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Preface

Bayesian models are very popular in non-life claims reserving. This monograph
provides a review of Bayesian claims reserving models and their underlying
Bayesian inference theory. It investigates three types of claims reserving models in
Bayesian framework: chain ladder models, basis expansion models involving tail
factor, and multivariate copula models. One of the core techniques in Bayesian
modeling is inferential methods. This monograph largely relies on Stan, a spe-
cialized software environment which applies Hamiltonian Monte Carlo method and
variational Bayes. This monograph has the following three distinguishing features:

e It has a thorough review of various aspects of Bayesian statistics and relates
them to claims reserving problems.

e It addresses three important points in claims reserving: tail development,
stochastic version of payments per claim incurred method, and aggregation of
liabilities from correlated portfolios.

e [t provides explicit Stan code for non-life insurance claims reserving.

Beijing, China Guangyuan Gao
September 2018
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Chapter 1 ®)
Introduction Check for

Abstract This chapter briefly reviews Bayesian statistics, Markov chain Monte
Carlo methods, and non-life insurance claims reserving methods. Some of the most
influential literature are listed in this chapter. Two Bayesian inferential engines,
BUGS and Stan, are introduced. At the end the monograph structure is given and the
general notation is introduced.

1.1 Bayesian Inference and MCMC

The foundation of Bayesian data analysis is Bayes’ theorem, which derives from
Bayes (1763). Although Bayes’ theorem is very useful in principle, Bayesian statis-
tics developed more slowly in the 18th and 19th centuries than in the 20th century.
Statistical analysis based on Bayes’ theorem was often daunting because of the
extensive calculations, such as numerical integrations, required. Perhaps the most
significant advances to Bayesian statistics in the period just after Bayes’ death were
made by Laplace (1785, 1810).

In the 20th century, the development of Bayesian statistics continued, charac-
terised by Jeffreys (1961), Lindley (1965) and Box and Tiao (1973). At the time
these monographs were written, computer simulation methods were much less con-
venient than they are now, so they restricted their attention to conjugate families and
devoted much effort to deriving analytic forms of marginal posterior densities.

Thanks to advances in computing, millions of calculations can now be performed
easily in a single second. This removes the prohibitive computational burden involved
in much Bayesian data analysis. At the same time, computer-intensive sampling
methods have revolutionized statistical computing and hence the application of
Bayesian methods. They have profoundly impacted the practice of Bayesian statis-
tics by allowing intricate models to be posited and used in disciplines as diverse as
biostatistics and economics.

Bayesian inference

Compared with the frequentist approach, the Bayesian paradigm has the advantages
of intuitive interpretation of confidence interval, fully defined predictive distributions
and a formal mathematical way to incorporate the expert’s prior knowledge of the
© Springer Nature Singapore Pte Ltd. 2018 1
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parameters. For example, a Bayesian interval for an unknown quantity of interest
can be directly regarded as having a high probability of containing the unknown
quantity. In contrast, a frequentist confidence interval may strictly be interpreted
only in relation to a sequence of similar inferences that might be made in repeated
practice.

The central feature of Bayesian inference, the direct quantification of uncertainty,
means that there is no impediment in principle to fitting models with many parame-
ters and complicated multi-layered probability specifications. The freedom to set up
complex models arises in large part from the fact that the Bayesian paradigm provides
a conceptually simple method for dealing with multiple parameters. In practice, the
problems that do exist are ones of setting up and computing with such large mod-
els and we devote a large part of this monograph to recently developed, and still
developing, techniques for handling these modelling and computational challenges.

Markov chain Monte Carlo methods

Among Bayesian computational tools, Markov chain Monte Carlo (MCMC) meth-
ods (Metropolis et al. 1953; Hastings 1970) are the most popular. The Metropolis
algorithm (Metropolis et al. 1953) was first used to simulate a liquid in equilibrium
with its gas phase. Hastings (1970) generalized the Metropolis algorithm, and simula-
tions following his scheme are said to use the Metropolis-Hastings (M-H) algorithm.
A special case of the Metropolis-Hastings algorithm was introduced by Geman and
Geman (1984). Simulations following their scheme are said to use the Gibbs sampler.
Gelfand and Smith (1990) made the wider Bayesian community aware of the Gibbs
sampler, which up to that time had been known only in the spatial statistics commu-
nity. It was rapidly realized that most Bayesian inference could be done by MCMC.
Green (1995) generalized the M-H algorithm, as much as it can be generalized.

In the context of a Bayesian model, MCMC methods can be used to generate
a Markov chain whose stationary distribution is the posterior distribution of the
quantity of interest. Statisticians and computer scientists have developed software
packages such as BUGS (Lunn et al. 2012) and Stan (Gelman et al. 2014) to imple-
ment MCMC methods for user-defined Bayesian models. Hence, practitioners from
other areas without much knowledge of MCMC can create Bayesian models and
perform Bayesian inference with relative ease.

The BUGS project started in 1989 at the MRC Biostatistics Unit in Cambridge,
parallel to and independent of the classic MCMC work of Gelfand and Smith (1990).
Nowadays there are two versions of BUGS: WinBUGS and OpenBUGS. WinBUGS
is an older version and will not be further developed. OpenBUGS represents “the
future of the BUGS project”.

Stan is arelatively new computing environment which applies Hamiltonian Monte
Carlo (Duane et al. 1987; Neal 1994) and variational Bayes (Jordan et al. 1999). Stan
was first introduced in Gelman et al. (2014). The BUGS examples (volume 1-3) are
translated into Stan as shown in the Stan GitHub Wiki. In this monograph, we largely
rely on Stan for doing Bayesian inference.
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1.2 Bayesian Claims Reserving Methods

Recent attempts to apply enterprise risk management (ERM) principles to insurance
have placed a high degree of importance on quantifying the uncertainty in the various
necessary estimates, using stochastic models. For general insurers, the most impor-
tant liability is the reserve for unpaid claims. Over the years a number of stochastic
models have been developed to address this problem (Taylor 2000; Wiithrich and
Merz 2008, 2015).

In many countries, loss reserves are the single largest liability on the insurance
industry’s balance sheet. The delayed and stochastic nature of the timing and amount
of loss payments makes the insurance industry unique, and it effectively dominates or
defines much of the financial management and risk and opportunity management of an
insurance company. For example, insurers are typically hesitant to utilize a significant
amount of debt in their capital structure, as their capital is already leveraged by
reserves. Also, the characteristics of unpaid loss liabilities heavily influence insurer
investment policy.

The claims reserving problem is not only about the expected value of claims
liability, but also the distribution of claims liability (Taylor 2000; Wiithrich and Merz
2008). The predictive distribution of unpaid claims is vital for risk management, risk
capital allocation and meeting the requirements of Solvency II (Christiansen and
Niemeyer 2014) etc.

A feature of most loss reserve models is that they are complex, in the sense
that they have a relatively large number of parameters. It takes a fair amount of
effort to derive a formula for the predictive distribution of future claims from a
complex model with many parameters (Mack 1993, 1999, 2008). Taking advantage
of ever-increasing computer speeds, England and Verrall (2002) pass the work on
to computers using a bootstrapping methodology with the over-dispersed Poisson
model. With the relatively recent introduction of MCMC methods (Gelfand and
Smith 1990), complex Bayesian stochastic loss reserve models are now practical in
the current computing environment.

Bayesian inference can often be viewed in terms of credibility theory, where the
posterior distribution is a weighted average of the prior and likelihood. The idea
of credibility was widely used in actuarial science a long time ago (Whitney 1918;
Longley-Cook 1962; Bithlmann 1967). Often reasonable judgements by experienced
actuaries can override the signals in unstable data. Also, an insurance company
may not have enough “direct” data available to do a “credible” analysis. Bayesian
credibility theory provides a coherent framework for combining the “direct” data with
either subjective judgements or collateral data so as to produce a useful “credibility
estimate” (Mayerson 1964).

Setting a median reserve will lead to a half chance of insolvency, which definitely
violates the policyholders’ interest and will not meet the regulators’ requirements.
The insurers care more about the tail behaviour of future claims. Normally they hold
the economic capital defined as a remote quantile of future claims distribution so as
to ensure a low probability of insolvency.
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Furthermore, the insurers may have several lines of business, such as automobile,
commercial general liability, commercial property, homeowners etc. It is good for
such multi-line insurers to know not only which lines have higher net profit but also
which are riskier so they can compare the risk-adjusted return between lines. The risk
cannot be characterised just by standard errors, since the claims amounts are always
heavy-tailed. We are more interested in the tail-based risk measures such as value-
at-risk (Brehm et al. 2007), which can be estimated from the predictive distribution
of future claims.

Each line of insurance is typically modelled with its own parameters, but ulti-
mately the distribution of the sum of the lines is needed. To get the distribution of
the sum, the dependencies among the lines must be taken into account. For example,
if there are catastrophic events, all of the property damage lines could be hit at the
same time. Legislation changes could hit all of the liability lines. When there is the
possibility of correlated large losses across lines, the distribution of the sum of the
lines gets more probability in the right tail.

Unfortunately, even though the univariate distribution of the sum is the core
requirement, with dependent losses the multivariate distribution of the individual
lines is necessary to obtain the distribution of the sum. That quickly leads to the
realm of copulas (Joe 2014), which provide a convenient way to combine individual
distributions into a single multivariate distribution.

1.3 Monograph Structure

Two chapters of this monograph focus on Bayesian methodology and three chapters
on the application of Bayesian methods to claims reserving in non-life insurance.

In Chap. 2, we provide a broad overview of Bayesian inference, making compar-
isons with the frequentist approach where necessary. Model assessment and selection
in the Bayesian framework are reviewed. Some toy examples are used to illustrate
the main concepts.

In Chap. 3, Bayesian computational methods are reviewed. These computational
methods will be employed later in the monograph. As we mentioned before, the
popularity of Bayesian modelling is largely due to the development of Bayesian
computational methods and advances in computing. A knowledge of Bayesian com-
putational methods lets us feel more confident with using a “black box” such as
OpenBUGS or Stan. Moreover, with the computational methods at our disposal, we
may develop our own algorithm for some special models which cannot be solved by
any available package. To end this chapter, we do a full Bayesian analysis of a hier-
archical model for biology data in Gelfand et al. (1990). This model has a connection
with random effects models discussed in Chap. 4.

The next three chapters constitute an application of Bayesian methods to a data
set from WorkSafe Victoria which provides the compulsory workers compensation
insurance for all companies in Victoria except the self-insured ones. The data set
includes claims histories of various benefit types from June 1987 to June 2012.
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In Chap. 4, the parametric Bayesian models for the run-off triangle are inves-
tigated. We first review the time-honoured Mack’s chain ladder models (Mack
1993, 1999) and Bornhuetter-Ferguson models (Bornhuetter and Ferguson 1972),
which have been widely used in actuarial science for decades. Then the more recent
Bayesian chain ladder models with an over-dispersed Poisson error structure (Eng-
land et al. 2012) are studied. Reversible jump Markov chain Monte Carlo (RIMCMC)
is discussed in this chapter for the purpose of dealing with the tail development com-
ponent in the models. Finally, we apply the models discussed above to estimate the
claims liabilities for the weekly benefit and the doctor benefit in WorkSafe Victoria.
For the doctor benefit, we propose a compound model as a stochastic version of the
payments per claim incurred (PPCI) method.

Chapter 5 investigates Bayesian basis expansion models with shrinkage priors
and their applications to claims reserving. We first summarize some aspects of basis
expansion models (Hastie et al. 2009). Among all the basis expansion models, the
Bayesian natural cubic spline basis expansion model with shrinkage priors is our
favourite. Two simulated examples are studied to illustrate two advantages of this
model: the shorter computational time and the better tail extrapolation. The second
simulated example is designed to mimic the mechanism of claims payments. Finally,
we reanalyze the doctor benefit using the proposed Bayesian basis expansion model
and compare the results with those in Chap. 4 and the PwC report (Simpson and
McCourt 2012).

In Chap. 6, Bayesian copula models are used to aggregate the estimated claims
liabilities from two correlated run-off triangles. In the first section, we review Sklar’s
theorem, several parametric copulas, and inferential methods. A simulated example
is used to demonstrate the inference functions for margins (IFM) method (Joe and
Xu 1996). In the second section, we discuss the usefulness of copulas in modelling
risk dependence. Ignorance of risk dependence does not affect the aggregated mean
too much, but it will affect the more interesting tail-based risk measures significantly.
In the third section, we aggregate two correlated benefits in WorkSafe Victoria: the
doctor benefit and the hospital benefit. The marginal regression for each benefit is
the same as in Chap. 5.

Chapter 7 provides a summary of the monograph and discusses limitations and
further research topics. It includes remarks about the three most useful stochastic
claims reserving models in the monograph and suggests alternative Bayesian mod-
elling procedures.

There are two appendices. Appendix A supplies the technical complements to sup-
port the examples in Chaps. 2 and 3. Appendix B lists some Bayesian computational
methods not included in Chap. 3 and relevant proofs.

In each chapter, all figures and tables appear together at the end, in that order.



6 1 Introduction

1.4 The General Notation Used

By default, vectors are column vectors. If we write 8 = («, 8), we mean 0 is acolumn
vector with two elements. A lower case letter is a column vector or a scalar. A matrix
is denoted by a bold upper case letter.

Data

Bold and lower case Roman letters represent the observed data vector. For example,
y might be an n-vector of observed response values. A bold and upper case Roman
letter could represent a design matrix. For example, X might represent an n x p
matrix of observed predictors.

Parameters

Non-bold and lower case Greek letters represent the parameters. For example,
6 can be a vector containing p parameters. Bold and upper case Greek letters might
represent a covariance matrix. ¥ can be a p X p covariance matrix.

Functions

Unless stated otherwise, all the probability density (or mass) functions are represented
by p and all the cumulative distribution functions are represented by F. Other generic
functions are typically represented by f, g, h, 7.

Conditional distributions

The distribution of data is conditional on the parameters and the prior of parameters
is conditional on the hyperparameters. For example, a normal-normal-gamma model
with unknown mean and variance is formally written as follows:

ylu, 0% ~N(u, o%)
plo? ~ N(po, 03)

0% ~ Inv-Gamma(c, B).

For compactness, we will typically assume an implicit conditioning on the parameters
going down the page. For example the normal-normal-gamma model above could
also be written as follows:

y ~N(u, o)
n ~ N(wo, 03)

o? ~ Inv-Gamma(e, B).

For the posterior distributions, we always include the conditioning parts to emphasize
the meaning of “posterior”. For example, the posterior distribution of u is denoted
by p(uly), the full conditional posterior distribution of u is denoted by p(u|y, o)
or p(u|-), and the posterior predictive distribution is denoted by p(y'|y).
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Chapter 2 ®)
Bayesian Fundamentals e

Abstract Bayesian statistics is a field of study with a long history (Bayes 1763).
It has the features of straightforward interpretation and simple underlying theory, at
least in principle. Analogous to the maximum likelihood estimates and confidence
intervals in the frequentist framework, we have point estimates and interval esti-
mates based on posterior distributions in the Bayesian framework. We also have
similar diagnostic tools for model assessment and selections such as residual plots
and information criteria. In Sect. 2.1, we review Bayesian inference including the
posterior distribution, the posterior predictive distribution and the associated point
estimates and interval estimates. We also summarize the usefulness of different pri-
ors and state the asymptotic normality of the posterior distribution for large samples.
In Sect. 2.2, Bayesian model assessment and selections are discussed. For the model
assessment, the posterior predictive p-value is an alternative to the frequentist p-
value. For model selection, we turn to the several information criteria including DIC,
WAIC and LOO cross-validation.

2.1 Bayesian Inference

In contrast to frequentist statistics, where parameters are treated as unknown con-
stants, Bayesian statistics treats parameters as random variables with specified prior
distributions that reflect prior knowledge (information and subjective beliefs) about
the parameters before the observation of data. Given the observed data, the prior
distribution of the parameters is updated to the posterior distribution from which
Bayesian inference is made. In the following, the model with a single parameter is
considered first, and then extensions are made to the multi-parameter case.

2.1.1 The Single-Parameter Case

Denote an observed sample of size n as y = (y1, y2, ..., Yn), the parameter as 0
(assumed to be a scalar), the prior density function of 6 as p(6), the parameter space
as @, the likelihood function (sometimes called sampling distribution) as p(y|9),

© Springer Nature Singapore Pte Ltd. 2018 9
G. Gao, Bayesian Claims Reserving Methods in Non-life Insurance with Stan,
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and the posterior density function of 6 as p(0|y). According to Bayes’ theorem, the
three functions p(6|y), p(y|6) and p(6) have the following relationship:

p@ly) = p®.y) __ pOI®)p©®)
Py [o PO p(6)do

x p(y6)p(0), 2.1

where p(0,y) is the unconditional joint density function of parameters and obser-
vations, and p(y) is the unconditional density function (sometimes called marginal
distribution) of y which averages the likelihood function over the prior.

An important concept associated with the posterior distribution is conjugacy. If
the prior and posterior distributions are in the same family, we call them conjugate
distributions and the prior is called a conjugate prior for the likelihood. We will
see in Example 2.1 that the Beta distribution is the conjugate prior for the Bernoulli
likelihood.

An aim of frequentist inference is to seek the “best” estimates of fixed unknown
parameters; for Bayesian statistics, the counterpart aim is to seek the “exact” distri-
bution for parameters and Eq. (2.1) has realized this aim.

2.1.1.1 Point Estimation

The fundamental assumption of Bayesian statistics is that parameters are random
variables, but we are still eager to find a single value or an interval to summarize the
posterior distribution in Eq. (2.1). Intuitively, we want to use the mean, median or

mode of the posterior distribution to indicate an estimate of the parameter. We define
the posterior mean of 6 as

b= E@ly) = / 6p(Oly)do,
®

where @ is the domain of 6 determined by the prior p(6). The posterior median of
0 is defined as

6 := median(f|y) = {r : Pr(# > t|y) > 0.5 and Pr(6 < t|y) > 0.5}.
The posterior mode of 6 is defined as

6 := mode(f|y) = argmax p(0]y).
0ec®

2.1.1.2 Interval Estimation

An interval covering the most likely values is called the highest posterior density
region (HPDR). It is defined as
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HPDR(0|y) := the shortest interval in .,
where

S ={S:Pr(@ € Sly)>1—«aand p(@ =sly) > p(@ =t|y)forany s € S, 1 € S°}.

Another interval, called the central posterior density region (CPDR), covers the
central values of a distribution. It is defined as the following interval:

CPDR(Oy) := (sup{z : Pr(0 < z|y) < «/2},inf{z : Pr(6 > z|y) < a/2}),

where « is the significance level. Note that when 6 is continuous, the above is
simplified as CPDR(@|y) = (Fa_l; (a/2), Fa_l)}(l — a/2)>, where Fe_\; is the inverse
of the cumulative posterior distribution function of 6.

2.1.1.3 Decision Analysis/Theory

When selecting a point estimate, it is of interest and value to quantify the con-
sequences of that estimate being wrong to a certain degree. To this end, we may
consider a specified loss function L(0*, 0) as a measure of the information “cost”
due to using an estimate 0 of the “true” value 8. We want 6* to minimize the “overall
cost”, E(L(6*, 0)), namely the Bayes risk. According to the law of total expectation,
we have the following relationship:

E(L(6*,0)) = Ey{Egpy (L (6%,0)1y)} = Eo{Eyo(L(6*,60)]6)}.

We define the posterior expected loss (PEL) and the risk function respectively as
follows:

PEL(0") := Eqjy (L(0", 0)|y) = f L(0*,0)p©®ly)do

[C]

R(67,0) :=Eyo(L(6",0)|0) = /L(G*, 0)p(y16)dy.

Hence E(L(6%, 0)) = E,(PEL(6%)) = Eq(R(0%, 8)). If 6* minimizes PEL(6*) for
all data y, then it also minimizes the Bayesian risk. Such 6* is called the Bayesian
estimate with respect to the loss function L(6*, 8). Consider the following three loss
functions:

1. Quadratic error loss function: L, (0%, 6) = (6* — 0)2.
2. Absolute error loss function: L, (0%, 0) = |6* — 6].
3. Zero-one error loss function: L, = 1o (6* — 0).



12 2 Bayesian Fundamentals

It can be proved that the posterior mean 6 minimizes the quadratic error loss function,
the posterior median 6 minimizes the absolute error loss function, and the posterior
mode & minimizes the zero-one error loss function. Hence, the point estimates dis-
cussed before are the Bayesian estimates with respect to these loss functions.

2.1.1.4 Prediction

Before the data y is observed, the distribution of the unknown but observable y is

p(y) = f p(y,6)d6 = / p(y16)p(©)de.
) )

This is called the marginal distribution, the prior predictive distribution or the uncon-
ditional distribution of y since it is not conditional on a previous observation.

After the data y has been observed, we can predict an unknown observable y’. The
distribution of y’ is called the posterior predictive distribution, since it is conditional
on the data y:

Oy =fp(y’,9|y)d9 =[p(y’|9)p(9ly)d9-
@) @)

Example 2.1 (A single-parameter Bernoulli-Beta model) Consider the following
Bayesian Bernoulli-Beta model:

yi ~Bern(#),i =1,...,n
6 ~ Beta(a, B).

According to Bayes’ theorem, the posterior distribution of 6 is

—]-‘rn Vi p—1+ -y i
2Oy 0" B Q=) E (2.2)

which implies the posterior distribution of 6 is Beta(a + Y 1, i, B+1n — > i_; ¥i)-
The posterior mean of 6 s = (a + >, yi)/(e + B + n), and it can be interpreted
as an upgrade from the prior mean of o/« + B due to observation y. And we can
continually upgrade 6 as more observations become available.

If we choose @ = 1, 8 = 1, i.e., the prior of 6 is an uniform distribution on [0, 1]
reflecting no favourite of a particular value of 6, then the posterior mean 6=+
Y i 1 i)/ (2 + n). In the case when « = 0, B = 0, the prior is improper (discussed
later). However, the resulting posterior is still proper and§ = n~! >, yi. whichis
equal to the MLE.

To illustrate the point estimates and interval estimates in the Bayesian framework,
we assume the true underlying parameter as 6r,,, = 0.3, then simulate a data set
y=(0,0,0,1,0,0,1,0,1,1,0,1,0,0,1,0,0,0, 1, 0). The prior of 8 is assumed
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tobe Beta(2, 5), because suppose we had previously observed 2 successes in 7 trials
before our y was observed. In Fig. 2.1, we show the prior distribution, the likelihood,
the posterior distribution, three point estimates, the 95% CPDR, the MLE and the
95% confidence interval. The posterior distribution is a kind of weighting between
the prior distribution and the likelihood. The predictive distribution of the proportion
of successes in the next 10 trials, Z}Ozl y} /10, is given in Fig. 2.2, together with the
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Fig. 2.3 The prior, posterior and likelihood of 6

Example 2.2 (Number of positive lymph nodes) This example is adjusted from Berry
and Stangl (1996). About 75% of the lymph from the breasts drains into the axillary
lymph nodes, making them important in the diagnosis of breast cancer. A doctor will
usually refer a patient to a surgeon to have an axillary lymph node dissection to see
if cancer cells have been trapped in the nodes. The presence of cancer cells in the
nodes increases the risk of metastatic breast cancer.

Suppose a surgeon removes four axillary lymph nodes from a woman with breast
cancer and none tests positive (i.e., no cancer cells). Suppose also that the probability
of a node testing positive has a distribution of Beta(0.14, 4.56) Berry and Stangl
(1996). The question is, what is the probability that the next four nodes are all
negative?

Denote a random variable by y with the sample space of {0, 1}, where O repre-
sents negative and 1 represents positive for a tested node. We know y ~ Bern(6).
Now we have a data set y = (0, 0, 0, 0), so according to Eq. (2.2) our knowledge
of 0 is upgraded as the posterior distribution of Beta(0.14 4 Z?:l vi,4.56 +4 —
Z?:, y;) = Beta(0.14, 8.56). Figure 2.3 shows how the observation shifts the prior
to the posterior. In this example, the number of successes is zero, so the 95% CI is not
well defined while the 95% CPDR still exists. The posterior mean is 6 = 0.01609,
the posterior median is 6 = 0.0005460, the posterior mode is § = 0 and the 95%
CPDR of 6 is (0, 0.14).

The posterior predictive distribution of y’ is given by:

A

1
Pr(y’ =1ly) = / Op@|y)do =6 =0.016
0

1
Pr(y’ =0ly) = / (1=60)p@ly)dd =1—6 =0.984,
0
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where p(8|y) is the density function of Beta(0.14, 8.56). Hence y’|y ~ Bern(0.016).
Now denote the status of next four nodes by ys, ys, y7, y3. The probability that the
next four nodes are all negative is

Pr(ys, v, y7, ys = 0|y)

=Pr(ys = 0lys, y6, y7 = 0, y) Pr(y7 = 0lys, y6 = 0, y) Pr(ys = Olys =0, y)
Pr(ys = 0ly)

=0.946.

Note that Pr(ys = 0]y) = 0.984 and the other terms are obtained from the updating
procedure just described in two previous paragraphs.

2.1.2 The Multi-parameter Case

We extend a single parameter 6 to multiple parameters 6 and assume the parameter
vector 0 = (6, ..., 6,) distributed as a joint prior p(6) with parameter space 6 C
R™. The left hand side of Eq. (2.1) becomes a joint posterior distribution of 6 =
G, ..., 0m).

Unlike the single parameter case, we cannot make inferences about a parameter
directly from Eq. (2.1). We need to further find the marginal posterior distribution
by integrating the joint posterior distribution p(6|y) over all the parameters except
the parameter of interest, 6, as follows:

P(6kly) Z/p(Gly)d&k, (2.3)

where 0_; = (61, ..., 6k—1, Ok+1, - - ., Om). Now the definitions of posterior mean,
median, mode, HPDR and CPDR from the previous section can be applied to p (6¢|y).
For the posterior predictive distribution, multiple integration is required since p(6|y)
is a joint distribution. We also define the full conditional posterior distribution of 6y
as p(Ocly, 0—x) o< p(@ly) for 1 <k < m.

Example 2.3 (An autoregressive process of order one) Consider the following
Bayesian model for an autoregressive process of order one:

Xp=ox_1+e,t=1,...,n
e ~N(©, 171
a~U(-1,1)

pr) x 1/A,

where A is the precision parameter. We simulate a sample of size n, assuming
ap = 0.7, 19 = 0.25 and n = 20. The joint posterior density of o and A is
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Fig. 2.4 The joint posterior
distribution of « and A

A
pla, 1) = hoA"*71 (1 — o) exp (—Eh(x, a)) ,

where hy is called the normalizing constant and h(x, @) = (x,, — Xy + -+
(r —ax))?+ (1 — az)x%.

In Fig. 2.4 we show the joint posterior distribution, two marginal distributions,
the joint mode and two marginal modes. There is a slight difference between joint
modes and marginal modes. Similar to the single parameter case, in Fig. 2.5 we
show the inferences made from two marginal posterior distributions. Under the non-
informative priors, Bayesian inference is quite close to the frequentist inference. This
is guaranteed by the asymptotic theory, which will be discussed in Sect. 2.1.4.

Finally for the prediction, X201 1 = E(x2011|x) = E(axylx) = xpoE(a|x) = xp0&
= 0.3517. The analytic solution to the predictive distribution requires a double inte-
gral with respect to o and A. We will estimate the posterior predictive distribution in
Sect. 3.1.2 using the MCMC methods. See details in Appendix A on page 187.

2.1.3 Choice of Prior Distribution

Here we will discuss three types of priors: informative priors, non-informative priors
and weakly informative priors Gelman et al. (2014).

2.1.3.1 Informative Priors
In Example 2.1, comparing p(6) and p(0|y) suggests that the prior is equivalent

to o — 1 prior successes and § — 1 prior failures. The parameters of the prior dis-
tribution are often referred to as hyperparameters. If we had past trials, we could
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Fig. 2.5 The marginal posterior distributions of @ and A

summarize the past information about € into an informative prior. Every time we
use an informative prior we can treat the prior as the summary from past data. An
informative prior is equivalent to adding some observations to a non-informative
prior.

Sometimes informative priors are called strong priors, in the sense that they affect
the posterior distribution more strongly, relative to the data, than other priors. The
distinction between strong priors and weak priors is vague, and a strong prior may
become a weak prior as more data comes in to counterbalance the strong prior. It is
better to look at the prior together with the likelihood of data.
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2.1.3.2 Non-informative Priors

There has been a desire for priors that can be guaranteed to play a minimal role,
ideally no role at all, in the posterior distribution. Such priors are variously called
non-informative priors, reference priors (Berger et al. 2009), vague priors, flat priors,
or diffuse priors. The rationale for using a non-informative prior is often given as
letting the data speak for themselves.

The Bernoulli-Beta model

In Example 2.1, Beta(l, 1) is a non-informative prior, since it assumes that 6 is
distributed uniformly on [0, 1]. The posterior distribution under this prior is the
same as the likelihood. The posterior mode will be equal to the maximum likelihood
estimate ) __, y;/n. Note that the posterior mean is not equal to the posterior mode.

If we want the posterior mean equal to the MLE, we need to specify «, 8 = 0.
This prior is called a improper non-informative prior since the integral of this prior’s
pdf is not 1. When we use an improper non-informative prior, we need to check

whether the resulting posterior is proper. Fortunately, the posterior here is proper.
The normal-normal model with known variance

Another example is the normal model with unknown mean but known variance,
shown as follows:
yi ~N(u,0%),i=1,...,n

n ~ N(o, 7).

If 7§ — oo, the prior is proportional to a constant, and is improper. But the posterior
is still proper, p(uly) &~ N(u|y, 0%/n). Here N(u|y, o /n) is used to represent the
probability density function for variable 1, a normal distribution with mean of y and
variance of o2 /n.

The normal-normal model with known mean

Now assume the mean is known and variance is unknown. We know that the con-
jugate prior for variance is inverse-gamma distribution, i.e., o =2 follows a gamma
distribution, Gamma(w, 8). The non-informative prior is obtained as «, 8§ — 0.
Here we parameterize it as a scaled inverse— x > distribution with scale 002 and vy
degrees of freedom; i.e., the prior distribution of o2 is taken to be the distribution of
002 vo/ X, where X is a X&n random variable. The model can be written as follows:

yi~Nu,0%,i=1,....n

o’ ~ Inv—xz(vo, 002).

The resulting posterior distribution of o> can be shown as
voao2 + nv>

o’y ~ Inv-x? (vo + n,
Vo +n

where v = 1/n Y ", (yi — w)*.
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The non-informative prior is obtained as vy — 0, which is improper and propor-
tional to the inverse of the variance parameter. This non-informative prior is some-
times written as p(log o) o 1. The resulting posterior distribution is proper, with
the density function of p(c?|y) ~ Inv-x2(c?|n, v). The uniform prior distribution
ono?,ie., p(c?) o 1, will lead to an improper posterior.

Jeffreys’ priors

Finally, there is a family of non-informative priors called Jeffreys’ priors. The idea
is that the non-informative priors should have the same influence as likelihood on
the parameters. It can be shown that the Jeffreys’ prior of 6 is proportional to the
squared root of Fisher information; i.e., p(6)  J(8)'/?, where

[ (dlogpyin\’|\ d*log p(yl6)
J(©O)=E ((d—0> 9) =-FE (T 9) ) (2.4)

As a simple justification, the Fisher information measures the curvature of the log-
likelihood, and high curvature occurs wherever small changes in parameter values
are associated with large changes in the likelihood. So the proportional relationship
ensures that Jeffreys’ prior gives more weight to these parameters. In Example 2.1,
the Fisher information is J(0) = n/(6(1 — 6)). Hence, Jeffreys’ prior is p(f)
0~172(1 — 6)~'/2, which is Beta(0.5, 0.5).

2.1.3.3 Weakly Informative Priors

A weakly informative prior lies between informative priors and non-informative
priors. It is proper, but is set up so that the information it provides is intentionally
weaker than whatever actual prior knowledge is available. We do not use weakly
informative priors here. For more discussion, please refer to Gelman et al. (2014) on
page 55.

Example 2.4 (A single-parameter Bernoulli-Beta model) We continue with
Example 2.1 and consider the effects of two non-informative priors, Beta(l, 1)
and Beta(0.5, 0.5), on the posterior distributions. Under the uniform distribution
Beta(l, 1), the posterior distribution is equal to the scaled likelihood, so the poste-
rior mode is equal to the MLE. Under the Jeffreys’ prior Beta(0.5, 0.5), the posterior
distribution is quite close to the scaled likelihood. In both cases, the effect of the
priors on the posterior distribution is negligible. In Fig. 2.6, we plot the likelihood,
the prior, and the posterior distribution. As we expect, under the two non-informative
priors the scaled likelihood is quite close to the posterior distribution.
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Fig. 2.6 The effect of two non-informative priors, Beta(1, 1) and Beta(0.5, 0.5), on the posterior
distribution

2.1.4 Asymptotic Normality of the Posterior Distribution

Suppose yi, ..., y, are outcomes sampled from a distribution f(y). We model the
data by a parametric family p(y|0) : 0 € @, where 6 is distributed as p(6). The
result of large-sample Bayesian inference is that as more and more data arrive, i.e.,
n — 00, the posterior distribution of the parameter vector approaches multivariate
normal distribution.

We label 6y as the value of 6 that minimizes the Kullback-Leibler divergence
KL(0) of the likelihood p(y|0) relative to the true distribution f(y). The Kullback-
Leibler divergence is defined as a function of 6 as follows:
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. FO) f ( o) )
KLO®O) =E-|(1 =— 11 dy.
@ f<°g<p<y|e>)) VYT R

2.1.4.1 When the True Distribution is in the Parametric Family

If the true data distribution is included in the parametric family, i.e., f(y) =
P (3|O1rue) for some Oy, then 6y will approach Oy as n — oo. The posterior distri-
bution of @ approaches normality with mean 6, and variance nJ (6y) !, where J (6;)
is the Fisher information defined in Eq. (2.4).

The proof of asymptotic normality is based on the Taylor series expansion of log
posterior distribution, log p(6]y), centred at the posterior mode up to the quadratic
term. Asn — 00, the likelihood dominates the prior, so we can just use the likelihood
to obtain the mean and variance of the normal approximation.

2.1.4.2 When the True Distribution is Not in the Parametric Family

The above discussion is based on the assumption that the true distribution is included
in the parametric family, i.e., f(y) € {p(¥]6) : 0 € ®@}. When this assumption fails,
there is no true value Ot € @, and its role in the theoretical result is replaced
by the value 6, which minimizes the Kullback-Leibler divergence. Hence, we still
have the similar asymptotic normality that the posterior distribution of 6 approaches
normality with mean 6, and variance nJ (6y)~'. But now p(y|6p) is no longer the
true distribution f(y).

2.2 Model Assessment and Selection

In this section, we review the model diagnostic tools including posterior predictive
checking and residual plots. We also discuss the model selection criteria including
several information criteria and cross-validation.

2.2.1 Posterior Predictive Checking

In the classical framework, the testing error is preferred since it is calculated on a
testing data set which is not used to train the model. In the Bayesian framework,
ideally we want to split the data into a training set and a testing set and do the
posterior predictive checking on the testing data set. Alternatively, we can choose a
test statistic whose predictive distribution does not depend on unknown parameters
in the model but primarily on the assumption being checked. Then there is no need
to have a separate testing data set. Nevertheless, when the same data are used for
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both fitting and checking the model, this needs to be carried out with caution, as the
procedure can be conservative.
In frequentist statistics, p-value is typically defined as

p:=Pr(T(y) = T(y)|Hp),

where T is the function of data that generates the test statistic, y’ is the future
observation (random variable), and y is the observed sample. Note that 7T (y) is
regarded as a constant. The probability is calculated over the sampling distribution
of y under the null hypothesis. It is well known that p can be calculated exactly only
in the sense that T (y) is a pivotal quantity.

Meng (1994) explored the posterior predictive p-value (pp), a Bayesian version
of the classical p-value. pp is defined as the probability

pe =Pr{T(y',0) = T(y,0)ly, Ho},

where y’ is the future data, and T'(y, 0) is a discrepancy measure that possibly
depends on 6. This probability is calculated over the following distribution:

p(y'.0ly, Hy) = p(y'10)p(0ly, Hy),

where the form of p(6|y, Hy) depends on the nature of the null hypothesis. Following
Meng (1994), we consider the two null hypotheses: a point hypothesis and a compos-
ite hypothesis. For the completion of discussion, please refer to Robins et al. (2000).
They mentioned some problems associated with the posterior predictive p-value
under a composite hypothesis.

2.2.1.1 When the Null Hypothesis is a Point Hypothesis

Suppose the null hypothesis is 6y = a and the prior under the null hypothesis is
p(6_16x = a) with the parameter space ©® C R™~!. Then the posterior density of @
under the null hypothesis is

P Y0, Ok = a) p (0|6 =a)

p @ly, Hy) = .
O T P IO, 6 = a) p (O_xl6x = a) dO_y

The posterior predictive p-value is calculated as

ps =Pr{T (y,0) =T (y,0) |y, Ho)

=f Pr{T (y'.0) =T (y.0)10} p 0]y, Ho) .
€]
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2.2.1.2 When the Null Hypothesis is a Composite Hypothesis

Suppose the null hypothesis is 6, € A and the prior under the null hypothesis is
P(0_116r) p(6r). Then the posterior density of 6 under the null hypothesis is

p (¥10) p (O_|6k)
Jo P 10) p (0_r16k) dO_i

p @ly, Ho) = p (O—«ly.00) p () = P @) -

The posterior predictive p-value is calculated as

pe =Pr{T (y.60) = T (y.6)ly. Ho}

- /o /A Pr{T (¥.6) = T (5.0) 10} p (O_ily.60) p (B0) drd_y.

2.2.1.3 Choiceof T (y, 0)

Recall that in the frequentist theory, the most powerful test in a composite test,
Hy : 6, € A versus H; : 6, ¢ A, is based on the generalized likelihood ratio defined

as follows:
SUpg ¢4 P (¥16k)

Ag (y) == :
¢ SuPekeAP()’Wk)

Meng (1994) suggested using the conditional likelihood ratio and the generalized
likelihood ratio, defined respectively as follows:

supg,¢ap (¥16)
supgcaP (¥10)
SUpg,¢4SUPy_ P (¥16)
SUPg, c4SUPy_, p (¥16)

CLR (y,0) =T (y,0) :=

GLR (y) =T (y) :=

Because a probability model can fail to reflect the process that generated the data in
any number of ways, pp can be computed for a variety of discrepancy measures T
in order to evaluate more than one possible model failure.

Example 2.5 (A one-sample normal mean test using pp) This example is extracted
from Meng (1994). Suppose we have a sample of size n from N(t, 0%), and we test
the null hypothesis that i = o with o> unknown. Recall that in classical testing,
the pivotal test statistic is /7 (X — po)/s, where X is the sample mean and s? is
the sample variance. We know this test statistic follows a #,_ distribution. So p =
Pr(t,—1 = /n(x — wo)/s).

In the Bayesian framework, we assume x and o2 are independent and o> has a
non-informative prior (i.e., p(6?) o< 1/0*). We can find CLR and GLR as
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n@ — po)
0-2
= 2
n(x — o)
52 )

CLR (x,0%) =T (x,0%) =
GLR(x) =T (x) =

Using the two discrepancy measures, we calculate pg as

2

- 2
nx —
p§ = Pr(TC (x',0%) > T (x,0%) Ix. o} = Pr (Fl,n > %)
0

ps =Pr{T® (x') > T (x) Ix, po} = Pr{Fia1 > T (x)},

where s = ", (x; — po)*. Note that p = p§ # p$; pp is equal to the classical
p-value when using GLR. See details in Appendix A on page 189.

Example 2.6 (Number of runs) Suppose we have a data setx = (x1, x2, ..., X19) =
(1,1,1,0,0, 0,0,0, 1, 1), resulting from n = 10 Bernoulli trials with success prob-
ability & which has an non-informative improper prior, Beta (0, 0). Now we want to
test the null hypothesis that the trials are independent of each other.

We use the number of runs in x as the test statistic, denoted by r(x). Note that a
run is defined as a subsequence of elements of one kind immediately preceded and
succeeded by elements of the other kind. So in this example we have r(x) = 3, and 6
is treated as a nuisance parameter. It is easy to find that the posterior distribution of
0 is Beta (6, 6) under H,. To calculate pp = Pr{r(x") < 3|Hy}, we apply the exact
density of r(x’).

According to Kendall and Stuart (1961), assuming n; 1’s and n, 0’s are ran-
domly placed in a row, the number of runs, denoted by R (n;, n,), has the following
probability mass functions forO <n; <njand2 < R <nj;+ny:

—1y (n2—1
z(nls )(”:2_1)
—1 )
()
—1\ (n2—1 —1y (ny—1
(1) () + () ()
(") ’
s—1
However, this probability mass function is not complete, missing the case when
R =2n,+1 (ie., R is odd and s = n, + 1). For completeness, we add the two

special cases and their associated probabilities as in Table 2.1. Applying the exact
density of R (ny, ny), pp is calculated as

Pr{R =25} = fors=1,...,n,

Pr{R =25 — 1} = fors =2,3,...,n,.

10 3

1
. :/ 3 STPHR G, 10 — i) = j}Pr(ny = i16) | p(@1x)d6 = 0.1630,
0 \i=o0 j=I

2.5)
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Table 2.1 Special cases for the probability of R(n1, ny)

ny na s Pr(R(ny,ny) =
2 — 1)

>1 0 1 1

>ny+ 1 ny >1 ny + 1 (/)

Table 2.2 pp’s for other observations

Case Sample x n r(x) B

(i) (1,1,1,1,1, 1,1,1,1,1) 10 1 0.5293
(ii) (0,0,0,0,0, 1,1,1,1,1) 10 2 0.0462
(iii) (0,1,1,0,1, 1,0,1,1,1) 10 6 0.6066
(iv) (0,1,0,1,0, 1,0,1,0,1) 10 10 1

) (1,0,1,1,1, 0,0,1,1,0, 1,0,1,1,0) 15 10 0.9354
(vi) (1,1,1,1,1, 0,0,0,0,0, 1,1,1,1,1, 1,1,1,1,1, 1,1,1,0,0) |25 4 0.0248
(vii) (1,0,1,0,1, 0,1,0,1,0, 1,0,1,0,1, 0,1,0,1,0, 1,0,1,0,1) 25 25 1

which implies that under H, the number of runs of a future observed sample would
be smaller than 3 with probability of 0.163. See details in Appendix A on page 192.
Furthermore, we list pp’s calculated for other observations in Table 2.2. Note that
the sample test statistics in cases (iv) and (vii) reach the maximum number of runs, so
pp is definitely 1. However, we cannot conclude that x’s are definitely independent
of each other, as these observations indicate that 1°s are most likely followed by 0’s.
We consider any pp smaller than 0.1 or larger than 0.9 as indicating the violation
of H().

2.2.2 Residuals, Deviance and Deviance Residuals

In the Bayesian framework, we can generate a set of residuals for one realization of
posterior parameters. So there are four choices of residuals:

e Choose the posterior mean of parameters and find one set of residuals.

e Randomly choose a realization of parameters and find one set of the residuals.
e Get the posterior mean of residuals.

e Get the posterior distribution of residuals.

In the following, we will review Pearson residuals, deviance and deviance residuals.
A Pearson residual is defined as

i (0) := w
/Var(y;|6)

The deviance is defined as

D () := —2log p(y|6) = —2 > log p (3il6) . (2.6)

i=1
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and the contribution of each data point to the deviance is D; (6) = —21log p (y;16) .
‘We will define and use D(é) and D/@) in the next section.

The deviance residuals are based on a standardized or “saturated” version of the
deviance, defined as

D5 (6) =2y log p (316) +2 Y log p (i[s @),

i=1 i=1

where g (y) are appropriate “saturated” estimates, e.g., we set Os (y) = y. The con-
tribution of each data point to the standardized deviance is

Ds, (6) = —2log p (10) + 21og p (305 ) -

The deviance residual is defined as

dr; = sign;+/ Ds, (9),

where sign; is the sign of y; — E(y/16).

Example 2.7 (Three error structures for stack-loss data) The stack-loss data set
contains 21 daily responses of stack loss y, the amount of ammonia escaping, with
covariates being air flow x|, temperature x, and acid concentration x3. We assume a
linear regression on the expectation of y, i.e., E (y;) = w; = Bo + Bizi1 + P22i2 +
B3ziz, i = 1,...,21. We consider three error structures: normal, double exponential
and 4, as follows:

yi ~N(ui, t™h

y; ~ DoubleExp(u;, ™

yi ~ ta(u, T,
where z;; = (x;; —X;) /sd (x;) for j = 1,2, 3 are covariates standardized to have
zero mean and unit variance, and By, B, B2, B3 are given independent non-informative

priors.
The deviance residuals of the three models have the following forms respectively:

Ds, = /T (yi — i)
Ds, = sign;+/27 |y; — il

2
Ds, = signi\/S log (1 + M)

We plot the posterior distributions of deviance residuals for each model in Fig. 2.7.
The three residual plots agree on four outliers: 1, 3,4 and 21.
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Fig. 2.7 The deviance residual plots of the three models
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2.2.3 Bayesian Model Selection Methods

The model selection problem is a trade-off between a simple model and good fitting.
Ideally, we want to choose the simplest model with best fitting. However good fitting
models tend to be more complicated while simpler models tend to be underfit. The
model selection methods used in frequentist statistics are typically cross-validation
and information criteria, which are the modified residual sum of squares with respect
to the model complexity and overfitting.

Cross-validation measures the fit of a model on the testing data set, which is not
used to fit the model, while the information criteria adjust the measure of fit on the
training data set by adding a penalty for model complexity.

2.2.3.1 The Predictive Accuracy of a Model

In the Bayesian framework, the fit of a model is sometimes called the predictive
accuracy of a model (Gelman et al. 2014). We measure the predictive accuracy of
a model to a data set y’ by log point wise predictive density (Ippd), calculated as
follows:

n'

Ippd:=log [ [Eoyyp (v/16) = Zlog Earyp (3/10)) Zlog(/ p(y,-’w)p(my)de).

i=1 i=1

Ideally, y’ should not be used to fit the model. If we choose y' =y, we get the
within-sample Ippd (denoted by Ippd,,,;,), Which is typically larger than the out-of-
sample 1ppd (denoted by Ippd,.;). To compute Ippd in practice, we can evaluate the
expectation using draws from the posterior distribution p(6|y), which we label as
0', t =1,...,T. The computed lppd is defined as follows:

n' 1 n
computed Ippd:= Z log (; Z P(yf|9t)> .

i=1 i=1

2.2.3.2 Cross-validation

In Bayesian cross-validation, the data are repeatedly partitioned into a training set
Virain and a testing set yis. For simplicity, we restrict our attention to leave-one-out
cross-validation (LOO-CV), where y.y only contains a data point. The Bayesian
LOO-CYV estimate of out-of-sample Ippd is defined as follows:

Ippdigy ., = Y log ( / P (3i16) p ©1y—) de) : 2.7
i=1
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where y_; is the data set without the ith point. The lppd,,,_., can be computed as

n 1 T .
Computed 1ppdloo—cv = Z 10g (T Z p (yi |9”)) s
i=1 t=1

where 0%, t = 1, ..., T are the simulations from the posterior distribution p (9 |y7i) .

2.2.3.3 Deviance Information Criterion (DIC)

AIC and BIC

Before describing the DIC, we review another two information criteria employed in
frequentist statistics. The Akaike information criterion (AIC) by Akaike (1973) is
defined as

n

AIC:=—2) "log p (i|0mLe) + 2p.

i=1

The Bayesian information criterion (BIC) by Schwarz (1978) is defined as

BIC:=—2) log p (yifmLe) + plogn,

i=1

where p is the number of parameters. The first common term —2 ), log p(y;|6mrEg)
measures the discrepancy between the fitted model and the data. The second term
measures the model complexity.

DIC

In the Bayesian framework, we define a similar quantity to measure the discrepancy,
=237, log p(yi 16), where 6 is the posterior mean. Spiegelhalter et al. (2002) pro-
posed a measure of number of effective parameters, which is defined as the difference
between the posterior mean of the deviance and the deviance at the posterior means,
as follows:

é),

pp =D ) — D@) = —2Eg, (Z log p <y,-|9>) +2) logp (v

i=1 i=I

where D is the deviance defined in Eq. (2.6).

Furthermore, they proposed a deviance information criterion (DIC), defined as
the deviance at the posterior means plus twice the effective number of parameters,
to give

DIC := D) + 2pp.

DIC is viewed as a Bayesian analogue of AIC. We prefer the model with smaller
DIC. Note that DIC and pp are sensitive to the level of a hierarchical model. They
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are appropriate when we are interested in the parameters directly related to the
data. DIC and pp can be calculated using OpenBUGS, which will be discussed in
Sect. 3.3.

2.2.3.4 Watanabe-Akaike or widely available information criterion
(WAIC)

Watanabe (2010) proposed another measure of number of effective parameters as
follows:

n n
pwaic = D(0) + 2lppd,i, = —2Eqy (Z log p ()’i|9)> +2) log (Eayp (3i10)) .

i=1 i=1

where —2Ippd,,;, plays arole as D() as in pp. As with AIC and DIC, the Watanabe-
Akaike information criterion (WAIC) is defined as

WAIC:= — 2lppd,,in, + 2PwalC-

2.2.3.5 Leave-One-Out Information Criterion (LOOIC)

Different from the definition of number of effective parameters in AIC, DIC, and
WAIC, we define

Pioo ‘= lppdtrain - lppdloo—cv’

where Ippd,,, ., comes from Eq. (2.7). The leave-one-out information criterion
(LOOIC) is defined as

LOOIC:= — 21ppdtrain + 2p100 = _21ppdloo—cv7

which is reasonable since lppd,,,_., already penalizes the overfitting (or equivalently
the model complexity).

Example 2.8 (pp in a random effects model) This example follows Spiegelhalter
et al. (2002). Consider the following random effects Bayesian model:

yij ~N@, 7", i=1,....m, j=1,....n
6; ~ N(u, 27"
w ~ N(0, 00)

where 7;, i = 1,...,m, and A are known precision parameters. 7; is termed as the
within-group precision, and A is termed as the between-group precision. It can be
shown that the posterior distribution of population mean is
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m -1
uly ~N1y, (kZp,) ;

i=1

where i
5’_ Zl*l piyl' Ti —_— Zj:l Yij
Dot i R ANIANS n '
Assuming 6 = (64, ..., 6,,), we will have the following equations:

— i (1 — pi
DO =Y p+rY p (1—pi)@,4—9>2+%
D@)=1Y_pi(1—p) (i — )’

Y pi (1—p)
=5 pi+ =0
Pp ZP Zﬂi

Consider the number of effective parameters pp under the following three cases:
e If A — oo, then p; — 0,and pp = 1. All the groups have the same mean p, which
is the only effective parameter. The model is equivalent to:

yijNN(M,fi_l)’i:1,...,m,j=1,-~-,n
u~N(,oc0).

e If . — 0, then p; — 1, and pp = m. All the groups are independent and have
different means. The model is equivalent to:

L

6; ~ N (0, 00).

)’ij"“N(Qi»T-fl)’iz1""’m’j=1""’n

e If 7, areequal,thenp; =---=p, =pand pp =1+ (m — 1) p.

In summary, if we assign the majority of variation in y to the within-group variation
rather than between-group variation (i.e., A is much larger than 7;), then the group
means 6; tend to converge to the population mean ., and we have only one parameter
(i.e., 6; cannot be effectively estimated distinguishably).

On the other hand, if we assign the majority of variation in y to the between-group
variation (i.e., 7; is much larger than A), then there is no accurate estimate of w, and
every 6; tends to “escape” from the “trap” distribution §; ~ N (/L, A’l). Every 6; can
be effectively estimated by its group mean, and there are m effective parameters.

Example 2.9 (Three error structures for stack-loss data) We continue with Example
2.7 and calculate Ippd,, .., DIC, pp, WAIC and pwajc for the three models discussed
on page 26. As shown in Table 2.3, Ippd,,, .., DIC, and WAIC agree on the model
with double exponential error distribution.
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Table 2.3 lppd,,,_.,, DIC and WAIC for the three models

Error structures | 1ppd;oq_cyv DIC PD WAIC DPWAIC
Normal —59.0 115.5 5.23 116.5 4.8
DoubleExp -57.3 113.3 5.53 114.5 5.7
14 —57.8 114.2 5.53 115.6 5.8

2.2.4 Overfitting in the Bayesian Framework

Suppose that we have a sample of size n from a common normal distribution
with unknown mean and known precision, y; ~ N (M, r’l) ,i=1,...,m.In the
Bayesian framework we can assume m parameters, each of which is for one data
value. Such a Bayesian model can be written as follows:

yi~N(ui,t™"), i=1....m
mi ~N(zo. 75",

where 7 is known and p(uo, 7 1Y 1 is a non-informative improper hyperprior.
This is a special case when n = 1 in Example 2.8.

This random effects model can also be viewed as a hierarchical model with three
levels. We refer to the top level distribution related to the data as the sampling
distribution or likelihood, the second level distribution as the prior and the third level
distribution as the hyperprior. Accordingly, u;, T are called parameters and pg, 7o
are called hyperparameters.

The model has m data values and m + 2 parameters, which presents an overfitting
issue in the frequentist framework on account of parameters treated as unknown fixed
constants. However, it is quite common for the number of parameters to be larger
than the number of data values in the Bayesian framework, where the number of
effective parameters would be smaller than m as shown in Example 2.8.

2.3 Bibliographic Notes

Bayesian statistics derives from Bayes’ famous 1763 essay, which has been reprinted
as Bayes (1763). For other early contributions, see also Laplace (1785, 1810). Gel-
man et al. (2014) contains most of the current developments in Bayesian statistics.

Jeffreys’ priors and the invariance principles for non-informative priors are studied
in Jeffreys (1961). The asymptotic normality of the posterior distribution was known
by Laplace (1810).

The method of posterior predictive checking was proposed by Rubin (1981, 1984).
The posterior predictive p-value was studied by Meng (1994). Akaike (1973) intro-
duced the expected predictive deviance and AIC. Schwarz (1978) introduced BIC.
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Spiegelhalter et al. (2002) introduced the DIC. Watanabe (2010, 2013) presented
WAIC. RIMCMC was introduced by Green (1995). A recent work summarizing cri-
teria for evaluation of Bayesian model selection procedures is Bayarri et al. (2012).
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Chapter 3 ®)
Advanced Bayesian Computation oo

Abstract The popularity of Bayesian statistics is largely due to advances in com-
puting and developments in computational methods. Currently, there are two main
types of Bayesian computational methods. The first type involves iterative Monte
Carlo simulation and includes the Gibbs sampler, the Metropolis-Hastings algorithm,
Hamiltonian sampling etc. These first type methods typically generate a Markov
chain whose stationary distribution is the target distribution. The second type involves
distributional approximation and includes Laplace approximation (Laplace 1785,
1810), variational Bayes (Jordan et al. 1999), etc. These second type methods try to
find a distribution with the analytical form that best approximates the target distribu-
tion. In Sect. 3.1, we review Markov chain Monte Carlo (MCMC) methods including
the general Metropolis-Hastings algorithm (M-H), Gibbs sampler with conjugacy,
and Hamiltonian Monte Carlo (HMC) algorithm (Neal 1994). Section 3.2 discusses
the convergence and efficiency of the above sampling methods. We then show how
to specify a Bayesian model and draw model inferences using OpenBUGS and Stan
in Sect. 3.3. Section 3.4 provides a brief summary on the mode-based approxima-
tion methods including Laplace approximation and Bayesian variational inference.
Finally, in Sect. 3.5, a full Bayesian analysis is performed on a biological data set
from Gelfand et al. (1990). The key concepts and the computational tools discussed
in this chapter are demonstrated in this section.

3.1 Markov Chain Monte Carlo (MCMC) Methods

In Sect. 2.1, we discussed how to make inferences about parameters from the posterior
distribution. When the posterior distribution is complicated, it is tedious to make any
inferences analytically. We have seen that in Example 2.3 the marginal posterior
distribution p(A|y) contains a complicated integral. Even if p(A|y) can be found
analytically, it still requires some effort to get the exact posterior mean and the
CPDR of A. This motivates us to explore other methods.

Monte Carlo simulation is a sampling process from a target distribution. Once
sufficient samples are obtained, the inferences of target distribution can be approx-
imated by sample statistics, such as sample mean, sample standard error, sample

© Springer Nature Singapore Pte Ltd. 2018 35
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percentile etc. The traditional Monte Carlo simulation methods involve inversing the
cumulative distribution function, the rejection sampling method, etc. These methods
generate independent samples. In contrast, Markov chain Monte Carlo (MCMC)
methods generate a Markov chain whose stationary distribution is equivalent to
the target distribution. In MCMC, the next sampled value typically depends on the
previous sampled value.

In this section, we first briefly state some properties of a Markov chain with a
stationary distribution. Then the Metropolis-Hastings (M-H) algorithm, Gibbs sam-
pler and Hamiltonian Monte Carlo (HMC) are reviewed. Throughout this section,
we continue with Example 2.3. We compare the MC-based inferences to analytical
inferences.

3.1.1 Markov Chain and Its Stationary Distribution

Let . be afinite set. A Markov chain is characterized by a transition matrix K (s, s”)
with K (s,s") > 0 for any s, 5" € ., and )., K(s,s") = 1 for any s’ € .. All
of the Markov chains considered in this chapter have a stationary distribution 7 (s)
which satisfies the equation

Z 1)K (s,s) = 7(s).

se.

The stationary theorem of Markov chains says, under a simple connectedness condi-
tion, 7 is unique, and high powers of K converge to a rank one matrix with all rows
equal to . That is

K'(s,s") = n(s') fors,s" € 7.

The probabilistic content of the theorem is that from any starting state s, the nth step
of a run of the Markov chain has a chance close to 77 (s") of being at s if n is large. In
computational settings, when the cardinality of . is large, it is easy to move from s
to s’ according to K (s, s”), but it is hard to sample from 7 directly.

Example 3.1 (The stationary distribution of a Markov chain process). Suppose a
Markov chain with the sample space . = {0, 1, 2, 3}, and a transition matrix as
follows:

090.1 0 0
09 0 0.1 0
K=10900 001
09 0 0 0.1

A little more calculation shows that
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0.9 0.09 0.009 0.001
0.9 0.09 0.009 0.001
0.9 0.09 0.009 0.001 |~
0.9 0.09 0.009 0.001

K* =

so that for some m > 4, K" (s1,s") = K" (s, §) for all 51, 55 € .%. It follows that
K™ = K™, since

K" (s, s") = Z K (s,v) K" (v, s’) =K"(s,s") Z K (s,v) =K"(s,s).

ves ves

Therefore, lim,,_, oo K" (s, s") = K" (s, s") = 7 (s"), where we write the final equality
without reference to s since all the rows of K™ (s, s’) are identical. 7 (s’) is the
stationary distribution.

3.1.2 Single-Component Metropolis-Hastings (M-H)
Algorithm

Suppose we want to simulate a sample of 6. When 6 contains multiple variables,
instead of sampling the whole 6 at a time, it is often more convenient and com-

putationally efficient to divide 6 into components as {0y, 0>, ..., 6}, and sample
these components one by one, i.e., using single-component Metropolis-Hastings
algorithm.

An iteration of the single-component Metropolis-Hastings algorithm comprises &
updating processes. Suppose 6 is updated sequentially according to the component
index and the target multivariate distribution as 7. The ith updating process for 6; at
the rth iteration in the M-H algorithm works as follows:

1. Draw a value from a proposal distribution of 6;, g; (Qi*|9i’_l, 6! l.) , where 9 ;=

{61’“, L 0/,y,....0;}, and 6!~! denotes the value of 6; at the end of

iteration ¢ — 1 or denotes the initial value when r = 1.

2. Calculate the acceptance ratio

7 (0716",) & (6:7"167,0",)
7 (6;7116%;) g (6716;7".61,)

[ AR ’

A (67,071 =
where 7 (+|6",) is the full conditional distribution of ;.
3. Accept 07 and set 6! = 6 with probability A; (6, 6/™"). Otherwise, reject 6}
and set 0! = 60!~
Note that the parameters in the proposal distribution g; are called tuning parameter;

these are specified in advance and will affect the acceptance rates and the conver-
gence. In Sect. 3.3, we will see that OpenBUGS has a phase called “adapting”,
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when the program automatically chooses the appropriate tuning parameters. In the
M-H algorithm, we need to discard the first few iterations, which are called burn-in.
We judge the length of burn-in by looking at trace plots, BGR plots (Gelman and
Rubin 1992) or potential scale reduction factor (Gelman et al. 2014), which will be
discussed in Sect. 3.2.1.

Example 3.2 (An autoregressive process of order one). We continue with Example
2.3 on page 15. Now we complete the following tasks:

1. Write a M-H algorithm to generate a sample of size T = 1000 from the joint pos-
terior distribution p (¢, A|x), and produce trace plots for o and A. Also calculate
the acceptance rates for both parameters.

2. Draw histograms for the sampled values in (1) and superimpose density estimates
of marginal posterior distributions, p («|x) and p (A|x). Estimate the posterior
means & and A and give the 95% confidence intervals for them. Also report the
95% CPDR estimates for « and A.

Solutions to (1):

Instead of using p (o, A|x) directly, we take the logarithm of it, denoted by / («, A|x),
and calculate the acceptance ratio on a logarithm scale. The ¢th iteration in the M-H
algorithm is as follows:

1. Draw a proposed value o* ~U (e —c,a +c¢). If a* ¢ [—1, 1], reject it and
redraw. Otherwise, calculate the acceptance ratio:

A, (a*, ot”l) = exp [l (a*lx, )»”1) —1 (a”1|x, )f’l)] ,
where o/~! and A’~! are the values at the end of the (f — 1)th iteration or the
initial values when ¢ = 1. If A, (a*, &'~!) > 1, accept a* and set o' = a*. If
A, (a*, oz”l) < 1, accept @* and set &’ = o* with probability of A, (a*, oz”l);
otherwise, set o' = o'~ 1.
2. Draw a proposed value A* ~ U (o —d, o +d). If A* < 0, reject it and redraw.
Otherwise, calculate the acceptance ratio:

A (5 ) =exp[1 (M Ix, o) =1 (A, a')],

where o' comes from step 1. If A, (A*, )\"1) > 1, accept A* and set A = A*. If
Ay (A, A7) < 1, accept A* and set A" = A* with probability of A; (A%, A'7");
otherwise, set A/ = A'~1.
Withe =03, d =02, «° =0, 10 =1, the M-H algorithm converges within 100
iterations with acceptance rate of 71% for o and 69% for X over a total of 10, 000
iterations. The trace plots for « and A are shown in Fig. 3.1.

Solutions to (2):

The last 9,900 sampled values are used for inference. The MC estimate of posterior
mean & is @ = (Y, 000 @')/9900 = 0.4721, with the 95% CI
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Fig. 3.1 The trace plots of « and A
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where Var («) is the MC sample variance (i.e., the sample variance of o', =
101, ..., 10000). The MC estimate of 95% CPDR for « is (0.0726, 0.8188).

Similarly, the MC estimate of posterior mean A is A = (Zgﬂ%ﬂ A1)/9900 =
0.4101, with the 95% CI (0.4075, 0.4126). The MC estimate of 95% CPDR for
A is (0.1947, 0.6959). We show the MC histograms and the MC density estimates
comparing with the exact densities in Fig. 3.2. We can see the MC estimates are quite
close to the exact values.
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Fig. 3.2 The MC estimates of « and X using M-H

Since there is strong series dependence in a Markov chain, it is not good to make
inferences directly from the original MCMC sample. Two methods can be applied to
reduce the dependence: the batch means (BM) method and the thinning sample (TS)
method. We will discuss these two methods in more detail in Sect. 3.2.2. In the batch
means method we place 20 bins and in the thinning sample method we extract one
value from every 20 successive samples. Table 3.1 lists the inferences made from the
two methods. Note that * indicates the exact posterior mean is in the 95% CI.
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Table 3.1 The MC, BM, TS estimates of the posterior means and the associated 95% Cls using
the M-H algorithm

MC est. MC CI BM CI TS CI Exact
a | 04721 (0.4683, 0.4759) | (0.4598, 0.4845)* | (0.4461, 0.4800) | 0.4814
* | 0.4101 (0.4075, 0.4126) | (0.4047, 0.4154)* | (0.3982, 0.4208) |0.4129

3.1.3 Gibbs Sampler

The Gibbs sampler is another MCMC method which simulates the joint distribution
via full conditional distributions. In fact, if we choose the full conditional distribution
of each component in single-component M-H algorithm as the proposal distribution
for this component, i.e., g; (66! 1 ;) =7 (676";) . the acceptance ratio will be

Lo m(erlen) (e
) = Ty o)

which guarantees the proposed value 6 being accepted. So the Gibbs sampler is a
special case of the M-H algorithm.

Compared with the M-H algorithm, the Gibbs sampler does not have the accept-
reject step and tuning parameters. However, the main difficulty with the Gibbs sam-
pler is simulating from the full conditional distribution which sometimes does not
have a recognizable form. In that case, we may turn to other sampling methods such
as adaptive rejection sampling (Gilks and Wild 1992); see details in Appendix B on
page 196.

Adaptive rejection sampling is a generalized rejection sampling method that can
be used to simulate for any univariate log-concave probability density function. As
sampling proceeds, the rejection envelope and the squeezing function converge to
the target function. The adaptive rejection sampling and the M-H algorithm are both
intended for the situation where there is non-conjugacy of the Gibbs sampler in a
Bayesian model.

Example 3.3 (An autoregressive process of order one). We continue with Example
2.3. The Gibbs sampler is applied to the joint posterior distribution of @ and . The
full conditional distributions are

p(alx, 1) o (1 — az)% exp [—%h (x,a)i|

h k)
Alx, @ ~ Gamma E, *, @) .
2 2

The full conditional distribution of « is unrecognisable. We can write a Gibbs sampler
for A and keep the M-H algorithm for «.
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Table 3.2 The MC, BM, TS estimates of the posterior means and the associated 95% Cls using a

Gibbs sampler

3 Advanced Bayesian Computation

MC est. MC CI BM CI TS CI Exact
a 0.477 (0.473, 0.480) | (0.466,0.487) |(0.451,0.484) | 0.481
N 0.413 (0.411,0.416) | (0.411,0.416) |(0.398, 0.420) | 0.413
X21 0.363 (0.331, 0.395) | (0.329, 0.396) |(0.210,0.491) | 0.352

To simulate x;;, we add an extra step to every iteration: draw a value from
N (a’xzo, l/kjt), where o', A;" are the ending values at the rth iteration. Simi-
lar to Table 3.1, we can obtain the new MC estimates based on the Gibbs sampler
as shown in Table 3.2. Another way to find the posterior mean and the posterior
marginal density is to apply the Rao-Blackwell (RB) method. We can estimate the
marginal posterior distribution of A as

h (x, of )
2’ 2 ’

where o' is the tth sampled value from the posterior distribution p («|x). The pos-
terior mean is estimated as

T
1
p(Alx) = T ; Gamma (A

T

n
Z hx,a)

t=1

>
Il
S| -

The 95% CI for posterior mean is calculated as (A & 1.96s/+/T), where s is the
sample standard deviation of n/h (x, a’) ,t=1,...,T
Similarly, we can estimate the posterior predictive distribution of x; as

T

- _ 1 1

p (x21lx) = — E p (x20]x, ', 2") = E N(x21 atxZO’F)'
t=1

The posterior mean of x;; is estimated as

T
_ 1 ;
X221 = — E o Xp0.
r t=1

The 95% CI for the posterior mean is calculated as ()221 + 1.96s/ JT ), where s is the

sample standard deviation of &’ x9, t = 1, ..., T. We summarize the Rao-Blackwell
estimates in Fig. 3.3. We see that the 95% RB ClIs cover the exact posterior means,
and the RB density estimate of A is almost equal to its exact density.
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Fig. 3.3 The Rao-Blackwell estimates of A and x7;

3.1.4 Hamiltonian Monte Carlo (HMC)

Hamiltonian Monte Carlo (HMC) was introduced to physics by Duane et al. (1987)
and to statistical problems by Neal (1994, 2011). In contrast to the random-walk
Metropolis algorithm where the proposed value is not related to the target distribution,
HMC proposes a value by computing a trajectory according to Hamiltonian dynamics
that takes account of the target distribution.
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3.14.1 Hamiltonian Dynamics

Suppose we have a Hamiltonian dynamics scenario in which a frictionless ball slides
over a surface of varying height. The state of the ball at any time consists of the
position and the momentum. Denote the position by a & vector 6 and the momentum
by a same length vector ¢.

Hamiltonian functions can be written as

H(O,¢9) =U®) + K(¢),

where U (0) is called the potential energy and will be defined to be minus the log
probability density of the distribution of 6 we wish to simulate, K (¢) is called the
kinetic energy and is usually defined as

K()=9¢"27"'¢/2,

where X ~! is a symmetric positive-definite “mass matrix” which s typically diagonal
and is often a scalar multiple of the identity matrix. This form of K (¢) corresponds
to the minus log probability density of the zero-mean Gaussian distribution with
covariance matrix ¥

The state of the ball in the next infinitesimal time is determined by Hamilton’s
equations of motion:

do; oH

=" =[x ¢
a9 (X7 ¢]
d¢;  9H  oU
dr — 86, 96"

For computer implementation, Hamilton’s equation must be approximated by
discretizing time, using some small step size, €. The most straightforward method
is Euler’s method. The solution to the above system of differential equations can be
approximated by Euler’s method as follows:

(1 = ¢ (t d¢it—~t 8U9~t
@i ( +8)_¢’()+8E()_¢’()_8%(’())

do; _
0t +8) = 6,() +e—=(1) = 6,() + 6[ % 'p];.
However, Euler’s method does not preserve the volume and the resulting trajectory

would diverge from the exact trajectory to infinity. A better trajectory may be gen-
erated by using the leapfrog method as follows:
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¢i(t +¢e/2) = ¢i(1) — (8/2) (9 ®)
6i(t + &) = 6;(t) + e[ X~ qb(t + s/z)],-

it +¢e) =it +¢/2) — (5/2) (9(t+8))

The leapfrog method preserves volume exactly.

3.1.4.2 MCMC from Hamiltonian Dynamics

Suppose we want to simulate a sample from the target density p(8). HMC intro-
duces auxiliary momentum variables ¢ and draws from a joint density p(6, ¢). We
assume the auxiliary density is a multivariate Gaussian distribution, independent of
the parameter 6. The covariance matrix X' acts as a Euclidean metric to rotate and
scale the target distribution. The joint density p(6, ¢) defines a Hamiltonian function
as follows:

H(0,¢) = —log p(0,¢) = —log p(6) —log p(¢) = U(0) + K(9).

Starting from the value of the parameters at the end of the ¢ — 1th iteration, 6’ -1 a
new value 6* is proposed by two steps before being subjected to a Metropolis accept
step.

First, a value ¢’ ~! for the momentum is drawn from the multivariate Gaussian
distribution, N(0, X). Next the joint system (6'~!, ¢'~!) is evolved via the following
leapfrog method for L steps to get the proposed value (0%, ¢*):

_ dlog p(0'~!
o 14e/2 _ 6 + (e/2) gpO')
26;
9{714’8 — 9[_)‘71 + 8[2—1¢I—1+S/2]i
e dlog p(0'—1*¢
¢[(—1+5 — ¢[f 1+e/2 + (¢/2) g p( )
26;
Note that 0* = 9'~1+2L ¢* = ¢'~1T¢L If there were no numerical errors in the
leapfrog step (i.e., the leapfrog trajectory followed the exact trajectory), we would
accept (6%, ¢*) definitely. However, there are always errors given the non-zero step
size. Hence, we conduct a Metropolis accept step with the acceptance rate as

min{1, exp[H (6'~", ¢'™") — H(6", ¢")]}.
Neal (1994) suggests that HMC is optimally efficient when its acceptance rate is

approximately 65% while the multi-dimensional M-H algorithm is optimal at an
acceptance rate of around 23%.
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3.1.4.3 The No-U-Turn Sampler (NUTS)

There are three tuning parameters in HMC: the mass matrix X, the step size ¢ and
the number of steps L. If ¢ is too large, the resulting trajectory will be inaccurate and
too many proposals will be rejected. If ¢ is too small, too many steps will be taken by
the leapfrog method, leading to long simulation times per iteration. If L is too small,
the trajectory traced out will be too short and sampling will devolve to a random
walk. If L is too large, the algorithm will spend too much time in one iteration. The
mass matrix X' needs to be comparable with the covariance of the posterior.

In MCMC, all the tuning parameters should be fixed during the simulation that
will be used for inference; otherwise the algorithm may converge to the wrong
distribution. BUGS has an adaptive period during which suitable tuning parameters
are selected.

NUTS (Homan and Gelman 2014) can dynamically adjust the number of leapfrog
steps at each iteration to send the trajectory as far as it can go during that iteration.
If such a rule is applied alone, the simulation will not converge to the desired target
distribution. The full NUTS is more complicated, going backward and forward along
the trajectory in a way that satisfies detailed balance (Gelman et al. 2014).

The programming of NUTS is much more complicated than a M-H algorithm.
We rely on Stan to implement NUTS inferential engine. More details of Stan are
provided in Sect. 3.3. Along with this algorithm, Stan can automatically optimize
€ to match an acceptance rate target and estimate X' based on warm up iterations.
Hence we do not need to specify any tuning parameters in Stan.

3.2 Convergence and Efficiency

Two concerns in MCMC methods are checking the convergence of sampled values
and designing an efficient algorithm.

3.2.1 Convergence

We can detect the convergence by eye, relying on the trace plots such as Fig. 3.1.
Informally speaking, a “fat hairy caterpillar” appearance indicates the convergence.
For numerical diagnosis, we use the Brooks-Gelman-Rubin (BGR) ratio and potential
scale reduction factor, both of which are based on the mixture and stationarity of
simulated multiple chains starting from diversified initial values.
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3.2.1.1 The Brooks-Gelman-Rubin (BGR) Ratio

The numerical diagnosis for convergence in OpenBUGS is based on comparing
within- and between- chain variability (Gelman and Rubin 1992). Suppose we sim-
ulate / chains, each of length J, with a view to assessing the degree of stationarity
in the final J/2 iterations. We take the width of 100 (1 — &) % credible interval for
the parameter of interest as a measure of posterior variability.

From the final J/2 iterations we calculate the width of empirical 100 (1 — ) %
credible interval for each chain as W;, i =1,..., I, then find the average width
across these chains as W = Zle W;/m. We also pool IJ iterations together and
find the pooled width B.

The BGR ratio is defined as the ratio of pooled interval widths to average interval
widths, Rggr = B / W. It should be larger than 1 if the starting values are suitably
diversified and will tend to be 1 as convergence is approached. So we can assume
convergence for practical purposes if Rpar < 1.05.

Brooks and Gelman (1998) further suggested splitting the total iteration range
of each chain into M batches of length a = J/M and calculating B(m), W (m) and
IéBGR (m) based on the latter halves of iterations (1, ..., ma) form =1,..., M.

3.2.1.2 The Potential Scale Reduction Factor

Gelman et al. (2014) propose a similar quantity to monitor the convergence, namely
potential scale reduction factor. This factor is automatically monitored in Stan.
Again, suppose we simulate / chains, each of length J (this is all after discarding the
burn-in iterations). We split each chain into two parts to get 2/ batches, each of length
J /2. We label the simulations as 6; ;,i =1,...,21, j =1,...,J/2 and calculate
the between- and within- batch variances as a measure of posterior variability rather
than the width of credible interval as in BGR.

The average within-batch variance is Wy, = leil s?, where s? is the sample
variance of the ith batch. The between-batch variance is

21

J/2 _ _2
BVarzzl_IZ(e,’.—Q) s

i=1

where 6;. is the sample mean of ith batch and 6 is the pooled sample mean. The
reason for containing a factor of J/2 is that By, is based on the sample variance of
batch means ;.. Note that Wy, and By, are both estimates of the posterior variance
Var (9|y). Later we will show that /By, /1 J is the MC standard error of the posterior
mean estimate using batch-mean method.

Gelman et al. (2014) proposes an estimate of Var (9]y) as a weighted average of

WVar and BVar: ]/2 1 1
WVar + _BVars

Var (6 =
©@ly) 7 7




48 3 Advanced Bayesian Computation

which is also an unbiased estimate under stationarity, but an overestimate if involving
the burn-in iterations. On the other hand, W+, always underestimates Var (6]y) due
to limited sample size J /2 and dependent iterations. So we monitor convergence by
estimating the potential scale reduction factor by

. [Nar(o
WVar

which declines to 1 as J — oo. If R is high, we believe that more iterations are
needed to guarantee the convergence.

3.2.2 Efficiency

For a given sample size, the accuracy of our inferences is dependent on the efficiency
of the posterior sample, which decreases with an increasing level of autocorrelation.
We can improve the efficiency by refining the algorithm or resampling from the MC
sample to reduce the correlation.

3.2.2.1 Reparameterization, Thinning and Adding Auxiliary Variables

One way of increasing efficiency is to reparameterize the model so that the posterior
correlation among parameters is reduced, as shown in Example 3.4 and Sect. 3.5.4.

Another way to improve efficiency is to perform a process known as thinning,
whereby only every vth value from the MC sample is actually retained for inference.
In Sect. 3.3, we will see there is an option of “thin” in the OpenBUGS Update Tool
window.

Finally, the Gibbs sampler can often be simplified or the convergence can be
accelerated by adding an auxiliary variable (Gelman et al. 2014).

3.2.2.2 The Batch Means Method

In Example 2.3 we are interested in the 95% CI of the posterior mean. The standard
error of the posterior mean estimate (i.e., the MC sample mean) is calculated by
the sample standard deviation over the squared root of sample size. This follows the
central limit theorem (CLT) under the condition of independent samples. However,
the MC sample is from a Markov chain and each sampled value depends on the
previous sampled value. The MC sample variance is not an accurate estimate of the
posterior variance Var (6]y). We will turn to the batch means method to get a more
accurate estimate.
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Suppose we have I chains, each of length J, and split every chain into M batches,
each of length J/M, and J/M is sufficiently large that CLT holds for each batch.
We label the simulations as 6;;,i =1,...,IM,j=1,...,J/M.

We calculate the batch means 6;., which are roughly independent and identically
distributed with a mean of posterior mean and a variance of posterior variance over
J /M. Then we can use the sample variance of batch means to estimate the posterior

variance as
M

_— J/M _ _
Var (0]y) = IM/_ 1 3 (6. - 6).
i=1

The standard error of the posterior mean estimate 6 = > ;0ij/(1J) can be approx-
imated more accurately by

M

Var 0ly) 1 o
‘/ I IM(IM_l)Z(Qi-_Q)’ (3.2)

i=l1

which is also called the Monte Carlo standard error given in the “MC_error” column
in OpenBUGS output and the “se_mean” column in Stan. Using the batch means

method, the 95% CI of 4 is modified as (9_ + 1.964/ Vz?(?ly)/([])).

3.2.2.3 Effective Sample Size

Gelman et al. (2014) defined an estimate of effective sample size as

1J

= (3.3)
1+2Y 72 o

Nett

where I, J follow the notation in batch means method and p, is the autocorrelation
of the MC sample at lag ¢. Stan automatically monitors n.g for each parameter of
interest and gives them in the column of n_ef¥f.

Example 3.4 (Reparameterize a simple linear regression model). Consider the

simple linear regression model: y; ~ N (a + bx;,0%),i =1,...,30, with true
parameters a = 17, b = 3, 02 =16. Assume x = (0.5, 1.0, ..., 15) and generate
a response vector y = (y1, y2, ..., ¥30) . We assume a non-informative prior, i.e.,

P (a,b,az) x 1/
Gibbs sampler (1):

A Gibbs sampler which could be applied here is based on the following full condi-
tional distributions:
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| ~N li} by, O
a n P yl xl ) n
bp~N<Z£”“”‘” o )

Yix? Y a2
" ; — —b ; 2
02|. ~ Inv-Gamma (%’ Zl:l 6} 2a X;) ) .

The dependence of p (a|-) on b makes the Gibbs sampler (1) ineffective, especially
for 0. We reparameterize the simple linear regression model as

Yi ~N(C+b(xi—i),02),

where ¢ = a + bx. The prior for ¢ can be shown as N (a + bx, 00). So ¢ also has a
non-informative flat prior.

Gibbs sampler (2):

An alternative Gibbs sampler is based on the following full conditional distributions:
1 o?
.~N|[Z . —
b|.~N<Z?=1 G = X) o’ )

PRECIE LD SRR Oy
dici i —c—bxi + bj)2>

2 (”
o“|- ~ Inv-Gamma | —,
2 2

where p (c|-) does not depend on b and p(b|-) is not dependent on c¢. The inde-
pendence between full conditional distributions will make Gibbs sampler (2) more
effective than Gibbs sampler (1).

We compare the MC estimates and the least-squares estimates in Table 3.3. Gibbs
sampler (2) improves the MC estimates of posterior means 62, §', while performing
equally well for a and b as Gibbs sampler (1).

Table 3.3 Comparison of the least-squared estimates with the MC estimates using different Gibbs
samplers

Estimation method | 62 95% CPDR v 95% CI/CPDR
L-S estimates 22.81 NA 32.83 (22.82,42.84)
Gibbs sampler (1) | 34.35 (15.26, 86.18) 32.95 (20.56, 45.44)
Gibbs sampler (2) |24.56 (14.30, 41.55) 32.81 (22.67,43.10)
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3.3 OpenBUGS and Stan

The MCMC methods are useful Bayesian model computation tools, especially when
the posterior distribution does not have a closed form. The programming of MCMC
requires a lot of effort, even for a simple linear regression model as in Example 3.4.
Moreover, we need to customize a MCMC algorithm for every model. To relieve the
burden of programming MCMC, several packages have been developed. The two
main statistical packages are BUGS and Stan. We will see in this section how to use
these two packages to do a Bayesian analysis.

3.3.1 OpenBUGS

BUGS stands for Bayesian inference Using Gibbs Sampler. The BUGS project began
in 1989 and has developed into two versions: WinBUGS and OpenBUGS. Currently
all development is focused on OpenBUGS. As its name suggests, OpenBUGS uses
a Gibbs sampler which updates unknown quantities one by one, based on their full
conditional distribution.

The MCMC building blocks include the conjugacy Gibbs sampler, the M-H algo-
rithm, various types of rejection sampling and slice sampling; see details in Appendix
B on page 197. Such methods are used only as a means of updating full conditional
distributions within a Gibbs sampler. OpenBUGS has an “expert system”, which
determines an appropriate MCMC method for analysing a specified model.

3.3.1.1 Directed Graphical Models

Suppose we have a set of quantities ¢ arranged as a direct acyclic graph, in which
each quantity v € ¢ represents anode in the graph. The “intermediate” nodes always
have “parents” and “descendants”. The relationship between parent and child can be
logical or stochastic. If it is a logical relationship, the value of the node is determined
exactly by its parents. If it is a stochastic relationship, the value of the node is
generated by a distribution which is determined only by its parents.

Conditional on its parents, denoted by pa[v], v is independent of all the other
nodes except its descendants, denoted by ch[v]. This conditional independence
assumption implies the joint distribution of all the quantities ¢ has a simple fac-
torization in terms of the conditional distribution p(v|pa[v]), as follows:

p @) =[] pwipalv).

vey
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where the conditional distribution may degenerate to a logical function of its parents
if the relationship is logical. The full joint distribution p (¢) can be fully specified
by the parent-child relationships.

The crucial idea behind BUGS is that this factorization forms the basis for both
the model description and the computational methods. The Gibbs sampler for each
unknown quantity 6;, is based on the following full conditional distribution:

p (0i10—i.y) o p (6ipa[6;]) x ]_[ p (vlpafv]).

vech[6;]

Note that 6; can be any unknown quantities, not just unknown parameters. An impor-
tant implication of directed graphical models is that every node should appear in the
left side of an assignment sign only once. This implication can be used as a debugging
tool of the BUGS language.

3.3.1.2 The BUGS Language

For a complex model, it is better to use the BUGS language to specify the model
rather than using a graphical model. It takes time for R users to get used to BUGS.
The fundamental difference is the declarative language in BUGS, so it does not
matter in which order the statements come in BUGS.

3.3.2 Stan

Stan stands for Sampling Through Adaptive Neighbourhoods, which applies the no-
U-turn sampler (NUTS). Besides the no-U-turn sampler, Stan can also approximate
Bayesian inference using variational Bayes, which will be discussed in Sect. 3.4.2,
and do penalized maximum likelihood estimation if we specify the priors as the
penalized term.

The key steps of the algorithm include data and model input, computation of the
log posterior density (up to an arbitrary constant that cannot depend on the parameters
in the model) and its gradients, a warm-up phase in which the tuning parameters, ¢
and M, are set, an implementation of NUTS to move through the parameter space,
convergence monitoring, and inferential summaries at the end.

Compared with OpenBUGS, Stan works seamlessly with R. Stan is installed as a
package in R. The output from Stan is stored in R automatically and can be analyzed
and plotted in R directly. Instead, BUGS works by itself. BUGS has its own graph
tools and output form. The output from BUGS needs to be transferred into another
package such as R before it can be used for further analysis.
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Fig. 3.4 The graphical
model for AR(1)

Stan can analyze all the BUGS examples. It provides more instructive error mes-
sages than BUGS. This is particularly helpful when we work with a “black box”
inferential engine. Stan can solve the multi-level models with unknown covariance
matrices which BUGS can not easily deal with. Moreover, it is easier to specify the
constraints of parameters in Stan.

Example 3.5 (An autoregressive process of order one). We continue with Example
3.2. Rather than programming the MCMC, we rely on BUGS and Stan to make
inference.

BUG:

A graphical model (also called a Doodle) representation is shown in Fig. 3.4. For
the simplicity, we only assume 6 observations. The single arrows imply stochastic
relationship, while double arrows imply logical relationship. A “parent” constant is
denoted by a squared plate, while other nodes are denoted by ellipse plates. The BUGS
can generate codes from graphical model by using “pretty print” under “model”
menu.

The modelling procedure using BUGS language typically includes the following
steps:

1. Check the syntax of the model specification by “Specification Tool””; if the model
is correctly specified, the message “model is syntactically correct” will appear
on the bottom left of the screen.
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Read in the following data by clicking “load data”:

list (K=20, x=

c(-0.58196581,-1.70339058, -4.29434356,-2.00495593,
-0.09234224,-1.56433489,-0.49151508, -1.55912920,
-0.90546327,-1.31576285, -1.12240668, 0.50931757,
0.54899741,-1.87582922,-4.54187225,-0.41553845,
0.31656492,-0.32832899, 1.69457825, 0.73050020)) .

The message “data loaded” will appear.

Specify the number of chains as 2 and compile the model. The message “model
compiled” will appear.

Load the following initial values:

list (alpha=-0.99, lambda=100)
list (alpha=0.99, lambda=0.001).

The message “model initialised” or “initial values loaded but chain contains
uninitialised variables” will appear. In the second case, we need to click “gen
inits”, which will generate initial values from priors.

After compiling and loading data, BUGS will choose an appropriate MCMC
method for each unknown quantity, which is shown under the menu “Info/Updater

types”.

. Start the simulation using “Update Tool”. We have the following options:

e Thin: Every kth iteration will be used for inference.

e Adapting: This will be ticked while the M-H or slice sampling is in its initial
tuning phase where some optimization parameters are tuned.

e Over relax: This generates multiple samples at each iteration and then selects
one that is negatively correlated with the current value. The within-chain
correlations should be reduced.

Monitor the interested unknown quantities using “Sample Monitor Tool”. Typing
* into the node box means all monitored nodes.

. Diagnose the convergence via “bgr diag” plots and trace plots shown in Fig. 3.5.

MCMC converges after 750 iterations, so we can rely on the subsequent iterations
to make inferences.

. Report the inferences. We can get the inference by clicking “stats” in “Sample

Monitor Tool” window. OpenBUGS also automatically reports DIC, pp, D/(\G)
(shown as “Dbar”), and D(0) (shown as “Dhat”). In this example, pp is close to
the number of parameters. See the following output:

Dbar Dhat DIC pD

X 75.83 73.86 77.81 1.975
total 75.83 73.86 77.81 1.975
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Stan:

Programming in Stan is more flexible and easier than in BUGS. For example, there is
no need to specify flat priors, logical operators are allowed in stochastic expressions,
constraints are easily incorporated, and there are more instructive error messages.
The Stan code is as follows:

modelcode<-"

data{
int<lower=0> J;
real x[J];

}

parameters {
real<lower=-1,upper=1> alpha;
real<lower=0> sigma;
real x21;

}

transformed parameters({
real<lower=0> sigmal;
sigmal<-sigma/(l-alpha”2) ;

}

model {
x[1] ~ normal (0,sigmal) ;
for (j in 2:J) x[j] ~ normal (alpha*x[j-1],sigma);
x21 ~ normal (alpha*x[J],sigma) ;

}
generated quantities/{
real <lower=0> lambda;
lambda<-1/sigma”2;
}
stanmodel <-stan_model (model_code=modelcode)
J=1length (x20)
dat<-1list (J=J,%x=x20)
fit<-stan (model_code=modelcode, data=dat, iter=1000, chains=4)
print (fit,par=c("alpha","lambda", "x21"))
## Inference for Stan model: modelcode.
## 4 chains, each with iter=1000; warmup=500; thin=1;
## post-warmup draws per chain=500, total post-warmup draws=2000.
##

## mean se_mean sd 2.5% 25% 50% 75% 97.5%
n_eff Rhat
## alpha 0.45 0.01 0.19 0.05 0.33 0.47 0.59 0.80
853 1
## lambda 0.39 0.00 0.13 0.18 0.30 0.38 0.47 0.70
1079 1
## x21 0.39 0.05 1.70 -2.96 -0.71 0.35 1.53 3.73
962 1
##
## Samples were drawn using NUTS (diag_e) at Thu Sep 10 23:23:28
2018.

## For each parameter, n_eff is a crude measure of effective
sample size,

## and Rhat is the potential scale reduction factor on split
chains (at

## convergence, Rhat=1).

Note that x20 is the data. We run iter=1000 iterations for each of four chains. By
default, Stan discards the first half of each chain as burn-in. In the output, the last
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row is normalized log posterior density. The se_mean column contains the MC errors
defined in Eq. (3.2). The last two columns correspond to n_e£f and Rhat, which we
defined in Egs. (3.3) and (3.1). The posterior densities of «, A, x,; and log posterior
density are shown in Fig. 3.6, which are similar to Figs. 3.2 and 3.3.

3.4 Modal and Distributional Approximations

The joint posterior modes can be found using the optimizing( ) function in Stan,
which applies the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Nocedal
and Wright 2006). Conditional maximization Newton’s method can also find the pos-
terior joint modes. For the marginal modes, a well-known method is the expectation-
maximization (EM) algorithm.

3.4.1 Laplace Approximation

Once the posterior mode is found, we can approximate the target distribution by a
multivariate Gaussian distribution with the same mode and covariance matrix as the
inverse of the log posterior density curvature at the mode. This approximation works
well for large sample sizes following the asymptotic theory discussed in Sect. 2.1.4.

3.4.2 Variational Inference

When facing a difficult problem for which we cannot give an exact solution, we
typically have two alternatives. One is to stick to this problem and give an approxi-
mation to the exact answer. That is what the MCMC methods do. We approximate
the exact posterior distribution using a Markov chain. The other is to introduce a
closely similar problem for which we can give an exact answer. That is what the
variational inference tries to do.

We introduce an approximate distribution family g that is easier to deal with than
p(0]y). The log model evidence log p(y) can be written as follows:

.0
log p(y) = log p((zm)

p(y, )
log
/ @l Gy ?
4(6) p(y,9)>
= 0) (1 1 do
/‘1( )(Og POy % 40
:/q(e)log () d9+/ @ 1og 2209 4

p@ly) 90
= KLI[q||p] + F(q., y),
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where the first term in the last line is called the Kullback-Leibler divergence between
q(6) and p(f|y), and the second term is called free energy. If we want to find an
approximate distribution ¢ to minimize KL[g||p], we can just maximize the free
energy since the model evidence is a constant given the sample.

3.4.2.1 Mean Field Variational Inference
A common choice of g () is to assume it can be factorized into independent partitions:
h
q©®) =[] a®).
i=1

This assumption is called mean field assumption. Under this assumption, if we dissect
out the dependence on g (6;), then the free energy can be written as

_ p(y.0)
F(q,y)—/q(O)log—q(g) do

h h
= /Hqiw» x (log Py, 0) — Zlogqiw») do

i=1 i=1

= /‘Ik(ek)l_[%(ei) x [log p(y, 6) — log g (6,)] d6

i#k

- / ac®) [ 416 D logqi(6:)de

i#k i#k

=/Qk(9k) /Hqi(ei)logp(}’,e)d&k — log qi (Or) | dbi
i#k
- / qc(0c) / [ a6 logqi©:)doy | do
i#k i#k
exp{Eq , log p(y, 0))

/‘]k(é’k) log do, +C
qrx (6)
= —KL [ (60| exp{Eq_, log p(y, 0)}] + C.

Then the approximate distribution g (6;) that maximizes the free energy is given by

« exp{Eq_, log p(y, 0)}
q; = argmax F(q,y) = . ~ )
qk

This implies a straightforward algorithm for variational inference. Assume the param-
eters in distribution g; are ¢y. The algorithm consists of the following two steps:
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e Determine the form of the approximating distribution. Average log p (y, 6) over
q—« (6—¢) to find the marginal approximate distribution g;’, whose parameters are
some function of parameters in g_x, ¢_.

e Iterative update ¢. The first step establishes the a circular dependence among ¢;.
We iterate ¢ until there are no more visible changes and use the last update g (6|¢)
as an approximation to p (6]y).

3.5 A Bayesian Hierarchical Model for Rats Data

We have seen a hierarchical model in Example 2.8. A hierarchical model is often used
when considering the variations on different levels. For most hierarchical models, the
posterior distribution does not have a closed form. We compute Bayesian inference
via programming a MCMC algorithm or using BUGS/Stan.

In this section, we reanalyze the rats’ weights data set shown in Table 3.4, and
extend the work by Gelfand et al. (1990) and Lunn et al. (2000). The data set contains
the weights of 60 rats measured weekly for 5 weeks. The first 30 rats are under control
while the rest are under treatment. Our interest is the effect of treatment on the growth
rates and on the growth volatility.

In Sect. 3.5.1, a classical fixed effects model and a random effects model are
considered. In Sects. 3.5.2 and 3.5.3, two Bayesian hierarchical models are used. The
advantages of Bayesian models are the accommodation of parameters uncertainties
and the inherent hierarchical structure. We turn to Stan to do model inference in this
section. In Sect. 3.5.4, we reparameterize the univariate normal hierarchical model
to propose a more efficient Gibbs sampler as we did in Example 3.4.

3.5.1 Classical Regression Models

We first fit a fixed effects model, then a random effects model with rat IDs as group
levels. We will see that the random effects model is better at capturing the two levels
of variation: between-rat variation and within-rat variation.

Table 3.4 The rats’ weights measured at the end of each week (Gelfand et al. 1990)

Rat id. 8 days 15 days 22 days 29 days 36 days
1 151 199 246 283 320
60 136 177 223 256 287
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Fig. 3.7 Two regression lines for the control and treatment groups

3.5.1.1 Two Regression Lines

We fit one regression line to each of the control group and the treatment group
respectively. Figure 3.7 roughly shows the negative effect of the treatment on the
weights.

3.5.1.2 A Random Effects Model

As we saw in Fig. 3.7, after considering the effect of treatment, there still remains
variation between different rats, so we may fit the following random effects model:

Vij = oo + Box; + o1 Liear (i) + B1Xj ligear (1) + a; + bix; + &5
a;i ~N(0,07).b; ~N(0,05) ., ; ~N(0,0%),

where i indicates the ith rat, j indicates the jth week; «g, Bo are the population inter-
cept and slope for the control group; o, f; are the incremental population intercept
and the slope for the treatment group; a;, b; are the random intercepts and the slopes
for the ith rats; and x; is the days until the jth week (i.e., x; =8, ..., x5 = 36).

In the random effects model, we effectively separate the residual variation from
the fixed effects model into two parts: the variation in random effects, measured by
aj, crg, and the variation in residuals, measured by o2 We compare the residuals
from the fixed effects model and the random effects model in Fig. 3.8. In the random
effects model, the variation of residuals is largely reduced, and the residuals for
each rat are closer to a normal distribution. Note that red dots indicate the means of
residuals for each rat.
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Fig. 3.9 Fitted lines in the random effects model

We draw the fitted lines for each rat in Fig. 3.9. In the random effects model, the
fitted values for the ith rat are obtained by adding the population fitted values (based
only on the fixed effects estimates) and the estimated contributions of the random
effects to the fitted values. The resulting values estimate the best linear unbiased
predictions (BLUPs) for the ith rat.
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One interest is the effect of treatment on the growth rate, measured by ;. The
summary output shows the significant negative effect of treatment on the growth rate.
Another interest is whether a rat with higher birth weight will grow faster. A Pearson
correlation test of intercepts and slopes shows there is no significant relationship
between birth weights and growth rates.

3.5.2 A Bayesian Bivariate Normal Hierarchical Model

A Bayesian bivariate normal hierarchical model is used to fit both control and treat-
ment groups as follows:

~

N (o + Bixj.02).i=1,...,30
~N(a + Bixj,07),i=31,...,60
N

5)x(()-5) =1
() -~(GE35) ). =

1
Y., ¥, ~ Inv-Wishart <200 0 ) 2],

3.4)

0 02

where «, 8, Aa, AB, 02, o2 have non-informative priors.

We are interested in the effect of treatment on the growth rate, AB, the variation
ratio of treatment group to control group, o, /o, and the correlation between growth
rates and born weights (for either control group, i.e., p., or treatment group, i.e., o;),
Peyi = ey [1,2] /\/Z‘c/, [1, 1] X, [2, 2]. The Stan code is as follows:

rats_codel<-"

data{
int <lower=8, upper=36> dayI[5];
real <lower=0> weights [60,5];

}

parameters {

vector [2] ab[60];
vector [2] ab_ave;
vector [2] ab_treat;

real <lower=0> sigmacC;
real <lower=0> sigmaT;

cov_matrix[2] cov_ave;
cov_matrix[2] cov_treat;
}
model {
for (j in 1:30) ab[j] ~ multi_normal (ab_ave, cov_ave);
for (j in 31:60) ab[j] ~ multi_normal (ab_ave+ab_treat, cov_
treat) ;

for (j in 1:30)
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for (t in 1:5) weights[j,t] ~ normal(ab[j,1l]l+abl[j,2]*day([t],
sigmacC) ;
for (j in 31:60)
for (t in 1:5) weights[j,t] ~ normal(abl[j,1l]+abl[j,2]*dayl[t],
sigmaT) ;

generated quantities/{

In

real TC_sigma;

matrix[2,2] TC_ab;

vector [300] log_1lik;

vector [300] dev_res;

vector [300] fitted;

real rhoC;

real rhoT;

real D;

TC_sigma <- sigmaT/sigmaC;

TC_ab <- cov_treat ./ cov_ave;

rhoC <- cov_ave[l,2]/sgrt(cov_avel[l,l]*cov_ave[2,2]);
rhoT <- cov_treat[1l,2]/sgrt(cov_treat[l,1]*cov_treat[2,2]

for (j in 1:30) ¢{
for (t in 1:5) {
log_1lik[5*(j-1)+t] <- normal_log(weights[j,t], abl[j,1] + ab
[j,2] * daylt], sigmaC);
dev_res [5*(j-1)+t] <- (weights[j,t] - abl[j,1] - abl[j,2] *
day[t]) / sigmacC;
fitted[5*(j-1)+t] <- abl[j,1] + ablj,2] * daylt];

}
for (j in 31:60) {
for (t in 1:5) {
log_1lik[5*(j-1)+t] <- normal_log(weights[j,t]l, abl[j,1] + ab
[§,2] * dayl[t], sigmaT);
dev_res [5*(j-1)+t] <- (weights[j,t] - abl[j,1] - abl[j,2] *
day[t]) / sigmacC;
fitted[5*(j-1)+t] <- ab[j,1] + ab[j,2] * dayl[t];

O -

<- sum(-2*log_1lik) ;

Stan, we simulate four chains, each of 400 iterations, and discard the first halves.

The MC estimates are shown in Table 3.5. The MC estimated posterior densities of
interested quantities are drawn in Fig. 3.10. According to Table 3.5 and Fig. 3.10,
we make the following conclusion: the effect of treatment on the growth rates is
negative, i.e., the CPDR of AB = B; — B, is negative; the treatment group is less
volatile, i.e., the CPDR of o, /0, is less than 1; there is no significant relationship
between born weights and growth rates for either group, i.e., the CPDRs of p, and

Pt

contain 0. Finally, Fig. 3.11 validates the assumption of normal error distribution.
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Fig. 3.10 The posterior density plots of interested parameters in the Bayesian bivariate model
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Table 3.5 The MC estimates made by Stan

Advanced Bayesian Computation

Parameter | Post. mean Mean err. | 2.5% Median | 97.5% Eff. size | R

AB —1.33 0.01 —1.64 —-1.32 —1.01 800 1.00
o1/0¢ 0.72 0.00 0.58 0.72 0.89 661 1.00
P —0.17 0.01 —0.59 —0.19 0.32 428 1.01
01 0.00 0.01 —0.43 —0.01 0.40 800 1.00
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Fig. 3.11 The deviance residual plots of the Bayesian bivariate model

3.5.3 A Bayesian Univariate Normal Hierarchical Model

In the previous section, p is not significantly different from 0. If we can assume that
p = 0, the bivariate normal hierarchical model (3.4) can be simplified to a univariate
normal hierarchical model, as follows:

+,3,X/, Lz)’
o + pixj, o zz)’
2Y),i= ,...,30

N (o
N
N(a.0
(,3 oﬁc) 1,...,30
N
N{(

.., 30
..., 60

(3.5)

., 60
., 60,
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2

2 2 2

2 2
where o, B, Aa, AB, 0., 0, Oper Oy 005 O

priors. The Stan code is as follows:

rats.code2<-"
data{

int <lower=8, upper=36> dayl([5];
weights [60,5];

real <lower=0>

}

parameters {

real alpha[60];
real beta[60];
real alpha_ave;
real alpha_treat;
real beta_ave;
real beta_treat;

real <lower=0> sigmacC;
real <lower=0> sigmaT;

real <lower=0> sigma_alphaC;
real <lower=0> sigma_alphaT;
real <lower=0> sigma_DbetaC;
real <lower=0> sigma_betaT;

}

model {
for (j in 1:30) alphalj]
sigma_alphaC) ;
for (j in 31:60) alphalj]
sigma_alphaT) ;
for (j in 1:30) betalj]

sigma_betaC) ;

for (j in 31:60) betal[]j]

sigma_betaT) ;
for (j in 1:30)

~ normal (alpha_ave,

67

are assumed to have non-informative

~ normal (alpha_ave+alpha_treat,

~ normal (beta_ave,

~ normal (beta_ave+beta_treat,

for (t in 1:5) weights[j,t] ~ normal (alphal[jl+betal[jl*daylt

1,sigmacC) ;
for (j in 31:60)

for (t in 1:5) weights[j,t] ~ normal (alphal[jl+betal[jl*daylt

],sigmaT) ;
}
generated quantities/{
real TC_sigma;
real TC_bsigma;
real TC_asigma;

vector [300] log_1lik;
vector [300] dev_res;
vector [300] fitted;
real D;

TC_sigma<-sigmaT/sigmacC;
TC_asigma<-sigma_alphaT/sigma_alphaC;
TC_bsigma<-sigma_betaT/sigma_betaC;

for (j in 1:30) ¢{
for (t in 1:5) {
log_1lik [5*(j-1)+t]

< -

betal[j] * dayl[t],

dev_res [5*(j-1)+t] <-
day[t]) / sigmaC;
fitted[5*(F-1)+t] <-

}
for (j in 31:60) {

normal_log (weights[j,t], alphalj]

sigmacC) ;
(weights

alphal3j]

[,t] - alphal[j] - betalj]

+ betalj]

*

day[t];

+

*
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for (t in 1:5) {
log_1lik [5*(j-1)+t] <- normal_log(weights[j,t], alphalj]l +

betalj] * dayl[t]l, sigmaT);
dev_res [5*(j-1)+t] <- (weights[j,t] - alphalj] - betalj] *
day[t]) / sigmaT;

fitted[5*(J-1)+t] <- alphal[j]l + betaljl * daylt]:;

}
D <- sum(-2*log_1ik) ;

We get similar estimates of AB and o, /0, as in model (3.4). We display the model
selection criteria in Table 3.6. Both DIC and WAIC agree on the best model (3.5).
The Stan code for information criteria is as follows:

rats.stanfitl<-stan (model_code=rats.codel, data=c("weights", "day
") ,iter=1000, chains=4, seed=20) #or model_code=rats.code2
rats.siml<-extract (rats.stanfitl, permuted =T)
# loo and WAIC
loo(extract_log_lik(rats.stanfitl,"log_1lik"))
# pD and DIC
Dbarl<-mean (rats.siml$D)
Dhatl<-0
for (j in 1:30){
for (t in 1:5)

Dhatl<-Dhatl-2*dnorm (weights([j,t], mean(rats.simlS$alphal,j]) +
mean (rats.siml$betal,j]) * dayl[t], mean(rats.siml$sigmacC),
log=T);

}
for (j in 31:60) {
for (t in 1:5)

Dhatl<-Dhatl-2*dnorm(weights([j,t], mean(rats.simlS$Salphal,j]l) +
mean (rats.siml$betal[,3j]) * dayl[t], mean(rats.siml$sigmaT),
log=T) ;;

3.5.4 Reparameterization in the Gibbs Sampler

An issue arises when R is used to reproduce the results from the Stan analysis. Table
3.7 shows the posterior mean estimates of scale parameters in model (3.5) using a
Gibbs sampler coded in R, compared with the estimates from Stan. The estimates of
&, and &, using the R Gibbs sampler are unduly large.

Table 3.6 Information criteria of models (3.4) and (3.5)

Model lppdloo—cv DIC PD WAIC PWAIC
3.4 —988.6 1938.7 107.3 1948.0 91.9
3.5) —988.6 1937.2 103.2 1946.2 88.8
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Table 3.7 Comparison of the MC estimates of scale parameters via different sampling methods

Estimation method O Ouc Gpe oy Car Gpr

Stan 6.2 10.7 0.52 43 13.8 0.55
Gibbs sampler 13.2 11.1 0.5 14.2 13.6 0.56
New Gibbs sampler 5.6 12.7 0.46 39 14.5 0.52

The effectiveness of the Gibbs sampler crucially depends on the choice of param-
eters to be simulated. Gelman et al. (2014) suggested parameterization in terms
of independent components as an approach to constructing an efficient simulation
algorithm. Following the suggestion, model (3.5) is reparameterized as follows:

yij ~N(yi + i (xij = %), 02),i=1,...,30

yij ~N(vi + Bi (xij — xi),af),z—31, .60

yi ~N(a+pX;. 00 +05%;).i=1,...,30

Bi ~ N (B, aﬁc) i=1,...,30

yi ~N(a+ Aa+ (B + AP)%i. 0 + 0} %;) i =31,....60
Bi ~N(B+ AB.oj).i =31,....60,

where the prior of y; is derived based on the relationship y; = o; + BiX;.
Fori =1, ..., 30, the full conditional distributions of y; and B; are

v (02 +03]) + @+ E) 0l (o2 + 3R} o7

vil- ~N

5( +aﬂ01)+02 5(02 + 0. )—i—ocz
,3 | N (Zi:l Yij (xij _Ei)o'ﬁc + ﬂacz 0/3250 )
il 5 N s 5 — s
Zj:l (‘xij _xi) U,gc +Uc2 Zj:l ()ij _xi) G/gc +Gc2

where p(y;| -) does not depend on §; and p(B;|-) does not depend on y;. We use these
full conditional distributions to update y;, B;, and then recover «; as y; — B;x;. This
new Gibbs sampler gives more accurate posterior mean estimates of scale parameters,
as shown in Table 3.7.

3.6 Bibliographic Notes

Metropolis et al. (1953) were the first to describe the Metropolis algorithm. This was
generalized by Hastings (1970). The Gibbs sampler was first so-named by Geman
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and Geman (1984). HMC was introduced by Duane et al. (1987) in the physics
literature and Neal (1994) for statistics problems.

Gelman and Rubin (1992) and Brooks and Gelman (1998) provided a theoretical
justification of the convergence checking methods presented in Sect. 3.2.1 and 3.2.2.
For improving the efficiency of MCMC, Tanner and Wong (1987) discussed data
augmentation and auxiliary variables. Hills and Smith (1992) and Roberts and Sahu
(1997) discussed different parameterizations for the Gibbs sampler.

Lunn et al. (2012) is the first book about the BUGS project. Other references to
BUGS include Lunn et al. (2000) and Spiegelhalter et al. (2003). The references to
Stan include Stan Development Team (2014), Carpenter et al. (2017), Gelman et al.
(2015), Homan and Gelman (2014) and Kucukelbir et al. (2015). Vehtari et al. (2015)
demonstrated the calculation of WAIC and LOO cross-validation in Stan.

The EM algorithm was first presented in full generality by Dempster et al. (1977).
Some references on variational Bayes include Jordan et al. (1999), Jaakkola and
Jordan (2000), Blei et al. (2003) and Gershman et al. (2012). Hoffman et al. (2013)
presented a stochastic variational algorithm that is computable for large datasets.

Gilks et al. (1996) is a book full of examples and applications of MCMC methods.
The data and model investigated in Sect. 3.5 are from Gelfand et al. (1990).

For other sampling methods, Neal (2003) discussed slice sampling, and Gilks and
Wild (1992) introduced adaptive rejection sampling.
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Chapter 4 ®)
Bayesian Chain Ladder Models i

Abstract We study the Bayesian chain ladder models and their extensions in this
chapter. In Sect. 4.1, the non-life insurance claims reserving background is reviewed.
There are two parts in this section. The first part reviews claims reserving terminology.
The second part summarizes widely used traditional reserving methods, including
the chain ladder (CL) method and the Bornhuetter-Ferguson (BF) method. Stochastic
models are discussed in Sects. 4.2 and 4.3. We focus on a Bayesian over-dispersed
Poisson (ODP) model with an exponential decay curve component (Verrall et al.
2012). Reversible jump MCMC is used to simulate a sample from this model. In
Sect. 4.4, we propose a compound model based on the payments per claim incurred
(PPCI) method. A fully Bayesian analysis blending with preliminary classical model
checking is performed on the weekly benefit data set and the doctor benefit data
set from WorkSafe Victoria, a workers compensation scheme in Victoria state of
Australia. We compare our results with the PwC evaluation (Simpson and McCourt
2012).

4.1 Non-life Insurance Claims Reserving Background

Non-life insurance is also known as property and casualty (P&C) insurance in the
United States and general insurance in Australia. There have been much stochastic
claims reserving literature proposed in recent decades. England and Verrall (2002)
is a good summary of stochastic models up to 2002. Wiithrich and Merz (2008,
2015) are very much mathematically driven. The literature using Bayesian methods
include Taylor (2000), England et al. (2012), Verrall and Wiithrich (2012), Zhang
et al. (2012), Meyers (2015), etc. We follow Taylor (2000) to review the claims
reserving terminology and the traditional claims reserving methods.
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4.1.1 Terminology

A non-life insurance policy is a contract between two parties, the insurer and the
insured, providing for the insurer to pay an amount of money to the insured on the
occurrence of specified events.

A claim is the right of the insured to these amounts and the aggregate of facts
establishing that right and the insurer’s fulfillment of it. These facts are also called
trigger events. For a personal automobile policy, the trigger event is usually a car
accident. For a workers compensation policy, the trigger event is usually a work-place
accident. For a homeowners policy, it can be a fire or storm.

The date on which the events generating the claim took place is called date of
occurrence. Most non-life insurance policies are occurrence policies, which limit the
insurer’s liability to the trigger events within the policy period. In contrast, claims-
made policies cover the claims made during the policy period even if these claims
arise from an event that happened before policy inception. Most malpractice insur-
ance policies are belong to this type. Claim amount is the amount which the insurer
is obliged to pay with respect to a claim. It is also called loss amount, claim payment,
loss payment, paid claim, paid loss etc.

4.1.1.1 The Claims Process

Figure 4.1 shows the time line of a claim. The period A to B is the policy effective
period, during which accidents fulfilling other policy conditions will be covered. #;
is the date of occurrence. The claim is not notified to the insurer until #,, when the
policy is already expired.

Typically, the claim will not be paid immediately. At the very least there will be
administrative delays. For more complicated claims, investigation, dispute, litigation
or other processes are needed before determination of any payments. It may be in the
nature of the policy that the payments extend over years, e.g., when the benefits are
income replacement under workers compensation. At time ¢s, the insurer considered
the action on the claim was complete and closed it. At time f, the early closure
decision was found to be wrong and claim was reopened, further payments made,
and it was closed again at 3.

Occurrence  Notification Loss Closure  Re-open Loss  Ciosure
Pavments Payments
v v v L v L ¥ L
—— >
At Bt ty &, te te t, tg

Fig. 4.1 Time line of a claim
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4.1.1.2 The Components of Unpaid Claims

Unpaid claims as of a particular time are defined as the outstanding loss liability with
regarding to the past exposure period. For the claim in Fig. 4.1, the unpaid claims as
of time B are called the incurred but not reported claim (IBNR), since there is no
notification of the claim.

At t,, when the claim is notified, the unpaid claims consist of case estimates,
future development of case estimates and estimates for reopened claim. Case esti-
mate is established by the claim department or independent adjusters. The sum of
future development of case estimates and estimates of the re-opened claim are called
incurred but not enough reported (IBNER).

Aggregately, at any particular time point, the unpaid claims of an insurer consist
of IBNR, case estimates for reported claims, and IBNER. The case estimates and
IBNER are set up individually according to the characteristics of a particular claim,
while IBNR must be estimated aggregately since it comes from the existing claims
not yet reported to the insurer. Actuaries rely on the historical aggregate claims data
to estimate IBNR, which is also one of the main tasks of this monograph.

4.1.1.3 Loss Reserving

The outstanding loss liability is distinct from loss reserve. The outstanding loss
liability is an unknown random variable which would be recognized after all the
claims are paid. Before all the claims are closed, an unbiased estimate of unpaid
claims liability as of a valuation date is called expected outstanding loss liability.

A reserve set at this level would have a roughly 50% chance of ultimate adequacy.
Often an insurer will wish to reserve more strongly than this and will add a margin to
the expected liability. This margin is also referred to as the prudential margin or pro-
vision for adverse deviation. To quantify the margin, the uncertainty of outstanding
loss liability or, ideally, its predictive distribution needs to be estimated.

4.1.2 Run-Off Triangles

As mentioned before, the estimation of IBNR is impossible for a single claim. So we
need to rely on the aggregate claims history. The claims are usually cross-aggregated
by two factors: period of occurrence and period of development. We treat all the
claims with the same occurrence period as a group and track the group’s development
in the future. This structure is analogous to the rats growth data in Sect. 3.5. The only
difference is that the claims groups have varying development periods at a particular
time.
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Table 4.1 An incremental

: . Occurrence period Development period
claims run-off triangle
1 2 ... 1
V1,1 V1,2 1,1
2 2,1 ¥2,2
1 Vi,1

4.1.2.1 Notation for a Run-Off Triangle

We denote the occurrence periods (or accident periods) by i =1, ..., I, and the
development periods by j = 1, ..., J. The unit can be a quarter, half or full year,
but the occurrence periods and development periods should use the same units and the
intervals should be equal. The experience periods (or calendar periods) are denoted
by k =i + j, which contains a cross-section of experience from various periods of
occurrence lying on a diagonal line, and the incremental claims of occurrence period
i during the development period j as y; ;.

In the case of I > J, the run-off triangle becomes a trapezoid where the early
occurrence periodsi = 1, ..., J — I are assumed fully run-off by the development
period J. A trapezoid can be converted to a triangle by adding J — I development
periods and assuming y; ; = 0 for J/ < j < I. So we always consider the case when
I = J. Table 4.1 shows a typical structure of incremental claims run-off triangle,
where the upper triangle { yijiri+j<I+ l} is available by the end of most recent
accident year / (or by the end of most recent experience period I + 1). The loss
reserving problem is to predict the lower triangle {y; ; :i +j > I +1, j < I}, and
tail development {y; ; : j > I} if not fully run-off by the end of development period
I. The final reserve is not equal to the summation of predicted lower triangle and
possible tails development but depends on the uncertainty around them.

We define the cumulative claims for occurrence year i as of development period j
asc; = Z{:l vi.1, and the ultimate claims of occurrence year i as ¢; o Or #;, which
is equal to ¢; ; when the claims are fully run-off by the development period /. The
unpaid claims of accident year i are defined as R; = ij; 1—i+2 Yi.j- In the case of
no development after /, R; = ¢;; — ¢; j—i+1. The total unpaid claims are defined as

R= ZiI:l R;.

4.1.3 Widely-Used Claims Reserving Methods

Here we list two methods: the chain ladder (CL) method and the Bornhuetter-
Ferguson (BF) method. Friedland (2010) discusses other popular methods such as
the Cape Cod method, frequency-severity method, case development method etc.
But the CL and BF methods are the building blocks of all the other methods.
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Table 4.2 An age-to-age factors triangle

Occurrence period | Age-to-age factor
1to2 2to3 I—1tol
fii=cia/c1n fia=c13/c12 fl—1=cur/ci-1
2 1 =c22/c2 fro=c23/c22
-1 fi-11 =
cr—12/¢i-1,1

4.1.3.1 The Chain Ladder Method

The CL method is the most popular and basic technique. The key assumption is that
the future claims development is similar to prior years’ development. An implicit
assumption is that, for an immature accident year, the claims observed so far tell
something about the claims yet to be observed. This is in contrast to the assumption
underlying the BF method. Other important assumptions include a consistent claim
processing and a stable mix of claim types.

The CL method first calculates the observed age-to-age factor (also called the
development factor) triangle as in Table 4.2. The CL method requires the judgemen-
tally selected age-to-age factors among the candidates including all-year average,
last three-year average, volume-weighted average etc. We define the CL estimate of
development factor of j to j + 1 as the volume-weighted average:

I=j
~ i1 Cij
fj:Zl—ll_—j“’“forj=1,...,1—1.
Dici Cij

Assume the tail factor as f;. In the case of no development after 7, f; = 1. The
CL estimate of ultimate claim of occurrence period i is

Ui = Cioo = Citgi—i fr41=i - f1.

The expected outstanding liability of occurrence period i is

Ri=ciriii (fl+1—i o 1) .

4.1.3.2 The Bornhuetter-Ferguson Method

The Bornhuetter-Ferguson (BF) method (Bornhuetter and Ferguson 1972) assumes
that unpaid claims will develop based on a prior ultimate claim estimate. In other
words, the claims reported to date contain no informational value as to the amount
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of claim yet to be reported. The BF method is rather robust against the unreliable
immature claim in the recent accident years.

The BF method applies the same estimate of development pattern as the CL
method, but uses a prior estimate of ultimate claims #;. The BF reserve is I?,- =
Uu; (1 — 21“4) , where Z;,1_; is the estimated percentage of the ultimate claims
amount that is expected to be known by the end of the most recent development period
I 4+ 1 — i for the occurrence period i (i.e. by the end of the most recent experience
period I + 1). The BF method simply uses the CL estimates f] to estimate z as
follows:

A

-1 —1
A 2 ;o7 4 ;o2 . -1
Zl=(f1... 171f1) ,--.,2171=(f171f1> 2= fr .

4.2 Stochastic Chain Ladder Models

Wiithrich and Merz (2008) commented on the development of claim reserving meth-
ods that:

Reserving actuaries now have to not only estimate reserves for the outstanding loss liabilities
but also to quantify possible shortfalls in these reserves that may lead to potential losses.
Such an analysis requires stochastic modelling of loss liability cash flows and it can only be
done within a stochastic framework.

This section summarizes the recent literature on stochastic claims reserving models.
They can be divided into two categories according to the mean functions: multi-
plicative (cross-classifed) structure using occurrence period and development period
as factor covariates; parametric curve using development period as a continuous
variable.

The first type of models can give the CL estimates when using over-dispersed
error structure but they cannot accommodate the tail development. The second type
of models have far fewer parameters and can accommodate the tail development. We
will turn to the bootstrap or the MCMC methods to get the predictive distribution
of unpaid claims. RIMCMC is discussed in this section as a way of combining the
MCMC methods with the model selection.

4.2.1 Frequentist Chain Ladder Models

The distribution-free model by Mack (1993) and the over-dispersed Poisson (ODP)
model by Renshaw and Verrall (1998) use the same mean function to fit the incre-
mental claims. The mean function is the multiplication of two parameters, which cor-
respond to the occurrence periods and the development periods respectively. Besides
having the same response variable and mean function, they both assume the variance
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of the response variable is proportional to its mean. It is not surprising that both of
them give the CL estimates.

The distribution-free model does not assume a distribution family and relies on
the unbiased estimators, while the ODP model assumes a Poisson distribution and
relies on the MLE. They have different prediction errors and predictive distributions
which can be estimated via the bootstrap.

4.2.1.1 The Distribution-Free Model

Mack (1993) proposed a distribution-free model assuming only the first two moments,
as follows:

E(c,-,j|c,-,j,1) ijflci,jfl, i= ],...,I, j=2,...,]

4.1
Var(c,-,j|c,-,j_1):U?_lci,j_l, i=1,...,1, ]22,,] ( )

It can be shown that the CL estimators f; are the unbiased estimator of f;. Using

the CL estimators f;, the unpaid claims estimate is the same as the CL estimate.

Furthermore, an unbiased estimator for af is

—J 2
~2 Ci j+1 A .
67 = § <” f,»), j=1...,1-2
[ - .] Tz Cij
22 2 2
0;_, = min (0172/0173, min (0173, 0172)) .

The conditional mean squared error of prediction (MSEP) for R; is

y)=E <(Ri - 1%)2‘y> = Var (R) + (E(R) ~ &)

wherey = {y;;:i=1,...1, j=1,...,1 —i+ 1} is the upper triangle. In words,
the conditional prediction variance is equal to the sum of process variance and esti-
mation bias squared. Note that E (R;) # Ié; see Mack (1993). The analytical results
of conditional MSEP of individual occurrence period reserve and total reserve are
available. As a final remark, Mack (1999) extends this model to involve the tail factor.

MSEP, (1%[

4.2.1.2 The Over-Dispersed Poisson (ODP) Model

One of the most popular generalized linear models in the claims reserving problem
is the ODP model which has the following form:

M~Poisson(ﬂ>,i=1,...,1,j=1,...,1, (4.2)
¢ <p
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with the constraint ZJJ‘=1 vv; = 1. Here p; is interpreted as the expected ultimate
claims of occurrence period i and +; as the expected proportion of incremental
claims to the ultimate claims during development period j. This model has been
intensively studied, including by Renshaw and Verrall (1998), Verrall (2000, 2004),
England and Verrall (2002, 2006), England et al. (2012), Verrall et al. (2012) and
Wiithrich (2013b).

An implicit assumption of this model is that the variance of the response variable
is proportional to its mean. We can check this assumption by inspecting the residual
plots. When it fails, other error structures such as a Tweedie distribution can be used.

It can be shown that the MLESs for y; and «y; are equal to the CL estimates using
the weighted averages of age-to-age factors. The ODP model can be extended to
non-integer, and negative data (i.e., when recoveries are possible) via the quasi-
likelihood method (Faraway 2015). The quasi-likelihood method is easily applied in
R by specifying the argument family as quasi in the function glm().

We define the unscaled Pearson residuals as

Yij — M
Tijg=—"7Fr/=—_

where 71; ; is the MLE for E (y,‘, j) (i.e., the fitted value). The dispersion parameter
 is estimated by
Zi+j§1+1 ri.j’

v

where N = (I + 1)1/2 is the number of observations, and p = 21 — 1 is the number
of parameters. Fortunately, R can calculate all of these estimates in a second. England
and Verrall (2006) also consider the non-constant dispersion for development periods,
which is the assumption of the distribution-free model (4.1).

The mean squared error of prediction for R; is

R A2 A . \2
MSEP(R;) = E(Ri — R,») = Var (R,- - R,-) + (E (R)) — IE(R,-)) .
The second term is approximately zero. Hence,
MSEP(R;) ~ Var (R,- - zéi) = Var (R;) + Var(R)). 4.3)

In words, the prediction variance is roughly equal to the sum of process variance
and estimation variance. R cannot provide the MSEP(I%,-) directly since it is a com-
plicated function of parameters. From Renshaw and Verrall (1998), MSEP(I%,») is
estimated as

1 1
Z (,51’;;! + Z m Var "71 j +2Zml kmllcov (nlka nii )’
j=I— j=I1— k>l
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where 7 is the linear predictor and its covariance matrix is available directly from R.
England and Verrall (2002) also give the MSEP of total reserve with an additional
covariance term for different occurrence periods (i.e., Cov (.«, 7n.;))- We can rely
on ChainLadder package to get MSEP(ﬁi). Later, we will use the bootstrap or
MCMC to simulate R; and estimate its MSEP based on the simulated sample.

4.2.1.3 The Predictive Distribution via the Bootstrap

Bootstrapping (Efron and Tibshirani 1994) is a powerful, yet simple, technique for
obtaining information from a single sample of data. In a standard application of
the bootstrap, where data are assumed to be independent and identically distributed,
resampling with replacement takes place of the data themselves.

In regression problems the data are usually assumed to be independent but not
identically distributed due to the existence of covariates. Therefore, with regression
problems it is common to bootstrap residuals, rather than data themselves, since the
residuals are approximately independent and identically distributed. For model (4.1)
and model (4.2), we use the scaled Pearson residuals for bootstrapping.

The bootstrap for model (4.1).
Model (4.1) is in a recursive structure. England and Verrall (2002) showed that

an equivalent model can be obtained using the observed factors f; ; as a response
variable with the following mean and variance:

E(fijlei) = f;
o2
Var (f,',j|c,-,j) = c—j
ij

The scaled Pearson residuals are defined as

o i

r

RNy
The bootstrap algorithm for model (4.1) is as follows:

1. Sample with replacement, from the set of scaled Pearson residuals, to get a sample
of residuals for a single bootstrap iteration [rfj i+ j<Iy.

2. Back out the residual definition to obtain a pseudo run-off triangle of development
factor as follows: 5 A

g _ Fij%i

ij =

”+f,.

2¥)

3. Obtain the new volume-weighted development factor
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I-j ¢B
' Di=i Jij Cii
fi= Y AT
D ici Cij
4. Simulate the future claims. Starting from the latest cumulative claims ¢; j+1-;,

forecast the next cumulative claims by sampling a value from a gamma distribu-
tion:

~D LN

= ~
. C; - .
~ f] 1— i, I+1—i f1+1—l .
Ci,1+2—ilci,1+l—i ~ Gamma o fori = 2, ey 1.
Or+1-i Or+1-i

5. Recursively predict the future cumulative claims by sampling from

_ fiei f . . .
Ci,j+11¢;,j ~ Gamma = fori =3,...,Iandj=1—-i+3,...,1.
o; 0

6. Calculate each accident year future claims and total future claims as

Rl' = E,"I — Ci,I+1—i> fori = 2, ey 1

R=Ry+Ri+---+Ry.

7. Repeat steps 1-6 to get a sample of R; and R.

The empirical distribution of the bootstrap sample approximates the predictive dis-
tribution. The prediction variance of total liability can be estimated by the sample
variance of the bootstrap sample of total liability. Note that the bootstrap sample
variation consists of variation due to bootstrapping in step 1 (i.e., estimation vari-
ance) and variation due to forecasting in step 4 and 5 (i.e., process variance), which
correspond to the two terms on the right side of Eq. (4.3).

The bootstrap for model (4.2).

The scaled Pearson residuals of model (4.2) are

A

s Yij — Mij
The bootstrap algorithm for model (4.2) is as follows:

1. Sample with replacement from the set of scaled Pearson residuals to get a sample
of residuals for a single bootstrap iteration {rf it j=1 }

2. Back out the residual definition to obtain a pseudo run-off triangle of incremental
claims as follows:

B __ B A A ~
Yi.j = Tijy/ iy +m .
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Table 4.3 The total outstanding liability estimates from models (4.1) and (4.2)

Model Estimate No tail factor With tail factor
“4.1) R 1,463,076 1,599,558

\/ MSEP,.(R) 55,300 58,528
(4.2) R 1,463,076 (1,471,906) | NA

\/ MSEP(R) 60,444 (60,087) NA

3. Use the CL method to get the new estimate ji;, ; based on the pseudo incremental
claims run-off triangle from step 2.
4. Simulate the future claims from the following ODP model:

~ I ~
Hi Zj:]—i+2 i

R; ~ (Poisson
¥

) fori =2,3,...,1.

Calculate the total future claims as Ii: 152 + R:; +---+ Ry.
5. Repeat steps 1-4 to get a sample of R; and R.

In the case when ¢ is large, e.g., ¢ = 1000, R; will be sampled from {0, 1000, ...},
which is undesirable. We can use an alternative gamma distribution with the target
mean and variance in step 4.

Example 4.1 (Liability insurance claims data) We use the liability claims run-off
data with 22 accident years and 22 development years from Verrall and Wiithrich
(2012). The R package chainLadder by Gesmann et al. (2015) can estimate all the
quantities we have previously mentioned.The residual plots are needed to validate
the model assumptions.

Table 4.3 shows that models (4.1) and (4.2) both give the same point estimate of
total liability, which are also equal to the CL estimate. The numbers in parentheses are
from the bootstrap method. The distribution-free model (4.1) can accommodate tail
development, which consists of nearly 10% of total liability. The conditional mean
squared error is smaller than the unconditional mean squared error since the latter
involves the extra uncertainty induced by the historical claims data (i.e., estimation
error).

The function BootChainLadder in the R package ChainLadder performs the
bootstrap for model (4.2). Here we bootstrap 1, 000 times. We show the histogram
of the bootstrap sample of total outstanding liability in Fig. 4.2, and we get the
bootstrap estimate of total outstanding liability and the standard error in Table 4.3
(stated in parentheses).
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Fig. 4.2 The histogram of the total outstanding claims liability via the bootstrap

4.2.2 A Bayesian Over-Dispersed Poisson (ODP) Model

The model (4.2) in a Bayesian framework has the following form:

Y Poisson <ﬂ>
2 2

w; ~ Gamma (a;, b;) @4)

v; ~ Gamma (c;, d;),

where p; is related to the ultimate claim of accident year i, 7, is related to the
incremental claims percentage during development year j, and a;, b;,c;,d; are
constant hyperparameters whose values are adjusted according to prior knowledge.
In the case where there is no prior knowledge, we assume p; and ; follow the
same non-informative prior. ¢ is a plug-in estimate via GLM (see Sect. 4.2.1.2). We
can assume a prior for ¢, see Example 3.17 of Wiithrich and Merz (2015). Note
that the uncertainty around ¢ doesn’t have a significant influence on the predictive
uncertainty of unpaid claims. Hence, it is reasonable to assume a constant ¢ as we
did here.
The joint posterior distribution of . = (uy, ..., py) and v = (yy, ..., y7) is

Pyl v) p(p,y)

S POl y) p () dudy o P Ol PG )

p (YY) =
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i j iy j 5 !
o [ ex (‘7’ ! ) (71 ! ) [Tmi " exp(=bipi) T 7" exp (—dj;) -
i+j<i+1 L4 L4 i=1 j=1
Our interest is in not only the parameter p, -y but also the future claims. We have the
following posterior predictive distribution of future claims:
POy =/ p (¥l ) p ( v1y) dpdy,
1y

where y’ is the set of lower triangle. It is hard to solve p (y’|y) analytically. The
conditional mean squared error of prediction for a predictor Ris

2

MSEP,(R) = E ((1% - R)2

y) = Var (Rly) + (R~ E(RIy))

We prefer the predictor R=E (R|y) (i.e., the posterior mean) which minimizes
MSEP.(R). The MSEP of the posterior mean is Var (R|y), which can be estimated
from a MC sample.

4.2.2.1 A Gibbs Sampler for Model (4.4)

The Gibbs sampler is a special case of the Metropolis-Hastings (M-H) algorithm.
In the M-H algorithm if we choose the full conditional distribution as the proposed
distribution, the acceptance rate will be 1. The use of the Gibbs sampler implicitly
requires that the full conditional distribution is recognisable; otherwise, we need to
turn to the general M-H algorithm or adaptive rejection sampling (Gilks and Wild
1992).

The full conditional distribution of y; is obtained from p (u, y|y), assuming all
the other parameters constant, as follows:

I+1-i I+1-i
Wil Tim i
P(Mib”’%lL[)O(eXp (—JT> i @ i leXP(_bi/ii),

where p_; is the vector i excluding u;. It can be recognized as a gamma distribution

I+1—i I+1—i
i—1  Yi,j i=1 Vi
pily, v ~ Gamma [ a; + 2 L b+ 2o . 4.5)
P ¥
Symmetrically, the full conditional distribution of v; for j =1, ..., is
IHl-j I+1-j
v;ly, p ~ Gamma (cj + Z’zl(p 2, dj + Zl:zp Ml) . (4.6)



86 4 Bayesian Chain Ladder Models

A Gibbs sampler based on the above full conditional distributions has the following
steps:

1. Initialize ,uo, 70. For t > 1, repeat the steps 2—4.

2. For 1 <i <, draw a value y; from distribution (4.5) with v =+~
pho= (gl ph).

3. For 1 < j <1, draw a value 7; from distribution (4.6) with y = pf, and set
’yt = (’yi,,’y;)

4. For 1 <i < I, draw a value R; from the distribution

t M t
gDPOiSSOH <M)
¥

1 and set

andset R" = R, +---+ R}.

Steps 2 and 3 provide a Markov chain (u’ Y )[>0 whose stationary distribution is
p (i, v|y). Step 4 provides a sample of the total outstanding liability. The prediction
error of future claims consists of estimation error via steps 2 and 3 and process error
via step 4, which correspond to the bootstrap resampling step and forecasting step
respectively.

Note that parameters p and «y are not uniquely defined. In Example 4.2, we will
see that the multiplication p;; is converged rather than y;,y; by themselves. In
other words, 1;, 7y; cannot be estimated accurately individually. For interpretation
purposes, we define the normalized p;, 7; as

1
Hi = Hi E Yio Vi =S
j=1 D=1 W

Inferences under non-informative priors

Under the non-informative priors, i.e.,a - 0,b — 0,c — 0,d — 0, distributions
(4.5) and (4.6) define the following conditional expectations:

s o

2t Yij E (1ly. 1) = Yt i
T (AN Ry sy

>l Yis

If we substitute the left sides with y; and +;, the above equations define a system of
equations whose solutions will be consistent with the CL estimates. Strictly, the pos-
terior mean of outstanding liability is close but not exactly equal to the CL estimate.

E (uily, v) =
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In Example 4.1, we use the plug-in estimate ¢ = 631.8, and non-informative prior
for u, v, (i.e., a, b, c,d — 0). We iterate for T = 1000 times and get the MC esti-
mate of posterior mean of total outstanding liability as 1,461,958 dollars, with the
standard error of 60,902 dollars. These values are quite close to the result in Table 4.3.

Inferences under strong priors for p

Assume the prior knowledge of u is some value around m with small variation,
i.e., b/m; — oo and a; = m;b. Distributions (4.5) and (4.6) define the following
conditional expectations:

I+1—j

Zi:l Vi, j
J R

sy mi

which follows the BF predictor proposed by Mack (2008). The estimation error of
1 is close to 0, and the standard error of claims liability will be largely reduced.

E (wly,y) = m;, E(v;ly, p) ~

Example 4.2 (A Monte Carlo study of model (4.4) using simulated data) We assume
the parameters in model (4.4) as p = (107,1.02 x 107, ..., 1.02° x 107), v =
(0.30, 0.21, 0.15, 0.10, 0.08, 0.06, 0.04, 0.03, 0.02, 0.01), ¢ = 25000, where
the sum of ~y is 1 implying no claims development beyond age 10. We simulate a
sample of incremental claims in the upper triangle.

Inferences under non-informative priors

We use the plug-in estimate ¢ = 23,488, and choose a =0, b = 0. We iterate
for T = 1000 times. The trace plots in Fig. 4.3 show that yg, 7 converge rather
than z6, 7. The MC estimates of posterior means of 4", 7" are close to the CL esti-
mates as shown in Fig. 4.4. The predictive distributions of outstanding liability are
shown in Fig. 4.5. We check whether the 95% CPDRs have 95% chances to cover
the true parameters if we replicate the above process (i.e., simulate the data then
estimate the 95% CPDR) for 100 times. Table 4.4 confirms our expectation except
for the last accident year and the last development period, due to the sparse data for
these two periods.

Table 4.4 The proportions of the 95% CPDRs containing the true values

1 12 M3 1 s He M7 I3 Ho K10
0.93 0.91 0.95 0.92 0.93 0.89 0.91 0.96 0.95 0.89
71 2 V3 V4 V5 6 7 8 79 Y10
0.94 0.94 0.94 0.94 0.95 0.92 0.97 0.92 0.96 0.78
R R R3 R4 Rs Re R7 Rg Ry Rio
0.94 0.90 0.94 0.98 0.95 0.98 0.97 0.97 0.95 0.88
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Fig. 4.4 The MC estimates of the ultimate claims * and the incremental claims percentages v*

Inferences under strong priors for |

We choose the following strong priors for p: a = 102, m = (107, 1.02 x 107, .. ) ,
b = 0. Weiterate for T = 1,000 times and get the MC estimates as in Table 4.5. As we
expected, the variations of outstanding liability under strong priors are substantially
smaller than those under a non-informative prior.
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Fig. 4.5 The predictive distributions of outstanding claims liability for each accident year and the
predictive distribution of the total outstanding claims liability

4.3 A Bayesian ODP Model with Tail Factor

In this section we will focus on the following model:
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Vi Poisson(w)’ i=1.,1j=1...,1
%) ¥

w; ~ Gamma (a;, b;)
vj ~Gamma (c;,d;), j=1,....k—1

vi=expla—jB), j=k....1 @.7)
04~N(e,0f)
B~ N(f 03)
1
Prk=i)= i =2,...,1,
T ( i) I—l’l

where a, b, c,d, e, f, a%, a% are the specified hyperparameters and ¢ is a plug-in
estimate. This is the same Bayesian ODP model as model (4.4) but extended to
include a suitable tail factor.

To illustrate this model, we specify a; = 100, b; = a;/m;,c; = 1,d; = c;/h;,
e=0, f =0,0f =100, 05 = 100, where m; and h; are the CL ultimate claims
estimates and the CL incremental claims proportion estimates. The choice of these
hyperparameters ensures the convergence of the RIMCMC algorithm while allowing
sufficient flexibility. Denote 6, = {«, 3, i, 71, - - -, Vk—1}- This model reduces the
number of parameters from 2/ in model (4.4) to k + 2. Note that k is usually much
smaller than /.

Model (4.7) implicitly includes a tail factor

J

=) expla—jB),

j=I+1

where J is chosen judgementally. / — oo leads

_expla—U+1)p)
T l—exp(=p)

The main task of this section is to determine which k leads to the optimal model
fit. Since different ks will lead to different parameter dimensions, this problem is

Table 4.5 The outstanding liability estimates under different priors

Estimate Strong prior case Non-informative prior case

Post. mean | Sd. error CV (%) Post. mean | Sd. error CV (%)
R 24,244,540 |1,006,232 4.2 23,867,671 | 1,524,567 6.4
R1o 8,340,955 | 453,191 |54 8,206,132 | 857,982 |10.5
Ry 5,706,840 | 383,309 |6.7 5,189,284 | 528,886 |10.2
Rg 3,862,495 | 321,367 |83 4,040,881 | 422,256 |10.5
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equivalent to model selection. Here we investigate two methods: deviance infor-
mation criteria (DIC) (Spiegelhalter et al. 2002) and reversible jump Markov chain
Monte Carlo (RIMCMC) method (Green 1995). There are other methods to compare
and evaluate Bayesian models such as BIC, cross-validation and posterior predictive
checking (see Sect. 2.2).

4.3.1 Reversible Jump Markov Chain Monte Carlo

RIMCMC generalizes the Metropolis-Hastings (M-H) algorithm to include a model
indicator. The joint state space (6;, [) is defined by both model parameters ; and the
model index [, where [ € {1,2, ..., L}. The joint posterior distribution of 6;, / can
be factorized as

p L, 0ily) o< p(Oly) pUly) o< p(¥10:, D) p(0) p (D),

which is the product of the likelihood, the prior of 6; and the prior of /.
Before turning to the RIMCMC algorithm, we review the M-H algorithm. In the
M-H algorithm, a proposal distribution from 6 to 0* is ¢(6*|0), and the acceptance

rate is
2 p(071y) q(616")
" p@ly)q@r1e) |

For RIMCMC, we need a model index proposal distribution from [ to I*, g (I*|]), and
a parameter proposal distribution from 6; to 6;-. Since 6; and 6, may have different
dimensions, the parameter proposal process involves two steps: generate u ~ q;_.;*,
and then set (6, u") := T)_,; (6;,u), where T, is a one-to-one mapping with
Tisr = Tl*_—l>l'

Note that (6, u) must have the same dimension as (0,*, ux) It is possible that
u is zero-dimensional, e.g., §; has more parameters than 6;-. Similar to the M-H
algorithm, the acceptance rate is calculated as

1. Initialize % and 6. In the following we use the shortened notation ¢}, for 6'. For
t > 1, repeat the following steps.

2. Propose a new model index [* from the distribution g (l |1t ) .

3. If I* =1, do the following within-model update. Otherwise, jump to step 4.

OTi; (O, u)
0O, u)

. p (. 0rly) gl qr—i (')
min { 1, -
p @ Oily) g1 qir (u)

where the final term is the determinant of the Jacobian matrix.
The RIMCMC algorithm typically has the following steps:

a. Update the current model I’ by one iteration (i.e., via normal MCMC).
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b. Set/'*! =[* and #'*! as the updated parameters.
c. Goto step 2.

4. IfI" #I', do the following between-model update.

a. Generate u' ~ qp_ .
b. Set (6", u”) == Ty (6", u').
c. Compute the acceptance rate as

* * t * B . *
min (1. p(l°,0 |}’)CI(1*|1 ) ar i (1)
p A, 01y q (I"1I") qur (u)

a]‘ll*)[* (Ql, Mt)
90, u')

d. With this acceptance rate, set I'*! = [* and 6'T' = #*. Otherwise keep

lt+l =" and 01+1 =0,
e. Go to step 2.

The RIMCMC algorithm provides a Markov chain (l e ) .~ Whose stationary distri-
butionis p(l, 6;|y). We can either choose the model [y which has the highest posterior
probability p(I|y), or perform model averaging over p(l, 6;]y).

4.3.2 RJMCMC for Model (4.7)

In model (4.7), k is a model index variable whose value determines the param-
eter dimension. The joint posterior of k and 6 is simplified as p (k, O|y) o
p (10x) p (6r) . We use the following model index proposal distributions:

q<k* =k|k) :q(k* =k+1|k) :q(k*zk—uk) =lfork=34,...,1-1
g (k =k|k) =2andg (k* =k+1|k)
q(k* :klk) = %andq(k* —k— 1|k) =lfork=1
(4.8)
which implies that k can equally jump to the nearest neighbourhood or stay in the

current state. The RIMCMC algorithm for model (4.7) consists of a within-model
update and a between-model update.

4.3.2.1 Within-Model Update

Suppose at the  + 1th iteration we propose k* = k' from (4.8). The parameters at the
end of rth iteration are denoted by 6" = {o', 8", 4/, 71, ..., 7_, }. The following
steps update ' to §'*!:

1. Forp! ™1, %t . 4L, we apply the Gibbs sampler algorithm from Sect. 4.2.2.

2. For o/*!, B'*!, we apply the following M-H algorithm:
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a. Propose a” ~ N (o, 0.02?), 8" ~ N (', 0.02%).

* w g 1 At +1
b. Setd :{a,ﬁ,u’*,’yi ,...,7,2,_1}.
c. Calculate the acceptance as

. p (y10")N (a'|a", 0.02%) N (38", 0.02%)
min | 1, ,
p (y10) N (a*|a, 0.02) N (5|3, 0.02?)

where N (x|a, b) is the normal density at x with mean a and variance b.
d. With this acceptancerate, seta/*! = o, 3+ = 3. Otherwise keep o/ *! =
ot ﬁtJrl — ﬂl.
3. Set k't = k", 91! = {a’“, B it A 'y,i,tll} Note that the within-
model acceptance rate of k* is always 1.

4.3.2.2 Between-Model Update

Between-model update case 1:

Suppose at the ¢ + 1th iteration, we propose k* = k' + 1 from (4.8). The parameters
at the end of the rth iteration are denoted by ' = {a, ', t', 7}, ..., V_;}- The
following steps update & to 6'*!:

1. Propose a value u' from a gamma distribution with shape of 100 and mean of
exp (o' — k(") , as follows:

, 100
u' ~ qp_p = Gamma | 100, ——— | .
exp (af — k")
2. Set (9*, u’) = T i (9’, u’) = (9’, u’), where u* has zero-dimension. Tj:_, ;-
is an identity mapping matrix with the Jacobian of 1.
3. Calculate the acceptance rate as

p(10°) p(97)

p (316 p(@)Gamma (' 100, 10— )

min | 1,

4. With this acceptance rate, set (k’“, 9’“) = (k*, 0*). Otherwise keep (k’“, 9’“)
= (k’, 0 ) )

Between-model update case 2:
Suppose at the 7 + 1th iteration, we propose k* = k' — 1 from (4.8). The parameters

at the end of the th iteration are denoted by 6" = {a’, B ey } The
following steps update 6’ to 6'*!:
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Fig. 4.6 DIC’s and pp’s for the simulated data with respect to k

1. Set (0*, u*) = T i (0’, u’) = (Ht, u’), where u' has zero-dimension,
u* =},_,. Tk~ is an identity mapping matrix with the Jacobian of 1.
2. Calculate the acceptance rate as

p (y16") p (¢") Gamma (u* ‘IOO, m>
p (¥10") p(0")

min | 1,

3. With this acceptance rate, set (k’“, 9’“) = (k*, 0*). Otherwise keep (k’“, 0’“)
= (k',0").

Example 4.3 (A Monte Carlo study of model (4.7)) We specify the true parameters
as follows:

I=10k=5a=—14,3=02,¢=25000
p=(107,1.02 x 107, ..., 1.02° x 107)
v = (0.159, 0.179, 0.179, 0.139),

and simulate a sample from model (4.7).
DIC method:

We want to determine which k leads to the optimal model fit. Applying MCMC to
different models indexed by k gives the corresponding DIC and pp. We prefer the
model with smaller DIC, thus k = 5 is preferred as shown in Fig. 4.6. Also note that
pp is always less than the length of 6, since pp depends on the strength of priors,
the structure of the Bayesian model and the data (Spiegelhalter et al. 2002).
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Fig. 4.7 The trace plot and the histogram of k

RIMCMC method:

We iterate for 10° times. The within-model acceptance rate is 0.37 and the between-
model acceptance rate is 0.11. We plot the trace plot and the histogram of k in Fig. 4.7.
In this example, DIC and RIMCMC suggest the same best model, k = 5. However,
the DIC method takes a much longer time than RIMCMC. The reason is that the DIC
method spends equal time on every model while RIMCMC always tends to jump to a
more “accepted” model. Hence, in term of running time, RIMCMC is more efficient.

Example 4.4 (Liability insurance claims data) We continue with Example 4.1. DIC
method suggests that the models with k larger than 7 perform equally well as shown in
Fig. 4.8. We choose k = 8 to keep pp as small as possible. RIMCMC is then applied
starting from k° = 3 and iterating for 10° times. The trace plot and histogram of k are
shown in Fig. 4.9. Again, the model with k = 8 is preferred. RIMCMC outperforms
DIC in terms of distinguishing the “best” model from the other candidates.

We set k = 8 and estimate the posterior mean and the 95% CPDR of v, comparing
with the CL estimates (in logarithm scale) shown in Fig. 4.10. The development
pattern after age 8 is smoothed to a straight line due to an exponential decay curve
being used. The big jump at development period 23 represents a large proportion of
tail development to the ultimate claims. In fact, the last point is valued as

J
log [ Y expla—jB

j=I+1
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Fig. 4.9 The trace plot and the histogram of k for Verrall and Wiithrich (2012) data

We close this subsection by summarizing the total outstanding liability estimates
from different models in Table 4.6. For model (4.1) and (4.2), R is an unbiased
estimate and equal to the CL estimate. For model (4.4) and (4.7), R is an estimate of

posterior mean.
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Table 4.6 Comparison of the  “yjo e Estimate No tail With tail
total outstanding liability =
estimates from four different 4.1 R 1,463,076 1,599,558
models se(R) 55,300 58,528
4.2) R 1,463,076 NA
se(R) 60,444 NA
(4.4) R 1,463,312 NA
se(R) 60,428 NA
4.7) R 1,475,336 1,610,734
se(R) 54,060 56,746

4.4 Estimation of Claims Liability in WorkSafe VIC

In this section, we analyze WorkSafe Victoria claims data to estimate the claims
liabilities of the weekly benefit and doctor benefit. The data are from the actuarial
valuation reports of outstanding claims liability for the scheme as of 30 June 2012 by
Pricewaterhouse Coopers (PwC) Actuarial Pty Ltd (Simpson and McCourt 2012).

4.4.1 Background of WorkSafe Victoria

A company operating in Victoria must take out WorkSafe insurance if it pays more
than $7,500 a year in rateable remuneration. WorkSafe insurance covers employee’s
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Table 4.7 Summary of the PwC report
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Benefit Sub-benefit Method Key note
Weekly Weekly PPAC 349% of the total liability
Occupational Relate to Help workers back to work
rehabilitation income
Medical Doctor PPCI Shorter tail than weekly benefit
and like
Hospital PPCI Correlated with doctor
Paramedical PPAC Generally ceases one year after weekly
benefit
Hearing aids PPCI Missing data before experience year 1994
Personal and household | PPAC Including attendant care, personal
services services, home care, case management,
home and vehicle modification payments
Community integration | CL on Personal & household services for
program amounts catastrophically injured workers
Medical reports PPCI Refers to independent medical
examinations and treating health
practitioners’ reports
Common | Common law damages | PPCR Relates to damages and costs arising from
law and legal costs common law claims with respect to
injuries occurring on or after 20 Oct 1999
Old common law PPCR Date of injury prior to 12 Nov 1997
Impairment| Impairment PPCR Injured workers can access impairment
and death benefit if their whole person impairment is
benefits assessed as being 10% or more
Maim PPCR The maim benefit is in run-off, being
applicable only for injuries occurring
prior to 12 Nov 1997
Death lump sum PPCR Includes payments of statutory lump sum
and interest payments on it
Death pension PPAC Payment pattern determines the method
used
Disputes, Statutory legal PPCR All legal costs, other than those associated
recoveries with common law cases, arising from
and others workers and employers appealing
decisions relating to eligibility of
payments or continuance of benefits
Investigation costs PPCI Can be incurred before any claims
payments
Recoveries PPCI Relates to recoveries from negligent third
parties or recoveries of amounts where
agents have paid injured workers in excess
of the required amount
Other PPCI Travel and accommodation costs




100 4 Bayesian Chain Ladder Models

work related claims, such as back-injury during work. The benefits include income
replacement, medical costs, rehabilitation etc. The premiums depend on the remuner-
ation, the industry classification, industry claims history or its own business claims
history, capping etc. Most of the functions associated with premium and claims
management are performed by WorkSafe agents appointed by WorkSafe, including
Allianz Australia Workers’ Compensation Ltd., CGU Workers Compensation Ltd.
etc.

4.4.1.1 Benefits

Depending on the features of a claim, one benefit or several benefits may be paid.
A benefit can be a stream of payments extending for years or a lump sum. In the
claims reserving problem, it is desirable to distinguish benefits in terms of payment
period, settlement rate, average size etc. The PwC report divides claims payments
into five benefits shown in Table 4.7, each of which has several sub-benefits. The
reserving method is chosen for each sub-benefit depending on the benefit features
and the data available. The last column in Table 4.7 provides some key information
about each sub-benefit.

4.4.1.2 Reserving Methods Used by the PwC Report

The methods used in the PwC report mainly include payments per active claim
(PPAC), payments per claim incurred (PPCI) and payments per claim resolved.

For example, it is suitable to use PPAC to model the weekly benefit. The weekly
benefit is to compensate the loss of salary. So PPAC during a development year
should be stably proportional to average weekly salary for that period. In contrast,
PPCI is not suitable for the weekly benefit since PPCI does not take account of the
duration of a claim, a main factor determining the weekly benefit.

4.4.2 Estimation of the Weekly Benefit Liability Using
Models (4.1) and (4.7)

We analyze the weekly benefit using the distribution-free model with tail factor
(4.1) and the Bayesian ODP model with tail factor (4.7). We will show that the tail
development consists of a large percentage of total outstanding liability.
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Table 4.8 The outstanding claims liability estimates of the weekly benefit from different models

Model Expected value Standard deviation | 95% PI/CPDR

4.1) 2,902,875,000 172,396,900 (2,558,081,200, 3,247,668,800)
“4.7) 3,127,649,615 145,385,671 (2,849,161,960, 3,417,721,458)
PwC 2,831,072,753 NA NA

4.4.2.1 The Distribution-Free Model (4.1)

We apply this model to the incremental payments run-off triangle. The total out-
standing liability is estimated as 2,902,875,000 dollars with the standard error of
172,396,900 dollars (CV = 6.0%). The PwC estimate of 2,831,072,753 dollars is
within the 95% prediction interval (2,558,081,200, 3,247,668,800).

From the diagnostic plots in Fig. 4.11, we can see an obvious pattern in the
standardized residuals vs. original years plot, which implies that the distribution-
free model does not fit the data well (i.e. the model assumptions do not hold). The
PwC report mentioned that the scheme structure changed in 2010, 2006, 1999 and
1997. These changes affected the weekly benefit, which more or less explains the
pattern observed.

4.4.2.2 The Bayesian Over-Dispersed Poisson Model with Tail Factor
4.7)

First we apply the RIMCMC algorithm. The trace plot and the histogram of k are
plotted in Fig. 4.12. Then we apply the M-H algorithm with & = 8 to estimate the
outstanding liability. The tail factor is considered and J is assumed to be 37. The
posterior mean of total outstanding liability is estimated as 3,127,649,615 dollars
with the standard error of 145,385,671 dollars (CV = 4.6%). The 95% CPDR is
(2,849,161,960, 3,417,721,458) as shown in Table 4.8.

4.4.2.3 Limitations

The above analysis demonstrates that real world problems are always more complex
than our models. In the actuarial area, we typically use a statistical model to identify
and quantify the independent risk. Other risks, such as event risk, strategic risk,
operational risk, legal risk etc, are difficult to be quantified by a statistical model.

The models discussed in this chapter all assume that historical experience can
predict the future. When the assumption does not hold, actuarial judgement is neces-
sary to adjust the prediction inferred from the model. Nevertheless, a comprehensive
understanding of model assumptions, historical events and possible future events is
required before making any judgements.
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Fig. 4.11 The diagnostic plots for the distribution-free model applied to the weekly benefit
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Fig. 4.12 The trace plot and the histogram of k for the weekly benefit data

4.4.3 Estimation of the Doctor Benefit Liability Using
a Compound Model

The doctor benefit is not subject to changes in legislation as frequently as the weekly
benefit, hence the historical claims data are much more instructive for the future
claims. The PPCI method is used to analyze the doctor benefit. Compared to the
CL method applied to the claims amounts directly, the PPCI method provides more
information, such as the total incurred claims number and the average claim size.
There are three steps in the PPCI method:

1. Project the ultimate incurred claims number for each accident year.

2. Divide the incremental claims amounts by the ultimate claims number to get the
PPCI triangle, and project the PPCI triangle to get the outstanding PPCI.

3. Combine the ultimate claims number with the outstanding PPCI to get the out-
standing liability.

Here we apply the Bayesian ODP model without tail factor model (4.4) to both the
claims number and PPCI triangles, since the doctor benefit is not a long-tailed benefit.
We then aggregate them using a compound model.

4.4.3.1 Preliminary GLM Analysis

Before going to the Bayesian analysis, we apply a quasi-likelihood GLM to the
incremental claims number, in which a log link function and variance proportional
to mean are specified. It is equivalent to fitting an ODP model (4.2). We get the scaled
Pearson residual plot in Fig. 4.13.
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Fig. 4.13 The scaled Pearson residuals of the ODP model
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Fig. 4.14 The scaled Pearson residuals of the GLM with a gamma error and a log link function
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It displays heteroscedasticity, implying the variance is proportional to the mean
powered to more than one. We then try a GLM with the same link function but with
variance proportional to mean squared, as follows:

n,,j~Gamma<a,i),i=1,...,27,j=1,...,27.

i

A better residual plot is obtained as in Fig. 4.14. The scaled Pearson residual in this
model is defined as

€ij nij _ﬁij ~
VU = = = VC;.

W)

By dividing the incremental payments triangle by the ultimate claims number
predicted from the above model, we get the PPCI triangle. The same process is
applied to the PPCI triangle as to the claims number. Similarly, a gamma error
distribution does a better fit than an ODP error structure.

This preliminary GLM fitting provides valuable information about the further
Bayesian analysis. In the following, we will use the gamma error distribution for
both claims numbers and PPCI.

4.4.3.2 A Bayesian Gamma Model for the Claims Numbers and PPCI

According to the preliminary GLM analysis, a Bayesian gamma model (similar to
model (4.4)) is used here, as follows:

«
n; ; ~ Gamma <a, —)
Hiyj
w; ~ Gamma (a;, b;)
vj ~ Gamma (cj, dj) .

The prior N (20000, 1000) is assumed for the ultimate claims numbers of the three
most recent accident years, pu;,i = 25,26,27. The strong prior works as the BF
method to reduce the leverage effect of the immature claims numbers. The Stan code
is as follows:

number .code<-="

data {
int N; // Number of observations
int K; // Number of accident years
int M; // Number of development years
int acc[N]; // Accident years in upper triange
int dev[N]; // Development years 1in upper triangle
real first_inc[N]; // Number of claims in upper triangle
int n; // Number of future prediction
int acc_plnl; // Accident years in lower triangle

int dev_pln]; // Development years in lower triangle
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parameters {
vector<lower=0, upper=50000>[K] ult;
vector [M] dev_raw;
real<lower=0> alpha;

}

transformed parameters{
vector [N] means;
vector [M] dev_norm; //Normalized development pattern
dev_norm<-exp (dev_raw) /sum (exp (dev_raw) ) ;
for (i in 1:N){

means [1] <-dev_norm[dev[i]]*ult[acc[i]];

}

}

model {
for (i in 1:N)
first_inc[i] ~ gamma (alpha,alpha/means([i]) ;
for (i in 25:27)
ult[i] ~ normal (20000,1000) ;

}
generated guantities
{
real pearson_res[N];
real means_p[n];
for (i in 1:N)
pearson_res[i]<-(first_inc[i]-means[i])/means[i]*sqgrt (alpha) ;
for (i1 in 1:n)
means_pl[i]l<-dev_norm[dev_pl[il]*ultlacc_plil];

The posterior mean of residuals vs. linear predictors is plotted in Fig. 4.15, which
shows a similar pattern to Fig. 4.14. It seems that the variance is proportional to
the mean powered to some value between 1 and 2. We could use a Tweedie family
in glm( ) function in R, but Stan does not have such a distribution. The predictive
distribution of outstanding claims numbers is positively skewed. The posterior mean
of outstanding claims number is estimated as 13,923, which is higher than the PwC
estimate of 12,811. It takes one minute to run 1,600 iterations. We use the posterior
means of ultimate claims numbers to derive the PPCI triangle and fit the same model
as for the claims numbers. The residual plot and the histogram of total outstanding
PPCI are shown in Fig. 4.16. The predictive distribution of outstanding PPCI is
roughly symmetric with the posterior mean of 18,012 dollars, compared with the
PwC estimate of 17,827 dollars.
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4.4.3.3 A Compound Model to Combine the Ultimate Claims Numbers
and the Outstanding PPCI

Ideally, we should use the predictive distribution of ultimate claims numbers to derive
the PPCI triangle, then combine the predictive distribution of the outstanding PPCI
with the corresponding ultimate claims numbers to get the predictive distribution of
outstanding liability. This method requires a large amount of computing time.
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Here we propose a compound model to get the predictive distribution of outstand-
ing liability. The model is specified as follows:

Hi

y,~j=Zx,~_,~k, i=1,...,27, j=1,...,27
k=1

wi ~ Distribution;

Xijk ™~ Gamma (Oé,'j, 61'1') s k= 1, ey Mgy

where p; is the ultimate claims number of accident year i whose distribution is
approximated by a Bayesian model, and x;j is the payment for the kth claim during
the development year j, with the distribution depending on both accident year and
development year.

The payments per claim incurred (PPCI) during the development period j of
accident year i is defined as

PPCL; := y;; /E ().

Note that E(PPCI;;) = E(x;;x). The posterior mean of y; is an estimate of E (u;).
The relationship between the variance of PPCI;; and the variance of x;j; is as
follows:

Var (PPCI;;) = Var (%)
_ Var (xijk) E () + (E (xijk))zvar (i)
B (E (1))
_ Var (xi¢) E () + (E (PPCL;))*Var ()
B E (1))

We can solve Var (x;;x) as

Var (xijk) = (E Gy Var (PPCL]T)E ( l:;ar (i) (E (PPCL])) ) 4.9)

where all the quantities on the right hand side can be estimated by a MC sam-
ple. The distribution of y;; conditional on y; is Gamma (u,-aij, B; j) , where o;; =

E(xijk)2/Var (xijk)» Bij = uij /B (xije) -
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The outstanding claims liability of accident year i is R; |u; = ij r—it1Yij- The
predictive distribution of total claims liability is shown in Fig. 4.17. The poste-
rior mean of total claims liability is estimated as 391,761,803 dollars with the
standard deviation of 10,195,111 (CV = 2.6%), compared with 396,827,792 dol-
lars estimated by PwC. The 95% CPDR of total claims liability is estimated as
(373,902,941, 414,549,267). We summarize the predictions made from the com-
pound model in Table 4.9.
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Fig. 4.17 The predictive distribution of total outstanding liability of the doctor benefit

Table 4.9 Summary of the predictions made from the compound model

Post. mean Std. deviation 95% CPDR PwC estimate
O/S claims no. 13,923 2,407 (9,742, 19,117) 12,811
0O/S PPCI 18,012 474 (17,056, 18,901) 17,827
O/S liability 391,761,803 10,195,111 (373,902,941, 396,827,792
414,549,267)
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4.4.3.4 Other Ways to Combine the Ultimate Claims Numbers
with the Outstanding PPCI

As a final remark, we point out that the PPCI triangle is conditional on the posterior
mean of ultimate claims number, i.e., E(u;|y). If we only consider the variation in
PPCI and keep the ultimate claims numbers fixed at the posterior mean, we would
underestimate the variation of outstanding liability, i.e., we ignore the estimation
error in E(u;|y).

The key point of the compound model is Eq. (4.9), which recovers the variation
in a single claim payment x;;, which is assumed to be independent of the ultimate
claims number ;.

4.5 Discussion

Occasionally, we see some abnormal values in a particular diagonal line or some
pattern in the residuals vs. experience periods plot. This is called the experience
period effect or calendar period effect. It can be due to the uncommon inflation
rates in a particular calendar year. The straightforward way to address this problem
is to involve an experience period covariate. This covariate effectively isolate the
outliers in the diagonal lines, so the estimation of accident period parameters and
development period parameters are not affected.

For the run-off triangle data, the experience period parameters are not used in
the prediction of future claims since all future claims correspond to new experience
periods. So the main purpose of introducing the experience period covariate is to
remove the discontinuous abnormal calendar year effect.

An innovative contribution made in this chapter is using a compound model to
quantify the uncertainty associated with the estimates from the PPCI method. The
distributional assumption of x;;; has not been checked. To check this assumption,
we need the payments data during the whole life of individual claims.

We also stress the importance of preliminary GLM fitting. Bayesian modelling
needs time-consuming inferential tools. We normally cannot get the inference and
do the goodness-of-fit check of a Bayesian model as easily as a GLM. So a prelim-
inary GLM fitting can help us set up the Bayesian model with regards to the error
distribution, the mean function, the priors for parameters etc.

Finally, we point out that it is hard to program RIMCMC and there are no statistical
packages available to do RIMCMC directly. To avoid RIMCMC but still incorporate
a tail factor, a non-linear curve mean function, such as log-logistic curve and Hoerl
curve (Taylor 2000), can be used. If these non-linear curves are used, GLM will not
work, which demonstrates an advantage of Bayesian models. In the next chapter,
rather than using curves, we go a step further to use a basis expansion model, which
is a non-parametric approach.



4.6 Bibliographic Notes 113
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(2000, 2004), Alai et al. (2009), Saluz et al. (2011), England et al. (2012), Verrall
and Wiithrich (2012) and Wiithrich (2013a).

Other papers using a Bayesian approach include Scollnik (2001), De Alba (2002),
Ntzoufras and Dellaportas (2002) and Meyers (2009, 2015).

Clark (2003) and Zhang et al. (2012) used the stochastic curve models. Brydon and
Verrall (2009) and Wiithrich (2013a) considered the calendar year effect. Piwcewicz
(2008) and Beens et al. (2010) are two presentations about Bayesian claims reserving
method in TAA’s non-life insurance seminars.

Verrall et al. (2012) and Verrall and Wiithrich (2012) used RIMCMC. RIMCMC
is proposed by Green (1995). The collective risk model (or aggregate risk model)
have been much studied in the standard risk modelling text books such as Klugman
etal. (2012) and Gray and Pitts (2012). Gao et al. (2018) investigates the uncertainty
associated with the PPCI method from a different perspective.
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Chapter 5 ®)
Bayesian Basis Expansion Models e

Abstract In this chapter, Bayesian basis expansion models are used to fit various
development patterns and accommodate the tail factor. A parametric model is typ-
ically characterized by a parametric mean function and an error distribution. The
shape of the mean function is restricted by the space of parameters. Non-parametric
models such as basis expansion models are able to automatically adjust to fit any
shape of data. In Sect. 5.1, the aspects of splines are reviewed, including spline basis
functions, smoothing splines, low rank smoothing splines and Bayesian shrinkage
splines. In Sect. 5.2, we study two simulated examples. The first simulated example
is based on a trigonometric mean function, while the second simulated example is
based on the claims payments process. Both examples illustrate the usefulness of
natural cubic spline basis in the extrapolation beyond the range of data. Section 5.3
is the application of above methodology to the doctor benefit in WorkSafe Victoria.
The basis expansion model used to fit the PPCI triangle induces a tail development.

5.1 Aspects of Splines

There is a trade-off between flexibility and simplicity in model fitting. Basis expan-

sion models on one hand are more flexible, able to be adjusted to fit various shapes of

data, while on the other hand, they are more complicated (i.e., involve more param-

eters). Before using a non-parametric model, we should consider whether there is a

capable parametric model. The log-logistic curve and Hoerl curve together with the

models in the previous chapter can tackle many claims reserving problems.
Consider the following underlying true model:

i~ fxp)+e,i=1,...,n,

where ¢; are i.i.d N (0, o). A non-parametric approach is to approximate f by a
non-parametric function m. Basis expansion is a way to express the form of m. The
core idea of basis expansion is to expand the input x with additional variables, which
are transformations of x, and then to apply linear models to this newly expanded
space of input x. In basis expansion models, m is written as a linear combination of
basis functions, as follows:
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H
m(x) =Y Bubu (x),
h=1

where b, is called a basis function. A common choice of by, is a polynomial. The
mechanism of defining b, determines the behaviour of m. Here we consider m as
splines, which use polynomials as basis functions with some constraints. Splines
are a combination of polynomials and step functions. In polynomial models, the
basis functions have the form of b, (x) = x”. Polynomial models tend to capture the
shape of the data as long as there are high-degree polynomials. A disadvantage of
polynomial models is the global representation of basis functions, which means all
the data points can affect parameter estimation and every parameter can affect the
mean function. A step function model partitions the data into H parts and fits the
hth part using a basis function by, (x) whose value is zero for the remaining parts of
data. Step function models have a disadvantage of discontinuity at the boundaries of
partition. Spline models are a combination of polynomial models and step function
models. For example, a cubic spline is a series of piecewise-cubic polynomials joined
continuously up to the second derivatives. The properties of continuity and being
piecewise are realised by using a particular set of basis functions.

5.1.1 Basis Functions of Splines

5.1.1.1 Truncated Power Basis

One intuitive choice is truncated power basis of degree p, which contains K + p + 1
basis functions as follows:

]"x""7xp7(x_Kl)i""7(x_KK)i7

where (x — /c,-)ﬂ’r = (x — k;)? forx > k; andOelsewhere,x;, i = 1, ..., K arecalled
knots. The basis functions consist of two parts: the global polynomials up to degree p,
and the truncated degree p polynomials which have the local representation property.
It can be shown that any linear combination of these basis functions has continuous
derivatives up to order p — 1 at every knot.

The degrees of freedom of a spline is the number of parameters in the mean
function. Truncated power basis of degree p has K + p + 1 degrees of freedom,
which is intuitive to join K + 1 pieces of degree p polynomials smoothly (up to p —
1th derivatives at knots), K p degrees of freedom are lost, leaving K + p + 1 degrees
of freedom,ie., K + p+ 1= (K + 1) (p + 1) — Kp. Inthe GLM setting, we write
the design matrix as

g oooxf o —w)f - (e — k)Y

Loxy ooxy (p — k)i (o — kg



5.1 Aspects of Splines 119

At first glance, it seems that spline models are more complicated than either poly-
nomial models or step function models. This is not true. Compared with polynomial
models, we do not need the higher degree polynomials to capture all the curvatures
of the data, since we have the local basis functions. Compared with step function
models, we overcome the problem of discontinuity via the mechanism of basis func-
tions. Spline models combine the advantages of both polynomial and step functions
models, and get rid of the flaws of both models when they are used alone.

A truncated power basis has a practical disadvantage in that it is far from orthog-
onal, i.e., the columns of design matrix X are not orthogonal. It is better to work
with an equivalent basis with more stable numerical properties. Note that two bases
are equivalent if they span the same set of functions.

5.1.1.2 B-Spline Basis

The most common choice for spline basis is the B-spline basis of degree p, which
consists of piecewise continuous functions only non-zero over the intervals between
p + 2 adjacent knots. The degrees of freedom of a K-knot degree p B-spline basis
is K — p + 1, since the spline is to be evaluated only over the interval [/c 1y KK— p].

To span the same function space as truncated power basis of degree p with K
knots, we need to add p arbitrary knots to the ends of [k, kx ], i.e., we usually choose
the knots {«, k1, k1, k1, k2, ..., Kk —1, KK, KK, Kk, Kg } in a cubic B-spline basis. A
B-spline basis is an orthogonal set.

5.1.1.3 Radial Basis

Another set of basis functions equivalent to a truncated power basis of degree p (odd)
is a radial basis, as follows:

Lx,...,xP |x —«i|?, ..., |x —kglP.

We will come back to radial basis functions in smoothing splines and Bayesian
shrinkage splines.

5.1.2 Smoothing Splines

Smoothing splines come from the solution to the optimal problem of finding a func-
tion g to minimizes the residual sum of squares (RSS) plus a penalty on the integral
of the squared second derivatives of g. This penalized residual sum of squares is

n

RSS(g.0) =Y [yi — g ) +2 / [¢" ()], 5.1)

i=I
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where A is a fixed smoothing parameter. The first term measures closeness to the
data, while the second term penalizes curvature in the function and A establishes
a trade-off between the two. Two special cases are: . — 0, g can be any function
that interpolates the data (i.e., RSS = 0); A — 00, g is the simple linear regression
fit since no second derivative can be tolerated. Note that a smoothing spline is a
one-dimensional thin plate spline.

Remarkably, even without the constraint of g as splines, it can be shown, for
0 < A < oo, that g is a natural cubic spline with knots placed at the unique values
of x;,i =1,...,n (Hastie and Tibshirani 1990). Natural cubic splines are cubic
splines with the constraint that they are linear beyond the boundary knots. Hence,
the degrees of freedom of a smoothing spline g are n (.e,n=n+3+1—-2—2),
since 4 degrees of freedom are lost due to the linear constraints at two boundary
knots.

We can write this natural cubic spline as

2 =Y Bubn(x),
h=1

where {b, : h =1, ..., n} is a set of n basis functions for representing this natural
cubic spline. We write the design matrix as

by (xy) -+ by (x1)
X = ) )

by ) - ba ()]
which is an n x n matrix. RSS in (5.1) can be written as

RSS(B, 1) =y — XB+ABT 28, (5.2)
where £2[i, j1= [ b (t)b;” (t)dt. The solution is f = (X" X + AQ)_lXTy,
which has a additional penalty term A2 compared with the ordinary least squares
solution.
5.1.2.1 Rank of a Smoother and Effective Degrees of Freedom
The fitted values of smoothing splines are

P=X(X"X+22)"' X"y =Sy,

where S, is known as the smoother matrix or hat matrix. We list some features of
S, as follows:
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e S, is a symmetric positive semi-definite matrix with rank 7.

e S, has n eigenvectors and n non-zero eigenvalues.

e ) cannot affect the eigenvectors of S.

e ) affects the eigenvalues of S, negatively, except the first two which are always 1
corresponding to the two-dimensional eigenspace of functions linear in x. Other
eigenvalues are between 0 and 1 depending on A.

e The degree of freedom of S, is df, = trace (§;) = sum of eigenvalues, which is
always between 2 and n.

e When L — 0, all the eigenvalues are 1. df, = trace (§,) = sum of eigenvalues
= n, corresponding to any functions interpolating the data.

e When A — o0, all the eigenvalues are 0 except the first two. df; = trace (S;) =
sum of eigenvalues = 2, corresponding to a straight line.

5.1.2.2 Radial Basis Functions for Smoothing Splines

Smoothing splines have a natural representation in terms of radial basis functions.
For a given A, a smoothing spline can be written as

n
2 =70+ nx+ ) Slx —xil,
k=1

~

where § = (770, V1, 81y, Sn) minimizes the penalized residual sum of squares

n n

n 2 n
Z(yi —fo—Pixi — Y Skl —ka) FAD 6 v —xl’. (53)
k=1

i=1 i=1 k=1

subject to the constraints  ;_, & = e 8¢x; = 0. The constraints make the num-
ber of parameters n rather than n 4 2 which is consistent with the degrees of freedom
of a smoothing spline.

The criterion (5.3) is connected with the criterion of best linear unbiased pre-
diction (BLUP) in a mixed effects model, which opens a gate for a Bayesian mixed
effects model representing a smoothing spline.

5.1.2.3 Choice of A

The above discussion is based on a given A. We can treat A as a tuning parameter
which indexes different smoothing models. The choice of A can be thought as a model
selection problem. The selection criterion relates to a model’s prediction capability
on an independent test data set. Typically, we use test error as a measure of prediction
capability, defined as the prediction squared error over an independent test sample.
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The most widely used method for estimating the test error is cross-validation (see
Sect. 2.2). A is chosen by minimizing CV or generalized CV (Hastie et al. 2009).

5.1.3 Low Rank Thin Plate Splines

The rank of smoother S, is the number of distinct x. Sometimes it is called a full
rank smoother. Wood (2003, 2006) uses the truncated eigen-decomposition of X
to achieve a low rank smoother approximating the full rank smoother. A simpler
approximation is to set up a new natural cubic spline basis with specified knots
ki, i = 1,..., K, rather than at every distinctive x.

It can be shown that a natural cubic spline with specified knots fitted by minimizing
(5.1) can approximate the full rank smoothing spline well (Ruppert et al. 2003). A
spline with fixed knots is called a spline regression. If it is fitted by minimizing (5.1),
it is called a penalized spline regression, or more generally a low rank thin plate
spline.

5.1.3.1 Rank of a Fixed-Knot Thin Plate Spline and Effective Degrees
of Freedom

Some features of a K-knot thin plate spline smoother §; are as follows:

e S, is a symmetric positive semi-definite matrix with rank of K.

e S, has K eigenvectors and K non-zero eigenvalues.

e ) cannot affect the eigenvectors of ;.

e ) affects the eigenvalues of S; negatively, except the first two which are always 1
corresponding to the two-dimensional eigenspace of functions linear in x. Other
eigenvalues are between 0 and 1 depending on A.

e The degrees of freedom of §; is df; = trace (§,) = sum of eigenvalues, which is
always between 2 and K.

e When A — 0, all the eigenvalues are 1, §; — I.df; = trace (S;) = sum of eigen-

values = K, corresponding to any functions interpolating the K knots.

When A — o0, all the eigenvalues are O except the first two. df; = trace (S,) =

sum of eigenvalues = 2, corresponding to a straight line.

5.1.3.2 Radial Basis Functions for a Fixed-Knot Thin Plate Spline

For a given A and fixed knots «;, i = 1, ..., K, the fixed-knot thin plate spline can

be written as
K

2 =P+ nx+ ) &lx — il
k=1
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where § = ()90, Vbt ..., SK) minimizes the following penalized residual sum of
squares,
n K 2 K K
Z()’i—)70—)71Xi—25k|xi—l<k|3> FAY 8D bl — Kl
i=1 k=1 =1 k=l

subject to the constraints Zle 5 = Zle Sxkx = 0. The constraint makes the num-
ber of parameters K rather than K + 2 which is consistent with the degrees of freedom
of a natural cubic spline with K knots. For compact notation and programming, we
can write the above equation in terms of matrices, as follows:

RSS = |ly — X7 — Z§|| + AT K3, (5.4)

A A

where X [i,] = (1, x)", Z[i. k] = v — &, 7 = (70, 7). = (... 6 ) and
K[LkKl=lc—xll=1,....,K,k=1,...,K.

5.1.3.3 Linkage to a Mixed Effects Model

As already mentioned at the end of Sect. 5.1.2, the criterion of minimizing (5.4) is
related to the criterion for calculating the best linear unbiased prediction (BLUP) in
a mixed effects model. Suppose we have the following mixed effects model:

K

Yi=vo+yixi+ Y &l — kil + e
k=1

E(8) =0; Var(8) =oK™
E(e;) =0; Var(e) = o’1.

BLUP of y and § is defined as follows:

7.8 = argmin E{(s" Xy’ +1728') — (s" Xy + tTZS)}Z,
v,

for any arbitrary s and ¢, and subject to the unbiasedness constraint
E(s"Xy' +1"28') =E(s"Xy +17Z5).

It can be shown that 7 and § also minimize the following penalized RSS:

1A~

(y - Xy' —28) (c21) "' (y — Xy' — 28') + 8" (c2K 1) '3,
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which is equivalent to minimizing (5.4) with A = 02/02. 7 and 8 have the following
expression:

1 (T -1 .7
M_(c c+1B)"'CTy,

where

00
C:[X,Z],B:[OK].

The fitted values are y = C (C 'c + )»B)AC Ty. Note that 7 and § depend on the
variance parameters o and o2, which can be estimated via maximum likelihood or
restricted maximum likelihood (REML).

The connection of a fixed-knot thin plate spline with a mixed effects linear model
makes it possible to analyze a smoothing spline in the framework of a Bayesian
mixed effects linear model. Bayesian mixed effects linear models can quantify the
estimation uncertainties of variance parameters which are ignored in the REML
approach.

5.1.4 Bayesian Splines

Rather than using the equivalence of a smoothing spline to a mixed effects linear
model, we can set up a mixed effects model structure directly on the basis expansion
functions. The core idea of a smoothing spline is to shrink the parameters §;, i =
1,...,n towards O in Eq. (5.3), where the shrinkage force and style are controlled
by the smoothing parameter A.

In the Bayesian framework, we can assume shrinkage priors, which perform the
role of the smoothing parameter. Generally, we use the following Bayesian shrinkage
spline model:

H

Yo=Y Bubn (x;) + &
h=1

& "'N(0,0’z)

ﬁh "“Gh,hz 1,...,H,

where G, is a shrinkage prior having high density at zero and heavy tails to avoid
over-shrinking. G, can be a ¢ distribution with small degrees of freedom, or a double
exponential distribution (Laplace distribution) which is related to the lasso method.
The Laplace prior induces sparsity in the posterior mode, in that the posterior mode
B can be exactly equal to zero. The Laplace prior is the prior having heaviest tails
which still produces a computationally convenient uni-modal posterior density.
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An alternative is to use a generalized double Pareto prior distribution (Gelman
et al. 2014), which resembles the double exponential near the origin while having
arbitrarily heavy tails.

One can sample from a generalized double Pareto with scale parameter of £ and
shape parameter of & by instead drawing B, ~ N (0, 027;), with 7, ~ Exp (17 /2)
and A, ~ Gamma (&, @&). Placing the prior p (o) o 1/o, we then obtain a simple
block Gibbs sampler having the following full conditional posterior distributions:

Bl~N((X"X+T7) X"y, * (X" X +T7)7")

ntk G-Xp O -Xp) ﬂTT“ﬂ>

o%|- ~ Inv-gamma ,
2 2 2

Ah|~~Gamma<a+l,@+n>,h:1,...,H
o

1 . Ao 2
7, |- ~ Inv-Gaussian M=E,P=)\h ,h=1,...,H,

where
by (x1) - by (x1)
X = .. ,T =Diag(ty, -, tH).

by (xy) -+ by (xn)
5.2 Two Simulated Examples

Now we turn to two simulated examples. It is always good to first check our methods
using some simulated data to see whether these methods work before we go into
the more complicated application. In these two examples, even though we know
the underlying true mean function, estimating the coefficients in the mean function
is not straightforward. We use smoothing splines, low rank smoothing splines and
Bayesian shrinkage splines to estimate the mean function.

The first simulated example uses a trigonometric mean function with normal
errors. It is an example used by Faraway (2015). Here we are more interested in
prediction beyond the boundary. Besides the methods used by Faraway (2015), we
also study this example in the Bayesian framework. The second simulated example
assumes the response variable following a gamma distribution with a log-logistic
curve mean function. We design the second example to mimic the claims payment
process in general insurance. This prepares for application to real claims data in
Sect. 5.3.
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5.2.1 A Model with a Trigonometric Mean Function
and Normal Errors

We generate the data from the following model:

yi =sin’Qrx}) +&,i=1,...,100
xi ~U(0,1)
g ~N(0,0.01).

5.2.1.1 Polynomial Basis Expansion Regression Models

TheR functionpoly ( ) generates an orthogonal polynomial basis matrix of specified
degree at specified values. In Fig. 5.1, the first plot shows the raw polynomial basis
of degree 4 at values from 0 to 1, where each line corresponds to a polynomial. The
second plot shows the orthogonal polynomial basis of degree 4 at values from O to 1,
where each line corresponds to a linear combination of polynomials, x, x2, x3, x*.
The third plot shows the orthogonal polynomial basis of degree 11 at values from 0
to 1.

We use the orthogonal polynomial basis of degrees 4, 7, and 11 to fit the simulated
data. The fitted lines are shown in Fig. 5.2. Note that the degrees of freedom (df)
shown in the legend box include the intercept term. None of the fitted lines can
capture the shape of data adequately.

5.2.1.2 Spline Regression Models

The R function bs ( ) works similarly to poly( ). It generates the B-spline basis
matrix of specified degree and knots. The number of rows of the B-spline basis matrix
is equal to the number of values to be calculated. The number of columns of B-spline
basis matrix is equal to the degrees of freedom of this spline. Here we use a cubic
B-spline with 8 knots at (0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9). So the degrees of
freedom (or equivalently the number of columns) is 12, including the intercept term.

Using the R function ns ( ), we generate a natural cubic B-spline with 8 interior
knots at (0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9) and the boundary knots at the ending
points of x. A natural cubic B-spline has the property of orthogonality and linearity
beyond the boundary knots, so the degrees of freedom of this natural cubic B-spline
are 10 (i.e., 8 + 2 + 3 + 1 — 4), including the intercept term.

The comparison of a normal cubic B-spline basis with a natural cubic B-spline
basis is shown in Fig. 5.3. There are 12 lines in the first plot corresponding to 12
columns of a cubic B-spline basis matrix. Except the marginal lines, all the lines are
non-zero over the interval between 5 adjacent knots. There are 10 lines in the second
plot, corresponding to 10 columns of the natural cubic B-spline basis matrix.
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Fig. 5.1 Three polynomial basis functions in the interval [0, 1]: a raw polynomial basis of 4°, an
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Figure 5.4 shows the fitted lines from spline basis expansion regressions. The cubic
spline with 12 degrees of freedom is less wiggly than the polynomial regression with
the same degrees of freedom. This is mainly due to the local representation of spline
basis functions. However, the cubic spline spreads weirdly outside the range of data,
especially for x > 1.

The natural cubic spline regression with 10 degrees of freedom has similar per-
formance to the cubic spline within the range of data. Moreover, it has a better
extrapolation outside the range of data due to the linear constraints.
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Fig. 5.4 The fitted lines of two spline regressions and the smoothing spline

5.2.1.3 A Full Rank Thin Plate Spline

The full rank smoothing spline is as good as the natural cubic spline since the smooth-
ing spline also puts linear constraints beyond the range of data. However, the fitting
process of a smoothing spline is quite different.

A smoothing spline uses the natural basis functions with knots at every unique x
and shrink the coefficients by a penalty matrix based on (5.2), while the natural cubic
spline regression does not shrink the coefficients but uses the least squares estimates.

5.2.1.4 Low Rank Thin Plate Splines

Rather than using the full rank basis matrix as in a smoothing spline, Wood (2003,
2006) uses the truncated eigen-decomposition of a full rank basis matrix to achieve
a low rank smoother approximating the full rank smoother. Package mgcv can fit a
low rank smoothing spline by smoothing function s. A disadvantage of this package
is that we cannot specify the degrees of freedom or the location of knots. They are
chosen automatically by generalized cross-validation criteria.

Another approach to solving the low rank smoothing spline is using a set of radial
basis functions with specified knots as in Sect. 5.1.3. Due to the equivalence of a low
rank thin plate spline to a mixed effects model, we can set up a low rank thin plate
spline model as a Bayesian mixed effects model:
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Fig. 5.5 A Bayesian mixed effects model using radial basis functions

y=Xy+Z5+¢
8§ ~N(0,0K") (5.5)
e~N(0,01),

where X [i,1= (1, x)7, Z[i, k1 = |x; — x>,y = 0, 1), 8 = (81, ..., 8k) and
K[l k] = |k —Kk|3,l =1,...,K,k=1,...,K. Here we specify a set of 20
equally located knots spreading the range of x. We give non-informative priors for
Y, 052, 082. The smoothing parameter A = ‘752 /‘752 is not fixed, and we can get the
posterior distribution of it.

We use Stan to simulate from the posterior distribution. It takes approximately 5
min to generate 1,600 iterations of which the first half are discarded as burn-in.

The posterior mean of A is estimated as 0.000121 compared with 0.000102
from smoothing spline fit. We also plot the posterior predictive distribution for
x € (—0.05, 1.05) in Fig. 5.5. The estimated number of effective parameters is
pp = 17.9, pwaic = 16.5, pioo = 17.5, which indicates around 16 degrees of free-
dom for the smoothing line (i.e., 18 minus two scale parameters, o2 and 02).

5.2.1.5 A Bayesian Spline Model

We apply the method in Sect. 5.1.4. A natural cubic spline basis is used with 20
equally located interior knots spreading the range of x and the boundary knots at
the ending points of x. We compare the goodness-of-fit of three shrinkage priors:
generalized double Pareto (gdP) prior, Laplace prior (double exponential prior) and
Cauchy prior. The Stan code when using gdP prior is as follows:
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El.code<-"
data{
int H; // Number of basis functions
int N; // Number of observations
int n; // Number of predicted values
vector [N] vy; // Observations
matrix [N,H] basis; // Basis functions at observed x
matrix[n,H] basis_hat;// Basis functions at some fixed points
x_hat

}

parameters {

vector [H] b; // Parameters of basis functions

real<lower=0> sigmaE; // Standard deviation of observations vy
vector<lower=0>[H] tau; // Hyperparameter in gdP prior
vector<lower=0>[H] lambda; // Hyperparameter in gdP prior

}

transformed parameters{
vector [N] means;
means <-basis*b;

}

model {
for (i in 1:H) {
b[i] ~ normal (0, sigmaE*taul[i]”0.5) ;
taul[i] ~ exponential (lambdal[i]"2/2) ;
lambda[i] ~ gamma (1,1);
}
vy ~ normal (means, sigmak) ;

}
generated quantities{
vector [n] means_hat;
vector [N] log_1lik;
real D;
means_hat<-basis_hat*b;
for (i in 1:N)
log_lik[il<-normal_log(y[i],means([i], sigmaE) ;
D<-sum(-2*log_1lik) ;
3o
funky <- function(x) sin(2*pi*x"3)"3

set.seed(1l); x <- sort(runif (100,0,1))

vy <- funky(x) + O0.l*rnorm(length(x))

knots<-seqg(min(x),max (x), length.out=20) [-c(1,20)]

basis<-ns (x, knots=knots, intercept = T) # using the default
boundary knots of range of data

H<-ncol (basis); N<-nrow (basis)

x_hat<-seq(-0.05,1.05,0.01)
basis_hat<-ns (x_hat, knots=knots, intercept=T, Boundary .knots =

range (x)) # make sure to use the same knots as design matrix
n<-length (x_hat)
El.stanfit<-stan(model_code = El.code, data=c("H","N","basis","y"
,"basis_hat","n"), iter=800,chains=4,seed=10)

The smoothness depends on the hyperparameters in the shrinkage priors, which
can be specified as fixed constants or left to be estimated from the data. We list
several information criteria in Table 5.1. Generally, all the shrinkage priors perform
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Table 5.1 Comparison of Bayesian spline models using different shrinkage priors in the first
simulated example. The computing time for 4 x 800 iterations is on a PC of 6G RAM with 2.8
GHz dual CPU. We assume the scale and shape parameters for gdP prior, and assume the mean and
standard variance parameters for the Laplace prior and the Cauchy prior

Shrinkage prior Computing time | pp PWAIC | Ploo DIC WAIC |LOOIC
gdP (1, 1) 13s 17.5 15.5 16.5 —168.5 | —168.1 | —166.0

2,7 5 min 17.6 16.1 22.6 —171.7 | —171.0 | —158.0
Laplace | (0,0.1) | 1s 16.6 15.6 16.5 —168.7 | —167.1 | —165.3

0, ?) 1s 20.0 18.0 19.3 —167.9 | —166.7 | —164.2
Cauchy |(0,0.1) | 1s 17.6 16.0 16.9 —169.2 | —168.2 | —166.5

0,7 1s 19.1 17.3 18.6 —168.3 | —167.2 | —164.5
Model (5.5) 5 min 17.9 16.5 17.5 —1654 | —164.1 | —162.0

— True
. - - Posterior mean
=7 - 95%CPDR
Knots
0 _|
o
> o

2 -

0

pig

I

2 |

T

0.0 0.2 0.4 0.6 0.8 1.0
X

Fig. 5.6 A Bayesian natural cubic spline model using Cauchy (0, 0.01) prior

equally well. The fitted line is not sensitive to shrinkage priors. Hence we only give
the posterior mean of the fitted line with the 95% CPDR under Cauchy (0, 0.1)
shrinkage prior in Fig. 5.6. Note that the information criteria can be calculated using
the following code:
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El.sim<-extract (El.stanfit, permuted=T)

# loo and WAIC

loo (extract_log_lik (El.stanfit,"log_1lik"))
waic (extract_log_lik (El.stanfit,"log_1lik"))
# pD and DIC

Dbar<-mean (E1.sim$D)

Dhat <-0
for (i in 1:N){
Dhat <-Dhat -2*dnorm (y[i], basis[i,]%*%apply(El.simSbh,2, mean),

mean (El.sim$sigmaE), log=T) ;
}
list (Dhat=Dhat , Dbar=Dbar , pD=Dbar -Dhat ,DIC=2*Dbar -Dhat)

5.2.2 A Gamma Response Variable with a Log-Logistic
Growth Curve Mean Function

‘We assume the cumulative claims following a log-logistic growth curve, and generate
the incremental claims from a gamma distribution. More specifically, we use the
following model to generate the incremental claims:

Vij ~Gamma<100, L.;_(?),i =1,...,30,j=1,...,40
ij

wij = Pi x LR x (G (j; 0;, 1) — G (j — 15 6;, ;)

P, = (1.00+i x 0.01) x 10°

LR; ~N(0.8,0.1%)

6; ~ N (7.5,0.05%)

w; ~ N (2.5,0.03%)
G(I;0,w) = l—,l:O,...,40,
I
where P; is the earned premium of accident year i, L R; is the loss ratio of accident
year i and G is a log-logistic function. Note that the earned premiums are always
available and are used as the offset later. We choose the shape parameter of the
gamma distribution to be 100, implying the coefficient of variation of y;; as 0.1.

We define the cumulative claims at the end of development year j for the accident
yeariasc;; = 37—, yi. We assume that there is no development after 40 years since
G (40;7.5,2.5) = 0.985.

Suppose the evaluation time of outstanding liability is at the end of first develop-
ment year of accident year 30. We have the triangle data sety = { yij i+ <31,
i =1,...,30} available. The task is to predict the future claims up to the develop-
ment year 40, y' = {y;; :i +j > 31,i =1,...,30, j < 40}. The simulated data
is plotted in Fig. 5.7.
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Fig. 5.7 Simulated incremental and cumulative claims

In the following, we fit four models: a polynomial basis expansion regression
model, a natural cubic spline regression model, a low rank smoothing spline model,
and a Bayesian shrinkage natural cubic spline model. All the models have the fol-
lowing common structure:

yij~Gamma(a,i>,i:l,...,30,j:1,...,40
Mij

H
iy = P x LR x exp (Z Bubi (j)) 60

h=1
P, = (1.00 +i x 0.01) x 10°.

5.2.2.1 A Polynomial Basis Expansion Regression Model

We fit a GLM with a gamma family and a logarithm link function. The offset term
is log P;. The number of parameters is 31 + H', where H' is the degrees of freedom
of polynomial basis without intercept. H’' is chosen according to AIC. Figure 5.8
shows that H’ = 10 is optimal.

For this model, we make the prediction of the lower triangle and tail development
during development years 31-40. The predicted values are shown as lines and simu-
lated data of the same accident year are shown as dots in the same colour. We separate
the prediction of the lower triangle from the prediction of the tail development in
Fig. 5.9.

As in the first simulated example, the polynomial basis expansion model cannot
make good prediction beyond the range of data.



5.2 Two Simulated Examples 135

]
D e e —8
e \ .
e
° /"
¢ IS
" 3
8 ot ¥ @
S ° o
‘9 e W
- o ‘S
.
®) - @
°
< o Lo ©
o o/ = 2
o — e (0]
Yo} ° ©
[=2] Ve —
° ° c
o o
s [
’ -8 2
° >
o - o
S . ° ]
1= o AN
o o/ °
)
P-0-0-0-0-06-0-0-0-0-0-0-0 78
I I I I
5 10 15 20

H

Fig. 5.8 AIC versus H' of polynomial basis expansion models

Simulated data
Predicted lower triangle

Incremental claims
60000

_ = :
e [ I 1 — T = T T
0 5 10 15 20 25 30
Development years
[22]
£ g = 3
S &t i s «  Simulated data
s | ¢ " § 8 —— Predicted tail development
‘g o | ‘ ° 0 . i ; % .
o S | ° %
E 2 \ v v . v g Q
s
£ - \ \ \ \ \
32 34 36 38 40

Development years

Fig. 5.9 Prediction of future claims from a polynomial basis expansion model

5.2.2.2 A Natural Cubic Spline Regression Model

We choose 5 interior knots at 2, 3, 5, 10, 20 and 2 boundary knots at 1 and 30. This
induces a 7 degrees of freedom smoothing development curve. The prediction of
future claims is shown in Fig. 5.10. The model can predict the tail development more
accurately compared with the polynomial basis expansion model.
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Fig. 5.10 Prediction of future claims from a natural cubic spline regression model

5.2.2.3 A Low Rank Thin Plate Spline

We rely on the mgcv package by Wood (2006) to fit a generalized additive model
(GAM) with a low rank smoothing spline for the development year covariate. The
degrees of freedom of the smoothing spline cannot be specified but are chosen using
the criterion of generalized cross-validation. The rank reduction is achieved by a
truncated eigen-decomposition rather than the choice of knots.

The predicted lower triangle is quite close to those predicted by the previous two
models. Here we compare the tail development predictions made by the three models:
the polynomial basis expansion model, the natural cubic spline basis expansion model
and the low rank smoothing spline model. As shown in Fig. 5.11, the natural cubic
spline regression model can best capture the tail development. Next we will set up a
natural cubic spline basis expansion model in the Bayesian framework.

5.2.2.4 A Bayesian Natural Cubic Spline

In the previous simulated example, we saw that a Bayesian mixed effects model is
more computationally expensive but no better fit than a Bayesian shrinkage spline
model (see Table 5.1). Here we consider only a Bayesian full rank natural cubic spline
model with shrinkage priors. An alternative is to use a fixed-knot natural cubic spline
model which leads to similar prediction given the knots are chosen properly.

The Bayesian shrinkage spline model we will focus on is as follows:
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yi,~Gamma(a,i>,i=1,...,30,j=1,...,40

Hij
30
pij = Pi x LR; x exp | Y Bubi () (5.7)
h=1

Br ~ DoubleExp (0,1),h =1,...,30
P, = (1.00 +i x 0.01) x 10°,
where {b, : h = 1, ..., 30} isasetof natural cubic spline basis functions with interior

knots placed at 2, .. ., 29 and boundary knots placed at 1 and 30.
Denote the natural cubic spline basis matrix (40 x 30) by B. Hence

30

> Bubi () = BB j.

h=1

where 8 = (B1, ..., B3o). We use the double exponential (Laplace) shrinkage priors
with mean zero and variance 1. We assume non-informative priors for LR;, «.

Model inference

We use Stan to estimate parameters and predict future claims. The code is as follows:

E2.code<-"

data {
int N; // Number of obs.
int H; // Number of basis functions
int n; // Number of future values
int K; // Number of accident year
int M; // Number of develop year
vector [N] inc; // Incremental claims in upper triangle
matrix[M, H] dev_basis; // Basis expansion matrix
int acc[N]; // Accident years in upper triangle
int dev [N]; // Development years 1in upper triangle
vector [N] pre; // Premiums in upper triangle
int acc_plnl; //Accident years in lower triangle
int dev_pllnl; //Development years in lower triangle
vector [n] pre_p; //Premiums in lower triangle

}

parameters {

vector [H] b;
vector<lower=0.6, upper=1>[K] ratio;
real<lower=0> alpha;

}
transformed parameters{
vector [N] means;
vector [M] dev_raw;
dev_raw<-exp (dev_basis * Db);
for (i in 1:N){
means [i]<-pre[i]l*ratiolacc([i]]*dev_raw[dev[i]];
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model {
b ~ double_exponential (0,1) ;
for (i in 1:N){
inc[i] ~ gamma (alpha, alpha/means([i]) ;

}
generated quantities({
vector [n] means_p;
vector [N] residuals;
vector [N] log_1lik;
real D;
for (i in 1:n){
means_plil<-pre_plil*ratiol[acc_plill*dev_raw[dev_pl[il];
}
for (i in 1:N){
residuals[il<-(inc[i]-means[i])/means[i]*sqgrt (alpha) ;
log_lik[il<-gamma_log(inc[i],alpha,alpha/means([i]) ;
}
D<-sum(-2*log_1lik) ;
}

"

knots<-c (2:29)

dev_basis<-ns (1:40, knots=knots , Boundary.knots = c¢(1,30), intercept
=T)

E2.stanfit<-stan (model_code = E2.code,data=c("N","n","H","K","M",
"inc","acc","dev","dev_basis","pre","acc_p","dev_p","pre_p"),

iter=400, chains=4, seed=1)

It takes 40 s for 1600 iterations. After checking convergence, we plot the posterior
mean of Pearson residuals versus the posterior mean of fitted values in Fig. 5.12. Not
surprisingly, it shows a randomly spread, since the gamma distribution assumption
is the same as the underlying error structure generating the data.

Posterior mean of Pearson residuals

\ T T T T I
0e+00 2e+04 4e+04 6e+04 8e+04 1e+05
Posterior mean of fitted values

Fig. 5.12 The residual plot of a Bayesian natural cubic spline model
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The posterior mean and the 95% CPDR of the proportion of the incremental
claims to the ultimate claims (i.e., the term exp (ZZO:l Brby, (j)) in Eq. (5.7)) is

shown in Fig. 5.13. The posterior mean is close to the true underlying log-logistic
curve. The 95% CPDR covers most of the true underlying curve. As we expected,
the 95% CPDR spreads out after development year 30, since there are no data after
development year 30.

We plot the posterior distribution of cumulative claims up to development year 40
for 9 accident years shown in Fig. 5.14. The ultimate claims distributions are posi-
tively skewed due to the assumption of gamma likelihood. The posterior distribution
of total outstanding unpaid claims liability is plotted in Fig. 5.15. We also plot the
result using a Cauchy shrinkage prior for comparison in Fig. 5.15. Both models lead
to similar posterior distributions that are positively skewed.

Advantages of using a Bayesian model

An important advantage of Bayesian modelling is the ability to evaluate the uncer-
tainty via simulation from the posterior distribution. Frequentist models typically use
the asymptotic property of parameters under resampling to estimate the uncertainty
associated with parameters and future values. This method becomes problematic for
some complicated functions of direct predictions.

For the claims reserving problem, the response variable is the incremental claims,
but our interest is the cuamulative claims whose uncertainty is difficult to estimate. The
bootstrap method can tackle this task through resampling residuals and generating
the pseudo-data. In the Bayesian framework, we use MCMC or HMC to simulate
the joint posterior distribution of parameters and perform a further step to generate
the future claims. Essentially, the distribution of any functions of response variable
can be simulated through this process.
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5 Bayesian Basis Expansion Models

142
* Posterior mean

4 95% CPDR
® Min and Max

Density

0.5

\ \
12

oA
T T

\ T
7 8 9 10 11
Outstanding unpaid claims in millions (using Laplace shrinkage prior)

0.0

* Posterior mean
4 95% CPDR
® Min and Max

Density

\
12

\ \ \
8 9 10 11

7
Outstanding unpaid claims in millions (using Cauchy shrinkage prior)

0.0

Fig. 5.15 The predictive distribution of the total outstanding liability using different shrinkage

priors



5.2 Two Simulated Examples 143

Table 5.2 Comparison of Bayesian spline models using different shrinkage priors in the second
simulated example. The computing time for 4 x 800 iterations is on a PC of 6G RAM with 2.8
GHz dual CPU. We assume the scale and shape parameters for gdP prior, and assume the mean and
standard variance parameters for the Laplace prior and the Cauchy prior

Shrinkage prior | Computing time (s) | pp PWAIC | Ploo DIC WAIC | LOOIC
Laplace | (0, 1) 35 57.1 51.6 52.8 8783.8 |8784.4 |8786.8
0, ?) 35 55.7 49.8 51.1 8780.5 |8780.3 |8782.9
Cauchy | (0, 1) 34 58.2 51.9 53.4 8786.0 |8785.9 |8789.0
0, ?) 34 57.3 51.2 52.7 8784.1 |8784.1 |8787.1

Model selection

Finally, we compare four models in terms of the three information criteria discussed
in Sect. 2.2. As shown in Table 5.2, these four models have similar goodness-of-fit
values. The differences are mainly due to the randomness.

5.3 Application to the Doctor Benefit

In the previous chapter, the analysis of doctor benefit did not accommodate the tail
development. While all the claims seem to be reported by the development year 27,
the benefit payments seem to continue beyond the development year 27. So we need
to consider the tail development of PPCI.

A basis expansion model is applied to extrapolate the tail development. The natural
cubic spline is at the top of our option list, since it comes from an optimal problem
and has the linear constraint beyond the boundary knots.

As in the previous chapter, we have three steps to fit a compound model. The
first step is to fit a Bayesian natural cubic spline model to the claims numbers. The
posterior mean of ultimate claims number is used to calculate the PPCI triangle.
Next, we fit a Bayesian natural cubic spline model to the PPCI triangle to get the
posterior distribution of outstanding PPCI. The payments are assumed to continue
up to the development year 30. Finally, we apply a compound model to combine the
ultimate claims numbers with the outstanding PPCI to get the claims liability.

5.3.1 Claims Numbers

A Bayesian natural cubic spline model with Cauchy shrinkage priors and a gamma
distribution is fitted to the claims numbers triangle. The boundary knots are placed
at the first and last available development years, i.e., the development years 1 and
27. The development years 2—26 are interior knots. The basis matrix for prediction
must use the same knots. The Stan code is as follows:
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number .code<-"

data{
int N; // Number of observations
int n; // Number of future values
int K; // Number of accident years
int M; // Number of develop years (27)
int H; // Number of basis functions
vector [N] first_inc; // Number of claims in upper triangle
matrix [M,H] dev_Dbasis; // The basis functions
int acc[N]; // Accident years in upper triangle
int dev [N]; // Development years in lower triangle
int acc_plnl; // Accident years in lower triangle
int dev_plnl; // Development years in lower triangle
}
parameters {
vector [H] b;
vector<lower=0, upper=55000>[K] ult;
real<lower=0> alpha;
real<lower=0> sigma ;

}
transformed parameters{
vector [N] means;
vector [M] dev_raw;
vector [M] dev_norm;
dev_raw<-exp (dev_basis * b);
dev_norm<-dev_raw/sum(dev_raw) ;
for (i in 1:N){
means [i]<-ult[acc[i]]*dev_norm([dev[i]];

}
}
model {
b ~ cauchy (0, sigma) ;
for (i in 1:N){
first_inc[i] ~ gamma (alpha, alpha/means([i]) ;
}
for (i in 25:27)
ult[i] ~ normal (20000,2000) ;
}

generated gquantities{
vector [n] means_p;
vector [N] residuals;
vector [N] log_1lik;
real D;
for (i in 1:n){
means_pli]l<-ultlacc_pli]l*dev_norm[dev_pl[ill;
}
for (i in 1:N){
residuals[i]<-(first_inc[i]-means([i])/means[i]*sqgrt (alpha) ;
log_1lik[i]l<-gamma_log(first_inc[i],alpha,alpha/means[i]) ;
}
D<-sum(-2*log_1lik) ;
yo
M<-27; knots<-c(2:26)

dev_basis<-ns(c(1:M),knots=knots, Boundary.knots = c(1,27),
intercept = T)

number .stanfit<-stan (model_code = number.code, data=c("first_inc"

,"N","n","K","M","H","acc","dev","acc_p","dev_p","dev_basis"),

iter=800, chains=4, seed=1)
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Fig. 5.16 Proportions of incremental claims numbers to ultimate claims numbers

The residual plot shows a quite similar pattern to Fig. 4.17 so we did not present
it here. The posterior mean and the 95% CPDR for the proportion of incremental
reported claims to the ultimate claims numbers are plotted in Fig. 5.16. It shows that
nearly all the claims are reported by the development year 3, hence the assumption
of no tail development after development year 27 is reasonable.

We plot the posterior distributions of cumulative claims numbers for the accident
years 8, 10, 12, 14, 16, 18, 20, 22 and 24 in Fig. 5.17. It shows that the ultimate
claims numbers for the older accident years can be estimated more accurately. For
the recent accident years, the large uncertainties in the first three development years
are carried forward to the ultimate claims numbers. We use the posterior mean of the
ultimate claims number as a proxy to derive the PPCI triangle.

5.3.2 PPCI

Similar to the claims numbers, we fit a natural cubic spline model with Cauchy
shrinkage priors to the PPCI triangle. The choice of knots is the same as for the
claims numbers, and we assume the payments are finalized by the development year
30. The Stan code is similar to number . code, but with the following changes:
M<-30; knots<-c(2:26)

dev_basis<-ns(c(1l:M),knots=knots, Boundary.knots = c(1,27),
intercept = T)
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The posterior inference of the proportion of incremental PPCI to the ultimate
PPCI is shown in Fig. 5.18. The 95% CPDR spreads out in the tail area due to the
lack of data. The development of PPCI for accident years 8, 10, 12, 14, 16, 18, 20,
22 and 24 is plotted in Fig. 5.19. As expected, less developed accident years show
more variation.

Here we saw the advantage of the basis expansion model compared with model
(4.7). Model (4.7) separates the development curve into two parts: the first few devel-
opment years, characterized by a factor covariate, and the last mature development
years, characterized by an exponential curve. The RIMCMC method is used to sim-
ulate from the posterior distribution, which is a joint distribution of the model index
and parameters. By using a basis expansion model, only one model is focused and
non-significant coefficients are shrunk to zero.

5.3.3 Combining the Ultimate Claims Numbers with the
Outstanding PPCI

A compound model discussed in the previous chapter (see Sect. 4.4) is applied to
calculate the posterior distribution of total outstanding claims liability as shown
in Fig. 5.20. Table 5.3 lists the predictions made from the compound model. The
posterior mean of total outstanding liability is 419,770,032 dollars (7% higher than
in the previous chapter) with standard variance of 10,492,327 dollars. The 95% CPDR
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Table 5.3 The predictions made from the compound model for the doctor benefit

Post. mean Std. deviation 95% CPDR
O/S claims no. 13,693 2,397 (9,846, 19,060)
0O/S PPCI 18,320 386 (17,548, 19,059)
O/S liability 419,770,032 10,492,327 (401,778,990, 442,281,893)

Table 5.4 The outstanding claims liability estimates of the doctor benefit from different models

Model Post. mean Std. deviation 95% CPDR

Previous chapter 391,761,803 10,195,111 (373,902,941, 414,549,267)
This chapter 419,770,032 10,492,327 (401,778,990, 442,281,893)
PwC 396,827,792 NA NA

is (401,778,990, 442,281,893). These estimates should be compared with those from
the previous chapter in Table 5.4.

5.3.4 Computing Time

Finally, we point out that the computing time for the Bayesian basis expansion model
is much less than for the Bayesian chain ladder model in the previous chapter, since
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Table 5.5 Comparison of the computing times for the Bayesian chain ladder model and the
Bayesian spline model. The computing time is on a Mac of 4 GB 1600 MHz DDR3 with 1.3
GHz Intel Core i5

Model Response variable Iterations Computing time (s)
Bayesian chain ladder Claims no. 4 x 400 86

PPCI 4 x 400 364
Bayesian basis expansion | Claims no. 4 x 800 73

PPCI 4 x 800 65

we use the orthogonal basis functions in the basis expansion model. The computing
times for the models used in this section and for those used in Sect. 4.4.3 are displayed
in Table 5.5.

5.4 Discussion

To the best of our knowledge of the actuarial science literature, the contribution of
this chapter is to introduce a Bayesian basis expansion model to the claims reserving
problem. Compared with a stochastic chain ladder model, a Bayesian basis expan-
sion model has the advantages of reducing the number of parameters via shrinkage
priors and incorporating the tail factor via interpolation. Due to the orthogonality of
basis functions, the running time of MCMC is largely reduced. Unlike a non-linear
curve model, a Bayesian basis expansion model can accommodate all the shapes of
data. Hence, the Bayesian basis expansion model is one of the most powerful tools
according to our research.

This chapter considers the basis expansion of the development year covariate,
and it is typically enough for the claims reserving problem. We can address the non-
linear effect of both accident years and development years simultaneously (and their
interaction) using the multivariate adaptive regression splines (MARS), see Hastie
et al. (2009) and Section 3.2 of Wiithrich and Buser (2018). Another related work
is Gabrielli et al. (2018) which embeds the MLEs from GLM into a neural network.
Further research can consider the basis expansion of two or more covariates, which
is more common in the insurance rating problem.

Finally, we point out a problem in Fig. 5.18. From a statistical point of view,
since there is no data in the tail development, more variability is expected. However,
from an actuarial point of view, the claims paid in the tail development period should
be subjected to less variability since almost all the claims have been closed by this
period. We do expect less variation associated with the tail development. To realize
this expectation, a strong prior for the tail development can be assumed to limit its
posterior variability. This method will be applied in the next chapter (see Figs. 6.12
and 6.13). This is a situation when the actuarial judgements override the data.
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5.5 Bibliographic Notes

There are several books covering the topic of spline models: Hastie and Tibshirani
(1990), Ruppert et al. (2003), Wood (2006), Hastie et al. (2009) and James et al.
(2013).

Wood (2003) discusses low rank thin plate splines. Ruppert (2012) discusses
selecting the number of knots. DiMatteo et al. (2001) apply RIMCMC to allocate
the knots. Crainiceanu et al. (2005) fit a penalized spline model via WinBUGS and
give several examples. Hall and Opsomer (2005) give some theoretical properties
of penalized spline regression. Lay (2012) is an excellent reference book for matrix
concepts such as orthogonality, rank, basis etc.

Bishop (2006) provides a useful review of basis function models. Park and Casella
(2008) discuss inference using the Laplace prior distribution. References on gen-
eralized double Pareto shrinkage include Armagan et al. (2013). Komaki (2006)
investigates the shrinkage predictive distributions based on vague priors.

There is little literature about non-parametric claims reserving models. England
and Verrall (2001) apply the generalized additive model. Zhang and Dukic (2013)
apply a semi-parametric Bayesian model proposed by Crainiceanu et al. (2005). Gao
and Meng (2018) propose the Bayesian basis expansion claims reserving model.
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Chapter 6 ®)
Multivariate Modelling Using Copulas oo

Abstract Copulas are a family of multivariate distributions whose marginal distri-
butions are uniform. At the end of reserving problems, we need to aggregate the
outstanding liability distribution of each line of business or each type of benefit to
get the total outstanding liability distribution. The dependence between them must
be considered. In the Bayesian copulas framework, all the uncertainties and correla-
tions are considered during the inferential process which is an advantage compared
with the likelihood-based frequentist inference. In Sect. 6.1, the elements of copulas
are reviewed, including Sklar’s theorem, parametric copulas, inference methods, etc.
In Sect. 6.2, we discuss the usefulness of copulas in risk modelling generally. The
copula is used to model the empirical dependence between risks while the marginal
regression model is used to model the structural dependence. In Sect. 6.3, a bivari-
ate Gaussian copula is used to aggregate the liabilities of the doctor benefit and the
hospital benefit in WorkSafe Victoria. These two benefits are correlated positively
even after removing the structural effects of the development periods.

6.1 Overview of Copulas

All the models we discussed before are univariate models, i.e., there is one response.
However, for many applications, it is more appropriate to apply a multivariate model
which captures important relationships. Property damage lines could be positively
correlated, e.g., homeowners property damage insurance and personal auto damage
insurance could be hit at the same time in catastrophic events. Liability lines could
be positively correlated due to changes in litigation. It is important to consider the
impacts of correlation between lines or benefits on the distribution of aggregated
liability.

Typical multivariate distributions include multivariate Gaussian distribution, mul-
tivariate ¢-distribution, Wishart distribution etc. These multivariate distributions also
determine the marginal distributions. Copulas are a family of multivariate distri-
butions whose marginal distributions are uniform. In this section, we summarize
the elements of copulas in four parts: the mechanism of copulas to join arbitrary
marginal distributions, two copula families, measures of bivariate association, and
the inferential methods.
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6.1.1 Sklar’s Theorem

Sklar’s theorem (Sklar 1959) is perhaps the most important result regarding copulas. It
establishes the general connection between any multivariate distribution and copulas
and is used essentially in all copula applications. Sklar’s theorem states that for
an m-dimensional multivariate distribution function F' with marginal distributions,
Fy, ..., F,, there always exists an m-dimensional copula C such that

Freoowy) =CIF1 (1), ..., Fu )]

Conversely, if C is an m-dimensional copula and Fi, ..., F,, are distribution func-
tions, then the function F defined above is an m-dimensional multivariate distribution
function with marginal distribution functions, Fi, ..., F,.

From Sklar’s theorem, we see that for any multivariate distributions, the marginal
distributions can be separated from the multivariate dependence which can then be
represented by a copula. A direct implication of Sklar’s theorem is deriving a copula
from a multivariate distribution as follows:

Cui,...;up)=F[F " (u),....F," ()],

where uy, ..., u, follow marginal uniform distributions on the interval [0, 1].

6.1.1.1 Invariance to Monotone Transformation

While a joint distribution is affected by the monotone transformation of variables, a

copula is invariant to the monotone transformation of variables. Let (yi, ..., y,) bea
vector of continuous random variables with a copula C. Define x| = h; (y1), ..., Xi
= hy (Ym).If Ay, ..., hy, are strictly increasing functions, then (x, ..., x,,) also has

the same copula C.

6.1.1.2 The Fréchet-Hoeffding Bounds for Bivariate Copulas

Fréchet (1935) found that any bivariate copula C is bounded by the Fréchet-Hoeffding
lower bound W and the Fréchet-Hoeffding upper bound M, as follows:

W (uy, uz) < C(uy,uz) < M(uy,uz),
where W (uy, up) = max (uy; +up; —1,0), M (uy, uy) = min (u, u,). Figure 6.1

shows the surfaces and contours of W and M compared with the independent copula
whose variables are independent with each other.
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Fig. 6.1 The surfaces and contour plots of the independent, minimum, and maximum copulas

6.1.2 Parametric Copulas

We will investigate two parametric copula families: elliptical copulas and Archi-
medean copulas. Elliptical copulas are simply the copulas of elliptical distributions
such as multivariate Gaussian distribution and multivariate ¢-distribution.

Rather than deriving from multivariate distributions, Archimedean copulas are
functions of a convex generator and the dependence strength is governed by only
one parameter. Archimedean copulas include the Clayton, Gumbel, Frank, and others.

6.1.2.1 Elliptical Copulas

The copula of an m-dimensional normal distributed random vector z with mean zero
and correlation matrix X is

Cw) =@ [@7" u),.... 0 " (un); 2],

where ®~! is the inverse of the standard normal distribution function and ®,, is
the joint distribution function of z. The connection between elliptical copulas and
elliptical distributions provides an easy way to simulate from elliptical copulas: first
simulate z ~ ®,,, thenlet u; = &~ (z;) fori =1, ..., m.

The copula of an m-dimensional ¢-distributed random vector x with mean zero,
degrees of freedom v and correlation matrix X is
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Fig. 6.2 A bivariate Gaussian copula and 7-copulas with df = 1, 10, which have the same Pearson
correlation of 0.8 and Kendall’s tau of 0.5903

C W)=ty [t;" @), ....t;" (n); 2],

where ¢! is the inverse of the -distribution function with v degrees of freedom and
tm., 18 the joint distribution function of x.

Figure 6.2 shows a bivariate Gaussian copula and a bivariate ¢-copula, both of
which have the same Pearson correlation of 0.8 and Kendall’s tau of 0.5903 (defined
in Sect. 6.1.3). Kendall’s tau of a 7-copula does not depend on the degrees of freedom.
With the degrees of freedom increasing, a #-copula approaches a normal copula.
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Table 6.1 The generators, Kendall’s tau and tail dependence for two elliptical copulas and three
Archimedean copulas

Copula Generator Kendall’s tau Upper Lower
Gaussian NA 2 arcsin (X12) /m 0 0

t NA 2 arcsin (X12) /7 0 0
Clayton T —1) /(0 +2) 0 2-1/8
Gumbel (—logu)? 1-1/60 2—21/0 0
Frank —log (7?5;(:9;‘)):1‘) | - $A D 0 0

6.1.2.2 Archimedean Copulas

A general definition of Archimedean copulas can be found in Nelsen (2013). An
Archimedean m-dimensional copula has the following form:

C) =" Mp@i;0)+ -+ ¢ 0);0],

where ¢ is called the generator of copula C and [~ is the pseudo-inverse of .
The function ¢ is a continuous, strictly decreasing convex function mapping from
[0, 1] to [0, oo], such that ¢ (1) = 0.

Table 6.1 shows the generators of three popular Archimedean copulas. We plot the
cumulative distribution functions, the probability density functions and the contours
of probability density functions for the three Archimedean copulas in Fig. 6.3.

6.1.3 Measures of Bivariate Association

Copulas are invariant under monotone transformation, so we want the measures of
association to also be invariant to monotone transformation. Pearson correlation (or
linear correlation) is invariant under linear transformation but not invariant under
non-linear transformation.

In the following we will review two measures of association known as Kendall’s
tau and Spearman’s rho, both of which depend on the variable ranks rather than their
values (and hence are invariant under monotone transformations).

Moreover, we will discuss the tail dependence relating to the amount of depen-
dence in the upper-right-quadrant tail or lower-left-quadrant tail of a bivariate distri-
bution. It turns out that tail dependence is also a copula-based association measure
that is invariant under monotone transformations.
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Fig. 6.3 Clayton, Gumbel and Frank copulas with the same Kendall’s tau of 0.5903

6.1.3.1 Kendall’s Tau and Spearman’s Rho

Kendall’s tau for two random variables is defined as the probability of concordance
minus the probability of discordance. Assuming the two variables y;, y, have a
copula C, then Kendall’s tau for y;, y, is given by

T (1, y2) 1= 4// €, ur)dC (uy, uz) — 1 =4E[C (uy, us)] — 1.
[0,1]
Spearman’s rho for y;, y; is given by

ps(yl,y2)=12// M[Mde(M],Mz)—3=IZE(MIMQ)—?).
[0,11
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If the marginal distributions are F; and F, and u; = F; (y;) and up = F> (y,), then

E(ulug) — 1/4 . Cov (ul, Mz)
1/12 — J/Var (u1)+/Var (u2)

ps (¥1, y2) = =pF1 (1), F2 ().

Table 6.1 lists Kendall’s tau for two elliptical copulas and three Archimedean copulas
discussed before. Figure 6.3 shows three Archimedean copulas, all of which have
the same Kendall’s tau of 0.5903.

6.1.3.2 Tail Dependence

The coefficient of upper tail dependence of the two variables y;, y, with the copula
C is defined as
Ay = lim Pr [v2> B @)y > F7w)].

It can be shown that Ay is a copula property which has the following equivalent
form:

1—2u+C (u,u)
Ay = lim .
u—1 1—u

The coefficient of lower tail dependence )\, is defined in a similar way:

C )
A = lim S0
u—0 u

Table 6.1 lists the coefficients of upper and lower tail dependence for bivariate cop-
ulas. None of the copulas exhibit tail dependence except the Clayton copula and the
Gumbel copula. The Clayton copula has a lower tail dependence while the Gumbel
copula has an upper tail dependence.

6.1.4 Inference Methods for Copulas

In this section, we follow the model specification as in Pitt et al. (2006). Consider

an m-element response variable y = (yy, ..., ¥,). It is observed for n times, so the
data is
y= (yh »yn) = ((yll’ --~»y1m)Ta ) ()’nl, -~~,ynm)T) = ()’1, --~,)’m)T,

where y; is an m-row-vector of the ith observation, y; is an n-column-vector of the
Jjth response variable.

For the jth element in the ith observation y;;, we have a k-vector covariate x;;.
Marginally, we fit a generalized linear model F; to y;. We denote the associated
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parameters as 6; = (3;, ;), where 3; is a k-vector of coefficients of x;; and ¢; is
a vector of all the other parameters in F;.

The joint distribution of the ith observation y; = (y;1, ..., Vi) is modelled by a
copula with parameters 6, as follows:

F(yl):C[Fl (yil)w”va (yim);ec]v (6.1)

which can be seen as a joint distribution of residual ranks of response variables (after
removing the systematic effects of covariates). In a Gaussian copula setting, we can
write the above copula as

O, {7 [F i)y s @7 [ (vim)]; 2,

where ®~! is the inverse of a standard normal distribution function and ®,, is an
m-multivariate Gaussian distribution function with mean zero.

In the following, we discuss two likelihood-based estimations: the maximum like-
lihood estimation (MLE) and the inference functions for margins estimator IFME).
Bootstrap methods and MCMC methods can be applied to estimate the estimation
error and the prediction error in IFME.

6.1.4.1 Maximum Likelihood Estimation (MLE)

The density function of y; is the derivative of Eq. (6.1), as follows:
e [Fl (yil) seees P (ytm)]
f i) = 3
Vit - OYim
=clF1 (it ooy F Qi) 1 Qi) =+« fon Qi)

where c is the density function of C and f; is the density function of y;. The likelihood
function of y = (y, ..., yu) i

n

LO:y)=]]ctFiom)..... b sl [[[ ] £5 (is) -
i=1 j=1i=1

The MLE is then defined as

éMLE =argmax L (6;y).
)

Note that the optimization of global likelihood can be quite demanding since the cop-
ula likelihood part also contains marginal regression parameters 0;, j = 1,...,m.
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6.1.4.2 Inference Functions for Margins Estimator (IFME)

Joe (2014) suggested first estimating 6; for each jth marginal regression model, and
then estimating the copula parameter 6, via

n
HEFME = argmax c (Fl (yil; 01) D] Fm (yim; em) ; 06‘) ’
b iz

where § i, j =1,..., mare the MLEs of the marginal models. IFME is always easier
to compute than the global MLE.

Predictive distributions via parametric bootstrap

Suppose we want to get the predictive distribution of R = g (y,,+1,1, R y,,+1,m)
given the covariates x,4+1 = (X,+1.1, - - -, Xnt1,m), Where g is a generic function. The
bootstrap algorithm is as follows:

1. Fitamarginal regression toy; to get the estimated parameters 0 jforj=1,...m.
2. Calculate the cdfs given the estimated parameters in step 1 as

ﬁiszj(yij;éj> f0ri=1,...n,j=l...,m.

3. Calculate the IFME of 0,.:

HAZFME = argmaxﬁc (F1 (yil; é1> veois Fi (yim; ém) ; 96> .
i=1

0(
4. Generate a bootstrap sample ujfj,i =1,...,n,j=1,...,m from the copula
C(u;0.).
5. Inverse the cdfs to get a bootstrap data sample yfj = FJ._l (ufj; é]> Jdi=1,...,n,
j=1,...,m, where éj is from step 1.
6. Fit a marginal regression to y‘} to get the estimated parameters é; j=1,...m.
7. Calculate the prediction as R* = g (y3 (. ---, Yo 1) Where Yotlj = Fj_l

(”f,+1,j§ éj) uy_  is arealized sample from C (u; 0.).
8. Redo steps 4 to 7 for S times to get a bootstrap sample R, s =1, ..., S.

The key steps are 4 and 7 which establish the correlation between the estimated
parameters and the correlation between the predicted values.
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Predictive distributions via MCMC

Again, suppose we want to get the predictive distribution of R = g (yn+1,1, ceey
ynH,m) given the covariates x,+1 = (Xy41.1, - - - » Xut+1.m)» Where g is a generic func-
tion. The MCMC algorithm is as follows:

1. Apply the MCMC methods to each marginal model to generate a Markov chain
whose stationary distribution is the posterior distribution of §; for j =1, ..., m.
2. For the tth MC sampled parameters ¢, calculate the corresponding cumulative
probabilities u} ;= F; (y; is 9;) , which will be used as the “observed” data of

the copula.

3. Calculate the MLE of copula parameter ., and generate a sample u],_ , ~
C(ulfl).

4. Calculate the prediction values as

R'=¢ (Ffl (uf1+1,1; 9?) R F;;] (M;Jrl,m; 9%))
5. Repeat steps 2 to 4 for T times to get a MC sample R, t =1,...,T.

Example 6.1 (A simulated example using a Gumbel copula) Suppose the joint dis-
tribution of two response variables have a Gumbel copula and each variable is
marginally modelled by a linear regression model:

yits yi2 ~ C (Fi (it @ Bot. Bu) » Fa (viz: 0%, Boas Biz) : be)
a
yi1 ~ Gamma (a, —)
: Bor + Brixin
log yiz ~ N (802 + Bi2xi2. 0°) .

The following true parameters are specified: n = 100, Bo; = 1, 511 =2, a = 10,
Boa = 0.1, B1 = 0.3, 0% = 0.5, 6. = 2 (Kendall’s tau is 0.5). x;|, x;» are generated
independently from a uniform distribution U [0, 10]. y;; and y;, are associated via
the same index i which can indicate the same time, the same place or other common
features. Figure 6.4 shows the relationships between the variables. Due to the effects
of covariates, there is no significant relationship between the two response variables.

Inference functions for margins estimator (IFME)

Two linear regression models are fitted to two response variables respectively. The
estimated parameters of two models are shown in Table 6.2. We then calculate the
cdfs of the response variables given the estimated regression parameters as

F (yil; Bors Bt 54) , (yiz; Bozs Bras 5) ,

which are denoted by u;1, ;2,1 = 1, ..., 100.
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Table 6.2 The inferences made for two marginal linear regressions in Example 6.1.

Model 5o B l/&oro
yi1 ~ Gamma (oz, W) 0.96 1.95 0.11
log yi2 ~ N (Boz2 + Biaxiz. 02) | 0.07 0.31 0.53
The scatter plot of (ﬁ,-l, ﬁ,-z) ,i =1,...,100 is shown in Fig. 6.5, indicating a

significant positive relationship with an empirical Kendall’s tau of 0.51. The rugs
indicate that the marginal distributions of i1;, &;, are close to a uniform distribution

as expected.
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methods

The predictive distribution via bootstrap methods

Suppose we want to predict the sum of yjo;,; and yjo;1.2, both of which have the
same covariate of 5. The bootstrap algorithm discussed before is used to simulate
the predictive distribution of yj1.1 + yi01.2- Figure 6.6 shows a significant positive
correlation between yj01,; and yj0;1,2. The bootstrap estimate is 16.42 with the 95%

PI of (7.24, 32.23).
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We fit two Bayesian linear models separately to the two response variables. HMC is
applied to simulate from the posterior distribution. At the end of Bayesian infer-
ential simulation, a sample of parameters is obtained. Assuming the rth sam-
pled parameters as [, 3, o', 85,, B},, o', we can calculate the corresponding
ul;,uly, i =1,..., n. The Stan code for sampling u!,, ul, is as follows

El.cod
data{
int
real
real
real
real
}
parame
real
real
real
real

e<-"

n;
x1[n
x2[n
ylln
v2[n

ters{
b01l;
bll;
b02;
bl2;

]
1;
1
]

i

real<lower=0> alpha;
real<lower=0> sigma;

}

transformed parameters/{
real mul[n];
real mu2[n];

for

(i in

1:n){

mul[i]<-b01l+bll*x1[i];
mu2[i]l<-b02+bl2*x2[1];

}

model {
for (i in 1:n){
y1l[i] ~ gamma (alpha,
log(y2[i]) ~ normal

alpha/mullil]) ;
(mu2[il,

sigma) ;
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}
generated gquantities/{
real Fl[n];
real F2[n];
real resl[n];
real res2[nl];
for (i in 1:n){
Fl[i]<-gamma_cdf(y1l[i],alpha,alpha/mul([i]) ;
F2[i]<-normal_cdf (log(y2([i]),mu2[i], sigma) ;
resl[il<-(yl[i]l-mulf[i])/mul[i]l*sqgrt (alpha);
res2[i]l<-(log(y2[i])-mu2[i])/sigma;

}

"

El.stanfit<-stan (model_code=El.code,data=c("n","x1","x2","y1l","y2
") ,iter=400, chains=4, seed=2)
El.sim<-extract (El.stanfit, permuted=T)

For the ease of copula parameter estimation, a bivariate Gaussian copula is chosen.
The MLE of a bivariate normal copula parameter is just the sample correlation of
&~ (u!,) and ®~!(ul,), denoted by 6. Figure 6.7 shows the scatter plot of posterior
means, #;| versus u;», which is quite similar to Fig. 6.5 indicating the suitability
of using a bivariate Gaussian copula. The histogram of 6, is shown in Fig. 6.7,
which also confirms the significant positive relationship between u;; and u;>. Again,
suppose we want to predict the sum of yjo;,; and yjo; 2, both of which have the
same covariate value of 5. We compare two approaches: the independent predic-
tion and the dependent prediction using a copula. The independent prediction is the
sum of posterior predictions y{,, |, ¥iy; , Without considering the permutation. For
the dependent prediction using a copula, first a pair of (u}y; ;. Uig; o) is generated
from a bivariate Gaussian copula with parameter 6’.. Then we inverse two functions,
wiorr = Fr(¥ior1s Bors Bip @) and gy 5 = Fa(¥igy 23 Bip» Bz, o), to geta pair of
(¥lo1.1+ Yio1.2)- Figure 6.8 shows a positive correlation between yioi.1, yio1,2 under
the dependent prediction and this positive correlation affects the 97.5% percentile
significantly compared with independent prediction. The posterior mean is 16.74
with the 95% CPDR of (7.80, 33.20) under the dependent prediction. The R code
for estimating 0’ and predicting yjo1,1, Y1012 is as follows:

rho<-rep (NA,nrow (E1l.simS$SF1))

vl _5<-rep(NA,nrow(El.sim$SF1))

yv2_5<-rep(NA,nrow (El.sim$SF1))

v1l_5_ind<-rep (NA,nrow (El.simS$SF1))
v2_5_ind<-rep (NA,nrow (E1l.sim$F1))

for (i in l:nrow(El.sim$F1))
{
rho[il<-cor (gnorm(El.sim$F1[i,]),gqnorm(El.sim$SF2([1i,]))
sigma<-matrix (c(l,rho[i],rho[i],1) ,ncol=2)
Fl2<-rmvnorm (1, mean=rep (0,2) ,sigma)
Fl<-pnorm(F12[1]) ;F2<-pnorm(F12([2])
vl _5[i]l<-ggamma (Fl, shape=El.sim$alpha[i], rate=El.sim$alphalil/(
E1l.sim$b01[1i]1+45*El.sim$Sb1l1[1i]))
v2_5[il<-exp(gnorm(F2,El.sim$b02[1]+5*El.sim$bl12[i],E1l.sim$
sigma[i]))
vl _5_ind[i]l<-rgamma (1, shape=El.simS$Salpha[i], rate=El.sim$alphal[i]
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/(E1l.sim$b01[i]+5*El.sim$b11[1]))
v2_5_ind[il<-exp(rnorm(l,El.sim$b02[1i]+5*El.sim$b12[1i],El.sim$
sigmal[il))

}

6.2 Copulas in Modelling Risk Dependence

We focus on the models for multiple run-off triangles. There are several papers on
this topic. Shi and Frees (2011) and Shi (2014) use the elliptical copulas to address
the dependencies introduced by various sources. They use the parametric bootstrap
method to simulate the predictive distribution of outstanding liabilities. De Jong
(2012) uses a Gaussian copula to model the dependence of payments from different
triangles in the same calendar year.
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Fig. 6.8 yi01,1 versus yjo1,2 and the predictive distribution of y101,1 + y101,2 via the MCMC. The
first row is from the desirable copula model. The second row is from the inappropriate independent
model for the purpose of comparison. VaR and TVaR will be discussed in Sect. 6.2.2
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One of the most important works is Zhang et al. (2012) which was awarded
the ARIA prize by the Casualty Actuary Society. This annual prize, first awarded in
1997, is made to the author or authors of a paper published by the Journal of Risk and
Insurance that provides the most valuable contribution to casualty actuarial science.
This paper uses a Bayesian copula model to address the dependence between the
different triangle payments in the same accident year and development year. This
paper compares the goodness-of-fit of Clayton, Gumbel, Frank and Gaussian copulas
and uses three different marginal regressions: a generalized linear regression, a non-
linear growth curve model and a semi-parametric model.

6.2.1 Structural and Empirical Dependence Between Risks

We distinguish the two types of dependence since two different approaches are used
to tackle them. In general, the risks an insurer faces often exhibit co-movement or
dependencies. This means that knowledge about results for one risk can be used to
better predict the results for another risk. Dependence between two risks may be
due to known relationships (structural dependence), or simply due to the historically
observed correlations (empirical dependence).

Structural dependence modelling

The structural co-movements can be accounted for in a regression modelling process.
Structural dependencies include situations where loss variables are driven by com-
mon variables: for example, the cumulative claims of two benefits are both increasing
with the development periods. This positive dependence can be modelled by using
the covariate of development periods.

Empirical dependence modelling

The empirical co-movements are simply observed without any known (or capable
of being modelled) relationships, i.e., the positive relationship of residuals from
two models. For many types of risks, particularly in property and liability areas, co-
movements are observed, but may not be easily explained. It is more likely necessary
to construct dependency models that reflect observed and expected dependencies
without formalising the structure of those dependencies with cause-effect models.
The theory of copulas provides a comprehensive modelling tool that can reflect
dependencies in a very flexible way.
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6.2.2 The Effects of Empirical Dependence on Risk Measures

An insurer needs to hold much more than the expected value of unpaid claims liability
to ensure the company’s solvency with a quite large probability. In Australia, insurers
typically add a risk margin to the mean of liability to get the estimation of reserve
amount.

A risk margin is set consistently with risk measures. A risk measure is not cal-
culated by summing up the contributions of different business lines, but more likely
from the distribution of all risks combined. So it is necessary to consider the empirical
dependence between different lines.

6.2.2.1 Risk Measures

Most risk measures can be classified as moment-based, tail-based, or probability
transforms. The moment-based risk measures (including the standard deviation and
semi-standard deviation) are not often used since they are not directly related to the
solvency concept.

The most used risk measures are tail-based risk measures which emphasize large
losses. The four tail-based risk measures, value at risk (VaR), tail value at risk
(TVaR), excess tail value at risk (XTVaR), and expected policyholder deficit (EPD),
are defined as follows:

e VaR is a percentile of a loss distribution.

e TVaR is the expected loss at a specified probability level and beyond.

e XTVaR is TVaR less the mean. When the mean is financed by other funding,
capital is needed for losses above the mean, so subtracting the mean can capture
this need.

e EPD is calculated by multiplying TVaR minus VaR by the probability level. If
the probability level is chosen so that capital is VaR at that level, then TVaR
minus VaR is the expected value of defaulted losses if there is default. Multiplying
this quantity by the complement of the probability level yields the unconditional
expected value of defaulted losses.

Probability transforms measure risk by shifting the probability towards the
unfavourable outcomes and then computing a risk measure from the transformed
probabilities. Most of the usual asset pricing formulas, like the capital asset pricing
model and the Black-Scholes options pricing formula, can be expressed as trans-
formed mean.
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Table 6.3 The tail-based risk measures under different copula parameters in Example 6.2

Copula parameters Loss Mean VaR TVaR XTVaR EPD
X1 200.00 366.14 438.23 234.32 3.02
X2 147.31 295.88 369.13 223.07 3.80
0.=1,7=0 X1+ x2 347.31 566.10 654.03 304.07 4.40
0. =2,7=05 x;+x2 | 34731 667.59 826.50 473.59 7.95
0. =4,7=0.75 X1 +x2 347.31 687.10 852.75 501.18 8.28

Example 6.2 (Empirical dependence) We illustrate the effects of empirical depen-
dence on the risk measures by a hypothetical example. Consider two correlated loss
variables x| and x; with the following distribution:

F (x1,x2) = C (Fg (x1; o, ) , Frwv (x23 pi2, 02) ;6c)

«
x1 ~ Gamma (a, —)
H1

logxz ~ N (2, 0%)

where C is a Gumbel copula. The underlying parameters are specified as p; =
200, a = 5, pp = log 130 and % = 0.25. Consider three cases: 6, = 1 (i.e., the two
risks are independent), 6, = 2 and 6. = 4. The two marginal distributions are posi-
tively skewed.

By doing simulation, we estimate the four tail-based risk measures for individual
loss and the aggregated loss. Table 6.3 shows the results, implying the significant
effects of empirical dependence on the tail-based risk measures. Figure 6.9 shows
that when 6. = 2, larger x; and x, are more likely to be correlated with each other.
This is because a Gumbel copula has a non-zero upper tail dependence as shown in
Table 6.1.

6.3 Application to the Doctor and Hospital Benefits

Recall that Table 4.9 lists all the benefits in the WorkSafe Victoria. In “medical and
like” benefit category, we have two sub-benefits: doctor and hospital. Intuitively,
these two sub-benefits should be positively correlated. Here we focus on the models
applied to the claims amounts rather than the PPCI method as in the previous two
chapters.
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6.3.1 Preliminary GLM Analysis Using a Gaussian Copula

As a quick check of correlation between two triangles, we recommend starting from
the least complicated models. We fit two chain ladder GLMs with a gamma error and
a log link to the doctor benefit x and the hospital benefit y. The model is as follows:

F (xij, vij) = C (F1 (xij5 a1, i v15) s B2 (ijs 02, pai, 725) 3 0c)
aq
H1ij
(0%)
H2i72j

x,-j'vGamma(al, ),i=1,..-,27,j=1,-~-,27

yi‘iNGamma(az, ),i:l,...,27,j=1,...,27,
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Fig. 6.10 The top two: the residual plots of two marginal regressions. The bottom two: the scatter
plot of residuals and the scatter plot of it;; versus v;;.

where F), F, are the cdfs of gamma distributions and C is a bivariate Gaussian
copula.

For model inference, the IFME method is applied. We calculate the empirical
cdfs, ﬁ;j = F] ()C,'j; ay, ,041[7 ’%j) and ﬁij =F (y,'j; s, ,[lz,‘, ’3/2/‘). Note that 6[1,[1,1,',
A1j, Qa, [loi, A2; are the MLEs. We draw four Pearson residual plots: two scatter
plots of residuals from marginal GLMs, the plot showing the relationship between
two residuals, and the plot of #;; versus ¥;; in Fig. 6.10. It shows a significant positive
empirical relationship.
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6.3.1.1 The Predictive Distribution via a Parametric Bootstrap

The claims liability is simulated via the bootstrap method. The IFME of 6, is b, =
cor[@~! (&), =" (¥)] = 0.5530. We compare the bootstrap sample from the copula
model (first row in Fig. 6.11) with the bootstrap sample from an independent model
(second row in Fig. 6.11).

The 95% VaR from the copula model is larger than that from the independent
model. We also list other tail-based risk measures in Table 6.4. Note that the estimated
aggregated liability of both benefits is 707,407,135 dollars in the PwC report.
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Fig. 6.11 The top two: the prediction of claims liability of two benefits made from the desirable
copula model. The bottom two: the prediction of claims liability of two benefits made from the
inappropriate independent model. The simulation is performed using bootstrap methods
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Table 6.4 The tail-based risk measures of the aggregated liability via bootstrap methods

Model Mean VaR TVaR XTVaR EPD
Copula model 692,205,659 | 737,515,967 | 747,729,301 | 55,523,642 |510,667
Independent 693,343,113 | 727,254,943 | 737,508,270 | 44,165,157 |512,666
Differences (%) -0.2 14 14 25.7 —-04

6.3.2 A Gaussian Copula with Marginal Bayesian Splines

We apply a Gaussian copula model with two marginal Bayesian natural cubic spline
models to the two benefits, as follows:

F (xij, yij) = C[Fi (xij: a1, 0;5) . Fa (yijs o2, 0ij) ; 0]
x;j ~ Gamma (al, ﬂ)

(6%
yij ~ Gamma (az, —)

Pij
27
0ij = A; x exp (Z Bnbn (j))
h=1
27
©wij = B; X exp <Z Ynbn (j))
h=1

B ~ DoubleExp (0, 07) ,h = 1,...,27
Y» ~ DoubleExp (0, 03) ,h =1, ...,27
0. ~U(0,1),

where Fy, F, are the cdfs of gamma distributions and C is a bivariate Gaussian
copula. All the claims are assumed to be settled by the development year 30. The
IFME method is applied for the copula parameter estimation.

6.3.2.1 The Inferences for the Marginal Bayesian Splines

We draw the posterior mean and the 95% CPDR of the proportions of incremental
payments to the ultimate claims payments for two benefits in Fig. 6.12. The increasing
uncertainty in the tail developments is due to the lack of data. However, as stated
in the discussion of previous chapter, we believe that the uncertainties should not
increase dramatically. One approach to solving this problem is to assume strong
priors for the tail developments.
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Fig. 6.12 Proportions of the incremental claims to the ultimate claims under non-informative priors

Under the non-informative priors, the posterior mean of exp Zill Brby, (27)]
was 0.003 with posterior standard deviation of 0.0004 and the posterior mean of
exp [Zflll Ynbn (27)] is 0.003 with posterior standard deviation of 0.0006. Accord-

ingly, we assume the following strong priors for the tail developments in the devel-
opment years 28, 29, 30:

27
exp ( > Bubn (j) | ~ N (0.003,0.0003) , j =28, ....30
h=1
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exp ( > bn (j) ) ~ N(0.003,0.0006), j =28, ..., 30.
h=1

The resulting posterior distributions of proportions of incremental claims for both
benefits are plotted in Fig. 6.13. Now the tail developments do not show as much
volatility as in the model with non-informative priors. The Stan code is as follows:

amount .code<-"
data{
int N
int n
int K;
int M
int
vector [N]
vector [N]
matrix[M,H]
int
int
triangle
int
int
triangle
}
parameters {
vector [H]
vector [H]

//
//
/7
//
//
amount_doc; //
amount_hos; //
dev_basis; //
acc [N]; //
dev [N]; /7
acc_pln]; //
dev_pl[nl; //

Number
Number
Number
Number
Number
Claims
Claims

of
of
of
of
of
of
of

observations
future values
accident year
develop vyear
basis functions
doctor benefit
hospital benefit

Basis functions

Accident years
Development years

Accident years
Development years

vector<lower=60*10"6, upper=150*10"6>[K]
vector<lower=50*10"6, upper=150*10"6>[K]

real<lower=0>
real<lower=0>
real<lower=0>
real<lower=0>
}
transformed
vector [N]
vector [N]
vector [M]
vector [M]

vector<lower=0>[M]

dev_rawl<-exp
dev_raw2<-exp

parameters {
meansl;
means?2;
dev_rawl;
dev_raw2;
vector<lower=0>[M]

dev_norml;
dev_norm?2;
bl)
b2)

(dev_basis *
(dev_basis *

dev_norml<-dev_rawl/sum (dev_rawl) ;
dev_norm2<-dev_raw2/sum(dev_raw2) ;

for (i

in 1:N) {

upper triangle
in upper

in

in lower triangle

in lower

bl;

b2;
ultl;
ult2;
alphal;
alpha?2;
sigmal;
sigma?2;

meansl[i]l<-ultlf[acc[i]]*dev_norml[devI[i]];
means2[i]l<-ult2lacc[i]]*dev_norm2[dev[i]];

}

}

model {
bl ~ cauchy (0
b2 ~ cauchy (0

for (i in 28:M) {

dev_norml([i]
dev_norm2[1i]

}

,sigmal); //sigma
,sigma?2) ; //sigma
~ normal (0.003, 0.0003) ;
~ normal (0.003, 0.0006) ;

is a tuning parameters
is a tuning parameters
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for (i in 1:N) {
amount_doc[i] ~ gamma (alphal, alphal/meansl1[i]) ;
amount_hos[i] ~ gamma (alpha2, alpha2/means2[i]) ;

}
generated gquantities/{
vector [n] means_pl;
vector [n] means_p2;
vector [N] u;
vector [N] v;
vector [N] residualsl;
vector [N] residuals?2;
vector [N] log_1lik1;
vector [N] log_1lik2;
real D1;
real D2;
for (i in 1:n){
means_pl[il<-ultllacc_plill*dev_norml[dev_pl[il];
means_p2[il<-ult2[acc_plill*dev_norm2[dev_plill;
}
for (i in 1:N) {
ul[il<-gamma_cdf (amount_doc[i],alphal,alphal/means1([i]) ;
v[ii]<-gamma_cdf (amount_hos[i],alpha2, alpha2/means2[i]) ;
residualsl[i]<-(amount_doc([i]l-meansl[i])/meansl[i]*sqgrt (alpha
1)
residuals2[i]<-(amount_hos[i]-means2[1i])/means2[i]*sgrt (alpha
2);
log_likl[i]l<-gamma_log (amount_doc[i],alphal,alphal/means1[i]) ;
log_lik2[i]<-gamma_log (amount_hos[i],alpha2,alpha2/means2[i]) ;
}
Dl<-sum (-2*log_1lik1) ;
D2<-sum (-2*log_1ik?2) ;
yo
knots<-c(2:26)
dev_basis<-ns(c(1:30),knots=knots, Boundary.knots = c(1,27),
intercept = T)
H<-ncol (dev_basis)
M<-nrow (dev_basis)

amount .stanfit<-stan (model_code = amount.code, data=c ("amount_doc
", "amount_hos","N","n","K","M","H","acc","dev","acc_p","dev_p
","dev_basis"),iter=800, chains=4, seed=10)

6.3.2.2 The Predictive Distribution via MCMC Methods

We aggregate the liabilities of two benefits via a bivariate Gaussian copula. Surpris-
ingly, there is no significant difference between simulations of total liability from
the copula model and from the independent model as shown in Fig. 6.14.

There are two reasons for this: one is that the marginal Bayesian model uncertainty
overwhelms the dependence between them; the other is that the copula is used to
model the dependence of incremental claims and the sum of incremental claims
may display less dependence. We list the tail-based risk measures of the aggregated
liability in Table 6.5.
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Fig. 6.13 Proportions of the incremental claims to the ultimate claims under strong priors

Table 6.5

estimate is 707,407,135

The tail-based risk measures of the aggregated liability via MCMC methods. The PwC

Model Mean VaR TVaR XTVaR EPD
Copula model 706,344,715 | 745,713,292 | 756,101,056 |49,756,341 | 519,388
Independent 706,302,106 | 742,610,194 | 753,119,350 | 46,817,244 |525,458
Differences (%) 0.01 0.42 0.40 6.28 1.16
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Fig. 6.14 The top two: the prediction of claims liability of two benefits made from the desirable
copula model. The bottom two: the prediction of claims liability of two benefits made from the
inappropriate independent model. The simulation is performed using MCMC methods

To end of this section, we point out that the copula model makes a difference if
the claims payments in the next calendar year are predicted. As we did for the total
claims liability, we simulate the claims payments in the next calendar year for both
benefits from the copula model and from the independent model. The results are
shown in Fig. 6.15 and Table 6.6. The empirical positive correlation is more obvious
and it affects the XTVaR most significantly.
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Fig. 6.15 The top two: the prediction of next year claims payment of two benefits made from
the desirable copula model. The bottom two: the prediction of next year claims payment of two
benefits made from the inappropriate independent model. The simulation is performed using MCMC
methods

Table 6.6 The tail-based risk measures of the aggregated claims payments in the next calendar
year via MCMC methods

Model Mean VaR TVaR XTVaR EPD
Copula model 133,988,676 | 149,919,590 | 154,493,898 |20,505,222 | 228,715
Independent 133,956,740 | 147,246,196 | 151,426,112 | 17,469,373 |208,996
Differences (%) 0.02 1.82 2.03 17.38 9.44
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6.4 Discussion

Copulas have a wide range of applications in finance, risk management, insurance
etc. This chapter uses copulas to model the contemporaneous correlation, i.e., the
dependence among different run-off triangles at the same development year and the
same accident year. There are several actuarial papers considering using copulas to
model other types of dependence, such as the common calendar years dependence
due to claims inflation.

Another concern is the estimation method for the copula models. Here we apply the
IFME method involving two consecutive steps: first make inference of the marginal
regressions, then fix the parameters of the marginal regressions and infer the cop-
ula parameters. We have done some experiments to compare the Bayesian IFME
method (applying MCMC to the marginal distribution and MLE to the copula con-
secutively) and the full Bayesian method (applying MCMC to the multivariate likeli-
hood directly). They show that the Bayesian IFME method takes much less time with
better convergence and similar inferences compared with the full Bayesian method.
So we are confident with the Bayesian IFME method. Nevertheless, several papers
develop a MCMC algorithm for the full Bayesian copula models (see the relevant
literature in the next section).

In this chapter, we do not consider the selection of the optimal copula family,
since a Gaussian copula fits well (at least visually) in all the problems considered.
Genest and Rivest (1993) provide estimation and selection methods for Archimedean
copulas. The tail dependence can be used to select a copula if the interest is in the
tail behaviour.

6.5 Bibliographic Notes

A thorough discussion of copulas can be found in Joe (2014). An introduction to
copulas is available in Nelsen (2013), which does not, however, contain the inference
methods. Sklar (1959) introduces Sklar’s theorem. Trivedi and Zimmer (2007) cover
the main implementation and estimation of copulas. Genest and Rivest (1993) provide
estimation and selection methods for Archimedean copulas. Embrechts and Hofert
(2013) address the inference methods and goodness-of-fit tests for high-dimensional
copulas. Kruskal (1958) discusses the measures of association in detail.

Pittet al. (2006), Hoff (2007), Danaher and Smith (2011) and Smith (2011) discuss
the Bayesian copula models and design efficient MCMC methods accordingly. All
of them also consider the special case where there are discrete response variables.

Frees and Valdez (1998) introduced copulas to actuarial science. A general
overview of copulas and their applications in actuarial science is provided by
Embrechts et al. (2001), Venter (2002), Brehm et al. (2007) and Feldblum (2010).

Literature considering the dependence among run-off triangles includes Shi and
Frees (2011) and Zhang et al. (2012), both of which use copulas to model the con-
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temporaneous correlations among various lines of business: the former apply the
bootstrap to estimate the predictive distribution of unpaid claims, while the latter
apply the MCMC methods, which is closer to what we did in this chapter. De Jong
(2012) uses copulas to accommodate the common calendar effect between triangles.

Shi et al. (2012) and Merz et al. (2013) model the contemporaneous dependence
between run-off triangles and the common calendar effect within a run-off triangle
via a Bayesian hierarchical log-normal model, which is equivalent to a Gaussian
copula model with marginal log-normal regressions. Shi (2014) relaxes the marginal
log-normal regression using elliptical copulas. Anas et al. (2015) use a hierarchical
Archimedean copula to analyze the data from Shi and Frees (2011).

Czado et al. (2012) and Kréamer et al. (2013) use copulas to model the dependence
between claims occurrences and claims sizes. Meng and Gao (2018) discuss the
claims reserving methods using both claims numbers and claims amounts but not in
a copula framework.
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Chapter 7 )
Epilogue i

Abstract In this final chapter, we summarize the three proposed Bayesian claims
reserving models and suggest a Bayesian modelling procedure for use when facing
a real problem. Finally, other considerations with respect to Bayesian methodology
and actuarial applications are discussed.

7.1 The Three Claims Reserving Models

This monograph presents several Bayesian models to tackle the claims reserving
problem in general insurance. These models are used to analyze the WorkSafe Vic-
toria data set. Bayesian models provide a coherent way to incorporate the prior
knowledge and combine it with the evidence from the data. This property is particu-
larly useful when the actuarial judgements override the data. Another advantage of
Bayesian models is that the Bayesian inferential engine can simulate the posterior
distribution of parameters and the predictive distribution of the future value. This
property is very important for application to the claims reserving problem, since
claims reserving models are always complicated in terms of number of parameters
and insurers are more interested in the distribution of unpaid claims than the point
estimates.

We point out that the three proposed claims reserving models in this monograph
are a compound model, a Bayesian natural cubic spline basis expansion model and
a copula model with Bayesian margins. For the model inference, we rely on Stan,
which implements the HMC method. Like MCMC, HMC simulates a Markov chain
whose stationary distribution is the same as the target distribution. Compared with
MCMC, HMC has a higher acceptance rate due to the “Hamiltonian dynamics”
proposal.

7.1.1 A Compound Model

The PPCI method is used in the PwC report for the doctor benefit in WorkSafe
Victoria, and we propose a compound model as a stochastic version of the PPCI
method. The key point is to establish the relationship between the variance in a
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single claim payment and the variance in PPCI. The distributional assumption of a
single claim payment could be checked if we had the individual claims data.
The compound model discussed in Chaps. 5 and 6 is as follows:

i

Yij = injk
k=1
w; ~ Distribution;

Xijk ™~ Gamma(ozij,ﬁij) s k= 1, ey Mgy

where yi; is the ultimate claims number of accident year i whose distribution is
approximated by a Bayesian model, and x;j is the payment for the kth claim dur-
ing the development year j whose distribution depends on both accident year and
development year.

We define the payments per claim incurred during the development period j of
accident year i as PPCL;; := y;; /E (11;). Note that E(PPCI;;) = E(x;;x). We use the
posterior mean of y; as an estimate of E (y;). The relationship between the variance
of PPCI;; and the variance of x;j is

(E (1:))*Var (PPCI;;) — Var (1) (E (PPCL;))°
V(o) — (PECt) V) £ 27

where all the quantities on the right hand side can be estimated by a MC sam-
ple. The distribution of y;; conditional on f; is Gamma (y; i, 3;;) , where ;=

E(xijk)z/Var ()C,'jk) and ﬁij = a,‘j/E (xijk)-

7.1.2 A Bayesian Natural Cubic Spline Basis Expansion
Model

In the claims reserving models, the two challenging tasks are the derivation of the
predictive distribution and the fit to the various shapes of development patterns. In
the Bayesian framework, the first task is easily tackled by either the MCMC method
or the HMC method. To deal with the second task, we rely on the chain ladder model
or the basis expansion model.

The stochastic chain ladder model treats the development year as a factor variable,
effectively introducing the same number of parameters as the number of development
periods. So it can accommodate all the shapes of development patterns. However,
the stochastic chain ladder model does not introduce the tail development.

The basis expansion model treats the development year as a continuous vari-
able and expands the predictor space by including transformation of the predictor
variable. In the Bayesian framework, we can shrink the non-significant parameters
and interpolate the tail development.

Consider the Bayesian basis expansion model as discussed in Chap. 5:
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o
}’ijNGamma(O"_),i=1,~--a17j=1v-~"J
Hij

H
pij = Pi x LR; x exp (Zﬁhbh (j))

h=1
3, ~ DoubleExp (0,07) . h =1,..., H.

The key part of this model is the natural cubic spline basis functions {b;,:h =
1, ..., H} which expand the predictor space. We use the B-spline basis, an orthog-
onal set, generated by R function ns( ). We normally choose the knots at every
unique value of x, which is analogous to the full rank smoothing splines.

Here we choose a gamma error distribution which could be replaced by other
distributions such as a more general Tweedie distribution.

7.1.3 A Copula Model with Bayesian Margins

The copula model is used to aggregate the outstanding claims liabilities estimated
from multiple triangles. We could assume any marginal regression for each triangle
in the copula framework. In this monograph, we use the Gaussian copula which
offers computational simplicity.

The copula model with Bayesian marginal regressions discussed in Chap. 6 is as
follows:

F (xij, yij) = C[Fi (xijs a1, 05) . Fa (viji a2, 937) 3 0c]
x;j ~ Gamma (al, ﬂ)

vij ~ Gamma (0[2, 2)
Pij
H
0ij = Ai x exp (Z Brbn (j))
h=1

H
@ij = B; x exp (Z Ynbn (j)>

h=1
On ~ DoubleExp (0, O'%)
Y4 ~ DoubleExp (0, 03)
0. ~U(,1),

with non-informative priors for oy, ay, A;, B, of, a%. We fit the model using the
IFME method (Joe 2014) which is not a full Bayesian analysis. It is possible to do a
full Bayesian analysis by using a user-defined MCMC algorithm.
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7.2 A Suggested Bayesian Modelling Procedure

A typical Bayesian modelling procedure includes: proposing a full probability model,
calculating the posterior inference conditional on the data, modelling evaluation, and
refinement. We suggest that a typical Bayesian modelling procedure should involve
the following steps:

1. Define the problem. Different problems need different levels of effort. If we just
need to get a point estimate of unpaid claims, the deterministic CL method or BF
method may solve this problem well enough.

2. Visualize the data. We cannot change the data which is a reflection of real world,
but we could change a model. Visualising the data helps us detect abnormal
observations and choose a suitable model to analyze the data.

3. Fit a classical model, usually a GLM. This includes choosing the covariates,
the mean function and the error distribution. It is good to try a simple model
first, then go deeper into a more complicated model. In the GLM setting, lots
of diagnostic tools are available and easily accessed. The mean function and the
error distribution can be used in the next step.

4. Set up a Bayesian model and simulate from the posterior distribution. We turn
to Bayesian modelling software such as BUGS or Stan to simulate from the
posterior distributions. The detection of convergence was discussed in Sect. 3.2.1
and strategies for improving the convergence and efficiency were discussed in
Sect. 3.2.2.

5. Make inferences from the MCMC or HMC sample. If the predictive distribution
is required, we need to perform one further step to simulate the future values from
the likelihood.

6. Model assessment and selection. We can compare different models using several
information criteria. LOO cross-validation and WAIC can be easily derived using
Stan, while DIC can be calculated automatically in BUGS.

We followed these six steps (though not strictly) in all the Bayesian modelling pre-
sented in this monograph. A variation to step 4 is to use a user-defined MCMC or
HMC algorithm. We did this in the early stage of research for the examples discussed
in Chaps. 2 and 3. We also used a user-defined RIMCMC algorithm in Sect. 4.3.1.

7.3 Other Considerations

We list some other considerations in Bayesian methodology and actuarial applica-
tions.
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7.3.1 Bayesian Methodology

7.3.1.1 ODP Models and Tweedie Models in Stan

ODP models can be specified in BUGS via the zero trick. Indeed the zero trick can
be used to define arbitrary likelihood function in BUGS (Lunn et al. 2000). However,
Stan does not accept the zero trick and we have not yet worked out how to make
a statement of the ODP model in Stan. In addition, Tweedie distributions are not
built-in distributions in Stan.

7.3.1.2 Other Non-parametric Bayesian Models

We have seen the power of basis expansion models. Other Bayesian non-parametric
models include Gaussian process models, Dirichlet process models etc. Further
research could be done on these models and their applications.

7.3.1.3 Copulas Comparison and Selection

As we mentioned in Sect. 6.4, the comparison of different copulas is ignored in that
chapter. The selection of a suitable copula could be based on the information criteria
or the tail dependence. The goodness-of-fit for copulas is discussed in Genest et al.
(2009).

7.3.1.4 Distributional Approximation
In Sect. 3.4, we have briefly reviewed variational Bayes methods, which are promis-
ing when dealing with large data sets. Other distributional approximation methods,

such as pragmatic expectation (Minka 2001), are discussed in Bishop (2006). These
methods deserve more attention in future research.

7.3.2 Actuarial Applications

7.3.2.1 Calendar Year Effect

The calendar year effect is not considered in this monograph. The obvious pattern
in Fig. 4.17 indicates a significant calendar year effect. A possible approach is to
incorporate a calendar year covariate (see Sect. 4.5).
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7.3.2.2 Stochastic Reserving Methods for Other Benefits in WorkSafe
Victoria

Three benefits in WorkSafe Victoria are investigated: the weekly benefit, the doctor
benefit and the hospital benefit. These benefits are chosen since they are stable and
less subject to changes in legislation than many others. It is desirable to propose
stochastic versions of other reserving methods in the PwC report (Simpson and
McCourt 2012) such as PPAC and PPCR.

7.3.2.3 One-Year Reserve Volatility

One key issue relating to the actual implementation of Solvency Il is the estimation of
the one-year reserve volatility (or claims development results). This issue is discussed
in some recent literature, including Saluz et al. (2011), Christiansen and Niemeyer
(2014) and Saluz (2015).
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Appendix A
Derivations

A.1 Example 2.3

Since E (x;) = E (x,_;) and Var (x;) = Var (x,_;), we can easily get

1

]E(xl) = 0 and Var(xl) = m

Hence, this autoregressive process is uniquely determined by the following two
distributions:

1
A~NIO0, ———
x|, ( ’)L(l —a2)>

1
Xe|X_1, 0, A~ N(ax,l, X) Jt=2,3,...,n.

A.1.1 The Joint Posterior Distribution

The joint posterior distribution of @ and X is

p (@, Alx) o p (x]a, 1) p (@) p (1)

1

X p(x|o, A)—

pxle, 2)
1
Zp(xn|xn—17xn—2’-~-axlaa’)‘-)p(xn—l’xn—2a--~’x1|a’)‘-)x

1

=p (xn|xn—lv o, )‘) p (X,1_1|Xn_2, o, )\) e p (X1|O[, )") X
X 2 (1 —o? 1
X v A exp |:—§(x,, —xn1)2:| RN (1 — az) exp |:—¥xl2:| -
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Appendix A: Derivations
B 1
= )ﬁ_l(l — 052)2

eXP{ ) [(xn —axy ) 4+ (o —axy)? + (1 - 052) X1 ]}
Thus,

u 1 A
p (o, Alx) = hor2 "' (1 — a?)? exp |:—§h (x, oz):| ,

where

1
ho =

Jo SLaa -

is called the normalizing constant and

) exp [—%h (x, )| dad

hx,a) = (X, — ax,—1)* + (X1 — @x,2)* +

N o[xl)z + (1 — 0[2) x12.

A.1.2 Two Marginal Posterior Distributions

The marginal posterior distribution of « is

oo

p(alx) = | p(a, Alx)da

Thus,

where
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The marginal posterior distribution of A is

1

p(ulx) = /p(a,Mx)da
—1
1

0 1 A
x /)ﬁ"(] —a2)2 exp [_Eh (x,a)] da

-1
1

n A
ox Azt /exp |:—§h (x, a)j| doa

e
=m(A).

o0
Thus p (A|x) = o7 (1), where 7o = 1/ [ 7 (1) dA.
0

A.1.3  Full Conditional Distribution of A

It is easy to note that the full conditional distribution of A is given by

h b
Alx, @ ~ Gamma ’l, x, @) .
2 2

So

1

n
x) =/h(x’a)p(a|x)doz.

-1

A =EOx)=EE QAo x)|x) = E(

h(x, )

In Sect. 3.1.3 we show that the Rao-Blackwell estimate of A is just based on the
above argument.

A.2 Example 2.5

Consider a sample of size n from N (,u, 02), denoted by x. We want to test Hy : © =
o versus Hy : ;o # o with o2 unspecified.
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A.2.1 CLR and GLR

The conditional likelihood ratio (CLR) is

su x|p, o2 =%. 02 X — )2

SuPM:MUP(HM,Uz) Cop(x|p = o, 0% 252

Since the posterior predictive p-value, pg, is invariant under any strictly monotone
data-free transformation of a discrepancy variable, we can use n(x — o)’ /0% as the
CLR. Similarly, the generalized likelihood ratio (GLR), T (x), can be calculated as
n(x — wo)?/s2, where x and s are the sample mean and the sample variance.

A.2.2 pp Using CLR

The posterior predictive p-value, pg, conditional on o2 is

- 2
n(X —p & — 1o)’
P (02)=Pr< ( - N O_ZMO

H0,02>,

which depends on the choice of the conditional prior p(c?). Under the non-
informative prior, p(0?) o 1/02, the posterior distribution of 0% can be calculated
as 5
21, 5o
(e |x >
n

where s2 = Y7_, (x; — pt0)?/n is the MLE of o' under the null hypothesis Hy.
We have the following equation:

P =E (pj (07) Ix, Ho)
5 2
n(X — nx — 2
:E|:Pr< ( 2#0) > ( ZMO) MO,GZ,X) Mo,x:|
o o (A.1)
n(X o)’
E|p (1( LT P
= T 3 = 3 Ko, 07, X || [ho, X
I’ZSO S
o2 0
Let: B 5
n(X — o ns, n(x — (o)
= ( 2 )’ = T = 2
o 55

Since u|uo, ol x ~ X12 does not depend on o or x, we have
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2 2
ulpo, x ~ xi and (ulpo, x) L (07|10, X) .

Similarly we have

u
v

VIio, X ~ x2, (v 1o, x)L(ul o, x), ( Mo,x)J-(GZWOJ)-

n

It follows, by continuation of (A.1), that

c_ u 2
pp =E|Pr| 5 =To@)|no, 0% x || o, X
n
Pr(% = 7y (). 020, x)
=E 2 Mo, X
P (o|ko. x)

p(02|u0,x) do?

Pr (% > Ty (x), 02|M0,x>
f p (92110, x)

02
= /Pr (% >Ty (x),a2 uo,x) do?
o? "
u
=Pr (Z > To (x) uo,x> /p (0%I0, x) do?
n 2

o
=Pr(Fi, = To ®) |x, o) -

A.2.3 pp Using GLR

The posterior predictive p-value using GLR is

. 2
n(X —p0)” _ n(x — po)*
pg =Pr ( 2 = s2

Mo,x>
2
Mo, X

=Pr(Fi,-1 2 T%())

—Pr (:,1_1 > JT6 (x)).

Notice that T'¢ is a pivotal quantity, and pp based on GLR is identical to the classical
p-value based on the z-test.
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A.3 Calculation of Equation (2.5)

To calculate pg, we will first verify that 1’s are uniformly placed given n;. It can be
shown that Pr (x; = 1|}_7_, x; = ny) = n;/n, as follows:

n
E Xi = ny
i=1

Pr(xkzl
1 n
=/Pr<xk=12xi=n1,9)p<9
b i=1
lP( 1, 110) -
rxg =1, X =n —
= - plo x; =n; | do
0/ Pr(zizlxiznl’O) ( ; )
1

(yoma—oy

ixi = n1> do
i=1

ixi = I’l]) do
i=1

0
1

ni " ni

=/7p(9 .X;Xi =n1>d6= -
0 =
where x_; = Y | x; — xx.

Next,
10
P = ZPr(R (i, 10 — i) < 3)Pr(n;, = i|x). (A.2)

i=0

It follows that

pe =Pr(r(x') <r@lx)

L 710 3
=/ ZZPr(R (i,10—i) = j)Pr(n; = il0) | p(O]x)do
o \Ui=0 j=1

0 !
=Z/Pr(R(i, 10—i) <3) p(n; =il0) p (B)x)dé
i=00

o 1

:Z/Pr(R(i, 10—i)<3)p(n =i, 0lx)do
i=0
10

= Pr(R(i.10—i) < 3)Pr(n; = ix).
i=0
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We next calculate p (nq|x) as follows:

1

p (nilx) =/p(n1,t9|x)d9
0
1

= /p (110, x) p(@|x)do
0
1

= /P (n110) p(©|x)do
0
1

O(/(n)enl+5(l_9)n_’ll+5d9
nj
0

oc<n>F(n1+6)F(n+6—n1)
ni

o i +5!'n+5—np)!
nl! (}’l — I’ll)'

k]

which implies that
(n1+5)!(n+5—n;)!
_ nyl(n—np)!
p(mlx) = AN
i=0 " {i(n—i)!

Now the pmfs of R (i, 10 — i) and n;|x are know. Finally, according to Eq. (A.2),
pp can be calculated as

10
pe =Y Pr(R(i,10—i) < 3)Pr(ny =ilx) = 0.1630.
i=0
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Other Sampling Methods

B.1 A Simple Proof of the M-H Algorithm

The Metropolis-Hastings (M-H) algorithm is used to simulate a Markov chain whose
stationary distribution is the target distribution. This Markov chain has a certain
transaction matrix determined by the target distribution and by a proposal distribution.

Let 2 be a finite sample space and 7 (x) a probability of interest on .2~ (perhaps
specified up to an unknown normalizing constant). The M-H algorithm at the ¢th
iteration works as follows:

1. Propose a value from a proposal distribution g (x*|x'~!), where x'~! is the state
of x at the end of  — 1 iteration or the initial value when t = 1.
2. Calculate the acceptance ratio

(%) g(x' ' |x)
T (xt—l) g(x*|x"1) :

A ()C*, xtfl) —

3. Accept x* and set x’ = x* with probability A (x*,x'~!) if A (x*,x""!) < 1.
Otherwise, reject x* and set x’ = x'~!.

The above M-H algorithm defines a Markov transaction matrix K, whose entry,
K (x~!, x"), has the following expression:

g(x’|xt’1), if x! #x”l,A(x”l,x’) >1

g (x’|x”1) A (x”l, x’) , ifxt £x"1 A (x”l, x’) <1
g (xt|xr—l) + Zg (xt|xz—1) (1 —A (.Xt_l,.xl)) , if x! = xt_l,

where A (x’ -1 x! ) is the acceptance ratio. Note that the normalizing constant of &
cancels out in all calculations. It is easy to show that the following equation holds:

T (x’fl) K (x’fl, x’) =7 (x’) K (xt, xtfl) .
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Thus
Zn (x’_l)K(x’_l,xt) = Zn (x') K(xt,xt_l) =7 (xt) ZK(x’,x'_l) = (xt).

The above equation says that no matter what the starting value is, after many itera-
tions, the chance of being at x’ is approximately 7 (x’).

When 2" extends to the general space, many results are analogous to the results
for discrete state-space space chains as we have shown here (see Robert and Casella
2013). Hence the M-H algorithm can be applied to most target distributions.

B.2 Adaptive Rejection Sampling

In adaptive rejection sampling, we assume 7 (x) is log-concavity and denote h (x) =
log (7t (x)). Suppose that & (x) and &’ (x) have been evaluated at k abscissae in
X xi<x<...<x.LletTpy={x;:i=1,2,...,k}.

Define the envelope function on 7} as exp uy (x) where uy (x) is a piecewise linear
upper hull formed from the tangents to & (x) at the abscissae in Tj. The tangents at
x; and x;4 intersect at

_ hGie) = ) — Xipth' (xXig1) + x;h' (x;)
W (x;) — 1 (xiq1)

yfori=1,...,k—1.

i

We add z as the lower bound of 2~ and z; as the upper bound of .2". Then uy (x) =
h(x;)+ (x —x;))h' (x;) forx € [z,-_l,z,-],i =1,...,k.

Define the squeezing function on Tj as expl (x), where [ (x) is a piecewise
linear lower hull formed from the chords between adjacent abscissae in 7;. For
X e [.Xj,XjJrl],j =1,2,...,k—1,

(cj1 =) b (o)) + (v = xj) h (x1) '

Iy (x) =

For x < x; and x > x;, we define [; (x) = —o0.

Note that the envelope and squeezing functions are piecewise exponential func-
tions. The concavity of & (x) ensures that [, (x) < h (x) < uy (x) forall x in Z". To
independently simulate n values from 7 (x) by the adaptive rejection sampling, we
perform the following steps until n values are accepted:

1. Initialisation step. Initialize the abscissae in T}. If 2" is unbounded, make sure
h' (x1) > 0 and A’ (x;) < 0. Calculate the functions uy (x) and I (x). Also cal-
culate

exp (uy (x))

5 exp (uy (x)) dx’

sp(x) = T
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2. Sampling step. Sample a value x* from s; (x) (a piecewise exponential distribu-
tion) and a value u from U (0, 1). Acceptitif u < exp [l (x*) — uy (x*)]. Other-
wise, calculate & (x*) and k' (x*), accept it if u < exp [h (x*) — uy (x™)].

3. Updating step. If & (x*) and &’ (x*) were evaluated at the sampling step, include
x*in T to form Ty, relabel the elements of T;, in ascending order, construct
functions ug41 (x), lx+1 (x) and sz41 (x) on the basis of 7. Return to the sam-
pling step if n values have not yet been accepted.

In a Gibbs sampler, the full conditional distribution of a particular parameter 6 can
be written as

h6l) o[ e (6;1%25).
J

where g;(0,]£2;) is a function containing 6;, and §2; is a set of other parameters and
data. When & (6]-) is not a standard distribution but every g;(0;|2;) is log-concave,
we can apply the adaptive rejection sampling to & (0]-).

B.3 Slice Sampling

Slice sampling is another MCMC method. This was introduced by Neal (2003) and
it is one of the building blocks of BUGS. Slice sampling simulates a value uniformly
from underneath the pdf curve 7 (x) without need to reject any points. Here we give
a brief summary of how slice sampling works. The zth iteration of a slice sampling
consists of the following three steps:

1. Draw a value y from U (0, g (x"~")) (i.c., a vertical line under g (x'~")), where
x'~!is the ending value of # — 1th iteration, and g is a function proportional to
the target distribution 7 (x). Define a horizontal slice S = {x : g (x) > y}.

2. Find a suitable interval / containing much of the slice S. Ideally, we can solve
g (x) > y and find the exact slice. But this is not always feasible. Generally, we
use a “stepping out” procedure to find an interval containing much of the slice.
We assume w as a typical length of a unit interval, m as an integer limiting the

length of interval to mw.

a. Randomly place a unitinterval of length w around x'~!. First choose a value u
from U (0, 1), thenset L = x'~' —wu and R = L + w. The interval (L, R)
covers x' !,

b. Expand the unit interval. Choose a value v from U (0, 1), then set the maxi-
mum number of unit intervals on the right side as the largest integral smaller
than mv, denoted by J, and the maximum number of unit intervals in the
left side as K = m — 1 — J. Calculate the ending points of the expanded
interval as follows:

L=x"'—wu—wJ, R=L+w.
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c. Adjust the interval. If / > Oand y < g (L), repeat set thenew L as L — w
andthenew JasJ — luntil J =0ory > g(L);if K > 0and y < g (R),
repeat set the new R as R + w and the new K as K — 1 until K =0 or
y > g (R). Return the final interval / = (L, R).

3. Draw a new value x’ uniformly from S. Repeatedly draw a value uniformly from
an interval which is initially equal to 7 but shrinks each time when a draw is not
in the slice §, until a value is found within S N I. Note that the interval / found
from “stepping out” procedure may overlap S.

Neal (2003) gave detailed proof of slice sampling which is not discussed here.
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