
123

S P R I N G E R  B R I E F S  I N  S TAT I S T I C S
J S S  R E S E A R C H  S E R I E S  I N  S TAT I S T I C S

Masayuki Hirukawa

Asymmetric Kernel 
Smoothing
Theory and 
Applications in 
Economics and 
Finance



SpringerBriefs in Statistics

JSS Research Series in Statistics

Editors-in-Chief

Naoto Kunitomo
Akimichi Takemura

Series editors

Genshiro Kitagawa
Tomoyuki Higuchi
Yutaka Kano
Toshimitsu Hamasaki
Shigeyuki Matsui
Manabu Iwasaki
Yasuhiro Omori
Masafumi Akahira



The current research of statistics in Japan has expanded in several directions in line
with recent trends in academic activities in the area of statistics and statistical
sciences over the globe. The core of these research activities in statistics in Japan
has been the Japan Statistical Society (JSS). This society, the oldest and largest
academic organization for statistics in Japan, was founded in 1931 by a handful of
pioneer statisticians and economists and now has a history of about 80 years. Many
distinguished scholars have been members, including the influential statistician
Hirotugu Akaike, who was a past president of JSS, and the notable mathematician
Kiyosi Itô, who was an earlier member of the Institute of Statistical Mathematics
(ISM), which has been a closely related organization since the establishment of
ISM. The society has two academic journals: the Journal of the Japan Statistical
Society (English Series) and the Journal of the Japan Statistical Society (Japanese
Series). The membership of JSS consists of researchers, teachers, and professional
statisticians in many different fields including mathematics, statistics, engineering,
medical sciences, government statistics, economics, business, psychology,
education, and many other natural, biological, and social sciences.

The JSS Series of Statistics aims to publish recent results of current research
activities in the areas of statistics and statistical sciences in Japan that otherwise
would not be available in English; they are complementary to the two JSS
academic journals, both English and Japanese. Because the scope of a research
paper in academic journals inevitably has become narrowly focused and
condensed in recent years, this series is intended to fill the gap between
academic research activities and the form of a single academic paper.

The series will be of great interest to a wide audience of researchers, teachers,
professional statisticians, and graduate students in many countries who are
interested in statistics and statistical sciences, in statistical theory, and in various
areas of statistical applications.

More information about this series at http://www.springer.com/series/13497

http://www.springer.com/series/13497


Masayuki Hirukawa

Asymmetric Kernel
Smoothing
Theory and Applications in Economics
and Finance

123



Masayuki Hirukawa
Faculty of Economics
Ryukoku University
Kyoto
Japan

ISSN 2191-544X ISSN 2191-5458 (electronic)
SpringerBriefs in Statistics
ISSN 2364-0057 ISSN 2364-0065 (electronic)
JSS Research Series in Statistics
ISBN 978-981-10-5465-5 ISBN 978-981-10-5466-2 (eBook)
https://doi.org/10.1007/978-981-10-5466-2

Library of Congress Control Number: 2018936652

© The Author(s) 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
part of Springer Nature
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore



Preface

My first encounter with the nonstandard smoothing (or curve-fitting) technique by
means of asymmetric kernels dates back to more than a decade ago. At that time,
Nikolay (Gospodinov) and I were colleagues at Concordia University, Montreal,
Canada, and we conducted a joint research project. This project specialized in
pursuing a viable method of improving finite-sample properties of Stanton’s (1997)
nonparametric estimators for continuous-time scalar diffusion models. In the middle
of the project, I happened to know the asymmetric, gamma kernel by Chen (2000)
through Hagmann and Scaillet (2007). We then found superior finite-sample per-
formance of Stanton’s (1997) estimators combined with the gamma kernel, and our
theoretical and empirical results were published as Gospodinov and Hirukawa
(2012); see Chap. 4 for more details. Since then, I have put asymmetric kernel
smoothing as one of my primary research topics and published several articles.

This book is a small collection of estimation and testing procedures using
asymmetric kernels. I employ the kernels mainly for economic and financial data
analyses, whereas their theoretical aspects are also of my interest. Therefore, this
book is designed for a mixture of theoretical foundations and economic and
financial applications of asymmetric kernel smoothing.

There are many excellent books and monographs on kernel smoothing (e.g.,
Silverman 1986). However, their focuses are on standard symmetric kernels.
Inevitably, there are no books that pay attention to asymmetric kernels, to the best
of my knowledge. I hope that this book serves as a compliment to existing books on
standard kernel smoothing techniques.

This book is organized as follows. As the introduction of the book, Chap. 1
provides an informal definition and a history of asymmetric kernels and refers to the
kernels that are investigated throughout. Chapters 2 and 3 deal with density esti-
mation. While Chap. 2 discusses basic properties of the density estimators, Chap. 3
focuses on bias correction techniques in density estimation. Nonparametric
regression estimation is explained in Chap. 4. Chapter 5 illustrates model specifi-
cation tests smoothed by asymmetric kernels. Chapter 6 concludes with a few
applications of asymmetric kernel smoothing to real data.
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Chapter 1
Asymmetric Kernels: An Introduction

This chapter presents an overview of the nonstandard smoothing technique bymeans
of asymmetric kernels. After referring to a (relatively short) history of asymmetric
kernels, we provide an informal definition and a list of the kernels. Obviously it is
difficult and even uneconomical to investigate each of them fully within the limited
space of this book. Instead, we concentrate on a few kernels throughout, explain
why they are chosen, and illustrate their functional forms and shapes.

1.1 How Did Asymmetric Kernels Emerge?

1.1.1 Boundary Bias in Kernel Density Estimation

We should start our discussion in relation to the issue of boundary bias in kernel den-
sity estimation. The problem of estimating the unknown probability density function
(“pdf”) f of a univariate random variable X ∈ R has been of long-lasting research
interest. The most popular nonparametric estimator of the pdf is the standard kernel
density estimator originated from Rosenblatt (1956) and Parzen (1962). Let K be a
kernel function, which is assumed to be a symmetric pdf at this moment. Examples
of such kernel functions can be found, for instance, in Table3.1 of Silverman (1986).
Given n observations {Xi }ni=1, the kernel density estimator of f at a given design
point x using the kernel K is defined as

f̂ S (x) = 1

nh

n∑

i=1

K

(
Xi − x

h

)
, (1.1)

where the smoothing parameter h (> 0) is called the bandwidth, which controls the
amount of smoothing, and the subscript “S” signifies a standard symmetric kernel.
The consistency of f̂ S is well documented; see Parzen (1962) or Silverman (1986,
Sect. 3.7.1) for a set of regularity conditions for consistency.

© The Author(s) 2018
M. Hirukawa, Asymmetric Kernel Smoothing, JSS Research Series
in Statistics, https://doi.org/10.1007/978-981-10-5466-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-5466-2_1&domain=pdf


2 1 Asymmetric Kernels: An Introduction

The consistency result holds as long as the support of f is unbounded. However,
it is often the case that variables of interest take only nonnegative values. If the
support of f has a boundary, or more specifically, if it lies on the unit interval [0, 1]
or the positive half-line R+, then the consistency of f̂ S at the origin no longer holds.
Because the kernel assigns positive weights outside the support when smoothing is
carried out near the origin, the expected value of f̂ S (0) converges to f (0) /2 as
n → ∞.

1.1.2 Matching the Support of the Kernel with That
of the Density

Perhaps Silverman (1986, Sect. 2.10) is one of the earliest studies onmodifications of
standard kernel density estimation in the presence of a boundary on the support. Since
then, a number of remedies for the issue of boundary bias have been proposed. Exam-
ples include reflection, boundary kernel, transformation, and pseudo-data methods,
to name a few. A nonexhaustive list of boundary correction methods can be found,
for instance, in Zhang et al. (1999) and Karunamuni and Alberts (2005). It should be
emphasized that all the methods discussed therein are built on standard symmetric
kernels.

Yet another way of dealing with the boundary bias is to match the support of
the kernel with that of the density to be estimated. When the support of f is the
positive half line, it is possible to restore consistency of the density estimate at (or
in the vicinity of) the boundary by switching K in (1.1) from a symmetric pdf with
some pdf having support on R+. Because the latter never assigns positive weights
on the negative half line, the resulting density estimate is free of boundary bias. The
density estimator proposed byBagai and PrakasaRao (1995) is grounded on this idea.
Because the estimator has an inferior bias convergence due to one-sided smoothing,
(Guillamón et al. 1999) adopt jackknife bias correction methods to improve the bias
convergence. The kernel density estimator by Abadir and Lawford (2004) may be
also classified as a variant of the density estimator by Bagai and Prakasa Rao (1995).
While the kernels studied in these articles are no longer symmetric, they are not
categorized as asymmetric kernels because of lacking some key properties to be
discussed in the next section.

1.1.3 Emergence of Asymmetric Kernels

It is only the late 1990s that research on asymmetric kernels began. The earliest
focuses are on boundary correction of regression and density estimations with com-
pact support. Brown and Chen (1999) approximate regression curves with support
on the unit interval [0, 1] using the Bernstein polynomials smoothed by a family of
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beta densities. As an extension of the Bernstein polynomial smoothing, Chen (1999,
2000a) propose to use a family of beta densities as kernels for density and Gasser
and Müller’s (1979) nonparametric regression estimators, respectively. Contrary to
the chronological order in publications, the history of asymmetric kernels may have
begun with regression estimation; indeed, Chen (2000a, Sect. 8) explains density
estimation using the beta kernel, which is Chen’s (1999) main focus. As in Bagai
and Prakasa Rao (1995), Guillamón et al. (1999), and Abadir and Lawford (2004),
Chen (1999, 2000a) also avoid the boundary bias by matching the support of the ker-
nel with that of the density or regression curve. What distinguishes the latter from
the former is that the latter allows kernels to vary their shapes across design points
at which smoothing is made, whereas the former keeps kernels fixed everywhere.

Since the seminal work by Chen (1999, 2000a), researchers’ attention has shifted
to the kernels that can be applied for density estimation with support on the positive
half line. The basic idea of beta kernel smoothing is extended to constructing the
kernels with support on R+. Chen (2000b) employs gamma densities as kernels
for density estimation. Jin and Kawczak (2003) investigate density estimation using
the kernels constructed from log-normal and Birnbaum–Saunders densities, whereas
Scaillet (2004) advocates applying inverse and reciprocal inverse Gaussian densities
as kernels. Recent development and improvement of asymmetric kernels will be
discussed in the next section.

1.1.4 Asymmetric Kernel Density Estimation as General
Weight Function Estimation

We conclude this section by interpreting density estimators using asymmetric kernels
in relation to Silverman’s (1986) early insight. Observe that the standard kernel
density estimator (1.1) can be rewritten as

f̂ S (x) = 1

n

n∑

i=1

Kx,h (Xi ) , (1.2)

where Kx,h (·) := (1/h) K {(· − x) /h}. Generalizing Kx,h (·) as the pdf that assigns
most of the weight in the neighborhood of the design point x , Silverman (1986,
Sect. 2.9) refers to (1.2) as general weight function estimators. The shape of the
weight function Kx,h (·) may be asymmetric or even vary across the positions of
x . Surprisingly, Silverman (1986, p. 28) does mention possibility of employing a
gamma or log-normal density as the weight function when the underlying density has
support on R+ and is right-skewed, before the advent of the gamma or log-normal
kernel.

To express asymmetric kernel density estimators in the format of (1.2), let Kx,b (·)
be a generic asymmetric kernel that has support either on [0, 1] or R+ and depends
on the design point x and the smoothing parameter b(>0). In the literature of
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asymmetric kernels, the standard notation for the smoothing parameter has been b
since Chen (1999) rather than h, and this book follows the convention. Accordingly,
the density estimator smoothed by the asymmetric kernel Kx,b (·) can be expressed
as

f̂ (x) = 1

n

n∑

i=1

Kx,b (Xi ) .

1.2 What Are Asymmetric Kernels?

1.2.1 Two Key Properties of Asymmetric Kernels

To the best of our knowledge, no formal definition of asymmetric kernels has been
provided so far. Below we loosely “define” the asymmetric kernels with which we
deal in this book. A weight function Kx,b (·) is said to be an asymmetric kernel if it
possesses the following two basic properties:

Property 1.1 The weight function is a pdf with support either on the unit interval
[0, 1] or on the positive half-line R+.

Property 1.2 Both the location and shape parameters in the weight function are
functions of the design point x where smoothing is made and the smoothing
parameter b.

Property 1.1 makes nonparametric estimators smoothed by asymmetric kernels
free of boundary bias, despite that they use observations with a boundary in their
original scale. The property also implies that density estimates using asymmetric ker-
nels become nonnegative everywhere. The kernels investigated byBagai and Prakasa
Rao (1995), Guillamón et al. (1999), and Abadir and Lawford (2004) also satisfy this
property. However, each of these kernels Kx,h (·) is defined within the framework of
the location-scale transformation, i.e., Kx,h (·) = (1/h) K {(· − x) /h}. It follows
that h alone controls the amount of smoothing, as is the case with standard symmetric
kernels. Therefore, once the value of h is fixed on the entire support, the amount of
smoothing is also fixed regardless of whether the data points are dense or sparse in
the vicinity of x .

In contrast, Property 1.2 suggests that both location and scale parameters in asym-
metric kernels play a role in controlling the amount of smoothing. It follows that
shapes of a given asymmetric kernel vary across design points where smoothing is
made, or the amount of smoothing changes in an adaptive manner. This property will
be confirmed graphically at the end of this chapter. In this respect, asymmetric kernel
smoothing is reminiscent of (or may be even viewed as a version of) variable ker-
nel (or bandwidth) methods (e.g., Abramson 1982; Silverman 1986, Sect. 2.6). The
adaptive smoothing property is particularly advantageous for capturing the shapes
of densities of positive random variables that are assumed to be right-skewed.
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1.2.2 List of Asymmetric Kernels

A variety of asymmetric kernels have been proposed for the last two decades. There
are a limited number of asymmetric kernels with support on [0, 1]. Examples include
the beta kernel by Chen (1999) and the Gaussian-copula kernel by Jones and Hen-
derson (2007). On the other hand, there is rich literature on asymmetric kernels
with support on R+ (and the number of such kernels may be increasing while this
book is written). Below the asymmetric kernels are classified in terms of underlying
distributions.

• Gamma kernel (Chen 2000b; Jeon and Kim 2013; Igarashi and Kakizawa 2014;
Malec and Schienle 2014).

• Generalized gamma kernel (Hirukawa and Sakudo 2015).
• Inverse gamma kernel (Mnatsakanov and Sarkisian 2012; Koul and Song 2013;
Mousa et al. 2016; Igarashi and Kakizawa 2017).

• Inverse Gaussian and reciprocal inverse Gaussian kernels (Scaillet 2004).
• Generalized inverse Gaussian kernel (Igarashi and Kakizawa 2014).
• Birnbaum–Saunders kernel (Jin and Kawczak 2003).
• Generalized Birnbaum–Saunders kernel (Marchant et al. 2013; Saulo et al. 2013).
• Log-normal kernel (Jin and Kawczak 2003; Igarashi 2016).

It is worth emphasizing that the kernel generated from a given distributionmay not
be unique, regardless of whether it has support on [0, 1] orR+. Rather, it is possible
to generate different kernels from the same distribution by changing functional forms
of the shape and scale parameters. For example, the gamma kernels proposed by
Igarashi and Kakizawa (2014, Sect. 4) and Malec and Schienle (2014, Sect. 2.3) can
be obtained via alternative specifications of the shape parameter.

1.3 Which Asymmetric Kernels Are Investigated?

1.3.1 Scope of Asymmetric Kernels to Be Studied

It is difficult (and even uneconomical) to explain all the kernels in the list within
the limited space of this book. Instead of dealing with all the kernels equally, we
primarily focus on the beta and gamma kernels with support on [0, 1] and R+,
respectively. In addition, whenever necessary, we refer to the generalized gamma
kernels. The kernels can be regarded as close cousins of the gamma kernel. Like the
beta and gamma kernels, asymptotic expansions of the generalized gamma kernels
are boiled down to those of the gamma function. Moreover, appealing properties
of the beta and gamma density estimators are inherited to the generalized gamma
density estimators.
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Fig. 1.1 Histogram of US family incomes

We put a priority on these kernels because of the following reasons:

1. Empirical relevance in economics and finance;
2. Asymptotic expansion techniques; and
3. Properties of variances and boundary behavior in density estimation.

The first and second aspectswill be discussed shortly. Explanations of the third aspect
are deferred to Remark2.12 and Sect. 2.5.

1.3.1.1 Empirical Relevance in Economics and Finance

The distributions of economic and financial variables such as wages, incomes, short-
term interest rates, and insurance claims (or financial losses) can be empirically
characterized by two stylized facts, namely (i) existence of a lower bound in support
(most possibly at the origin) and (ii) concentration of observations near the boundary
and a long tail with sparse data. Figure1.1 is a histogram of 9275 annual family
incomes in the USA. The data set is taken from Abadie (2003) and will be analyzed
in detail in Chap.6. The figure assures us of the two stylized facts. For such right-
skewed distributions with a boundary, asymmetric kernels are expected to work well
because of their freedom of boundary bias and adaptive smoothing property via
changing shapes automatically across design points.

While asymmetric kernels are relatively new in the literature, a number of articles
report favorable evidence from applying them to empirical models using the eco-
nomic and financial variables. In particular, most of these empirical works apply
either the beta or gamma kernel. Popularity of the kernels may be attributed to
their easy implementation and attractive finite-sample properties. Table1.1 lists non-
parametric estimation problems in economics and finance using the beta or gamma
kernel.

Furthermore, there are only a few works on nonparametric testing problems using
asymmetric kernels, all of which will be discussed in Chap.5. The gamma and (a
few special cases of) generalized gamma kernels are exclusively considered therein.
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Table 1.1 Estimation problems in economics and finance using beta and gamma kernels

Application Article

1. Income distribution Bouezmarni and Scaillet (2005) [G]

Hagmann and Scaillet (2007) [G]

2. Actuarial loss distribution Hagmann and Scaillet (2007) [G]

Gustafsson et al. (2009) [B]

Jeon and Kim (2013) [G]

3. Recovery rate distribution Renault and Scaillet (2004) [B]

Hagmann et al. (2005) [B]

4. Distribution of trading volumes Malec and Schienle (2014) [G]

5. Hazard rate Bouezmarni and Rombouts (2008) [G]

Bouezmarni et al. (2011) [G]

6. Regression discontinuity design Fé (2014) [G]

7. Realized integrated volatility Kristensen (2010) [B]

8. Diffusion models Gospodinov and Hirukawa (2012) [G]

Note Letters “B” and “G” in brackets indicate the beta and gamma kernels, respectively

1.3.1.2 Asymptotic Expansion Techniques

Standard symmetric kernels are built on a set of common conditions. Typically, the
kernels are symmetric, bounded, and square-integrable densities, and asymptotic
properties of the estimators smoothed by the kernels can be analyzed straightfor-
wardly by the conditions. In contrast, when delivering convergence results of asym-
metric kernel estimators, we utilize mathematical tools and proof strategies that are
totally different from those for symmetric kernel estimators. A tricky part is that
exploring the asymptotic properties relies on kernel-specific and thus diversified
approaches. To put it in another way, different asymmetric kernels require differ-
ent asymptotic expansion techniques. It is uneconomical to display kernel-specific
expansion techniques one-by-one. A benefit of concentrating on the beta, gamma
and generalized gamma kernels is that the gamma function constitutes their core
parts. Approximation techniques to the gamma function (and those to the incom-
plete gamma functions, which will be applied in Chap. 5) have been actively studied,
and they are directly applicable to asymptotic analyses on these kernels.

1.3.2 Functional Forms of the Kernels

1.3.2.1 Beta and Gamma Kernels

Chen (1999, 2000b) provide two definitions for each of the beta and gamma ker-
nels. These are called “the beta (or gamma) 1 and 2 kernels”, “the first and second
beta (or gamma) kernels”, or “the beta and modified beta (or gamma and modified
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gamma) kernels”. This book adopts the third names throughout. Moreover, for nota-
tional conciseness, hereinafter the beta, modified beta, gamma, and modified gamma
kernels are abbreviated, respectively, as the “B”, “MB”, “G”, and “MG” kernels,
whenever no confusions may occur.

TheB andMBkernels are defined as the pdfs of beta distributions Beta {b/x + 1,
(1 − x) /b + 1} and Beta {

�b,0 (x) , �b,1 (x)
}
, respectively, for two functions�b,0 (x)

and �b,1 (x) to be specified shortly. Functional forms of the kernels are given by

[Beta] : KB(x,b) (u) = ub/x (1 − u)(1−x)/b

B {b/x + 1, (1 − x) /b + 1}1 {u ∈ [0, 1]} , and

[ModifiedBeta] : KMB(x,b) (u) = u�b,0(x)−1 (1 − u)�b,1(x)−1

B
{
�b,0 (x) , �b,1 (x)

} 1 {u ∈ [0, 1]} ,

where

�b,0 (x) =
{

�b (x) for x ∈ [0, 2b)
x/b for x ∈ [2b, 1]

,

�b,1 (x) =
{

(1 − x) /b for x ∈ [0, 1 − 2b]
�b (1 − x) for x ∈ (1 − 2b, 1]

, and

�b (x) = 2b2 + 5

2
−

√
4b4 + 6b2 + 9

4
− x2 − x

b
.

Likewise, theGandMGkernels are thepdfs of gammadistributionsG (x/b+ 1, b)
and G {ρb (x) , b} for the function ρb (x) to be specified below. The kernels take the
forms of

[Gamma] : KG(x,b) (u) = ux/b exp (−u/b)

bx/b+1� (x/b + 1)
1 {u ≥ 0} , and

[ModifiedGamma] : KMG(x,b) (u) = uρb(x)−1 exp (−u/b)

bρb(x)� {ρb (x)} 1 {u ≥ 0} ,

where

ρb (x) =
{
x/b for x ≥ 2b
(1/4) (x/b)2 + 1 for x ∈ [0, 2b)

.

Motivations to propose two modified kernels can be found in Remark2.3. Also
observe that the MB and MG kernels for interior regions are pdfs of Beta {b/x,
(1 − x) /b} and G (x/b, b), respectively. These densities become unbounded at the
boundary. Shape parameters�b (x) andρb (x) for boundary regions are compromises
to ensure boundedness of the kernels.
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1.3.2.2 Generalized Gamma Kernels

A family of the generalized gamma (“GG”) kernels proposed by Hirukawa and
Sakudo (2015) constitutes a new class of asymmetric kernels. The family consists
of a specific functional form and a set of common conditions. The pdf of a GG
distribution (Stacy 1962), which is also known as a special case of the Amoroso
distribution (Amoroso 1925), is chosen as the functional form. The definition of the
family is given below.

Definition 1.1 (Hirukawa and Sakudo 2015, Definition 1).
Let (α, β, γ ) = (αb (x) , βb (x) , γb (x)) be a continuous function of the design

point x and the smoothing parameter b. For such (α, β, γ ), consider the pdf of the
GG distribution GG (α, β� (α/γ ) /� {(α + 1) /γ } , γ ), i.e.,

KGG(x,b) (u) =
γ uα−1 exp

[
−

{
u

β�
(

α
γ

)
/�

(
α+1
γ

)

}γ ]

{
β�

(
α
γ

)
/�

(
α+1
γ

)}α

�
(

α
γ

) 1 {u ≥ 0} . (1.3)

This pdf is said to be a family of the GG kernels if it satisfies each of the following
conditions:

Condition 1.1

β =
{
x f or x ≥ C1b
ϕb (x) f or x ∈ [0,C1b)

for some constant C1 ∈ (0,∞), where the function ϕb (x) satisfies C2b ≤ ϕb (x) ≤
C3b for some constants 0 < C2 ≤ C3 < ∞, and the connection between x and ϕb (x)
at x = C1b is smooth.

Condition 1.2 α, γ ≥ 1, and for x ∈ [0,C1b), α satisfies 1 ≤ α ≤ C4 for some con-
stant C4 ∈ [1,∞). Moreover, connections of α and γ at x = C1b, if any, are smooth.

Condition 1.3

Mb (x) =
�

(
α
γ

)
�

(
α+2
γ

)

{
�

(
α+1
γ

)}2 =
{
1 + (C5/x) b + o (b) f or x ≥ C1b
O (1) f or x ∈ [0,C1b)

,

for some constant |C5| ∈ (0,∞).

Condition 1.4

Hb (x) =
�

(
α
γ

)
�

(
2α
γ

)

21/γ �
(

α+1
γ

)
�

(
2α−1

γ

) =
{
1 + o (1) i f x/b → ∞
O (1) i f x/b → κ ∈ (0,∞)

.
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Condition 1.5

Ab,ν (x)=
⎧
⎨

⎩
γ�

(
α+1
γ

)

β

⎫
⎬

⎭

ν−1
�

{
ν(α−1)+1

γ

}

ν
ν(α−1)+1

γ

{
�

(
α
γ

)}2ν−1

=
{
VI (ν) (xb)(1−ν)/2 + o

(
b(1−ν)/2

)
i f x/b → ∞

VB (ν, κ) b1−ν + o
(
b1−ν

)
i f x/b → κ ∈ (0,∞)

, ν ∈ R+,

where the subscripts “I” and “B” in the constants VI (ν) , VB (ν, κ) ∈ (0,∞) signify
“interior” and “boundary”, respectively.

A major advantage of the family is that for each asymmetric kernel generated
from this class, asymptotic properties of the kernel estimators (e.g., density and
regression estimators) can be delivered by manipulating the conditions directly,
as with symmetric kernels. Conditions1.1 and 1.2 ensure that a legitimate ker-
nel can be generated from the pdf of GG (α, β� (α/γ ) /� {(α + 1) /γ } , γ ). The
reason why the GG kernels are built not on the pdf of GG (α, β, γ ) but on that
of GG (α, β� (α/γ ) /� {(α + 1) /γ } , γ ) will be explained in Remark2.3. Condi-
tion1.3 can be primarily used for the bias approximation to the GG density estimator,
whereas Conditions1.4 and 1.5 are prepared for its variance approximation. These
aspects will be revisited in Remarks2.2 and 2.5.

The family of the GG kernels embraces the following three special cases. It is
easy to check that each kernel satisfies Conditions1.1 and 1.2. The Proof of Theorem
2 in Hirukawa and Sakudo (2015) also reveals that Conditions1.3–1.5 hold for each
kernel.

(i) MG Kernel. Putting

(α, β) =
{

(x/b, x) for x ≥ 2b(
(1/4) (x/b)2 + 1, x2/ (4b) + b

)
for x ∈ [0, 2b)

and γ = 1 in (1.3) generates the MG kernel

KMG(x,b) (u) = uα−1 exp {−u/ (β/α)}
(β/α)α � (α)

1 {u ≥ 0} .

It can be found that this is equivalent to the one proposed by Chen (2000b) by
recognizing that α = ρb (x) and β/α = b.

(ii) Weibull Kernel. Use the same β as for the MG kernel but let

α = γ =
{√

2x/b for x ≥ 2b
x/ (2b) + 1 for x ∈ [0, 2b)
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in (1.3). Then, it becomes

KGG(x,b) (u) =
αuα−1 exp

[
−

{
u

β/�(1+1/α)

}α]

{β/� (1 + 1/α)}α 1 {u ≥ 0} .

The right-hand side can be rewritten as the pdf of the Weibull distribution W (α,

β/� (1 + 1/α)), and thus the Weibull (“W”) kernel can be defined as

KW (α,β/�(1+1/α)) (u)

= α

β/� (1 + 1/α)

{
u

β/� (1 + 1/α)

}α−1

exp

[
−

{
u

β/� (1 + 1/α)

}α]
1 {u ≥ 0} .

(iii) Nakagami-m Kernel. Employ the same (α, β) as for the MG kernel, but put
γ = 2 in (1.3). Then, it reduces to

KGG(x,b) (u) = 2uα−1 exp
[−{u/ (β� (α/2) /� ((α + 1) /2))}2]

{β� (α/2) /� ((α + 1) /2)}α � (α/2)
1 {u ≥ 0} ,

The right-hand side can be also expressed as the pdf of the Nakagami-m distribu-
tion NM

(
α/2, (α/2) [β� (α/2) /� {(α + 1) /2}]2) due to Nakagami (1943, 1960).

The distribution is frequently applied in telecommunications engineering as the dis-
tribution that can describe signal intensity of shortwave fading. In the end, the
Nakagami-m (“NM”) kernel is defined as

KNM(α/2,(α/2)[β�(α/2)/�{(α+1)/2}]2) (u)

= 2 (α/2)α/2

[
(α/2) {β� (α/2) /� ((α + 1) /2)}2]α/2

� (α/2)
u2(α/2)−1

× exp

[
− α/2

(α/2) {β� (α/2) /� ((α + 1) /2)}2 u
2

]
1 {u ≥ 0} .

1.3.3 Shapes of the Kernels

We conclude this chapter by illustrating shapes of the asymmetric kernels. Figure1.2
plots shapes of the B (in solid lines) andMB (in dashed lines) kernels at five different
design points (x = 0.00, 0.25, 0.50, 0.75, 1.00). Likewise, Fig. 1.3 presents shapes
of the G and (three special cases of) GG kernels at four different design points
(x = 0, 1, 2, 4). As indicated in Property 1.2, the shape of each asymmetric kernel
varies according to the position at which smoothing is made; in other words, the
amount of smoothing changes in a locally adaptive manner.
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Fig. 1.2 Shapes of the B and MB kernels for b = 0.2

It should be stressed that each figure is drawn with the value of the smoothing
parameter fixed at b = 0.2. When we attempt to estimate such a density as in Fig. 1.1
using symmetric kernels, global smoothing with a fixed bandwidth may not work.
If a short bandwidth is chosen so that the sharp peak near the boundary may not be
missed, then the estimated right tail has spurious bumps. On the other hand, if a
long bandwidth is employed to avoid the wiggly tail, then the peak is considerably
smoothed away. In the end, we may be tempted to resort to variable kernel methods.
In contrast, adaptive smoothing by means of asymmetric kernels can be achieved by
a single smoothing parameter, which makes them much more appealing in empirical
work.

A closer look at Fig. 1.2 reveals that the B and MB kernels become symmetric at
x = 0.5, i.e., the midpoint of the unit interval. As the design point moves away from
the midpoint, degrees of asymmetry increase. Also observe that when smoothing is
made at each boundary, the kernels put maximum weights on the boundary. It can
be found in Fig. 1.3 that when smoothing is made at the origin (Panel (a)), the NM
kernel collapses to a half-normal pdf, whereas others reduce to exponential pdfs. As
the design point moves away from the boundary (Panels (b)-(d)), the shape of each
kernel becomes flatter and closer to symmetry.
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Fig. 1.3 Shapes of the G and GG kernels for b = 0.2
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Chapter 2
Univariate Density Estimation

Researchers and policy-makers are often interested in the distributions of economic
and financial variables. Specifying their density functions provides natural descrip-
tions of the distributions. This chapter investigates nonparametric density estimation
using asymmetric kernels. Ourmain focus is on univariate density estimation. Specif-
ically, the density estimator smoothed by the asymmetric kernel indexed by j can be
expressed as

f̂ j (x) = 1

n

n∑

i=1

K j(x,b) (Xi ) , (2.1)

where j ∈ {B, MB,G, MG,W, NM}. Whenever necessary, j = GG may be used.
In this case, j refers to the entire family of the GG kernels. Throughout it is assumed
that {Xi }ni=1 are i.i.d. random variables drawn from a univariate distribution with a
pdf f having support either on [0, 1] or R+. We start from the bias and variance
approximations of the density estimator (2.1) and discuss their various convergence
properties. Methods of choosing the smoothing parameter are also considered. There
is a list of useful formulae for asymptotic analysis in the end.

2.1 Bias and Variance

2.1.1 Regularity Conditions

Our analysis starts from bias and variance approximations. Not only do the bias and
variance properties establish weak consistency of the density estimator (2.1), but
also they become a building block for subsequent analyses including bias correc-
tion to be discussed in Chap.3. Although the main focus of this section is on the
bias-variance trade-off, asymptotic normality of the density estimator is straightfor-
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18 2 Univariate Density Estimation

ward to establish in a similar manner to the Proof of Theorem 5.4 in Sect. 5.5.1.
Below, we present a set of regularity conditions that are standard for asymmetric
kernel density estimation.

Assumption 2.1 The second-order derivative of the pdf f (·) is continuous and
bounded in the neighborhood of x .

Assumption 2.2 The smoothing parameter b (= bn > 0) satisfies b + (nb)−1 → 0
as n → ∞.

2.1.2 Bias Approximation

The bias of the density estimator (2.1) can be approximated under Assumptions 2.1
and 2.2. It is easy to see that

E
{
f̂ j (x)

}
=

∫
K j(x,b) (u) f (u) du = E

{
f
(
θ j(x,b)

)}
, (2.2)

where θ j(x,b) is the random variable obeying the distribution with the pdf K j(x,b) (·),
i.e., θG(x,b)

d= G (x/b + 1, b), for instance. Then, a second-order Taylor expansion
of f

(
θ j(x,b)

)
around θ j(x,b) = x yields

E
{
f̂ j (x)

}
= f (x) + E

(
θ j(x,b) − x

)
f (1) (x)

+ 1

2
E

{(
θ j(x,b) − x

)2}
f (2) (x) + R f̂ j (x)

,

where

R f̂ j (x)
:=

∫ {
f (2) (ξ) − f (2) (x)

}
(ξ − x)2 K j(x,b) (u) du

is the remainder term with ξ = αu + (1 − α) x for some α ∈ (0, 1), which is shown
to be of smaller order in magnitude. Finally, evaluating the moments E

(
θ j(x,b) − x

)

and E
{(

θ j(x,b) − x
)2}

by means of formulae given in Sect. 2.8 yields the leading

bias term. It can be found that the leading bias of f̂ j (x) is O (b). In particular,

Bias
{
f̂ j (x)

}
= B1, j (x, f ) b + o (b) ,

for some kernel-specific coefficient B1, j (x, f ) that depends on the design point x
and derivatives of the pdf f . Forms ofB1, j (x, f ) are given in Table2.1 below. Notice
that the table also presents forms of B2, j (x, f ), the kernel-specific coefficient on the
O

(
b2

)
bias term, except the W kernel. They are required for bias approximations in

a variety of bias-corrected estimators. Section 3.2 and Remark 3.5 will explain how
B2, j (x, f ) appears in bias approximations of the bias-corrected density estimators
and why B2,W (x, f ) is not listed in Table2.1, respectively.
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Remark 2.1 As documented in Lemma 6 of Bouezmarni and Rolin (2003), both
f̂ B (x) and f̂MB (x) are unbiased for 1 {0 ≤ x ≤ 1}, i.e., the pdf of U [0, 1]. This is
obvious from (2.2).

Remark 2.2 For f̂GG (x), Condition 1.3 serves as a high-level assumption, and it
leads to the leading bias coefficient

B1,GG (x, f ) =
{

(C5/2) x f (2) (x) for x ≥ C1b
ξb (x) f (1) (x) for x ∈ [0,C1b)

, (2.3)

where

ξb (x) := ϕb (x) − x

b
= O (1) .

For each of the MG, W, and NM kernels, C1 = 2 and ϕb (x) = x2/ (4b) + b so that
ξb (x) = {(1/2) (x/b) − 1}2. On the other hand, as indicated in Table2.1, the values
of C5 differ; to be more precise,

(
C5,MG,C5,W ,C5,NM

) = (
1,π2/12, 1/2

)
.

Remark 2.3 It is also worth explaining why the MB and MG are proposed as
modifications of the B and G kernels, respectively. As in Table2.1, B1,B (x, f )
and B1,G (x, f ), the leading bias coefficients of the B and G density estimators,
include f (1) (x) as well as f (2) (x). This comes from the fact that E

(
θB(x,b)

) =
(x + b) / (1 + 2b) = x + O (b) and E

(
θG(x,b)

) = x + b by (2.13) and (2.14),
respectively. Because these expected values are not exactly x , extra terms with
f (1) (x) are included in the corresponding bias coefficients. Modified versions of
the kernels, namely the MB and MG kernels, are designed to eliminate the term

involving f (1) (x) as long as x is away from the boundary. Indeed, θMB(x,b)
d=

Beta {x/b, (1 − x) /b} for x ∈ [2b, 1 − 2b] and θMG(x,b)
d= G (x/b, b) for x ≥ 2b.

It follows again from (2.13) and (2.14) that E
(
θMB(x,b)

) = E
(
θMG(x,b)

) = x , which
leads to the bias coefficient without f (1) (x). Similarly, we can also understand why
not GG (α,β, γ) but GG (α,β� (α/γ) /� {(α + 1) /γ} , γ) is chosen as the distri-
bution that generates theGGkernels. For θGG(x,b)

d= GG (α, β� (α/γ) /� {(α + 1) /γ} , γ),
E

(
θGG(x,b)

) = β by (2.15). Therefore, E
(
θGG(x,b)

) = x for x ≥ 2b, which again
yields the bias coefficient with only f (2) (x). The GG kernels are designed to inherit
all appealing properties that the MG kernel possesses, and this result is one of such
properties.

Remark 2.4 We can compare bias approximations of f̂ j (x) and f̂ S (x), the density
estimator using a nonnegative symmetric kernel defined in (1.1). It is well known
that the bias expansion of f̂ S (x) takes a much simpler form of

Bias
{
f̂ S (x)

}
= μ2

2
f (2) (x) h2 + o

(
h2

)
,

where μ2 = ∫ ∞
−∞ u2K (u) du. Inclusion of f (1) (x) in dominant bias terms of some

asymmetric kernel density estimators reflects that while odd-order moments of sym-
metric kernels are exactly zero, first-order moments of asymmetric kernels around
the design point x are O (b).
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2.1.3 Variance Approximation

An approximation to the variance of f̂ j (x) under Assumptions 2.1 and 2.2 can be
made in a similar manner to its bias approximation. Because

Var
{
f̂ j (x)

}
= 1

n

[∫
K 2

j(x,b) (u) f (u) du − E2 {
f
(
θ j(x,b)

)}]

= 1

n

∫
K 2

j(x,b) (u) f (u) du + O
(
n−1

)
,

we may focus on approximating the integral. The integral can be rewritten as

∫
K 2

j(x,b) (u) f (u) du := A j(x,b)E
{
f
(
ϑ j(x,b)

)}
,

where A j(x,b) := ∫
K 2

j(x,b) (u) du is a kernel-specific function of (x, b) (which usu-
ally involves the gamma function) andϑ j(x,b) is the randomvariable that obeys the dis-
tribution with the pdf K 2

j(x,b) (·) /A j(x,b). The leading variance term can be obtained
by making an approximation to A j(x,b) and recognizing that E

{
f
(
ϑ j(x,b)

)} =
f (x) + o (1). Typically approximation strategies for A j(x,b) differ, depending on
whether the design point x is located away from or in the vicinity of the boundary.
As a consequence, different convergence rates can be obtained for these regions.

Variance approximations to f̂ j (x) can be documented, depending on whether the
support is on [0, 1] or R+. In order to describe different asymptotic properties of
an asymmetric kernel estimator across positions of the design point x , we may rely
on the phrases “interior x” and “boundary x” whenever necessary. The design point
x is said to be an interior x if x ∈ [0, 1] satisfies x/b → ∞ and (1 − x) /b → ∞,
or if x ∈ R+ satisfies x/b → ∞, as n → ∞. On the other hand, x is said to be a
boundary x if x ∈ [0, 1] satisfies either x/b → κ or (1 − x) /b → κ, or if x ∈ R+
satisfies x/b → κ for some κ ∈ (0,∞), as n → ∞.

For notational convenience, let

v j =

⎧
⎪⎪⎨

⎪⎪⎩

1
2
√

π
for j ∈ {B, MB,G, MG}

1
2
√
2
for j = W

1√
2π

for j = NM

and (2.4)

g j (x) =
{ 1√

x(1−x)
for j ∈ {B, MB}

1√
x

for j ∈ {G, MG,W, NM} .

Wepresent variance approximations of density estimators using theBandMBkernels
first. For interior x , recognizing vB = 1/

(
2
√

π
)
yields
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Var
{
f̂ B (x)

}
= 1

nb1/2
vBgB (x) f (x) + o

(
n−1b−1/2

)

= 1

nb1/2
f (x)

2
√

π
√
x (1 − x)

+ o
(
n−1b−1/2) . (2.5)

The dominant term in Var
{
f̂MB (x)

}
for interior x takes the same form as the one

in Var
{
f̂ B (x)

}
. In contrast, for boundary x , orders of magnitude in Var

{
f̂ B (x)

}

and Var
{
f̂MB (x)

}
slow down to O

(
n−1b−1

)
. In particular, the approximation to

Var
{
f̂ B (x)

}
for this case is given by

Var
{
f̂ B (x)

}
= 1

nb

� (2κ + 1)

22κ+1�2 (κ + 1)
f (x) + o

(
n−1b−1

)
.

However, it suffices to obtain the order of magnitude for boundary x , because the
inferior variance convergence does not affect the global property of the density esti-
mator, as can be seen shortly.

Next, we turn to Var
{
f̂ j (x)

}
for j ∈ {G, MG,W, NM}. For interior x ,

Var
{
f̂ j (x)

}
= 1

nb1/2
v jg j (x) f (x) + o

(
n−1b−1/2)

= 1

nb1/2
v j

f (x)√
x

+ o
(
n−1b−1/2

)
.

For boundary x , the order of magnitude in Var
{
f̂ j (x)

}
again slows down to

O
(
n−1b−1

)
. In particular, Var

{
f̂G (x)

}
for this case can be approximated as

Var
{
f̂G (x)

}
= 1

nb

� (2κ + 1)

22κ+1�2 (κ + 1)
f (x) + o

(
n−1b−1

)
.

For each of other three kernels, the Proof of Theorem 2 in Hirukawa and Sakudo
(2015) documents VB (2,κ) given in (2.6) below.

Remark 2.5 Var
{
f̂ j (x)

}
for j ∈ {MG,W, NM} can be also obtained via

Var
{
f̂GG (x)

}
. Conditions 1.4 and 1.5 serve as high-level assumptions, and

these conditions jointly imply the leading variance term. Approximations to

Var
{
f̂GG (x)

}
can be summarized as

Var
{
f̂GG (x)

}
=

{
1

nb1/2 VI (2) f (x)√
x

+ o
(
n−1b−1/2

)
if x/b → ∞

1
nb VB (2,κ) f (x) + o

(
n−1b−1

)
if x/b → κ

, (2.6)

where VI (2) corresponds to v j in (2.4).
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Remark 2.6 As pointed out by Chen (2000) and Scaillet (2004), a unique feature
of the density estimator (2.1) with support on R+ is that the variance coefficient is
inversely proportional to x1/2 and thus decreases as x increases. To see this, consider

f̂G (x) for simplicity. If θG(x,b)
d= G (x/b + 1, b), then Var

(
θG(x,b)

) = xb + b2.
This indicates that the G kernel spreads out as x grows. The varying shape induces
the G kernel to possess an adaptive smoothing property similar to the variable kernel
method with an effective bandwidth of xb employed, although a single smoothing
parameter b is used everywhere. In other words, the kernel can collect more data
points (or increase its effective sample size) to smooth in the areas with fewer obser-
vations. This property is particularly advantageous to estimating the distributions
that have a long tail with sparse data, such as those of the economic and financial
variables mentioned in Sect. 1.3.1.

Remark 2.7 We can compare variance approximations of f̂ j (x) and f̂ S (x). It is
well known that the variance of f̂ S (x) can be approximated as

Var
{
f̂ S (x)

}
= 1

nh
R (K ) f (x) + o

(
n−1h−1) ,

where R (K ) = ∫ ∞
−∞K 2 (u) du is called the roughness of the kernel K . Observe that

R (K ) corresponds to v jg j (x). The property that shapes of an asymmetric kernel
vary with x makes its “roughness” no longer constant.

2.2 Local Properties

Consider the mean squared error (“MSE”) of f̂ j (x)

MSE
{
f̂ j (x)

}
= E

[{
f̂ j (x) − f (x)

}2
]

= Bias2
{
f̂ j (x)

}
+ Var

{
f̂ j (x)

}
.

In particular, the MSE for interior x can be approximated by

MSE
{
f̂ j (x)

}
= {B1, j (x, f )

}2
b2 + 1

nb1/2
v jg j (x) f (x) + o

(
b2 + n−1b−1/2

)
.

This approximation demonstrates the bias-variance trade-off in f̂ j (x). Observe that
the squared bias and variance terms are monotonously increasing and decreasing in
b, respectively. The optimal smoothing parameter b∗

j that minimizes the dominant
two terms in the MSE is

b∗
j =

[
v jg j (x) f (x)

4
{B1, j (x, f )

}2

]2/5

n−2/5. (2.7)
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Notice that the order of magnitude in the MSE-optimal smoothing parameter b∗
j is

O
(
n−2/5

) = O
(
h∗2), where h∗ is the MSE-optimal bandwidth for density estima-

tors using nonnegative symmetric kernels. Therefore, when best implemented, the
approximation to the MSE reduces to

MSE∗
{
f̂ j (x)

}
∼ 5

45/4
v
4/5
j

{B1, j (x, f )
}2/5 {

g j (x) f (x)
}4/5

n−4/5. (2.8)

The optimal MSE of f̂ j (x) for interior x becomes O
(
n−4/5

)
, which is also the

optimal convergence rate in the MSE of nonnegative symmetric kernel density esti-
mators.

On the other hand, for boundary x , MSE
{
f̂ j (x)

}
= O

(
b2 + n−1b−1

)
, and the

bias-variance trade-off is again observed. The MSE-optimal smoothing parameter
is b†j = O

(
n−1/3

)
, which yields the optimal MSE of O

(
n−2/3

)
. However, it can be

soon demonstrated that influence of the slow convergence in the boundary region to
the global property of f̂ j (x) is negligible.

Remark 2.8 The order of magnitude in MSE
{
f̂ j (x)

}
for interior x is

O
(
b2 + n−1b−1/2

)
, which can be rewritten as O

(
h4 + n−1h−1

)
by defining

h := b1/2. Some authors pay attention to the fact that O
(
h4 + n−1h−1

)
is also

the order of magnitude in MSE
{
f̂ S (x)

}
, the MSE of a nonnegative symmetric ker-

nel density estimator using the bandwidth h. Accordingly, they prefer to denote the
smoothing parameter by h2 rather than b (e.g., Jones and Henderson 2007).

Remark 2.9 It is of interest that combining (2.5) with (2.8) leads to

MSE∗
{
f̂MB (x)

}
∼ 5

4

(
1

4π

)2/5 {
f (2) (x)

}2/5 { f (x)}4/5 n−4/5

for interior x . The right-hand side coincides with the optimal MSE of the density
estimator using the Gaussian kernel K (u) = exp

(−u2/2
)
/
√
2π.

Remark 2.10 Because B1,GG (x, f ) = (C5/2) x f (2) (x) for x ≥ C1b, the bias of
f̂GG (x) may become large (in absolute value) as x moves away from the origin.
However, the large bias for a large x is compensated (or balanced) by the shrinking
variance. Substituting (2.3) and (2.6) into (2.8) yields the optimal MSE for f̂GG (x)
for interior x as

MSE∗
{
f̂GG (x)

}
∼ 5

4
C2/5
5 {VI (2)}4/5 {

f (2) (x)
}2/5 { f (x)}4/5 n−4/5.
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Observe that MSE∗
{
f̂GG (x)

}
depends only on f (x) and not on x itself, which

suggests that the large bias for a large x is indeed balanced by the shrinking variance.
Scaillet (2004) also reports a similar result between bias and variance of the density
estimator smoothed by the inverse Gaussian or reciprocal inverse Gaussian kernel.

Remark 2.11 It is also possible to look into the local properties of density estimators
using three special cases of the GG kernels individually. It follows from (2.4) and
(2.7) that the MSE-optimal smoothing parameters of the MG, W, and NM density
estimators for interior x are

b∗
MG =

(
1

2
√

π

)2/5
[

{ f (x)}2/5
x

{
f (2) (x)

}4/5

]
n−2/5,

b∗
W =

{(
12/π2

)2

23/2

}2/5 [
{ f (x)}2/5

x
{
f (2) (x)

}4/5

]
n−2/5, and

b∗
NM =

(
23/2√

π

)2/5
[

{ f (x)}2/5
x

{
f (2) (x)

}4/5

]
n−2/5.

It can be immediately found that b∗
NM = 2b∗

MG holds. By (2.8), the optimal MSEs
of f̂MG (x) and f̂NM (x) for interior x have the relation

MSE∗
{
f̂MG (x)

}
∼ MSE∗

{
f̂NM (x)

}

∼ 5

4

(
1

4π

)2/5 {
f (2) (x)

}2/5 { f (x)}4/5 n−4/5. (2.9)

The right-hand side is again the optimal MSE of the Gaussian kernel density esti-
mator. In sum, when best implemented, the MG and NM density estimators become
first-order asymptotically equivalent. Combining with Remark 2.9, we can see that,
the MG and NM kernels on R+, as well as the MB kernel on [0, 1], are in a sense
equivalent to the Gaussian kernel onR. In contrast, when best implemented, theMSE
of f̂W (x) for interior x can be approximated by

MSE∗
{
f̂W (x)

}
∼ 5

4

(
π2

96

)2/5 {
f (2) (x)

}2/5 { f (x)}4/5 n−4/5. (2.10)

Comparing the factors of (2.9) and (2.10) reveals that (5/4) {1/ (4π)}2/5
≈ 0.454178 . . . and (5/4)

(
π2/96

)2/5 ≈ 0.503178 . . . Ṫherefore, f̂W (x) is shown

to be slightly inefficient than f̂MG (x) and f̂NM (x) in the best-case scenario.
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2.3 Global Properties

Although the variance convergence of f̂ j (x) for boundary x slows down, the inferior
convergence rate does not affect its global property. Applying the trimming argument
in Chen (1999, p. 136, 2000, p. 476) approximates the mean integrated squared error
(“MISE”) of f̂ j (x) as

MI SE
{
f̂ j (x)

}

=
∫

E

[{
f̂ j (x) − f (x)

}2
]
dx

= b2
∫ {B1, j (x, f )

}2
dx + v j

nb1/2

∫
g j (x) f (x) dx + o

(
b2 + n−1b−1/2

)
,

provided that both
∫ {B1, j (x, f )

}2
dx and

∫
g j (x) f (x) dx are finite, where B1, j

for j = MB and for j = GG refers to the one for x ∈ [2b, 1 − 2b] and for x ≥ C1b,
respectively. The smoothing parameter value that minimizes two dominant terms on
the right-hand side is

b∗∗
j =

(v j

4

)2/5
[ ∫

g j (x) f (x) dx
∫ {B1, j (x, f )

}2
dx

]2/5

n−2/5.

Therefore, when best implemented, the approximation to the MISE reduces to

MI SE∗∗
{
f̂ j (x)

}

∼ 5

45/4
v
4/5
j

[∫ {B1, j (x, f )
}2

dx

]1/5 {∫
g j (x) f (x) dx

}4/5

n−4/5.

In particular, for f̂GG (x), it holds that

MI SE∗∗
{
f̂GG (x)

}

∼ 5

4
C2/5
5 {VI (2)}4/5

[∫ ∞

0
x2

{
f (2) (x)

}2
dx

]1/5 {∫ ∞

0

f (x)√
x

dx

}4/5

n−4/5.

Note that O
(
n−4/5

)
is the optimal convergence rate of the MISE within the class of

nonnegative kernel estimators in Stone’s (1980) sense.

Remark 2.12 The requirements for finiteness of
∫ {B1, j (x, f )

}2
dx and∫

g j (x) f (x) dx depend on kernels. While both
∫ {

f (1) (x)
}2

dx < ∞ and∫
x2

{
f (2) (x)

}2
dx < ∞ imply

∫ {B1, j (x, f )
}2

dx < ∞ for j ∈ {B,G}, the sec-

ond condition alone establishes
∫ {B1, j (x, f )

}2
dx < ∞ for j ∈ {MB,GG}. Fur-
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thermore, for j ∈ {G,GG}, ∫ ∞
0 g j (x) f (x) dx = ∫ ∞

0

{
f (x) /

√
x
}
dx < ∞ holds

as long as f (x) ∝ x−q as x ↓ 0 for some q < 1/2. Therefore, finiteness of this
integral is ensured if the underlying pdf at the origin is zero, takes a positive
constant, or even diverges at a certain rate. In contrast, dominant variance coef-
ficients of some other asymmetric kernel density estimators are proportional to
f (x) /x or f (x) /x3/2. As a result, integrated variances of these estimators are
well defined only if f (0) = 0. Igarashi and Kakizawa (2017) are concerned with
this problem and propose amodification of such kernels. Likewise, for j ∈ {B, MB},∫ 1
0 g j (x) f (x) dx = ∫ 1

0

{
f (x) /

√
x (1 − x)

}
dx < ∞ is the case if f (x) ∝ x−q as

x ↓ 0 and f (x) ∝ (1 − x)−q as x ↑ 1 for some q < 1/2.

Remark 2.13 Igarashi and Kakizawa (2014) point out that reparameterizing the
exponent in the MG kernel can make the MISE of the resulting density estimator
even smaller. For two constants c and c′that satisfy c + 2 > c′ ≥ 1, let

ρb,c,c′ (x) :=
{
x/b + c for x ≥ 2b(
c − c′ + 2

) {x/ (2b)}2/(c−c′+2) + c′ for x ∈ [0, 2b)
.

Also define the pdf of G
(
ρb,c,c′ (x) , b

)
as a new class of the G kernel, which is

labeled the further modified gamma (“FMG”) kernel. Observe that the G and MG
kernels are special cases of the FMG kernel with

(
c, c′) = (1, 1) and

(
c, c′) = (0, 1),

respectively. It can be demonstrated that the dominant term of the optimal MISE of
the density estimator using the FMG kernel is

MI SE∗∗
{
f̂ FMG (x)

}

∼ 5

44/5

(
1

4π

)2/5 [∫ ∞

0

{B1,FMG (x, f )
}2

dx

]1/5 {∫ ∞

0

f (x)√
x

dx

}4/5

n−4/5,

where

B1,FMG (x, f ) = B1,FMG (x, f ; c) := c f (1) (x) + 1

2
x f (2) (x)

depends only on c. As in Proposition 3 of Igarashi and Kakizawa (2014), if
x

{
f (1) (x)

}2 → 0 as x → ∞, then using integral by parts yields

∫ ∞

0

{B1,FMG (x, f ; c)}2 dx

= c

(
c − 1

2

)∫ ∞

0

{
f (1) (x)

}2
dx +

∫ ∞

0

{ x
2
f (2) (x)

}2
dx .
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The right-hand side is minimized at c = 1/4, and the minimum value is

∫ ∞

0

{
B1,FMG

(
x, f ; 1

4

)}2

dx

=
∫ ∞

0

{ x
2
f (2) (x)

}2
dx −

∫ ∞

0

{
1

4
f (1) (x)

}2

dx

<

∫ ∞

0

{ x
2
f (2) (x)

}2
dx

(
=

∫ ∞

0

{B1,MG (x, f )
}2

dx

)
.

Putting c′ = 1 for simplicity, Igarashi andKakizawa (2014) conclude that f̂ FMG with(
c, c′) = (1/4, 1) is preferred to f̂MG in terms of the MISE.

2.4 Other Convergence Results

While our focus so far has been on the mean square convergence, different types
of convergence results are also available. Bouezmarni and Rolin (2003) and Bouez-
marni and Scaillet (2005) show weak L1 consistency of the B and G density esti-
mators, respectively. Bouezmarni and Rolin (2003) and Bouezmarni and Scaillet
(2005) also demonstrate uniformweak consistency of these estimators. Furthermore,
Bouezmarni and Rolin (2003) and Bouezmarni and Rombouts (2010a) establish their
uniform strong consistency. These results are summarized as the theorem below.

Theorem 2.1 (i) (Bouezmarni and Rolin 2003, Theorem 3 and Remark 2)
If f (·) has support on [0, 1] and is continuous and bounded on [0, 1], then

sup
x∈[0,1]

∣∣∣ f̂ B (x) − f (x)
∣∣∣

{
p→ 0 i f b + (

nb2
)−1 → 0

a.s.→ 0 i f b + log n/
(
nb2

) → 0
.

(ii) (Bouezmarni and Scaillet 2005, Theorem 3.1; Bouezmarni and Rombouts 2010a,
Theorem 2)

If f (·) has support on R+ and is continuous and bounded on a compact interval
I ⊂ R+, then

sup
x∈I

∣∣∣ f̂G (x) − f (x)
∣∣∣

{
p→ 0 i f b + (

nb2
)−1 → 0

a.s.→ 0 i f b + log n/
(
nb2

) → 0
.
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2.5 Properties of Density Estimators at the Boundary

2.5.1 Bias and Variance of Density Estimators at the
Boundary

This section explores properties of the density estimator (2.1) at the boundary. We
start from approximating the bias and variance of f̂ j (x) at the boundary under
the assumption that the true density is finite at the boundary. This analysis is a
natural extension of the one in Theorem 3.2 of Shi and Song (2016). The results are
documented separately, depending on whether the support is on [0, 1] or R+.

At each boundary (i.e., x = 0, 1) biases and variances of f̂ B (x) and f̂MB (x) are
first-order asymptotically equivalent. Specifically, for j ∈ {B, MB},

Bias
{
f̂ j (0)

}
= f (1) (0) b + o (b) , (2.11)

Var
{
f̂ j (0)

}
=

{
1
nb

f (0)
2 + o

(
n−1b−1

)
if f (0) > 0

1
n

f (1)(0)
4 + o

(
n−1

)
if f (0) = 0 and f (1) (0) > 0

, (2.12)

Bias
{
f̂ j (1)

}
= − f (1) (1) b + o (b) , and

Var
{
f̂ j (1)

}
=

{
1
nb

f (1)
2 + o

(
n−1b−1

)
if f (1) > 0

− 1
n

f (1)(1)
4 + o

(
n−1

)
if f (1) = 0 and f (1) (1) < 0

.

Biases and variances of f̂ j (0) for j ∈ {G, MG,W } admit the same first-order expan-
sions as in (2.11) and (2.12), respectively. While f̂NM (0) also has the samefirst-order
bias expansion, its variance expansion slightly differs. It is

Var
{
f̂NM (0)

}
=

{
1
nb

√
2

π
f (0) + o

(
n−1b−1

)
if f (0) > 0

1
n

f (1)(0)
π

+ o
(
n−1

)
if f (0) = 0 and f (1) (0) > 0

.

2.5.2 Consistency of Density Estimators for Unbounded
Densities at the Origin

So far we have delivered asymptotic results of asymmetric kernel density estimators
under the assumption that f is bounded at the boundary. In the previous section, the
estimators are shown to be indeed consistent at the boundary under this assumption.
In reality, the assumption may be violated. For example, a clustering of observations
near the boundary, or a pole in the density at the origin can be frequently observed
in distributions of intraday trading volumes (e.g., Malec and Schienle 2014) and
spectral densities of long memory processes (e.g., Bouezmarni and Van Bellegem
2011).



30 2 Univariate Density Estimation

We may still employ the B, G, and GG kernels to estimate such unbounded den-
sities consistently. Several authors demonstrate weak consistency and the relative
convergence of the density estimators for unbounded densities. The next two theo-
rems document these results.

Theorem 2.2 (Bouezmarni and Scaillet 2005, Theorem 5.1; Bouezmarni and Van
Bellegem 2011, Proposition 3.3; Hirukawa and Sakudo 2015, Theorem 5)

If f (x) is unbounded at x = 0 and b + (
nb2

)−1 → 0 as n → ∞, then f̂ j (0)
p→

∞ for j ∈ {B,G,GG}.
Theorem 2.3 (Bouezmarni and Scaillet 2005, Theorem 5.3; Bouezmarni and Van
Bellegem 2011, Proposition 3.4; Hirukawa and Sakudo 2015, Theorem 6)

If f (x) is unbounded at x = 0 and continuously differentiable in the neighbor-
hood of the origin and b + {

nb2 f (x)
}−1 → 0 as n → ∞ and x → 0, then

∣∣∣∣∣
f̂ j (x) − f (x)

f (x)

∣∣∣∣∣
p→ 0

for j ∈ {B,G,GG} as x → 0.

Remark 2.14 Not all asymmetric kernels share the appealing properties described in
these theorems. Igarashi andKakizawa (2014, Sect. 2.2) argue that density estimators
smoothed by some asymmetric kernels generate nonnegligible bias at or near the
boundary by construction. Specifically, both the Birnbaum–Saunders kernel by Jin
and Kawczak (2003) and the inverse Gaussian kernel by Scaillet (2004) always yield
zero density estimates at the origin even when the truth is f (0) > 0. Moreover, the
reciprocal inverse Gaussian kernel by Scaillet (2004) is shown to have downward
bias in the vicinity of the origin.

2.6 Further Topics

2.6.1 Density Estimation Using Weakly Dependent
Observations

Often we are interested in estimating the marginal density from nonnegative time-
series data. Examples include estimation problems of (i) the distribution of important
financial variables such as short-term interest rates or trading volumes and (ii) the
baseline hazard in financial duration analysis.

To explore convergence properties of asymmetric kernel density estimators using
dependent observations, we must impose some regularity condition on their depen-
dent structure, typically as a notion of mixing. Here, we exclusively focus on
α-mixing (or strongly mixing) processes by Rosenblatt (1956). For reference, an
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α-mixing process is formally defined as follows. For−∞ ≤ J ≤ L ≤ ∞ denote the
σ-algebra generated from the stationary random variables {Xt }Lt=J by

F L
J := σ {Xt , J ≤ t ≤ L (t ∈ Z)}

and define

α (τ ) := sup
j∈Z

sup
A∈F j

−∞,B∈F∞
j+τ

|Pr (A ∩ B) − Pr (A)Pr (B)| .

The stationary process {Xt }∞t=−∞ is said to be α-mixing if α (τ ) → 0 as τ → ∞.
As an alternative condition, β-mixing (or absolute regularity) is often considered
in economics and finance (e.g., Carrasco and Chen 2002; Chen et al. 2010). Since
β-mixing implies α-mixing, assuming the latter is general enough to cover many
important applications in economics and finance.

As with density estimators using standard symmetric kernels, the leading bias
and variance terms for asymmetric kernel density estimators remain unchanged even
when positive weakly dependent observations are used. Intuitively, even if the obser-
vations chosen for a local average in the neighborhood of a design point have serial
dependence, they are not necessarily close to each other in time as long as their
dependence is weak. As a result, the dependent observations are likely to behave as
if they were independent.

Bouezmarni and Rombouts (2010b, Proposition 1) first extend density estima-
tion using asymmetric kernels in this direction. They exclusively consider the MG
kernel and show that the (first-order) bias and variance approximations are still
valid for α-mixing processes with an exponentially decaying mixing coefficient
α (τ ) such that α (τ ) ≤ Cρτ for some C ∈ (0,∞) and ρ ∈ (0, 1). The results hold
true even when the decay rate of α (τ ) is relaxed to a polynomial one. Under α-
mixing of size − (2r − 2) / (r − 2) for some r > 2, i.e., α (τ ) ≤ Cτ−q for some
q > (2 − 2/r) / (1 − 2/r), Hirukawa and Sakudo (2015, Theorems 4–6) demon-
strate that not only the bias and variance approximations but also two theorems on
estimating unbounded densities at the origin (i.e., Theorems 2.2 and 2.3) hold for
the entire family of the GG kernels including the MG kernel.

2.6.2 Normalization

Anasymmetric kernel Kx,b (·) cannot be expressed in the formof (1/b) K {(· − x) /b},
or roles of the design and data points are nonexchangeable. TheGaussian-copula ker-
nel by Jones and Henderson (2007) is an exception in that the roles are exchangeable
inside this kernel by construction. The lack of exchangeability incurs a cost. Asym-
metric kernel density estimators are not bona fide in general, in the sense that they are
not integrated to unity infinite samples. Tobemore precise,

∫
f̂ j (x) dx = 1 + O (b),

provided that B1, j (x, f ) is absolutely integrable.
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The normalization problem is commonacrossmost of asymmetric kernels (includ-
ing those under consideration in this book). Jones and Henderson (2007) even refer
to (2.1) as a kernel-type density estimator, where the phrase “kernel-type” signifies
the fact that they lack a basic property every symmetric kernel possesses. Accord-
ingly, it could be also more appropriate to classify asymmetric kernels not as kernels
but as kernel-type weighting functions. Nonetheless, following the convention in the
literature, we simply express them as kernels throughout.

Here are a few remarks on this matter. First, the normalization problem is not
uncommon in density estimation smoothed by symmetric kernels, actually. For exam-
ple, sometimes symmetric kernels are employed to estimate a density with support
on R+. The resulting density estimates are not integrated to one over R+. As will
be revisited in Chap.3, bias-corrected density estimators using symmetric kernels
are not bona fide, either; see, for instance, Sect. 2.2 of Jones et al. (1995). Second,
there are several attempts to make asymmetric kernel density estimators bona fide.
For densities with support on [0, 1], Gouriéroux and Monfort (2006) propose two
methods of renormalizing theB kernel density estimator in the context of density esti-
mation for recovery rate distributions. Two renormalized density estimators, namely
the “macro-” and “micro-beta” estimators, are defined as

f̂ RB (x) := f̂ B (x)
∫ 1
0 f̂ B (x) dx

and f̂ rB (x) := 1

n

n∑

i=1

KB(x,b) (Xi )∫ 1
0 KB(x,b) (Xi ) dx

,

respectively. Observe that in the former renormalization is made after the initial
density estimate is obtained, whereas in the latter the B kernel itself is renormalized
before density estimation. Jones and Henderson (2007) also propose the Gaussian-
copula kernel, in which roles of the design and data points are exchangeable as in
symmetric kernels. Moreover, for densitieswith support onR+, Jeon andKim (2013)
study the G kernel with roles of the design and data points reversed.

2.6.3 Extension to Multivariate Density Estimation

When multivariate bounded data are available, we may be interested in estimating
their joint density, as well as individual marginal densities. There are only a few
studies on multivariate extension of asymmetric kernel density estimation, to the
best of our knowledge. Examples include Bouezmarni and Rombouts (2010a) and
Funke and Kawka (2015). In principle, there are two approaches for estimating the
joint density of multivariate bounded random variables by asymmetric kernels. One
way is to apply the product kernel method, and the other is to employ multivariate
extensions of beta, gamma, and generalized gamma densities as kernels.

The former is a natural and straightforward strategy, and both Bouezmarni and
Rombouts (2010a) and Funke and Kawka (2015) adopt it. A benefit of this strat-
egy is that asymptotic results on the joint density estimators can be obtained easily
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and are similar to those for one-dimensional cases. In particular, Funke and Kawka
(2015) investigate multivariate bias-corrected density estimation, and convergence
properties of their estimators will be revisited in Chap. 3.

On the other hand, the latter may not be practical. Density functions for multivari-
ate versions of beta, gamma, and generalized gamma distributions take complicated
forms. Even though they can be used as kernels, it appears to be quite challenging
to explore convergence properties of the joint density estimators smoothed by such
kernels.

2.7 Smoothing Parameter Selection

Choosing the smoothing parameter b is an important practical issue. If the value of
b is appropriately chosen, then it can help to yield a density estimate that is close
to the truth; however, a poorly selected smoothing parameter is likely to distort the
quality of the density estimate severely.

There are several bandwidth selection methods available for symmetric kernel
density estimation; see Jones et al. (1996) for a brief survey. In contrast, it seems
that the problem of choosing a smoothing parameter for asymmetric kernel density
estimation still stays at the stage of what Jones et al. (1996) categorize as “first gen-
eration methods.” Below two main approaches, namely plug-in (or rule-of-thumb)
and cross-validation methods, are discussed in order.

It is worth emphasizing that we exclusively consider the problem of choosing a
single, global smoothing parameter that can be used everywhere. It could be also
possible to vary smoothing parameter values across different design points. However,
we do not pursue this idea because each asymmetric kernel can change the amount of
smoothing by varying its shapes under a single smoothing parameter; see Hagmann
and Scaillet (2007, p. 229) for a discussion.

2.7.1 Plug-In Methods

A plug-in method is built on the minimizer of two dominant terms in the MISE of
f̂ j (x). Because both terms include an unknown quantity, they are replaced by those
implied by a parametric (or reference) density. In this sense, this approach is very
close to Silverman’s (1986) rule-of-thumb bandwidth, where a normal density is
chosen as the reference. Examples of plug-in smoothing parameters can be found
in Scaillet (2004), Hirukawa (2010) and Hirukawa and Sakudo (2015).

It is straightforward to derive the plug-in smoothing parameters for the MB and
GG density estimators. For the MB density estimator, Hirukawa (2010) defines the
plug-in smoothing parameter b̂MB as



34 2 Univariate Density Estimation

b̂MB = argmin
b

[
b2

4

∫ 1

0
x2 (1 − x)2

{
f (2)
θ (x)

}2
v (x) dx

+n−1b−1/2

2
√

π

∫ 1

0

fθ(x)√
x (1 − x)

v (x) dx

]
.

While the objective function is in principle based on two dominant terms of

MI SE
{
f̂MB (x)

}
, a couple of modifications are made. First, the unknown true

density f is replaced by a reference fθ with some parameter θ. Second, a
weight function v is introduced to ensure finiteness of two integrals. Specifically,
the pdf of Beta (α,β) is chosen as fθ, and the weight function is specified as
v (x) = x3 (1 − x)3. It follows that b̂MB has an explicit form of

b̂MB =
{
B (α,β) B (α + 5/2,β + 5/2)

2
√

πCα,β

}2/5

n−2/5,

where

Cα,β = 1

� (2α + 2β + 4)

{
(α − 1)2 (α − 2)2 � (2α) � (2β + 4)

− 4 (α − 1)2 (α − 2) (β − 1) � (2α + 1) � (2β + 3)

+ 2 (α − 1) (β − 1) (3αβ − 4α − 4β + 6) � (2α + 2) � (2β + 2)

− 4 (α − 1) (β − 1)2 (β − 2) � (2α + 3) � (2β + 1)

+ (β − 1)2 (β − 2)2 � (2α + 4) � (2β)
}
.

In practice, the parameter θ = (α,β) should be replaced by some consistent estimate
via maximum likelihood (“ML”) or method of moments.

Moreover, if the true distribution is U [0, 1] so that α = β = 1, then b̂MB tends
to take a large value. Invoke that f̂MB (x) (as well as f̂ B (x)) is unbiased for the pdf
of U [0, 1] in Remark 2.1. It follows that the smoothing parameter that minimizes
the sum of two dominant terms in the MISE is not well defined (even after some
modifications are made for both terms). Under this circumstance, it suffices to
employ a O (1) smoothing parameter, and a large b̂MB simply reflects “optimality”
of oversmoothing.

Hirukawa (2010) does not derive b̂B , yet another smoothing parameter for f̂ B (x),
because extra terms involving f (1) (·) in its integrated squared bias cause b̂B to
have many terms involving (α,β). It follows that b̂B tends to be noisy because of
estimation errors of the parameters. Monte Carlo simulations in Hirukawa (2010)
indicate no adversity in using b̂MB for f̂ B (x).

The plug-in smoothing parameter for the GG density estimator (including the
MG, W, and NM density estimators as special cases) due to Hirukawa and Sakudo
(2015) can be obtained in a similar manner. It is defined as
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b̂GG = argmin
b

[
b2

(
C2
5

4

)∫ ∞

0
x2

{
f (2)
θ (x)

}2
v (x) dx

+VI (2)

nb1/2

∫ ∞

0

fθ(x)√
x

v (x) dx

]
,

where the pdf of G (γ, δ) is chosen as the reference fθ and the weight function
is specified as v (x) = x3. As a result, the plug-in smoothing parameter can be
simplified to

b̂GG =
{
4γ−1VI (2) δ5/2� (γ) � (γ + 5/2)

C2
5Cγ� (2γ)

}2/5

n−2/5,

where

Cγ = 1

4
(γ − 2)2 (γ − 1)2 − (γ − 2) (γ − 1)2 γ

+ 1

2
(3γ − 4) (γ − 1) γ

(
γ + 1

2

)
− (γ − 1) γ

(
γ + 1

2

)
(γ + 1)

+ 1

4
γ

(
γ + 1

2

)
(γ + 1)

(
γ + 3

2

)
.

As before, we must replace the parameter θ = (γ, δ) with some consistent estimate
to implement b̂GG .

2.7.2 Cross-Validation Methods

Cross-validation (“CV”) is another popular method of choosing the smoothing
parameter. The idea of CV is to find the value of b that minimizes the integrated
squared error (“ ISE”)

I SE
{
f̂ j (x)

}
=

∫ {
f̂ j (x) − f (x)

}2
dx

=
∫ {

f̂ j (x)
}2

dx − 2
∫

f̂ j (x) f (x) dx +
∫

{ f (x)}2 dx .

Because the last term does not depend on b, an estimate of I SE
{
f̂ j (x)

}
−

∫ { f (x)}2 dx serves as the CV criterion. Let

f̂ j,−i (Xi ) := 1

n − 1

n∑

k=1,k �=i

K j(Xi ,b) (Xk)
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be the density estimate using the sample with Xi removed. Then,
∫

f̂ j (x) f (x) dx
can be estimated as

1

n

n∑

i=1

f̂ j,−i (Xi ) = 1

n (n − 1)

n∑

i=1

n∑

k=1,k �=i

K j(Xi ,b) (Xk) .

It follows that the leave-one-out CV criterion becomes

CV (b) =
∫ {

f̂ j (x)
}2

dx − 2

n (n − 1)

n∑

i=1

n∑

k=1,k �=i

K j(Xi ,b) (Xk) ,

where the integral in the first term can be evaluated numerically. TheCVmethod then
selects the smoothing parameter value as b̂CV = argminb CV (b). Asymptotic opti-
mality of the selector b̂CV for density estimation using the G kernel is demonstrated
in Theorem 4 of Bouezmarni and Rombouts (2010a).

However, the leave-one-out CV method may not be appropriate for density esti-
mation using weakly dependent (but possibly persistent) observations. In estimating
densities using positive time-series data, Bouezmarni and Rombouts (2010b) replace
CV (b) with the h-block CV criterion

CVh (b) =
∫ {

f̂ j (x)
}2

dx − 2

n

n∑

i=1

f̂ j,−(i−h;i+h) (Xi ) ,

where

f̂ j,−(i−h;i+h) (Xi ) := 1

n − (2h + 1)

n∑

k=1,|k−i |>h

K j(Xi ,b) (Xk)

is the density estimate using n − (2h + 1) observations obtained by removing Xi

itself and h data points on both sides of Xi from the entire n observations; see
Chap. VI of Györfi et al. (1989) for more details. The idea behind this procedure is
that a diverging block size h (at a certain rate) induces the remaining n − (2h + 1)
observations to behave as if theywere independent. Obviously, when h = 0,CVh (b)
collapses to CV (b) for independent observations. Accordingly, the h-block CV
method selects the smoothing parameter value as b̂CVh = argminb CVh (b). Notice
that for consistency of the procedure, the divergence rate of h must be slower than the
sample size n, and Bouezmarni and Rombouts (2010b) recommend putting h = n1/4.
This approach will be revisited in Chap.4 in the context of nonparametric estimation
of scalar diffusion models.
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2.8 List of Useful Formulae

This section lists several formulae on gamma functions for reference. These are
found to be useful for asymptotic expansions of density and regression estimators
and test statistics smoothed by asymmetric kernels.

Moments about Zero of the Beta, Gamma, and Generalized Gamma Distribu-
tions

Let X
d= Beta (p, q), Y

d= G (p, q) and Z
d= G (p, q, r) for p, q, r > 0. Then,

for m ∈ Z+,

E
(
Xm

) = � (p + q) � (p + m)

� (p + q + m) � (p)

= p (p + 1) · · · (p + m − 1)

(p + q) (p + q + 1) · · · (p + q + m − 1)
, (2.13)

E
(
Ym

) = qm � (p + m)

� (p)

= p (p + 1) · · · (p + m − 1) qm, and (2.14)

E
(
Zm

) = qm � {(p + m) /r}
� (p/r)

. (2.15)

Stirling’s Asymptotic Formula

� (a + 1) = √
2πaa+1/2 exp (−a)

{
1 + 1

12a
+ O

(
a−2

)}
as a → ∞. (2.16)

Series Expansion of the Log Gamma Function

log� (1 + a) = −γa +
∞∑

k=2

(−1)k ζ (k)

k
ak for |a| < 1,

where (only in this context)

γ = lim
n→∞

(
n∑

k=1

1

k
− log n

)
= 0.5772156649 . . .

is Euler’s constant, and

ζ (k) =
∞∑

n=1

1

nk
for k > 1

is the Riemann zeta function.
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Legendre Duplication Formula (Legendre 1809)

� (a) �

(
a + 1

2

)
=

√
π

22a−1
� (2a) for a > 0.

Recursive Formula on the Lower Incomplete Gamma Function

γ (a + 1, z) = aγ (a, z) − za exp (−z) for a, z > 0. (2.17)
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Chapter 3
Bias Correction in Density Estimation

We are motivated to estimate the quantity of interest in a less biased manner, and
density estimation is not an exception. The bias correction methods discussed in
this chapter are natural extensions of what are originally proposed for nonnegative
(or second-order) symmetric kernels. Again in this chapter n observations {Xi}ni=1
used for density estimation are assumed to be i.i.d. random variables drawn from
a univariate distribution with a pdf f having support either on [0, 1] or R+. A
variety of (fully) nonparametric and semiparametric bias correction techniques are
described. Our main focus is on improvement in the bias property of each bias-
corrected estimator. We do not refer to its limiting distribution, although it is not
hard to derive it in light of the Proof of Theorem 5.4 in Sect. 5.5.1. Smoothing
parameter selection for some bias-corrected estimators is also discussed.

3.1 An Overview

Bias correction methods using asymmetric kernels are classified roughly into two
approaches, namely nonparametric and semiparametric ones. Below we present an
overview of each approach.

3.1.1 Nonparametric Bias Correction

Nonparametric methods provide valid inference under a much broader class of struc-
tures than those imposed by parametric models. However, there is a price to pay for
the robust inference. Nonparametric estimators in general have slower convergence
than parametric ones do. The bias induced by kernel smoothing may be substantial
even for moderate sample sizes. This motivates us to investigate bias correction (or
reduction) for asymmetric kernel density estimation in a fully nonparametric manner.

© The Author(s) 2018
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There are a variety of fully nonparametric bias correction techniques for den-
sity estimation using nonnegative symmetric kernels; see Jones and Foster (1993)
and Jones and Signorini (1997) for reviews. The literature on this approach using
asymmetric kernels includes Hirukawa (2010), Hirukawa and Sakudo (2014, 2015),
Igarashi and Kakizawa (2015), and Funke and Kawka (2015). Hirukawa (2010) and
Hirukawa and Sakudo (2014, 2015) apply two classes of nonparametric multiplica-
tive bias correction methods studied by Terrell and Scott (1980) and Jones et al.
(1995) to density estimation with support on [0, 1] and R+, respectively. The addi-
tive bias correction considered by Igarashi and Kakizawa (2015) follows a version
of generalized jackknife methods by Jones and Foster (1993), and the approach may
be viewed as an attempt to construct fourth-order asymmetric kernels with support
on R+.

Each of the above approaches has a common feature. As seen in Chap.2, an
asymmetric kernel density estimator has a O (b) bias. As demonstrated shortly,
under sufficient smoothness of f , bias convergence of each bias-corrected estimator
can be accelerated from O (b) to O

(
b2

)
, whereas the order of magnitude in vari-

ance remains unchanged, i.e., it is still O
(
n−1b−1/2

)
for interior x. The accelerated

bias convergence leads to a faster convergence rate. Because the MISE of each
bias-corrected estimator is O

(
b4 + n−1b−1/2

)
, it can achieve the convergence rate

of O
(
n−8/9

)
in MISE when best implemented. The rate is faster than O

(
n−4/5

)
,

the best-possible convergence rate in MISE within the class of nonnegative kernel
estimators. Furthermore, Funke and Kawka (2015) extend the bias correction tech-
niques studied in Hirukawa (2010) and Hirukawa and Sakudo (2014, 2015) to joint
density estimation using multivariate bounded data.

3.1.2 Semiparametric Bias Correction

Parametric models are still popularly chosen in estimating distributions of economic
and financial variables such as incomes and payments to the insured. However, impo-
sition of an imprecise parametric model may lead to an inconsistent density estimate
and misleading inference. Then, asymmetric kernels can be employed to reduce the
bias induced by inaccuracy in parametric specification. Inevitably the entire bias cor-
rection procedure becomes semiparametric in the sense that a nonparametric kernel
method helps to decrease the bias of an initial parametric density estimator.

Examples of semiparametric bias correction using asymmetric kernels include
Hagmann and Scaillet (2007), Gustafsson et al. (2009), and Hirukawa and Sakudo
(2018). Although each method uses asymmetric kernels at the bias correction step
after initial parametric density estimation, there is a crucial difference. The local
multiplicative bias correctionmethod byHagmann and Scaillet (2007) can be viewed
as an asymmetric kernel version of the semiparametric bias correction method stud-
ied by Hjort and Glad (1995) and Hjort and Jones (1996). While Hagmann and
Scaillet (2007) focus exclusively on bias correction in the original data scale on R+,
Gustafsson et al. (2009) correct the bias of the initial parametric density estimate on
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R+ after transforming the original data into those on [0, 1] in the spirit of Rudemo
(1991). Because of this nature, the approach is called local transformation bias cor-
rection. These approaches are designed primarily for misspecification-robust density
estimation via nonparametric kernel smoothing, whereas they do not accelerate the
bias convergence unlike fully nonparametric bias correction methods. As a result,
their best-possible MISE convergence is still O

(
n−4/5

)
in general. Then, following

Jones et al. (1999), Hirukawa and Sakudo (2018) combine the semiparametric den-
sity estimator by Hjort and Glad (1995) with the bias correction method by Jones
et al. (1995) to improve theMISE convergence toO

(
n−8/9

)
in the best-case scenario.

3.2 Nonparametric Bias Correction

3.2.1 Additive Bias Correction

To generate fourth-order kernels from a given nonnegative symmetric kernel, Jones
and Foster (1993) conduct a comprehensive study of the generalized jackknife meth-
ods. The additive bias correction (“ABC”) by Igarashi and Kakizawa (2015) can be
recognized as an extension of the methods to asymmetric kernel density estimation
with support on R+.

Igarashi and Kakizawa (2015) consider the ABC density estimator using the G
kernel. Let f̂j,b (x) and f̂j,b/c (x) denote density estimators using the kernel j and
smoothing parameters b and b/c, respectively, where c ∈ (0, 1) is some predeter-
mined constant that does not depend on the design point x. The ABC estimator
using the G kernel is defined as

f̃ABC,G (x) := 1

1 − c
f̂G,b (x) − c

1 − c
f̂G,b/c (x) .

In addition, Igarashi and Kakizawa (2015) derive the limit case with c ↑ 1 of this
estimator as

f̆ABC,G (x) : = lim
c↑1 f̃ABC,G (x)

= f̂G,b (x) − b
∂

∂b
f̂G,b (x)

= 1

n

n∑

i=1

KG(x,b) (Xi)HG(x,b) (Xi) ,

where
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HG(x,b) (u) : = 1 − b
∂

∂b
logKG(x,b) (u)

= 2 −
(
u − x

b

)
+ x

b

{
log

(u
b

)
− Ψ

( x
b

+ 1
)}

.

By construction, the ABC estimator is free of boundary bias, regardless of the value
of c.

To explore convergence properties of fully nonparametric bias-corrected estima-
tors including the ABC estimator, we impose the regularity conditions below.

Assumption 3.1 The fourth-order derivative of the pdf f (·) is continuous and
bounded in the neighborhood of x.

Assumption 3.2 The smoothing parameter b (= bn > 0) satisfies b + (
nb3

)−1 → 0
as n → ∞.

The smoothness condition for the true density f in Assumption3.1, which is
stronger than Assumption2.1, is standard for consistency of density estimators using
fourth-order kernels. Assumption3.2 implies that the shrinkage rate of the smoothing
parameter b must be slower than O

(
n−1/3

)
. This condition is required to control

the orders of magnitude in remainder terms that appear in the bias approximation to
each nonparametrically bias-corrected estimator.

The next theorem documents approximations to the bias and variance of the ABC
estimator.

Theorem 3.1 (Igarashi and Kakizawa 2015, Theorem 2)
Under Assumptions 3.1 and 3.2, the bias of f̃ABC,G (x) can be approximated as

Bias
{
f̃ABC,G (x)

}
= −1

c

{
f (2) (x) + 5

6
xf (3) (x) + x2

8
f (4) (x)

}
b2 + o

(
b2

)
.

The approximation to the variance of f̃ABC,G (x) is given by

Var
{
f̃ABC,G (x)

}
=

{ 1
nb1/2

λ(c)
2
√

π
f (x)√

x
+ o

(
n−1b−1/2

)
for interior x

O
(
n−1b−1

)
for boundary x

,

where

λ (c) :=
(
1 + c5/2

)
(1 + c)1/2 − 2

√
2c3/2

(1 + c)1/2 (1 − c)2

is monotonously increasing in c ∈ (0, 1) with

lim
c↓0 λ (c) = 1 and lim

c↑1 λ (c) = 27

16
.
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In addition, the bias and variance approximations to f̆ABC,G (x) can be obtained by
letting c ↑ 1 in the corresponding results.

ABC improves the bias convergence from O (b) to O
(
b2

)
, where the leading

bias term can be expressed alternatively as − (1/c)B2,G (x, f ) b2 for B2,G (x, f )
given in Table 2.1. The asymptotic variance of the ABC estimator for interior
x is still O

(
n−1b−1/2

)
, whereas the variance coefficient is inflated by a factor of

λ (c) from that of the G density estimator. It is straightforward to see that orders
of magnitude in the MSE-optimal smoothing parameters are b∗

ABC,G = O
(
n−2/9

)

and b†ABC,G = O
(
n−1/5

)
for interior and boundary x, respectively; the rates are

indeed within the range required by Assumption 3.2. Moreover, provided that both∫ ∞
0

{B2,G (x, f )
}2

dx and
∫ ∞
0

{
f (x) /

√
x
}
dx are finite, theMISE of the ABC estima-

tor becomes O
(
b4 + n−1b−1/2

)
, which yields the MISE-optimal smoothing param-

eter b∗∗
ABC,G = O

(
n−2/9

)
. It follows that the optimal MISE is O

(
n−8/9

)
, i.e., ABC

can attain rate improvement. Despite these attractive properties, a concern on ABC
is that the resulting estimate may be negative. The bias correction techniques in the
next section are free of this issue.

3.2.2 Multiplicative Bias Correction

This section focuses on two class of multiplicative bias correction (“MBC”) methods
using asymmetric kernels. UnlikeABC, eachMBCestimator is free of boundary bias
and always generates nonnegative density estimates everywhere by construction.

3.2.2.1 MBC by Terrell and Scott (1980)

The first class of MBC considered in this section is to construct a multiplicative
combination of two density estimators using different smoothing parameters. Terrell
and Scott (1980) (abbreviated as “TS” hereinafter) originally propose this idea in the
form of a linear combination of the logarithms of two density estimates with some
predetermined weights. Later Koshkin (1988) generalizes the idea, and Jones and
Foster (1993) incorporate it into their generalized jackknife methods and reinterpret
it as an MBC technique. Transplanting the TS-MBC method into asymmetric ker-
nel density estimation dates back to Hirukawa (2010). Subsequently, Hirukawa and
Sakudo (2014, 2015), Funke and Kawka (2015), Igarashi and Kakizawa (2015), and
Funke and Hirukawa (2017) extend this method in different directions within the
framework of asymmetric kernel smoothing.

Using the same f̂j,b (x) and f̂j,b/c (x) for some c ∈ (0, 1) as in the previous section,
the TS-MBC estimator using the kernel j is defined as

f̃TS,j (x) :=
{
f̂j,b (x)

}1/(1−c) {
f̂j,b/c (x)

}−c/(1−c)
.
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The theorem below presents the bias and variance approximations of the TS-MBC
estimator.

Theorem 3.2 (Hirukawa 2010, Theorem 1; Hirukawa and Sakudo 2014, Theorem
1; Hirukawa and Sakudo 2015, Theorem 3)

If Assumptions 3.1 and 3.2 and f (x) > 0 hold, then the bias of f̃TS,j (x) for j ∈
{B,MB,G,MG,NM } can be approximated as

Bias
{
f̃TS,j (x)

}
= 1

c

[
1

2

{B1,j (x, f )
}2

f (x)
+ B2,j (x, f )

]

b2 + o
(
b2

)

for B1,j (x, f ) and B2,j (x, f ) given in Table 2.1. The approximation to the variance
of f̃TS,j (x) is given by

Var
{
f̃TS,j (x)

}
=

{
1

nb1/2 λ (c) vjgj (x) f (x) + o
(
n−1b−1/2

)
for interior x

O
(
n−1b−1

)
for boundary x

for λ (c) defined in Theorem3.1.

As seen in ABC, TS-MBC improves the bias convergence from O (b) to O
(
b2

)
.

The leading bias coefficient of the TS-MBC estimator using the MG kernel, for
instance, reduces to

1

c

[
1

2

{B1,MG (x, f )
}2

f (x)
+ B2,MG (x, f )

]

=1

c

[
x2

8

{
f (2) (x)

}2

f (x)
+ x

3
f (3) (x) + x2

8
f (4) (x)

]

for x ≥ 2b. Like ABC, the leading variance coefficient of the TS-MBC estimator
is also inflated by a factor of λ (c) than that of the density estimator using the same

kernel. Interestingly, the dominant term inVar
{
f̃TS,G (x)

}
for interior x is the same as

that of the ABC estimator. The optimalMISE of f̃TS,j (x) is againO
(
n−8/9

)
, provided

that both
∫ {B1,j (x, f ) /f (x) + B2,j (x, f )

}2
dx and

∫
gj (x) f (x) dx are finite, where

B1,j and B2,j for j = MB and for j ∈ {MG,NM } refer to those for x ∈ [2b, 1 − 2b]
and for x ≥ 2b, respectively.

3.2.2.2 MBC by Jones et al. (1995)

The second class of MBC in the spirit of Jones et al. (1995) (abbreviated as “JLN”
hereinafter) is based on the identity with respect to the true density f
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f (x) ≡ g (x)

{
f (x)

g (x)

}
:= g (x) r (x) , (3.1)

where g (·) and r (·) are an initial density estimator and a correction factor, respec-
tively. This identity and the kernel j lead to a density estimator of the form

f̃j (x) = g (x)

{
1

n

n∑

i=1

Kj(x,b) (Xi)

g (Xi)

}

. (3.2)

Observe that g (·) ≡ 1 (i.e., (improper) uniform density) gives the usual density
estimator f̂j (x). The original JLN estimator takes g (·) = f̂S (·) for some nonnegative
symmetric kernel and uses the same kernel in place ofKj(x,b) (·). ThisMBC technique
is also applied in nonparametric regression estimation (Linton and Nielsen 1994),
hazard estimation (Nielsen 1998; Nielsen and Tanggaard 2001), and spectral matrix
estimation (Xiao andLinton 2002;Hirukawa 2006). Often applications of JLN-MBC
to asymmetric kernel density estimation are investigated on a parallel with TS-MBC;
see Hirukawa (2010), Hirukawa and Sakudo (2014, 2015), and Funke and Kawka
(2015), for instance.

Substituting g (·) = f̂j (·)
(
= f̂j,b (·)

)
into (3.2), we can immediately define the

JLN-MBC estimator using the kernel j as

f̃JLN ,j (x) := f̂j (x)

{
1

n

n∑

i=1

Kj(x,b) (Xi)

f̂j (Xi)

}

.

The bias and variance approximations of the JLN-MBC estimator are documented
in the next theorem.

Theorem 3.3 (Hirukawa 2010, Theorem 2; Hirukawa and Sakudo 2014, Theorem
2; Hirukawa and Sakudo 2015, Theorem 3)

If Assumptions 3.1 and 3.2 and f (x) > 0 hold, then the bias of f̃JLN ,j (x) for j ∈
{B,MB,G,MG,NM } can be approximated as

Bias
{
f̃JLN ,j (x)

}
= −f (x)B1,j

{
x, hj (x, f )

}
b2 + o

(
b2

)
,

where B1,j
{
x, hj (x, f )

}
can be obtained by replacing f = f (x) in B1,j (x, f ) given in

Table 2.1 with hj (x, f ) := B1,j (x, f ) /f (x). In addition, V ar
{
f̃JLN ,j (x)

}

∼ Var
{
f̂j (x)

}
regardless of the position of x.

JLN-MBC is yet another method that can improve the bias convergence from
O (b) to O

(
b2

)
. The expression B1,j

(
x, hj

)
in the leading bias coefficient looks

complex at first glance. It should read as follows: for example, if we consider the
case of the MG kernel again, then
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B1,MG {x, hMG (x, f )} = B1,MG

{
x,

B1,MG (x, f )

f (x)

}
= x

2

{
x

2

f (2) (x)

f (x)

}(2)

for x ≥ 2b, and so on. Also observe that the dominant term in Var
{
f̃JLN ,j (x)

}
for

interior x is first-order asymptotically equivalent to that of the usual density estimator
using the same kernel. This is a sharp contrast to the variances of the ABC and TS-
MBC estimators. The optimal MISE of f̃JLN ,j (x) is again O

(
n−8/9

)
, provided that

both
∫
f 2 (x)B2

1,j

{
x, hj (x, f )

}
dx and

∫
gj (x) f (x)dx are finite, where the choice of

B1,j for j ∈ {MB,MG,NM } obeys the one given below Theorem 3.2.

Remark 3.1 It is interesting to compare the dominant terms in the bias and variance
of f̃JLN ,j (x) with those using a nonnegative symmetric kernel. The original JLN
estimator using a nonnegative symmetric kernel is given by

f̃JLN ,S (x) = f̂S (x)

[
1

nh

n∑

i=1

K {(Xi − x) /h}
f̂S (Xi)

]

.

It follows from Theorem 1 of Jones et al. (1995) that its bias and variance are

Bias
{
f̃JLN ,S (x)

}
= −μ2

2

4
f (x)

{
f (2) (x)

f (x)

}(2)

h4 + o
(
h4

)
, and

Var
{
f̃JLN ,S (x)

}
= 1

nh
R (TK ) f (x) + o

(
n−1h−1

)
,

where R (TK ) = ∫ ∞
−∞ T 2

K (u) du is the roughness of the fourth-order, “twiced” ker-
nel TK (u) := 2K (u) − K ∗ K (u) by Stuetzle and Mittal (1979). Observe that

B1,j
(
x, hj

)
in Bias

{
f̃JLN ,j (x)

}
tends to be much more complex than the correspond-

ing f (x)
{
f (2) (x) /f (x)

}(2)
in Bias

{
f̃JLN ,S (x)

}
. Because moments of asymmetric

kernels around the design point x are often O (b) or O
(
b2

)
, B1,j

(
x, hj

)
is likely to

include extra density derivatives. In addition, while Var
{
f̃JLN ,j (x)

}
is first-order

asymptotically equivalent to Var
{
f̂j (x)

}
, the dominant term in Var

{
f̃JLN ,S (x)

}

tends to be larger than the one in Var
{
f̂S (x)

}
due to the fact that R (TK ) > R (K).

Remark 3.2 Some readersmaywonder why TS- and JLN-MBCmethods are applied
not to the entire family of the GG kernels but individually to two special cases,
namely the MG and NM kernels. There are two main reasons. First, whether the
bias convergence may speed up from O (b) to O

(
b2

)
depends crucially on whether

the second-order term in Bias
{
f̂GG (x)

}
is O

(
b2

)
. It is worth noting that Condi-

tions 1–5 provide no guidance on the order of magnitude in the second-order bias

term. For instance, the second-order term in Bias
{
f̂W (x)

}
is found to be O

(
b3/2

)
.

Because these MBC techniques merely improve the bias convergence up toO
(
b3/2

)
,

Theorems 3.2 and 3.3 exclude such inferior cases. The same reason applies to Table
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2.1, where the cells of “B2,j (x, f )” for the W kernel are intentionally left blank. Sec-
ond, to provide the variance approximation of each MBC estimator, we must addi-
tionally specify the functional form of (α,β, γ) = (αb (x) ,βb (x) , γb (x)). Again
Conditions 1–5 alone do not suffice for this purpose.

3.2.2.3 Normalization

Neither f̃TS,j (x) nor f̃JLN ,j (x) integrates to one. In general, MBC leads to lack of
normalization, even when nonnegative symmetric kernels are employed. Indeed,
Jones et al. (1995, Sect. 2.2) are concerned on this issue in their original JLNestimator
and recommend renormalization. The renormalized TS- and JLN-MBC estimators
are defined as

f̃ RTS,j (x) := f̃TS,j (x)
∫
f̃TS,j (x) dx

and f̃ RJLN ,j (x) := f̃JLN ,j (x)
∫
f̃JLN ,j (x) dx

,

respectively. Notice that the renormalization procedure is equivalent to the “macro”
approach by Gouriéroux and Monfort (2006) described in Chap.2. It is straightfor-
ward to see that the biases of these renormalized estimators are

Bias
{
f̃ RTS,j (x)

}

= 1

c

[{B1,j (x, f )

f (x)
+ B2,j (x, f )

}
−

∫ {B1,j (x, f )

f (x)
+ B2,j (x, f )

}
dx

]
b2

+ o
(
b2

)
, and

Bias
{
f̃ RJLN ,j (x)

}

= −
{
f (x)B1,j

(
x, hj

) −
∫

f (x)B1,j
(
x, hj

)
dx

}
b2 + o

(
b2

)
,

provided that each integrand is absolutely integrable, where the choices of B1,j and
B2,j for j ∈ {MB,MG,NM } in integrands again obey those given below Theorem
3.2. On the other hand, their asymptotic variances are unaffected.

3.2.2.4 Further Bias Reduction via Iteration

In principle, further bias reduction is possible after the regularity conditions are
properly strengthened. Constructing amultiplicative combination of (s + 1)different
density estimators, we can generalize the TS-MBC estimator f̃TS,j (x) as

f̃ (s)
TS,j (x) =

s∏

r=0

{
f̂j,b/cr (x)

}αs,r

,
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where c0 = 1, c1, . . . , cs ∈ (0, 1) are mutually different constants, and the exponent
is

αs,r = (−1)s csr
s∏

p=0,p �=r

(
cp − cr

) .

Similarly, the sth iterated JLN-MBC estimator can be defined as

f̃ (s)
JLN ,j (x) = f̃ (s−1)

JLN ,j (x)

{
1

n

n∑

i=1

Kj(x,b) (Xi)

f̃ (s−1)
JLN ,j (Xi)

}

,

where f̃ (0)
JLN ,j (x) = f̂j (x). If f (x) > 0, the 2 (s + 1)th-order derivative of f (·) is con-

tinuous and bounded in the neighborhood of x, and the smoothing parameter b satis-
fies b + 1/

(
nb2s+1

) → 0, then it can be demonstrated that the bias of each estimator
is accelerated to O

(
bs+1

)
while its variance remains O

(
n−1b−1/2

)
and O

(
n−1b−1

)

for interior and boundary x, respectively. In particular, Var
{
f̃ (s)
JLN ,j (x)

}
is shown to

be first-order asymptotically equivalent to Var
{
f̃ (0)
JLN ,j (x)

}
= Var

{
f̂j (x)

}
for inte-

rior x. Their optimalMSEs areO
{
n−(4s+4)/(4s+5)

}
andO

{
n−(2s+2)/(2s+3)

}
for interior

and boundary x, respectively. Accordingly, as the number of iterations increases,
global convergence rates of the iteratedMBC estimators when best implemented can
be arbitrarily close to the parametric one. However, it is doubtful whether there is
much gain in practice from these estimators, and thus the iterative procedure is not
pursued any further.

3.2.2.5 Bias Correction in Joint Density Estimation

Often it is of interest to estimate a joint pdf using multivariate bounded data. While
Jones et al. (1995, Sect. 4.1) have already considered a multivariate extension of their
original JLN estimation, it is very recently that Funke and Kawka (2015) extend the
twoMBC techniques to joint density estimation using asymmetric kernels. Suppose
that we estimate the joint density f with support on [0, 1]d orRd+ using a random sam-
ple {Xi}ni=1 = {

(X1i, . . . ,Xdi)

}n

i=1. Following Bouezmarni and Rombouts (2010),
Funke and Kawka (2015) adopt the product kernel method, where

Kj(x,b) (u) :=
d∏

�=1
Kj(x�,b) (u�)

is the product asymmetric kernel given a design point x = (x1, . . . , xd )

 and a com-

mon smoothing parameter b1 = · · · = bd = b. Then, the joint density estimator
using the product kernel Kj(x,b) (·) is given by
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f̂j (x) = f̂j,b (x) = 1

n

n∑

i=1

Kj(x,b) (Xi) .

The corresponding multivariate TS- and JLN-MBC estimators can be defined as

f̃TS,j (x) :=
{
f̂j,b (x)

}1/(1−c) {
f̂j,b/c (x)

}−c/(1−c)

for some c ∈ (0, 1), and

f̃JLN ,j (x) := f̂j (x)

{
1

n

n∑

i=1

Kj(x,b) (Xi)

f̂j (Xi)

}

.

If f (x) > 0, all fourth-order partial derivatives of f (·) are continuous and bounded in
the neighborhood of x, and the smoothing parameter b satisfies b + (

nbd+2
)−1 → 0,

then each estimator is shown to have a O
(
b2

)
bias and a O

{
n−1

d∏

�=1
b−(1/2)(1+1�)

}

variance, where 1� := 1 {x�/b → κ� ∈ (0,∞)}. For interested readers, analytical
expressions of the leading bias and variance terms can be found in Theorems 2.1 and
2.2 of Funke and Kawka (2015).

3.3 Semiparametric Bias Correction

3.3.1 Local Multiplicative Bias Correction

To estimate the unknown density f with support onR+, Hagmann and Scaillet (2007)
consider a local model

m {x,θ1,θ2 (x)} := f (x,θ1) r {x,θ2 (x)} . (3.3)

Notice that f (·,θ1) is an initial parametric density with the global parameter θ1 ∈
�1 ⊆ R

p that is supposed to be close to f but subject to misspecification. In addition,
r {·,θ2 (·)} serves as a local parametricmodel with the local parameter θ2 (·) ∈ �2 ⊆
R

q that is also an estimate of the correction factor r (·) = f (·) /f (·,θ1). Observe
that this setup corresponds to the identity (3.1) with g (·) = f (·,θ1) plugged in and
r (·) replaced by r {·,θ2 (·)}.

The estimation procedure of the local model m takes two steps. The first step
estimates the initial parametric model by ML in the spirit of Hjort and Glad (1995).
Let θ̂1 be the maximum likelihood estimate (“MLE”) of θ1. The second step is
designed to reduce the bias caused by possible misspecification of the parametric
start f (·,θ1). For this purpose, θ2 (x) can be estimated via the local likelihood
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method in the spirit of Hjort and Jones (1996). Specifically, θ̂2,G (x), the local
likelihood estimator using the G kernel, is defined as the solution to the system of q

equations Vn

(
x, θ̂1,θ2

)
= 0, where

Vn

(
x, θ̂1,θ2

)
:= 1

n

n∑

i=1

KG(x,b) (Xi) v (x,Xi,θ2)

−
∫ ∞

0
KG(x,b) (t) v (x, t,θ2)m

(
t, θ̂1,θ2

)
dt (3.4)

for the general weight function v (x, t,θ2) ∈ R
q. If the score ∂ log r (t,θ2) /∂θ2

is chosen as the weight function, then Vn

(
x, θ̂1,θ2

)
= 0 reduces to the first-order

condition of the original local log-likelihood by Hjort and Jones (1996). The bias
correction method by Hagmann and Scaillet (2007) is called local multiplicative
bias correction (“LMBC”) in the sense that the correction factor r is modeled and
estimated locally. The LMBC estimator using the G kernel is finally defined as

f̃LMBC,G (x) := f
(
x, θ̂1

)
r
{
x, θ̂2,G (x)

}
.

To describe convergence properties of the LMBC estimator, we introduce addi-
tional notations. Let θ0

1 be the pseudo-true value which minimizes the Kullback–
Leibler distance of f (x,θ1) from the true f (x). We also denote f0 (·) := f

(·,θ0
1

)

and r0 (·) := f (·) /f
(·,θ0

1

)
. Moreover, define

V
(
x,θ0

1,θ2
) :=

∫ ∞

0
KG(x,b) (t) v (x, t,θ2) f0 (t) {r0 (t) − r (t,θ2)} dt,

and let θ0
2 be the solution to V

(
x,θ0

1,θ2
) = 0. After stating an additional regularity

condition on the initial parametric model, we present a theorem on the bias and
variance approximations to the LMBC estimator.

Assumption 3.3 (i) The parameter space �1 is a compact subset of R
p.

(ii) f (x;θ1) is continuos in θ1 for every x ∈ R+. (iii) θ0
1 is interior in �1 and

uniquely minimizes the Kullback-Leibler distance. (iv) The log-likelihood of the
sample {Xi}ni=1 uniformly converges in probability to the Kullback-Leibler distance.

(v)
√
n

(
θ̂1 − θ0

1

)
= Op (1).

Theorem 3.4 (Hagmann and Scaillet 2007, Proposition 1)

If Assumption2.2 and 3.3 hold, Vn

(
x, θ̂1,θ2

)
p→ V

(
x,θ0

1,θ2
)
as n → ∞, θ0

2

uniquely solves V
(
x,θ0

1,θ2
) = 0, and the second-order derivatives of r0 (·) and

r
(·,θ0

2

)
are continuous and bounded in the neighborhood of x, then for q ≥ 2,

Bias
{
f̃LMBC,G (x)

}
= x

2
f0 (x)

{
r(2)
0 (x) − r(2)

(
x,θ0

2

)}
b + o (b) .
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In addition, V ar
{
f̃LMBC,G (x)

}
∼ Var

{
f̂G (x)

}
regardless of the position of x.

As explained in Hjort and Jones (1996), Hagmann and Scaillet (2007), the leading
bias coefficient would include extra terms with first-order derivatives of f0 (x), r0 (x)
and r

(
x,θ0

2

)
if the dimension of the local parameter θ2 were limited to one. There-

fore, it is recommended that two or more local parameters are fitted in the second

step. Inspecting the leading term of Bias
{
f̃LMBC,G (x)

}
in this case also reveals that

the term becomes small if the local model of the correction factor r
(·,θ0

2

)
can locally

capture the curvature of the true correction factor r0 (·) so that r(2)
0 (·) ≈ r(2)

(·,θ0
2

)
in

the neighborhood of x. Furthermore, if the model is correct, then the local likelihood
estimator is unbiased up to the order considered.

To implement the LMBCestimation, Hagmann and Scaillet (2007) suggest choos-
ing a gamma pdf and the local log-linear regression model in the first and second
steps, respectively; see Example 2 of Hagmann and Scaillet (2007) for more details.
It can be also found that like the JLN-MBCestimation using theGkernel, the variance
of the LMBC estimator is first-order asymptotically equivalent to that of f̂G (x).

3.3.2 Local Transformation Bias Correction

Gustafsson et al. (2009) propose yet another semiparametric MBC technique called
local transformation bias correction (“LTBC”), which basically follows the idea of
Rudemo (1991). LMBC and LTBC specialize in density estimation with support on
R+, and in each approach an asymmetric kernel plays an important role in reducing
the bias of the initial parametric density estimate nonparametrically. A key difference
between two approaches is that LMBC and LTBC correct the bias in the original and
transformed data scales, respectively.

Although LTBC also relies on the local model (3.3), the bias correction is made
in the scale on [0, 1] implied by the probability integral transform. A rationale for
LTBC is that if the cumulative distribution function (“cdf”) of the initial parametric
distribution were the true cdf F , then the correction term r would be the pdf of
U [0, 1]. To rewrite the local model (3.3) suitably, let

Fθ1 (x) := F (x,θ1) =
∫ x

0
f (t,θ1) dt

be the cdf of the initial parametric distribution indexed by the global parameter θ1.
The local model for LTBC can be expressed eventually as

m
{
Fθ1 (x) ,θ1,θ2

(
Fθ1 (x)

)} = F (1)
θ1

(x) r
{
Fθ1 (x) ,θ2

(
Fθ1 (x)

)}

= f (x,θ1) r
{
Fθ1 (x) ,θ2

(
Fθ1 (x)

)}
.

The estimation procedure of the local model m again takes two steps. In the
first step, θ1 can be estimated by ML. For the MLE θ̂1, denote the transformed

data and design points by
(
Û , û

)
:=

(
Fθ̂1

(X ) ,Fθ̂1
(x)

)
. Because their supports
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are on [0, 1], the second, bias correction step applies the B kernel. Then, θ̂2,B
(
û
)
,

the local likelihood estimator using the B kernel, solves the system of q equations

Vn

{
û, θ̂1,θ2

(
û
)} = 0, where

Vn

{
û, θ̂1,θ2

(
û
)} := 1

n

n∑

i=1

KB(û,b)

(
Ûi

)
v

(
û, Ûi,θ2

)

−
∫ 1

0
KB(û,b) (t) v

(
û, t,θ2

)
r (t,θ2) dt

for the general weight function v
(
û, t,θ2

) ∈ R
q. As before, if the score

∂ log r (t,θ2) /∂θ2 is chosen as the weight function, then Vn

{
û, θ̂1,θ2

(
û
)} = 0

is the first-order condition of the original local log-likelihood by Hjort and Jones
(1996). The LTBC estimator using the B kernel is finally defined as

f̃LTBC,B (x) := f
(
x, θ̂1

)
r
{
û, θ̂2,B

(
û
)}

.

To describe convergence properties of the LTBC estimator, let u0 := Fθ0
1
(x) for

the pseudo-true valueθ0
1. Also let r (·) be the true pdf of the transformed dataFθ1 (X ).

Furthermore, define

V
{
u,θ0

1,θ2 (u)
} :=

∫ 1

0
KB(u,b) (t) v (x, t,θ2) {r (t) − r (t,θ2)} dt,

and let θ0
2

(
u0

)
be the solution to V

{
u0,θ0

1,θ2
(
u0

)} = 0. Using f0 (·) = f
(·,θ0

1

)
,

the following theorem documents the bias and variance approximations to the LTBC
estimator.

Theorem 3.5 (Gustafsson et al. 2009, Proposition 1)

If Assumption2.2 and 3.3 hold, Vn

{
û, θ̂1,θ2

(
û
)} p→ V

{
u,θ0

1,θ2 (u)
}
as n →

∞, θ0
2

(
u0

)
uniquely solves V

{
u0,θ0

1,θ2
(
u0

)} = 0, and the second-order deriva-
tives of r (·) and r (·,θ0

2 (·)) are continuous and bounded in the neighborhood of u0,
then for q ≥ 2,

Bias
{
f̃LTBC,B (x)

}

= 1

2
f0 (x) u0

(
1 − u0

) {
r(2)

(
u0

) − r(2)
(
u0,θ0

2

(
u0

))}
b + o (b) .

In addition,
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Var
{
f̃LTBC,B (x)

}

=
⎧
⎨

⎩

1
nb1/2

(
1

2
√

π

)
f0(x)f (x)√
u0(1−u0)

+ o
(
n−1b−1/2

)
for interior u0

1
nb

�(2κ+1)
22κ+1�2(κ+1) f0 (x) f (x) + o

(
n−1b−1

)
for boundary u0

.

As mentioned in the previous section, a correction factor with two or more local
parameters should be considered for a better bias property. Also observe that the

dominant term in Var
{
f̃LTBC,B (x)

}
differs from the one in Var

{
f̂B (x)

}
. Gustafsson

et al. (2009) explain that the extra term f0 (x) appears because the probability integral
transform induces an implicit location-dependent smoothing parameter b/ {f0 (x)}2.

Comparing LTBC with LMBC in terms of computational aspects, Gustafsson
et al. (2009) also argue that the local likelihood step for LMBC is independent of
the global parametric start, which may be considered as a disadvantage. On the
other hand, LTBC has no closed form, and thus it must always rely on numerical
approximations. Certain combinations of a global parametric start, a local model
of the correction factor and a kernel, can yield simple closed-form expressions of
LMBC; see Sect. 4.4 of Hagmann and Scaillet (2007) for more details.

To implement theLTBCestimation,Gustafsson et al. (2009) recommend choosing
the pdf of the generalized Champernowne distribution by Buch-Larsen et al. (2005)
and the local log-linear density model in the first and second steps, respectively.
Because of its Pareto-type tail, the generalized Champernowne distribution is useful
for modeling distributions of insurance payments and operational risks.

3.3.3 Rate Improvement via Combining with JLN-MBC

The initial parametric model for LMBC and LTBC is misspecified in almost all
cases. As a consequence, the bias convergence of these estimators remains at O (b)
in general. Within the framework of symmetric kernel smoothing, Jones et al. (1999)
(abbreviated as “JSH” hereinafter) combine the semiparametric density estimator by
Hjort and Glad (1995) (abbreviated as “HG” hereinafter) with JLN-MBC. JSH’s
approach aims at acquiring the best aspects of both parametric and nonparametric
density estimation. When the parametric start for HG estimation is close enough
to the true density, the JSH-MBC estimator can attain considerable efficiency at the
stage of parametric fitting, as in LMBC and LTBC. Even if the parametric start is
shown not to be good enough, additional JLN-type bias correction can still generate
an estimator with bias of smaller order.

Hirukawa and Sakudo (2018) extend this approach to asymmetric kernel density
estimation. Applying (3.2) repeatedly constitutes the entire JSH-MBC estimation.
In the first step, consider an initial parametric model f (·) = f (·,θ1) and estimate

θ1 by ML, as in LMBC and LTBC. In the second step, substituting g (·) = f
(
·, θ̂1

)

for the MLE θ̂1 into (3.2) yields the HG density estimate using the kernel j
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f̃HG,j (x) := f
(
x; θ̂1

)
⎧
⎨

⎩
1

n

n∑

i=1

Kj(x,b) (Xi)

f
(
Xi; θ̂1

)

⎫
⎬

⎭
.

Then, in the final step, putting g (·) = f̃HG,j (·) again in (3.2), we can define the
JSH-MBC density estimator using the kernel j as

f̃JSH ,j (x) := f̃HG,j (x)

{
1

n

n∑

i=1

Kj(x,b) (Xi)

f̃HG,j (Xi)

}

.

The theorem below documents the bias and variance approximations to the JSH-
MBC estimator. Notice that the definitions of θ0

1 and r0 (·) are the same as used for
Theorem 3.4.

Theorem 3.6 (Hirukawa and Sakudo 2018, Theorem 1)
If Assumptions3.2 and 3.3 hold, the fourth-order derivative of r0 (·) is continu-

ous and bounded in the neighborhood of x, and f (x) , f0 (x) > 0, then the bias of
f̃JSH ,j (x) for j ∈ {B,MB,G,MG,NM } can be approximated as

Bias
{
f̃JSH ,j (x)

}
= −f (x)B1,j

{
x, hj (x, r0)

}
b2 + o

(
b2

)
,

where B1,j
{
x, hj (x, r0)

}
can be obtained by replacing f = f (x) in B1,j (x, f ) given

in Table 2.1 with hj (x, r0) := B1,j (x, r0) /r0 (x). In addition, V ar
{
f̃JSH ,j (x)

}
∼

Var
{
f̂j (x)

}
regardless of the position of x.

The termB1,j
{
x, hj (x, r0)

}
in the leading bias coefficient can be obtained straight-

forwardly by replacing f in B1,j
{
x, hj (x, f )

}
given in Theorem 3.3 with r0. Hence,

the former should be read in a similar manner to the latter. Also invoke that
r0 (·) = f (·) /f

(·,θ0
1

)
. It follows that if the initial parametric start f

(·,θ0
1

) ≡ 1
(i.e., if the (improper) uniform density is chosen as the “start”), then the JSH-MBC
density estimator collapses to the JLN-MBC estimator using the same kernel. Fur-
thermore,

Var
{
f̃JSH ,j (x)

}
∼ Var

{
f̃JLN ,j (x)

}
∼ Var

{
f̂j (x)

}
∼ 1

nb1/2
vjgj (x) f (x)

for interior x. This contrasts with the original JSH estimator using symmetric kernels
in that

Var
{
f̃JSH ,S (x)

}
∼ Var

{
f̃JLN ,S (x)

}
∼ 1

nh
R (TK ) f (x)

>
1

nh
R (K) f (x) ∼ Var

{
f̂S (x)

}
.
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Lastly (but not least importantly), acceleration of the bias convergence from O (b)
to O

(
b2

)
improves the optimal MISE of f̃JSH ,j (x) to O

(
n−8/9

)
, provided that both∫

f 2 (x)B2
1,j

{
x, hj (x, r0)

}
dx and

∫
gj (x) f (x) dx are finite, where, as before, the

choice of B1,j for j ∈ {MB,MG,NM } obeys the one given below Theorem3.2.

3.4 Smoothing Parameter Selection

There are very fewworks on smoothing parameter selection in bias-corrected estima-
tion. It appears that this problem is hard to resolve even in the case of bias correction
in density estimation using nonnegative symmetric kernels. Indeed, Jones and Sig-
norin (1997, Sect. 5) defer automatic bandwidth selection to future work, and there
has been not much progress since then, to the best of our knowledge.

As in Chap.2, methods of choosing the smoothing parameter b can be classified
roughly into plug-in and CV approaches. Hirukawa (2010), Hirukawa and Sakudo
(2014) develop plug-in methods for TS- and JLN-MBC estimators that are similar to
the ones given in Chap.2. Their analytical expressions are complex in general, and
thus we suggest that interested readers look into Sect. 3.1 of Hirukawa (2010) and
Sect. 3.2 of Hirukawa and Sakudo (2014).

In contrast, in implementing the LTBC estimator, Gustafsson et al. (2009) employ
b̂LTBC = σ̂n−2/5 for the bias correction step using the B kernel, where σ̂ is the sample
standard deviation of the transformed data on [0, 1]. This particular choice reflects
that if the global parametricmodel is correct, then the transformed data are distributed
as U [0, 1]. Unbiasedness of f̂B (·) for the pdf of U [0, 1] (see Remark 2.1) makes it
difficult to select the smoothing parameter on theMISE basis. As a result, they decide
to employ the simplest possible smoothing parameter. However, the parametric
model is typically misspecified, and thus b̂MB in Chap.2 could also work in this
context.

Some authors alternatively consider the CVmethod. Hagmann and Scaillet (2007)
apply it to the LMBC estimation, whereas Funke and Kawka (2015) use it in the
context of multivariate TS- and JLN-MBC estimations. More details can be found
in Sect. 4.5 ofHagmann andScaillet (2007) and Sect. 3.3 of Funke andKawka (2015).
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Chapter 4
Regression Estimation

As mentioned in Chap.1, research in asymmetric kernels appears to begin with
regression estimation. This chapter investigates nonparametric regression estimation
smoothed by asymmetric kernels. Our primary focus is on the problem of estimating
the regression model

Y = m (X) + ε, E (ε| X) = 0,

using i.i.d. random variables {(Yi , Xi )}n
i=1 that are assumed to be drawn from a joint

distribution with support either on R × [0, 1] or R × R+. We discuss convergence
properties of the Nadaraya–Watson (Nadaraya 1964; Watson 1964) and local linear
estimators (Fan and Gijbels 1992; Fan 1993) of the conditional mean function m,
including their bias and variance approximations and limiting distributions. As
an application of regression estimation, the estimation problem of scalar diffusion
models is also explained. A brief review of smoothing parameter selection concludes
the chapter.

4.1 Preliminary

4.1.1 The Estimators

The Nadaraya–Watson (“NW”) and local linear (“LL”) regression smoothers are two
popular choices in nonparametric regression estimation. The NW estimator of m at
a given design point x using the kernel j can be defined as

m̂nw
j (x) := argmin

β0

n∑

i=1

(Yi − β0)
2 K j(x,b) (Xi ) =

∑n
i=1 Yi K j(x,b) (Xi )∑n

i=1 K j(x,b) (Xi )
.
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Often the estimator is alternatively called the local constant estimator, because it is
the solution to this optimization problem.

On the other hand, the LL estimator ofm at a given design point x using the kernel
j is m̂ll

j (x) = β̂0, where

(
β̂0, β̂1

)
:= arg min

(β0,β1)

n∑

i=1

{Yi − β0 − β1 (Xi − x)}2 K j(x,b) (Xi ) .

In fact, the LL estimator admits the concise expression

m̂ll
j (x) = S2, j (x) T0, j (x) − S1, j (x) T1, j (x)

S0, j (x) S2, j (x) − {
S1, j (x)

}2 ,

where

S�, j (x) =
n∑

i=1

(Xi − x)� K j(x,b) (Xi ) and

T�, j (x) =
n∑

i=1

Yi (Xi − x)� K j(x,b) (Xi )

for � ≥ 0. Observe that m̂nw
j (x) = T0, j (x) /S0, j (x) holds. It is also worth empha-

sizing that unlike density estimation, lack of normalization in asymmetric kernels is
not an issue in regression estimation.

4.2 Convergence Properties of the Regression Estimators

4.2.1 Regularity Conditions

The regularity conditions below are required to establish asymptotic normality of
the regression estimators. Assumptions 4.1 and 4.2 are basically the same as (2.3)
of Chen (2002), and they suffice for the bias and variance approximations of the
estimators. On the other hand, Assumption 4.3 is required to establish Liapunov’s
condition for the central limit theorem.

Assumption 4.1 The second-order derivative of m (·) is continuous and bounded in
the neighborhood of x .

Assumption 4.2 Let f (·)be themarginal pdf of X . Alsodefineσ 2 (·) := E ( ε| X = ·).
Then, both f (·) and σ 2 (·) are first-order Lipschitz continuous in the neighborhood
of x , f (x) > 0 and σ 2 (x) < ∞.
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Assumption 4.3 There is some constant δ > 0 so that E
( |ε|2+δ

∣∣ X = ·) is bounded
uniformly on the support of X .

4.2.2 Asymptotic Normality of the Estimators

In what follows, our primary focuses are on the NW and LL estimators using the
B and G kernels. We consider only a few cases from the following two viewpoints
on LL estimation. First, the LL estimators using the B and G kernels eliminate the
design bias term including m(1) (x)

{
f (1) (x) / f (x)

}
, as is the cases with symmetric

kernels. This contrasts the fact that the leading biases of f̂ B (x) and f̂G (x) involve a
term with f (1) (x). Second, it is also straightforward to see that for interior x , the LL
estimators using the MB andMG kernels are first-order asymptotically equivalent to
those using the B and G kernels, respectively.

Two theorems below document asymptotic normality of the NW and LL estima-
tors. Each theorem can be demonstrated by making the bias and variance approx-
imations and establishing Liapunov’s condition. Asymptotic expansions of ker-
nel regression estimation and moment approximations explained in Chap. 2 directly
apply to the bias and variance approximations, whereas Liapunov’s condition can be
shown in a similar manner to the Proof of Theorem5.4 in Sect. 5.5.1.

Theorem 4.1 Suppose that Assumptions4.1–4.3 hold. Ifb � n−2/5, then, asn →
∞, for j ∈ {B, G},

√
nb1/2

{
m̂nw

j (x) − m(x) − Bnw
j (x) b

} d→ N
(
0, V nw

j (x)
)

for interior x, where

Bnw
B (x) =

{
(1 − 2x) + x (1 − x)

f (1)(x)

f (x)

}
m(1)(x) + 1

2
x (1 − x) m(2)(x),

Bnw
G (x) =

{
1 + x

f (1)(x)

f (x)

}
m(1)(x) + 1

2
xm(2)(x),

V nw
B (x) = σ 2 (x)

2
√

π
√

x (1 − x) f (x)
, and

V nw
G (x) = σ 2 (x)

2
√

π
√

x f (x)
.

If b � n−1/3, then, as n → ∞, for j ∈ {B, G},
√

nb
{
m̂nw

j (x) − m(x) − m(1)(x)b
} d→ N

(
0, V nw

j,0 (x)
)

for x/b → κ ∈ (0,∞), and
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√
nb

{
m̂nw

B (x) − m(x) + m(1)(x)b
} d→ N

(
0, V nw

B,0 (x)
)

for (1 − x) /b → κ ∈ (0,∞), where

V nw
j,0 (x) = 	 (2κ + 1)

22κ+1	2 (κ + 1)

σ 2 (x)

f (x)
.

Theorem 4.2 Suppose that Assumptions4.1–4.3 hold. If b � n−2/5, then, as n →
∞, for j ∈ {B, G},

√
nb1/2

{
m̂ll

j (x) − m(x) − Bll
j (x) b

} d→ N
(
0, V nw

j (x)
)

for interior x, and

√
nb

{
m̂ll

j (x) − m(x) − 1

2
(κ − 2) m(2)(x)b2

}
d→ N

(
0,

(2κ + 5) V nw
j,0 (x)

2 (κ + 1)

)

for x/b → κ ∈ (0,∞) or (1 − x) /b → κ , where

Bll
B (x) = 1

2
x (1 − x) m(2)(x), Bll

G (x) = 1

2
xm(2)(x),

and V nw
j (x) and V nw

j,0 (x) are defined in Theorem 4.1.

A few remarkable differences can be found in asymptotic results on the NW and
LL estimators. First, as mentioned above, LL estimation eliminates the design bias
term. Because this term depends on the distribution of X , it is sensitive to the position
of the design point x . Second, while the bias convergence in NW estimation is O (b)

regardless of the position of x , the one for boundary x in LL estimation improves to
O

(
b2

)
. To put it in anotherway, LLestimation automatically compensates slowdown

in the variance convergence for boundary x with acceleration in the bias convergence.
As a consequence, the MSE-optimal smoothing parameter and optimal MSE of each
LL estimator are O

(
n−2/5

)
and O

(
n−4/5

)
, respectively, regardless of the position

of x . In contrast, those of each NW estimator for boundary x remain O
(
n−1/3

)
and

O
(
n−2/3

)
. Observe that Theorems 4.1 and 4.2 rely on the MSE-optimal smoothing

parameters. Third, it is easy to see that the optimal MSE of m̂ll
B (x) for interior x

and that of m̂ll
G (x) are first-order asymptotically equivalent, i.e.,

M SE∗ {
m̂ll

B (x)
} ∼ M SE∗ {

m̂ll
G (x)

}

∼ 5

4

(
1

4π

)2/5 {
m(2) (x)

}2/5
{

σ 2 (x)

f (x)

}4/5

n−4/5.

The right-hand side is also the optimal MSE of the LL estimator using the Gaussian
kernel.
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Remark 4.1 Seifert and Gasser (1996, Theorem 1) argue that finite-sample vari-
ances of local polynomial smoothers using kernels with compact support may be
unbounded. This problem is typically the case when smoothing is made in sparse
regions. As a remedy, Seifert and Gasser (1996) propose to increase the bandwidth
locally in such regions. However, Chen (2002, Lemma 1) demonstrates that the
pth-order local polynomial smoother using the B kernel is immune to this problem,
as long as at least p + 1 different data points are not on the boundary of [0, 1]. It
follows that in finite samples m̂ll

B (·) has finite variance with probability 1.

Remark 4.2 As mentioned in Chap.1, the B kernel may have been originally pro-
posed in the context of regression estimation. Chen (2000) reports asymptotic
properties of Gasser–Müller type regression estimators (Gasser and Müller 1979)
using the B and MB kernels. Let X1, . . . , Xn be ordered fixed regressors so that
0 ≤ X1 ≤ · · · ≤ Xn ≤ 1. Then, the Gasser–Müller type estimator is defined as

m̂gm
j (x) :=

n∑

i=1

Yi

∫ si

si−1

K j(x,b) (u) du, j ∈ {B, M B} ,

where si := (Xi + Xi+1) /2, i = 1, . . . , n − 1 with (s0, sn) = (0, 1). In particular,
as reported in Sect. 5 of Chen (2000), m̂gm

M B (x) for interior x admits the following
bias and variance expansions:

Bias
{
m̂gm

M B (x)
} = 1

2
x (1 − x) m(2) (x) b + o (b) ; and

V ar
{
m̂gm

M B (x)
} = 1

nb1/2

(
1

2
√

π

)
σ 2 (x)√

x (1 − x) f (x)
+ o

(
n−1b−1/2

)
.

Observe that the leading bias and variance terms are the same as those of m̂ll
B (x). It

follows that the optimal MSE of m̂gm
M B (x) for interior x is first-order asymptotically

equivalent to those of the LL estimators using the B, G, and Gaussian kernels.

4.2.3 Other Convergence Results

As presented in Chap.2, different types of convergence results are also available
for asymmetric kernel regression estimation. Shi and Song (2016, Theorem3.5)
demonstrate uniform strong consistency of the NW estimator using the G kernel
with a convergence rate. The uniform convergence may be useful for exploring
convergence properties of semiparametric estimation with the estimator employed
as a first-stage nonparametric estimator. The result could be also extended to the LL
(or even local polynomial) smoother using the G kernel or nonparametric regression
estimators using other asymmetric kernels.
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4.2.4 Regression Estimation Using Weakly Dependent
Observations

So far convergence results of nonparametric regression estimators using asymmetric
kernels have been developed under i.i.d. setting. With growing interest in describ-
ing the dynamic behavior of high-frequency financial variables such as the volatility
of asset returns and the time duration between market events, more attention has
been paid to nonnegative time-series models for past three decades: recent examples
include Engle (2002), Gouriéroux and Jasiak (2006) and Brownlees et al. (2012), to
name a few. While we may in principle apply asymmetric kernel regression estima-
tion for nonnegative time-series data, we must understand asymptotic properties of
the estimators.

Asymptotic results have been already explored for nonparametric regression esti-
mation using symmetric kernels and weakly dependent observations. For example,
Masry and Fan (1997) establish asymptotic normality of local polynomial estima-
tors using symmetric kernels for some mixing processes. It appears that asymptotic
normality of the regression estimators smoothed by asymmetric kernels for positive
α-mixing processes can be established by suitably modifying the regularity con-
ditions provided therein. More specifically, it can be demonstrated that Theorems
4.1 and 4.2 still hold under weakly dependent sampling by additionally imposing
a battery of conditions, including (i) boundedness of the joint density between two
observations, (ii) α-mixing of a suitable size, and (iii) a divergence rate of the block
size for the small-block and large-block arguments. These conditions correspond to
Condition 2 (ii), (iii) and Condition 3 of Masry and Fan (1997), respectively.

4.3 Estimation of Scalar Diffusion Models of Short-Term
Interest Rates

4.3.1 Background

As an interesting application of asymmetric kernel regression estimation, we dis-
cuss nonparametric estimation of time-homogeneous drift and diffusion functions in
continuous-time models that are used to describe the underlying dynamics of spot
interest rates. The general form of the underlying continuous-time process for the
spot interest rate Xt is represented by the stochastic differential equation (“SDE”)

d Xt = μ (Xt ) dt + σ (Xt ) dWt , (4.1)

where Wt is a standard Brownian motion, and μ(·) and σ(·) are called the drift
and diffusion (or instantaneous volatility) functions, respectively. Stanton (1997)
uses the infinitesimal generator and a Taylor series expansion to give the first-order
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approximations to μ(X) and σ 2(X) as

E ( Xt+� − Xt | Xt ) = μ(Xt )� + o(�) and

E
{
(Xt+� − Xt )

2
∣∣ Xt

} = σ 2(Xt )� + o(�),

respectively, where � is a discrete, arbitrarily small time step and o(�) denotes the
remainder term of a smaller order.

The conditional expectations can be estimated via nonparametric regression
smoothing. Although Stanton (1997) originally proposes to use the NW estima-
tion using the Gaussian kernel, Chapman and Pearson (2000) find in their Monte
Carlo study that when the true drift is linear in the level of the spot interest rate,
there are two biases in Stanton’s (1997) drift estimator, namely a bias near the origin
and a pronounced downward bias in the region of high interest rates where the data
are sparse. This motivates us to incorporate asymmetric kernel smoothing into the
Stanton’s (1997) nonparametric drift and diffusion estimators.

4.3.2 Estimation of Scalar Diffusion Models via Asymmetric
Kernel Smoothing

4.3.2.1 The Drift and Diffusion Estimators

Suppose that we observe a discrete sample {Xi�}n
i=1 at n equally spaced time points

from the short-rate diffusion process {Xt : 0 ≤ t ≤ T } satisfying the SDE (4.1),
where the time span of the sample T and the step size between observations �

satisfy T = n�. Gospodinov and Hirukawa (2012) focus on nonnegativity of the
spot rate Xt and define the NW estimators of drift and diffusion functions using the
G kernel for a given design point x > 0 as

μ̂b(x) := 1

�

∑n−1
i=1

(
X(i+1)� − Xi�

)
KG(x,b) (Xi�)

∑n−1
i=1 KG(x,b) (Xi�)

and

σ̂ 2
b (x) := 1

�

∑n−1
i=1

(
X(i+1)� − Xi�

)2
KG(x,b) (Xi�)

∑n−1
i=1 KG(x,b) (Xi�)

,

respectively.

4.3.2.2 Regularity Conditions

Gospodinov and Hirukawa (2012) apply the in-fill and long-span asymptotics such
that n → ∞, T → ∞ (long-span), and � = T/n → 0 (in-fill) to deliver conver-
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gence properties of μ̂b(x) and σ̂ 2
b (x). Exploring the properties requires the following

regularity conditions.

Assumption 4.4 (i)μ (·) and σ (·) are time-homogeneous,B-measurable functions
on (0,∞), whereB is the σ -field generated by Borel sets on (0,∞). Both functions
are at least twice continuously differentiable. Hence, they satisfy local Lipschitz and
growth conditions. Thus, for every compact subset J of the range (0,∞), there exist
constants C J

1 and C J
2 such that, for all x, y ∈ J ,

|μ (x) − μ (y)| + |σ (x) − σ (y)| ≤ C J
1 |x − y| and

|μ (x)| + |σ (x)| ≤ C J
2 {1 + |x |} .

(ii) σ 2 (·) > 0 on (0,∞).
(iii) The natural scale function

S (x) :=
∫ x

c
exp

[∫ y

c

{
−2μ (u)

σ 2 (u)

}
du

]
dy

for some generic constant c ∈ (0,∞) satisfies

lim
x→0

S (x) = −∞ and lim
x→∞ S (x) = ∞.

Assumption 4.5 The speed function

s (x) := 2

σ 2(x)S(1) (x)

satisfies
∫ ∞
0 s (x) dx < ∞.

Assumption 4.6 Let the chronological local time of the diffusion process (4.1) be

L X (T, x) := 1

σ 2 (x)
lim
ε→0

1

ε

∫ T

0
1 {Xs ∈ [x, x + ε)} σ 2 (Xs) ds.

Then, as n, T → ∞, �(= T/n) → 0, b
(= bn,T

) → 0 such that

L̄ X (T, x)

b

√

� log

(
1

�

)
= oa.s. (1) .

Assumption 4.4 ensures that the SDE (4.1) has a unique strong solution Xt and
that Xt is recurrent. Assumption 4.5, together with Assumption 4.4, implies that the
process Xt is positive recurrent (or ergodic) and ensures the existence of a time-
invariant distribution P0 with density f (x) = s (x) /

∫ ∞
0 s (x) dx . In addition, if

X0 has distribution P0, Xt becomes strictly stationary. The square-root process by
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Cox et al. (1985) and the inverse-Feller process by Ahn and Gao (1999), for instance,
are known to have time-invariant distributions. Assumption 4.6 controls the rates
of convergence or divergence of the sequences used in the asymptotic results for
general and positive recurrent cases. L X (T, x) is a normalized measure of the time
spent by Xt in the vicinity of a generic point x . When Xt is strictly stationary,
L X (T, x) /T

a.s.→ f (x), where f (x) is the time-invariant marginal density of Xt . In
contrast, for a general recurrent diffusion, L X (T, x) diverges to infinity at a rate no
faster than T .

4.3.2.3 Convergence Properties of the Drift and Diffusion Estimators

The theorem below states asymptotic properties of the drift and diffusion estimators
for general and positive recurrent cases separately.

Theorem 4.3 (i) (General Recurrent Case) (Gospodinov and Hirukawa 2012,
Theorem 1)

Suppose that Assumptions4.4and4.6 hold. Also let

L̂ X (T, x, b) := �

n∑

i=1

KG(x,b) (Xi�)

be a (strongly) consistent estimate of L X (T, x) for a fixed T .
(a) (Drift Estimator) If b5/2 L̄ X (T, x) = Oa.s. (1), then, as n, T → ∞,

√
b1/2 L̂ X (T, x, b)

{
μ̂b(x) − μ(x) − B R

μ (x) b
} d→ N

(
0,

σ 2 (x)

2
√

π
√

x

)

for x/b → ∞, and

√
bL̂ X (T, x, b) {μ̂b(x) − μ(x)} d→ N

(
0,

	 (2κ + 1) σ 2 (x)

22κ+1	2 (κ + 1)

)

for x/b → κ ∈ (0,∞), where

B R
μ (x) =

{
1 + x

s(1) (x)

s (x)

}
μ(1)(x) + x

2
μ(2)(x).

(b) (Diffusion Estimator) If b5/2 L̄ X (T, x) /� = Oa.s. (1), then, as n, T → ∞,

√
b1/2 L̂ X (T, x, b)

�

{
σ̂ 2

b (x) − σ 2 (x) − B R
σ 2 (x) b

} d→ N

(
0,

σ 4 (x)√
π

√
x

)

for x/b → ∞, and
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√
bL̂ X (T, x, b)

�

{
σ̂ 2

b (x) − σ 2 (x)
} d→ N

(
0,

	 (2κ + 1) σ 4 (x)

22κ	2 (κ + 1)

)

for x/b → κ , where

B R
σ 2 (x) =

{
1 + x

s(1) (x)

s (x)

} {
σ 2 (x)

}(1) + x

2

{
σ 2 (x)

}(2)
.

(ii) (Positive Recurrent Case) (Gospodinov and Hirukawa 2012, Corollary 1)
Suppose that in addition to Assumptions 4.4 and 4.6, Assumption 4.5 holds.
(a) (Drift Estimator) If b � T −2/5, then, as n, T → ∞,

√
T b1/2

{
μ̂b(x) − μ(x) − BS

μ (x) b
} d→ N

(
0,

σ 2 (x)

2
√

π
√

x f (x)

)

for x/b → ∞, and

√
T b {μ̂b(x) − μ(x)} d→ N

(
0,

	 (2κ + 1) σ 2 (x)

22κ+1	2 (κ + 1) f (x)

)

for x/b → κ , where

BS
μ (x) =

{
1 + x

f (1) (x)

f (x)

}
μ(1)(x) + x

2
μ(2)(x).

(b) (Diffusion Estimator) If b � n−2/5, then, as n, T → ∞,

√
nb1/2

{
σ̂ 2

b (x) − σ 2 (x) − BS
σ 2 (x) b

} d→ N

(
0,

σ 4 (x)√
π

√
x f (x)

)

for x/b → ∞, and

√
nb

{
σ̂ 2

b (x) − σ 2 (x)
} d→ N

(
0,

	 (2κ + 1) σ 4 (x)

22κ	2 (κ + 1) f (x)

)

for x/b → κ , where

BS
σ 2 (x) =

{
1 + x

f (1) (x)

f (x)

} {
σ 2 (x)

}(1) + x

2

{
σ 2 (x)

}(2)
.

In each part of Theorem 4.3, the rate on b balances orders of magnitude in squared
bias and variance for interior x . This rate undersmooths the curve for boundary x , and
as a consequence, the O (b) leading bias term becomes asymptotically negligible.
The theorem also suggests that μ̂b(x) has a slower convergence rate than σ̂ 2

b (x),
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regardless of the position of x . Therefore, if the sample size is not sufficiently large,
it is much harder to estimate the drift accurately, especially for design points in the
region of high valueswhere the data are sparse. It also follows that a longer smoothing
parameter is required to estimate the drift, as documented in Chapman and Pearson
(2000, p. 367).

4.3.3 Additional Remarks

4.3.3.1 Finite-Sample Properties of the Drift and Diffusion Estimators

Gospodinov and Hirukawa (2012) conduct Monte Carlo simulations based on the
square-root process by Cox et al. (1985). The process is convenient because the
transition and marginal densities are known and the prices of a zero-coupon bond
and a call option written on the bond that are implied by the process have closed-form
expressions.

The process is known to have a linear drift. Figure2 of Gospodinov and Hirukawa
(2012) reveals that the drift estimator using the G kernel captures linearity well and
is practically unbiased. On the other hand, the drift estimator using the Gaussian
kernel exhibits a downward bias over the region of high interest rate levels.

In addition, the bond and derivative prices based on the drift and diffusion estima-
tors using the G kernel are less biased than those based on the Gaussian counterparts.
The former enjoys much smaller variability and tighter confidence intervals than the
latter. Furthermore, while the confidence interval of the call price based on the G
kernel is roughly symmetric around the median estimate, that of the Gaussian-based
call price appears to be highly asymmetric (with long right tail).

4.3.3.2 A Few Words on Linearity in the Drift Function

There is still no consensus on the presence of statistically significant nonlinearity
in the drift function of the US short-term interest rates. For instance, Chapman
and Pearson (2000) argue that the nonlinearity in the drift of the spot rate at high
values of interest rates documented by Stanton (1997) could be spurious due to the
poor finite-sample properties of Stanton’s (1997) estimator. Fan and Zhang (2003)
conclude that there is little evidence against linearity in the short-rate drift function.
In contrast, Arapis and Gao (2006) report that their specification testing strongly
rejects the linearity of the short rate drift at both daily and monthly frequency.

Gospodinov and Hirukawa (2012) shed some light on this problem. Based on
the bootstrap-based inference, Gospodinov and Hirukawa (2012) observe some mild
(but statistically insignificant) nonlinearity in the drift function of US risk-free rates.
However, their drift estimate at higher interest rate levels has much smaller curvature
than the one originally reported by Stanton (1997).
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4.4 Smoothing Parameter Selection

As in the cases of symmetric kernels, the CV and generalized cross-validation
(“GCV”) methods may be applied to implement asymmetric kernel regression esti-
mation. For instance, Shi and Song (2016, p. 3495) define the GCV criterion for the
NW estimator using the G kernel as

GCV (b) = n
∑n

i=1

(
Yi − ∑n

k=1 wikYk
)2

(
n − ∑n

i=1 wi i
)2 ,

where

wik = KG(Xi ,b) (Xk)∑n
�=1 KG(Xi ,b) (X�)

, i, k = 1, . . . , n.

Below we discuss the CV method in the context of estimating scalar diffusion
models. From the viewpoint of observations with serial dependence, Gospodinov
and Hirukawa (2012) adopt the h-block CV method developed by Györfi et al.
(1989, Chap.VI), Härdle and Vieu (1992) and Burman et al. (1994). For equally
spaced observations {Xi�}n

i=1, let m̂−(i−h)�:(i+h)� (Xi�) denote the estimate of the
drift μ(Xi�) or the diffusion σ 2(Xi�) from n − (2h + 1) observations

{
X�, X2�, ..., X(i−h−1)�, X(i+h+1)�, ..., Xn� (= XT )

}
.

The smoothing parameter can be selected by minimizing the h-block CV criterion

CVh (b) =
n−h∑

i=h+1

{
Yi� − m̂−(i−h)�:(i+h)� (Xi�)

}2
,

where Yi� is
(
X(i+1)� − Xi�

)
/� (for drift estimation) or

(
X(i+1)� − Xi�

)2
/� (for

diffusion estimation). Moreover, given some similarities between problems of choos-
ing the block size h and the bandwidth parameter in heteroskedasticity and auto-
correlation consistent covariance estimation, Gospodinov and Hirukawa (2012) put
h = (γ n)1/4, where

γ := 4ρ2

(1 − ρ)2(1 + ρ)2

and ρ ∈ (0, 1) is the coefficient when a first-order autoregressive model is fitted to
{Xi�}n

i=1. In practice, ρ is replaced by its least squares estimate. Lastly, observe
that when γ = 0 (or equivalently ρ = 0), the h-block CV naturally reduces to the
leave-one-out CV for serially uncorrelated data.
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Chapter 5
Specification Testing

There are only a few accomplishments on applying asymmetric kernels to specifica-
tion testing. This chapter deals with three model specification tests. Each test has
an application-driven flavor, and it is shown to be consistent, i.e., the power of the
test approaches one as the sample size diverges. In particular, the test of discon-
tinuity in densities in Sect. 5.3 extends an existing method and contains some new
results. It is also worth emphasizing that asymmetric kernel tests perform well in
finite samples despite relying simply on first-order asymptotic results. Therefore,
assistance of size-adjusting devices such as bootstrapping appears to be unnecessary,
unlike most of the smoothed tests employing conventional symmetric kernels. We
conclude this chapter by discussing a method of choosing the smoothing parameter
under the test-optimality criterion and providing technical proofs.

5.1 Test of a Parametric Form in Autoregressive
Conditional Duration Models

5.1.1 Background

With the availability of high-frequency financial transaction data and the rapid
advance in computing power, there is growing interest in applied microstructure
research. In high-frequency financial econometrics, the timing of transactions is
a key factor to understanding economic theory. For example, the time duration
between market events has been found to have a deep impact on the behavior of mar-
ket agents (e.g., traders and market makers) and on the intraday characteristics of the
price process. Motivated by this feature, Engle and Russell (1998) propose a class of
autoregressive conditional duration (“ACD”) models to characterize the arrival time
intervals between market events of interest such as the occurrence of a trade or a
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bid–ask quote. The main idea behind ACD modeling is a dynamic parameterization
of the conditional expected duration given available public and private information.

Although a wide variety of ACD specifications have been proposed since the
seminal work by Engle and Russell (1998), model evaluation has not received much
attention up until recently. Fernandes and Grammig (2005) consider two nonpara-
metric specification tests for the distribution of the standardized innovation (or the
error term) in ACDmodels. Each test takes two steps. First, the conditional duration
process is estimated by the quasi-maximum likelihood (“QML”) method. Second,
the functional-form misspecification of the distribution can be tested by gauging the
closeness between parametric and nonparametric estimates of the baseline density or
hazard function using the standardized residuals from the QML estimate (“QMLE”).
The idea of comparing the parametric estimate which is consistent only under cor-
rect specification of the model with the nonparametric one which is consistent both
under correct specification and misspecification of the model is closely related, for
instance, to the densitymatching test for interest rate diffusionmodels byAït-Sahalia
(1996).

5.1.2 Specification Testing for the Distribution of the
Standardized Innovation

5.1.2.1 Two Versions of the Test

Denote the duration by zi = ti − ti−1, where zi is the time elapsed between events
occurring at time ti and ti−1. In ACD models, the duration is specified by zi = ψiεi ,
where ψi = E ( zi | Ii−1) is the conditional expected duration process given Ii−1, the
information available at time i − 1, and εi (≥ 0) is the i.i.d. standardized innovation
that is independent of ψi . Typically, ψi is specified as a parametric form involving
lagged zi and ψi , whereas the exponential, gamma, Weibull, and Burr distributions,
for instance, are popularly chosen as the distribution of εi .

The tests by Fernandes and Grammig (2005) are designed to detect misspecifi-
cation of the distribution of εi , under the assumption that the conditional expected
duration process ψi is correctly specified up to the parameter vector φ. Let f be
the true pdf of the distribution of ε. Also, a parametric family of f is denoted by
P = { f (·;θ) : θ ∈ �}, where θ is the parameter vector and � is the parameter
space. Fernandes and Grammig (2005) investigate the problem of testing the null
hypothesis

H0 : ∃θ0 ∈ � such that f (·;θ0) = f (·)

against the alternative
H1 : f (·) /∈ P .
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Derivations of test statistics start from assuming that the true value of φ in the
conditional expected duration process ψi is known. It follows that the standardized
innovation εi is observable, and thus the closeness between parametric and nonpara-
metric densities f (·;θ0) and f (·) can be evaluated by the distance

� f :=
∫ ∞

0
{ f (ε;θ) − f (ε)}2 1 {ε ∈ S} d F (ε) ,

where S ⊆ R+ is a compact interval in which density estimation is stable so that
1 {ε ∈ S} serves as a trimming function. Using n observations {εi }n

i=1 and replacing
θ, f , and F with the MLE θ̂, the G density estimate f̂G , and the empirical measure
Fn , respectively, we obtain the sample analog of � f as

� f̂ := 1

n

n∑
i=1

{
f
(
εi ; θ̂

)
− f̂G (εi )

}2
1 {εi ∈ S} .

The specification test based on � f̂ is labeled as the D-test.
It is also known that there is a one-to-one correspondence between the true pdf

f and the true hazard rate function H f (·) := f (·) /S (·), where S (·) := 1 − F (·)
is the survival function. Accordingly, the null H0 can be rewritten in the context of
hazard-based testing as

H ′
0 : ∃θ0 ∈ � such that Hθ0 (·) = H f (·) ,

where Hθ0 := H (·;θ0) is the hazard function implied by the parametric density
f (·;θ0). Considering the sample analog to the distance between Hθ0 and H f as
before, we have

� f̂ := 1

n

n∑
i=1

{
Hθ̂ (εi ) − H f̂G

(εi )
}2

1 {εi ∈ S} ,

where Hθ̂ := H
(
·; θ̂
)
is the parametric estimate of the baseline hazard function

with the MLE θ̂ plugged in and H f̂G
is the nonparametric baseline hazard estimate

using the G kernel. The specification test based on � f̂ is referred to as the H-test.

5.1.2.2 Convergence Properties of the D- and H-Tests

After providing a set of regularity conditions, we deliver convergence properties of
the D- and H-tests.

Assumption 5.1 {εi }n
i=1 are i.i.d. random variables drawn from a univariate distri-

bution with a pdf f having support on R+.
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Assumption 5.2 The pdf f is twice continuously differentiable, and first two deriva-
tives of f are bounded and square integrable onR+. In addition, f is bounded away
from zero on the compact interval S.
Assumption 5.3 The smoothing parameter b (= bn > 0) satisfies b � n−q for some
constant q ∈ (2/5, 1).

Assumption 5.4 The parameter space� is a compact subset ofRp . Moreover, there
is a neighborhoodN around θ0 such that ζ (·;θ), which is either f (·;θ) or H (·;θ),
is twice continuously differentiablewith respect toθwith uniformly bounded second-
order partial derivatives and the matrix E

[{∂ζ (·;θ) /∂θ} {∂ζ (·;θ) /∂θ}	] is of full
rank.

Theorem 5.1 (Fernandes and Grammig 2005, Propositions 2 and 6)
Suppose that Assumptions 5.1–5.4 hold.

(i) Under H0, as n → ∞, the statistic for the D-test

T D
n := nb1/4� f̂ − b−1/4δ̂G

σ̂G

d→ N (0, 1) ,

where δ̂G and σ̂2
G are consistent estimates of

δG := 1

2
√

π
E

[
f (ε)√

ε
1 {ε ∈ S}

]
and σ2

G := 1

2
√

π
E

[ { f (ε)}3√
ε

1 {ε ∈ S}
]

,

respectively.
(ii) Under H ′

0, as n → ∞, the statistic for the H-test

T H
n := nb1/4� f̂ − b−1/4λ̂G

ς̂G

d→ N (0, 1) ,

where λ̂G and ς̂2G are consistent estimates of

λG := 1

2
√

π
E

[
H f (ε)√
εS (ε)

1 {ε ∈ S}
]

and ς2G := 1

2
√

π
E

[{
H f (ε)

}3
√

εS (ε)
1 {ε ∈ S}

]
,

respectively.

As δ̂G, σ̂2
G , λ̂G, and ς̂2G , Fernandes and Grammig (2005) suggest
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δ̂G = 1

2
√

π

1

n

n∑
i=1

f̂G (εi )√
εi

1 {εi ∈ S} ,

σ̂2
G = 1

2
√

π

1

n

n∑
i=1

{
f̂G (εi )

}3
√

εi
1 {εi ∈ S} ,

λ̂G = 1

2
√

π

1

n

n∑
i=1

f̂G (εi )

√
εi

{
1 − F̂G (εi )

}2 1 {εi ∈ S} , and

ς̂2G = 1

2
√

π

1

n

n∑
i=1

{
f̂G (εi )

}3
√

εi

{
1 − F̂G (εi )

}4 1 {εi ∈ S} ,

where F̂G (ε) := ∫ ε

0 f̂G (y) dy is the cdf estimate based on the G density estimate.

5.1.3 Additional Remarks

5.1.3.1 Asymptotic Local Power and Consistency

Proposition 3 of Fernandes and Grammig (2005) demonstrates asymptotic local
power of theD-test against the sequence of Pitman local alternatives H1n : f (ε;θ) =
f (ε) + rnh (ε) for rn � n−1/2b−1/8 and h (ε) such that

∫∞
0 h (ε) d F (ε) = 0 and∫

S h2 (ε) d F (ε) ∈ (0,∞). It is also straightforward to demonstrate that the power
approaches one against the local alternativeswith rn satisfying rn + 1/

(
n1/2b1/8rn

)→
0 as n → ∞, as well as for the fixed alternative H1 : f (ε;θ) = f (ε) + h (ε). Sim-
ilar results apply for the H-test.

5.1.3.2 Two-Step Specification Testing

The argument so far has been constructed under the assumption the true value of φ
in the conditional expected duration process ψi is known. In reality, however, the
parameterφ is unknown. Tomake theD- andH-tests fully operational, we take a two-
step procedure. In the first step,φ is estimated by QML. Denoting the QMLE by φ̂,

we obtain the standardized residuals
{
ε̂i
}n

i=1 =
{

zi/ψ̂i

}n

i=1
, where ψ̂i is the estimated

conditional expected duration process with φ̂ plugged in. Then, in the second step,
we proceed to either the D- or H-test using the standardized residuals. Proposition
9 of Fernandes and Grammig (2005) demonstrate that convergence properties of the
D- and H-tests are unaffected even whenφ is replaced by its

√
n-consistent estimate.
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5.1.3.3 Finite-Sample Properties of Test Statistics

Fernandes and Grammig (2005) also consider the D- and H-tests with the density
estimate using a standard symmetric kernel plugged in. Monte Carlo results indicate
substantial size distortions of the tests using the symmetric kernel, which reflects
that omitted terms in the first-order asymptotics on the test statistics are actually
nonnegligible in their finite-sample distributions. As a consequence, Fernandes and
Grammig (2005) turn to bootstrapping the standardized residuals for size correction.
In contrast, the tests using the G kernel perform well in terms of both size and power.
First-order asymptotic results on the test statistics appear to be well transmitted to
their finite-sample distributions, which make bootstrapping unnecessary.

5.2 Test of Symmetry in Densities

5.2.1 Background

Symmetry and conditional symmetry play a key role in numerous fields of economics
and finance. In econometrics, for example, conditional symmetry in the distribution
of the disturbance is often a key regularity condition for regression analyses including
adaptive estimation and robust regression estimation. In finance, the mean-variance
analysis is consistent with investors’ portfolio decision making if and only if asset
returns are elliptically distributed.

In view of the importance in the existence of symmetry, Fernandes et al. (2015)
propose the split-sample symmetry test (“SSST”) smoothed by the G kernel. Later,
Hirukawa and Sakudo (2016) ameliorate the SSST by combining it with the MG and
NM kernels. While superior finite-sample performance of the MG kernel has been
reported in the literature, theNMkernel is also anticipated to have an advantagewhen
applied to the SSST. It is known that finite-sample performance of a kernel density
estimator depends on proximity in shape between the underlying density and the
kernel chosen. As illustrated in Fig. 1.3, the NM kernel collapses to the half-normal
pdf when smoothing is made at the origin, and the shape of the density is likely to
be close to those on the positive side of single-peaked symmetric distributions.

5.2.2 Asymmetric Kernel-Based Testing for Symmetry in
Densities

Case (i): When Two Subsamples Have Equal Sample Sizes

Suppose, without loss of generality, that we are interested in testing symmetry about
zero of the distribution of a random variable U ∈ R. If U has a pdf, then under the
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null of symmetry, its shapes on positive and negative sides of the entire real line R
must be mirror images each other. Therefore, whether symmetry holds can be tested
by gauging closeness between the density estimates on positive and negative sides
from positive and absolute values of negative observations, respectively. Let f and
g be the pdfs to the right and left from the origin, respectively. Given f and g, the
null and alternative hypotheses can be expressed as

H0 : f (u) = g (u) for almost all u ∈ R+, and
H1 : f (u) �= g (u) on a set of positive measure in R+,

respectively. A natural test statistic may be built on the ISE between f and g

I =
∫ ∞

0
{ f (u) − g (u)}2 du

=
∫ ∞

0
{ f (u) − g (u)} d F (u) −

∫ ∞

0
{ f (u) − g (u)} dG (u) ,

where F and G are cdfs corresponding to f and g, respectively.
To construct a sample analog to I ,we split the randomsample {Ui }N

i=1 into two sub-
samples, namely {Xi }n1

i=1 := {Ui : Ui ≥ 0}n1
i=1 and {Yi }n2

i=1 := {−Ui : Ui < 0}n2
i=1,

where N = n1 + n2. Then, we employ one of theG,MG, andNMkernels to estimate
f and g, respectively, as

f̂ j (u) = 1

n1

n1∑
i=1

K j(u,b) (Xi ) and

ĝ j (u) = 1

n2

n2∑
i=1

K j(u,b) (Yi ) , j ∈ {G, MG, N M} .

In addition, because n1 ∼ n2 under H0, without loss of generality and for ease of
exposition, we assume that N is even and that n := n1 = n2 = N/2. Substituting(

f̂ j , ĝ j

)
in places of ( f, g) and replacing (F, G) with their empirical measures(

Fn1 , Gn2

)
yield the sample analog to I as

Īn, j = 1

n

n∑
i=1

{
f̂ j (Xi ) + ĝ j (Yi ) − ĝ j (Xi ) − f̂ j (Yi )

}

=
n∑

i=1

1

n2

{
K j(Xi ,b) (Xi ) + K j(Yi ,b) (Yi ) − K j(Yi ,b) (Xi ) − K j(Xi ,b) (Yi )

}
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+
n∑

k=1

n∑
i=1,i �=k

1

n2

{
K j(Xk ,b) (Xi ) + K j(Yk ,b) (Yi ) − K j(Yk ,b) (Xi ) − K j(Xk ,b) (Yi )

}

= I1n, j + In, j , j ∈ {G, MG, N M} .

Although we could use Īn, j itself as the test statistic, I1n, j is likely to the source
of size distortions in finite samples in that its probability limit plays a role in a
nonvanishing center term of the asymptotic null distribution. Instead of subtracting
I1n, j from Īn, j like the D- and H-tests in Sect. 5.1, we build the test statistic solely
on In, j . Observe that In, j can be reformulated as

In, j :=
∑

1≤i<k≤n

�n, j (Zi , Zk) :=
∑

1≤i<k≤n

1

n2

{
φn, j (Zi , Zk) + φn, j (Zk, Zi )

}
,

where Zi := (Xi , Yi ) and

φn, j (Zi , Zk) := K j(Xk ,b) (Xi ) + K j(Yk ,b) (Yi ) − K j(Yk ,b) (Xi ) − K j(Xk ,b) (Yi ) .

It can be found that In, j is a degenerate U-statistic, because �n, j (Zi , Zk) is sym-
metric between Zi and Zk and E

{
�n, j (Zi , Zk)

∣∣ Zi
} = 0 almost surely under H0.

Therefore, a martingale central limit theorem applies to In, j .
After presenting a set of regularity conditions, we document convergence results

of In, j .

Assumption 5.5 Two random samples {Xi }n1
i=1 and {Yi }n2

i=1 are drawn independently
from univariate distributions that have pdfs f and g with support onR+, respectively.

Assumption 5.6 f and g are twice continuously differentiable on R+, and
E
∣∣X f (2) (X)

∣∣2, E
∣∣X2 f (2) (X) g(2) (X)

∣∣, E
∣∣Y 2 f (2) (Y ) g(2) (Y )

∣∣, E
∣∣Y g(2) (Y )

∣∣2 <

∞.

Theorem 5.2 (Fernandes et al. 2015, Proposition 1; Hirukawa and Sakudo 2016,
Theorem 1)

Suppose that Assumptions 5.5 and 5.6 and n1 = n2 = n hold and that the smooth-
ing parameter b (= bn) satisfies b + (nb)−1 → 0 as n → ∞.

(i) Under H0, nb1/4 In, j
d→ N

(
0,σ2

j

)
, j ∈ {G, MG, N M} as n → ∞, where

σ2
j = 2v j E

[
X−1/2 { f (X) + g (X)} + Y −1/2 { f (Y ) + g (Y )}]

and v j is the kernel-specific constant given in (2.4).
(ii) A consistent estimator of σ2

j is given by

σ̂2
j = 2v j

1

n

n∑
i=1

[
X−1/2

i

{
f̂ j (Xi ) + ĝ j (Xi )

}
+ Y −1/2

i

{
f̂ j (Yi ) + ĝ j (Yi )

}]
.
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The variance estimator σ̂2
j is consistent both under H0 and H1. Moreover, σ2

j
reduces to

σ2
j = 8v j E

{
X−1/2 f (X)

}

under H0, and thus Fernandes et al. (2015) exclusively employ its sample analog as
the variance estimator. The theorem implies that the test statistic is

Tn, j := nb1/4 In, j

σ̂ j

d→ N (0, 1) under H0,

as n → ∞. Clearly, the SSST is a one-sided test that rejects H0 in favor of H1 if
Tn, j > zα, where zα is the upper α-percentile of N (0, 1).

Case (ii): When Two Subsamples Have Unequal Sample Sizes

When the sample sizes of two subsamples {Xi }n1
i=1 and {Yi }n2

i=1 differ, i.e., n1 �= n2 is
the case, In, j can be rewritten as

In1,n2, j =
n1∑

k=1

n1∑
i=1,i �=k

1

n2
1

K j(Xk ,b) (Xi ) +
n2∑

k=1

n2∑
i=1,i �=k

1

n2
2

K j(Yk ,b) (Yi )

−
n2∑

k=1

n1∑
i=1,i �=k

1

n1n2
K j(Yk ,b) (Xi ) −

n1∑
k=1

n2∑
i=1,i �=k

1

n1n2
K j(Xk ,b) (Yi ) (5.1)

for j ∈ {G, MG, N M}. Following Fan and Ullah (1999), we deliver convergence
results under the assumption that two sample sizes n1 and n2 diverge at the same
rate.

Theorem 5.3 (Fernandes et al. 2015, Proposition 2; Hirukawa and Sakudo 2016,
Theorem 2)

Suppose that Assumptions 5.5 and 5.6 and n1/n2 → λ for some constant λ ∈
(0,∞) hold and that the smoothing parameter b

(= bn1

)
satisfies b + (n1b)−1 → 0

as n1 → ∞.

(i) Under H0, n1b1/4 In1,n2, j
d→ N

(
0,σ2

λ, j

)
, j ∈ {G, MG, N M} as n1 → ∞,

where

σ2
λ, j = 2v j

[
E
{

X−1/2 f (X)
}+ λE

{
X−1/2g (X)

}
+λE

{
Y −1/2 f (Y )

}+ λ2E
{
Y −1/2g (Y )

}]
,

and v j is again given in (2.4).
(ii) A consistent estimator of σ2

λ, j is given by
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σ̂2
λ, j = 2v j

{
1

n1

n1∑
i=1

X−1/2
i f̂ j (Xi ) +

(
n1

n2

)
1

n1

n1∑
i=1

X−1/2
i ĝ j (Xi )

+
(

n1

n2

)
1

n2

n2∑
i=1

Y −1/2
i f̂ j (Yi ) +

(
n1

n2

)2 1

n2

n2∑
i=1

Y −1/2
i ĝ j (Yi )

}
. (5.2)

Theorem 5.3 presents the limiting null distribution of n1b1/4 In1,n2, j , which implies
that the test statistic in this case takes the form of

Tn1,n2, j := n1b1/4 In1,n2, j

σ̂λ, j

d→ N (0, 1) under H0,

as n1 → ∞. Again the variance estimator σ̂2
λ, j given in Theorem 5.3 is consistent

both under H0 and H1, and σ2
λ, j reduces to

σ2
λ, j = 2 (1 + λ)2 v j E

{
X−1/2 f (X)

}

under H0. Finally, when n1 = n2 = n so that λ ≡ 1, Theorem 5.3 collapses to
Theorem 5.2.

5.2.3 Additional Remarks

5.2.3.1 A Comparison with the Test of Symmetry Using Symmetric
Kernels

Applying the idea of two-sample goodness-of-fit tests to the symmetry test is not new.
Ahmad and Li (1997) and Fan and Ullah (1999) have also studied the symmetry test
based on closeness of two density estimates measured by the ISE. They estimate
densities using two samples, namely the original entire sample {Xi }N

i=1 := {Ui }N
i=1

and the one obtained by flipping the sign of each observation {Yi }N
i=1 := {−Ui }N

i=1 in
our notations. Because each of X and Y has support on (−∞,∞) by construction,
a standard symmetric kernel is employed for density estimation. Notice that while
these tests require continuity of density derivatives at the origin, the SSST does not.

5.2.3.2 Two-Sample Test of Equality in Two Densities

If X and Y are taken from two different distributions with support onR+, then In, j (or
In1,n2, j ) can be viewed as a pure two-sample goodness-of-fit test. It can be immedi-
ately applied to the testing for equality of two unknown distributions of nonnegative
economic and financial variables such as incomes, wages, short-term interest rates,
and insurance claims.
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5.2.3.3 Asymptotic Local Power and Consistency

Proposition 4 of Fernandes et al. (2015) establishes nontrivial power of the SSST
against the sequence of Pitman local alternatives H1n : g (u) = f (u) + rnh (u) for
rn � n−1/2b−1/8 and h (u) such that

∫∞
0 h (u) du = 0 and

∫∞
0 h2 (u) du ∈ (0,∞).

The test is also consistent against the local alternatives with rn satisfying rn +
1/
(
n1/2b1/8rn

)→ 0 as n → ∞, as well as for the fixed alternative H1 : g (u) =
f (u) + h (u); see Propositions 1 (for Case (i)) and 2 (for Case (ii)) of Hirukawa and
Sakudo (2016) for more details.

5.2.3.4 Finite-Sample Properties of the Test Statistic

Monte Carlo simulations in Fernandes et al. (2015) andHirukawa and Sakudo (2016)
indicate nice finite-sample performance of the SSST. The performance is confirmed
even when the entire sample size N is 50, despite a nonparametric convergence rate
and a sample-splitting procedure. It should be again stressed that the good perfor-
mance is based solely on first-order asymptotic results.

5.2.3.5 Test of Conditional Symmetry

Our focus so far has been on testing for unconditional symmetry. However, often U
is unobservable (e.g., the error term in a regression model) or the axis of symmetry
is not zero (e.g., a nonzero mean or median). For these cases, the SSST must be
extended to the test for conditional symmetry. Proposition 5 of Fernandes et al.
(2015) and Theorem 3 of Hirukawa and Sakudo (2016) demonstrate that the SSST
may be used for the test of conditional symmetry, as long as unknown parameters are
replaced by their

√
n-consistent estimates and the smoothing parameter is chosen as

b � n−q for some q ∈ (2/5, 1).

5.3 Test of Discontinuity in Densities

5.3.1 Background

Economic importance and interest in discontinuity of densities can be argued in
the context of regression discontinuity designs (“RDD”). Local randomization of
a continuous running variable is a key requirement for the validity of RDD; if the
value of the running variable falls into the left and right of the cutoff strategically,
then treatment effects are no longer point identified due to self-selection. Therefore,
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detection of discontinuity in the density of the running variable at the cutoff suggests
evidence of such strategic behavior or manipulation in RDD.

Nonetheless, there are only a few estimation and testing procedures on discontinu-
ity in densities available. Examples include the bin-based LL regression method by
McCrary (2008), the empirical likelihood-based inference by Otsu et al. (2013), and
the truncated kernel method built on the G kernel by Funke and Hirukawa (2017a).
While all these previous works exclusively consider the case of a single cutoff that
is suspected to be a discontinuity point, this section proposes a joint test of no jumps
at prespecified multiple cutoffs in a density with support onR+. The test is a natural
extension of the one by Funke and Hirukawa (2017a).

5.3.2 Joint Estimation and Testing on Discontinuity in
Densities at Multiple Cutoffs

5.3.2.1 Estimation of the Jump Size via the Truncated Kernel Method

Suppose that for some small positive integer L we suspect discontinuity of the pdf
f at L prespecified points or cutoffs c1, . . . , cL , where (c0 ≡) 0 < c1 < · · · < cL <

∞ (≡ cL+1). Throughout it is assumed that two adjacent cutoffs c� and c�+1 for � =
0, . . . , L are so separate that there are a sufficient number of observations between
them. Let

f− (c�) := lim
x↑c�

f (x) and f+ (c�) := lim
x↓c�

f (x)

be the lower and upper limits of the pdf at x = c� for � = 1, . . . , L , respectively.
Then, the jump-size magnitude of the density at c� is

J (c�) := f+ (c�) − f− (c�) .

To check whether f is continuous at L cutoffs c1, . . . , cL jointly, we first estimate
J (c) := (J (c1) , . . . , J (cL))	 nonparametrically and then proceed to a hypothesis
testing for the null of continuity of f at all c1, . . . , cL , i.e.,

H0 : J (c) = 0,

against the alternative of discontinuity of f at some of c1, . . . , cL , i.e.,

H1 : J (c) �= 0.

For notational conciseness, expressions such as “ f± (c�)” are used throughout, when-
ever no confusions may occur.
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To develop a consistent estimator of J (c), we generalize the truncated kernel
method by Funke and Hirukawa (2017a) to the case of multiple cutoffs. The G
kernel is split into (L + 1) disjoint parts so that

KG(x,b) (u) :=
L∑

�=0

K [c�,c�+1)

G(x,b) (u) :=
L∑

�=0

ux/b exp (−u/b)

bx/b+1� (x/b + 1)
1
{
u ∈ [c�, c�+1)

}
.

Because K [c�,c�+1)

G(x,b) (u) is not a legitimate kernel function in the sense that

∫ ∞

0
K [c�,c�+1)

G(x,b) (u) du = γ (x/b + 1, c�+1/b) − γ (x/b + 1, c�/b)

� (x/b + 1)
∈ (0, 1) ,

we renormalize K [c�,c�+1)

G(x,b) (u) to construct the truncated kernel

KG(x,b;c�,c�+1) (u) := � (x/b + 1)

γ (x/b + 1, c�+1/b) − γ (x/b + 1, c�/b)
K [c�,c�+1)

G(x,b) (u)

for � = 0, . . . , L . It follows from (c0, cL+1) = (0,∞) that γ (x/b + 1, c�+1/b) −
γ (x/b + 1, c�/b) for � = 0, L reduce to γ (x/b + 1, c1/b) and � (x/b + 1, cL/b),
respectively.

Given the random sample {Xi }n
i=1 drawn from a univariate distribution with a pdf

f , we can estimate J (c�) for � = 1, . . . , L consistently as the difference between
consistent estimates of f+ (c�) and f− (c�). While

f̂+ (c�) = 1

n

n∑
i=1

KG(x,b;c�,c�+1) (Xi )
∣∣
x=c�

= 1

n

n∑
i=1

KG(c�,b;c�,c�+1) (Xi ) and

f̂− (c�) = 1

n

n∑
i=1

KG(x,b;c�−1,c�) (Xi )
∣∣
x=c�

= 1

n

n∑
i=1

KG(c�,b;c�−1,c�) (Xi )

are consistent for f+ (c�) and f− (c�), respectively, each estimator has inferior bias
convergence due to one-sided smoothing as demonstrated in Proposition 1 of Funke
and Hirukawa (2017a). Then, we define the consistent estimator of J (c�) as

J̃ (c�) := f̃+ (c�) − f̃− (c�) , � = 1, . . . , L ,

where

f̃± (c�) :=
{

f̂±,b (c�)
}1/(1−δ1/2) {

f̂±,b/δ (c�)
}−δ1/2/(1−δ1/2)

for some constant δ ∈ (0, 1) are the TS-MBC estimators of f± (c�) in Sect. 3.2.2.1
and f̂•,b (x) and f̂•,b/δ (x) signify the density estimators using smoothing parameters
b and b/δ, respectively.
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5.3.2.2 A Rationale for the Truncated Kernel Method

Some readers may wonder why we avoid estimating f− (c�) and f+ (c�) using the B
and/or G kernels. The reason is bias and variance convergences of the density esti-
mates using these kernels when the cutoff c� is chosen as the boundary. In the vicinity
of the cutoff, their bias convergences are usual O (b), whereas the variance conver-
gences slow down to O

(
n−1b−1

)
. Although the inferior rate is likely to adversely

affect power properties of our test, it is hard (or even impossible) to improve the rate
to usual O

(
n−1b−1/2

)
. In fact, in a closely related study, Fé (2014) leaves the inferior

convergence rate of his RDD estimator smoothed by the G kernel as it is. In contrast,
density estimates using the truncated kernels have the inferior bias convergence of
O
(
b1/2

)
with the usual variance convergence of O

(
n−1b−1/2

)
maintained. While

the slow bias convergence potentially has a negative impact on size properties of
the test, it can be improved to usual O (b) with no additional conditions (e.g., extra
smoothness in the density), by means of TS-MBC. A similar idea can be found in
Guillamón et al. (1999), who adopt jackknife bias correction methods to improve the
bias convergence of Bagai and Prakasa Rao’s (1995) density estimator smoothed by
a one-sided kernel.

5.3.2.3 Test Statistic for Discontinuity

To establish convergence results of J̃ (c), we assume a set of regularity conditions
below.

Assumption 5.7 {Xi }n
i=1 are i.i.d. random variables drawn from a univariate distri-

bution with a pdf f having support on R+.
Assumption 5.8 For each of � = 1, . . . , L , there is a neighborhood N� around c�

such that the second-order derivative of the pdf f is continuous on N�\ {c�}. Also,
let f (p)

− (c�) := limx↑c�
d p f (x) /dx p and f (p)

+ (c�) := limx↓c�
d p f (x) /dx p for p =

1, 2. Then, f± (c�) > 0 and
∣∣∣ f (2)

± (c�)

∣∣∣ < ∞.

Assumption 5.9 The smoothing parameter b (= bn > 0) satisfies b + (nb3/2
)−1 →

0 as n → ∞.

Theorem 5.4 Let J̃ (c) :=
(

J̃ (c1) , . . . , J̃ (cL)
)	

. Also, suppose that Assumptions

5.7–5.9 hold.

(i) (The Bias-Variance Trade-off)
As n → ∞,

Bias
{̃
J (c)

} = B (c) b + o (b) , and

V ar
{̃
J (c)

} = 1

nb1/2
V (c) + o

(
n−1b−1/2

)
,
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where B (c) := (B (c1) , . . . , B (cL))	, V (c) := diag {V (c1) , . . . , V (cL)},

B (c�) =
(

1

δ1/2

)⎡⎢⎣c�

π

⎧⎪⎨
⎪⎩

(
f (1)
+ (c�)

)2
f+ (c�)

−
(

f (1)
− (c�)

)2
f− (c�)

⎫⎪⎬
⎪⎭

−
{(

1 − 4

3π

)(
f (1)
+ (c�) − f (1)

− (c�)
)

+ c�

2

(
f (2)
+ (c�) − f (2)

− (c�)
)}]

,

V (c�) = υ (δ)

{
f+ (c�) + f− (c�)√

πc1/2�

}

for � = 1, · · · , L, and

υ (δ) :=
(
1 + δ3/2

)
(1 + δ)1/2 − 2

√
2δ

(1 + δ)1/2
(
1 − δ1/2

)2

is monotonously increasing in δ ∈ (0, 1) with

lim
δ↓0

υ (δ) = 1 and lim
δ↑1

υ (δ) = 11

4
.

(ii) (Asymptotic Normality)
In addition, if nb5/2 → 0 as n → ∞, then

√
nb1/2

{̃
J (c) − J (c)

} d→ NL (0,V (c)) .

Proof See Sect. 5.5.1.
Part (i) of the theorem suggests that the leading bias term B (c) b cancels out if

f has a continuous second-order derivative at each of L cutoffs. It also follows
from Part (ii) of the theorem that given a smoothing parameter b � n−q for some
constant q ∈ (2/5, 2/3) (which fulfills three rate requirements for b, namely b → 0,
nb3/2 → ∞ and nb5/2 → 0 as n → ∞) and Ṽ (c), a consistent estimate of V (c),
the test statistic is

T (c) = nb1/2̃J (c)	 Ṽ (c)−1 J̃ (c)

=
L∑

�=1

nb1/2

{
J̃ (c�)

}2

Ṽ (c�)

d→ χ2 (L) under H0 : J (c) = 0,

where χ2 (L) denotes the chi-squared distribution with L degrees of freedom. The
test rejects H0 in favor of H1 ifT (c) > χ2

α (L),whereχ2
α (L) is the upperα-percentile

of χ2 (L). Observe that the test investigated in Funke and Hirukawa (2017a) corre-
sponds to the case with L = 1.



88 5 Specification Testing

5.3.2.4 Asymptotic Local Power and Consistency of the Test

An argument like Proposition 3 of Funke and Hirukawa (2017a) immediately estab-
lishes asymptotic local power and consistency of the test. Specifically, the test has
nontrivial power against the sequence of Pitman local alternatives H1n : Jn (c) = 0 +
rnC1 for rn � n−1/2b−1/4 and some constant vector ‖C1‖ ∈ (0,∞). The test is also
consistent against the local alternatives with rn satisfying rn + 1/

(
n1/2b1/4rn

)→ 0
as n → ∞, as well as for the fixed alternative H1 : J (c) = C2 for some constant
vector ‖C2‖ ∈ (0,∞).

5.3.2.5 Consistent Estimates of V (c)

There are a few candidates of Ṽ (c). Replacing f± (c�) in V (c�)with their consistent

estimates f̃± (c�) immediately yields Ṽ1 (c) := diag
{

Ṽ1 (c1) , . . . , Ṽ1 (cL)
}
, where

Ṽ1 (c�) := υ (δ)

{
f̃+ (c�) + f̃− (c�)√

πc1/2�

}
.

Alternatively, taking into account that the G density estimator at c�

f̂G (c�) := 1

n

n∑
i=1

KG(x,b) (Xi )
∣∣
x=c�

= 1

n

n∑
i=1

KG(c�,b) (Xi )
p→ f+ (c�) + f− (c�)

2
,

we can obtain another estimator Ṽ2 (c) := diag
{

Ṽ2 (c1) , . . . , Ṽ2 (cL)
}
, where

Ṽ2 (c�) := υ (δ)

{
2 f̂G (c�)√

πc1/2�

}
.

5.3.3 Estimation of the Entire Density in the Presence of
Multiple Discontinuity Points

5.3.3.1 Density Estimation by Truncated Kernels

Graphical analyses including inspections of densities of running variables are
strongly encouraged in empirical studies on RDD. Below we consider the problem
of estimating f for a given design point x that differs from L prespecified cutoffs
c1, . . . , cL . It turns out that f (x) for x ∈ [0, c1) and for x ∈ (c�, c�+1) , � = 1, . . . , L
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can be consistently estimated by

f̂[0,c1) (x) := 1

n

n∑
i=1

KG(x,b;0,c1) (Xi ) and f̂(c�,c�+1) (x) := 1

n

n∑
i=1

KG(x,b;c�,c�+1) (Xi ) ,

respectively, regardless of whether f may be continuous or discontinuous at the
cutoffs.

The density estimators should be consistent at design points other than L cutoffs.
Therefore, after strengthening Assumption 5.8 suitably, we document a theorem on
consistency of the density estimators.

Assumption 5.10 The second-order derivative of f is continuous and bounded on
R+\ {c1, . . . , cL}.
Theorem 5.5 Suppose that Assumptions 5.7, 5.10, and 5.9 hold. Then, for � =
1, . . . , L, as n → ∞,

Bias
{

f̂(c�,c�+1) (x)
}

=
{

f (1) (x) + x

2
f (2) (x)

}
b + o (b) , and

V ar
{

f̂(c�,c�+1) (x)
}

= 1

nb1/2

f (x)

2
√

πx1/2
+ o

(
n−1b−1/2

)
.

On the other hand, for � = 0, as n → ∞,

Bias
{

f̂[0,c1) (x)
}

=
{

f (1) (x) + x

2
f (2)
}

b + o (b) , and

V ar
{

f̂[0,c1) (x)
}

=
{

1
nb1/2

f (x)

2
√

πx1/2 + o
(
n−1b−1/2

)
if x/b → ∞

1
nb

�(2κ+1)
22κ+1�2(κ+1) f (x) + o

(
n−1b−1

)
if x/b → κ ∈ (0,∞)

.

Proof See Sect. 5.5.2.
Theorem 5.5 indicates no adversity when f (x) for x ∈ (c�, c�+1) is estimated

by f̂(c�,c�+1) (x); although only the bias-variance trade-off is provided, asymptotic
normality of the estimators can be established similarly to Theorem 5.4. Observe
that f̂(c�,c�+1) (x) admit the same bias and variance expansions as f̂G (x) does. A
rationale is that as the design point x moves away from both of two adjacent cutoffs
c� and c�+1, data points tend to lie on both sides of x and each truncated kernel is
likely to behave like the G kernel.

5.3.3.2 Properties of f̂[0,c1) (x) at the Origin

Properties of density estimators at the origin that are discussed in Sect. 2.5 also apply
to f̂[0,c1) (x). First, if f (0) < ∞, then under Assumptions 5.7, 5.10, and 5.9 the bias
and variance of f̂[0,c1) (0) can be approximated by
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Bias
{

f̂[0,c1) (0)
}

= f (1) (0) b + o (b) , and

V ar
{

f̂[0,c1) (0)
}

=
{

1
nb

f (0)
2 + o

(
n−1b−1

)
if f (0) > 0

1
n

f (1)(0)
4 + o

(
n−1
)

if f (0) = 0 and f (1) (0) > 0
,

respectively. Observe that these results are the same as those for f̂G (x).
Second, clusterings of observations near the boundary are observed even in the

study of RDD (e.g., Fig. 5 ofMcCrary 2008). The following two theorems document
weak consistency and the relative convergence of f̂[0,c1) (x)when f (x) is unbounded
at x = 0.

Theorem 5.6 (Funke and Hirukawa 2017a, Theorem 3)
If f (x) is unbounded at x = 0, Assumption 5.7 holds, and b + (nb2

)−1 → 0 as

n → ∞, then f̂[0,c1) (0)
p→ ∞.

Theorem 5.7 (Funke and Hirukawa 2017a, Theorem 4)
Suppose that f (x) is unbounded at x = 0 and continuously differentiable in

the neighborhood of the origin. In addition, if Assumption 5.7 holds and b +{
nb2 f (x)

}−1 → 0 as n → ∞ and x → 0, then

∣∣∣∣∣
f̂[0,c1) (x) − f (x)

f (x)

∣∣∣∣∣
p→ 0

as x → 0.

As seen in Sect. 2.5, the weak consistency and relative convergence for densities
unbounded at the origin are peculiar to the density estimators smoothed by the B,
G, and GG kernels. The theorems ensure that f̂[0,c1) (x) is also a proper estimate for
unbounded densities. We can deduce fromTheorems 5.5–5.7 that all in all, appealing
properties of f̂G are inherited to f̂[0,c1) and f̂(c�,c�+1), � = 1, . . . , L .

5.4 Smoothing Parameter Selection

We conclude this chapter by discussing the problem of choosing the smoothing
parameter b for asymmetric kernel-based testing. Little is known about the problem,
despite its importance. Accordingly, some authors simply adopt the choice method
implied by density estimation. Fernandes and Grammig (2005) employ a method
similar to Silverman’s (1986) rule of thumb for the test of a parametric form in ACD
models, whereas Fernandes et al. (2015) adjust the value chosen via CV for the
SSST.

These approaches cannot be justified in theory or practice, because the value of b
chosen in an estimation–optimal criterion may not be equally optimal for inference.
In light of test optimality, Hirukawa and Sakudo (2016) and Funke and Hirukawa
(2017a) tailor the approach by Kulasekera andWang (1998) to the SSST and the test
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of discontinuity in densities, respectively. Below we briefly discuss the former. In
Chap.6, the latter will be extended to the case of the joint test of discontinuity in
densities at multiple cutoffs.

Themain idea inKulasekera andWang (1998) is grounded on subsampling. With-
out loss of generality, it is assumed that {Xi }n1

i=1 and {Yi }n2
i=1 are ordered samples,

where n1 �= n2 may be the case. Then, the entire sample
{{Xi }n1

i=1 , {Yi }n2
i=1

}
can be

split into M subsamples, where M = Mn1 is a nonstochastic sequence that satisfies
1/M + M/n1 → 0 as n1 → ∞. Given such M and (k1, k2) := (�n1/M� , �n2/M�),
themth subsample is defined as

{{
Xm+(i−1)M

}k1
i=1 ,

{
Ym+(i−1)M

}k2
i=1

}
, m = 1, . . . , M .

The test statistic using the mth subsample becomes

Tk1,k2, j (m) := k1b1/4 Ik1,k2 (m)

σ̂λ (m)
, m = 1, . . . , M,

where Ik1,k2, j (m) and σ̂2
λ (m) are the subsample analogs to (5.1) and (5.2), respec-

tively. Also, denote the set of admissible values for b = bn1 as Hn1 :=
[

Bn−q
1 , Bn−q

1

]
for some prespecified exponent q ∈ (2/5, 1) and two constants 0 < B < B < ∞.
Moreover, let

π̂M
(
bk1

) := 1

M

M∑
m=1

1
{
Tk1,k2 (m) > cm (α)

}
,

where cm (α) is the critical value for the size α test using the mth subsample. We
pick the power-maximizing value

b̂k1 = B̂k−q
1 = arg max

bk1∈Hk1

π̂M
(
bk1

)
,

and the smoothing parameter value b̂n1 := B̂n−q
1 follows.

In practice, the test-optimal b̂n1 may be chosen in the following five steps. Step 1
reflects that M should be divergent but smaller than both n1 and n2 in finite samples.
Step 3 follows from the implementation methods in Kulasekera and Wang (1998).
Finally, Step 4 considers that there may be more than one maximizer of π̂M

(
bk1

)
.

Step 1: Pick M := min
{⌊

nδ
1

⌋
,
⌊

nδ
2

⌋}
for some δ ∈ (0, 1).

Step 2: Make M subsamples of sizes (k1, k2) := (�n1/M� , �n2/M�).

Step 3: Choose two constants 0 < H < H < 1 and define Hk1 := [H , H
]
.

Step 4: Set cm (α) ≡ zα (i.e., Pr {N (0, 1) > zα} = α) and find
b̂k1 = inf

{
argmaxbk1∈Hk1

π̂M
(
bk1

)}
by a grid search.

Step 5: Recover B̂ = b̂k1k
q
1 for some q ∈ (2/5, 1) and obtain b̂n1 = B̂n−q

1 .
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5.5 Technical Proofs

5.5.1 Proof of Theorem 5.4

The proof requires the following lemmata.

Lemma 5.1 Let β1, β2, and β3 be sequences such that 0 < β1 < β2 < β3 and
β1,β2,β3 → ∞. Then,

γ (β2 + 1,β3)

� (β2 + 1)
= 1 + O

[
β
1/2
2 exp

{
β2 log

(
e

ηe1/η

)}]

= 1 + o (1) ,

γ (β2 + 2,β3)

� (β2 + 1)
= β2 + 1 + O

[
β
3/2
2 exp

{
β2 log

(
e

ηe1/η

)}]

= β2 + 1 + o (1) ,

γ (β2 + 3,β3)

� (β2 + 1)
= β2

2 + 3β2 + 2 + O

[
β
5/2
2 exp

{
β2 log

(
e

ηe1/η

)}]

= β2
2 + 3β2 + 2 + o (1) ,

γ (β2 + 1,β1)

� (β2 + 1)
= O

[
β
1/2
2 exp

{
β2 log

(
η′e
eη′

)}]
= o (1) ,

γ (β2 + 2,β1)

� (β2 + 1)
= O

[
β
3/2
2 exp

{
β2 log

(
η′e
eη′

)}]
= o (1) , and

γ (β2 + 3,β1)

� (β2 + 1)
= O

[
β
5/2
2 exp

{
β2 log

(
η′e
eη′

)}]
= o (1) ,

where η := β2/β3 ∈ (0, 1) and η′ := β1/β2 ∈ (0, 1) so that e/
(
ηe1/η

)
, η′e/eη′ ∈

(0, 1).

Lemma 5.2 Under Assumptions 5.7–5.9, as n → ∞,

Bias
{

f̂± (c�)
}

= ±
√
2

π
c1/2� f (1)

± (c�) b1/2 +
{(

1 − 4

3π

)
f (1)
± (c�) + c�

2
f (2)
± (c�)

}
b + o (b) , and

V ar
{

f̂± (c�)
}

= 1

nb1/2

f± (c�)√
πc1/2�

+ o
(
n−1b−1/2

)

for � = 1, . . . , L.
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Lemma 5.3 Under Assumptions 5.7–5.9, as n → ∞,

Cov
{

f̃+ (c�) , f̃− (c�+m)
}

=
{

O
(
n−1
)

if m = 1
0 if m �= 1

for � = 1, . . . , L and m = 0, 1, . . . , L − �.

Proof of Lemma 5.1

The first equality for each statement immediately establishes the second one because
of an exponentially decaying rate in the big O term. Then, we may concentrate on
demonstrating the first equalities. These can be obtained by using (2.16), (2.17) and
arguments in the Proof of Theorem 2 in Funke and Hirukawa (2017b). �

Proof of Lemma 5.2

Proposition 1 of Funke and Hirukawa (2017a) has already established the bias-
variance trade-off on f̂− (c1) and f̂+ (cL). To save space, without loss of generality,

we focus only on approximating E
{

f̂+ (c1)
}
and V ar

{
f̂+ (c1)

}
. Bias and variance

approximations to other estimators can be obtained in a similar manner.

Bias. By the change of variable v := u/b,

E
{

f̂+ (c1)
}

=
∫ c2

c1

uc1/b exp (−u/b) f (u)

bc1/b+1 {γ (c1/b + 1, c2/b) − γ (c1/b + 1, c1/b)}du

=
∫ a2

a1

f (bv)

{
va1 exp (−v)

γ (a1 + 1, a2) − γ (a1 + 1, a1)

}
dv,

where (a1, a2) := (c1/b, c2/b), and the object inside brackets of the right-hand side
is a pdf on the interval [a1, a2). Then, a second-order Taylor expansion of f (bv)

around bv = c1 (from above) yields

E
{

f̂+ (c1)
}

= f+ (c1) + b f (1)
+ (c1)

{
γ (a1 + 2, a2) − γ (a1 + 2, a1)

γ (a1 + 1, a2) − γ (a1 + 1, a1)
− a1

}

+ b2

2
f (2)
+ (c1)

{
γ (a1 + 3, a2) − γ (a1 + 3, a1)

γ (a1 + 1, a2) − γ (a1 + 1, a1)

− 2a1
γ (a1 + 2, a2) − γ (a1 + 2, a1)

γ (a1 + 1, a2) − γ (a1 + 1, a1)
+ a2

1

}
+ R f̂+(c1)

,

where

R f̂+(c1)
:= b2

2

∫ a2

a1

{
f (2) (ξ) − f (2) (c1)

}
(v − a1)

2
{

va1 exp (−v)

γ (a1 + 1, a2) − γ (a1 + 1, a1)

}
dv
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is the remainder term with ξ = α (bv) + (1 − α) c1 for some α ∈ (0, 1).
Observe that a1 < a2 and a1, a2 → ∞ as n → ∞. Putting (β2,β3) = (a1, a2)

in Lemma 5.1, using (2.17) and equation (A6) of Funke and Hirukawa (2017b)
repeatedly, and making some straightforward but tedious calculations, we have

γ (a1 + 2, a2) − γ (a1 + 2, a1)

γ (a1 + 1, a2) − γ (a1 + 1, a1)
− a1

=
√
2

π
a1/2
1 +

(
1 − 4

3π

)
+ O

(
a−1/2
1

)

=
√
2

π

(c1
b

)1/2 +
(
1 − 4

3π

)
+ O

(
b1/2) , and

γ (a1 + 3, a2) − γ (a1 + 3, a1)

γ (a1 + 1, a2) − γ (a1 + 1, a1)
− 2a1

γ (a1 + 2, a2) − γ (a1 + 2, a1)

γ (a1 + 1, a2) − γ (a1 + 1, a1)
+ a2

1

= a1 + O
(

a1/2
1

)

= c1
b

+ O
(
b−1/2

)
.

A similar argument to the Proof of Proposition 1 in Funke and Hirukawa (2017b)
can also establish that R f̂+(c1)

= o (b). Then, the bias approximation immediately
follows.

Variance. By

V ar
{

f̂+ (c1)
}

= 1

n
E
{

K 2
G(c1,b;c1,c2) (Xi )

}+ O
(
n−1
)
,

we may concentrate on approximating E
{

K 2
G(c1,b;c1,c2) (Xi )

}
. A straightforward

calculation and the change of variable w := 2u/b yield

E
{

K 2
G(c1,b;c1,c2) (Xi )

}

=
∫ c2

c1

u2c1/b exp (−2u/b) f (u)

b2(c1/b+1) {γ (c1/b + 1, c2/b) − γ (c1/b + 1, c2/b)}2 du

=
{

b−1� (2a1 + 1)

22a1+1�2 (a1 + 1)

}{
γ (2a1 + 1, 2a2)

� (2a1 + 1)
− γ (2a1 + 1, 2a1)

� (2a1 + 1)

}

×
{

γ (a1 + 1, a2)

� (a1 + 1)
− γ (a1 + 1, a1)

� (a1 + 1)

}−2

×
∫ 2a2

2a1

f

(
bw

2

){
w2a1 exp (−w)

γ (2a1 + 1, 2a2) − γ (2a1 + 1, 2a1)

}
dw,

where (a1, a2) = (c1/b, c2/b) as in the bias approximation part, and the object inside
brackets in the integral on the right-hand side is again a pdf on the interval [2a1, 2a2).
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As before, the integral part can be approximated by f+ (c1) + O
(
b1/2

)
. Applying

Lemma 5.1, equation (A6) of Funke and Hirukawa (2017b), and the argument on
p.474 of Chen (2000) and recognizing that a1 = c1/b also yield

{
b−1� (2a1 + 1)

22a1+1�2 (a1 + 1)

}{
γ (2a1 + 1, 2a2)

� (2a1 + 1)
− γ (2a1 + 1, 2a1)

� (2a1 + 1)

}

×
{

γ (a1 + 1, a2)

� (a1 + 1)
− γ (a1 + 1, a1)

� (a1 + 1)

}−2

= b−1/2

√
πc1/21

+ o
(
b−1/2

)
.

Therefore, the variance approximation is also demonstrated, which completes the
proof. �

Proof of Lemma 5.3

It is the case that Cov
{

f̃+ (c�) , f̃− (c�+m)
}

= 0 if m = 0 or m ≥ 2, because the

subsamples used for f̃+ (c�) and f̃− (c�+m) do not overlap. Our remaining task is to

demonstrate, without loss of generality, that Cov
{

f̃+ (c1) , f̃− (c2)
}

= O
(
n−1
)
.

Let I±,b (c�) := E
{

f̂±,b (c�)
}

, Z±,b (c�) := f̂±,b (c�) − E
{

f̂±,b (c�)
}

, and

W± (c�) := Z±,b (c�) − δ1/2Z±,b/δ (c�). Then, by a similar argument to the Proof
of Theorem 1 in Hirukawa (2010),

f̃± (c�) = {I±,b (c�)
}1/(1−δ1/2) {I±,b/δ (c�)

}−δ1/2/(1−δ1/2)

+
(

1

1 − δ1/2

)
W± (c�) + R f̃±(c�)

,

where the remainder term R f̃±(c�)
is of smaller order than Z±,b (c�) and Z±,b/δ (c�).

It follows that the proof is completed if all the followings are proven to be true:

E
{

Z+,b (c1) Z−,b (c2)
} = O

(
n−1
) ; (5.3)

E
{

Z+,b (c1) Z−,b/δ (c2)
} = O

(
n−1
) ; (5.4)

E
{

Z+,b/δ (c1) Z−,b (c2)
} = O

(
n−1) ; and (5.5)

E
{

Z+,b/δ (c1) Z−,b/δ (c2)
} = O

(
n−1
)
. (5.6)

Observe that (5.6) automatically holds once (5.3) is shown. In addition, the proof
strategies for (5.4) and (5.5) are basically the same as that of (5.3). Therefore, we
demonstrate only (5.3) below.



96 5 Specification Testing

By the definitions of Z+,b (c1) and Z−,b (c2),

E
{

Z+,b (c1) Z−,b (c2)
}

= 1

n
E
{

KG(c1,b;c1,c2) (Xi ) KG(c2,b;c1,c2) (Xi )
}+ O

(
n−1
)
.

A straightforward calculation and the change of variable w := 2u/b yield

E
{

KG(c1,b;c1,c2) (Xi ) KG(c2,b;c1,c2) (Xi )
}

=
∫ c2

c1

uc1/b+c2/b exp (−2u/b) f (u)

bc1/b+c2/b+2
{
γ
( c1

b + 1, c2
b

)− γ
( c1

b + 1, c1
b

)} {
γ
( c2

b + 1, c2
b

)− γ
( c2

b + 1, c1
b

)}du

=
{

b−1� (a1 + a2 + 1)

2a1+a2+1� (a1 + 1) � (a2 + 1)

}{
γ (a1 + a2 + 1, 2a2)

� (a1 + a2 + 1)
− γ (a1 + a2 + 1, 2a1)

� (a1 + a2 + 1)

}

×
{

γ (a1 + 1, a2)

� (a1 + 1)
− γ (a1 + 1, a1)

� (a1 + 1)

}−1 {γ (a2 + 1, a2)

� (a2 + 1)
− γ (a2 + 1, a1)

� (a2 + 1)

}−1

×
∫ 2a2

2a1
f

(
bw

2

){
wa1+a2 exp (−w)

γ (a1 + a2 + 1, 2a2) − γ (a1 + a2 + 1, 2a1)

}
dw,

where (a1, a2) = (c1/b, c2/b) as before. Obviously, the integral part is at most
O (1). Lemma 5.1 and equation (A6) of Funke and Hirukawa (2017b) also give

γ (a1 + 1, a2)

� (a1 + 1)
− γ (a1 + 1, a1)

� (a1 + 1)
= 1

2
+ o (1) = O (1) , and

γ (a2 + 1, a2)

� (a2 + 1)
− γ (a2 + 1, a1)

� (a2 + 1)
= 1

2
+ o (1) = O (1) .

Because 2a1 < a1 + a2 < 2a2 and a1, a2 → ∞ as n → ∞,

γ (a1 + a2 + 1, 2a2)

� (a1 + a2 + 1)
− γ (a1 + a2 + 1, 2a1)

� (a1 + a2 + 1)
= 1 + o (1) = O (1) .

Finally, (2.16) yields

b−1� (a1 + a2 + 1)

2a1+a2+1� (a1 + 1) � (a2 + 1)

= b−1

2
√
2π

(
1

a1
+ 1

a2

)1/2 (a1 + a2

2a1

)a1 (a1 + a2

2a2

)a2

{1 + o (1)} ,

It is easy to see that (1/a1 + 1/a2)
1/2 = O

(
b1/2

)
. Denoting ρ = a1/a2 ∈ (0, 1) as

before, we also have

(
a1 + a2

2a1

)a1 (a1 + a2

2a2

)a2

= exp

[
a2 log

{(
1 + ρ

2ρ

)ρ (1 + ρ

2

)}]
,



5.5 Technical Proofs 97

where {(1 + ρ) / (2ρ)}ρ {(1 + ρ) /2} ∈ (1/2, 1) so that the right-hand side converges
to zero at an exponential rate. Therefore,

b−1� (a1 + a2 + 1)

2a1+a2+1� (a1 + 1) � (a2 + 1)
= o (1) ,

and thus E
{

KG(c1,b;c1,c2) (Xi ) KG(c2,b;c1,c2) (Xi )
} = o (1), which establishes (5.3). �

Proof of Theorem 5.4

(i) This part is obvious by Lemmata 5.1 and 5.2 and the bias and variance approx-
imation techniques for the TS-MBC estimation (e.g., the Proof of Theorem 1 in
Hirukawa 2010).
(ii) Let W± (c) := (W± (c1) , . . . , W± (cL))	. Then, for an arbitrary vector t :=
(t1, . . . , tL)	 ∈ R

L ,

√
nb1/2

{
t	J̃ (c) − t	J (c)

}
=√

nb1/2
[
t	J̃ (c) − E

{
t	J̃ (c)

}]+ √
nb1/2

[
E
{
t	J̃ (c)

}− t	J (c)
]

=√
nb1/2

(
1

1 − δ1/2

)
t	 {W+ (c) − W− (c)}

+ √
nb1/2t	 {B (c) b + o (b)} + op (1) ,

where
√

nb1/2t	 {B (c) b + o (b)} = o (1) if nb5/2 → 0. It follows from the Cramér-
Wold device that the proof of this part is completed if

√
nb1/2

(
1

1 − δ1/2

)
t	 {W+ (c) − W− (c)} d→ N

(
0, t	V (c) t

)
.

Because Lemmata 5.2 and 5.3 have already established the asymptotic variance of
the left-hand side, we only need to demonstrate Liapunov’s condition for this term.

Let

W± (c) :=
n∑

i=1

W±,i (c) :=
n∑

i=1

{
Z±,b,i (c) − δ1/2Z±,b/δ,i (c)

}
,

where
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Z+,b,i (c) = 1

n

⎡
⎢⎣

KG(c1,b;c1,c2) (Xi ) − E
{

KG(c1,b;c1,c2) (Xi )
}

...

KG(cL ,b;cL ,∞) (Xi ) − E
{

KG(cL ,b;cL ,∞) (Xi )
}

⎤
⎥⎦ and

Z−,i,b (c) = 1

n

⎡
⎢⎣

KG(c1,b;0,c1) (Xi ) − E
{

KG(c1,b;0,c1) (Xi )
}

...

KG(cL ,b;cL−1,cL ) (Xi ) − E
{

KG(cL ,b;cL−1,cL ) (Xi )
}

⎤
⎥⎦ .

Then,

√
nb1/2

(
1

1 − δ1/2

)
t	 {W+ (c) − W− (c)}

=
n∑

i=1

√
b1/2

n

(
1

1 − δ1/2

)
t	
{
W+,i (c) − W−,i (c)

}
.

Further, denoteYi := √b1/2/n
(
1 − δ1/2

)−1
t	
{
W+,i (c) − W−,i (c)

}
. Then, E |Yi |3

is bounded by

b3/4

n3/2

‖t‖3(
1 − δ1/2

)3
× E

{(∥∥Z+,i,b (c)
∥∥+ ∥∥Z+,i,b/δ (c)

∥∥+ ∥∥Z−,i,b (c)
∥∥+ ∥∥Z−,i,b/δ (c)

∥∥)3} .

Similarly to Lemma A1 of Funke and Hirukawa (2017b), the expected value part is
shown to be at most O

(
b−1
)
. Hence, E |Yi |3 = O

(
n−3/2b−1/4

)
. It is also straight-

forward to see that V ar (Yi ) = O
(
n−1
)
. Therefore,

∑n
i=1 E |Yi |3{∑n

i=1 V ar (Yi )
}3/2 = O

(
n−1/2b−1/4

)→ 0,

or Liapunov’s condition holds. This completes the proof. �

5.5.2 Proof of Theorem 5.5

Because the results on f̂[0,c1) (x) and f̂(cL ,∞) (x)have beenmade available asTheorem
2 of Funke and Hirukawa (2017a), it suffices to establish bias and variance approxi-
mations to f̂(c�,c�+1) (x) , � = 1, . . . , L − 1. Without loss of generality, we put � = 1.

Bias. By the change of variable v := u/b,
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E
{

f̂(c1,c2) (x)
}

=
∫ c2

c1

ux/b exp (−u/b) f (u)

bx/b+1 {γ (x/b + 1, c2/b) − γ (x/b + 1, c1/b)}du

=
∫ a2

a1

f (bv)

{
vz exp (−v)

γ (z + 1, a2) − γ (z + 1, a1)

}
dv,

where (a1, a2) := (c1/b, c2/b), z := x/b ∈ (a1, a2), and the object inside brackets
of the right-hand side is a pdf on the interval (a1, a2). Then, a second-order Taylor
expansion of f (bv) around bv = x yields

E
{

f̂(c1,c2) (x)
}

= f (x) + b f (1) (x)

{
γ (z + 2, a2) − γ (z + 2, a1)

γ (z + 1, a2) − γ (z + 1, a1)
− z

}

+ b2

2
f (2) (x)

{
γ (z + 3, a2) − γ (z + 3, a1)

γ (z + 1, a2) − γ (z + 1, a1)

−2z
γ (z + 2, a2) − γ (z + 2, a1)

γ (z + 1, a2) − γ (z + 1, a1)
+ z2

}
+ R f̂(c1 ,c2)

(x),

where

R f̂(c1,c2)
(x)

:= b2

2

∫ a2

a1

{
f (2) (ξ) − f (2) (x)

}
(v − x)2

{
vz exp (−v)

γ (z + 1, a2) − γ (z + 1, a1)

}
dv

is the remainder term with ξ = α (bv) + (1 − α) x for some α ∈ (0, 1).
Observe that a1 < z < a2 and a1, a2, z → ∞ as n → ∞. It follows from putting

(β1,β2,β3) = (a1, z, a2) in Lemma 5.1 that

γ (z + 2, a2) − γ (z + 2, a1)

γ (z + 1, a2) − γ (z + 1, a1)
− z

=1 + o (1) , and

γ (z + 3, a2) − γ (z + 3, a1)

γ (z + 1, a2) − γ (z + 1, a1)
− 2z

γ (z + 2, a2) − γ (z + 2, a1)

γ (z + 1, a2) − γ (z + 1, a1)
+ z2

=z + 2 + o (1)

= x

b
+ 2 + o (1) .

A similar argument to the Proof of Proposition 1 in Funke and Hirukawa (2017b)
can also establish that R f̂(c1,c2)(

x) = o (b). Then, the bias approximation immediately

follows.

Variance. By

V ar
{

f̂(c1,c2) (x)
}

= 1

n
E
{

K 2
G(x,b;c1,c2) (Xi )

}+ O
(
n−1
)
,
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we only need to approximate E
{

K 2
G(x,b;c1,c2) (Xi )

}
. A straightforward calculation

and the change of variable w := 2u/b yield

E
{

K 2
G(x,b;c1,c2) (Xi )

}

=
∫ c2

c1

u2x/b exp (−2u/b) f (u)

b2(x/b+1) {γ (x/b + 1, c2/b) − γ (x/b + 1, c2/b)}2 du

=
{

b−1� (2z + 1)

22z+1�2 (z + 1)

}{
γ (2z + 1, 2a2)

� (2z + 1)
− γ (2z + 1, 2a1)

� (2z + 1)

}

×
{

γ (z + 1, a2)

� (z + 1)
− γ (z + 1, a1)

� (z + 1)

}−2

×
∫ 2a2

2a1

f

(
bw

2

){
w2z exp (−w)

γ (2z + 1, 2a2) − γ (2z + 1, 2a1)

}
dw,

where (a1, a2, z) = (c1/b, c2/b, x/b) as in the bias approximation part, and the
object inside brackets in the integral on the right-hand side is again a pdf on the inter-
val (2a1, 2a2). As before, the integral part can be approximated by f (x) + O

(
b1/2

)
.

By a similar argument to the one in the Proof of Lemma 5.2,

{
b−1� (2z + 1)

22z+1�2 (z + 1)

}{
γ (2z + 1, 2a2)

� (2z + 1)
− γ (2z + 1, 2a1)

� (2z + 1)

}

×
{

γ (z + 1, a2)

� (z + 1)
− γ (z + 1, a1)

� (z + 1)

}−2

= b−1/2

2
√

πx1/2
+ o

(
b−1/2

)
.

Therefore, the variance approximation is also demonstrated, which completes the
proof. �
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Chapter 6
Asymmetric Kernels in Action

The final chapter presents two applications of asymmetric kernel smoothing to real
data. One is on density estimation and the other on a testing problem. Each empirical
illustration is closely related to the author’s latest work.

6.1 Estimation of Income Distributions

As the first application, a variety of density estimates are compared. The data set of
US annual family incomes in Abadie (2003), which has been already used to draw
Fig. 1.1, is again employed for this analysis. The data are extracted originally from
the 1991 Survey of Income and Program Participation, and 9275 family incomes are
reported in thousands of US dollars. Table6.1 provides a brief summary of the data.

Table 6.1 Summary statistics on US family incomes

# of Obs. Mean Std. Dev. Skewness Min. Median Max.

9275 39.25 24.09 1.60 10.01 33.29 199.04

The following five density estimators are examined: (i) a parametric density esti-
mator based on fittingG (α, β) byML [ML]; (ii) the HG estimator in Sect. 3.3.3 with
G (α, β) chosen as the parametric start and theG kernel used for bias correction [HG-
G]; (iii) the G estimator [G]; (iv) the JLN-MBC estimator in Sect. 3.2.2 using the G
kernel [JLN-G]; and (v) the JSH-MBC estimator in Sect. 3.3.3 with G (α, β) chosen
as the parametric start and the G kernel used for bias correction [JSH-G]. The MLEs

of (α, β) are
(
α̂, β̂

)
= (3.16, 12.43). To implement estimators (ii)-(v), we adopt the

plug-in smoothing parameters proposed by Hirukawa and Sakudo (2014). Specifi-
cally, b̂GR−BU are chosen for (ii) and (iii) and b̂GR−J LN for (iv) and (v), where for
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Fig. 6.1 Estimates of the density of US family incomes

each formula MLEs
(
α̂, β̂

)
are plugged in place of (α, β). Notice that b̂GR−BU is a

special case of b̂GG in Chap.2.
Figure6.1 presents plots of five density estimates. Although it is impossible to

judgewhich estimator is closest to the truth, some interesting results can be observed.
There is no substantial difference in the tail part. However, ML and G identify
the position of the mode differently. Invoke that HG-G and JLN-G correct biases
of ML and G, respectively. It appears that by downweighting (upweighting) the
overestimated (underestimated) parts, HG-G and JLN-G shift the location of the
mode to the left and right, respectively. As a result, their estimated modes become
close in terms of both location and height. Since JSH-G is a bias-corrected version of
HG-G, it yields a sharper peak through further downweighting the part in the vicinity
of the origin.

6.2 Estimation and Testing of Discontinuity in Densities

The second application is concerned with estimation and testing procedures of dis-
continuity at multiple cutoffs. We employ the data sets on Israeli elementary schools
used by Angrist and Lavy (1999), which contain enrollment counts of fourth and
fifth graders at 2059 and 2029 schools, respectively. Following Maimonides’ rule,
Israeli public schools make each class size not greater than 40. As a result of strategic
behavior on schools’ and/or parents’ sides, the density of school enrollment counts
for each grade may be discontinuous at multiples of 40, namely 40, 80, 120, and 160.
In fact, Otsu et al. (2013) and Funke and Hirukawa (2017) detect discontinuity (and
thus evidence of manipulation in RDD) at some of these prespecified cutoffs.

Naturally, we are motivated to apply the joint discontinuity test at multiple cutoffs
in Sect. 5.3 to Angrist and Lavy’s (1999) data sets. On the other hand, it is desirable
to clarify finite-sample properties of test statistics before analyzing the real data.
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Therefore, this section conducts a small Monte Carlo study and then proceeds to the
data analysis.

6.2.1 Finite-Sample Properties of Test Statistics
for Discontinuity at Multiple Cutoffs

6.2.1.1 Monte Carlo Setup

The pdf of the Weibull distribution W (1.75, 3.5) is used as the true density.
To make the setup close to the real data, we examine the case with four sus-
pected discontinuity points (i.e., L = 4). Specifically, 20, 40, 60, and 80% quan-
tiles of the distribution are chosen as four cutoffs so that c = (c1, c2, c3, c4) :=
(q0.2, q0.4, q0.6, q0.8). Let X be drawn with probability γ from the truncated Weibull
distribution with support on [0, q0.4) and with probability 1 − γ from the one with
support on [q0.4,∞). Unless γ = Pr (X < q0.4), the Weibull pdf is discontinuous
at q0.4. Also denote the measure of discontinuity as d := Pr (X < q0.4) − γ , where
d ∈ {0.00, 0.02, 0.04, 0.06, 0.08, 0.10} and d > 0 suggests a jump of the pdf at q0.4.
Two test statistics Ti (c) := nb1/2̃J (c)� Ṽi (c)−1 J̃ (c) for i = 1, 2 are investigated
for Ṽ1 (c) and Ṽ2 (c) defined in Sect. 5.3, and three different values of the mixing
exponent δ are considered, namely δ ∈ {0.49, 0.64, 0.81}. For each test statistic,
empirical rejection frequencies of the null H0 : J (c) = 0 against the nominal 5 and
10% levels are computed. The sample size is 2000, which is also close to those of
Angrist and Lavy’s (1999) data sets, and 5000 replications are drawn.

The smoothing parameter b for each test statistic is selected by the test-optimal
criterion in Sect. 5.4. Let n� be the number of observations falling into the interval[
c�, c�+1) for � = 0, . . . , 4, where (c0, c5) ≡ (0,∞). Then, implementation details
are summarized as the following five steps.

Step 1: Pick M := ⌊
min0≤�≤4 n

p
�

⌋
for p = 1/2.

Step 2: Make M subsamples of sample size k := ∑4
�=0 k�,

where k� := �n�/M� for � = 0, . . . , 4.
Step 3: Choose the interval for bk as Hk := [0.15, 0.50].
Step 4: Set the critical value at χ2

0.05 (4) = 9.49 and find
b̂k = inf

{
argmaxbk∈Hk π̂M (bk)

}
by a grid search,

where π̂M (bk) := (1/M)
∑M

m=1 1
{
Tm (c) > χ2

0.05 (4)
}

for the test statistic from the mth subsample Tm (c).
Step 5: Recover B̂ = b̂kkq for q = 4/9 and obtain b̂n = B̂n−q .
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Table 6.2 Empirical rejection frequencies of test statistics

Test δ Nominal d (%)

0.00 0.02 0.04 0.06 0.08 0.10

T1 (c) 0.49 5% 4.2 5.8 10.8 23.5 45.3 70.6

10% 8.6 10.8 19.0 35.8 60.1 81.0

0.64 5% 4.2 5.7 10.4 22.6 43.5 67.1

10% 9.0 11.0 18.8 34.6 57.6 78.4

0.81 5% 4.1 5.8 10.3 21.9 41.6 64.4

10% 9.3 11.0 18.6 34.2 55.4 76.2

T2 (c) 0.49 5% 4.8 6.3 11.3 24.8 46.6 71.4

10% 9.7 11.6 20.3 36.9 61.4 81.7

0.64 5% 4.6 6.3 11.0 23.8 44.5 68.2

10% 9.7 11.9 19.7 36.2 58.8 79.2

0.81 5% 4.6 6.5 11.0 23.0 43.1 65.4

10% 10.2 12.0 19.9 35.5 56.6 76.9

6.2.1.2 Results

Table6.2 reports simulation results. Observe that each test statistic has good size
(d = 0) and power (d > 0) properties. As with other tests smoothed by asymmetric
kernels, the good performance is based solely on first-order asymptotic results. A
closer look also reveals that T2 (c) has better power than T1 (c) for each δ and that
δ = 0.49 is most powerful.

6.2.2 Empirical Illustration

We proceed to applying the joint discontinuity test to Angrist and Lavy’s (1999)
data sets. T2 (c) with δ = 0.49 with the test-optimal smoothing parameter plugged
in is employed because of its better finite-sample properties. The test statistic takes
the values of 38.58 and 37.69 for fourth and fifth graders, respectively. Each value
well exceeds the critical value at the 1% level χ2

0.01 (4) = 13.28, i.e., there is strong
evidence that the underlying density for each grade is discontinuous at some of four
prespecified cutoffs.

Moreover, Funke and Hirukawa (2017) conduct discontinuity tests at the four
cutoffs individually for each grade and find evidence of discontinuity at 40,120, and
160 for fourth graders and at 40 and 120 for fifth graders. Figure6.2 plots estimates of
enrollment densities for fourth (solid) andfifth graders (dashed) under the assumption
that the densities are indeed discontinuous at all these cutoffs. A difficulty arises in
smoothing parameter selection. While there is no guidance for implementing density
estimation with discontinuity points, adopting the smoothing parameter value under
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Fig. 6.2 Density estimates of school enrollments in the presence of multiple cutoffs

the test-optimal criterion is inappropriate in that this is an estimation problem. As a
consequence, we simply put b̂ = σ̂n−2/5 for each density estimate, where n is the
sample size (i.e., n = 2059 for fourth and n = 2029 for fifth graders) and σ̂ the
sample standard deviation.
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A
Absolute regularity, see β-mixing
ACD model, 73
Actuarial loss distribution, 7
Additive bias correction, 42, 43
α-mixing, 30, 64

B
Beta function, 8
Beta kernel, 5, 8, 11, 20, 29, 54, 61
β-mixing, 31
Bias-variance trade-off, 23, 86
Birnbaum–Saunders kernel, 5, 30
Boundary bias, 1, 2, 4
Boundary correction, 2

C
Cross-validation

h-block cross-validation, 36, 70
leave-one-out cross-validation, 36

D
Degenerate U-statistic, 80
Diffusion estimator, 65
Diffusion model, 7, 64
Digamma function, 43, 44
Distribution of trading volumes, 7
Drift estimator, 65
D-test, 75

G
Gamma function, 7, 8

Gamma kernel, 5, 8, 11, 29, 43, 52, 61, 65,
75, 78, 85, 103

Gaussian kernel, 24, 25, 62
Gaussian-copula kernel, 5, 31
Generalized Birnbaum-Saunders kernel, 5
Generalized cross-validation, 70
Generalized gamma kernel, 5, 9, 11, 20, 22,

24, 29, 34
Generalized inverse Gaussian kernel, 5
Generalized jackknife method, 43
General weight function estimator, 3

H
Hazard rate, 7, 30, 75
H-test, 75

I
Income distribution, 6, 7, 103
Integrated squared error, 35, 79
Inverse gamma kernel, 5
Inverse Gaussian kernel, 5, 30

J
Joint density estimation, 32, 50

K
Kernel regression estimator

Gasser-Müller estimator, 3, 63
local linear estimator, 59
Nadaraya–Watson estimator, 59, 65

L
Legendre duplication formula, 37
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Local multiplicative bias correction, 42, 51
Local transformation bias correction, 42, 43,

53
Log gamma function, 37
Log-normal kernel, 5
Lower incomplete gamma function, 38

M
Macro-beta estimator, 32
Mean integrated squared error, 26
Mean squared error, 23, 62
Micro-beta estimator, 32
Modified beta kernel, 8, 11, 20, 24, 33
Modified gamma kernel, 8, 10, 25, 27, 78
Multiplicative bias correction, 42, 45, 85,

103

N
Nakagami-m kernel, 11, 25, 78
Normalization, 31, 49

P
Plug-in smoothing parameter, 33, 57, 103
Product kernel, 32, 50

R
Realized integrated volatility, 7

Reciprocal inverse Gaussian kernel, 5, 30
Recovery rate distribution, 7, 32
Regression discontinuity design, 7, 83, 86,

104

S
Stirling’s asymptotic formula, 37
Strong mixing, see α-mixing
Symmetric kernel, 20, 23, 24, 48, 82

T
Test-optimal smoothing parameter, 90, 105
Truncated kernel, 84, 86, 88
Two-sample goodness-of-fit test, 82

U
Unbounded density, 29, 90
Uniform convergence, 28, 63

V
Variable kernel, 4, 12, 23

W
Weibull kernel, 10, 25, 48, 49
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