarantee fund, and we
asked respondents to indicate which one they preferred and explain why.

28 T. van de Zande and S. Jansen

6.2 Survey Results

From the 20 respondents, 50% claimed to provide a SaaS-solution, the other
50% claimed to be (professional) SaaS-users. Only three of the in total 20 re-
spondents (or their provider) currently offered a complete business continuity
solution like SaaS-escrow or a guarantee fund. The other 17 respondents either
simply answered “no” or stated that they were still looking into it. Five re-
spondents stated that their provider offered data-export abilities as a continuity
solution. These results are quite surprising when we look at the results of the
second survey question, which we asked to the group that stated they were (po-
tential) SaaS-users: “Would you consider a SaaS-solution if it does not provide
a clear solution for business continuity?” Seven out of ten respondents answered
that they “could not take such a risk”, while the remaining three respondents
answered that it depended on the specific company and SaaS-solution.

The combined results of the ranking of importance of several SaaS aspects
are visualized in Fig. 1. As expected, the location of the company is perceived
less important than aspects like price, financial situation and technical continu-
ity, since the access to SaaS-applications is location independent. Respondents
rated data export abilities as the most important aspect when selecting a SaaS-
solution. This is in line with our findings in the previous chapter, but it is
surprising to see that even though it is perceived as extremely important, not
every SaaS-solution offers this possibility. The next most important aspect is
technical continuity. That is not surprising, because the likelihood of technical
problems is much higher than that of business continuity problems. The respon-
dents rated business continuity solutions as the third most important aspect
of a SaaS-solution, with almost the same score as price and financial stability.
This is quite surprising because business continuity solutions are not common in
SaaS-solutions, based on the survey results which showed that only 3 out of 20
SaaS-solutions offer some kind of business continuity solution. So there is a big
difference between how important people think business continuity solutions are
and the number of SaaS-providers actually using a business continuity solution.
There was no significant difference between the ratings of SaaS-providers and
customers.

Fig. 1. A graph showing the average score of several aspects related to SaaS-solutions
on a scale of importance (from 0 to 3.0), along with the standard deviation

Business Continuity Solutions for SaaS Customers 29

Exactly 50% of the respondents preferred the escrow-solution, while the other
50% preferred the guarantee-fund alternative. Some arguments in favor of the
escrow-solution were: “Because it’s easier to set-up and the arrangement is ac-
tive immediately” and “they have the legal expertise available”. Arguments in
favor of a SaaS guarantee fund were: “Without the capital knowledge of the
technical staff, the code/data is of very little use” and “Storing the code and
data at a third party could be dangerous regarding theft of IP and setting up
a guarantee-fund isn’t that hard to achieve and has the advantage of (expected)
lower costs”. There was nog significant difference between the solution-preference
among SaaS-providers and SaaS-users. Several respondents explained that they
prefer an escrow arrangement for standard SaaS-solutions, but that they would
prefer a custom guarantee fund for more complicated solutions with a lot of third
parties, because a guarantee fund has the ability to “cover the whole chain”.

To summarize, the survey showed that people think business continuity solu-
tions are important for SaaS-providers, but currently not many SaaS-providers
actually use a business continuity solution. The survey showed that both of the
discussed solutions are seen as viable options for business continuity guarantees,
with equal votes, but each with different advantages and disadvantages.

7 Conclusions

A company going bankrupt will always be a risk for a customer, no matter what
kind of business it is in. A business continuity solution could work to make the
consequences for a customer less disastrous, but it is hard to provide complete
protection in every scenario. In most cases, customers of SaaS-providers can find
comfort in the fact that because of the SaaS business model, keeping the service
running has the highest priority even if the company goes bankrupt, because it
provides a continuous revenue stream. In any case, the customer at least has to
make sure that he has access to his data and be able to acquire a backup. This
is the most important step towards business continuity. A customer should ask
himself how problems with the SaaS provider would affect his own business. If
a customer would get into serious problems with its own business continuity if
the SaaS provider fails, then a business continuity arrangement makes sense.

As our survey showed, most providers and customers think business continu-
ity arrangements are important, but not many providers are currently offering a
business continuity solution. This probably has to do with the fact that SaaS is
a relatively new phenomenon and that there is no ‘best practice’ yet. With this
paper we hope to give some clarification on this topic, and help clarify the dif-
ferent options available to arrange business continuity. Several issues that could
influence the validity of the survey results is that the number of respondents
is quite small and it did not distinguish between different SaaS-solution. It is
possible that several respondents were using the same solution. However, the
goal of this paper is not to identify how many companies currently use business
continuity solutions, or point out which solution is preferred. Instead, this paper
calls for attention on the topic and provides insights in the risks at stake and
the two possible solutions.

30 T. van de Zande and S. Jansen

The types of business continuity solutions we discussed both have their pros
and cons, and there is no one best solution. Because the SaaS model, in its
current form, is relatively new, there are no practical examples to assess the
effectiveness of both solutions in real life. There are no known cases where one
of the two continuity arrangements were ever actually put into effect yet.

Theoretically both the escrow-solution and the fund-solution should function
as a reliable solution. The big difference between the two is that the escrow-
solution is a commercial solution, which could be more expensive because the
escrow-company needs to make a profit, but offers a complete and ready to
use solution with professional (legal) support. The fund-solution can be cheaper
to set-up, but is more time consuming and requires a lot of effort from the
SaaS-provider itself. What is the best solution depends on the type of SaaS
solution and personal preferences of both the provider and its customers. We
think that when business continuity solutions are needed, for most standard
SaaS solutions the escrow version is preferred because of its simplicity and low
effort requirements. When the SaaS solution is more exotic or needs more specific
arrangements with many third parties or for a difficult infrastructure, the fund-
solution appears to be a better alternative.

Acknowledgements. The authors would like to thank the interviewed CEOs
and survey respondents, for their valuable insights. We would also like to thank
Pasi Tyrväinen, as well as the anonymous reviewers, for their valuable comments
and suggested improvements.

References

1. Abdat, N., Spruit, M., Bos, M.: Software as a service and the pricing strategy
for vendors. In: Strader, T. (ed.) Digital Product Management, Technology and
Practice: Interdisciplinary Perspectives. Advances in E-Business Research (AEBR)
Book Series, pp. 154–192. IGI Global (2010)

2. Hiles, A.: Service Level Agreements: Panacea or Pain? The TQM Magazine 6(2),
14–16 (1994)

3. Freeman, E.: Source Code Escrow. Information Systems Security 13(1), 8–11 (2004)
4. Dubey, A., Wagle, D.: Delivering software as a service. The McKinsey Quarterly

(2007)
5. Kaplan, J.: SaaS: friend or foe? Business Communications Review 37(6) (2007)
6. Currie, W., Seltsikas, P.: Exploring the supply-side of IT outsourcing: evaluating

the emerging role of application service providers. European Journal of Information
Systems 10(3), 123–134 (2001)

7. Chen, M., Chen, A., Shao, B.: The implications and impacts of web services to
electronic commerce research and practices. J. Electron. Commerce Res. 4(4),
128–139 (2003)

8. Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghalsasi, A.: Cloud computing
- The business perspective. Decision Support Systems 51(1), 176–189 (2011)

9. Armbrust, M., Stoica, I., Zaharia, M., Fox, A., Griffith, R., Joseph, A.D., Katz,
R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.: A view of cloud computing.
Communications of the ACM 53(4), 50 (2010)

Business Continuity Solutions for SaaS Customers 31

10. Mezrich, J.: Source Code Escrow: An Exercise in Futility. Marquette Intellectual
Property Law Review 5 (2001)

11. Denson, W.: Source Code Escrow: A Worthwhile or Worthless Investment. Rutgers
Bankruptcy Law Journal 1 (2002)

12. Helms, S., Cheng, A.: Source code escrow: Are you just following the
herd? (2008), http://www.cio.com/article/187450/Source_Code_Escrow_Are_

You_Just_Following_the_Herd_

13. Savvas, A.: Coghead customers left high and dry despite sap acqui-
sition (2009), http://www.computerweekly.com/Articles/2009/02/20/234935/

Coghead-customers-left-high-and-dry-despite-SAP-acquisition.htm

14. Spiotto, A., Spiotto, J.: Ultimate Downside of Outsourcing: Bankruptcy of the
Service Provider. The American Bankruptcy Institute Law Review 11 (2003)

http://www.cio.com/article/187450/Source_Code_Escrow_Are_You_Just_Following_the_Herd_
http://www.cio.com/article/187450/Source_Code_Escrow_Are_You_Just_Following_the_Herd_
http://www.computerweekly.com/Articles/2009/02/20/234935/Coghead-customers-left-high-and-dry-despite-SAP-acquisition.htm
http://www.computerweekly.com/Articles/2009/02/20/234935/Coghead-customers-left-high-and-dry-despite-SAP-acquisition.htm

B. Regnell, I. van de Weerd, and O. De Troyer (Eds.): ICSOB 2011, LNBIP 80, pp. 32–43, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Software Ecosystems: A Set of Management Practices for
Platform Integrators in the Telecom Industry

Martti Viljainen and Marjo Kauppinen

Aalto University School of Science and Technology
Department of Computer Science and Engineering

Espoo, Finland
mtviljai@cc.hut.fi, marjo.kauppinen@tkk.fi

Abstract. There is an emerging trend for software companies to adopt ecosys-
tem strategies. A software ecosystem consists of an open technology platform
with complementary components produced by several software companies or
communities. By open innovation, ecosystems add value to the platform inte-
grator’s core offerings, while causing management challenges. This paper in-
vestigates what management practices support platform integrators operating in
software ecosystems. The set of management practices that is synthesised from
the literature includes technology scouting, orchestration, software supply net-
work management, and technology asset management. This paper gives a struc-
tured overview of the management practices and links them to the technology
and innovation management processes. A case example shows how a platform
integrator utilises these practices in the telecom industry.

Keywords: software ecosystem; technology management; industry platform;
telecommunications; open innovation.

1 Introduction

The product line approach, which originally emerged around the car industry, has
been adopted in the software industry too. It has made possible the efficient mass
production of standardised products, while, however, providing limited diversification
[1]. One major approach to software product lines is the use of a common platform as
a basis for product derivation. In the 1990s, the popular discussion was concentrated
on the benefits of software reuse in intra-organisational “product platforms” [2]. Later
in the 1990s, the strategic potential of “industry-wide platforms” became a topic dem-
onstrated by the dominant market positions among the platform leadership (Microsoft
Windows, Intel, Cisco) [3, 4].

 Compared to the product platform, the industry platform has four significant char-
acteristics. First, the industry platform consists of components that are likely to come
from different companies called “complementors” [2]. The complementors, together
with the industry platform, create an ecosystem in which the participants are depend-
ent on each other to some extent. Second, the industry platform has relatively little
value to users without complementary products or services [2]. Third, the industry

 Software Ecosystems: A Set of Management Practices for Platform Integrators 33

platform tends to create “network effects”, which are positive feedback loops that can
grow at increasing rates as the adoption of the platform and the complements rises [2].
The network effect can be “direct”, such as technical compatibility (Microsoft-Intel).
Alternatively, an “indirect” network effect is caused when a number of application
developers, content producers, buyers and sellers, or advertisers adopt a particular
platform (Google, Facebook). The more external adopters create or use complemen-
tary innovations in the ecosystem, the more valuable the platform (and the comple-
ments) becomes [2]. This encourages more users to adopt the platform and more
complementors to enter the ecosystem. In market-driven software development, many
possibly anonymous stakeholders influence requirements value chains in an ecosys-
tem [5]. Fourth, markets for industry platforms tend to be “multi-sited” [6]. Compa-
nies compete not only for customers but also for developers and other complementors.

Jansen et al. [7] define a software ecosystem (SECO) as a set of actors functioning
as a unit and interacting with a shared market for software and services. A SECO
consists of actors such as independent software vendors (ISV), outsourcers, and cus-
tomers [7]. A SECO typically is interconnected with institutions such standardisation
organisations, open source software communities, research communities, and the
related ecosystems. There are two main types of roles actors can take in a healthy
SECO [8]. The keystone players (or shapers) are the drivers of platform technologies
and standards [9]. The niche players (participants/followers) require the standard or
platform technology provided by the keystone player for creating business value [9].
In this paper, we focus on the role of a keystone player i.e. a software vendor that acts
as a platform integrator.

There are several reasons why a company may decide to open up its platform and
transition from a software product line to a software ecosystem. A company may
realise that the amount of functionality that needs to be developed to satisfy customer
needs is far more than what represents a reasonable investment for the company,
which calls for external development. The ecosystem approach may increase the
value of core offerings to existing users, enhance the attractiveness of the ecosystem
for new users, increase the “stickiness” of the platform (lock-in makes it harder to
change platforms), accelerate innovation through open innovation in the ecosystem,
and reduce innovation and maintenance costs [10].

Besides the benefits of the ecosystem approach, companies face challenges in, for
instance, gaining an insight into ecosystems, identifying survival strategies inside
ecosystems, and disclosing IPR (Intellectual Property Rights) selectively [7]. The
competition is often about who has the best platform strategy and the best ecosystem
to back it up [2]. If the challenges are made more understandable and manageable, the
realisation of the benefits becomes more likely. In the literature there is still a frag-
mented view of supporting management practices. This paper aims to create an over-
view of available technology management practices. The telecommunication industry
is selected as an example since it demonstrates strong network effects leading to clear
interdependence between platforms and complements [4]. The focus is on software
ecosystems, since telecom platforms are becoming more and more software-intensive.
The research question is formulated as follows: What management practices support
platform integrators operating in software ecosystems?

34 M. Viljainen and M. Kauppinen

The management practices are synthesised from the recent literature related to the
software ecosystems, technology management, and industry platforms. As software
ecosystems are a relatively new research topic, the most of available publications
could be found and acknowledged. Especially, publications of Jansen et al. [7, 9] are
used as a basis for terminologies and subsequent searches. A case example from the
telecom industry is provided on the basis of experiences of the first author working in
Nokia Siemens Networks.

This paper is structured as follows. Section 2 synthesises the management practices
that were found in the literature. Section 3 presents a case example in the telecommu-
nication industry where the management practices are utilised. Finally, the paper
summarises the key results and suggests directions for further research

2 Management Practices

The management of a software ecosystem can be viewed as a part of the general tech-
nology and innovation management processes. Rohrbeck presents these processes in
[11]. Jansen et al. investigated challenges related to the software ecosystems at three
scope levels - the ecosystem, software supply network, and organisational levels [9].
These challenges include how to gain insights into ecosystems, how to identify sur-
vival strategies at the ecosystem and supply network levels, and how to open up to a
software ecosystem without losing critical intellectual property [9].

Our paper synthesises a set of four management practices that are linked to the
technology management process introduced by Rohrbeck [11] and aim to address the
challenges identified by Jansen et al [9]. Following Rohrbeck [11], the first practice in
the technology management process is selected as technology scouting. Furthermore,
the three subsequent management practices address the development and storage of
the technology that is exploited in products or sold. We divided these management
practices according to the activities needed at the three scope levels. The first one is
orchestration as defined by Jansen et al [9]. We labeled the last two management
practices as software supply network management and technology asset management.
The management practices are summarised as follows.

• Technology scouting is a systematic approach to gather information in the field
of science and technology and to facilitate technology sourcing [11]. It is a
way to gain insights into a SECO when deciding on which level of intensity to
participate in it and finding out about new technologies and relationships. This
involves estimating opportunities and threats on the basis of identified SECO
characteristics, such as health.

• Orchestration is a method to leverage the advantages of the SECOs and it con-
sists of the arrangement, coordination, and management of actors and networks
at the ecosystem level [9].

• Software supply network management is needed in organising the collaborative
production of products and services. It involves strategies about who are the
suppliers and how to govern relationships and quality assurance with them [7].

• Technology asset management includes organisational-level strategic and op-
erational decisions regarding how technology is organised to support the selec-
tive revelation of IPR.

 Software Ecosystems: A Set of Management Practices for Platform Integrators 35

Fig. 1. The set of four management practices in the context of the technology and innovation
management processes (adapted from [11])

Figure 1 illustrates the four management practices in the context of the technology
and innovation management processes. The technology management process de-
scribes the development and life cycle of technology assets in a company. We see that
the development of relationships is an important component in this process when
operating in a SECO. In technology scouting, technologies and relationships are
searched for and sourced from the ecosystem, related ecosystems and communities.
Technologies and relationships are developed in orchestration resulting in commonly
agreed standards, vision and incentives for SECO participants. Technologies and
relationships are further developed in the collaborative development of products and
services in software supply networks. In technology asset management, company’s
technology assets are stored for their potential use in future products and services.
Thus feedback is possible to the previous management practices. A part of the tech-
nology assets is opened and returned to the ecosystem. Alternatively, the technology
is kept internal or sold. In the innovation management process, software supply net-
work management is used to assess and integrate complementary products and ser-
vices. The resulting integrated platform is further prototyped and tested as a part of
the products and services that are later launched to the markets.

2.1 Technology Scouting

Technology scouting is used to detect advances in technology at an early development
stage including the identification and assessment of new technologies [12]. In addi-
tion, technology scouting plays a key role in technology sourcing [13]. Personal rela-
tionships established by the scouts for information-gathering purposes can be used
when negotiating about joint research, licensing, buying IPRs, creating joint ventures,
or the acquisition of start-ups. Organising technology scouting involves the building

36 M. Viljainen and M. Kauppinen

and use of networks of experts [11]. This requires to address the following three fac-
tors: 1) the goal of the technology scouting should be defined (directed or undirected
scouting): 2) the incentive systems should be aligned carefully with all the actors in
the process, and 3) the company should offer something in exchange for the informa-
tion that is collected [11]. For example, Deutsche Telekom AG utilises internal and
external scouts that are typically rewarded by money, while academic sources can be
rewarded by recognition and joint research projects and the industry sources are of-
fered by collaboration opportunities, for instance [11].

Utilising open source software ecosystems is an opportunity for system integrators.
As well as being available free of charge, open source software can be of high quality.
Building an effective open source software ecosystem should involve collaboration at
the international level and the realisation of effective projects and communities in the
field of the most strategic technologies combined with commercial success [14]. The
company may choose only source solutions developed by others but active contribu-
tion enables a collaborative network to be created, which enriches the company’s
offerings to the market [14].

2.2 Orchestration

Orchestration is mainly keystone players’ task [9]. The introduction of interoperable
software standards is an important task in orchestration [15]. Other possible methods
involve introducing quality standards and legislation about them, introducing certifi-
cation programmes, the sharing of a SECO vision, and explicitly defining the bounda-
ries of a SECO [9]. Samuel Fricker proposes requirements value chain analysis as a
means of support for stakeholder management in understanding the relative power of
stakeholders or the maturity of an ecosystem [5]. The requirements value chain analy-
sis covers the inception of requirements, communicating them in a SECO, and solving
conflicts regarding goals related to functionality and quality in order to formulate a set
of agreed requirements with stakeholders. Supporting research fields that are identi-
fied are social network theory, group theory, and negotiation theory [5].

The applicability of orchestration methods depends on the characteristics of a
SECO. In the case of a stable SECO (e.g, Visual Studio) where niche players are
locked-in, the introduction strict rules may be appropriate, but in a more open SECO
(e.g. Eclipse) that could scare developers [9]. In a young SECO there are usually
bootstrap problems such as a lack of adopters of the keystone technology in order to
get a return on investments [9]. To overcome this, the keystone technology should be
made reusable through APIs or plug-in infrastructures [9]. After this niche players
should be encouraged to be active in a SECO. There are several methods, such as
revenue sharing or establishing partner networks [9].

The tipping strategy (with the product strategy) is applicable for system integrators
if a dominant platform exists [16]. Tipping is a set of acts and strategic moves to
shape market dynamics in favour of a particular technology and to win a platform war
[16]. The tipping strategy consists of technology and business actions. The techno-
logical actions are [4]:

• try to develop unique features that are hard to imitate and attractive for
users:

• tip markets by absorbing features from adjacent markets.

 Software Ecosystems: A Set of Management Practices for Platform Integrators 37

The business actions are [4]:

• offer more incentives for complementors than competitors do:
• build coalitions with competitors to defend against the entry of new platform

wannabes:
• utilise pricing subsidy mechanisms to attract users.

Linux is a successful example of a tipping strategy. It consists of a large coalition of
service provider companies and users. Technology scouting seems to support the
tipping strategy in absorbing features from adjacent markets.

2.3 Software Supply Network Management

At the software supply network level there are challenges in identifying and selecting
partners, the governance of relationships, and sorting out the dependencies between
component developers [7]. Software supply networks cause particular risks in the
innovation process. Ron Adner suggests that the risk management should be divided
into three parts [17].

• Assessing the initiative risks of the project: evaluate the feasibility, customer
value, competition, and capabilities of your own offering. Decide how risks are
handled internally and which it is better to outsource.

• Assessing the interdependence risks of coordinating with complementary in-
novations: list whose projects need to be ready before yours can be. Estimate
the probabilities of success for each key partner (by consulting with managers,
double-checking with suppliers, and examining historical precedents) and mul-
tiply them to identify the overall probability of the success or delay.

• Assessing integration risks: identify who has to adopt the solution before the
customer can. Adding up the estimated adoption cycles of intermediaries can
be used in the integration risk assessment.

There are additional challenges in coordinating cross-organisational quality assurance
and synchronising release timing [7]. External development teams cannot be subjected
to standardised process models, tools, and ways of working [10]. This means that
traditional process maturity approaches, such as CMMI (Capability Maturity Model
Integration), are not well suited. Traditional centralised coordination, based on re-
quirements, architecture, and software configuration management, which has worked
for internal product lines is not appropriate for the ecosystem approach [10]. Central-
ised coordination of complex relationships tends to cause overheads that reduce com-
petitiveness. Instead a decentralised composition-oriented approach is recommended
[10]. In this approach coordination is done through software architecture principles
rather than processes [18]. Moreover, component teams announce roadmaps and re-
quirement specifications that are released at the end of the next iteration cycle, in
contrast to the centralised top-down roadmap and requirement management [10]. A
component team needs to reach out to other teams for local discussions on potential
changes in component interfaces. Quality assurance should also be decentralised,
since, as complexity and dependencies increase, centralised integration and quality
assurance becomes a major effort [18]. To achieve a sufficient integration rate a soft-
ware stack should support different release frequencies for different layers [10].
Backward compatibility is important in order to simplify the software configuration

38 M. Viljainen and M. Kauppinen

management and it requires loosely coupled component interfaces [10]. In other
words, once a new component version is working, older versions or branches may not
need to be maintained. In order to guarantee sufficient user experience and seamless
integration for the overall system, a platform integrator has to provide a basic user
experience framework and guidelines to achieve the composition-orientation [10].

2.4 Technology Asset Management

Technology asset management covers how technology is organised, stored and re-
vealed by a company. A company needs to make internal decisions regarding how to
design product technology strategically [3] and disclose IPR selectively [4]. A com-
pany may choose to open interfaces by offering APIs, open the source code, or open
other IPRs, such as a requirement engineering process, road-maps, release times, cus-
tomer and supplier information, bug repositories, or market research [9]. There is a
natural tension associated with allowing external developers to become involved in the
development process and, to some extent, even taking over part of the customer rela-
tionship [10]. A platform integrator may be concerned about gaining a negative reputa-
tion or the risk of the platform becoming irrelevant over time. A useful approach to
avoid an undesired reputation while still sourcing new functionalities developed by
external developers is to publicly release a long-term platform roadmap that indicates
the intentions of the platform integrator company [10]. In addition, a company may
develop innovative licensing methods, such as, for instance, open source commercial
business models, and establish internal and external component markets [9].

The modularity of a functionality enables chosen components to be selectively dis-
closed [9]. Potential industry standards support software architects using uniform
interfaces. A company may open the architecture gradually in order to remain able to
develop the software without it becoming a maintenance nightmare [7]. Other prac-
tices involve designing reuse policies, creating a reuse enabling architecture, and
supporting interchangeable data formats [9]. Opening up account system interfaces
enables external developers to gain faster-paced access, as well as enabling content
updates, feedback, licensing, and billing, for instance, to be automated [7].

3 A Case Example from the Telecom Industry

Telecom equipment manufacturers have traditionally organised themselves along
product lines. Platforms used to be proprietary and mostly built internally from ASIC
circuits to operating systems and middleware components. However, increasing com-
petition among telecom equipment manufacturers has pushed down margins, which
leads to requirements for a lower channel cost and shorter time-to-market [19]. In order
to cut down costs and speed up development, a platform must be created from stan-
dardised components. Then components can be sourced from COTS (Commercial Off
The Shelf) vendors for competitive prices and they may already be available in the
markets when needed in products. The standardisation of components enables compo-
nents to be replaced by more competitive ones, if necessary, without a lock-in to one
vendor, and, additionally, this supports low integration and verification costs. For in-
stance, Ericsson and Nokia Siemens Networks leverage basic platform technologies
and add value in the application domain. They have adopted ecosystem strategies, as
well as an integrator role for building platforms.

 Software Ecosystems: A Set of Management Practices for Platform Integrators 39

3.1 Technology Scouting

Nokia Siemens Networks, since found (2007), has researched ways to facilitate sys-
tematic technology scouting in order to find emergent software technologies. A rea-
son for this is several common trends occurring in the telecom and IT platforms,
which call for technology scouting to identify inter-industry opportunities and threats.
Convergent technology and market needs are exemplified by the generalising
IP-based (Internet Protocol) services such as IMS (IP Multimedia Subsystem), and
Unified Communications. Technology scouting is focused on the activities from the
definition of the search areas to data interpretation. The outcome is communicated,
for instance, to product lines for decision making. Technology sourcing is not explic-
itly linked to technology scouting. A scouting network consisting of internal and ex-
ternal experts including university researchers collects data in the three modes: 1)
non-focused scouting done continuously company-wide and communicated through
web 2.0 tools (blogs), emails, and informal expert networks: 2) focused scouting on
strategic areas done by responsible experts and communicated by strategy materials,
and 3) focused intelligence studies typically triggered by product lines.

3.2 Orchestration

Nokia Siemens Networks orchestrates selected ecosystems in order to contribute to
their development directions. It is shown that the tipping strategy is used for shaping
market dynamics in favour of particular ecosystems and technologies. For instance,
this involves contribution in standardisation groups and industry consortia in order to
agree specifications together with potential competitors. Active marketing efforts are
used to create credibility around emergent ecosystems. A vision of an ecosystem is
communicated, for instance, in worldwide industry conferences. This helps smaller
participants to align their strategies and identify new business opportunities. In addi-
tion, different events provide valuable connections to partner networks.

Telecom equipment manufacturers convey requirements from telecom operator cus-
tomers to other ecosystem participants, who may have insufficient domain knowledge to
realise them alone. It appears to be challenging to specify and communicate require-
ments so that supplied components are easily integrated. Especially, non-functional
requirements may have a great impact throughout the platform architecture and rework-
ing them may affect on many components. The most important non-functional require-
ments in a telecom platform include availability, scalability, and serviceability.

A modular architecture with well-defined interfaces is needed in order to integrate
a platform from externally developed components and achieve the interoperability of
components. Figure 2 presents a common telecom platform architecture that contains
standardised and proprietary components. Currently, the following prominent and
relatively stable industry standard ecosystems can be identified, which have emerged
around certain components in the telecom platform architecture [19].

• Hardware platform (ATCA): the Advanced Telecommunications Computing
Architecture is a set of specifications defined by the PCI Industrial Computer
Manufacturers Group [20]. The ATCA is a modular hardware platform de-
signed for scalability and carrier-grade availability (that is services are running
99.999% of the time). The evolution of the ATCA can be compared to the evo-
lution of the standardised IT rack mountable hardware platform.

40 M. Viljainen and M. Kauppinen

Hardware
Abstractions

Hardware Platform (ATCA)

Carrier-grade Operating System
(Linux)

Proprietary
components

Cluster Middleware (SAF)

Packet Data
Interworking

(GGSN)

Platform
Software

Application

Availability
Management
Framework

Software
Management
Framework

AIS

HPI

Fig. 2. A telecom platform architecture

• Carrier-grade operating system (Linux): by the acceptance in the server mar-
ket, the telecom equipment vendors also started seriously considering Open
Source Linux for telecom systems. The Open Source Development Lab's car-
rier-grade Linux working group was established to collect requirements from
network and telecom equipment providers and independent software vendors,
specifically for Linux [21].

• Cluster middleware (SAF): the Service Availability Forum™ is a consortium
of industry-leading communications and computing companies working to-
gether to develop and publish open software interface specifications for ser-
vices requiring high availability. The two main specifications are the Hardware
Platform Interface (HPI) and Application Interface Specification (AIS) [22].
The hardware abstractions encapsulate hardware (such as temperature and
voltage sensors) coming from different vendors so that they can be integrated
into the HPI in a common way. The AIS is designed to support applications
ranging from web servers to telecom applications like GGSN (Gateway GPRS
Support Node) [19]. The Availability Management Framework (AMF) and
Software Management Framework (SMF) are examples of AIS Services.

3.3 Software Supply Network Management

Nokia Siemens Networks has developed an assessment method for third-party
software component selection during 2001-2006 [23]. The simplified software devel-
opment process contains the following phases [23]:

 Software Ecosystems: A Set of Management Practices for Platform Integrators 41

• Design & implementation – the supplier designs and implements components
based on the standard specifications

• Assessment – candidate implementations are assessed on the basis of func-
tional and non-functional requirements as specified in the standards

• Integration – the chosen component is integrated into the product
• Operation – the product is deployed in a global volume and is under maintenance

In terms of risk management the assessment phase presents the estimation of the prob-
ability of success for each key partner candidate. Picking a sub-optimal implementa-
tion may cause considerable costs in the later phases of the life cycle. Conformance
testing (IEEE 2003-1997) has been applied to test robustness of the AIS Services such
as AMF and the process was feasible, repeatable, and reusable [23].

Feedback and reintegration mechanisms are seen to be critical and developed at
least on project or supplier basis in order to handle fault situations. Typically, there
are some shortcomings in standard specifications co-created in orchestration and
new requirements appear during the integration phase. The interoperability of compo-
nents is verified sometimes by hands-on plug-fests. Sometimes, a platform integrator
can fix a shortcoming in the supplied software but occasionally a correction is needed
quickly from the supplier. Usually, direct engineer-to-engineer communication
between component teams, as suggested in the decentralised composition-oriented
approach, is the fastest way to solve problem. Greater shortcomings may require
renegotiation and road-mapping with a supplier.

3.4 Technology Asset Management

Nokia Siemens Networks has recently started to improve software reuse systemati-
cally by asset management services that provide better asset visibility through the
company and with potential external collaborators. By the software reuse, the expan-
sion of the software base is tried to keep manageable when new products and product
variants are created. The number of maintained platforms is restricted and consoli-
dated across product lines by dividing products into groups on the basis of their cost
structure and technical requirements. The number of technology standards and part-
ners that are used is also restricted for the sake of simplicity. In order to support the
easy integration of third-party software components, software architectures are devel-
oped to be flexible and modular enough. Proprietary software development tools are
replaced by commonly used ones, which are preferably available as open software.
This allows the gradual opening of software repositories, version control systems, and
continuous integration builds (such as SVN and CruiseControl). Code validation tools
are also used for legal checks on migrated open source software.

4 Conclusions

In this paper, we presented a structured overview of the four management practices
that support platform integrators operating in software ecosystems. The four manage-
ment practices identified from the literature are technology scouting, orchestration,
software supply network management, and technology asset management. These man-
agement practices are linked to the technology and innovation management processes,
which may help to systematically respond to challenges in software ecosystems.

42 M. Viljainen and M. Kauppinen

The assumption is that a company has a strategic intent to operate in software ecosys-
tems. A discussion about whether or not the ecosystem approach is appropriate for
certain businesses is another relevant topic. We focused on the technology manage-
ment perspective and all business management practices were not covered. The pre-
sented management practices are seen to be equally important for a company’s success
and they should be aligned according to technology and business strategies. We made
the first attempt to validate the set of the four management practices by the case exam-
ple in the telecom industry. It should be noted that these management practices are not
specific for the telecom industry but we offer them for platform integrators that are
keystone players in other industries as well. Our case example indicates that a platform
integrator in the telecom industry utilises the four management practices. Technology
scouting is organised for finding new technologies. By orchestration, the development
of ecosystems is directed, especially, towards the common standards-based platform
architecture. Software supply network management is used for managing supplier risks
and integrating platform components. Technology asset management prepares for
opening repositories by architectures supporting software reuse and by using standard
development tools. In the case example, the management practices are not utilised in
the extent presented in the literature synthesis of this paper. This does not mean that it
has been the objective but both viewpoints can enlighten each other. The synthesis
helps to optimise the management practices together to support holistic technology
management when operating in software ecosystems. One of our future research
objectives is to validate the management practices by means of case studies. Our aim
is to identify the success factors and challenges related to the application of the
management practices.

References

1. Pohl, K., Böckle, G., Linden, F.J.: Software Product Line Engineering: Foundations, Prin-
ciples and Techniques. Springer, Heidelberg (2005)

2. Cusumano, M.: Technology Strategy and Management: The Evolution of Platform Think-
ing. Communications of the ACM 53(1), 32–34 (2010)

3. Gawer, A., Cusumano, M.: Platform Leadership: How Intel, Microsoft, and Cisco Drive
Industry Innovation. Harvard Business School Press, Boston (2002)

4. Gawer, A., Cusumano, M.: How Companies Become Platform Leaders. MIT Sloan
Management Review 49(2), 29–30 (2008)

5. Fricker, S.: Requirements Value Chains: Stakeholder Management and Requirements En-
gineering in Software Ecosystems. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010.
LNCS, vol. 6182, pp. 60–66. Springer, Heidelberg (2010)

6. Rochet, J., Tirole, J.: Two-Sided Markets: A Progress Report. RAND Journal of Econom-
ics 37(3), 645–667 (2006)

7. Jansen, S., Finkelstein, A., Brinkkemper, S.: A Sense of Community: A Research Agenda
for Software Ecosystems. In: 31st International Conference on Software Engineering, New
and Emerging Research Track, pp. 187–190 (2009)

8. Iansity, M., Levien, R.: Keystones and Dominators: Framing Operating and Technology
Strategy in a Business Ecosystem. Harvard Business School, Working Paper #03-061
(2004)

 Software Ecosystems: A Set of Management Practices for Platform Integrators 43

9. Jansen, S., Brinkkemper, S., Finkelstein, A.: Business Network Management as a Survival
Strategy: A Tale of Two Software Ecosystems. In: Proceedings of the First Workshop on
Software Ecosystems. CEUR-WS, pp. 34–48 (2009)

10. Bosch, J.: From Software Product Lines to Software Ecosystems. In: Proceedings of the
13th International Conference on Software Product Lines, SPLC (2009)

11. Rohrbeck, R.: Technology scouting – a Case Study of the Deutsche Telekom Laboratories.
In: ISPIM-Asia 2007 Conference, pp. 1–14 (2007)

12. Brenner, M.S.: Technology Intelligence and Technology Scouting. Competitive Intelli-
gence Review 7(3), 20–27 (1996)

13. Wolff, M.F.: Scouting for Technology. Research Technology Management 35(2), 10–12
(1992)

14. Ruffatti, G.: SpagoWorld, the Open Source Initiative by Engineering. The European Jour-
nal for the Informatics Professional X(3), 44–50 (2009)

15. Bannerman, P.L., Zhu, L.: Standardization as a Business Ecosystem Enabler. In: Feuer-
licht, G., Lamersdorf, W. (eds.) ICSOC 2008. LNCS, vol. 5472, pp. 298–303. Springer,
Heidelberg (2009)

16. Gawer, A., Cusumano, M.: Strategy Toolkit for Platform Leader Wannabes. In: DRUID
Summer Conference 2007 on Appropriability, Proximity, Routines and Innovation,
pp. 1–33 (2007)

17. Adner, R.: Match Your Innovation Strategy to Your Innovation Ecosystem. Harvard Busi-
ness Review 84(4), 98–107 (2006)

18. Bosch, J.: The Challenges of Broadening the Scope of Software Product Families.
Communications of the ACM 49(12), 41–44 (2006)

19. Kamalvanshi, A., Jokiaho, T.: Build the Next Generation of Telecom Systems with
Open Interfaces, Part 2. Commsdesign (2005), http://www.commsdesign.com/
design_corner/showArticle.jhtml?articleID=163700304 (accessed on
May 27, 2010)

20. PCI Industrial Computer Manufacturers Group, PICMG 3.0 AdvancedTCATM Base
Specification, http://www.picmg.org/v2internal/specifications.htm

21. The Linux Foundation, Carrier Grade Linux Workgroup,
http://www.linux-foundation.org/en/Carrier_Grade_Linux

22. Service Availability Forum, Application Interface Specification,
http://www.saforum.org

23. Francis, T.: Service Availability Standards for Carrier-grade Platforms: Creation and
Deployment in Mobile Networks. PhD thesis, Tampere University of Technology (2009)

Steering Insight: An Exploration of the Ruby

Software Ecosystem

Jaap Kabbedijk and Slinger Jansen

Utrecht University
Department of Information and Computing Sciences

Princetonplein 5, 3584CC, Utrecht, Netherlands
{j.kabbedijk,s.jansen}@cs.uu.nl

Abstract. Software products are part of a larger network of products,
suppliers and partners, called a software ecosystem, working together in
order to provide functionality for the users and generate profit for the
vendors. Not much is known about the characteristics and relationships
within such a software ecosystem. This paper presents an overview of
the open source Ruby ecosystem and lists its elements, characteristics,
descriptives, roles, cliques and relationships. Data is gathered using the
Git decentralized source code management system and is analyzed using
social network and statistical analysis techniques. Our analysis shows
that the Ruby ecosystem exists out of a couple very distinctive roles
developers fulfil. It also shows that within the Ruby ecosystem only a
small ‘core’ of approximately 10% of all developers and gems (Ruby
packages) are dominant within the ecosystem. At this point in time it
appears that the rails community would benefit from motivating current
developers to work together more, instead of supporting new developers
or gems in order to get a healthy ecosystem.

Keywords: software ecosystem, Ruby, ecosystem governance, explo-
ratory case study.

1 Introduction

As a software vendor, your profit is not determined by one independent prod-
uct, but by all parties and products related to your product. The development of
software has a lot of differences compared to how physical products (e.g. bread
or furniture) are created. First of all software is not one physical product, but a
product that can be multiplied an infinite amount of time without substantial
extra costs [1]. Second and most importantly, the total value of a software prod-
uct is determined by sum of all additional products using the software product.
The Android mobile phone operating system for example, has a limited value
as a product on its own. The overall value of Android is determined by all the
applications built on top of Android that extend the possibilities of the main
software product (software platform). This network of all products, companies
and services working together in one big network is called a Software Ecosys-
tem. The term Software Ecosystem (SECO) was first coined by Messerschmitt

B. Regnell, I. van de Weerd, and O. De Troyer (Eds.): ICSOB 2011, LNBIP 80, pp. 44–55, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Ruby Software Ecosystem Dynamics 45

and Szyperski in 2005 [2], but it took until 2009 before a clear definition was
formed by Jansen, Finkelstein and Brinkkemper [3], who define a SECO as “a
set of businesses functioning as a unit and interacting with a shared market for
software and services, together with the relationships among them”.

“Making profit from your software product” became “making profit from your
software ecosystem” [4]. Profit is not generated only by one product or service,
but by all companies together making use of one core service to deliver their own
products. The popularity of a product created by one company can benefit all com-
panies and products in the same SECO. Software companies are increasingly be-
coming aware of this development and start to recognize their position within the
SECO. Software vendors face new problems, as they need insight in their software
ecosystems. They need to know the dynamics within their SECO, the participants
and how to steer their SECO in order to generate the most profit. Jansen et al. [3]
state that to the extent of getting a good insight into a SECO, characteristics must
be quantified and measured. Possible characteristics are the number of sub commu-
nities, the reciprocity of the ecosystem or the outdegree of keystone actors. Iansiti
and Levien [5] state that: “the performance of a firm is a function not only of its
own capabilities or of its static position with respect to its competitors, customer,
partners and suppliers, but of its dynamic interactions with the ecosystem as a
whole”. This statement emphasizes the importance of getting an overview of the
entire SECO in order to judge the position of one participant in it.

Open source projects are typical environments in which SECOs develop around
the community. By open source we mean that the source code of the project is
available for download and everyone can participate in extending or adapting the
code [6]. Among Free Open Source Software (FOSS) projects, relationships are
frequently seen in the form of developers coding on multiple projects [7]. These
developers are linchpins [8] between the different projects and are an important
reason SECOs exists within FOSS. Since everyone can participate in coding for a
specific project, large projects and with that, large interconnected SECOs come
into play. Because of the size and level of transparency of these FOSS SECOs,
they are ideal for statistical and network analysis, since a high sample size in-
creases the significance of found results and improves the external validity [9].
Also, the use of large central repositories for storing all related projects enables
a convenient way for gathering all data needed [10].

In this paper we first explain the main research question, including all sub
questions related to this question in section 2. In (section 3) the Ruby case that
was analyzed is described and the data gathering is explained. The research
questions asked are analyzed into depth in section 4 and the results are presented
in section 5. We conclude with the conclusion and discussion, followed by future
research in section 6.

2 Research Questions

The main research questions answered in this paper is: “What are the defining
characteristics of a large scale open source software ecosystem?”.

46 J. Kabbedijk and S. Jansen

From the main research question, the following sub questions are derived:

1. What elements can be identified within a SECO? - An ecosystem
exists out of several different elements interacting with each other. We expect
different types of elements to exist within a SECO, each having different
functions within the SECO. This question will be answered by looking at
the description of all elements in the repository.

2. What are the characteristics of the identified elements? - Each of
the defining characteristics for the SECO are required for the analysis of an
element. A characteristics is defined as a prominent attribute of a SECO
element.

3. What are the descriptives of a SECO? - In order to get a good overview
of the SECO we are analyzing, we first need to explore the elements and
characteristics within a SECO into some more depth. We focus on the
software supply network level [3] when answering this question. Descrip-
tives describe the main characteristics of a collection of the SECO elements
quantitatively [11].

4. What roles can be identified within a SECO? - The elements exist-
ing within a SECO have different roles depending on their position in the
SECO. We will identify several distinctive roles within a SECO based on
their interconnectivity.

These sub questions will be answered in the following sections, concluded with
the answer to the main research question in section 5.

3 Case Description and Data Gathering

In this research the relationships, dynamics and characteristics of the Ruby
Ecosystem are analyzed. Ruby is a popular programming language, using the
MVC design principle [12] and trying to combine a scripting language’s simple
immediacy (e.g. PHP) with a strict object oriented architecture (e.g. Java) [13].
The framework consists out of thousands of possible parts that can be combined
to get exactly the functionality your project needs. The ‘parts’ are called ‘gems’
in Ruby jargon and are hosted and maintained through Git. Git is a Decen-
tralized Source Code Management (DSCM) system [14] that uses decentralized
repositories, owned by developers, that can be mined for analysis in the case of
Ruby. Because all gems related the the Ruby programming language are released
under an open source license [15], the entire Ruby ecosystem is a collection of
FOSS projects. Gems are developed by different developers and everyone can
create as many gems as he wants. All gems are indexed on a central place and
users of the Ruby programming language can decide which gems they need for
their project development.

All data for this project was gathered by using an XML [16] overview of all
gems present in the Ruby Git repository on 15-02-2010. This XML contained
information on each gem such as the name, dependencies, author, etc. Please see
figure 1 for an excerpt of the XML file showing the XML data for one gem.

Ruby Software Ecosystem Dynamics 47

Fig. 1. XML excerpt

By using the URI for the gem, the gem was downloaded from RubyGems1 and
stored in a a relational database. All additional meta information on the gem
like the version of the gem release and developers who worked on the gem were
stored in the database as well. This data gathering was done by using XSLT to
get the right URI and the PHP scripting language to download the gems. The
gems were downloaded to be able to analyze the source code of the gems and
not only the meta information available of the gems. All data was stored in the
database by using PHP scripting combined with SQL statements.

Before the data was usable for analysis, it had to be checked and reformatted.
Due to errors in the XML source file and small glitches during data gathering,
some data are incomplete or duplicated. We used the PASW analytics suite to
identify errors and irregularities in the dataset2 and corrected the gathered data
based on this. The alterations to the original data are documented in our case
study protocol [9].

4 Analysis

In this section an analysis of the Ruby dataset is provided, so each question posed
in section 2 can be assessed. The numbering of the sub sections matches the
numbering of the research questions in section 2 and each sub section analyzes
the corresponding question.

4.1 Elements

The units of analysis in the Ruby SECO are gems and developers, with the
possible relationships among them. If a developer has a relationship with a gem,
he is a developer of that specific gem. If a developer has a relationship with
another developer they have worked together on a certain gem and if a gem
has a relationship with another gem, they are dependent on one another. The
dependency relationship among gems can have two different types, as can be seen
in figure 1. Dependencies between gems can either be runtime dependencies or
1 Ruby community’s official gem hosting service. Available at http://rubygems.org
2 The complete dataset can be downloaded from http://softwareecosystems.org

48 J. Kabbedijk and S. Jansen

Developer Gem
develops0..* 1..*

works together with

0..*
0..*

needs runtime dep. of

0..*
0..*

needs developement dep. of

0..*

0..*

Fig. 2. Metamodel of interacting SECO elements

development dependencies. The first type is in place if a gem needs another gem
in order to work properly for the end-user. The second type of dependency is
relevant when a gem needs another gem only for development purposes, but not
to work properly at runtime. An overview of all elements and their relationships
can be found in figure 2.

4.2 Element Characteristics

Numerous characteristics are related to the SECO elements described above. For
all gems we identified the following characteristics relevant for analysis, based
on the information in the XML and the additional information available by
downloading and examining the source code of the gem:

– Name - This is an unique identifier used to give a name to the particular
gem, but also to be able to differentiate this gem from other gems. We use
this characteristic only for identifying purposes.

– Number of Downloads - This number is an indication of the popularity
of the gem. The more a gem is downloaded, the more popular it probably is.
This popularity can for example be caused by the fact that this gem fulfils
a core functionality and is used as a dependency by a lot of other gems.

– Main Version - This version number is a indicator of the maturity of the
gem. Ruby uses sequence-based software versioning scheme in which a 0 as
starting digit indicates a beta state and 1 or higher indicates a more mature
state of the gem (for example 1.0.6). We only looked at the starting digit of
the versioning sequence. Please note that the digits are not comparable with
each other; version 2 on one gem can indicate another level of maturity than
version 2 on another gem, since developers can decide themselves when to
increase their version number.

– Lines of Code (LOC) - The LOC is an important indicator of the effort
that was put in developing a gem. Ruby gems have two types of code that
are present in the source of the gem. Besides the code that provides the
functionality for the gem, also test code in embedded in the gem source. For
the sake of our analyses we looked at the total lines of code. This includes
both the functionality LOC and the test LOC.

Ruby Software Ecosystem Dynamics 49

Table 1. Ruby Ecosystem descriptives

Characteristic Minimum Maximum Average SD Median

Downloads 3 377,251 1,159 10,710 123
Yahoo Hits 0 21,500,000 167,057 745,156 334
Size 0 25,851,477 76,362 422,091 16034
Lines of Code 0 427,736 2,059 8,544 513

– Size - This characteristic indicates the amount of bytes a gem uses. The
characteristic can also be used as an indicator of the total effort put in
developing the gem, but this can be deceiving due to the fact that gems can
exist out of more than only code (i.e. images).

– Yahoo Hits - The amount of hits that were generated by giving “$name
of the gem + ’ruby gem”’ as input to the Yahoo search engine. This is also
an indicator of the gem popularity, since a popular gem is more likely to be
named or linked on multiple locations on the web instead of only from one
location.

The characteristics listed above will be used as variables in further sections of
the paper.

4.3 Descriptives

First the entire ecosystem including all developers, gems and their relation-
ships is visualized within one big graph using the network visualization software
Gephi [17], as can be seen in figure 33. The visualization gives a clear indication
of the size of the Ruby ecosystem and also shows a lot of small projects and
some larger interconnected projects. The structure of the ecosystem clearly in-
dicates some sort of ecosystem ‘core’ of active developers, as can be seen by the
interconnected ‘stem’ in the middle of the visualization.

The ecosystem consists of 4,784 developers, 10,046 gems and 13,103 relation-
ships between them. A gem is developed by an average of 1.23 developers with a
standard deviation of 0.725 and each developer in the ecosystem has developed
an average of 2.53 gems with a standard deviation of 3.95. A selection of some
of the most important descriptives of the ecosystem is reported in table 1.

In order to get insight in the Ruby ecosystem we first examined the bound-
aries of the ecosystem by analyzing the most popular gems and most active
developers. We calculated the eigenvector centrality for all developers within the
ecosystem to get a good overview of the level of importance of the developer. The
eigenvector centrality is used within network analysis as a measure to indicate
the importance of a node in the network [18]. For the sake of understandabil-
ity of the graph, only the top 30 developers in terms of degree [19] were included.

3 A high resolution version of the figure is available at http://softwareecosystems.org

50 J. Kabbedijk and S. Jansen

Fig. 3. Ruby Ecosystem Visualization

Figure 4a shows the network of interacting developers with a range of degree
between 15 and 30. Notable is the concentration of nodes on the left, which are
all interconnected and indicate a dense interaction of a large number of most
active developers. Figure 4b shows the top 30 of interdependent gems. This top is
composed by selecting the gems that have the highest number of gems depending
on them. We added up both runtime and development dependency for calculating
this top 30. As can be seen, most crucial gems also have interdependencies among
each other, indicating a strong network of important gems within the Ruby
ecosystem.

All of the developers shown in figure 4a are in the top 50 op highest eigenvector
of centrality score and have an eigenvector centrality score of between 1 and
approximately 0.1. The meaning of this will be explained in section 5.

Ruby Software Ecosystem Dynamics 51

eric hodel

aaron patterson

nick quaranto

john nunemaker

inc.

jon yurek

joe ferris

kouhei sutou

josh nichols

thomas sawyer

ben mabey

brandon keepers

brian takita

chris wanstrath

dan croak

mike burns

jason morrison

eugene bolshakov
mike breen

marcel gã¶rner

bence nagy

eloy duran

tim pope

mihai anca

mark cornick

shay arnett

chad pytel

marcos tapajã³s

luke francl

matt sanford

(a) Top 30 of interacting developers (b) Top 30 of interdependent gems

Fig. 4. Overview of top 30 gems and developers

4.4 Roles

Within the Ruby ecosystem several different roles for developers are identified
based on the degree of the developer (number of other developers he cooperates
with), the number of gems made and the popularity of the gems.

The first role identified is the Lone Wolf. The role of Lone Wolf is based on
the role of a ‘Niche Player’ [5], Specific to this context it is defined as a developer
who has developed gems that are of importance within the Ruby ecosystem, but
has almost no connections with other developers. He produces useful content for
the ecosystem, but works solitary. The importance of a gem can be determined
in different ways. First the number of downloads of all gems a developer made
combined are of importance, after this the amount of gems that are dependent
on a gem play a role. Finally the amount of gems created by someone is of
importance in addressing the Lone Wolf role. Table 2 shows the top 5 of Lone
Wolfs in the Ruby ecosystem. The ranking is based on the number of dependent
gems as most important qualifier. These 5 developers mean a lot for the SECO,
but are not related to any other developers.

The second role we identified is the role of ‘Networker’. The Networker role
is based on the keystone role [5], but is defined for this specific case as someone
who has a lot of developers he works with and also plays a large role in the

Table 2. Lone Wolf Top 5

Developer Number of downloads Dependent gems Number of gems

David Heinemeier Hansson 2,056,351 2146 13
Loren Segal 7.123 295 10
Bob Aman 53,198 268 10
Makoto Kuwata 73,874 180 17
Zed A. Shaw 114,546 164 9

52 J. Kabbedijk and S. Jansen

Table 3. One Day Fly Top 3

Developer Gem Version Number Number of downloads

Wayne Meissner FFI 0.6.1 46,222
Philip Ross tzinfo 0.3.16 22,398
Benjamin Curtis faker 0.3.18 13,522

SECO in terms of gem downloads. The top 30 of Networkers can be found in
figure 4a. Besides Networkers we can also identify the so called ‘One Day Flies’.
These developers have made one popular gem, but never made anything else.
The criterion for being classified as a One Day Fly is: only one gem created with
a version number starting with ‘0’ and being in the top 5% of most number of
downloads. A listing of the top 3 One Day Flies can be found in table 3.

All different roles identified each have different functions in the Ruby ecosys-
tem, as will be further discussed in section 6.

5 Results

As section 4.1 showed, developers, gems and the relationships among them play a
crucial role in the Ruby SECO. The characteristics playing a role in our analysis
were listed and explained in section 4.2. For answering the question on SECO
descriptives, table 4.3 shows the average number of downloads of a gem was
1,159. This does not mean, in this case, that an average gem has approximately
one thousand downloads. The height of the Standard Deviation (SD) shows us
that the individual number of downloads per gem differs significantly from the
average. This conclusion is shown clearly in figure 5a, in which a high number
of gems can be seen with less than 100 downloads. Around 90% of all gems has
a number of downloads below the average, meaning that there is only a 10% of
all gems responsible for the high number of downloads.

A similar situation can be seen when looking at the amount of hits gems got
in the Yahoo search engine. The SD of 745,156 again is much higher than the
average number of hits of 167,057, meaning that there is a skewed distribution.
Figure 5b4 shows that the distribution of hits on Yahoo is indeed skewed and the
number of gems that is has an amount of hits below the average is again around
90%. Since we use the amount of hits on Yahoo as an indication of popularity
of a specific gem, this statistic says a lot about the distribution of popularity
among gems. Figure 5c4 and 5d4 both show a similar distribution and indicate
the same effect as the amount of downloads and the number of Yahoo hits did;
a small part of the Ruby SECO in this case take care of the largest gems in
terms of bytes and lines of code. Finally in section 4.4 we could identify three
distinct roles within the SECO, each being of high importance for the SECO.
4 One should note that the bar at ‘0’ should actually be extended to a higher number,

but is cropped due to readability.

Ruby Software Ecosystem Dynamics 53

Downloads

4003002001000

Fr
eq

ue
nc

y

800

600

400

200

(a) Number of Downloads

Yahoo Hits

200000150000100000500000

Fr
eq

ue
nc

y

400

300

200

100

0

(b) Number of Yahoo Hits

Size

5000004000003000002000001000000

Fr
eq

ue
nc

y

2.500

2.000

1.500

1.000

500

0

(c) Size

Lines of Code

150001000050000

Fr
eq

ue
nc

y

3.000

2.000

1.000

0

(d) Lines of Code

Fig. 5. Gem Characteristics Histograms

The existence of these roles could indicate that there is not one ‘holy grail’ in
governing a SECO, since there are different types of developers.

6 Discussion and Conclusion

The conclusions of this work are as follows: (1) the Ruby SECO consists of devel-
opers, gems and relationships and (2) developers within the SECO fulfil several
distinctive roles, each of different value to the ecosystem. (3) Also, within the
SECO most activity is caused only by a small part of the ecosystem. the top 90%
of the open source components used in Ruby development has been developed
by only 10% of the total number of open source contributors.. The value of this
knowledge lies in deciding how to better manage or steer SECO governance. (4)
Trying to lure additional developers to your ecosystem in order to expand your
ecosystem may not be the best way of managing a SECO; motivating existing

54 J. Kabbedijk and S. Jansen

developers to work together more on existing gems is a better way to get a solid
and healthy ecosystem. On the other hand, some of the most popular gems are
developed by lone wolfs, so this conclusion should be investigated in more depth
in future longitudinal research.

For the dataset we analyzed, we were dependent on the ‘snapshot’ of gems
available on Github. This dependency caused us to not being able to analyze
everything the way we would have wished. The developments and growth within
the SECO could not be researched by the static dataset we had. Because of this,
no strong conclusions can be made on how to stimulate growth or health. Also
we only performed one case study, so our results can not be generalized to draw
conclusion on FOSS SECOs in general. On the topic of analysis tools, the large
size of the dataset resulted in very long computation times, making analysis
sometimes difficult and cumbersome.

Due to the lack of longitudinal data it is impossible to speculate about the
dynamics of the Ruby SECO. In the future, we plan to follow specific developers
and clusters in the ecosystem. Methods such as structural break analysis can
be applied to monitor SECOs, to early discover the specific events that have
happened in the SECO. Presently an extensible tool is being developed that is
able to mine several different repositories, so future repositories can be mined
as well. The tool will be able to add the element ‘time’ to our analysis and can
also give additional case studies rather easily. This will enable us to do more
longitudinal research on the topic of software ecosystem evolution in the future
and generate more generalizable results on software ecosystems in general.

Acknowledgements. The authors would like to thank Bernard Verhoeven for
supplying us with the data used for our analyses and his useful suggestions.

References

1. Xu, L., Brinkkemper, S.: Concepts of product software. European Journal of In-
formation Systems 16(5), 531–541 (2007)

2. Messerschmitt, D.G., Szyperski, C.: Software ecosystem: understanding an indis-
pensable technology and industry. The MIT Press, Cambridge (2005)

3. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: A research
agenda for software ecosystems. In: 2009 31st International Conference on Software
Engineering Companion Volume, pp. 187–190 (2009)

4. Popp, K.M., Meyer, R.: Profit from Software Ecosystems. Books on Demand GmbH
(2010)

5. Iansiti, M., Levien, R.: The keystone advantage: what the new dynamics of business
ecosystems mean for strategy, innovation, and sustainability. Harvard Business
Press, Boston (2004)

6. Feller, J., Fitzgerald, B.: Understanding open source software development.
Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

7. Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S., Lakhani, K.: Understanding
free/open source software development processes. Software Process: Improvement
and Practice 11(2), 95–105 (2006)

Ruby Software Ecosystem Dynamics 55

8. Madey, G., Freeh, V., Tynan, R.: Modeling the free/open source software com-
munity: A quantitative investigation. Free/Open Source Software Development,
203–220 (2004)

9. Yin, R.K.: Applications of case study research, 2nd edn. Sage, Thousand Oaks
(2003)

10. Kagdi, H., Collard, M.L., Maletic, J.I.: A survey and taxonomy of approaches
for mining software repositories in the context of software evolution. Journal of
Software Maintenance and Evolution: Research and Practice 19(2), 77–131 (2007)

11. Ross, S.M.: Introductory statistics. Academic Press, London (2005)
12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of

reusable object-oriented software. Addison-Wesley, Reading (1995)
13. Bächle, M., Kirchberg, P.: Ruby on Rails. IEEE Software, 105–108 (2007)
14. Bird, C., Rigby, P., Barr, E., Hamilton, D., German, D., Devanbu, P.: The promises

and perils of mining git. In: 6th IEEE International Working Conference on Mining
Software Repositories, pp. 1–10 (2009)

15. Rosen, L.: Open source licensing: Software freedom and intellectual property law.
Prentice-Hall PTR, Upper Saddle River (2004)

16. W3C: Extensible markup language (xml) 1.0 (fifth edition) (November 2008)
17. Bastian, M., Heymann, S., Jacomy, M.: Gephi: An open source software for explor-

ing and manipulating networks. In: International AAAI Conference on Weblogs and
Social Media (2009)

18. Bonacich, P.: Some unique properties of eigenvector centrality. Social Net-
works 29(4), 555–564 (2007)

19. West, D.B.: Introduction to graph theory. Prentice-Hall, Englewood Cliffs (2001)

Study of the Competition between Proprietary

Software Firms and Free/Libre Open Source
Software Firms Using a Simulation Model

Luisanna Cocco, Katiuscia Mannaro, Giulio Concas, and Michele Marchesi

University of Cagliari, DIEE - Dipartimento di Ingegneria Elettrica ed Elettronica,
Piazza D’Armi, 09123 Cagliari, Italy

{luisanna.cocco,mannaro,concas,michele}@diee.unica.it

Abstract. In recent years, a very important structural change in the
software industry took place, with an increasing number of firms that
got involved in Free/Libre Open Source Software (FLOSS) development
communities. FLOSS communities and products have been studied as
complementary to proprietary software companies and products. In this
paper we propone a business model for the software market, and in par-
ticular we analyze the competition between proprietary software firms
and FLOSS firms. Our software market is a system where each agent is
independent of each other in the choice about buying or selling software
products or services. The proposed work aims to analyze the influence of
FLOSS firms producing both software and services in vertical software
markets, nowadays mostly dominated by large proprietary firms. The
findings show that FLOSS firms are able to compete with proprietary
firms, though in the end a monopoly or oligopoly of the latters emerges.
The ousted FLOSS firms, however, survive longer than proprietary ones,
when these are not able to compete in the market.

Keywords: Free/Libre Open Source Software, simulation model, busi-
ness model, market strategy.

1 Introduction

In recent years the software market has been in a constant state of change. From
an economic point of view, the entry of open source products in the software
market has led to changes in the market structure. The situation of monopoly or
oligopoly, with only one software production model that characterized the past
years, was replaced by a competition between two different business models:
proprietary software firms (PROPSf), whose primary goal is to develop propri-
etary software to make profits and increase the value of their shares [11], and
Free/Libre Open Source Software (also abbreviated as FLOSS1) –based firms
(FLOSSf), whose primary goal is to develop non-proprietary software given away

1 We refer to the phenomenon known such as “libre software”, “free software”, or
“open source software”.

B. Regnell, I. van de Weerd, and O. De Troyer (Eds.): ICSOB 2011, LNBIP 80, pp. 56–69, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

PROPSf vs. FLOSSf 57

for free. FLOSS was originally developed by volunteer programmers who engage
in such projects because they are not satisfied with the existing software or sim-
ply because the required software feature does not exist [2]. Nowadays, many
commercial firms decided to enter the FLOSS market, devolving resources to
develop FLOSS products. Their profit is gained through selling complementary
goods and services. For this reason, their behavior of developing a software prod-
uct that is going to be given away for free is not so strange. An example of how
some producers of proprietary software support the development of open source
software is given by the IBM company, that invests in developing and adapt-
ing FLOSS to their hardware and software, and sells consulting services and
proprietary software that are complementary to the FLOSS software.

In this paper, we propone a business model for the software market, and in
particular we analyze the competition between proprietary software firms and
FLOSS–based firms. This work follows and complements many other papers
appeared on the subject. Among others, we quote the papers by Mustonen [9],
[10], Bonaccorsi et al. [3], Bitzer et al. [1], Leppämäki et al. [7] and Economides
et al. [4] .

At first we define and compare these PROPS and FLOSS business models,
then we describe some aspects of their strategies.

The paper is organized as follows: Section 2 briefly presents some of the
research literature related to our work, in Section 3 we explain the characteristics
of our model and in Section 4 we show the analysis of data obtained from our
simulations. Finally, Section 5 summarizes the conclusions of our research, and
ends the study with recommendations for future work.

2 Related Works

In this paper we propose a business model that follows and complements many
other papers appeared on the subject, but our work differs in many ways. Lihui
Lin in [8], studies how users’ skill and networks effect may influence the software
market, characterized by PROPS firms, and FLOSS firms. The work of Mustonen
[9] explains the simultaneous existence of commercial alternatives to copylefted
programs and why commercial alternatives to copyleft programs may not exist.
In this model the monopolist firm invests in the quality of its program, that
depends on the programming output, and thus on the programmers’ ability.
The programmers can choose to develop for the monopolist firms or can be
engaged in copyleft work, receiving complementary income based on their ability.
Finally, the firm sets a price for its program, and the consumers value the various
programs.

Two research papers gave specific and precious insights to develop our model
– they are the works of Haruvy et al. [6] and of Gosh [5], that have suggested
some variables of our proposed model.

In particular, the work of Haruvy et al. [6] examines a model in a monopoly
setting where the open source code is free but complements another product that

58 L. Cocco et al.

is sold commercially. The authors characterize price, quality, and hiring paths
for the firms under both the open source and closed source models. The optimal
decision on opening the source depends on the importance of user contributions,
and on the wages and effectiveness of in-house developers. In the case of closed
source development, all quality improvement is due to in-house developers. In-
stead, in the case of open source development, all quality improvements come
from the users, as a function of the size m of the network of users. So, in the
first case the quality is defined as:

(
dQ

dt

)
= KN − δQ (1)

while, in the second case the quality is defined as:
(

dQ

dt

)
= αm − δQ (2)

The parameter K denotes the productivity or effectiveness of the in-house
programmers. The software quality becomes obsolete over time at a constant
rate 0 < δ < 1. The parameter α represents the level of involvement of the open
source user community, which includes users of both the software and of the
complementary product.

Gosh [5] considers the software such as one of the key elements driving ICT
role in the economy. This work identifies the role of FLOSS in the economy, its
direct impact on the ICT sector, and its indirect impact on ICT-related sector. It
uses an endogenous growth model in order to model and simulate the economic
impact of FLOSS. In Gosh’ work the growth rates of the following variables are
analyzed and studied: FLOSS and PROPS prices, quality, technology (called
varieties in [5]), human capital, effective capital stock, ICT-capital stock, and
finally output and labour productivity. For the sake of brevity, we report only
the equations defining the human capital, and the definition of the FLOSS and
PROPS varieties, since they were also used in our model. In the model [5], the
human capital h is defined as:

(
dh

dt

)
= π(uh(t))γ(νki(t))1−γ (3)

where π is a constant parameter reflecting the productivity of the human capital
accumulation process, γ is a constant parameter equals to 0 ≤ γ ≤ 1, and ki

is the ICT capital. The FLOSS and PROPS varieties are proportional to the
labour force measured in human capital units, to the ICT-capital intensity, and
to an exogenous term linked to R&D activity.

3 Model

In this section we describe our agent–based business model. Recently, in the
software market an alternative to proprietary companies has been introduced

PROPSf vs. FLOSSf 59

– the open source competitors. Analyzing the software market, we make the
hypothesis that market trends are determined by the interaction between two
kind of heterogeneous agents: users and software firms.

The aim of our model is to study a ”vertical” software market, that is a
segment of the whole software market where some software applications compete,
giving functionalities to perform a specific job. To keep the model as simple as
possible, we do not consider families of applications, network effects, or other
kind of externalities.

In the proposed model, we consider an economy with two kinds of software
firms:

1. Proprietary Software firms (PROPSf): firms that develop proprietary soft-
ware, trying to make profit;

2. FLOSS–based firms (FLOSSf): firms whose business is built upon the selling
of services complementary to the free software product.

The users of our model are heterogeneous in their expertise and they can freely
choose between proprietary and FLOSS software. In our software market model,
the software products are substitutable, meaning that they meet the same need,
thus they have the same functionality, but they may differ in quality (for in-
stance: Microsoft Office vs Open Office). Each proprietary software firm is char-
acterized by a specific product that differs from the products of the competitors
in quality, technology and cost. The PROPS firms develop a primary product
(the software), and a complementary secondary product (the services). Comple-
mentary products are the products whose purchase cannot be made without the
other one (e.g.: software product and specific services). They complement each
other in common usage, and buying one of them would encourage buying the
other. The primary and secondary PROPS products are commercial.

On the contrary, FLOSS firms tend to associate with each other in order to
produce a single product. The FLOSS firms develop a primary product (the
software), and a complementary secondary product (the services). The primary
product is distributed freely, the secondary product is a commercial product.
In our model all firms, PROPSf and FLOSSf, are characterized by specific in-
vestment policies, which influence the prices, the quality and the technology of
the products. Starting from the definition of the product quality presented in
the model of Haruvy et al. [6], the quality Qi(t) is defined using a differential
equation, where human capital h refers to the model carried out by the team led
by UNU-MERIT [5].

We describe the features of the products of our model. First, we present the
products developed by PROPS firms. The quality Qp,s,i(t) of the primary and
secondary PROPS products of the i − th firm at time t is defined as in [6]:

(
dQp,s,i

dt

)
= hi(t)Np,s,i − δQp,s,i (4)

60 L. Cocco et al.

The technology Tp,s,i(t) of the primary and secondary PROPS products of
i − th firm at time t is defined as in [5]:

Tp,s,i(t) = Ψp
0 [h(t)∗Np,s,i +Np,s,i]+Ψp

1 [(1−ν)IICT,i(t)−hTOT,i(t)−Np,s,i]+Ψp
2

(5)

The features of the primary FLOSS product are defined instead by the fol-
lowing equations:

(
dQp,i

dt

)
= α(t)m(t) +

NF LOSSf∑
i=0

λqhi(t)Np,i − δQp,i (6)

Tp,i(t) =
i=NF LOSSf∑

i=0

λt∗

∗ [Ψf
0 (h(t) ∗ Np,i + Np,i) + Ψf

1 [(1 − ν)IICT,i(t) − hTOT,i(t) − Np,s,i] + Ψf
2] (7)

The features of the secondary FLOSS products are defined by the following
equations, as in [6] and in [5] :

(
dQs,i

dt

)
= hi(t)Ns,i − δQs,i (8)

Ts,i(t) = Ψf
0 (h(t)∗Ns, i+Ns,i)+Ψf

1 [(1−ν)IICT,i(t)−hTOT,i(t)−Ns,i]+Ψf
2 (9)

where the meaning of the variables is the following:

– Np,i and Ns,i: Number of developers of the i − th firm that work in the
primary and secondary product, respectively;

– Ψf
0 : Contribution of human capital in FLOSS based number of varieties;

– Ψf
1 : Contribution of ICT-capital2 in FLOSS based number of varieties;

– Ψp
0 : Contribution of human capital in PROPS based number of varieties;

– Ψp
1 : Contribution of ICT-capital in PROPS based number of varieties;

– h: Productivity or human capital;
– IICT : ICT-capital stock;
– α: Level of involvement by the open source user community;
– m(t): Size of open source community at time t;
– δ: Rate of depreciation of quality;
– λq, λt: Parameters that limit the quality and technology of the primary

FLOSS product, with respect to the sum of contributions to the project of
all FLOSS firms.

2 ICT- capital is the money specifically devoted to increase competences and assets in
information and communication technology (See [5]).

PROPSf vs. FLOSSf 61

The equations 6 and 7 differ from the equations presented in [6] and in [5] be-
cause we have take into account the contributions of all FLOSS firms to product
development in order to define the primary FLOSS product quality and technol-
ogy. These contributions are weighted by the coefficients, λq, and λt, that have
values less than one.

3.1 Firms’ Behavior

Each company enters the market with an initial investment Ii and with two
software products, one primary and one secondary, respectively characterized by
a well-defined quality Qp,i(t) and Qs,i(t) which varies over time. Each company
is endowed with a initial wealth Wi > 0 used as the initial investment for a new
product or service. In order to enter the market each company invests at the
initial time t0 a fraction β of its initial wealth: Ii(t0) = β(Wi) with β ∈ [0.8, 1].
Now let’s suppose that Np,i is the the number of work units employed by the i−th
firm in the primary product , Ns,i is the the number of work units employed by
the firm i in the secondary product, and ω is the per-capita salary for company
employee. It follows that:

I(ICT,i)(t0) = Ii(t0) − ω(Np + Np)

is the quantity of wealth to be invested in ICT at the initial time t0, and

I(notICT,i)(t0) = ω(Np + Np)

is the quantity of wealth to be invested in non- ICT expenses (wages) at the
initial time t0.

By considering our initial definition that N is the total number of company
employees, let’s suppose that in the FLOSS case Np = Ns = N

2 and in the
PROPS case Np = 2

3N and Ns = 1
3N .

Briefly, we show the investments in the next time step. Each software firm
updates its primary product at time intervals Δ, whose values are normally
distributed, investing a quantity of money IICT,i(t) that depends on its profits.
We assume a longer time interval in PROPS firms than in FLOSS ones. In
particular, IICT,i(t) is a normal variable that assumes values in the interval
[0, μ∗G] . The variable μ is a normal variable that assumes values in the interval
[0.2,1] for firms with less than 50 developers, and in the interval [0.2, 0.4] for
firms with more than 50 developers.

At monthly intervals the software firms invest a small quantity of money
IICTmin,i(t) in order to keep acceptable the software quality, and a quantity
I(notICT,i)(t) for ordinary expenses.

Let us note that the ICT investments of a firm are equally shared by the de-
velopers of the firm, so the human capital per capita is equal for every developer,
and in according to the definition of quality, an improvement of primary product
quality implies an improvement of the secondary product. These improvements
of the products’ quality are proportional to the total human capital of the firm,
h ∗ N , and every ICT investment contributes to increase the price of both the
primary and the secondary product.

62 L. Cocco et al.

Finally, let’s note that the firms can make a new investment only if the follow-
ing condition is verified: G(t−1) > −[IICT (t)+ IICTmin(t)+ InonICT (t)]+R(t),
otherwise the software firm may apply for funding. The credit value is equal to
the difference between the profit Gi and the wealth to invest at time t Ii(t). A
company goes bankrupt when its debt exceeds its wealth Wi. For each new re-
quest for funding, the amount of time to reimburse the financing and its interest
rate are calculated. In the case of business failure, the firm’s customers will need
to purchase a new product.

3.2 Price Clearing Mechanism

We assume that the price clearing mechanism is influenced by the investments
Ii made by the ith software firm, by the number of software firms on the market
NfTOT , by the total number of users in the market NuTOT , and finally by a
percentage of the profit gi to be obtained. The price of the primary and the
secondary PROPS products at time t is calculated taking into account all the
investments made by a firm from time t = 0 to time t, and it is determined by
the following equations:

Pp,pi(t) = gi(t)

(
NfTOT (t)

∑t
t=0 Ip,i(t)

NuTOT

)
(10)

Ps,pi(t) = gi(t)

(
NfTOT (t)

∑t
t=0 Is,i(t)

NuTOT

)
(11)

The primary FLOSS products is freely distributed, while the price for the
secondary FLOSS products is given by:

Ps,fi(t) = gi(t)

(
NfTOT (t)

∑t
t=0 Ii(t)

NuTOT

)
(12)

Finally, let’s note that the firms reduce the price of their products when the
number of their customers is decreasing.

3.3 User’ Behavior

At the start time, in the simulated market there are Nu users. This quantity
may vary during the simulation, because at random intervals a random number
of users, equal to Nu,i and Nu,o, respectively, may enter or exit the simulation.
Each user is modeled as an autonomous agent, and is endowed with a given
amount of cash that varies in time. Our users are heterogeneous in their skill
level, that increases with time.

According to [8], let’s suppose that all users, with different levels of skill, com-
pare the various available software products taking into account their quality,
their technology and their price. We assume that the skill Θ is drawn from a

PROPSf vs. FLOSSf 63

normal distribution with average 2.5, limited to the interval [1,4]. When Θ = 1,
the skill is considered low, while for Θ = 4 the skill is high. The user’s choice is
made in the following way:

– for 1 ≤ θ < 2, the user chooses the cheapest product;
– for 3 ≤ θ ≤ 4 the user chooses the product with highest quality and tech-

nology;
– for 2 ≤ θ < 3 the user chooses a product randomly.

Moreover, at each time interval, a set of users is extracted in a random way, and
only these users will be involved in an economic transaction. If the user chooses
a proprietary product, then his portfolio will decrease by a quantity equal to the
sum of Pp,pi(t) and Ps,pi(t) (see eq. 10 and eq. 11). Instead, if the user chooses
a FLOSS product, then his portfolio will decrease of a quantity equal to Ps,fi(t)
(see eq. 12). Finally, if the user wants to update a software product, then he
incurs in an update cost that is zero only in the FLOSS case.

4 Results

In this section we describe the results of the computational experiments we per-
formed. In particular we analyzed the influence of FLOSS firms in the software
market in order to assess whether there are conditions under which the FLOSS
firms are able to compete with PROPS firms, or even if they are able to exclude
the others from the market.

The proposed model describes an extremely ideal software market, where at
the start time, all companies enter the market with their own offers, the users
make their purchasing decisions, and only in the subsequent steps the users and
the firms operate according to more realistic and specific strategies. Our model is
studied in a time period T , and the time step used by our simulator is nominally
equal to 1, corresponding to one month calendar time. As initial conditions, we
assumed that the quality and the technology of products on the market and
the productivity of the firms, have values equal to one at the beginning of the
simulation. We assigned to each firm a given amount of initial capital, depending
on its number of developers. The initial capital available to each firm is equal
to 50,000 per developer in the firms with more than 50 developers, and it is
equal to 40,000 per developer in firms with less than 50 developers. The number
of developers is assigned at the start time and remains unchanged during the
simulation.

We divided the simulations in two sets; for each set we considered different
initial parameters. In the first set, we considered an initial number of users equal
to 2000, an input rate of new users variable in the range [4-10], and an output
rate of users variable in the range [1-4]. In the second set, we considered an initial
number of users equal to 3000, an input rate of new users variable in the range
[40-100], and an output rate of users variable in the range [10-40] We simulated
four scenarios for each set. In these scenarios, we set the number of developers
and the initial capital value considering that FLOSS firms have typically smaller

64 L. Cocco et al.

size and make smaller investments with respect to PROPS ones. In the first sce-
nario we studied the trend of some economic variables by considering 20 PROPS
companies operating in the software market and studying the competition only
among proprietary firms. They are characterized by a number of developers that
varies in the interval [20;200] and by an initial capital with values in the range
[800,000-10,000,000].

Subsequently, we analyzed the market trends when one PROPS company
competes with 5 FLOSS companies. The PROPS firm is characterized by an
assigned capital equal to 10,000,000 and by a number of developers equals to
200. The number of FLOSS developers varies in the interval [10-70] and their
initial capital takes values in the range [200,000-1,000,000]. As mentioned in the
model presentation, FLOSS firms are positively affected by the contributions of
the FLOSS community and they enjoy the benefits arising from the peculiarities
of this software to offer free access to the code. Consequently, we analyzed the
influence of FLOSS competitors in the PROPS market by introducing a term
that takes into account the increasing productivity of FLOSS firms. This fact
is modelled through the parameter α, that represents the level of involvement
of the open source user community. Note that the parameter α is a normally
distributed variable, that assumes values in the range [1-4]. This range was set
in agreement with the fact that the human capital of the in-house developers
grows in time up to a max value equal to 3.

In the third scenario, we studied the iterations among 10 PROPS firms and 5
FLOSS firms. Also in this scenario, the initial capital and the number of devel-
opers of the PROPS firms are larger than those of FLOSS firms. In particular,
in the PROPS firms, the number of developers varies in the interval [20-100]
and the initial capital is valued in the range [200,000-5,000,000]. The number
of FLOSS developers varies in the interval [10-70] and the initial capital takes
values in the range [200,000-1,000,000].

Eventually, in the fourth scenario we examined the same quantity of PROPS
and FLOSS firms (14 firms in total) that compete among each other. For each
PROPS firm, there is a FLOSS firm with the same features, in particular the
number of developers varies in the interval [20-70] and the initial capital in the
range [800,000-3,500,000].

Note that the firm survival does not only depend on its initial capital and
number of developers, but on many other factors, closely linked. In fact, the
profit of a firm depends by the following quantities: initial capital, number of
developers, number of users, ICT capital invested to upgrade its products, ICT
capital invested to keep acceptable the quality, time interval to update the prod-
ucts, financing and interest rate, parameters that weight the human capital, ICT
capital and research and development.

For FLOSS firms, we add three more factors: level of involvement by the open
source community, and parameters that limit the quality and technology of the
primary FLOSS product with respect to the sum of contributions to the project
of all FLOSS firms.

PROPSf vs. FLOSSf 65

Table 1. Initial Parameters of the proposed model

Parameters

IICT : capital invested to update the product

InonICT : capital invested in wages

IICTmin: capital invested to keep an acceptable quality

β: normally distributed variable with values in the range [0.8,1]

μ: normally distributed variable with values in the interval [0.2,1] for
firms with less than 50 developers, and in [0.2, 0.4] for firms with more
than 50 developers

δPROPS, δF LOSS: time intervals to update the product, with values in
the range [24, 48]months and [12, 18]months, respectively

quality and technology: main features of the products defined by a
differential equation and by an algebraic equation, respectively

m: size of the open source community, and α: normally distributed
variable with values in the range [1,4]

Nu: number of users (public and private companies), θ: normally dis-
tributed variable with values in the interval [1,4]

λq and λt :normally distributed variables with values in the range
[0.1,0.7]

ΨF
0 : normally distributed variable with values in the interval [0.8,1]

ΨP
0 : normally distributed variable with values in the range [0.9,1]

ΨF
1 : normally distributed variable with values in the interval [0.2,0.3]

ΨP
1 : normally distributed variable with values in the range [0.1,0.2]

ΨP,F
2 : parameter equals to 0.25]

In Table 1 we report the parameters we used for performing the simulations,
that have a close link with the firm’s ability to survive in the market. The
reported values are taken from the literature, by analyzing market data, and by
using our experience in software engineering. They have to be considered a first
attempt to build such a complex model, and to verify its consistency.

In the following subsection 4.1 we report some results obtained running the
simulations described above, assuming for the model’s parameters the values
reported in Table 1. In subsection 4.2, we report a sensitivity analysis to
validate the results obtained.

4.1 Simulation Sets

In a first set of simulations we considered an initial number of users equal to
2000, an input rate of new users variable in the range [4-10], and an output rate
of users variable in the range [1-4]. In the second set, we considered a bigger,
more variable market, with initial number of users equal to 3000, an input rate
of new users variable in the range [40-100], and an output rate of users variable
in the range [10-40].

In Table 2 we report the results of the simulations by highlighting the num-
ber of survived firms for each kind, and the 25th, 50th and 75th percentiles

66 L. Cocco et al.

Table 2. Number of survived firms and statistics about exit time from the market in
the two sets of four performed simulations

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Set 1 PROPS FLOSS PROPS FLOSS PROPS FLOSS PROPS FLOSS

Survived firms 1 - - 1 0 1 0 2 0

P0.25 16.25 - - 0 102 7 120.5 7.75 65

P0.50 36 - - 0 108 8 132 8 68

P0.75 140 - - 0 159.5 8 170.5 9 80.25

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Set 2 PROPS FLOSS PROPS FLOSS PROPS FLOSS PROPS FLOSS

Survived firms 1 - - 1 0 1 0 2 0

P0.25 15.25 - - 0 142.5 7 127 7 90.5

P0.50 34 - - 0 168 8 134 7 96

P0.75 212.75 - - 0 180.5 8.25 159.5 8.25 107.75

pertaining to the time istants in which the firms that go bankrupt exit the
market. The results of the first Set confirm that in a free market with no techno-
logical breakthroughs or large economical variations, a monopoly or an oligopoly
of PROPS firms tend to emerge. In particular, in the case of only PROPS firms
(Scenario 1), the results show that the 75 % of the firms exit the market before
of the 140th month, with 50% of the firms exiting within 36 months. A single
monopolist emerges among these firms. The analysis of the competition between
PROPS firms and FLOSS firms, under the initial conditions and the parameters
chosen, show that in the long term a PROPS monopoly tends to emerge, driving
out from the market all FLOSS firms. In the Scenario 4, an oligopoly of two
PROPS firms emerges.

Note that the ousted FLOSS firms tend to survive on the market fairly longer
than ousted PROPS firms. The latter ones are out of the market in about 9-10
months, while the former ones resist ten times longer, or more. This feature is
closely linked to their smaller size and their smaller investments, so that they
tend to loose less money, and thus are able to stay in the market for a longer
time.

With a bigger market, and a bigger average inflow of new users every month
(Set 2) , the survival times of PROPS firms do not change substantially, except
in Scenario 1, when only PROPS firms are involved. In this case, the time when
the last firms exit the market is substantially increased. On the contrary, FLOSS
firms tend to last longer in almost all cases. In the 4th scenario, we have two
PROPS firms surviving in the market.

In Figure 1 we show the number of users of the firms in this last scenario.
Most PROPS firms collapse very quickly, while FLOSS firms proceed together a
longer time, until they go bankrupt in about 80-130 months. Two PROPS firms
survive with about the same market share. The number of users steadily increase
with time.

PROPSf vs. FLOSSf 67

0 100 200 300 400 500 600
0

200

400

600

800

1000

1200

time[month]

P
R

O
P

S
f a

nd
 F

LO
S

S
f u

se
rs

Fig. 1. Scenario 4: Numbers of firms’ users versus time in the case of 7 PROPS firms
(solid lines) and 7 FLOSS firms (dashed lines)

Table 3. Second simulation set: results of the Monte Carlo analysis

PROPS parameters Scenario1 Scenario2 Scenario3 Scenario4

Average exit time for
last ousted PROPS
firm

336.34 - 14.21 12.52

P0.05 273 - 9 8

P0.95 384.5 - 27 22

FLOSS parameters Scenario1 Scenario2 Scenario3 Scenario4

Average exit time for
last ousted FLOSS firm

- 227.61 228.0833 132.55

P0.05 - 159 165.7 107

P0.95 - 308.5 292.8 172.50

4.2 Sensitivity Analysis: Monte Carlo Simulations

In the previous section, we reported results about just eight simulations. To
assess the robustness of our model, we used a Monte Carlo approach. We repeated
several simulations with the same initial conditions, but different seeds of the
random number generator. We executed 100 simulations for the four scenarios
of the second set, using the same parameters reported in Table 1. In particular,
for each Monte Carlo run, we computed the exit time of the last firm exiting
the market. In Table 3 we show the results of the Monte Carlo analysis and
report the average exit time of the last ousted firm, and the 5th and the 95th
percentiles of the exit time of the last ousted firm for all Monte Carlo runs, and
for the two different kinds of firms.

In all the runs, we consistently observed that a monopoly, or an oligopoly of
PROPS firms tends to emerge, but the ousted FLOSS firms survive on the market
consistently longer than ousted PROPS ones. The 5th and 95th percentiles of
the survival times of the last ousted firm are of the same order of magnitude of
the average times, showing an overall consistency of the results.

68 L. Cocco et al.

5 Conclusions and Future Work

The presented simulations has the aim to present an heterogeneous agent-based
approach to study the influence of the FLOSS firms in the software market
by assessing whether there are conditions under which FLOSS firms are able
to compete with PROPS ones, or even if they are able to exclude other firms
from the market. We believe that the results of our agent-based model, whose
parameters were taken from the literature, by analyzing market data, and by
using our experience in software engineering, are interesting.

These results show that the FLOSS firms are able to compete with PROPS
firms for a long time in the market, albeit the larger size and ability to make
investments in technology in the end lead to a monopoly, or an oligopoly of
the latters. Typically, FLOSS firms have a smaller size, and make smaller in-
vestments, compared to PROPS ones. This makes them more agile, and able to
survive for a long time – of the order of ten years or more in our reference time.

Our model, as all simulation models, is a simplification of the real world. It
represents each agent in an ideal way, and is based on several parameters in
general difficult to estimate and whose values can heavily influence the output
of the simulation. The aim of the presented work, however, is to show that
an agent-based approach to analyze the software market is viable. To keep the
model more focused, we limited ourselves to a ”vertical” software market, with
relatively few competitors and with no network or platform externalities.

Clearly, further research is needed to improve the model making it more re-
alistic, and studying which parameters of the model have the larger effect on
the results. In future works we will extend our model, in particular we intend
to analyze the effects of network externalities, and to study product families,
and their interplay. We will improve the price clearing mechanism, and we will
include the possibility for the users to buy the primary and secondary products
not necessarily from the same firm. Moreover, we will take into account that
the customers’ purchasing decision will vary in agreement with the maturity
of the product and with the fact that FLOSS is often avoided because of the
uncertainty of future support services. We will also take into account a more dy-
namic simulation setting, with the number of companies and customers following
growth patterns.

We believe that this kind of research has the potential to help the study of
future developments of various software market segments, including whether the
monopoly of big firms will continue or will be challenged.

References

1. Bitzer, J., Schröder, P.J.H.: Competition and innovation in a technology setting
software duopoly. Elsevier B.V, Amsterdam (2006)

2. Bitzer, J., Schröder, P.J.H. (eds.): The Economics of Open Source Software Devel-
opment. Elsevier B.V, Amsterdam (2006)

3. Bonaccorsi, A., Rossi, C.: Why Open Source software can succeed. Research Pol-
icy 32, 1243–1258 (2003)

PROPSf vs. FLOSSf 69

4. Economides, N., Katsamakas, E.: Two-Sided Competition of Proprietary vs. Open
Source Technology Platforms and the Implications for the Software Industry. Man-
agement Science 52(7), 1057–1071 (2006)

5. Ghosh, R.A.: Study on the Economic impact of open source software on innova-
tion and the competitiveness of the Information and Communication Technologies
(ICT) sector in the EU, UNU-MERIT (2006)

6. Haruvy, E., Sethi, S.P., Zhou, J.: Open Source Development with a Commer-
cial Complementary Product or Service. Production and Operations Manage-
ment 17(1), 29–43 (2008)

7. Leppämäki, M., Mustonen, M.I.: Skill Signalling with Product Market Externality.
The Economic Journal 119(539), 1130–1142 (2009), Available at SSRN:
http://ssrn.com/abstract=1418177

8. Lin, L.: Impact of user skills and network effects on the competition between
open source and proprietary software. Electronic Commerce Research and Ap-
plications 7(1), 68–81 (2008)

9. Mustonen, M.: Copyleft–the economics of Linux and other open source software.
Information Economics and Policy 15(1), 99–121 (2003)

10. Mustonen, M.: When does a firm supportsubstitute Open SourceProgramming?
Journal of Economics & Management Strategy 14(1), 121–139 (2005)

11. Pekka, H.: The Hacker Ethic and the Spirit of Information Age. Secker & Warburg,
London (2001)

http://ssrn.com/abstract=1418177

B. Regnell, I. van de Weerd, and O. De Troyer (Eds.): ICSOB 2011, LNBIP 80, pp. 70–84, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Adoption of Open Source Software and Software-as-a-
Service Models in the Telecommunication Industry

Eetu Luoma1, Nina Helander2, and Lauri Frank1

1 University of Jyväskylä, Department of Computer Science and Information Systems,
P.O. Box 35 (Agora), FI-40014 University of Jyväskylä, Finland

{eetu.luoma,lauri.frank}@jyu.fi
2 Tampere University of Technology, Dept. of Business Information Management and Logistics

P.O. Box 527, FI-33101 Tampere, Finland
nina.helander@tut.fi

Abstract. A case research is carried out on adoption of open source software
(OSS) and software-as-a-service (SaaS) in the telecommunication industry. The
study was conducted to examine the types of software deployed as OSS and
SaaS and the conditions of adopting OSS and SaaS. Findings of the case study
indicate that industry-specific software is not developed as OSS or deployed in
SaaS mode. Based on the findings, we also arrive at conclusion: Adoption is
hindered by specificity of processes and technology interfaces.

Keywords: Open source software, Software-as-a-Service, Telecommunication,
Vertical Software Industries.

1 Introduction

Examining software business from the perspective of information systems (IS)
science, software business is all about outsourcing the IS function. In the context of
vertical software industry1, software business takes place in dyadic relationship
between a vertical industry enterprise and a vendor providing software products or
services [1]. The vertical industry enterprise usually has its own unit or employees to
produce certain parts of the IS function itself [2]. Alternatively, the enterprise may
find it more efficient to outsource software development, deployment and operating to
an external vendor. Nelson et al. [3] have provided an examination on which types of
information systems are being outsourced. They found that common applications
based on common technology are more likely to be acquired as packaged software,
whereas specialized and unique applications require custom software development.

1 Vertical software industry comprises of vertical industry enterprises (secondary software

companies and software vendors (primary software companies), producing software products
and services for the specific needs of the vertical industry. Vertical industry (e.g.
telecommunication) has a clear specialization and limited transferability of skills and
knowledge outside its own domain. Later, the term industry-specific software is used to
describe software, which cannot be easily redeployed in other vertical industries than its
original domain, as opposed to producing horizontal (general-purpose) software.

Adoption of OSS and Software-as-a-Service Models in the Telecommunication Industry 71

Further, unique applications based on common technology are more likely to be
insourced and common application based on advanced technology are rather
outsourced. The common development in the vertical software industries is that once
unique and differentiating software depreciate into commodity [1, 4].

The software business setting in vertical software industries is also relevant when
investigating the adoption of open source software and software-as-a-service. To
facilitate such examination below, we define the concept based on contemporary
literature as follows. Open source software (OSS) refers to product software, which is
produced in collaborative manner and made available royalty free and with relaxed
license terms. The terms allow to running, distributing and modifying the source code,
for both commercial and non-commercial use. [5–8]. Software-as-a-Service (SaaS) is
a type of software-based service where a service provided offers access to the
functionalities of a commodity software over the Internet to several end-users,
running a single instance of the particular software on top of multi-tenant
infrastructure [9–11]. These definitions imply that OSS is a model for organizing
software development and maintenance and, in turn, SaaS is a model for orchestrating
software deployment and operating. Further, both OSS and SaaS can be treated as
means to outsource software-related activities from vertical industry enterprise to
external vendor.

The utilization of OSS has increased remarkably in the last decade. In the
development of software programs and even large software systems, open source has
become a serious alternative for the utilization of proprietary software [5, 6]. As one
of the manifestations of cloud computing, even higher expectations are set to SaaS
offerings. Primarily for established software vendors, SaaS presents an opportunity to
add value in form of service offering, even as the product business declines [12].
Customers are also offered economic, flexibility and strategic benefits [11]. Against
this background, it is interesting to examine why OSS and SaaS have not become
widespread in industry-specific software. Conducted literature review reveals that this
question has not been addressed before with regard to the two models.

Consequently, the following questions are of particular interest in this study: 1)
Which types of software do the vertical industry enterprises deploy using OSS and
SaaS models? 2) Do the vertical industry enterprises perceive value of OSS and SaaS
differently? 3) Which factors drive and inhibit adoption of OSS and SaaS offering in
vertical industry enterprises? These questions are set with the intention to generate an
overview to the adoption of OSS and SaaS models and to compare these models to
other business models in software business (e.g. with bespoke software) through their
benefits and problems. We seek answers to the questions by adopting an exploratory
approach and, therefore, the aim of our study was to arrive at a hypothesis on the
factors affecting the OSS and SaaS adoption.

Our empirical investigation is conducted in the context of telecommunication
software, where communication service providers (CSP) and software vendors
serving them form the vertical software industry. Software specific to this industry
supports CSP’s day-to-day processes for service fulfillment, service assurance and
billing as well as infrastructure development processes. Specifically, two types of
software are considered to fall under this definition. First, operations support systems
are software systems supporting telecommunication network management processes
such as maintaining network inventory, provisioning services, configuring network

72 E. Luoma, N. Helander, and L. Frank

components, collecting and mediating usage information and managing faults [13].
Second, business support systems are software systems supporting customer
management processes including taking orders, providing customer service,
processing bills and collecting payments [13]. This definition of telecommunication
software excludes e.g. software used in mobile terminals, where OSS is used in
different forms and to a different extent. Telecommunication software industry was
chosen as the context for investigation for its plurality: operation support systems
were assumed to incorporate specific knowledge that cannot be redeployed in other
industries, whereas business support systems support processes common to many
vertical industries.

The article has four further sections. Next section gives an overview on relevant
literature concerning the OSS and SaaS adoption. Section three introduces the case
study methodology applied. In section four, we present the findings made in the
empirical study about the context of the particular vertical software industry, and
about the current OSS and SaaS adoption in the industry. In the concluding section,
we discuss the findings against the research questions and present two hypothesis for
further studies.

2 Literature Review

2.1 Open Source Software Adoption

The research on OSS has progressed in the last decade. Most of the earlier literature
focused on the motivations of individuals to contribute to the communities, open
source project management issues and on general descriptions of the model [5]. More
recent studies have additionally aimed at observing the adoption of OSS in
organizations, through clarifying the benefits and problems of OSS adoption [5, 14–
21] through examining which kind of OSS are deployed [5, 17, 18] and through
studying the antecedents of adoption [5, 22, 23].

Ajila and Wu [14] suggest that the benefits of OSS are associated with reuse:
customers receive added value from reduced time to market, reduced product
development costs, improved process predictability and increased product quality.
Their study also indicates that when organizations perform OSS component reuse in a
systematic manner, organizations can attain economic benefits, increased productivity
and increased quality. These observations are in line with many other similar research
results, which often state lower costs, higher quality, adaptability and reduced
dependency on vendor as the main benefits of OSS [14, 16, 18, 19]. The papers
reporting on OSS adoption [21, 22] analogously ascertain that the decision making in
organizations culminates on assessing potential cost benefits, on opportunities to
exploit communities' resources and knowledge, and on functionalities and maturity of
the software under consideration. Maturity is stressed by [20, 21] stating that both the
customers and the vendors may hold their actions until dominant design emerges, and
act only when peers are deploying OSS. To conclude, important determinants for
adoption are, uniformly to general IS outsourcing, economics of the offering,
capabilities and commodification.

Adoption of OSS and Software-as-a-Service Models in the Telecommunication Industry 73

There are fewer studies questioning the claimed benefits [5, 19, 22]. Ven et al. [19]
raise several arguments, for instance OSS itself may be for free, but the switching
costs as well as total costs are unclear. Performing customization and modifications to
the source code may also turn out impractical in case the organization is missing
required skills [5, 16]. Finally, whereas using OSS reduces vendor lock-in in software
development, dependency on the vendor providing supporting services may increase
[5, 19].

The advantages of OSS are examined in the literature mainly from the viewpoint of
software intensive enterprise. To our knowledge, there are also studies targeting
vertical industry enterprises [16, 22, 23] and a single study with focus solely on
secondary software enterprises [15], in which the authors interviewed representatives
of 13 companies from different vertical industries. They found that incentive to
innovate and collaborate (by virtue of access to source code) reduced vendor lock-in
and diminished costs were the most important business-related benefits. Technical
benefits included various elements of software quality such as performance, security,
flexibility and interoperability, and the respondents of the study indicated that these
outweigh the drawbacks (lack of OSS expertise and poor documentation). As
business-related problems, the study lists e.g. lack of ownership and support, which
denotes that the vertical industry enterprises may find it difficult to find a service
provider taking responsibility over support. While [5, 16, 22, 23] lists several other
qualities in favor of and against OSS, and also some which do not usually appear in
OSS literature, none of authors did explicitly compare motivations of secondary
software enterprises to general findings across OSS literature. Overall, there appears
to be a paucity of published empirical research on how motivations to deploy OSS
differ in vertical industry enterprises.

Studies on industry-specific software developed in open source communities
further seem non-existent. Current academic literature concerns horizontal
infrastructure software [5, 17, 18, 23] almost exclusively and the industry-specific
OSS may perhaps come forth in next wave of publications [8]. It seems that proper
business models are missing in provisioning of OSS for vertical industries [16].

2.2 Software-as-a-Service Adoption

Contemporary academic literature is mostly limited to describing the architectural and
technical properties of the SaaS offering and, in terms of adoption, suggesting
advantages and downsides of the model. [11] and [24] were among the first to
introduce claimed value propositions: less need for internal IT resources, and lower
initial and total costs. These economic benefits are associated with the deployment
and distribution model of SaaS, enabling service provider to achieve economies of
scale [11, 25]. In addition to the economic value, customers may gain flexibility
advantages such as prompt deployment, scalability, easily accessible updates and
patches and, additionally, strategic benefits like increased bargaining power over
vendors [11, 24–28]. Offering and using SaaS may also create problems compared to
traditional means of deploying software systems. Using SaaS, customer is exposed to
risks of losing control of business-critical data [24, 25, 29], thus not being able to
access the service or experience inferior performance owing to the distribution of
the service over the Internet [24, 27, 29]. Extensive integration and need for

74 E. Luoma, N. Helander, and L. Frank

customizations may also reduce the attainable benefits compared to other business
models in software business [30].

Similarly to OSS, well-known examples of SaaS are horizontal and employed in
multiple industries [25, 29]. Excluding infrastructure software (which are rather part
of platform-as-a-service offering), in services to business customers, SaaS model is
mostly applied to email, customer relationship management, human resources
management and financial management applications. In services to individual
consumers, SaaS is applied to social media applications (e.g. Blogger, Facebook) and
to storage and office applications (e.g. Dropbox, Google Apps).

Despite the enthusiasm towards SaaS model, relatively limited amount of research
on the actual volume, reasons and experiences of adoption is available. However, few
insightful studies can be found. Xin and Levina [31], reporting a research in progress,
hypothesize that customization and need for client-specific functionalities, required
service volume, internal IT capabilities among few other factors derived from IS
outsourcing literature would be determinants for SaaS adoption. Benlian et al. [32]
examined adoption of different types of applications using SaaS model. Applying
transaction cost theory, resource-based view of firm, and theory of planned behavior,
the authors found that in office applications attitude towards SaaS adoption and SaaS
adoption can be explained by subjective norm, by low level of specificity and low
level of adoption uncertainty. Correspondingly, when analyzing ERP systems, SaaS
adoption is explained by higher adoption uncertainty, higher strategic value of
application and higher application inimitability. This result can be interpreted in a
way that standard applications and applications which are not supporting core
processes of the enterprise may be offered and adopted using SaaS model.

3 Research Method

Using empirical data, this study examines the adoption of OSS and SaaS model in the
telecommunication industry. Specifically, present study analyzes why adoption takes
place, which factors drive and which inhibit adoption of OSS and SaaS. Moreover, we
examine how adoption occurs in the companies of the specific industry, both on the
client-side and on the vendor-side. This study applies exploratory approach [33] and
case research [34] including a total of eight companies. Out of the total, six are
communication service providers (CSP) and two are companies producing software
products and services. The case study approach was chosen because of the lack
of previous research and explanations on limited adoption of OSS and SaaS in
industry-specific software. Therefore, motivation to conduct case research was to
increase understanding on the specific context of vertical software industries [35].
Furthermore, case research has been argued to apply for initial identification of cause-
effect relationships and forming hypothesis for further studies [34].

Telecommunication industry was selected as the target domain, since it clearly
exhibits characteristics of a vertical industry that were thought also to affect the
software business setting. First, software systems in this domain are required to
interface with telecommunication networks. In addition, software systems are required
to support processes specific to the industry. Furthermore, analyzing the properties of
operations support systems and business support systems used in the domain, it was

Adoption of OSS and Software-as-a-Service Models in the Telecommunication Industry 75

assumed that the domain would have both industry-specific and horizontal software
systems, facilitating more insightful analysis on adoption of OSS and SaaS. The set of
companies was selected to the case study through both purposive and convenience
sampling [36]. For the former part, the sampling frame consisted of finding case
companies of different sizes and breadth of operations and finding markets within
telecommunication industry with different phases of maturity. Consequently, European
and Chinese communication service providers were first selected as the target group of
this study. Secondly, we also wanted to incorporate the software vendor's viewpoint
into the study and, therefore, the inquiry was targeted to software vendors serving
the communication service providers. These vendors are typically well aware of the
customer needs and trends, and often push the adoption of new technologies and
models.

The present study was executed in 2010, using two main sources of information:
public documents and interviews. We initiated the study by gathering general
background information on the case companies from their own and other public web
pages. Case company details are summarized in Table 1, including company type,
geographical area, and company size measured by revenue in the year 2009. With
regards to the company type and revenue, it is noteworthy that they are defined based
on the primary source of information, namely the respondents organizational unit.

The interviews were conducted as semi-structure interviews consisting of both
fixed and open-ended questions. The questions covered operational environment,
software acquisition strategies and adoption of OSS and SaaS in particular. Questions
concerning operational environment attempted to prioritize between certain focus
areas and capabilities: increasing customer base, network technologies and their
development, operational efficiency and new services making possible new sources of
revenue. It was hypothesized that business focus would affect software acquisitions
strategies, i.e. whether software-related activities are insourced or outsourced, or
whether CSP would prefer to acquire bespoke software or software product. These
aspects were asked from CSPs through ratio of spending between internal versus
outsourced development and bespoke versus product software, respectively.
Additionally, the reasons for the selected strategy were asked. Further, both business
focus and software acquisition strategy were seen as associated with OSS and SaaS
adoption. Both the OSS mode of development and the SaaS mode of deployment
assume outsourcing and relatively high level of commodification. Therefore, the more
CSPs outsource there is function and utilize product software, the more OSS and SaaS
should become a viable alternative. The questions on OSS and SaaS adoption simply
comprised of open-ended questions on whether, how and why the models were
adopted in the CSP software systems. All the respondents were asked essentially the
same questions.

The interviews were mostly accomplished by the authors. The interviews were
digitally recorded and transcribed. A Chinese scholar interviewed the service providers
E and F. For these interviews, the questions were first translated into local language
and Chinese scholar was instructed in performing the interviews. Later, responses were
later translated to English. Due to confidentiality reasons, these interviews were not
recorded, but the interviewer made notes on the questionnaire form.

As presented in the Table 1, the interviewees represented different positions in
their organization. The main criterion for interviewed persons among the CSPs was

76 E. Luoma, N. Helander, and L. Frank

that they were actively involved in their firm’s decision-making regarding acquisition
and deployment of software systems. In the software companies, we selected
respondents who were frequently in contact with their customers and were
consequently acquainted with their customers’ needs, decision-making criteria and
actions. Also, we interviewed those employees responsible of development of
software products.

Table 1. Details of the case companies

 Company type Area Revenue in
2009 (Euros)

Respondent Mode

Service
provider A

Group of 28
regional
operators

Europe consolidated,
450 million

CEO In-depth
interview

Service
provider B

Affiliate of
global CSP

Europe close to 1
billion

IT manager Focused
interview

Service
provider C

National,
incumbent CSP

Europe over 12
billion

IT manager Focused
interview

Service
provider D

Affiliate of
global CSP

Europe over 1,5
billion

Director, R&D In-depth
interview

Service
provider E

Provincial
branch of
national CSP

China estimated 450
million

IT manager Focused
interview

Service
provider F

Provincial
branch of
national CSP

China estimated 750
million

Business
manager

Focused
interview

Software
vendor A

Global telecom
software vendor

Europe consolidated
sales over 12
billion

R&D managers Two focused
interviews

Software
vendor B

Global telecom
software vendor

China consolidated
sales over 12
billion

Account and
R&D manager

Two focused
interviews

Software
vendor C

Global system
integrator

Europe consolidated,
close to 75
billion

Account
manager

Focused
interview

With the software vendor producing software especially for telecommunication, we

had the possibility to carry out two interviews in both Europe and China. In China,
these interviews complemented the answers by the CSPs and enabled verifying
certain aspects regarding the operational environment. While most of the interviews
were so called focused interviews, we also conducted two in-depth interviews with
informants. By focused interviews, we refer to a single interview [34], which in the
present study usually took approximately two hours. By in-depth interview, we refer
to an interaction with the informant over longer period of time involving at least two

Adoption of OSS and Software-as-a-Service Models in the Telecommunication Industry 77

interview sessions [34]. This enabled asking more detailed questions and confirming
initial observations.

Data analysis followed the principles of qualitative research on parallel data
reduction, data display and drawing conclusions [36]. First, the data was organized by
identifying unique patterns in each case on the basis of interview themes and research
questions. These themes were operating environment, software acquisition, and
adoption of OSS and SaaS. Pattern matching [34, p. 136] enabled analyzing factors
within the cases. Next cross-case synthesis technique was employed, enabling
comparing the cases and aggregating the data [34, p. 156]. Overall, particular
emphasis was on aspects explaining adoption of OSS and SaaS across the cases, on
comparing customers and vendors viewpoints and on potential connections between
the context (operating environment and software procurement) and adoption of OSS
and SaaS.

4 Research Findings

In the following, the observations made in the empirical study are presented by
categorizing them according to the interview themes. The operational environment
and general alignments in developing, deploying and operating software should be
treated as the context, where the contemporary models of software business may be
examined.

Properties of the operational environment were realized through examination of
communication service providers' business focus and required organizational
capabilities. Surprisingly, there was much variety among European CSPs. Service
providers A and B saw increasing customer base as most important focus area. In
contrary, service providers C and D perceived operational efficiency and new service
development as most critical. While this may be due to the positions of the companies
in their market (market leaders and challengers), respondent in CSP C highlighted that
the telecommunication market is already saturated and that developing new services is
possible only through understanding customer needs. In China, the market is still
growing and service providers focus on customer acquisition and improving quality of
their network services.

Both the European and Chinese service providers suggested that the capability of
being able to customize standard technologies to match the customer needs will be
critical in the future. Overall, CSPs seem to be transforming from technology-
orientated to customer-orientated companies. One of the interviewees from service
provider C described this change:

"We started out as a true technicians' company. We had an advantage because we
were the only operator so selling your services was easy. That changed with the
competition from cable companies around two years ago. We said ok, the customer is
the central of our world and technology is a way to attract the customer."

Software procurement activity in the service provider firms was investigated

through outsourcing viewpoint. Questions on this topic focused on reasons to
outsource and spending on software related activities. Currently, majority of software

78 E. Luoma, N. Helander, and L. Frank

development and deployment is outsourced. Chinese CSPs estimated the ratio of
expenditures between internal work and outsourcing expenses to be around one to
nine. In European CSPs, the ratio varies. For example, CSP B told that these activities
are solely in the hands of the vendors, whereas firms C and D estimated the
outsourcing ratio to be between 60 to 70 percent.

The European interviewees stated cost-efficiency to be the most important reason
for outsourcing. In China, outsourcing may additionally be explained by a lack of
high-end capability. One informant from software vendor B explained this as follows:

"Chinese operators do not have capabilities to develop software themselves. CSPs
and ISVs co-operate in developing and deploying their operations support systems
and business support systems, making it almost all tailor-made... Operating is mostly
organized by the CSP."

We also asked the ratio of spending between bespoke systems and software
products. Chinese CSPs reported that their software systems, specifically used in
producing telecommunication services, are fully bespoke. European CSPs (B, C, D) in
turn attempt to employ software products as much as possible. However, the reality
with all the CSPs is that company-specific legacy systems cannot be replaced.
Reasons for this include complex network interfaces, company-specific procedures
and sunk costs. The situation is different between business support systems (for
customer management and billing) and in operation support systems (for
provisioning, ticketing and mediation). Replacing business support systems with
standard solutions is more straightforward; standards for processes of customer
management and billing exist and deploying standard software products have become
possible.

4.1 Open Source Software Adoption

In the telecommunication industry, OSS is mainly deployed in infrastructure software.
Mentioned software included Linux, Apache and MySQL. The software vendor C
informed that there are many initiatives, which drive open source adoption and CSPs
are increasing use of OSS components in the future. However, it was found that open
source is not in use in industry-specific software. The software vendor C expressed
his opinion that OSS "does not fit" to software specific to the telecommunication
industry and there are no communities to develop them. With regards to infrastructure
software, open source is nowadays a common practice and OSS is used as part of the
software system deliveries. Respondent from software vendor B described the use of
OSS as follows:

"Operators are using open source, mainly in applications provided for customers.
There is no preference in using either open source or proprietary solution, rather they
want functioning and secure (and cheap) solution. OSS is more common in
infrastructure software than in application software."

In contrary, one of the informants (in CSP D) underlined that the use of open
source is avoided in business-critical systems and in services visible to their

Adoption of OSS and Software-as-a-Service Models in the Telecommunication Industry 79

customers. He suggested that open source can be applied to systems supporting
internal processes and to "enterprise-grade" systems, but in "carrier-grade" systems
proprietary solutions are preferred.

OSS is mainly adopted because of the cost factors (CSPs B, C, D, F), although
CSP D commented that OSS is not cheaper by an order of magnitude when looking at
overall costs. Use of OSS is also motivated by the capabilities and resources available
through the communities. With CSPs A and C, this is related to the lack of internal
capabilities and to the efforts to generate new sources of revenue. Many service
providers believe that flexibility is also an important benefit for OSS, including fast
time-to-market. Service provider B sees flexibility in form of future capabilities
allowing customization of standard building blocks.

Barriers for adopting OSS in telecommunication industry include lack of internal
capabilities (CSPs B, C, D), fear of liabilities (CSPs A, C, Vendor A), associated
control risks and uncertainties in business continuation (CSP A, B, C, D). According
to the respondents, lack of internal expertise leads to situations where obtaining
commercial supporting service becomes necessary and as a result cost advantages are
diminished. Uncertainties and fear of liabilities are linked to the complexity of
different open source licenses. In addition, service providers A and D mentioned that
they are not using open source, as no viable offering is available.

4.2 Software-as-a-Service Adoption

Similarly to OSS, SaaS adoption is connected to the cost benefits (CSPs B, F) and
principally to the flexibility of SaaS offering. The service providers A, B, C and D
presented ease of procurement, ease of maintenance and swift time-to-market as
components of flexibility. However, respondents were concerned with the total costs
and for instance CSP C disclosed such uncertainty as inhibiting factor to SaaS
adoption. The Chinese service providers are not applying SaaS, because their
suppliers are not providing it. This was explained by the software vendors A and B; in
software vendors currently have a strong customer lock-in (no incentives to offer
SaaS) and systems are acquired as custom deployments (transformation to SaaS
would be difficult). Service provider B called for industry standards in speeding up
the development.

Common concerns related to SaaS mode included integration and security issues
(CSPs B,C,D,E). For instance, CSPs are obliged by law to apply high data security
measures on call data records, which SaaS vendors are not able to comply with.
Problems with integration are related to the properties of SaaS offering. The mode of
deployment assumes standard processes and interfaces, which does not match the
attributes of industry-specific software. Informant in CSP C described the issues
related to company-specific processes and network technologies:

“It is a combination of the two things. We’ve got a variety of network technologies in
our network, for historical reasons. And that doesn't help in making it easier to
outsource it because both of them are completely different. So try to outsource that to
one and same company in itself it's a challenge. Try to rationalize and simplify the
processes around it is also a challenge... Yeah, I would be inclined to say that it is
more challenging to outsource in the OSS side of fence than BSS of fence.”

80 E. Luoma, N. Helander, and L. Frank

However, the SaaS mode of deployment has already been adopted in several
companies in the telecommunication industry (CSP A, B, C, D, F). Deployed software
are horizontal, e.g. for financial management and customer relationship management.
SaaS is also in use in the business support systems. However, in the companies
interviewed, SaaS mode of deployment is not applied for industry-specific software.
Service provider D described the adoption of SaaS in their organization:

“SaaS deployments have progressed and CRM system is in production in one
business unit. New projects to deploy SaaS have been initiated in the area of business
support systems... Attitude towards SaaS is more and more positive.”

With regards to third-party software, the most of the operators (CSP B, C, D, F)
see their role in the value chain as reseller and operator of the services, and have
already taken such role. The CSP A's strategy in providing third-party software is to
increase customer lock-in, by providing a combination of IT and communication
services, and envisions operating in both intermediating and aggregating roles, and
has already launched product concept to do so. The service provider D is aiming for
an aggregator role, where CSP offers multiple SaaS products for end-users. Such role
is seen natural, and CSPs are expected to take such role in its ecosystem.

5 Conclusions and Further Research

This study has focused on different aspects of OSS and SaaS adoption in the context of
vertical software industry. This is a perspective, which has received limited attention in
the contemporary literature, although a significant share of software business takes
place in this context. Examination of the facets of the vertical industries may to bring
into focus certain factors explaining the adoption or non-adoption, which do not
manifest in the procurement of more generic software. In this study, the dynamics of
software business in the telecommunication industry were examined. It was regarded
as suitable target domain for analysis as it demonstrates characteristics of vertical
industry enterprises that are both generic (like selling and using CRM) and industry-
specific (like provisioning mobile subscriptions and managing network elements).
Conducting a multicase study involving both communication service providers and
software vendors serving them therefore facilitated insightful examination on software
business in vertical software industry.

The interview data uncovers that OSS mode of development and SaaS mode of
deployment are currently utilized by the communication service providers in
horizontal software: OSS in infrastructure software and SaaS in customer relationship
management and financial management software systems, which can all be used
similarly in many vertical industries. Industry-specific software (i.e. operation support
systems) is not developed as open source or deployed as a service. This observation
addressing the first research question has two further consequences.

First, it signifies that the perceptions and experiences of interviewees on OSS and
SaaS can only be associated with horizontal software. However, this allows us to
position the empirical findings more easily against the prior literature. The respondents
mentioned mostly similar benefits and disadvantages of OSS and SaaS as in earlier
studies:

Adoption of OSS and Software-as-a-Service Models in the Telecommunication Industry 81

• The benefits of OSS include cost efficiency [15, 21, 22], resources and knowledge
of the communities [21, 22], reduced time-to-market [14] and adaptability [14]
of source code. Lack of internal capabilities to maintain OSS [5, 15, 16] and
resulting increased dependency on support services [5, 15, 19] were considered as
problems of OSS.

• SaaS model was regarded as beneficial in terms of flexibility [11, 24–28] in
procuring, deploying and maintaining the software. Cost benefits [11, 24] were
also mentioned, but the respondents also raised a question whether the total costs
of utilizing SaaS would actually be lower over longer period of time compared to
other deployment models. The problems with the model to be solved include issues
related to security [24, 27, 29] and integration [30].

In this research, the value of OSS and SaaS was examined primarily through
advantages and disadvantages of the models compared to more traditional business
models incorporating bespoke software or software products. Taking into account that
the specific attributes of industry-specific software most probably did not affect
respondents assessment of OSS and SaaS, a partial answer to the second research
question may be given: conducted case research indicates that the communication
service providers see the value of OSS and SaaS consistently with companies in other
domains.

The adoption of OSS and SaaS in only certain types of software, and non-adoption
in certain others, moreover indicates that there are factors in the operating
environment and in the software business setting, which simultaneously drive and
inhibit adoption of OSS and SaaS models. As revealed by the case research, the
decision-making on software procurement in communication service provider firms is
presently business-driven. There are concurrent pressures to reduce expenditures on
software and to deliver compelling services of highest quality. Such pressures drive
e.g. acting as sales channel for third-party SaaS offering. This also informs us that
certain technology, specifically horizontal business support systems, does not to any
further extent provide significant competitive advantage to the firms. Instead, focus is
on new technologies and services that further makes commoditized software subject
to outsourcing and cost considerations. This observation is in line with previous
studies, in which productization [1] and commodification [4] are seen as leading to
increase in adoption of OSS and SaaS models.

On the other hand, it can be stated that SaaS mode of deployment is not harnessed
in industry-specific software, i.e. operations support systems. This observation is
somewhat contradicting to the models describing commodification development,
since operation support systems (for provisioning, ticketing and mediation) are
unlikely to act as source of differentiation in telecommunication either. Some of the
case companies addressed the issue. Representatives of software vendors disclosed
that there may not be incentives to offer SaaS or developing SaaS offering may turn
out infeasible. Reasons mentioned by the CSPs for using the existing systems, instead
of opting for SaaS mode, included specificity of processes and technology interfaces.
These factors also appear in previous studies as determinants for vertical software
industry evolution [1], but in the present study, company-specific processes and
interfaces emerged as factors disallowing use of highly commoditized SaaS offering.

82 E. Luoma, N. Helander, and L. Frank

When software business is examined as outsourcing of the IS function, transaction
cost economics may be employed to explain market failure, i.e. non-adoption of SaaS
mode of deployment. Transaction cost theory [37] holds that transactions with high
asset specificity are managed more efficiently within the boundaries of the firm. In
the software business setting, this means that the more specific the requirements of
software are, the more likely shall the clients choose to develop the software
internally or as bespoke software. Further, in case of high asset specificity, software is
less likely to be acquired as software product or as a service. In a prior study, Benlian
et al. [32] analyzed the association of asset specificity as explaining factor for SaaS
adoption. However, their focus was on more generic software systems and their
operationalization of asset specificity constructs was therefore missing dimensions,
which might be relevant to vertical software industries. Based on the case research,
and in line with the transaction cost theory, the following hypotheses are put forth for
further studies:

H1: Specificity of processes in client organization is negatively associated with
SaaS adoption.

H2: Specificity of technology interfaces in client organization is negatively
associated with SaaS adoption.

This paper has examined the adoption of OSS and SaaS models in telecommunication
industry. Therefore, it contributes to the software business literature by recognizing
the similarities and differences in adoption in vertical software industries. Conducting
a case research, it was found that managers in communication service providers find
similar benefits and problems in OSS and SaaS as suggested by the current literature.
A conclusion can also be made on the types of deployed software: communication
service providers use OSS and SaaS mode of deployment in software provided and
used across industries. In this case research, no examples of industry-specific software
developed as OSS or deployed as a service could be found. For theory development in
the field of software business, the findings indicate different patterns of adoption on
different types of systems. This study arrived at two hypotheses, which are subject to
further research.

References

1. Tyrväinen, P., Warsta, J., Seppänen, V.: Evolution of Secondary Software Businesses:
Understanding Industry Dynamics. In: León, G., Bernardos, A., Casar, J., Kautz, K.,
DeGross (eds.) IFIP International Federation for Information Processing, Open
IT-Based Innovation: Moving Towards Cooperative IT Transfer and Knowledge
Diffusion, pp. 381–401. Springer, Heidelberg (2008)

2. Hirschheim, R.A., Lacity, M.C.: The Myths and Realities of Information Technology
Insourcing. Communications of the ACM 43(2), 99–107 (2000)

3. Nelson, P., Richmond, W., Seidmann, A.: Two dimensions of software acquisition.
Communications of the ACM 39(7), 29–35 (1996)

4. van der Linden, F., Lundell, B., Marttiin, P.: Commodification of Industrial Software:
A Case for Open Source. IEEE Software 26(4), 77–83 (2009)

Adoption of OSS and Software-as-a-Service Models in the Telecommunication Industry 83

5. Nagy, D., Yassin, A.M., Bhattacherjee, A.: Organizational adoption of open source
software: barriers and remedies. Communications of the ACM 53(3), 148–151 (2010)

6. Sen, R.: A Strategic Analysis of Competition Between Open Source and Proprietary
Software. Journal of Management Information Systems 24, 233–257 (2007)

7. Von Krogh, G., Von Hippel, E.: The Promise of Research on Open Source Software.
Management Science 52(7), 975–983 (2006)

8. Fitzgerald, B.: The Transformation of Open Source Software. MIS Quarterly 30(3),
587–598 (2006)

9. Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds:
towards a cloud definition. ACM SIGCOMM Computer Communication Review 39(1),
50–55 (2008)

10. Mell, P., Grance, T.: Draft NIST Working Definition of Cloud Computing, Version 15,
8-21-09. National Institute of Standards and Technology. Information Technology
Laboratory (2009)

11. Jacobs, D.: Enterprise Software As Service. Online Services are Changing the Nature
of Software. ACM Queue, 36–42 (July/August 2005)

12. Cusumano, M.A.: The Changing Software Business: Moving from Products to Services.
IEEE Computer 41(1), 20–27 (2008)

13. Luoma, E., Frank, L., Pulkkinen, M.: Overview of Telecom Operator Software Market. In:
Tyrväinen, p., Mazhelis, O. (eds.) Vertical Software Industry Evolution: Analysis of
Telecom Operator Software, pp. 35–42. Springer, Heidelberg (2009)

14. Ajila, S., Wu, D.: Empirical study of the effects of open source adoption on software
development economics. Journal of Systems and Software 80, 1517–1529 (2007)

15. Morgan, L., Finnegan, P.: Open Innovation in Secondary Software Firms: An Exploration
of Managers’ Perceptions of Open Source Software. DATABASE for Advances in
Information Systems 41(1), 76–95 (2010)

16. Ågerfalk, P.J., Deverell, A., Fitzgerald, B., Morgan, L.: Assessing the Role of
Open Source Software in the European Secondary Software Sector: A Voice from
Industry. In: First International Conference on Open Source Systems. Springer, Heidelberg
(2005)

17. Hayes, J.: Open to Growth. Engineering & Technology 4(15), 54–55 (2009)
18. Ven, K., Mannaert, H.: Challenges and strategies in the use of Open Source Software by

Independent Software Vendors. Information and Software Technology 50, 991–1002
(2008)

19. Ven, K., Verelst, J., Mannaert, H.: Should You Adopt Open Source Software? IEEE
Software 25(3), 54–59 (2008)

20. Serrano, N., Sarriegi, J.M.: Open Source Software ERPs: A New Alternative for an Old
Need. IEEE Software 23(3), 94–97 (2006)

21. Ebert, C.: Open Source Software in Industry. IEEE Software 25(3), 52–53 (2008)
22. Glynn, E., Fitzgerald, B., Exton, C.: Commercial Adoption of Open Source Software: An

Empirical Study. In: International Symposium on Empirical Software Engineering. IEEE,
Los Alamitos (2005)

23. Dedrick, J., West, J.: An Exploratory Study into Open Source Platform Adoption. In: 37th
Hawaii International Conference on System Sciences. IEEE, Los Alamitos (2004)

24. Greschler, D., Mangan, T.: Networking lessons in delivering‚ Software as a Service’ Part I.
International Journal of Network Management 12(5), 317–321 (2002)

25. Gonçalves, V., Ballon, P.: An Exploratory Analysis of Software as a Service and Platform
as a Service Models for Mobile Operators. In: 13th International Conference
on Intelligence in Next Generation Networks. IEEE, Los Alamitos (2009)

84 E. Luoma, N. Helander, and L. Frank

26. Choudhary, V.: Software as a Service: Implications for Investment in
Software Development. In: 40th Hawaii International Conference of System Sciences.
IEEE Computer Society Press, Los Alamitos (2007)

27. Erdogmus, H.: Cloud Computing: Does Nirvana Hide behind the Nebula? IEEE
Software 26(2), 4–6 (2009)

28. Gold, N., Mohan, A., Knight, C., Munro, M.: Understanding Service Oriented Software.
IEEE Software 21(2), 71–77 (2004)

29. Luoma, E., Mazhelis, O., Paakkolanvaara, P.: Software-as-a-Service in the
Telecommunication Industry: Problems and Opportunities. In: Tyrväinen, P., Jansen, S.,
Cusumano, M.A. (eds.) ICSOB 2010. Lecture Notes in Business Information Processing,
pp. 138–150. Springer, Heidelberg (2010)

30. Ma, D.: The Business Model of “Software-As-A-Service”. In: IEEE International
Conference on Services Computing, SCC 2007 (2007)

31. Xin, M., Levina, N.: Software-as-a-Service Model: Elaboration Client-Side
Adoption Factors. In: 29th International Conference on Information Systems (2008)

32. Benlian, A., Hess, T., Buxmann, P.: Drivers of SaaS-Adoption – An Empirical Study of
Different Application Types. Business & Information Systems Engineering 1(5), 357–369
(2009)

33. Myers, M.D.: Qualitative research in information systems. MIS Quarterly 21(2), 241–242
(1997)

34. Yin, R.K.: Case Study Research: Design and Methods, 4th edn. Sage Publications,
Thousand Oaks (2009)

35. Benbasat, I., Goldstein, D.K., Mead, M.: The Case Research Strategy in Studies
of Information Systems. MIS Quarterly 11(3), 369–386 (1987)

36. Miles, M.B., Huberman, M.: Qualitative Data Analysis: An Expanded Sourcebook. Sage
Publications, Thousand Oaks (1994)

37. Williamson, O.E.: The Economics of Organization: the Transaction Cost Approach.
American Journal of Sociology 87(3), 548–575 (1981)

B. Regnell, I. van de Weerd, and O. De Troyer (Eds.): ICSOB 2011, LNBIP 80, pp. 85–97, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Examining the Effects of Agile Methods and Process
Maturity on Software Product Development Performance

Mikko Rönkkö, Juhana Peltonen, and Christian Frühwirth

Software Business Lab, Aalto University
FI-00076 Aalto, Finland

{Mikko.Ronkko,Juhana.Peltonen,Christian.Fruehwirth}@Aalto.fi

Abstract. This paper examines the effects of agile methods and software
process maturity on software product development performance. Through a
mail survey, we obtained data from 72 small and medium-sized software firms
that predominantly were not CMMI-certified. Findings from our partial least
squares analysis suggest that the use of agile methods has a positive impact on
product development efficiency and effectiveness, but CMMI practices do not
have this effect. Our results suggest that software process improvement
initiatives in software product firms create the highest benefits through first
adopting agile methods and only then moving on to implementing CMMI-like
process improvement initiatives.

Keywords: Product development, agile methods, process improvement,
software.

1 Introduction

The performance of agile information systems development methods has received
considerable interest among information systems scholars [e.g., 1-3]. However, the
current level of empirical support for the arguments about performance of agile
methods can be considered to be inadequate [4]. In this paper, we compare the effects
of agile software development practices and process maturity on the firm software
product development performance.

Research has provided us with strong evidence of the positive effect of process
maturity on software development performance [5, 6]. These studies have pre-
dominantly focused on process maturity from a more traditional CMMI perspective.
However, recently the use of agile methods has gained popularity in the software
industry. These methods have been advocated as a solution to problems in software
development [7-10] in a dynamic environment such as the software product industry
[11, 12]. Regardless of the relative popularity of this alternative development
approach, only a limited amount of research compares agile methods with other
development approaches [13]. Clearly, more studies comparing the effectiveness of
different development approaches are needed. Moreover, a large share of the studies
testing the performance of CMMI uses data from CMMI appraisals that are used
predominantly by larger firms [14]. While the CMMI based approach on software

86 M. Rönkkö, J. Peltonen, and C. Frühwirth

process improvement is well suited for large project-based development organizations,
the effectiveness of different development approaches in small firm context is currently
under-studied.

In this paper we investigate the following research question: “What is the impact of
process maturity and use of agile practices on software product development
performance?” This paper addresses two important gaps in the present body of
knowledge: First, we conduct a statistical comparative test between the effects of
process maturity and agility on software product development performance. To our
knowledge, only a few comparative studies like this exist [e.g., 13]. Second, in
contrast to previous studies using projects in larger firms, our sample consist of small
and medium sized firms that develop software products hence extending the
generalizability of previous studies.

The rest of the paper is organized as follows. In the second section we briefly
review the key literature and formulate hypotheses for testing. The next sections
introduce our sample, constructs and measures that are followed by data collection
and analysis. Thereafter, the sixth section introduces the results of hypothesis testing
using structural equation modeling. The final section presents a discussion on our
results and on their broader implications.

2 Literature Review and Hypothesis Development

Compatibility of agile development and process maturity has been of interest for the
information systems community. Agile methods were initially seen as alternative,
contradicting ways to develop software that are based on profoundly different values
and principles [15]. While agile development and process maturity were initially often
considered to be incompatible targets, information systems and software engineering
communities have recently started to consider these as more compatible than
conflicting targets [15-18].

Process maturity, often measured through frameworks such as CMMI, refers to the
degree of use of well-established software engineering methods [19]. Development
organizations often strive for maturity to improve the quality of the systems developed,
to improve the manageability of the process, and to make the development projects
more predictable. During the recent more than a decade, the CMM family – including
the most recent CMMI model – has established itself as the leading software process
improvement framework, through which increased maturity is pursued.

When combined with traditional plan-driven development methods, increasing
process maturity generally emphasizes and accommodates issues such as planning of
the system and development organization, repeatability predictability, and relatively
rigid control procedures [20, 21]. Combining software engineering best practices into
development frameworks has been a big success in both terms of popularity and
results. Indeed, there is no lack of research supporting the existence of a link between
maturity and development process performance [5, 6, 22, 20]. However, software
process improvement with CMMI or any other leading framework does not come
without a cost. First, CMMI adoption and appraisals required for official certification
are costly and require significant effort thus making it more accessible for larger than
smaller firms [14]. Second, opponents of these development frameworks argue that

 Examining the Effects of Agile Methods and Process Maturity 87

they can lead to too much overhead making the process less efficient and responsive
to changes [23] While these potential weaknesses can be justified especially in large
software development projects, the relative cost in terms of lost opportunities can be
high in more market driven software product development [24, 25].

Agile methods were initially presented as an alternative to the increased overhead
in the development process as well as to decrease the effort required for adopting a
new development framework. In contrast to several of the major SPI frameworks that
are commonly documented as books [26], agile methods commonly define only
minimum amount of processes required for a development team to function efficiently
and can be codified as a relative small number of principles [27]. Another distinctive
feature of agile methods is that they emphasize simplicity, speed, and flexibility to
accommodate changes in requirements. For achieving the pursued characteristics,
developers of the agile methods feel the planning – including documentation – and
control should be, to certain degree, discarded [28]. Agile methods emphasize self-
organization of the development team, quick and frequent delivery of working
software in an incremental manner, and intensive communication both within the
development team and with the customer. Not surprisingly, agile methods have been
recently advocated as a solution to problems in software product development [7-10]
as a response to dynamic environment where technologies change fast and often in an
unpredictable manner [11, 12].

The topic of the compatibility of agile methods and process maturity has been
recently under investigation in the information systems community [2]. Within the
field of software engineering, insights have been gained through case studies of
companies that have adopted agile methods into traditional development organization
[16], and of companies using agile development processes that have implemented
CMMI, even up to maturity level 5 [29]. In general, these efforts are usually not
without challenges, but most studies report positive outcomes. In general, recently
more evidence for than against the compatibility of agile development and process
discipline has been presented [15-18]. The current understanding is that agile process
can be disciplined and mature, and that the development process should be selected
base on situation characteristics [15, 30].

Since most studies focusing on the performance of different software development
approaches focus on software projects, this poses a limitation on how well these
approaches generalize to non-project oriented settings. Particularly, cases where
software is developed as products has received limited attention in the studies
investigating the performance of different development approaches. We start the
discussion on the product development effects of these frameworks by looking at how
product development performance is defined in the literature. While information
systems and software engineering research communities view the development
performance as a two dimensional construct composed of product quality and
development project performance [31], product development research has developed
several alternative conceptualizations, most notably one consisting of efficiency,
effectiveness and innovativeness [32], and an alternative separating product
development and product management as distinct dimensions [33]. The differences on
these conceptualizations can be best understood by examining them in the context:
Incremental product development - the improvement of existing products or product
lines - and radical product development - the development of completely new

88 M. Rönkkö, J. Peltonen, and C. Frühwirth

products or product lines – require different capabilities and hence it is natural that
performance of these processes are considered as separate constructs [34, 35]. In all,
the operationalization of incremental product development include the dimensions of
efficiency and effectiveness, while the goodness of radical product development
performance is often measured through an additional dimension of innovativeness.
Efficiency refers to the goodness of rate that the resources are transformed into
outputs [32], and is composed of two main factors, lead-time and cost-efficiency. This
dimension has a close fit to the process performance dimension of software
development performance [20, 36]. Effectiveness refers to the goodness of the
product not only in terms of product quality – a common measurement of software
development performance [20, 36] – but also how well it fits the needs of the markets.
Finally, innovativeness refers to the ability to conceive new ideas and develop these
into commercially successful products or product features.

Traditional plan-driven methods have been designed to for developing well-
defined software solutions in time and on budget. These objectives are normally
achieved through solid planning and by avoiding wasted programming work [19].
Considering the strong evidence of process maturity on development project
performance [5, 6, 20] and the close fit between the performance dimensions of
incremental product development and software project performance presented earlier,
we hypothesize:

Hypothesis 1: Process maturity increases product development efficiency.
Hypothesis 2: Process maturity increases product development effectiveness.

While agile methods are not about efficiency in the same sense as plan-driven
methods [7], they aim to reduce the amount of administrative work and control for
wasted programming work through frequent integration, testing and delivery of
program versions. In this way, agile methods provide an improvement in efficiency
compared to having less defined processes. Considering the suggested fit between
agile methods to software product development [7-10] we hypothesize:

Hypothesis 3: Process agility increases product development efficiency.

Product development effectiveness refers to how well the developed product matches
the markets. While software product industry is obviously one of the more turbulent
industries, it is likely that the market requirements change during the development
cycle of a new product. In traditional project and contracting oriented software
engineering requirements changes cause schedule and budget overruns. However, in
product oriented development these can result in product with bad market fit or delay,
significantly affecting how the product performs in the markets [37-39]. Hence it is
imperative for firms to maintain flexibility in product development. We hypothesize:

Hypothesis 4: Process agility increases product development effectiveness.

Regarding the last dimension of product development performance, innovativeness is
has received relatively little attention in the software process research. In management
research, one of the most enduring findings about innovativeness is that innovation

 Examining the Effects of Agile Methods and Process Maturity 89

occurs at organizational interfaces [40]. Considering that several of the SPI processes
are organizational level tools that define interfaces also between engineering and other
units within the firm, process maturity should improve innovativeness. In addition,
several of the frameworks specify that organization should have processes for managing
innovations [7].

Hypothesis 5: Process maturity increases product development innovativeness.

It has been suggested that agile methods are associated with innovation [41-43].
Moreover, agile methods give significant responsibilities to individuals, and this
empowerment of individuals is a prerequisite for innovative behavior [28]. Moreover,
agile methods emphasize the importance of communications with the customer
interface and emphasize building the work motivation at an individual level. Hence
we hypothesize:

Hypothesis 6: Process agility increases product development innovativeness.

3 Empirical Study Design

We use a subset of a larger data collection that was collected as a part of a research
project surveying software companies in Finland [44]. We use the term “software
product firm” to refer to any firm that owns and markets a software product –
regardless of the official company classification. The sampling frame for the primary
survey, which is described in details elsewhere [44], contained 2616 firms mainly
under the NACE (rev 1.2) codes 72.21 and 72.22, but also a small number of other
firms that conduct software product business as a secondary area. For this sample, the
CEO or other high ranking employee of a firm was used as an informant. After filling
in the general information including questions about product development
performance the informant nominated another person that was intimately familiar
with the software development process of the firm, most commonly the manager of
the software development function. These nominates acted as the population for the
secondary survey where the software development related questions were asked.
Asking the independent and dependent variables from a different person helped us to
avoid common method bias, which is commonly present in survey research.

The dependent variable, product development performance, was measured with a
scale developed by Kusunoki et al. [32]. It contains three dimensions; product
development efficiency, product development effectiveness and innovativeness.
These were measured with 10 items using 7-point Likert scales. Principal factor
analysis revealed only one dominant factor and a weaker three-factor solution.
However due to the theoretical foundations of the scale, we decided to use the three
dimensional structure of efficiency, effectiveness, and innovativeness for which we
standardized and calculated the Cronbach’s alphas of .76, .75, and .85, respectively.

The constructs for development process maturity and agility were adapted directly
from a paper by Rönkkö, Järvi, and Mäkelä [45]. Although their scale was originally
developed as a Rasch scale [cf., 46], it consists of simple agree-disagree questions and
can hence be adapted to a study using more traditional measurement approaches. The

90 M. Rönkkö, J. Peltonen, and C. Frühwirth

scale for measuring the process maturity was based on a well-known Capability
Maturity Model Integration (CMMI) software process maturity framework: CMMI
for Development, Version 1.2 [26]. To improve the discriminant validity of the
construct, i.e. its ability to measure software process maturity as a distinct construct
from more general product development capability, we decided to exclude the so-
called integrated product and process development (IPPD) additions to the CMMI. In
total this scale consisted of 21 items. The adoption of agile methods was measured
using a scale derived from on the basis of the two most well known agile methods and
consisted of 16 items.

All scales that were adapted from previously published research were translated to
Finnish using the double blind translate and back-translate procedure [47]. The
translations were performed by the first authors of this paper, one researcher not
related to this paper, and two research assistants. The translating protocol included
translating also the context of the items, if the content validity of the original item was
considered poor by the translator. The clarity and general validity of the items were
checked by pre-testing all survey instruments with several experts and practitioners
that had roles closely matching the ones of the informants. Based on these reviews, a
number of items were reformulated.

The primary survey was implemented in two stages as follows. First, a pilot survey
with about 11 percent of the sampling frame of 2616 firms was launched in April
2007. The pilot survey, mailed to 291 firms, was used to test the primary survey
instrument. Minor modifications were made to the questionnaire. The main primary
survey was thereafter sent to 2550 firms (2616 firms, from which we have excluded
66 firms that had responded to the pilot survey).

Both stages were implemented following a modified version of the tailored survey
design method [48]. Mailings began with a pre-notice letter followed by the main
survey package using postal mail. Two email reminders and one round of telephone
calls were used to improve the response rate. A printed questionnaire and an online
form were offered as alternative options to the informants. This phase of our data
collection lasted from April through July 2007. Altogether, this phase produced 287
usable responses. After excluding firms with less than five employees as too small,
the secondary survey was sent to 123 managers of software development or person in
similar knowledgeable position with regards to software development in the firm.
After several reminders by email and telephone, 83 firms provided responses to both
surveys and were used in the main analyses. 9 cases were dropped due to the amount
of missing data resulting in final sample of 72 companies.

We screened and prepared the data with Stata version 10. The effect of non-
response was tested using two different methods. First, we compared the means of the
key study variables between early and late respondents, as suggested by Oppenheim
[49]. For the primary survey, we found that late respondents were larger (p < .001)
and older (p < .05) than the early respondents. No significant differences were found
for the secondary survey. Second, we compared the sampling frame with the
respondents. For the primary survey, we found that industry codes 72.21 and 72.22
were overrepresented, which was expected considering that the survey targeted the
software product industry and oversampling was used. We did not find any significant
differences between geographical distribution and age of the sampling frame and the
respondents. When comparing the respondents of the secondary survey to the

 Examining the Effects of Agile Methods and Process Maturity 91

sampling frame, no differences were found. In all, the results of our non-response
analysis indicate that the results of this study are likely to be more valid for smaller
than larger software product firms.

We used Partial Least Squares Path Modeling (PLS) as our main data analysis
method. The reason for using this approach is the convenience it provides by testing
all hypotheses and the validity of the measures in a single set of analyses. Although
structural equation modeling would perform similar tests, we chose PLS because it
has less stringent sample size and indicator distribution requirements than traditional
SEM approaches [50]. Moreover, the method has increased popularity in IS recently
[51] and hence we considered it more appropriate.

4 Results

We start examining the results of PLS by examining the measurement model. Table 1
shows the summary statistics for the constructs and Table 3 shows the construct-
indicator cross loading matrix. Indicator loadings for the product development
performance constructs are all above the recommended .707 threshold except the first
two items. The first item is substantially below the limit for acceptable, but we
decided to keep it nevertheless. The reason for this is that PLS model works better
when the number of indicators is larger, all reliability indicators in Table 2 were good
for this construct, and this poor item is weighted less than others so it should not
cause bias in the results. All indicators in these scales load higher on their respective
constructs than other constructs indicating discriminant validity of the three-
dimensional product development performance scale.

The process agility and process maturity scales are more problematic since they have
so many items. We considered parceling of the items, but this was not done due to the
fact that to get unbiased results in PLS, the number of indicators needs to be large [52].
However, when the ratio of number of indicators to the number of cases is large, the
indicator loadings tend to be unstable. Nevertheless, the reliability indices for these two
constructs were high (Process Maturity) and acceptable (Process Agility) and hence we
concluded that the overall degree of quality of measurement is sufficient.

Figure 1 shows the results of PLS estimation in the form of a path diagram and
Table 2 shows the results of bootstrapping. All path coefficients are positive except
for the path from Process Maturity to Efficiency. None of the paths between Process

Table 1. Construct reliability and validity

 AVE Composite
Reliability

R
Square

Cronbachs
Alpha

Commun-
ality

Redund-
ancy

Agility 0,1932 0,7772 0,0000 0,7531 0,1932 0,0000
Effectiveness 0,4225 0,7356 0,1649 0,5329 0,4225 0,0665
Efficiency 0,6093 0,8236 0,1929 0,6850 0,6093 0,0997
Inno-
vativeness

0,7640 0,9066 0,0856 0,8454 0,7640 0,0521

Maturity 0,3742 0,9237 0,0000 0,9147 0,3742 0,0000

92 M. Rönkkö, J. Peltonen, and C. Frühwirth

Fig. 1. Results of PLS estimation

Table 2. Bootstrapping results

 Original
Sample

Sample
Mean

Standard
Error

T
Statistics

p

Agility -> Effectiveness 0,3614 0,4046 0,1401 2,5787 0,05981
Agility -> Efficiency 0,5037 0,4787 0,1527 3,2974 0, 0007589
Agility -> Innovativeness 0,1981 0,2532 0,1535 1,2908 0,1005
Maturity -> Effectiveness 0,0726 0,1223 0,1272 0,5706 0,2850
Maturity -> Efficiency -0,1485 -0,0693 0,1773 0,8378 0,2025
Maturity ->
Innovativeness

0,1320 0,1590 0,1295 1,0189 0,1556

 Examining the Effects of Agile Methods and Process Maturity 93

Table 3. Construct-indicator cross-loading matrix

 Agility Effectiveness Efficiency Inno-
vativeness

Maturity

Agile1 0,5515 0,3127 0,1299 0,2173 0,5430
Agile10 0,3789 0,1255 0,2487 -0,0273 0,0404
Agile11 0,5548 0,1869 0,2705 0,1668 0,4009
Agile12 0,3367 0,0768 0,2214 -0,0083 0,0376
Agile13 0,3031 -0,0318 -0,0773 -0,0028 0,5196
Agile14 0,2710 -0,0128 0,0527 -0,0955 0,3336
Agile15 0,2448 -0,0225 -0,0154 0,0362 0,3367
Agile16 0,5672 0,1005 0,3635 0,0891 0,3932
Agile2 0,4581 0,1095 0,0276 0,0608 0,3085
Agile3 0,4256 0,0781 0,0076 0,0688 0,3247
Agile4 0,2935 -0,0001 0,0229 0,1066 0,5750
Agile5 0,5457 0,2462 0,1487 0,1581 0,3604
Agile6 0,7113 0,3264 0,3295 0,2493 0,2257
Agile7 0,4541 0,1525 0,0068 -0,0359 0,4008
Agile8 0,3141 0,2139 0,0911 0,1171 -0,0456
Agile9 0,2999 0,1206 0,1487 0,1379 0,2503
CMMI1 0,2075 0,0245 0,0326 0,0685 0,3686
CMMI10 0,5046 0,2144 0,2208 0,0453 0,6608
CMMI11 0,4052 -0,0227 -0,1179 -0,0375 0,6358
CMMI12 0,4344 0,1157 0,1575 0,0425 0,6293
CMMI13 0,3204 0,1073 0,0087 0,1387 0,7229
CMMI14 0,3130 0,1407 0,0694 0,2226 0,7038
CMMI15 0,1868 0,1349 -0,1231 0,0695 0,6136
CMMI16 0,2867 0,0802 -0,1057 0,0536 0,6906
CMMI17 0,1609 0,2231 -0,1458 0,1694 0,6626
CMMI18 0,1469 0,1367 0,0535 0,0439 0,2506
CMMI19 0,6020 0,2361 0,2840 0,0237 0,5287
CMMI2 0,1281 0,1380 -0,0326 0,2104 0,4804
CMMI20 0,4241 0,1507 0,1119 0,0457 0,5156
CMMI21 0,2926 0,1742 -0,0233 0,0957 0,6183
CMMI3 0,3116 0,0983 0,0007 0,2018 0,6391
CMMI4 0,2585 0,2190 0,0707 0,2861 0,7086
CMMI5 0,5284 0,1554 0,2045 0,2393 0,7431
CMMI6 0,4737 0,2091 0,2277 0,1620 0,6023
CMMI7 0,3866 0,0686 -0,0611 0,0388 0,6062
CMMI8 0,1414 0,0767 -0,0478 0,1276 0,6392
CMMI9 0,2022 0,1720 -0,0713 0,1647 0,5934
PDEffectiveness1 0,0764 0,3985 0,1221 0,1919 0,1971
PDEffectiveness2 0,2938 0,6317 0,2349 0,2655 0,1857
PDEffectiveness3 0,3106 0,7509 0,4392 0,5817 0,0940
PDEffectiveness4 0,2969 0,7539 0,4742 0,6027 0,2428
PDEfficiency1 0,3087 0,2378 0,7466 0,2607 0,0174
PDEfficiency2 0,3045 0,4715 0,8316 0,4067 0,0402
PDEfficiency3 0,3594 0,4760 0,7609 0,4216 0,2093
PDInnovativeness1 0,2505 0,6057 0,4483 0,8841 0,1661
PDInnovativeness2 0,2519 0,6588 0,5216 0,9004 0,2425
PDInnovativeness3 0,2073 0,4617 0,2596 0,8365 0,2203

94 M. Rönkkö, J. Peltonen, and C. Frühwirth

Maturity to the product development constructs are significant and hence we can
conclude that hypotheses 1, 2, and 5 are not supported. When we look at the
significance tests for the paths from Process Agility to the product development
constructs, we can see that the path to Efficiency is significant, path to Effectiveness
is marginally significant and path to Innovativeness is close to marginally significant.
Hence we conclude that Hypothesis 3 is supported, Hypothesis 4 is weakly supported
and Hypothesis 6 does not receive support from our data. The lack of support for the
last hypothesis is probably due to lack of statistical power due to a small sample size.

5 Discussion and Conclusions

In this paper we studied the product development performance effects of agile
software development practices and mature software process. To our understanding,
this undertaking is one of the first studies investigating the relative merits of these
models using survey research. Our key findings are that agile methods have a positive
effect on product development performance, but process maturity does not seem to
have an effect. This finding is a bit surprising, but can be explained by the fact that
the companies in the sample are small firms and the process development frameworks
are designed for predominantly large organizations that do larger software projects.

The fact that software process and innovativeness seem unrelated can be
interpreted as meaning that there are other organizational factors that affect
innovativeness much more than what software development methods are in use.

Regarding the limitations of the study, non-response analysis and descriptive
statistics indicate that the results of the study are probably rather well generalizable
among small and the smaller medium-sized software product firms. However, it needs
to be pointed out that we have studied only Finnish firms. A number of issues of
national culture or the peculiarities of Finland as a small economy that may influence
business operations can quite possibly affect the results..

Also, as with any paper relating to self-administered surveys and related to
composite variables is that our paper relies on self-reports. Although we spent
considerable efforts to make the survey items as clear as possible [45] and tried to
make the items such that also persons not familiar with CMMI or the particular agile
methods used could reliably answer the questionnaire, it is possible that some of the
items were too difficult for the respondents. However, our more detailed analysis [45]
indicated that these problems should not be more serious than what is typical for a
paper based on survey data. Finally, there have recently been some concerns related to
the validity of the PLS approach [53-54], and should these concerns be validated in
follow-up studies, they can have implications for this paper.

This paper has two managerial implications: First, at least in small firm context,
using agile methods can substitute for process maturity. Although our sample includes
only firms from CMMI levels four and below, this is an important finding that can, if
supported by further research, help guide initial software process improvement efforts
in smaller firms. Second, our data indicated that agile methods are probably more
appropriate for product development than non-agile.

 Examining the Effects of Agile Methods and Process Maturity 95

References

1. Kautz, K., Madsen, S., Norbjerg, J.: Persistent problems and practices in information
systems development. Information Systems Journal 17, 217–239 (2007)

2. Vinekar, V., Slinkman, C.W., Nerur, S.: Can Agile and Traditional Systems Development
Approaches Coexist? an Ambidextrous View. Information Systems Management 23, 31–
42 (2006)

3. Balijepally, V., Mahapatra, R., Nerur, S., Price, K.H.: Are Two Heads Better Than One for
Software Development? The Productivity Paradox of Pair Programming. MIS
Quarterly 33, 91–118 (2009)

4. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: A systematic
review. Information and Software Technology (2008)

5. Agrawal, M., Chari, K.: Software effort, quality, and cycle time: A study of CMM level 5
projects. IEEE Transactions on Software Engineering 33, 145–156 (2007)

6. Galin, D., Avrahami, M.: Are CMM program investments beneficial? Analyzing past
studies. IEEE Software 23, 81–87 (2006)

7. Highsmith, J., Cockburn, A.: Agile Software Development: The Business of Innovation.
IEEE Computer 34, 120–122 (2001)

8. Meso, P., Jain, R.: Agile Software Development: Adaptive Systems Principles and Best
Practices. Information Systems Management 23, 19–30 (2006)

9. Poppendieck, M.: Lean Software Development. In: Companion to the Proceedings of the
29th International Conference on Software Engineering, pp. 165–166. IEEE Computer
Society, Los Alamitos (2007)

10. Taylor, P.S., Greer, D., Sage, P., Coleman, G., McDaid, K., Lawthers, I., Corr, R.:
Applying an agility/discipline assessment for a small software organisation. In:
Proceedings of Product-Focused Software Process Improvement, pp. 290–304. Springer,
Berlin (2006)

11. Baskerville, R., Pries-Heje, J.: Short cycle time systems development. Information
Systems Journal 14, 237–264 (2004)

12. MacCormack, A., Verganti, R., Iansiti, M.: Developing products on “Internet time": The
anatomy of a flexible development process. Management Science 47, 133–150 (2001)

13. Germain, É., Robillard, P.N.: Engineering-based processes and agile methodologies for
software development: a comparative case study. The Journal of Systems & Software 75,
17–27 (2005)

14. Staples, M., Niazi, M., Jeffery, R., Abrahams, A., Byatt, P., Murphy, R.: An exploratory
study of why organizations do not adopt CMMI. Journal of Systems and Software 80,
883–895 (2007)

15. Boehm, B., Turner, R.: Using risk to balance agile and plan-driven methods. Computer 36,
57–66 (2003)

16. Baker, S.W.: Formalizing agility: an agile organization’s journey toward CMMI
accreditation. In: Proceedings of Agile Conference, pp. 185–192 (2005)

17. Merisalo-Rantanen, H., Tuunainen, T., Rossi, M.: Is extreme programming just old wine in
new bottles: A comparison of two cases. Journal of Database Management 16, 41–61
(2005)

18. Paulk, M.C.: Extreme programming from a CMM perspective. IEEE Software 18, 19–26
(2001)

19. Pressman, R.: Software Engineering: A Practitioner’s Approach. McGraw-Hill
Science/Engineering/Math. (2009)

96 M. Rönkkö, J. Peltonen, and C. Frühwirth

20. Jiang, J.J., Klein, G., Hwang, H.G., Huang, J., Hung, S.Y.: An exploration of the
relationship between software development process maturity and project performance.
Information & Management 41, 279–288 (2004)

21. Schach, S.R.: Object-oriented and classical software engineering. McGraw-Hill, Boston
(2002)

22. Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W., Paulk, M.: Software quality and the
Capability Maturity Model. Communications of the ACM 40, 30–40 (1997)

23. Turner, R., Jain, A.: Agile meets CMMI: Culture clash or common cause? Extreme
Programming and Agile Methods—XP/Agile Universe 2002, 153–165 (2002)

24. Carlshamre, P.: Release Planning in Market-Driven Software Product Development:
Provoking an Understanding. Requirements Engineering 7, 139–151 (2002)

25. Jantunen, S., Smolander, K.: Towards global market-driven software development
processes: an industrial case study. In: Proceedings of the 2006 International Workshop on
Global Software Development for the Practitioner, pp. 94–100. ACM, Shanghai (2006)

26. SEI: CMMI for Development, version 1.2 (2006)
27. Beck, K., Andres, C.: Extreme programming explained: embrace change. Addison-Wesley

Professional, Reading (2004)
28. Turk, D., France, R., Rumpe, B.: Assumptions underlying agile software-development

processes. Journal of Database Management 16, 62–87 (2005)
29. Sutherland, J., Jakobsen, R., Johnson, K.: Scrum and cmmi level 5: The magic potion for

code warriors. In: Proceedings of the 41st Annual. Hawaii International Conference on
System Sciences, p. 466 (2008)

30. Cockburn, A.: Selecting a project’s methodology. IEEE Software 17, 64–71 (2000)
31. Subramanian, G.H., Jiang, J.J., Klein, G.: Software quality and IS project performance

improvements from software development process maturity and IS implementation
strategies. Journal of Systems and Software 80, 616–627 (2007)

32. Kusunoki, K., Nonaka, I., Nagata, A.: Organizational capabilities in product development
of Japanese firms: a conceptual framework and empirical findings. Organization Science 9,
699–718 (1998)

33. Kahn, K.B.: Market orientation, interdepartmental integration, and product development
performance. The Journal of Product Innovation Management 18, 314–323 (2001)

34. McDermott, C.M., O’Connor, G.C.: Managing radical innovation: an overview of
emergent strategy issues. Journal of Product Innovation Management 19, 424–438 (2002)

35. Veryzer, R.W.: Discontinuous Innovation and the New Product Development Process.
Journal of Product Innovation Management 15, 304–321 (1998)

36. Nidumolu, S.R.: Standardization, requirements uncertainty and software project
performance. Information and Management 31, 135–150 (1996)

37. Citrin, A.V., Lee, R.P., McCullough, J.: Information use and new product outcomes: The
contingent role of strategy type. Journal of Product Innovation Management 24, 259–273
(2007)

38. Karlsson, L., Dahlstedt, A.G., Regnell, B., Nattoch Dag, J., Persson, A.: Requirements
engineering challenges in market-driven software development - An interview study with
practitioners. Information and Software Technology 49, 588–604 (2007)

39. Slaughter, S.A., Levine, L., Ramesh, B., Pries-Heje, J., Baskerville, R.: Aligning software
processes with strategy. Mis Quarterly 30, 891–918 (2006)

40. Tushman, M.L.: Special boundary roles in the innovation process. Administrative Science
Quarterly 22, 587–605 (1977)

41. McDonough, E.F.: Investigation of factors contributing to the success of cross-functional
teams. Journal of Product Innovation Management 17, 221–235 (2000)

 Examining the Effects of Agile Methods and Process Maturity 97

42. Spreitzer, G.M.: Psychological empowerment in the workplace: Dimensions,
measurement, and validation. Academy of Management Journal 38, 1442–1465 (1995)

43. Tierney, P., Farmer, S.M.: Creative self-efficacy: Its potential antecedents and relationship
to creative performance. Academy of Management Journal 45, 1137–1148 (2002)

44. Rönkkö, M., Eloranta, E., Mustaniemi, H., Mutanen, O., Kontio, J.: Mustaniemi, H.,
Mutanen, O., Kontio, J.: Finnish Software Product Business: Results of National Software
Industry Survey 2007. Helsinki University of Technology (2007)

45. Rönkkö, M., Järvi, A., Mäkelä, M.M.: Measuring and comparing the adoption of software
process practices in the software product industry. In: Proceedings of Internationl
Conference on Software Process, Leipzig, Germany, pp. 407–419 (2008)

46. Dekleva, S., Drehmer, D.: Measuring software engineering evolution: A rasch calibration.
Information Systems Research 8, 95–104 (1997)

47. Brislin, R.W.: Back-Translation for Cross-Cultural Research. Journal of Cross-Cultural
Psychology 1, 185–216 (1970)

48. Dillman, D.A.: Mail and Internet surveys: the tailored design method. Wiley, New York
(2007)

49. Oppenheim, A.N.: Questionnaire Design and Attitude Measurement Heinemann, London
(1966)

50. Chin, W.W.: The partial least squares approach to structural equation modeling. In:
Marcoulides, G.A. (ed.) Modern Methods for Business Research, pp. 295–336. Lawrence
Erlbaum Associates Publishers, Mahwah (1998)

51. Ahlemann, F., Urbach, N.: Structural Equation Modeling in Information Systems Research
Using Partial Least Squares. Journal of Information Technology Theory and Application
(JITTA) 11 (2010)

52. Dijkstra, T.: Some comments on maximum likelihood and partial least squares methods.
Journal of Econometrics 22, 67–90 (1983)

53. Evermann, J., Tate, M.: Testing Models or Fitting Models? Identifying Model
Misspecification in PLS. In: Proceedings of the ICIS 2010 (2010)

54. Rönkkö, M., Ylitalo, J.: Construct Validity in Partial Least Squares Path Modeling. In:
Proceedings of the ICIS 2010 (2010)

B. Regnell, I. van de Weerd, and O. De Troyer (Eds.): ICSOB 2011, LNBIP 80, pp. 98–109, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Online Distribution of Packaged Software

Shuangzeng Hu and Rod B. McNaughton

Conrad Business, Entrepreneurship and Technology Centre
University of Waterloo

295 Hagey Blvd., Suite 240
Waterloo, Ontario Canada N2L 6R5
rmcnaughton@uwaterloo.ca

Abstract. Increased bandwidth and user sophistication make it practical for
software developers to sell and distribute packaged software to customers
online. This paper develops a transaction cost model of the conditions under
which software developers are more likely to distribute their packaged software
online rather than through traditional channels. The model is tested using data
from a survey of Canadian software firms. Almost three-quarters of the respon-
dents use the Internet at least in part to distribute their products. Firms are more
likely to distribute their packaged software online in less diverse markets and
where channel volume is increasing rapidly. However, the results are not consis-
tent with other conditions posited to be associated with online distribution. Im-
plications for understanding how the Internet is changing the transaction costs
of distributing digital products are discussed.

Keywords: packaged software, distribution channels, transaction cost analysis.

1 Introduction

The research reported in this paper tests a model of the conditions in which software
vendors are likely to sell and distribute their packaged products to end-users through
the Internet. As software is a digital product, it is easily transferred from developer to
user on the Web. Thus, the Internet has become a key element in the marketing strat-
egy of software firms throughout the selling cycle from promotion, sales and pay-
ments, downloading, after-sale service and updates, and monitoring accounts. Online
software distribution benefits both developers and customers in terms of time and
place utility. The effective use of the Internet enables software developers to provide
anytime/anywhere access to their products. With online software distribution, cus-
tomers can purchase and immediately download software products to their computers.
In addition, online software distribution reduces logistics, hardware and supply costs,
and allows software firms to address more points of sale worldwide at low cost. This
is facilitated by the penetration of high-speed broadband access and high performance
desktop computers. The Internet is a particularly potent marketing medium for
smaller software firms, as it can help them to compete on a more “level playing field”
with larger firms.

Packaged software is an important part of the software industry. The worldwide
sales of packaged software for all platforms was $US 297 billion in 2008 (IDC,
2009). Packaged software is traditionally purchased “off-the-shelf” and is often re-
ferred to as “shrink-wrapped” after a common form of packaging. However, packaged

 Online Distribution of Packaged Software 99

software can also be downloaded, or even remotely hosted by a service provider. The
Software & Information Industry Association (2005) defines packaged software as
that which is “…written for mass distribution, not for the specific needs of a particular
user, and may be distributed in any format – electronic download, physical media
such as disk or CD, or a web-based service.” We explicitly exclude software designed
solely for mobile devices as this lacks the size and complexity generally associated
with packaged software, and is only distributed through downloads or original equip-
ment manufacturers (OEMs) (i.e., it is included with a mobile device).

We view the decision to distribute online through the lens of transaction cost analy-
sis (TCA). Several researchers have used transaction cost theory to address the issues
of marketing channel choice and software outsourcing in the software industry (e.g.,
McNaughton, 1996, 2002; Eric and Wang, 2002). However, this literature pre-dates the
widespread commercial use of the Internet, especially for downloading and hosting
software products. Thus, the fundamental question addressed by this research is how
and when packaged software developers use the Internet to deliver their products.

The following section reviews transaction cost theory, and existing empirical stud-
ies of software distribution. We then develop hypotheses of the conditions under
which developers are more likely to sell and distribute their products online. Further
sections describe the collection of data from the senior executives of Canadian pack-
aged-software developers, and statistical tests of the hypotheses. The paper concludes
with a discussion of the implications of the findings for using TCA to understanding
the choice of online distribution, and practical guidance for firms that face the deci-
sion of whether to sell their packaged software online.

2 Literature Review

There is a large literature on transaction cost analysis, much of which was spawned by
the writings of Williamson (1975, 1979, 1981, 1985, 1996). As the theory is well-
known and reviews are available elsewhere, we focus on previous applications of this
theory to explain the decision about the distribution of software products. In essence,
TCA argues that because markets are frequently inefficient, the costs associated with
activities such as searching for information, negotiating terms, and monitoring con-
tracts are an important part of ensuring a favorable deal. Williamson (1981) argued
that there are three critical dimensions of transactions that influence these costs:

1. Asset specificity: durable investments that are undertaken in support of par-
ticular transactions, and that are difficult or costly to transfer to other uses.

2. Uncertainty: the cost associated with unexpected outcomes and asymmetry of
information. Uncertainty arises due to opportunism, bounded rationality, and
asymmetry of information.

3. Transaction frequency: how often a particular type of transaction recurs.

Transaction cost theory can be used to identify conditions in which firms are more
likely to extend forward into distribution rather than outsource those activities to third
parties. Whether internal organization or market exchange is preferred depends on the
relevant transaction costs. TCA argues there is little incentive to integrate in a
competitive market because transaction costs are relatively low. In contrast, firms
prefer to internalize their distribution channels when transaction costs are high and

100 S. Hu and R.B. McNaughton

difficult to control through pricing and/or behavioral constraints. From a TCA per-
spective, distribution channel choice involves decisions about how to minimize the
total cost of transferring a product from developer to customer, including both pro-
duction and transaction costs.

McNaughton (1996, 2002) and McNaughton and Bell (2001) used TCA to explore
several aspects of how software firms distribute both their packaged and customized
software. McNaughton (1996) used TCA to analyze the impacts of product and market
attributes on the selection of distribution channels by Canadian software firms when
they sell to export customers. He concluded that channel volume is positively associ-
ated with the use of foreign sales subsidiaries and negatively associated with the use of
shared control modes such as distributors; and that asset specificity is negatively asso-
ciated with the use of shared control modes and positively associated with the use of
foreign sales subsidiaries. Firms selling primarily packaged software were more likely
to have overseas sales subsidiaries or joint ventures, and were less likely to use market-
based channels compared with firms that sell customized software services.

McNaughton and Bell (2001) tested seven hypotheses about the conditions in
which software firms use a lower control mode in an export market than in their do-
mestic market. Their model includes variables for asset specificity, external uncer-
tainty, production cost efficiency, specific market (the U.S. market or other), and
customization (packaged software products versus customized software products).
They found that firms tend to use the same channels in both domestic and foreign
markets: only 23% of the respondents used a different channel when entering a for-
eign market. Amongst those that did switch, the most common change was from a
higher to a lower control mode, and this was negatively associated with knowledge-
based asset specificity, physical asset specificity, and market size; but positively with
market diversity. The authors conclude that software businesses need to be conscious
of the momentum of their domestic channels and carefully evaluate whether or not it
is appropriate to extend their domestic channels into a foreign market.

In a follow-up study, McNaughton (2002) developed a TCA model of channel
choice to identify conditions that increase the likelihood that multiple channels are
used to serve a foreign market. He found that neither channel volume nor growth rate
is associated with the use of multiple channels, leading to the conclusion that multiple
channels are used to increase sales volumes, rather than being a consequence of them.
The study also found that multiple channels are more likely to emerge in mature mar-
kets that are experiencing slower growth.

Finally, two other researchers, Eric and Wang (2002), studied how transaction at-
tributes and post-contractual opportunism affect the success of customized software
outsourcing. In this model, the dependent variables were outsourcing success and
post-contractual opportunism, while the independent variables were contractor reputa-
tion, uncertainty, and asset specificity. Data to test the model were collected from
medium to large-sized software firms in Taiwan. The results show that asset specific-
ity and uncertainty both significantly reduce a contractor’s post-contractual opportun-
ism, and increase outsourcing success.

3 Transaction Cost Model

The traditional distribution channels available to developers of packaged software
include:

 Online Distribution of Packaged Software 101

1. Retail distribution channels. For example, computer vendors, big-box stores,
office equipment vendors, stores specializing in software sales, and ware-
house clubs.

2. Distributors. These include horizontal distributors (who typically carry many
software titles) and vertical distributors that concentrate on a few categories
of software and target a vertical market. Distributors generally do not offer a
high level of technical support, and sell primarily to retail stores and other re-
sellers (Wilson, 2001).

3. Original equipment manufacturers. These are vendors or manufacturers of
computer hardware. By integrating specialized products, hardware, and ser-
vices, OEMs sell turnkey products intended for a specific use.

4. Systems integrators. These are often large consulting companies or OEMs,
and usually specialize in a particular vertical market.

5. Service partners (or value-added resellers - VARs). These firms typically add
value to software products through consulting, customization, and/or training
services. Most VARs work with distributors and do not keep their own stock.

6. Direct marketing channels. In this case, developers sell their packaged soft-
ware directly to clients. This can include in person selling, direct-mail adver-
tising, and telemarketing.

Selling and downloading software from the Internet is a form of direct marketing
when the software developer uses their own Website. In some cases, however, soft-
ware is sold through a distributor’s Website, transforming the Internet into an indirect
channel. While either case is less expensive than traditional marketing channels, and
incurs no shipping or handling costs, most vendors sell and distribute directly through
their own Website, thus avoiding having to share margin with a channel partner.

 Online distribution also enables numerous alternative business models and addi-
tional services, for example, remote hosting and per-use or subscription-based pricing.
In addition, multiple distribution channels can be managed through secure affiliate
sites. As a consequence, online selling and distribution is quickly becoming the norm
for packaged software. However, the basic TCA argument is that a market mode is
the default choice as it is more efficient. Thus, we begin with the assumption that
firms will distribute their software through a traditional indirect channel unless there
is a compelling reason to do otherwise, and our model develops expectations about
the conditions under which firms are more likely to sell and distribute directly to
customers through their own Website.

3.1 Asset Specificity

Prior research uses two dimensions to reflect the degree of asset specificity associated
with software: physical and knowledge-based asset specificity. Physical asset speci-
ficity refers to investment in special equipment, such as computers, servers or routers
for the purpose of software distribution, while knowledge-based asset specificity
refers to unique knowledge and expertise that is required to sell or use the software.
TCA argues that asset specificity increases transaction costs as both parties may have
to invest in specific assets, such as skilled sales persons or unique equipment (e.g.,
Thompson et al, 2004). In such conditions, integrated (i.e., direct) distribution chan-
nels are more efficient as the developer will typically already have the required

102 S. Hu and R.B. McNaughton

equipment and expertise, and it will be difficult to find third parties (i.e., channel
partners) who are willing to make the required investment. Thus, to the extent that
online distribution is typically done by the vendor:

H1. The use of the Internet in the distribution of packaged software is positively
related to the physical asset specificity of the software.
H2. The use of the Internet in the distribution of packages software is positively
related to the knowledge-based asset specificity of the software.

3.2 Uncertainty

We identify two sources of uncertainty in the market for packaged software: diversity
and volatility. In a volatile market, software firms have difficulty predicting customer
demands and competitor actions. In this situation, a direct channel is more likely to be
used as few third parties will be willing to assume the risk of environmental volatility,
or would demand a premium for doing so. Therefore:

H3. The use of the Internet in the distribution of packaged software is positively
related to environmental volatility.

Diversity stems from multiple sources of uncertainty in a market. A diverse market is
one in which there are many customers and competitors and they are heterogeneous in
their characteristics. In such a market, a firm will need to develop multiple strategies
to meet varied and specialized demands. A more complex and flexible channel struc-
ture can be created by including channel partners that help to gather and process the
information required to deal with a heterogeneous market. As the diversity of the
environment increases, multiple channels may be used, and the relative importance of
direct distribution of software through the Internet may decline. Thus:

H4. The use of the Internet in the distribution of packaged software is negatively
related to environmental diversity.

3.3 Transaction Frequency

Two dimensions are used to measure transaction frequency: sales volume and sales
growth. TCA argues that firms have more incentive to integrate their distribution
channels for high volume transactions as the costs of developing and maintaining the
channel are spread over more transactions. In addition, there is an incentive to retain
the margin that would otherwise be shared with channel partners. Compared with
other forms of direct distribution, online distribution has relatively low set-up costs,
and almost negligible unit costs. Consequently, it is financially feasible for software
firms to integrate their distribution online at much lower sales volumes than is the
case for traditional direct channels. In contrast, large sales volumes provide more
financial resources that can be used to explore relatively more expensive channels that
may be more effective in reaching additional customer segments and in gathering
information to further refine the product. McNaughton (2002) observed that in more
mature markets where sales have slowed, developers often use multiple channels to
refine the way they target segments. In such cases, firms are likely to continue dis-
tributing online to some segments, while serving others with personal sales or VARS,
and supporting customers online in more refined ways (e.g., targeted or personalized
online sales sites, or support through live chat). Therefore:

 Online Distribution of Packaged Software 103

H5. The use of the Internet in the distribution of packaged software is positively
related to growth in sales volume.
H6. The use of the Internet in the distribution of packages software is negatively
related to gross sales.

4 Method

To test these hypotheses, data were collected from Canadian software developers in
an online survey. The target population of CEOs or other executive leaders of soft-
ware firms was identified from the Canadian Company Capabilities online directory
(CCC) maintained by Industry Canada. Recruitment e-mails were sent to executives
at 1142 software development firms that are Canadian owned (i.e., not subsidiaries of
firms based in the US or elsewhere). Complete responses were received from 82
firms, for a response rate of 7%. Unfortunately, low rates are becoming the norm in
online surveying. Replies to the recruitment and follow-up e-mails suggests that about
one third of the targeted firms did not have a software product (i.e., they provide cus-
tomized programming services only) and thus did not respond. The number of e-mails
reaching their intended recipients was also reduced by errors and changes in e-mail
addresses, and messages being trapped by spam filters.

Krosnick (1999, 540) argued that “surveys with very low response rates can be
more accurate than surveys with much higher response rates,” and that “having a low
response rate does not necessarily mean that a survey suffers from a large amount of
nonresponse error”. This conclusion is based on Visser et al.’s (1996) study showing
that data accuracy, measured as the difference between predicted and actual out-
comes, was higher in a low-response rate mail survey than in a higher response rate
telephone survey. The most important consideration is if the reason for low response
is related to the topic of the survey, which is unlikely in our case. To check for non-
response bias we compared the first and last quartile of respondents, and found no
statistically significant differences in demographics or mean responses to the key
dependent and independent variables.

Consistent with the structure of the Canadian software industry, the majority of re-
spondents represented small firms: 30% had between 1 and 5 employees, and 75%
employed fewer than 30 employees. Only 10% had more than 100 employees. The
firms were generally young, with two-thirds having been founded since 2000. Re-
spondents were asked to provide data for their best-selling software product in its
largest market. This combination accounted for an average of 63% of the gross sales
of respondents. Many of the firms only had one software product. For most Canadian
software firms, the largest market for their best-selling product is either Canada (48%)
or the United States (44%). Only 8% cited a different national market. Respondents
characterized their software product as a horizontal application (16%), vertical market
application (78%), or games and educational software (6%).

4.1 Dependent Variable

The dependent variable measured whether or not a firm uses the Internet for distribu-
tion of packaged software. Respondents were asked a series of questions to determine
if they use the Internet to distribute their best-selling product, and details about how it

104 S. Hu and R.B. McNaughton

Table 1. Primary Channel for Distribution of Packaged Software

Primary channels Frequency Percent
Internet 32 39.0
Offline direct marketing channels (personal sales,
telesales, direct mail, etc.)

29 35.4

Distributors, publishers or wholesalers 14 17.1
OEM 4 4.9
Value added resellers 1 1.2
Other 2 2.4
Total 82 100.0

is used or their other channels. Table 1 shows the primary distribution channel
reported by the respondents. Thirty-nine percent use the Internet, while 35% sell di-
rectly using a traditional direct method. The remainder use a traditional indirect
method. However, The classification of distribution channel type is more complex, as
it is possible for firms to use the Internet in conjunction with another method (i.e.,
complete only part of the selling and distribution function online), alongside another
method (i.e., multiple channels), and for the Website to be controlled by either the
software developer or a partner (e.g., an online software distributor). Table 2 shows
that almost three-quarters of the firms incorporate the Internet in some way as part of
their distribution channel, while Table 3 provides detail on the frequency with which
channel activities are conducted online.

4.2 Independent Variables

The independent variables were measured using Likert scales adapted from previous
research (McNaughton 1996, 2002 and McNaughton and Bell, 2001). Respondents
were asked to indicate their level of agreement (“Strongly disagree”=1, “Strongly
agree”=7) about a series of statements that related to physical and knowledge-based
asset specificity, volatility and diversity. Respondents were also asked to estimate the
current sales of their best-selling software package in its largest national market, and
the annual growth rate of those sales. Table 4 provides descriptive statistics for the
independent variables. Gross sales and growth in sales are highly skewed, so were
rank transformed before the analysis. We also include a control variable to indicate if
the largest market is domestic (0) or foreign (US or international = 1).

Table 2. Use of the Internet for Distribution of Packaged Software

Online Distribution Frequency Percent
Internet is the primary method of distribution 32 39.0
Internet is part of the distribution channel 29 35.4
No part of distribution is online (except viewing
promotional material)

20 24.4

Missing 1 1.2
Total 82 100.0

 Online Distribution of Packaged Software 105

Table 3. Channel Activities Conducted Online

Channel activity Frequency
View promotional material 82
After-sale service and support (including documentation) 34
Download patches and/or updated versions 43
Download a beta or trial version 23
Download full software package 32
Make payment online 30
Online training 2
Missing 1

Frequencies sum to more than the number of respondents as respondents could indicate all
activities that apply.

Table 4. Descriptive Statistics for Independent Variables

Variable N Mean S.D. Min. Max.
Knowledge-based
Asset Specificity

82 5.5 1.6 1.0 7.0

Physical Asset
Specificity

82 2.1 1.6 1.0 7.0

Diversity 82 4.3 2.1 1.0 7.0
Volatility 82 4.2 2.0 1.0 7.0
Gross annual sales
($CAN millions)

79 41.9 191.7 0.05 100.0

Annual growth in
sales (%)

82 60.0 130.0 0 500.0

5 Findings

To test the hypotheses developed in Section 3, we first fit a binary logistic regression
model in which firms that use the Internet as part of their distribution channel (i.e.,
distribute completely online or incorporate the Internet as part of the channel) are
compared with those that do not. Table 5 reports the result of this analysis. The over-
all model is statistically significant, and has a moderate fit and classification rate.
However, the parameters for several of the variables are very small and not statisti-
cally distinguishable from 0.0. The sign is reversed from the expectation for H2, and
there is support for hypotheses H5 and H6. The control variable is not significant.

To better understand the relationships, we fit an additional polychotomous model
in which the dependent variable distinguishes between those firms that use the Inter-
net as their primary distribution channel, those that include the Internet along with
offline components, and those that do not use the Internet as part of their distribution
channel. Table 6 reports the results. We only include the variables that were statisti-
cally significant in the first model to reduce the number of parameters that needed to
be estimated. This additional analysis has similar results to those reported in Table 5,
except that knowledge-based specificity is not statistically significant in either case (at
p=0.05), and gross sales is not significant for partial use of the Internet.

106 S. Hu and R.B. McNaughton

Table 5. Relationships Between Transaction Cost Variables and Use of the Internet in Distribu-
tion Channel

Parameter Expected
sign

Estimate Chi-Square Pr > Chi Sq

Intercept 7.44 6.81 0.01
Physical asset
specificity

H1 (+) -- -- 1.00

Knowledge asset
specificity

H2 (+) -0.51 3.80 0.04

Volatility H3 (+) -- -- 1.00
Diversity H4 (-) -0.58 5.02 0.03
Growth rate H5(+) 0.08 10.05 0.00
Gross sales H6 (-) -0.08 13.10 0.00
Largest market Control -- -- 1.00

Goodness of fit (residual test) chi-square = 3.22 (p=0.78 and df=6); Hosmer and Lemeshow
Goodness-of-Fit test =15.24 (df=7, P=0.03); Correct classification rate = 82.9%, R2 = 0.56.

Table 6. Relationships Between Transaction Cost Variables and Use of the Internet as Primary
Distribution Channel or Part of Distribution Channel

Parameters for online distribu-
tion as the primary channel

Estimate Chi-Square Pr > Chi Sq

Intercept 8.09 8.19 0.00
Knowledge specificity -0.58 3.01 0.08
Diversity -0.63 5.85 0.02
Growth rate 0.12 16.84 0.00
Gross sales -0.14 18.72 0.00

Parameters for partial use of
Internet in channel

Estimate Chi-Square Pr > ChiSq

Intercept 5.85 5.00 0.03
Knowledge specificity -0.55 3.61 0.06
Diversity -0.65 5.85 0.02
Growth rate 0.06 6.92 0.01
Gross sales -0.04 2.97 0.09

Goodness of fit (residual test) chi-square = 10.79 (p=0.70 and df=14); Correct classification
rate = 79.3%, R2 = 0.63.

6 Conclusions

About three-quarters of the firms in our sample incorporate the Internet into the dis-
tribution channel for their best-selling software product. However, only about 40%
complete the entire distribution process online. Of the six hypotheses developed
in Section 3, only two are supported by the empirical evidence. Contrary to the expec-
tations and evidence from prior research (e.g., McNaughton 1996), physical asset
specificity does not play a role in the choice of distribution channel. The parameter
estimate for knowledge-based asset specificity is statistically significant, but the sign

 Online Distribution of Packaged Software 107

is opposite to our expectation. Software firms are less likely to incorporate the Inter-
net into their distribution channel when knowledge-intensity is high. (However, this
effect is not statistically significant in our second model.) Environmental uncertainty
in the form of volatility has no influence on the use of the Internet in the channel,
while diversity is a positive influence as expected. Annual growth in sales volumes
also has a significant positive effect, and sales volume a negative effect as expected.
However, gross sales has no significant relationship in the case of incorporating the
Web as part of the channel (p=0.05).

7 Discussion

As our expectations are not strongly supported by the empirical evidence, we looked to
the answers respondents provided to open-ended questions in the survey for additional
insight. The absence of a relationship between physical asset specificity and use of the
Internet may be explained by the wide availability of high performance computing.
Few software packages require an investment in specialized equipment. As one re-
spondent wrote: “Our software is a large system that we formerly marketed through
sales agents. Now we market our product on the Internet, and offer updates online for
download.” The results for knowledge-based specificity are counter to the expectation,
with more knowledge intense products being less likely to be distributed online.

An explanation may lie in the desire to protect unique intellectual property, or the
notion that cutting-edge and advanced knowledge may be difficult to codify and
transfer in an online environment. Vasiu (2003, 1), for example, found that online
distribution “may also render organizations more vulnerable to electronic fraud
(e-fraud).” E-fraud, including license breaking, can have significant financial implica-
tions, and adversely affect the decision to distribute online. Some developers of pack-
aged software may keep their products off-line as a means of protecting them. This
could extend to competitive information about pricing, rather than the software itself.
For example, two of the 32 firms that make their full software package available for
download do not take payments online. Instead, once they pay offline, clients are
given access to a secure Website to download the software. As one respondent com-
mented: “The Internet is a valuable sales channel, but pricing is discussed privately
via e-mail and telephone. Therefore, there are no online financial transactions.”

An additional consideration is that some developers (28%) do not sell their soft-
ware through their own Website, rather they sell through the site of an online distribu-
tor or catalogue. In these cases, online distribution is a market rather than an
integrated mode of distribution. Unfortunately, the number of these cases was too
small for us to model them separately. Nor is it obvious in these cases that the distri-
bution process is entirely outsourced. For example, one respondent commented: “We
use our own site and those of various partners for marketing, but there is always a
phone or in-person component of the sales process. Technically, online distribution is
easy, but we sometimes mail our software on CD, or even install it in person.”

Diversity is negatively associated with the use of the Internet for distribution in
both models. In more diverse software markets, developers turn to traditional distribu-
tion channels to target specific segments and gain valuable feedback. As two of the
respondents commented: “At this time we use the Internet primarily as an information
portal to our products. As our software is scientific and can be used in various

108 S. Hu and R.B. McNaughton

applications, assistance from our company or its partners is needed to determine the
best piece of software”, and “Our packaged software is a very sophisticated product
that requires training and face-to-face advice from our sales agents.”

The variables relating to gross sales and sales growth measure production costs
rather than transaction costs. The argument relates to the ability to spread costs of
channel development over a large number of sales. However, online distribution fun-
damentally changes the economics of distribution. Online distribution is relatively
inexpensive compared to alternatives, so developers are able to integrate their channel
at much lower volumes. Online distribution contributes to growth in sales. However,
when sales volumes are higher and growth slows, firms turn to more diverse channels
to reach additional segments, and create value for those customers who are willing to
pay a premium.

This study is one of very few that explores the channel choices of software devel-
opers, and possibly the only one to address the issue of the conditions in which devel-
opers are more likely to use online distribution. This research extends the early work
of McNaughton (1996, 1999, 2002) and McNaughton and Bell (2001) which largely
predated the online distribution of software. Transaction costs appear less relevant in
determining whether developers deliver their software online or not, than they were in
distinguishing between the use of traditional market and integrated forms of distribu-
tion. As software is a digital product that can be transferred online, the Internet is
fundamentally restructuring the economics of this industry. While Internet use is
almost universal for some aspects of the software distribution process, there remain
nuances in the extent to which all aspects of the selling and distribution process are
handled online. In particular, offline components play a role in protecting knowledge-
based assets, in dealing with diversity in markets, and later in the product life-cycle
when volumes are larger but growth slows. In these cases, offline components can
help to identify and serve additional segments that require more advice or service, and
that are willing to pay a premium for value-added channels.

References

1. Barnett, V.: Sample survey: Principles and methods, 3rd edn. Oxford University Process,
London (2002)

2. Eric, T., Wang, G.: Transaction Attributes and Software Outsourcing Success: An Empiri-
cal Investigation of Transaction Cost Theory. Information Systems Journal 12, 153–181
(2002)

3. Krosnick, J.A.: Survey Research. Annual Review of Psychology 50, 537–567 (1999)
4. Liang, T.P., Huang, J.S.: An Empirical Study on Consumer Acceptance of Products in

Electronic Markets: A Transaction Cost Model. Decision Support Systems 24, 29–43
(1998)

5. Lohrke, F.T.: The Internet as an Information Conduit: A Transaction Cost Analysis Model
of Small Business Internet Use (2002), http://www.usasbe.org/knowledge/
proceedings/2002/38.pdf (retrieved December 22, 2005)

6. McNaughton, R.B.: Foreign Market Channel Integration Decision of Canadian Computer
Software Firms. International Business Review 5(1), 23–52 (1996)

7. McNaughton, R.B.: Disk by Mail for Industrial Survey Research: a Review and Example.
Industrial Marketing Management 28(3), 32–47 (1999)

 Online Distribution of Packaged Software 109

8. McNaughton, R.B., Bell, J.: Channel Switching between Domestic and Foreign Markets.
Journal of International Marketing 9(1), 24–39 (2001)

9. McNaughton, R.B.: The use of multiple export channels by small knowledge-intensive
firms. International Marketing Review 19(2/3), 190–203 (2002)

10. The Software & Information Industry Association (TSIIA): Packaged Software Industry
Revenue and Growth (2005), http://www.siia.net/software/pubs/growth_
software05.pdf (retrieved September 10, 2005)

11. Thompson, S.H., Wang, P., Leong, H.C.: Understanding online shopping behavior using a
transition cost economics approach. Internet Marketing and Advertising 1(1), 62–84
(2004)

12. Vasiu, L.: A conceptual framework of e-fraud control in an integrated supply chain (2003),
http://csrc.lse.ac.uk/asp/aspecis/20040168.pdf (retrieved March 26,
2006)

13. Visser, P.S., Krosnick, J.A., Marquette, J., Curtin, M.: Mail Surveys for Election Forecast-
ing? An Evaluation of the Columbus Dispatch Poll. Public Opinion Quarterly 60, 181–227
(1996)

14. Williamson, O.E.: Markets and hierarchies: Analysis and antitrust implications. The Free
Press, New York (1975)

15. Williamson, O.E.: Transaction-Cost Economics: The Governance of Contractual Relations.
Journal of Law and Economics 22, 233–262 (1979)

16. Williamson, O.E.: The Economics of Organization: The Transaction Cost Approach.
American Journal of Sociology 87, 548–577 (1981)

17. Williamson, O.E.: The Economic Institutions of Capitalism: Firms, Markets, Relational
Contracting. The Free Press, New York (1985)

18. Williamson, O.E.: The Mechanisms of Governance. Oxford University Press, New York
(1996)

19. Wilson, L.H.: Software development industry study. Business & Research Services.
The U.S. Small Business Administration (2001), http://www.spa.org/
sharedcontent/press/2000/6-6-00.html (retrieved March 25, 2006)

B. Regnell, I. van de Weerd, and O. De Troyer (Eds.): ICSOB 2011, LNBIP 80, pp. 110–124, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Scenarios on Adoption of Open Source Software in the
Communications Software Industry

Eetu Luoma1, Mikko Riepula2, and Lauri Frank1

1 University of Jyväskylä, Department of Computer Science and Information Systems,
P.O. Box 35 (Agora), FI-40014 University of Jyväskylä, Finland

{eetu.luoma,lauri.frank}@jyu.fi
2 Aalto University, School of Economics,
P.O. Box 21210, FI-00076 Aalto, Finland

mikko.riepula@aalto.fi

Abstract. We examine the trends and developments affecting the adoption of
open source software in the communications software industry. Based on expert
interviews and scenario analysis, four alternative and possibly co-existing sce-
narios are derived. The analysis suggests that communication service providers
will mostly deploy open source software in infrastructure software. Alternative
developments include use of open source software in launching new services
and in cloud computing. The present study is relevant particularly for technol-
ogy managers considering open source strategies.

Keywords: open source software, scenarios, communications industry, com-
munications software, telecom software, vertical software markets, technology
management.

1 Introduction

Software produced for vertical industries is a considerable business for software ven-
dors and a significant expense for its buyers in the industry. Our focus is on the com-
munications software market1, i.e. both the software vendors and communications
service providers2 (CSPs). As expected, also the communications software market has
been found to be developing according to a pattern where software at first provides

1 The communications software market is formed by the communications software vendors and

the communication service providers (CSPs) as their customers. It is a vertical software mar-
ket, producing software products and services mainly applicable within the communications
industry, as opposed to producing horizontal (general-purpose) software.

2 The communications industry is formed by the CSPs and their customers. As a vertical indus-
try, it has a clear specialization and limited transferability of skills outside its own domain.
By avoiding the more traditional “telecommunications” term we want to account for the
changing industry landscape where not only traditional telecom operators, but a variety of
actors ranging from ISPs and cable operators to the likes of Google and Amazon, are at play
and capable of making attractive end-user offerings in at least parts of the communications
domain.

 Scenarios on Adoption of Open Source Software 111

competitive advantage to the companies in the form of technological or process inno-
vation, but later, as software becomes a commodity, it is mainly a cost issue [1]. In
the latter and currently observable phase of price erosion and cost cutting, the actors
in the market can benefit from two low-cost models, namely open source software
(OSSw) and cloud computing. At present cloud computing, and particularly software
as a service (SaaS) as a part of it, are being adopted widely, also in the communica-
tions software market. OSSw in turn has already achieved a prominent share in hori-
zontal infrastructure software, as in operating systems, databases, and application
servers.

This article concentrates on a) the utilization of OSSw by communication service
providers and b) use of OSSw by the software vendors in their offerings. Past research
has indicated that the CSPs are reluctant to adopt OSSw, owing to the perceived asso-
ciated risks [2]. Assuming that more recently the attitudes towards OSSw have
changed with the positive experiences from Linux, MySQL and Apache, the use of
and contributions to OSSw may increase also in the communications software market.

Open source software generally refers to software, which source code is made
available to all users along with the usual run-time code and which has licenses with
relaxed or very few restrictions. Using analytical and case study approaches, the con-
temporary academic literature around the phenomenon has focused on the incentives
to produce and deploy OSSw, in the management issues of OSSw projects as well as
comparison of open source and proprietary software from a business perspective
[3–5]. While much has also been written about the antecedents of OSSw adoption
[6–8], there are only few articles available where OSSw is studied in the context of
vertical industries [10, 11].

This article reports a scenario elaboration on the trends and alternative develop-
ment paths, which may affect the adoption of OSSw in the communications software
market in the future. We also draw conclusions on how OSSw adoption would in-
crease in the domain. We applied a set of scenario elaboration techniques, including
domain expert interviews and workshops, morphological analysis, and the Global
Business Network (GBN) method.

In the next section, the current rate and form of OSSw utilization in CSPs is exam-
ined. Section 3 gives an overview to the scenario method and techniques applied in
this study. Sections 4 and 5 deal with the trends and change drivers of the communi-
cations software market and develop alternative or co-existing scenarios for OSSw in
the communications industry. Before the conclusions, we discuss the benefits and
limitations of the scenario approach we used.

2 Scenario Approach

Scenarios are defined by Ogilvy and Schwartz as "narratives of alternative environ-
ments in which today’s decisions may be played out" [12]. In assessing possible
developments for OSSw in the domain, we chose an exploratory design where future
scenarios were developed based on a combination of interviews and a workshop with
industry experts and a set of scenario techniques. The aim was not to forecast one
future state, but to describe alternative developments providing a view on how adop-
tion of OSSw would increase in the communications industry. Such information
enables setting a technology strategy, which matches the emerging needs and

112 E. Luoma, M. Riepula, and L. Frank

Table 1. Scenario method in the current study

Steps [14] Current study

1. Identify focal issue How would OSSw adoption increase in the
communications industry?

2. Identify key forces in the environment Current state of OSSw adoption and business
trends in the communication industry were
examined through expert interviews.

3. Rank factors by importance and
uncertainty

A baseline scenario depicting the likely
development path was established in a
workshop. Based on the interviews, authors
identified the main trends and uncertainties
affecting the OSSw adoption in the vertical
software market.

4. Select scenario logics Alternative development paths were elaborated
utilizing GBN technique.

5. Flesh out scenarios Scenario descriptions were written by the
authors, based on the baseline and alternative
developments.

6. Analyzing implications of scenarios Not applied in this study so far. Learning
scenarios were introduced to workshop
participants as a tool for further work.

7. Selection of indicators and signposts Not applied in this study so far.

requirements of the specific market. Assessment of possibly co-existing scenarios
consequently makes available a tool for anticipating the developing needs and thus
aids in technology forecasting and roadmapping.

Scenario elaboration includes a number of identifiable tasks relating to the genera-
tion of ideas and gathering of data, integrating the ideas, and checking the consistency
of scenarios [13]. The main steps included in the scenario method by Schwartz [14, p.
241] were adapted for the current scenario elaboration. Table 1 below introduced the
tasks and the outcomes in this study.

We first conducted a set of interviews with the objective of assembling information
on the CSPs’ operating environment and OSSw adoption among them. Here, inter-
viewees represented a mix of large software vendors (4 interviews) and communica-
tion service providers (6 interviews). In the semi-structured interviews, these industry
experts were asked to describe their business focus, critical capabilities, software
acquisition strategies employed by CSPs and reasons for usage or non-usage of
OSSw. The initial findings from the interviews were documented and organized to
facilitate the current state and trend analysis.

We then arranged a workshop among industry experts in order to establish a base-
line scenario with the main drivers and barriers for OSSw adoption therein. Represen-
tatives from three software companies and two research organizations participated in
the workshop. The baseline scenario was created applying a morphological analysis
using a "future table", in which the columns represent the dimensions of uncertainty
and each dimension may include several alternative future states [15, 16]. The sce-
nario logic is identified by choosing one alternative state from each column. This
technique is efficient in capturing several future attributes concurrently, and practical
in cases where a group of domain experts is available.

 Scenarios on Adoption of Open Source Software 113

Although scenarios usually realize as simple and apprehensible narratives, there are
multiple means of creating good and internally consistent scenarios. Bishop et al. [17]
examined an extensive set of the techniques for developing scenarios. They found the
techniques to vary in complexity and rigor, from judgmental techniques relying solely
on the individual describing the future to cross-impact analyses for calculating rela-
tive probabilities for future events. To identify sources of uncertainty as the basis for
alternative futures, forecasting techniques, the GBN technique, and morphological
analysis can be used. In the GBN technique, a matrix of dimensions is created and the
combinations of the dimensions incorporate the scenario logic [12]. It is common that
the dimensions include the current trends and anticipated future developments.

To elicit the scenarios, we applied a deductive GBN approach, in which the trends
and uncertainties were prioritized to form scenarios, each combining the extremes of the
two uncertainties. By comparing and contrasting the main drivers for the CSPs and
software vendors as identified in the two rounds of data gathering, the forces were re-
duced into two dimensions. First, the CSPs have traditionally been technology driven,
focusing on building and operating the communications networks with technology from
vendors. Here, the change may be towards strategies with service and business innova-
tions, as the technologies are becoming commoditized and it is no longer the speed and
extent of deploying new technology that determines the winning CSPs. This forms our
nature of competences dimension ranging from capabilities to produce and benefit from
technical product innovations to capabilities to produce and benefit from business and
service innovations of non-technical nature. Second, the communications software mar-
ket was born as CSPs started to outsource their software development in the 1990s, and
outsourcing had increased ever since [1, 2]. However we now see a change in this trend
and instead, in the near future, some CSPs may on the contrary increase in-house devel-
opment for flexibility. This uncertainty affects both CSPs and software vendors serving
them, and forms our technology sourcing dimension.

Any scenario consists of three elements [18]: interpretation of current events and
their propagation into the future, internally consistent description of future develop-
ments and description of future end state. In our approach, interviews and the work-
shop provided insight on the current state and on the likely developments on OSSw
adoption in the communications industry. Further, the identified dimensions facili-
tated elaboration of alternative developments, based on combination of the extremes
of the dimensions. Accordingly, after the dimensions were identified, we focused on
creating descriptions of the future developments and arriving at prospective end state
based on causal logic from the present to the future. Combining the extremes resulted
in four consequences, which were written into a form of learning scenarios [19].
Learning scenarios were later introduced to the workshop participants and serve as
inputs for further company-specific examinations.

3 Open Source Adoption in the Communications Software
Industry

In order to examine the current state of OSSw adoption in the communications indus-
try, a set of thematic interviews was conducted. The interviews were obtained accord-
ing to judgment sampling and included two large Chinese CSPs and four European

114 E. Luoma, M. Riepula, and L. Frank

Table 2. Overview of the respondents’ position and their companies

Respondent(s) role Company

CEO Small regional CSP in Europe (later CSP1)

IT manager Affiliate of global CSP in Europe (CSP2)

Director of R&D Affiliate of global CSP in Europe (CSP3)

IT manager National incumbent CSP in Europe (CSP4)

IT manager Provincial branch of national CSP in China (CSP5)

Business manager Provincial branch of national CSP in China (CSP6)

R&D managers, Account manager Global telecom software vendor (Vendor1)

Account manager Global system integrator (Vendor2)

CSPs of different sizes in order to enable a comparison of mature and developing CSP
markets. In addition, two large software vendors operating in a global scale were
interviewed. The interviewees had varying positions in their organizations. However,
they were chosen so as to have a good view of how software systems are acquired and
deployed. Table 2 provides an overview on the positions in their organization and the
types of companies they represent.

The interviews were semi-structured. Each interviewee was presented with essen-
tially the same questions, with certain differences in wording depending on whether
the interviewee represented a CSP or a software vendor. The questionnaire applied
had both fixed and open-ended questions to gain a deeper understanding on the
adoption of OSSw. The questionnaire was organized around three themes: operating
environment referring to both the communications industry and the communications
software market, software acquisition strategies by the CSPs, and adoption of OSSw.
In the following, the analysis on the latter topic is reported, while the results from the
two former are included in the scenario elaboration. Under the adoption theme, the
volume, the kind of and reasons for OSSw usage were discussed. Specifically, the
respondents were asked: i) “Are you using OSSw and in which systems?” ii) “Why
have you chosen or not chosen to use OSSw?” and iii) “What are the risks of OSSw?”
The interviews were analyzed following the thematic analysis principles as proposed
by Aronson [20]. The key findings were as follows.

Generally, the respondents commented that perception and attitude towards OSSw
is getting more positive and that the OSSw alternative is treated with same principles
and analyzed against similar criteria as proprietary alternatives when acquiring soft-
ware systems (indicated by CSP3 and CSP4). Nevertheless, the current usage of
OSSw among CSPs could be described as moderate or even as low. The OSSw alter-
natives are used mainly in infrastructure software, including Linux, Apache, and
MySQL. Comparing the circumstances in European and Chinese markets, there is no
notable difference in the adoption of OSSw by CSPs. In both markets, the develop-
ment and deployment of software systems is occurring in fixed co-operation with
vendors. This signifies that OSSw will likely be deployed in case the vendor provides
it as part of their offering.

We found that only a few applications specific to this industry exist, namely in
service monitoring tools and in voice communication servers built on IP networks

 Scenarios on Adoption of Open Source Software 115

(Vendor 2). Also, the service providers are cautious in using OSSw components in
systems visible to masses of subscribers and in systems that are otherwise critical to
the business, i.e. in systems that require carrier-grade quality and performance. In
such systems, the proprietary alternative is often preferred (CSP4).

The main reasons cited for opting for proprietary software systems were the lack of
capabilities, the required support services, and the perceived legal and business risks
(CSPs 1–6). Especially the European CSPs informed that they had outsourced most of
their software-related activities. This has led to the organizations not being able to main-
tain internal capabilities on OSSw. If CSPs deploy OSSw, they will need to contract
comprehensive support services from the vendor (CSP2). In fact, also the vendors are
forced to do the same. As a result, a major share of the cost advantage of OSSw is lost.
One of the CSP interviewees also brought up the of overall cost structure of software
systems: a large part of the total costs incurs from deployment, integration, maintenance
and operating, and the share of software licensing fees is only about 20 percent (CSP3).
As the CSPs review the overall costs, the zero licensing cost of OSSw does not bring a
weighty cost advantage. Instead, according several interviewees, the other contemporary
phenomenon, cloud computing, may generate more measurable and wide-ranging bene-
fits and thus CSPs are currently more focused on those. In addition, there are risks re-
lated to OSSw, which may cause CSPs to favor proprietary software: the interviewees
specifically mentioned the difficulty of understanding OSSw licenses, continuity of
OSSw businesses, and control over the OSSw communities.

4 Trends in the Communications Software Market

As part of the scenario elaboration, a workshop was organized with the aim of identi-
fying the main trends in the communications industry and the communications soft-
ware market as well as the main drivers behind OSSw adoption by CSPs and OSSw
offerings by vendors. Managers from three software companies serving the communi-
cations industry (total of 5 persons) and scholars studying OSSw from two universi-
ties (total of 4 persons) were invited to a one-day workshop. In the workshop, the
researchers presented the observations made based on the interviews and together
with managers from software companies a business-as-usual scenario was con-
structed. The results of the workshop and, thus, the main trends can be summarized as
follows.

The communications industry has been consolidating mainly through mergers of
established CSPs. Simultaneously, new entrants from IT and software industries (e.g.
Google and Amazon) have penetrated the market, along with virtual network opera-
tors and smaller ventures competing with innovative business models (e.g. Blyk be-
fore its transformation into a vendor). As a consequence of declining revenues from
the traditional operating business, especially in the mature markets, the CSPs’ busi-
ness focus is partly on operational efficiency and partly on efforts to generate new
revenues through introduction of new services. On the other hand, traditional MNOs
are still committed to building and developing their basic network infrastructure, as
mobile Internet is increasing the demand for capacity.

With regards to software systems, a clear trend has been to outsource development,
deployment and operating of systems. The network element manufactures have a
strong position in selling software closer to the network interfaces. However, the

116 E. Luoma, M. Riepula, and L. Frank

market for these operations support systems is slowly declining and commoditising.
For business support systems, closer to the customer interface, where CSPs manage
sales and billing processes, new providers have appeared to compete with the existing
vendors. Thereby, analogously to the host industry, the communications software
market is affected by imminent price competition leading to cost pressures. As a re-
sult, the vendors are striving to keep their positions and searching for new ventures in
service-based businesses. To strengthen their positions, network element manufactur-
ers and software vendors are engaging in long-term managed service contracts with
the CSPs. New sources of revenues are being sought from cloud computing and re-
lated services.

The workshop agreed on the cost efficiency as the main driver for adoption and
provisioning of OSSw. End-user innovation, another often quoted benefit of OSSw,
did not come up as a driver in the discussion. Primary barriers for adoption were
thought to be the perceived inferior quality of OSSw compared to proprietary alterna-
tives – even if generally OSSw has been demonstrated to be of relatively high quality
due to testing by the masses, in the communications software market OSSw is usually
not considered carrier-grade, probably explained by the lack of those masses of testers
and users (CSPs) – as well as control costs and risks. The potential liabilities for mis-
using the source code was seen as a secondary barrier.

From the interviews, several different alternative developments or pairs of opposite
forces emerged, which could each have a potential impact on the adoption of OSSw in
the communications software market. Out of these we identified the following two as
most significant and took them as the basis of our scenario creation: technology
sourcing and the nature of competences (whether technical or business-oriented).

Below we first define the concepts using extant literature and also consider how
they manifest themselves in our data. Depending on the how the actors in the commu-
nications software market organize their sourcing and competences development, they
may become either active or passive in employing and developing software technolo-
gies. Both circumstances have further effects on the future of OSSw in the market.

4.1 Technology Sourcing

Dibbern et al. [21] use the term technology sourcing to refer to an organization’s
arrangements regarding which parts of software development, deployment, operating
and maintenance are executed with internal resources and which parts are produced
by external providers. It thus designates the decision to either insource or outsource
tasks and responsibilities related to software systems. Outsourcing decisions and ante-
cedents have been studied extensively in the context of information systems. The
reasons for outsourcing include cost advantages [22, 23], providers’ special capabili-
ties and resources [24, 25] and commodification of certain types of systems [26].
Alternatively, producing the IS function with the organization’s own resources has
been explained by asset specificity and by control costs and risks [24, 25].

Certain issues regarding outsourcing were revealed by the interviews with domain
experts. Both in mature and developing parts of the communications industry, out-
sourcing of activities related to software systems has increased over time. In the ma-
ture parts, the main reason for contracting out is the aim to lower operational costs. In
the developing parts, CSPs instead need the capabilities of the vendors as the internal
competences are missing. However, some of the interviewees expresses that their

 Scenarios on Adoption of Open Source Software 117

organization seeks to increase internal development. The motivations included a need
to increase flexibility, avoiding dependency on the vendors and ensuring the quality
of the software being deployed.

One of the interviewees, a representative of a CSP in Europe (CSP3), described the
ramifications of cost-pressures to software quality as described in Figure 1. By out-
sourcing software activities, the CSP intended to lower costs by a certain amount. The
software vendor obviously must produce the services at an even lower cost than what
the price paid by the CSP is. The CSP’s costs will in fact increase in the beginning
when outsourcing is commenced due to the structural change and other transaction
costs of one-time nature.

Fig. 1. Cost pressures in software outsourcing. The curve represents the CSP’s total cost over
time from commencement of the outsourcing arrangement.

If this comes as surprise to the CSP, the CSP may expect the software vendor to
compensate for this by offering the services at an even lower price, i.e. with even less
effort than what the original aim was. According to the interviewee, these cost
pressures influence the quality of the software negatively. The CSP may thus lose in
competitiveness due to substandard software and services, whether it shows as more
limited functionality, a less faultless implementation or poorer performance. CSPs
may therefore make a more prudent evaluation on which activities are outsourced and
rather insource those that they see critical for keeping customers and creating new
competitive benefits.

4.2 Nature of Competences

Hamel and Prahalad [27] define company's core competence as a set of skills and
technologies that enable a company to provide a particular benefit to customers. Fur-
ther, customer value can be achieved through product innovations or business innova-
tions, which again reflect the skills and orientation of the provider. According to
Kampas [28], product innovations materialize as a result of breakthrough engineering,
whereas business innovations are grounded in enhancing processes and deploying
commodity-marketing strategies. He thus suggests that these types of innovations are

118 E. Luoma, M. Riepula, and L. Frank

applicable in different phases of the technological development. Once a dominant
design emerges in any technology domain, commodification begins and companies
need to innovate with complementary assets such as marketing, efficient operations,
after-sales support etc. in order to be competitive [29]. Focus moves from product
innovation to business innovation. Whether competencies are generated within the
company or by combining capabilities of multiple vendors in the supply chain is con-
sidered in the established theories of the management discipline. According to the
resource based view [30] a competence can be achieved using internal resources that
are "valuable, rare, difficult to imitate and non-substitutable". As an alternative, the
dynamic capabilities framework [31] suggests that competences are created by devel-
oping an ability to "integrate, build and reconfigure internal and external competences
to address rapidly changing environments."

In our data, some of the CSP respondents stressed the skills and capabilities related
to different network technologies, while others emphasized understanding customer
needs and customizing technologies to match the present needs. Adding capabilities
for providing new services was also mentioned. Technological competences were
considered important by the representatives of the European CSPs (CSP 2–4). Cus-
tomization and innovations were deemed equally important by both the European and
Chinese CSPs.

It is consequently natural to observe the CSPs’ attempts to create competences
through both product innovations and business innovations: in the future certain CSPs
may build their competences by developing network assets, technologies and internal
resources. These companies may seem inactive, but may maintain their positions by
offering network capacity efficiently. Also, certain CSPs may instead choose to compete
with contemporary and diligently segmented services built on existing infrastructure.

A CSP’s total revenue can be formulated as (number of users) x (average revenue
per user, or ARPU). Improving ARPU through new services is particularly of impor-
tance to CSPs operating in mature markets, given that gaining new customers is very
difficult. Until recently, the CSPs have focused on the media and entertainment ser-
vices, but CSPs are also well positioned to act as channels for delivering software
vendors’ offerings to end customers. For instance, Lucas [32] suggests the following
to be strengths for CSPs in the emerging software as a service (SaaS) market: Net-
work assets, expertise in service assurance and billing, and marketing channels. The
interviews revealed that the CSPs are interested in taking their position in the SaaS
value chain as aggregators of services. A typical way is to package the various SaaS
services (computing and storage, e-mails, entertainment, photos, and business applica-
tions like CRM, financial management, etc.) and to automate the access to them via a
portal. The end user gets all the services via a single access and is billed on a single
bill. Strategic competence lies in brand creation, marketing and packaging. Such bun-
dling is used to increase ARPU and decreases churn.

5 Four Scenarios on Open Source Adoption

In this section the two dimensions presented in the previous section are used to de-
velop future scenarios. The scenarios illustrate how the adoption of OSSw in the
communications industry might increase in the future. As described above, the GBN

 Scenarios on Adoption of Open Source Software 119

Fig. 2. The four scenarios of communications software market development

approach was applied to prioritize industry trends and to form four scenarios, each
combining the extremes of the two uncertainties. Figure 2 provides an overview of the
four different scenarios.

The baseline scenario A, which was established in the workshop, signifies the cur-
rent trends and development path. While the baseline scenario itself may have inter-
esting outcomes, some of the communication service providers may also aim at, for
instance, strengthening their position in their industry by increasing internal software
development and by developing new capabilities. What follows is that the develop-
ment path and outcomes of scenario D also become possible, simultaneously with the
baseline scenario. Thus, in the future we might see alternative and coexisting devel-
opments, which all have potential to increase adoption of OSSw in the domain. Table
3 below summarizes the scenario logics in terms of factors affecting the communica-
tions industry and communications software market, dimensions of uncertainties,
drivers for OSSw adoption and the outcomes of developments.

Scenario A: Cost-cutting. This scenario assumes a continuous increase of out-
sourcing with simultaneously occurring product innovation (new technical services,
such as a location-based application for smartphones). This scenario might occur as a
result of consolidation in both the host industry and the communications software
market. Consolidation enables economies of scale, and both CSPs and software ven-
dors are focusing on lowering operational expenditures. It is characteristic to both
kinds of actors to concentrate on developing and deploying the network technologies.
In this scenario, the main driver for OSSw adoption is cost efficiency, although OSSw
is mainly used in infrastructure software. Utilization of OSSw mainly takes place on
the side of the software vendors', who include it as part of their offering. However,
aggressive price competition may lead to an unexpected outcome, in which the player
suffering the most engages in a loss-leader strategy and releases its business support
system as OSSw. The intention of the vendor is to retain its existing customers, possi-
bly create new revenues from complementary services, and to avoid competition with
new entrants. In case the actor is large enough or it succeeds in obtaining more cus-
tomers with this strategy, other actors in the communications software market may be
forced to follow.

Scenario B: Alliances. This scenario is based on similar premises with regards to
the operating environment as the previous scenario. The activities of both the CSPs

120 E. Luoma, M. Riepula, and L. Frank

Table 3. Summary of the scenario logics

 Scenario A:
Cost-cutting

Scenario B:
Alliances

Scenario C:
Bundle

Scenario D:
New capabilities

Factors in communications industry (CSPs side)
- structure Consolidated Consolidated Diversificated Diversificated
- focus Decrease costs Decrease costs Increase ARPU Increase ARPU

- capabilities Operational
efficiency

Operational
efficiency

New services
development

New services
development

Factors in the communications software market (Vendors' side)
- structure Consolidated Consolidated Diversificated Consolidated
- focus Decrease costs Protect market

share
Service-based
business

Decrease costs

- capabilities New technol.
development

New services
development

New services
development

New technol.
development

Technology
sourcing

Outsourcing
increases

Insourcing
increases

Outsourcing
increases

Insourcing
increases

Nature of
competences

Product
innovations

Product
innovations

Business
innovations

Business
innovations

Driver for
OSSW adoption

Costs Costs New services Flexibility and
new services

Patronages of
OSSw devel.

Software
vendors

Both Both CSPs

Uses of OSSw Infrastructure
software

Vertical
software

Used in
several layers

Used in
several layers

Outcomes Loss-leader
dumps BSS

Common
platform devel.

Adopt Cloud
OSSw

CSPs engage in
communities

and the vendors are focused on technological development and both are affected by
the cost pressures of commodified older services. However, in contrast to the first
scenario, operators become more active by increasing internal software development
and related capability in order to benefit from the available standard solutions and
OSSw – or models resembling it. To match the competition and to secure their market
share, one of the software vendors will attempt to gather its customers into an alli-
ance, in which an application based on the vendor’s source code is being developed in
co-operation with the CSPs. Such a mode of collaboration is described under the term
Client-Shared Source [33]. It refers to an arrangement where the customer pays the
vendor to participate in a restricted community, and is granted a license and access to
the common source code repository. In this arrangement, both customers and ven-
dor(s) contribute to the development. Such a mode is beneficial for the vendor in that
the source code is not accessible to its competitors, the vendor may build its business
model based on managed services or alike, and in that the vendor may maintain its
lock-in to the customers.

Scenario C: Bundles. This scenario is a combination of outsourcing and business in-
novating trends. In it the service providers will evolve into to two basic types: ones
focusing on providing network capacity (“bitpipe operators”) and ones exploiting their
brand to sell value-adding services on top of their existing infrastructure. Technologi-
cal (i.e. product) innovation is much less important than the way the commercial

 Scenarios on Adoption of Open Source Software 121

offering is formulated, priced, and marketed (the business innovation). Those CSPs
profiling them with such services will organize their service delivery platforms so that
third parties, software vendors for instance, may utilize the platform in a flexible and
agile manner. In this scenario, in line with the current trend, the CSPs outsource most
of their software development activities, which means it is up to the network element
manufacturers and software vendors to supplying necessary incremental improvements
to the CSP's system infrastructure. Cloud computing technologies will be in a central
role in providing new services efficiently. In cloud computing, mature and widely-
adopted OSSw solutions already exist. Present considerable projects include e.g. Euca-
lyptus, a software platform for the implementation of private cloud computing, and
Hadoop enabling the creation of data-intensive distributed applications. In this sce-
nario, the adoption of OSSw in the communications industry is consequently associ-
ated with the developments of cloud computing. At a high adoption rate, OSSw
solutions may become the dominant design in cloud technologies.

Scenario D: New capabilities. In this scenario vertical integration and divergence
in the communications industry increase. Owing to the need to improve flexibility,
speed to market and the quality of services, some CSPs increase their competences
and capabilities in software development. Decreasing time-to-market on new services
enables CSPs to monetize the current needs of their customers. Development of net-
work technologies and IT infrastructure is left for the existing vendors to take care of.
Main drivers of OSSw adoption in this development are the modifiability of standard
OSSw components to specific needs and the access to a pool of resources and knowl-
edge of the OSSw communities. As an outcome of the development, certain CSPs
will become patronages of selected communities, they actively engage in these com-
munities, and OSSw will be used in value-adding services offered to both business
customers and consumers.

6 Discussion and Further Research

This paper has introduced four future scenarios for the communications industry and
assessed the role of OSSw in each. We argue that the adoption of OSSw cannot be
explained only through analysis on drivers and barriers of adoption. In contrast to the
current studies on adoption of OSSw, this paper examines the operating environment
that is influenced by several trends and forces, some of which are opposing each
other. Above we have implicitly suggested that either the communication software
market continues to follow the current development path with emphasis on new tech-
nology and outsourcing, or discontinuity transpires in two possible ways. First, diver-
sification of both CSPs and software vendors may result in coexisting developments
and outcomes, where e.g. certain CSPs insource in software-related activities, while
others continue outsourcing these activities. Such diversity would allow software
vendors to employ different technology strategies and business models, also ones
incorporating OSSw as part of the offering. Second, we might also see radical change
in the communications industry (e.g. widespread adoption of cloud computing tech-
nologies and service-orientation), which would further affect the whole vertical soft-
ware market and its developments.

Making predictions about OSSw developments or any future events is uncertain
and difficult. The scenario approach does not forecast the future; rather it can be seen

122 E. Luoma, M. Riepula, and L. Frank

as a tool for elaborating plausible future situations [14, 19]. The developments are not
necessarily mutually exclusive at the industry level; they might turn out co-existing
with different players evolving in different directions. This suggests that this scenario
study complements the analysis on the current state. In addition, the approach pro-
duces information, which helps practitioners to identify development paths, to focus
their R&D efforts and even to influence the development towards desired direction
[13]. The strength of the scenario approach is in the information the interviewed do-
main experts can provide. However, as with all studies collecting qualitative data,
there are downsides in accuracy and questions whether propositions can be general-
ized. While the workshop was used to elaborated baseline scenario and seek confir-
mation on the identified trends of the communications software market, we recognize
that further interviews with domain experts might have revealed further trends. Fur-
ther studies on the domain could therefore select different dimensions for the analysis
and assess further development paths and outcomes.

It is also recognized that the quality of the data might have been affected by the
unwillingness of some experts to share their information on current state and likely
developments. In assessing the scenarios it also should be remembered that the sce-
narios are based more on the researchers’ views and interpretation than on the ex-
perts’ views. Further, it is noteworthy that the analysis may have revealed possible
development paths, but authors’ conclusions on outcomes may not materialize. A
further limitation of the study is that we have only addressed the traditional telecom-
munications industry directly, not the whole communications industry. However,
insofar as the landscape is changing with forces external to them, this should be felt
by the traditional CSPs and their software vendors at least indirectly.

The exploratory approach, which applies adapted scenario method, facilitated ex-
amination on how OSSw is currently used and how adoption of OSSw could increase.
The results of the analysis suggest that OSSw will mainly be adopted in infrastructure
software. In addition, the use of OSSw in new services and as basis for applying cloud
computing technologies seem both plausible. Alternative developments include an
increase in OSSw supply by unusual business models (loss-leader strategy) and by
alliances of software vendors and communication service providers.

The presented approach is relevant particularly for technology managers as a tool to
examine uncertainties and expand thinking on the technology strategies. Moreover, the
scenario elaboration is useful in examining the interplay of multiple factors affecting
the environment and developments. It is therefore a viable tool for researchers conduct-
ing exploratory research in the domain. In further research, it would be interesting to
feed the scenarios back to the experts, to further discuss the likelihood and impact of
the scenarios to their business, and refine the scenario based on experts’ feedback.
What was also left for further studies was the creation of indicators enabling the tech-
nology managers to observe and project the development paths in this domain.

References

1. Tyrväinen, P., Warsta, J., Seppänen, V.: Evolution of Secondary Software Businesses: Un-
derstanding Industry Dynamics. In: León, G., Bernardos, A., Casar, J., Kautz, K., DeGross
(eds.) IFIP International Federation for Information Processing, Open IT-Based Innova-
tion: Moving Towards Cooperative IT Transfer and Knowledge Diffusion, vol. 287,
pp. 381–401. Springer, Heidelberg (2008)

 Scenarios on Adoption of Open Source Software 123

2. Frank, L., Luoma, E.: Future Issues in a Software Market: A Delphi Study on the Tele-
communications Industry. In: 8th Conference on Telecom, Internet & Media Techno-
Economics (2009)

3. Sen, R.: A Strategic Analysis of Competition Between Open Source and Proprietary
Software. Journal of Management Information Systems 24, 233–257 (2007)

4. Von Krogh, G., Von Hippel, E.: The Promise of Research on Open Source Software.
Management Science 52(7), 975–983 (2006)

5. Fitzgerald, B.: The Transformation of Open Source Software. MIS Quarterly 30(3), 587–
598 (2006)

6. Glynn, E., Fitzgerald, B., Exton, C.: Commercial Adoption of Open Source Software: An
Empirical Study. In: International Symposium on Empirical Software Engineering. IEEE,
Los Alamitos (2005)

7. Nagy, D., Yassin, A.M., Bhattacherjee, A.: Organizational adoption of open
source software: barriers and remedies. Communications of the ACM 53(3), 148–151
(2010)

8. Ven, K., Verelst, J., And Mannaert, H.: Should You Adopt Open Source Software?
IEEE Software 25(3), 54–59 (2008)

9. Ogilvy, J., Schwartz, P.: Plotting Your Scenarios. GBN Global Business Network (2004)
10. Morgan, L., Finnegan, P.: Open Innovation in Secondary Software Firms: An Explora-

tion of Managers’ Perceptions of Open Source Software. DATABASE for Advances in
Information Systems 41(1), 76–95 (2010)

11. Ågerfalk, P.J., Deverell, A., Fitzgerald, B., Morgan, L.: Assessing the Role of
Open Source Software in the European Secondary Software Sector: A Voice from Indus-
try. In: First International Conference on Open Source Systems. Springer, Heidelberg
(2005)

12. Ogilvy, J., Schwartz, P.: Plotting Your Scenarios. GBN Global Business Network (2004)
13. Börjeson, L., Höjer, M., Dreborg, K.-H., Ekvall, T., Finnveden, G.: Towards a user’s guide

to scenarios - a report on scenario types and scenario techniques. Royal Institute of Tech-
nology (2005)

14. Schwartz, P.: The Art of the Long View: Planning for the Future in an Uncertain World.
Currency Doubleday, New York (1991)

15. Rhyne, R.: Whole-pattern futures projection, using field anomaly relaxation. Technologi-
cal Forecasting and Social Change 19, 331–360 (1981)

16. Godet, M.: The Art of Scenarios and Strategic Planning: Tools and Pitfalls. Technological
Forecasting and Social Change 65, 3–22 (2000)

17. Bishop, P., Hines, A., Collins, T.: The current state of scenario development: an overview
of techniques. Foresight 9(1), 5–25 (2007)

18. Burt, G., Chermack, T.J.: Learning With Scenarios: Summary and Critical Issues.
Advances in Developing Human Resources 10(2), 285–295 (2008)

19. Schoemaker, P.J.H.: Multiple scenario development: Its conceptual and behavioral founda-
tion. Strategic Management Journal 14(3), 193–213 (1993)

20. Aronson, J.: A Pragmatic View of Thematic Analysis. The Qualitative Report 2 (1994)
21. Dibbern, J., Goles, T., Hirschheim, R., Jayatilaka, B.: Information Systems Outsourcing: A

Survey and Analysis of the Literature. ACM SIGMIS Database 35(4), 6–102 (2004)
22. Ang, S., Cummings, L.L.: Strategic Response to Institutional Influences on Information

Systems Outsourcing. Organization Science 8(3), 235–256 (1997)
23. McLellan, K.L., Marcolin, B.L., Beamish, P.W.: Financial and Strategic Motivations

Behind IS Outsourcing. Journal of Information Technology 10, 299–321 (1995)

124 E. Luoma, M. Riepula, and L. Frank

24. Poppo, L., Zenger, T.: Testing Alternative Theories of the Firm: Transaction Cost, Knowl-
edge- Based, and Measurement Explanations for Make-or- Buy Decisions in Information
Services. Strategic Management Journal 19, 853–877 (1998)

25. Loh, L.: An Organizational-Economic Blueprint for Information Technology Outsourcing:
Concepts and Evidence. In: 15th International Conference on Information Systems,
pp. 73–89 (1994)

26. Nelson, P., Richmond, W., Seidmann, A.: Two dimensions of software acquisition. Com-
munications of the ACM 39(7), 29–35 (1996)

27. Hamel, G., Prahalad, C.K.: Competing for the Future. Harvard Business School Press
(1994)

28. Kampas, P.J.: Shifting Cultural Gears in Technology-driven Industries. MIT Sloan Man-
agement Review, 41–48 (winter 2003)

29. Teece, D.J.: Profiting from Technological Innovation: Implications for Integration,
Collaboration, Licensing and Public Policy. Research Policy (15), 285–305 (1986)

30. Wernerfelt, B.: A resource-based view of the firm. Strategic Management Journal 5,
171–180 (1984)

31. Teece, D.J., Pisano, G., Shuen, A.: Dynanic capabilities and strategic management. Strate-
gic Management Journal 18(7), 509–533 (1997)

32. Lucas, M.: Software as a Service (SaaS) and the Telecoms,
http://www.billingworld.com/articles/editorial/
Editorial-Software-as-a-Service-SaaS-and.html

33. Riepula, M.: A Licensing and Business Model for Sharing Source Code with Clients -
Leveraging Open Client Innovation in the Proprietary World. In: Tyrväinen, P., Jansen, S.,
Cusumano, M.A. (eds.) ICSOB 2010. Lecture Notes in Business Information Processing,
vol. 51, pp. 13–25. Springer, Heidelberg (2010)

B. Regnell, I. van de Weerd, and O. De Troyer (Eds.): ICSOB 2011, LNBIP 80, pp. 125–139, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Improving Quality and Cost-Effectiveness in Enterprise
Software Application Development: An Open, Holistic

Approach for Project Monitoring and Control

Luigi Buglione1, Ernesto Damiani2, Fulvio Frati2,
Sergio Oltolina1, and Gabriele Ruffatti1

1 Engineering Group
Via S.Martino della Battaglia 56, 00185 Rome, Italy

{luigi.buglione,sergio.oltolin,gabriele.ruffatti}@eng.it
2 Dipartimento di Tecnologie dell’Informazione, Università degli Studi di Milano

Via Bramante 65, 26013 Crema (CR), Italy
{ernesto.damiani,fulvio.frati}@unimi.it

Abstract. The availability of integrated software tools can help organizations to
easily and quickly achieve higher maturity and capability levels in process
improvement and change management initiatives, by effectively supporting
easy data and information sharing. However, despite their usefulness, their
implementation costs still often represent a not trivial constraint for their
adoption. In order to overcome such constraints, Open Source Software (OSS)
can represent the right solution. Among the plenty of OSS freely available on
the Net, only a very reduced set deals with measurement and monitoring &
control processes, which instead represent two core processes in well-known
SPI models. This paper proposes a case study showing how to efficiently detect
possible project improvements using a combination of software engineering
measurement-related techniques supported by the OS platform Spago4Q,
keeping the focus on the need of organizations to strengthen its historical data
gathering process.

Keywords: Open Source, Project Monitoring & Control, CMMI, Process
Improvement, Performance Measures, QEST, LIME.

1 Introduction

The relevance of Open Source Software (OSS) has been rapidly increasing during the
last few years for several reasons, including the OSS capability of fostering the open
knowledge sharing across organizations, the Total Cost of Ownership (TCO) [1]
reduction and a higher Return on Investment (ROI) [2] for successfully implemented
projects. Nowadays, a large amount of OSS is freely available and covers plenty of
informative and business goals. However, even if major forges contain hundreds of
thousands projects (e.g. SourceForge – www.sourceforge.net - has more than 260,000
projects), only a few OSS projects are listed under the “Software Development” or
“Enterprise” categories.

126 L. Buglione et al.

Again, very few OSS projects deal with goal-oriented measurement gathering data
directly from the organization’s information systems. Most available tools adopt a
traditional view on software measurement, deriving static measures from source
code, such as One Point Project (http://sourceforge.net/projects/opproject/) and Open
Workbench (http://sourceforge.net/projects/openworkbench/).

The aim of this paper is to present a new, more comprehensive approach to software
project management, including a roadmap to set up and manage a reliable and efficient
measurement framework. The paper is organized as follows: Section 2 presents the
measurement techniques needed to detect, filter, organize a measurement plan and
measure the overall value of a project from the viewpoints of concurrent stakeholders,
namely QEST-LIME. Afterwards it introduces the open source platform Spago4Q
(Spago for Quality), showing its integration and joint usage with the above-mentioned
measurement framework. Then, Section 3 proposes a case study applying this
measurement framework to two Italian projects. Finally, Section 4 draws our
conclusions and provides information about future steps towards further improvements
of quality and cost-effectiveness in enterprise software application development.

2 The Puzzle of Project Monitoring and Control

When setting up a measurement plan, organizations often erroneously choose the most
adopted “standard measures”, following a sort of “adoption by analogy” approach.
However, in the medium term, the habit of under-analyzing the internal informative
needs and the impact that measurements have on their economic situation may lead to
a “domino effect.” The reduction of the budget devoted to measurement, monitoring,
and control processes usually leads to a lower level of control on the project. This
effect is described in the most popular SPI process reference models, such as CMMI
[4] and ISO/IEC 15504 (aka SPICE) [5]. Lack or scarcity of reliable data can make it
hard to bind the mean relative error to the phenomena to be predicted. Here a sound
analysis on the informative needs and the careful choice of measurements and metrics
as a basic recipe for successful process monitoring is provided.

The following sub-sections include a short description of the “ingredients” for the
above-mentioned recipe, focusing on the added value that an OSS suite can bring to it.

2.1 Deriving Measures from Information Needs: The GQM Paradigm

The first, common-sense technique for deriving a measure is GQM (Goal-Question-
Metric), originated by Basili & Weiss in the early ‘80s [3] and refined during the
years. Such approach uses a three-tier decomposition, deriving measures (M) from
the related questions (Q) to be posed for answering the information goals (G) of the
interested stakeholders. In fact, one of the strong points of GQM is being multi-
faceted supporting multiple perspectives. Fig. 1 (a) shows GQM bi-directional
information flow, from the definition of measures until the interpretation of results
obtained by applying those measures.

Plenty of variants from the basic technique have been proposed, including GQ(I)M
[6], GQM++ [7], and M3P [8], in the ‘90s and more recently V-GQM [9], MIM,
Lightweight GQM [10], and GQM+Strategies [11].

 Improving Quality and Cost-Effectiveness 127

(a)

(b)

Fig. 1. GQM (a) and MIM (b) specifications

128 L. Buglione et al.

Using also a three-tier decomposition schema, ISO/IEC 15939 proposed the
Measurement Information Model (MIM), linking the information needs to its
measurable entities and related attributes (Fig. 1 (b)) [12]. MIM refines and reinforces
the basic GQM idea, stressing the central role of information needs and the
instrumental role of measures as a tool for addressing them [13].

2.2 Determining the Right Number of Measures: The BMP Technique

An important set of questions to be answered concerns the number of measurements
to be collected and the cost of the measurement campaign.
Relevant questions include: How many measures should be adopted? Are they
frequent enough/properly balanced in order to intercept the different stakeholders’
goals? And how much do they cost as a percentage of the project budget? Finally, are
measurement costs aligned and well integrated within the cost for the ‘project
management’ process?

BMP (Balancing Multiple Perspective) [14] is a technique for answering these
questions, using concepts taken from the popular Balanced ScoreCard (BSC)
approach1.

The four steps allowing to deploy an efficient BMP framework are:

1. Determine the dimensions of interest in the project;
2. Determine the list of the most representative measures associated with each

dimension;
3. For each of the selected measures, identify which other control variables might

be impacted negatively (e.g. higher quality often means greater initial costs or
longer project duration);

4. Figure out the best combination of indicators and the causal relations between
them in order to build a measurement plan for the project.

2.3 Determining the Performance Value: The QEST-LIME Family

The QEST-LIME models and frameworks have been designed to tackle the entire
decision-making process from a multi-perspective viewpoint [15]. QEST (Quality
factor + Economic, Social and Technical dimensions) is a multi-dimensional,
software performance measurement model: it provides a multidimensional shell that
can be filled according to the management objectives of each specific development
project.

For this reason, it is often referred to as an “open model”. Its basic purpose is to
express performance into a unique, single value, as the combination of the specific
measures (or sets of measures) selected for each of the three dimensions, these values
being derived from both an instrument-based measurement of productivity and a
perception-based measurement of quality.

In the last decade, the original QEST three-dimensional model has been extended to
handle n dimensions/perspectives, using the simplex algorithm to compute the top

1 More information and references with BMP case studies are available at the BMP webpage

(www.semq.eu/leng/modtechbmp.htm).

 Improving Quality and Cost-Effectiveness 129

performance point. Therefore, QEST nD can be also used as a generic n-dimensional
measurement model, according to the features and advantages listed above [16]. At the
same level, the LIME (LIfecycle MEasurement) model [15] represents an extension of
QEST model concepts to a dynamic context.

The iterative definition, collection and analysis of multidimensional measures at
each software life cycle (SLC) phase offer the feedback required to make adjustments
to the project processes in a timely fashion, both for the next phase and for designing
future improvements to the process of the previous phase.

2.4 Automating Project Monitoring and Control: Spago4Q

Whatever the technique used for measuring and collecting data, the evaluation must
be executed in a fully transparent way, without requiring any further action by
programmers and/or designers.

In relation to this, Spago4Q (www.spago4q.org) is an open source multi-process
and multi-project monitoring platform. It allows to measure and monitor the quality
improvement during the project lifetime, software projects development, ICT services
supply and facility management, according to specific service level based on the
various actors’ point of views.

Spago4Q relies on a suitable meta-model, described in [17], for the definition of the
process and measurement framework, supporting its customization to different process
paradigms and measurement frameworks. Refer to [17][18] for a more detailed
description of valuable features of the tool (e.g. supporting assessment frameworks
such as CMMI and QEST). As shown in Fig. 2, Spago4Q includes multiple extractors
for the tools used during the software lifecycle (development environments, text-
editing tools, requirements management frameworks, etc.). Those extractors collect
data directly from process work-products (e.g. java classes or logs).

Spago4Q meta-model is composed of four modules:

• the Process meta-model, which provides a description of the generic software
development process;

• the Measurement Framework meta-model, used to represent specific measure
models from most popular development processes;

• the Assessment meta-model, which allows the modeling of a generic evaluation
structure;

• the Extractors meta-model, which formalizes and defines the extractors used to
retrieve data from the process entities and supplies it to the measurement
framework.

The exploitation of the platform in working environments showed that automating the
gathering of measurement data and its computation considerably reduced the impact
of costs in Software Process Improvement (SPI) activities.

Even if a number of open source and proprietary process monitoring tools
are available, to the best of our knowledge only Spago4Q can handle multi-
process, multi-project measuring. Commercial well-known tools such as Polarion
(www.polarion.com) and 6th Sense (www.6thsenseanalytics.com) do not support
cross-process, cross-project comparisons. The Holkar project [19] developed a

130 L. Buglione et al.

prototype to monitor quality which used the XML data model for collecting data
from sources and storing them in a repository. A limited set of budget performance
metrics can then be applied on the XML database. The Hackystat project
(http://csdl.ics.hawaii.edu/research/hackystat) provides a measurement framework for
non-intrusive project metric collecting and analysis.

Fig. 2. Spago4Q framework

Fig. 3. The main flow followed for establishing a goal-oriented measurement framework

 Improving Quality and Cost-Effectiveness 131

2.5 Putting All Pieces Together: The Suggested Measurement Framework

Techniques like GQM, BMP, QEST-LIME, and advanced tools like Spago4Q provide
the pieces needed to solve the process monitoring puzzle described in Section 2. Each
piece has its own value, but taking them singularly, they have only a limited impact.
For instance, the GQM alone does not provide suggestions on how to build a
measurement plan and on the proper number of measures to be adopted.

Furthermore, it covers neither the economics of monitoring & control process, nor
their consolidated value for the decision-making. Therefore, our approach proposes to
join such techniques and tools, keeping the best from each one and creating a simple
procedure (Fig.3):

1. Define what we need to measure (using a GQM-based technique).
2. Filter and prioritize what we need to measure (using the BMP technique [4]).
3. Determine the project/activity performance values with a holistic view (using

QEST-LIME), highlighting the improvement goals to manage.
4. Automate the last step with an OSS tool (e.g. Spago4Q), providing faster data

gathering and – consequently – better data for the decision-making, as well as
a better historical database for future estimates.

3 A Case Study

In order to validate our approach, we present a complete case study referring to
monitoring two large proprietary products developed and maintained by Engineering
Health Software Factory (HSF); the projects were analyzed, collecting data in the
period January 2009 – October 2010.

Both are on-going projects deployed on customers’ server, and new versions are
released yearly. The first project (Product 1), deployed for 100 customers, produces a
release per quarter and it is developed exploiting mainframe techniques, following the
Unified Process paradigm. It is characterized by a dimension of 1100 EKLOC
(Effective Thousands of Lines of Code) and a development team of 18 units. The
second project (Product 2) is characterized by an average of ten releases per year, a
dimension of 1600 EKLOC, and it has been deployed for 60 customers. The team
who realized it is composed of 10 developers following an agile-based process.

In order to properly monitor each phase of the HSF software life cycle, we use
BMP and LIME – together with the three classical QEST analysis perspectives
(Economic, Social, and Technical) – as described in Section 2.
The main business goal for the goal-oriented analysis was to reduce the overall
production cost.

Such cost is mainly driven by three factors:

1. Lack of requirement stability, as a source of overhead in design and
implementation activities;

2. Working group management overhead, as a source of delays and variance in
milestones;

3. Corrective and adaptive maintenance activities.

132 L. Buglione et al.

In particular, a relevant part of such cost was represented by the cost trend of
corrective and adaptive maintenance activities, monitored by PR-MAN-E measures.
These factors were identified after a thorough analysis on the process and on the
analyzed projects [20] allowed to define the measurement goals shown in Table 1.

Table 2 presents the complete list of measures selected with respect to the goals. In
order to reduce costs, different improvement actions were undertaken to monitor each

Table 1. Case study: Measurement goals with respect to cost factors

Cost
Factors

SLC
Phase

Dimension Goal Id.

Reduce Delivery Variance REQ-E- 1 E
Economic

Reduce Requirements
Variability

REQ-E-2

Reduce criticality in working
group management

REQ-S-1 S
Social
 Involve users in requirements

sharing and validation
REQ-S- 2

Lack of
requirement
stability

Requi-
rements
(analysis)

T
Technical

Compliance with pre-defined
product quality levels

REQ-T- 1

E
Economic

Reduce delivery variance DEV-E- 1

S
Social

Reduce criticality in working
group management

DEV-S- 1

Compliance with pre-defined
product quality levels

DEV-T- 1

Compliance with pre-defined
product software quality
levels

DEV-T- 2

Develop-
ment &
Design

T
Technical

Process compliance DEV-T- 3
Reduce the # severe defect
due to analysis and design
phases, reducing rework costs

TES-E- 1 E
Economic

Reduce Delivery Variance TES-E- 2
S
Social

Reduce criticality in working
group management

TES-S-1

Increase n.o. checks

TES-T- 1

Working
group
management
overhead

Test

T
Technical
 Process compliance TES-T- 2
E
Economic

Reduce defects resolution
costs

MAN-E- 1

Reduce criticality in working
group management

MAN-S- 1 S
Social
 User satisfaction MAN-S- 2

Corrective
and adaptive
maintenance
activities

Running
(mainte-
nance)
CMMI-
SVC v1.3
Processes

T
Technical

Increase # checks MAN-T-1

 Improving Quality and Cost-Effectiveness 133

Table 2. Case study: Measurement goals with respect to cost factors

Goal Measure CMMI-DEV
v1.3 PAs Measure Id.

REQ-E- 1 Incidence of delays on delivery milestones
(deliverables) w.r.t. total # deliverables

PMC
MA

PR-REQ-E-
M1.1

REQ-E-2 Requirements Variability RD
REQM
PMC

PR-REQ-E-
M1.2

REQ-S-1 #. detected criticalities during the human
resources management w.r.t. group size in
the phase

PPQA
PMC

PR-REQ-S-
M1.1

REQ-S- 2 User satisfaction or % users involvement
in the phase

all PA (GP2.7) -
low correlation
w.r.t. ISO
9001:2008 §5.2

PR-REQ-S-
M1.2

REQ-T- 1 Document quality: respect of quality
standard

PPQA PR-REQ-T-
M1.1

DEV-E- 1 Incidence of delays on delivery milestones
(deliverables) w.r.t. total # deliverables

PMC
MA

PR-DEV-E-
M2.1

DEV-S- 1 # detected criticalities during the human
resources management w.r.t. group size in
the phase

PPQA
PMC

PR-DEV-S-
M2.1

DEV-T- 1 Document quality: respect of quality
standard

PPQA PR-DEV-T-
M2.1

DEV-T- 2 Software quality: complexity, compliance,
maintainability

PPQA
VAL

PR-DEV-T-
M2.2

DEV-T- 3 Compliance with end-phase checklist PPQA PR-DEV-T-
M2.3

TES-E- 1 # Defects detected before System Test by
PR or verifications w.r.t. code size

VER
VA
PMC

PR-TES-E-
M3.1

TES-E- 2 Incidence of delays on delivery milestones
(deliverables) w.r.t. total # deliverables

PMC
MA

PR-TES-E-
M3.2

TES-S-1 N.o. detected criticalities during the
human resources management w.r.t. group
size in the phase

PPQA
PMC

PR-TES-S-
M3.1

Incidence of the n.o. reviews (peer
reviews or inspection reviews) w.r.t. total
deliverables

PPQA
VER

PR-TES-T-
M3.1

TES-T- 1

Percentage defects distribution on phases
that produced the defects (consider only
analysis and design phase)

PP
PMC
MA

PR-TES-T-
M3.2

TES-T- 2 Compliance with end-phase checklist PPQA
PMC

PR-TES-T-
M3.3

Incidence of defects tested in running and
testing phase w.r.t. maintained code size
(Lines of Code or Function Points)

PMC
MA

PR-MAN-E-
M4.1

MAN-E- 1

Mean defect resolution time w.r.t. severity
during running phase

IRP PR-MAN-E-
M4.2

134 L. Buglione et al.

Table 2. (continued)

MAN-S- 1

N.o. detected criticalities during the
human resources management w.r.t. group
size in the phase

PPQA
PMC

PR-MAN-S-
M4.1

MAN-S- 2 User satisfaction all PA (GP2.7)
low correlation
ref. ISO
9001:2008 §5.2

PR-MAN-S-
M4.2

MAN-T-1 Percentage defects distribution on phases
that produced the defects (consider only
analysis and design phase)

PP
PMC
MA

PR-MAN-T-
M4.1

phase. In particular, we performed the actions listed below in order to improve the
overall economic results. All actions take as their input from the value of specific
metrics.

Increase document quality produced in the requirements phase (monitored by the
measure PR-REQ-T-M1.1).

Increase software quality to facilitate the its maintainability in the development
phase (monitored by the measures PR-DEV-T-M2.1 and PR-DEV-T-M2.2).

Increase the number of reviewed deliverables (monitored by the measure PR-TES-
T-M3.1). The reviews performed in the analysis and design phases had the goal to
discover bugs early in the development cycle (as assessed by the measures PT-MAN-
T-M4.1, PR-TES-T-M3.2).

Table 3 analyzes the results related to the goal “Reduce Defects Resolution Cost”
in the Running phase. The goal has been achieved with an improvement of the 7.2%
for Product 1 and 7.6% for Product 2; furthermore, the “Mean Defect Resolution
Time” measure (PR-MAN-E-M4.2) improved in a significant manner. Also the Social
(S) dimension, and in particular the “User Satisfaction” metric (PR-MAN-S-M4.2),
received benefit from the improvements of the other phases and dimensions such as
document quality improvement and the reduction of Mean Defect Resolution Time.

Table 3. Selected measures and results for the “Reduce defects resolution cost” goal

 Product 1 Product 2
Goals Measure \ Year 2009 2010 2009 2010

Economical Dimension
PR-MAN-E

0.7000 0.7550 0.7870 0.8530 Reduce Defects
resolution costs

PR-MAN-E-M4.1 0.5244 0.5099 0.5793 0.7319
PR-MAN-E-M4.2 0.8173 0.9244 0.9262 0.9333
Social Dimension
PR-MAN-S

0.6810 0.7000 0.7100 0.6850
Reduce criticality
in working group
management

PR-MAN-S-M4.1 0.6944 0.5833 0.5000 0.3000
PR-MAN-S-M4.1 0.6750 0.7500 0.8000 0.8500

User satisfaction Technical Dimension
PR-MAN-T

0.6304 0.6552 0.7005 0.6842

Increased #. of
checks/reviews

PR-MAN-T-M4.1 0.6304 0.6552 0.7005 0.6842

 Improving Quality and Cost-Effectiveness 135

Table 4. Measures correlated to the “Reduce defects resolution cost” goal

 Product 1 Product 2
Goals Measure \ Year 2009 2010 2009 2010
Compliance with pre-
defined documents q.l.

Requirement phase
PR-REQ-T-M1.1

0.8333 0.8667 0.8667 0.9000

Compliance with pre-
defined documents q.l.

Development phase
PR-DEV-T-M2.1

0.8333 0.8667 0.8667 0.9000

Compliance with pre-
defined software q.l.

Development phase
PR-DEV-T-M2.2

0.5000 0.6000 0.7500 0.9000

Increase n.o.
checks/reviews

Test phase
PR-TES-T-M3.1

0.7500 0.8750 0.5250 0.6250

Fig. 4. Performance value by perspective for Product 1 (a) and Product 2 (b)

136 L. Buglione et al.

Table 4 shows the values of correlated measures: the increased number of reviews
(PR-TES-T-M3.1) had a positive effect on the improvement of the overall quality of
documents (PR-REQ-T-M1.1 and PR-DEV-T-M2.1), and software quality (PR-DEV-
T-M2.2 with respect to the measure PR-MAN-T-M4.1), decreasing the percentage of
defects due on initial development phases (analysis and design). Fig. 4 and 5 show
charts produced by Spago4Q.

Fig. 5. Performance value for each phase, for Product 1 (a) and Product 2 (b)

 Improving Quality and Cost-Effectiveness 137

These charts provide a synoptical representation of the results taken in the two
periods exploiting the described monitoring framework. Performances for each
dimension (Fig. 5 (a) and (b)) and phase (Fig. 6 (a) and (b)) have been, in most cases,
improved. The calculation of the performance value (range value 0-1) for each
dimension and phase is discussed in [15].

A further analysis on the case study results shows how the completeness and
quality of the measured data are influenced by time constraints imposed by customers.

Tests showed that a strong commitment by the development team is needed to
guarantee a good quality level on the released code. Moreover, the effectiveness of
peer reviews in preventing errors in the development and design phase has been
measured by means of the metrics PR-TES-E-M3.1, PR-TES-T-M3.1, and PR-TES-
T-M3.2. To reduce peer reviews costs, a thorough analysis of criticalities in
deliverables is necessary at each change request, in order to apply reviews only on
such deliverables. This implies a definition of a risks map to point out the specific risk
exposure of each component. Furthermore, an additional improvement to HSF
development activities has been identified in the implementation of automatic
functional tests to better define non-regression tests on new releases or patches, with
probable benefits on maintenance costs. On the other hand, the high implementation
costs of such a technique could be justified only in specific critical projects.

4 Conclusions and Next Steps

There is an increasing need to run real, valuable governance and not only
management of ICT projects. Thus, a deeper attention on the measurement process is
strongly needed. The importance of this factor such as a priority is also stressed in
most SPI models and frameworks (e.g. CMMI, where “measurement & analysis” is a
ML2 process and the quest for data is included in GP2.8).
Another major requirement is the usage of automatic tools for making faster and more
accurate that allows to perform measures in a faster and more accurate way. The high
costs of acquisition and maintenance of these tools can however discourage their
adoption people from adopting them.

Now Open-Source Software has a higher level of affordability and reliability than
in the previous years (see for instance the wide adoption of CVS tools
in Configuration Management processes). However, tools alone cannot support ICT
project governance: advanced measurement techniques and models are also needed.

This paper presented an Italian experience running a measurement framework
using advanced techniques together with a specific OSS toolkit, Spago4Q. The case
study showed the results of the application of such a framework to two projects,
presenting some snapshots of the achieved results. We claim that our approach
represents a good starting point for a full implementation of a Balanced Scorecard
(BSC) technique. Applying BSC to our scenario is simple but not trivial: it would
require observing the number of companies failing (or having difficulties) when
dealing with holistic and comprehensive governance from concurrent stakeholders’
viewpoints.

Our future works will focus on the improvement in Spago4Q reporting features
(insertion of multi-dimensional representations as in the original QEST model, for

138 L. Buglione et al.

making easier the interpretation of results; monitoring & control level by process
from the desired process model) and the implementation of a GQM(R) matrix [21],
for choosing new possible measures in order to cover a larger plateau of information
needs at the same cost.

Acknowledgement

This work was partially funded by EC under the project ARISTOTELE (contract n.
FP7-257886) and ASSERT4SOA (contract n. FP7-257351).

References

1. Wheeler, D.A.: Why Open Source Software / Free Software (OSS/FS)? Look at the
Numbers!, http://www.dwheeler.com/oss_fs_why.html

2. Stefan, A.: How Software Copyright and Patent Laws Are Hurting Real Innovation.
Technical Sciences and Applied Mathematics 2, 15–22 (2008)

3. Basili, V.R., Weiss, D.M.: A Methodology for Collecting Valid Software Engineering
Data. IEEE Trans. on Software Engineering SE-10(6), 728–738 (1984)

4. CMMI Product Team, Capability Maturity Model for Development (CMMI-DEV) v1.3,
Technical Report, CMU/SEI-2010-TR-033, Software Engineering Institute,
http://www.sei.edu.cmu/cmmi

5. ISO/IEC, I.S.: 15504-x, - Information technology – Process assessment, Parts 1-7 (2004-
2008), International Organization for Standardization (2010)

6. Park, R., Goethert, W.B., Florac, W.A.: Goal-Driven Software Measurement - A
Guidebook. Software Engineering Institute, Handbook, CMU/SEI-96-HB-002 (1996)

7. Gray, A., MacDonell, S.G.: GQM++ A Full Life Cycle Framework for the Development
and Implementation of Software Metrics Programs. University of Otago, New Zealand.
Technical Report (1997), http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.47.9007

8. Offen, R.J., Jeffery, R.: Establishing Software Measurement Programs. IEEE
Software 14(2), 45–53 (1997)

9. Olson, T., Runeson, P.: V-GQM: a feedback Approach to Validation of a GQM study. In:
7th IEEE Symposium on Software Metrics (METRICS 2001), London, UK, pp. 236–254
(2001)

10. Gresse Von Wangenheim, C., Anacleto, A., Salviano, C.F.: MARES - A Methodology for
Software Process Assessment in Small Software Companies, LQPS001.04E. Laboratório
de Qualidade e Produtividade de Software, UNIVALI. Technical Report (2004)

11. Basili, V., Heidrich, J., Lindvall, M., Munch, J., Regardie, M., Trendowicz, A.:
GQM+Strategies – Aligning Business Strategies with Software Measurement. In: 1st Int.
Symposium on Empirical Software Engineering and Measurement (ESEM 2007), pp. 488–
490 (2007)

12. ISO/IEC, IS 15939:2007 - Systems and software engineering - Measurement process,
International Organization for Standardization (2007)

13. Abran, A.: Software Metrics and Software Metrology. IEEE-CS Press & John Wiley &
Sons, Hoboken (2010)

 Improving Quality and Cost-Effectiveness 139

14. Buglione, L., Abran, A.: Improving Measurement Plans from multiple dimensions:
Exercising with Balancing Multiple Dimensions – BMP. In: 11th IEEE International
Software Metrics Symposium (METRICS 2005). IEEE Press, New York (2005)

15. Buglione, L., Abran, A.: Performance calculation and estimation with QEST/LIME
using ISBSG r10 data. In: 5th Software Measurement European Forum (SMEF 2008),
pp. 175–192 (2008)

16. Buglione, L., Abran, A.: QEST nD: n-dimensional extension and generalisation of a
Software Performance Measurement Model. Int. J. of Advances in Engineering
Software 33(1), 1–7 (2002)

17. Colombo, A., Damiani, E., Frati, F., Oltolina, S., Reed, K., Ruffatti, G.: The use of a meta-
model to support multi-project process measurement. In: 15th Asia-Pacific Software
Engineering Conference (APSEC 2008), pp. 503–510 (2008)

18. Ardagna, C.A., Damiani, E., Frati, F., Oltolina, S., Regoli, M., Ruffatti, G.: Spago4Q and
the QEST nD model: An open source solution for software performance measurement. In:
Ågerfalk, P., Boldyreff, C., González-Barahona, J.M., Madey, G.R., Noll, J. (eds.) OSS
2010. IFIP Advances in Information and Communication Technology, vol. 319, pp. 1–14.
Springer, Heidelberg (2010)

19. Holkar, V.: Experimental Implementation and Evaluation of Quality Management Process,
Master Thesis. Department of Computer Science and Computer Engineering, La Trobe
University, Australia (2007)

20. STSC Cost Analysis Group, Software Development Cost Estimating Guidebook,
Software Technology Support Center. Handbook, http://stsc.hill.af.mil/
consulting/sw_estimation/softwareguidebook2010.pdf

21. Buglione, L.: Misurare il Software 3/ed. Franco Angeli Editore, Milan (2008)

B. Regnell, I. van de Weerd, and O. De Troyer (Eds.): ICSOB 2011, LNBIP 80, pp. 140–153, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Transformations of a Solution Strategy: A Case Study

Marko Komssi1,2, Marjo Kauppinen1, Matti Ropponen2, and Pirkka Palomäki2

1 Aalto University School of Science and Technology, PO Box 9210, 02015 Aalto, Finland
2 F-Secure Corporation, PO Box 24, 00181 Helsinki, Finland
{Marko.Komssi,Marjo.Kauppinen}@tkk.fi,

{Matti.Ropponen,Pirkka.Palomaki}@f-secure.com

Abstract. Fast-paced and turbulent business environments force companies to
make repeated decisions concerning their solution strategy. This paper presents
a retrospective case study that investigated changes in the strategy of a
successful SaaS solution provided by a medium-sized Finnish software
company. The study concentrated on the following research question: “How did
the solution strategy evolve during the life-cycle of the software solution?” The
main finding of the study is that the solution strategy has undergone four
distinct stages over nine years. The stages differed in terms of whether the focus
was on existing or new services offered to potential or new customers. Each of
the four stages contributed to sustaining the solution’s revenue growth in an
increasingly competitive and maturing market. The study’s findings suggest
that customers’ customers are crucial for growth opportunities, particularly
once the original market has become mature.

Keywords: Solution Strategy, Product Life Cycle, New Service Development,
Software as a Service (SaaS), Customer Relationships, Retrospective Case Study.

1 Introduction

Surviving in fast-paced and turbulent business environments is a crucial concern for
high-tech companies [1]. Solution strategies are presented with critical challenges in
high-tech companies, as the fast-paced environment forces repeated strategic
decisions [2]. Solution strategies handle how core products and services are produced,
designed, distributed, promoted, and innovated over time [3].

Product life cycles seem to be very short in software industries [4]. In a fast-paced
business environment, even a successful software solution strategy soon becomes
outmoded. A product (or solution) life cycle includes exploratory, growth, and mature
stages, as stated by Klepper [5], who argued that each of the stages entails special
characteristics. For instance, product innovation is high in the exploratory stage. The
product stabilizes during the growth stage and the number of product innovations
declines. Finally, in the mature stage, market shares stabilize, and management,
marketing, and development techniques become more refined.

One example of emergent and dynamic concepts in software business is Software
as a Service (SaaS). SaaS was introduced in the literature in the late ’90s [6].
Thereafter, SaaS has been called, for instance, a delivery, business, pricing, revenue,

 Transformations of a Solution Strategy: A Case Study 141

or licensing model, as well as a demand-led paradigm [7]. The market share of SaaS
solutions reached $9.6 billion in 2009 and SaaS is forecast to have a 17.7% compound
annual growth rate through 2013 [8, 9]. From a technical point of view, SaaS
architecture comprises valuable characteristics, such as internationalization and
extreme transaction processing [10]. These characteristics allow even a relatively
small software company to enter or create a mass market and serve a huge number of
customers and customers’ customers simultaneously. Once the software company has
succeeded with its market entry, however, it must anticipate the changes in solution
strategy and heavy competition in the growth and mature stages.

This paper aims to increase the understanding of the strategic changes that can
make a SaaS solution successful over time in a fast-paced and unpredictable mass-
consumer market. The paper presents a retrospective case study of a nine-year
adoption of a SaaS model in a Finnish mid-sized software company. The study
concentrated on the following research question: “How did the solution strategy
evolve during the life-cycle of the software solution?” The solution investigated in
this study represents one way of adopting the SaaS model. The adoption has been
described previously [11]. The term ‘solution’ refers to a core software product and/or
platform augmented by other components, such as training, manuals, support, and
other services [12].

This paper is organized as follows. Section 2 presents the research background and
Section 3 explains the case study. Section 4 introduces the market evolution findings
and Section 5 presents the transformation of a solution strategy between the years
2001 and 2010. Section 6 discusses the findings and Section 7 concludes the paper.

2 Background

The theoretical framework of this study consists of two schemas called the new
service strategy matrix [13] and the three tiers of noncustomers [14]. The first schema
consists of four elements as illustrated in Table 1. Under a new business strategy, the
company enters a new market with a new solution. A market extension strategy
guides the company towards offering existing services to new market segments. By
following a share building strategy, the company intends to sell more existing
services to existing customers. Finally, the company endeavors to market new
services to existing customers under a line extension strategy.

The four elements of the strategy matrix contain identifiable characteristics [13]. A
new business strategy is the riskiest alternative for the company because it cannot rely
on its existing competencies. The market extension strategy engages the company to
pursue new market segments. The share building strategy may involve, for instance,

Table 1. A new service strategy matrix in new solution development [13]

 Markets
Offering

Existing
customers

Potential
customers

Existing services Share building Market extension
New services Line extension New business

142 M. Komssi et al.

the aggressive pricing of solutions. The line extension strategy is common in mature
industries and involves leveraging the current customer base.

The schema known as three tiers of noncustomers is presented in Figure 1. The
first tier represents the potential customers who pay for an industry’s offering but are
not loyal to any existing solution. The second tier stands for potential customers who
currently refuse to purchase the industry’s offerings. The third tier represents potential
customers who have never thought about the industry’s offerings.

Connections can be found between the two schemas. Focusing on the first tier
typically leads to account wars [14]. Therefore, the aggressive style of the share
building strategy can be used in the tough competition in the first tier. In addition, a
new business strategy may be required to develop a novel solution to be offered to a
new market segment in the third tier.

In the literature, we found one previous work [15] that used the new service
strategy matrix to illustrate how internationalization had impacted the service offered
by a modern technopark operator. We also found one previous work [16] that utilized
the three tiers of noncustomers to demonstrate the new market for the game consoles.

Fig. 1. The schema known as three tiers of noncustomers [14]

3 Research Method

3.1 Research Approach

The research question “How did the solution strategy evolve during the life cycle of
the software solution?” requires an historic perspective of the research topic. More
precisely, studying the transformations of a solution strategy from the “novel idea”
phase to the “mature industry” phase called for a retrospective case study, which is
useful for addressing, for instance, a question regarding how a phenomenon behaves
over time [17].

In order to gain rich understanding from the changes of important variables, such as
market, technology, competition, and corporate strategy, the principles of two research
methods were combined. As our primary research method, we used the case study
method explained by Yin [18]. The method reveals richly detailed information that
emphasizes the important contingencies that exist among the variables. In addition, the

 Transformations of a Solution Strategy: A Case Study 143

method promotes the researchers’ own learning process with respect to the social
phenomenon that is being observed. In particular, the method lets researchers study
historical descriptions and events dealing with a full range of evidence sources, such as
documentation, archival records, interviews, and observations. As a supporting
research method, we used retrospective action research, in which practitioners
afterwards reflect on what they have lived through [19]. The research method guides
practitioners to act as researchers, which should provide unique access for and the
collection of data and a pre-understanding of the research topic to be analyzed. Thus,
practitioner-researchers who are closely involved in solution planning, from both
corporate and solution strategy perspectives, are able to enrich data collection and
analysis.

3.2 Unit of Analysis

In the study, the unit of analysis is the transformation of solution strategy. The selected
solution is called Security as a Service (for consumers), provided by F-Secure. The
company recently renamed the solution to Protection Service for Consumers. We
selected this particular solution for three reasons. Firstly, the solution was novel in
2001 and its commercialization created a new market. Secondly, the new market grew
very quickly and all the major competitors copied the business idea rapidly. Thirdly,
the revenue from the solution continued to grow steadily, despite the tough competition
in the mass consumer market. Thus, the solution was selected based on a purposeful
sampling strategy [20]. Accordingly, the case was information-rich, and this provided
the researchers with a great deal of data about issues of central importance to the
purpose of the study. The rationale for selecting a single solution was to study
the strategy of the same solution at different points in time [18]. A decision was taken
to study the transformations of the solution strategy throughout the existence of the
solution, from the year 2001 to the present.

The solution is illustrated in Figure 2. It consists of both software and service
components that are provided for the two chains of customers. The direct customers
are Internet Service Providers (ISPs). They receive, for instance, a hosted software
platform and sales support for the management of the subscriptions and deployments
of the security offered to their customers. Here, the customers of ISPs are called
customers’ customers. The customers’ customers are consumers who have subscribed
to the broadband services offered by the ISPs. To each of the customers’ customers,
for instance, F-Secure provides a client software product and daily protection service
updates. The customers’ customers can subscribe to both the broadband connection
and security solution and, later, receive support from their local ISP. The solution is
also co-branded to correspond to the ISP’s brand.

F-Secure has over 800 employees on three continents: Europe, North America, and
Asia. The company’s headquarters, which employs nearly 400 people, is located in
Finland. Moreover, the company has 18 country offices and a presence in more than
100 countries. F-Secure develops commercial software-intensive solutions mainly for
mass markets. The solution that is being studied has been offered to protect the
irreplaceable content of its customers’ customers and has had a key role in promoting
F-Secure as the most profitable value-added services partner for customers.

144 M. Komssi et al.

Fig. 2. A simplified illustration of the solution known as Security as a Service for consumers

3.3 Data Collection

Our data collection tactic was aimed at getting both external and internal points of
view. From an external point of view, we focused on collecting data concerning the
solution strategy and related influencing factors, such as market, competition, revenue,
profit, customers, and partners, from a ten-year period. Archival records were our
primary data source. We studied all the financial reports from the beginning of year
2000 to the present. We copied the relevant content from the 43 interim reports and 10
annual reports into separate text files for further analysis. We also read and listened to
the multimedia package called “20 years of reliability” produced by the company. Four
parts of the audio were transcribed for further analysis. In addition, we used an Internet
archive called WayBackMachine [21] to collect the marketing messages for the
solution from the company webpage from different points in time. Moreover, we
studied the news archive on the F-Secure website from the beginning of year 2000 to
the present. We concentrated on the material that contained information related to the
solution and the deals made with partners and customers.

To get an internal point of view of the context and rationale of the solution strategy,
we conducted nine interviews and two workshops. The interviews were conducted on
an open-ended question basis. Nine key persons who were responsible for the
development of the solution and/or who will have an important role in the development
of future solutions were interviewed. Two of the interviewees were executive team
members and the other seven were vice-presidents, directors, and managers of various
functions, such as R&D, customer advocacy, and service development. The researchers
conducted semi-structured interviews in pairs. All the interviews were recorded and
transcribed from the recordings. The interview questions had three themes. Firstly, we
clarified the most important customer group for the solution both at present and in the
future. Secondly, the benefits of the solution for the customers were explored. Thirdly,
the reasons why the customers were selecting the solution rather than one provided by
the competitors were discovered. We also organized two workshops with the
practitioners to clarify the preliminary findings from the interviews. The workshops
were recorded and transcribed. In addition to the transcribed data, the researchers wrote
notes during the workshops.

 Transformations of a Solution Strategy: A Case Study 145

3.4 Data Analysis and Threats to Validity

The authors’ pre-understanding of the research topic was utilized at first. The authors’
had a wide-ranging prior knowledge of the topic, as three of the authors have worked
at the case study company and the research group has been cooperating with the
company on research for over six years. Throughout the study period, in particular,
one author has been an executive member of the company and another author has
participated in the business development of the solution. We utilized two research
schemas to structure the pre-understanding. Firstly, we applied the three tiers of
noncustomers [14] to analyze a case study market in 2001 and 2010. Potential
customers of the intrusion prevention and content security solutions were categorized
into three groups to describe the market and competition at these two times. Secondly,
the strategy matrix [13] was used to identify the types of solution strategies followed
by the company during 2001 and 2010.

The data collected from the archival records were carefully analyzed to enhance
the preliminary findings. In particular, the data collected in relation to customers and
solution development from the different periods of time were classified based on the
four strategy matrix elements. After the classification, the rationale for each
recognized solution strategy was identified. Next, the transcripts and notes from
interviews and workshops were investigated to add details to the findings, and to
format the key lessons learned from each of the four solution strategies. Finally, four
of the company’s key management personnel validated the findings.

The four strategy matrix elements [13] provided challenges for two reasons.
Firstly, the strategy matrix elements consist of only one chain of customers.
Therefore, we needed to decide that the potential and/or existing customer was a
direct customer, an ISP, and to ignore the customers’ customers, the consumers. On
the other hand, the role of the customers’ customers and information from them was
used to identify the rationale behind why the case study changed the solution strategy
over time. Secondly, the strategy matrix element known as the new business strategy
was ambiguously defined as, “entering uncharted territory where the company cannot
capitalize on any existing strength” which is hardly possible in practice. For instance,
a company that is going for an uncharted territory might require, at least, its existing
business management competence. We used market and technology uncertainties as
classifiers to draw a clear distinction between the four strategy matrix elements [22].
As a result, the new business strategy meant developing and providing a new type of
solution (including a high level of technology uncertainty) to a new type of customer
segment (including a high level of market uncertainty). The same analogy was also
used to clarify the definitions of three other strategy matrix elements. Moreover, it
was also necessary to consider whether the new solution development affected the
pricing of the solution in order to distinguish between share building and line
extension strategies.

A threat to construct validity was the possibility of not being able to correctly
collect and analyze the data related to the research question [18]. If the threat appears
to be valid, our findings do not represent the reality of the changes to the solution
strategy in the case study company. Therefore, we used triangulation of data sources
and data collection techniques to reduce the threat. In addition, two key informants
from the case study company and a researcher validated the findings several times to

146 M. Komssi et al.

reduce the bias of a single researcher. A threat to external validity is evident in a
single case study. However, we improved the possibility of our findings being useful
to other software organizations by comparing them to related studies [3, 15] and
providing contextual market and competition situation information from different
periods of time.

4 Non-customers in the Market Evolvement

In this paper, the case study market is made up of existing or potential Internet users
who have considered, or will consider, acquiring anti-virus and/or intrusion prevention
solutions. In 2001, the case study market was growing very rapidly as households
increasingly began to acquire their first broadband connections. The three tiers of non-
customers are used to illustrate the case study market during that time (see Figure 3).

Fig. 3. Consumer market in the anti-virus and intrusion prevention field in the year 2001

First Tier: Potential and existing Internet users who were rather conscious of security
threats and solutions. The first tier describes the consumers who purchased security
products as CD-boxes from the retail stores, or over the Internet from a security
product vendor. The consumers valued the product’s price and features as well as
being influenced by magazine reviews and the recommendations from the salesperson
at the retail store or a trusted friend. There was tough competition in the first tier. For
instance, it was typical to see account wars between the software vendors to get deals
with wholesale dealers, agents/suppliers, and large retail stores.

Second Tier: Potential and existing Internet users who did not pay for security
solutions. The second tier portrays consumers who did not purchase any security
solution. For instance, they did not care about security, they perceived the security of
their operating system to be good enough, or they used illegal solutions. In addition,
the second tier also includes advanced computer users, who used open source /
freeware solutions. Open source solutions began to emerge at that time. However,
vendors of existing security products had difficulties in finding a business model to
profitably leverage the second tier. In fact, providing security solutions “for free”
might have cannibalized their current business.

 Transformations of a Solution Strategy: A Case Study 147

Third Tier: Potential broadband users who just wanted to use network safely. The
third tier illustrates a very large set of households potentially purchasing their first
broadband connections in 2001. These households typically did not include advanced
users. These consumers valued convenience over technical details and product
features. A large proportion of these consumers were not even aware of security
threats. The optimal moment to increase their awareness of security threats and
solutions seemed to be while they were negotiating broadband services with an
Internet service provider (ISP).

In 2001, F-Secure launched a novel solution called Security as a Service, which
aimed to meet the demands of consumers in the third tier. F-Secure hosted a
customized security service that an ISP offered as a complement to its broadband
services. The ISP was only involved in selling and billing the service and providing
first-level support for consumers. In a broadband selling situation, a buyer (consumer)
was able to gain an awareness of security needs and solutions as a complement to the
broadband offering. The buyer perceived security as a natural and convenient part of a
broadband offering. Mainly because of this SaaS solution, F-Secure was the fastest-
growing publicly listed software security company for over four years in a row.

Less than two years after the launch, the third tier was the fastest-growing business
area in the field of software security. Not surprisingly, the competitors had noticed
the business area and had begun to address the same market segment. As a result, the
characteristics of the original third tier began to resemble the original first tier. In
other words, the original “unexplored non-customers” in the third tier were soon
known to the every security vendor and the competition rapidly increased.

Figure 4 illustrates the situation in 2010. The original third tier has migrated to
become part of the first tier. Consumers purchasing anti-virus and intrusion
prevention solutions either as CD-boxes or as a service through ISPs both belong to
the first tier. In particular, the business area of providing security as a service to
consumers through ISPs has been subject to tough competition for years, in the same
way as the traditional product business. In contrast, the second tier has not changed
over time. While the number of users and providers of open source solutions has
grown, the second tier has not been subject to tough competition. The major software
security vendors do not yet have a strategic focus on open source solutions.

Fig. 4. The original third tier has migrated to form a part of the original first tier in year 2010

148 M. Komssi et al.

The future outlook for the second and third tiers is uncertain in 2010. For instance,
“free” anti-virus solutions for consumers are of a good quality nowadays as the
providers of these solutions aim to build a trusted brand at first, and then sell similar
security solutions to companies. Moreover, Microsoft is providing security solutions
for free. Therefore, the second tier may grow in the future, to the detriment of the first
tier. The third tier may consist of digital home consumers who use, or will purchase,
for instance, a variety of household appliances with broadband connections, such as
Web TVs and game consoles. No major software vendor has launched a very
profitable security solution to this market segment of digital home consumers. In
addition, the number of new operating systems and platforms are increasing, due to
mobile tablets, for instance.

5 Changes in the Strategy Matrix

The solution strategy of Security as a Service for consumers has transformed
considerably between the years 2001 and 2010, as illustrated in Table 2. Using the
terms of Scheuing and Johnson [13], the strategy variations have been: 1) new business
(2001), 2) market extension (2003), 3) share building (2005), and 4) line extension
(2008).

Table 2. Variations in the solution strategy between the years 2001 and 2010

 Markets
Offering

Existing
customers

Potential
customers

Existing
services

2005: Improving the existing solution
and selling it to the existing customers
(by leveraging the potential customers’
customers)

2003: Improving the existing
solution and selling it to ISPs
worldwide

New
services

2008: Developing new services and
selling them to existing customers (by
leveraging the existing and potential
customers’ customers)

2001: Developing and piloting
new services and software
technology to be consistent with
a new business model

The new business strategy was required to commercialize a novel solution. In
2001, the company invested in developing a new solution to correspond to a novel
business model. For instance, the new solution involved a different pricing model and
chain of customers than traditional consumer products. Ari Hyppönen, the former
CTO, recalled: “It is not really a technological innovation but a business model
innovation and this is where I would say that F-Secure's strategic advantage has
been. We have been able to innovate in the way we provide the solution, not only in
the way the solution works.” In 2001, the company did not only develop a new
software platform, but also new services such as billing support, as part of the
offering to the ISPs. New solution development and commercialization included
piloting with a domestic ISP partner.

 Transformations of a Solution Strategy: A Case Study 149

The market extension strategy aimed at internationalizing the solution. After the
successful piloting and first partnership deals with ISPs in nearby European countries,
the strategy shifted from new business to market extension in 2003. The strategic
focus was to build partnerships with new customers all over Europe, and later
worldwide. ISPs formed the first chain of potential customers, and the second chain
was their potential customers (consumers). The key target customers were major ISPs.
In other words, the strategic focus was primarily to gain ISP partners globally, and
then to help them sell a complementary solution to their new customers.

The share building strategy sharpened the implementation of value proposition.
In 2005, the competition had become intense. On one hand, the company had a
competitive advantage, as they had the longest experience in providing the services to
ISPs. On the other hand, the competitors were bridging the gap, and this made it more
difficult for the company to get partnership deals with new ISPs. Therefore, the
strategy changed from market extension to share building. In practice, the company
invested in actions that increased customer loyalty and the revenue shared with the
customer. The key value proposition of the solution was to increase the loyalty of
customers’ customers while maximizing profits. The strategic focus pushed to
develop and improve sales process and marketing support, with the aim of increasing
sales by customers to their customers. The revenue growth was derived from the
potential customers of ISPs, while the existing customers of ISPs were not excluded.
The company began to pay more attention to understanding the reasons why some of
the customers’ customers were disloyal. All in all, the company focused on keeping
the existing customers happy and on growing with them. These investments in the
implementation of value proposition also promoted an increase in the number of ISP
partners.

The line extension strategy aimed at leveraging the current customer base in new
solution development. In 2008, the business domain of providing security as a
service to consumers was already mature. The ISP market had become crowded, as
almost all of the major ISPs had a partnership with a software security vendor.
Because of the tough market situation, on one hand, the company kept focusing on
their existing customers. On the other hand, the company’s strategy and slogan were
changed to preserve the company’s future growth. The corporate strategy directed the
transformation of the solution strategy from share building to line extension. The
company invested in acquiring new technology and in the development of new
solutions to provide storage as a service, such as online backup, to existing
customers. The company has proclaimed to its investors that the current customer
base (including customers’ customers) is a valuable asset for the line extension
strategy that provides growth opportunities. The company’s financial report from the
third quarter of 2010 states, “The company currently has more than 200 partners in
over 40 countries with an addressable market of over 70 million broadband consumer
customers. F-Secure has not lost any of its existing partnerships”. According to the
informants, it is crucial to understand the daily processes of both customers / partners
and customers’ customers in order to successfully leverage the customer base.

150 M. Komssi et al.

6 Discussion

This paper has sought to answer how the solution strategy evolved during the life-
cycle of the software solution. The retrospective case study analyzed the solution
strategy of Security as a Service for consumers against the strategy matrix [13]. The
key finding of the study is that the solution strategy has gone through all four stages
of the strategy matrix within nine years. The shifts in the solution strategy were
critical in order to ensure sustainable growth in the revenue of the solution.

Our findings present an example of a sequential path for altering a software
solution strategy in the mass-consumer market over time. Firstly, we illustrated the
market situation in 2001 that provided a window of opportunity for the new business
strategy of the case study company. Secondly, it was found to be beneficial to
transform the solution strategy from new business to market extension, in order to
internationalize the solution. Thirdly, it was found that the shift to the share building
strategy was beneficial in closing relationships with existing customers and, in
particular, further implementing the value proposition. Finally, the transition to line
extension leveraged the current customer base in the development of a new solution.

The point at which the solution strategy should be transformed is not obvious, and
neither is the direction it should take. F-Secure could have chosen to follow another
path in the variations of solution strategy or to make the changes at different times.
The initial extension from a small domestic market into a large international market
was an obvious decision. However, as the next step, the company could have moved
from market extension to line extension instead of sharing the building strategy or
continuing with the market extension strategy. These alternative decisions might have
resulted in the loss of some of its existing partnerships, while providing other
competitive advantages, such as new (types of) partners or services. However, we
believe that the actual transformation to sharing building strategy was correct and was
performed early enough. The shift sharpened the implementation of value proposition
and promoted the loyalty of the exiting customers/partners. Retention rate is certainly
one of the most critical variables for management to focus on, as it is much more
expensive to acquire new customers than to keep and serve existing ones [23].

Our findings indicate that the key drivers of the strategic changes were competition
and growth potential. Eventually, the tough competition in the mass-consumer market
led to a situation whereby existing customers and their customers provided better
opportunities for the solution’s revenue generation than did new customers. Similarly,
a recent study by Claudio and Marchi [3] pointed out that mobile phone
manufacturers have radically transformed their solution/product strategy over the
industry life cycle. They reported that the key drivers for change have been the
intense competition and rapid changes in technology and mass-consumer preferences.
This implies that software companies, which operate in the mass markets, must
carefully follow the evolution of the competition and the market and react
accordingly. Actually, it is recommended to define a monitoring plan to detect any
undertakings by competitors that could alter the solution strategy [2].

Our study also explained how the solution life cycle went from the exploratory
stage to the growth stage, and then to the mature stage. The tough competition made it

 Transformations of a Solution Strategy: A Case Study 151

increasingly difficult for F-Secure to maintain growth in the revenue of the solution.
Therefore, the vital question for the management was how to sustain the growth,
especially in the mature stage. The answer was to focus on the customers’ customers.
In fact, our findings indicate that the customers’ customers can provide huge
opportunities for growth. Our case study company has been able to address over 70
million customers’ customers through just over 200 partners/customers. Grönroos
[24] has also emphasized the role of customers’ customers in extending the network
of relationships. However, shifting the focus from the customers to their customers
may bring new challenges. Our previous study found that the balance between the
customer and the customers’ customers requires special attention [7]. The study
highlighted the fact that the company has to be aware of the needs of the whole
customer chain. Our findings underline that the company needs to keep a careful eye
on the daily business processes of both customers and the customers’ customers.

The three tiers of non-customers [14] were used to illustrate the changes in the
market and competition. The third tier of non-customers, which were potential
broadband users who just wanted to use the network safely, was found to be a novel
market. As the market soon faced heavy competition, it became part of the first tier. It
seems that the shift from the third tier to the first tier characterizes the market
evolvement and competition in mass-consumer markets. A similar example is the
target market of Nintendo Wii, which was people who do not play video games; this
also originally represented the third tier [16]. Four years after the successful release of
Nintendo Wii, it is quite obvious that Nintendo’s competitors are addressing the same
market with their solutions; namely, with Playstation Move and Kinect. In other
words, the third tier has become part of the first tier, as in our case. This paper
suggests using the three tiers of non-customers to periodically describe potential
customers in a mass-consumer market.

There may be some challenges when attempting to describe the changes of solution
strategy with the strategy matrix [13] for a solution similar to our case. Firstly,
without adaptations, the strategy matrix may provide a limited view of target
customers. In mass-consumer market segments, the delivery of a solution to the end-
customer typically involves a chain of customers/stakeholders. Therefore, just
considering whether to focus on existing or new customers is not enough in the
solution strategy. The managers need to determine the whole customer chain and
prioritize the importance of each chain. The importance of each chain may also
change during the life cycle of the solution, like it did in our study. Secondly, it is not
clear whether the solution strategy should focus on only one or many options of
strategy matrix at a time. For instance, a technopark company leveraged all four
strategy matrix options concurrently for a service concept [15]. However, a single
dominating option can provide a clear spotlight for the solution development teams.
Moreover, pushing for a single denominator is likely to create better insights for the
management team than letting themselves off with three or four denominators [25].
Therefore, the management should periodically decide and communicate the
dominating option of the strategy matrix in order to crystallize the current solution
strategy. Our findings provide insights into the advantages that each of the four
strategy options can offer in the different stages of the solution’s life cycle.

152 M. Komssi et al.

7 Conclusions

This paper presents the findings from the evolution of the software solution strategy
between 2001 and 2010. Our retrospective study discovered that the solution first
created a new mass-consumer market that grew and soon became mature.
Consequently, the main finding of the study is that the solution strategy has gone
through four different stages, each of which contributes to achieving a competitive
advantage in the different phases of the solution’s life cycle. The stages of the
solution strategy differed in terms of whether the focus was on existing or new
services offered to potential or new customers. Our findings indicate that customers’
customers are crucial for growth opportunities, particularly when the original market
has become mature.

This study presents the results from the analysis of the changes that occurred in the
solution strategy over a period of nine years. In the future, it would be interesting to
compare the transformations of solution strategies in different types of business
domains. In addition, because the changes in the solution strategy must remain
faithful to the company’s strategy and resources, it is worthwhile studying how to
continuously link the solution strategy to the corporate strategy and portfolio
management. Also, the links between the solution strategy and requirements
engineering practices need to be studied further. Finally, as the customers’ customers
were found to be a valuable asset for the development of new solutions, the challenge
of improving ideas related to eliciting and analyzing the customers’ customers’ data
seems to be a promising new research avenue.

References

1. Christensen, C.M., Suáres, F.F., Utterback, J.M.: Strategies for Survival in Fast-Changing
Industries. Management Science 44(12), 207–220 (1998)

2. McGrath, M.E.: Product Strategy for High-Technology Companies, 2nd edn. McGraw-
Hill, New York (2001)

3. Giachetti, C., Marchi, G.: Evolution of Firms’ Product Strategy over the Life Cycle of
Technology-Based Industries: A Case Study of the Global Mobile Phone Industry, 1980-
2009. Business History 52(7), 1123–1150 (2010)

4. Karakaya, F., Kerin, R.A.: Impact of Product Life Cycle Stages on Barriers to Entry.
Journal of Strategic Marketing 15(4), 269–280 (2007)

5. Klepper, S.: Industry Life Cycles. Industrial and Corporate Change 6(1), 145–181 (1997)
6. Brereton, P., Budgen, D., Bennett, K., Munro, M., Layzell, P., Macaulay, L., Griffiths, D.,

Stannett, C.: The Future of Software. Communications of the ACM 42(12), 78–84 (1999)
7. Komssi, M., Kauppinen, M., Heiskari, J., Ropponen, M.: Transforming a Software Product

Company into a Service Business: Case Study at F-Secure. In: Proceedings of the 33rd
Annual International Computer Software and Application Conference, COMPSAC, pp.
61–66 (2009)

8. Sharon, A.M., Eschinger, C., Eid, T., Swinehart, H.H., Pang, C., Pring, B.: Market Trends:
Software as a Service, Worldwide, 2008–2013, Update. Gartner, November 4 (2009)

9. Katzmarzik, A.: Product Differentiation for Software-as-a-Service Providers. Business &
Information Systems Engineering 3(1), 19–31 (2011)

 Transformations of a Solution Strategy: A Case Study 153

10. Concha, D., Espadas, J., Romero, D., Molina, A.: The e-HUB evolution: From a Custom
Software Architecture to a Software-as-a-Service implementation. Computers in
Industry 61(2), 145–151 (2010)

11. Lassila, A.: Taking a Service-Oriented Perspective on Software Business: How to Move
from Product Business to Online Service Business. IADIS International Journal on
WWW/Internet 4(1), 70–82 (2006)

12. Lehtola, L., Kauppinen, M., Vähäniitty, J., Komssi, M.: Linking Business and
Requirements Engineering: Is Solution Planning a Missing Activity in Software Product
Companies? Requirements Engineering 14(2), 113–128 (2009)

13. Scheuing, E.E., Johnson, E.M.: A Proposed Model for New Service Development. Journal
of Services Marketing 3(1), 25–34 (1989)

14. Kim, W.C., Mauborgne, R.: Blue Ocean Strategy. HBS Press (2005)
15. Kaartemo, V., Peltola, K.K.: New Service Development in an International Context: a

Case Study of a Finnish Technopark Company in Russia. International Journal of Business
Excellence 2(3-4), 338–401 (2009)

16. Ziesak, J.: Wii Innovate - How Nintendo Created a New Market through the Strategic
Innovation. GRIN Verlag (2009)

17. Bozeman, B., Kingsley, G.: R&D Value Mapping: A New Approach to Case Study-Based
Evaluation. Journal of Technology Transfer 22(2), 33–41 (1997)

18. Yin, R.K.: Case Study Research – Design and Methods, 3rd edn. Sage Publications Inc.,
Thousand Oaks (2003)

19. Gummesson, E.: Qualitative Methods in Management Research, 2nd edn. Sage
Publications Inc., Thousand Oaks (2000)

20. Patton, M.Q.: Qualitative Research and Evaluation Methods, 3rd edn. Sage Publications
Inc., Thousand Oaks (2002)

21. Internet Achieve WayBackMachine,
http://web.archive.org/web/*/ http://www.f-secure.com

22. Macmillan, I.C., McGrath, R.G.: Crafting R&D Project Portfolios. Research Technology
Management 45(5), 48–60 (2002)

23. Gupta, S., Lehmann, D., Stuart, J.A.: Valuing Customers. Journal of Marketing
Research 41(1), 7–18 (2004)

24. Grönroos, C.: The Relationship Marketing Process: Communication, Interaction, Dialogue,
Value. Journal of Business & Industrial Marketing 19(2), 99–113 (2004)

25. Collins, J.: Good to Great: Why Some Companies Make the Leap ... and Others Don’t.
Collins (2001)

The Sun also Sets: Ending the Life of a Software Product

Slinger Jansen1, Karl Michael Popp2, and Peter Buxmann3

1 Utrecht University, Utrecht, the Netherlands
s.jansen@cs.uu.nl

2 SAP AG, Waldorf, Germany
karl.michael.popp@sap.com

3 Darmstadt University of Technology, Darmstadt, Germany
buxmann@is.tu-darmstadt.de

Abstract. Sunsetting a software product is a painful and frustrating process,
whether it happens in times of crisis or in an organized and planned manner.
It is surprising that little information is available on how to perform sunsetting
and it appears to be a blind spot in software product management literature. This
paper describes the sunsetting method and provides practitioners with a well-
defined process of how software products must be taken out of development,
maintenance, and finally use. With the sunsetting method, product managers will
have as little trouble as possible based on the experiences of others. The process
description is elaborated using a method description. Furthermore, three retro-
spective case studies have been conducted to evaluate the method.

Keywords: sunsetting, product software, end-of-life, method engineering.

1 Introduction

We define sunsetting as the process of planning and executing the end-of-life of a soft-
ware product that is currently in use by customers and maintained by a software produc-
ing organization. The end-of-life of a software product describes the point after which
the product is no longer maintained or supported by the manufacturer of the software
product. Phase-out is an alternative term for sunsetting. Sunsetting is actually part of
the portfolio management process.

Portfolio management is defined as the strategic decision process, whereby a busi-
ness portfolio is constantly updated and revised in order to meet business objectives [1].
In the context of software vendors, the aim of portfolio management is to get the most
out of a companys investments and products [2]. Good portfolio management requires
close oversight, constant review of historical and current performance, and the courage
to rebalance and rationalize the portfolio when necessary while aligning your actions
with the overall strategy of the organization [3]. Basically, product phase-out is part of
the continuous assessment that a software product manager undertakes when evaluating
the product portfolio.

In a time of double-digit growth in the software industry, it may seem illogical to ad-
dress the death of a software product. Why would one wish to phase out an unsuccessful
product when there is always the chance that a customer might order it, or orders extra

B. Regnell, I. van de Weerd, and O. De Troyer (Eds.): ICSOB 2011, LNBIP 80, pp. 154–167, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

The Sun also Sets: Ending the Life of a Software Product 155

licenses out of the blue? As more experienced software product and portfolio managers
know, there are many reasons to do so. These reasons are found in three categories,
being product strategy, platform changes, and portfolio decisions [4,5].

In regards to product strategy, there are simple reasons such as release deprecation
(e.g. a software vendor only supports the last two minor releases) and a lack of demand
for the product. Another reason may be that maintenance becomes too expensive, i.e.,
upkeep for multiple products is too expensive for one company, or when developers for
a technical platform become too scarce. It must be noted that a products life expectancy
and potential profitability is more relevant than current profitability. If a product is suc-
cessful presently, but will be hard to monetize in a couple of years because the product is
no longer needed or based on technology that will become outdated soon, it can become
a candidate for discontinuation.

The platform on which the product is built can also change the course of a products
lifecycle. If a new release is made of the underlying technology, for instance the op-
erating system as a basis for applications, the product owner has to decide when the
releases of the product based on the older platform are no longer required to maintain a
healthy business. Another platform on which the product depends might be a database
system. If a database system is phased out, the product needs to evolve as well, or be
phased out as well.

Finally, there may be portfolio decisions that end the life of a product. A product
may be an inferior duplicate to another product, or a product may be outdated. Another
reason may be that the product is no longer profitable or even performing badly in
such a manner that it is causing harm to the software vendors reputation. Finally, legal
constraints may force a product owner to kill off a product. These legal constraints may
be that the company has formed a monopoly and is forced to reduce specific activities,
or that intellectual property laws are broken by the product.

There are several factors that influence the ideal moment, with the least damage to
the company, to end the life of a software product. Environmental influences, such as
the entrance of a new standard or the introduction of regulatory requirements, such
as XBRL-based reporting (a universal standard that allows for automatic processing
of business accounting data), may mark such an ideal moment. Also, please note that
there is a difference between ending the life of a product all-together and ending its life
as a customer of an application [6], even though these processes have many things in
common, such as changing customer needs, technical change, regulatory change, and
competitive change.

To further illustrate, we take the example of Microsoft when it ends the life of one
of its own products, by taking a closer look at one of the Windows versions. Microsoft
publishes three dates to customers for each version of the Windows operating system
in regards to sales, being the date of general availability, retail end of sales, and the
end of sales for PCs with Windows version pre-installed. Furthermore, three dates are
published in regards to support, being the publication of the latest service pack, the end
of mainstream support date, and the end of extended (paid) support date. Obviously,
for some organizations a major operating system upgrade is a huge undertaking, in
terms of system maintenance (imagine an organization with over 5000 workstations),
in terms of system compatibility (organizations easily have over 10,000s of applications

156 S. Jansen, K.M. Popp, and P. Buxmann

of which many are compatible with one version of Windows only), and in terms of in-
vestment (hardware may be outdated, the upgrade will involve acquiring new licenses).
An interesting detail of Microsoft’s terms of service is that pre-installed deployments
of Windows sometimes have downgrade rights, enabling the customer to downgrade to
a previous version of Windows that is compatible with the other Windows versions in
the organization.

We continue this paper by describing the research method in section 3. The research
method is followed by a decomposition of the interactions between software vendor and
customer in section 2, to illustrate what type of agreements need to be dismantled when
ending the life of a software product. In section 4 the product software discontinuation
method is presented and described in detail. Section 5 continues with the description of
three case studies that illustrate the method and show the intricacies of the sunsetting
process. Finally, in section 6, the conclusions are derived and discussed.

2 Decomposing Sunsetting

We now provide a further explanation of the complex operation of sunsetting. This
paper looks specifically at on-premise software, which is provided from a software
vendor to the customer. For the sake of simplification, let us assume a simple, direct
relationship between the software vendor and the customer. In this case, sunsetting is
like rolling back a distributed transaction between the software vendor and a customer.
This distributed transaction can be divided into three subtransactions: Provide software,
Provide maintenance and Provide support. While rolling back this transaction and its
three subtransactions seem simple, the next level of detail shows that there are sub-
transactions that cannot be rolled back. They need compensating transactions and thus
introduce complexity and efforts into the process of sunsetting solutions. Another factor
for adding complexity and efforts is customer lock-in.

Provide software - The transaction Provide software is divided into the subtransactions
Provide a copy of the software, Transfer usage rights and Provide license key. The first
transaction Provide a copy of the software can be easily rolled back if the customer has
a time limited license. The customer just has to give back the copy of the software at the
end of the license term. If the customer has a perpetual license, the customer can keep
the copy of the software. The second transaction Transfer usage rights cannot be rolled
back in a simple manner. Based on the contract terms, the customer can keep the usage
rights, the usage rights can end. If the customer has perpetual usage rights, he needs to
get usage rights on a software product that replaces the sunsetted product.

Replacing the sunsetted software product introduces more complexity and effort for
the software vendor and the customer. Replacing a sunsetted software product with a
new software product means that the results of activities that have gone into installing,
implementing, maintaining and running the software cannot be rolled back and usually
carry high sunk cost. A compensating transaction has to collect the results of these ac-
tivities and migrate these results into a new software product that replaces the sunsetted
product. Simple examples for these results are customer data or customer specific exten-
sions of the software product. How this replacement is properly planned and executed

The Sun also Sets: Ending the Life of a Software Product 157

will be covered later in this paper. The third transaction Provide license key follows the
same logic of rolling back as Transfer usage rights.

Provide maintenance - Provide maintenance is divided into subtransactions Provide
new release, Provide new version and Provide bugfix. Over time, the customer is served
by multiple executions of these subtransactions. At a certain point in time, the customer
arrives at a combination of release, version and bugfix. In the case of replacement of
sunsetted product, the customer needs a replacement of exactly the combination of re-
lease, version and bugfix he is currently running. This shows additional complexity in
replacing sunsetted software, since each of the customers might have a specific com-
bination that might differ from the combination each other customers have. Numerous
instances of these transactions have been executed and have lead to the current system
landscape at the customer.

Provide support - The third high-level transaction is Provide support, which aims at
providing resolutions or workarounds for customer issues with the software. Each of
the transactions was executed several times. The result of the transactions is a customer
specific set of resolutions or workarounds. The transactions do not have to be rolled
back.

3 Research Method

The research question of this paper is:

How can a method be created for a product manager to sunset a product (line)?
The research question is answered by applying method engineering in a design re-

search project. Method engineering is used for designing, constructing and adapting
methods, techniques and tools to develop information systems [7]. Design science is an
outcome based information technology research method, which offers specific guide-
lines for evaluation and iteration within research projects [8].

Research Execution - The research consists of three steps. A first version of the method
was created to create a baseline method, based on literature and experience. The method
is evaluated with several experts from the industry (with 15, 15, and 13 years of expe-
rience), who have long-standing experience with retiring and sunsetting software prod-
ucts and product lines. Thirdly, the method is evaluated by doing three exploratory case
studies, to establish that the method is complete. The case studies are listed in table 1
and further discussed in section 5.

Method Engineering - van de Weerd et al. [9] describe a meta-modeling technique
based on UML. This technique depicts a method in a Process-Deliverable Diagram
(PDD). A PDD consists of two parts: a process model (UML activity model) on the
left side and the deliverable model (UML class diagram) on the right side. An exam-
ple PDD is depicted in Figure 1, which models a highly simplified requirements en-
gineering process. On the left-hand side an activity called “Requirements elicitation”
is modeled, which contains the sub-activity “Write requirements document”. The re-
quirements engineer executes the activity. The activity results in a deliverable called
“Requirements Document”, which has several properties. The main reason for using

158 S. Jansen, K.M. Popp, and P. Buxmann

Requirements
elicitation

Write requirements document

Requirements Document

Context
Description
Criteria
Technical sepcificationRequirements

engineer

Fig. 1. Process-data diagram [9]

Table 1. Companies and Products (* age of the software business, the company was established
in 1878)

Case Study Company Phased out product
Identifier # of em-

ploy-
ees/products

Age Location Reasons for phase-out # of em-
ployees in
product
unit

Age

PubComp 18000/40+ 15* Netherlands,
Europe

Out of portfolio scope,
not making targets

120 20

ERPComp 51000/100+ 38 Germany,
world-wide

Redundant, rebranded
product branch, contract
standardization, reduce
maintenance efforts

20 10

ServicesComp 9100/100+ 18 Netherlands,
Europe

Duplicate functionality,
aged technology

135 16

this type of method descriptions is that it enables us to present the sunsetting method
in a structured manner, and enriches the main contribution of this paper from a simple
checklist, to a rich method description that can be reused by practitioners and improved
upon by academics.

The three companies were opportunistically selected, since we had access to board
level management in each of the companies. Each of the companies, however, has a
long experience dealing with large product portfolios and were selected with that rea-
son in mind. Each of the interviewees was working at one of the case companies at
the time. The interviews were undertaken in four steps. First, a general discussion was
had about the organization. Secondly, we discussed the topic of phase-outs, and tried
to establish the interviewees view on the topic, including any previous experiences the
interviewee had with the topic. The interviewees were asked to develop a quick outline
for a method themselves, to see whether they understood the topic and to see whether
their experiences further confirmed the first version of the method. Documentation, if
available, was handed over in regards to product end-of-life. In the third step, the first

The Sun also Sets: Ending the Life of a Software Product 159

version of the method was shown to the interviewees and walked through with the
exact same narration for all interviews. The interviewees were allowed to comment on
the method and all three at some point grabbed a pen to make their own additions and
changes. During step four, an example from the interviewee’s past was taken to see
whether the method was followed in any way.

Three interviews were undertaken, of which two in Dutch and one in English. The
method was always described in English and each term was explained in a glossary,
which the researchers brought to the interview. Interviews took between 100 and 150
minutes. Each of the interviews was recorded. The interviews were conducted by one
researcher only. The results from one of the interviews were checked by a second re-
searcher.

4 The Product Software Discontinuation Method

This section describes the method shown in figure 2. On the left side the method activ-
ities are displayed, on the right side the deliverables created during the execution of the
method are shown. These deliverables are further explained in table 2. The first version
of this method was created from literature, the second version was created based on
three interviews and case studies.

The first version of the method was in part inspired by IEEE std 1074 [10], a pro-
cess standard for the software lifecycle, which provides a concise description of the
retirement process. The description consists of three steps, being “notify user”, “con-
duct parallel operations”, and “retire system”. The “parallel operations” step consists of
using two systems simultaneously, while one of the two is being phased out. The IEEE
standard provides some insight into the retirement process, but does not specifically ad-
dress the challenges a software vendor may experience during a product phase out. The
method was also inspired by several product phase-out overviews from larger software
vendors, such as the Microsoft Windows phase out web pages, the information pages
from SAP about Business Object’s (acquired by SAP) SRC, and the pages from Cisco
about the Quality of Service (QoS) Device Manager Software, which was phased out
over a long period in the previous decade.

Discontinuation Assessment - Any organization that maintains a software product
must regularly assess the viability of its products and product lines, as part of the port-
folio management process. This process consists of reviewing the portfolio plans for
current products, assessing their success, profitability, market size, and growth. When
a product becomes a potential candidate for discontinuation, a customer assessment
needs to be done to establish how important the product is for these customers and how
important these customers are, since discontinuation of the product could mean the ter-
mination of a long-lasting relationship. Finally, a list must be created of all the products
that depend on the product that may be discontinued. In case of discontinuation, the
teams behind all products on the list of dependent products must be informed.

Phase-out Planning - Whenever a phase-out is impending, software vendors need to
evaluate possible alternatives before actually phasing out a software product. There are
several alternatives to phasing out a software product that still ensure continuation of

160 S. Jansen, K.M. Popp, and P. Buxmann

Phase-out
planning

Phase out

Discontinuation
assessment

Perform legal assessment

Perform customer assessment

Create organizational change plan

Pre-phase out

Inform sales department

Make sunset planning

Enter maintenance mode

Inform customers

Product
discontinuation

document

Legal
assessment

Customer
assessment

Organizational
change plan

Sunset/Release plan

End product's life

Create detailed transition template
plan for customers

Review lifecycle and portfolio plans

Review product dependencies

Re-allocate maintenance team

Stop shipping

Establish communication policy

Discontinuation
possible?

No

Yes

Inform organization

Inform resellers

Communication
policy

Transition template
plan for customers

Stop supporting/maintaining

Stop selling licenses

Inform regulatory bodies

Product eulogy

Evaluate alternative option list

Alternative
found?No

Yes

Alternative
option list

Dependent
product list

Fig. 2. Product Software Discontinuation Method (all activities executed by product owner)

The Sun also Sets: Ending the Life of a Software Product 161

Table 2. Concept Table

Concept Name Concept Description
PRODUCT DISCONTINUATION

DOCUMENT

This document describes the complete plan on how to discon-
tinue the product. The creation of the document only expresses
the intent to explore the options for discontinuation and plans
may be discarded after the LEGAL ASSESSMENT and CUS-
TOMER ASSESSMENT have been completed.

CUSTOMER ASSESSMENT The CUSTOMER ASSESSMENT is performed to explore what the
effect will be for customers and how relationships will be al-
tered after discontinuation. The assessment includes a general
assessment and a specific assessment per individual customer.

DEPENDENT PRODUCT LIST The DEPENDENT PRODUCT LIST lists all products that are de-
pendent on the discontinued product and therefore may also
have to be discontinued.

ALTERNATIVE OPTION LIST The list of alternatives provides an overview of alternatives to
discontinuation, such as the sale of the product to a third-party.

LEGAL ASSESSMENT This document describes the legal risks and consequences,
based on the CUSTOMER ASSESSMENT and DEPENDENT

PRODUCT LIST.
ORGANIZATIONAL CHANGE

PLAN

This document describes how the organization will change in
the following period as the product is discontinued.

SUNSET/RELEASE PLAN The SUNSET/RELEASE PLAN describes how the product was
planned to be phased out, if such a plan is available. If not a
sunset plan is created. It is also called a lifecycle plan.

COMMUNICATION POLICY The COMMUNICATION POLICY describes how and especially
when the discontinuation plans are communicated. These doc-
uments are generally sensitive and must be treated so by the
entire organization to avoid leaking.

TRANSITION TEMPLATE FOR

CUSTOMERS

Based on the CUSTOMER ASSESSMENT a TRANSITION TEM-
PLATE is created for each customer group, that can be filled in
by a consultant, as to advise a customer in the transition to (for
instance) a new system.

PRODUCT EULOGY The PRODUCT EULOGY describes what the product was, how
well it performed, and why it was phased out.

the business, although perhaps with different levels of quality of support. The following
list is not exhaustive, but presents some of the alternatives to completely phasing out
the software product:

– Open source - it is possible to establish an open source community that further
supports and maintains the product. This option, if the product is not already open
source, should provide a real alternative, i.e., a sustainable community must be
created that maintains and provides support, and there should not be a contractual
conflict in regards to licenses.

– Management Buy-out - if a product is being maintained by an isolated group of
people within the organization and the product could become more profitable if it

162 S. Jansen, K.M. Popp, and P. Buxmann

did not have to support the parent organization, one option to avoid product phase-
out is to have a group of adequate managers or key people in the product group buy
the product out of the portfolio, and continue as an independent organization.

– Sale - when a product no longer fits the portfolio of an organization, it can be sold
to a third party, along with (parts of) its maintaining organization. Organizations
will generally go to great lengths to sell off a product instead of killing it off. A
common phenomenon is that an organization starts “putting lipstick on the pig”,
i.e., trying to maximize profit and growth numbers to make the product group more
attractive to a potential seller.

Based on the alternatives, an organizational change plan is created and a legal assess-
ment is performed. The organizational change plan establishes how the product discon-
tinuation is implemented in the organization, together with a timeline of events. A legal
assessment is performed as well, to establish the consequences of the different varia-
tions of the plan. The legal implications can be serious, in that contractual obligations
towards customers and partners may need to be altered to accommodate a products
discontinuation.

Pre-phase out - If no alternatives are found, the product will need to be phased out.
To do so, a planning is made that details the steps that are taken in the process. Such
steps include the cessation of maintenance and support of a product, and the last sale
of licenses. One of the most precarious processes of the phase-out is the establishment
of a communication policy, due to the nature of the phase-out process. Phasing out a
software product entails in some cases the complete disbandment of a products main-
taining unit. The impact the discontinuation of a software product can have requires that
a communication policy is set-up that minimizes damage to the organization.

Phase-out - After a phase-out plan has been crafted, the plan must be executed, starting
with the creation of a customer transition plan template, which lists several routes to a
new solution for customers, such as migration to a replacement product. This is a tem-
plate and must be adjusted for each individual customer, since each customer operates
from a unique situation. If the product is still being sold that must be stopped. Further-
more, the product must fully go into maintenance mode, such that no new functionality
is added to the product, with the exception of updating time-sensitive content. Once the
product is in maintenance mode, the communication policy is executed according to
the timeline created earlier. After communicating with all stakeholders that the prod-
uct will be discontinued, a last round of license sales can be done, after which license
sales are ceased as well. As soon as the product legally no longer requires support and
maintenance, these processes can be stopped as well, after which the maintenance team
needs to be re-allocated. Finally, the product is finished, and the product manager or
entrepreneur who has been responsible for the phase-out process, can write a product
eulogy.

Painful Process - The method description does not sufficiently show that the process of
phasing out a software product actually has great consequences for the people working
with it. Think, for instance, of the support engineer who knows every nook and cranny
of the software product, or the user who has configured the product just to her speci-
fications and is described as the wizard of that product by her colleagues. We advise

The Sun also Sets: Ending the Life of a Software Product 163

practitioners to make compromises and be sensitive towards the emotions that surround
legacy products, both in their internal and external communication. By taking it slow
and on-boarding fanatic proponents of the legacy products, transitions may potentially
go much easier.

5 Case Studies

The case studies were performed to provide different examples of how the lives of
products are ended. The cases served as a measure to evaluate the method provided in
figure 2.

5.1 Case Study: Health and Safety Product at PubComp

Context. The HSP (a Health and Safety Product) was a relatively successful prod-
uct that no longer supported the business goals of PubComp, a software vendor in the
Netherlands with a large portfolio. The HSP came up in regular evaluations at PubComp
as being out-of-scope of the product portfolio, and was consistently underperforming.

Process. These evaluations were top-level management evaluations, and were treated as
top-secret, since they deciding on the future of approximately 120 people. After consid-
erable time, a team was identified within the HSP business unit that could potentially
undertake a management buy-out. The HSP team and PubComp agreed to a buy-out
price and strategy. Within 18 months the HSP business unit was functioning indepen-
dently and the formal contract was signed.

Findings. When a management buy-out or the sale of a product to another company
is in sight, some interesting processes start taking place. There are issues with person-
ell, resources, and business unit value determination (although one could argue this is
relevant for ‘regular’ phase-outs as well). Purchasers attempt to find all the things that
could bring the value of the company down, whereas the seller will be tempted to make
the business unit look more successful than it actually is. The sale of a business unit is
a more organic and management-directed transition than a planned phase-out.

Impact on the method. The first version of the method assumed that the end of a life of
a software product always entails the complete ending of sales, support, etc. This first
case already showed that it is rarely the case that the product, whose customers always
represent some kind of business value, is completely phased out without any viable
alternatives for the product (management buy-out or purchase by another company) or
for the customers (in the form of a product alternative, for instance).

5.2 Case Study: Enterprise Resource Planning Product at ERPComp

Context. A large platform provider in Germany has been growing autonomously, for al-
most 40 years. The company has gone through several product sunsets, but availability
of knowledge on these processes within the organization remains scarce. In 2007, ER-
PComp acquired a company that specializes in identity management products and was
aimed to be complementary to the ERP platforms supplied by ERPComp. Throughout

164 S. Jansen, K.M. Popp, and P. Buxmann

the years, ERPComp integrated some of the technological feats that came with the iden-
tity management products into a new identity management platform, thereby making
some of the original products redundant. In 2007 it was decided that the last products
that were still being supported by ERPComp from the acquired company were to be
sunsetted. In total, different versions of six products were to be phased out.

Process. First, an overview was created of the different products that were currently
in use and of how many active customers each of these products had. Secondly, an
overview was created of upgrade and migration routes that could be traveled by cus-
tomers. Part of this overview was a plan that described what happened when a customer
ordered extra support, licenses, or even a new deployment.

Findings. An extra complication was that some of the products had been resold and
rebranded under another label and these also needed to be phased out. Phasing out the
rebranded product proved to be a challenge, since the resellers that sold the rebranded
product also had service contracts with their customers. As soon as ERPComp phased
out the product, the reseller contracts were also ended. Because of this, the customers
of those resellers no longer received support and maintenance. ERPComp solved this
elegantly by timing exactly when these customers would be willingly transitioned from
the reseller to ERPComp.

The phase-out timeline had to be extended twice with one year, because ERPComp
wrongly estimated the availability of consultants that would be needed for each transi-
tion. Furthermore, for some customers it proved to be interesting to extend the mainte-
nance period further, against much higher license costs. A positive observation was that
out of approximately 200 customers, there was no attrition.

Another challenge was that the transition template plan for customers had to be up-
dated, due to the fact that new releases of the replacing platform came out. This had
not been taken into account, and introduced extra cost into the phase-out process. ER-
PComp required support from its ecosystem of partners in phasing out the product. To
gain their support, the partners were informed early of the consequences, and com-
munication protocols were established. Partners were also trained in providing support
during transitions, such that customers could receive support from their preferred part-
ner at the same quality level as ERPComp would provide.

Impact on the method. The role of the communication policy and legal assessment
were further outlined during this case study. ERPComp has many large customers,
which expect the absolute best from their ERP vendor, and are willing to pay for it.
If ERPComp makes any serious changes, a network of customers exists that is powerful
and can litigate if necessary.

5.3 Case Study: Three Municipalities Products at ServicesComp

Context. A large software and services company in the Netherlands has been growing
mostly through acquisitions. Three software producing organizations creating products
for municipalities were acquired in 1996. Each of these software producing organiza-
tions has become a separate business unit of ServicesComp. Two of the products are
complementary, whereas the third product copies up to 70% of the functionality of the
other two. All three products have been developed on older technological platforms

The Sun also Sets: Ending the Life of a Software Product 165

and all three products are currently maintained and marketed separately. ServicesComp
perceives that three business units building similar products is inefficient and an ini-
tiative has been started to build a new best-of-breed product that will replace the other
three. The decision to reduce the inefficiency has been made a long time ago by the
management team of the business division. No structural approach was implemented
at that time at ServiceComp for portfolio management, but at the time of acquisition it
was already clear that the three products had overlap and that a merge would happen
over time.

Product 3

Product 2

Product 1

t

0 1 2 3 4 5

Product X

Fig. 3. Transitioning from Three Products to a New Product

Process. The actual merge has been visualized in Figure 3, which shows how the three
products are phased out and replaced out by a fourth. The two products that are compli-
mentary are phased out first, the third product will be phased out last. ServicesComp has
steady five-year contracts, with yearly extensions after that. It is clear to ServicesComp
when the last contract can potentially be ended, so planning for the merger of the
products is more dependent on development speed than contractual obligations. Ser-
vicesComp looks positively toward the transition of customers from their old products
to the new. To begin with, the transition is a business opportunity for ServicesComp,
who provide a lot of services, and as their competition has made some mistakes in the
past in regards to transition, ServicesComp is unafraid of customers transitioning to an-
other vendor. ServicesComp has indicated that customer research is a major step in a
product discontinuation document, since transitions will go much smoother and entail
less risk if customers perceive the supplier of the original product positively.

Findings. When it was clear that the functionality of the three products would be
merged into product four, the organization prepared a communication protocol. Parts
of this protocol were reused to establish the rules of (potential) customer communica-
tion for sales personnel. ServiceComp used the following elements in this protocol:

166 S. Jansen, K.M. Popp, and P. Buxmann

– Roadmap of product X
– Rough timeline for phase-outs
– Generic features, such as connectivity
– News embargo on product 1, since the planning hadn’t been finalized

The communication protocol was created to ensure customers that service for the prod-
ucts would be continued and discouraged them to look at competing products by de-
scribing the advantages of the new products.

Impact on the method. Again it was confirmed that providing alternative options to
customers is a successful way of retaining them as customers. Furthermore, because
ServicesComp has a mature view on the phase-out process, the case study functioned
as a confirming case to show that the method does not miss any essential steps. None
such steps were found and the second version of the method, as shown in this paper,
could be published.

6 Discussion and Conclusion

The sunsetting process of a software product that has been deployed in the market is
a complex and loaded process. It involves changes to the product portfolio of an orga-
nization, an impact analysis on the company, and structural change in an organization.
The process should not be taken lightly, or mistakes will be made. In our case studies
alone, we found examples of deadlines that were severely delayed, customers that ex-
perienced serious financial damage, and missed business opportunities (not offering a
replacement product, for instance). The method provided in this paper hopefully helps
organizations avoid future problems when ending the life of a software product.

During our research with experts and at companies, it became clear that this topic
is considered sensitive. We have looked for method descriptions, process descriptions,
and phase out plans, and found that these documents were always confidential, if avail-
able at all. We also found that because of its nature, the sunsetting process is generally
performed ad hoc, even if a company is highly experienced in the field. It has become
apparent that case studies and interviews are the best way to develop the method that
has been created during this research.

It may appear that aspects of our approach (take it slow, communicate early, use a
structural approach) are directly opposed to the profit goals of an organization. After
all, if a business unit can be sold off, the sunsetting process is slow and mechanical,
and the seller may feel it is missing out on a great deal. We hypothesize, however, that
a structured approach will lead to less problems along the way and may even uncover
that the life of the product (or business unit) is not yet over or cannot be over, due to
customer lock-in.

In this paper we have focused on ending the life of a software product. It is surpris-
ing how little literature is available about such a meticulous and sensitive process, and
this paper attempts to fill that void. We have defined the process of sunsetting, devised
a method to support the process, and given some hints towards reasons to start sunset-
ting. We hope that practitioners will benefit from our research and that the scientific
community further expands on how and when to sunset a software product.

The Sun also Sets: Ending the Life of a Software Product 167

References

1. Pohl, K., Bckle, G., van der Linden, F.: Software Product Line Engineering (2005)
2. Popp, K.M., Meyer, R.: Profit from Software Ecosystems. Books on Demand GmbH (2010)
3. Haines, S.: The Product Manager’s Desk Reference. McGraw-Hill, New York (2008)
4. van de Weerd, I., Bekkers, W., Brinkkemper, S.: Developing a maturity matrix for software

product management. In: Tyrväinen, P., Jansen, S., Cusumano, M.A. (eds.) ICSOB 2010.
Lecture Notes in Business Information Processing, vol. 51, pp. 76–89. Springer, Heidelberg
(2010)

5. Jansen, S., Brinkkemper, S., Finkelstein, A.: Business Network Management as a Survival
Strategy: A Tale of Two Software Ecosystems. In: Proceedings of the First International
Workshop on Software Ecosystems, vol. (2), pp. 34–48 (2009)

6. Furneaux, B., Wade, M.: The end of the information system life: a model of is discontinu-
ance. SIGMIS Database 41, 45–69 (2010)

7. Brinkkemper, S.: Method engineering: engineering of information systems development,
methods and tools. Information and Software Technology 38, 275–280 (1996)

8. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information Systems
Research. MIS Quarterly 28(1), 75–105 (2004)

9. van de Weerd, I., Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., Bijlsma, L.: On
the creation of a reference framework for software product management: Validation and
tool support. In: Proceedings of the 1st International Workshop on Product Management,
Minneapolis/St. Paul, Minnesota, USA, pp. 3–12 (2006)

10. IEEE Standards Board: IEEE Standard for Developing Software Life Cycle Processes,
IEEE Std 1074-1997 (1997)

Requirements Scoping Visualization for

Project Management

Krzysztof Wnuk1 and David Callele2

1 Department of Computer Science, Lund University, Lund, Sweden
Krzysztof.Wnuk@cs.lth.se

http://www.cs.lth.se
2 Department of Computer Science, University of Saskatchewan,

Saskatchewan, Canada
callele@cs.usask.ca

http://www.cs.usask.ca/

Abstract. Determining requirements process efficiency, and measuring
the corresponding monetary impacts, is a challenging but necessary as-
pect of project management. In this paper, we perform an independent
analysis of scoping decisions from a large industrial project with the goal
of providing visualizations that facilitate investigations of process effi-
ciency, agility, and the effects of scoping decisions. The visualizations
proposed in this paper can be used to analyze scoping dynamics and
support process management decisions on a quantitative rather than a
qualitative basis.

Keywords: Requirements visualization, process evaluation, require-
ments scope, project management.

1 Introduction

In Market-Driven Requirements Engineering (MDRE) [1], the time taken to de-
liver the product to market (and hence the overall release scheduling) is impor-
tant and may strongly affect market success [2]. These time pressures place hard
limits on all aspects of the development effort and force requirements efforts
to be efficient and responsive [3]. Feature leapfrogging [4] between companies
also imposes hard time constrains, which combined with resource constraints
force requirements to be prioritized, with some requirements postponed for later
implementation [5]. The process of selecting a subset of requirements for imme-
diate implementation within a given project is called scoping and is considered
a key activity for achieving economic benefits in product line development [6].
In MDRE, the scope of the project must adapt to competitive pressures and
respond to changing market conditions in a timely manner – making appro-
priate scope decisions is a vital part of developing software systems that meet
stakeholders’ needs and expectations [5,7].

Project management in this context has the goal of delivering a quality prod-
uct within the given resource constraints, with appropriate risk management and
acceptable predictability. Making decisions in a timely manner is fundamental

B. Regnell, I. van de Weerd, and O. De Troyer (Eds.): ICSOB 2011, LNBIP 80, pp. 168–180, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Requirements Scoping Visualization for Project Management 169

for productive software management – unnecessarily delaying decisions can lead
to wasted resources and can place other aspects of the projects at risk due to re-
source constraints [8]. However, as reported by Boehm and Sullivan [9] there is a
“disconnect” between the process of making technical software product decisions
and the value creation criteria of the organizations that develop these products.
Moreover, the growing importance of software in all aspects of successful business
demands better understanding of the relationships between technical properties
of the decisions and the criteria for business value creation. In other words, soft-
ware development should be considered an “investment activity” that aims at
maximizing value creation for the resources invested [9].

Our prior work [10,11,12] showed that in MDRE there is the potential for
the project scope to be constantly changing, or at least be under pressure to do
so, particularly from unanticipated market forces. For example, the last minute
addition of cutting-edge features and technologies to a project can lead to signif-
icant investments in requirements definition and feasibility analysis efforts. The
associated project management risks may include excessive resource allocations
that starve other efforts, destabilizing technologies being added to the product
before they are ready, and even outright project failure. This prior work pro-
posed new visualizations to help to assess the dynamics of scope changes in this
context using a post-mortem analysis perspective.

In this paper, we analyze scoping from a project management perspective and
propose visualizations that support management decision-making. Using the ac-
tion research strategy [13] the second author of this paper, who is an industrial
Project Manager (PM) interested in Decision Support Systems (DSS), reviewed
the previous work with the focus on the financial aspects of requirements engi-
neering and requirements scoping and its implications on efficient project man-
agement. The project manager needs tools that can help him to identify oppor-
tunities for improvement in the process itself and to reduce risk by identifying
wasted resources. As a result of this participatory effort, the following research
questions are stated:

– What factors influence the process of removing features from the scope of
the project? (RQ1)

– What factors influence the late addition of features to the scope of the
project? (RQ2)

This work investigates the acts of adding and removing features from the scope
of a product release; all features under consideration for a release are present
before the scoping process begins. RQ1 identifies opportunities to optimize fea-
ture removal under the premise that, if the feature is to be removed from the
release, then early removal wastes fewer resources. RQ2 investigates late feature
addition to identify opportunities to reduce risks inherent in this decision.

In the remainder of this paper we review the related work and present a
summary of the relevant results from our prior work (Section 2). We discuss the
research approach and data used in this study in Section 3. Section 4 presents new
visualizations that support financial analysis of the scoping process in projects.

170 K. Wnuk and D. Callele

We discuss threats to validity for this study in Section 5 and close with our
conclusions and identification of future work in Section 6.

2 Related Work

Release planning is an integral part of software product management. Multi-
ple releases are considered in a release plan [14] and the selection of the ’right’
requirements for a particular release is normally preceded by requirements pri-
oritization [15,5] and cost estimation [16]. Release planning is performed within
the context of the product and corporate strategies, providing input to the fea-
ture selection process [17,18,19]. The feature selection process is not a trivial
task; dependencies on other features [20] or frequent changes to the scope of the
next release of a project [12] are typical complications. As a result, the selection
process often becomes an uneasy compromise where the development efforts to-
ward some features may need to be sacrificed (at the expense of wasted effort)
in support of other features whose priorities have changed.

Managing this scope complexity is considered one of the core functions of
software release planning and a key activity for achieving economic benefits in
product line development [6]. While the importance of scoping has already been
reported in several studies, most of the research is focused on the domain scoping
aspect and the process of scope identification [6,21]. When looking at product
portfolio scoping [6] most techniques focus on the financial benefits associated
with reuse across the product line [22].

The quantity of information that must be managed for large software projects is
often overwhelming and visualizations can be useful in this context, offering more
dimensions to represent than text [23]. Appropriate visualizations can assist with,
for example, the requirements comprehension problem of gaining a quick assess-
ment of the state of a set of requirements; a task typically impeded by the need to
browse through disjoint textual requirements documentation and accompanying
models [24]. The visualizations presented in our previous work [10,11,12] give a
support assessment of the scoping process for large projects and can also be used
for more in-depth analysis of the details of the scoping process. In [10] the Feature
Survival Chart was introduced and applied to one large industrial project. In [12]
the Feature Survival Chart was complemented with a set of scope tracking mea-
surements while in [11] the Feature Transition Chart technique, designed to cover
scope changes across the projects, was proposed and initially validated. These vi-
sualizations can be extended via metrics such as the volatility of the feature set
and temporal measurements such as the time taken to cancel a feature [12]. In
this paper, we extend the previous work, presenting a new set of visualizations
that aim at supporting project managers in understanding the scoping dynamics
and assess the monetary impact of the visualized scope changes.

3 Research Approach and Data in Context

The analysis performed in this study is based on empirical data from a large
company that develops embedded systems for a global market. The company uses

Requirements Scoping Visualization for Project Management 171

Table 1. The Project Timeline

Milestones Project Analyzed
Elapsed Days Launched May 2007

MS1 0
MS2 98
MS3 143
MS4 203

Table 2. Milestone Criteria

MS1 Potential features are drawn from the long-term roadmap documents. The ini-
tial scope (set of features) is defined and baselined. The scope is then docu-
mented and updated after the weekly meeting of the Change Control Board
(CCB). The CCB is responsible for adding or removing features from the
project plan.

MS2 Features are refined to requirements that are specified, reviewed and approved.
Each feature typically contains ten or more requirements from various areas in
the products. The feature requirements are forwarded to the design teams who
return updated effort estimates.

MS3 Requirements are updated as necessary (based on design team feedback) and
the effort estimates are refined.

MS4 The requirements work and design are finished. The final project scope has
been negotiated with the development resources and the project is ready to
start implementation.

the software product line approach [25] based upon a common code base (referred
to here as the platform) for the product line. A platform project follows the
stage-gate model [26] with several increments; Milestones (MSs) and Tollgates
(TGs) are used to control the project progress. In particular, there are four
milestones for requirements management and design before the implementation
starts: MS1 through MS4. The scope of a given project is based on a unit called a
feature, a group of requirements that constitute a functional enhancement to the
platform. At the beginning of a project, the feature definition typically contains
a functional description and estimates of market value and development effort.
To cancel or descope a feature in this context means to permanently remove the
feature from the project plan. The discussions in this paper focus on activity
within a current project, features re-introduced in a later project are outside of
the scope of this work.

The elapsed time information for the projects used in this work are presented
in Table 1. The milestone criteria are presented in Table 2. We use the same
metrics as in our prior work [12], summarized in Table 3 for convenience.

In this paper we have focused on the top four reasons for feature removal
within the data set. The categories are defined as follows.

– Stakeholder A stakeholder made a business decision to to add or cancel the
feature

172 K. Wnuk and D. Callele

Table 3. Metrics

M1 Number of positive and negative scope changes per time stamp/baseline. A pos-
itive scope change means a feature was added, and a negative scope change
indicates a feature was removed. M1 is not used in the current work and is
only included here for completeness.

M2 Time to feature removal. The time from feature introduction until permanent
removal.

M3 Number of state changes per feature. Number of times that the state of the
feature in the scope was changed. In this work, we do not consider the initial
inclusion to the scope as a scope change.

M4 Time to feature addition. The time from the start of the project until the feature
was added.

M5 Reason for feature removal. A categorical metric focusing on reasons for removal
due to project constraints.

– Resources A feature has been removed due to lack of resources
– Portfolio A feature has been removed due to changes in the product line

portfolio
– Replaced A feature has been replaced by an another feature.

The underlying data sets have been transformed, as necessary, for the purposes
of this paper to ensure that they are logically correct and consistent across the
projects. The analyzed project has 223 features considered during the analysis
period. The project contained features that survived from project inception,
features that were added during the project, and features that were canceled
during the project.

For investigations involving M2, only features that were removed from the
scope were included (120 data points). The values for M3 and M4 were calculated
for all features in the analyzed project; features that survived the cancellation
process were assigned a value of zero to remove them from consideration.

For investigations involving M5, 120 descoping decisions were analyzed and
categorized. The entire set of 120 cancellation decisions was used during the
M2-M5 and M4-M5 correlation analyses. However, some categories such as “de-
pendent on supplier” or “inadequate feature description” contained such a small
number of data points that we focused our analyses on the five categories with
the most data points. Moreover, the normalization of the dataset (for example
to MS4) further limited the datasets. The specific number of data points for
each category is contained in the axis labels (e.g. (7dp) means 7 data points) for
Figures 1, 2, 3 and 4.

4 Visualizations

The following sub-sections present visualizations designed to assist a project
manager in analyzing the requirements scoping process. The visualizations por-
tray the relationships between the (normalized) metric data.

Requirements Scoping Visualization for Project Management 173

The underlying business decisions that generate the data sets are assumed to
be rational in context – the decisions may not be perfect but the decisions were
acceptable in the situation. Under this assumption, if a feature is going to be
canceled, it is less wasteful of resources to cancel the feature sooner than later.
While there may be cases where efforts to promote early feature cancellation
may impede innovation, in this product line process the innovation decisions are
made prior to the studied scenarios and are based on an ROI analysis rather than
technical feasibility. This is not greenfield product development and innovation
is incremental and often small in scope (e.g. a new software feature as compared
to a new hardware platform).

4.1 Interpreting the Visualizations

Box-plots are a non-parametric means for visualizing datasets; they provide
greater insight into the data than a simple average value without making any
assumptions about the distribution of the underlying data – a factor that makes
them particularly useful for smaller data sets.

The box plots used in this work have horizontal bars (whiskers) that identify
the most extreme data points for the population (approximately +/-2.7 σ and
99.3% coverage if the data are normally distributed) that are not considered
outliers; outliers are individually plotted. The box captures the 25% to 75% range
(second and third quartiles) of the data set and the median value is represented
by the horizontal line within the body of the box.

In Figure 1, comparing the plot for the entire dataset to the other plots for
subsets of the dataset, we note that the plot for the Resources category of M5
is similar in size and shape to that for the entire dataset. This shape correlation
identifies resource management as the principle contributor to the long-tail of
the entire dataset. Five possible causes for the tail are identified in Section 4.2,
that may or may not be the cause – the critical factor is that the visualization
helps the Project Manager to immediately understand that they should devote
their attention to resource management as a source of issues related to time to
cancel decisions for this project. In comparison, the time to add issues in Figure 3
are attributable to the stakeholders rather than resources – again directing the
Project Manager’s attention in an appropriate manner.

4.2 The Relationship between the Time to Feature Removal
(M2) and the Reason for Feature Removal (M5) - Addressing
Research Question RQ1

The data set was partitioned based on the Reason for Descope of the feature
and the resulting temporal distributions (normalized to MS4) of the top four
categories for M5 are presented as box-whisker plots in Figure 1. We see that
approximately 40% of the features (29/72) were removed as a result of a stake-
holder business decision with the mean time to feature removal (as a result of a
stakeholder business decision) approximately 10% of the way into the final mile-
stone of the requirements management process. These characteristics indicate
that the feature list was pruned relatively aggressively and relatively quickly.

174 K. Wnuk and D. Callele

Fig. 1. The Relationship between the time to feature removal (M2) and the reason for
feature removal (M5), normalized to MS4

In contrast, approximately 50% of the features (median line of the Resources
box in the plot) were removed from scope due to lack of resources by approxi-
mately 30% of the way to MS4. However, some features were not removed until
almost the end of the project. This is a matter for concern to a project manager
for it may be evidence that one or more of the following statements are true
(this list is only exemplary and not exhaustive):

– There are difficulties estimating the scope (effort) required for a feature.
– There are difficulties determining what resources are available.
– There are difficulties estimating the contributions of the available resources.
– There are difficulties matching the available resources to the features

(resource mismatch).
– The business process (algorithm) used to make the decisions may need

improvement.

Simplistically, from the project manager’s perspective, all features that are can-
celed waste scarce resources. It is imperative to make the keep/cancel decision
for a feature as soon as possible to minimize this waste. In this regard, the
keep/cancel decision could be considered a form of potential defect detection in
the sense that a canceled feature is a feature that is no longer deemed appropri-
ate for this feature release. As such, the economic benefits are those identified
by Boehm and Basili [27].

Next, the earliest stage of the project was investigated, the time between MS1
and MS2 to see if we could gain any further insight. The data set was partitioned
again and only features that have been removed in the time between MS1 and
MS2 were kept. The resulting data was normalized to MS2 and the results are
shown in Figure 2.

Requirements Scoping Visualization for Project Management 175

Fig. 2. The Relationship between the time to feature removal (M2) and the reason for
feature removal (M5), normalized to MS2

The resulting data represents approximately 76% of the entire data set. We
note that all portfolio changes (8/8), almost all replaced or renamed decisions
(5/6) and most of the stakeholder business decisions (23/29) were made in this
interval. This indicates that the project scope is being reduced in an effective
manner, although portfolio changes and reduced or renamed decisions still lag
the start of the interval by an average value of approximately 50%.

Only 17 of 27 resource decisions were made in this interval, again with an
average delay in excess of 30% of the interval and a tail that extends to the end
of the interval. While the situation is not as challenging as it appeared in Figure
1, there does appear to be evidence that improvements could be made.

4.3 The Relationship between the Time to Feature Addition
(M4) and the Reason for Feature Removal (M5) - Addressing
Rresearch Question RQ2

Figure 3 illustrates the relationship between M4 and M5 for the analyzed project,
normalized to MS4 for this project. We note that the medians for each partition
show significantly greater diversity than those of Figure 1. The average time
to feature introduction was approximately 50% of the timeline. We note that
features introduced in the first half of the projects were predominantly cancelled
due to lack of resources, replaced or renamed, or portfolio changes. Features
introduced after the midpoint were predominantly cancelled as a result of stake-
holder business decisons, although there is a much lesser contribution from a
lack of resources.

Figure 4 illustrates the relationship between M4 and M5 normalized to MS3
for this project. Again, we note that there is significant diversity in the median

176 K. Wnuk and D. Callele

Fig. 3. The Correlation between the Time to feature addition and The Reason for
Cancellation, normalized to MS4 of the project

Fig. 4. The Correlation between the Time to feature addition and The Reason for
Cancellation, normalized to MS3 of the project

values. However, we are cautious of drawing strong conclusions due to the rel-
atively small data set. There is some indication of a relatively binary decision
making process: cancel due to lack of resources or defer to a later date (port-
folio changes + stakeholder business decision). We present this visualization to
draw attention to the challenges faced with analyzing the tails of distributions
in support of management decisions.

Requirements Scoping Visualization for Project Management 177

5 Threats to Validity

In this section, threats to validity are outlined and discussed based on the clas-
sification by Wohlin et al [28]. The causal conclusions drawn from our analyses
were validated in a number of meetings with practitioners who confirmed that
frequent (and sometimes late) scope changes are principally caused by specific
market forces. However, more research is needed to validate the causal influ-
ence of the different reasons for adding and removing features from the scope
of the project. The causal influence for the timing of when the features were in-
cluded or excluded from the scope of the analyzed projects also requires further
investigation.

The proposed visualization do not promote particular reasons for including
or excluding features from the scope of the project. Therefore, researcher bias
toward (or fishing for) a specific justification is minimized. Finally, although the
example visualizations show four main reasons for removing features from the
scope of the project, there is no theoretical limit to the number of attributes that
can be visualized using this technique. As a result, the mono-operation threat
for under-representation of the construct is minimized.

With respect to external validity threats, we would like to emphasize that
while the investigated scenario has been observed in a specific company, using
a specific development paradigm and releasing software products to a specific
market, the identified issues of estimation challenges and changing the scope of
the project are known and reported in the software engineering literature. We
are aware that the approach should be validated in one or more independent
contexts, yet we believe that the presented visualizations have sufficient support
in the current context that they can be applied, with appropriate caution, in
other than studied contexts.

6 Conclusions and Future Work

Software engineering, as an engineering discipline, should be guided by the goal
of value creation, measured in terms that count for the enterprise that is invest-
ing the resources [9]. In order for software systems to best catalyze their potential
for novel value generation, management must maintain a broad perspective to
ensure that investments is software artifacts deliver an acceptable return. In this
context, deciding which requirements to include into the scope of an upcoming
project is crucial for the process of value creation. In a rapidly changing situa-
tion, such as MDRE, the failure to quickly cancel features or projects that new
information shows are unlikely to succeed is a common example of failing to make
a value-optimizing decision [9]. Improving the understanding of the connections
between technical decisions and enterprise-level value maximization will enable
software engineers and managers to make better choices.

In this paper, we present visualizations that emphasize the relationship be-
tween the technical and financial aspects of scoping decisions. Utilizing a par-
ticular industrial example, with rapidly changing context and a high degree of

178 K. Wnuk and D. Callele

uncertainty, we demonstrate methods for analyzing the impact of scoping deci-
sion on the financial aspects of the project and the company (RQ1). The visu-
alizations help to understand the drivers of late scope exclusions and inclusions
and can assist management efforts to control them (RQ2). The results from this
paper support both diagnostic and predictive aspects of decision making [29] and
have been expressed in a manner that supports strategic decision management
for the project.

In future work, we hope to obtain other data sets that will allow us to further
generalize this work. We are particularly interested in investigating whether new
reasons for removing features from the scope of the project, other than those
identified in this work, can be identified as influences on the scoping process. A
larger dataset may enable us to propose a method for minimizing waste incurred
by late scope removal; we are particularly interested in temporal optimizations
based on cost-benefit analysis or return on investment. Formal statistical anal-
yses of the current dataset are in progress; additional datasets are expected to
strengthen the results of these analyses. Finally, the investigation of possible sim-
ilarities between the defect detection and correction process and the associated
costs are considered within the future work agenda.

In the visualization domain, we plan to investigate cost feedback using geom-
etry (such as line thickness proportional to cost) and luminance (proportional
to cost). Cost feedback can also be provided using cost as a function of assessed
(predicted) risk. Finally, further empirical studies are planned that investigate
the utility of the visualizations for other project managers and how the visual-
izations are interpreted by them.

Acknowledgments

This work is supported by VINNOVA (Swedish Agency for Innovation Systems)
within the UPITER project.

References

1. Regnell, B., Brinkkemper, S.: Market–Driven Requirements Engineering for Soft-
ware Products. In: Engineering and Managing Software Requirements, pp. 287–308.
Springer, Heidelberg (2005)

2. Chen, J., Reilly, R.R., Lynn, G.S.: The impacts of speed-to-market on new product
success: the moderating effects of uncertainty. IEEE Transactions on Engineering
Management 52(2), 199–212 (2005)

3. McPhee, C., Eberlein, A.: Requirements engineering for time-to-market projects.
In: Proc. Ninth Annual IEEE Int. Conf. and Workshop on the Eng. of Computer-
Based Systems, pp. 17–24 (2002)

4. Schumpeter, J.: Capitalism, Socialism and Democracy. Harper (1942)
5. Karlsson, J., Ryan, K.: A cost-value approach for prioritizing requirements. IEEE

Software 14(5), 67–74 (1997)
6. Schmid, K.: A comprehensive product line scoping approach and its validation. In:

24th Int. Conf. on Soft. Eng (ICSE 2002), pp. 593–603 (2002)

Requirements Scoping Visualization for Project Management 179

7. Regnell, B., Beremark, P., Eklundh, O.: A market–driven requirements engineer-
ing process – results from an industrial process improvement programme. Require-
ments Engineering Journal 3(2), 121–129 (1998)

8. Institute, P.M.: A Guide To The Project Management Body of Knowledge, 4th
edn. Project Management Institute (2009)

9. Boehm, B., Sullivan, K.: Software economics: a roadmap. In: Proc. of the
Conf. on The Future of Soft. Eng., ICSE 2000, Limerick, Ireland, pp. 319–
343. ACM, New York (2000), http://doi.acm.org/10.1145/336512.336584,
doi:10.1145/336512.336584

10. Wnuk, K., Regnell, B., Karlsson, L.: Visualization of feature survival in platform-
based embedded systems development for improved understanding of scope dynam-
ics. In: Third Int. Workshop on Req. Eng. Visualization (REV 2008), pp. 41–50
(2008)

11. Wnuk, K., Regnell, B., Karlsson, L.: Feature transition charts for visualization of
cross-project scope evolution in large-scale requirements engineering for product
lines. In: Forth Int. Workshop on Req. Eng. Visualization (REV 2009), pp. 89–98
(2009)

12. Wnuk, K., Regnell, B., Karlsson, L.: What happened to our features? visualization
and understanding of scope change dynamics in a large-scale industrial setting. In:
Proc. of the 17th IEEE Int. Req. Eng. Conference (RE 2009), pp. 89–98 (2009)

13. Robson, C.: Real World Research. Blackwell Publishing, Malden (2002)
14. van de Weerd, I., Brinkkemper, S., Nieuwenhui, R., Versendaal, J.A.: A refer-

ence framework for software product management. Technical Report UU-CS, vol.
2006(014), Utrecht (2006)

15. Karlsson, J.: A Systematic Approach for Prioritizing Software Requirements. Doc-
torial Dissertation, PhD thesis, Linköping University, Sweden (1998)

16. Jorgensen, M., Shepperd, M.: A systematic review of software development cost
estimation studies. IEEE Transactions on Software Engineering 33(1), 33–53 (1992)

17. Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Saleem, S.B., Shafique, M.U.:
A systematic review on strategic release planning models. Inf. Softw. Tech-
nol. 52, 237–248 (2010), http://dx.doi.org/10.1016/j.infsof.2009.11.006,
doi:10.1016/j.infsof.2009.11.006

18. Gorschek, T., Gomes, A., Pettersson, A., Torkar, R.: Market-driven requirements
engineering process maturity model. Journal of Software Maintenance tba (tba
2010) (2010)

19. Khurum, M., Gorschek, T.: A systematic review of domain analysis solutions for
product lines. J. Syst. Softw. 82, 1982–2003 (2009), doi:10.1016/j.jss.2009.06.048

20. Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Nattoch Dag, J.: An indus-
trial survey of requirements interdependencies in software product release planning.
In: Proceedings of the Fifth IEEE Int. Symp. on Req. Eng., RE 2001, p. 84. IEEE
Computer Society, Washington, DC, USA (2001)

21. Wiess, D.M., Lai, C.T.R.: Software Product Line Engineering. Addison-Wesley,
Reading (1999)

22. Green, P.E., Krieger, A.M.: Models and heuristics for product line selection. Mar-
keting Science 4(1), 1–19 (1985), http://www.jstor.org/stable/183706

23. Tufte, E.: Envisioning Information. Graphics Press LLC (1990)
24. Gotel, O.C.Z., Marchese, F.T., Morris, S.J.: On requirements visualization. In:

Proc. of the Second Int. Workshop on Req. Eng. Visualization (REV 2007),
pp. 80–89 (2007)

http://doi.acm.org/10.1145/336512.336584
http://dx.doi.org/10.1016/j.infsof.2009.11.006
http://www.jstor.org/stable/183706

180 K. Wnuk and D. Callele

25. Pohl, K., Bockle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, Heidelberg (2005)

26. Cooper, R.G.: Stage-gate systems: A new tool for managing new products. Business
Horizons 33(3), 44–54 (1990)

27. Boehm, B., Basili, V.: Software defect reduction top 10 list. IEEE Computer 34(1),
135–137 (2001)

28. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslen, A.: Exper-
imentation in Software Engineering An Introduction. Kluwer Academic Publishers,
Dordrecht (2000)

29. Pomerol, J.C.: Scenario Development and Practical Decision Making under Un-
certainty: Application to Requirements Engineering. Requirements Engineering 3,
3–4 (1998)

B. Regnell, I. van de Weerd, and O. De Troyer (Eds.): ICSOB 2011, LNBIP 80, pp. 181–186, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Variability-Based Release Planning

Samuel Fricker1 and Susanne Schumacher2

1 Blekinge Institute of Technology, School of Computing
Campus Gräsvik, 371 79 Karlskrona, Sweden

samuel.fricker@bth.se
2 Zurich University of the Arts

Ausstellungsstrasse 60, 8005 Zurich, Switzerland
susanne.schumacher@zhdk.ch

Abstract. A release plan defines the short-term evolution of a software product
in terms of development project scope. In practice, release planning is often
based on just fragmentarily defined requirements. Current release planning ap-
proaches, however, assume that a requirements catalogue is available in the
form of a complete flat list of requirements. This very early commitment to de-
tail reduces the flexibility of a product manager when planning product devel-
opment. This paper explores how variability modeling, a software product line
technique, can be used to plan, communicate, and track the evolution of a single
software. Variability modeling can reduce the number of decisions required for
release planning and reduce the information needed for communicating with
stakeholders. An industrial case motivates and exemplifies the approach.

Keywords: release planning; variability; features.

1 Introduction

Release planning is used to plan the development of software products by allocating
requirements to development projects [1]. Thereby, the evolving product is aligned
with market and stakeholder needs, company objectives, and constraints such as time,
resources, and legacy. Release planning is also a central concern in iterative develop-
ment, where the scope of iterations, rather than projects, is defined [2].

Release planning involves the following steps [3]. Requirements are elicited
and specified based on an understanding of stakeholders, organizational environment,
and culture [4]. That same understanding is a basis for defining criteria [5] to evaluate
and prioritize requirements [6]. The priorities are then used to scope releases by
allocating requirements to development projects. The resulting release plans are
implemented, delivered, and analyzed with post-release reflections [7].

Release planning is challenging in practice because of the typically large number
of requirements [8]. These requirements often are not properly defined and detailed
due to the limited effort that can be invested before a development project is funded.
These challenges contradict with the assumptions taken by current release planning
approaches. For example, requirements catalogues cannot be considered complete or
correct until their effect on solution architecture and project planning has been under-
stood and agreed [9, 10].

182 S. Fricker and S. Schumacher

This paper proposes to ease the release planning problem not by improving priori-
tization algorithms, but by structuring the requirements catalogue. The approach is
based on analyzing variability [11] by utilizing AND, OR, and REQUIRES relation-
ships between requirements [12]. Such variability is a particular form of decision
options [13] utilized to define the scope of product releases.

The approach works with a body of only fragmentarily and vaguely defined re-
quirements and can be used in continuous agile product management processes [14].
Simple abstractions allow incremental aggregation and extension of requirement cata-
logues, hence address the scalability problem [15]. The abstractions further allow
expressing the essence of release decisions to support the dialogue of the product
manager with stakeholders, hence addressing the problem of limited trust that results
from mathematical, black box-oriented prioritization [15].

This paper motivates and describes the variability-based release planning approach.
An industrial case of an organization that transited from flat requirements list-based
release planning to variability-based release planning is used to illustrate the ap-
proach. The paper is structured as follows. Section 2 describes background and moti-
vation. Section 3 introduces variability-based release planning. Section 4 provides a
short discussion and concludes.

2 Background and Motivation

Current release planning approaches require a flat and complete catalogue of require-
ments that are evaluated, prioritized, and selected for implementation [16]. Known
approaches include manual techniques such as top ten, numerical assignment, raking,
and 100$-test [6], and computer-based techniques such as Integer Linear Program-
ming [17] and the Analytical Hierarchy Process [18].

We investigated release planning in a company that offered software as a service
for managing media such as text, sound, pictures, and movies. The product manager
and important stakeholders, henceforth called “release planners”, regularly planned
software releases that corresponded to small and large version increments.

The requirements catalogue was managed in a word processor document and used
as a basis for release planning. It contained 108 requirements. Some of them were
specified with a few words in a declarative manner. Others were specified in detail
with descriptions of up to 245 words. The requirements were grouped into 12 sections
and 19 subsections or themes. The grouping, however, did not show a relationship
with requirements allocation to development releases. In average, a group contained
3.6 requirements and was allocated to 1.93 releases.

Current release planning approaches would have expected the release planners to
evaluate every detailed requirement. For example the planners would have compared
each requirement individually with other requirements by posing questions such as
“are thumbnails of variable sizes (requirement 11.3) more important than storage of
search results (requirement 8.1)?” Such evaluation would have led to detailed evalua-
tion results. However, it also would have increased the risk of losing the understanding
of the big picture and sub-optimizing details irrelevant in the given product evolution
stage.

 Variability-Based Release Planning 183

Considering requirements out of their larger context also would have increased the
risk of misunderstandings: When would thumbnails be shown? For what purpose?
Which sizes? What (photos, videos, documents, etc.) would be depicted by these
thumbnails? It is evident, independent of the applied prioritization technique, that the
lack of a common understanding leads to considerably different interpretations of
criteria such as importance, urgency, dependencies, implementation cost, and risk.

These problems motivated us to indentify alternative release planning approaches
based on the following criteria. Minimalism: release planning should involve as few
decisions as possible to reduce effort and likelihood of errors. Traceability: a release
plan should be traceable to roadmaps to align long-term with short-term planning.
Saliency: a release plan should abstract detail and contain just salient information to
support negotiations and communication. Evolution: a release plan should change to
reflect evolving knowledge and progress.

A solution that respects these criteria moves the release planning problem away
from mathematical optimization towards supporting the dialogue with stakeholders. A
minimal number of release planning decisions enables stakeholders to reflect on alter-
natives, for example by building a mental model of the decision options and by ex-
ploring what-if scenarios. Traceability to roadmaps allows stakeholders to understand
the impact of decisions on their stakes and commitments regarding the software prod-
uct. For example they need to know whether they need and can hold promises given
during long-term planning. Saliency allows focusing on the big picture, e.g. by dis-
cussing just the most important decision-making topics and options during steering
committee meetings and by communicating just the important information for market-
ing purposes. A release plan finally, is in continuous evolution. It is expanded when
new requirements are elicited, refined when solutions are explored, and its status
changed when development progresses.

3 Variability Modeling for Release Planning

Feature trees are a widespread approach to document and analyze variability of soft-
ware products [11]. They are used to specify how features vary for the products of a
product line (variability in space). Applied for release planning, variability models
can be used for defining the evolution of software (variability in time) [19]. How
feature trees are utilized for release planning, has not been researched yet though [1].

The here proposed approach structures requirements with such a feature tree. The
tree’s root refers to the central parts of the solution: the architecture and infrastructure
assets to be developed before value-adding features can be added. The branches cap-
ture variability by referring to features that are enhanced incrementally with extending
sub-features. Each feature groups requirements with an AND relationship [12]. These
requirements are intended to be developed together in the same development incre-
ment. An enhancing feature stands in a REQUIRES relationship with the enhanced
feature. Alternative enhancements stand in an OR relationship.

A product manager constructs a feature tree by first grouping requirements into
coarse features and then building feature vectors [20] that connect the root of the
feature tree with leafs. Feature vectors are built iteratively by extracting requirements
from given features into extending sub-features [21]. The feature vector-building
process stops when no requirements can be extracted without making the concerned
super-feature useless.

184 S. Fricker and S. Schumacher

Media
Management

 Help

 Explore

 Search

 Import

 Edit

 Manage

 Export

 Media
Format

 Filter

 Browse

 Overview

 Fast Search

 Cancel
Upload

 Basic
Import

 Media
Entry

 Basic
Admin Intf

 Trails & Trace

 Snap Shots
 Multi
Language

 Data
Expiration

Improve
nap Shots

 Institution
Independence

 Media
Grouping

 Favorites

 Clipboard

 Sets

 Work
Space

er ME
oups

 Sets of
Sets

cts

 Indexing

 User Roles
 Generic Intf

 MIZ Archive

 Expert

 Admin

 Authorizations

 Workgroup

 AAI
Login

 omniauth
Login

 Web
Download

 ZIP
 API

 Presentation

 My
Everything

 Ha

 Extended
Search

p

 Admin
 Workg

 AAI
Login

 om
Logi

p
g

m

p
g

m
i

Legend
shaded: implemented features.
bold-edged: features selected for
implementation
other: pending features
arrows: REQUIRES relationship

Fig. 1. Extract of the media management solution’s feature tree (notation [21]). Allocation of
requirements to features (AND relationship) not shown

The product manager uses the feature tree for release planning, communication, and
controlling. Initial development starts with the root of the tree. Release planning in-
volves selecting those features that are not implemented yet from those that are con-
nected with already implemented or planned features (connectivity rule). Implementa-
tion progress is documented by tagging features as being implemented. The tree is used
in project status and in steering committee meetings as an instrument to illustrate plans
and progress. Emerging requirements, for example discovered during elicitation activi-
ties or late in the development process, are added to existing non-implemented features
or as new leaf features to the tree.

Figure 1 shows the feature tree that the product manager of the media management
solution created and continuously used for planning, communicating and controlling
implementation progress. Media Management was the root and referred to the basic
software infrastructure. Each node selected for implementation was marked with a bold
edge and the contained requirements were entered into the backlog of the concerned
development increment. The feature Indexing, for example, contained 12 requirements
(AND relationship). The feature Indexing was only selected for implementation after
Media Entry was implemented (REQUIRES relationship). Concluded feature imple-
mentation was marked by shading the corresponding nodes. In an earlier development
stage, Media Entry stood in competition with Basic Admin Intf (OR relationship):
none, one of them, or both features could be implemented as an enhancement of Edit.
The chain Edit ← Media Entry ← Indexing represented one of the feature vectors of
the media management solution.

A major challenge concerned the implementation of the approach. No tools were
available that were integrated into the development environment. Ad-hoc tools were
used instead. The feature tree was specified with diagramming software and the re-
quirements–feature allocation (AND grouping of requirements) with a word processor
document. The development project tracked requirements and implementation

 Variability-Based Release Planning 185

progress with a task management solution. The product manager ensured consistency
in meetings with the development team.

4 Discussion and Conclusions

This paper has introduced an approach, variability-based release planning, that simpli-
fies release planning by structuring the underlying requirements catalogue. It utilizes
feature trees and feature vectors to structure requirements with AND, OR, and
REQUIRES relationships. It uses feature extraction as the basic technique to construct
the tree and a simple lifecycle model to track and plan software development. An
industrial case was described to motivate and exemplify the approach.

Variability-based release planning reduces the complexity of release planning com-
pared with the traditional approaches that are based on a flat list of requirements. The
feature tree allows abstracting from detailed requirements to groups of requirements. It
provides a graphical representation that allows stakeholders to develop a mental model
of the decision options. A planned release can now be described by referring to a few
features instead of a potentially large and incomplete set of requirements. The de-
scribed tree construction, planning, and controlling approach is used to evolve the
information base for release planning. Containers for adding requirements that are
discovered late in the development process allow dealing with requirements incom-
pleteness. The connectivity rule provides support to rapidly identify those features that
are candidates for release planning. Release planning scenarios can be analyzed by
exploring the OR relationships between sub-features. Roadmaps can be traced to by
referring with important features to agreed activities of the company, for example by
utilizing appropriate naming.

Variability-based release planning has not been integrated with other product man-
agement and development activities yet. Future research should investigate how the
approach relates to upstream techniques for requirements triage such as the require-
ments abstraction model [4] and downstream techniques for requirements communi-
cation such as handshaking with implementation proposals [9]. Empirical research is
needed to better understand benefits, and limitations of variability-based release plan-
ning in practice, for example compared to other release planning approaches.

References

1. Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Bin Saleem, S., Usman Shafique, M.:
A Systematic Review on Strategic Release Planning Models. Information and Software
Technology 52, 237–248 (2009)

2. Cohn, M.: Agile Estimating and Planning. Prentice-Hall, Englewood Cliffs (2006)
3. Amandeep, N.F.N.G., Ruhe, G., Stanford, M.: Intelligent Support for Software Release

Planning. In: Bomarius, F., Iida, H. (eds.) PROFES 2004. LNCS, vol. 3009, pp. 248–262.
Springer, Heidelberg (2004)

4. Gorschek, T., Wohlin, C.: Requirements Abstraction Model. Requirements Engineer-
ing 11(1), 79–101 (2006)

5. Wohlin, C., Aurum, A.: What is Important when Deciding to Include a Sotware Require-
ment into a Project or Release. In: International Symposium on Empiricial Software
Engineering (2005)

186 S. Fricker and S. Schumacher

6. Berander, P., Andrews, A.: Requirements Prioritization. In: Aurum, A., Wohlin, C. (eds.)
Engineering and Managing Software Requirements. Springer, Heidelberg (2005)

7. Karlsson, L., Regnell, B., Karlsson, J., Olsson, S.: Post-Release Analysis of Requirements
Selection Quality - An Industrial Case Study. In: 9th International Workshop on Require-
ments Engineering: Foundation for Software Quality, RefsQ 2003 (2003)

8. Regnell, B., Svensson, R.B., Wnuk, K.: Can we beat the complexity of very large-scale
requirements engineering? In: Rolland, C. (ed.) REFSQ 2008. LNCS, vol. 5025,
pp. 123–128. Springer, Heidelberg (2008)

9. Fricker, S., Gorschek, T., Byman, C., Schmidle, A.: Handshaking with Implementation
Proposals: Negotiating Requirements Understanding. IEEE Software 27(2), 72–80 (2010)

10. Fricker, S., Glinz, M.: Comparison of Requirements Hand-Off, Analysis, and Negotiation:
Case Study. In: 18th IEEE International Requirements Engineering Conference, Sydney,
Australia (2010)

11. Schobbens, P.-Y., Heymans, P., Trigaux, J.-C., Bontemps, Y.: Generic Semantics of Fea-
ture Diagrams. Computer Networks 51, 456–479 (2007)

12. Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B.: Nattoch Dag, J.: An Industrial Sur-
vey of Requirements Interdependencies in Software Product Release Planning. In: 5th
IEEE International Symposium on Requirements Engineering (2001)

13. Haberfellner, R., Nagel, P., Becker, M., Büchel, A., von Massow, H.: Systems Engineer-
ing: Methodik und Praxis, 11th edn. Verlag Industrielle Organisation (2002)

14. Vlaanderen, K., Jansen, S., Brinkkemper, S., Jaspers, E.: The Agile Requirements Refin-
ery: Applying SCRUM Principles to Software Product Management. In: 3rd International
Workshop on Software Product Management (2009)

15. Lehtola, L., Kauppinen, M.: Suitability of Requirements Prioritization Methods for
Market-driven Software Product Development. Software Process Improvement and Prac-
tice 11, 7–19 (2006)

16. Carlshamre, P.: Release Planning in Market-Driven Software Product Development:
Provoking an Understanding. Requirements Engineering 7, 139–151 (2002)

17. Ruhe, G., Saliu, M.O.: The Art and Science of Software Release Planning. IEEE Soft-
ware 22(6), 47–53 (2005)

18. Karlsson, J., Ryan, K.: A Cost-Value Approach for Prioritizing Requirements. IEEE Soft-
ware 14(5), 67–74 (1997)

19. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foundations,
Principles and Techniques, 1st edn. Springer, Heidelberg (2005)

20. Nejmeh, B., Thomas, I.: Business-Driven Product Planning Using Feature Vectors and
Increments. IEEE Software 19(6), 34–42 (2002)

21. Stoiber, R., Glinz, M.: Feature Unweaving: Efficient Variability Extraction and Specifica-
tion for Emerging Software Product Lines. In: 4th International Workshop on Software
Product Management (IWSPM 2010), Sydney, Australia (2010)

B. Regnell, I. van de Weerd, and O. De Troyer (Eds.): ICSOB 2011, LNBIP 80, p. 187, 2011.
© Springer-Verlag Berlin Heidelberg 2011

EPIC 2011:
Third Workshop on Leveraging Empirical Research

Results for Software Business Success

Maya Daneva1 and Andrea Herrmann2

1 University of Twente, The Netherlands
2 Axivion, Germany

For many companies, software development is their core business process. For this
process to be economically viable, it is not enough that software companies deliver
software products that satisfy customers´ written specification. Software businesses
also deem other requirements important as to deliver in time and on budget, to in-
crease developers´ satisfaction and to optimize their delivery processes and reduce
waste.

Collective efforts by software engineering practitioners, consultants and research-
ers have yielded a huge variety of solutions for improving software processes, prod-
ucts and services. While it is generally known that the suitability and effectiveness of
most of these solutions depend on the context where they are applied, only few
empirical studies were done to uncover how the current process/product/service-
focused approaches used in software businesses yield outcomes that are aligned to the
business goals of these organizations. With few exceptions, little is known about the
empirical evidence that can possibly confirm or disconfirm the claims of effectiveness
of different commercially viable approaches that solve particular process, product or
service related problems.

The primary goal of the first EPIC workshop was twofold: to initiate (1) the con-
versation of leveraging empirical research for software business success and (2) the
process of creating a forum and a community to debate the need and value of using
empirical/evidence-based approaches to researching aspects of software processes,
products and services that contribute to software business success. An outcome of the
workshop is the LinkedIn group, EPIC FORUM.

The second EPIC event was a panel session that defined some roadblocks to the
collaboration of software business practitioners and researchers, and some solutions
that worked.

The third workshop builds upon these first results and will extend the discussion on
state-of-the art good practices for empirical research that adds value to both small and
large software companies.

B. Regnell, I. van de Weerd, and O. De Troyer (Eds.): ICSOB 2011, LNBIP 80, p. 188, 2011.
© Springer-Verlag Berlin Heidelberg 2011

IWSECO 2011:
Third International Workshop on Software Ecosystems

Slinger Jansen1, Jan Bosch2, Faheem Ahmed3, and Piers Campbell3

1 Utrecht University, The Netherlands
2 Intuit Inc, USA

3 United Arab Emirates University

Software vendors no longer function as independent units, where all customers are
end-users, where there are no suppliers, and where all software is built in-house. In-
stead, software vendors have become networked, i.e., software vendors are depending
on (communities of) service and software component suppliers, value-added-resellers,
and pro-active customers who build and share customizations. Software vendors now
have to consider their strategic role in the software ecosystem to survive. With their
role in the software ecosystem in mind, software vendors can become more successful
by opening up their business, devising new business models, forging long-lasting
relationships with partnership networks, and overcoming technical and social chal-
lenges that are part of these innovations. The focus of the first workshop was the
definition of the research field. The second workshop’s focus was the ‘ideal’ architec-
ture of a software platform. The third workshop on software ecosystems focuses on
the management of software ecosystems, i.e., how a software vendor can manage its
network of partners, developers, service deliverers, and other third parties that play a
role in the software ecosystem.

Typically, software vendors have several instruments available to them for manag-
ing their ecosystem, such as the creation of partnership models or the introduction of
component and service certification. The effects of these decisions on the software
ecosystem have not yet been made measurable, which can be considered one of the
main challenges of the field of software ecosystems.

A software ecosystem is a set of actors functioning as a unit and interacting with a
shared market for software and services, together with the relationships among them.
These relationships are frequently underpinned by a common technological platform
or market and operate through the exchange of information, resources and artifacts.
Several challenges lie in the research area of software ecosystems. To begin with,
insightful and scalable modeling techniques for software ecosystems currently do not
exist. Furthermore, methods are required that enable software vendors to transform
their legacy architectures to accommodate reusability of internal common artifacts
and external components and services. Finally, methods are required that support
software vendors in choosing survival strategies in software ecosystems.

The workshop aims to further increase the body of knowledge in this specific area
of software reuse and software engineering by providing a forum to exchange ideas
and discuss state-of-the-art results. It will build and shape the community of leading
practitioners and research experts. Given the relevance of software ecosystems, and
the rather unexplored scientific and industry contribution in this field, the workshop
will deliver a state-of-the-practice overview of the available knowledge on software
ecosystems, as well as an overview of challenges for further research.

Author Index

Ahmed, Faheem 188

Bosch, Jan 188
Buglione, Luigi 125
Buxmann, Peter 154

Callele, David 168
Campbell, Piers 188
Cocco, Luisanna 56
Concas, Giulio 56

Damiani, Ernesto 125
Daneva, Maya 187

Finkelstein, Anthony 1
Frank, Lauri 70, 110
Frati, Fulvio 125
Fricker, Samuel 181
Frühwirth, Christian 85

Helander, Nina 70
Herrmann, Andrea 187
Hu, Shuangzeng 98

Jansen, Slinger 17, 44, 154, 188

Kabbedijk, Jaap 44
Kauppinen, Marjo 32, 140
Komssi, Marko 140

Luoma, Eetu 70, 110

Mannaro, Katiuscia 56
Marchesi, Michele 56
McNaughton, Rod B. 98

Oltolina, Sergio 125

Palomäki, Pirkka 140
Peltonen, Juhana 85
Popp, Karl Michael 154

Riepula, Mikko 110
Rönkkö, Mikko 85
Ropponen, Matti 140
Ruffatti, Gabriele 125

Schumacher, Susanne 181
Selin, Joona 2

Tyrväinen, Pasi 2

van de Zande, Tommy 17
Viljainen, Martti 32

Wnuk, Krzysztof 168

	Title
	Preface
	Organization
	Table of Contents
	Part 1
	Keynote
	Keynote: Engineering Challenges of New Business Models in Software

	Part 2
	Research Papers
	How to Sell SaaS: A Model for Main Factors of Marketing and Selling Software-as-a-Service
	Introduction
	Marketing and Sales in Software Business
	Marketing and Sales Model for SaaS
	Multi-case Study
	Research Process and Methods
	Characteristics of the Case Firms
	Updated Model

	Summary and Conclusions
	References

	Business Continuity Solutions for SaaS Customers
	Introduction
	Interviews
	Interview Design
	Initial Results

	Guaranteeing Business Continuity for SaaS
	Available Solutions
	SaaS-escrow
	SaaS Guarantee Fund
	Comparison

	Necessity of SaaS Continuity Arrangements
	The Bankruptcy Trustee

	Survey
	Survey Design
	Survey Results

	Conclusions
	References

	Software Ecosystems: A Set of Management Practices for Platform Integrators in the Telecom Industry
	Introduction
	Management Practices
	Technology Scouting
	Orchestration
	Software Supply Network Management
	Technology Asset Management

	A Case Example from the Telecom Industry
	Technology Scouting
	Orchestration
	Software Supply Network Management
	Technology Asset Management

	Conclusions
	References

	Steering Insight: An Exploration of the Ruby Software Ecosystem
	Introduction
	Research Questions
	Case Description and Data Gathering
	Analysis
	Elements
	Element Characteristics
	Descriptives
	Roles

	Results
	Discussion and Conclusion
	References

	Study of the Competition between Proprietary Software Firms and Free/Libre Open Source Software Firms Using a Simulation Model
	Introduction
	Related Works
	Model
	Firms’ Behavior
	Price Clearing Mechanism
	User’ Behavior

	Results
	Simulation Sets
	Sensitivity Analysis: Monte Carlo Simulations

	Conclusions and Future Work
	References

	Adoption of Open Source Software and Software-as-a-Service Models in the Telecommunication Industry
	Introduction
	Literature Review
	Open Source Software Adoption
	Software-as-a-Service Adoption

	Research Method
	Research Findings
	Open Source Software Adoption
	Software-as-a-Service Adoption

	Conclusions and Further Research
	References

	Examining the Effects of Agile Methods and Process Maturity on Software Product Development Performance
	Introduction
	Literature Review and Hypothesis Development
	Empirical Study Design
	Results
	Discussion and Conclusions
	References

	Online Distribution of Packaged Software
	Introduction
	Literature Review
	Transaction Cost Model
	Asset Specificity
	Uncertainty
	Transaction Frequency

	Method
	Dependent Variable
	Independent Variables

	Findings
	Conclusions
	Discussion
	References

	Scenarios on Adoption of Open Source Software in the Communications Software Industry
	Introduction
	Scenario Approach
	Open Source Adoption in the Communications Software Industry
	Trends in the Communications Software Market
	Technology Sourcing
	Nature of Competences

	Four Scenarios on Open Source Adoption
	Discussion and Further Research
	References

	Improving Quality and Cost-Effectiveness in Enterprise Software Application Development: An Open, Holistic Approach for Project Monitoring and Control
	Introduction
	The Puzzle of Project Monitoring and Control
	Deriving Measures from Information Needs: The GQM Paradigm
	Determining the Right Number of Measures: The BMP Technique
	Determining the Performance Value: The QEST-LIME Family
	Automating Project Monitoring and Control: Spago4Q
	Putting All Pieces Together: The Suggested Measurement Framework

	A Case Study
	Conclusions and Next Steps
	References

	Transformations of a Solution Strategy: A Case Study
	Introduction
	Background
	Research Method
	Research Approach
	Unit of Analysis
	Data Collection
	Data Analysis and Threats to Validity

	Non-customers in the Market Evolvement
	Changes in the Strategy Matrix
	Discussion
	Conclusions
	References

	The Sun also Sets: Ending the Life of a Software Product
	Introduction
	Decomposing Sunsetting
	Research Method
	The Product Software Discontinuation Method
	Case Studies
	Case Study: Health and Safety Product at PubComp
	Case Study: Enterprise Resource Planning Product at ERPComp
	Case Study: Three Municipalities Products at ServicesComp

	Discussion and Conclusion
	References

	Requirements Scoping Visualization for Project Management
	Introduction
	Related Work
	Research Approach and Data in Context
	Visualizations
	Interpreting the Visualizations
	The Relationship between the Time to Feature Removal (M2) and the Reason for Feature Removal (M5) - Addressing Research Question RQ1
	The Relationship between the Time to Feature Addition (M4) and the Reason for Feature Removal (M5) - Addressing Rresearch Question RQ2

	Threats to Validity
	Conclusions and Future Work
	References

	Variability-Based Release Planning
	Introduction
	Background and Motivation
	Variability Modeling for Release Planning
	Discussion and Conclusions
	References

	Part 3
	Workshops
	EPIC 2011:Third Workshop on Leveraging Empirical Research Results for Software Business Success
	IWSECO 2011: Third International Workshop on Software Ecosystems

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

