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Preface

Despite an undergraduate degree in Zoology and an MSc on the behavior of voles,
I have long been fascinated by theoretical biology and the relationship between
models and data, and the feedback between statistical analysis and conceptual de-
velopments in the area of infectious disease dynamics, in particular, and ecological
dynamics in general. My perpetual frustration has been to read all the wonderfully
clever books and journal articles exuding all sorts of nifty maths and stats, but not
quite being able to do any of it myself when it came to infectious diseases that
I care about. This frustration led me to attempt to make myself some worked ex-
amples of all this cleverness. Over the years the stack of how-tos has grown, and
the following chapters are an attempt at organizing these so they may be useful for
others. I have tried to organize the chapters and sections in a reasonably logical
way: Chaps. 1–10 are a mix and match of models, data, and statistics pertaining to
local disease dynamics; Chaps. 11–13 pertain to spatial and spatiotemporal dynam-
ics; Chap. 14 highlights similarities between the dynamics of infectious disease and
parasitoid-host dynamics; finally, Chaps. 15 and 16 overview additional statistical
methodology I have found useful in studies of infectious disease dynamics. Some
sections are marked as “advanced” for one of two reasons: (1) either the maths or
stats is a bit more involved or (2) the topic in focus is a bit more esoteric. Although
not marked as such, most of Chap. 10 is advanced in this respect. While less run-of-
the-mill, I have thought it important to include these sections, because they cover
topics that may be less easy to find code for online.

I have had invaluable help from students, colleagues, and collaborators in my
quest. The preconference workshops of “Ecology and Evolution of Infectious Dis-
eases” that I co-taught between 2005 and 2008 enhanced my motivation to annotate
many worked examples; bare bones of several of the following sections were writ-
ten during frantic 24-h stints prior to these workshops. Much of the other material
arose from interactions with students and postdocs at Pennsylvania State Univer-
sity’s Center for Infectious Disease Dynamics (CIDD). Parts of the epidemics on
networks and the R0 removal estimator is from Matt Ferrari’s PhD research, and the
age-structured SIR simulator and the SIRWS model are from Jennie Lavine’s PhD
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work. Working with distributed-delay models has been a collaboration with Bill Nel-
son and my students Lindsay Beck-Johnson and Megan Greischar. Angie Luis and I
cooked up the R code to do transfer functions as part of her PhD research. Much of
the code on the catalytic model is from collaborations with Laura Pomeroy and then
CIDD postdoctoral fellows Grainne Long and Jess Metcalf. The in-host TSIR was
also a collaboration with Jess. The Gillespie code arose from collaborations with
postdoctoral fellow Shouli Li and my honor student Reilly Mummah. Reilly also
taught me how to write my first Shiny app. Away from Penn State, Aaron King
and Ben Bolker have at various times been unbelievably patient in teaching me
bits of maths I did not understand. Roger Nisbet painstakingly guided me through
my first transfer functions during my postdoctoral fellowship at NCEAS. During
the same period, Jordi Bascompte introduced me to coupled map lattice models.
Finally, Bryan Grenfell showed me wavelets and introduced me to the field of infec-
tious disease dynamics some 20 years ago.

The data used has been kindly shared by Janis Antonovics, Jeremy Burdon, Re-
becca Grais, Sylvije Huygen, Jenn Keslow, Sandy Leibhold, Grainne Long, and
Mary Poss. The first draft of the text was completed while I was on sabbatical at the
University of Western Australia and University of Oslo/the Norwegian Veterinary
Institute during 2017. My work leading up to this text has variously been funded by
the National Science Foundation, the National Institutes of Health, the US Depart-
ment of Agriculture, and the Bill and Melinda Gates Foundation.

University Park, PA, USA Ottar N. Bjørnstad
May 2018
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Chapter 1
Introduction

1.1 Preamble

The use of mathematical models to understand infectious disease dynamics has a
very rich history in epidemiology. Kermack and McKendrick (1927) is the seminal
paper that introduced the equations for the general Susceptible-Infected-Removed
model and showed how a set of restrictive assumptions lead to the standard SIR
model of ordinary differential equations. During the 1950s and early 1960s stochas-
tic theories of disease dynamics were developed by Bailey (1957) and Bartlett
(1960b). Bartlett (1956, 1960a) further pioneered the use of Monte Carlo simula-
tions of epidemics with the aid of “electronic computers” (as opposed to regular
human computers), while Muench (1959) proposed the “catalytic” framework for
understanding age-incidence patterns.1 The decades to follow saw broad expansions
of theories as well as a surge in real-life application of mathematics to dynamics and
control of infectious disease.

There are several excellent textbooks of mathematical epidemiology including
Anderson and May (1991) and Keeling and Rohani (2008). The purpose of the cur-
rent text is not to replicate these efforts but rather use these frameworks as a starting
point to discuss practical implementation and analysis. The discussion will be cen-
tered around a somewhat haphazard collection of case studies selected to explore
various conceptual, mathematical, and statistical issues. The text is designed to be
more of a “practicum in infectious disease dynamics.”

The dynamics of infectious diseases shows a wide diversity of pattern. Some
have locally persistent chains-of-transmission; others persist spatially in “consumer-
resource metapopulations.” Some infections are prevalent among the young, some
among the old, and some are age-invariant. Temporally, some diseases have little

1 Though, as reviewed by Dietz and Heesterbeek (2002), the original calculations leading to the
catalytic model was proposed by Daniel Bernoulli in the late eighteenth century.

© Springer Nature Switzerland AG 2018
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variation in prevalence, some have predictable seasonal shifts, and others exhibit
violent epidemics that may be regular or irregular in their timing. Models and
“models-with-data” have proved invaluable for understanding and predicting this
diversity, and thence help improve intervention and control. The following chapters
are an attempt at providing some notes for a “field guide” for working with data,
models, and “models-and-data” to understand epidemics and infectious disease dy-
namics in space and time.

1.2 In-Host Persistence

Infectious diseases can be classified according to their persistence within the host
and attack rates with respect to age. Some infections result in life-long colonization
of a host because the immune system does not clear them. Such “in-host persistence”
may be because the immune system permits it—as for the many symbionts that are
beneficial to the host (viz. commmensals and mutualists)—or because detrimental
symbionts (viz. pathogens) are able to evade clearance. Examples of “in-host persis-
tent” pathogens are retroviruses such as HIV, latent viruses such as, herpes viruses,
and a number of bacteria such as the causative agents of tuberculosis (Mycobac-
terium tuberculosis) and leprosy (M. leprae).

“Acute” infections, in contrast, result in transient colonization of the host—that
in humans can last for days or months depending on the pathogen—followed by
clearance. The clearance is usually immune-mediated, though some viruses like ca-
nine distemper virus may run out of target cells and some pathogens may have
a programmed life cycle within the host. Some coccidian pathogens within the
genus Eimeria, for example, go through an exact number of replication cycles in
the host (as merozoites) before all pathogen cells are expelled into the environment
(as oocysts). The more common example of transience is due to immune-mediated
clearance. Examples are plentiful and include acute viruses like measles and in-
fluenza, bacteria such as many that causes respiratory disease like bacterial menin-
gitis (e.g., Neisseria meningitidis) or whooping cough (Bordetella pertussis and B.
parapertussis), and protozoans such as those that cause malaria (Plasmodium spp.).

Among the acute infections we further distinguish between those that leave ster-
ilizing immunity following clearance versus those that leave no or short-lived im-
munity. This can happen via a number of mechanisms including variable gene ex-
pression, rapid evolution, co-circulating strain clouds, or other immune evasive ma-
neuvers. N. meningitidis and its congener N. gonorrhoeae (which cause gonorrhea),
for example, are thought to leave little effective immune memory because of the
bacteria’s ability to express a very variable arsenal of surface proteins (e.g., Stern
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et al. 1984; Tettelin et al. 2000). Many influenza subtypes, in contrast, render ef-
fective immune memory short-lived because of rapid evolution; high mutation rates
lead to “antigenic drift” and viral recombination during coinfection leads to anti-
genic “shifts.” Plasmodium falciparum is thought to be comprised of a diverse set
of strains with nonoverlapping “antigenic repertoires” (as well as variable antigen
expression) that allows repeat reinfection (e.g., Gupta et al. 1998). A number of
common viral afflictions of children have a somewhat more limited strain diversity
that may allow several reinfection cycles, but the immune system is ultimately able
to cover their antigenic space; Examples include rotavirus (Pitzer et al. 2011) and
the enterovirus-complex that cause hand-foot-and-mouse disease (Takahashi et al.
2016). Finally, many pathogens have various “anti-immune devices.” Respiratory
syncytial virus, for example, uses molecular decoys against neutralizing antibodies
(Bukreyev et al. 2008) and Bordetella pertussis employs the pertussis toxin to, at
least transiently, inhibit recruitment of immune effector cells to sites of infection
(Kirimanjeswara et al. 2005).

Many of the remaining “acute, immunizing pathogens”—the ones that result
in a transient infection followed by life-long sterilizing immunity—are the poster
children of mathematical epidemiology. Notable examples are among the classic
vaccine-preventable viruses like measles, rubella, and smallpox. From a biolog-
ical point of view, the complete failure of immune escape of these pathogens is
somewhat mysterious (Kennedy and Read 2017), but the resulting simple dynam-
ical clockwork is a joy to anyone hoping to apply mathematics to understand the
living world.

From an epidemiological point of view, it is important to make the functional—as
opposed to taxonomical—classification of pathogens because it allows us to under-
stand the differences in age-specific attack rates and contrasting disease dynamics.
The acute, immunizing infections mainly circulate among the young and therefore
comprise the many “childhood” infections because most or all older hosts are im-
mune. From the point of view of the compartmental “SIR-like” formalism (Fig. 1.1),
it is thus natural to divide the host population in S, I, and R compartments and as-
sume a unidirectional flow from susceptible children through immune (“removed”)
adults. In contrast, the prevalence of “in-host persistent” infections will tend to ac-
cumulate with age. With respect to the SIR formalism, it is thus natural to consider
a model with a unidirectional flow from the S class to a terminal I class. The acute
but imperfectly immunizing infections should lead to relatively age-invariant attack
rates, and S → I → S or S → I → R → S flows depending on the duration of immune
protection.

The SIR-like framework predicts how the broad expectation for age-prevalence
curves will be modulated by factors such as age-specific pattern of mixing and
differential mortality between infected and noninfected individuals. Statistical epi-
demiology can thus be used to probe empirical patterns to discover subtleties in the
dynamics of disease transmission that is hard to observe directly.
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1.3 Patterns of Endemicity

We can classify the dynamics of infectious disease according to broad “patterns of
endemicity.” First, there is the distinction between locally persistent vs locally non-
persistence pathogens. Local persistence fails when a local chain-of-transmission
breaks. This can happen for two very different reasons (Fig. 1.1): (i) The transmis-
sion bottleneck is when a pathogen is insufficiently transmissible to sustain a chain
of transmission; (ii) at the opposite end of the spectrum is the susceptible bottle-
neck for acute pathogens that are so transmissible that they burn through suscepti-
bles much faster than they are replenished. In measles, for example, prevaccination
cities in the USA smaller than a critical community size (CCS) of 250k–500k people
did not produce enough children to sustain a local chain-of-transmission (Bartlett
1960a) (Fig. 1.2). Recurrence of such pathogens typically involves spatial dynamics
and persistence at the metapopulation scale through spread among asynchronous
local host communities (Keeling et al. 2004) or core-satellite dynamics in which a
few large cities above the CCS serve as persistent sources for spatial dissemination
to communities below the CCS (Grenfell and Harwood 1997; Grenfell et al. 2001).

The 1988 and 2002 epidemics of a related morbilli virus, the phocine distem-
per virus, in European harbor seals is another illustrations of locally non-persistent
infections due to high transmission relative to susceptible recruitment rates (e.g.,
Swinton 1998). Following introduction into each local population (“haul-out”), ex-
plosive local epidemics terminated after 1–4 months due to susceptible depletion.
When such epidemics happens so fast that recruitment of susceptibles (through
birth, immigration, or loss of immunity) is negligible during the course of the out-
break we call it a “closed epidemics.” The closed epidemic is the focus of the stan-
dard Susceptible-Infected-Recovered model which we will study in Chap. 2. At the
opposite end of the transmissibility spectrum, pathogens may bottleneck because
transmission is too ineffective. In particular, if the basic reproductive ratio (R0, the

Birth / loss of
immunity

Susceptible

S
Infected

I
Recovered

R

(ii)

(i)

Susceptible

S
Fig. 1.1 The two bottlenecks for local persistence: (i) the transmission bottleneck for poorly trans-
mitted infections and (ii) the susceptible bottleneck for highly transmissible, acute immunizing (or
lethal) pathogens
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expected number of secondary cases from a primary case in a completely susceptible
population) is smaller than one, we see stuttering (“subcritical”) chains of transmis-
sion followed by pathogen fade-out. We see this in many zoonoses such as mon-
key pox and nipah (stage 3 zoonoses in the classification by Lloyd-Smith et al.
2009). Persistent recurrence of these typically involves reservoir host and intermit-
tent zoonotic reintroduction. For example, in their study of Lassa fever in Sierra
Leone, Iacono et al. (2015) concluded that about 20% of the human cases were
caused by human-to-human transmission (with an average reproductive ratio below
one) while the remaining majority was caused by transmission from the multimam-
mate rat (Mastomys natalensis) reservoir.
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Fig. 1.2 Persistence of measles against population size for 954 cities and villages in pre-
vaccination England and Wales (1944–1964). Communities below 500k exhibited occasional or
frequent (depending on size) local extinction of the virus

The locally persistent infections can be classified as: (1) Stable endemics that
show little variation in incidence through time. Many STDs with SI and SIS-like
dynamics like gonorrhea (Fig. 1.3a) and HIV exhibit this pattern. (2) Seasonal en-
demics that show low’ish-level predictable seasonal variation around some mean.
Many endemic vector-borne and water-borne infections exhibit this pattern. A clas-
sic example is the seasonal two-peaked mortality rate from Cholera in the province
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of Dacca, East Bengal (King et al. 2008); The first peak at the beginning of the mon-
soon season and the second towards the end (Fig. 1.3b). Finally, (3) recurrent epi-
demics that may be regular or irregular are characterized by violent epidemic fluc-
tuations over time. Many acute, immunizing highly contagious pathogens—measles
being the poster-child—follow this pattern (Fig. 1.4).
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Fig. 1.3 Incidence of (a) weekly incidence of gonorrhea in Massachusetts (2006–2015) and (b)
monthly average (± SE) mortality from cholera in the Dacca district (1891–1940)

1.4 R

To provide a cohesive framework for the practical calculations, all analyses are done
in the open-source R-program. The text is written assuming a basic knowledge of
this platform. All functions, data, and ShinyApp’s discussed in the text are contained
in the epimdr-package. With the package everything contained herein should be
reproducible. The above Figs. 1.2 and 1.4 were for example generated using the
following code:

#Fig 1.2
data(ccs)
plot(ccs$size, ccs$ext*100, log="x", xlab=

"Community size", ylab="Percent
of time extinct")

#Fig 1.3a
plot(magono$time, magono$number, ylab="Cases",

xlab="Year")
lines(lowess(x=magono$time, y=magono$number, f=.4))

http://www.r-project.org
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Fig. 1.4 Incidence of measles in various US and UK cities during the pre-vaccination era. The data
represent fortnightly incidence (roughly corresponding to the virus’ serial interval). The vertical
bars mark annual intervals

#Fig 1.3b
data(cholera)
ses=sesdv=rep(NA, 12)
ses[c(7:12, 1:6)]=sapply(split(cholera$Dacca,

cholera$Month), mean, na.rm=TRUE)
sesdv[c(7:12, 1:6)]=sapply(split(cholera$Dacca,

cholera$Month), sd, na.rm=TRUE)/
sqrt(length(split(cholera$Dacca, cholera$Month)))

require(plotrix)
plotCI(x=1:12, y=ses, ui=ses+sesdv, li=ses-

sesdv, xlab="Month", ylab="Deaths")
lines(x=1:12, y=ses)
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1.5 Other Resources

A 5 min overview of Patterns of endemicity can be watched from YouTube:
https://www.youtube.com/watch?v=Mf EZm5amxI. This video is part of the Penn-
sylvania State University-produced epidemics-MOOC. The entire course is accessi-
ble free from https://www.coursera.org/learn/epidemics.

https://www.youtube.com/watch?v=Mf_EZm5amxI
http://epidemics.psu.edu/coursera
https://www.coursera.org/learn/epidemics


Chapter 2
SIR

2.1 The SIR Model

In 1927, Kermack and McKendrick (1927) published a set of general equations
(Breda et al. 2012) to better understand the dynamics of an infectious disease spread-
ing through a susceptible population. Their motivation was

“One of the most striking features in the study of epidemics is the difficulty of finding a
causal factor which appears to be adequate to account for the magnitude of the frequent
epidemics of disease which visit almost every population [. . .] The problem may be sum-
marized as follows: One (or more) infected person is introduced into a community of in-
dividuals, more or less susceptible to the disease in question. The disease spreads from
the affected to the unaffected by contact infection. Each infected person runs through the
course of his sickness, and finally is removed from the number of those who are sick, by
recovery or by death. The chances of recovery or death vary from day to day during the
course of his illness. The chances that the affected may convey infection to the unaffected
are likewise dependent upon the stage of the sickness. As the epidemic spreads, the num-
ber of unaffected members of the community becomes reduced [. . .] In the course of time
the epidemic may come to an end. One of the most important problems in epidemiology is
to ascertain whether this termination occurs only when no susceptible individuals are left,
or whether the interplay of the various factors of infectivity, recovery and mortality, may
result in termination, whilst many susceptible individuals are still present in the unaffected
population.”

Following a general mathematical exposé, they suggested a set of pragmatic as-
sumptions which lead to the standard SIR model of ordinary differential equations

This chapter uses the following R-packages: deSolve, rootSolve, phaseR, and shiny.
A conceptual understanding of reproductive ratios and the closed epidemic is useful prior to this
discussion. Five minute epidemics-MOOC introductions can be watched from YouTube:
Reproductive number https://www.youtube.com/watch?v=ju26rvzfFg4.
Closed epidemic https://www.youtube.com/watch?v=sSLfrSSmJZM.

© Springer Nature Switzerland AG 2018
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for the flow of hosts between Susceptible, Infectious, and Recovered compartments.
In modern notation, their simplest set of equations is (Fig. 2.1):

dS
dt

=μ(N −S)−β I
S
N

(2.1)

dI
dt

=β I
S
N
− (μ + γ)I (2.2)

dR
dt

=γI −μR. (2.3)

Susceptible

Infectious

Recovered

Births
μ

μ

μ

μ

βΙ/Ν

γ

Fig. 2.1 The SIR flow diagram. Flows represent per capita flows from the donor compartments

The assumptions of Eqs. (2.1)–(2.3) are:

• The infection circulates in a population of size N, with a per capita “background”
death rate, μ , which is balanced by a birth rate μN. From the sum of Eqs. (2.1)–
(2.3), dN/dt = 0 and N = S+ I +R is thus constant.

• The infection causes acute morbidity (not mortality); That is, in this version of
the SIR model we assume we can ignore disease-induced mortality. This is rea-
sonable for certain infections like chickenpox, but certainly not for others like
rabies, SARS, or ebola.

• Individuals are recruited directly into the susceptible class at birth (so we ignore
perinatal maternal immunity).

• Transmission of infection from infectious to susceptible individuals is controlled
by a bilinear contact term β I S

N . This stems from the assumption that the I infec-
tious individuals are independently and randomly mixing with all other individ-
uals, so the fraction S/N of the encounters is with susceptible individuals; β is
the contact rate times the probability of transmission given a contact between a
susceptible and an infectious individual.
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• Chances of recovery or death is assumed not to change during the course of
infection.

• Infectiousness is assumed not to change during the course of infection.
• Infected individuals move directly into the the infectious class (as opposed to the

SEIR model; see Sect. 3.7) and remains there for an average infectious period of
1/γ (assuming μ << γ).1

• The model assumes that recovered individuals are immune from reinfection for
life.

The basic reproductive ratio (R0), defined as the expected number of secondary in-
fections from a single index case in a completely susceptible population, is a very
important quantity in epidemiology. Chapter 3 is entirely devoted to this quantity.
For this simple SIR model R0 =

β
γ+μ .

2.2 Numerical Integration of the SIR Model

If there are no (or negligible) births and deaths during the duration of an epidemic
(μ � 0), it is commonly referred to as a closed epidemic. While it is occasionally
possible to derive analytical solutions to systems of ODEs like Eqs. (2.1)–(2.3), we
generally have to resort to numerical integration to predict the numbers over time.
We use the deSolve R-package to numerically integrate the equations. We will
numerically integrate a variety of different models. While the models differ, the
basic recipe is generally the same: (1) define a R-function for the general system of
equations, (2) specify the time points at which we want the integrator to save the
state of the system, (3) provide values for the parameters, (4) give initial values for
all state variables, and finally (5) invoke the R-function that does the integration. We
use the ode-function in the deSolve-package.

1 The implicit assumptions that stem from the use of deterministic, ordinary differential equa-
tion (ODE) are that the infectious periods (and resident times in all compartments) are expo-
nentially distributed. This is a tractable approximation for exploring overall dynamics, but ob-
served duration of infection periods is often much less variable—the Eimeria-gut parasite (a rel-
ative of Plasmodium that cause malaria) undergoes exactly 8 replication cycles before leaving a
host; or much more variable—see superspreader MOOC video: https://www.youtube.com/watch?
v=3H1tG4uz9uk. Section 2.7 discusses a practical approach to model dynamics when the expo-
nential assumption is deemed too simplistic.

https://www.youtube.com/watch?v=3H1tG4uz9uk
https://www.youtube.com/watch?v=3H1tG4uz9uk
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require(deSolve)

Step 1: We define the function (often called the gradient-functions) for the equa-
tion systems. The deSolve-package requires the function to take the following
parameters: time,2 t, a vector with the values for the state variables (S, I, R), y, and
parameter values (β , μ , γ , and N), parms:

sirmod = function(t, y, parms) {
# Pull state variables from y vector
S = y[1]
I = y[2]
R = y[3]
# Pull parameter values from parms vector
beta = parms["beta"]
mu = parms["mu"]
gamma = parms["gamma"]
N = parms["N"]
# Define equations
dS = mu * (N - S) - beta * S * I/N
dI = beta * S * I/N - (mu + gamma) * I
dR = gamma * I - mu * R
res = c(dS, dI, dR)
# Return list of gradients
list(res)

}

The ode-function solves differential equations numerically.
Steps 2–4: Specify the time points at which we want ode to record the states of

the system (here we use 26 weeks with 10 time-increments per week as specified
in the vector times), the parameter values (in this case as specified in the vector
parms), and starting conditions (specified in start). In this case we model the
fraction of individuals in each class, so we set N = 1, and consider a disease with an
infectious period of 2 weeks (γ = 1/2), no births or deaths (μ = 0) and a transmis-
sion rate of 2 (β = 2). For our starting conditions we assume that 0.1% of the initial
population is infected and the remaining fraction is susceptible.

times = seq(0, 26, by = 1/10)
parms = c(mu = 0, N = 1, beta = 2, gamma = 1/2)
start = c(S = 0.999, I = 0.001, R = 0)

2 Though, in the case of the simple SIR model there is no time-dependence in any of the parameters,
so this parameter is not called within the gradient function; This will change when we consider
seasonality (Chap. 5).
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Step 5: Feed start values, times, the gradient-function and parameter vector
to the ode-function as suggested by args(ode).3 For convenience we convert
the output to a data frame (ode returns a list). The head-function shows the
first 5 rows of out, and round(,3) rounds the number to three decimals.

out=ode(y=start, times=times, func=sirmod, parms=
parms)

out=as.data.frame(out)
head(round(out, 3))

## time S I R
## 1 0.0 0.999 0.001 0
## 2 0.1 0.999 0.001 0
## 3 0.2 0.999 0.001 0
## 4 0.3 0.998 0.002 0
## 5 0.4 0.998 0.002 0
## 6 0.5 0.998 0.002 0

We can plot the result (Fig. 2.2) to see that the model predicts an initial exponen-
tial growth of the epidemic that decelerates as susceptibles are depleted, and finally
fade-out as susceptible numbers are too low to sustain the chain of transmission.

plot(x=out$time, y=out$S, ylab="Fraction", xlab=
"Time", type="l")

lines(x=out$time, y=out$I, col="red")
lines(x=out$time, y=out$R, col="green")

R allows for a lot of customization of graphics—Rseek.org is a useful resource to
find solutions to all things R. . . Fig. 2.2 has some added features such as a right-hand
axis for the effective reproductive ratio (RE )—the expected number of new cases per
infected individuals in a not completely susceptible population—and a legend so
that we can confirm that the turnover of the epidemic happens exactly when RE =
R0s = 1, where s is the fraction of remaining susceptibles. The threshold R0s = 1 ⇒
s∗ = 1/R0 results in the powerful rule of thumb for vaccine induced eradication and
herd immunity: If we can—through vaccination —keep the susceptible population
below a critical fraction, pc = 1−1/R0, then pathogen spread will dissipate and the
pathogen will not be able to reinvade the host population (e.g., Anderson and May
1982; Roberts and Heesterbeek 1993; Ferguson et al. 2003). This rule of thumb
appeared to work well for smallpox, the only vaccine-eradicated human disease;
Its R0 was commonly around 5, and most countries saw elimination once vaccine
cover exceeded 80% (Anderson and May 1982). The actual code used to produce
Fig. 2.2 is:

3 For further details on usage, do ?function on the R command-line, i.e., ?ode in this instance.

http://rseek.org
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#Calculate R0
R0=parms["beta"]/(parms["gamma"]+parms["mu"])

#Adjust margins to accommodate a second right axis
par(mar = c(5,5,2,5))
#Plot state variables
plot(x=out$time, y=out$S, ylab="Fraction", xlab="Time",

type="l")
lines(x=out$time, y=out$I, col="red")
lines(x=out$time, y=out$R, col="green")
#Add vertical line at turnover point
xx=out$time[which.max(out$I)]
lines(c(xx,xx), c(1/R0,max(out$I)), lty=3)

#prepare to superimpose 2nd plot
par(new=TRUE)
#plot effective reproductive ratio (w/o axes)
plot(x=out$time, y=R0*out$S, type="l", lty=2, lwd=2,

col="black", axes=FALSE, xlab=NA, ylab=NA,
ylim=c(-.5, 4.5))

lines(c(xx, 26), c(1,1), lty=3)
#Add right-hand axis for RE
axis(side = 4)
mtext(side = 4, line = 4, expression(R[E]))
#Add legend
legend("right", legend=c("S", "I", "R",

expression(R[E])), lty=c(1,1,1, 2),
col=c("black", "red", "green", "black"))

2.3 Final Epidemic Size

The closed epidemic model has two equilibria {S = 1, I = 0,R = 0} which is unsta-
ble when R0 > 1, and the {S∗, I∗,R∗}-equilibrium which reflects the final epidemic
size, for which I∗ = 0 as the epidemic eventually self-extinguish in the absence of
susceptible recruitment; S∗ is the fraction of susceptibles that escape infection al-
together; and R∗ is the final epidemic size—the fraction of susceptibles that will
be infected before the epidemic self-extinguish. For the closed epidemic, there is
an exact mathematical solution to the final epidemic size (below). It is nevertheless
useful to consider computational ways of finding equilibria in the absence of exact
solutions.
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The rootSolve-package will attempt to find equilibria of systems of differ-
ential equations through numerical integration. The function runsteady is really
just a wrapper function around the ode-function that integrates until the system
settles on some steady-state (if it exists). It takes the same arguments as ode. By
varying initial conditions rootSolve should find multiple stable equilibria if there
are more than one stable solution.4
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Fig. 2.2 The closed SIR epidemic with left and right axes and effective reproductive ratio, RE . The
epidemic turns over at RE = 1

require(rootSolve)
equil=runsteady(y=c(S=1-1E-5, I=1E-5, R=0),
times=c(0,1E5), func=sirmod, parms=parms)
round(equil$y, 3)

4 It will not find unstable equilibria, for these we will need to use other strategies. We will consider
finding all equilibria in more depth in Sect. 9.3.
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## S I R
## 0.02 0.00 0.98

So for these parameters, 2% of susceptibles are expected to escape infection al-
together and 98%—the final epidemic size—are expected to be infected during the
course of the epidemic.

Let us explore numerically how the final epidemic size depends on R0. Recall that
for the specific SIR variant we are working with R0 = β/(γ +μ), and since we are
studying the closed epidemic μ = 0. In the above example we assume an infectious
period of 2 weeks (i.e., γ = 1/2), so we may vary β so R0 goes from 0.1 to 5. For
moderate to large R0 this fraction has been shown to be approximately 1−exp(−R0)
(e.g., Anderson and May 1982). We can check how well this approximation holds
(Fig. 2.3).5

#Candidate values for R0 and beta
R0 = seq(0.1, 5, length=50)
betas= R0 * 1/2
#Vector of NAs to be filled with numbers
f = rep(NA, 50)
#Loop over i from 1, 2, ..., 50
for(i in seq(from=1, to=50, by=1)){

equil=runsteady(y=c(S=1-1E-5, I=1E-5,
R=0), times=c(0,1E5), func=sirmod,
parms=c(mu=0, N=1, beta=betas[i], gamma=1/2))

f[i]=equil$y["R"]
}
plot(R0, f, type="l", xlab=expression(R[0]))
curve(1-exp(-x), from=1, to=5, add=TRUE, col="red")

We see that the approximation is good for R0 > 2.5 but overestimates the final
epidemic size for smaller R0 (and is terrible for R0 < 1).

For the closed epidemic SIR model, there is an exact mathematical solution to the
fraction of susceptibles that escapes infection (1− f ) given by the implicit equation
f = exp(−R0(1− f )) or equivalently exp(−R0(1− f ))− f = 0 (Swinton 1998). So
we can also find the final size by applying the uniroot-function to the equation.
The uniroot-function finds numerical solutions to equations with one unknown
variable (which has to be named x).

#Define function
fn=function(x, R0){
exp(-(R0*(1-x))) - x

5 We use a for-loop here to calculate the final epidemic size for a range of values of R0; A loop
works by repeating calculations (in this case 50 times), after each repeat the value of the looping
variable (in this case i) is changed to the next value in the looping vector. So in this example i
will be 1 first, then 2, then . . . until the loop ends after i= 50.
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Fig. 2.3 The final epidemic size as a function of R0. The black line is the solution based on nu-
merically integrating the closed epidemic, and the red line is the approximation f � 1−exp(−R0)

}
1-uniroot(fn, lower = 0, upper = 1-1E-9,

tol = 1e-9, R0=2)$root

## [1] 0.7968121

#check accuracy of approximation:
exp(-2)-uniroot(fn, lower = 0, upper = 1-1E-9,

tol = 1e-9, R0=2)$root

## [1] -0.06785259

So for R0 = 2 the final epidemic size is 79.6% and the approximation is off by
around 6.7% points.
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2.4 Open Epidemic

The open epidemic has recruitment of new susceptibles (i.e., μ > 0). As long as
R0 > 1, the open epidemic has an “endemic equilibrium” were the pathogen and host
coexist. If we use the SIR equations to model fractions (i.e., set N = 1), Eq. (2.2) of
the SIR model implies that S∗ = (γ + μ)/β = 1/R0 is the endemic S-equilibrium,
which when substituted into Eq. (2.1) gives I∗ = μ(R0 − 1)/β , and finally, R∗ =
N − I∗ −S∗ as the I and R endemic equilibria. We can study the predicted dynamics
of the open epidemic using the sirmod-function. Let us assume a life expectancy
of 50 years, a stable population size, and thus a weekly birth rate of μ = 1/(50∗52).
Let’s assume that 19% of the initial population is susceptible and 1% is infected and
numerically integrate the model for 50 years (Fig. 2.4).

times = seq(0, 52*50, by=.1)
parms = c(mu = 1/(50*52), N = 1, beta = 2,

gamma = 1/2)
start = c(S=0.19, I=0.01, R = 0.8)
out = as.data.frame(ode(y=start, times=times,

func=sirmod, parms=parms))
par(mfrow=c(1,2)) #Make room for side-by-side plots
plot(times, out$I, ylab="Fraction", xlab="Time",

type="l")
plot(out$S, out$I, type="l", xlab="Susceptible",

ylab="Infected")

2.5 Phase Analyses

When working with dynamical systems we are often interested in studying the dy-
namics in the phase plane and derive the isoclines that divide this plane in regions
of increase and decrease of the various state variables. The phaseR package is a
wrapper around ode that makes it easy to analyze 1D and 2D ode’s.6 The R-state
in the SIR model does not influence the dynamics, so we can rewrite the SIR model
as a 2D system.

simod = function(t, y, parameters) {
S = y[1]
I = y[2]

6 The phaseR package requires the gradient function to take the arguments t, y, and
parameters.
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Fig. 2.4 The open SIR epidemic. (a) The fraction infected over time. (b) The joint time series of
infecteds and susceptibles in the S-I phase plane. The trajectory forms a counter-clockwise inwards
spiral in the S-I plane (note that the 50-year simulation is not long enough for the system to reach
the steady-state endemic equilibrium at the center of the spiral)

beta = parameters["beta"]
mu = parameters["mu"]
gamma = parameters["gamma"]
N = parameters["N"]

dS = mu * (N - S) - beta * S * I/N
dI = beta * S * I/N - (mu + gamma) * I
res = c(dS, dI)
list(res)

}
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The isoclines (sometimes called the nullclines) in this system are given by the
solution to the equations dS/dt = 0 and dI/dt = 0 and partitions the phase plane
into regions were S and I are increasing and decreasing. For N = 1, the I-isocline is
S = (γ+μ)/β = 1/R0 and the S-isocline is I = μ(1/S−1)/β . We can draw these in
the phase plane and add a simulated trajectory to the plot (Fig. 2.5). The trajectory
cycles in a counter-clockwise dampened fashion towards the endemic equilibrium
(Fig. 2.5). To visualize the expected change to the system at arbitrary points in the
phase plane, we can further use the function flowField in the phaseR-package
to superimpose predicted arrows of change (vectors).
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Fig. 2.5 The S-I phase plane with isoclines and the predicted anti-clockwise trajectory towards the
equilibrium

require(phaseR)
#Plot vector field
fld=flowField(simod, x.lim=c(0.15,0.35), y.lim=c(0,.01),

parameters=parms, system="two.dim", add=FALSE,
ylab="I", xlab="S")

#Add trajectory
out = as.data.frame(ode(y = c(S=0.19, I=0.01), times=

seq(0, 52*100, by=.1), func=simod, parms=parms))
lines(out$S, out$I, col="red")
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#Add S-isocline
curve(parms["mu"]*(1/x-1)/parms["beta"], 0.15, 0.35,

xlab="S", ylab="I", add=TRUE)
#Add I-isocline
shat=(parms["gamma"]+parms["mu"])/parms["beta"]
lines(rep(shat, 2), c(0,0.01))

legend("topright", legend=c("Transient", "Isoclines"),
lty=c(1, 1), col=c("red", "black"))

2.6 Stability and Periodicity

If we work with continuous-time ODE models like the SIR, equilibria are locally
stable if (and only if) all the real part of the eigenvalues of the Jacobian matrix—
when evaluated at the equilibrium—are smaller than zero. We will discuss stability
and resonant periodicity in detail in Chap. 9, so this section is just a teaser. . . An
equilibrium is (1) a node (i.e., all trajectories moves monotonically towards/away
from the equilibrium) if the largest eigenvalue has only real parts, or (2) a focus
(trajectories spiral towards or away from the equilibrium) if the largest eigenvalues
are a conjugate pair of complex numbers (a± bı).7 For a focus the imaginary part
determines the dampening period of the cycle according to 2π/b. We can thus use
the Jacobian matrix to study the SIR model’s equilibria. If we let F = dS/dt =
μ(N − S)− βSI/N and G = dI/dt = βSI/N − (μ + γ)I, the Jacobian of the SIR
system is

J =

( ∂F
∂S

∂F
∂ I

∂G
∂S

∂G
∂ I

)
, (2.4)

and the two equilibria are the disease-free equilibrium and the endemic equilibrium
as defined above.

R can help with all of this. We first calculate the equilibria:

# Pull values from parms vector
gamma = parms["gamma"]
beta = parms["beta"]
mu = parms["mu"]
N = parms["N"]

# Endemic equilibrium

7 And a center—like the Lotka-Volterra predator-prey model—if conjugate pair only has imaginary
parts.

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
https://en.wikipedia.org/wiki/Lotka-Volterra_equations
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Sstar = (gamma + mu)/beta
Istar = mu * (beta/(gamma + mu) - 1)/beta
eq1 = list(S = Sstar, I = Istar)

We then calculate the elements of the Jacobian using R’s D-function:

# Define equations
dS = expression(mu * (N - S) - beta * S * I/N)
dI = expression(beta * S * I/N - (mu + gamma) * I)
# Differentiate w.r.t. S and I
j11 = D(dS, "S")
j12 = D(dS, "I")
j21 = D(dI, "S")
j22 = D(dI, "I")

We pass the values for S∗ and I∗ in the eq1-list to the Jacobian,8 and use eigen-
function to calculate the eigenvalues:

#Evaluate Jacobian at equilibrium
J=with(data=eq1, expr=matrix(c(eval(j11),eval(j12),

eval(j21),eval(j22)), nrow=2, byrow=TRUE))
#Calculate eigenvalues
eigen(J)$values

## [1] -0.00076864+0.02400384i -0.00076864-0.02400384i

For the endemic equilibrium, the eigenvalues are a pair of complex conjugates
which real parts are negative, so it is a stable focus. The period of the inwards spiral
is:

2 * pi/(Im(eigen(J)$values[1]))

## [1] 261.7575

So with these parameters the dampening period is predicted to be 261 weeks (just
over 5 years). Thus, during disease invasion we expect this system to exhibit initial
outbreaks every 5 years. A further significance of this number is that if the system
is stochastically perturbed by, say, environmental variability affecting transmission,
we expect the system to exhibit low amplitude “phase-forgetting” cycles (Nisbet

8 In previous coding like for the sirmod-function, we “pulled” parameter values from the input
arguments inside the function to make the code as transparent as possible; while it makes the code
easy to read, it makes for extra coding, and can clutter up the workspace with variables that are
defined in multiple locations. The with-function allows the evaluation of an expression using
variables defined in a data list.
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and Gurney 1982) with approximately this period in the long run (see Chap. 9).
We can make more accurate calculations of the stochastic system using transfer
functions (Nisbet and Gurney 1982; Priestley 1981). We will visit on this slightly
more advanced topic in Sect. 9.7.

The same protocol can be used on the disease-free equilibrium {S∗ = 1, I∗ = 0}.

eq2=list(S=1,I=0)
J=with(eq2,

matrix(c(eval(j11),eval(j12),eval(j21),
eval(j22)), nrow=2, byrow=TRUE))

eigen(J)$values

## [1] 1.4996153846 -0.0003846154

The eigenvalues are strictly real and the largest value is greater than zero, so
it is an unstable node (a “saddle”); The epidemic trajectory is predicted to move
monotonically away from this disease free equilibrium if infection is introduced into
the system. This makes sense because with the parameter values used, R0 = 3.99
which is greater than the invasion-threshold value of 1.

2.7 Advanced: More Realistic Infectious Periods

The S(E)IR-type differential equation models assumes that rate of exit from the in-
fectious classes are constant, the implicit assumption is thus that the infectious pe-
riod is exponentially distributed among infected individuals; The average infectious
period is 1/(γ + μ), but an exponential fraction is infectious much shorter/longer
than this. The chain-binomial model (see Sect. 3.4), in contrast, assumes that every-
body is infectious for a fixed period and then all instantaneously recover (or die).
These assumptions are mathematically convenient, but in reality neither are particu-
larly realistic. Hope-Simpson (1952) traced the chains of transmission of measles in
multi-sibling household. The timing of secondary and tertiary cases was analyzed in
detail by Bailey (1956) and Bailey and Alff-Steinberger (1970). The average latent
and infectious periods were calculated to be 8.58 and 6.57 days, respectively. While
the distribution around each of these averages were not estimated separately (the la-
tent period was assumed to be distributed and the infectious period assumed fixed),
the variance around the roughly fortnight period of infection was estimated to be
3.13. The mean duration of infection is thus 15.15 days with a standard deviation
of 1.77 (Fig. 2.6). So neither a fixed nor an exponential distribution is very accurate
(Keeling and Grenfell 1997; Lloyd 2001).

Kermack and McKendrick’s (1927) original model allows for arbitrary
infectious-period distributions. We can write Kermack and McKendrick’s origi-
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nal equations as “renewal equations” (Breda et al. 2012), introducing the additional
notation of k(t) being the (instantaneous) incidence at time t (i.e., flux into the
I-class at time t).

dS
dt

= μ(N −S)− k(t) (2.5)

k(t) = β I
S
N

(2.6)

dI
dt

= k(t)−μI−
∫ ∞

0

h(τ)
1−H(τ)

k(t − τ)dτ (2.7)

dR
dt

=
∫ ∞

0

h(τ)
1−H(τ)

k(t − τ)dτ −μR, (2.8)
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Fig. 2.6 Gamma distributed infectious periods: (a) The predicted infectious period distribution
based on a Gamma distribution with shape u = 1, 5, 25, 100, and 100,000; u = 1 corresponds to
the exponential distribution implicit in the standard SIR model; the bold line (u = 73) is the one
corresponding to the variance observed in Hope-Simpson’s (1952) study of measles. The dotted
line (virtually indistinguishable from the u = 100) is a Gaussian distribution intended to show
that when u is large the Gamma distribution converges on the Gaussian. (b) The probability of
still being infectious as a function of time for the different distributions; as u becomes large, the
distribution converges on a fixed infectious period. Note that the empirical distribution (bold) is
quite different from the exponential
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where k(t − τ) is the number of individuals that was infected τ time units ago,
h(τ) is the probability of recovering on infection-day τ , and H(τ) is the cumulative
probability of having recovered by infection-day τ; k(t − τ)/(1−H(τ)) is thus the
fraction of individuals infected at time t−τ that still remains in the infected class on
day t and the integral is over all previous infections so as to quantify the total flux
into the removed class at time t. Though intuitive, these general integro-differential
equations (Eqs. (2.5)–(2.8)) are not easy to work with in general. For a restricted set
of distributions for the h()-function, however—the Erlang distribution (the Gamma
distribution with an integer shape parameter)—the model can be numerically in-
tegrated using a “Gamma-chain” model (referred to as “linear chain trickery” by
Metz and Diekmann 1991) of coupled ordinary differential equations (e.g., Blythe
et al. 1984; de Valpine et al. 2014; Bjørnstad et al. 2016). The trick is to separate
any distributed-delay compartment into u sub-compartments through which individ-
uals pass through at a rate overallrate∗u. The resultant infectious period will have a
mean of 1/overallrate and a coefficient-of-variation of 1/

√
u.

We can write a chain-SIR model to simulate S → I → R flows with more realistic
infectious period distributions9:

chainSIR=function(t, logx, params){
x=exp(logx)
u=params["u"]
S=x[1]
I=x[2:(u+1)]
R=x[u+2]
with(as.list(params),{

dS = mu * (N - S) - sum(beta * S * I) / N
dI = rep(0, u)
dI[1] = sum(beta * S * I) / N - (mu + u*gamma) * I[1]
if(u>1){

for(i in 2:u){
dI[i]= u*gamma * I[i-1] - (mu+u*gamma)* I[i]

}
}
dR = u*gamma * I[u] - mu * R
res=c(dS/S, dI/I, dR/R)
list(res)

})
}

9 With high number of compartments this system of equations can become “stiff” with the com-
puter potentially making rounding errors leading to erroneous negative numbers. We use a “log-
trick” (Ellner and Guckenheimer 2011) available for systems where all state variables are strictly
positive: we solve the system in log-coordinates to smooth abrupt changes and force all number
to be greater than zero. To employ this technique we log-transform all initial values in start,
change the first line in the function to x = exp(logx) and the last line to return dS/S, etc. in
place of dS which comes from the chain-rule of differentiation and the fact that D(logx) = 1/x.

https://en.wikipedia.org/wiki/Erlang_distribution
https://en.wikipedia.org/wiki/Chain_rule
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We can compare the predicted dynamics of the simple SIR model with the u = 2
chain model, the u= 500 chain model (which is effectively the fixed-period delayed-
differential model) and the “measles-realistic” u = 73 model.

times = seq(0, 10, by=1/52)
paras2 = c(mu = 1/75, N = 1, beta = 625,

gamma = 365/14, u=1)
xstart2 = log(c(S=.06, I=c(0.001, rep(0.0001,

paras2["u"]-1)), R = 0.0001))
out = as.data.frame(ode(xstart2, times, chainSIR,

paras2))
plot(times, exp(out[,3]), ylab="Infected", xlab=

"Time", ylim=c(0, 0.01), type=’l’)

paras2["u"] =2
xstart2 = log(c(S=.06, I=c(0.001, rep(0.0001/

paras2["u"], paras2["u"]-1)), R = 0.0001))
out2 = as.data.frame(ode(xstart2, times, chainSIR,

paras2))
lines(times, apply(exp(out2[,-c(1:2,length(out2))]),

1 ,sum), col=’blue’)

paras2["u"] =73
xstart2 = log(c(S=.06, I=c(0.001, rep(0.0001/

paras2["u"], paras2["u"]-1)), R = 0.0001))
out3 = as.data.frame(ode(xstart2, times, chainSIR,

paras2))
lines(times, apply(exp(out3[,-c(1:2,length(out3))]),

1, sum), col=’red’, lwd=2, lty=2)

paras2["u"] =500
xstart2 = log(c(S=.06, I=c(0.001, rep(0.0001/

paras2["u"], paras2["u"]-1)), R = 0.0001))
out4 = as.data.frame(ode(xstart2, times, chainSIR,

paras2))
lines(times, apply(exp(out4[,-c(1:2,length(out4))]),

1,sum, na.rm=TRUE), col=’green’)

legend("topright", legend=c("SIR", "u=2", "u=500",
"u=73 (H-S)"), lty=c(1,1,1,2), lwd=c(1,1,1, 2),
col=c("black", "blue", "green", "red"))

The more narrow the infectious-period distribution, the more punctuated the pre-
dicted epidemics. However, infectious-period narrowing—alone—cannot sustain
recurrent epidemics; In the absence of stochastic or seasonal forcing epidemics will
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Fig. 2.7 Chain-SIR models with different infectious period distributions

dampen to the endemic equilibrium (though the damping period is slightly accel-
erated and the convergence on the equilibrium is slightly slower with narrowing
infectious period distributions) (Fig. 2.7).

In the above we considered non-exponential infectious-period distributions.
However, the general ODE chain method can be used for any compartment. Lavine
et al. (2011), for example, used it to model non-exponential waning of natural and
vaccine-induced immunity to whooping cough.

2.8 ShinyApp

The following code will launch a local shinyApp of the SIR model in your local
browser. This App can also be launched by calling SIR.app in the epimdr-
package. Several of the subsequent chapters also have associated shinyApps. Those
will only be accessible from the package (because the code is long and a bit tedious).
We quote an annotated version of the SIR.app in full.

require(shiny)
require(deSolve)
require(phaseR)

#This creates the User Interface (UI)
ui = pageWithSidebar(
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#The title
headerPanel("The SIR model"),
#The sidebar for parameter input
sidebarPanel(

#Sliders:
sliderInput("beta", "Transmission (yrˆ-1):", 300,

min = 0, max = 1000),
sliderInput("infper", "Infectious period (days)", 5,

min = 1, max = 100),
sliderInput("mu", "birth rate:", 5,

min = 0, max = 100),
sliderInput("T", "Time range:",

min = 0, max = 1, value = c(0,1))
),
#Main panel for figures and equations
mainPanel(

#Multiple tabs in main panel
tabsetPanel(
#Tab 1: Time plot (plot1 from server)
tabPanel("Time", plotOutput("plot1")),
#Tab 2: Phase plot (plot2 from server)
tabPanel("Phase plane", plotOutput("plot2",

height = 500)),
#Tab 3: MathJax typeset equations
tabPanel("Equations",

withMathJax(
helpText("Susceptible $$\\frac{dS}{dt} =

\\mu (N - S) - \\frac{\\beta I S}{N}$$"),
helpText("Infecitous $$\\frac{dI}{dt} =

\\frac{\\beta I S}{N} - (\\mu+\\sigma) I$$"),
helpText("Removed $$\\frac{dR}{dt} =

\\gamma I - \\mu R$$"),
helpText("Reproductive ratio $$R_0 =

\\frac{1}{\\gamma+\\mu} \\frac{\\beta N}{N}$$")
))

))) #End of ui()

# This creates the ’behind the scenes’ code (Server)
server = function(input, output) {

#Gradient function for SIR model
sirmod=function(t, x, parms){
S=x[1]
I=x[2]
R=x[3]
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beta=parms["beta"]
mu=parms["mu"]
gamma=parms["gamma"]
N=parms["N"]
dS = mu * (N - S) - beta * S * I / N
dI = beta * S * I / N - (mu + gamma) * I
dR = gamma * I - mu * R
res=c(dS, dI, dR)
list(res)

}

#Gradient function used for phaseR phase-plot
simod=function(t, y, parameters){
S=y[1]
I=y[2]
beta=parameters["beta"]
mu=parameters["mu"]
gamma=parameters["gamma"]
N=parameters["N"]
dS = mu * (N - S) - beta * S * I / N
dI = beta * S * I / N - (mu + gamma) * I
res=c(dS, dI)
list(res)

}

#Plot1: renderPlot to be passed to UI tab 1
output$plot1 = renderPlot({
#input\$xx’s are pulled from UI
times = seq(0, input$T[2], by=1/1000)
parms = c(mu = input$mu, N = 1, beta = input$beta,
gamma = 365/input$infper)

start = c(S=0.999, I=0.001, R = 0)
R0 = round(with(as.list(parms), beta/(gamma+mu)), 1)

#Integrate ode with parameters pulled from UI
out=ode(y=start, times=times, func=sirmod,
parms=parms)

out=as.data.frame(out)

#Plot1
sel=out$time>input$T[1]&out$time<input$T[2]
plot(x=out$time[sel], y=out$S[sel], ylab="fraction",
xlab="time", type="l", ylim=range(out[sel,-c(1,4)]))

title(paste("R0=", R0))
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lines(x=out$time[sel], y=out$I[sel], col="red")
lines(x=out$time[sel], y=out$R[sel], col="green")
legend("right", legend=c("S", "I", "R"),

lty=c(1,1,1), col=c("black", "red", "green"))
})

#Plot2: renderPlot to be passed to UI tab 2
output$plot2 = renderPlot({
times = seq(0, input$T[2], by=1/1000)
parms = c(mu = input$mu, N = 1, beta = input$beta,
gamma = 365/input$infper)

start = c(S=0.999, I=0.001, R = 0)
R0 = round(with(as.list(parms), beta/(gamma+mu)), 1)

#Integrate simod
out=ode(y=start[-3], times=times, func=simod,
parms=parms)

out=as.data.frame(out)

#Plot2
plot(x=out$S, y=out$I, xlab="Fraction suceptible",
ylab="Fraction infected", type="l")

title(paste("R0=", R0))
#Add vector field
fld=flowField(simod, x.lim=range(out$S), y.lim=
range(out$I), parameters=parms, system="two.dim",
add=TRUE, ylab="I", xlab="S")

#Add isoclines
abline(v=1/R0, col="green")
curve(parms["mu"]*(1-x)/(parms["beta"]*x), min(out$S),

max(out$S), add=TRUE, col="red")
legend("topright", legend=c("I-socline",

"S-isocline"), lty=c(1,1), col=c("red", "green"))
})

} #End of server()

shinyApp(ui, server)



Chapter 3
R0

3.1 Primacy of R0

For directly transmitted pathogens, R0 is, per definition, the expected number of
secondary cases that arise from a typical infectious index-case in a completely sus-
ceptible host population. R0 plays a critical role for a number of aspects of disease
dynamics and is therefore the focus of much study in historical and contemporary
infectious disease dynamics (Heesterbeek and Dietz 1996). For perfectly immuniz-
ing infections in homogeneously mixing populations these include (e.g., Anderson
and May 1991):

• The threshold for pathogen establishment. When R0 is greater than one, a
pathogen can invade. When it is smaller than one, the chain of transmission will
stutter and break (Lloyd-Smith et al. 2009). For directly transmitted wildlife dis-
eases there is often an associated critical host density for disease invasion. This
has for example been estimated to be 1 red fox per km2 for rabies in Europe (An-
derson et al. 1981) and 17 mice/ha for Sin nombre hantavirus in Montana (Luis
et al. 2015).

• The threshold for vaccine-induced herd immunity: If a sufficient number of indi-
viduals are vaccinated, the effective reproductive ratio will be below one, and the
population will be resistant to pathogen invasion. The threshold is pc = 1−1/R0.
Thus, measles with a R0 of up to 20 requires around 95% vaccine cover for elim-
ination and smallpox (R0 � 5) 80%.

This chapter uses the following R-packages: bbmle and statnet.
A conceptual understanding of reproductive ratios and the simple epidemic is useful prior to this
discussion. Five minute epidemics-MOOC intros can be watched from YouTube:
Reproductive number https://www.youtube.com/watch?v=ju26rvzfFg4.
Simple epidemic https://www.youtube.com/watch?v=sSLfrSSmJZM.

© Springer Nature Switzerland AG 2018
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• As discussed in Sect. 2.3, the final epidemic size is given by R0 according to the
approximate relationship f � exp(−R0).

• In a stable host population, the mean age of infection is approximately ā �
L/(R0 − 1), where L is host life-expectancy (Dietz and Schenzle 1985). In a
changing population a more accurate calculation is ā � 1/(μ(R0 −1)), where μ
is the host birth rate.

• As derived in Sect. 2.5, the susceptible fraction at equilibrium is S∗ = 1/R0.
A consequence of this is that for competing strains that elicit cross-protecting
immunity, R0 will determine competitive dominance and strain replacement
(Shrestha et al. 2014).1

A lot of attention has been given to measuring R0 for various infectious diseases.

3.2 Preamble: Rates and Probabilities

When working with data, models, and “models-and-data” for infectious disease dy-
namics, it is important to keep a cool head in terms of keeping track of which quan-
tities are probabilities and which quantities are rates, and how to move between
these two mathematical currencies.2 Confusion arises because the nomenclature of
epidemiology and mathematical epidemiology is related but not always identical. In
epidemiology the “case-fatality rate” is used to denote the fraction of infections that
ends in death, which from a mathematical/statistical point of view is not a rate but a
probability: the probability that an infection will lead to death (Dietz and Heester-
beek 2002). Likewise, in epidemiology, the seasonal influenza “attack rate” denotes
the fraction of people that contracts the flu in a given influenza season. Again, from
a mathematical/statistical/dynamical-systems point of view this quantity is not a
rate but a probability representing the chance of any randomly chosen individual
of unknown previous influenza infection-history getting infected during the season.

When considering events in modeling terms, a rate x per time unit is defined on
[0,∞] and 1/x is the average time to an event (if the rate remains constant). If events
are random and independent, the probability of no events in a time interval Δ t is
1− exp(xΔ t) and the number of events in Δ t follows a Poisson-distribution with
mean xΔ t (if the rate remains constant). A probability, in contrast, is defined on
[0,1]. If we observe a probability p of something happening in a time interval, we
can back-calculate the associated (constant) rate as x =−log(1− p)/Δ t.

1 This result is parallel to Tilman (1976)’s R∗-theory of resource-based competition of free-living
organisms: whichever species can sustain positive growth at the lowest concentration of the limited
resource will be competitively dominant.
2 The disease dynamics literature has many example of how easy it is to confuse the two; cf some
of the mathematical models of ebola dynamics published during the 2014 West Africa outbreak.
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If we have two competing rates, x at which event one (e.g., recovery) happens
and y at which event two (e.g., death) happens, the probability of ending up with
outcome one is x/(x + y) and the probability of ending up with outcome two is
y/(x+ y). This scales such that with three competing rates the probability of out-
come one is x/(x+ y+ z).

3.3 Estimating R0 from a Simple Epidemic

A variety of methods have been proposed to estimate R0 (or the effective repro-
ductive ratio, RE

3) in an epidemic setting (such as the 2014–15 West African ebola
outbreak; Althaus 2014). Some are purely model based, others involve very elab-
orate model fitting exercises, and some use fairly simple ideas based on the closed
epidemic and analogies to the ecology of free-living organisms (Dietz 1993).

The simplest idea is that during the initial spread phase susceptible depletion may
be sufficiently negligible that the epidemic may be assumed to grow in a density-
independent, exponential fashion. Basic ecology of free-living organisms tells us
that the rate of exponential growth is r = log(R0)/G, where G is the generation time;
thus R0 = exp(rG).4 Moreover, since an exponentially growing population grows
according to N(t) = N(0)exp(rt), the time for a population to double is log(2)/r.
We can apply these ideas to the early phase of an epidemic to get a rough value for
R0.

For pathogens, the Ns above would represent the prevalence. The G represents
the serial interval (V ) which is the average time between infection and reinfection.
This interval will normally be a little shorter than the latent plus infectious period.
Disease data, however, most often represents incidence—i.e., the number of new
infections, not the number of current infections. However, incidence also grows
at the same exponential rate. The simplest way to estimate R0 is thus to regress
log(cumulative incidence) on time to estimate the rate of exponential increase (r)
and then calculate R0 = V r+ 1 (e.g., Anderson and May 1991). The logic comes
from the fact that in one serial interval each infected is expected to give rise to R0

secondary cases and one removal (thus the total change is R0 −1).
Let us explore using weekly measles-data from the 2003 outbreak in Niamey,

Niger (Grais et al. 2008). The data is available as niamey in the epimdr-package.
The tot cases-column represents the total incidence across the city for each
week of the outbreak.5

3 The effective reproductive ratio is the expected number of secondary cases in a partially immune
population RE = sR0, where s is the fraction of the population that is susceptible.
4 Unless explicitly stated otherwise, log will always be taken to mean the natural logarithm in this
text.
5 All data sets analyzed in this text are included in the epimdr-package. To get a more detailed
description of each data set consult the R help-pages.
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data(niamey)
head(niamey[, 1:5])

## absweek week tot_cases tot_mort lethality
## 1 1 45 11 0 0.000000
## 2 2 46 12 1 8.333333
## 3 3 47 15 0 0.000000
## 4 4 48 14 1 7.142857
## 5 5 49 30 0 0.000000
## 6 6 50 41 1 2.439024

We can do a visual inspection to identify the initial period of exponential growth:

par(mar = c(5,5,2,5))
plot(niamey$absweek, niamey$tot_cases, type="b",

xlab="Week", ylab="Incidence")
par(new=T)
plot(niamey$absweek, niamey$cum_cases, type="l",

col="red", axes=FALSE, xlab=NA, ylab=NA, log="y")
axis(side = 4)
mtext(side = 4, line = 4, "Cumulative incidence")
legend("topleft", legend=c("Cases", "Cumulative"),

lty=c(1,1), pch=c(1,NA), col=c("black", "red"))
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Fig. 3.1 Weekly incidence of measles in Niamey, Niger during the 2003–2004 outbreak



3.4 Maximum Likelihood: The Chain-Binomial Model 35

The cumulative incidence looks pretty log-linear for the first 6 weeks or so
(Fig. 3.1). The data is weekly and the serial interval for measles is around 10–12
days, thus V is around 1.5–1.8 weeks; We calculate R0 assuming either 1.5 or 1.8:

fit=lm(log(cum_cases)˜absweek, subset=absweek<7,
data=niamey)

r=fit$coef["absweek"]
V=c(1.5, 1.8)
V*r+1

## [1] 1.694233 1.833080

So a fast-and-furious estimate of the reproductive ratio for this outbreak places
it in the 1.5–2 range. Measles exhibits recurrent epidemics in the presence of var-
ious vaccination campaigns in Niger, so this number represents an estimate of the
effective reproductive ratio, RE , at the beginning of this epidemic.

In their analysis of the SARS epidemics, Lipsitch et al. (2003) showed that for an
infection with distinct latent and infectious periods a more refined estimate is given
by R = V r + 1+ f (1− f )(V r)2, where f is the ratio of infectious period to serial
interval. For measles the infectious period is around 5 days:

V = c(1.5, 1.8)
f = (5/7)/V
V * r + 1 + f * (1 - f) * (V * r)ˆ2

## [1] 1.814450 1.999198

Lipsitch et al.’s (2003) refined calculations thus produce slightly higher estimates
of RE in the range of 1.8–2. These simple methods based on initial growth are very
handy because they are simple. However, they only use a portion of the data, and
as pointed out by King et al. (2015a) it may be desirable to carry out more rigorous
estimation.

3.4 Maximum Likelihood: The Chain-Binomial Model

Ferrari et al. (2005) proposed a maximum likelihood “removal” method for esti-
mating R0 for the simple epidemic based on the so-called “chain-binomial” model
of infectious disease dynamics. The chain-binomial model, originally proposed by
Bailey (1957), is a discrete-time, stochastic alternative6 to the continuous-time, de-
terministic SIR model introduced in Chap. 2.

6 This model also forms the foundation for the TSIR model (Bjørnstad et al. 2002a; Grenfell et al.
2002) which is the focus of Chap. 7.
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In contrast to the S(E)IR models, the chain-binomial assumes that an epidemic
is formed from a succession of discrete generations of infectious individuals in a
coin-flip fashion. Just like in the SIR we assume that infectious individuals exert a
force of infection on susceptibles of β I/N. In a generation, t, of duration given by
the serial interval (which we use as the basic time unit). The probability that any
given susceptible will escape an infectious contact will be exp(−β I/N). This comes
from the basic result that if some event—such as contacts between a susceptible
and the population of infectious individuals—is happening at rate, x, the number
of events in Δ t will be distributed according to a Poisson(xΔ t) distribution, so the
probability of no events—no contacts—will be e−xΔ t . The converse outcome will
happen with a probability 1 − exp(−β I/N), thus if there are St susceptibles we
expect St(1− exp(−β It/N)) new infecteds in generation t + 1. Since we assume
that contacts happen at random, the stochastic chain-binomial model is:

It+1 ∼ Binomial(St ,1− exp(−β It/N)). (3.1)

St+1 = St − It+1 = S0 −
t

∑
i=1

Ii

If we ignore observational error, we thus have two unknown parameters: the initial
number of susceptibles, S0, and the transmission rate. The reproductive ratio is a
composite of these two R = S0(1− exp(−β/N)), which for large populations is
approximately βS0/N because 1− exp(−x) � x for x << 1. Thus β is approxi-
mately the reproductive ratio at the beginning of the epidemic, which makes sense,
since infectious individuals are expected to transmit for exactly a time unit before
recovering.

If we make the assumption that each epidemic generation depends only on the
state of the system in the previous time step (“conditional independence”), the re-
moval method estimates β and S0 from a sequence of binomial likelihoods. The
advantage of this method relative to the earlier methods is that we can use all the
data and not just a few observations from the beginning of an epidemic.

We employ a standard recipe, for doing a “nonstandard” maximum likelihood
analysis (see Bolker 2008, for an excellent discussion of this). The first step is to
write a function for the likelihood. Conditional on some parameters, the function
returns the negative log-likelihood of observing the data given the model. The like-
lihood, which is the probability of observing data given a model and some param-
eter values, is the working-horse of a large part of statistics. R has inbuilt dxxxx-
functions to calculate the likelihood for any conceivable probability distribution.
The function to calculate a binomial likelihood is dbinom. We can thus define a
likelihood-function for the chain-binomial model 7:

7 Note that the [-x] subsetting in R means “drop the x’th observation”; thus the [-n] and [-1]
make sure that adjacent pairs of observations are aligned correctly. We use the floor-function for
the vector of S’s because dbinom requires the denominator and numerator to be integers.
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llik.cb = function(S0, beta, I) {
n = length(I)
S = floor(S0 - cumsum(I[-n]))
p = 1 - exp(-beta * (I[-n])/S0)
L = -sum(dbinom(I[-1], S, p, log = TRUE))
return(L)

}

For the real statistical analysis (below), the two parameters will be estimated
simultaneously. However, in order to ease into the idea of likelihood estimation we
will consider the two sequentially and visualize the likelihood by plotting it over a
grid of potential values. We illustrate with the data on measles from one of the three
different reporting centers in Niamey, Niger from 2003 (Grais et al. 2008). We first
need to aggregate the data into 2-week intervals which is roughly the serial interval
for measles. The epidemic in district 1 lasted for 30 weeks (the 31st week is a zero)8:

twoweek = rep(1:15, each = 2)
y = sapply(split(niamey$cases_1[1:30], twoweek), sum)
sum(y)

## [1] 5920

In district 1 there were 5920 cases during the epidemics, so S0 needs to be at
least that number. In the above parameterization RE � β , lets initially assume a
candidate value of 6500 for S0 and calculate the likelihood for each candidate value
of β between 1 and 10 by 0.1 (Fig. 3.2):

S0cand=6500
betacand=seq(0,10, by=.1)
ll=rep(NA, length(betacand))
for(i in 1:length(betacand)){

ll[i]=llik.cb(S0=S0cand, beta=betacand[i], I=y)
}
plot(ll˜betacand, ylab="Neg log-lik", xlab=

expression(beta))
betacand[which.min(ll)]

## [1] 2.3

We follow the convention of using the negative log-likelihood in the profile. Intu-
itively, one may think that it would be more natural to consider the likelihood itself
(i.e., the probability of observing the data, given particular parameter values). How-

8 The function split splits a vector into a list based on some grouping variable, and sapply
applies a function—in this case sum—to the list.
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Fig. 3.2 The conditional profile log-likelihood of β for Niamey’s district 1 assuming S0 = 6500

ever, since this would be a product of small numbers (one for each observation),
computers are not precise enough to distinguish the joint probability from zero if
the data set is large.

If our S0 guess is right, then β should be around 2.3. We can do a similar check
for S0 (assuming β is 2.3). The grid-value associated with the highest likelihood
value is 7084.8 (Fig. 3.3), so our original S0 guess was good but not perfect.

betacand=2.3
S0cand=seq(5920,8000, length=101)
ll=rep(NA, length=101)
for(i in 1:101){

ll[i]=llik.cb(S0=S0cand[i], beta=betacand, I=y)
}
plot(ll˜S0cand, ylab="Neg log-lik", xlab=

expression(S[0]))
S0cand[which.min(ll)]

## [1] 7084.8

For a proper analysis we minimize the negative log-likelihood by varying both
parameters simultaneously. We can do this using the generic optim-function or
the mle2-function in the bbmle-package. The mle2-function uses optim to find
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Fig. 3.3 The conditional profile log-likelihood of S0 for Niamey’s district 1 assuming β = 2.3

maximum likelihood estimates, but also provides confidence intervals, profile like-
lihoods, and a variety of other useful measures (Bolker 2008). We summarize the
basic pertinent likelihood theory for these other measures in Sect. 8.4.

require(bbmle)
fit=mle2(llik.cb, start=list(S0=7085, beta=2.3),

method="Nelder-Mead",data = list(I = y))
summary(fit)

## Maximum likelihood estimation
##
## Call:
## mle2(minuslogl = llik.cb, start = list(S0 = 7085,
## beta = 2.3), beta = 2), data = list(I = y))
##
## Coefficients:
## Estimate Std. Error z value Pr(z)
## S0 7.8158e+03 1.3022e+02 60.019 < 2.2e-16 ***
## beta 1.8931e+00 3.6968e-02 51.209 < 2.2e-16 ***
## ---
## Signif. codes:
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## -2 log L: 841.831
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confint(fit)

## Profiling...

## 2.5 % 97.5 %
## S0 7577.967212 8088.641095
## beta 1.820943 1.966336

So the joint MLE estimates are S0 = 7816 (CI: 7578, 8088) and β = 1.89 (CI:
1.82, 1.7).

Applying statistical tools to biological models—like the chain-binomial—can
usefully highlight uncertainties due to parametric interdependencies. In the case of
a “simple epidemic” like the measles outbreak considered here, for example, it is
conceivable that similar epidemic trajectories can arise from having a large number
of initial susceptibles and a low transmission rate, or a more moderate number of
susceptibles and a higher transmission rate. We can quantify this through consider-
ing the correlation matrix among the parameters of our likelihood analysis; vcov
calculates their variance-covariance matrix from which we can calculate standard
errors according to sqrt(diag(vcov(fit))) and cov2cor converts this to
a correlation matrix. As intuition suggested there is a strong negative correlation
between the estimates of the β and S0 parameters.

cov2cor(vcov(fit))

## S0 beta
## S0 1.0000000 -0.7444261
## beta -0.7444261 1.0000000

3.5 Stochastic Simulation

The chain-binomial is both a statistical model for estimation and a stochastic model
for dynamics. We can thus write a function to simulate dynamics using the estimated
parameters.9

sim.cb=function(S0, beta, I0){
I=I0
S=S0
i=1
while(!any(I==0)){

9 In contrast to the loop introduced in Sect. 2.3, where the number of iterations is constant and
known, the number of epidemic generations may vary among realizations because disease extinc-
tion is a stochastic process. We therefore use while instead of for when looping; ! means “not”
in R.
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i=i+1
I[i]=rbinom(1, size=S[i-1], prob=1-

exp(-beta*I[i-1]/S0))
S[i]=S[i-1]-I[i]

}
out=data.frame(S=S, I=I)
return(out)

}

We superimpose 100 stochastic simulations on the observed epidemic. The sim-
ulations from the chain-binomial model brackets the observed epidemic nicely
(Fig. 3.4), suggesting that the model is a reasonable first approximation to the un-
derlying dynamics. We will revisit on this case study in the context of outbreak-
response vaccination in Sect. 8.8.

plot(y, type="n", xlim=c(1,18),
ylab="Predicted/observed", xlab="Week")

for(i in 1:100){
sim=sim.cb(S0=floor(coef(fit)["S0"]),
beta=coef(fit)["beta"], I0=11)
lines(sim$I, col=grey(.5))

}
points(y, type="b", col=2)

3.6 Further Examples

3.6.1 Influenza A/H1N1 1977

The flu data set in the epimdr-package represents the number of children con-
fined to bed each day during a 1978 outbreak of the reemerging influenza A/H1N1
strain in a boarding school in North England (Fig. 3.5). This subtype of influenza
had been absent from human circulation after the A/H2N2 pandemic of 1957 but
reemerge (presumably from some laboratory freezer) in 1977. The school had 763
boys of which 512 boys were confined to bed sometime during the outbreak. None
of the boys would have had previous exposure to A/H1N1.

The typical time of illness was 5–7 days. Since the data is number confined to
bed each day, the data is not incidence but (a proxy for) prevalence. The data looks
pretty log-linear for the first 5 days. Family studies have been used to estimate the
serial interval for flu between 2 and 4 days (most between 2 and 3; Cowling et al.
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Fig. 3.4 Observed (red) and 100 simulated (gray) epidemics using the chain-binomial model and
ML parameters for S0 and β from Niamey’s district 1 data

2009; Vink et al. 2014). Volunteer studies show the mean infectious period around
5 days (Carrat et al. 2008).

data(flu)
plot(flu$day, flu$cases, type="b", xlab="Day",

ylab="In bed", log="y")
tail(flu)

## day cases
## 9 9 192
## 10 10 126
## 11 11 70
## 12 12 28
## 13 13 12
## 14 14 5

The “fast-and-furious” estimate of R0 is thus:

fit=lm(log(cases)˜day, subset=day<=5,
data=flu)

lambda=fit$coef["day"]
V=c(2,3)
V*lambda+1
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Fig. 3.5 Daily number of children confined to bed in a boarding school in North England during
an outbreak in 1978 of the reemerging A/H1N1 strain

## [1] 3.171884 4.257827

This is higher than most estimates of R0 of pandemic flu (which typically lies in
the 1.5–2.5 interval). However, contact rates within a boarding school is likely to be
higher than average across human populations as a whole.

3.6.2 Ebola Sierra Leone 2014–2015

The CDC’s record for the 2014–2015 ebola outbreak in Sierra Leone is in the
ebola-data set. The serial interval for ebola is estimated at around 15 days with an
incubation period of 11 days. The mean time to hospitalization is 5 days and mean
time to death or dismissal was 5 and 11 days, respectively (WHO Ebola Response
Team 2014; White and Pagano 2008). The data is the back-calculated incidence as
the difference of the cumulative cases reported by the CDC. Because of the com-
plexities of reporting and revisions of case-load through time, this leads to some
negative numbers for certain dates. These were set to zero as a crude fix (Fig. 3.6).

http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/cumulative-cases-graphs.html
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data(ebola)
par(mar = c(5,5,2,5))
plot(ebola$day, ebola$cases, type="b", xlab="Week",

ylab="Incidence")
par(new=T)
plot(ebola$day, ebola$cum_cases, type="l", col="red",

axes=FALSE, xlab=NA, ylab=NA, log="y")
axis(side = 4)
mtext(side = 4, line = 4, "Cumulative incidence")
legend("right", legend=c("Cases", "Cumulative"),

lty=c(1,1), pch=c(1,NA), col=c("black", "red"))
tail(ebola)

## date day cum_cases cases
## 98 7/8/15 468 13945 34
## 99 7/15/15 475 13982 37
## 100 7/22/15 482 14001 19
## 101 7/29/15 489 14061 60
## 102 8/5/15 496 14089 28
## 103 8/12/15 503 14122 33

We first use the regression method with Lipsitch’s correction:

V = 15
f = 0.5
V * lambda + 1 + f * (1 - f) * (V * lambda)ˆ2

## day
## 1.6988

We next aggregate the data in 2-week increments roughly corresponding to the
serial interval, so we can apply the removal method.10

#Data aggregation
cases=sapply(split(ebola$cases,

floor((ebola$day-.1)/14)), sum)
sum(cases)

## [1] 14721

#Removal MLE
fit=mle2(llik.cb, start=list(S0=20000, beta=2),

method="Nelder-Mead",data = list(I = cases))

10 Because of the difference in magnitude of the estimates of S0 (in the ten thousands) and R0
(around 1.4), the numerical method used to calculate confidence intervals struggles, so we suggest
starting standard errors for the confint-function.
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Fig. 3.6 Incidence and cumulative incidence of ebola during the 2014–2015 outbreak in Sierra
Leone

summary(fit)

## Maximum likelihood estimation
##
## Call:
## mle2(minuslogl = llik.cb, start = list(S0 = 20000,
## beta = 2), data = list(I = cases))
##
## Coefficients:
## Estimate Std. Error z value Pr(z)
## S0 2.7731e+04 2.5949e-07 1.0687e+11 < 2.2e-16 ***
## beta 1.4237e+00 1.1783e-02 1.2083e+02 < 2.2e-16 ***
## ---
## Signif. codes:
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## -2 log L: 5546.683

confint(fit, std.err=c(100,0.1))
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## Profiling...

## 2.5 % 97.5 %
## S0 26393.579452 29287.725327
## beta 1.384683 1.463184

The removal and Lipsitch methods provide comparable estimates that are some-
what lower than those concluded by more elaborate analyses by the WHO team for
the Sierra Leone outbreak (WHO Ebola Response Team 2014).

3.6.3 Ebola DRC 1995

The ferrari-data set holds the incidence data for a number of outbreaks—Ebola
DRC ’95, Ebola Uganda ’00, SARS Hong Kong ’03, SARS Singapore ’03, Hog
Cholera Netherlands ’97, and Foot-and-mouth UK ’00—aggregated by disease-
specific serial intervals (Table 3.1; Ferrari et al. 2005).

Table 3.1 Serial intervals for each outbreak in the ferrari data set
Disease Serial interval Location Year
Ebola 14d DRC 1995

Uganda 2000
SARS 5d Hong Kong 2003

Singapore
Hog cholera 7d Netherlands 1997
FMD 21d UK 2000

names(ferrari)

## [1] "Eboladeaths00" "Ebolacases00" "Ebolacases95"
## [4] "FMDfarms" "HogCholera" "SarsHk"
## [7] "SarsSing"

ferrari$Ebolacases95

## [1] 4 6 5 18 36 99 40 17 4 1 NA NA NA NA NA

sum(ferrari$Ebolacases95, na.rm = TRUE)

## [1] 230

y = c(na.omit(ferrari$Ebolacases95))

The number of initial susceptibles must be larger than the summed incidence, so
we make an initial guess of 300.
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fit=mle2(llik.cb, method="Nelder-Mead",
start=list(S0=300, beta=2), data = list(I = y))

fit

##
## Call:
## mle2(minuslogl = llik.cb, start = list(S0 = 300,
## beta = 2), data = list(I = y))
##
## Coefficients:
## S0 beta
## 241.118108 3.181465
##
## Log-likelihood: -48.3

confint(fit, std.err=2)

## Profiling...

## 2.5 % 97.5 %
## S0 233.973778 254.051292
## beta 2.692505 3.718357

The estimated R0 is 3.2. It thus appears that the Ebola outbreak in DRC in 1995
was more explosive than in Sierra Leone in 2014. This could be due to aggregation
across a larger geographic area of the latter and/or the more intensive public health
interventions. We will revisit on the DRC outbreak using the “next-generation ma-
trix” method in Sect. 3.9.2.

3.7 R0 from S(E)IR Flows

As discussed in Sect. 2.1, R0 = β/(γ + μ) for the simple SIR model. This is the
correct quantity assuming that the force-of-infection (the rate at which susceptibles
are infected) is β I/N, there is no latent period and no disease-induced mortality, so
the index case is expected to be infectious for a period of 1/(γ+μ) time units during
which it will transmit at a rate of β ∗N/N. The numerator comes about because all
the N individuals in the population is by definition susceptible when we consider
the basic reproductive ratio.

Different SIR-like flows will produce different definitions of R0 but we can use
the same logic for all linear SIR-like flows. Consider, for example, the SEIR model
(Fig. 3.7) of the flow of hosts between Susceptible, Exposed (but not yet infectious),
Infectious, and Recovered compartments in a randomly mixing population:

dS
dt

= μ(N[1− p]−S)− β IS
N

(3.2)
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Fig. 3.7 The SEIR flow diagram. Apart from vaccination, flows represent per capita rates of flow
from the donor compartment. Vaccination is assumed to be a fraction of children vaccinated at
birth

dE
dt

=
β IS
N

− (μ +σ)E (3.3)

dI
dt

= σE − (μ + γ +α)I (3.4)

dR
dt

= γI −μR+μN p, (3.5)

where susceptibles are either vaccinated at birth (fraction p) or infected at a rate
β I/N. Infected individuals will remain in the latent class for an average period of
1/(σ + μ) and subsequently (if they escape natural mortality at a rate μ) enter the
infectious class for an average time of 1/(γ + μ +α); α is the rate of disease in-
duced mortality (not case fatality rate). By the rules of competing rates (Sect. 3.2),
the case fatality rate is α/(γ + μ +α) because during the time an individual is ex-
pected to remain in the infectious class the disease is killing them at a rate α . By
a similar logic, the probability of recovering with immunity (for life in the case of
the SEIR model) is γ/(γ + μ +α). Putting all these pieces together, the expected
number of secondary cases in a completely susceptible population is thus: probabil-
ity of making it through latent stage without dying * expected infectious period *
transmission rate while infectious. Thus, R0 =

σ
σ+μ

1
γ+μ+α

βN
N = σ

σ+μ
β

γ+μ+α .
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3.8 Other Rules of Thumb

3.8.1 Mean Age of Infection

For endemic, fully immunizing infections, in a constant-sized host population R0 is
related to mean age of infection, ā, according to R0 � 1+L/ā where L is the life
expectancy of the host (e.g., Dietz and Schenzle 1985). This rule of thumb is often
used in conjunction with seroprevalence-by-age profiles to get ballpark estimates of
R0. Chapter 4 discusses age-incidence patterns in more detail.

3.8.2 Final Epidemic Size

In principle, the reproductive ratio can be estimated from the final epidemic size
according to the equations discussed in Sect. 2.3. If there is some preexisting im-
munity and there is homogeneous mixing, then R0 can be quantified according to
log(s0)−log(s∞)

s0−s∞
, where s0 and s∞ are the fractions of the population that is suscepti-

ble at the beginning and end of the epidemic, respectively (Heesterbeek and Dietz
1996). However, this is unlikely to be very reliable because the final epidemic size
calculations assume that the epidemic is progressing according to the deterministic
model (and all its assumptions) including no changes in host behavior in the face of
the epidemic. For example, ebola is thought to have an R0 in the 2–3.5 range, which
is what lead CDC to warn that the West-African outbreak could result in millions of
cases. In the end the total number of cases in Guinea, Liberia, and Sierra Leone was
a far lower number, around 25,000, because of extensive public health interventions
and changes to dangerous funeral practices.

For certain common infections like seasonal influenza the rule of thumb may
hold; The annual attack rate for the flu is around 10–15% which is probably close
to that expected from its R0 (around 1.5–2) and the typical fraction of susceptible
of around a quarter (pre-vaccination; assuming immunity following infection lasted
around 4 years).

3.8.3 Contact Tracing

Contact tracing can provide direct estimates of R0. Blumberg and Lloyd-Smith
(2013) showed that this together with size-distributions of subcritical transmission-
chains can provide estimates in important low R settings, such as human monkey
pox in the face of eroding smallpox herd-immunity. They estimated the human-to-
human reproductive ratio to be 0.32. Given that the smallpox vaccine is likely to
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be cross-protective against monkey pox, the worry is that this effective reproduc-
tive ratio will increase over time since smallpox vaccination is no longer carried
out. Contact tracing was also used to estimate R0 during the early spread of SARS
during the 2003 outbreak (Riley et al. 2003).

De et al. (2004) did a contact-tracing study of the spread of gonorrhea across a
sexual network in Alberta, Canada. The directional transmission graph among the 89
individuals is in the gonnet-data set. The initial cluster of 17 cases all frequented
the same bar, each infected between 0 and 7 other partners with 2.17 as the average.
We can use the statnet-package to visualize the chains of transmission (Fig. 3.8):

require(statnet)
data(gonnet)
nwt = network(gonnet, directed = TRUE)
plot(nwt, vertex.col = c(0, rep(1, 17), rep(2, 71)))

Fig. 3.8 Network of spread of gonorrhea as studied by De et al. (2004). The initial 17 cases (in
black) frequented the same bar (white) were ultimately responsible for a cluster of 89 cases iden-
tified through contact tracing

The subsequent infections, in turn, infected between 0 and 6 partners with an
average of 0.62. The drop is (1) due to the sexual network being depleted of sus-
ceptibles, and (2) because infection across heterogenous networks will differentially
infect individuals according to their number of contacts (Ferrari et al. 2006a). Epi-
demics across social networks is the topic of Chap. 12 and we will revisit on this
network therein.
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3.9 Advanced: The Next-Generation Matrix

For models that are not simple linear chains, it is less straightforward to calculate R0

from parameterized models using the “logical method.” The next-generation matrix
is the general approach that work for all compartmental models of any complexity
(Diekmann et al. 1990). It is done in a sequence of steps:

1. Identify all n infected compartments,
2. Construct a n × 1 matrix, F, that contains expressions for all completely new

infections entering each infected compartment,
3. Construct a n×1 matrix, V−, that contains expressions for all losses out of each

infected compartment,
4. Construct a n× 1 matrix, V+, that contains expressions for all gains into each

infected compartment that does not represent new infections but transfers among
infectious classes,

5. Construct a n×1 matrix, V = V−−V+,
6. Generate two n×n Jacobian matrices f and v that are the partial derivatives of F

and V with respect to the n infectious state variables,
7. Evaluate the matrices at the disease free equilibrium (dfe), and finally
8. R0 is the greatest eigenvalue of fv−1|d f e.

3.9.1 SEIR

This is quite an elaborate scheme, so we will try it out first for the SEIR model for
which we already know the answer. Unfortunately, R cannot do vectorized symbolic
calculations, so we need to do this, one matrix element at a time.11 In Chap. 2, we
discussed how to use expression to do symbolic calculations in R. The quote-
function is an alternative way to define mathematical expressions; substitute
allows some simple additional manipulations.

Step 1: Infected classes are E and I, let us label them 1 and 2.
Step 2: All new infections: dE/dt = βSI/N, dI/dt = 0

F1 = quote(beta * S * I/N)
F2 = 0

Step 3: All losses dE/dt = (μ +σ)E, dI/dt = (μ +α + γ)I

Vm1 = quote(mu * E + sigma * E)
Vm2 = quote(mu * I + alpha * I + gamma * I)

Step 4: All gained transfers dE/dt = 0, dI/dt = (σ)E

11 Though it is possible to do calculations more compactly using a list of equations.

https://en.wikipedia.org/wiki/Next-generation_matrix
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Vp1 = 0
Vp2 = quote(sigma * E)

Step 5: Subtract Vp from Vm

V1 = substitute(a - b, list(a = Vm1, b = Vp1))
V2 = substitute(a - b, list(a = Vm2, b = Vp2))

Step 6: Generate the partial derivatives for the two Jacobians

f11 = D(F1, "E"); f12 = D(F1, "I")
f21 = D(F2, "E"); f22 = D(F2, "I")

v11 = D(V1, "E"); v12 = D(V1, "I")
v21 = D(V2, "E"); v22 = D(V2, "I")

Step 7: Assuming N=1, the disease free equilibrium (dfe) is S = 1,E = 0, I =
0,R = 0. We also need values for other parameters. Assuming a weekly time-step
and something chickenpox-like we may use μ = 0, α = 0, β = 5, γ = .8, σ = 1.2,
and N = 1.

paras=list(S=1, E=0, I=0, R=0, mu=0, alpha=0,
beta=5, gamma=.8, sigma=1.2, N=1)

f=with(paras,
matrix(c(eval(f11),eval(f12),eval(f21),

eval(f22)), nrow=2, byrow=TRUE))

v=with(paras,
matrix(c(eval(v11),eval(v12),eval(v21),

eval(v22)), nrow=2, byrow=TRUE))

Step8: Calculate the largest eigenvalue of f × inverse(v). Note that the function
for inverting matrices in R is solve.

max(eigen(f %*% solve(v))$values)

## [1] 6.25

Let us check that the next-generation method and the “flow” method are in agree-
ment recalling that for the SEIR-flow R0 =

σ
σ+μ

β
γ+μ+α .

with(paras, sigma/(sigma + mu) * beta/(gamma + mu + alpha))

## [1] 6.25
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3.9.2 SEIHFR

Legrand et al. (2007) forms the foundation for many of the recent Ebola models.
The model has five compartments corresponding to Susceptible, Exposed, Infec-
tious in community, Infectious in hospital, Dead but not yet buried, and removed
(either buried or immune). The model is more complex than previous compartmen-
tal models and cannot be represented by a simple linear chain (Fig. 3.9). The pa-
rameterization used here is motivated by the original formulation of Legrand et al.
(2007), but the notation conforms to the other sections of this book; Each infectious
compartment contributes to the force of infection through their individual β s. There
are two branching-points in the flow: The hospitalization of a fraction Θ of the in-
fectious cases after an average time of 1/γh days following onset of symptoms, and
the death of a fraction Λ of the I- and H-class after an average time of 1/γ f days and
1/η f days, respectively. For the 1995 DRC outbreak, Legrand et al. (2007) assumed
that hospitalization affected transmission rates but not duration of infection or prob-
ability of dying. Model parameters are given in Table 3.2, and the model equations
are:

dS
dt

= −(βiI +βhH +β f F)S/N (3.6)

dE
dt

= (βiI +βhH +β f F)S/N −σE (3.7)

dI
dt

= σE −ΘγhI − (1−Θ)(1−Λ)γrI − (1−Θ)Λγ f I (3.8)

dH
dt

= ΘγhI −Λη f H − (1−Λ)ηrH (3.9)

dF
dt

= (1−Θ)(1−Λ)γrI +Λη f H − χF (3.10)

dR
dt

= (1−Θ)(1−Λ)γrI +(1−Λ)ηrH + χF (3.11)

There are four infected compartments (E, I, H, and F), thus F, V−, and V+ will
be 4×1 matrices, and f and v will be 4×4 matrices.

Step 1: Infected classes are E, I, H, and F , and let us label them 1–4.
Step 2: All new infections dE/dt = βSI/N, dI/dt = 0

F1=expression(betai * S * I / N + betah* S * H / N +
betaf * S * F / N)

F2=0
F3=0
F4=0
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Fig. 3.9 The SEIHFR flow diagram for ebola dynamics

Table 3.2 Parameters for Legrand et al. (2007)’s Ebola model using the data from the 1995 DRC
epidemic

Parameter Meaning Value
N Population size
1/σ Incubation period 7d
1/γh Onset to hospitalization 5d
1/γ f Onset to death 9.6d
1/γr Onset to recovery 10d
1/η f Hospitalization to death 4.6d
1/ηr Hospitalization to recovery 5d
1/χ Death to burial 2d
Θ Proportion hospitalized 80%
Λ Case fatality ratio 81%
βi Transmission rate in community 0.588
βh Transmission rate in hospital 0.794
β f Transmission rate at funeral 7.653

To avoid confusion, we use lowercase Greek for rates and uppercase for probabilities

Step 3: All losses

Vm1=quote(sigma * E)
Vm2=quote(Theta * gammah * I + (1 - Theta) * (1-

Lambda) * gammar * I + (1 - Theta) * Lambda *
gammaf * I)

Vm3=quote(Lambda * etaf * H + (1 - Lambda) * etar * H)
Vm4=quote(chi * F)
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Step 4: All gained transfers

Vp1=0
Vp2=quote(sigma * E)
Vp3=quote(Theta * gammah * I)
Vp4=quote((1 - Theta) * (1 - Lambda) * gammar * I+

Lambda * etaf * H)

Step 5: Subtract Vp from Vm

V1 = substitute(a - b, list(a = Vm1, b = Vp1))
V2 = substitute(a - b, list(a = Vm2, b = Vp2))
V3 = substitute(a - b, list(a = Vm3, b = Vp3))
V4 = substitute(a - b, list(a = Vm4, b = Vp4))

Step 6: Generate the partial derivatives for the two Jacobians

f11 = D(F1, "E"); f12 = D(F1, "I"); f13 = D(F1, "H")
f14 = D(F1, "F")

f21 = D(F2, "E"); f22 = D(F2, "I"); f23 = D(F2, "H")
f24 = D(F2, "F")

f31 = D(F3, "E"); f32 = D(F3, "I"); f33 = D(F3, "H")
f34 = D(F3, "F")

f41 = D(F4, "E"); f42 = D(F4, "I"); f43 = D(F4, "H")
f44 = D(F4, "F")

v11 = D(V1, "E"); v12 = D(V1, "I"); v13 = D(V1, "H")
v14 = D(V1, "F")

v21 = D(V2, "E"); v22 = D(V2, "I"); v23 = D(V2, "H")
v24 = D(V2, "F")

v31 = D(V3, "E"); v32 = D(V3, "I"); v33 = D(V3, "H")
v34 = D(V3, "F")

v41 = D(V4, "E"); v42 = D(V4, "I"); v43 = D(V4, "H")
v44 = D(V4, "F")

Step 7: Disease free equilibrium: the dfe is S = 1,E = 0, I = 0,H = 0,F = 0,R =
0. We also need values for other parameters. We use the estimates from the DRC
1995 outbreak scaled as weekly rates from tables and appendices of Legrand et al.
(2007).

gammah = 1/5 * 7
gammaf = 1/9.6 * 7
gammar = 1/10 * 7
chi = 1/2 * 7
etaf = 1/4.6 * 7
etar = 1/5 * 7
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paras=list(S=1,E=0, I=0, H=0, F=0,R=0,
sigma=1/7*7, Theta=0.81, Lambda=0.81, betai=0.588,
betah=0.794, betaf=7.653,N=1, gammah=gammah,
gammaf=gammaf, gammar=gammar, etaf=etaf,
etar=etar, chi=chi)

f=with(paras,
matrix(c(eval(f11),eval(f12),eval(f13),eval(f14),

eval(f21),eval(f22),eval(f23),eval(f24),
eval(f31),eval(f32),eval(f33),eval(f34),
eval(f41),eval(f42),eval(f43),eval(f44)),
nrow=4, byrow=T))

v=with(paras,
matrix(c(eval(v11),eval(v12),eval(v13),eval(v14),

eval(v21),eval(v22),eval(v23),eval(v24),
eval(v31),eval(v32),eval(v33),eval(v34),
eval(v41),eval(v42),eval(v43),eval(v44)),
nrow=4, byrow=T))

Step 8: Calculate the largest eigenvalue of f × inverse(v)

max(eigen(f %*% solve(v))$values)

## [1] 2.582429



Chapter 4
FoI and Age-Dependent Incidence

4.1 Burden of Disease

In everyday conversation about contagious maladies, “disease” and “infection” are
sometimes used interchangeably. Often this imprecision does not matter. It is how-
ever useful to keep in mind that disease strictly speaking refers to symptomology
and infection to pathogen/parasite colonization-status. The latent period —the time
between a pathogen colonizes a host and the host can pass the infection on—is dif-
ferent from the incubation period—the time from colonization to onset of symptoms
(“disease”). Such distinctions are obvious for certain infections; We all recognize
the distinction between AIDS and HIV positive. The former refers to disease status,
the latter to infection status. For “the flu,” the virus is typically cleared in less than a
week, but noncontagious cough and discomfort can last for another week or more.
Thus clinical relevance is not always the same as dynamic relevance.

The severity of disease of many infections depends on age. The very young are
often prone to more severe disease. Both measles and whooping cough, for exam-
ple, cause highest morbidity and mortality in children under one (e.g., Miller and
Fletcher 1976; Grais et al. 2007). Other diseases are more severe in the elderly.
Mortality from influenza-like illness is a common example. “Teratogenic” diseases
are those that cause complications during pregnancies. Rubella, chicken pox, and

This chapter uses the following R-packages: splines and fields.
A conceptual understanding of Force of Infection is useful prior to this discussion. A 5-min
epidemics-MOOC intro can be watched from YouTube:
Force of Infection https://www.youtube.com/watch?v=dj1DiqA4Lvg.
Pathogens and Extinction https://www.youtube.com/watch?v=v67gtiACBTY.
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Zika are important examples (Metcalf and Barrett 2016). For these, infections of
reproductive-age women are the most pressing public health concern. It is important
to understand determinants of age-prevalence curves for two reasons: First, because
of such age-specificity in burden of disease, and second—as we shall see—because
age-structure can mold infectious disease dynamics in important ways.

4.2 Force of Infection

The Force of Infection (FoI) is the per capita rate at which susceptibles are ex-
posed to infection. The FoI in the S(E)IR compartmental model (Eqs. (2.1)–(2.3)
and (3.1)–(3.3)) is φ = β I/N because each susceptible is assumed to contact other
individuals in the population at some rate, the fraction of those contacts that are
with infected individuals is I/N and β is by definition the contact rate times the
probability of infection upon contact.1

An important basic and applied question is how the FoI scales with population
density/size (de Jong et al. 1995). The literature suggests two extreme situations
termed: “density-dependent” transmission for which the FoI scales linearly with
density and “frequency-dependent” transmission for which the FoI is independent
of density. Roberts and Heesterbeek (1993) points out that there is some significant
confusion in the literature about the meaning of these terms, as the denominator N
in the SEIR formulations is by some wrongly interpreted as Eqs. (3.3)–(3.5) being a
“frequency-dependent” model. Roberts and Heesterbeek (1993) clarify that this is a
mistaken interpretation; the I/N simply stems from the idea that only this fraction
of random contacts are with infectious individuals (as opposed to the complimen-
tary fraction which is with noninfectious individuals). The issue of density- versus
frequency-dependence should be thought of in terms of how β (= contact rate ∗
transmission probability) scales with density (Roberts and Heesterbeek 1993; Fer-
rari et al. 2011). For the strictly density-dependent model, numbers of contacts are
proportional to density, so β (N) ∝ N and thus transmission and R0 scales linearly
with density. In contrast the strictly frequency-dependent model assumes that con-
tact rates are independent of N and, therefore, so is R0. The frequency-dependent
model is often used for sexually transmitted diseases (STDs) and vector-borne in-
fections with the logic that the number of sexual partner does not scale with density
and neither does the feeding requirements of mosquitos.

An interesting ecological implication is that in the absence of an alternative host,
a deadly density-dependently transmitted pathogen is less likely to drive a host ex-
tinct because as the pathogen decimates the host, the reproductive ratio is expected

1 The theoretical FoI is model specific, so more complicated models may have more complicated
FoIs. The FoI for the SEIHFR model of Sect. 3.9.2, for example, is given by rate 1© in Fig. 3.9.
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to eventually decrease below one, at which time the chain-of-transmission will falter
and break. Frequency-dependent pathogens, in contrast, may be able to sustain the
chain-of-transmission to a bitter end as the reproductive ratio may remain supercrit-
ical (De Castro and Bolker 2005).

4.3 Probability of Infection at Age: The Catalytic Model

The FoI is a rate, thus if age-invariant, in a randomly mixing population the expected
waiting-time to first infection is 1/φ . For endemic, fully immunizing infections in a
constant-sized host population, R0 determines the mean age of infection, ā, accord-
ing to R0 � 1+L/ā where L is the life expectancy of the host. Thus the mean age
of infection will be2 ā � L/(R0 −1).

The general rate, φ(a, t), at which any susceptible will be infected may depend
on age (a) and time (t). Ignoring time-dependence (but see Ferrari et al. 2010),
the integrated rate of infection to age a is

∫ a
0 φ(a)da, thus the probability of not

being infected by age a is 1− p(a) = exp(−∫ a
0 φ(a)da) and the probability of being

infected on or before age a is (by the logic laid out in Sect. 3.2):

p(a) = 1− e−
∫ a

0 φ(a)da. (4.1)

This is called the catalytic model (Muench 1959; Hens et al. 2010).3 Age-
intensity curves and age-seroprevalence curves are important data-sources for esti-
mating the FoI. For nonlethal, persistent infections and nonlethal, fully immunizing
infections the former/latter provides excellent data for estimating φ . In the simplest
case we assume that the FoI is independent of both age and time, in this case the
probability of being infected by age a is 1− exp(−φa). If we have data on number
of infected individuals by age, we can use the standard generalized linear model
(glm) framework to estimate the FoI for this simplest model.

Generalized linear models have two components: an error distribution (such as
binomial, Poisson, negative binomial, normal, etc.) and a “link” function which
specifies how the expected (predicted) values ŷ are linked to the “linear predictors”
x = a+ b1x1 + c1x2 · · · . Common link functions are (depending on error distribu-
tions): “identity,” “log,” “logit” (= “log-odds” = log(ŷ/(1− ŷ))), and “complimen-
tary log-log” (= log(− log(1− ŷ))) (McCullagh and Nelder 1989). The link func-
tions are associated with inverse link functions which for the aforementioned are:
“identity,” ex, ex

1+ex , and 1− e−x, respectively.

2 In populations of changing size a more accurate calculation is ā � 1/(μ(R0 −1)), where μ is the
host birth rate (Dietz and Schenzle 1985).
3 If immunity wanes at a rate ω , the reversible catalytic model is p(a) = φ(a)

φ(a)+ω (1−e−
∫ a

0 φ(a)+ωda)

(see e.g., Pomeroy et al. 2015, for an example). Heisey et al. (2006) discuss corrections needed if
infection causes significant disease-induced mortality.
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Let us assume we test some na individuals of each age a and find from serology
that ia individuals have been previously infected. Inferring φ from this data is a
standard(ish) binomial regression problem: p(a) = 1− exp(−φa) is the expected
fraction infected (or seropositive) by age a. Thus log(− log(1− p(a))) = log(φ)+
log(a), so we can estimate a constant log-FoI as the intercept from a glm with
binomial error, a complimentary log-log link and log-age as a regression “offset.”4

The R call will be of the form5:

glm(cbind(inf, notinf) ˜ offset(log(a)),
family=binomial(link="cloglog"))

We can illustrate the approach using the pre-vaccination Measles antibody data of
Black (1959). The data contain seroprevalence-by-age-bracket of some 300 people
from around New Haven, Connecticut from blood drawn in the summer of 1957:

data(black)
black

## age mid n pos neg f
## 1 <1 0.75 10 8 2 0.8000000
## 2 1-4 2.50 21 4 17 0.1904762
## 3 5-9 7.00 41 31 10 0.7560976
## 4 10-14 12.00 52 50 2 0.9615385
## 5 15-19 17.00 30 28 2 0.9333333
## 6 20-29 25.00 38 37 1 0.9736842
## 7 30-39 35.00 51 49 2 0.9607843
## 8 40-49 45.00 35 31 4 0.8857143
## 9 >50 60.00 30 26 4 0.8666667

The age-profile of seroprevalence takes the characteristic shape of many pre-
vaccination childhood diseases: High seroprevalence of the very young (<1 year)
due to the presence of maternal antibodies that wanes with age, followed by rapid
build-up of immunity to almost 100% seroprevalence by age 20 (Fig. 4.1). There
is perhaps some evidence of loss of immunity in the elderly. We use the binomial
regression scheme to estimate the log-FoI based on the data for people in the 1–40
year groups, and compare predicted and observed seroprevalence by age (Fig. 4.1):

4 An offset is a covariate that has a fixed coefficient of unity in a regression.
5 Binomial regression either takes a binary 0/1 variable as the response or a matrix with two
columns representing number of successes and failures for each covariate level.
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b2=black[-c(1,8,9),] #subsetting age brackets
#Estimate log-FoI
fit=glm(cbind(pos,neg) ˜ offset(log(mid)),

family=binomial(link="cloglog"), data=b2)
#Plot predicted and observed
phi=exp(coef(fit))
curve(1-exp(-phi*x), from=0, to=60,

ylab=’Seroprevalence’, xlab=’Age’)
points(black$mid, black$f, pch=’*’, col=’red’)
points(b2$mid, b2$f, pch=8)
exp(fit$coef)

## (Intercept)
## 0.1653329

The estimated FoI is 0.16/year, giving a predicted mean age of infection of 6
years.
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Fig. 4.1 Seroprevalence-by-age from the measles antibody study of Black (1959) from pre-
vaccination Connecticut. The solid line is the predicted age-prevalence curve for the subset of
the data used for estimation (black stars). The smaller red stars are data excluded from estimates
due to maternal antibodies or possibly waning titers. Data are centered on the midpoints of each
age-bracket
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4.4 More Flexible φ -Functions

The assumption of a constant, age-invariant FoI is usually too simplistic because of
age- or time-varying patterns of mixing. We can use Long et al.’s (2010) data on
prevalence of the bacterium Bordetella bronchiseptica in a rabbit breeding facility
to illustrate. B. bronchiseptica is a non-immunizing, largely avirulent (though it can
cause snuffles), persistent infection of rabbits. Two-hundred-and-fourteen rabbits of
known age were swabbed nasally and tested for the bacterium.

data(rabbit)
head(rabbit)

## a n inf
## 1 1.0 59 3
## 2 2.0 8 7
## 3 2.5 4 4
## 4 3.0 2 1
## 5 3.5 5 1
## 6 4.0 2 0

We first calculate the average FoI from the binomial regression scheme intro-
duced above. In the breeding facility the older breeding animals are kept separate
from the younger animals, so we restrict ourselves to rabbits <1 year old. We su-
perimpose our fit on the plot of prevalence by age. In Fig. 4.2 the size of the circles
is proportional to the sample size:

rabbit$notinf=rabbit$n-rabbit$inf
#Binomial regression
fit=glm(cbind(inf, notinf)˜offset(log(a)),

family=binomial(link="cloglog"),
data=rabbit, subset=a<12)

#Plot data
symbols(rabbit$inf/rabbit$n˜rabbit$a, circles=rabbit$n,

inches=.5, xlab="Age", ylab="Prevalence")
#Predicted curves for <1 and all
phi=exp(coef(fit))
curve(1-exp(-phi*x), from=0, to=12, add=TRUE)
curve(1-exp(-phi*x), from=0, to=30, add=TRUE, lty=2)
1/phi

## (Intercept)
## 5.918273

The predicted median age of infection is just under 6 months. The constant-FoI
model seems to do well for up to about 15 months of age, but the model overpredicts
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Fig. 4.2 Age-prevalence of B. bronchiseptica in a rabbit breeding facility. Circle size is proportion-
ate to the number of animals tested in each age group. The solid line is the predicted age-prevalence
curve for the subset of the data used for estimation (up to 1-year animals). The dotted line is the
extrapolation to older individuals

the prevalence in older individuals. To allow for the scenario that the FoI varies
with age, we need to implement our own framework (as opposed to using glm)
using the maximum likelihood ideas introduced in Sect. 3.4. A simple model for
age-specific FoI assumes a piecewise constant model (Grenfell and Anderson 1985),
where individuals are classified into discrete age classes. For a piecewise constant
model the integrand in Eq. (4.1) integrates to φa(a− ca)+∑k<a φkdk, where φa is
the FoI of individuals in the a’th age bracket, and ca and da are the lower cut-off
age and duration of that bracket, respectively. We define a function for the integrand
which takes the argument a for age, up is a vector of the upper cut-offs for each age
bracket, and foi is the vector of age-specific FoIs:

integrandpc=function(a, up, foi){
#Find which interval a belongs to
wh=findInterval(a, sort(c(0,up)))
#Calcultae duration of each interval
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dur=diff(sort(c(0,up)))
#Evaluate integrand
inte=ifelse(wh==1, foi[1]*a,

sum(foi[1:(wh-1)]*dur[1:(wh-1)])+
foi[wh]*(a-up[wh-1]))

return(inte)
}

The negative log-likelihood function for the piecewise constant model takes ar-
guments corresponding to log-FoI (par), age (age), number of positives (num),
number tested in each age group (denom), and age-class cut-offs (up). Estimating
the FoI on a log-scale (foi=exp(par)) ensures that all rates will be positive.

llik.pc = function(par, age, num, denom, up) {
ll = 0
for (i in 1:length(age)) {

p = 1 - exp(-integrandpc(a=age[i], up = up,
foi = exp(par)))

ll = ll + dbinom(num[i], denom[i], p, log = T)
}

return(-ll)
}

We use 1, 4, 8, 12, 18, 24, and 30 months as cut-off points for the age categories
and assign arbitrary initial values of 0.1 for each piece of the FoI-function:

x = c(1, 4, 8, 12, 18, 24, 30)
para = rep(0.1, length(x))

For the analysis we use the optim-function to find maximum likelihood esti-
mates:

est = optim(par=log(para),fn=llik.pc, age=rabbit$a,
num=rabbit$inf, denom=rabbit$n, up=x,
method="Nelder-Mead", control=list(trace=2))

The maximum likelihood estimates for the log-FoI is given in est$par. The
associated age-specific FoIs are:

round(exp(est$par), 6)
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Fig. 4.3 The piecewise constant age-specific FoI of B. bronchiseptica in a rabbit breeding facility
and the associated predicted age-prevalence curve

We can predict the age-prevalence curve and plot it as a step function (Fig. 4.3).

#Make space for left and right axes
par(mar = c(5,5,2,5))
#Add beginning and ends to x and y for step plot
xvals=c(0,x)
yvals=exp(c(est$par, est$par[7]))
plot(xvals, yvals, type="s", xlab="age", ylab="FoI")

#Superimpose predicted curve
par(new=T)
p = rep(0, 28)
for (i in 1:28) {

p[i] = 1 - exp(-integrandpc(a=i, up = x,
foi = exp(est$par)))

}
plot(p˜c(1:28), ylim=c(0,1), type="l", col="red",

axes=FALSE, xlab=NA, ylab=NA)

#Add right axis and legend
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axis(side = 4)
mtext(side = 4, line = 4, "Prevalence")
legend("right", legend=c("FoI", "Prevalence"),

lty=c(1,1), col=c("black", "red"))

The FoI peaks perinatally and then falls to zero after the 8-month age class. This
is likely due to the older breeder females being housed separately and only having
contact with their kittens. Long et al. (2010) used this (in combination with some
other analyses; see Sect. 15.4) to conclude that most infections happen at a young
age from infected mothers to their offspring and then among litter mates.

4.5 A Log-Spline Model

An alternative nonparametric approach to the piecewise constant model is to use
smoothing splines. A spline is a smooth curve that can take an arbitrary shape ex-
cept that it is constrained to be continuous and with continuous first and second
derivatives (Härdle 1990; Hastie and Tibshirani 1990). The popularity of splines in
nonparametric regression stems from its computational tractability; A spline can be
fit by multiple regression on a set of “basis function”-decompositions of a covariate.
The gam and mgcv packages offer automated ways to fit a variety of spline-variants
to binomial data (and any other error distribution within the exponential family).
Unfortunately, as with the case of the piecewise constant model, fitting the log-
spline model is a bit more involved because of the integration step in Eq. (4.1). The
splines package has functions to create various spline-bases that can be used with
lm; predict.lm can predict values for the spline given regression coefficients.

The approach taken here is a bit cheeky in that it “hi-jacks” a spline-regression
object created using the bs-spline basis functions in combination with lm and use
optim to update/override the regression coefficients in the lm-object until a max-
imum likelihood solution is found. First we set the number of degrees-of-freedom
for the spline. The dl-object will end up as the hi-jacked object for the age-specific
FoI (Long et al. 2010).

require(splines)
# Degrees-of-freedom
df = 7
# Construct dummy lm-object
dl = lm(inf ˜ bs(a, df), data = rabbit)

We write a tmpfn-function to predict the spline on a log-transformed scale to
ensure that the force-of-infection (FoI) is strictly positive:

https://en.wikipedia.org/wiki/Smoothing_spline
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tmpfn = function(x, dl) {
x = predict(dl, newdata = data.frame(a = x))
exp(x)

}

The tmpfn2-function calculates the negative log-likelihood of the FoI as we
did in the foipc-function above. In contrast to the piecewise constant model, the
integrated splines do not have a closed form solution, so we use Rs inbuilt numerical
integrator, integrate:

tmpfn2=function(par,data, df){
#Dummy lm-object
dl=lm(inf˜bs(a,df), data=data)
#Overwrite spline coefficients with new values
dl$coefficients=par
#Calculate log-likelihood
ll=0
for(i in 1:length(data$a)){
p = 1 - exp(-integrate(tmpfn, 0, i, dl = dl)$value)
ll=ll+dbinom(data$inf[i],data$n[i],p,log=T)

}
return(-ll)
}

We use arbitrary initial values and minimize the negative log-likelihood using
optim.

para=rep(-1, df+1)
dspline = optim(par=para, fn=tmpfn2, data=rabbit,

df=df, method="Nelder-Mead", control=
list(trace=2, maxit=2000))

We can plot the resultant maximum likelihood fits (Fig. 4.4).

par(mar = c(5,5,2,5)) #Room for two axes
#Overwrite dummy-objects coefficients with MLEs
dl$coefficients=dspline$par
#Age-prevalce plot
plot(tmpfn(rabbit$a,dl)˜rabbit$a, type="l", ylab="FoI",

xlab="Age (mos)", las=1)
#Overlay FoI
par(new=T)
p = rep(0, 28)
for (i in 1:28) {

p[i] = 1 - exp(-integrate(tmpfn, 0, i,
dl = dl)$value)
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}
plot(p˜c(1:28), ylim=c(0,1), type="l", col="red",

axes=FALSE, xlab=NA, ylab=NA)
axis(side = 4, las=1)
mtext(side = 4, line = 4, "Prevalence")
legend("topright", legend=c("FoI", "Prevalence"),

lty=c(1,1), col=c("black", "red"))

Both the piecewise and spline models show strong evidence of age-specificity
in the FoI with a peak in transmission somewhere between 1 and 5 months of age,
suggesting that circulation is mainly among the young and among littermates (Long
et al. 2010). We revisit on this case study in Sect. 15.4.
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Fig. 4.4 The spline-estimate of the age-specific FoI of B. bronchiseptica in a rabbit breeding facil-
ity
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4.6 Rubella

Rubella is a relatively mild, vaccine-preventable infection except that infection dur-
ing pregnancy leads to stillbirths or congenital rubella syndrome. The main public
health objective is therefore to minimize the FoI in women of childbearing age.
The issue was made clear because of a surprising surge in CRS cases in Greece in
the mid-90s following a low-intensity vaccination campaign (Panagiotopoulos et al.
1999).

Age-intensity data is less ideal than seroprevalence data for catalytic analysis;
however, it is more common and therefore worth considering. Metcalf et al. (2011c)
studied age-intensity curves for rubella across the provinces of Peru between 1997
and 2009. There were 24,116 reported cases during the period. The data are 1/2-
monthly to age 1 and yearly thereafter (Fig. 4.5). With age-incidence data on immu-
nizing infections, we can use the catalytic framework to estimate the relative age-
specific FoI using the cumulative incidence by age (in place of age-seroprevalence
or age-prevalence). For the analysis we use the total number of cases as our denomi-
nator because the actual number of susceptibles in each age group is not monitored.
Hence, the estimate is a relative FoI because of the unknown baseline. Using the to-
tal cases as a denominator, further leads to sever biases of the FoI at old age classes
(because exactly all of the assumed susceptibles in the final age class will be pre-
sumed to be infected at the time), so it should only be applied to the younger portion
of the data. Its application also assumes a uniform age-distribution, so a correction
for the age-pyramid may be necessary for a more refined analysis (Ferrari et al.
2010).

data(peru)
head(peru)

## age incidence cumulative n
## 2 0.01095890 1 56 24116
## 3 0.01369863 1 57 24116
## 4 0.01643836 1 58 24116
## 5 0.01917808 2 60 24116
## 6 0.03561644 1 61 24116
## 7 0.03835616 2 63 24116

#Calculate cumulative incidence
peru$cumulative=cumsum(peru$incidence)
#Define denominator
peru$n=sum(peru$incidence)
par(mar = c(5,5,2,5)) #Make room for two axes and plot
#Plot incidence with cumulative overlaid
plot(peru$incidence˜peru$age, type="b", xlab="Age",

ylab="Incidence")
par(new=T)
plot(peru$cumulative˜peru$age, type="l", col="red",

https://en.wikipedia.org/wiki/Congenital_rubella_syndrome
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axes=FALSE, xlab=NA, ylab=NA)
axis(side = 4)
mtext(side = 4, line = 4, "Cumulative")
legend("right", legend=c("Incidence", "Cumulative"),

lty=c(1,1), col=c("black", "red"))
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Fig. 4.5 Age-specific incidence and cumulative incidence of rubella in Peru 1997–2009

We first apply the piecewise model assuming a separate FoI for each year up
to age 20 and 10 year classes thereafter. Convergence of the piecewise model with
this many segments is very slow, so the actual figure (Fig. 4.6) was produced by
doing repeat calls to optim using different optimization methods (Nelder-Mead,
BFGS, and SANN), feeding the estimates from each call as starting values for the
next. However, the basic analysis is:
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#Upper age cut-offs
up=c(1:20,30, 40, 50, 60, 70,100)
para=rep(.1,length(up)) #Inital values
#Minimize log-likelihood
est2 = optim(par=log(para),fn=llik.pc, age=peru$age,

num=peru$cumulative, denom=peru$n, up=up,
method="Nelder-Mead", control=
list(trace=2, maxit=2000))

#Step plot
x=c(0, up)
y=exp(c(est2$par, est2$par[26]))
plot(x, y, ylab="Relative FoI", xlab="Age", type="l",

ylim=c(0,0.25), xlim=c(0,80))
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Fig. 4.6 The relative age-specific FoI of rubella in Peru as estimated using the piecewise-constant
model
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We see a clear peak in FoI in the 8–10 age group. The pattern makes sense given
the biology of rubella and the assortative mixing commonly seen in the human host
with most contacts being among same-aged individuals (see Sect. 4.7). Peru has a
life-expectancy of around 75 years, and the R0 of rubella is typically quoted in the
4–10 range, so according to ā � L/(R0 − 1) the peak in circulation is predicted to
be in an interval around 10 years of age.

We can do a more refined scenario-analyses regarding consequences of vaccina-
tion using the spline model. We focus on the 0–45-year age-range as this spans the
pre to post child-bearing age:

data3 = peru[peru$age < 45, ]
df = 5
para = rep(0.1, df + 1)

We use a log-transformation to constrain the FoI to be positive, create the
“dummy” lm-object, and define the function to evaluate the negative log-likelihood
of the FoI curve given the data:

#Prediction function
tmpfn=function(x,dl){

x=predict(dl, newdata=data.frame(age=x))
exp(x)}
#Dummy lm-object
dl=lm(cumulative˜bs(age,df), data=data3)
#Log-likelihood function
tmpfn2=function(par,data, df){

dl=lm(cumulative˜bs(age,df), data=data)
dl$coefficients=par
ll=0
for(a in 1:length(data$age)){
p=((1-exp(-integrate(tmpfn,0,data$age[a],

dl=dl)$value)))
ll=ll+dbinom(data$cumulative[a],data$n[a],p,log=T)

}
return(-ll)
}

Getting a good fit is, again, computationally expensive, but reveals an interesting
two-peaked force-of-infection (Fig. 4.7): A dominant peak just under 10 years and a
subdominant peak around 35. A plausible scenario is that most people get infected
in school but the fraction that escapes this dominant mode of infection are most
likely to contract the virus from their children when they reach school age.

#Fit model
dspline.a45.df5=optim(par=log(para),fn=tmpfn2,

data=data3, df=df, method="Nelder-Mead",
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control=list(trace=4, maxit=5000))
#Overwrite dummy-objects coefficients with MLEs
dl$coefficients=dspline.a45.df5$par
plot(exp(predict(dl))˜data3$age, xlab="Age",

ylab="Relative FoI", type="l")
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Fig. 4.7 The relative age-specific FoI of Rubella in Peru as estimated using the spline model

The fraction of cases that is predicted to occur in the child-bearing age-bracket
(say, 15–40 years of age) is the joint probability of not being infected by age 15 and
the probability of being infected in the 15–40 age range.

exp(−
∫ 15

0
φ(a)da)(1− exp(−

∫ 40

15
φ(a)da)) (4.2)

We can predict this fraction from the spline model.

(exp(-integrate(tmpfn,0,15,dl=dl)$value))*(1-
exp(-integrate(tmpfn,15,40,dl=dl)$value))

## [1] 0.08815273

Thus, with the current pattern of circulation just over 9% of the cases are pre-
dicted to occur in the at-risk age group. Let us ask how this fraction will change
with a flat 50% reduction in FoI.
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redn=0.5
(exp(-redn*integrate(tmpfn,0,15,dl=

dl)$value))*(1-exp(-redn*integrate(tmpfn,
15,40,dl=dl)$value))

## [1] 0.2376147

The reduction in FoI results, as predicted by theory, in an increase in the mean
age of infection (in reality this will also likely lead to a change in the age-specific
FoI curve), so that almost 24% of cases is predicted to fall in the at-risk group.
Assuming an associated 50% reduction in cases, the total number in the age-bracket
of concern would thus increase given this intervention—predicting an intervention-
induced enhancement of the public health problem as was seen in Greece during the
1990s (Panagiotopoulos et al. 1999).

Metcalf and Barrett (2016) discuss public health issues related to the possible in-
troduction of vaccines against Zika virus, which can cause microcephaly in children
of mothers infected during pregnancy, in light of the lessons learnt from rubella.
Whooping cough is another vaccine preventable disease that causes significant mor-
bidity and mortality in perinatal children. Lavine et al. (2011) discuss how an im-
perfect (waning) vaccine could increase circulation among people of child-bearing
age and thus increase the risk of parent-newborn transmission. They recommended
that cocoon-vaccination of expecting parents should be considered if the current
acellular vaccine is as leaky as is feared (Warfel et al. 2014). Althouse and Scarpino
(2015) provide further discussion of the utility of cocoon-vaccination and other in-
terventions.

4.7 WAIFW

Age-structured FoIs result from non-assortative mixing among different age groups.
The Who-Acquires-Infection-From-Whom (WAIFW) matrix is used to describe the
patterns of nonhomogenous mixing among different age groups (Grenfell and An-
derson 1989). Mossong et al. (2008) conducted a diary-based social study to map
age-stratified contact rates for various countries in Europe as part of the POLY-
MOD project. The contact rates by contactor and contactee are provided in
the mossong-data set. We can visualize the diary data using an image plot with
contours superimposed (Fig. 4.8)

data(mossong)
head(mossong)

## contactor contactee contact.rate
## 1 1 1 120.37234
## 2 2 1 33.45833
## 3 3 1 23.13380
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## 4 4 1 24.33333
## 5 5 1 29.00662
## 6 6 1 14.50331

x=y=mossong$contactor[1:30]
z=matrix(mossong$contact.rate, ncol=30, nrow=30)
image(x=x, y=y, z=z, xlab="Contactor",

ylab="Contactee", col=gray((12:32)/32))
contour(x=x, y=y, z=z, add=TRUE)
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Fig. 4.8 The contact rates reported in the diary study of Mossong et al. (2008)

The reported contact rates are not symmetrical—which a WAIFW matrix will
be—because of age-specific biases in diary entry rates as well as the age-profile
of the contactors versus contactees. Before we “symmetrize” the matrix, we look
at the reported marginal contact rate for each age group. Most contacts are among
same-aged individuals and school-age children have the greatest number of con-
tacts (Fig. 4.9). We do, however, also see off-diagonal ridges resulting from parent-
offspring or children teacher interactions.
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plot(apply(z,1,mean)˜x, ylab="Total contact rate",
xlab="Age")
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Fig. 4.9 The age-specific contact rates reported by the diary study of Mossong et al. (2008)

The symmetrized contact rate matrix (Fig. 4.10) is an estimate of the “WAIFW”-
matrix.

4.8 Advanced: RAS Model

Schenzle (1984) discussed the importance of age-structured mixing when model-
ing infectious disease dynamics. Bolker and Grenfell (1993) extended this model
to the “realistic age-structured (RAS) model” which in its full elaboration is an
age-structured compartmental model with discrete aging of each birth cohort (at
the beginning of each school year) and seasonality in transmission. Seasonality is
the topic of Chap. 5. We can incorporate the POLYMOD contact matrix in a sim-
pler age-structured model. We will make the simplifying assumptions that individ-
uals age exponentially with rates set such that they will on average spend the right
amount in each age-bracket. This allows us to formulate the model using chains of
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ordinary differential equations. The upper-age cut-offs and age-progression rates for
the n = 30 age categories are x and

a = c(1/diff(x), 0)

We can in principle use the raw symmetrized WAIFW matrix in our model,
but we will use a thin-plate spline smoothed matrix using the Tps-function in the
fields-package. The smoothing protocol also allows interpolation to use differ-
ent age-brackets for the model than used in the contact survey whenever necessary
(Fig. 4.10).

require("fields")
n=length(x)
z2=(z+t(z))/2
z3=as.vector(z2)
xy=data.frame(x=rep(x[1:n], n), y=rep(y[1:n], each=n))
polysmooth=Tps(xy, z3, df=100)
surface(polysmooth, xlab="", ylab="",

col=gray((12:32)/32))

## [1] 6400 2

For our age-structured SIR model we first normalize the WAIFW matrix:

W=matrix(polysmooth$fitted.values[,
1]/mean(polysmooth$fitted.values), nrow=n)

The age-specific force-of infection is φ = βWI/N. The age-structured SIR
model is thus (in log-coordinates)6:

siragemod = function(t, logx, params){
n=length(params$a)
x = exp(logx)
S = x[1:n]
I = x[(n+1):(2*n)]
R = x[(2*n+1):(3*n)]
with(as.list(params), {

phi = (beta*W%*%I)/N
dS = c(mu,rep(0,n-1)) - (phi+a)*S +

c(0,a[1:n-1]*S[1:n-1])*(1-p) - mu*S
dI = phi*S + c(0,a[1:n-1]*I[1:n-1]) -

(gamma+a)*I - mu*I
dR = c(0,a[1:n-1]*S[1:n-1])*p +

c(0,a[1:n-1]*R[1:n-1]) + gamma*I -

6 Recall that the with(as.list(...)) allows us to evaluate the equations using the defini-
tions in the params-vector.
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Fig. 4.10 The thin-plate spline smooth estimate of the WAIFW

a*R - mu*R
res = c(dS/S, dI/I, dR/R)
list((res))

})
}

where S, I, and R are vectors of length n, φ is the age-specific force of infec-
tion predicted by the WAIFW matrix, and p is a vector of length n that allows for
age-specific vaccination rates (we will assume no vaccination). The a-vector sets
appropriate aging rates when age groups vary in duration. We use the following
parameters and initial conditions:

p.pre=rep(0,n)
pars.pre =list(N=1, gamma=365/14, mu=0.02, sigma=0.2,

beta=100, W=W,p=p.pre, a=a)
ystart=log(c(S=rep(0.099/n,n), I=rep(0.001/n,n),

R=rep(0.9/n,n)))
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Fig. 4.11 The age-specific prevalences from the age-structured SIR model. (a) Trajectory through
time. (b) Equilibrium age-incidence curves for the polymod matrix (o) vs homogenous mixing (∗)

and integrate to plot the age-specific I-dynamics (Fig. 4.11a) and equilibrium
age-specific prevalence (Fig. 4.11b) for the polymod matrix. Figure 4.11b also
shows the predicted age-prevalence curve for the age-structured model with ho-
mogenous mixing.

times=seq(0,500,by=14/365)
#Polymod mixing
out=as.data.frame(ode(ystart, times=times,

func=siragemod, parms=pars.pre))
par(mfrow=c(1,2)) #Room for side-by-side plots
#Time series
matplot(times, exp(out[,32:61]), type="l", xlab="Time",

ylab="Prevalence", xlim=c(50,90), ylim=c(0, 0.0005))
#Final age-prevalence curve
plot(x, t(exp(out[13036,32:61])*a), ylab="Prevalence",
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xlab="Age", ylim=c(0, 4E-5))
#Homogenous mixing:
pars.pre$W=matrix(1, ncol=30, nrow=30)
out2=as.data.frame(ode(ystart, times=times,

func=siragemod, parms=pars.pre))
points(x, t(exp(out2[13036,32:61])*a), col=2, pch="*")

In contrast to the model with homogenous mixing which predicts that age-
intensity curves decay exponentially with age, the RAS model can lead to a variety
of age-incidence curves including the hump-shaped curve with a mode at around 10
years seen in Fig. 4.11b.



Chapter 5
Seasonality

5.1 Environmental Drivers

Host behavior and environmental factors influence disease dynamics in a variety
of ways through affecting the parasite/pathogen—the survival of infective stages
outside the host, speed of development of free-living stages, etc.; and the host
population—changing birth-rates, carrying capacity, social organization, etc. Some-
times such influences have relatively subtle consequences (e.g., slight changes in
R0) as is likely the effect of absolute humidity on influenza transmission (Lowen
et al. 2007). Other times the consequences are substantial by changing the dynam-
ics qualitatively such as inducing multiannual or chaotic epidemics (Dalziel et al.
2016) or initiating ecological cascades (Jones et al. 1998; Glass et al. 2000). It is
useful to distinguish between trends, predictable variability (such as seasonality),
and non-predictable variability due to “environmental” and “demographic” stochas-
ticity (see Chap. 7).

Some level of seasonality in transmission is very common in infectious disease
dynamics and is usually reflected in seasonal cycles in incidence (Altizer et al.
2006); Seasonality in incidence is the norm even for persistent infections for which
prevalence may remain relatively stable. Influenza is the poster-child for seasonality
in infection risk in the public eye (e.g., Bjørnstad and Viboud 2016). Figure 5.1a
shows the mean weekly influenza-related deaths in Pennsylvania between 1972 and

This chapter uses the following R-packages: deSolve and plotrix.
A conceptual understanding of seasonality is useful prior to this discussion. A 5-min epidemics-
MOOC can be seen on YouTube: https://www.youtube.com/watch?v=TDuuM-wm6nw.

© Springer Nature Switzerland AG 2018
O. N. Bjørnstad, Epidemics, Use R!, https://doi.org/10.1007/978-3-319-97487-3 5

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97487-3_5&domain=pdf
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Fig. 5.1 Mean (± 1 SD) weekly incidence of (a) deaths due to influenza like illness, (b) Lyme’s
disease, (c) giardiosis, and (d) pre-vaccination measles in Pennsylvania

1998. The pronounced winter-peaked seasonality is not fully understood, but are
thought to be linked to how climate conditions—notably absolute humidity (Shaman
and Kohn 2009)—affect rates of viral degradation outside the host.

We can illustrate various types of seasonality using four diseases in Pennsylvania
contained in the paili, palymes, pagiard, and pameasle data sets. We first
write a simple function to extract and plot weekly average incidence (and standard
errors) through the year from time series. Weekly incidence data occasionally has 53
reporting weeks (because years are 52.14 weeks, and leap years are 52.28 weeks).
The function omits these extras.
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ppp=function(wk, x){
require(plotrix)
x=x[wk<53]
wk=wk[wk<53]
ses=sapply(split(x, wk), mean, na.rm=TRUE)
sesdv=sapply(split(x, wk), sd, na.rm=

TRUE)/sqrt(length(split(x, wk)))
plotCI(x=c(1:52), y=ses, ui=ses+sesdv,

li=ses-sesdv, xlab="Week", ylab="Incidence")
}

We apply the function to influenza-like illness, Lyme’s disease, giardiosis, and
measles (Fig. 5.1):

par(mfrow = c(2, 2)) #A four panel plot
ppp(paili[, "WEEK"], paili[, "PENNSYLVANIA"])
title("ILI mortality (1972-98)")
ppp(palymes[, "WEEK"], palymes[, "PENNSYLVANIA"])
title("Lymes (2006-14)")
ppp(pagiard[, "WEEK"], pagiard[, "PENNSYLVANIA"])
title("Giardia (2006-14)")
ppp(pameasle[, "WEEK"], pameasle[, "PENNSYLVANIA"])
title("Measles (1928-69)")

Seasonality arises from a variety of causes depending on the mode of transmis-
sion of the pathogen: air-borne (like influenza), vector-borne, or water/food-borne.
Lyme’s disease, for example, is caused by tick-vectored bacteria in the genus Bor-
relia. Figure 5.1b shows the sharply seasonal incidence of human cases of Lyme’s
in Pennsylvania between 2006 and 2014. The seasonality is the combined effect
of seasonality in tick activity levels and human use of wilderness. Most mosquito-
vectored pathogens also show strong seasonality because of the temperature- and
precipitation-dependence of the vector life cycle. The seasonality of cholera infec-
tions, caused by the Vibrio cholerae bacterium, is among the most studied water-
borne pathogens. The seasonality in southeast Asia is caused by rainfall varia-
tion associated with the monsoon season (Codeço 2001; Ruiz-Moreno et al. 2007)
(Fig. 1.3b). However, other water-borne diseases like giardiasis also show marked
seasonality (Fig. 5.1c). Host behavior can further cause seasonality in contact rates.
Childhood disease dynamics, for example, are often shaped by “term-time” forc-
ing: increased transmission when schools are open (e.g., Fine and Clarkson 1982;
Kucharski et al. 2015). Weekly average pre-vaccination incidence of measles in
Pennsylvania, for instance, collapses as school closes for the summer only to re-
sume robust circulation after the vacation end (Fig. 5.1d). Additionally, seasonal
urban-rural migration in Niger has been shown to generate strong seasonality in
measles transmission (Ferrari et al. 2008). Seasonally varying birth rates can in-
duce seasonality in susceptible recruitment in wildlife (Peel et al. 2014) and humans
(Martinez-Bakker et al. 2014).
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5.2 The Seasonally Forced SEIR Model

To study the effect of seasonality in transmission we will modify the SEIR model
(Eqs. (3.3)–(3.5)). We first define the gradient functions for the “undriven” system:

seirmod = function(t, y, parms) {
S = y[1]
E = y[2]
I = y[3]
R = y[4]

mu = parms["mu"]
N = parms["N"]
beta = parms["beta"]
sigma = parms["sigma"]
gamma = parms["gamma"]

dS = mu * (N - S) - beta * S * I/N
dE = beta * S * I/N - (mu + sigma) * E
dI = sigma * E - (mu + gamma) * I
dR = gamma * I - mu * R
res = c(dS, dE, dI, dR)
list(res)

}

We simulate 10 years of dynamics using the basic recipe introduced in Sect. 2.2.
The seasonally forced SEIR model has been very successfully applied to understand
the dynamics of measles (and other immunizing childhood infections). To simulate
measles-like dynamics we assume a latent period of 8 days and an infectious period
of 5 days. We assume the initial host population to be 0.1% infectious, 6% suscepti-
bles, and the rest immune; The R0 of measles is typically quoted in the 13–20 range,
which means that the equilibrium fraction of susceptibles is somewhere around 5%.
For simplicity we assume a host life span of 50 years and set N = 1 to model the
fraction in each compartment.

require(deSolve)
times = seq(0, 10, by=1/120)
paras = c(mu = 1/50, N = 1, beta = 1000,

sigma = 365/8, gamma = 365/5)
start = c(S=0.06, E=0, I=0.001, R = 0.939)

As discussed in Sect. 3.7, the R0 for this system—assuming disease induced mor-
tality is negligible—is σ

σ+μ
β

γ+μ . We can verify that our choice of β places R0 in the
“measles-like” range. We use expression to define the equation for R0. As in
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Sect. 4.8, we use with(as.list(...)) to evaluate the expression using the
definitions in the paras-vector.

R0 = expression(sigma/(sigma + mu) * beta/(gamma + mu))
with(as.list(paras), eval(R0))

## [1] 13.68888

We integrate the ODEs and plot the time series and the phase plane (Fig. 5.2).
As is the case with the SIR model, the unforced SEIR model predicts dampened
oscillations toward the endemic equilibrium.

out = as.data.frame(ode(start, times, seirmod, paras))
par(mfrow = c(1,2)) #Two plots side by side
plot(times, out$I, ylab = "Prevalence",

xlab = "Time", type = "l")
plot(out$S, out$I, ylab = "Prevalence",

xlab = "Susceptible", type = "l")

5.3 Seasonality in β

The predicted dampened oscillations toward an equilibrium is at odds with the re-
current outbreaks seen in many immunizing infections (e.g., Fig. 1.4). Sustained
oscillations require either additional predictable seasonal drivers—the topic of this
chapter—or stochasticity (Sect. 7.1). An important driver in human childhood in-
fections is seasonality in contact rates because of aggregation of children during
the school term (Fine and Clarkson 1982; Kucharski et al. 2015). For simplicity we
can analyze the consequences of seasonality by assuming sinusoidal forcing on the
transmission rate1 according to β (t) = β0(1+β1cos(2πt)). The mean transmission
rate is β0 but the realized transmission varies cyclically with a period of one time
unit, and the magnitude of the seasonal variation is controlled by the parameter β1.
The modified gradient function is:

seirmod2=function(t, y, parms){
S=y[1]
E=y[2]
I=y[3]
R=y[4]
with(as.list(parms),{

1 It is possible to analyze more realistic patterns of seasonality, such as a more explicit “term-time”
forcing; see Keeling et al. (2001) and Chap. 7. The qualitative (but not detailed) results appear to
be robust to the exact shape of the forcing function.
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Fig. 5.2 Predicted prevalence from the SEIR model (a) in time, and (b) in the phase plane with
μ = 1/50, N = 1 (to model fractions), β = 1000, σ = 365/8, and γ = 365/5. Ten years are not
long enough for the simulation to settle on the endemic equilibrium

dS = mu * (N - S) - beta0 * (1+beta1 *
cos(2 * pi * t)) * S * I / N

dE = beta0 * (1 + beta1 * cos(2*pi * t)) *
S * I / N - (mu + sigma) * E

dI = sigma * E - (mu + gamma) * I
dR = gamma * I - mu * R
res=c(dS, dE, dI, dR)
list(res)

})
}

With no seasonality the model predicts dampened oscillation, with moderate sea-
sonality the prediction is low-amplitude annual outbreaks. However, as seasonality
increases (to β1 = 0.2, say) we start seeing some surprising consequences of the sea-
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sonal forcing (Fig. 5.3): the appearance of harmonic resonance between the internal
cyclic dynamics of the SEIR clockwork and the annual seasonal forcing function.

times = seq(0, 100, by=1/120)
paras = c(mu = 1/50, N = 1, beta0 = 1000, beta1 = 0.2,

sigma = 365/8, gamma = 365/5)
start = c(S=0.06, E=0, I=0.001, R = 0.939)
out = as.data.frame(ode(start, times, seirmod2, paras))
par(mfrow=c(1,2)) #Side-by-side plot
plot(times, out$I, ylab="Infected", xlab="Time",

xlim=c(90, 100), ylim=c(0,
max(out$I[11001:12000])), type="l")

plot(out$S[11001:12000], out$I[11001:12000],
ylab="Infected", xlab="Susceptible", type="l")
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Fig. 5.3 The 10 last years of the forced SEIR model for β1 = 0.2. (a) Predicted prevalence and (b)
the S-I phase plane
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The emergent pattern of recurrence in the forced SEIR is the result of an inter-
action between the internal periodic clockwork (the “damping period”) of the SEIR
flow and the externally imposed periodic forcing. The damping period is the focus
of Chap. 9; however, we can use the results previewed in Sect. 2.6: When work-
ing with a continuous-time ODE model which results in cyclic behavior like the
SEIR model, the dominant eigenvalues of the Jacobian matrix—when evaluated at
the equilibrium—are a conjugate pair of complex numbers (a±bı) that determines
the period of the cycle according to 2π/b.

The endemic equilibrium of the SEIR model is (ignoring the absorbing R com-
partment): S∗ = 1/R0, I∗ = μ(1−1/R0)R0/β and E∗ = (μ + γ)I∗/σ . We first cal-
culate the endemic equilibrium:

mu = paras["mu"]
N = paras["N"]
beta0 = paras["beta0"]
beta1 = paras["beta1"]
sigma = paras["sigma"]
gamma = paras["gamma"]
R0 = sigma/(sigma + mu) * beta0/(gamma + mu)

Sstar = 1/R0
Istar = mu * (1 - 1/R0) * R0/beta0
Estar = (mu + gamma) * Istar/sigma

eq = list(S = Sstar, E = Estar, I = Istar)

We next use Rs inbuilt D-function to carry out symbolic differentiation, and to
generate and evaluate the Jacobian matrix (ignoring the absorbing R compartment):

dS = expression(mu * (N - S) - beta0 * S * I / N)
dE= expression(beta0 * S * I / N - (mu + sigma) * E)
dI = expression(sigma*E - (mu + gamma) * I)

j11 = D(dS, "S"); j12 = D(dS, "E"); j13 = D(dS, "I")
j21 = D(dE, "S"); j22 = D(dE, "E"); j23 = D(dE, "I")
j31 = D(dI, "S"); j32 = D(dI, "E"); j33 = D(dI, "I")

J=with(eq,
matrix(c(eval(j11),eval(j12),eval(j13),

eval(j21),eval(j22), eval(j23),
eval(j31),eval(j32), eval(j33)),
nrow=3, byrow=TRUE))

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
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We finally calculate the eigenvalues. The dominant pair of complex conjugates
is at the second and third place in the vector of eigenvalues. The associated resonant
period is:

round(eigen(J)$values, 3)

## [1] -118.725+0.000i -0.107+2.667i -0.107-2.667i

2 * pi/(Im(eigen(J)$values[2]))

## [1] 2.355891

So the recurrent biennial epidemics are sustained because the internal epidemic
clock-work cycles with a period of 2.3 years, but it is forced at an annual time scale,
so as a “compromise” the epidemics are locked on to the annual clock, but with
alternating major and minor epidemics such as seen, for example, in pre-vaccination
measles in New York 1944–1958 (Fig. 1.4b) and London 1950–1965 (Fig. 1.4c).

5.4 Bifurcation Analysis

We can make a more comprehensive summary of the consequences of seasonality on
the SEIR-flow using a bifurcation analysis: a systematic search across a range of β1

values. For annually forced models we study the dynamics by “strobing” the system
once each year. To study the long-term (asymptotic) dynamics we discard the initial
transient part of the simulation. In the below we hence use one data point per year
for the last 42 years of simulation—which the sel variable flags—so that an annual
cycle produces a single value (so will a fixed-point equilibrium), biannual cycles two
values, etc. The resultant bifurcation plot shows when annual epidemics gives way
to biannual cycles and finally chaotic dynamics as seasonality increases (Fig. 5.4).
The irregular dynamics with strong seasonality comes about because there is no
simple resonant compromise between the internal clock and the external forcing
function. We may think of it as “resonance” giving place to “dissonance” in the dy-
namical system. That stronger seasonality pushes measles from regular to irregular
epidemics has been predicted by the theoretical literature (e.g., Aron and Schwartz
1984) and is supported by an empirical comparison of measles in pre-vaccination
UK versus USA by Dalziel et al. (2016) (see Sect. 10.2).

We define initial conditions and the sequence of parameter values to be consid-
ered for β1 and then do the numerical integration for each parameter set:

times = seq(0, 100, by = 1/120)
start = c(S = 0.06, E = 0, I = 0.001, R = 0.939)
beta1 = seq(0,0.25, length=101)
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#Matrix to store infecteds
Imat = matrix(NA, ncol = 12001, nrow = 101)
#Loop over beta1’s
for(i in 1:101){

paras = c(mu = 1/50, N = 1, beta0 = 1000,
beta1=beta1[i], sigma = 365/8, gamma = 365/5)

out = as.data.frame(ode(start, times,
seirmod2, paras))

Imat[i,] = out$I
}

For the visualization we select one observation per year for the last 42 years of
simulation and plot the values against the associated β1 values (Fig. 5.4).

sel = seq(7001, 12000, by = 120)
plot(NA, xlim = range(beta1), ylim = c(1E-7,

max(Imat[,sel])), log="y", xlab="beta1",
ylab="prevalence")

for(i in 1:101){
points(rep(beta1[i], length(sel)),

Imat[i, sel], pch=20)
}

5.5 Stroboscopic Section

Rand and Wilson (1991) studied the seasonally forced SEIR model with a particular
set of parameters resulting in chaotic dynamics. It is interesting to integrate the
model with these parameters for a very long time (in this case for 10,000 years) to
better understand/visualize the meaning of quasi-periodic chaos. Figure 5.5 shows
a time series of prevalence and the dynamics in the S-I phase plane strobed at the
annual time scale—the annual “stroboscopic section” of the S-I plane. The time
series is erratic, but the paired S-I series trace out a very intricate pattern (Fig. 5.5b):
The four-armed shape corresponds to the propensity of the chaotic pattern to adhere
to a wobbly (“quasiperiodic”) 4-year recurrence. We will revisit on this attractor and
its role in facilitating “chaotic stochasticity” and “stochastic resonance” in disease
dynamics in Chap. 10.
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Fig. 5.4 The bifurcation plot of prevalence against seasonality for the forced SEIR model

times = seq(0, 100000, by = 1/120)
start = c(S = 0.06, E = 0, I = 0.001, R = 0.939)
paras = c(mu = 1/50, N = 1, beta0 = 1800, beta1=0.28,

sigma = 35.84, gamma = 100)
out = as.data.frame(ode(start, times,seirmod2, paras))
sel=seq(7001, 12000000, by=120)
par(mfrow=c(1,2))
plot(out$time[7001:13001], out$I[7001:13001],

type="l", xlab="Year", ylab="Prevalence")
plot(out$S[sel], out$I[sel], type="p", xlab="S",

ylab="I", log="y", pch=20, cex=0.25)
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Fig. 5.5 Stroboscopic section in the S-I phase plane of the quasiperiodic chaotic prevalence of the
seasonally forced SEIR model (μ = 0.02, β0 = 1800, β1 = 0.28, σ = 35.84, γ = 100) (Rand and
Wilson 1991)

5.6 Susceptible Recruitment

The patterns of recurrent epidemics are also shaped by other characteristics of the
host and pathogen. Earn et al. (2000b) studied how susceptible recruitment affects
dynamics of the seasonally forced SEIR model by doing a bifurcation analysis over
μ (Fig. 5.6). As concluded by Earn et al. (2000b), reduced susceptible recruitment
in the seasonally forced SEIR model leads to a cascade from annual to biennial to
coexisting annual and complex attractors. To trace out the coexisting attractors it
is necessary to use multiple starting conditions because each attractor will have its
own “basin of attraction.” We do this by looping forwards and backwards over μ
using the final values of the previous simulation as initial conditions for the next.

times = seq(0, 100, by = 1/120)
start = c(S = 0.06, E = 0, I = 0.001, R = 0.939)
mu=seq(from = 0.005, to = 0.02, length = 101)
ImatF=ImatB=matrix(NA, ncol = 12001, nrow = 101)
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for(i in 1:101){
paras = c(mu = mu[i], N = 1, beta0 = 2500,

beta1=0.12, sigma = 365/8, gamma = 365/5)
out = as.data.frame(ode(start, times, seirmod2,

paras))
ImatF[i,]=out$I
start = c(S = out$S[12001], E = out$E[12001],

I = out$I[12001], R = out$R[12001])
}
start = c(S = 0.06, E = 0, I = 0.001, R = 0.939)
for(i in 101:1){

paras = c(mu = mu[i], N = 1, beta0 = 2500,
beta1=0.12, sigma = 365/8, gamma = 365/5)

out = as.data.frame(ode(start, times, seirmod2,
paras))

ImatB[i,]=out$I
start = c(S = out$S[12001], E = out$E[12001],

I = out$I[12001], R = out$R[12001])
}
sel=seq(7001, 12000, by=120)
par(mfrow=c(1,1))

plot(NA, xlim=range(mu), ylim=range(ImatF[,sel]),
log="y", xlab="mu", ylab="prevalence")

for(i in 1:101){
points(rep(mu[i], dim(ImatF)[2]), ImatF[i, ],

pch=20, cex=0.25)
points(rep(mu[i], dim(ImatB)[2]), ImatB[i, ],

pch=20, cex=0.25,col=2)
}

In Fig. 5.6 the attractor from the “forward” analysis is shown in black and “back-
ward” analysis in red. This color coding clearly reveals the coexisting attractors
for a range of parameter values. The transition from annual to biennial epidemics
predicted as μ varies between 15 per thousand per year and 25 per thousand per
year is clearly seen following the baby boom post-World War II in the dynamics of
measles in the UK (Sect. 6.5). The complex dynamics at lower susceptible recruit-
ment rates, again, comes about because of dissonance between the external annual
forcing and the internal periodic clock. With a per capita susceptible recruitment
rate of 0.002/year which corresponds to 90% vaccination rate in our model, the
dampening period is predicted to be 7.4 years. Earn et al. (2000b) predicted that
vaccination may—depending on seasonality —lead to chaotic epidemics. A com-
plication that makes this less likely in real populations is that the troughs following
major epidemics are so deep that the chain of transmission will almost always break,
leading to disease fade-out (Ferrari et al. 2008) (though see Sect. 10.2 for a counter
example). In his mathematical study of rabies spread, Mollison (1991) dubbed this
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Fig. 5.6 The bifurcation plot of prevalence against birth rate μ for the forced SEIR model with
intermediate seasonality. Black represents values from the “forward” analysis and red the “back-
ward” analysis

the “atto-fox” of deterministic models; If the models predict that there is a 10−18th
of a rabid fox running around, deterministic predictions may not be very relevant to
real-life epidemics.

5.7 ShinyApp

The seasonally forced SEIR model can be further studied using the SEIR.app in
the epimdr-package. The app can be launched from R through:

require(shiny)
SEIR.app



Chapter 6
Time-Series Analysis

6.1 Taxonomy of Methods

Analysis of epidemic time series is a large endeavor because of the richness of dy-
namical patterns and plentitude of historical data (Rohani and King 2010). A wide
range of tools are used, some of which are borrowed from mainstream statistics
other of which are “custom made.” The classic “mainstream” methods belong to
two categories: the so-called time-domain and frequency-domain methods. The au-
tocorrelation function and ARIMA models belong to the former class and spectral
analysis and the periodogram belong to the latter. Hybrid time/frequency methods
have become increasingly prominent in the form of wavelet analysis because it al-
lows the study of changes in disease dynamics through time (Grenfell et al. 2001).
This chapter discusses a variety of “mainstream” methods using a variety of time-
series data. Examples of “custom made” methods are mechanistic models such as
the time-series SIR (TSIR) which is the focus of Chap. 7, semi-parametric models
(Ellner et al. 1998) and nonparametric (“empirical dynamic”) models. An example
of the latter is discussed in Sect. 10.8.

6.2 Time Domain: ACF and ARMA

The autocorrelation function (ACF) and the autoregressive-moving-average
(ARMA) model are classic tools for describing serial dependence in time series in
the time-domain. We first apply the ACF to the (weekly) time series of prevalence

This chapter uses the following R-packages: forecast, Rwave, imputeTS, nlts, and
plotrix.
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from the seasonally forced SEIR model. The ACF quantifies serial correlations at
different time lags. Figure 6.1 shows the ACF for lags up to 3 years (=156 weeks):

times = seq(0, 100, by=1/52)
paras = c(mu = 1/50, N = 1, beta0 = 1000, beta1 = 0.2,

sigma = 365/8, gamma = 365/5)
xstart = c(S=0.06, E=0, I=0.001, R = 0.939)
out = as.data.frame(ode(xstart, times,seirmod2, paras))

par(mfrow=c(1,2))
plot(times, out$I, ylab="Infected", xlab="Time",

xlim=c(90,100), type="l")
acf(out$I, lag.max = 156, main="")
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Fig. 6.1 The ACF of prevalence from the seasonally forced SEIR model. (a) time series, (b) ACF



6.2 Time Domain: ACF and ARMA 97

The major peak in autocorrelation at 104 weeks reflects the dominant 2-year
periodicity; the minor peak at 52 weeks reflects the subdominant annual periodicity.

6.2.1 ARMA

Autoregressive moving-average models have been used to forecast disease dy-
namics (e.g., influenza-like illness; Choi and Thacker 1981). The ARMA(p,q)-
model assumes that the future incidence (Yt) can be predicted according to Yt =
a1Yt−1 + . . .+ apYt−p + εt − b1et−1 − . . .− bqεt−q, where the ε’s represent stochas-
ticity and the echo of past stochasticity.1 We apply the ARMA model to monthly
ILI incidence in Iceland using the forecast-package:

require(forecast)
data(Icelandflu)

We convert the data frame to a time-series ts-object and do a seasonal decompo-
sition (Fig. 6.2). There is a slight trend through the data, but as expected the winter
seasonality is the dominant feature of the time series. Because the epidemics are
very peaky we consider square-root transformed numbers:

ilits=ts(sqrt(Icelandflu$ili), start=c(1980, 1),
end=c(2009, 12), frequency=12)

plot(decompose(ilits))

We train a seasonal ARMA(2,1) model on for example 1990 through 2000 epi-
demics and do a 24-month forecast (Fig. 6.3):

wts=window(ilits, start=c(1990,6), end=c(2000,5))
fit = arima(sqrt(wts), order=c(2, 0, 1),

list(order=c(1, 0, 0), period = 12))
coef(fit)

## ar1 ar2 ma1 sar1
## 1.4460827 -0.7323795 -0.7819940 0.2026528
## intercept
## 2.4823415

fore = predict(fit, n.ahead=24)

1 The ARMA model is usually considered a purely statistical model (i.e., not containing biological
mechanism), though it can be shown that the linearized discrete-time SIR model with stochastic
transmission can be rewritten as a ARMA(2,1) model (see Sect. 9.8).
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Fig. 6.2 A decomposition of the Iceland ILI time series

#Calculate approximate upper (U) and
#lower (L) prediction intervals
U = fore$pred + 2*fore$se
L = fore$pred - 2*fore$se
# plot observed and predicted values
ts.plot(sqrt(wts), fore$pred, U, L, col=c(1, 2, 4, 4),

lty=c(1, 1, 2, 2), ylab="Sqrt(cases)")
legend("bottomleft", c("ILI", "Forecast",

"95% Error Bounds"), col=c(1, 2, 4),lty=c(1, 1, 2))

While ARMA forecasting is useful in many disciplines and is an important part
of the broad statistical toolbox, it suffers from lacking mechanism and can therefore
not answer questions like “how are dynamics likely to change if we vaccinate 50%
of susceptible children?” It furthermore assumes that time series are stationary, es-
sentially meaning that dynamical patterns do not change radically over time. As we
frequently see in infectious diseases, this is not a good assumption. In Chap. 7 we
discuss how time-series methods that incorporate more biological mechanisms (like
the “time-series SIR” model) are better able to capture/predict dynamic transitions.
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Fig. 6.3 Forecast of square-root transformed ILI incidence in Iceland for the 2001 and 2002 sea-
sons using a seasonal ARMA(2,1) model

6.3 Frequency Domain

The Schuster periodogram is a direct way of estimating and testing for significant
periodicity. The periodogram decomposes a time series into cycles of different fre-
quencies (frequency = 1/period). The importance of each frequency is measured
by the spectral amplitude. We use the spectrum-function to calculate the peri-
odogram for the time series from the seasonally forced SEIR model. The analysis
clearly identifies the two superimposed periods (Fig. 6.4).

my.spec = spectrum(out$I, plot=FALSE)
par(mfrow=c(1,2))
#default plot (less default lables)
plot(my.spec, xlab="Frequency", ylab="Log-amplitude",

main="", sub="")
#plot with period (rather than frequency)
plot(1/my.spec$freq/52,my.spec$spec, type="b", xlab=

"Period (year)", ylab="Amplitude", xlim=c(0,5))
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Fig. 6.4 The power spectrum of prevalence for the seasonally forced SEIR model. (a) Default plot
of log-amplitude against frequency and (b) amplitude against period (in years)

Using the fast Fourier transform (FFT), the Schuster periodogram will automat-
ically estimate the spectrum of a time series (of length T ) at the following T/2

frequencies: f = { 1
T ,

2
T , . . . ,

T/2
T } (or equivalent periods: {T, T

2 , . . . ,2}). An upside
of using FFT is that it is fast. A downside is that the Schuster periodogram is not
a consistent method, meaning that the estimated periodogram does not converge
on the true power spectrum as the time series gets longer because the number of
frequencies considered (and thus the number of parameters) increases linearly with
time-series length. Numerous fixes of this have been developed, the most common
is to smooth the periodogram (Priestley 1981), but nonparametric density estima-
tion has also been proposed. We use Kooperberg et al.’s (1995) log-spline method
in Sect. 9.7.

6.4 Wavelets

The wavelet spectrum is an extension of spectral analysis that allows an additional
time axis and therefore to allow the study of changes in dynamics over time (Tor-
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rence and Compo 1998). Unlike the periodogram, wavelets do not have “canoni-
cal” periods for decomposition. If we use the Morlet wavelet (which is provided
by the cwt-function in the Rwave-package), we need to specify the periods we
wish to consider through the number of octaves, no, and voices, nv. With 8 octaves
the main periods will be {21,22, . . . ,28} = {2,4, . . . ,256}. The number of voices
specifies how many subdivisions to estimate within each octave. With four voices
the resultant periods will be {21,21.25,21.5,21.75,22,22.25, . . .}. We first consider the
simulated time series of prevalence for the unforced SEIR model (Fig. 6.5).

#Simulate and plot time series
times = seq(0, 25, by=1/52)
paras = c(mu = 1/50, N = 1, beta = 1000,

sigma = 365/8, gamma = 365/5)
xstart = c(S=0.06, E=0, I=0.001, R = 0.939)
out2 = as.data.frame(ode(xstart, times, seirmod, paras))
par(mfrow = c(1, 2)) #Side-by-side plots
plot(times, out2$I, type="l", xlab="Time",

ylab = "Infected")

#Wavelet analysis
require(Rwave)
#Set the number of "octaves" and "voices"
no = 8; nv = 32
#Calculate periods
a = 2ˆseq(1,no+1-1/nv, by = 1/nv)
#Do the continous wavelet decomposition
wfit = cwt(out2$I, no, nv, plot=FALSE)
#Calculate the wavelet spectrum
wspec = Mod(wfit)

#Wavelet plot with contours
image(x=times, wspec, col=gray((12:32)/32), y=a/52,

ylim=c(0,4), xlab="Time", ylab="Period")
contour(x=times, wspec, y=a/52, ylim=c(0,4),

zlim=c(mean(wspec), max(wspec)), add=TRUE)

The initial inter-epidemic period at around 2.5 years is strong (recall that the
dampening period of the SEIR with these parameters is 2.3 years with these param-
eters; Sect. 5.3), but then wanes as the system converges towards the stable endemic
equilibrium. We see this clearly illustrated if we compare the wavelet spectrum at,
for example, the beginning of year 2 and the beginning of year 10 (Fig. 6.6).
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Fig. 6.5 Prevalence against time for the unforced SEIR model (μ = 1/50, N = 1, β = 1000, σ =
365/8, γ = 365/5) with associated wavelet spectrum

plot(a/52, wspec[104,], type="l", ylab="Amplitude",
xlab="Period")

lines(a/52, wspec[1040,], type="l",
lty=2, col="red")

legend("topright", legend=c("Year 2", "Year 10"),
lty=c(1,2), col=c("black", "red"))

6.5 Measles in London

The pre-vaccination incidence of measles shows interesting non-stationarities that
have been traced back to changing susceptible recruitment due to the post-World
War II baby boom (Fig. 6.7). The meas data set contains the biweekly incidence
and births from 1944 and 1965.
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Fig. 6.6 The estimated wavelet spectrum at the first week of year 2 and year 10 for the unforced
SEIR model

data(meas)
head(meas)

## year week time London B
## 1 44 2 44.00000 180 1725
## 2 44 4 44.03846 271 1725
## 3 44 6 44.07692 423 1725
## 4 44 8 44.11538 465 1725
## 5 44 10 44.15385 523 1725
## 6 44 12 44.19231 649 1725

par(mar = c(5,5,2,5)) #Make room for two axes
plot(meas$time, meas$London, type="b", xlab="Week",

ylab="Incidence", ylim=c(0,8000))
par(new=T) #Superimposed births plot
plot(meas$time, meas$B, type="l", col="red",

axes=FALSE, xlab=NA, ylab=NA, ylim=c(1000, 2700))
axis(side = 4)
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mtext(side = 4, line = 3, "Births")
legend("topright", legend=c("Cases", "Births"),

lty=c(1,1), col=c("black", "red"))
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Fig. 6.7 Biweekly incidence of measles in London between 1944 and 1965 with susceptible re-
cruitment (births) superimposed

We apply the wavelet analysis to the historical measles dynamics from London
(Grenfell et al. 2001). In addition to providing a continuous wavelet transform, the
Rwave-package has a “crazy climber” algorithm to highlight ridges in the wavelet
spectrum (implemented with the crc and cfamily-functions). When applied to
the London measles data, the crazy climber reveals the background annual rhythm
and the punctuated appearance of the biennial cycle in the early 1950s (Fig. 6.8).

#Set octaves, voices and associated periods
no = 8; nv = 32
a = 2ˆseq(1,no+1-1/nv, by = 1/nv)
#Continous wavelet decomposition
wfit = cwt(meas$London, no, nv, plot=FALSE)
wspec = Mod(wfit)
#Crazy climber
crcinc<-crc(wspec, nbclimb=10, bstep=100)
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fcrcinc<-cfamily(crcinc, ptile=0.5, nbchain=1000,
bstep=10)

## There are 2 chains.

ridges<-fcrcinc[[1]]
ridges[which(ridges==0)]<-NA
#Wavelet plot with crazy-climber and contours
image(x=meas$time, wspec, col=gray((12:32)/32), y=a/26,

ylim=c(0.1,3), ylab="Period", xlab="Year")
contour(x=meas$time, wspec, y=a/26, ylim=c(0,3),

nlevels = 6, zlim=c(mean(wspec), max(wspec)),
add=TRUE)

image(x=meas$time, y=a/26, z=ridges, add=TRUE,
col=gray(0))
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Fig. 6.8 The wavelet spectrum of the London measles incidence with “crazy-climber” ridges. The
appearance of a significant biennial rhythm in the 1950s is conspicuous
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We can contrast the spectrum of the first biweek of January 1945 and the first
biweek of January 1954 (Fig. 6.9). The transition from a dominance of annual to
biennial epidemics is conspicuous. Two-year cycles are pronounced when birth rates
are around 20 per thousand per year; Annual epidemics are associated with higher
birth rates. This transition, due to the post-World War II baby boom, is as predicted
by the seasonally forced SEIR model with dropping birth rates (Earn et al. 2000b,
Fig. 5.6).

plot(a/26,wspec[261,], type="l",xlim=c(0,3),
xlab="period (years)", ylab="amplitude")

lines(a/26,wspec[27,], type="l", lty=2, col="red")
legend("topleft", legend=c("1945", "1954"),

lty=c(2,1), col=c("red", "black"))
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Fig. 6.9 The wavelet spectrum of the London measles in Jan 1945 vs Jan 1954

The above methods of time-series analysis require regularly spaced time
series without any missing values. Lomb (1976) developed the Lomb peri-
odogram for unequally spaced data. Furthermore, the classic spectral methods
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cannot quantify rhythms in cruder “nonmetric” data such as presence/absence
of infection. Legendre et al. (1981) developed the “contingency periodogram”
for such situations. The nlts-package has the functions spec.lomb and
contingency.periodogram to carry out such analyses. The mvcwt-package
can do wavelet analyses of time series with missing data.

6.6 Project Tycho

Project Tycho (http://www.tycho.pitt.edu) is a great resource for time series on his-
torical disease incidence. The data used in Sect. 5.1 were downloaded from this
database. Weekly data of whooping cough (1925–1947), diphtheria (1914–1947),
and measles (1914–1947) in the city of Philadelphia are from Project Tycho and are
saved in the tywhooping, tydiphtheria, and tymeasles data sets. These
were all important causes of childhood mortality in the early twentieth century and
were therefore “reportable infections” in the USA. Whooping cough is caused by
bacterial colonization of the lower respiratory tract by congeneric species in the
genus Bordetella, most notably B. pertussis, and cause violent coughing, vomiting,
and pneumonia. Diphtheria is caused by infection by Corynebacterium diphtheriae
which toxins cause a range of health complications. Measles is a severely immuno-
compromising paramyxovirus. We will use these time series to illustrate some addi-
tional aspects of disease dynamics/time-series analysis.

data(tywhooping)
tywhooping$TIME=tywhooping$YEAR+tywhooping$WEEK/52
tywhooping$TM=1:length(tywhooping$YEAR)
data(tydiphtheria)
data(tymeasles)
tydiphtheria$TIME=tymeasles$TIME=tymeasles$YEAR+

tymeasles$WEEK/52

These time series have occasional weeks of missing data which we interpolate.
We will use the imputeTS-package. But first we use the whooping cough data to
illustrate the use of the Lomb periodogram for spectral analysis of unevenly spaced
data.

6.7 Lomb Periodogram: Whooping Cough

There are 14 missing weeks in the tywhooping data set. For frequency-domain
analyses of this data we either have to interpolate the missing weeks or use the Lomb
periodogram. We compare the two approaches:

http://www.tycho.pitt.edu
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data(tywhooping)
whp=na.omit(tywhooping)

#data with missing values interpolated
require(imputeTS)
sum(is.na(tywhooping$PHILADELPHIA))

## [1] 14

tywhooping$PHILADELPHIA=
na.interpolation(ts(tywhooping$PHILADELPHIA))

#Classic periodogram
my.spec = spectrum(sqrt(tywhooping$PHILADELPHIA))
#Lomb periodogram
require(nlts)
my.lomb=spec.lomb(x=whp$TM, y=sqrt(whp$PHILADELPHIA))

plot(1/my.spec$freq/52, my.spec$spec, type="b",
xlab="Period (year)", ylab="Amplitude")

par(new=TRUE)
plot(1/my.lomb$freq/52, my.lomb$spec, axes=FALSE,

type="b", col=2, xlab="", ylab="")
legend("topright", legend=c("Classic", "Lomb"),

lty=c(1,1), pch=c(1,1), col=c("black", "red"))

With only 14 missing values in a 1000+ week long time series the shape of the
Schuster periodogram (on interpolated data) and the Lomb periodogram are almost
identical (Fig. 6.10).

6.8 Triennial Cycles: Philadelphia Measles

Like in London, pre-vaccination measles dynamics in Philadelphia exhibit inter-
esting nonstationarities we can highlight with the wavelet analysis. There are 24
missing weeks we interpolate:

data(tymeasles)
sum(is.na(tymeasles$PHILADELPHIA))

## [1] 24

tymeasles$PHILADELPHIA=
na.interpolation(ts(tymeasles$PHILADELPHIA))
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Fig. 6.10 The Lomb periodogram and the classic periodogram (on interpolated data) of the
Philadelphia whooping cough time series

We twiddle with the graphics margins and layout using the par and layout
functions to make a prettier compound graphic (Fig. 6.11).

par(mfrow=c(2,1), mar=c(2,4,2,1))
layout(matrix(c(1,1,2,2,2), ncol=1))
plot(tymeasles$TIME, sqrt(tymeasles$PHILADELPHIA),

type="b", ylab="Sqrt(incidence)")
title("Measles 1914-47")

no = 8; nv = 16; a = 2ˆseq(1,no+1-1/nv, by = 1/nv)
wfit = cwt(sqrt(tymeasles$PHILADELPHIA),

no, nv, plot=FALSE)
wspec = Mod(wfit)
par(mar=c(1,4,0.25,1))
image(z=wspec, y=a/52, ylim=c(0,4), ylab="Period(year)",

col=gray((12:32)/32), xaxt=’n’)
contour(z=wspec, y=a/52, ylim=c(0,4), nlevels = 6,
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zlim=c(mean(wspec), max(wspec)), add=TRUE)
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Fig. 6.11 Wavelet spectrum of measles in Philadelphia

The early annual epidemics give way to triennial epidemic cycles from 1920
onwards (Fig. 6.12). The tri-annual cycles are the hallmarks of chaotic epidemics
(Dalziel et al. 2016) we discuss further in Sect. 10.2.

plot(a/52,wspec[54,], type="l", xlim=c(0,4),
xlab="Period (years)", ylab="Amplitude",
col="red", lty=2)

lines(a/52,wspec[1357,], type="l", xlim=c(0,4))
legend("topleft", legend=c("1915", "1940"),

lty=c(2,1), col=c("red","black"))
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Fig. 6.12 The Jan 1915 versus Jan 1940 measles wavelet spectrum; Annual epidemics give way to
triennial cycles

6.9 Wavelet Reconstruction and Wavelet Filter: Diphtheria

Diphtheria exhibited conspicuous annual cycles during the beginning of the twen-
tieth century until the addition of an adjuvant to the toxoid vaccine in 1926 led to
a strong secular downward trend and effectively the elimination of the disease
(Fig. 6.13). The wavelet lets us study how adjuvant-induced reduction in incidence
is associated with a loss of periodicity and increase in high-frequency variability
(“noise”) (Fig. 6.13). There are 18 missing values we interpolate prior to the analy-
sis.

data(tydiphtheria)
sum(is.na(tydiphtheria$PHILADELPHIA))

## [1] 18

tydiphtheria$PHILADELPHIA=
na.interpolation(ts(tydiphtheria$PHILADELPHIA))

par(mfrow=c(2,1), mar=c(2,4,2,1))
layout(matrix(c(1,1,2,2,2), ncol=1))
plot(tydiphtheria$TIME, sqrt(tydiphtheria$PHILADELPHIA),

https://en.wikipedia.org/wiki/Diphtheria#History
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type="b", ylab="Sqrt(incidence)")
title("Diphteria 1914-47")

no = 8; nv = 16; a = 2ˆseq(1,no+1-1/nv, by = 1/nv)
wfit = cwt(sqrt(tydiphtheria$PHILADELPHIA),

no, nv, plot=FALSE)
wspec = Mod(wfit)
par(mar=c(1,4,0.25,1))
image(z=wspec, y=a/52, ylim=c(0,3), ylab="Period(year)",

col=gray((12:32)/32), xaxt=’n’)
contour(z=wspec, y=a/52, ylim=c(0,3), nlevels = 6,

zlim=c(mean(wspec), max(wspec)), add=TRUE)
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Fig. 6.13 Wavelet spectrum of diphtheria in Philadelphia
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Fig. 6.14 Wavelet reconstructed variability in the 45–60 week range of diphtheria in Philadelphia

We are sometimes interested in using the wavelet as a “filter.” We may for ex-
ample want to quantitate how the strength of the annual cycle of diphtheria (in the
45–60 week range, say) changes over time. To do this we use wavelet reconstruc-
tion around the relevant time scales (Fig. 6.14). For the Morlet wavelet the formula
for reconstruction using the j’th though j+ sth scales is provided by Torrence and
Compo (1998). The mid-pass filter clearly illustrates the loss of annual signal over
time (Fig. 6.14).

#midpass filter
sel=a>45 & a<60
rec=0.6*apply(Re(wfit[,sel])/sqrt(a[sel]), 1,

sum)/(0.776*(piˆ(-1/4)))
data=pi*scale(sqrt(tydiphtheria$PHILADELPHIA))/2
plot(tydiphtheria$TIME, data, type="b", xlab="Year",

ylab="Scaled cases")
lines(tydiphtheria$TIME, rec, type="l", col=2, lwd=3)
legend("topright", legend=c("Scaled cases",

"Annual reconstruction"), pch=c(1, NA), lty=c(1,1),
lwd=c(1,3), col=c("black", "red"))
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6.10 Advanced: FFT and Reconstruction

One-hundred-and-twenty years ago, Arthur Schuster proposed the bold idea that any
discrete time series can be decomposed and exactly reconstructed from a sum of
trigonometric functions. Given its nonstationary transition from annual to biennial
epidemics, the pre-vaccination 1944–1964 London measles time series (in the meas
data set) offers a nice test-bed for this assertion.

The below code generates an animated visualization of the reconstruction. Sec-
tion 11.6 discusses making in-line and permanent animations in more detail. A web-
optimized animated gif can be found in https://github.com/objornstad/epimdr/blob/
master/mov/fftrecon.gif.

If z is the fast Fourier transform of the time series, then the trigonometric “sig-
nal” of the k’th observation is 1

T (∑ f (Re(z)cos(2π(k − 1) f ))− Im(z)sin(2π(k −
1) f )), where Re() and Im() represent real and imaginary parts. We first piece to-
gether relevant bits for the formula; we then do the reconstruction in the rec2-
object where the contribution of each frequency is weighed:

# fft
x <- meas$London
p <- length(x)
z <- fft(x)
f <- seq(from = 0, length = p, by = 1/p)
a <- Re(z)
b <- Im(z)
# reconstruction
rec2 = matrix(NA, ncol = p, nrow = p)
for (k in 1:p) {

rec2[, k] <- (a * cos(2 * pi * (k - 1) * f) - b *
sin(2 * pi * (k - 1) * f))/p

}

Finally we can visualize the convergence on the original signal using the se-
quence of frequencies order by amplitude (highest to lowest importance):

sim=rep(0, p)
n=0
samp=order(aˆ2+bˆ2, decreasing=TRUE)
for(g in samp){
n=n+1
par(mfrow=c(1,2))
plot(x, ylim=c(0,11000), ylab="Incidence",

xlab="Biweek")
title(paste("nfreq = ", n))
sim=sim+rec2[g,]
lines(sim, col=2)

https://github.com/objornstad/epimdr/blob/master/mov/fftrecon.gif
https://github.com/objornstad/epimdr/blob/master/mov/fftrecon.gif
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par(new=TRUE)
sc=scale((cos(2*pi*(0:(p-1))*f[g]) -

sin(2*pi*(0:(p-1))*f[g]))/p)
plot(sc*(aˆ2+bˆ2)[g]/max(aˆ2+bˆ2), type="l", col=
gray(.5), ylim=c(-8, 2), axes=FALSE, xlab="", ylab="")

plot(x, sim, ylab="Reconstructed", xlab="Observed",
ylim=c(0,8000))

#Sys.sleep makes R wait a bit
Sys.sleep(.2)
}



Chapter 7
TSIR

7.1 Stochastic Variability

Much environmental forcing is non-predictable “environmental stochasticity”. In
such cases stochastic simulation can be very useful.1 One can use stochastic ana-
logues of the continuous-time deterministic compartmental models using event-
based simulations (see Sect. 8.2), or consider extensions of the chain-binomial
model we introduced in Sects. 3.4 and 3.5. We will consider a variant of the
chain-binomial model: the time-series SIR (TSIR) model (Bjørnstad et al. 2002a;
Finkenstädt et al. 2002; Grenfell et al. 2002).

The TSIR model is as follows: If we use a discrete time step equal to the gen-
eration time of the pathogen (about 2 weeks in the case of infections like measles,
diphtheria, scarlet fever, and chickenpox), we can write the model (subsuming a
latent period) as:

St+1 = St +Bt − It , (7.1)

λt+1 = β
St

Nt
Iα
t (7.2)

where St and It are the numbers of susceptibles and infecteds in pathogen generation
t, Bt is the number of susceptible recruits (births) during the time interval, N is the
population size, and β is the transmission rate. The α is an exponent (normally just

This chapter uses the following R-packages: imputeTS and plotrix.
1 It is also possible to use more powerful mathematical approaches in such cases with signal theory
and transfer functions; see Sect. 9.7.

© Springer Nature Switzerland AG 2018
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under 1) that accounts for discretizing the underlying continuous process (Glass
et al. 2003).

The final variable λt+1 represents the expectation for the new number of infect-
eds in generation t + 1. The actual number of infecteds that will appear in genera-
tion t +1 will follow some stochastic distribution around λt+1. For example It+1 ∼
Po(λt+1) (Miramontes and Rohani 1998) or It+1 ∼ NegBin(λ , It) (Bjørnstad et al.
2002a) depending on the exact assumptions regarding the variability in the underly-
ing process.2 The link to the chain-binomial comes about because 1−exp(−φ)≈ φ ,
when φ is small, and the binomial process—for which we need to know the suscep-
tible denominator (which is usually unknown)—can be approximated with a Pois-
son or negative binomial distribution (depending on assumptions; Bjørnstad et al.
2002a) neither of which require known denominators.

Stochasticity may further enter through variable numbers of births or random
variation in the transmission rates. The SimTSIR-function does stochastic simu-
lation akin to the chain-binomial simulator (Sect. 3.5) but with the possibility of
having stochastic variation in β (controlled by the sdbeta argument):

SimTsir=function(alpha=0.97, B=2300, beta=25,
sdbeta=0, S0 = 0.06, I0=180, IT=520,
N=3.3E6){
#Set up simulation
lambda = rep(NA, IT)
I = rep(NA, IT)
S = rep(NA, IT)
#Add initial conditions
I[1] = I0
lambda[1] = I0
S[1] = S0*N

#Run simulation
for(i in 2:IT) {

lambda[i] = rnorm(1, mean=beta, sd=sdbeta) *
I[i - 1]ˆalpha * S[i - 1] /N

if(lambda[i]<0) {lambda[i]=0}
I[i] = rpois(1, lambda[i])
S[i] = S[i - 1] + B - I[i]

}
#Return result
list(I = I, S = S)

}

2 The negative binomial arises from assuming an epidemic birth-and-death process, in which case
the offspring distribution from each infected is a geometric distribution and the sum of It geometrics
is a negative binomial with “clumping parameter” It .
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In the function IT is the length of the time series to be simulated. S0 and I0 are
initial conditions, and B is the susceptible recruitment. The parameters in the model
are provided with default values. These values correspond roughly to estimates from
the measles time series for London for the period 1944–1965 (see Sect. 7.4), a city
with 3.3 million inhabitants at the time. The trajectories in time and in the phase
plane are (Fig. 7.1):

out = SimTsir()
par(mfrow=c(1,2))
plot(out$I, ylab="Infected", xlab="Time", type="l")
plot(out$S, out$I, ylab="Infected", xlab="Susceptible",

type="l")
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Fig. 7.1 A stochastic realization from the TSIR model with demographic stochasticity
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7.2 Estimating Parameters in Dynamic Models

There are many strategies for estimating the parameters of dynamic models from
time-series data. They differ conceptually in the way they handle demographic and
environmental stochasticity (sometimes referred to jointly as “process error”), ob-
servation error, and partial (missing) observation. The strategies also often vary by
whether the underlying dynamics is thought to be best approximated in continuous
time (differential models) or discrete time (difference models).

In reality, disease dynamics is always affected by some level of demographic
and environmental stochasticity, and observation error comes in the form of both
inaccuracies in observation and missing information—the exposed (latent) class of
an SEIR-like system, for example, is very rarely monitored (tuberculosis perhaps
being an exception). Furthermore, while disease dynamics very rarely play out in
discrete generation (in-host dynamics of Eimeria and sometimes Plasmodium being
exceptions; Mideo et al. 2013), they also never follow the exponential waiting-time
distributions implicit in ODE-models (Fig. 2.6). As discussed in Sect. 2.7 various
types of distributed-delay models or renewal equations can cover the continuum
between fixed (discrete) and exponential distributions (the original formulations of
Kermack and McKendrick (1927) is an early example), but these come at a prize of
mathematical/computational overhead.

Our previous implementation of Ferrari et al.’s (2005) removal method (Sect. 3.4)
for fitting the chain-binomial model for a simple epidemic is an example of a model
that assumes that all process error is due to demographic stochasticity (according
to the chain-binomial) and that observation error is sufficiently insignificant to be
ignored.3 The method finds parameters (S0 and β ) that predict an epidemic curve
that most closely (in a likelihood-sense) resembles the data. This is an example of
the strategy of trajectory matching; Chose parameters that produces a predicted tra-
jectory that comes most close to the observed. It is also common to use trajectory
matching for a continuous-time SIR model of simple epidemics, but instead as-
sume that all process error is sufficiently insignificant to be ignored. In this case we
find parameters that predict prevalence curves that most closely resembles the data
assuming an underlying deterministic epidemic clockwork cloaked by observation-
error only (Chap. 8).

A variety of other approaches has been proposed to fit dynamical models to eco-
logical and epidemiological time-series models including:

• Gradient matching: Fitting ODEs in the presence of significant process noise
(Ellner et al. 2002). The idea is to estimate derivatives dx/dt along the time series
(for example, by fitting a spline and calculate its derivatives) and then relate them
to relevant state variables.

• Probe matching was introduced by Kendall et al. (1999) and its statistical proper-
ties were later formalized in Wood’s (2010) “synthetic likelihood.” The idea is to

3 And sacrificed on the “bias-variance altar” of hierarchical uncertainty, as discussed by Polacheck
et al. (1993).
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choose parameters that make the model most closely reproduce what are deemed
to be the critical dynamical features of the system.

• Hierarchical models using MCMC (e.g., Clark and Bjørnstad 2004) which has
been much refined as Partially observed Markov Processes in the pomp-package
(King et al. 2015b).

• One of the simpler methods, which this chapter is devoted to, is the time-series
SIR model (Finkenstädt and Grenfell 2000; Bjørnstad et al. 2002a; Grenfell et al.
2002).

7.3 Estimation Using the TSIR

Estimation using the TSIR came out of a pragmatic attempt at dealing with the
complexities of disease dynamics and incidence data using basic statistical tools. In
its original form it assumes that process noise is due to demographic stochasticity
and observation error is in the form of time-invariant’ish under-reporting that in
large populations can be adequately corrected for in a deterministic fashion.

We will consider the biweekly incidence (number of cases for each 2-week
period) of measles from London between 1944 and 1965 (Fig. 6.8) introduced in
Sect. 6.5.

data(meas)

The incidence are accessed as meas$London. In addition, the data set con-
tains columns reporting meas$year, meas$week, the two combined into
meas$time, and biweekly number of births (meas$B). Birth numbers are annual,
so in the data set, this number is evenly distributed across the 26 biweeks of each
year. We should be able to use this data to estimate key epidemiological parameters.
However, we somehow have to reconstruct the susceptible time series (and correct
for under-reporting). . .

7.3.1 Inference (Hypothetical)

Given Eq. (7.2) and time series of I and S, the candidate for estimation is obvious:

log(It+1) = log(β )+αlog(It)+ log(St)− log(N). (7.3)

We can estimate the unknown parameters β and α by a regression of log(It+1) on
log(It) with log(St) and − log(N) as offsets (i.e., the slope for the log(S) and the
− log(N) variables are fixed at unity) or the equivalent generalized linear model
with a log-link. The intercept of this regression would be the estimate of log(β )
and the slope against log(It) would be the estimate of α .

In R, this would go something like:
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# Align time series
IT = length(meas$London)
Inow = log(meas$London[2:IT])
Ilag = log(meas$London[1:(IT - 1)])
Slag = log(S[1:(IT - 1)]) #This does not yet exist
# now the regression
glm(Inow ˜ Ilag + offset(Slag) + offset(-N))

7.4 Inference (for Real)

The challenge is that most real data sets do not contain perfect records on the state
variables. For example, the meas data does not contain information on S, and I is
generally under-reported. Another challenge is the strong seasonality in transmis-
sion rates that result from aggregation of children during school term but not during
school holidays.

7.4.1 Susceptible Reconstruction

While we do not have observation on susceptibles, we do have information on the
number of births. The idea of susceptible reconstruction was laid out by Boba-
shev et al. (2000). Consider how the recursive susceptible equation (Eq. 7.1) can
be rewritten as:

St = S+D0 +
t

∑
k=0

Bk −
t

∑
k=0

Ik/ρ , (7.4)

where S is the mean number of susceptibles, D0 is the unknown deviations around
the mean at time 0, and ρ is the (known or unknown) reporting rate. We can re-
construct the time series Dt of how the susceptible numbers deviate from the mean
value, Dt = St −S, by rewriting (7.4) as,

t

∑
k=0

Bk = S+D0 +1/ρ
t

∑
k=0

Ik +Dt , (7.5)

from which it is clear that Dt is the residual from the regression of cumulative num-
ber of births on the cumulative number of cases. Note, that this reconstruction still
works when the reporting rate ρ is unknown because under-reporting can be ac-
counted for by the slope of the cumulative-cumulative regression.
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As it turns out, reporting rates sometimes vary subtly through time, so it is good
to use a slightly more flexible model than linear regression (Finkenstädt et al. 2002),
for example, a smoothing spline (with 5 degrees-of-freedom) (Fig. 7.2).

cum.reg = smooth.spline(cumsum(meas$B),
cumsum(meas$London), df=5)

D = - resid(cum.reg) #The residuals

plot(cumsum(meas$B), cumsum(meas$London), type="l",
xlab="Cumulative births", ylab="Cumuative incidence")

lines(cum.reg)
abline(a=0,b=1)
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Fig. 7.2 Cumulative incidence versus cumulative births. The straight line is the 1-to-1 reference
line

The 1-to-1 line generated by the abline-command shows that the cumula-
tive number of cases are less than the cumulative number of births (Fig. 7.2). The
discrepancy is informative because we know from serology that almost all children
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were infected with the common childhood infections before the age of 20 in the
pre-vaccination era; Black’s (1959) data, for example, has seroprevalence >95% by
age 15 in pre-vaccination Connecticut (Sect. 4.3). The slope of the cumulative re-
gression, therefore, is an estimate of the reporting rate. We can get the estimated
reporting rates for each time step from the slope of the fitted spline:

rr = predict(cum.reg, deriv = 1)$y
summary(rr)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.3485 0.3841 0.4424 0.4522 0.5214 0.5635

The reporting rate is fairly steady across the 20 years at around 45%. We can
create time series corrected for reporting of both incidence, Ic, and susceptible
deviation, Dc:

Ic = meas$London/rr
Dc = D/rr

7.4.2 Estimation

To estimate parameters we rewrite the model (Eq. 7.3) in terms of the data and un-
known parameters on a log-scale (recall that λt+1 is the expected number of cases
in generation t +1):

log(λt+1) = log(βu)− log(N)+ log(Dt +S)+αlog(It).

This is almost (but not quite) a linear regression with unknown parameters βu, α ,
and S. Before we are ready to estimate the parameters, however, we need to consider
the fact that βu varies seasonally (because of the school year); Thus the subscript u.
The most flexible model is to assume that each of the 26 biweeks of the year has its
own transmission rate. Under that assumption we have 28 parameters to estimate (26
β s, α , and S). Let us define a vector that flags the periodic β s across the 21 years,
and create the three vectors of current (lInew) and lagged log-infecteds (lIold)
and lagged “residual susceptibles” (Dold) :

seas = rep(1:26, 21)[1:545]
lInew = log(Ic[2:546])
lIold = log(Ic[1:545])
Dold = Dc[1:545]
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Given a value for S, the models falls neatly within the linear regression frame-
work.4 We can therefore use glm to find a profile likelihood estimate of S. We know
from serology that the average proportion of susceptibles in measles is somewhere
in the 2–20% range and—given the size of London at the time (3.3M)—we can
postulate a reasonable range of candidate values:

N = 3300000
Smean = seq(0.02, 0.2, by = 0.001) * N
offsetN = rep(-log(N), 545)

We set up a vector to store the log-likelihood values corresponding to each can-
didate, and loop over the candidate values to generate a likelihood profile for S
(Fig. 7.3).

llik = rep(NA, length(Smean))
for(i in 1:length(Smean)){

lSold = log(Smean[i] + Dold)
glmfit = glm(lInew ˜ -1 +as.factor(seas) + lIold +

offset(lSold+offsetN))
llik[i] = glmfit$deviance / 2

}
par(mfrow=c(1,1))
plot(Smean/3.3E6, llik, ylim=c(min(llik), 25),

xlab="Sbar", ylab="Neg log-lik")

The -1 in the regression formula removes the intercept, so that
as.factor(seas) becomes the estimates of the log-β s. Note, further that
glmfit$deviance holds -2*log likelihood, so the negative log-likelihood is 1/2
the deviance.5

Our best estimates for the TSIR model is:

lSold = log(Smean[which(llik==min(llik))] + Dold)
glmfit = glm(lInew ˜ -1 +as.factor(seas) + lIold +

offset(lSold+offsetN))

That is, S is

Smean[which.min(llik)]/3300000

## [1] 0.045

4 Though had it not, we could write out the likelihood, and use optim or mle2 to find MLEs as
in Chap. 3.
5 An alternative to the Gaussian likelihood is to use a “counting”-likelihood such as the Poisson
quasi-likelihood with a log-link. For this we would replace the code with:
lnew = Ic[2:546]
glmfit = glm(lnew ∼ -1 + as.factor(seas) + lIold +
offset(lSold+offsetN), family=quasipoisson(link="log")).
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Fig. 7.3 The likelihood profile for S from the TSIR applied to the London measles time series

α is

glmfit$coef[27]

## lIold
## 0.9636908

and the log-β s are in glmfit$coef[1:26]. The seasonal β s with SEs are
plotted in Fig. 7.4. The β s vary significantly through the year and are lowest during
the summer holidays.

require(plotrix)
beta=exp(glmfit$coef[1:26])
ubeta=exp(glmfit$coef[1:26] +

summary(glmfit)$coef[1:26, 2])
lbeta=exp(glmfit$coef[1:26] -

summary(glmfit)$coef[1:26, 2])
plotCI(x=c(1:26), y=beta, ui=ubeta, li=lbeta,
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xlab="Biweek", ylab=expression(beta))
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Fig. 7.4 The estimated seasonal β s with SEs from the London measles time series

7.5 Simulating the TSIR Model

We can write a general function SimTsir2 to simulate the seasonally forced
TSIR using the estimated parameters. We write it to perform either a deter-
ministic (type="det") or a stochastic (assuming demographic stochasticity
type="stoc") simulation.

SimTsir2=function(beta, alpha, B, N, inits =
list(Snull = 0, Inull = 0), type = "det"){
type = charmatch(type, c("det", "stoc"),

nomatch = NA)
if(is.na(type))

stop("method should be \"det\", \"stoc\"")
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IT = length(B)
s = length(beta)
lambda = rep(NA, IT)
I = rep(NA, IT)
S = rep(NA, IT)

I[1] = inits$Inull
lambda[1] = inits$Inull
S[1] = inits$Snull

for(i in 2:IT) {
lambda[i] = beta[((i - 2) %% s) + 1] *

S[i - 1] * (I[i - 1]ˆalpha)/N
if(type == 2) {

I[i] = rpois(1, lambda[i])
}
if(type == 1) {

I[i] = lambda[i]
}
S[i] =S[i - 1] + B[i] - I[i]

}
return(list(I = I, S = S))

}

Simulated dynamics is sensitive to the value of α and there is evidence that the
TSIR regression is biased with respect to this parameter.6 A simulation using the
estimated parameters (with a small correction in α) is shown in Fig. 7.5. While not
perfect, the model nicely captures the transition from annual to biennial epidemics
as birth rates fall following the post-World War II baby boom.

sim=SimTsir2(beta=exp(glmfit$coef[1:26]), alpha=0.966,
B=meas$B, N=N, inits=list(Snull=Dc[1]+
Smean[which(llik==min(llik))], Inull=Ic[1]))

plot(sim$I, type="b", ylim=c(0, max(Ic)),
ylab="Incidence", xlab="Biweek")

lines(exp(lInew), col="red")
legend("topleft", legend=c("sim", "Ic"), lty=c(1,1),

pch=c(1,NA), col=c("black", "red"))

Bjørnstad et al. (2002a) and Grenfell et al. (2002) used the TSIR on measles
time series from 60 conurbations in pre-vaccination England and Wales to bet-
ter understand the dynamics and how it scales with community size. They found

6 Metcalf et al. (2011a) proposed to use a “Whittle estimator” of α to reestimate this variable by
matching simulated and observed power spectra.
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Fig. 7.5 Observed and TSIR-simulated dynamics for measles in London 1944–1965

that R0 was independent of population size, suggesting that even if transmission is
density-dependent, the social clique-size does not differ between large cities and
small towns. They speculated that this is because school classes are similar in size
across the conurbations (see also Ferrari et al. 2011).

The TSIR has also been used to study the dynamics of rubella (Metcalf et al.
2011a), hand-foot-and-mouth (Takahashi et al. 2016), a variety of other childhood
diseases (e.g., Metcalf et al. 2009; Mahmud et al. 2017) and the in-host dynamics
of malaria (see Sect. 7.7).

7.6 Tycho Data

Dalziel et al. (2016) compiled demographic data consistent with the level-2 measles
data in Project Tycho for 40 cities in the USA (1906–1948) and 40 cities in the UK
(1944–1964). The full data set is available from datadryad.org. The US portion of
the data are in the dalziel data set of the epimdr-package:

data(dalziel)

pop contains interpolated population sizes from the 10-year census surveys, and
rec contains reconstructed number of births. The data are biweekly (to match the
generation time of measles). We can use this data to fit the TSIR to other diseases
with a two-week’ish serial interval. The Philadelphia scarlet fever data is weekly
from Jan 1915 to Dec 1947. To prepare it for TSIR modeling we delete the occa-
sional 53rd week and aggregate in 2-week intervals:

http://datadryad.org/resource/doi:10.5061/dryad.r4q34
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data(tyscarlet)
tyscarlet=tyscarlet[tyscarlet$WEEK<53,]
tyscarlet=tyscarlet[tyscarlet$YEAR>1914,]
ag=rep(1:(dim(tyscarlet)[1]/2), each=2)
scarlet2=sapply(split(tyscarlet$PHILADELPHIA, ag), sum)

Then merge it with the appropriate part of the dalziel data set (and impute a
dozen missing values):

require(imputeTS)
philly=dalziel[dalziel$loc=="PHILADELPHIA", ]
philly=philly[philly$year > 1914 & philly$year < 1948,]
philly$cases=na.interpolation(ts(scarlet2))

cum.reg = smooth.spline(cumsum(philly$rec),
cumsum(philly$cases), df=10)

D = - resid(cum.reg) #The residuals
rr = predict(cum.reg, deriv=1)$y
summary(rr)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.03348 0.09533 0.10970 0.10990 0.13720 0.16680

The reporting rate is around 10%. We create time series corrected for under-
reporting of both incidence, Ic, and susceptible deviation, Dc:

Ic = philly$cases/rr
Dc = D/rr

seas = rep(1:26, 21)[1:597]
lInew = log(Ic[2:598])
lIold = log(Ic[1:597])
Dold = Dc[1:597]
N = median(philly$pop)
offsetN = rep(-log(N), 597)

We set up the vectors for profile likelihood on S and loop over all candidates to
find the MLE.

Smean = seq(0.02, 0.6, by=0.001)*N
llik = rep(NA, length(Smean))
for(i in 1:length(Smean)){

lSold = log(Smean[i] + Dold)



7.7 In-Host Malaria Dynamics 131

glmfit = glm(lInew ˜ -1 +as.factor(seas) + lIold +
offset(lSold+offsetN))

llik[i] = glmfit$deviance
}
Smean[which(llik==min(llik))]/N

## [1] 0.206

The estimated mean fraction of susceptibles suggests an R0 of around 5. Our best
estimates for alpha are:

lSold = log(Smean[which.min(llik)] + Dold)
glmfit = glm(lInew ˜ -1 +as.factor(seas) + lIold +

offset(lSold+offsetN))
#alpha
glmfit$coef[27]

## lIold
## 0.8336856

and the log-β s with SEs are shown in Fig. 7.6. The lower transmission during the
summer holiday is conspicuous.

beta=exp(glmfit$coef[1:26])
ubeta=exp(glmfit$coef[1:26] +

summary(glmfit)$coef[1:26, 2])
lbeta=exp(glmfit$coef[1:26] -

summary(glmfit)$coef[1:26, 2])
plotCI(x=c(1:26), y=beta, ui=ubeta, li=lbeta,

xlab="Biweek", ylab=expression(beta))

7.7 In-Host Malaria Dynamics

Metcalf et al. (2011b) noted the analogies between the TSIR-like dynamics of im-
munizing human pathogens and the within-host dynamics of malaria-causing para-
sites in their mammalian hosts. During the blood-stage of infection, infected red
blood cells (RBC) burst open in synchrony every 24, 48, or 72 h depending on
species to release 6–30 merozoites (depending on species). Merozoites then have
a narrow time window to find and invade susceptible cells to start the next repli-
cation cycle. The malaria TSIR model assumes that the number of infected cells
at generation t+1 is captured by It+1 = PE,t ItSt , where—in this in-host model—It
and St are the number of infected and uninfected RBCs and PE,t is the time-varying
effective propagation number. This quantity can be thought of as the product of
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Fig. 7.6 The estimated seasonal β s with SEs for scarlet fever in Philadelphia between 1914 and
1948

merozoite burst size, evasion of host immunity, contact rates between merozoites
and uninfected RBCs, and invasion probability given that a contact has occurred.

We will consider data for the mouse parasite, Plasmodium chaubaudi, which has
a 24-h replication cycle, and use daily data from day 3 to 21 of 10 laboratory mice
infected with the AQ-strain of P. chaudaudi as collected by Sylvie Huijben (we
will revisit on these data in Sects. 15.3 and 16.6). The SH9 data is in long-format.
We use reshape to make matrices with the time series of infected (paras) and
uninfected (RBC) red blood cells, and do some basic data formatting:

data(SH9)
#subset RBC data
SH9rbc=SH9[,-c(1,3,4,7,8,10,11)]
#Bump up RBC to microliter
SH9rbc[,4]=SH9rbc[,4]*10ˆ6
#subset parasitemia data
SH9para=SH9[,-c(1,3,4,7,8,9, 10)]
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#reshape to wide
SH9rbcw = reshape(SH9rbc, idvar = "Ind2", direction =

"wide", timevar="Day")
SH9pw = reshape(SH9para, idvar = "Ind2", direction =

"wide", timevar="Day")
#delete duplicate columns
SH9rbcw=SH9rbcw[,-seq(4,50,by=2)]
names(SH9rbcw)[2]="Treatment"
SH9pw=SH9pw[,-seq(4,50,by=2)]
names(SH9pw)[2]="Treatment"

#drop last columns of data not counted every day
SH9pw=SH9pw[,-c(22:27)]
SH9rbcw=SH9rbcw[,-c(22:27)]
#Pull out AQ mice
paras=SH9pw[1:10,-c(1:2)]
SH9rbcw=as.matrix(SH9rbcw[1:10,-c(1:2)])
#Uninfected are total RBCs less infected
RBCs=as.matrix(SH9rbcw-paras)

The time series of infected and susceptible RBCs is shown in Fig. 7.7.

par(mfrow=c(1,2),bty="l")
matplot(t(log(RBCs)),type="l",xlab="Day",

ylab="Uninfected log-RBCs")
matplot(t(log(paras)),type="l",xlab="Days",

ylab="Infected log-RBCs")

We fit the model after log-transforming and lagging as needed:

Tmax = length(paras[1,]) ##max number of days
Nind = length(paras[,1]) ##number of individuals
day = matrix(rep(1:(Tmax-1),each=Nind),Nind,Tmax-1)
day = c(day)

#Log infected cells
log.para = log(paras[,2:Tmax])
log.para.lag = log(paras[,1:(Tmax-1)])
log.para = unlist(c(log.para))
log.para.lag = unlist(c(log.para.lag))

#Log uninfected cells
log.rbcs.lag = log(RBCs[,1:(Tmax-1)])
log.rbcs.lag = unlist(c(log.rbcs.lag))
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Fig. 7.7 Numbers of infected and susceptible red blood cells in mice infected by the P. chaudaudi
AQ-strain in 10 different mice

Occasionally, the parasite count is below the detection limit. We replace these
zeros with minimum observed values:

log.para[!is.finite(log.para)] =
min(log.para[is.finite(log.para)] , na.rm=T)

log.para.lag[!is.finite(log.para.lag)] =
min(log.para[is.finite(log.para)] , na.rm=T)

The model fitting is similar to that done for measles, except that Plasmodium
replication occurs in discrete, synchronous cycles (Mideo et al. 2013); so the model
does not need the α exponent.

data = data.frame(log.para=log.para, day=day,
log.para.lag=log.para.lag, log.rbcs.lag=log.rbcs.lag)

fit = glm(log.para ˜ -1+as.factor(day)+
offset(log.para.lag+log.rbcs.lag), data=data)
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Figure 7.8 shows the estimated daily propagation numbers and associated in-host
effective reproductive numbers (RE,t = PE,tSt ). The REs are initially around 6 which
is close to (but a little smaller than) the burst-size of P. chaubodi. This drops to
around one after a week. Metcalf et al. (2011b) discuss how the drop in RE reflects
susceptible depletion and the action of innate and acquired immunity.

par(mfrow=c(1,2))
require(plotrix)
ses = summary(fit)$coeff[,2]
beta=exp(fit$coef)
ubeta=exp(fit$coef+ses)
lbeta=exp(fit$coef-ses)
plotCI(x=c(3:20), y=beta, ui=ubeta, li=lbeta,

xlab="Day", ylab=expression(P[E]))
points(x=c(3:20), exp(fit$coeff), type="b",pch=19)
plotCI(x=c(3:20), y=beta*colMeans(RBCs)[-19], ui=ubeta*

colMeans(RBCs)[-19], li=lbeta*colMeans(RBCs)[-19],
xlab="Day", ylab=expression(R[E]))

points(x=c(3:20), beta*colMeans(RBCs)[-19],
type="b",pch=19)

abline(h=1,lty=3)

7.8 ShinyApp

The epimdr-package contains the TSIR.app to simulate the nonseasonal TSIR.
The app can be launched from R through:

require(shiny)
TSIR.app
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Fig. 7.8 Estimated propagation numbers and effective in-host reproductive numbers of P. chau-
daudi in mice infected with the AQ strain



Chapter 8
Trajectory Matching

8.1 Preamble: Prevalence Versus Incidence

When we fit mechanistic models to data, we have to consider carefully the relation-
ship between the nature of the data versus the nature of the model state variables.
For example, when we work with continuous-time S(E)IR models it is important
to keep in mind that incidence is not prevalence; so if our data is incidence we will
need to do something more than trying to match simulated prevalence with observed
incidence. We therefore start with a toy example using simulated data.

When/if we can assume that dynamics is unaffected by process noise (demo-
graphic and environmental stochasticity), we can fit models to data using trajectory
matching. The assumption is that discrepancies between the observations and the
predictions from the dynamic model are due to observational errors. The upside
of trajectory matching is that we can easily fit continuous-time models to variably
spaced observations on any/all state-variable, the downside is that these assumptions
are usually restrictive.

8.2 Event-Based Stochastic Simulation

To begin, we will consider how to stochastically simulate the continuous-time
SIR model (Eqs. (2.1)–(2.3)). Previously we consider stochastic simulation using
discrete-time models. An alternative is to do continuous-time stochastic simulation
using an event-based approach: The Gillespie exact algorithm (Gillespie 1977) and

This chapter uses the following R-package: deSolve.
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the τ-leap approximation (Gillespie 2001). As discussed in Sect. 2.7, the S(E)IR-
model (and all simple ODEs) implies exponentially distributed waiting times be-
tween events. The Gillespie algorithms take advantage of this idea. If we for exam-
ple consider how the SIR-states of the SIR flows ((2.1)–(2.3)) should change over
time, we expect the following six possible changes:

• S → S+1 at rate μN from births
• S → S−1 at rate μS from deaths
• S → S−1 and I → I +1 at rate βSI/N from infection
• I → I −1 at rate μI from deaths
• I → I −1 and R → R+1 at rate γI from recovery
• R → R−1 at rate μR from deaths

Thus, the system is expected to change by an overall summed rate of r = μN+μS+
βSI/N + μI + γI + μR. We can therefore draw a random exponential waiting-time
with mean r to update a continuous-time clock, then draw a random event from a
multinomial distribution with probabilities given by the relative rates, update the
state variables accordingly, and repeat. . .

Because of the many versions of compartmental models used in studying disease
dynamics, it is useful to write a general purpose stochastic simulator that can be
applied to any set of rate equations. To this end we first define a rlist-list of
equations corresponding to the rates for the six transitions of the SIR flows. The
quote-formalism allows us to set up the list such that all equations can be evaluated
in a single sapply-call as the simulation progress.

rlist=c(quote(mu * (S+I+R)), #Births
quote(mu * S), #Sucseptible deaths
quote(beta * S * I /(S+I+R)), #Infection
quote(mu * I), #Infected death
quote(gamma * I), #Recovery
quote(mu*R)) #Recovered death

We next define a transition matrix associated with each SIR event. The three
columns correspond to changes in S, I, and R, respectively; The rows correspond to
the six possible events.

emat=matrix(c(1,0,0,
-1,0,0,
-1,1,0,
0,-1,0,
0,-1,1,
0,0,-1),
ncol=3, byrow=TRUE)

We finally write a general-purpose function to simulate a dynamical systems us-
ing the Gillespie algorithm. The idea is to write a function that is sufficiently robust
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and general that it can be applied to event-based stochastic simulation of any model
that fits within a compartmental framework. The function takes five arguments to
accomplish this:

• rateqs—a list of E rate equations corresponding to each of the E possible
events using the quote-formalism

• eventmatrix—a E-by-S matrix of changes to each of the S state variables
associated with each event

• parameters—a vector of parameter values
• initialvals—a vector of initial values for the S states
• numevents—number of events to be simulated

gillespie=function(rateqs, eventmatrix, parameters,
initialvals, numevents){

res=data.frame(matrix(NA, ncol=length(initialvals)+1,
nrow=numevents+1))

names(res)=c("time", names(inits))
res[1,]=c(0, inits)
for(i in 1:numevents){
#evaluate rates
rat=sapply(rateqs, eval,

as.list(c(parameters, res[i,])))
#update clock
res[i+1,1]=res[i,1]+rexp(1, sum(rat))
#draw event
whichevent=sample(1:nrow(eventmatrix), 1, prob=rat)
#updat states
res[i+1,-1]=res[i,-1]+eventmatrix[whichevent,]
}

return(res)
}

We provide parameters and initial conditions for a stochastic simulation assum-
ing an infectious period of 20 days (Fig. 8.1):

paras=c(mu=1, beta=500, gamma=365/20)
inits=c(S=100, I=2, R=0)
sim=gillespie(rlist, emat, paras, inits, 1000)
matplot(sim[,1],sim[,2:4], type="l", ylab="Numbers",

xlab="Time", log="y")
legend("topright", c("S", "I", "R"), lty=c(1,1,1),

col=c(1,2,3))

The Gillespie algorithm provides an “exact” stochastic simulation in the sense
that the time-evolution of the system is changing exactly according to the expo-
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Fig. 8.1 A Gillespie exact simulation of the stochastic SIR model with μ = 1, β = 500, and γ =
365/20

nential waiting-time distributions of the stochastic differential system. It is, how-
ever, computationally expensive as every event is recorded separately. Gillespie’s
τ-leap method uses the Poisson approximation corresponding to the discussion of
Sect. 7.1; If we assume that the interval, Δ t, is sufficiently short that any change
in the rates are negligible, the number of events should be Poisson-distributed with
mean overallrate ∗ Δ t and multinomially divided among the events according to
their relative rates.

We write a general τ-leap simulator and then apply it to the SEIR model. The
SEIR model has eight possible events:

• S → S+1 at rate μN from births
• S → S−1 at rate μS from deaths
• S → S−1 and E → E +1 at rate βSI/N from infection
• E → E −1 at rate μE from deaths
• E → E −1 and I → I +1 at rate σE from becoming infectious
• I → I −1 at rate μI from deaths
• I → I −1 and R → R+1 at rate γI from recovery
• R → R−1 at rate μR from deaths
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We thus have the following event matrix:

emat2=matrix(c(1,0,0,0,
-1,0,0,0,
-1,1,0,0,
0,-1,0,0,
0,-1,1,0,
0,0,-1,0,
0,0,-1,1,
0,0,0,-1),
ncol=4, byrow=TRUE)

The SEIR equations associated with each event are:

rlist2=c(quote(mu * (S+E+I+R)), quote(mu * S),
quote(beta * S * I/(S+E+I+R)), quote(mu*E),
quote(sigma * E), quote(mu * I),
quote(gamma * I), quote(mu*R))

A general-purpose τ-leap simulator is:

tau=function(rateqs, eventmatrix, parameters,
initialvals, deltaT, endT){

time=seq(0, endT, by=deltaT)
res=data.frame(matrix(NA, ncol=length(initialvals)+1,

nrow=length(time)))
res[,1]=time
names(res)=c("time", names(inits))
res[1,]=c(0, inits)
for(i in 1:(length(time)-1)){

#calculate overall rates
rat=sapply(rateqs, eval, as.list(c(parameters,

res[i,])))
evts=rpois(1, sum(rat)*deltaT)
if(evts>0){
#draw events
whichevent=sample(1:nrow(eventmatrix), evts,

prob=rat, replace=TRUE)
mt=rbind(eventmatrix[whichevent,],

t(matrix(res[i,-1])))
mt=matrix(as.numeric(mt), ncol=ncol(mt))
#update states
res[i+1,-1]=apply(mt,2,sum)
res[i+1, ][res[i+1,]<0]=0
}
else{ #if no events in delaT
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res[i+1,-1]=res[i,-1]
}}

return(res)
}

We assume an initial population comprised of 1000 individuals and 1 initial in-
fected and simulate daily incidence for 2 years and assume measles-like parameters:

paras = c(mu = 1, beta = 1000,
sigma = 365/8, gamma = 365/5)

inits = c(S=999, E=0, I=1, R = 0)
sim2=tau(rlist2, emat2, paras, inits, 1/365, 2)
matplot(sim2[,1],sim2[,2:5], type="l", log="y",

ylab="Numbers", xlab="Time")
legend("bottomright", c("S", "E", "I", "R"),

lty=c(1,1,1,1), col=c(1,2,3,4))
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Fig. 8.2 A τ-leap simulation of the SEIR model using a daily time step for 2 years assuming
μ = 1, β = 1000, an infectious period of 8 days, a latent period of 5 days, and an initial population
comprised of 1000 individuals one of which is infected
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Following the virgin epidemic, the inherent birth/death stochasticity leads to low-
amplitude oscillations (Fig. 8.2) according to the resonant periodicity of the SEIR
model (see Chap. 9).

8.3 Trajectory Matching

Trajectory matching assumes that the discrepancies between models and data are
due to error of observation. The event-based, stochastic simulation breaks with this
assumption as model discrepancies are due to demographic stochasticity; Let us
nevertheless see if we can fit the SEIR model to the event-based simulation. We first
recall the gradient-function for the system:

require(deSolve)
seirmod = function(t, y, parms) {

S = y[1]
E = y[2]
I = y[3]
R = y[4]

with(as.list(parms), {
dS = mu * (N - S) - beta * S * I/N
dE = beta * S * I/N - (mu + sigma) * E
dI = sigma * E - (mu + gamma) * I
dR = gamma * I - mu * R
res = c(dS, dE, dI, dR)
list(res)

})
}

Following the ideas introduced in Sect. 3.4, we define a likelihood function to
estimate parameters. The Gaussian log-likelihood is = const− n

2 log(RSS), where n
is the length of the time series, RSS is the residual sum-of-squares, and the constant
is n(log(n)− log(2π)−1)/2 (Aitkin et al. 2005).1

lfn=function(p){
times = seq(0, 2, by=1/365)
start = c(S=999, E=0, I=1, R = 0)
paras=exp(c(mu=p[1], N=p[2], beta=p[3],

1 If in a hurry we can ignore the constant and minimize n
2 log(RSS) because it is the relative

likelihood that matters.
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sigma=p[4], gamma=p[5]))
out = as.data.frame(ode(start, times=times,

seirmod, paras))
n=length(sim2$I)
rss=sum((sim2$I-out$I)ˆ2)
return(log(rss)*(n/2)-n*(log(n)-log(2*pi)-1)/2)

}

We next estimate parameters:

# initial values for mu, N, beta, sigma, gamma
paras0 = log(c(2, 500, 500, 365/7, 365/7))
fit = optim(paras0, lfn, hessian = TRUE)

and plot the deterministic prediction:

times = seq(0, 2, by=1/365)
paras = exp(c(mu = fit$par[1], N = fit$par[2],

beta = fit$par[3], sigma = fit$par[4],
gamma = fit$par[5]))

start = c(S=999, E=0, I=1, R = 0)
out = as.data.frame(ode(start, times, seirmod, paras))
plot(out$time, out$I, xlab="Time", ylab="Prevalence",

type="l")
lines(sim2$time, sim2$I, col=2, type="l")
legend("topright", c("Gillespie simulation",

"SEIR fit"), lty=c(1,1), col=c(2,1))

The trajectory-match’ed fit predicts the virgin epidemic and the next dampened
epidemic well, but not—as expected—the subsequent stochastically excited low-
amplitude cycles (Fig. 8.3). In addition to finding parameter estimates we are usually
interested in uncertainty and trade-offs among parameters in producing a fit to the
data.

8.4 Likelihood Theory 101

We have used maximum likelihood principles in several of our previous analysis
of, for example, the chain-binomial, the catalytic and the TSIR models. We have,
however, not discussed likelihood theory in a formal fashion.2 For our purposes it

2 Bolker (2008) is an excellent broad discussion on estimation for ecologically realistic models
using a variety of methods.
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Fig. 8.3 SEIR fitted predicted trajectory superimposed on the τ-leap simulation of the SEIR model

is useful to summarize the key results with respect to inference from “elementary”
likelihood theory with maximum brevity (see, for example, appendix A of McCul-
lagh and Nelder 1989):

• Let L(D|θ) be the function that calculates the likelihood for a set of data, D; i.e.,
the probability of observing the data given some values for the parameters, θ .
The values that maximize this probability are the maximum likelihood estimates
(MLEs) of the parameters, θ̂ .

• If �(θ) is the negative log-likelihood (i.e., − logL), then θ̂ are the values that
minimizes �. If data points are independent, then the joint log-likelihood is simply
the sum of the log-likelihoods of the data points.

• The MLE is a minimum of �, so the score function U(θ) = ∂�/∂θ is zero at the
MLE.

• The likelihood profile graphs how �(θ) changes with θ . The 95% confidence
interval is the set of values of θ for which �(θ) is within χ2(0.95, p)/2 of the
minimum, where p is the number of parameters. The quantity 2�(θ) is referred
to as the deviance, so if we work with the deviance we would use χ2(0.95, p) as
the cut-off.

• The second derivative of �(θ) with respect to θ is called the Fisher informa-
tion, ι(θ) = ∂ 2�/∂θ 2. The inverted information matrix is an approximation to
the variance-covariance matrix of the parameters, so we can obtain approximate
standard errors as the square-root of the diagonal of the inverted information ma-
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trix. The approximate correlation matrix is the standardized inverted information
matrix.

• A matrix of second derivatives is generally referred to as a Hessian matrix. If we
call optim(..., hessian=TRUE), R will numerically estimate the Hes-
sian at the minimum, so if the function to be minimized is the negative log-
likelihood, we can obtain approximate SEs and the approximate correlation ma-
trix from this Hessian.

• If we have two alternative models that are nested—meaning that the more com-
plex model contains all the parameters of the simpler—then we can test for
significant model improvement; the difference in the log-likelihood is χ2(d f =
Δ p)/2-distributed, where Δ p is the number of extra parameters in the complex
model.3

We apply these ideas to our model fit:

# MLEs:
round(exp(fit$par), 4)

## [1] 1.5165 642.3009 563.3407 50.3001 69.6786

# Approximate SEs:
round(exp(sqrt(diag(solve(fit$hessian)))), 4)

## [1] 1.2744 1.2441 1.2561 1.0224 1.0240

# Correlation matrix:
round(cov2cor(solve(fit$hessian)), 4)

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.0000 -0.9976 -0.9972 0.6107 -0.9546
## [2,] -0.9976 1.0000 0.9974 -0.5872 0.9649
## [3,] -0.9972 0.9974 1.0000 -0.6421 0.9543
## [4,] 0.6107 -0.5872 -0.6421 1.0000 -0.4653
## [5,] -0.9546 0.9649 0.9543 -0.4653 1.0000

The true parameter values used in the simulation were μ = 1, N = 1000, β =
1000, σ = 45.6, and γ = 73. So while the model prediction gives a good fit, the
parameter estimates are not particularly accurate. This is where it is useful to use
likelihood theory more extensively. From the normalized inverted Hessian we see
that several of the parameters are highly (positively or negatively) correlated, and
several with correlations more extreme than ±0.9. That means that different param-
eter combination may provide a very similar fit to the data. This is an illustration
of identifiability problems; With observations only on the infectious stage, for in-
stance, a relatively short infectious period and high transmission rate will predict a

3 If the models are non-nested, formal tests are not available but information theoretical rankings
of models using AIC, BIC, AIC-weights, etc. are useful.

https://en.wikipedia.org/wiki/Hessian_matrix
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similar trajectory to a relatively short latent period and a lower transmission rate.
Furthermore, a smaller population size and higher birth rate can result in identical
susceptible recruitment rate than a larger population with lower birth rate. For infer-
ence it is therefore normally best to inform the analysis with any known biological
quantities; For example if the latent and infectious periods are known from house-
hold or clinical studies, it may be best not to attempt to infer these from the time
series alone (though, as King et al. (2008) point out for Cholera dynamics, conven-
tional wisdom may not always be consistent with dynamical patterns). Moreover, if
there are strong correlations, the individual SEs (and CIs derived there from) may
be a poor representation of parametric uncertainty. It may then be better to look at
pairwise confidence ellipses (e.g., Bolker 2008).

8.5 SEIR with Error

We can use ode to integrate the SEIR model and add noise, to generate a data
set that exactly adheres to the assumption that the dynamics is only affected by
observational noise. Let us simulate 10 years of weekly data assuming measles’ish
parameters and that 6% of the initial population is susceptible:

times = seq(0, 10, by=1/52)
paras = c(mu = 1/50, N = 1, beta = 1000,

sigma = 365/8, gamma = 365/5)
start = c(S=0.06, E=0, I=0.001, R = 0.939)

out = as.data.frame(ode(start, times, seirmod, paras))

We add noise to the data using the jitter-function (Fig. 8.4),

datay = jitter(out$I, amount = 1e-04)

plot(times, datay, ylab = "Infected", xlab = "Time")
lines(times, out$I, col = 2)

define a Gaussian likelihood function,

lfn=function(p, data){
times = seq(0, 10, by=1/52)
start = c(S=0.06, E=0, I=0.001, R = 0.939)
paras=c(mu=p[1], N=p[2], beta=p[3],

sigma=p[4], gamma=p[5])
out = as.data.frame(ode(start, times=times,

seirmod, paras))
n=length(data)
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Fig. 8.4 Fraction infectious and jittered data from the SEIR model assuming μ = 0.02, β = 1000,
σ = 45.6, and γ = 73/year

rss=sum((data-out$I)ˆ2)
return(log(rss)*(n/2)-n*(log(n)-log(2*pi)-1)/2)

}

and estimate parameters using the jittered observations.

# mu, N, beta, sigma, gamma
paras0 = c(1/30, 1, 1500, 365/4, 365/10)
fit = optim(paras0, lfn, data = datay, hessian = TRUE)

The estimates are

# MLEs:
round(fit$par, 3)

## [1] 0.036 1.031 2179.946 71.197 138.851

# Approximate SEs:
round(sqrt(diag(solve(fit$hessian))), 3)

## [1] 0.003 0.066 200.261 7.584 8.718

# Correlation matrix:
round(cov2cor(solve(fit$hessian)), 3)
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## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.000 -0.743 -0.330 -0.407 0.374
## [2,] -0.743 1.000 0.820 -0.258 0.204
## [3,] -0.330 0.820 1.000 -0.658 0.714
## [4,] -0.407 -0.258 -0.658 1.000 -0.821
## [5,] 0.374 0.204 0.714 -0.821 1.000

8.6 Boarding School Flu Data

The boarding school flu data set introduced in Sect. 3.6.1 has an approximate match
between observation and prevalence because the data represents the number of chil-
dren confined to bed each day, and while the average stay in bed (3–7 days) is maybe
a bit different than the infectious period, the durations are comparable.

data(flu)

We define the gradient functions for a closed SIR epidemic:

sirmod = function(t, y, params) {
S = y[1]
I = y[2]
R = y[3]
with(as.list(params), {

dS = -beta * S * I/N
dI = beta * S * I/N - gamma * I
dR = gamma * I
res = c(dS, dI, dR)
list(res)

})
}

and define the likelihood function assuming normally distributed errors

lfn2 = function(p, I, N) {
times = seq(1, 14, by = 1)
start = c(S = N, I = 1, R = 0)
paras = c(beta = p[1], gamma = p[2], N = N)
out = as.data.frame(ode(start, times = times,

sirmod, paras))
n = length(I)
rss = sum((I - out$I)ˆ2)
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return(log(rss) * (n/2) - n * (log(n) -
log(2 * pi) - 1)/2)

}

There are two parameters to estimate: β and γ . The time-scale is daily so we set
reasonable initial conditions and maximize the likelihood:

#beta, gamma
paras0 = c(1.5, 1/2)
flufit = optim(paras0, lfn2, I = flu$cases, N = 763,

hessian = TRUE)

The estimated parameters and basic reproductive ratio, R0, are:

# parameters
flufit$par

## [1] 1.9566375 0.4738335

# R0:
flufit$par[1]/flufit$par[2]

## [1] 4.129377

The R0 estimate is comparable to the estimate we made in Chap. 3. The observed
and predicted outbreaks are seemingly a good match (Fig. 8.5):

times = seq(1, 20, by=.1)
start = c(S=762, I=1, R = 0)
paras=c(beta=flufit$par[1], gamma=flufit$par[2], N=763)
out = as.data.frame(ode(start, times=times,

sirmod, paras))
plot(out$time, out$I, ylab="Prevalence",

xlab="Day", type="l")
points(flu$day, flu$cases)

8.7 Measles

We consider, again, the measles incidence data collected by Doctors Without Bor-
ders (MSF) during the 03/04 outbreak in Niamey, Niger (Fig. 8.6; Sect. 3.4) but
using data at a daily resolution. We can compile the daily incidence in a vector y.
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Fig. 8.5 Predicted and observed influenza prevalence for the 1978 boarding school data

y = as.vector(table(niamey_daily))

The challenge with this data is that we need to make the SEIR-formulation rele-
vant to the data on incidence. The complication is that I represents prevalence (i.e.,
current number of infected individuals), while incidence, y, represents appearance
of new cases (i.e., flux) into the infected class. If we recast the SEIR model to also
keep track of cumulative incidence, K, we can difference the K time series at time-
steps corresponding to that of the observations to predict incidence (y). We define
the SEIRK-model assuming known latent and infectious periods of 8 and 5 days,
respectively.

times= unique(niamey_daily$day)
paras = c(mu = 0, N = 1, beta = 5, sigma = 1/8,

gamma =1/5)
start = c(S=0.999, E=0, I=0.001, R = 0, K = 0)

The resultant gradient function is:

seirkmod = function(t, x, params) {
S = x[1]
E = x[2]
I = x[3]
R = x[4]
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K = x[5]

with(as.list(params), {
dS = mu * (N - S) - beta * S * I/N
dE = beta * S * I/N - (mu + sigma) * E
dI = sigma * E - (mu + gamma) * I
dR = gamma * I - mu * R
dK = sigma * E
res = c(dS, dE, dI, dR, dK)
list(res)

})
}

We next define the likelihood function (assuming Poisson distributed errors) for
the unknown transmission rate, β , and initial susceptible number, N. According to
the MSF outbreak response protocol, an outbreak is declared once five cases have
been confirmed. The unknown infectious fraction is thus 5/N.

lfn4=function(p, I){
times=unique(niamey_daily$day)
xstart=c(S=(p[1]-5)/p[1], E=0, I=5/p[1], R = 0,

K=0)
paras=c(mu=0, N=p[1], beta=p[2], sigma=1/8,

gamma=1/5)
out=as.data.frame(ode(xstart, times=times, seirkmod,

paras))
predinci=c(xstart["I"], diff(out$K))*p[1]
ll=-sum(dpois(I, predinci, log=TRUE))
return(ll)
}

For starting values we assume initial susceptible numbers N = 11,000 and β = 5
and optimize:

#N, beta
paras0 = c(11000, 5)
measfit=optim(paras0,lfn4,I=y, hessian=TRUE)
day = 1:230
xstart = c(S=(measfit$par[1]-5)/measfit$par[1], E=0,

I=5/measfit$par[1], R = 0, K = 0)
paras=c(mu=0, N=measfit$par[1], beta=measfit$par[2],

sigma=1/8, gamma=1/5)
out = as.data.frame(ode(xstart, times=day,

seirkmod, paras))
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plot(table(niamey_daily), xlab="Day", ylab="Incidence")
lines(out$time, c(xstart["I"], diff(out$K))*

measfit$par[1], col=2, lwd=2)
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Fig. 8.6 Predicted and observed measles incidence using the MLEs from the Poisson-likelihood

The estimated effective reproductive ratio, RE , is comparable to the estimates
obtained in Chap. 3:

with(as.list(paras),
sigma/(sigma+mu)*1/(gamma+mu)*beta /N)

## [1] 1.761133

8.8 Outbreak-Response Vaccination

Grais et al.’s (2008) objective in fitting a model to the Niamey outbreak data was
to evaluate the effectiveness of outbreak-response vaccination (ORV) in reducing
the burden of disease during an on-going outbreak. The ORV campaign began on
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day 161 after the beginning of the epidemic with a goal of vaccinating 50% of
all children of ages between 9 months and 5 years. After 10 days, almost 85,000
(57%) of this at-risk group was vaccinated (without knowledge of previous disease
or vaccination status). Assuming vaccination was at random with respect to immune
status, we can write a modified SEIR function to study the problem. The vaccine
cover is a fraction—effectively a probability—so we need to translate it to a rate
using the relation discussed in Sect. 3.2: r =− log(1− p)/D, where D is the length
of the campaign. We define two functions to carry out the efficacy calculations.
The sivmod-function integrates the SI-model with outbreak-response vaccination
and the retrospec-function compares predicted epidemic trajectories with and
without the ORV.

sivmod=function(t,x,parms){
S=x[1]
E=x[2]
I=x[3]
R=x[4]
K=x[5]
with(as.list(parms),{
Q= ifelse(t<T | t>T+Dt,0,(-log(1-P)/Dt))
dS= -B*S*I-q*Q*S
dE= B*S*I-r*E
dI= r*E - g*I
dR= g*I+q*Q*S
dK=r*E
res=c(dS,dE,dI,dR,dK)
list(res)

})
}

retrospec=function(R, day, vaccine_efficacy,
target_vaccination,intervention_length,
mtime, LP=7, IP=7, N=10000){
steps=1:mtime

out=matrix(NA,nrow=mtime, ncol=3)
#starting values
xstrt=c(S=1-1/N,E=0,I=1/N,R=0,K=0)
beta= R/IP #transmission rate
#Without ORV
par=c(B=beta, r=1/LP, g = 1/IP, q = vaccine_efficacy,

P = 0, Dt = 0, T = Inf, R=R)
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outv=as.data.frame(ode(xstrt,steps,sivmod,par))
fsv=max(outv$K)
#With ORV
par=c(B=beta, r=1/LP, g = 1/IP, q = vaccine_efficacy,

P = target_vaccination, Dt =
intervention_length, T = day)

outi=as.data.frame(ode(xstrt,steps,sivmod,par))
fsi=max(outi$K)
res=list(redn=fsi/fsv, out=outv, orv=outi, B=par["B"],

r=par["r"], g=par["g"], q=par["q"], P=par["P"],
Dt=par["Dt"], T=par["T"], R=R)

class(res)="retro"
return(res)

}

We will discuss S3-class programming more formally in Sect. 12.1. However, as
a preview we define a plot.retro-function for objects of class retro as the
list returned by the retrospec-function is labeled:

plot.retro=function(x){
plot(x$out[,1], x$out[,"I"], type="l", ylim=c(0,

max(x$out[,"I"])), xlab=’Day’, ylab=’Prevalence’)
polygon(c(x$T, x$T, x$T+x$Dt,

x$T+x$Dt), c(-0.1,1,1,-.1), col="gray")
lines(x$out[,1], x$out[,"I"])
lines(x$orv[,1], x$orv[,"I"], col="red")
title(paste("Final size: ", round(100*(x$redn),1),

"% (R=",x$R,", target=", 100*x$P, "%)", sep=""))
legend(x="topleft", legend=c("Natural epidemic",

"With ORV"), col=c("black", "red"), lty=c(1,1))
text(x=x$T+x$Dt, y=0, pos=4,

labels=paste(x$intervention_length,
"ORV from ", x$T))

}

If we assume our model is correct and that the vaccine either elicits instantaneous
protection or after 2 or 4 weeks (for the antibody response to mature), the ORV is
predicted to have reduce the epidemic by 25%, 15%, or 8% respectively:
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red1=retrospec(R=1.8, 161, vaccine_efficacy=0.85,
target_vaccination=0.5, intervention_length=10,
mtime=250, LP=8, IP=5, N=16000)

red2=retrospec(R=1.8, 161+14, vaccine_efficacy=0.85,
target_vaccination=0.5, intervention_length=10,
mtime=250, LP=8, IP=5, N=16000)

red3=retrospec(R=1.8, 161+28, vaccine_efficacy=0.85,
target_vaccination=0.5, intervention_length=10,
mtime=250, LP=8, IP=5, N=16000)

1-red1$redn

## [1] 0.2612989

1-red2$redn

## [1] 0.1509867

1-red3$redn

## [1] 0.07827277

We can plot the red1-object to inspect the predicted epidemic curve with and
without outbreak-response vaccination (Fig. 8.7). The key insight is that for ORVs
to work it needs to be implemented early (Grais et al. 2008).

plot(red1)

8.9 ShinyApp

The epimdr-package contains the orv.app with a more detailed sensitivity anal-
yses of outbreak response vaccine scenarios. The app can be launched from R
through:

require(shiny)
orv.app
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Chapter 9
Stability and Resonant Periodicity

9.1 Preamble: Rabies

Rabies usually invades a naive host range in spatial waves. This has been docu-
mented in great detail for fox rabies in continental Europe and raccoon rabies in the
Eastern USA. The rabies data set collected by CDC is the monthly number of rabid
raccoons by state. The time column starts from first month of invasion for each state
(Childs et al. 2000). The incidence patterns follow the characteristic pattern of ma-
jor virgin epidemics followed by a fuzzy but distinct periodic recurrence intervals
between 3 and 4 years (Fig. 9.1). Theory should allow us to predict such recurrence
intervals.

data(rabies)
matplot(rabies[,2:7], ylab="Cases", xlab="Month")
legend("topright", c("CT", "DE", "MD", "MA",

"NJ", "NY"), pch=as.character(1:6), col=1:6)

9.2 Linear Stability Analysis

Linear stability analysis is very useful for two reasons: classification of types of
equilibria and the calculation of resonant periodicities (i.e., recurrence intervals) in
the case of stable or unstable foci.

This chapter uses the following R-packages: nleqslv, rootSolve, and polspline.

© Springer Nature Switzerland AG 2018
O. N. Bjørnstad, Epidemics, Use R!, https://doi.org/10.1007/978-3-319-97487-3 9
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Fig. 9.1 Incidence of raccoon rabies by state since first appearance in Virginia/West Virginia in
1977 (Childs et al. 2000)

If we work with continuous-time models (ODEs like the SEIR), equilibria
are stable if all the eigenvalues of the Jacobian matrix—when evaluated at the
equilibrium—are smaller than 0. An equilibrium is (1) a node (i.e., all trajectories
moves monotonically towards/away from the equilibrium) if the largest eigenvalue
has only real parts,1 and (2) a focus (trajectories spiral towards or away from the
equilibrium) if the largest eigenvalues are a conjugate pair of complex numbers
(a±bı).The resonant period of a focus is 2π/b.

If we work with discrete-time models like the TSIR discussed in Chap. 7 or
the Nicholson-Bailey parasitoid-host model (see Chap. 14), equilibria are stable
if the absolute value of all the eigenvalues of the Jacobian —when evaluated
at the equilibrium—are smaller than 1. Conditions for nodes versus foci are as
for continuous-time models, but the resonant period for difference equations is
2π/arctan(b/a).

1 And a “center” which produces amplitude-neutral oscillations like that seen in the
Lotka-Volterra predator-prey model if it has only imaginary parts.

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
https://en.wikipedia.org/wiki/Lotka?Volterra_equations
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9.3 Finding Equilibria

To carry out such calculations we need to (A) calculate the Jacobian and (B) gather
the values corresponding to the equilibrium of interest. An equilibrium is where
the state variables do not change. So in the case of ODEs we may consider three
strategies of decreasing desirability: (i) solve analytically for when all gradient-
functions are zero, (ii) solve numerically for when all gradient-functions are zero,
or (iii) simulate the ODEs a long time and record the state of the system at the end.
The latter is the worst because it will not find any unstable solutions, and (ii) is less
good than (i) because it is less exact, but (i) may be difficult if you are a biologist
working with complex models.

Let’s consider the SIR model (Eq. (2.1)–(2.3)). The equilibria occurs when
dS/dt, dI/dt, and dR/dt all equal zero.

Strategy 1: The disease-free equilibrium is S∗ = 1, I∗ = 0,R∗ = 0. If we set N=1,
it is easy to solve for the endemic equilibrium; The I-equation of the SIR implies
that S∗ = (γ + μ)/β = 1/R0 is the S steady-state, which when substituted into the
S-equation gives I∗ = μ(R0 −1)/β , and finally, R∗ = N − I∗ −S∗. Thus for a given
set of parameters we get:

parms = c(mu = 1/(50*52), N = 1, beta = 2.5,
gamma = 1/2)

N=parms["N"]
gamma=parms["gamma"]
beta=parms["beta"]
mu=parms["mu"]
Istar=as.numeric(mu*(beta/(gamma+mu)-1)/beta)
Sstar=as.numeric((gamma+mu)/beta)
Sstar

## [1] 0.2001538

Istar

## [1] 0.0006147934

Strategy 2: If we cannot do the math we can try to solve numerically. The
nleqslv-package solves coupled equations numerically. Note, now, that the state
variables, x are the unknown quantities we want to solve for so we define a function
with a set of equations that we want to equal zero:

require(nleqslv)
rootfn=function(x, params){

r=with(as.list(params),
c(mu * (N - x[1]) - beta * x[1]* x[2] / N,
beta * x[1] * x[2] / N - (mu + gamma) * x[2],
gamma *x[2] - mu*x[3]))



162 9 Stability and Resonant Periodicity

r
}
parms = c(mu = 1/(50*52), N = 1, beta = 2.5,

gamma = 1/2)
ans = nleqslv(c(0.1,0.5, 0.4), fn = rootfn,

params=parms)
ans$x

## [1] 0.2001523463 0.0006147945 0.7992328592

The numerical solution is accurate to the fifth decimal place for the endemic
equilibriums. Let us see if we can find the disease-free equilibrium {S∗ = 1, I∗ =
0,R∗ = 0} numerically if we explore across a range of initial guesses.

ans=grid=expand.grid(seq(0,1, by=.25), seq(0,1, by=.25),
seq(0,1, by=.25))

ans[,]=NA
for(i in 1:nrow(ans)){
ans[i,]=nleqslv(as.numeric(grid[i,]), fn = rootfn,

params=parms)$x
}
ans2=round(ans, 4)
ans2[!duplicated(ans2),]

## Var1 Var2 Var3
## 1 1.0000 0e+00 0.0000
## 6 0.2002 6e-04 0.7992

The two equilibria show up.
Strategy 3: This should not be used for final analyses because numerically inte-

grating differential equations are much more fraught than numerically solving non-
linear equations. However as a shortcut if we already have the gradient-function
defined we can use the rootSolve-package.

sirmod=function(t, y, parameters){
S=y[1]
I=y[2]
R=y[3]
beta=parameters["beta"]
mu=parameters["mu"]
gamma=parameters["gamma"]
N=parameters["N"]
dS = mu * (N - S) - beta * S * I / N
dI = beta * S * I / N - (mu + gamma) * I
dR = gamma*I - mu*R
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res=c(dS, dI, dR)
list(res)

}

require(rootSolve)
parms = c(mu = 1/(50*52), N = 1,

beta = 2.5, gamma = 1/2)
equil = runsteady(y = c(S = 1 - 1E-4, I = 1E-4, R = 0),

times = c(0, 1E05), func = sirmod, parms = parms)
round(equil$y, 4)

## S I R
## 0.2002 0.0006 0.7992

9.4 Evaluating the Jacobian

The R-compartment of the SIR model does not affect dynamics. So for analysis we
only need to consider the coupled S-I system.

dS = expression(mu * (1 - S) - beta * S * I/1)
dI = expression(beta * S * I/1 - (mu + gamma) * I)
j11 = D(dS, "S")
j12 = D(dS, "I")
j21 = D(dI, "S")
j22 = D(dI, "I")

We define a list of parameters and steady-states for the endemic equilibrium, and
then piece together the matrix by evaluating the expressions in the list.2

vals = list(mu = 1/(50*52), N = 1, beta = 2.5,
gamma = 1/2, S=Sstar, I=Istar)

J=with(vals, matrix(c(eval(j11), eval(j12), eval(j21),
eval(j22)), ncol=2, byrow=T))

eigen(J, only.values=TRUE)$values

## [1] -0.0009608+0.02771569i -0.0009608-0.02771569i

The leading eigenvalues are a pair of complex conjugates with negative real parts;
The equilibrium is a stable focus. The resonant frequency (in weeks) is:

2 It is almost imperative to use the with-function here, because the working directory will oth-
erwise get littered with defined objects that mask names corresponding to parameters and state-
variables.
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2 * pi/Im(eigen(J)$values[1])

## [1] 226.7014

which is just over 4 years.
Next we look at the disease-free equilibrium:

vals = list(mu = 1/(50*52), N = 1, beta = 2.5,
gamma = 1/2, S=1, I=0)

J=with(vals,
matrix(c(eval(j11), eval(j12), eval(j21),
eval(j22)), ncol=2, byrow=T))

eigen(J, only.values=TRUE)$values

## [1] 1.9996153846 -0.0003846154

The leading EV is real-only and > 0: The disease-free equilibrium is an unstable
node (because R0 > 1). What if we decrease the transmission rate to 0.3?

vals = list(mu = 1/(50*52), N = 1, beta = 0.3,
gamma = 1/2, S=1, I=0)

J=with(vals,
matrix(c(eval(j11), eval(j12),
eval(j21), eval(j22)), ncol=2, byrow=T))

eigen(J, only.values=TRUE)$values

## [1] -0.2003846154 -0.0003846154

The leading EV is real-only and < 0: The equilibrium is a stable node (because
R0 < 1).

9.5 Raccoon Rabies

Coyne et al. (1989) developed a compartmental model for rabies in raccoons. Using
their notation the flow is from susceptible (X), infected but not-yet infectious hosts
that eventually becomes rabid (H1), infected hosts that recover with immunity (H2),
rabid raccoons (Y), immune raccoons (I), and vaccinated raccoons (V). The total
number of raccoons (N) are the sum of these. The model is:

dX
dt

= a(X + I +V )−βXY − γNX − (b+ c+ v)X (9.1)

dH1

dt
= ρβXY − γNH1 − (b+σ + c)H1 (9.2)

dH2

dt
= (1−ρ)βXY − γNH2 − (b+σ + c)H2 (9.3)
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dY
dt

= σH1 − γNY − (b+α + c)Y (9.4)

dI
dt

= σH2 − γNI − (b+ c)I (9.5)

dV
dt

= vX − γNV − (b+ c)V (9.6)

N = X +H1 +H2 +Y + I +V (9.7)

The parameters are defined in Table 9.1.

Table 9.1 Parameters and values for Coyne et al. (1989) rabies model

a Birth rate 1.34/year
b Death rate 0.836/year
r Intrinsic rate of increase (=a−b) 0.504
K Carrying capacity 12.69/km2

γ Index of density dependence (=r/K) 0.0397 km2/year
(1-ρ) Probability of recovery 0.20
σ Rate of transition from latents 7.5/year
α Disease induced mortality 66.36/year
β Transmission rate 33.25/year
v Vaccination rate Variable
c Culling rate Variable

We will look at the slightly simplified system without vaccination (so without the
V-class and v-parameter). We use deSolve to integrate the model using the “log-
trick” introduced in Sect. 2.7—we solve the system in log-coordinates (Ellner and
Guckenheimer 2011); Note, again how initial values are log-transformed in start,
the first line in the function is x = exp(logx) and the last line returns dX/X etc.
in place of dX which comes from the chain-rule of differentiation and the fact that
D(logx) = 1/x.

coyne=function(t, logx, parms){
x=exp(logx)
X=x[1]
H1=x[2]
H2=x[3]
Y=x[4]
I=x[5]
N = sum(x)
with(as.list(parms),{
dX = a * (X + I) - beta * X * Y -

gamma * N * X - (b + c) * X
dH1= rho * beta * X * Y - gamma * N * H1 -

(b + sigma + c) * H1

https://en.wikipedia.org/wiki/Chain_rule
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dH2= (1-rho) * beta * X * Y - gamma * N * H2 -
(b + sigma + c) * H2

dY = sigma * H1 - gamma * N * Y -
(b + alpha + c) * Y

dI = sigma * H2 - gamma * N * I - (b + c) * I
res=c(dX/X, dH1/H1, dH2/H2, dY/Y, dI/I)
list(res)

})
}

We integrate the system:

times = seq(0, 50, by=1/520)
paras = c(gamma = 0.0397, b = 0.836,

a = 1.34, sigma = 7.5,
alpha = 66.36, beta = 33.25,
c = 0, rho = 0.8)

start = log(c(X=12.69/2, H1=0.1, H2=0.1,
Y = 0.1, I = 0.1))

out = as.data.frame(ode(start, times, coyne, paras))

and plot as time series and in the Susceptible-Infectious phase-plane anti-log’ing
the state-variables to convert them to abundances from log-abundances (Fig. 9.2).
The model predicts transient cycles towards the endemic equilibrium.

par(mfrow=c(1,2))
plot(times, exp(out$Y), ylab="Infected", xlab="Time",

type="l")
plot(exp(out$X), exp(out$Y), ylab="Infected",

xlab="Susceptible", type="l")

Childs et al. (2000) used this model to study how the predicted inter-epidemic
period compare to the data (Fig. 9.1). We can repeat this analysis by calculating the
resonant frequency of the system. To do this we need the 5×5 Jacobian matrix and
values for the endemic equilibrium. We first differentiate the equations:

dX = expression(a * (X + I) - beta * X * Y -
gamma * (X+H1+H2+Y+I) * X - (b + c) * X)

dH1= expression(rho * beta * X * Y -
gamma * (X+H1+H2+Y+I) * H1 - (b + sigma + c) * H1)

dH2= expression((1-rho) * beta * X * Y -
gamma * (X+H1+H2+Y+I) * H2 - (b + sigma + c) * H2)
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Fig. 9.2 Rabies dynamics predicted by the model of Coyne et al.’s (1989) using the parameters
defined in Table 9.1

dY = expression(sigma * H1 - gamma * (X+H1+
H2+Y+I) * Y - (b + alpha + c) * Y)

dI = expression(sigma * H2 - gamma * (X+H1+
H2+Y+I) * I - (b + c) * I)

j11 = D(dX, "X"); j12 = D(dX, "H1"); j13 = D(dX,
"H2"); j14 = D(dX, "Y"); j15 = D(dX, "I")

j21 = D(dH1, "X"); j22 = D(dH1, "H1"); j23 = D(dH1,
"H2"); j24 = D(dH1, "Y"); j25 = D(dH1, "I")

j31 = D(dH2, "X"); j32 = D(dH2, "H1"); j33 = D(dH2,
"H2"); j34 = D(dH2, "Y"); j35 = D(dH2, "I")

j41 = D(dY, "X"); j42 = D(dY, "H1"); j43 = D(dY,
"H2"); j44 = D(dY, "Y"); j45 = D(dY, "I")

j51 = D(dI, "X"); j52 = D(dI, "H1"); j53 = D(dI,
"H2"); j54 = D(dI, "Y"); j55 = D(dI, "I")

Because we have already defined the coyne-gradient function, we use the
lazy option (strategy 3) to find the endemic equilibrium numerically with the
runsteady-function of the rootSolve-package:
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require(rootSolve)
paras = c(gamma = 0.0397, b = 0.836, a = 1.34,

sigma = 7.5, alpha = 66.36, beta = 33.25,
c = 0, rho = 1)

equil=runsteady(y=log(c(X=12.69/2, H1=0.1, H2=0.1, Y =
0.1, I = 0.1)), times=c(0,1E5),
func=coyne, parms=paras)

We evaluate the Jacobian at the endemic equilibrium and calculate the dominant
eigenvalue:

#Evaluate Jacobian elements
JJ = with(as.list(c(exp(equil$y), paras)),
c(eval(j11),eval(j12),eval(j13),eval(j14), eval(j15),

eval(j21),eval(j22),eval(j23),eval(j24), eval(j25),
eval(j31),eval(j32),eval(j33),eval(j34), eval(j35),
eval(j41),eval(j42),eval(j43),eval(j44), eval(j45),
eval(j51),eval(j52),eval(j53),eval(j54), eval(j55)))

#Populate the Jacobian matrix
J= matrix(JJ, nrow=5, byrow=T)
#Eigen decomposition
which.max(Re(eigen(J, only.values=TRUE)$values))

## [1] 3

eigen(J, only.values=TRUE)$values[3]

## [1] -0.644556+1.743531i

The dominant eigenvalues are the conjugate pair with a real part of −0.64. The
endemic equilibrium is a stable focus with a resonant period of

2 * pi/Im(eigen(J)$values[3])

## [1] 3.603714

Thus the model predicts recurrent outbreaks with a mean period of 3.6 years
during the rabies invasion. This is 6 months shorter than observed in the data. Childs
et al. (2000) varied the ρ parameter (the fraction of exposed raccoons escaping
infection with immunity) to find a model that more closely matches the data (around
48 months).

9.6 Influenza

The mystery of the annual epidemics of influenza that peak in the Northern hemi-
sphere in the Northern winter and in the Southern hemisphere in the Southern winter
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(Hope-Simpson 1981) has been discussed as an exemplar par excellence in resonant
periodicities in epidemiology (Dushoff et al. 2004; Bjørnstad and Viboud 2016).
Seasonal influenza epidemics are caused by subtype B, A/H3N2, and A/H1N1 in
various mixtures in any given year. At the aggregate level, the “flu” can be modeled
as a susceptible-infected-recovered-(re)susceptible (SIRS) system (Axelsen et al.
2014) with transient immune protection upon recovery lasting around 4 years due
to “epochal” evolution (Koelle et al. 2006). The SIRS model is:

dS
dt

= μ(N −S)− β IS
N

+ωR (9.8)

dI
dt

=
β IS
N

− (μ + γ)I (9.9)

dR
dt

= γI − (μ +ω)R, (9.10)

where ω is the rate of loss of immunity (∼0.25year−1). For the infectious period
(1/γ) we use 3.8 days (Carrat et al. 2008) and assume an R0 of 2.9 (Axelsen et al.
2014). We model the population fractions (N = 1), thus SIRS flu-appropriate pa-
rameters (per week) are:

N = 1
gamma = 7/3.8
omega = 1/(52 * 4)
mu = 1/(52 * 70)
R0 = 2.9

We back-calculate β to get the right R0 and gather parameters:

#R0=beta/(gamma+mu)
beta=R0*(gamma+mu)
paras=c(beta=beta, gamma=gamma, mu=mu, omega=omega)

For the SIRS model there is an approximate equation for the dampening period
(Keeling and Rohani 2008): T = 4∗π/

√
(4(R0−1)/(GIGR)−((1/GR)−(1/A))2),

where A is the mean age of infection (= ρ+μ+γ
(ρ+μ)(β−γ−μ) ), GI is the infectious period

(= 1/(γ + μ)), and GR is the average duration of immunity (= 1/(ρ + μ)). The
approximate equation predicts the dampening period for influenza to be just under
a year:

A=(omega+mu+gamma)/((omega+mu)*(beta-gamma-mu))
GI=1/(gamma+mu)
GR = 1/(omega+mu)
T=4*pi/sqrt(4*(R0-1)/(GI*GR)-((1/GR)-(1/A))ˆ2)
T

## [1] 47.11307
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We can check the accuracy of the approximation against the resonant frequency
of the linearized system. The endemic equilibrium of the SIRS model is S∗ = 1/R0,

I∗ = μ(1−1/R0)

γ+μ− ωγ
ω+μ

, and R∗ = γI∗/(ω +μ):

Sstar=1/R0
Istar=mu*(1-1/R0)/(gamma+mu-(omega*gamma)/(omega+mu))
Rstar=gamma*Istar/(omega+mu)
eq=list(S=Sstar, I=Istar, R=Rstar)
eq

## $S
## [1] 0.3448276
##
## $I
## [1] 0.001802665
##
## $R
## [1] 0.6533697

The Jacobian matrix evaluated at the endemic equilibrium is:

F = expression(mu * (1-S) - beta * S * I / N +
omega * R)

G = expression(beta * S * I / N - (mu + gamma) * I)
H = expression(gamma*I -(mu +omega)*R)
j11 = D(F, "S");j12 = D(F, "I");j13 = D(F, "R")
j21 = D(G, "S");j22 = D(G, "I");j23 = D(G, "R")
j31 = D(H, "S");j32 = D(H, "I");j33 = D(H, "R")

J=with(eq, matrix(c(eval(j11),eval(j12),eval(j13),
eval(j21), eval(j22), eval(j23), eval(j31),
eval(j32), eval(j33)), nrow=3, byrow=T))

Finally, the eigenvalues and resonant frequency from the imaginary part of the
dominant conjugate-pair are:

round(eigen(J)$values, 4)

## [1] -0.0074+0.1332i -0.0074-0.1332i -0.0003+0.0000i

2 * pi/Im(eigen(J)$values)[1]

## [1] 47.17804

which is in close agreement with the approximate equation.
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9.7 Advanced: Transfer Functions

9.7.1 SIR

We can predict the entire power spectrum of a linearized stochastic system using
transfer functions (Priestley 1981; Nisbet and Gurney 1982; Bjørnstad et al. 2004).
In matrix form, the transfer function for a coupled continuous-time system is

T(ω) = (Iωı−J)−1A (9.11)

where I is the identity matrix, ω is the angular frequency (between 0 and π), J is the
Jacobian (evaluated at the equilibrium), A is the matrix of gradients differentiated
with respect to the stochastic term(s), and −1 denotes the matrix inverse.3

If the stochasticity is uncorrelated “white” noise, the power spectrum is predicted
by the modulus of the transfer function. Let us consider the SIR model from Sect. 2.6
and assume that variability enters through stochasticity in β . We first need the equi-
librium values for the linearization:

parms = c(mu = 1/(50*52), N = 1,
beta = 2.5, gamma = 1/2)

Istar=parms["mu"]*(parms["beta"]/(parms["gamma"]+
parms["mu"])-1)/parms["beta"]

Sstar=(parms["gamma"]+parms["mu"])/parms["beta"]

Next we need to calculate the derivatives required for the Jacobian matrix:

dS = expression(mu * (N - S) - beta * S * I/N)
dI = expression(beta * S * I/N - (mu + gamma) * I)
j11 = D(dS, "S")
j12 = D(dS, "I")
j21 = D(dI, "S")
j22 = D(dI, "I")

The linearized system is governed by the Jacobian evaluated at the equilibrium:

vals = list(mu = parms["mu"], N = parms["N"], beta =
parms["beta"], gamma = parms["gamma"],
S=Sstar, I=Istar)

3 This equation stems from the result that if x̃(ω) denotes the Fourier transform of the vector of
state variables, the transform of dx

dt will be x̃(ω)ıω; Rearranging in matrix form yields x̃(ω) =

T(ω)dβ̃ (ω). For discrete time systems the transfer function is T(ω) = (I− e−ıω J)−1A because
the Fourier transform of Xt−1 is X̃(ω)e−ıω (see Sect. 9.7.2).
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J=with(vals,
matrix(c(eval(j11), eval(j12),
eval(j21), eval(j22)), ncol=2, byrow=T))

The A-matrix is the linearization with respect to the stochastic term. Assuming
stochasticity in β we calculate the last pieces needed for the transfer function ac-
cording to:

a1 = D(dS, "beta")
a2 = D(dI, "beta")
A = with(vals, matrix(c(eval(a1), eval(a2)), ncol = 1))
Id = matrix(c(1, 0, 0, 1), ncol = 2)

Finally, we can evaluate the transfer function (across 500 frequencies between 0
and π):

wseq = seq(0, pi, length=500)
Fr = vector("list", 500) #set up empty list of matrices
#Loop to fill matrices for each frequency
for(i in 1:500){

#Solve gives matrix inverse
Fr[[i]]=matrix(solve(Id*1i*wseq[i]-J)%*%A,ncol=1)

}

and calculate the theoretical power spectrum from the modulus of the transfer
function:

PS = matrix(NA, ncol = 2, nrow = 500,
dimnames=list(1:500, c("S","I")))

#Power spectra from real and imaginary
# parts of the Fourier transform
for(i in 1:500){
PS[i,]=sqrt(Re(Fr[[i]])ˆ2+Im(Fr[[i]])ˆ2)
}
plot(wseq, PS[,2], type="l", log="x",

xlab="Frequency (in radians)", ylab="Amplitude")
#Calculate the dominant period in weeks
2*pi/wseq[which.max(PS[,2])]

## [1] 249.5

So the stochastic system with variability in β is predicted to oscillate with a pe-
riod of 248 weeks (just shy of 5 years) (Fig. 9.3). Thus the stochastically excited
cycles have a period that is comparable but slightly longer than the resonant fre-
quency of the deterministic system (Sect. 2.6).



9.7 Advanced: Transfer Functions 173

0.005 0.010 0.020 0.050 0.100 0.200 0.500 1.000 2.000

0
10

00
20

00
30

00
40

00
50

00

Frequency (in radians)

Am
pl

itu
de

Fig. 9.3 The full power spectrum of the SEIR model with stochasticity in β as predicted from the
transfer functions of the linearized system

9.7.2 The TSIR

Section 7.1 discussed how to do stochastic simulation using the TSIR model with
a stochastic transmission term. We can apply the transfer function theory to this
model. The TSIR model is a discrete time model, so the transfer function is T (ω) =
(I−e−ıω J)−1A. We first calculate the relevant derivatives (assuming randomness in
β ):

Seq = expression(S - beta * S * Iˆalpha/N + B)
Ieq = expression(beta * S * Iˆalpha/N)
j11 = D(Seq, "S")
j12 = D(Seq, "I")
j21 = D(Ieq, "S")
j22 = D(Ieq, "I")
jj = c(j11, j12, j21, j22)
a1 = D(Seq, "beta")
a2 = D(Ieq, "beta")
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aa = c(a1, a2)

The equilibrium for the TSIR model is S∗ = B1−α N
β and I∗ = B. Let us consider a

city of a million people and a pathogen with an R0 (= β ) of 5 and use the compact-
form equation evaluation introduced in Sect. 8.2:

paras = c(B = 800, beta = 5, alpha = 0.97, N=1E6)
eqs=sapply(c(quote(Bˆ(1-alpha)*N/beta), quote(B)),

eval, as.list(paras))

The Jacobian is:

J=matrix(sapply(jj, eval, as.list(c(paras, c(S=eqs[1],
I=eqs[2])))), 2, byrow=TRUE)

evs=eigen(J)$values
2*pi/atan2(Im(evs[1]), Re(evs[1]))

## [1] 112.9908

Predicting a resonant period of 113 disease generations. We next piece together
the transfer function:

A=matrix(sapply(aa, eval, as.list(c(paras,
c(S=eqs[1], I=eqs[2])))), 2, byrow=TRUE)

Id=matrix(c(1,0,0,1),ncol=2)
wseq=seq(0,pi,length=500)
Fr=vector("list",500) #Set up empty list of matrices
#Loop to fill those matrices with fourier transforms
for(i in 1:500){

#Solve gives matrix inverse
Fr[[i]]=matrix(solve(Id-exp(1i*wseq[i])*J)%*%

A,ncol=1)
}

PS=matrix(NA,ncol=2,nrow=500,dimnames=list(1:500,
c("S","I")))

#Power spectra from real and imaginary parts
for(i in 1:500){

PS[i,]=sqrt(Re(Fr[[i]])ˆ2+Im(Fr[[i]])ˆ2)
}

To compare the predicted power spectrum from the transfer functions against the
simulation, we assume a standard deviation in β of one and simulate for 100 years
(assuming the generation time is a week). The first 20 years of the simulation is
shown in Fig. 9.4. The figure suggests a transient period of a couple of years before
the dynamics settles down to stochastically excited recurrent epidemics.
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out = SimTsir(B=800, beta=5, sdbeta=1, N=1E6,
IT=100*52, I0=10, S0=0.3)

plot(out$I[1:1040], xlab="Biweek", ylab="Incidence",
type="l")
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Fig. 9.4 Twenty years of simulated incidence from the TSIR model with stochasticity in transmis-
sion

We estimate the spectrum from the simulation using the periodogram (discarding
the first 2 years of data).

sfit = spectrum(out$I[-c(1:104)])

As discussed in Sect. 6.3, the Schuster periodogram is the classic method to es-
timate the spectral density of a time series but with the drawback that it is not a
“consistent method.” In statistics, a consistent method is one where the estimate
converges on the truth as the sample size increases. For the Schuster periodogram
the spectral density is estimated at T/2 frequencies, thus doubling the length of the
time series, doubles the number of parameters, which defies consistency. Various
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window-smoothing approaches have been proposed to ameliorate this; (see for ex-
ample Priestley 1981). An alternative to smoothing is to estimate the spectral density
using Kooperberg et al.’s (1995) log-spline method using the lspec-function of the
polspline package. Figure 9.5 shows the empirical estimates and the transfer-
function predicted spectra for the TSIR model. Theory based on the linearized sys-
tem provides an excellent approximation to the empirical estimates (Fig. 9.5).

require(polspline)
sfit2=lspec(out$I[-c(1:104)])
plot(wseq, PS[,2], type="l", ylab="Amplitude",

xlab="Frequency (in radians)", xlim=c(0,0.6))
lines(pi*sfit$freq/0.5,

5000*sfit$spec/max(sfit$spec), col=2)
par(new=TRUE)
plot(sfit2, col=3, xlim=c(0,0.6), axes=FALSE)
legend("topright", c("Transfer fn", "Periodogram",

"Log-spline"), lty=c(1,1,1), col=c(1,2,3))

9.8 (Even More) Advanced: Transfer Functions and ARMA
Delay-Coordinates

The Hamilton-Caley theorem states that any stochastic, autonomous (i.e., unforced),
linear, discrete-time multistate system can be rewritten as an ARMA (Sect. 6.2.1)
delay-coordinate system. The significance of this jargon is that any linear(ized) sys-
tem of the form

xt = Jxt−1 +Aεt (9.12)

can be rewritten in a delay-form

xt = c+β1xt−1 +β2xt−2 + . . .+βdxt−d︸ ︷︷ ︸
autoregressivs

+εt +α1εt−1 + . . .+αqεt−q︸ ︷︷ ︸
moving average

, (9.13)

This is useful for understanding how dynamics can induce delayed feedbacks and
how the “echo” of stochastic perturbations propagate through time. It also provides
an alternative route for analyzing systems for which only a subset of variables (e.g.,
one) has been measured. The theorem says it can always be done, but in practice it
can be tedious because of the equivalence between finite AR-processes and infinite
MA-processes and vice versa. It turns out that transfer functions (Sect. 9.7) are very
helpful for such calculations (Priestley 1981; Bjørnstad et al. 2004). In its general
analytic form, the discrete-time transfer function takes the form:
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Fig. 9.5 The spectrum of the TSIR model with stochasticity in β as predicted from the transfer
functions of the linearized system with the periodogram and log-spline density estimate from a
simulation (Fig. 9.4) superimposed

T (ω) ∝
1+α1e−ıω + . . .+αqe−qıω

1−β1e−ıω − . . .βpe−pıω , (9.14)

where the α’s and β ’s correspond exactly to the coefficients of the ARMA(p, q)
delay-coordinate representation of the system. R does unfortunately not (yet?) have
enough symbolic power to solve the transfer function analytically. However, a pro-
gram like mathematica will show that the transfer functions for the I compartment
of the linearized stochastic TSIR is:

TI(ω) =
B

1+β
1+(Bα(β −1)−1)e−ıω

1− (1+α −βBα β )e−ıω +αe−2ıω . (9.15)

Theoretically, therefore, the model predicts an ARMA(2,1) delay-coordinate struc-
ture to the time series of incidence according to:

It+1 = const+(1+α −βBα β )It −αIt−1 + εt +(Bα(β −1)−1)εt−1. (9.16)
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Bjørnstad et al. (2001) used the state-space/delay-coordinate equivalence to study
how natural enemies—viruses and parasitoids—structurally alter the pattern of de-
layed density-dependent feedbacks in population dynamics. Bjørnstad et al. (2004)
provide some additional worked examples of using transfer functions to study pop-
ulation dynamics.

9.9 ShinyApp

The TSIR.app from Chap. 7 also calculates the transfer function-predicted power
spectrum of the TSIR model and compares it with simulated data.



Chapter 10
Exotica

10.1 Introduction

Chapter 9 discussed how a linear approximation to the perennially nonlinear dy-
namics of infectious disease can provide important insights on invasion, stability,
and resonant periodicity. As remarked by Nisbet and Gurney (1982) more gener-
ally, linear approximation can often provide remarkably useful insights for nonlinear
ecological systems as long as they are not too nonlinear.

From a dynamical system’s point of view, dynamics are (approximately) linear
if the system does not “miss-behave” as it approaches (diverges) from its stable
(unstable) fix-points. Thus, while the simple SIR model is mathematically speaking
nonlinear (because of the βSI/N term), its dynamics can be thought of as being
“linear” because of its smooth inwards spiraling towards the endemic equilibrium
(the stable focus) and logistic divergence from the disease-free equilibrium (the un-
stable node) when R0 > 1. However, highly infectious immunizing diseases have
the potential for exhibiting dynamics so nonlinear that crazy things can happen;
Things that require a different set of tools. The chaotic fluctuations seen in the sea-
sonally forced SEIR model and measles in pre-vaccination US (Sect. 5.4) are one
such highly nonlinear phenomenon. There are however other dynamic “exotica”
that can arise when stochasticity and nonlinearity interacts, or when there are great
perturbations (such as introduction of mass vaccination) to the nonlinear epidemic
clockworks. The following sections explore this and discuss some useful tools.

This chapter uses the following R-packages: deSolve, pomp, and nlts.
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10.2 Chaos

In nonlinear systems, a perturbation will either dampen (“dissipate”) or expand as
it interacts with the dynamic clockwork. The hallmark of a chaotic attractor is “sen-
sitive dependence on initial conditions”1: Two very nearby trajectories will diverge
exponentially over time. The classic way to quantify this is through the dominant
Lyapunov exponent:

λ = lim
T→∞

1
T

log(
T

∏
t

JtU0), (10.1)

where Jt is the Jacobian evaluated on the point of the attractor at time t and for a 2D
system like the TSIR U0 is the unit vector {1,0}. A chaotic attractor has λ > 0. The
Jacobian of the TSIR model is:

Jt =

[
1−βsIα

t /N −βsSt(I
α−1
t α)/N

βsIα
t /N βsSt(I

α−1
t α)/N

]
. (10.2)

We can estimate the Lyapunov exponent numerically by simulating the TSIR a long
time (Grenfell et al. 2002). We consider the measles dynamics in New York between
1920 and 1941 (Fig. 10.1) (Dalziel et al. 2016). We first fit the parameters using the
protocol discussed in Chap. 7; The profile likelihood on S suggests a mean fraction
of susceptibles of 0.051.

data(dalziel)
NY=na.omit(dalziel[dalziel$loc=="NEW YORK",])
NY=NY[NY$year %in% c(1920:1940),]
plot(NY$decimalYear, sqrt(NY$cases), type="b",

xlab="Year", ylab="Sqrt(cases)")
#Susceptible reconstruction and
#correcting for underreporting
cum.reg = smooth.spline(cumsum(NY$rec),

cumsum(NY$cases), df=5)
D = - resid(cum.reg) #The residuals
rr = predict(cum.reg, deriv=1)$y
Ic = NY$cases/rr
Dc=D/rr
#Align lagged variables
seas = rep(1:26, 21)[1:545]
lInew = log(Ic[2:546])
lIold = log(Ic[1:545])
Dold = Dc[1:545]
#TSIR fit

1 Interestingly Ruelle (1993) paraphrases Henri Poincaré as defining chance as sensitive depen-
dence on unknown initial conditions as far back as 1908.
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Fig. 10.1 Measles in New York city

N=NY$pop
offsetN=-log(N[1:545])
lSold = log(0.051*N[1:545] + Dold)
glmfit = glm(lInew ˜ -1 +as.factor(seas) + lIold +

offset(lSold+offsetN))

We use the SimTsir2-function from Chap. 7 to simulate a 200-year long deter-
ministic trajectory from the fitted model. The result is a highly erratic trajectory in
the phase plane (Fig. 10.2).

sim2=SimTsir2(beta=exp(glmfit$coef[1:26]), alpha=0.98,
B=rep(median(NY$rec), 5200), N=median(N),
inits=list(Snull=exp(lSold[1]), Inull=Ic[1]),
type="det")

Sattr=sim2$S[2601:5200]
Iattr=sim2$I[2601:5200]
plot(Sattr, Iattr, log="y", type="l",

xlab="S", ylab="I")
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points(sim2$S[seq(2601, 5200, by=26)],
sim2$I[seq(2601, 5200, by=26)],pch=19, col="red")

legend("bottomright", c("Trajectory", "Strobe"),
pch=c(NA, 19), lty=c(1, NA) , col=c("black","red"))
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Fig. 10.2 The deterministic trajectory of the New York measles TSIR model. The black line rep-
resents the full trajectory. The red dots are the annual stroboscopic section

Calculating the Lyapunov exponent is a bit involved, so we write a function to
do it. Because we will be wanting to study the attractor in greater detail, we make
the function to both calculate the Lyapunov exponent and store all the Jacobian
elements evaluated along the attractor.

TSIRlyap=function(I, S, alpha, bt, N){
IT <- length(I)
s <- length(bt)
j11=rep(NA, IT); j12=rep(NA, IT)
j21=rep(NA, IT); j22=rep(NA, IT)

#initial unit vector
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J=matrix(c(1,0),ncol=1)
#loop over the attractor
for(i in 1:IT) {

j11[i]=1 - bt[((i - 1) %% s) + 1] *
I[i]ˆalpha/N

j12[i]=-( bt[((i - 1) %% s) + 1] * S[i] *
(I[i]ˆ(alpha - 1) * alpha)/N)

j21[i]= bt[((i - 1) %% s) + 1] * I[i]ˆalpha/N
j22[i]= bt[((i - 1) %% s) + 1] * S[i] *

(I[i]ˆ(alpha - 1) * alpha)/N
J<-matrix(c(j11[i],j12[i],j21[i],j22[i]),

ncol=2, byrow=TRUE)%*%J
}

res=list(lyap=log(norm(J))/IT, j11=j11, j12=j12,
j21=j21, j22=j22, I=I, S=S, alpha=alpha,
bt=bt, N=N)

class(res)="lyap"
return(res)

}

We apply the function to the last 100 years of the simulated dynamics:

nylyap=TSIRlyap(I=Iattr, S=Sattr, alpha=0.98,
bt=exp(glmfit$coef[1:26]), N=median(N))

nylyap$lyap

## [1] 0.01223667

The exponent is positive indicating that the deterministic skeleton of the TSIR
model for measles in New York is a chaotic attractor as concluded by Dalziel et al.
(2016). This contrasts with the negative Lyapunov exponent of measles in London
testifying to the stability of its biennial limit cycle (see below).

10.3 Local Lyapunov Exponents

Bailey et al. (1997) suggested that it is useful to study the local Lyapunov expo-
nents to understand short-term predictability, and also how noise and nonlinearity
will interact in epidemic systems. The idea is that regardless of whether dynam-
ics is asymptotically stable, cyclic, or chaotic, there is likely to be regions in the
phase plane with expansion in which stochastic divergence will be amplified and
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regions of contraction were perturbations will be dampened. Grenfell et al. (2002)
used local Lyapunov exponents to understand the remarkable predictability of pre-
vaccination measles in London. Local Lyapunov exponents are similar in nature to
the global exponent, except that rather than evaluating a product of Jacobians across
the attractor, the Jacobians are evaluated locally. Armed with an object produced
with the TSIRlyap-function it is easy to write a second function to calculate local
exponents across m-steps along the attractor (or anywhere else in the phase plane,
such as along a “repellor”; see Sect. 10.5). Since the TSIR is a discrete time model,
contraction occurs if the largest eigenvalue of the stability matrix is inside the unit
circle—thus log(|λ |) < 0 is the cut-off between contraction and expansion. The
TSIRllyap-function calculates the Local Lyapunov exponents for outputs from
the TSIRlyap-function. The parameter m controls the number of iterations along
the attractor on which to calculate the product (Bailey et al. 1997).

TSIRllyap=function(x, m=1){
llyap=rep(NA, length(x$I))
for(i in 1:(length(x$I)-m)){

J=matrix(c(1,0,0,1), ncol=2)
for(k in 0:(m-1)){

J = matrix(c(x$j11[(i+k)], x$j12[(i+k)],
x$j21[(i+k)], x$j22[(i+k)]), ncol = 2,
byrow=TRUE)%*%J}

llyap[i]=log(max(abs(eigen(J)$values)))/m
}
res=list(llyap=llyap, I=x$I, S=x$S)
class(res)="llyap"
return(res)
}

For ease of use we can also write a function to visualize the local exponents:

plot.llyap=function(x, inches=.5){
pm=x$llyap>0
plot(NA, xlim=range(x$S), ylim=range(x$I), xlab="S",

ylab="I", log="y")
symbols(x$S[pm], x$I[pm], circles=x$llyap[pm],

inches = inches, add=TRUE)
symbols(x$S[!pm],x$I[!pm], squares = -x$llyap[!pm],

inches=inches, add=TRUE, bg=2)
}

We can study the measles NY attractor using the local Lyapunov exponents. De-
spite the fact that the overall attractor is chaotic, we see distinct areas of contraction
associated with the collapse of epidemics and post-epidemic troughs (Fig. 10.3).
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nyllyap = TSIRllyap(nylyap, m = 5)
plot.llyap(nyllyap, inches = 0.15)
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Fig. 10.3 Local Lyapunov exponents across the New York city measles attractor. Positive expo-
nents are shown as open circles and negative exponents as red squares

Section 7.4.2 provided TSIR estimates for pre-vaccination measles in London
and showed the limit-cycle nature of the dynamics. Biweekly transmission estimates
were:

beta=c(27.71, 43.14, 37.81, 33.69, 31.64, 32.10, 30.16,
24.68, 30.19, 31.53, 30.31, 26.02, 26.57, 25.68, 23.21,
19.21, 17.50, 20.50, 29.92, 35.85, 32.65, 28.34, 31.11,
29.89, 26.89, 39.38)

Median biweekly birth rate for London was 2083. We can simulate the London
attractor and associated global and local Lyapunov exponents.

sim=SimTsir2(beta=beta, alpha=0.98,
B=rep(2083, 5200), N=3.3E6, inits=list(Snull=133894,
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Inull=474))
Sattr=sim$S[5149:5200]
Iattr=sim$I[5149:5200]
lonlyap=TSIRlyap(I=Iattr, S=Sattr, alpha=0.98,

bt=beta, N=3.3E6)
lonlyap$lyap

## [1] -0.004289374

lonllyap=TSIRllyap(lonlyap, m=1)

The dominant Lyapunov exponent is negative testifying to the stability of the
limit cycles. We can look in greater detail across the biennial attractor (Fig. 10.4).
Interestingly there is potential for significant divergence during the growth phase
of the minor and major epidemics; however, the post-epidemic convergence is ap-
parently strong enough to overcome this to result in a strongly dissipative cyclic
attractor.

pm=lonllyap$llyap>0
plot(NA, xlim=c(1,52), ylim=range(Iattr),

xlab="Biweek", ylab="I", log="y")
symbols((1:52)[pm],Iattr[pm], circles=

lonllyap$llyap[pm], inches=.3, add=TRUE)
symbols((1:52)[!pm],Iattr[!pm], squares=

-lonllyap$llyap[!pm], inches=.3, add=TRUE, bg=2)

To visualize this effect more clearly we can plot the long-term deterministic at-
tractor with 20 stochastic simulation (assuming demographic stochasticity only)
(Fig. 10.5). The simulations show that despite abundant variability—particularly
during the minor epidemics—the trajectories exhibit long-term predictability; That
is except for the rare stochastic trajectory that escapes onto the opposite-year coex-
isting attractor towards the end of the simulations. Grenfell et al. (2001) discuss how
the area around Norwich locked on to the opposite-year coexisting attractor com-
pared to the rest of England and Wales for about 15 years following World War II.

sim=SimTsir2(beta=beta, alpha=0.98, B=rep(2083, 520),
N=3.3E6, inits=list(Snull=133894, Inull=474),
type="det")

plot(sqrt(sim$I), ylab="Sqrt(Cases)", xlab="Biweek")
for(i in 1:20){

sim=SimTsir2(beta=beta, alpha=0.98, B=rep(2083, 520),
N=3.3E6, inits=list(Snull=133894, Inull=474),
type="stoc")

lines(sqrt(sim$I))}
sim=SimTsir2(beta=beta, alpha=0.98, B=rep(2083, 520),
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Fig. 10.4 Local Lyapunov exponents across the biennial London measles attractor. Positive expo-
nents are shown as open circles and negative exponents as red squares

N=3.3E6, inits=list(Snull=133894, Inull=474),
type="det")

points(sqrt(sim$I), col=2)

During the first biweek of 1940, 23 cases of measles were reported in New York
city. Given our estimate of the reporting rate of 22.54% in that biweek, a best guess
of the incidence is 102; Correspondingly, the best guess of the number of suscep-
tibles is 402,153. To visualize the “sensitive dependence on initial conditions” of
the chaotic New York measles attractor we can forward simulate 10 years of dy-
namics, assuming there were either 5 more (less) infecteds (susceptibles) or 5 less
(more) infecteds (susceptibles). The rapid deterministic divergence (Fig. 10.6) is a
stark contrast to the predictability of the London attractor in the face of stochasticity
(Fig. 10.5).

sim2=SimTsir2(beta=exp(glmfit$coef[1:26]), alpha=0.98,
B=rep(median(NY$rec), 260), N=median(N),
inits=list(Snull=402153, Inull=102))

sim3=SimTsir2(beta=exp(glmfit$coef[1:26]), alpha=0.98,
B=rep(median(NY$rec), 260), N=median(N),
inits=list(Snull=402153-5, Inull=102+5))
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Fig. 10.5 Twenty years of deterministic dynamics (red circles) with 20 stochastic simulations of
the biennial London measles attractor

0 50 100 150 200 250

0
10

00
0

20
00

0
30

00
0

Biweek (from 1940)

I

Fig. 10.6 Ten years of deterministic dynamics of the chaotic New York city measles attractor
assuming three very similar initial conditions
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sim4=SimTsir2(beta=exp(glmfit$coef[1:26]), alpha=0.98,
B=rep(median(NY$rec), 260), N=median(N),
inits=list(Snull=402153+5, Inull=102-5))

plot(sim2$I[1:260], type="l", ylab="I",
xlab="Biweek (from 1940)")

lines(sim3$I[1:260], col=2)
lines(sim4$I[1:260], col=3)

10.4 Coexisting Attractors

Another nonlinear complication is how seasonally forced epidemic systems can ex-
hibit coexisting attractors as, for example, seen in the seasonally forced SEIR model
(Sect. 5.6). Stochastic perturbation can push dynamics between different basins of
attraction leading to erratic dynamics not predicted by basic theory.

One of the many puzzles about whooping cough dynamics is the apparent con-
tradiction between historical herd immunity and historical multi-annual epidemics
versus current circulation in adults.2 To reconcile these seemingly mutually exclu-
sive facets of whooping cough epidemiology, Lavine et al. (2011) proposed an hy-
pothesis that immunity to whooping cough wanes over time but re-exposure can
boost immunity. This leads to the following SIRWS compartmental model where W
is a waning class that is under the influence of two competing processes: return to
the S class at a rate of 2ω or boost back to the R class at a rate proportional to the
force of infection:

dS
dt

= μ(1− p)N −μS−βSI/N +2ωW (10.3)

dI
dt

= βSI/N − (μ + γ)I (10.4)

dR
dt

= γI − (μ −2ω)R+κβSW/N +μ pR (10.5)

dW
dt

= 2ωR−κβWI/N − (2ω +μ)W (10.6)

In the absence of boosting, immunity is expected to last for a mean of 1/ω year
(and distributed according to a Gamma-distribution with a shape-parameter of 2;
see Sect. 2.7). The parameter κ scales how sensitive boosting is relative to infection,
and p is the fraction of children vaccinated at birth. A surprising finding is that in
parts of the parameter space, a limit cycle coexists with a fix point attractor. We can

2 Modeling chicken pox, a herpes virus that can reactivate in older individuals in the form of
zoster, Ferguson et al. (1996) showed that the SEIR model cannot sustain multiannual (or chaotic)
childhood dynamics in the presence of “immigration” of the virus from an adult carrier group.
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use the forwards and backwards bifurcation algorithm of Sect. 5.6 to look at this.
We first define the gradients (using the log-trick):

sirwmod=function(t, logy, parms){
y=exp(logy)
S=y[1]
I=y[2]
R=y[3]
W=y[4]
with(as.list(parms),{
dS = mu * (1-p) * N - mu * S - beta * S * I / N +

2*omega * W
dI = beta * S * I / N - (mu + gamma) * I
dR = gamma * I - mu * R - 2*omega * R +

kappa * beta * W * I / N + mu*p*N
dW = 2*omega * R - kappa * beta * W * I / N -

(2*omega +mu)* W
res=c(dS/S, dI/I, dR/R, dW/W)
list(res)

})
}

We assume susceptible recruitment is reduced by vaccination and bifurcate on
this parameter (Fig. 10.7). The bifurcation analysis reveals the coexistence of a fix-
point and a cyclic attractor when vaccination is in the 20–40% range.

require(deSolve)
start = log(c(S=0.06, I=0.01, R=0.92, W = 0.01))
res=matrix(NA, ncol=100, nrow=5000)
p=seq(0.01, 1, length=100)
#Forwards
for(i in 1:100){

times = seq(0, 200, by=0.01)
paras = c(mu = 1/70, p=p[i], N = 1, beta = 200,

omega = 1/10, gamma = 17, kappa=30)
out = as.data.frame(ode(start, times, sirwmod, paras))
start=c(S=out[20001,2], I=out[20001,3],

R=out[20001,4], W=out[20001,5])
res[,i]=out$I[15002:20001]
cat(i, "\r")

}
#Backwards
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res2=matrix(NA, ncol=100, nrow=5000)
start = c(S=-1.8, I=-5.8, R=1.9, W=-1.9)
for(i in 100:1){

paras = c(mu = 1/70, p=p[i], N = 1, beta = 200,
omega = 1/10, gamma = 17, kappa=30)

out = as.data.frame(ode(start, times, sirwmod, paras))
start=c(S=out[20001,2], I=out[20001,3],

R=out[20001,4], W=out[20001,5])
res2[,i]=out$I[15002:20001]
cat(i, "\r")
}
plot(NA, xlim=range(p), ylim=range(res),

ylab="Log(I)", xlab="p")
for(i in 1:100) points(rep(p[i], 2), range(res[,i]))
for(i in 1:100) points(rep(p[i], 2),

range(res2[,i]), col=2)
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Fig. 10.7 Bifurcation diagram of the SIRWS model across the range of vaccination rates
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Figure 10.8 shows trajectories towards the two attractors assuming 20% vacci-
nation but with different initial conditions. For the given parameters the limit cy-
cle is stable and has period of 1.8 years and the fix-point attractor is a stable fo-
cus with a damping period of 1.2 years. Using a seasonally forced version of the
SIRWS model, Lavine et al. (2013) explored the hypothesis that the regime-shifts
in pre-vaccination whooping cough dynamics in Copenhagen (Fig. 10.12) was due
to stochastic switching between a low-amplitude noisy annual attractor and a high
amplitude cyclic attractor. In the end, the best evidence suggests that the major re-
current outbreaks between 1915 and 1925 was instead a “fly-by” of an unstable
multiannual “almost attractor” (Lavine et al. 2013; see Sects. 10.5 and 10.7).

paras = c(mu = 1/70, p=0.2, N = 1, beta = 200,
omega = 1/10, gamma = 17, kappa=30)

start=c(S=-1, I=-5, R=3.3, W=0)
times = seq(0, 30, by=1/52)
out = as.data.frame(ode(start, times, sirwmod, paras))
plot(out$time, exp(out$I), xlab="Year",

ylab="I", type="l", ylim=c(0,0.05))
start = c(S=-1.8, I=-5.8, R=1.9, W=-1.9)
times = seq(0, 30, by=1/52)
out = as.data.frame(ode(start, times, sirwmod, paras))
lines(out$time, exp(out$I), col=2)

10.5 Repellors/Unstable Manifolds

Rand and Wilson (1991) studied a seasonally forced SEIR model (Sect. 5.3) of
chickenpox (assuming that shedding from zoster can be ignored); They assumed a
latent period and infectious period of around 10 days and sinusoidally forced trans-
mission with a β0 of 537/year, β1 = 0.3, and a birth rate of 0.02.

The integrated ODEs predict robust annual epidemics in the presence of seasonal
forcing (Fig. 10.9).

times = seq(0, 100, by = 1/120)
start = c(S = 0.06, E = 0, I = 0.001, R = 0.939)
cparas = c(mu = 0.02, N = 1, beta0 = 537, beta1 = 0.3,

sigma = 36, gamma = 34.3)
out = as.data.frame(ode(start, times,seirmod2, cparas))
plot(out$time, out$I, type="l", xlab="Year", ylab=

"Prevalence", xlim=c(91,100), ylim=c(0, 0.0015))
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Fig. 10.8 The two coexisting attractors of the SIRWS-model with 20% vaccination at birth

In contrast, stochastic simulations of the model (see chapter Appendix for
detail)—assuming stochasticity in the seasonal transmission rate —exhibit dynam-
ics with conspicuous “regime-shifts”; Periods with the expected somewhat variable
annual outbreaks are interspersed with periods of violent multiannual cycles with
a period of around 4 years (Fig. 10.10) that is completely unrelated to the damping
period of the unforced SEIR model (∼2.8 years for these parameters). This appears
to be a dynamical phenomenon different to what we have studied previously.

For the stochastic simulations we build a pomp object using the “C-snippets”
detailed in the Appendix. The dat-data object defines the times for the stochastic
simulation. We are not working with data, so the reports column is just a dummy.

dat=data.frame(time=seq(0, 500, by=1/52), reports=NA)
seirp=pomp(dat, times="time",t0=0,

rprocess=euler.sim(Csnippet(rproc),delta.t=1/52/20),
skeleton=vectorfield(Csnippet(skel)),
rmeasure=Csnippet(robs),
dmeasure=Csnippet(dobs),
initializer=Csnippet(rinit),
params=c(iota=0,beta0=537,beta1=0.3,sigma=36,
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Fig. 10.9 Ten years of simulation of the forced SEIR model parameterized according to Rand and
Wilson’s (1991) chickenpox parameters predicts robust annual epidemics

gamma=34.3,alpha=0.015,rho=0.6,theta=1,
b=0.02,mu=0.02,pop0=5e8,
S0=0.06,E0=0,I0=0.001,R0=0.939),
paramnames=c("iota","beta0","beta1","gamma",
"sigma","alpha","rho","theta", "b","mu","pop0",
"S0","E0","I0","R0"),

statenames=c("S","E","I","R","inc","pop"),
zeronames="inc")

We simulate deterministic and stochastic trajectories to produce Figs. 10.9
and 10.10.

detsim<-trajectory(seirp, as.data.frame=TRUE)
plot(detsim$time, detsim$I/5E8, type="l",

xlim=c(101, 110), xlab="year", ylab="prevalence")
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Fig. 10.10 (a) Hundred years of stochastic simulation of the forced SEIR model parameterized
according to Rand and Wilson’s (1991) chickenpox parameters assuming stochasticity in transmis-
sion. (b) Annual stroboscopic section of the stochastic simulation is the S-I phase plane

The annual stroboscopic section of the deterministic and stochastic simulation is
shown in Fig. 10.10b:

par(mfrow=c(1,2))
stocsim<-simulate(seirp, seed=3495135,

as.data.frame=TRUE, nsim=1)
plot(stocsim$time, stocsim$I/5E8, type="l", xlim=c(150,

250), xlab="Year", ylab="Prevalence")
sel=seq(105, length(stocsim$I), by=52)
plot(stocsim$S[sel]/5E8, stocsim$I[sel]/5E8,

log="xy", xlab="S", ylab="I")
sel2=sel[401:500]
points(detsim$S[sel2]/5E8, detsim$I[sel2]/5E8, col=2,

pch=21, bg=2)

Rand and Wilson (1991) studied the apparent similarity of the stochastic trajec-
tory in the S-I phase plane (Fig. 10.10) to the quasiperiodic chaotic attractor of the
parametrically nearby model of Sect. 5.4 (Fig. 5.5). They stipulated that the stochas-
tic dynamics of the deterministically annual system is intermittently governed by
the weakly unstable “ghost” of the nearby 4-year quasi-periodic chaotic attractor.
To study this further we turn to the notion of “invasion orbits.”
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10.6 Invasion Orbits

Studying highly nonlinear, stochastic dynamical systems is complicated by the in-
termingling of two different sources of dynamic variability: the variability due to
deterministic instability and the variability due to stochastic forcing (Bjørnstad and
Grenfell 2001). In order to elucidate this complexity, we may think of the stochas-
tic forcing as a perturbation to the nonlinear system which laws subsequently will
attempt to return the system to the deterministic attractor. In Sect. 5.3, we discussed
how to study the long-term asymptotic behavior of the seasonally forced SEIR sys-
tem through numeric integration from arbitrary initial conditions and discarding the
initial transient dynamics. “Invasion orbits” is the flip-side of this; Systematically
distribute initial conditions across the phase plane and numerically integrate the
transients to describe the trajectories toward the deterministic attractor. For “linear
systems” or approximately linear systems—in the dynamical systems sense—the
invasion orbits will be monotonic trajectories towards a stable node and smooth spi-
rals towards a stable focus (see e.g., Fig. 2.5); The period of the inward spiral will
be determined by the dampening period of the focus as discussed in Chap. 9. For
highly nonlinear systems, in contrast, the approach towards the attractor may not
be smooth. We can illustrate this using Rand and Wilson’s (1991) chickenpox SEIR
model. We first have to set up a systematic grid of initial conditions:

starts=expand.grid(S=seq(0.02, 0.1, length=10),
E=seq(1E-8, 0.0125, length=10),
I=seq(1E-8, 0.005, length=10))

starts$R=1-apply(starts,1,sum)

For each of these 1000 initial conditions we will simulate the system for 100
years and then store the annual pointcare section in the S-I plane. Rand and Wilson
(1991) suggested this be done after discarding a short burn-in period (we use 5
years):

#times for integration
itimes = seq(0, 100, by=1/52)
#points for stroboscopic section
isel=seq(1, length(itimes), by=52)
#list to fill with results
cporbs=list(S=matrix(NA, ncol=dim(starts)[1],

nrow=length(isel)), I=matrix(NA,
ncol=dim(starts)[1], nrow=length(isel)))
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We now integrate to obtain the 1000 invasion orbits:

for (i in 1:dim(starts)[1]){
out2b = as.data.frame(ode(as.numeric(starts[i,]),

itimes, seirmod2, cparas))
cporbs$S[,i]=out2b[,2][isel]
cporbs$I[,i]=out2b[,4][isel]

}

Fig. 10.11 The stroboscopic section of the invasion orbits of the forced SEIR model trace out the
ghost of a chaotic attractor that has lost stability in the region of parameter space that Rand and
Wilson (1991) used for their chickenpox model. The white central circle is the annual deterministic
attractor, and the red open circles are annual strobes from a stochastic simulation

We can finally plot the stroboscopic section of the invasion orbits in the S-I phase
plane with the deterministic attractor superimposed (Fig. 10.11) to reveal that the
stochastic simulation is largely governed by the unstable highly nonlinear structure
in the phase plane dubbed variously a “repellor,” a “chaotic saddle,” or an “unstable
manifold.” Eckmann and Ruelle (1985) also referred to it as an “almost attractor.”
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#Invasion orbits
plot(as.vector(cporbs$S[-c(1:5),]),

as.vector(cporbs$I[-c(1:5),]), pch=20, cex=0.25,
log="xy", ylab="I", xlab="S")

#Stochastic simulation
sel=seq(105, length(stocsim$I), by=52)
points(stocsim$S[sel]/5E8, stocsim$I[sel]/5E8, col=2)
#Deterministic attractor
times = seq(0, 1000, by=1/120)
start = c(S=0.06, E=0, I=0.001, R = 0.939)
out = as.data.frame(ode(start, times, seirmod2, cparas))
sel=seq(120*100, length(times), by=120)
points(out$S[sel], out$I[sel], pch=21, col="white",

bg="white")

Rohani et al. (2002) discussed how the multiannual cycles in whooping cough
following vaccination may be explained as the dynamics chasing a periodic saddle
(i.e., a periodic “almost attractor”).

10.7 Stochastic Resonance

Whooping cough in pre-vaccination Copenhagen generally exhibited low amplitude
“fuzzy” epidemics, with the exception of a 10-year period of violent epidemics start-
ing around 1915 (Fig. 10.12)(Lavine et al. 2013). We use wavelet analysis with the
“crazy climber” ridge finding algorithm to characterize the transitions in dynamics.

data(pertcop)
require(Rwave)
#Wavelet decompostion
no=8
nv=16
a=2ˆseq(1, no+1-1/nv, by=1/nv)
wfit=cwt(sqrt(pertcop$cases), no, nv, plot=FALSE)
wspec = Mod(wfit)
#Crazy climber
crcinc<-crc(wspec, nbclimb=10, bstep=100)
fcrcinc<-cfamily(crcinc, ptile=0.5, nbchain=1000,

bstep=10)

## There are 1 chains.
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Fig. 10.12 (a) Incidence of whooping cough in Copenhagen. (b) The wavelet spectrum reveals a
10-year run of significant 3-year cycles starting around 1915. (c) The 3-year cycles are associated
with increased “signal-to-noise” (SNR) ratio in the wavelet spectrum

Lavine et al. (2013) used the ratio of variation in the multiannual versus high-
frequency part of the wavelet spectrum as a simple measure of the time varying
“signal-to-noise” (SNR) ratio in the whooping cough dynamics:

sigind=which((a/52)>3 & (a/52)<4)
noiseind=which((a/52)<0.5)
snr=apply(wspec[, sigind], 1,

sum)/apply(wspec[, noiseind], 1, sum)

We can finally make a composite plot of incidence, wavelet spectrum, and signal-
to-noise ratio (Fig. 10.12) to highlight how the major epidemics are much less
“noisy” than the low amplitude cycles. Lavine et al. (2013) fit a seasonally forced
SIRWS (Eq. (10.4)) model to the data and concluded that the curious run of vio-
lent epidemics of whooping cough appeared to trace out an unstable multiannual
“almost attractor.”
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par(mfrow = c(3,1), mar = c(0,4,2,1))
layout(matrix(c(1,1,2,2,2,3), ncol = 1))
#Top panel
plot(as.Date(pertcop$date), pertcop$cases, xlab = "",

ylab = "Sqrt(cases)", type = "l", bty = ’l’,
xlim = c(as.Date("1901-01-01"),
as.Date("1938-01-01")), xaxt=’n’, yaxt=’n’)

axis(2, at=seq(0,200,by=100), labels=FALSE)
axis(2, at=seq(50,250,by=100), labels=TRUE)
#Mid panel
par(mar=c(0,4,0.25,1))
image(x=as.Date(pertcop$date, origin="1900-01-07"),

wspec, col=gray((30:10)/32), y=a/52, ylim=c(0,5),
ylab="Period (year)", main="", xaxt="n", yaxt="n")

contour(x=as.Date(pertcop$date, origin="1900-01-07"),
wspec, y=a/52, ylim=c(0,5),
zlim=c(quantile(wspec)[4], max(wspec)), add=T)

axis(2, at=0:4)
ridges<-fcrcinc[[1]]
ridges[which(ridges<1.5*10ˆ-5)]<-NA
image(x=as.Date(pertcop$date, origin="1900-01-07"),

y=a/52, z=ridges, add=T, col="black")
#Bottom panel
par(mar=c(3,4,0.25,1), tcl=-0.4)
plot(x=as.Date(pertcop$date, origin="1900-01-07"), snr,

type="l", bty="l",xaxt="n", yaxt="n", ylab="SNR")
axis.Date(1, at=seq(as.Date("1900-01-01"),

as.Date("1938-01-01"), "years"))

In addition to highlighting the potential influence of unstable manifolds in dis-
ease dynamics, pre-vaccination Copenhagen whooping cough hints at another exotic
feature of certain nonlinear dynamical systems: increased stochasticity can some-
times increase predictability through a process of “stochastic resonance” (Wiesen-
feld and Moss 1995; Gammaitoni et al. 1998). We can illustrate this phenomenon
with the seasonally forced stochastic SEIR model introduced in Sect. 10.5. The
pomp C-snippets are detailed in the Appendix. We simulate 500 years of weekly
data across a range of 126 transmission variances between 0 and 0.025 (given by the
alpha-vector). The stochastic dynamics is prone to extinction so, for each param-
eter set, we change the pseudorandom seed until a 500-year persistent time series
is produced (using the while-loop):

dat=data.frame(time=seq(0, 500, by=1/52), reports=NA)
sds=rep(NA, 126)
alpha=seq(0,0.025, by=0.0002)
Smat=Imat=matrix(NA, nrow=26001, ncol=126)
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for(i in 1:126){
seirp=pomp(dat, times="time",t0=0,
rprocess=euler.sim(Csnippet(rproc),delta.t=1/52/20),
skeleton=vectorfield(Csnippet(skel)),
rmeasure=Csnippet(robs),
dmeasure=Csnippet(dobs),
initializer=Csnippet(rinit),
params=c(iota=0,beta0=537,beta1=0.3,sigma=36,

gamma=34.3,alpha=alpha[i],rho=0.6,theta=1,
b=0.02,mu=0.02,pop0=5e8,
S0=0.06,E0=0,I0=0.001,R0=0.939),
paramnames=c("iota","beta0","beta1","gamma",
"sigma","alpha","rho","theta","b","mu","pop0",
"S0","E0","I0","R0"),

statenames=c("S","E","I","R","inc","pop"),
zeronames="inc"
)

stocsim$I[26001]=0
j=-1
while(stocsim$I[26001]==0){
j=j+1
stocsim<-simulate(seirp, seed=3495131+j,

as.data.frame=TRUE,nsim=1)
sds[i]=3495131+j
}
Imat[,i]=stocsim$I
Smat[,i]=stocsim$S

}

To study stochastic resonance we simulate the model across a range of stochastic
variability in the transmission rate. We use wavelet analysis to quantify “predictabil-
ity” as a function of stochasticity (Fig. 10.13).

predn=rep(NA, 126)
#Set the number of "octaves" and "voices"
no = 8; nv = 10
#then calculate the corresponding periods
a = 2ˆseq(1,no+1-1/nv, by = 1/nv)
sel2= a>=39 & a <260 #Multiannual signal
sel=a<39 #High frequency noise
for(i in 1:126){
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wfit = cwt(sqrt(Imat[,i]), no, nv, plot=FALSE)
wspec = Mod(wfit)
predn[i]=sum(wspec[,sel2])/sum(wspec[sel])

}
plot(alpha, predn, xlab="Noise variance",

ylab="’Predictability’")
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Fig. 10.13 “Predictability” measured as the ratio of the wavelet spectrum that falls in the mul-
tiannual region versus the high-frequency region as a function of the stochastic variance in the
transmission rate (β0) for the seasonally forced SEIR model

The wavelet “signal-to-noise” ratio indicates the curious phenomenon that “pre-
dictability” increases with noise up to a point and then decays (Fig. 10.13). The ef-
fect comes about because with low noise variance, the system rarely interacts with
the high-amplitude quasi-periodic “almost attractor” and at high noise variance the
stochasticity breaks the epidemiological clockwork. Stochasticity can push a dy-
namical system towards an “almost stable” multiannual cycle, as Lavine et al. (2013)
argued was the case of pre-vaccination whooping cough in Copenhagen. Stochas-
ticity may also push dynamics towards an “almost stable” fix-point, for which the



10.8 Predictability: Empirical Dynamic Modeling 203

perhaps clearest ecological illustration is provided by laboratory colonies of cyclic
populations of the flour beetle Tribolium castaneum (Cushing et al. 1998); or an
“almost stable” chaotic manifold, as is the case of the seasonally forced chicken-
pox model of Rand and Wilson (1991). The latter phenomenon led to an interesting
discussion of the meaning of “noise-induced chaos” (Yao and Tong 1994; Dennis
et al. 2003; Ellner and Turchin 2005).

10.8 Predictability: Empirical Dynamic Modeling

The “predictability” measure used in the previous section is not truly a measure of
the level of determinism of the dynamics. Various researchers have proposed to use
some form of nonparametric autoregression—sometimes called “nonlinear forecast-
ing” and recently “empirical dynamic modeling” (Ye et al. 2015)—in combination
with leave-one-out cross-validation to quantify predictability in empirical time se-
ries. These approaches have used nearest-neighbor methods (Sugihara et al. 1990),
kernel regression (Yao and Tong 1998), and local polynomials (Fan et al. 1996). The
ntls-package has implementations of the local polynomial approaches proposed
by Tong and coworkers (Cheng and Tong 1992; Fan et al. 1996; Yao and Tong
1998) building on the locfit-package (Loader 2006). The function ll.order
calculates the cross-validation error across a range of kernel bandwidths and autore-
gressive lags.3

We consider the chickenpox SEIR model across a range of stochasticities in
transmission and use ll.order to calculate the cross-validation predictability of
annually strobed versions of the weekly simulations (discarding the first 10 years).

require(nlts)
llcv=rep(NA,126)
for(i in 1:126){
llfit=ll.order(sqrt(Imat[seq(521,26001, by=52),i]),

step=1, order=1:5, bandwidt = seq(0.5, 1.5,
by = 0.5), cv=FALSE)

llcv[i]=min(llfit$grid$GCV)
}
plot(llcv˜alpha, ylab="GCV", xlab="Noise variance")

The action of stochastic resonance due to the “almost attractor” is readily visible,
as the (generalized) cross-validation error is lowest for intermediate noise variances
(Fig. 10.14).

3 The method was originally proposed as a nonparametric method to estimate the “order” of a time
series (Cheng and Tong 1992).
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Fig. 10.14 Predictability measured as the cross-validation error of the optimized nonparametric
autoregression as a function of the stochastic variance in the transmission rate (β0) for the season-
ally forced SEIR model

In an early application to epidemiology, Sugihara et al. (1990) proposed to use
nonparametric prediction-error as a function of prediction lag to distinguish deter-
ministic chaos from noisy limit cycles in measles epidemics. Nonparametric autore-
gression is a completely “mechanism-free” model for the disease dynamics. We can
use the ll.edm-function to check that the method produces dynamics that are in
rough correspondence to the empirical patterns. Let’s consider a 10-year segment of
the 10th weekly simulation. We use order (embedding dimension) 3, because this
is indicated as best fit based on the order-consistent estimator (ll.order). The
resultant empirical dynamic model has roughly appropriate dynamics, though the
period is slightly too short (Fig. 10.15)

x=sqrt(Imat[seq(521,1040, by=1),10])
sim=ll.edm(x=x, order=3, bandwidth=0.8)
plot(x, type="b", ylab="Prevalence", xlab="Week")
lines(sim, col=2)
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Fig. 10.15 Model simulation and dynamics predicted by the nonparametric autoregressive (“em-
pirical dynamic”) model

legend("topright", legend=c("Simulation", "EDM"),
lty=c(1,1), pch=c(1, NA), col=c("black", "red"))

Appendix: Making a Pomp-Simulator

Doing the computations involved in Sects. 10.5 and 10.7 are computationally expen-
sive. The pomp-package includes a Csnippet-function that will compile C code
on the fly to speed up calculations. The following provides the C code used in the
simulations of the stochastic SEIR model.

require(pomp)

We first define the Csnippet for the deterministic skeleton of the unobserved pro-
cess:
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"
double rate[8]; // transition rates
double trans[8]; // transition numbers
double beta=beta0*(1+beta1*cos(2*M_PI*t));//transmission
double lambda = (iota+I*beta)/pop; // FoI

// transition rates
rate[0] = b*pop; // birth of S
rate[1] = lambda; // infection of S
rate[2] = mu; // death of S
rate[3] = sigma; // latent period of E
rate[4] = mu; // death of E
rate[5] = gamma; // recovery of I
rate[6] = mu; // death of I
rate[7] = mu; // death of R

// compute the transition numbers
trans[0] = rate[0];
trans[1] = rate[1]*S;
trans[2] = rate[2]*S;
trans[3] = rate[3]*E;
trans[4] = rate[4]*E;
trans[5] = rate[5]*I;
trans[6] = rate[6]*I;
trans[7] = rate[7]*R;

// balance the equations
DS = trans[0] - trans[1] - trans[2];
DE = trans[1] - trans[3] - trans[4];
DI = trans[3] - trans[5] - trans[6];
DR = trans[5] - trans[7];
Dinc = trans[5]; // cumulative recovery
Dpop = trans[0]-trans[2]-trans[4]-trans[6]-trans[7];
" -> skel

Then the Csnippet for the stochastic simulator

"
double rate[8]; // transition rates
double trans[8]; // transition numbers

double beta=beta0*(1+beta1*cos(2*M_PI*t));//transmission
double dW = rgammawn(alpha,dt); // white noise
double lambda = (iota+I*beta*dW/dt)/pop;
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// transition rates
rate[0] = b*pop; // birth of S
rate[1] = lambda; // infection of S
rate[2] = mu; // death of S
rate[3] = sigma; // latent period of E
rate[4] = mu; // death of E
rate[5] = gamma; // recovery of I
rate[6] = mu; // death of I
rate[7] = mu; // death of R

// compute the transition numbers
trans[0] = rpois(rate[0]*dt); // births are Poisson
reulermultinom(2, S, &rate[1], dt, &trans[1]);
reulermultinom(2, E, &rate[3], dt, &trans[3]);
reulermultinom(2, I, &rate[5], dt, &trans[5]);
reulermultinom(1, R, &rate[7], dt, &trans[7]);

// balance the equations
S += trans[0] - trans[1] - trans[2];
E += trans[1] - trans[3] - trans[4];
I += trans[3] - trans[5] - trans[6];
R += trans[5] - trans[7];
inc += trans[5]; // cumulative recovery
pop = S + E + I + R;
" -> rproc

pomp wants Csnippets for the observational process also (even if we only use
the object for simulation).

## Observation model simulator (negative binomial)
"
double mean = rho*inc;
double size = 1/theta;
reports = rnbinom_mu(size,mean);
" -> robs

## Observation model likelihood (negative binomial)
"
double mean = rho*inc;
double size = 1/theta;
lik = dnbinom_mu(reports,size,mean,give_log);
" -> dobs
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We need initial conditions

"
S = nearbyint(pop0*S0);
E = nearbyint(pop0*E0);
I = nearbyint(pop0*I0);
R = nearbyint(pop0*R0);
pop = S+E+I+R;
inc = 0;
" -> rinit

Finally we can build the pomp object. The dat-data object defines the times for
the stochastic simulation. We are not working with data, so the reports column
is just a dummy.

dat=data.frame(time=seq(0, 500, by=1/52), reports=NA)
seirp=pomp(dat, times="time",t0=0,

rprocess=euler.sim(Csnippet(rproc),delta.t=1/52/20),
skeleton=vectorfield(Csnippet(skel)),
rmeasure=Csnippet(robs),
dmeasure=Csnippet(dobs),
initializer=Csnippet(rinit),
params=c(iota=0,beta0=537,beta1=0.3,sigma=36,

gamma=34.3,alpha=0.015,rho=0.6,theta=1,
b=0.02,mu=0.02,pop0=5e8,

S0=0.06,E0=0,I0=0.001,R0=0.939),
paramnames=c("iota","beta0","beta1","gamma","sigma",

"alpha","rho","theta", "b","mu","pop0",
"S0","E0","I0","R0"),

statenames=c("S","E","I","R","inc","pop"),
zeronames="inc")

The pomp-package has numerous functions to simulate deterministic and
stochastic trajectories from pomp-objects.



Chapter 11
Spatial Dynamics

11.1 Dispersal Kernels

Pathogens move in space because of movement of transmission stages and in-
fected/susceptible hosts. Spatial pattern arises from landscape heterogeneities, dis-
persal and “reaction-diffusion” dynamics among spatially dispersed susceptible, and
infected individuals. The probability distribution that governs dispersal distances is
often referred to as the dispersal kernel. A variety of functional forms have been pro-
posed in the ecological and epidemiological literature (e.g., Mollison 1991; Clark
1998; Bjørnstad and Bolker 2000; Smith et al. 2002). From the point of view of
basic theory, it is often assumed that dispersal takes an exponential (the proba-
bility of dispersing a distance d ∝ exp(−d/a), where a is the range) or Gaussian
(∝ exp(−(d/a)2)) shape. The exponential model arises, for example, if we assume
dispersal happens in a constant direction with a constant stopping rate. The Gaussian
model arises if the stopping rate is constant but movement direction changes ran-
domly like a Brownian motion. However, other kernels are relevant; Broadbent and
Kendall (1953) calculated the movement probabilities of infectious larvae of a gut
nematode of sheep, Trichostrongylus retortaeformis, that performs a random walk
until it encounters a leaf of grass. Assuming the location of the leaves are according
to a spatially random point process, they showed that the random walk leads to a dis-
persal distance distributions that follows a Bessel K0-function. Ferrari et al. (2006b)

This chapter uses the following R-packages: ncf and animate.
A conceptual understanding of spatial spread is useful prior to this discussion. A 5-min epidemics-
MOOC can be seen on YouTube: https://www.youtube.com/watch?v=WPjsAdyD1Gg.

© Springer Nature Switzerland AG 2018
O. N. Bjørnstad, Epidemics, Use R!, https://doi.org/10.1007/978-3-319-97487-3 11
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used this kernel in a model of pollinator-vectored plant pathogens. Empirical dis-
persal distribution of free-living organisms typically has an over-representation of
rare long-range jumps that are improbable according to these kernels; They are the
so-called “fat-tailed” kernels (Clark 1998), which have important consequences for
the speed of spatial spread (Kot et al. 1996).

For human infections spatially contiguous, diffusive kernels are often a poor fit to
empirical patterns because spread often follows a characteristic “hierarchical” fash-
ion (Grenfell et al. 2001); Infections usually appear in big cities early, thereafter the
timing of epidemics on average happens in an order of descending size and increas-
ing isolation. This chapter is focused on inferring the shape of the spread-kernel
from spatial patterns over time, and then investigates the dynamical consequences
of such spread. We start with considering the simpler diffusive kernels and then
consider the more complicated patterns arising from human mobility.

11.2 Filipendula Rust

Jeremy Burdon and Lars Ericson surveyed presence/absence of a fungal pathogen
on a wild plant, Filipendula ulmaria, across islands in a Swedish archipelago (Smith
et al. 2003). The filipendula data contains observations for 1994 ($y94) and
1995 ($y95), with spatial coordinates $X and $Y. There are additionally a large
number of descriptive covariates for each site. Smith et al. (2003) used the data to
estimate the most likely dispersal kernel of the rust. The host plant is an herbaceous
perennial with pathogen spores overwintering on dead tissue. The infections in 1995
thus arose from the spores produced in 1994.

If spores disperse according to, say, an exponential function with range, a, then
the spatial force of infection on any location, i, will be ∝ ∑ j z jexp(−di j/a), where
z j is the disease status (0/1) in the previous year and di j are the distances to other
locations. The idea is that in each spring, every local group of hosts will be in the ac-
cumulated spore shadow of last year’s infected individuals. This leads to a metapop-
ulation “incidence-function” model (Hanski 1994) for the presence/absence of rust
among all locations from year to year. Figure 11.1 shows the spatial data.

data(filipendula)
symbols(filipendula$X, filipendula$Y, circles=

rep(1,162), inches=.1, bg=filipendula$y95+1,
xlab="X", ylab="Y")

symbols(filipendula$X, filipendula$Y, circles=
rep(1,162), inches=.05, bg=filipendula$y94+1,
add=TRUE)

legend("topright", c("infected 94", "infected 95"),
pch=c(21,21), pt.cex=c(1,2), pt.bg=c(2,2))

As for the basic catalytic (Chap. 4) and TSIR (Chap. 7) models, we can use the
glm-framework to estimate the parameters. Since the response variable is binary,



11.2 Filipendula Rust 211

0 200 400 600

10
0

20
0

30
0

40
0

50
0

60
0

X

Y
infected 94
infected 95

Fig. 11.1 Presence/absence of the rust on its Filipendula ulmaria host plant in 1994 and 1995. Red
is infected. Black is uninfected

we use logistic regression to calculate a profile likelihood for a. We first calculate
the distance matrix among the 162 locations:

dst = as.matrix(dist(filipendula[, c("X", "Y")]))

Arbitrarily assuming a value of a of 10 m, the 1995 FoI on each location will be
proportional to:

a = 10
foi = apply(exp(-dst/a) * filipendula$y94, 2, sum)

We use glm to evaluate the likelihood. The deviance of the glm object is 2
times the negative log-likelihood.

lfit=glm(y95˜foi, family=binomial(), data=filipendula)
lfit$deviance/2

## [1] 69.8527
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Figure 11.2 shows the likelihood profile across candidate values for a.

a=seq(1,20, length=1001)
llik=rep(NA, length(a))
for(i in 1:length(a)){

foi=apply(exp(-dst/a[i])*filipendula$y94,2,sum)
lfit=glm(y95˜foi, family=binomial(),

data=filipendula)
llik[i]=lfit$deviance/2

}
plot(a, llik, type="l", ylab="Neg. log-like")
abline(h=min(llik)+qchisq(0.95,1)/2)
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Fig. 11.2 Likelihood profile for a the parameter in the exponential dispersal kernel. The horizontal
line represents the 95% cut off for the χ2(1)/2 deviation from the minimum

We can compare our best kernel model with a nonspatial model assuming a ho-
mogenous risk among hosts using likelihood-ratio tests (Sect. 8.4). Recall that for
nested glm’s (i.e., where the simpler model is nested within the more complicated
model), the difference in deviances (= 2xlog-likelihood) is χ2(d f =Δ p)-distributed,
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where Δ p is the number of extra parameters in the complex model. The anova-
function provides this calculation in R. Since we first profiled on a, and then use the
value â that minimizes the negative log-likelihood, we have to correct the residual
degrees of freedom of the spatial model to get the correct likelihood-ratio test.

ahat=a[which.min(llik)]
foi=apply(exp(-dst/ahat)*filipendula$y94,2,sum)
spmod=glm(y95˜foi, family=binomial(), data=filipendula)
nullmod=glm(y95˜1, family=binomial(), data=filipendula)
#correct the df of the spmod
spmod$df.residual=spmod$df.residual-1
anova(nullmod, spmod, test="Chisq")

## Analysis of Deviance Table
##
## Model 1: y95 ˜ 1
## Model 2: y95 ˜ foi
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 161 222.10
## 2 159 109.48 2 112.63 < 2.2e-16
##
## 1
## 2 ***
## ---
## Signif. codes:
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The spatial model gives a highly significantly better fit than the null model.
The Gaussian dispersal kernel takes the form ∝ exp(−(di j/a)2). We can estimate

the parameters assuming this alternative kernel:

a2=seq(1,20, length=1001)
llik2=rep(NA, length(a2))
for(i in 1:length(a2)){

foi2=apply(exp(-(dst/a2[i])ˆ2)*filipendula$y94,2,sum)
lfit2=glm(y95˜foi2, family=binomial(),

data=filipendula)
llik2[i]=lfit2$deviance/2

}
ahat2=a2[which.min(llik2)]
foi2=apply(exp(-(dst/ahat2)ˆ2)*filipendula$y94,2,sum)
spmod2=glm(y95˜foi2, family=binomial(),

data=filipendula)
spmod2$df.residual=spmod2$df.residual-1
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Finally, we can visualize the shape of the competing probability kernels (using
appropriate scaling for power exponential functions) (Fig. 11.3):

curve((2/(ahat2 * gamma(1/2))) * exp(-((x/ahat2)ˆ2)),
0, 10, col = 2, lty = 2, ylab = "Probability",
xlab = "Meters")

curve((1/(ahat) * gamma(1)) * exp(-x/ahat), 0, 10,
add = TRUE)

legend("topright", c("Exponential", "Gaussian"),
lty = c(1, 2), col = c(1, 2))
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Fig. 11.3 The estimated exponential and Gaussian dispersal distance distributions for the Filipen-
dula rust data

The two spatial models are not nested, but we can get model rankings using their
AICs:

spmod$aic

## [1] 113.4775

spmod2$aic

## [1] 116.6538

The exponential model is favored over the Gaussian.
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11.3 Simulation

In addition to being a statistical method, our binomial spatial model also repre-
sents a fully specified metapopulation model for presence/absence of the rust.1

Since we used logistic regression (the default for the binomial-family), our re-
gression provides estimates for logit(p) = β0 + β1 ∗ foi. The inverse-link is p =
exp(β0 +β1 ∗ foi)/(1+ exp(β0 +β1 ∗ foi)).

We can write a simulator that stochastically projects the epidemic metapopula-
tion forwards in time (assuming a fixed host plant distribution). We will initiate the
simulation with the state of the system in 1995.

zprev = filipendula$y95
x = filipendula$X
y = filipendula$Y
beta0 = spmod$coef[1]
beta1 = spmod$coef[2]

Infection probabilities for next year are:

foi = apply(exp(-dst/ahat) * zprev, 2, sum)
logitp = beta0 + beta1 * foi
p = exp(logitp)/(1 + exp(logitp))

A stochastic realization is:

znew = rbinom(162, 1, p)
symbols(x, y, circles = rep(1, 162), bg = znew +

1, inches = 0.1, xlab = "X", ylab = "Y")

We can animate the next 100 years (if uncommented, the Sys.sleep argument
makes the computer go to sleep for 0.1 s to help visualization):

simdat=matrix(NA, ncol=100, nrow=162)
for(i in 1:100){

zprev=znew
foi=apply(exp(-dst/ahat)*zprev,2,sum)
logitp=beta0+beta1*foi
p=exp(logitp)/(1+exp(logitp))
znew=rbinom(162, 1, p)
simdat[,i]=znew
#symbols(x, y, circles=rep(1,162), bg=znew+1,

1 Just like the chain-binomial model in Sects. 3.4 and 3.5 the spatial logistic model can be used
both as a statistical method and a stochastic simulator.
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# inches=.1, xlab="X", ylab="Y")
#Sys.sleep(0.1)

}

Figure 11.4 shows the predicted relative spatial risk from the stochastic simula-
tion. The spatial.plot-function in the ncf-library is a wrapper for symbols
that plots values larger (smaller) than the mean as red circles (black squares). In this
case we see that spatial configuration alone can result in heterogenous infection risk
across the metapopulation. A corollary of this is that specialist plant pathogens may
regulate the spatial distribution of host plant recruitment through locally density-
dependent mortality and thus promote species diversity according to the Janzen-
Connell hypothesis (e.g., Clark and Clark 1984; Petermann et al. 2008).

require(ncf)
mprev = apply(simdat, 1, mean)
spatial.plot(x, y, mprev, ctr = TRUE)
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Fig. 11.4 Plot of predicted relative risk of rust infection from the metapopulation model. Risks
larger (smaller) than the mean are shown as red circles (black squares). The size of the symbols
reflects the deviation from the mean
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11.4 Gypsy Moth

Various viruses and parasitoids of insects cause population instabilities and cycles in
their hosts. The 5–10-year cycles in the gypsy moth (Lymantria dispar) are caused
by the ldNPV-virus. Larvae get infected when ingesting viral occlusion bodies.
The virus subsequently kills the larvae to release more of these infectious parti-
cles. USDA forest service conducts surveys each year of defoliation by the gypsy
moth across the Northeastern USA to reveal complex spatiotemporal patterns. A
web-optimized animated gif of the annual defoliation across the Northeastern USA
between 1975 and 2002 can be viewed from https://github.com/objornstad/epimdr/
blob/master/mov/gm.gif.

Spatiotemporal models can help to better understand such dynamics. There are
specialized models for both the local and spatiotemporal dynamics of the gypsy
moth (Dwyer et al. 2004; Abbott and Dwyer 2008; Bjørnstad et al. 2010). Here we
will consider a simpler spatially extended SIR model.

11.5 Coupled Map Lattice SI Models

Coupled map lattice models2 are constructed by assuming that spatiotemporal dy-
namics happens in two steps (Kaneko 1993; Bascompte and Solé 1995). First, local
growth according to some model, for example, the seasonally forced (discrete time)
SI model. Followed, second, by spatial redistribution of a fraction, m, of all individ-
uals to other neighboring patches.

Because R is a vectorized language we can simulate CMLs using very com-
pact code. We first write the function for the local SI dynamics according to
the expectation from the chain-binomial formulation (Sect. 3.4). We assume a
birth/death rate of μ and sinusoidal forcing on the transmission rate according to
β0 +β1 cos(2∗π ∗ t/26) (so there are 26 time-steps in a year). We assume infected
individual stays infected and infectious for one time step.

local.dyn = function(t, S, I, b0, b1, mu, N) {
beta = b0 * (1 + b1 * cos(2 * pi * t/26))
I = S * (1 - exp(-beta * I))
S = (1 - mu) * S + mu * N - I
list(S = S, I = I)

}

Next we construct the redistribution matrix among the nx−by−ny locations (we
consider a 30× 30 lattice). Nearest-neighbors will be <1.5 spatial units apart (to

2 The name refers to how the most stylized of these models assumes a lattice (checker board)
of locations at which local numbers change from one generation to the next according to some
“mapping”-rule such as the discrete logistic, the Nicholson-Baily model (see Chap. 14) or, in this
case, a discrete-time seasonally forced SI model.

https://github.com/objornstad/epimdr/blob/master/mov/gm.gif
https://github.com/objornstad/epimdr/blob/master/mov/gm.gif
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be exact <
√

3). Assume that the fraction that disperses to neighboring patches is
m = 0.25 and that movement is random and independent of disease status.

m = 0.25
ny = nx = 30
# generate coordinates
xy = expand.grid(x = 1:nx, y = 1:ny)
# make distance matrix
dst = as.matrix(dist(xy))
# make redistribution matrix with zeros
redist = matrix(0, nrow = ny * nx, ncol = ny * nx)
# populate the matrix so each of the 8 neighbors
# gets their share
redist[dst < 1.5] = m/8
# the remaining fraction stays put
diag(redist) = 1 - m

The S and I matrices will hold the results from the simulation. We will run the
model for IT=520 iterations (= 20 years). Assume that all patches have S0 =
100 susceptibles and that 1 infected is introduced in location {400, 1}:

IT = 520
S = I = matrix(NA, nrow = ny * nx, ncol = IT)
S[, 1] = 100
I[, 1] = 0
I[400, 1] = 1

We define the remaining parameters necessary for the local dynamics:

b0 = 0.04
b1 = 0.8
mu = 0.02/26
N = 1000

We are now ready to simulate the model. The %*%-operator represents matrix-
multiplication and the matrix-multiplication of a vector of abundances with the
redistribution-matrix moves all individuals appropriately.

for (t in 2:IT) {
# local growth:
tmp = local.dyn(t, S = S[, t - 1], I = I[, t -

1], b0 = b0, b1 = b1, mu = mu, N = N)
# spatial movement
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S[, t] = redist %*% tmp$S
I[, t] = redist %*% tmp$I
# progress monitor
cat(t, " of ", IT, "\r")

}

The simulation can be visualized as an inline animation. The predicted incidence
from the spatial SI-model varies so widely it is useful to transform incidence (using
a fourth-root) so that low values shows up better.

x = xy[, 1]
y = xy[, 2]
scIcubed = Iˆ(1/4)/(max(I[, 10:IT]ˆ(1/4)))

for (k in 1:IT) {
symbols(x, y, fg = 2, circles = scIcubed[, k],

inches = FALSE, bg = 2, xlab = "", ylab = "")
Sys.sleep(0.05)

}

Analyses of a variety of host-parasit(oid) CML models (Hassell et al. 1991;
Bjørnstad et al. 1999b; Earn et al. 2000a) have revealed a variety of emergent spa-
tiotemporal patterns including complete synchrony, waves, spatial chaos, and frozen
patterns. The pattern in any given system depends on the local dynamics and mobil-
ity. We will visit on these CML models further in Chap. 14.

11.6 Making Movies

We can make permanent movies by writing the plots to a sequence of jpeg’s and then
use an open-source utility like ImageMagick to convert the sequence to a movie.3

for(k in 100:IT){
png(filename=paste("m",1000+k,".jpg", sep=""))

symbols(x, y, fg=2, circles=scIcubed[,k],
inches=FALSE, bg=2,xlab="",ylab="")

dev.off()
}

3 The system()-function in R passes the convert and rm calls to the command-line. A web-
optimized version of the animated gif can be viewed on https://github.com/objornstad/epimdr/blob/
master/mov/simovie.gif.

http://www.imagemagick.org
https://github.com/objornstad/epimdr/blob/master/mov/simovie.gif
https://github.com/objornstad/epimdr/blob/master/mov/simovie.gif
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system("convert m*.jpg simovie.gif")
system("rm m*.png")
#For mp4-animation:
#system("convert -delay 5 m*.jpg simovie.mp4")

Alternatively we can incorporate the animation directly into a pdf—though for
this to work we need to work with LaTeX and use the LaTeX animate-package.

require("animation")
oopt = ani.options(interval = 0.02, nmax = 100)
test.function = function (xy, I, nmax) {

x = xy[,1]
y = xy[,2]
scIcubed = Iˆ(1/4)/(max(I[,10:IT]ˆ(1/4)))
for (i in seq_len(ani.options("nmax"))) {

dev.hold()
symbols(x,y,fg=2,circles=I[,i],inches=0.1,bg=2,

xlab="",ylab="")
ani.pause()

}
}

saveLatex({
test.function(xy=xy, I=I, nmax=50)
},
ani.basename = "BM", ani.opts = "controls,loop,
width=0.8\\textwidth", ani.first =
par(mar = c(3, 3, 1, 0.5), mgp = c(2, 0.5, 0),
tcl = -0.3, cex.axis = 0.8, cex.lab = 0.8,
cex.main = 1), latex.filename = "test.tex",
pdflatex = "/usr/texbin/pdflatex",
img.name = "Xplot")

ani.options(oopt)

11.7 Nonparametric Covariance Functions for Spatiotemporal
Data

Keeling et al. (2002) discuss how we may understand the emergent complicated spa-
tiotemporal dynamics of models of natural enemies in terms of the spatial variance
(or associated autocorrelation) and covariance of the interacting species.4 Bjørnstad
and Bascompte (2001) proposed to calculate auto- and cross-correlation functions

4 Seabloom et al. (2005) provide similar calculations for spatial competition models.

https://latex-project.org
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from simulated or real data. We can use the Sncf-function in the ncf-package
to calculate the “multivariate” spatial correlation function (Bjørnstad et al. 1999b)
among the simulated time series (see Chap. 13 for further details on this and other
geostatistical methods). We can further look at the spatial cross-correlation function
between susceptibles and infected (Fig. 11.5). The background synchrony for both
compartments (of around 0.3) is due to the common seasonal forcing. The locally
higher autocorrelation at shorter distances is due to emergence of dispersal-induced
aggregations of infected individuals. The negative local cross-correlation is due to
the local S-I cycles.

fitI = Sncf(x = xy[, 1], y = xy[, 2], z = sqrt(I[,
261:520]), resamp = 500)

fitS = Sncf(x = xy[, 1], y = xy[, 2], z = sqrt(S[,
261:520]), resamp = 500)

fitSI = Sncf(x = xy[, 1], y = xy[, 2], z = sqrt(S[,
261:520]), w = sqrt(I[, 261:520]), resamp = 500)

par(mfrow = c(1, 3))
plot(fitI, ylim = c(-0.1, 1))
plot(fitS, ylim = c(-0.1, 1))
plot(fitSI, ylim = c(-0.2, 0.2))
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Fig. 11.5 Spatial correlation (1) infecteds, (2) susceptibles, and (3) S-I cross-correlation as a func-
tion of distance
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One interesting additional application is the so-called time-lagged spatial corre-
lation function (Bjørnstad et al. 2002a). This analysis may help quantify wave-like
spread. For example we can look at the spatiotemporal relationship between the
infecteds and themselves 5 time-steps later (Fig. 11.6). The peak in correlation is
offset from the origin by somewhere between 5 and 10 units. This makes sense,
since we assume nearest neighbor dispersal, so the leading edge should move 5
units vertically/horizontally and 5∗√2 = 7.1 units diagonally during 5 time steps.

fitIlag = Sncf(x = xy[, 1], y = xy[, 2], z = I[,
261:515], w = I[, 266:520], resamp = 100)

plot(fitIlag, ylim = c(-0.2, 0.2))
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Fig. 11.6 The time-lagged spatial cross-correlation function of predicted prevalence of the SI cml
model (with a 5-year time lag)

Bjørnstad et al. (2002b) used time-lagged spatial correlation functions to show
that parasitoid-host interactions (see Chap. 14) lead to waves of larch tree defoliation
that travels at 210 km per year in a north-easterly direction across the European Alps.
Traveling waves have also been documented in the dynamics of dengue (Cummings
et al. 2004) and influenza A (Gog et al. 2014).

11.8 Gravity Models

Regional spread of human pathogens rarely forms a simple diffusive pattern because
human mobility patterns are more complex—movement may be distant dependent,
but overall flow between any two communities also typically depend on the size
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(and desirability) of both “donor” and “recipient” location (Erlander and Stewart
1990; Fotheringham 1984). Grenfell et al. (2001), for example, showed that the
spatiotemporal dynamics of measles across all cities and villages in pre-vaccination
England and Wales exhibited “hierarchical waves,” in which the timing of epidemics
relative to the big urban conurbations (the donors) depended negatively on distance
but positively on the size of the recipient. Viboud et al. (2006) demonstrated similar
hierarchical spread of seasonal influenza across the states of continental USA.

Xia et al. (2004) and Viboud et al. (2006) subsequently showed that a metapopu-
lation model where movement among communities followed a “generalized gravity
model” approximates the dynamic patterns; The “gravity model” is a model of mo-
bility/transportation from transportation science that posits that transportation vol-
ume between two communities depends inversely on distance, d, but bilinearly on
the size, N, of the communities (Erlander and Stewart 1990; Fotheringham 1984).
Gravity-like models have since been applied to study the spatial dynamics of a vari-
ety of human infection settings (e.g., Mari et al. 2012; Truscott and Ferguson 2012;
Gog et al. 2014).

The generalized gravity model quantifying the spatial interaction between lo-
cations i and j (commonly) take the form θNτ1

i Nτ2
j d−ρ

i j , where θ , τ1, τ2, and ρ are
nonnegative parameters shaping the topology of the spatial interaction network. The
gravity model has at least two important special cases: ρ = 0,τ1 = τ2 = 1 represent-
ing a mean field model and τ1 = τ2 = 0 representing simple spatial diffusion.

Viboud et al. (2006) proposed a stochastic multipatch SIR model for the spread
of seasonal influenza among the states of the continental USA. We will consider a
simpler SIR version of the model (ignoring susceptible recruitment)5:

dSi

dt
= −(β Ii +∑

j 	=i

ι j,iI j)Si (11.1)

dIi

dt
= (β Ii +∑

j 	=i

ι j,iI j)Si − γIi (11.2)

dRi

dt
= γIi, (11.3)

where ι j,iI j is the gravity-weighted force of infection exerted by state j on state i.
The corresponding R-code is:

require(deSolve)
SIR.space = function(t, y, pars) {

i = c(1:L)

5 Note that we assume that spatial transmission does not dilute local transmission. Keeling and
Rohani (2002) provide a discussion of this issue.
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S = y[i]
I = y[L + i]
R = y[2 * L + i]
with(pars, {

beta = beta[i]
dS = -(beta * I + m * G %*% I) * S
dI = (beta * I + m * G %*% I) * S - gamma *

I
dR = gamma * I
list(c(dS, dI, dR))

})
}

G is the spatial interaction matrix and m is a scaling factor. Combining state-level
ILI-data with county-level commuter census data, Viboud et al. (2006) estimated the
gravity parameters to be τ1 = 0.3, τ2 = 0.6, and ρ = 3.6 The usflu data contains
coordinates and populations for each of the contiguous lower 48 states plus the
District of Columbia. The gcdist-function of the ncf-package generates spatial
distance matrices from latitude/longitude data:

require(ncf)
data(usflu)
usdist = gcdist(usflu$Longitude, usflu$Latitude)

We define a function to generate the spatial interaction matrix given parameters
and distances:

gravity = function(tau1, tau2, phi, pop, distance) {
gravity = outer(popˆtau1, popˆtau2)/distanceˆphi
diag(gravity) = 0
gravity

}
G = gravity(0.3, 0.6, 3, usflu$Pop, usdist)

We finally define initial conditions and parameters (scaling β such that R0 will
be the same in all states). Viboud et al. (2006) were interested in exploring spread
in a pandemic setting. We therefore assume that everybody is susceptible, with 1
initial index case arriving in New York:

gamma = 1/3.5
R0 = 1.8
beta = R0 * gamma/usflu$Pop

6 Viboud et al. (2006) showed that the commuter flows has a heavier tail than predicted by this
gravity model which we, for expedience, ignore.
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m = 1/1000/sum(usflu$Pop)
parms = list(beta = beta, m = m, gamma = gamma, G = G)
L = length(usflu$Pop)

S = usflu$Pop
R = I = rep(0, length(usflu$Pop))
I[31] = 1
inits = c(S = S, I = I, R = R)

We are now set to simulate a spatial SIR pandemic across the USA (Fig. 11.7):
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Fig. 11.7 Simulated influenza dynamics across the continental USA using a multipatch SIR model
with gravity coupling parameterized according to Viboud et al. (2006)
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require(deSolve)
times = 0:200
out = ode(inits, times, SIR.space, parms)
matplot(out[,50+(1:L)], type="l", ylab="Prevalence",

xlab="Day")

The outbreak peaks are predicted to be staggered because of the spatial diffusion
of the infection across the continent.



Chapter 12
Transmission on Networks

12.1 S Preamble: Objects, Classes, and Functions

The S-language which is the foundation of R was constructed using an “object”-
based logic where each object is assigned a “class.” The class, in turn, controls
printing, plotting, and summarizing each object. There are many excellent introduc-
tions to S programming (e.g., Venables and Ripley 2013), in this chapter we will
use S3-class programming to streamline our analysis of epidemics on networks.
The basic idea is this: if we label the result of some calculation as class foo, then
R will look for functions print.foo(), summary.foo(), and plot.foo()
in the search-path when further interacting with the result of the calculation. Let’s
illustrate with a silly example:

foo = function(x) {
res = x
class(res) = "foo"
return(res)

}

print.foo = function(obj) {
cat("foo is:\n", obj)

}

This chapter uses the following R-package: statnet.
A conceptual understanding of social networks is useful prior to this discussion. Five-minute
epidemics-MOOC intros can be watched from YouTube:
Structure of networks: https://www.youtube.com/watch?v=hLwasjKxFoc
Networks and control https://www.youtube.com/watch?v=GBQqhtGAzGc.

© Springer Nature Switzerland AG 2018
O. N. Bjørnstad, Epidemics, Use R!, https://doi.org/10.1007/978-3-319-97487-3 12
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summary.foo = function(obj) {
cat("In summary, foo is:\n", obj)

}

plot.foo = function(obj) {
plot(NA, type = "n", ylim = c(0, 1), xlim = c(0,

1), ylab = "")
text(x = seq(0.1, 0.9, by = 0.1), y = seq(0.1,

0.9, by = 0.1), as.character(obj))
}

The result is a fully functional S3-class of R objects:

zz = foo("pibble")

which we can print,

zz

## foo is:
## pibble

summarize,

summary(zz)

## In summary, foo is:
## pibble

and plot (Fig. 12.1):

plot(zz)

And that is the basics of S3-class programming . . .
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Fig. 12.1 A plot of objects of class foo
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12.2 Networks

Transmission on social networks bears conceptual similarities to spatial transmis-
sion. The only difference being that in spatial models transmission occurs among
neighbors in space, and transmission on networks occurs among neighbors in so-
cial space. We can thus use the type of compact code we used for CML models
(Sect. 11.5) to simulate epidemics on networks. A key determinant of invasibility
and speed of spread is the average and variance in the number of contacts on the
networks (Newman 2002; Keeling and Eames 2005; Bansal et al. 2007). As we saw
in the network of spread of gonorrhea (Sect. 3.8.3), there is often substantial vari-
ation in the number of sexual partners. Section 4.7 further highlighted age-specific
variation in contact rates. It is easiest to consider static networks (networks for which
contact patterns do not change over time) for which the contact distribution is char-
acterized by the “degree distribution,” contacts are mapped onto “edges,” and indi-
viduals are “nodes.”

12.3 Models of Networks

In the previous spatial coupled map lattice models, transmission was restricted to
the eight nearest neighbors on the lattice, so we can think of this as an example
of a network with fixed degree of 8. In network theory, an analogous fixed-degree
network is constructed as a ring lattice. The associated matrix that flags neighbors
is a particular type of Toeplitz matrix. We can define a ringlattice-function to
generate such networks with N nodes and 2*K degrees. We label the result to be of
class cm (short for contact matrix):

ringlattice = function(N, K) {
# N is the number of nodes K is the number of
# neighbors on each side to which each node is
# connected so degree = 2xK
CM = toeplitz(c(0, rep(1, K), rep(0, N - 2 *

K - 1), rep(1, K)))
class(CM) = "cm"
return(CM)

}

Trigonometry provides a basic way to visualize a ring network. . . or any other
object that is defined as class cm.

https://en.wikipedia.org/wiki/Toeplitz_matrix
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plot.cm=function(CM){
N=dim(CM)[1]
theta=seq(0,2*pi,length=N+1)
x=cos(theta[1:N])
y=sin(theta[1:N])
symbols(x,y, fg=0, circles=rep(1, N),

inches=0.1, bg=1, xlab="", ylab="")
segx1=as.vector(matrix(x, ncol=length(x),

nrow=length(x), byrow=TRUE))
segx2=as.vector(matrix(x, ncol=length(x),

nrow=length(x), byrow=FALSE))
segy1=as.vector(matrix(y, ncol=length(x),

nrow=length(x), byrow=TRUE))
segy2=as.vector(matrix(y, ncol=length(x),

nrow=length(x), byrow=FALSE))
segments(segx1,segy1, segx2,

segy2, lty=as.vector(CM))
}

Figure 12.2 depicts a ring-lattice with 20 individuals and a fixed-degree of eight.

cm = ringlattice(N = 20, K = 4)
plot(cm)
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Fig. 12.2 A 20-node ring-lattice of degree 8
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12.3.1 Watts-Strogatz Networks

Real social networks have heterogeneities in contact rates and usually exhibit much
lower social separation than predicted by the ring lattice. In the study of small-world
networks, Watts and Strogatz (Watts and Strogatz 1998) proposed an algorithm for
generating more realistic networks by randomly rewiring a fraction Prw of the edges
of a ring lattice.

WattsStrogatz=function(N, K, Prw){
# Build a Watts-Strogatz contact matrix from
# a ring lattice, Prw is the rewiring probability
CM=ringlattice(N=N, K=K)
CMWS=CM
tri=CM[upper.tri(CM)]
Br=rbinom(length(tri),1,Prw) # Break edges
a=0
for(i in 1:(N-1)){
for(j in (i+1):N){

a=a+1
if(Br[a]==1 & CMWS[i,j]==1){ #If "Br == 1"

CMWS[i,j]=CMWS[j,i]=0 # break edge
tmp=i
tmp2=c(i, which(CMWS[i,]==1))
#new edge, if already present try again
while(any(tmp2==tmp)){

tmp=ceiling(N*runif(1))}
CMWS[i,tmp]=CMWS[tmp,i]=1 # make new edge
}

}
}

class(CMWS)="cm"
return(CMWS)
}

Figure 12.3 depicts a Watts-Strogatz network with 20 individuals, a mean degree
of 8, and a rewiring probability of 0.3.

cm2 = WattsStrogatz(N = 20, K = 4, Prw = 0.3)
plot(cm2)

We can extend the notion of writing generic functions for class cm-objects, to de-
fine a summary-function that calculates and optionally plots (Fig. 12.4) the degree
distribution.

https://en.wikipedia.org/wiki/Watts_and_Strogatz_model
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Fig. 12.3 A Watts-Strogatz network with 20 individuals, mean degree of 8, and a rewiring proba-
bility of 0.3

summary.cm = function(x, plot = FALSE) {
x = table(apply(x, 2, sum))
res = data.frame(n = x)
names(res) = c("degree", "freq")
if (plot)

barplot(x, xlab = "degree")
return(res)

}
summary(cm2, plot = TRUE)

## degree freq
## 1 5 1
## 2 6 2
## 3 7 3
## 4 8 6
## 5 9 6
## 6 10 2

The Watts-Strogatz model scales the degree distribution from fixed to the
“random graph”—when the rewiring probability is set to 1—which has a
Poisson-distributed degree distribution. The random graph corresponds to the
Erdos-Renyi model (Erdös and Rényi 1959).

https://en.wikipedia.org/wiki/Erdos-Renyi_model
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Fig. 12.4 The degree distribution of the Watts-Strogatz network with 20 individuals, a mean degree
of 8, and a rewiring probability of 0.3 as generated by summary.cm(..., plot=TRUE)

12.3.2 Barabasi-Albert Networks

The Watts-Strogatz model can at most have Poisson-like variance in degree distri-
bution, so it cannot mimic heavy-tailed distributions seen in “scale-free” networks.
Barabasi and Albert (1999) proposed that such behavior arises from preferential at-
tachment (“rich-get-richer”) dynamics. We can write a function that generates a
network with N-nodes and mean degree 2*K. The log-log plot (Fig. 12.5) shows the
power-law heterogeneity in contacts predicted by the Barabasi-Albert algorithm.

BarabasiAlbert=function(N, K){
CM=matrix(0, ncol=N, nrow=N)
CM[1,2]=1
CM[2,1]=1
for(i in 3:N){

probs=apply(CM, 1, sum)
link=unique(sample(c(1:N)[-i],

size=min(c(K, i-1)), prob=probs[-i]))
CM[i, link]=CM[link, i]=1

}
class(CM)="cm"
return(CM)
}

https://en.wikipedia.org/wiki/Barabasi-Albert_model
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cm3 = BarabasiAlbert(200, 4)
ed = summary(cm3)
plot(as.numeric(ed$degree), ed$freq, log = "xy",

xlab = "Degree", ylab = "Frequency")
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Fig. 12.5 A log-log plot of degree-distribution from a Barabasi-Albert network

For fancier visualization of networks we can use the plotting functions in the
statnet-package (Fig. 12.6). The network-function in the statnet-package
converts the contact matrix (of class CM) to a network-class object.

require(statnet)
plot(network(cm3, directed = FALSE))

12.4 Epidemics on Networks

We can run SIR-like epidemics across networks by assuming that an infection is
transmitted across an S-I edge with a probability, τ , per time step (e.g., Barbour and
Mollison 1990; Ferrari et al. 2006a). Following, the Reed-Frost version of the chain-
binomial model (Abbey 1952), the probability of any given susceptible becoming
infected is p = 1− (1− τ)y where y is the number of infected neighbors. We may
further assume infecteds are removed with a constant probability, γ , leading to a ge-
ometrically distributed infectious period. Spread of infections on networks depends

https://en.wikipedia.org/wiki/Reed-Frost_model
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Fig. 12.6 Visualizing the Barabasi-Albert network using the statnet-package

on both mean number of contacts k and heterogeneity in that number (quantified by
k2) according to R0 = (τ/(τ + γ))(k2 − k)/k) (e.g., Bansal et al. 2007).

The NetworkSIR function will simulate a closed SIR epidemic on arbitrary
contact matrices and return an object of class netSIR.

NetworkSIR=function(CM,tau,gamma){
#generate SIR epidemic on a CM-network
#CM = contact matrix
#tau = probability of infection across an edge
#gamma = probability of removal per time step
N=dim(CM)[1]
I=matrix(rep(0,N),nrow=N,ncol=1) #First infecteds
S=matrix(rep(1,N),nrow=N,ncol=1) #First susceptibles
R=matrix(rep(0,N),nrow=N,ncol=1) #First removed
I1=sample(1:N, size=1)#Pick first random infected
I[I1,1]=1
S[I1,1]=0
t=1
while(sum(I[,t-1])>0 | t==1){
t=t+1
infneigh=CM%*%I[,t-1]
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pinf=1-(1-tau)ˆinfneigh
newI=rbinom(N, S[,t-1], pinf)
newR=rbinom(N, I[,t-1], gamma)
nextS=S[,t-1]-newI
nextI=I[,t-1]+newI-newR
nextR=R[,t-1]+newR
I=cbind(I, nextI)
S=cbind(S, nextS)
R=cbind(R, nextR)

}
res=list(I=I,S=S,R=R)
class(res)="netSIR"
return(res)
}

We can define summary- and plot-functions for the netSIR class.

summary.netSIR=function(x){
t=dim(x$S)[2]
S=apply(x$S,2,sum)
I=apply(x$I,2,sum)
R=apply(x$R,2,sum)
res=data.frame(S=S,I=I,R=R)
return(res)

}

plot.netSIR=function(x){
y=summary(x)
plot(y$S, type="b", xlab="time", ylab="")
lines(y$I, type="b", col="red")
lines(y$R, type="b", col="blue")
legend("right", legend=c("S", "I", "R"),
lty=c(1,1,1), pch=c(1,1,1),
col=c("black", "red", "blue"))

}

Figure 12.7 shows epidemic spread on (1) scale-free, (2) Watts-Strogatz, (3) Pois-
son, and (4) ring lattice networks.

cm1=BarabasiAlbert(N=200,K=2) #(i)
cm2=WattsStrogatz(N=200, K=2, Prw=.1) #(ii)
cm3=WattsStrogatz(N=200, K=2, Prw=1) #(iii)
cm4=ringlattice(N=200,K=2) #(iv)
sim1=NetworkSIR(cm1,.3,0.1)
sim2=NetworkSIR(cm2,.3,0.1)
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sim3=NetworkSIR(cm3,.3,0.1)
sim4=NetworkSIR(cm4,.3,0.1)
plot(apply(sim1$I,2,sum), type="l", xlab="Time",

ylab="Infected")
lines(apply(sim2$I,2,sum), type="l", col="red")
lines(apply(sim3$I,2,sum), type="l", col="red", lty=2)
lines(apply(sim4$I,2,sum), type="l", col="blue")
legend("topright", legend=c("Scale-free", "WS(0.1)",

"Poisson", "Lattice"), lty=c(1,1, 2, 1),
col=c("black", "red", "red", "blue"))
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Fig. 12.7 Simulated closed epidemics on (1) scale-free, (2) Watts-Strogatz, (3) Poisson, and (4)
lattice models. All with a mean degree of 4

The difference in spread can be understood in terms of how network geome-
try molds R0 even when all else (including the mean number of contacts) is con-
stant (Bansal et al. 2007). The r0fun-function calculates R0 for any given network
and apply it to each simulated networks. The greater the heterogeneity, the greater
the R0:
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r0fun=function(CM, tau, gamma){
x=apply(CM, 2, sum)
(tau/(tau+gamma))*(mean(xˆ2)-(mean(x)))/mean(x)
}
r0fun(cm1, 0.3, 0.1)

## [1] 4.79471

r0fun(cm2, 0.3, 0.1)

## [1] 2.30625

r0fun(cm3, 0.3, 0.1)

## [1] 2.77125

r0fun(cm4, 0.3, 0.1)

## [1] 2.25

We can combine the functionality of the statnet-package with the above re-
sults on network heterogeneity to revisit on the gonorrhea contact tracing study of
De et al. (2004) from Sect. 3.8.3.

data(gonnet)
nwt = network(gonnet, directed = TRUE)
x = degree(nwt)[2:89]
mean(x)

## [1] 1.920455

The mean degree is 1.92, but the inflation factor due to the network heterogeneity
is predicted to almost double the R0 of a STD spreading across this network:

(mean(xˆ2) - (mean(x)))/mean(x)

## [1] 1.940828

To simulate an epidemic on the empirical contact-tracing study from Sect. 3.8.3,
we first have to construct an undirected contact network among the 89 members and
next apply the NetworkSIR model to plot the time trajectory and final infection
status of the network:

#Undirected network
cmg=gonnet+t(gonnet)
#Simulate epidemid
cep=NetworkSIR(cmg, 0.3, 0.1)
sm=summary(cep)
par(mfrow=c(1,2))
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inf=ifelse(apply(cep$I,1,sum)>0,2,1)
nwt=network(cmg, directed=FALSE)
plot(nwt, vertex.col=inf)
matplot(sm, ylab="Numbers")
legend("right", c("S", "I", "R"),

pch=c("1", "2", "3"), col=c(1,2,3))
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Fig. 12.8 A simulated closed epidemics on the gonorrhea contact-tracing network. (a) Network
infection history (red nodes = infected, black nodes = escapees). (b) Outbreak trajectory

The infection history of the network (Fig. 12.8) reveals the feature that the core-
group of the network is likely to always be infected, but peripheral individuals may
escape infection by getting surrounded by immune individuals before getting in-
fected. Ferrari et al. (2006a) discuss how the geometry of a network shapes the
likelihood of a given individual escaping infection.

Models of networks and epidemics on networks is a vast literature, so the above
should at best be considered a teaser. The statnet project and associated statnet-
package have a rich set of resources for network analysis and modeling epidemics
on networks including how to generate dynamic networks.



Chapter 13
Spatial and Spatiotemporal Patterns

13.1 Introduction

Spatial and spatiotemporal data analysis is of great importance in disease dynam-
ics for a number of reasons such as looking for space-time clustering, hot-spot de-
tection, characterizing invasion waves, and quantifying spatial synchrony. Spatial
synchrony—the level of correlation in outbreak dynamics at different locations—
is of particular significance to acute immunizing infections, because asynchrony
may permit regional persistence of infections despite local chains-of-transmission
breaking during post-epidemic troughs (Keeling et al. 2004). Conversely, spatial
synchrony can exacerbate the economic and public health burden because the re-
sulting regionalized outbreaks can overwhelm logistical capabilities as was evident
in the early part of the 2013–2014 West African ebola outbreak.

Spatial statistics is also important in order to correct for the problem of spurious
associations between incidence and environmental data because spatial autocorrela-
tion violates the assumption of independence. We will discuss this in Sect. 15.2.

13.2 A Plant-Pathogen Case Study

Jennifer Koslow carried out an experiment with a foliar, nonsystemic rust
(Coleosporium asterum) infecting the flat-top goldenrod (Euthamia graminifo-
lia). The gra data present the severity of disease expression ($score, from 0 to
10) on host-plants planted within mesocosms ($plot) in an old field near Ithaca,
NY, USA. The mesocosms were in a checkerboard grid with locations specified by

This chapter uses the following R-package: ncf.
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coordinates $xloc and $yloc. Each mesocosm contained three focal E. gramini-
folia plants. The field also contained naturally occurring E. graminifolia, as well as
several other hosts of the rust notably the Canada goldenrod (Solidago canaden-
sis). Two different treatments, species composition ($comp, with three levels) and
watering treatment ($water, with two levels), were applied to the mesocosms in
a fully factorial design. Finally, to account for spatial variation across the field,
there were four blocks with treatment combinations randomly assigned within each
block.

We have to jitter the coordinates for some of the analyses because the three plants
within each plot were not given separate coordinates. Figure 13.1 the spatial layout
of the study. The vertical lines mark the blocks.

data(gra)
gra$jx=jitter(gra$xloc)
gra$jy=jitter(gra$yloc)
symbols(y=gra$xloc, x=gra$yloc, circles=gra$score,

inches=0.1, xlab="y", ylab="x")
abline(v=47.5,col=2)
abline(v=97.5,col=2)
abline(v=147.5,col=2)
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Fig. 13.1 Rust scores from Keslow’s experiment

13.3 Spatial Autocorrelation

Spatial statistics is a very rich field. We will focus on a subset of methods that
are more (or less) commonly used in disease ecology. Many of these involve the
notion of spatial autocorrelation in one form or another. Legendre (1993) is a great
introduction to the use of spatial autocorrelation in ecological studies in general.
While all the methods we will be discussing—such as Mantel tests, parametric and
nonparametric correlation functions, local indicators of spatial association, etc.—
come in canned packages (this chapter uses the ncf-package), it is useful to spend
a bit of time on the underlying ideas.
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Many geostatistical methods to describe spatial pattern are focused on either spa-
tial variance (Gary’s C) or spatial correlation (Moran’s I). We will discuss the fam-
ily of “correlational” methods. We start off with considering the regular (Pearson’s)
product-moment correlation between two random variables, Z1 and Z2, which we
denote by ρ12 and defined as:

ρ12 =
(Z1 −μ1)

σ1

(Z2 −μ2)

σ2

where μ’s are expectations and σ ’s are standard deviations. Autocorrelation has ex-
actly the same definition and is used when the Z’s are measurements of the same
quantity (e.g., prevalence, incidence, presence/absence, etc.) at different spatial lo-
cations (or different times).

To calculate the autocorrelation we need to know (or have an estimate of) the
values of the μ’s and σ ’s. In the case of single snapshot spatial data we use the
marginal mean and marginal standard deviation.1 Let’s explore using the gramini-
folia rust data (Fig. 13.1).

n = length(gra$score)
# marginal mean:
mu = mean(gra$score)
# marginal MLE sd:
sig = sd(gra$score) * (n - 1)/n

The estimated “autocorrelation matrix” (rho) among all 360 plants is then2:

# rescale Zs
zscale = (gra$score - mu)/sig
# autocorrelation matrix
rho = outer(zscale, zscale)

Note that these individual values are not constrained to be between −1 and 1.
This is not a worry, though, because the various geostatistical methods we will be
discussing involve relatively simple manipulations of this matrix. For several of the
methods we also need some sort of spatial distance matrix. Most commonly used
is the Euclidian distance for UTM coordinates and greater-circle distance for lati-
tude/longitude coordinates. The Euclidean distance matrix among all 360 plants is:

dst = as.matrix(dist(gra[, c("xloc", "yloc")]))

1 Note that the geostatistical methods usually use the Maximum Likelihood Estimator (MLE) of
the sd rather than the Best Linear Unbiased estimator (BLUE): i.e., the denominator is n rather
than n−1.
2 The outer-function provides all pairwise products of two vectors.

https://en.wikipedia.org/wiki/Great-circle_distance
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To understand the different geostatistical methods we will consider the plot of
the first 1000 pairs as a function of their spatial distance (Fig. 13.2). Plotting all the
64,620 pairs would clutter up the screen.

plot(dst[1:1000], rho[1:1000], ylab="Pairwise rho",
xlab="Pairwise distance (m)")
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Fig. 13.2 Scatterplot of pairwise-ρ versus pairwise-distance

With this we are ready to conceptually understand many different geostatistical
methods:

• Mantel test: An overall test for whether there is any significant relationship be-
tween the elements in the two matrices. This is essentially a test for significant
correlation between ρ and distance.

• Correlogram: The most classic tool of testing how autocorrelation depends on
distance without assuming any particular function—hack the x-axis into seg-
ments (given by specifying some distance increment) and calculate the average
within each distance class.3

• Parametric correlation functions: Assume the relationship follows some para-
metric relationship—such as Exponential, Gaussian, or Spherical functions—and
do the appropriate nonlinear regression of ρ on distance; Sect. 15.2 provides an
example of such fitting via the lme-function of the nlme-library.

3 The semivariogram is similar to the correlogram but instead of using the “autocorrelation simi-
larity” measure it uses the “semivariance dissimilarity” measure: (Zi −Z j)

2/2.
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• Nonparametric correlation function: Fit a “nonparametric regression” (usually
a smoothing spline or a kernel smoother) to the relationship (Hall and Patil 1994).
This also goes by the name of the “spline.correlogram” (Bjørnstad and Falck
2001).

• LISA: Local indicators of spatial association (Anselin 1995): A test for
“hotspots.” Specify a neighborhood size, and for each location calculate the
average ρ with all the other locations that belongs to its neighborhood to find
areas of significant above-average values.

There are a bunch of other named methods that are variations of these. Several of
which are extensions to when there is multiple observations at each location (such
as a time series), in which case it is natural to estimate the “autocorrelation matrix”
using the regular correlation matrix. The “modified correlogram” of Koenig (1999)
is the multivariate extension of the correlogram (e.g., Bjørnstad et al. 1999b). The
“time-lagged spatial cross-correlation function” has been used to study waves of
spread (see below and Sect. 11.7). Various directional versions allow the spatial cor-
relation function to vary by cardinal direction (so-called anisotropic correlograms)
to investigate directional patterns (e.g., Bjørnstad et al. 2002b).

13.4 Testing and Confidence Intervals

An important reason why specialized methods are needed for these analyses—
despite most being conceptually simple—is because while the n original data-points
may (or may not) be statistically independent, the n2 numbers in the autocorrela-
tion matrix is obviously very statistically not-independent and the interdependence
is very intricate. None of the usual ways of testing for significance or generating
confidence intervals are therefore applicable. Testing is usually done using permu-
tation tests under the null-hypothesis of no spatial patterns. The correlogram (or
Mantel test, or . . . ) of the real data should look no different than that of a random
reallocation of observations to the spatial coordinates if the null hypothesis is true.
Statistical significance is calculated by comparing the observed estimate to the dis-
tribution of estimates for, say, 999 different randomized data sets.4 If the observed
is more extreme than 950 (990) of the randomized we conclude that there is signifi-
cant deviation from spatial randomness at a nominal 5%-level (1%-level). For some
of the methods it is possible to generate confidence intervals using bootstrapping
(resampling with replacement) (e.g., Bjørnstad and Falck 2001).

All the above methods are available in the ncf-package.

require(ncf)

4 This produces a total of 1000 known possible outcomes; The 999 we randomly generated + the
one nature provided.
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13.5 Mantel Test

We continue using Keslow’s data as a case study.

test1 = mantel.test(M1 = rho, M2 = dst)

test1

## $correlation
## [1] -0.04603662
##
## $p
## [1] 0.000999001
##
## $call
## [1] "mantel.test(M1 = rho, M2 = dst)"
##
## attr(,"class")
## [1] "Mantel"

We see that there is a significant negative association between similarity and
distance. This is a crude tool but it does reveal that locations near each other tend to
be more similar in disease status than those separated by a greater distance.

If we, instead of having two matrixes, have spatial coordinates and observations,
the syntax is:

test = mantel.test(x = ..., y = ..., z = ...)

13.6 Correlograms

The correlogram shows how the autocorrelation is a function of distance (Fig. 13.3).
The shape of the correlogram can indicate random versus diffusive versus clinal pat-
terns. Legendre and Fortin (1989) provide probes for patterns using various visual
characteristics of the correlogram.

test2=correlog(x=gra$xloc, y=gra$yloc, z=gra$score,
increment=10)

plot(test2)
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The first distance class is significantly positive, and the estimated distance to
which the local positive distance decays to zero (the x-intercept) is 44 m, in-
dicative of significant local similarity. There is further evidence of significantly neg-
ative autocorrelation at long distances suggestive of a gradient (Legendre and Fortin
1989) across the field (Fig. 13.3).
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Fig. 13.3 The spatial correlogram of Keslow’s rust data. Values that significantly deviate from that
expected under the null hypothesis of complete spatial randomness are represented by filled black
circles

13.7 Nonparametric Spatial Correlation Functions

We can get a bit finer resolution and confidence intervals for the underlying spatial
correlation function using a nonparametric spatial covariance function (Hall and
Patil 1994) as implemented in the spline correlogram (Bjørnstad and Falck 2001).
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test3=spline.correlog(x=gra$xloc, y=gra$yloc,
z=gra$score)

summary(test3)

## $call
## [1] "spline.correlog(x = gra$xloc, y = gra$yloc,
## z = gra$score)"
##
## $estimate
## x e y
## estimate 36.53433 5.981471 0.5824953
##
## $quantiles
## x e y
## 0 -1.805418 0.000000 -0.02511758
## 0.025 23.252053 0.000000 0.14654935
## 0.25 33.067324 0.000000 0.28755750
## 0.5 36.555305 1.316775 0.38985499
## 0.75 39.924299 5.880383 0.48984864
## 0.975 44.163650 11.783945 0.75428625
## 1 49.466042 14.797740 0.98590369

The spline correlogram returns a bunch of stuff—in fact all the summary statistics
I thought might be of relevance in some previous spatial analyses. These are:

• estimates: a vector of benchmark statistics
• x: is the lowest value at which the function is = 0.5

• e: is the lowest value at which the function is = 1/e (i.e., the spatial scale param-
eter in the presence of exponential or Gaussian spatial correlation).

• y: is the extrapolated value at x = 0.
• quantiles: A matrix summarizing the quantiles in the bootstrap distributions of

the benchmark statistics. The 2.5- and 97.5-percentiles represent the 95% confi-
dence interval.

plot(test3)

Figuer 13.4 shows the estimated correlation function with its bootstrap 95% con-
fidence intervals. The confidence intervals allows us to compare correlation func-
tions for different data sets to test for significant differences (e.g., Bjørnstad et al.
1999a).

5 If correlation is initially negative, the distance calculated appears as a negative measure. This
may seem a little strange, but some locally inhibitory processes predict significant negative local
auto- or cross-correlation (e.g., Seabloom et al. 2005).
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Fig. 13.4 The spline correlogram of Keslow’s rust data. The outer lines represent the 95% boot-
strap confidence interval

13.8 LISA

The previous methods average across all locations to study how similarity depends
on distance. Local indicators of spatial association (Anselin 1995) quantify how
similar observations are within neighborhoods of each observation—this can be
used to test for significant spatial hot-/cold-spots of disease (Fig. 13.5). For this we
have to define the radius of the neighborhood. Spatial dependence in the Koslow-
data decay to zero at around 40 m (Fig. 13.4), so we use 20 m:

test4=lisa(x=gra$yloc, y=gra$xloc, z=gra$score,
neigh=20)

plot(test4)
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Fig. 13.5 LISA analysis of Koslow’s rust data (with a 20 m neighborhood). Filled red circles are
significant spatial hot-spots. Squares are cold-spots

Significant hot-spots show up as filled red circles and cold-spots as filled squares.
The size of the symbols reflects how much the disease-score deviates from the mean.

13.9 Cross-Correlations

Janis Antonovics and his colleagues have done road-side surveys of antler smut dis-
ease counting number of healthy and diseased wild campions (silene alba) at the
Mountain Lake Biological field station for more than 20 years (Antonovics 2004).
The silene2-data contains the mean number of healthy ($hmean) and diseased
($dmean) individuals for each road segment, as well as latitude ($lat) and longi-
tude ($lon) (Fig. 13.6).

data(silene2)
symbols(silene2$lon, silene2$lat, circles =

sqrt(silene2$dmean), inches=.2, xlab="Longitude",
ylab="Latitude")

Most geostatistical methods can be extended to consider spatial cross-correlation
between different variables. We can use the silene data set to investigate if
prevalence is spatially cross-correlated with abundance using the spline cross-
correlogram (Fig. 13.7).

silene2$ab=silene2$dmean+silene2$hmean
silene2$prev=silene2$dmean/(silene2$dmean+silene2$hmean)

We square-root transform the abundance measure before analyses. There is sig-
nificant positive cross-correlation within a 1 km range (95% CI: {0.6, 2.9} km).

testcc=spline.correlog(x=silene2$lon, y=silene2$lat,
z=silene2$prev, w=sqrt(silene2$ab),
latlon=TRUE, na.rm=TRUE)

plot(testcc)
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Fig. 13.6 Burden of antler smut on wild campion at Mt. Lake field station (Antonovics 2004)

We can use a spatial cross-correlogram (using 25 m distance increments) to study
if presence/absence of rust is spatiotemporally cross-correlated between 1994 and
1995 in the filipendula data set we discussed in Sect. 11.2.

data(filip)
testcc2=correlog(x=filip$X, y=filip$Y, z=filip$y94,

w=filip$y95, increment=25)

The local inter-year correlation (corr0) is 0.75 and the first cross-correlation is
significantly positive with a cross-correlogram x-intercept of 148 m6:

testcc2$corr0

## [1] 0.7651124

testcc2$x.intercept

## (Intercept)
## 148.939

Locations heavily affected in 1994 were thus also heavily affected in 1995 (testi-
fying to the importance of local contagion and/or habitat heterogeneity in infection
risk). This is an example of a “time-lagged cross-correlogram” (e.g., Bjørnstad et al.
2002b).

6 The spline cross-correlogram would give bootstrap confidence intervals on these quantities.
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Fig. 13.7 Spatial cross-correlation of prevalence and abundance in the silene data

13.10 Gypsy Moth

The gypsy moth was introduced to the northeastern USA in the late 1860s and has
spread at a rate of 10–20 km/year since. The larvae eats leaves of a wide range of
trees and shrubs and reach outbreak (defoliating) densities usually around every
10 years. The outbreaks end through epizootics of the Lymantria dispar nuclear
polyhedrosis virus and more recently the entomopathogenic fungus Entomophaga
maimaiga that together kills virtually all larvae following outbreaks. Bjørnstad et al.
(2010) used the nonparametric spatial covariance function to study the spatiotem-
poral patterns in these outbreaks. The gm-data set contains UTM coordinates and
fraction of forests defoliated each year between 1975 and 2002 in 20 × 20 km grid
cells across the northeastern USA. We characterize the patterns of synchrony and
time-lagged cross correlation in the outbreak time series.

data(gm)
sel=apply(gm[3:30],1,sum)!=0
#Synchrony:
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fit1=Sncf(gm[sel,1]/1000, gm[sel,2]/1000,
gm[sel,3:30], resamp=500)

#Lag 1 cross-correlation
fit2=Sncf(gm[sel,1]/1000, gm[sel,2]/1000,

z=gm[sel,3:29], w=gm[sel,4:30], resamp=500)
#Lag 2 cross-correlation
fit3=Sncf(gm[sel,1]/1000, gm[sel,2]/1000,

z=gm[sel,3:28], w=gm[sel,5:30], resamp=500)

The outbreaks are highly synchronized out to 200 km, with a regional aver-
age outbreak correlation of around 0.2. The time lagged cross-correlation function
shows significant local cross-correlation at the 1-year lag but not 2-year lag, indicat-
ing that outbreaks tend to persist spatially for 2 years before collapsing (Fig. 13.8):

par(mfrow = c(1, 3))
plot(fit1, ylim = c(-0.1, 1))
plot(fit2, ylim = c(-0.1, 1))
title("Lag 1")
plot(fit3, ylim = c(-0.1, 1))
title("Lag 2")
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Fig. 13.8 The (a) nonparametric spatial covariance function, (b) lag-1, and (c) lag-2 cross-
correlation function of gypsy moth outbreak data from the northeastern USA between 1975 and
2002



Chapter 14
Parasitoids

14.1 Parasitoid-Host Dynamics

Many of the classic studies of the spatiotemporal dynamics of natural enemies and
their hosts consider parasitoid-host interactions. Parasitoids represent a fascinating
group of insect “infections.” Adults are free-living and lay their eggs in larvae (or
eggs) of host insects. Hosts die when the parasitoid(s) complete their development
and adults emerge from the infected hosts. From a dynamical systems point of view
parasitoid-host interactions share many features of infectious disease dynamics. It
is therefore instructive to cap our discussion of spatiotemporal dynamics with a
discussion of this ecological interaction.

Burnett (1958) conducted a cage experiment involving greenhouse white flies
(Trialeurodes vaporariorum) and its parasitoid Encarsia formosa. The population
was followed for 21 generations (Fig. 14.1). The two populations oscillated in in-
creasingly violent cycles until the parasitoid went extinct.

data(burnett)
plot(burnett$Generation,

burnett$NumberofHostsParasitized, type="b",
ylab="Numbers", xlab="Generation")

lines(burnett$Generation,
burnett$NumberofHostsUnparasitized, type="b",
col=2, pch=2)

legend("topleft", legend=c("Parasitoid", "Host"),
lty=c(1,1), pch=c(1,2), col=c(1,2))

Nicholson and Bailey (1935) developed the first mathematical model for this
interaction. Assuming random search (with a searching efficiency a) by the par-
asitoids, the probability of escaping parasitation is exp(−aPt) and the number of
host, H, and parasitoids, P, in the next generation is:

© Springer Nature Switzerland AG 2018
O. N. Bjørnstad, Epidemics, Use R!, https://doi.org/10.1007/978-3-319-97487-3 14
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Fig. 14.1 Parasitoid-host dynamics of T. vaporariorum parasitized by E. formosa

Ht+1 = RHt exp(−aPt) (14.1)

Pt+1 = RHt(1− exp(−aPt)), (14.2)

where R
parasitoid is:

NB = function(R, a, T = 100, H0 = 10, P0 = 1){
#T is length of simulation (number of time-steps)
#H0 and P0 are initial numbers
H=rep(NA, T) #Host series
P=rep(NA, T) #Parasitoid series
H[1] = H0 #Initiating the host series
P[1] = P0 #Initiating the parasitoid series

for(t in 2:T){
H[t] = R * H[t-1] * exp(- a * P[t-1])
P[t] = R * H[t-1] * (1-exp(- a * P[t-1]))

}

res= list(H = H, P = P)
return(res)

}

The Nicholson-Bailey models show that density-independent growth of the host
(in the absence of parasitism) and random search by parasitoids predicts cycles with

is the average number of offspring per hosts. A function for the host-
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ever-increasing amplitude until the host and/or parasitoid goes extinct as seen in
Burnett’s (1958) experiment. Let’s assume a host growth rate R of 1.1 and a par-
asitoid searching efficiency a of 0.1. We use the NB()-function to simulate the
Nicholson-Bailey model and plot host/parasitoid abundance against time, and host-
parasitoids in the phase plane (Fig. 14.2).

sim = NB(R=1.1,a=0.1)
time = 1:100
par(mfrow=c(1,2))
plot(time, sim$H, type= "l",xlab = "Generations",

ylab = "Host abundance", ylim = c(0,14))
points(time, sim$P, type = "l", col = "red")
plot(sim$H,sim$P, type = "l", xlab = "Host abundance",

ylab = "Parasitoid abundance")
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Fig. 14.2 Simulation from the Nicholson-Bailey model with R = 1.1 and a = 0.1

We can assume a sequence of searching efficiencies between 0 and 1 to explore
how the time to extinction of the parasitoid depends on the searching efficiency. We
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make use of the functions which and min to store the time to extinction. Persis-
tence time is greatest at intermediate search efficiency (Fig. 14.3).

aVals = seq(0,1,by=0.01)
tte = rep(NA,length(aVals))
for (i in c(1:length(aVals))){

sim = NB(R=1.1,a=aVals[i],T=500)
tte[i] = min(which(sim$P==0))
}

plot(aVals,tte,type = "b", ylab="TTE",
xlab="Search efficiency")
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Fig. 14.3 Time to extinction of the parasitoid as a function of search efficiency in the Nicholson-
Bailey model

Burnett (1958) suggested that R = 2 and a = 0.067 were appropriate values for
this system. Let’s check if we agree by minimizing sum-of-square-errors between
observed and predicted abundances. We estimate R and a on a log-scale to make
sure they are strictly positive quantities.
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ssfn=function(par){
R=exp(par[1])
a=exp(par[2])
sim=NB(R,a, T=22, H0=10.1, P0=11.9)
ss=sum((burnett$NumberofHostsUnparasitized-sim$H)ˆ2+

(burnett$NumberofHostsParasitized-sim$P)ˆ2)
return(ss)
}

par=log(c(2, 0.05))
fit=optim(par, ssfn)
exp(fit$par)

## [1] 2.16767130 0.06812596

Our fit is close to Burnett’s. Figure 14.4 shows the model prediction using our
best-guess parameters.
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Fig. 14.4 Burnett’s data and predictions by the Nicholson-Bailey model with R = 2.17 and a =
0.07
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sim= NB(R=2.16767, a=0.06812, T=22, H0=10.1, P0=11.9)
plot(burnett$Generation,

burnett$NumberofHostsParasitized, type="b",
ylab="Numbers", xlab="Generation")

lines(burnett$Generation, sim$P)
lines(burnett$Generation,

burnett$NumberofHostsUnparasitized, type="b",
col=2, pch=2)

lines(burnett$Generation, sim$H, col=2)
legend("topleft", legend=c("Parasitoid", "NB-P",

"Host", "NB-H"), lty=c(1,1,1,1), pch=c(1,NA,2,NA),
col=c(1,1,2,2))

14.2 Stability and Resonant Periodicity

Nicholson and Bailey (1935) did a detailed mathematical analysis of the model and
showed that the equilibrium is an unstable focus regardless of parameter values.
We can revisit on the concepts from Chap. 9 for this model. The equilibrium of the
Nicholson-Bailey model is P∗ = log(R)/a, H∗ = log(R)/(a(R−1)). The eigenval-
ues of the Jacobian evaluated at the equilibrium are:

F=expression(R*H*exp(-a * P))
G=expression(R*H*(1-exp(-a * P)))
j11=D(F, "H"); j12=D(F, "P")
j21=D(G, "H"); j22=D(G, "P")
R=2.17; a=0.068
params=c(R=R, a=a, P=log(R)/a, H= log(R)/(a*(R-1)))
J=with(as.list(params),

matrix(c(eval(j11), eval(j12), eval(j21),
eval(j22)), ncol=2, byrow=T))

eigen(J, only.values =TRUE)$values

## [1] 0.83108+0.8638247i 0.83108-0.8638247i

max(abs(eigen(J)$values))

## [1] 1.198702
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It is an unstable focus since the eigenvalues are a pair of complex conjugates
whose absolute value is greater than one.1 Since this is a difference model, the

predicted period of the outwards spiral is 2π/ tan−1( Im(λ )
Re(λ ) ):

2*pi/atan2(Im(eigen(J)$values[1]),
Re(eigen(J)$values[1]))

## [1] 7.807961

Let us explore how the cycle period depends on host growth rate (Fig. 14.5):

RVals = seq(1.1, 3, by=0.1)
per = rep(NA,length(RVals))

1.5 2.0 2.5 3.0

8
10

12
14

16
18

20

R

Pe
rio

d

Fig. 14.5 Resonant period of the unstable Nicholson-Bailey model as a function of host growth
rate

1 Recall that according to local stability theory, stability of discrete time models requires the abso-
lute value of the largest eigenvalue of the Jacobian evaluated at the equilibrium to be smaller than
1—as opposed to continuous time models for which the requirement is that the real part must be
smaller than 0.

https://en.wikipedia.org/wiki/Stability_theory
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for(i in 1:length(RVals)){
R=RVals[i]
a=0.068
params=c(R=R, a=a, P=log(R)/a,

H= log(R)/(a*(R-1)))
J=with(as.list(params),

matrix(c(eval(j11), eval(j12), eval(j21),
eval(j22)), ncol=2, byrow=T))

per[i]=2*pi/atan2(Im(eigen(J)$values[1]),
Re(eigen(J)$values[1]))

}
plot(RVals, per, type="b", xlab="R", ylab="Period")

The higher the host growth rate, the faster the outwards spiral.

14.3 Biological Control

Parasitoids have been used for biocontrol of agricultural pest through the ages (Mur-
doch et al. 1985). Successful biocontrol requires that the natural enemy—in this case
parasitoid—keeps the pest consistently below an economic threshold. The inherent
instability predicted by the Nicholson-Bailey model is at odds with successful bio-
control by parasitoids. Many different model modifications have been analyzed to
see when stable regulation can happen. These include: (1) long-lived adult hosts,
(2) density-dependent host growth, (3) heterogeneity in risk such as aggregated at-
tack rates, spatial heterogeneity, host refugia, and (4) interference among parasitoids
(Murdoch et al. 2003). May (1978) showed—by replacing the Poisson-attack as-
sumption with a negative binomial distribution—how heterogeneity in risk stabilizes
dynamics. He coined the CV2-rule which says that if the coefficient-of-variation in
attack rate is greater than 1, the parasitoid-host dynamics stabilizes. May’s (1978)
model is:

Ht+1 = RHt(1+
aPt
k )−k (14.3)

Pt+1 = RHt(1− (1+ aPt
k )−k). (14.4)

A Shiny-app of the negative binomial model, May.app, can be found in the
epimdr-package.

As with infectious diseases, parasitoids-host interactions may persist even with
local non-persistence through regional persistence and regulation in a consumer-
resource metapopulation. . .
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14.4 Larch Bud Moth

Parasitoids cause violent fluctuations in the dynamics of the larch bud moth across
the European Alps. Historical records show recurrent traveling waves of defoliation
every 9 years for centuries (Bjørnstad et al. 2002b; Johnson et al. 2010).2 Turchin
(2003) developed a model of the interactions among the larch bud worm, its para-
sitoids, and the host plant. Johnson et al. (2004) showed that a spatial extension of
this model predicts the observed waves. However, for the more general purpose of
considering spatiotemporal host-parasitoid dynamics we will use the simpler spa-
tially extended Nicholson-Bailey model.

14.5 Host-Parasitoid Metapopulation Dynamics

Coupled map lattice models have a long history in the study of parasitoid-host dy-
namics (e.g., Hassell et al. 1991; Bjørnstad and Bascompte 2001; Johnson et al.
2004). Hassell et al. (1991) highlighted the importance of allowing for different
mobility of the host and parasitoid. We define Dh as the proportion of host that dis-
perses to neighboring patches, and Dp the proportion of parasitoid that disperses.
Hassell et al. (1991) showed that changing these can shift the spatial dynamics be-
tween spatial chaos, spiral waves, or stable spatial heterogeneity. We construct a
Nicholson-Bailey CML along the lines introduced in Chap. 11:

#Dh is proportion of hosts that disperses
#Dp is proportion of parasitoids that disperses
Dh = 0.5
Dp = 0.7
#xlen is width of the lattice (E-W)
#ylen is height of the lattice (N-S)
xlen =30
ylen =30

The hp.dyn-function defines the function to update the local abundances of
hosts and parasitoids according to the Nicholson-Bailey model. Previous densities
of host, h, and parasitoids, p, need to be supplied as arguments to the function, in
addition to the host growth rate (R) and parasitoid search efficiency a.

hp.dyn = function(h, p, R, a) {
# hnew is the post-interaction host density
hnew = R * h * exp(-a * p)

2 https://github.com/objornstad/epimdr/blob/master/mov/lbm.gif shows an animated gif of Larch
bud moth defoliation between 1960 and 2000.

https://github.com/objornstad/epimdr/blob/master/mov/lbm.gif
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# pnew is the post-interaction parasitoid density
pnew = R * h * (1 - exp(-a * p))
# the two vectors of results are stored in a ’list’
res = list(h = hnew, p = pnew)
return(res)

}

We generate spatial coordinates and calculate the distance between all popula-
tions:

xy = expand.grid(1:xlen, 1:ylen)
dmat = as.matrix(dist(xy))

The redistribution matrix is calculated by checking if the distance in dmat is
smaller than 1.5, thus flagging all populations that are first neighbors. If the distance
is <1.5 we assign a value of Dh/8 and Dp/8. The fractions that do not disperse
(1-Dh and 1-Dp) are along the diagonal of the redistribution matrices.

kh = ifelse(dmat < 1.5, Dh/8, 0)
kp = ifelse(dmat < 1.5, Dp/8, 0)
diag(kh) = 1 - Dh
diag(kp) = 1 - Dp

We finally construct matrices to store results and set starting conditions for the
simulation. IT is number of iterations. The initial conditions are zeros everywhere
(i.e., the first column in each matrix gets zeros), except for an arbitrary population
(in this case 23) which starts with 4 hosts and 1 parasitoid.

IT = 600
hmat = matrix(NA, nrow = xlen * ylen, ncol = IT)
pmat = matrix(NA, nrow = xlen * ylen, ncol = IT)
hmat[, 1] = 0
pmat[, 1] = 0
hmat[23, 1] = 4
pmat[23, 1] = 1

We simulate from generation 2 to IT, storing the results on the way. We first sim-
ulate growth, using the function hp.dyn. Next, we redistribute the host parasitoids
according to their dispersal matrices. The vector of pre-dispersal hosts, tmp$h,
is redistributed through matrix multiplying the vector by the redistribution matrix,
kh. The same is done for the parasitoid. The function cat() provides a progress
monitor.
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for(i in 2:IT){
#growth
tmp = hp.dyn(h = hmat[,(i-1)], p = pmat[,(i-1)],

R = 2, a = 1)
#redistribution
hmat[,i] = tmp$h%*%kh;
pmat[,i] = tmp$p%*%kp;
cat(i, " of ", IT, "\r")

}

Finally, we are ready to plot our results. Here is the code to make an animation
of the last 100 generations for the parasitoid:

#plot the last 100 generations for the parasitoid
for(i in 1:100){

x=xy[,1]
y=xy[,2]
z=pmat[,i+500]
symbols(x,y, fg=2, circles=z, inches=0.1,

bg=2, xlab="", ylab="")
Sys.sleep(.1) #this is to slow down the plotting

}

Low mobility of both host and parasitoid (e.g., Dp=Dh=0.1) leads to spa-
tially chaotic dynamics and high mobility (e.g., Dh=0.5, Dp=0.7) leads to spiral
waves (Hassell et al. 1991). Animated gifs of the two dynamic regimes are on:
https://github.com/objornstad/epimdr/blob/master/mov/cml1.gif and
https://github.com/objornstad/epimdr/blob/master/mov/cml2.gif.

14.6 ShinyApp

The epimdr-package contains a Shiny-app to study the negative-binomial
parasitoid-host model. The app can be launched through:

require(shiny)
May.app

https://github.com/objornstad/epimdr/blob/master/mov/cml1.gif
https://github.com/objornstad/epimdr/blob/master/mov/cml2.gif


Chapter 15
Non-independent Data

15.1 Introduction

Many infectious disease experiments result in non-independent data because of spa-
tial autocorrelation across fields (such as discussed in Chap. 13), repeated mea-
sures on experimental animals (such as the in-host Plasmodium data discussed in
Sect. 7.7), or other sources of correlated experimental responses among experimen-
tal units (such as the possibility of correlated infection fates among the rabbit lit-
termates discussed in Sect. 4.3). Statistical methods that assume independence of
observations are not strictly valid and/or fully effective on such data (e.g., Legen-
dre 1993; Keitt et al. 2002). “Mixed-effects models” and “Generalized linear mix-
effects models” (GLMMs) have been/are being developed to optimize the analysis
of such data (Pinheiro and Bates 2006).

While this full topic is outside the main scope of this text, it is very pertinent to
analyses of disease data, so we will consider the three case studies.

require(nlme)
require(ncf)
require(lme4)
require(splines)

15.2 Spatial Dependence

We use the rust example introduced in Sect. 13.2 (Fig. 13.1) to illustrate two ap-
proaches to accounting for spatial dependence in disease data: (1) random blocks vs
(2) spatial regression. This experiment looked at severity of a foliar rust infection

This chapter uses the following R-packages: nlme, ncf, lme4, and splines.

© Springer Nature Switzerland AG 2018
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on three focal individuals of flat-top goldenrods in each of 120 plots across a field
divided into four blocks. The experimental treatments were (1) watering or not and
(2) whether surrounding non-focal host plants were conspecifics only, a mixture of
conspecifics and an alternative host (the Canadian goldenrod) or the alternative host
only.

15.2.1 Random Blocks

As in our spatial pattern analysis, we jitter the coordinates because some meth-
ods require unique coordinates for each data point.

data(gra)
gra$jx = jitter(gra$xloc)
gra$jy = jitter(gra$yloc)

We first use lme to fit two random effect models. The first considers individuals
in blocks. The second considers plots nested in blocks.

fit=lme(score˜comp+water, random = ˜1 | block,
data= gra, na.action=na.omit)

fit2=lme(score˜comp+water, random = ˜1 | block / plot,
data= gra, na.action=na.omit)

We next do a likelihood ratio-test to check for the better fit. The likelihood ratio
test (provided by anova) shows that the nested model provides the best fit.

anova(fit, fit2)

## Model df AIC BIC logLik Test
## fit 1 6 1186.175 1209.424 -587.0874
## fit2 2 7 1077.579 1104.704 -531.7895 1 vs 2
## L.Ratio p-value
## fit
## fit2 110.5959 <.0001

The intervals-call shows that the between-plot variance is about twice as
large as the between-block variance, and watered plots have a significantly higher
rust burden.

intervals(fit2)

## Approximate 95% confidence intervals
## Fixed effects:
## lower est. upper
## (Intercept) 0.8678624 1.4180556 1.9682487
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## compSOL -0.2517755 0.2083333 0.6684422
## compSYM -0.1726089 0.2875000 0.7476089
## watermesic 0.2548782 0.6305556 1.0062329
## attr(,"label")
## [1] "Fixed effects:"
##
## Random Effects:
## Level: block
## lower est. upper
## sd((Intercept)) 0.154977 0.4101308 1.08537
## Level: plot
## lower est. upper
## sd((Intercept)) 0.7901556 0.9302044 1.095076
##
## Within-group standard error:
## lower est. upper
## 0.7317349 0.8001735 0.8750132

15.2.2 Spatial Regression

The above randomized block mixed-effects models are the classic solution to an-
alyzing experiments with spatial structure. An alternative is to formulate a regres-
sion model that considers the spatial dependence among observations as a func-
tion of separating distance. To investigate how proximate observations on dif-
ferent experimental treatments may be spatially autocorrelated, we can explore
the spatial dependence among the residuals from a simple linear analysis of the
data. We use the nonparametric spatial covariance function (as implemented in the
spline.correlogram()-function in the ncf-package) discussed in Chap. 13.
We first fit the simple regression model that ignores space altogether.

fitlm = lm(score ˜ comp + water, data = gra)

Next we calculate the spatial correlation function among the residuals of the fit
(Fig. 15.1).

fitc = spline.correlog(gra$x, gra$y, resid(fitlm))
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The nonparametric spatial correlation function reveals strong spatial autocorre-
lation that decays to zero around 38 m (with a CI of 31–43 m).

plot(fitc, ylim = c(-0.5, 1))
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Fig. 15.1 The spline correlogram of the residuals from the regression model of Keslow’s rust data

To fit the spatial regression model we use the gls-function from the nlme-
package (Pinheiro and Bates 2006). This function fits mixed models from data that
have a single dependence group, i.e., one spatial map, one time series, etc.; With
multiple groups we use the lme-function discussed (see Sect. 15.3). There are many
possible models for spatial dependence. We compare the exponential model (which
assumes the correlation to decay with distance according to exp(−d/a) where d is
distance and a is the scale) and the Gaussian model (exp(−(d/a)2). [The nugget-
flag means that the function is not anchored at one at distance zero]. We compare
these to the nonspatial model (fitn) and the best random block model (fit2)
using AIC.
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fite=gls(score˜comp+water, corr = corSpatial(form =
˜jx + jy, type="exponential", nugget=TRUE),
data=gra, na.action=na.omit)

fitg=gls(score˜comp+water, corr = corSpatial(form =
˜jx + jy, type="gaussian", nugget=TRUE), data=gra,
na.action=na.omit)

fitn=gls(score˜comp+water, data=gra, na.action=na.omit)
AIC(fite, fitg, fitn, fit2)

## df AIC
## fite 7 1061.725
## fitg 7 1064.522
## fitn 5 1209.500
## fit2 7 1077.579

The AICs show that the exponential model provides the best fit. Moreover,
the spatial regression model provides a better fit than the nested random effect
model. This is presumably because of the gradual decay in correlation with distance
(Fig. 15.1).

summary(fite, corr = FALSE)

## Generalized least squares fit by REML
## Model: score ˜ comp + water
## Data: gra
## AIC BIC logLik
## 1061.725 1088.849 -523.8623
##
## Correlation Structure: Exponential spatial
## correlation
## Formula: ˜jx + jy
## Parameter estimate(s):
## range nugget
## 9.9222621 0.3210873
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 1.4914991 0.2595408 5.746685 0.0000
## compSOL 0.1776521 0.2030045 0.875114 0.3821
## compSYM 0.2068005 0.2015687 1.025955 0.3056
## watermesic 0.4998769 0.1589941 3.143996 0.0018
##
## Correlation:
## (Intr) cmpSOL cmpSYM
## compSOL -0.393
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## compSYM -0.397 0.547
## watermesic -0.291 0.041 0.022
##
## Standardized residuals:
## Min Q1 Med Q3
## -1.3253792 -0.7737412 -0.1546712 0.6258009
## Max
## 3.9090911
##
## Residual standard error: 1.281276
## Degrees of freedom: 360 total; 356 residual

The parametrically estimated range of 9.8 m is a bit longer (but within the con-
fidence interval) of the e-folding scale (5.5 m) estimated by the spline correlogram;
1-nugget = 0.64 is comparable (but a little greater) than the 0.55 y-intercept. We can
use the Variogram-function from the nlme-package to see if the spatial model
adequately captures reflects the spatial dependence (Fig. 15.2). It looks like a plau-
sible fit.

plot(Variogram(fite))
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Fig. 15.2 A variogram plot of the fitted and observed spatial dependence for the spatial regression
model
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15.3 Repeated Measures of In-Host Mouse Malaria

Repeated measurements usually result in non-independent data because of the in-
herent serial dependence. Consider Huijben’s data on anemia of mice infected by
five different strains of Plasmodium chaubodii introduced in Sect. 7.7 with lots of
measurements taken on days 3 through 21, 24, 26, 28, 31, 33, and 35. We will study
the red blood cell counts (RBCs) of mice infected by one of five different clones as
well as the control group. The sample sizes per treatment were 10 for AQ, BC, CB,
and ER, 7 for AT and 5 for control. Eleven of the animals died. SH9 has the data (in
long format).1 For the analysis we strip some unnecessary columns 1, 3, 4, 7, 8, and
11 that are extraneous to focus on the RBC count:

data(SH9)
SH9RBC = SH9[, -c(1, 3, 4, 7, 8, 10, 11)]

For the repeated measures analyses we create a groupedData-object from the
data frame using the nmle-package. The below call declares how the RBC counts
represent time series for each mouse. Note that mice that died are scored by zero
RBC count in the data set and that these zeros end up dominating patterns, we
therefore rescore these data as missing (NA), and plot the grouped data object to
visualize the anemia by treatment (Fig. 15.3).

RBC = groupedData(RBC ˜ Day | Ind2, data = SH9RBC)
RBC$RBC[RBC$RBC == 0] = NA
plot(RBC, outer = ˜Treatment, key = FALSE)

The main difference is between control and treatments, but the maximum anemia
varies somewhat among strains. To test for significant differences we use lme to
build a repeated measures model. In the simplest case we follow standard convention
and model the time series using day as an ordered factor and assume the treatment
effect to be additive. The random= ∼ 1|Ind2-call in the formula indicates that
we assume there to be individual variation in the intercept (but not the slopes) among
individuals. We then use the ACF function to look for evidence of serial dependence
in the residuals from the fit. As is apparent from the ACF plot there is temporal
autocorrelation in the residuals out to at least 4 days (Fig. 15.4).

mle.rbc=lme(RBC˜Treatment+ordered(Day), random =
˜1|Ind2, data=RBC, na.action=na.omit, method="ML")

plot(ACF(mle.rbc))

There are many models for serial dependence. We use a first order autoregres-
sive process (AR1). This is specified by the correlation=corAR1(form= ∼

1 With repeated measures data we often use both long-format with one line for each observation
and wide-format with one line for each experimental unit.
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Fig. 15.3 RBC counts of control and P. chaubodii-infected mice. Each panel represents a different
parasite strain
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Fig. 15.4 Serial dependence as quantified using the ACF-function on the repeated measures mixed-
effects model of the SH9RBC data

Day|Ind2) function call. Note that this is one of a variety of time-series models
available in the nlme-package, the most general of which is the ARMA(p, q) model
discussed in Sect. 6.2.1.
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mle.rbc2=lme(RBC˜Treatment+ordered(Day), random=
˜1|Ind2, data=RBC, correlation=corAR1(form=˜
Day|Ind2), na.action=na.omit, method="ML")

mle.rbc2

## Linear mixed-effects model
## Data: RBC
## Log-likelihood: -1568.255
## Fixed: RBC ˜ Treatment + ordered(Day)
## (Intercept) TreatmentAT TreatmentBC
## 5.860494309 0.024586193 0.947853117
## TreatmentCB Treatmentcontrol TreatmentER
## -0.022048465 1.560872851 0.325308683
## ordered(Day).L ordered(Day).Q ordered(Day).C
## 3.339300000 6.015597509 -5.057192257
## ordered(Day)ˆ4 ordered(Day)ˆ5 ordered(Day)ˆ6
## 1.498354649 0.067695099 -0.600409959
## ordered(Day)ˆ7 ordered(Day)ˆ8 ordered(Day)ˆ9
## 1.352000127 -1.122142721 -0.394162545
## ordered(Day)ˆ10 ordered(Day)ˆ11 ordered(Day)ˆ12
## 0.312998475 -0.673514349 -0.122937927
## ordered(Day)ˆ13 ordered(Day)ˆ14 ordered(Day)ˆ15
## 0.219014886 0.378460147 0.191963472
## ordered(Day)ˆ16 ordered(Day)ˆ17 ordered(Day)ˆ18
## 0.180627944 -0.024392052 0.032617128
## ordered(Day)ˆ19 ordered(Day)ˆ20 ordered(Day)ˆ21
## -0.142080994 -0.046539002 -0.054854991
## ordered(Day)ˆ22 ordered(Day)ˆ23 ordered(Day)ˆ24
## -0.039333282 -0.210031799 0.006591632
##
## Random effects:
## Formula: ˜1 | Ind2
## (Intercept) Residual
## StdDev: 0.0002332905 1.327223
##
## Correlation Structure: ARMA(1,0)
## Formula: ˜Day | Ind2
## Parameter estimate(s):
## Phi1
## 0.7088701
## Number of Observations: 1104
## Number of Groups: 52
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The Phi1 parameter of 0.7088 represents the estimated day to day correlation,
which is substantial. We can plot the predicted and observed correlation. The AR1-
model seems to be a nice fit (Fig. 15.5).

tmp = ACF(mle.rbc2)
plot(ACF ˜ lag, data = tmp)
lines(0:15, 0.7088ˆ(0:15))
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Fig. 15.5 An ACF plot of the fitted and observed serial dependence for the repeated measures
regression model

Moreover, a formal likelihood-ratio test provided by the anova function reveals
that the correlated error model provides a significantly better fit to the data:

anova(mle.rbc, mle.rbc2)

## Model df AIC BIC logLik
## mle.rbc 1 32 3834.369 3994.583 -1885.184
## mle.rbc2 2 33 3202.510 3367.731 -1568.255
## Test L.Ratio p-value
## mle.rbc
## mle.rbc2 1 vs 2 633.8586 <.0001

Statistically, the time-by-treatment interaction model, rather than the additive
model, is better still:

options(width=50)
mle.rbc3=lme(RBC˜Treatment*ordered(Day), random=

˜1|Ind2, data=RBC, correlation=corAR1(form=
˜Day|Ind2), na.action=na.omit, method="ML")

anova(mle.rbc2, mle.rbc3)
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## Model df AIC BIC logLik
## mle.rbc2 1 33 3202.510 3367.731 -1568.255
## mle.rbc3 2 153 3163.654 3929.679 -1428.827
## Test L.Ratio p-value
## mle.rbc2
## mle.rbc3 1 vs 2 278.8557 <.0001

Finally we can plot the predicted values against time (filtering out predictions for
the missing values in the original data) (Fig. 15.6). There is a distinct ordering in the
virulence of the strains:

pr=predict(mle.rbc3)
RBC$pr=NA
RBC$pr[!is.na(RBC$RBC)]=pr
plot(RBC$pr˜RBC$Day, col=as.numeric(RBC$Treatment),

pch=as.numeric(RBC$Treatment),xlab="Day",
ylab="RBC count")

legend("bottomright",
legend=c("AQ", "AT", "BC", "CB", "Control", "ER"),
pch=unique(as.numeric(RBC$Treatment)), col=1:6)
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Fig. 15.6 Predicted and observed for the repeated measures RBC data
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Modeling time as an ordered factor is quite parameter wasteful (the full interac-
tion model has 153 parameters). A flexible yet more economic approach may be to
model time using smoothing splines. The following example uses a B-spline with
5 degrees-of-freedom (Fig. 15.7). The qualitative features are similar to the more
parameter rich model (Fig. 15.6)

require(splines)
mle.rbc4=lme(RBC˜Treatment*bs(Day, df=5), random=

˜1|Ind2, data=RBC, correlation=corAR1(form=
˜Day|Ind2), na.action=na.omit, method="ML")

pr=predict(mle.rbc4)
RBC$pr=NA
RBC$pr[!is.na(RBC$RBC)]=pr
plot(RBC$pr˜RBC$Day, col=as.numeric(RBC$Treatment),

pch=as.numeric(RBC$Treatment), xlab="Day",
ylab="RBC count")

legend("bottomright",
legend=c("AQ", "AT", "BC", "CB", "Control", "ER"),

pch=unique(as.numeric(RBC$Treatment)), col=1:6)
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Fig. 15.7 Predicted and observed for the repeated measures RBC data using a spline model in time
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15.4 B. bronchiseptica in Rabbits

Bordetella bronchiseptica is a respiratory infection of a range of mammals (e.g.,
Bjørnstad and Harvill 2005). Its congeners, B. pertussis and B. parapertussis, cause
whooping cough in humans, but B. bronchiseptica is usually relatively asymp-
tomatic (though it can cause snuffles in rabbits and kennel cough in dogs). The
data comes from a commercial rabbitry which breeds NZW rabbits to study trans-
mission paths in the colony. The data is from the same study as we used to study the
age-specific force of infection in Sect. 4.3. Nasal swabs of female rabbits and their
young were taken at weaning (∼4 weeks old). A total of 86 does and 408 kits were
included in the study (Long et al. 2010).

data(litter)

To investigate if (a) offspring of the infected mothers have an increased instan-
taneous risk of becoming infected and (b) if offspring of the same litter tended to
have the same infection fate because of within-litter transmission, we use a random
effect (generalized linear mixed model, GLMM) logistic regression, with litter as a
random effect. We first do some data formatting.

tdat=data.frame(lsize=as.vector(table(litter$Litter)),
Litter=names(table(litter$Litter)),
anysick=sapply(split(litter$sick,litter$Litter),sum))

ldat=merge(litter, tdat, by="Litter")
ldat$othersick=ldat$anysick-ldat$sick
ldat$anyothersick=ldat$othersick>0
ldat$X=1:408

Here, the concern is with whether littermates share correlated fates. Unlike for
spatial or temporal autocorrelation, there are no canned functions to quantify this
correlation. However, following our discussion of autocorrelation in Sect. 13.3, it is
easy to customize our own calculations. In the below, the first double-loop makes a
sibling-sibling “contact-matrix,” tmp, that flags kits according to litter membership.
After, tmp2 rescales the binary sick vector that flags whether or not an animal was
infected, and tmp3 generates the correlation matrix. Finally mean(tmp3*tmp)
provides the within-litter autocorrelation in infection status averaged across all lit-
ters.

tmp=matrix(NA, ncol=length(ldat$Litter),
nrow=length(ldat$Litter))

for(i in 1:length(ldat$Litter)){
for(j in 1:length(ldat$Litter)){

if(ldat$Litter[i]==ldat$Litter[j]){
tmp[i,j]=1



280 15 Non-independent Data

}
}

}
diag(tmp)=NA
tmp2=scale(ldat$sick)[,1]
tmp3=outer(tmp2, tmp2, "*")
mean(tmp3*tmp, na.rm=TRUE)

## [1] 0.5302508

The within-litter correlation of 0.53 represents a substantial interdependence
among littermates. Since the response variable is binary (infected vs noninfected)
we cannot use lme. Instead we use the lmer-function from the lme4-package and
specify using the “family” argument that the response is binomial. Using AICs we
contrast the fit with within-litter correlation (fitL) with the fit that assumes inde-
pendence (fit0); The appropriate independence fit is generated by declaring that
each of the 408 individuals are in their own group (variable X in the data set).

require(lme4)
fitL=glmer(sick˜msick+lsize+Facility+anyothersick+

(1|Litter), family=binomial(), data=ldat)
fit0=glmer(sick˜msick+lsize+Facility+anyothersick+

(1|X), family=binomial(), data=ldat)
AIC(fitL, fit0)

## df AIC
## fitL 7 291.0263
## fit0 7 316.5853

The litter-dependent model is clearly best (no surprise given the strong empirical
intra-litter correlation). The summary of the best model reveals that the key predictor
of infection fate is whether or not a sibling was infected (anyothersickTRUE).
The infection status of the mother was insignificant. The mixed-effect logistic re-
gression thus reveals that the most important route of infection is likely to be sib-to-
sib transmission (Long et al. 2010).

summary(fitL, corr = FALSE)

## Generalized linear mixed model fit by maximum
## likelihood (Laplace Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula:
## sick ˜ msick + lsize + Facility + anyothersick +
## (1 | Litter) Data: ldat

##
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## AIC BIC logLik deviance df.resid
## 291.0 319.1 -138.5 277.0 400
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.7277 -0.3199 -0.1333 -0.0386 13.2186
##
## Random effects:
## Groups Name Variance Std.Dev.
## Litter (Intercept) 2.077 1.441
## Number of obs: 407, groups: Litter, 52
##
## Fixed effects:
## Estimate Std. Error z value
## (Intercept) -3.43236 2.32298 -1.478
## msick 2.74171 1.65447 1.657
## lsize -0.37908 0.19153 -1.979
## FacilityT3 1.15833 0.80626 1.437
## FacilityT9 -0.01773 0.68553 -0.026
## anyothersickTRUE 2.88387 0.71564 4.030
## Pr(>|z|)
## (Intercept) 0.1395
## msick 0.0975 .
## lsize 0.0478 *
## FacilityT3 0.1508
## FacilityT9 0.9794
## anyothersickTRUE 5.58e-05 ***
## ---
## Signif. codes:
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1



Chapter 16
Quantifying In-Host Patterns

16.1 The Experiments

In addition to the mouse malaria data discussed in Sects. 7.7 and 15.3, we consider
a coinfection study of FIV in cats (Roy et al. 2009). The experiment showed that
disease in cats caused by infection with a virulent feline immunodeficiency viruses
(FIV f ) can be attenuated by prior infection with strains of lower pathogenicity from
cougars. The data are from twenty cats that were experimentally infected with two
strains of FIV, the virulent house cat (Felix) strain (FIV f ) and a mild wild cougar
(Puma) strain (FIVp). On day 0, 10 cats were infected with FIVp and 10 were sham
inoculated. On day 28 five cats from each group were inoculated with FIV f and the
other ten cats were again sham inoculated. This resulted in four treatment groups: C
(control, only sham inoculation), P (FIVp on day 0 and sham on day 28), F (sham
on day 0, FIV f on day 28), and D (dual infection, FIVp on day 0 and FIV f on day
28). A variety of cytokines and cell counts that were thought to relate to protective
immunity were measures approximately every 7 days. Details of the experiment can
be found in Roy et al. (2009).

16.2 Data

For our FIV analysis we focus on the multivariate measures on days 31 and 59 to
create two data sets Day31 and Day59, 3 and 30 days respectively, after the second
treatment (FIV f infection). We strip some unnecessary columns 1, 14, 15, and 16
that are extraneous or were not measured on these days, remove lines with missing

This chapter uses the following R-packages: ade4 and MASS.
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values (using na.omit), and make sure that each row is labeled with the correct
animal Id (using dimnames).

data(fiv)
Day31 = fiv[fiv$Day == 31, ]
dimnames(Day31)[[1]] = Day31$Id
Day31 = na.omit(Day31[, -c(1, 14, 15, 16)])
Day59 = fiv[fiv$Day == 59, ]
dimnames(Day59)[[1]] = Day59$Id
Day59 = na.omit(Day59[, -c(1, 14, 15, 16)])

For our malaria analysis we also strip some unnecessary columns 1, 3, 4, 7, 8,
and 11 that are extraneous and focus on the red blood cell count (RBC).

data(SH9)
SH9RBC = SH9[, -c(1, 3, 4, 7, 8, 10, 11)]

In addition to the long-format used for the repeated measures analysis
(Sect. 15.3), we need “wide” formatted data (denoted . . . w) for both the princi-
pal component analysis (PCA) and linear discriminant analysis (LDA) we will use
to study the dynamics. We make the wide-formatted data using reshape. The
-seq(4,50,by=2) strips extraneous columns generated by the reshape. The
names(...)[2]="Treatment" renames column 2.

SH9RBCw = reshape(SH9RBC, idvar = "Ind2",
direction = "wide", timevar="Day")

SH9RBCw=SH9RBCw[,-seq(4,50,by=2)]
names(SH9RBCw)[2]="Treatment"

16.3 PCA of FIV Day 31 and 59 Data

The FIV data has counts of various effector cells (lymphocytes, neutrophils, CD4,
CD8B, and CD25), virus load (provirus and overall viremia), and measurements on
a number of cytokines (IFNγ , IL-4, IL-10, IL-12, TNF-α). The goal of the experi-
ment was to elucidate what immunological conditions best distinguished sever from
attenuated infections. The ade4-package has refined statistical and graphical meth-
ods to explore multivariate patterns. According to the “French protocol” (Dray and
Dufour 2007), as implemented in the ade4-package, biplot-like decompositions
are referred to as “duality-diagrams” (because of the arrows and points); Thus the
naming of dudi.pca for principal component analysis. We use the dudi.pca
function to elaborate on the biplot. By providing an explicit “group” annotation we
can add group means as well as group ellipses (which reflect within-group variabil-
ity) to the biplot using the s.class function. The add.scatter.eig function
adds the eigenvalue histogram to the bottom right corner that shows the relative
importance of each PCA axis (Fig. 16.1).
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require(ade4)
pca31=dudi.pca(Day31[,1:11], scannf = FALSE, nf = 5)
#select 5 axes
groups=Day31$Treatment
s.arrow(dfxy=pca31$co[,1:2]*8, ylim=c(-7,9),

sub="Day 31", possub="topleft", csub=2)
s.class(dfxy=pca31$li[,1:2], fac=groups, cellipse=2,

axesell=FALSE, cstar=0 , col=c(2:5), add.plot=TRUE)
add.scatter.eig(pca31$eig, xax=1, yax=2,

posi="bottomright")
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Fig. 16.1 A biplot of in-host measurement in the FIV experiment on day 31 with group ellipses
and eigenvalues superimposed

On Day 59 patterns are starting to resolve and treatment units are starting to sep-
arate with FIV f infected cats having the lowest white blood cell counts (Fig. 16.2).

pca59=dudi.pca(Day59[,1:11], scannf = FALSE, nf = 5)
groups=Day59$Treatment
s.arrow(dfxy=pca59$co[,1:2]*8, ylim=c(-7,9),

sub="Day 59", possub="topleft", csub=2)
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s.class(dfxy=pca59$li[,1:2], fac=groups, cellipse=2,
axesell=FALSE, cstar=0 , col=c(2:5), add.plot=TRUE)

add.scatter.eig(pca59$eig, xax=1, yax=2,
posi="bottomright")
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Fig. 16.2 A biplot of in-host measurement in the FIV experiment on day 59 with group ellipses
and eigenvalues superimposed

16.4 LDA of FIV Day 31 and 59 Data

As opposed to PCA which broadly explores the overall variability in the multivariate
data, discriminant analysis explicitly considers “group membership” (such as exper-
imental treatment or other types of grouping) and asks what linear combination of
response variables (a kin to the components in PCA) allows for the best discrimina-
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tion among groups. The MASS-package has the lda-function to do such analysis.
Since the variables are heterogeneous we normalize each prior to the analysis by
applying the scale function to each of the first eleven columns of the data set.

require(MASS)
Day31sc = Day31
Day31sc[, 1:11] = apply(Day31[, 1:11], 2, scale)

The lda-function uses the group response formulation as its argument. The
LDA plot depicts the discrimination among the groups along the discriminant axes
(Fig. 16.3).

lda31 = lda(Treatment ˜ CD4 + CD8B + CD25 + FAS +
IFNg + IL_10 + IL_12 + lymphocyte + neutrophils +
TNF_a, data = Day31sc)

plot(lda31)

Figure 16.3 shows how discriminant axis 1 clearly discriminates between the
Dual (D)/Cougar (P) and the Control (C)/Feline (F) groups. Axis 2 separates the
Dual (D) group from the Cougar (P) group. Axis 3 provides imperfect separation
between the Control (C) group and the Feline (F) group. We can further check how
the predicted LDA group assignments compare to the true treatment groupings:

pr = predict(lda31, method = "plug-in")$class
table(pr, Day31sc$Treatment)

##
## pr C D F P
## C 2 0 1 0
## D 0 5 0 0
## F 1 0 3 0
## P 0 0 0 5

For the most part the discrimination is good, but as Fig. 16.3 suggests there is
some difficulty in discriminating between the C and F group on day 31; There is
one misclassification among the groups.

To see how the group-informed LDA ordination differs from the PCA we can
represent the LDA analysis as a biplot (Fig. 16.4). (The first two lines in the below
code calculates the coordinates of each cat along the first two LDA axes to be com-
patible with the ADE4-package.) The discrimination is largely along LDA axis one.

ld1=as.matrix(Day31sc[,attr(lda31$terms,
"term.labels")])%*%matrix(lda31$scaling[,1], ncol=1)

ld2=as.matrix(Day31sc[,attr(lda31$terms,
"term.labels")])%*%matrix(lda31$scaling[,2], ncol=1)

groups=Day31$Treatment
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Fig. 16.3 The LDA of in-host measurement in the FIV experiment on day 31

contribs = lda31$svd/sum(lda31$svd)
s.arrow(dfxy=lda31$scaling[,1:2], sub="Day 31",

possub="topleft", csub=2)
s.class(dfxy=cbind(ld1, ld2)*2.5, fac=groups,

cellipse=2, axesell=FALSE, cstar=0,
col=c(2:5), add.plot=TRUE)

add.scatter.eig(contribs, xax=1, yax=2,
posi="bottomright")
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Fig. 16.4 The LDA of day 31 as a biplot

We repeat the analysis for the data from day 59 to see that discrimination among
all four groups are very good by this time (Fig. 16.5). The linear discriminant (LD)
1 separates treatments C from D/F and P and LD2 separates F from the other treat-
ments.

Day59sc=Day59
Day59sc[,1:11]=apply(Day59[,1:11],2,scale)
lda59 = lda(Treatment ˜ CD4 + CD8B + CD25 + FAS +

IFNg + IL_10 + IL_12 + lymphocyte + neutrophils +
TNF_a, data = Day59sc)

pr=predict(lda59, method="plug-in")$class
table(pr, Day59sc$Treatment)

##
## pr C D F P
## C 5 0 0 0
## D 0 5 0 0
## F 0 0 5 0
## P 0 0 0 4

ld1=as.matrix(Day59sc[,attr(lda59$terms,
"term.labels" )])%*%matrix(lda59$scaling[,1], ncol=1)

ld2=as.matrix(Day59sc[,attr(lda59$terms,
"term.labels" )])%*%matrix(lda59$scaling[,2], ncol=1)
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groups=Day59$Treatment

contribs = lda59$svd/sum(lda59$svd)
s.arrow(dfxy=lda59$scaling[,1:2], sub="Day 59",

possub="topleft", csub=2)
s.class(dfxy=cbind(ld1, ld2), fac=groups, cellipse=2,

axesell=FALSE, cstar=0 , col=c(2:5), add.plot=TRUE)
add.scatter.eig(contribs, xax=1, yax=2,

posi="bottomright")
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Fig. 16.5 The LDA of day 59 as a biplot

The severe disease (treatment F) is associated with reduction in counts of several
cell types and modulation of the expression of various cytokines.

16.5 MANOVA of FIV Day 59 Data

In addition to the exploratory analysis provided by PCA and LDA we may also
want to do a formal multivariate test between our treatment groups. The most tra-
ditional approach is through the use of multivariate analysis of variance (manova).
The manova-function has many test options—The Hotelling T 2 is the multivari-
ate version of the t-test. According to the R help pages, the Pillai-Bartlett statistic



16.6 PCA of Mouse Malaria 291

is recommended by Hand and Taylor (1987) and is the default. There are many
assumptions involved (including multivariate normality).

Y=cbind(Day59sc$CD4, Day59sc$CD8B, Day59sc$CD25,
Day59sc$FAS, Day59sc$IFNg, Day59sc$IL_10,
Day59sc$IL_12, Day59sc$lymphocyte,
Day59sc$neutrophils, Day59sc$TNF_a)

X=Day59$Treatment
mova59=manova(Y˜X)
summary(mova59, test="Pillai")

## Df Pillai approx F num Df den Df
## X 3 2.1078 1.8901 30 24
## Residuals 15
## Pr(>F)
## X 0.05676 .
## Residuals
## ---
## Signif. codes:
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

16.6 PCA of Mouse Malaria

A preliminary PCA of the RBC time series reveals that the fate of the animals com-
pletely dominates the patterns since RBCs were scored as 0 after death (Fig. 16.6).

require(ade4)
dead=ifelse(SH9RBCw[,27]==0, "dead", "alive")
pcaRBC=dudi.pca(SH9RBCw[,3:27], scale=FALSE,

scannf = FALSE, nf = 5)
s.arrow(dfxy=pcaRBC$co[,1:2]*3, xlim=c(-10, 10),

ylim=c(-5,5), sub="RBC", possub="topleft", csub=2)
s.class(dfxy=pcaRBC$li[,1:2]*.3, fac=as.factor(dead),

cellipse=2, axesell=FALSE, cstar=0 ,
col=c(2:7), add.plot=TRUE)

add.scatter.eig(pcaRBC$eig, xax=1, yax=2,
posi="bottomright")
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Fig. 16.6 The biplot of the RBC time series of the mouse malaria experiment

We therefore omit the 11 animals that died and redo the analysis (but note that
these were nonrandom with respect to treatment; the dead were 7 CB, 2 AT, 1 BC,
0 AQ, and 0 control).1

SH9RBCw2=SH9RBCw[dead=="alive",]
groups=SH9RBCw2$Treatment
pcaRBC=dudi.pca(SH9RBCw2[,3:27], scale=FALSE, scannf =

FALSE, nf = 5)
s.arrow(dfxy=pcaRBC$co[,1:2]*3, xlim=c(-4,9),

ylim=c(-5,5), sub="RBC", possub="topleft", csub=2)
s.class(dfxy=pcaRBC$li[,1:2]*.3, fac=groups, cellipse=2,

axesell=FALSE, cstar=0 , col=c(2:7), add.plot=TRUE)
add.scatter.eig(pcaRBC$eig, xax=1, yax=2,

posi="bottomright")

All the arrows are pointing in the same direction for axis one (Fig. 16.7). This
axis is therefore broadly a “means” effect, meaning that individuals with more posi-
tive axis one scores tend overall to have more RBCs. Clearly the main driver of this
variation is control versus treatment animals. There is further some level of separa-
tion among the treatment animals along axis two, with BC generally having negative
values.
1 An approach that uses all available data would be to code dead RBCs as NAs and do a PCA with
missing data using nonlinear iterative partial least-squares (nipals) as done by Roy et al. (2009).
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Fig. 16.7 The biplot of the RBC time series of the mouse malaria experiment excluding animals
that died

16.7 FDA of Mouse Malaria

We can get some deeper insights into the differences revealed by the PCA by con-
sidering how the mouse data is of a “functional” nature. That is, we can consider
each of the time series of RBC counts as sampled along a curve through time. We
can ask how each curve can be thought of as being generated by adding or subtract-
ing underlying component curves. Generally speaking, this multivariate approach is
referred to as functional data analysis (FDA; Ramsay and Silverman 1997).

While specialized packages exist, we can treat our PCA as a simple FDA by
considering the loadings along each axis to comprise a component time series (a
so-called “empirical orthogonal function,” EOF), and the score for each individual
as a weight of how much of that EOF to add or subtract to reconstitute the data.
Figure 16.8 depicts the loadings of axis one and two as EOFs along the top row. The
bottom row shows how adding or subtracting—corresponding to having positive
or negative scores—these EOFs modulates the shape of the overall average curve
among all experimental animals.

par(mfrow=c(1,2))
#Gets the experimental days
day=unique(SH9$Day)
#Calculate the average time series
avg=apply(SH9RBCw2[,3:27], 2, mean)
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plot(day, avg, type="b", ylim=range(SH9RBCw[,3:27]),
ylab = "RBC", xlab="Day")

title("Mean +/- 1 SD eof 1")
lines(day, avg+1*pcaRBC$co[,1], col=2,

type="b", pch="+")
lines(day, avg-1*pcaRBC$co[,1], col=2,

type="b", pch="-")
plot(day, avg, type="b", ylim=range(SH9RBCw[,3:27]),

ylab = "RBC", xlab="Day")
title("Mean +/- 1 SD eof 2")
lines(day, avg+1*pcaRBC$co[,2], col=2,

type="b", pch="+")
lines(day, avg-1*pcaRBC$co[,2], col=2,

type="b", pch="-")
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Fig. 16.8 The PCA of the RBC time series represented as a functional data analysis

The analysis offers some interesting insights. As previously suggested, axis one
measures the overall anemia. Animals with positive scores experience less anemia.
Axis two, in contrast, is more interesting as it reveals that the second most important
pattern broadly distinguishes between animals that have peak anemia before day
10 (negative scores; broadly comprised of individuals infected with the BC clone)
versus the other more slowly progressing infections (positive scores) that have peak
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anemia around day 15. To confirm our interpretation we plot the actual time series
for the 10 most extreme mice along EOF1 and EOF2 axes (Fig. 16.9).

par(mfrow=c(1,2))
so=order(pcaRBC$li[,1])
plot(day, t(SH9RBCw2[so[1],3:27]), type="l", ylab="RBC",

xlab="Day")
for (i in 1:5) lines(day, t(SH9RBCw2[so[i],3:27]))
for (i in 36:41) lines(day, t(SH9RBCw2[so[i],3:27]),

col=2, lty=2)
so=order(pcaRBC$li[,2])
plot(day, t(SH9RBCw2[so[1],3:27]), type="l", ylab="RBC",

xlab="Day")
for (i in 1:5) lines(day, t(SH9RBCw2[so[i],3:27]))
for (i in 36:41) lines(day, t(SH9RBCw2[so[i],3:27]),

col=2, lty=2)
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Fig. 16.9 The RBC time series for the five animals with highest (lowest) scores along the (a) first
and (b) second axes. Black lines represent the five mice with the most negative scores and red
dashed lines represent the mice with the most positive scores
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