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Preface

This monograph is devoted to a unified, up-to-date, and accessible exposition of Eu-
clidean distance matrices (EDMs) and rigidity theory of bar-and-joint frameworks.
EDMs, which comprise the first part of the monograph, are those matrices whose
entries can be realized as the squared Euclidean interpoint distances of a point con-
figuration. Such matrices arise in many areas of science and engineering including
statistics, computational biochemistry, and computer science, to name a few. The
second part of the monograph focuses on rigidity theory of bar-and-joint frame-
works. Given a subset E of the interpoint distances of a point configuration, rigidity
theory is concerned with the existence of a second point configuration having the
same interpoint distances as those of E. Various rigidity notions correspond to var-
ious conditions on the second point configuration. Rigidity theory has a long and
rich history going at least as far back as Cauchy (1813) and is of great interest
to structural engineers and mathematicians. EDMs and rigidity theory fall in the
general area of distance geometry. Distance geometry has important applications in
statistics (multidimensional scaling [48]), computational biochemistry (molecular
conformations [66]), and computer science (sensor networks).

The last four decades have seen a growing body of literature on EDMs and rigid-
ity theory. Much of this literature, unfortunately, is available mainly in scattered
form in journals of various disciplines. This, coupled with the lack of a unified no-
tation, makes it difficult to get a firm grasp of the published literature and acts as
a barrier to new researchers entering the field. This monograph is an attempt to
rectify this situation by presenting a unified account of EDMs and rigidity theory
based on the one-to-one correspondence between EDMs and projected Gram matri-
ces. Accordingly, the machinery of semidefinite programming is a common thread
that runs throughout the monograph. As a result, two parallel approaches to rigidity
theory are presented. The first one is traditional and more intuitive and is based on
a vector representation of a point configuration. The second one is novel and less
intuitive and is based on a Gram matrix representation of a point configuration. Each
of these two approaches, obviously, has its advantages and disadvantages.
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viii Preface

The monograph is self-contained and should be accessible to a wide audience
including students and researchers in statistics, computational biochemistry, engi-
neering, computer science, operations research, and mathematics. The notation used
here is standard in the semidefinite programming literature. Chapters 1 and 2 pro-
vide the necessary background for the rest of the chapters. The focus of Chap. 1 is
on pertinent results from matrix theory, graph theory, and convexity theory, while
Chap. 2 is devoted entirely to positive semidefinite (PSD) matrices due to the key
role these matrices play in our approach. Chapters 3–7 are devoted to a detailed
study of EDMs, and in particular their various characterizations, classes, eigenval-
ues, entries, and geometry. Chapters 9 and 10 are devoted to local and universal
rigidities of bar-and-joint frameworks. The literature on rigidity theory is vast. We
chose to include only those two notions of rigidity because they lend themselves eas-
ily to semidefinite programming machinery used throughout the monograph. More-
over, due to space limitation, we discuss only the most significant results and results
directly relevant to EDMs. Finally, Chap. 8 is a transitional chapter that links rigidity
theory to EDMs by viewing various rigidity problems as EDM completion unique-
ness problems.

Finally, I would like to express my sincere thanks and gratitude to Katta G. Murty
(thesis advisor) and Henry Wolkowicz (postdoctoral advisor). Murty introduced me
to Henry and Henry introduced me to EDMs.

Windsor, ON, Canada Abdo Y. Alfakih
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Chapter 1
Mathematical Preliminaries

In this chapter, we briefly review some of the mathematical preliminaries that will
be needed throughout the monograph. These include a brief review of the most
pertinent concepts and results in the theories of vector spaces, matrices, convexity,
and graphs. Proofs of several of these results are included to make this chapter as
self-contained as possible.

1.1 Vector Spaces

The notion of a vector space plays an important role in Euclidean geometry. In this
monograph we are interested only in finite-dimensional real vector spaces.

Let V be a nonempty set equipped with the operations of addition and scalar
multiplication. Then V is a real vector space (or a real linear space) if the following
conditions are satisfied:

1. x+ y = y+ x for all x,y in V .
2. x+(y+ z) = (x+ y)+ z for all x,y,z in V .
3. There exists a unique 0 ∈ V such that x+0 = x for all x ∈ V .
4. For each x ∈ V , there exists a unique (−x) ∈ V such that x+(−x) = 0.
5. (α +β )x = αx+βx for all α,β in R and all x ∈ V .
6. α(x+ y) = αx+αy for all α in R and all x,y in V .
7. (αβ )x = α(βx) for all α,β in R and all x in V .
8. 1x = x for all x ∈ V .

The vector spaces of interest to us are the ones where V = R
n and V =S n, the

set of n×n real symmetric matrices. The elements of real vector space V are called
vectors. If the origin 0 is of no particular interest to us, then the elements of V are
called points. Let V be a real vector space and let V ′ ⊂ V . If V ′ is a real vector
space in its own right, then V ′ is called a linear subspace, or a subspace for short,
of V . It is easy to see that a nonempty subset of V is a subspace of V iff it is closed
under linear combinations.

© Springer Nature Switzerland AG 2018
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2 1 Mathematical Preliminaries

An inner product on a real vector space V , denoted by 〈., .〉, is a real-valued
function on V ×V that satisfies the following properties:

1. 〈x,x〉 ≥ 0 for all x ∈ V and 〈x,x〉= 0 iff x = 0.
2. 〈αx+βy,z〉 = α〈x,z〉 + β 〈y,z〉 for all x,y,z in V and all α,β in R.
3. 〈x,y〉 = 〈y,x〉 for all x,y in V .

A vector space on which an inner product is defined is called an inner product space.

A norm on a real vector space V , denoted by ||x||, is a function V → R that
satisfies the following properties:

1. ||x|| ≥ 0 for all x ∈ V , and ||x||= 0 iff x = 0.
2. ||αx|| = |α| ||x|| for all x in V and all α in R.
3. ||x+ y|| ≤ ||x||+ ||y|| for all x,y in V .

A vector space equipped with a norm is called a normed vector space. Every inner
product naturally induces a norm of the form ||x|| = 〈x,x〉1/2. Our interest in this
monograph is in the norm in R

n induced by 〈x,y〉= xT y and the norm in S n induced
by 〈X ,Y 〉= trace(XY ).

Theorem 1.1 (Cauchy–Schwarz inequality) Let x and y be two vectors in a real
vector space V equipped with inner product 〈., .〉. Then

|〈x,y〉| ≤ 〈x,x〉1/2 〈y,y〉1/2,

where equality holds if and only if x−αy = 0 for some scalar α .

Proof. Let ||x||2 = 〈x,x〉. Then, it follows from the definition of inner product that
〈x− ty,x− ty〉 = t2||y||2 − 2t〈x,y〉+ ||x||2 ≥ 0 for all t ∈ R. Now if y = 0, then the
result follows trivially. Thus, assume that ||y||2 �= 0 and let

t̂ =
〈x,y〉
||y||2 .

Then

〈x− t̂y,x− t̂y〉= ||x||2 − 〈x,y〉2

||y||2 ≥ 0.

Consequently, 〈x,y〉2 ≤ ||y||2||x||2, with equality iff x− t̂y = 0.
�

Cauchy–Schwarz inequality is used to establish the continuity of the inner prod-
uct.

Lemma 1.1 Let {xk}k∈N, {yk}k∈N be two sequences in V that converge to x and y,
respectively. Then

lim
k→∞

〈xk,yk〉= 〈x,y〉.

That is, the inner product 〈x,y〉 is a continuous function.
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Proof.

|〈xk,yk〉−〈x,y〉| = |〈xk,yk〉−〈xk,y〉+ 〈xk,y〉−〈x,y〉|
= |〈xk,(yk − y)〉+ 〈(xk − x),y〉|
≤ |〈xk,(yk − y)〉|+ |〈(xk − x),y〉|
≤ ||xk|| ||yk − y||+ ||xk − x|| ||y||,

where the last inequality follows from Cauchy–Schwarz inequality. Now ||xk|| is
bounded by the convergence of {xk}. Thus, 〈xk,yk〉 → 〈x,y〉 as xk → x and yk → y.

�

Let V1 and V2 be two vector spaces and let T :V1 →V2 be a linear transformation.
The adjoint of T , denoted by T ∗, is the unique transformation T ∗ : V2 → V1 that
satisfies

〈y,T (x)〉= 〈T ∗(y),x〉 for all x ∈ V1 and for all y ∈ V2.

For example, let Diag(x) denote the diagonal matrix formed by vector x and let
diag(A) denote the vector consisting of the diagonal entries of matrix A. Let Rn be
endowed with inner product 〈x,y〉= xT y and let S n be endowed with the trace inner
product 〈A,B〉= trace(AB). Further, let T : Rn →S n, where T (x) = Diag(x). Then
for any A ∈S n, we have

trace(ADiag(x)) =
n

∑
i=1

aiixi = xT diag(A).

Therefore, the adjoint of T is T ∗ : S n → R
n, where T ∗(A) = diag(A).

1.2 Matrix Theory

In this monograph we deal only with real matrices. Let A be an n× n matrix. The
matrix obtained from A by deleting n−k rows and n−k′ columns, where 1 ≤ k,k′ ≤
n, is a k × k′ submatrix of A. A principal submatrix of A is the square submatrix
obtained from A by deleting similarly indexed rows and columns; i.e., if the ith row
of A is deleted, then so is the ith column. The determinant of a principal submatrix
of A is called a principal minor of A. The kth leading principal submatrix of A is
the square submatrix obtained by deleting the last n− k columns and rows of A.
Note that the nth leading principal submatrix of A is A itself. The determinant of
the kth leading principal submatrix of A is called the kth leading principal minor of
A. It easily follows that an n× n matrix has 2n − 1 principal minors and n leading
principal minors.
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1.2.1 The Characteristic and the Minimal Polynomials

Let A be an n×n matrix and let x be a nonzero vector in R
n. Then x is said to be an

eigenvector of A if
Ax = λx,

for some scalar λ , in which case, λ is said to be the eigenvalue of A corresponding
to x. The pair (λ ,x) is called an eigenpair of A. An immediate consequence of this
definition is that the eigenvalues of A are the roots of the polynomial

χA(λ ) = det(A−λ I). (1.1)

χA(λ ) is called the characteristic polynomial of A. An important fact to bear in
mind is that A and AT have the same characteristic polynomial and hence the same
eigenvalues. Since χA(λ ) is of degree n, it follows that A has n eigenvalues some of
which may be complex even if A is real. On the other hand, A may or may not have
n linearly independent eigenvectors. A is said to be diagonalizable if there exists a
nonsingular matrix S such that

A = SΛS−1,

where Λ is the diagonal matrix consisting of the eigenvalues of A, in which case,
the columns of S are the eigenvectors of A, and the rows of S−1 are the eigenvec-
tors of AT . It is easy to see that A is diagonalizable if and only if it has n linearly
independent eigenvectors. As will be shown next, real symmetric matrices are al-
ways diagonalizable, and more importantly, they are diagonalizable by orthogonal
matrices.

Theorem 1.2 Let A be an n×n real symmetric matrix. Then A has n real eigenval-
ues and n orthonormal eigenvectors.

Proof. Let Ax = λx. Then Ax̄ = λ̄ x̄, where x̄ is the complex conjugate of x. There-
fore, x̄T Ax− xT Ax̄ = (λ − λ̄ ) x̄T x = 0. Thus, λ̄ = λ since x̄T x �= 0. Hence, λ is real
and thus x can be chosen real.

Now let Ax1 = λ1x1 and Ax2 = λ2x2, where λ1 �= λ2. Then x2T
Ax1 − x1T

Ax2 =

(λ1 −λ2) x2T
x1 = 0. Thus x2T

x1 = 0. Hence, the eigenvectors of A corresponding
to distinct eigenvalues are orthogonal. Now if an eigenvalue λ of A is repeated, then
the eigenvectors corresponding to λ can be chosen to be orthogonal.

�

Theorem 1.3 (The Spectral Theorem) Let A be a real n×n matrix. Then A is sym-
metric if and only if

A = QΛQT , (1.2)

where Λ is the diagonal matrix consisting of the eigenvalues of A and Q is an or-
thogonal matrix whose columns are the corresponding eigenvectors.

Equation (1.2) is called the spectral decomposition of A. Let (λ1,q1), . . . ,(λn,qn) be
the eigenpairs of A. Then Eq. (1.2) can be written as A = ∑n

i=1 λiqi(qi)T .
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Rayleigh–Ritz Theorem gives a variational characterization of the largest and the
smallest eigenvalues of a real symmetric matrix.

Theorem 1.4 (Rayleigh–Ritz) Let A be an n × n real symmetric matrix and let
λ1 ≥ ·· · ≥ λn be the eigenvalues of A. Further, let x1 and xn be eigenvectors of
A corresponding to λ1 and λn, respectively. Then

λ1 = max
x �=0

xT Ax
xT x

and λn = min
x �=0

xT Ax
xT x

.

Moreover, the maximum is attained at x1 and the minimum is attained at xn.

Proof. We only present a proof of the maximum case. The proof of the minimum
case is similar. Let A=QΛQT be the spectral decomposition of A. Then for all x �= 0
we have

xT Ax
xT x

=
yT Λy
yT y

=
∑n

i=1 λiy2
i

∑n
i=1 y2

i

≤ λ1

since ∑n
i=1 λiy2

i ≤ ∑n
i=1 λ1y2

i . The result follows since (x1)T Ax1 = λ1(x1)T x1.
�

We will find the following corollary of Rayleigh–Ritz Theorem useful in later
chapters.

Corollary 1.1 Let A be an n×n real symmetric matrix. Let λ1, . . . ,λn be the eigen-
values of A with corresponding orthonormal eigenvectors q1, . . . ,qn. Assume that
λ1 > λi for all i = 2, . . . ,n and let x be a unit vector such that xT Ax = λ1. Then
x =±q1.

Proof. Let x = ∑n
i=1 αiqi. Then ∑n

i=1 α2
i = 1 and λ1 = ∑n

i=1 α2
i λi. Hence,

n

∑
i=2

α2
i λi = λ1(1−α2

1 ) = λ1

n

∑
i=2

α2
i .

Therefore, ∑n
i=2 α2

i (λ1 − λi) = 0. But (λ1 − λi) > 0 for all i = 2, . . . ,n. Hence,
α2 = · · ·= αn = 0 and thus x =±q1.

�

Theorem 1.5 Let A be a real symmetric n×n matrix and let L be a k-dimensional
subspace of Rn such that xT Ax ≤ 0 for all x ∈L . Then A has at least k nonpositive
eigenvalues.

Proof. Let q1, . . . ,qn be orthonormal eigenvectors of A with corresponding eigen-
values λ1 ≥ ·· · ≥ λn. Let S = span {q1, . . . ,qn−k+1}. Then dim(S) = n− k+1. Thus
L ∩ S �= /0 and hence let x be a unit vector in L ∩ S. Hence, λn−k+1 ≤ xT Ax ≤ 0.
Therefore, λn ≤ ·· · ≤ λn−k+1 ≤ 0.

�

The inertia of a real symmetric matrix A is the ordered triple (n+,n−,n0), where
n+,n−, and n0 are, respectively, the numbers of positive, negative, and zero eigen-
values of A. Thus, rank(A) = n++n−.
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Theorem 1.6 (Sylvester Law of Inertia) Let A be an n× n real symmetric matrix
and let S be a nonsingular n×n matrix. Then A and SAST have the same inertia.

Theorem 1.7 (Cauchy Interlacing Theorem) Let μ1 ≥ ·· · ≥ μn be the eigenval-
ues of an n× n real symmetric matrix A. Let B be any (n− 1)× (n− 1) principal
submatrix of A and let λ1 ≥ ·· · ≥ λn−1 be the eigenvalues of B. Then the eigenvalues
of A are interlaced by those of B; i.e.,

μk ≥ λk ≥ μk+1 for k = 1, . . . ,n−1.

The coefficients of the characteristic polynomial can be expressed in terms of the
principal minors.

Theorem 1.8 Let A be an n×n matrix and let ck be the coefficient of λ k in χA(λ ),
the characteristic polynomial of A. Then for k ≤ n−1, we have

ck = (−1)k × the sum of all principal minors of A of order n− k.

Proof. Let ei be the ith standard unit vector in R
n and let A. j be the jth column of

A. Then

χA(λ ) = det(A−λ I) = det( [(A.1 −λe1) (A.2 −λe2) · · · (A.n −λen) ]). (1.3)

Since the determinant is linear in each column separately, the coefficient of λ k in
(1.3) is

ck = (−1)k ∑det( [x(1) x(2) . . .x(k) x(k+1) . . .x(n)] ), (1.4)

where the sum is taken over all possible ways to replace x( j) with A. j or e j such
that the total number of e j’s is k. For instance, det([e1 e2 . . .ek A.k+1 . . .A.n]) is one
of the terms in the sum in (1.4). But this term is precisely the principal minor of A
of order n− k, obtained by deleting the first k rows and columns. Hence, the sum in
(1.4) is the sum of all principal minors of A of order n− k.

�

The coefficient cn is called the leading coefficient of χA(λ ) and it is equal to
(−1)n. Also, Theorem 1.8 immediately implies that c0 = det(A), cn−1 = (−1)n−1

trace(A). Note that the determinant and the trace are equal, respectively, to the prod-
uct and the sum of the eigenvalues counting multiplicities.

Theorem 1.9 (Cayley–Hamilton) Every square matrix satisfies its characteristic
polynomial.

The geometric multiplicity of an eigenvalue λ is equal to the maximum number of
linearly independent eigenvectors corresponding to λ . On the other hand, the alge-
braic multiplicity of λ is equal to the number of times λ is repeated as a root of the
characteristic polynomial. Note that the geometric multiplicity of an eigenvalue is
always less than or equal to its algebraic multiplicity. Moreover, matrix A is diago-
nalizable if and only if, for each eigenvalue of A, the geometric multiplicity is equal
to the algebraic multiplicity.
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Let λ1, . . . ,λk be the distinct eigenvalues of A with respective algebraic multi-
plicities m1, . . ., mk. Then

χA(λ ) = (λ1 −λ )m1 . . .(λk −λ )mk .

Hence, Cayley–Hamilton Theorem implies that

χA(A) = (λ1I −A)m1 . . .(λkI −A)mk = 0.

A polynomial is called monic if its leading coefficient is 1. The minimal polyno-
mial of A, denoted by mA(λ ), is the smallest degree monic polynomial that annihi-
lates A, i.e., mA(A) = 0. Consequently,

mA(λ ) = (λ1 −λ )r1 . . .(λk −λ )rk ,

where ri ≤ mi for all i = 1, . . . ,k.

Theorem 1.10 Let A be an n×n matrix. Then A is diagonalizable if and only if its
minimal polynomial, mA(λ ), is the product of linear terms, i.e., iff r1 = · · ·= rk = 1.

The norm of matrix A, denoted by ||A||, is a real-valued function that satisfies
the following three properties: (i) ||A|| ≥ 0 for all A and ||A|| = 0 iff A = 0, (ii)
||αA||= |α| ||A|| for all A and for all scalars α , and (iii) ||A+B|| ≤ ||A||+ ||B|| for
all A and B. In addition, if a matrix norm satisfies the property that ||AB|| ≤ ||A|| ||B||
for all A and B, then this norm is said to be consistent or submultiplicative.

The Frobenius norm of an m× n real matrix A, denoted by ||A||F , is defined by
||A||F =

√
trace(AT A). It is not hard to show that the Frobenius norm is submulti-

plicative. Every vector norm ||x|| induces a matrix norm as follows:

||A||= max
x �=0

||Ax||
||x|| .

Thus, ||A|| ||x|| ≥ ||Ax|| for any x. Accordingly, every induced matrix norm is sub-
multiplicative since

||ABx|| ≤ ||A|| ||B|| ||x|| for any x ∈ R
n.

Furthermore, it follows from Rayleigh–Ritz Theorem that ||A||2, the matrix norm
induced by the Euclidean vector norm, is given by ||A||2 =

√
λmax(AT A). Conse-

quently, ||A||2 ≤ ||A||F for any matrix A.

1.2.2 The Perron Theorem

A vector x in R
n is said to be positive, denoted by x > 0, if xi > 0 for all i = 1, . . . ,n.

Similarly, an n× n real matrix A is said to be positive (nonnegative), denoted by
A > 0 (≥ 0), if ai j > 0 (≥ 0) for all i, j = 1, . . . ,n. A nonnegative matrix A is said to
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be primitive if Ak > 0 for some positive integer k. Clearly, positive matrices form a
subset of primitive matrices. The spectral radius of A is ρ(A) = max{|λi| : λi is an
eigenvalue of A}.

Theorem 1.11 (Perron) Let A be an n×n primitive matrix and let ρ(A) be its spec-
tral radius. Then

1. There exists an eigenvalue λ1 = ρ(A) with a corresponding eigenvector x1 > 0.
2. λ1 has algebraic multiplicity 1.
3. x1 is the only positive eigenvector of A.
4. λ1 > |λ | for all eigenvalues λ �= λ1 of A.

The eigenpair (λ1,x1) is called the Perron eigenpair.

To keep the proof simple, we assume that matrix A is symmetric. Also, we as-
sume that A is positive. We comment later on the proof when A is primitive.
Proof. Assume that A is symmetric and positive. Thus ρ(A)> 0. Let λ1 ≥ ·· · ≥ λn

be the eigenvalues of A. Notice that λ1 > 0 since trace(A)> 0. Therefore, ρ(A) is ei-
ther equal to λ1 or |λn|. Let y1 and yn be the normalized eigenvectors corresponding
to λ1 and λn, respectively, and let x1 = |y1|, i.e., x1

i = |y1
i | for i = 1, . . . ,n. Then

|λn|= |(yn)T Ayn|= |∑
j

ai jy
n
i yn

j | ≤ ∑
j

ai j|yn
i | |yn

j | ≤ λ1,

where the last inequality follows from Rayleigh–Ritz Theorem. Thus λ1 = ρ(A).
Moreover,

λ1 = |λ1|= |(y1)T Ay1| ≤ (x1)T Ax1 ≤ λ1.

Therefore, (x1)T Ax1 = λ1 and thus Ax1 = λ1x1. Furthermore, since x1 ≥ 0 and since
x1 = Ax1/λ1, it follows that x1 > 0. This proves Statement 1.

To prove Statement 2, assume that there exists y such that Ay = λ1y. Let

α = min{x1
i

yi
: yi > 0}= x1

i0

yi0
> 0.

Let z = x1 −αy. Then z ≥ 0 and zi0 = 0. Assume that z �= 0. Then Az = λ1z and
hence, z = Az/λ1 must be > 0 since z ≥ 0, a contradiction. Therefore, z = 0 and y is
a multiple of x1 and hence the geometric multiplicity of λ1 is 1. Statement 2, thus,
follows since A is diagonalizable.

Statement 3 follows from the fact that eigenvectors corresponding to distinct
eigenvalues of a real symmetric matrix are orthogonal. Indeed, assume, to the con-
trary, that there exists an eigenpair (λ ,y), where λ �= λ1 and y > 0. Thus, on one
hand yT x1 > 0, and on the other hand, y and x1 are orthogonal, a contradiction.

To prove Statement 4, it suffices to prove that λn �= −λ1. To this end, assume
to the contrary that Ayn = −λ1yn. Then (yn)T x1 = 0. Moreover, A2y = λ 2

1 y and
A2x1 = λ 2

1 x1. Thus, for the symmetric positive matrix A2, the algebraic multiplicity
of the Perron eigenvalue λ 2

1 is 2, a contradiction.
�
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The proof of the case where A is primitive uses the above proof applied to the
symmetric positive matrix Ak. It also uses the following facts. First, if λ1, . . . ,λn

are the eigenvalues of A, then λ k
1 , . . . ,λ

k
n are the eigenvalues of Ak. Consequently, if

|λ1|k ≥ ·· · ≥ |λn|k, then |λ1| ≥ · · · ≥ |λn|. Second, since the algebraic multiplicity
of λ k

1 is 1, and thus its geometric multiplicity is also 1, it follows that the Perron
eigenvector x1 of Ak is also a Perron eigenvector of A. Furthermore, λ1 > 0 since
Ax1 = λ1x1.

1.2.3 The Null Space, the Column Space, and the Rank

Let A be an m×n real matrix. The null space of A is null(A) = {x∈R
n : Ax= 0} and

the column space of A is col(A) = {y ∈R
m : y = Az for some z in R

n}. Both null(A)
and col(A) are, respectively, subspaces of Rn and R

m of dimensions n− rank(A) and
rank(A). The subspace null(AT ) is often called the left null space of A.

Every k-dimensional subspace L of Rn can be represented either as the column
space of an n× k matrix A, or as the null space of an (n− k)× n matrix B. The
columns of A form a basis of L , while the rows of B form a basis of L ⊥, the
orthogonal complement of L in R

n.
The Moore–Penrose inverse of A, denoted by A†, is the unique matrix that sat-

isfies: (i) AA†A = A, (ii) A†AA† = A†, (iii) (A†A)T = A†A, and (iv) (AA†)T = AA†.
Obviously, if A is nonsingular, then A† = A−1. The following two facts are easy to
verify. First, if A has full column rank, then A† = (AT A)−1AT . Second, if A=QΛQT

where Q is orthogonal, then A† = QΛ †QT .
A matrix P satisfying P2 =P is called a projection matrix. If such P is symmetric,

then it is called an orthogonal projection matrix. Otherwise, it is called an oblique
projection matrix. It easily follows that AA† is the orthogonal projection matrix onto
col(A). Notice that AA† is symmetric. Thus, if the system of equations Ax = b is
consistent, i.e., if AA†b = b, then x = A†b + (I − A†A)z, where z is an arbitrary
vector, is a solution of this system since Ax = AA†b = b.

The following technical result will be used repeatedly in this monograph.

Proposition 1.1 Let A and B be two real symmetric square matrices such that AB =
0. Further, assume that A is singular and let U be the matrix whose columns form
an orthonormal basis of null(A). Then B =UΦUT , where Φ =UT BU.

Proof. Let A = WΛW T be the spectral decomposition of A, where Λ is the di-
agonal matrix consisting of the nonzero eigenvalues of A. Therefore, W T B = 0
since WΛ has full column rank. Let Q = [W U ]. Then Q is orthogonal and

QT BQ =

[
0 0
0 Φ

]
, where Φ =UT BU . Consequently, B =UΦUT .

�
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Let A and B be two m× n matrices. Then col([A B]) = col(A)+ col(B). Hence,
dim (col([A B])) = dim(col(A)) + dim(col(B)) − dim(col(A)∩ col(B)). Therefore,

rank([A B]) = rank(A)+ rank(B)−dim(col(A)∩ col(B)). (1.5)

On the other hand, col(A+B) = {y : y = (A+B)z for some z ∈ R
n} = {y : y =

[A B]

[
z
z

]
for some z ∈ R

n} ⊆ col([A B]). Therefore,

rank(A+B)≤ rank([A B]). (1.6)

As a result, it follows from Eqs. (1.5) and 1.6 that

rank(A+B)≤ rank(A)+ rank(B). (1.7)

The following theorem establishes a necessary and sufficient condition for equal-
ity to hold in Eq. (1.7).

Theorem 1.12 (Marsaglia and Styan [140]) Let A and B be two m× n matrices.
Further, let α = dim(col(A)∩ col(B)) and β = dim(col(AT )∩ col(BT )). Then

rank(A+B) = rank(A)+ rank(B)

if and only if α = β = 0.

We present the proof for the case where A and B are symmetric.
Proof. It follows from Eqs. (1.5) and 1.6 that

rank(A+B)≤ rank([A B])≤ rank(A)+ rank(B)−α ≤ rank(A)+ rank(B).

Thus, if rank(A+B) = rank(A)+ rank(B), then α = 0.
To prove the reverse direction, let A=W1Λ1W T

1 and B=W2Λ2W T
2 be the spectral

decompositions of A and B, where Λ1 and Λ2 are the diagonal matrices consisting
of the nonzero eigenvalues of A and B. Thus, W1 and W2 are orthonormal bases of

col(A) and col(B). Let Λ =

[
Λ1 0
0 Λ2

]
. Then rank(Λ) = rank(A) + rank(B).

If α = 0, then W = [W1 W2] has full column rank and hence, has a left inverse
W † = (W TW )−1W T ; i.e., W †W = I. Moreover,

A+B = [W1 W2]

[
Λ1 0
0 Λ2

][
W T

1
W T

2

]
.

Thus,

rank(A+B) = rank(WΛW T )≥ rank(W †WΛW T (W †)T ) = rank(Λ)

and the proof is complete.
�
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As an illustration of Theorem 1.12, let A and B be two real symmetric matrices
such that AB = 0. Then clearly col(B) is perpendicular to col(A). Thus, by Theo-
rem 1.12, rank(A+B) = rank(A) + rank(B).

A real-valued function f (x) is said to be lower semicontinuous if the set {x :
f (x)> a} is open for every a ∈ R.

Lemma 1.2 Let S mn denote the set of m× n real matrices and let S ⊆ R
n. Let

A(x) : S →S mn be continuous. Then rank(A(x)) is lower semicontinuous.

Proof. Let a ∈ R and let S′ = {x ∈ S : rank(A(x))> a}. If S′ = /0, then S′ is open.
Therefore, assume that S′ �= /0 and let x0 ∈ S′. Assume that rank(A(x0)) = k, then
there exists a k×k submatrix of A(x0), say AIJ (x0), such that det(AIJ (x0)) �= 0.
Hence, by the continuity of the determinant function, there exists a neighborhood U
of x0 such that det(AIJ (x)) �= 0 for all x ∈ U . Consequently, rank(A(x)) ≥ k > a
for all x ∈U and thus U ⊂ S′. As a result, S′ is open and the result follows.

�

Hence, for a sufficiently small perturbation of A, rank(A) either stays the same
or increases. That is, for a sufficiently small neighborhood U of x0, rank(A(x)) ≥
rank(A(x0)) for all x ∈U .

We end this section with a useful property of rank-2 symmetric matrices. Vectors
u and v in R

n are parallel if u = cv for some nonzero scalar c. Thus, u and v are
parallel if u = v = 0.

Proposition 1.2 Let a and b be two nonzero, nonparallel vectors in R
n, n ≥ 2, and

let C = abT +baT . Then C has exactly one positive eigenvalue λ1 and one negative
eigenvalue λn, where

λ1 = aT b+ ||a|| ||b|| and λn = aT b−||a|| ||b||.

Here, ||.|| is the Euclidean norm.

Proof. Assume that n = 2 and let the eigenvectors of C be of the form xa+ yb,
where x and y are scalars. Then C(xa+ yb) = λ (xa+ yb) leads to the following
system of equations: [

aT b ||b||2
||a||2 aT b

][
x
y

]
= λ

[
x
y

]
. (1.8)

Hence, the eigenvalues of C are precisely the eigenvalues of

[
aT b ||b||2
||a||2 aT b

]
, which

are λ1 = aT b+ ||a|| ||b|| and λr = aT b−||a|| ||b||.
Now assume that n ≥ 3 and let u1, . . . ,un−2 be an orthonormal basis of the null

space of

[
aT

bT

]
. Then obviously, u1, . . . ,un−2 are orthonormal eigenvectors of C

corresponding to eigenvalue 0. Thus, we have two remaining eigenvectors of C of
the form xa + yb, where x and y satisfy Eq. (1.8). Therefore, the remaining two
eigenvalues of C are λ1 and λn as given above. The fact that λ1 > 0 and λn < 0 fol-
lows from Cauchy–Schwarz inequality since a and b are nonzero and nonparallel.

�
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1.2.4 Hadamard and Kronecker Products

Let A and B be two m×n matrices. The Hadamard product of A and B, denoted by
A◦B, is the m×n matrix C such that ci j = ai jbi j for all i = 1, . . . ,m and j = 1, . . . ,n.
An n×n symmetric matrix A is said to be positive definite (positive semidefinite) if
and only if all of its eigenvalues are positive (nonnegative). Chapter 2 is devoted to
a detailed study of these matrices.

Theorem 1.13 (Schur Product Theorem) Let A and B be two n × n symmetric
positive semidefinite matrices. Then A◦B is symmetric positive semidefinite.

It should be pointed out that Schur Product Theorem follows from Theorem 1.15
below. Let A and B be two m× n and p× q matrices, respectively. The Kronecker
product of A and B, denoted by A⊗B, is the mp×nq matrix

A⊗B =

⎡

⎢⎢⎢
⎣

a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

⎤

⎥⎥⎥
⎦
.

The following basic lemma follows immediately from the definition.

Lemma 1.3 Let A, B, C, and D be matrices of appropriate sizes. Then

(A⊗B)(C⊗D) = (AC)⊗ (BD).

Let A and B be two n× n and m×m matrices and let (λ ,x) and (μ ,y) be two
eigenpairs of A and B, respectively. Then it immediately follows from Lemma 1.3
that (λ μ ,x⊗ y) is an eigenpair of A⊗B. Moreover, every eigenvalue of A⊗B is
of the form λiμ j where λi and μ j are eigenvalues of A and B. Hence, we have the
following two theorems.

Theorem 1.14 Let A and B be two n×n and m×m matrices. Then

1. det(A⊗B) = (det(A))m (det(B))n,
2. trace(A⊗B) = trace(A) trace(B).

Theorem 1.15 Let A and B be two symmetric positive semidefinite matrices. Then
A⊗B is positive semidefinite.

Schur Product Theorem follows from Theorem 1.15 since A ◦B is a principal
submatrix of A⊗B. See Chap. 2 for more details.

For more details concerning the topics discussed in this section, see, e.g., [112,
113, 41].
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1.3 Graph Theory

In this monograph, we are interested in connected simple (no loops and no multiple
edges) graphs. For a simple graph G= (V,E), we denote by V (G) its node set and by
E(G) its edge set. We assume that V (G) = {1, . . . ,n} and that the number of edges
of G is m. The complement graph of G is Ḡ = (V (G), Ē(Ḡ)), where {i, j} ∈ Ē(Ḡ)
iff i �= j and {i, j} �∈ E(G). The cardinality of Ē(Ḡ) is denoted by m̄ and hence
m̄ = n(n−1)/2−m. The edges of Ḡ are referred to as the missing edges of G.

The adjacency matrix of G is the n×n symmetric (0−1) matrix A = (ai j) such
that ai j = 1 iff {i, j} ∈ E(G). The degree of node i, denoted by deg(i), is the number
of edges incident with i. The vector consisting of all the degrees is denoted by deg.
As a result, deg = Ae, where e is the vector of all 1’s in R

n. Nodes of degree one
are called leaves. It is easy to see that the sum of the degrees in a graph is equal to
twice the number of its edges, i.e., eT deg = 2m.

Let us orient each edge {i, j} arbitrarily as (i, j) and refer to i and j as the tail
and the head of (i, j), respectively. The node-edge incidence matrix of G is the n×m
matrix M = (mi j) such that

mi j =

⎧
⎨

⎩

1 if node i is the tail of edge j,
−1 if node i is the head of edge j,

0 otherwise.

Obviously, MT e = 0. Moreover, it is easy to prove that rank(M) = n−1 if and only
if G is connected. The matrix

L = Diag(deg)−A = Diag(Ae)−A

is called the Laplacian of G. It is a well-known result in algebraic graph theory
[42] that L = MMT . Consequently, Le = 0 and L is positive semidefinite. Moreover,
rank(L) = n−1 iff G is connected.

Graph G is complete if its adjacency matrix is A = E − I, where E is the n× n
matrix of all 1’s and I is the identity matrix of order n. That is, G is complete if every
two of its nodes are adjacent. The complete graph on n nodes is denoted by Kn. A
clique of G is a complete subgraph of G. Graph G is said to be k-vertex connected
if either G = Kk+1, or |V (G)| ≥ k+ 2 and the deletion of any k− 1 nodes leaves G
connected. Connected graphs with no cycles are called trees . It is not hard to see that
if T is a tree on n nodes, then T has n−1 edges. Thus for a tree T , eT deg= 2(n−1).

A graph is said to be series-parallel [47] if it can be obtained from an edge by
a sequence of series and parallel extensions. A series extension is the subdivision
of an edge, while a parallel extension is the addition of a new edge joining two
adjacent nodes.

Graph G is said to be chordal [44, 89] if every cycle of G of length ≥ 4 has a
chord, that is, an edge connecting two nonconsecutive nodes on the cycle. Chordal
graphs are also known as triangulated, monotone transitive, rigid circuit, or perfect
elimination graphs.
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Among the many different characterizations of chordal graphs, the following two
are the most useful for our purposes. An ordering π(1), . . . ,π(n) of the vertices of a
graph G is called a perfect elimination ordering if for each i = 1, . . . ,n− 1, the set
of vertices π( j), j > i that are adjacent to π(i), induce a clique in G.

Theorem 1.16 (Fulkerson and Gross [82]) Graph G is chordal if and only if it has
a perfect elimination ordering.

It should be pointed out that such a perfect elimination ordering can be obtained in
polynomial time [161].

Let G1 and G2 be two graphs and let K1 ⊂V (G1) and K2 ⊂V (G2) be two cliques
of the same cardinality. We say that G is a clique sum of G1 and G2 if it is obtained
from G1 and G2 by identifying K1 and K2, and then deleting duplicate edges in the
clique.

Theorem 1.17 (Dirac [72]) Graph G is a chordal graph if and only if it is a clique
sum of complete graphs.

1

2

3

4

5

6

G G1 G2 G3

Fig. 1.1 The chordal graph of Example 1.1

Example 1.1 Consider the chordal graph G depicted in Fig. 1.1. Clearly, the or-
dering 1,2, . . . ,6 is a perfect elimination ordering of G. Also, it is clear that G is a
clique sum of the three complete graphs G1,G2, and G3.

A graph is planar if it can be drawn in the plane with no two of its edges crossing.
Every planar graph admits a planar drawing in which all edges are straight line
segments (Fáry’s Theorem [78]). A drawing of a connected planar graph divides the
plane into regions or faces. The unbounded face is called the outer face and all other
bounded faces are called inner faces.

1.4 Convexity Theory

Convex sets play a prominent role in this monograph. For excellent references on
the topics discussed in this section, see, e.g., [160, 109, 166]. Let V be a finite-
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dimensional normed real vector space. Our interest here is in the two Euclidean
vector spaces: Rn endowed with the inner product 〈x,y〉 = xT y, and S n endowed
with the trace inner product 〈A,B〉= trace(AB). When the origin 0 is of no interest
to us, we refer to the elements of V as points. On the other hand, given a point
configuration, we can always impose a vector space structure by fixing an origin.

Set S ⊂V is said to be convex if the closed line segment joining any two points of
S lies entirely in S, i.e., for any two points x1 and x2 in S, the point λx1 +(1−λ )x2

lies in S for all λ : 0 ≤ λ ≤ 1. The convex hull of S, denoted by conv(S), is the
smallest convex set containing S. Set S is said to be affine if the line passing through
any two points of S lies entirely in S, i.e., for any two points x1 and x2 in S, the point
λx1+(1−λ )x2 lies in S for all λ . Every affine set in V is parallel to a unique vector
subspace in V . The dimension of an affine set is equal to the dimension of the vector
subspace parallel to it. The affine hull of S, denoted by aff(S), is the smallest affine
set containing S. The dimension of S is equal to the dimension of aff(S). Finally,
set K in V is said to be a cone if for every x in K and for every scalar α ≥ 0, it
follows that αx lies in K. Cone K is pointed if K ∩ (−K) = {0}. The conic hull of
set S is the set of all conic combinations (i.e., linear combinations with nonnegative
coefficients) of vectors in S.

Let S be a convex set and let x ∈ S. We say that x is an interior point of S if there
exists r > 0 such that the set {y ∈ V : ||y−x|| ≤ r} ⊆ S. That is, x is an interior point
of S if and only if, for every d ∈ V , there exists ε > 0 such that x+ εd lies in S.
The interior of S, denoted by int(S), is the set of all interior points of S. Set S is said
to be open if S = int(S). On the other hand, S is said to closed if its complement is
open, i.e., if the set {x ∈ V : x �∈ S} is open. The closure of S, denoted by cl(S), is
the smallest closed set containing S.

Theorem 1.18 Let S⊂V . Then S is closed if and only if for every sequence {xk}k∈N
in S that converges to x ∈ V , it follows that x ∈ S.

Let S1 and S2 be two sets in V . Then S = S1 + S2 is the set defined as S = {x :
x = x1+x2, where x1 ∈ S1 and x2 ∈ S2}. S is called the Minkowski sum of S1 and S2.
Set S is said to bounded if for all x ∈ S, ||x|| ≤ M for some finite scalar M. Set S is
said to be compact if it is both closed and bounded. As an immediate consequence
of the definition of convex sets, we have that the intersection of two convex sets is
convex, and the Minkowski sum of two convex sets is convex.

Lemma 1.4 Let S1 and S2 be two closed sets in V and assume that S2 is bounded.
Let S = S1 +S2. Then S is closed.

Proof. Let x ∈ cl(S) and let the sequence {xk} in S converge to x. Thus it suffices
to show that x ∈ S. To this end, there exist sequences yk in S1 and zk in S2 such that
{yk + zk} converges to x. Since S2 is compact, there exists a subsequence {zki} that
converges to z ∈ S2. But since every convergent subsequence converges to the same
limit of the sequence, it follows that the subsequence {yki + zki} converges to x and
hence {yki} converges to x− z. But since S1 is closed, it follows that x− z lies in S1.
Therefore, x = (x− z)+ z lies in S.

�
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Theorem 1.19 Let S be a compact set in V . Then the convex hull of S is compact.

x1

x2

Fig. 1.2 An example of a closed set whose convex hull is not closed

We remark here that the proof of Theorem 1.19 uses Carathéodory’s Theorem.
Also, note that the condition that S is bounded cannot be dropped. Let S = {x ∈R

2 :
x1 ≥ 0,x2 = 0}∪{(0,1)} (see Fig. 1.2 ). Then S is closed while the convex hull of S
is not closed.

The boundary of set S, denoted by ∂S, is defined as ∂S = cl(S)\ int(S). Note
that ∂S is closed since it is the intersection of two closed sets, namely cl(S) and the
complement of int(S).

The notion of relative interior of S is of special interest to us since most of the
sets we deal with in this monograph have empty interior. A point x̂ ∈ S is a relative
interior point of S if there exists r > 0 such that {x ∈ aff(S) : ||x− x̂|| ≤ r} ⊆ S. The
relative interior of S, denoted by relint(S), is the set of all relative interior points of
S. Observe that if aff(S) = V , then relint(S) = int(S). Consequently, either int(S) is
empty or int(S) = relint(S). Evidently,

relint(S)⊆ S ⊆ cl(S). (1.9)

It is a well-known fact that every nonempty convex set has a nonempty relative
interior. The relative interior of convex sets can be easily characterized.

Theorem 1.20 Let S be a convex set in V . Then

relint(S) = {x ∈ S : ∀ y ∈ S,∃ μ > 1 such that μx+(1−μ)y ∈ S}. (1.10)

Proof. Let x ∈ S. Then x ∈ relint (S) if and only if for every y ∈ S, there exists
y′ ∈ S such that x = λy′ +(1− λ )y for some λ : 0 < λ < 1; i.e., for every y ∈ S,
there exists λ : 0 < λ < 1 such that y′ = (x/λ +(1−1/λ )y) ∈ S. The result follows
by setting μ = 1/λ .

�

Therefore, x is a relative interior point of S if and only if for each y in S, the
line segment [y,x] can be extended slightly beyond x without leaving S. That is, by
setting μ = 1+ γ , we have that x ∈ relint(S) iff for every y in S, there exists γ > 0
such that x+ γ(x− y) lies in S.
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Lemma 1.5 Let S1 and S2 be two nonempty convex sets in V and let S = S1 + S2.
Then relint(S) = relint(S1) + relint(S2).

Note that the above lemma is false if the relative interior is replaced by the inte-
rior. For example, let S1 = {x ∈ R

2 : 0 ≤ x1 ≤ 1,x2 = 0} and S2 = {x ∈ R
2 : x1 =

0,0 ≤ x2 ≤ 1}. Then int(S1) = int(S2) = /0, while int(S1 + S2) = {x ∈ R
2 : 0 < x1 <

1,0 < x2 < 1}.
Set S is said to be relatively open if relint(S) = S. Moreover, the relative boundary

of S, denoted by rbd(S), is defined as rbd(S) = cl(S)\ relint(S).
Affine sets are closed. Also, the relative interior of an affine set is the set itself.

Hence, affine sets are also relatively open. In particular, a singleton set {x̂} is affine
and thus is relatively open. In other words, aff({x̂}) = {x̂} = relint({x̂}).
Theorem 1.21 Let S be a convex set in V1 and let T : V1 → V2 be a linear transfor-
mation. Then T (S) is a convex set in V2. Moreover, T(relint(S)) = relint(T (S)).

In other words, if x lies in relint(S), then T (x) lies in relint(T (S)). On the other
hand, let x′ be in relint(T (S)) and let T−1(x′) = {x∈V1 : T (x) = x′}. Then T−1(x′)∩
relint(S) �= /0; i.e., there exists x in relint(S) such that x′ = T (x).

Theorem 1.22 Let S be a closed convex set in V1 and let T : V1 → V2 be a linear
transformation. If T has a trivial kernel, then T (S) is a closed convex set.

Theorem 1.23 Let S be a nonempty convex set in V . Then relint(S) and cl(S) are
convex. Furthermore, the three sets S, relint(S), and cl(S) have the same affine hull.

Theorem 1.24 Let S be a nonempty convex set in V . Then cl(relint(S)) = cl(S) and
relint(cl(S)) = relint(S).

As a result, the three convex sets S, relint(S), and cl(S) have the same relative
interior and the same closure. Note that for any set S, whether convex or not,
relint(relint(S)) = relint(S) and cl(cl(S)) = cl(S). Finally, it should be pointed out
that the convexity assumption in Theorem 1.24 cannot be dropped. For example,
let V = R and let S be the set of rational numbers in [0,1]. Then aff(S) = R and
relint(S) = int(S) = /0 since every neighborhood of a rational number must contain
irrational numbers. Hence, cl(relint(S)) = /0. On the other hand, cl(S) = [0,1] and thus
relint(cl(S)) = (0,1).

1.4.1 Faces of a Convex Set

Definition 1.1 Let S be a convex set in V and let F be a convex subset of S. Then
F is said to be a face of S if for every x in F such that x = λy+(1−λ )z for some y
and z in S and 0 < λ < 1, it follows that y and z are both in F.

In other words, a convex subset F is a face of convex set S if every line segment
in S with a relative interior point in F must have both endpoints in F . Evidently, /0
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and S are faces of S. These two faces are called improper faces of S, while all other
faces of S are called proper. The dimension of a face is the dimension of its affine
hull. Faces of S of dimensions 0, 1, and dim(S)−1 are called, respectively, extreme
points, edges, and facets.

The following theorems are easy consequences of the definition of a face.

Theorem 1.25 Let F1 and F2 be two faces of a convex set S. Then F1 ∩F2 is a face
of S.

Theorem 1.26 Let S be a convex set and let F2 be a face of S. Let F1 be a face of
F2. Then F1 is a face of S.

As will be shown next, faces of S are characterized by their relative interiors.
More precisely, every point x in S belongs to a unique face of S containing x in its
relative interior. This unique face is called the minimal face of S containing x, which
we denote by face(x,S).

Theorem 1.27 Let S be a convex set in V and let K be a subset of S. Then there is
a minimal face of S containing K which we denote by face(K,S).

Proof. Let F be the family of all faces of S containing K. F �= /0 since S is in
F . Let F be the intersection of all faces in F . Thus face(K,S) = F .

�

As a result, face(K,S) is a subset of every face of S that contains K. In partic-
ular, if K1 ⊂ K2 ⊂ S, then face(K1,S) ⊂ face(K2,S) since face(K2,S) is a face of S
containing K1.

Theorem 1.28 Let S be a convex set in V and let F be a face of S. Let K be a convex
subset of S such that relint(K)∩F �= /0. Then K ⊆ F.

Proof. Let x ∈ K and let y ∈ relint(K)∩ F . Then there exists z ∈ K such that
y = λx+(1−λ )z for some λ : 0 < λ < 1. Since F is a face of S and since y ∈ F , it
follows that x,z are in F . Therefore, K ⊆ F .

�

This theorem has three immediate consequences. First, let x ∈ S and let K and F
be two faces of S containing x. Assume that x ∈ relint(K). Then relint(K)∩F �= /0,
and hence, K ⊆ F . Consequently, K is the minimal face of S containing x; i.e.,
face(x,S) is the face of S containing x in its relative interior. As a result, the faces
of S are uniquely determined by their relative interiors. The other two consequences
are the following two corollaries.

Corollary 1.2 Let S be a closed convex set in V and let K ⊂ S. Let F be a face of S
containing K. If K∩ relint(F) �= /0, then F = face(K,S).

Proof. Let x ∈ K∩ relint(F). Then F = face(x,S). Now clearly face(K,S) ⊆ F
and face(x,S) ⊆ face(K,S). Therefore, F = face(K,S).

�
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Corollary 1.3 Let F1 and F2 be two faces of a convex set S such that relint(F1) ∩
relint(F2) �= /0. Then F1 = F2.

Proof. This follows from the previous theorem since relint(F1) ∩ F2 �= /0 and
relint(F2)∩F1 �= /0.

�

Theorem 1.29 Let S be a closed convex set in V1 and let T : V1 → V2 be a linear
transformation. Let F ′ be a face of S′ = T (S). Then F = T−1(F ′)|S, the preimage
of F ′ restricted to S, is a face of S. In particular, if x̄′ is an extreme point of S′, then
T−1(x̄′)|S is a face of S.

Proof. Let x and y be in S such that x/2+y/2 lies in F = T−1(F ′)|S. Let x′ = T (x)
and y′ = T (y). Thus, x′ and y′ are in S′ and x′/2+ y′/2 lies in F ′. But F ′ is a face of
S′. Therefore, x′ and y′ are in F ′. Hence, x and y are in F and thus F is a face of S.
The second result follows since F ′ = {x̄′} is a face of S′.

�

Let V1 = V2 = R
n and let T (x) = Ax. Then it is easy to see that the preimage of

x̄′ is an affine set since T−1(x̄′) = {x ∈ R
n : Ax = x̄′}.

Example 1.2 Let S and S′ = T (S) be the sets depicted in Fig. 1.3, where T is the
projection on the x1-axis. Then T−1(x̄′) is the affine hull of u and v, while T−1(x̄′)|S
is the line segment [u,v]. Notice that x̄′ is a face of S′ and T−1(x̄′)|S is a face of S.
Also, notice that T (relint(S)) = relint(T (S)).

x1

x2

S

S′

u

v

x̄′

Fig. 1.3 The sets S and S′ of Example 1.2

The following theorem is useful in the study of the geometry of Euclidean dis-
tance matrices.

Theorem 1.30 Let S be a closed convex set in V1 and let T : V1 → V2 be a linear
transformation. Let x ∈ S and let S′ = T (S) be closed. If y ∈ face(x,S), then T (y) ∈
face(T (x),S′).

Proof. If face(x,S) = {x}, then the result follows trivially. Therefore, assume that
y ∈ face(x,S) and y �= x. Since x ∈ relint(face(x,S)), there exist λ : 0 < λ < 1 and
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z ∈ face(x,S) such that x = λy+(1−λ )z. Hence, T (x) = λT (y)+(1−λ )T (z) and
consequently, T (y) ∈ face(T (x),S′).

�

Let p ∈ V , p �= 0, the hyperplane H = {x ∈ V : 〈p,x〉 = p0} is said to be a
supporting hyperplane of a convex set S if S �⊂ H, H ∩S �= /0 and 〈p,x〉 ≥ p0 for all
x ∈ S. The set H+ = {x ∈ V : 〈p,x〉 ≥ p0} is called a closed half space.

Theorem 1.31 Let S be a convex set in V and let H = {x ∈ V : 〈p,x〉 = p0} be a
supporting hyperplane of S. Further, let F = H ∩S. Then F is a face of S.

Proof. The convexity of F is obvious. Now let x ∈ F and let y and z be in S such
that x = λy+(1−λ )z for some λ : 0 < λ < 1. Thus, 〈p,y〉 ≥ p0 and 〈p,z〉 ≥ p0

since H is a supporting hyperplane. Moreover, 〈p,x〉 = λ 〈p,y〉+(1−λ )〈p,z〉= p0

or λ (〈p,y〉 − p0) + (1 − λ )(〈p,z〉 − p0) = 0. Thus, λ (〈p,y〉 − p0) = 0 and
(1 − λ )(〈p,z〉 − p0) = 0. Hence, 〈p,y〉 = p0 and 〈p,z〉 = p0, and thus y and z
are in F . Therefore, F is a face of S.

�

Definition 1.2 Let S be a convex set in V and let F be a proper face of S. Then F
is said to be an exposed face if F = S∩H for some supporting hyperplane H of S,
in which case, if H = {x ∈ V : 〈p,x〉 = p0}, then we say that p exposes F or F is
exposed by p.

It should be pointed out that not all faces of a convex set are exposed faces.
For example, consider the convex set S depicted in Fig. 1.4, where S = {x ∈ R

2 :
(x1−1)2+x2

2 ≤ 1} ∪{x∈R
2 :−1≤ x1 ≤ 1,−1≤ x2 ≤ 1}. Then the points x=(1,1)

and y = (1,−1) are nonexposed faces of S.

x

y

z

u v

Fig. 1.4 A convex set with two nonexposed faces, namely {x} and {y}

1.4.2 Separation Theorems

The notion of separation is crucial and very useful in convexity theory. A hyperplane
H = {x ∈ V : 〈p,x〉= p0} is said to properly separate convex sets S1 and S2 if

〈p,x〉 ≥ p0 ≥ 〈p,y〉 for all x ∈ S1 and y ∈ S2,
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and S1 ∪ S2 �⊆ H. On the other hand, H is said to strongly separate convex sets S1

and S2 if
〈p,x〉> p0 > 〈p,y〉 for all x ∈ S1 and y ∈ S2.

The following two standard results are needed in the proofs of the separation
theorems below.

Theorem 1.32 (Weierstrass) Let S be a nonempty compact set in V and let f be
a continuous real-valued function on S. Then f attains a maximum and a minimum
on S.

Theorem 1.33 (The Projection Theorem) Let S be a nonempty closed convex set
in V and let x̂ �∈ S. Further, let ||x|| = 〈x,x〉1/2. Then there exists a unique x∗ in S
such that

x∗ = arg minx∈S||x̂− x||.
x∗ is said to be the projection of x̂ on S. Moreover, x∗ is the projection of x̂ on S if
and only if 〈x̂− x∗,x− x∗〉 ≤ 0 for all x ∈ S.

Note that the existence of x∗ follows from Weierstrass Theorem and its unique-
ness follows from the convexity of S. Moreover, if S is an affine set, then x∗ is the
projection of x̂ on S if and only if 〈x̂− x∗,x− x∗〉= 0 for all x ∈ S.

The first separation theorem establishes the existence of a hyperplane strongly
separating a point and a closed convex set.

Theorem 1.34 (The Strong Separation Theorem) Let S be a nonempty closed
convex set in V and let x̂ �∈ S. Then there exists a hyperplane H = {x ∈ V : 〈p,x〉=
p0} such that

〈p, x̂〉> p0 and 〈p,x〉 ≤ p0 for all x ∈ S.

x̂

x∗
H

S

Proof. By the projection theorem, there exists x∗ in S such that 〈x̂−x∗,x−x∗〉 ≤ 0
for all x ∈ S. Let p = x̂− x∗. Then p �= 0 and thus ||p||2 = 〈p, x̂− x∗〉 > 0. Let
p0 = 〈p,x∗〉. Hence, 〈p, x̂〉 > p0 and 〈p,x〉 ≤ p0 for all x ∈ S.

�

A remark is in order here. Since 〈p, x̂− x∗〉 = ||p||2, i.e., 〈p, x̂〉 = p0 + ||p||2, it
follows that 〈p, x̂〉 > p0 + ||p||2/2. Let p′0 = p0 + ||p||2/2 =〈p,x∗+ p/2〉. Then by
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choosing the hyperplane H = {x : 〈p,x〉= p′0}, i.e., by choosing H to pass through
the point x∗+ p/2 instead of x∗, we have 〈p, x̂〉> p′0 and 〈p,x〉< p′0 for all x ∈ S.

A second version of the strong separation theorem is given next. It shows that
two disjoint closed convex sets can be strongly separated provided that one of them
is bounded.

Theorem 1.35 (The Strong Separation Theorem) Let S1 and S2 be two nonempty
disjoint closed convex set in V and assume that S2 is bounded. Then there exists a
hyperplane H = {x ∈ V : 〈p,x〉= p0} such that

〈p,x〉< p0 for all x ∈ S1, and 〈p,y〉 ≥ p0 for all y ∈ S2.

Proof. Let S = S1 − S2. Then S is a closed convex set and 0 �∈ S since S1 and S2

are disjoint. Thus, there exist p �= 0 and p′0 such that 〈p,0〉> p′0 and 〈p,x−y〉 ≤ p′0
for all x ∈ S1 and y ∈ S2. Thus, p′0 < 0 and hence 〈p,x〉 < 〈p,y〉 for all x ∈ S1 and
y ∈ S2. The result follows by setting p0 = min y∈S2〈p,y〉.

�

It is worthy of note that the condition S2 is bounded cannot be dropped. For
example, the two sets S1 = {x ∈ R

2 : x2 ≥ 1/x1,x1 > 0} and S2 = {x ∈ R
2 : x2 =

0,x1 > 0} cannot be strongly separated.
The following theorem shows that for any convex set S, there exists a supporting

hyperplane to S at a boundary point.

Theorem 1.36 (The Supporting Hyperplane Theorem) Let S be a convex set
with a nonempty interior and let y ∈ ∂S. Then there exists a supporting hyper-
plane at y to S. That is, there exists H = {x ∈ V : 〈p,x〉 = p0 = 〈p,y〉} such that
〈p,x〉 ≤ p0} for all x ∈ S and S �⊂ H.

Proof. Let {yk} be a sequence in V \ cl(S) that converges to y. Thus, for each
k, there exists a unit pk such that 〈pk,yk〉 > 〈pk,x〉 for all x ∈ cl(S). Since pk is
in the compact set {x ∈ V : ||x|| = 1}, it follows that there exists a subsequence
{pki} that converges to a unit vector p. By taking the limit as k → ∞ and since the
inner product is a continuous function, we have p0 = 〈p,y〉 ≥ 〈p,x〉 for all x ∈ S. To
complete the proof, observe that S �⊂ H since otherwise, int(S) = /0, a contradiction.

�

This result can be extended to the case where int(S) = /0 and y∈ rbd (S). Let V ′ be
the subspace parallel to aff(S) and translate set S such that y = 0. Take the sequence
{yk} to be in V ′\ cl(S). Then H = {x ∈ V ′ : 〈p,x〉 = p0}+V ′⊥ is a supporting
hyperplane in V . Note that in this case, S �= {y} since otherwise y ∈ relint(S = {y}).
Consequently, S �⊂ H.

Theorem 1.37 (The Separation Theorem) Let S1 and S2 be two nonempty convex
sets in V such that relint(S1) ∩ relint(S2) = /0. Then there exists a hyperplane H =
{x ∈ V : 〈p,x〉= p0} such that

〈p,x〉 ≤ p0 for all x ∈ S1, and 〈p,y〉 ≥ p0 for all y ∈ S2.

Moreover, (S1 ∪S2) �⊂ H.
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Proof. Let S = S1 − S2. Then S is a convex set and 0 �∈ relint(S) since relint(S1)
and relint(S2) are disjoint. Thus, there exists a hyperplane H = {z : 〈p,z〉 = 0}
such that 〈p,z〉 ≤ 0 for all z ∈ S and 〈p, ẑ〉 < 0 for some ẑ in S. Consequently,
〈p,x〉 ≤ 〈p,y〉 for all x ∈ S1 and y ∈ S2; and 〈p, x̂〉 < 〈p, ŷ〉 for some x̂ in S1 and
ŷ ∈ S2. The result follows by setting p0 = inf y∈S2〈p,y〉.

�

The reverse of Theorem 1.37 is also true. Suppose that H properly separates S1

and S2 and assume to the contrary that x ∈ (relint(S1) ∩ relint(S2)). Thus x must be
in H. Let y be any point in S2, y �= x. Then there exists z in S2 and 0 < λ < 1 such
that x = λy+(1−λ )z. Thus, both y and z are in H and hence S2 ⊆ H. By a similar
argument, S1 ⊆ H. Thus, we have a contradiction since (S1 ∪S2) �⊆ H.

The sets S1 and S2 of Theorem 1.37 that are most relevant for our purposes are
cones, linear subspaces, and affine sets. As a result, we have the following corollary
of Theorem 1.37, which will be used in the proofs of the theorems of the alternative.

Corollary 1.4 The assertion in Theorem 1.37 that 〈p,x〉 ≤ p0 for all x ∈ S1 reduces
to

1. 〈p,x〉 ≤ 0 for all x ∈ S1 if S1 is a cone.
2. 〈p,x〉= 0 for all x ∈ S1 if S1 is a linear subspace.
3. 〈p, x̂〉 ≤ p0 and 〈p,x〉= 0 for all x ∈L if S1 is the affine set x̂+L , where x̂ is

a point and L is a subspace.

Proof. We prove Statement 3, the proofs of the other two statements are similar.
Assume that S1 = x̂+L . Then 〈p, x̂〉 ≤ p0 since 0 ∈L . Now, by way of contradic-
tion, assume that 〈p, x̄〉 �= 0 for some x̄ ∈L . Let α be a scalar. Then α〈p, x̄〉 can be
made large enough so that 〈p, x̂+α x̄〉 = 〈p, x̂〉+α〈p, x̄〉> p0, a contradiction.

�

1.4.3 Polar Cones

Let K be a cone, then the set

K◦ = {y ∈ V : 〈y,x〉 ≤ 0 for all x ∈ K}. (1.11)

is called the polar of K. As immediate consequences of this definition, we have that
K◦ is a closed convex cone and K ⊆ (K◦)◦. Moreover, if K1 ⊆ K2, then, evidently,
K◦

2 ⊆ (K1)
◦. It is worth pointing out that if K is a subspace of V , then K◦ is the

orthogonal complement of K. The cone (−K◦) is called the dual of K. Consequently,
cone K is self-dual if K◦ = −K. Next, we prove a few important properties of the
polar cone.

Lemma 1.6 Let K be a nonempty cone in V . Then

K◦ = (cl(K))◦.
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Proof. (cl(K))◦ ⊆ K◦ since K ⊆ cl(K). Now let y ∈ K◦ and let x̄ ∈ cl(K). Then
there exists a sequence {xk} in K that converges to x̄. Thus, 〈y,xk〉 ≤ 0 for all k and
hence, 〈y, x̄〉 ≤ 0. Therefore, y ∈ (cl(K))◦ since x̄ was arbitrary. Consequently, K◦ ⊆
( cl(K))◦ and the result follows.

�

Theorem 1.38 Let K be a nonempty convex cone in V . Then

(K◦)◦ = cl(K).

Proof. As noted earlier, K ⊆ (K◦)◦. Now since (K◦)◦ is closed and since cl(K)
is the smallest closed set containing K, it follows that cl(K) ⊆ (K◦)◦. Therefore, it
suffices to show that cl(K) ⊇ (K◦)◦. To this end, suppose to the contrary that there
exists x ∈ (K◦)◦ and x �∈ cl(K). Thus, by the Strong Separation Theorem, there exist
p �= 0 and p0 such that

〈p,x〉> p0 ≥ 〈p,y〉 for all y ∈ cl(K).

But since 0 ∈ K, it follows that p0 ≥ 0. Furthermore, by Corollary 1.4, we have

〈p,x〉> 0 and 0 ≥ 〈p,y〉 for all y ∈ cl(K).

Hence, p ∈ (cl(K))◦ = K◦. But x ∈ (K◦)◦. Therefore, 〈p,x〉 ≤ 0, a contradiction.
�

Theorem 1.39 Let K1 and K2 be two nonempty cones in V . Then

(K1 +K2)
◦ = K◦

1 ∩K◦
2 .

Proof. Let y∈ (K◦
1 ∩K◦

2 ). Then 〈y,x〉 ≤ 0 for all x∈K1 and 〈y,z〉 ≤ 0 for all z∈K2.
Hence, 〈y,x+ z〉 ≤ 0 for all x ∈ K1 and z ∈ K2. Therefore, y ∈ (K1 +K2)

◦ and thus
K◦

1 ∩K◦
2 ⊆ (K1 +K2)

◦.
On the other hand, let y ∈ (K1 +K2)

◦. Then 〈y,x + z〉 ≤ 0 for all x ∈ K1 and
z ∈ K2. But 0 ∈ K2. Thus 〈y,x〉 ≤ 0 for all x ∈ K1. Similarly, 〈y,z〉 ≤ 0 for all z ∈ K2.
Hence, (K1 +K2)

◦ ⊆ K◦
1 ∩K◦

2 and the result follows.
�

Corollary 1.5 Let K1 and K2 be two nonempty closed convex cones in V . Then

(K1 ∩K2)
◦ = cl(K◦

1 +K◦
2 ).

Proof. Since K1 and K2 are closed and convex, we have (K◦
1 )

◦ = K1 and
(K◦

2 )
◦ = K2. Thus K1 ∩K2 = (K◦

1 )
◦ ∩ (K◦

2 )
◦ = (K◦

1 +K◦
2 )

◦. Therefore, (K1 ∩K2)
◦ =

((K◦
1 +K◦

2 )
◦)◦ = cl(K◦

1 +K◦
2 ), where the last equality follows from Theorem 1.38.

�

The need for the closure in the above corollary can be understood in light of the
fact that K◦

1 +K◦
2 need not be closed, while (K1 ∩K2)

◦ is always closed.
For closed convex cones, the Projection Theorem specializes to the following:
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Theorem 1.40 Let K be a nonempty closed convex cone in V and let x̂ �∈ K. Then
x∗ is the closest point in K to x̂ if and only if (x̂− x∗) ∈ K◦ and 〈x̂− x∗,x∗〉= 0.

Proof. Assume that x∗ is the closest point in K to x̂. Then 〈x̂− x∗,x− x∗〉 ≤ 0 for
all x ∈ K. This implies that 〈x̂−x∗,x∗〉= 0. To see this, observe that this implication
trivially follows if x∗ = 0. On the other hand, if x∗ �= 0, then 0 and 2x∗ are in K
since K is a cone. Consequently, 〈x̂− x∗,x∗〉 ≥ 0 and 〈x̂− x∗,x∗〉 ≤ 0, and hence
〈x̂−x∗,x∗〉= 0. As a result, we have that 〈x̂−x∗,x〉 ≤ 0 for all x ∈ K; i.e., (x̂−x∗) ∈
K◦.

To prove the other direction, note that if 〈x̂−x∗,x∗〉= 0 and if 〈x̂−x∗,x〉 ≤ 0 for
all x ∈ K. Then it follows, trivially, that 〈x̂− x∗,x− x∗〉 ≤ 0 for all x ∈ K.

�

We conclude this subsection with the following well-known important decompo-
sition result.

Theorem 1.41 (Moreau [149]) Let K be a nonempty closed convex cone in V .
Then the following two statements are equivalent:

(i) For every x̂ ∈ V , there exist a unique x∗ ∈ K and a unique y∗ ∈ K◦ such that:

x̂ = x∗+ y∗ and 〈x∗,y∗〉= 0,

(ii) x∗ and y∗ are, respectively, the closest points in K and K◦ to x̂.

Proof. Assume that Statement (ii) holds. If x̂ lies in K or K◦, then Statement (i)
trivially holds. Thus, assume that x̂ �∈ (K∪K◦) and let ȳ= x̂−x∗. Then Theorem 1.40
implies that ȳ ∈ K◦ and 〈x̂− ȳ, ȳ〉 = 〈x∗, ȳ〉 = 〈x∗, x̂− x∗〉 = 0. Moreover, (x̂− ȳ) ∈
(K◦)◦ since x∗ ∈ K = (K◦)◦. Consequently, it follows from Theorem 1.40 that ȳ is
the closest point in K◦ to x̂. Hence, ȳ = y∗ and 〈x∗,y∗〉= 0.

To prove the other direction, assume that Statement (i) holds. Then (x̂−x∗) = y∗
lies in K◦ and 〈x̂− x∗,x∗〉 = 〈y∗,x∗〉 = 0. Thus, it follows from Theorem 1.40 that
x∗ is the closest point in K to x̂. By a similar argument, we have that y∗ is the closest
point in K◦ to x̂.

�

1.4.4 The Boundary of Convex Sets

The boundary is of special interest in the study of convex sets. Let S be a nonempty
closed convex set in V and let x̂ ∈ S. The normal cone of S at x̂ is

NS(x̂) = {c ∈ V : 〈c, x̂〉 ≥ 〈c,x〉 for all x ∈ S}.

Three facts follow immediately from this definition. First, normal cones are closed
and convex. Second, NS(x̂) = {0} if and only if x̂ is an interior point of S. Third, the
set x̂+NS(x̂) is precisely the set of all points in V whose projection on S is x̂.
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Let d be a nonzero vector in V , d is said to be a feasible direction of S at x̂ if

∃ δ > 0 : x̂+δd lies in S.

Let FS(x̂) be the set of all feasible directions of S at x̂, and the origin 0. FS(x̂) is
called the cone of feasible directions of S at x̂. Let d1 and d2 be in FS(x̂) and let
λ : 0 ≤ λ ≤ 1. Then x̂ + δ1d1 and x̂ + δ2d2 are in S for some δ1 > 0 and some
δ2 > 0. Assume that δ1 ≤ δ2. Since S is convex, it follows that x̂+ δ1d2 is also in
S. Therefore, λ (x̂+δ1d1)+(1−λ )(x̂+δ1d2) = x̂+δ1(λd1 +(1−λ )d2) lies in S.
Hence, λd1 +(1−λ )d2 ∈ FS(x̂) and thus FS(x̂) is convex. However, FS(x̂) need not
be closed. For example, consider the unit disk in the plane S = {x ∈ R

2 : ||x|| ≤ 1}
and let x̂ = (0,1) (see Fig. 1.5). Then NS(x̂) = {α

[
0
1

]
where α ≥ 0} and FS(x̂) =

{d =

[
d1

d2

]
: d2 < 0}. Thus FS(x̂) is not closed.

x̂

NS(x̂)

S

Fig. 1.5 A nonclosed cone of feasible directions FS(x̂)

It is worth noting that FS(x̂) = conic hull of (S−{x̂}) = {α(x− x̂) : α ≥ 0,x ∈ S}
since S is convex. The tangent cone of S at x̂, denoted by TS(x̂), is the closure of
FS(x̂).

Theorem 1.42 Let S be a nonempty closed convex set in V and let x̂ ∈ S. Then

TS(x̂) = (NS(x̂))
◦.

Proof. Let d ∈ FS(x̂). Then x̂+δd lies in S for some δ > 0. Let c ∈ NS(x̂). Then
〈c, x̂〉 ≥ 〈c, x̂+δd〉. Thus 〈c,d〉 ≤ 0. Hence, d ∈ (NS(x̂))◦ and thus FS(x̂)⊆ (NS(x̂))◦.
Therefore, cl(FS(x̂)) = TS(x̂)⊆ (NS(x̂))◦ or NS(x̂)⊆ (TS(x̂))◦.

To prove the other direction, let c ∈ (TS(x̂))◦. Then 〈c,d〉 ≤ 0 for all d ∈ TS(x̂).
Let x �= x̂ be any point in S. Since S is convex, x̂+(x− x̂)/2 lies in S. Thus, x− x̂
lies in TS(x̂). Therefore, 〈c,x− x̂〉 ≤ 0. Hence, c ∈ NS(x̂).

�

Recall that an extreme point x∗∗ of S is exposed if there exists a hyperplane H
such that {x∗∗}= H ∩S; i.e., if there exists p ∈ V , p �= 0 such that 〈p,x∗∗〉< 〈p,x〉
for all x ∈ S\{x∗∗}.
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Lemma 1.7 Let S be a nonempty convex compact set in V and let x̂ ∈ V . Let x∗∗
be a farthest point in S to x̂; i.e., x∗∗ = arg maxx∈S||x̂− x||. Then x∗∗ is exposed.

Proof. Let x ∈ S. Then ||x̂− x||2 = ||x̂− x∗∗ + x∗∗ − x||2 = ||x̂− x∗∗||2 + ||x∗∗ −
x||2 +2〈x̂− x∗∗,x∗∗ − x〉. Hence, for any point x ∈ S, we have

||x̂− x||2 −||x̂− x∗∗||2 = ||x∗∗ − x||2 +2〈x̂− x∗∗,x∗∗ − x〉 ≤ 0.

Let p = x̂− x∗∗. Then

2〈p,x∗∗ − x〉 ≤ −||x∗∗ − x||2 ≤ 0.

Therefore, 〈p,x∗∗〉 ≤ 〈p,x〉 for all x ∈ S. Moreover, 〈p,x∗∗〉 = 〈p,x〉 if and
only if x = x∗∗. To see this, note that if x = x∗∗, then it trivially follows that
〈p,x∗∗〉 = 〈p,x〉. On the other hand, if 〈p,x∗∗〉 = 〈p,x〉, then ||x∗∗ − x||2 = 0. Let
H = {x : 〈p,x〉 = 〈p,x∗∗〉}. Then H is a supporting hyperplane to S at x∗∗ and
H ∩S = {x∗∗}. As a result, x∗∗ is exposed.

�

We should point out that while the closest point of a convex compact set S to x̂ is
unique, the farthest point of S to x̂ need not be so.

Lemma 1.8 ( [189]) Let S be a nonempty convex compact set in V . If there exists a
hyperplane H = {x : 〈p,x〉= p0〉} such that 〈p, x̂〉> p0 for some x̂ ∈ S. Then there
exists an exposed point x∗∗ in S such that 〈p,x∗∗〉> p0.

ŷ

x∗∗
x̂

y

H

Fig. 1.6 Illustration of the proof of Lemma 1.8

Proof. Let y be the closest point in H to x̂ and wlog assume that p = x̂− y. Let
ŷ = x̂−α p for some large scalar α > 0 and let x∗∗ be a farthest point in S to ŷ.
Hence, ||ŷ− x∗∗||2 ≥ ||ŷ− x̂||2; i.e.,

||x̂−α p− x∗∗||2 = ||x̂− x∗∗||2 +α2||p||2 −2α〈p, x̂− x∗∗〉 ≥ α2||p||2.
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Therefore,
2α〈p, x̂− x∗∗〉 ≤ ||x̂− x∗∗||2. (1.12)

Now if 〈p, x̂− x∗∗〉 > 0, then by taking α large enough, we get that 2α〈p, x̂−
x∗∗〉 > ||x̂ − x∗∗||2, a contradiction to Eq. (1.12). Therefore, 〈p, x̂ − x∗∗〉 ≤ 0 and
hence 〈p,x∗∗〉 ≥ 〈p, x̂〉 > p0. Furthermore, by Lemma 1.7, x∗∗ is exposed and the
result follows.

�

Lemma 1.9 Let S be a nonempty convex compact set in V and let x̂ be an extreme
point of S. Then for each r > 0, there exists a hyperplane H = {x : 〈p,x〉= p0} such
that 〈p, x̂〉> p0 and 〈p,x〉 ≤ p0 for all x ∈ S such that ||x− x̂|| ≥ r.

Proof. Let S′ = conv({x ∈ S : ||x− x̂|| ≥ r}). Therefore, by Theorem 1.19, S′ is
compact. Thus, obviously, x̂ �∈ {x ∈ S : ||x− x̂|| ≥ r}). Now assume that x̂ ∈ S′. Then
x̂ is a proper convex combination of points in {x ∈ S : ||x− x̂|| ≥ r}), a contradiction
since x̂ is an extreme point of S. Therefore, x̂ �∈ S′ and the result follows from the
Strong Separation Theorem.

�

x̂

H

S′

Fig. 1.7 Illustration of the proof of Lemma 1.9

Theorem 1.43 (Straszewicz [180]) Let S be a nonempty convex compact set in V
and let x̂ be an extreme point of S. Then for each r > 0, there exists an exposed
point x∗∗ of S such that ||x∗∗ − x̂|| ≤ r; i.e., every extreme point of S is the limit of a
sequence of exposed points of S.

Proof. Let x̂ be an extreme point of S. Then, by Lemma 1.9, for each r > 0, there
exists a hyperplane H = {x : 〈p,x〉 = p0} such that 〈p, x̂〉 > p0 and 〈p,x〉 ≤ p0 for
all x ∈ S such that ||x− x̂|| ≥ r. Thus by Lemma 1.8, there exists an exposed point
x∗∗ of S such that 〈p, x̂〉> p0. Hence, ||x∗∗ − x̂||< r.

�

It should be pointed out that Straszewicz Theorem applies not only to convex
compact sets but to closed convex sets as well. Indeed, let S be a closed convex
set and let x̂ be an extreme point of S. Further, let B = {x : ||x− x̂|| ≤ α} for some
α > 0. Then there exists a sequence {xk} of exposed points of S∩B that converge
to x̂. Clearly, the tail of this sequence must lie the interior of B and hence the points
in the tail are exposed points of S.



Chapter 2
Positive Semidefinite Matrices

Positive semidefinite (PSD) and positive definite (PD) matrices are closely con-
nected with Euclidean distance matrices. Accordingly, they play a central role in
this monograph. This chapter reviews some of the basic results concerning these
matrices. Among the topics discussed are various characterizations of PSD and PD
matrices, theorems of the alternative for the semidefinite cone, the facial structures
of the semidefinite cone and spectrahedra, as well as the Borwein–Wolkowicz facial
reduction scheme.

2.1 Definitions and Basic Results

Definition 2.1 An n×n real symmetric matrix A is said to be positive definite (PD)
if

xT Ax > 0 for all x ∈ R
n,x �= 0.

An immediate consequence of this definition is that PD matrices are nonsingular.
For suppose that A is singular. Then there exists x �= 0 such that Ax = 0. Hence,
xT Ax = 0 and thus A is not PD.

Definition 2.2 An n×n real symmetric matrix A is said to be positive semidefinite
(PSD) if

xT Ax ≥ 0 for all x ∈ R
n.

We use the notation A � 0 (A � 0) to denote that A is a real symmetric PD (PSD)
matrix. Another easy consequence of the definition is that if A � 0 (A � 0), then
every diagonal entry of A is positive (nonnegative). Similarly, if A is a PD (PSD)
block matrix, then every diagonal block of A is PD (PSD).

As always, S n denotes the space of n×n real symmetric matrices endowed with
the inner product 〈A,B〉 = trace(AB). A ∈S n is called negative semidefinite if (−A)
is positive semidefinite, and it is called negative definite if (−A) is positive definite.
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Let S n
+ and S n

++ denote, respectively, the sets of n×n real symmetric PSD and
real symmetric PD matrices. Evidently, S n

+ and S n
++ are pointed convex cones in

S n. Moreover, it is not hard to see that dim(S n
+) = dim(S n

++) = n(n+ 1)/2. Let
Â ∈S n\S n

+, then x̂T Âx̂ < 0 for some unit vector x̂ in R
n. Hence, for any B in S n,

there exists ε > 0 such that x̂T Âx̂− ε x̂T Bx̂ < 0; i.e., Â− εB is not in S n
+. Therefore,

S n\S n
+ is open and hence S n

+ is closed. On the other hand, let A ∈ S n
++ and

let x be a unit vector in R
n. Then, for any B in S n, there exists δ > 0 such that

xT (A− δB)x > 0. Indeed, by Rayleigh–Ritz Theorem, xT Ax− δxT Bx ≥ λn(A)−
δλ1(B), where λn(A)> 0. Thus, if λ1(B)≤ 0, i.e., if B is negative semidefinite, then
A− δB � 0 for all δ > 0. Otherwise, A− δB � 0 for δ : 0 < δ < λn(A)/λ1(B).
Consequently,

int(S n
+) =S n

++ and S n
+ = cl(S n

++).

Theorem 2.1 Let A and S be two n×n real matrices and assume that A ∈S n and
S is nonsingular. Then SAST � 0 (� 0) if and only if A � 0 (� 0).

Proof. Assume that A � 0 and let x be any nonzero vector in R
n. Then

xT SAST x > 0 since ST x �= 0. Hence, SAST � 0. On the other hand, assume that
SAST � 0 and let x be any nonzero vector in R

n. Let x = ST y, then y �= 0. Therefore,
xT Ax = yT SAST y > 0. Hence, A � 0. The proof for the semidefinite case is similar.

�

Note that Theorem 2.1 is a special case of Sylvester law of inertia. The lemma
that follows, known as Schur complement, plays an important role in the theory of
semidefinite matrices and will be used repeatedly throughout the monograph.

Theorem 2.2 (Schur Complement) Let M ∈S n and assume that M is partitioned

as M =

[
A B

BT C

]
. Further, assume that A � 0. Then M � 0 (� 0) if and only if

C−BT A−1B � 0 (� 0).

The matrix C−BT A−1B is called the Schur complement of A.

Proof. Let S =

[
I 0

−BT A−1 I

]
. Then SMST =

[
A 0
0 C−BT A−1B

]
. Thus, the result

follows from Theorem 2.1 since S is obviously nonsingular.
�

It is worth pointing out that S in the proof of Schur complement is an elementary
matrix. Thus, multiplying M by S from the left is equivalent to a block Gaussian
elimination step. Furthermore, it is evident that det(M) = det(A) det(C−BT A−1B).

2.2 Characterizations

PD and PSD matrices can be characterized in terms of eigenvalues, principal minors,
and Gram matrices. We begin first with the eigenvalue characterization.
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2.2.1 Eigenvalues

Theorem 2.3 Let A ∈S n. Then A is positive definite if and only if all of its eigen-
values are positive.

Proof. Assume that the eigenvalues of A are all positive. Let A = QΛQT be the
spectral decomposition of A and let x be any nonzero vector in R

n. Further, let
y = QT x. Thus y �= 0. Therefore, xT Ax = yT Λy = ∑n

i=1 λi(yi)
2 > 0. Hence, A is PD.

To prove the other direction, assume that one eigenvalue of A, say λ1, is ≤ 0. Let
x1 be an eigenvector of A corresponding to λ1. Then (x1)T Ax1 = λ1(x1)T x1 ≤ 0 and
hence A is not PD.

�

Corollary 2.1 Let A ∈S n. Then A is positive definite if and only if A−1 is positive
definite.

Similarly, we have

Theorem 2.4 Let A ∈ S n. Then A is positive semidefinite if and only if all of its
eigenvalues are nonnegative.

Therefore, PD matrices are precisely the nonsingular PSD matrices. Next, we turn
to the principal minor characterization.

2.2.2 Principal Minors

Theorem 2.5 Let A ∈S n. Then A is positive definite if and only if all of its leading
principal minors are positive.

Proof. Assume that the kth leading principal minor of A is nonpositive and assume

that A is partitioned as A =

[
Ak B
BT C

]
, where Ak is the kth leading principal submatrix

of A. Thus det(Ak) ≤ 0. Hence, Ak has an eigenpair (λ̂ , x̂) where λ̂ ≤ 0. Let xT =
[x̂T 0] ∈ R

n . Then xT Ax = x̂T Akx̂ ≤ 0 and hence A is not PD.
To prove the other direction, assume that the leading principal minors of A are

all positive. We use induction on n to prove that A is PD. The result is obvious for
n = 1. Thus, assume that the result is true for n = k. Let Ak+1 be the (k+1)th leading

principal submatrix of A, and let Ak+1 be partitioned as Ak+1 =

[
Ak b
bT c

]
, where Ak

is the kth leading principal submatrix of A. Thus, the leading principal minors of
Ak are all positive and hence, by the induction hypothesis, Ak is PD. Moreover,
det(Ak+1) = det(Ak) det(c−bT A−1

k b)> 0. Therefore, c−bT A−1
k b > 0 and hence, by

Schur complement, Ak+1 is PD.
�

At this point, it would be tempting to conjecture that A is PSD if and only if all
leading principal minors of A are nonnegative. Unfortunately, this is false [155]. Let
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A =

[
0 0
0 −1

]
. Then, the two leading principal minors of A are nonnegative while,

obviously, A is not PSD. In fact, in the semidefinite case, all principal minors, not
just the leading ones, need to be nonnegative.

Theorem 2.6 Let A ∈ S n. Then A is positive semidefinite if and only if all of its
principal minors are nonnegative.

Proof. Let A be partitioned as A =

[
Ak B
BT C

]
. Assume that one principal minor of

A is negative and wlog assume that det(C) < 0. Hence, C has an eigenpair (λ̂ , x̂)
where λ̂ < 0. Let xT = [0 x̂T ] ∈ R

n. Then xT Ax = x̂TCx̂ < 0. Therefore, A is not
PSD.

To prove the other direction, assume that all principal minors of A are nonnega-
tive. Let χA(λ ) = c0 + c1λ + · · ·+ ckλ k + · · ·+(−1)nλ n be the characteristic poly-
nomial of A. Then by Theorem 1.8, for k = 0, . . . ,n−1, ck = (−1)kαk where αk > 0.
Now assume, to the contrary, that A has a negative eigenvalue, say λ1. Then

χA(λ1) = α0 −α1λ1 +α2(λ1)
2 −α3(λ1)

3 + · · ·+(−λ1)
n > 0

since each term is positive, a contradiction. Hence, all eigenvalues of A are nonneg-
ative and thus A is PSD.

�

Finally, we turn to the Gram matrix characterization.

2.2.3 Gram Matrices

Let p1, . . . , pn be a point configuration in R
k, and assume that these points are not

contained in a proper hyperplane in R
k. Then the n×n symmetric matrix A = (ai j),

where
ai j = (pi)T p j

is called the Gram matrix of this configuration. If P is the n× k matrix whose ith
row is equal to (pi)T , then P has full column rank. Furthermore, A = PPT and hence
rank(A) = k.

Theorem 2.7 Let A ∈S n. Then A is positive definite if and only if A = PPT , where
P is nonsingular.

Proof. Assume that A = PPT , where P is nonsingular. Then xT Ax = ||PT x||2 > 0
for all nonzero x ∈ R

n and hence A is PD. On the other hand, assume that A is
PD and let A = QΛQT be the spectral decomposition of A. Let P = QΛ 1/2, where
(Λ 1/2)ii =

√
Λii. Then P is nonsingular and A = PPT .

�

Similarly, we have
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Corollary 2.2 Let A ∈S n. Then A is positive semidefinite of rank k if and only if
A = PPT , where P is an n× k matrix with full column rank.

2.3 Miscellaneous Properties

Further properties of PSD matrices are given in this section. Recall that S n
+ denotes

the set of n×n real symmetric PSD matrices.

Proposition 2.1 Let A ∈S n
+ and assume that aii = 0 for some i. Then all entries of

A in the ith row (and consequently the ith column) are zeros.

Proof. Assume, to the contrary, that aik �= 0 for some k. Then the principal minor
of A induced by rows i and k is negative, a contradiction.

�

An immediate consequence of Proposition 2.1 is that if A ∈S n
+, then trace(A) =

0 if and only if A = 0.
Let A ∈ S n

+, then A has a unique positive semidefinite square root, denoted
by A1/2, such that A = A1/2A1/2. To this end, let A = QΛQT be the spectral de-
composition of A. Further let Λ 1/2 denote the positive square root of Λ . Then
A1/2 = QΛ 1/2QT . Notice that rank(A1/2) = rank(A).

Proposition 2.2 Let A and B be in S n
+. Then trace(AB)≥ 0. Moreover, trace(AB)=

0 if and only if AB = 0.

Proof. Clearly, trace(AB) = trace(B1/2A1/2A1/2B1/2) = ||A1/2B1/2||2F ≥ 0. Now
assume that trace(AB) = 0. Therefore, A1/2B1/2 = 0 and hence AB = 0. The other
direction is trivial.

�

Proposition 2.3 Let A = PPT . Then null(A) = null(PT ).

Proof. The fact that null(PT ) ⊆ null(A) is obvious. Now let x ∈ null(A), then
xT Ax = xT PPT x = ||PT x||2F = 0. Hence, PT x = 0 and thus null(A)⊆ null(PT ).

�

Let A = PPT . Then the following two facts are immediate consequences of
Proposition 2.3. First, rank(A) = rank(P). Second, xT Ax = 0 iff x ∈ null(A).

Proposition 2.4 Let A and B be in S n
+ and let rank(A)+ rank(B) ≥ n+ 1. Then

trace(AB)> 0.

Proof. Assume that rank(B) = r and let B = PPT , where P is n×r. Thus col(P) �⊆
null(A) since dim null(A) ≤ r− 1. Therefore, trace(AB) = trace(PT AP) > 0 since
PT AP is a nonzero PSD matrix.

�
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Proposition 2.5 Let A and B be in S n
+ and let C = λA+(1−λ )B for some λ : 0 <

λ < 1. Then
null(C) = null(A)∩null(B).

The fact that (null(A) ∩ null(B)) ⊆ null(C) is obvious. To prove the other
inclusion, let x ∈ null(C). Then xTCx = λxT Ax + (1 − λ )xT Bx = 0. Thus,
λxT Ax = (1−λ )xT Bx = 0. But λ > 0 and 1−λ > 0. Therefore, xT Ax = xT Bx = 0
and hence x ∈ (null(A)∩null(B)).

�

Proposition 2.6 Let M ∈ S n. Assume that M is partitioned as M =

[
A B

BT C

]
and

that A is nonsingular. If M is positive semidefinite, then

null(C)⊆ null(B).

Proof. Clearly, C � 0 and A is PD since it is nonsingular. Thus BT A−1B � 0. By
Schur’s complement, C−BT A−1B � 0. Let x ∈ null(C). Then xT (C−BT A−1B)x =
−xT BT A−1Bx ≥ 0. Therefore, xT BT A−1Bx = 0. Consequently, Bx = 0 since A−1 is
PD, and thus x ∈ null(B).

�

Proposition 2.7 Let M(t) =

[
A′+ tA tB

tBT tC

]
, where A′ � 0, C � 0,C �= 0 and t is

a scalar. If null(C) ⊆ null(B), then there exists t̂ �= 0 such that M(t̂) is positive
semidefinite.

Proof. Let W and U be the matrices whose columns form orthonormal bases
of col(C) and null(C), respectively. Thus, BU = 0 and W TCW = Λ , where Λ is
the diagonal matrix consisting of the positive eigenvalues of C. Moreover, the ma-

trix Q =

[
I 0 0
0 W U

]
is orthogonal. On the other hand, M(t) is PSD if and only if

QT M(t)Q is PSD. Therefore, M(t) is PSD if and only if
[

A′+ tA tBW
tW T BT tΛ

]
� 0. (2.1)

Now by Schur complement, (2.1) holds iff A′+ t(A−BWΛ−1W T BT ) � 0. More-
over, since A′ � 0, it follows that A′ + t̂(A−BWΛ−1W T BT ) � 0 for some t̂ �= 0.
Thus the result holds.

�

Let f : R→ R and let f [A] = ( f (ai j)) denote the matrix obtained from matrix A
by applying f to A entrywise. The following theorem is an immediate consequence
of Schur Product Theorem.

Theorem 2.8 Let A = (ai j) be a real symmetric positive semidefinite matrix, then
exp[A] is also symmetric positive semidefinite.
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Proof. The i jth entry of exp[A] is given by

eai j = 1+ai j +
a2

i j

2!
+

a3
i j

3!
+ · · · .

Thus,

exp[A] = E +A+
A◦A

2!
+

A◦A◦A
3!

+ · · · ,
where E denotes the matrix of all 1’s. But, by Schur Product Theorem, each term in
this sum is PSD. Hence, exp[A] is PSD.

�

2.4 Theorems of the Alternative

Theorems of the alternative, the most famous of which is the celebrated Farkas
lemma, are an indispensable tool in optimization theory. These theorems assert that
exactly one of two given systems of linear inequalities or linear matrix inequalities
has a solution. Thus, they underpin the duality theory of linear programming and
semidefinite programming. Moreover, the theorems of the alternative are intimately
connected with the separation theorems of convex sets. In this section, several theo-
rems of the alternative for the semidefinite cone are presented.

Recall that the polar of S n
+ is

(S n
+)

◦ = {Y ∈S n : trace(Y X)≤ 0 for all X � 0},

and that the dual of cone K is −K◦.

Theorem 2.9 The cone of symmetric positive semidefinite matrices is self-dual, i.e.,

(S n
++)

◦ = (S n
+)

◦ =−S n
+.

Proof. The first equality follows by applying Lemma 1.6 to the cone S n
++. To

prove the second equality, assume that Y ∈ (S n
+)

◦. Then trace(Y X) ≤ 0 for all
X ∈ S n

+. Let X = xxT , where x is any vector in R
n. Thus trace(Y X) = xTY x ≤ 0.

Therefore, −Y � 0 and hence (S n
+)

◦ ⊆ (−S n
+).

To prove the other inclusion, assume that (−Y ) � 0. Then by Proposition 2.2,
trace(Y X)≤ 0 for all X ∈S n

+. Thus, Y ∈ (S n
+)

◦ and hence (−S n
+)⊆ (S n

+)
◦.

�

Next, we turn to the theorems of the alternative.

Theorem 2.10 (Homogeneous) Let A1, . . . ,Am be given matrices in S n. Then ex-
actly one of the following two statements holds:

(i) There exists x ∈ R
m such that x1A1 + · · ·+ xmAm � 0.

(ii) There exists Y � 0, Y �= 0 such that trace(YAi) = 0 for i = 1, . . . ,m.
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Proof. Assume that both statements hold. Then trace(Y ∑m
i=1 xiAi) > 0. On the

other hand, trace(Y ∑m
i=1 xiAi) = ∑m

i=1 xi trace(YAi) = 0, a contradiction.
Now assume that Statement (i) does not hold and let L = span {A1, . . . ,Am}.

Then L ∩ int(S n
+) = /0. Therefore, by the Separation Theorem and Corollary 1.4,

there exists Y ∈S n, Y �= 0 such that trace(AY ) = 0 for all A ∈L and trace(Y B)≥ 0
for all B ∈S n

+. Therefore, trace(YAi) = 0 for all i = 1, . . . ,m, and by Theorem 2.9,
Y belongs to −(S n

+)
◦ =S n

+.
�

Theorem 2.11 (Nonhomogeneous) Let A0,A1, . . . ,Am be given matrices in S n.
Then exactly one of the following two statements holds:

(i) There exists x ∈ R
m such that A (x) := A0 + x1A1 + · · ·+ xmAm � 0.

(ii) There exists Y � 0, Y �= 0 such that trace(YA0) ≤ 0 and trace(YAi) = 0 for
i = 1, . . . ,m.

Proof. Assume that both statements hold. Then trace(YA (x)) > 0. On the other
hand, trace(YA (x)) = trace(YA0)+∑k

i=1 xitrace(YAi)≤ 0, a contradiction.
Now assume that Statement (i) does not hold and let S1 = {A (x) : x ∈R

m}. Then
S1∩ int(S n

+) = /0. Therefore, by the Separation Theorem, there exist Y ∈S n, Y �= 0,
and scalar p0 such that trace(YA) ≤ p0 for all A ∈ S1 and trace(Y B) ≥ p0 for all
B ∈S n

+. Hence, by Corollary 1.4, it follows that trace(YA0)≤ 0 and trace(YAi) = 0
for all i = 1, . . . ,m. It also follows that trace(Y B)≥ 0 for all B � 0 and hence Y � 0.

�

The case where A0 � 0 is of particular interest to us. Theorem 2.11, in this case,
can be strengthened to the following easily proved corollary.

Corollary 2.3 Let A0,A1, . . . ,Am be given matrices in S n and let A (x) := A0 +
x1A1 + · · ·+xmAm. Assume that A0 � 0. Then exactly one of the following two state-
ments holds:

(i) There exists x such that A (x)� 0.
(ii) There exists Y � 0,Y �= 0, such that trace(YA0) = 0 and trace(YAi) = 0 for

i = 1, . . . ,m.

Proof. The result follows since 0 ≤ trace(A0Y )≤ 0.
�

Since any affine set can also be represented as the intersection of hyperplanes,
we obtain equivalent forms of Theorem 2.10, Theorem 2.11, and Corollary 2.3.
To this end, let S1 = {X ∈ S n : trace(AiX) = bi for i = 1, . . . ,m} and assume
that X̂ ∈ S1. Then S1 = {X ∈S n : trace(Ai(X − X̂)) = 0 for i = 1, . . . ,m}. Hence,
S1 = X̂ + x1B1 + · · ·+ xkBk where {B1, . . . ,Bk} is a basis of the orthogonal comple-
ment of span {A1, . . . ,Am} in S n. Now let Y � 0, Y �= 0 such that trace(Y X̂) ≤ 0
and trace(Y Bi) = 0 for i = 1, . . . ,k. Then Y = y1A1 + · · ·+ ymAm for some scalars
y1, . . . ,ym, and trace(Y X̂) = ∑m

i=1 yi trace(AiX̂) = ∑m
i=1 yibi. Consequently, we have

the following results.

Corollary 2.4 (Homogeneous) Let A1, . . . ,Am be given matrices in S n. Then ex-
actly one of the following two statements holds:
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(i) There exists X � 0 such that trace(AiX) = 0 for i = 1, . . . ,m.
(ii) There exists y ∈ R

m such that y1A1 + · · ·+ ymAm � 0, �= 0.

Theorem 2.12 (Nonhomogeneous) Let A1, . . . ,Am be given matrices in S n and
let b ∈ R

m. Assume that the set {X ∈S n : trace(AiX) = bi for i = 1, . . . ,m} is not
empty. Then exactly one of the following two statements holds:

(i) There exists X � 0 such that trace(AiX) = bi for i = 1, . . . ,m.
(ii) There exists y ∈ R

m such that y1A1 + · · ·+ ymAm � 0, �= 0 and bT y ≤ 0.

Corollary 2.5 Let A1, . . . ,Am be given matrices in S n and let b ∈ R
m. Further, let

F = {X ∈ S n
+ : trace(AiX) = bi for i = 1, . . . ,m} and assume that F �= /0. Then

exactly one of the following two statements holds:

(i) There exists X � 0 such that trace(AiX) = bi for i = 1, . . . ,m.
(ii) There exists y ∈R

m such that Ω(y) = y1A1+ · · ·+ymAm � 0, �= 0 and bT y = 0.

Proof. Let X̂ ∈ F and assume that Statement (ii) of Theorem 2.12 holds. Then
0 ≥ bT y = ∑m

i=1 yi trace(AiX̂) = trace(X̂Ω(y))≥ 0 since X̂ � 0. Therefore, bT y = 0.
�

The following simple result will be needed in the sequel.

Corollary 2.6 Let F and Ω(y) be as in Corollary 2.5 and assume that Statement
(ii) of Corollary 2.5 holds. Then trace(Ω(y)X) = 0 for all X ∈F .

Proof. Let X ∈F , then trace(Ω(y)X) = ∑m
i=1 yi trace(AiX) = bT y = 0.

�

A remark is in order here. The affine set {x ∈ R
m : A0 + x1A1 + · · ·+ xmAm} is

always nonempty, while the affine set {X ∈S n : trace(AiX) = bi for i = 1, . . . ,m}
may or may not be empty. Hence, the assumption that this set is not empty is made
in Theorem 2.12.

2.5 Semidefinite Programming (SDP)

In this section, we present a few basic results concerning semidefinite program-
ming (SDP) that will be needed in the monograph. Two excellent references on this
subject are [198, 137]. As noted earlier, theorems of the alternative are the main
ingredient in the proof of the strong duality theorem of SDP. Let A0,A1, . . . ,Am be
given linearly independent matrices in S n and let b be a given vector in R

m. Then
a primal SDP problem is of the form

(P) inf f (x) = bT x
subject to A0 + x1A1 + · · ·+ xmAm � 0.

The dual problem of (P) is
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(D) sup ν(Y ) =−trace(A0Y )
subject to trace(AiY ) = bi for i = 1, . . . ,m.

Y � 0

It should be pointed out that the dual of the dual problem is the primal problem.
Thus, SDP problems come in dual pairs. Any solution that satisfies the constraints
is called a feasible solution. The set of all feasible solutions is called the feasible
region. Problem (P) satisfies Slater’s condition if there exists x̂ ∈R

m such that A0 +
x̂1A1 + · · ·+ x̂mAm � 0. Likewise, Problem (D) satisfies Slater’s condition if there
exists Ŷ � 0 which satisfies the constraints trace(AiŶ ) = bi for i = 1, . . . ,m. In other
words, an SDP problem satisfies Slater’s condition iff its feasible region intersects
the interior of S n

+.
The following are the basic duality theorems of SDP.

Theorem 2.13 (Weak Duality) Let (P) and (D) be a primal–dual pair of SDP
problems as above. Then for any primal feasible solution x and any dual feasible
solution Y , we have

f (x)≥ ν(Y ).

Proof. f (x)−ν(Y ) = ∑m
i=1 bixi + trace(A0Y ) = ∑m

i=1 trace(AiY )xi + trace(A0Y ) =
trace((∑m

i=1 xiAi +A0)Y )≥ 0.
�

Theorem 2.14 (Strong Duality) Let (P) and (D) be a primal–dual pair of SDP
problems as above. Assume that (P) and (D) are feasible and (P) satisfies Slater’s
condition. Then

f ∗ = ν∗,

where f ∗ and ν∗ are the respective optimal values. Moreover, the dual optimal value
is attained.

Proof. By the definition of an optimal solution, there does not exist an x such that
A0 + x1A1 + · · ·+ xmAm � 0 and bT x < f ∗. Therefore, the system

[
f ∗ 0
0 A0

]
+ x1

[−b1 0
0 A1

]
+ · · ·+ xm

[−bm 0
0 Am

]
� 0.

is infeasible. Thus, by Theorem 2.11, there exist y ≥ 0 and Y � 0, not both
of which are zero, such that −ybi + trace(AiY ) = 0 for all i = 1, . . . ,m; and
y f ∗ + trace(A0Y ) ≤ 0. Now y > 0 since otherwise, Theorem 2.11 would imply
that (P) does not satisfy Slater’s condition. Therefore, Y/y is a feasible solu-
tion of (D) with objective value ν(Y/y) = −trace(A0Y/y) ≥ f ∗ ≥ ν∗. Hence,
ν(Y/y) = f ∗ = ν∗.

�

We remark here that in the absence of Slater’s condition, an SDP problem may
have a finite duality gap and/or the optimal value may not be attained.

Assume that Y is a feasible solution of (D) with rank s, and let W ′ and U ′ be
the matrices whose columns form orthonormal bases of col(Y ) and null(Y ), respec-
tively. Further [26, 154], let
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L = span{A1, . . . ,Am} (2.2)

TY =

{
C ∈S n : C = [W ′ U ′]

[
Φ1 Φ2

ΦT
2 0

][
W ′T
U ′T

]}
, (2.3)

where Φ1 is a symmetric matrix of order s. TY is called the tangent space at Y to
the set of symmetric matrices of rank s. Y is said to be nondegenerate if

TY +L ⊥ =S n. (2.4)

Otherwise, Y is said to be degenerate. Note that Eq. (2.4) is equivalent to

T ⊥
Y ∩L = {0}, (2.5)

where T ⊥
Y , the orthogonal complement of TY , is given by

T ⊥
Y = {C ∈S n : YC = 0}= {C ∈S n : C =U ′ΦU ′T},

where Φ is a symmetric matrix of order n− s.

Theorem 2.15 (Alizadeh et al. [26]) Let x and Y be optimal solutions of (P) and
(D), respectively. If Y is nondegenerate, then x is unique.

Proof. Since x is an optimal solution of (P), it follows that X (x) = A0+∑i xiAi �
0 and bT x = −trace(A0Y ), i.e., trace(X (x)Y ) = 0. Hence, X (x)Y = 0 since both
X (x) and Y are PSD. Now assume that x′ is an optimal solution of (P). Then
X (x′)Y = 0 and hence (X (x)−X (x′))Y = 0. Consequently, ∑i(xi − x′i)Ai lies
in T ⊥

Y . Therefore, (2.5) implies that ∑i(x
′
i − xi)Ai = 0 and hence x′ = x since

A1, . . . ,Am are linearly independent.
�

2.6 The Facial Structure of S n
+

It is well known [165, 35, 34, 36, 108, 154] that the faces of the positive semidefinite
cone S n

+ can be characterized either in terms of the null space or in terms of the
column space.

Lemma 2.1 Let A and B be two matrices in S n
+ and let F be a face of S n

+ contain-
ing A. If null(A)⊆ null(B), then B ∈ F.

Proof. Assume that null(A)⊆ null(B). Now if A = 0, then null(A) =R
n and thus

B = 0. Hence, the result follows trivially. Therefore, assume that A �= 0 and let U
be the matrix whose columns form an orthonormal basis of null(A). Further, let
A = WΛW T be the spectral decomposition of A, where Λ is the diagonal matrix
consisting of the positive eigenvalues of A. Thus the matrix Q = [W U ] is orthogo-
nal. Let t be a scalar. Then A− t(B−A)� 0 if and only if QT (A− t(B−A))Q � 0.
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But

QT (A− t(B−A))Q =

[
Λ − tW T (B−A)W 0

0 0

]
.

Hence, there exists t̂ > 0 such that A− t̂(B−A)� 0. Let C = A− t̂(B−A). Then

A =
1

1+ t̂
C+

t̂
1+ t̂

B.

Therefore, B ∈ F .
�

Example 2.1 Let A =

⎡

⎣
1 1 0
1 0 1
1 −1 0

⎤

⎦, B =

⎡

⎣
1 1 1
1 0 0
1 −1 −1

⎤

⎦ and C =

⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦. Then

null(A) = {0}, null(B) = col(

⎡

⎣
0
1

−1

⎤

⎦) and null(C) = col(

⎡

⎣
1 0
0 1

−1 −1

⎤

⎦). Hence,

null(A) ⊂ null(B) ⊂ null(C). Accordingly, any face of S n
+ containing A must con-

tain B and C, and any face of S n
+ containing B must contain C.

Recall that face(A,S n
+) denotes the minimal face of S n

+ containing A. Also, re-
call that, by Theorem 1.28, A lies in the relative interior of face(A,S n

+).

Theorem 2.16 (Barker and Carlson [35]) Let A ∈S n
+. Then

face(A,S n
+) = {B ∈S n

+ : null(A)⊆ null(B)}. (2.6)

= {B ∈S n
+ : col(B)⊆ col(A)}. (2.7)

Proof. Let S = {B ∈ S n
+ : null(A) ⊆ null(B)}. Then, by Lemma 2.1, S ⊆

face(A,S n
+). Now if face(A,S n

+) = {A}, then face(A,S n
+) ⊆ S and we are done.

Therefore, let B ∈ face(A,S n
+) where B �= A. Since A lies in relint(face(A,S n

+)),
there exist C ∈ face(A,S n

+) and 0 < λ < 1, such that A = λB+(1−λ )C. Hence,
by Proposition 2.5, null(A)⊆ null(B). Thus B ∈ S and therefore face(A,S n

+)⊆ S.
�

It is an easy observation that face(I,S n
+) = S n

+ and face(0,S n
+) = 0. Moreover,

the following corollaries are immediate.

Corollary 2.7 Let A ∈S n
+. Then

relint(face(A,S n
+)) = {B ∈S n

+ : null(A) = null(B)},
= {B ∈S n

+ : col(B) = col(A)}.

Corollary 2.8 Let A and B be in S n
+. Then

face(A,S n
+)⊆ face(B,S n

+) if and only if col(A)⊆ col(B),

face(A,S n
+) = face(B,S n

+) if and only if col(A) = col(B).
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Corollary 2.9 Let A ∈ S n
+ and let rank(A) = r, r ≤ n− 1. Further, let W be the

n× r matrix whose columns form an orthonormal basis of col(A). Then

face(A,S n
+) = {WΦW T for some Φ ∈S r

+},
relint(face(A,S n

+)) = {WΦW T for some Φ ∈S r
++}.

Corollary 2.10 Let F be a face of S n
+. Then

F = {B ∈S n
+ : L ⊆ null(B) for some subspace L of Rn}.

Note that Corollary 2.9 follows in part from Proposition 1.1. As a result, the
faces of S n

+ are isomorphic to positive semidefinite cones of lower dimensions, and
they are in a one-to-one correspondence with the subspaces of Rn. As the following
theorem shows, all faces of S n

+ are exposed.

Theorem 2.17 Let A ∈ S n
+ and let rank(A) = r, r ≤ n− 1. Further, let U be the

n× (n− r) matrix whose columns form an orthonormal basis of null(A); and let
H = {X ∈S n : trace(UUT X) = 0}. Then

face(A,S n
+) = H ∩S n

+. (2.8)

That is, all faces of S n
+ are exposed.

Proof. H is a supporting hyperplane of S n
+ at A since trace(UUT X) ≥ 0 for

all X in S n
+. Let X ∈ face(A,S n

+). Then XU = 0. Hence, X ∈ (H ∩S n
+) and thus

face(A,S n
+) ⊆ (H ∩S n

+). To prove the other inclusion, let X ∈ (H ∩S n
+). Then

trace(UT XU) = 0. But UT XU � 0. Hence, UT XU = 0. Thus, XU = 0 and hence
X ∈ face(A,S n

+). Therefore, (H ∩S n
+)⊆ face(A,S n

+).
�

2.7 The Facial Structure of Spectrahedra

Of particular interest to us are sets formed by the intersection of the positive
semidefinite cone S n

+ with an affine set. Such sets are called spectrahedra. Evi-
dently, a spectrahedron is a closed convex set. A spectrahedron F has two equiva-
lent representations depending on the representation of the affine set. Each of these
representations has its own advantages. In this section, it is advantageous to use the
following description of F . Let A0,A1, . . . ,Am be linearly independent matrices in
S n. Then F can be parameterized as

F = {x ∈ R
m : A (x)� 0},

where
A (x) := A0 + x1A1 + · · ·+ xmAm.
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Assume that there exists x̂ ∈ R
m such that A (x̂) � 0, i.e., assume that A (x)

satisfies Slater’s condition. Then we may assume, wlog, that A0 � 0 since F can
be expressed as F = {x ∈ R

m : A (x̂)+∑m
i=1(xi − x̂i)Ai � 0}. On the other hand,

if A0 � 0, then for any x ∈ R
m, there exists ε > 0 such that A0 + ε ∑m

i=1 xiAi � 0.
Hence, int(F ) �= /0. The reverse statement is not true; i.e., if a spectrahedron has a
nonempty interior, then it may or may not satisfy Slater’s condition.

Example 2.2 Let A0 =

[
1 1
1 1

]
, A1 =

[
1 0
0 −1

]
and A2 =

[
0 −1

−1 0

]
. Then the spec-

trahedron F = {x ∈R
2 : A (x) = A0+x1A1+x2A2 � 0} is clearly given by the unit

disk centered at (0,1). Notice that A (x) � 0 for all x in the interior of this disk.
Hence, A (x) satisfies Slater’s condition. However, F can also be represented as
F = {x ∈ R

2 : A ′(x) = A′0 + x1A′1 + x2A′2 � 0}, where

A′0 =

⎡

⎣
1 1 −2
1 1 −2

−2 −2 4

⎤

⎦ ,A′1 =

⎡

⎣
1 0 −1
0 −1 1

−1 1 0

⎤

⎦ and A′2 =

⎡

⎣
0 −1 1

−1 0 1
1 1 −2

⎤

⎦ .

Notice that the three principal minors of A ′(x) of order 2 are equal. Also, notice
that det(A ′(x)) = 0 for all x since the 3rd row of A ′(x) is a linear combination of
its first two rows. Hence A ′(x) �� 0 for all x, and thus A ′(x) does not satisfy Slater’s
condition.

In this monograph we will be interested in minimal faces of F as well as those
of S n

+.

Theorem 2.18 (Ramana and Goldman [156]) Let F = {x ∈R
m : A (x)� 0} and

let x ∈F . Then

face(x,F ) = {y ∈F : null(A (x))⊆ null(A (y))}. (2.9)

Proof. Let S = {y ∈ F : null(A (x)) ⊆ null(A (y))} and let y ∈ S. Then by an
argument similar to that in the proof of Lemma 2.1, there exists t̂ > 0 such that
A (x)− t̂(A (y)−A (x))� 0. Let z = x− t̂(y− x). Then A (z) =A (x)− t̂(A (y)−
A (x)) and thus z ∈F . Hence,

x =
1

1+ t̂
z+

t̂
1+ t̂

y.

Therefore, y ∈ face(x,F ) and hence S ⊆ face(x,F ).
To prove the other inclusion, note that if face(x,F ) = {x}, then face(x,F ) ⊆ S

and we are done. Therefore, let y ∈ face(x,F ) where y �= x. Since x lies
in relint(face(x,F )), there exist z ∈ face(x,F ) and 0 < λ < 1 such that
x = λy + (1 − λ )z. Then A (x) = λA (y) + (1 − λ )A (z). By an argument sim-
ilar to that in the proof of Theorem 2.16, it follows that null(A (x)) ⊆ null(A (y))
and thus y ∈ S. Therefore, face(x,F )⊆ S.

�

The following corollary is immediate.
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Corollary 2.11 Let F = {x ∈ R
m : A (x)� 0} and let x ∈F . Then

relint(face(x,F )) = {y ∈F : null(A (x)) = null(A (y))}. (2.10)

It is worth pointing out that, for a face F of F , all matrices {A (x) : x∈ relint(F)}
have the same rank. That is, the rank is constant over the relative interior of a face.
Let S be a convex subset of F . Then it easily follows from Theorem 1.28 and
Corollary 1.2 that face(S,F ), the minimal face of F containing S, is the face of F
whose relative interior intersects relint(S) [154].

Example 2.3 Let F = {x ∈ R
2 : A0 + x1A1 + x2A2 � 0} be the spectrahedron of

Example 2.2. Then null(A (0)) = null(A0) = col(

[
1

−1

]
). Hence, face(0,F ) = {x∈

F : x1 + x2 = 0 = x1 − x2}= {0}.

As was the case for the faces of S n
+, all faces of a spectrahedron are exposed.

Theorem 2.19 (Ramana and Goldman [156]) Let F = {y ∈R
m : A (y)� 0} and

let x ∈ F . If A (x) � 0, then face(x,F ) = F . Otherwise, let U be the matrix
whose columns form an orthonormal basis of null(A (x)); and let H = {y ∈ R

m :
trace(UTA (y)U) = 0}. Then

face(x,F ) =F ∩H, (2.11)

i.e., all faces of F are exposed.

Proof. H is a supporting hyperplane to F since trace(UUTA (y)) ≥ 0 for all
y ∈ F . Now let y ∈ (F ∩H). Therefore, UTA (y)U = 0 and hence A (y)U = 0.
Consequently, y lies in face(x,F ) and thus (F ∩H)⊆ face(x,F ).

To prove the other inclusion, let y ∈ face(x,F ). Then A (y)U = 0. Consequently,
y ∈ (F ∩H) and hence face(x,F )⊆ (F ∩H).

�

Theorem 2.20 Let F = {x ∈ R
m : A (x) � 0} and let S be a convex subset of F .

Further, let x̂ ∈ S. Then the following statements are equivalent:

(i) rank A (x̂)≥ rank A (x) for all x ∈ S.
(ii) face(x̂,F ) = face(S,F ).

(iii) x̂ lies in relint(S).

Proof. (i) ⇒ (ii)
Since x̂ ∈ S, it follows that face(x̂,F ) ⊆ face(S,F ). To prove the other inclu-

sion, let x be any point in S and let y = λ x̂+(1− λ )x for some 0 < λ < 1. Then
y ∈ S since F is convex. Moreover, A (y) = λA (x̂) + (1 − λ )A (x). Thus, by
proposition 2.5, null(A (y)) ⊆ null(A (x̂)) and null(A (y)) ⊆ null(A (x)). Hence,
rank A (y) ≥ rank A (x̂). But by assumption, rank A (y) ≤ rank A (x̂). There-
fore, rank A (y) = rank A (x̂) and consequently null(A (y)) = null(A (x̂)). Hence,
null(A (x̂))⊆ null(A (x)). Therefore, x ∈ face(x̂,F ) and thus S ⊆ face(x̂,F ). As a
result, face(S,F )⊆ face(x̂,F ).
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(ii) ⇒ (iii)
Assume that face(x̂,F ) = face(S,F ) and assume, to the contrary, that x̂ �∈

relint(S). Then x̂ lies in the relative boundary of S. Hence, by the Supporting Hyper-
plane Theorem, there exists a hyperplane H containing x̂ but not S. Therefore, H∩
face(S,F ) is a face of F containing x̂ of a smaller dimension than face(S,F ). This
contradicts the definition of a minimal face.

(iii) ⇒ (i)
Assume that x̂∈ relint(S) and let y be any point in S. Then there exist z∈ S and λ :

0 < λ < 1 such that x̂ = λy+(1−λ )z. Therefore, A (x̂) = λA (y)+(1−λ )A (z).
Then, by proposition 2.5, null(A (x̂)) ⊆ null(A (y)). Consequently, rank A (x̂) ≥
rank A (y).

�

The following theorem gives a representation of the affine hull of the minimal
face of F containing x.

Theorem 2.21 Let F = {x ∈ R
m : A (x)� 0} and let x ∈F . Further, let U be the

matrix whose columns form an orthonormal basis of null(A (x)). Then the affine
hull of face(x,F ) is given by

aff(face(x,F )) = {y ∈ R
m : A (y)U = 0}. (2.12)

Proof. Let L = {y ∈ R
m : A (y)U) = 0} and let y be a point in aff(face(x,F )).

Then y = λw+(1−λ )v for some points w and v in face(x,F ) and some scalar λ .
Thus, A (w)U =A (v)U = 0 and hence A (y)U = λA (w)U +(1−λ )A (v)U = 0.
Consequently, y ∈L and thus aff(face(x,F )) ⊆L .

To prove the other inclusion, note that if L = {x}, then we are done. Therefore,
let y ∈L , y �= x. Let W be the matrix whose columns form an orthonormal basis for
col(A (x)). Thus, Q = [U W ] is orthogonal and W TA (x)W � 0. Hence, there exists
t > 0 such that W TA (x)W − t(W TA (y)W −W TA (x)W )� 0. Let z = x− t(y− x).
Therefore, W TA (z)W � 0 and A (z)U = 0. Moreover, QTA (z)Q � 0 and hence,
A (z) � 0. Therefore, z ∈ face(x,F ). Moreover, since y = (1+ 1/t)x− z/t, it fol-
lows that y belongs to aff(face(x,F )) and hence L ⊆ aff(face(x,F )).

�

2.8 Facial Reduction

As we saw earlier, Slater’s condition is sufficient for SDP strong duality and its
absence can result in theoretical and numerical problems. Even though it holds
generically [76], Slater’s condition fails in many interesting instances of the SDP
problem since the feasible regions of these problems are contained in the bound-
ary of S n

+, and thus do not intersect the interior of S n
+. Borwein and Wolkowicz

[49, 50] devised a facial reduction algorithm to regularize such problems and to turn
the absence of Slater’s condition to our advantage, see, e.g., [54, 74].
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Lemma 2.2 An SDP problem satisfies Slater’s condition if and only if the minimal
face of its feasible region is S n

+.

Proof. Assume that an SDP problem satisfies Slater’s condition and let F be its
feasible region. Then F ∩S n

++ �= /0 and thus let A∈ (F ∩S n
++). Hence face(A,S n

+)
⊆ face(F ,S n

+) ⊆ S n
+. But, face(A,S n

+) = S n
+ since A has a trivial null space.

Therefore, face(F ,S n
+) =S n

+.
To prove the other direction, assume that face(F ,S n

+) =S n
+ = face(I,S n

+) and
let A ∈ relint(F ). Then face(A,S n

+) = face(F ,S n
+) = face(I,S n

+) and thus A is
PD. Therefore, Slater’s condition holds.

�

Another characterization of Slater’s condition is given in Lemma 2.4 below. Con-
sequently, in the absence of Slater’s condition, the Borwein–Wolkowicz facial re-
duction algorithm aims at finding the minimal face of the feasible region by gen-
erating a sequence of faces of S n

+ containing F , each of which is a proper subset
of the previous one. In other words, this algorithm generates matrices U1, . . . ,Uk+1

such that

face(F ,S n
+) = face(Uk+1U

T
k+1,S

n
+)⊂ ·· · ⊂ face(U1U

T
1 ,S n

+)⊂S n
+, (2.13)

where col(Uk+1)⊂ ·· · ⊂ col(U1)⊂ col(I) =R
n. An important point to bear in mind

is that X̂ lies in relint(F ) iff face(F ,S n
+) = face(X̂ ,S n

+) iff col(X̂) = col(Uk+1). It
is worth noting that face(F ,S n

+) is isomorphic to the cone S r
+ for some r ≤ n. As

a result, Slater’s condition holds if F is embedded in S r
+ instead of S n

+; i.e., if F
is embedded in the smallest possible space.

Notice that theorems of the alternative presented above do not involve the rank.
The Borwein–Wolkowicz facial reduction scheme is used to establish the follow-
ing theorem of the alternative involving the rank (see also [136]). For the purposes
of this section, it is advantageous to describe a spectrahedron as F = {X ∈ S n

+ :
trace(AiX) = bi for i = 1, . . . ,m}.

Theorem 2.22 (Alfakih [14]) Let A1, . . . ,Am be given linearly independent matri-
ces in S n and let b be a given nonzero vector in R

m. Further, let

F = {X ∈S n
+ : trace(AiX) = bi for i = 1, . . . ,m}.

Let X∗ be a matrix in F such that rank(X∗) = r, r ≤ n−1. Then exactly one of the
following two statements holds:

(i) There exists an X ∈F such that rank(X) ≥ r+1.
(ii) There exist nonzero matrices Ω 0,Ω 1, . . . ,Ω k, for some k ≤ n−r−1 such that:

a. Ω j = ∑m
i=1 x j

i Ai( j = 0,1, . . . ,k), for some scalars x j
i ’s.

b. Ω 0 � 0, U T
1 Ω 1U1 � 0, . . . ,U T

k Ω kUk � 0.
c. trace(Ω jX∗) = 0 for j = 0,1, . . . ,k.
d. rank(Ω 0)+ rank(U T

1 Ω 1U1)+ · · ·+ rank(U T
k Ω kUk) = n− r.
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Here, U1, . . . ,Uk+1 and W0,W1, . . . ,Wk are full column rank matrices defined as
follows: For i= 0,1, . . . ,k, col(Wi)= null(U T

i Ω iUi) and Ui+1 =UiWi, where U0 =
In.

Two remarks concerning Theorem 2.22 are in order. First, if r = n−1, then this
theorem reduces to Corollary 2.5. Second, the integer k in this theorem, i.e., the
number of steps needed in the facial reduction procedure, depends on the choice of
the matrix U T

i Ω iUi in each step. The minimum number of such steps is called the
singularity degree of F [181]. For example, if k = 0, then the singularity degree is
one and the facial reduction procedure terminates in one step.

The following lemma is the crucial ingredient in the proof of Theorem 2.22.

Lemma 2.3 Let F , X∗, U j, U j+1 and W j be as in Theorem 2.22. Then

F ⊆ face(U j+1U
T
j+1,S

n
+)⊂ face(U jU

T
j ,S n

+), (2.14)

if the following two conditions hold:

1. F ⊂ face(U jU T
j ,S n

+),

2. ∃ a nonzero Ω j = ∑m
i=1 x j

i Ai for some scalars x j
i ’s such that U T

j Ω jU j � 0 and
trace(Ω jX∗) = 0.

Proof. Assume that Conditions 1 and 2 hold. Then since F ⊂ face(U jU T
j ,S n

+),
Corollary 2.9 implies that

F = {X =U jYjU
T
j : Yj � 0, trace(AiX) = bi for i = 1, . . . ,m}.

Now for any X ∈F , we have

trace(Ω jX) =
m

∑
i=1

x j
i trace(AiX) =

m

∑
i=1

x j
i bi =

m

∑
i=1

x j
i trace(AiX∗) = 0.

But trace(Ω jX) = trace(U T
j Ω jU jYj). Consequently, U T

j Ω jU jYj = 0 since both
Yj and U T

j Ω jU j are PSD. Therefore, by Proposition 1.1, Yj =W jYj+1W T
j for some

Yj+1 � 0. Hence, F = {X : X = U j+1Yj+1U
T
j+1 : Yj+1 � 0, trace(AiX) = bi for

i = 1, . . . ,m}, i.e., F ⊂ face(U j+1U
T
j+1,S

n
+). Moreover, face(U j+1U

T
j+1,S

n
+) ⊂

face(U jU T
j ,S n

+) since col(U j+1)⊂ col(U j).
�

The following observation concerning Lemma 2.3 is worth pointing out. Sup-
pose that U j is n × s. Then face(U jU T

j ,S n
+) is isomorphic to S s

+. Hence, if
rank(U T

j Ω jU j) = δ , then W j is s × (s − δ ) and therefore, U j+1 is n × (s − δ ).
As a result, face(U j+1U T

j+1,S
n
+) is isomorphic to S s−δ

+ . Accordingly, the higher
the rank of U T

j Ω jU j is, the greater the difference between the dimensions of
face(U jU T

j ,S n
+) and face(U j+1U

T
j+1,S

n
+) will be. Consequently, the higher the

ranks of the matrices U T
j Ω jU j’s are, the fewer steps the facial reduction scheme

will need.
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Proof of Theorem 2.22. All minimal faces in this proof are faces of S n
+ and thus

we will drop the second argument of face. We first prove that if Statement (i) does
not hold, then Statement (ii) holds. Therefore, assume that there does not exist X ∈
F such that rank(X)≥ r+1; i.e., assume that face(F ) = face(X∗). Then there does
not exist X � 0 such that trace(AiX) = bi for i = 1, . . . ,m. Hence, by Corollary 2.5,
there exists a nonzero Ω 0 � 0 such that Ω 0 = ∑m

i=1 x0
i Ai and trace(Ω 0X∗) = 0. Now

if rank(Ω 0) = n− r, then we are done and k = 0 in the theorem. Therefore, assume
that rank(Ω 0) = n−r−δ1 for some δ1 ≥ 1, and let W0 be an n×(r+δ1) full column
rank matrix such that col(W0) = null(Ω 0). Since F ⊂ face(I) = S n

+, it follows from
Lemma 2.3 that

F ⊆ face(U1U
T

1 )⊂ face(In) =S n
+,

where U1 = InW0 is n × (r + δ1) with full column rank. Moreover, face(F ) =
face(X∗) �= face(U1U

T
1 ). That is, X∗ = U1Y ∗

1 U
T

1 , where Y ∗
1 is a singu-

lar PSD matrix. Furthermore, there does not exist (r + δ1) × (r + δ1) matrix
Y1 � 0 such that trace(AiU1Y1U

T
1 ) = bi for i = 1, . . . ,m. Hence, by Corol-

lary 2.5, there exists a nonzero Ω 1 = ∑m
i=1 x1

i Ai such that U T
1 Ω 1U1 � 0 and

trace(U T
1 Ω 1U1Y ∗

1 ) = trace(Ω 1X∗) = 0. If rank(U T
1 Ω 1U1) = δ1, then we are

done and k = 1 in the theorem since rank(Ω 0) + rank(U T
1 Ω 1U1) = n− r. Thus,

assume that rank(U T
1 Ω 1U1) = δ1 − δ2, where 1 ≤ δ2 ≤ δ1 − 1. Let W1 be an

(r + δ1)× (r + δ2) full column rank matrix such that col(W1) = null(U T
1 Ω 1U1).

Since F ⊂ face(U1U
T

1 ), it follows from Lemma 2.3 that

F ⊆ face(U2U
T

2 )⊂ face(U1U
T

1 )⊂ face(In) =S n
+,

where U2 =U1W1 is n× (r+δ2) with full column rank.
Observe that, at each step, a lower dimensional face containing F is obtained.

Also, δ1,δ2, . . . is a strictly decreasing sequence of positive integers bounded above
by n− r − 1. Thus after at most n− r steps, we must have some k, k ≤ n− r − 1,
such that Uk is n× (r + δk) and rank(U T

k Ω kUk) = δk. But, rank(Ω 0) = n− r −
δ1, rank(U T

1 Ω 1U1) = δ1 − δ2, . . ., rank(U T
k−1Ω k−1Uk−1) = δk−1 − δk. Therefore,

Statement (ii) holds.
Second, we prove that if Statement (ii) holds then Statement (i) does not hold.

Thus, for k ≥ 1, assume that rank(Ω 0) = n− r−δ1,

rank(U T
1 Ω 1U1) = δ1 −δ2, . . . , rank(U T

k−1Ω k−1Uk−1) = δk−1 −δk,

and rank(U T
k Ω kUk) = δk. Therefore, W0 is n× (r+δ1), W1 is (r+δ1)× (r+δ2),

. . ., Wk−1 is (r+δk−1)× (r+δk) and Wk is (r+δk)× r. Moreover, U1 =W0, U2 =
W0W1, . . ., Uk+1 =W0 · · ·Wk. Hence, Uk+1 is n× r.

Now successive application of Lemma 2.3 yields

F ⊆ face(Uk+1U
T

k+1)⊂ face(UkU
T

k )⊂ ·· · ⊂ face(U1U
T

1 )⊂S n
+.
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But X∗ ∈F . Thus, face(F ) is a face of S n
+ containing X∗. Hence, by the definition

of a minimal face, it follows that face(X∗) ⊆ face(F ). Similarly, face(F ) ⊆
face(Uk+1U

T
k+1). Thus, face(X∗) ⊆ face(Uk+1U

T
k+1) or col(X∗) ⊆ col(Uk+1).

Therefore, face(X∗) = face(Uk+1U
T

k+1) since rank(X∗) = r and Uk is n× r. Conse-
quently, face(X∗) = face(F ) and thus Statement (i) does not hold.

Now if k = 0, i.e., if rank(Ω 0) = n− r, then W0 is n× r and hence U1 = InW0 is
also n× r. By applying Lemma 2.3 we get

face(X∗)⊆F ⊆ face(U1U
T

1 )⊂S n
+.

Hence, col(X∗) ⊆ col(U1) and thus col(X∗) = col(U1). Therefore, face(X∗) =
face(F ).

�

Example 2.4 As an illustration of the facial reduction algorithm and the proof of
Theorem 2.22, consider the spectrahedron F = {X � 0 : trace(XAi) = bi for i =
1, . . . ,4}, where

A1 =
1
9

⎡

⎣
16 4 4
4 1 1
4 1 1

⎤

⎦ ,A2 =
1
9

⎡

⎣
1 4 1
4 16 4
1 4 1

⎤

⎦ ,A3 =

⎡

⎣
0 0 0
0 1 −1
0 −1 1

⎤

⎦ ,

A4 =

⎡

⎣
1 0 −1
0 0 0

−1 0 1

⎤

⎦ and b =

⎡

⎢⎢
⎣

0
1
1
4

⎤

⎥⎥
⎦ . Then F = {X∗ =

1
4

⎡

⎣
1 −1 −3

−1 1 3
−3 3 9

⎤

⎦}.

That is, F is a singleton and rank(X∗) = r = 1. Therefore, F has empty interior
and hence, by Corollary 2.5, there exists a nonzero Ω 0 = ∑4

i=1 x0
i Ai � 0 such that

trace(Ω 0X∗) = bT x0 = 0. It is easy to see that, by setting x0
1 = 1, x0

2 = x0
3 = x0

4 = 0,

we get Ω 0 = A1 � 0. Thus, W0 =

⎡

⎣
−1 −1

4 0
0 4

⎤

⎦. Notice that rank(Ω 0) = 1. Hence,

δ1 = 1 since n− r = 2. Therefore, U1 =W0 and hence, F ⊂ face(U1U T
1 ,S 3

+), i.e.,

F = {X : X =U1Y1U
T

1 � 0 and trace(XAi) = bi for i = 1, . . . ,4},
= {Y1 � 0 : trace(Y1U

T
1 AiU1) = bi for i = 1, . . . ,4},

= {Y ∗
1 =

1
64

[
1 3
3 9

]
},

since U T
1 A1U1 = 0, U T

1 A2U1 =

[
25 5
5 1

]
, U T

1 A3U1 =

[
16 −16

−16 16

]
and U T

1 A4U1 =
[

1 5
5 25

]
.

Again, by Corollary 2.5, there exists a nonzero Ω 1 = ∑4
i=2 x1

i U
T

1 AiU1 � 0 such
that trace(U T

1 Ω 1U1Y ∗
1 ) = trace(Ω 1X∗) = bT x1 = 0, or x1

2 + x1
3 + 4x1

4 = 0. Elimi-
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nating x1
3 yields

U T
1 Ω 1U1 = 3

[
3x1

2 −21x1
4 7x1

2 +23x1
4

7x1
2 +23x1

4 −5x1
2 −13x1

4

]
� 0.

Hence, det(U T
1 Ω 1U1) =−192(x1

2 +2x1
4)

2 ≥ 0. Therefore, x1
2 =−2x1

4. Thus, by set-
ting x1

2 = 2, x1
3 = 2 and x1

4 =−1, we get

Ω 1 =
1
9

⎡

⎣
−7 8 11

8 50 −10
11 −10 11

⎤

⎦ and U T
1 Ω 1U1 = 9

[
9 −3

−3 1

]
� 0.

Notice that rank(U T
1 Ω 1U1) = δ1 = 1. Thus, rank(Ω 0)+ rank(U T

1 Ω 1U1) = 2 =
n− r. Therefore, k = 1 in Theorem 2.22, i.e., the singularity degree of F is 2.

Now W1 =

[
1
3

]
. Hence, U2 = U1W1 =

⎡

⎣
−4

4
12

⎤

⎦. Thus, F ⊆ face(U2U
T

2 ,S 3
+)

and more precisely, face(F ,S 3
+) = face(U2U

T
2 ,S 3

+). Note that X∗ =U2U
T

2 /64.

We saw in the preceding discussion that face(F ,S n
+) = face(Uk+1U

T
k+1,S

n
+).

As we noted earlier, face(F ,S n
+), as well as any other face of S n

+, is exposed.
To be more precise, let U k+1 be the n× (n− r) full column rank matrix such that
col(U k+1) = null(U T

k+1). Then face(F ,S n
+) = H ∩S n

+, where H = {X ∈ S n :

trace(U k+1U
T
k+1X) = 0}. Now, the exposing matrix U k+1U

T
k+1 can be found in

one step if and only if the singularity degree of F is one. Let M : S n → R
m be

the linear transformation where Mi(X) = trace(AiX). As it turns out, the minimal
faces of M (S n

+), unlike those of S n
+, may or may not be exposed. Drusvyatskiy

et al. [75] proved that the singularity degree of F is one iff face(b,M (S n
+)) is ex-

posed. Before presenting their result, we provide another characterization of Slater’s
condition.

Lemma 2.4 ([74]) Let F = {X ∈S n
+ : M (X) = b} and assume that F �= /0. Then

F satisfies Slater’s condition if and only if b lies in relint(M (S n
+)).

Proof. We have, by Theorem 1.21, that relint(M (S n
+)) =M (relint(S n

+)). Now,
obviously, there exists X � 0 : M (X) = b iff b lies in M (relint(S n

+)) and hence the
result follows.

�

Consequently, in the absence of Slater’s condition, we have the following theo-
rem.

Theorem 2.23 (Drusvyatskiy et al. [75]) Let M : S n → R
m be a linear transfor-

mation and let F = {X ∈S n
+ : M (X) = b}. Further, let X∗ ∈ relint(F ). Assume

that rank(X∗) = r ≤ n−1 and that M (S n
+) is closed. Then the following statements

are equivalent:

(i) The singularity degree of F is 1.
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(ii) w exposes face(b,M (S n
+)).

(iii) M ∗(w) exposes face(F ,S n
+).

(iv) M ∗(w)� 0, bT w = 0 and rank M ∗(w) = n− r.

Theorem 2.23 has interesting implications for dimensional rigidity, which we
study in Chap. 10. Next, we prove the following theorem which is used in the proof
of Theorem 2.23, and which is interesting in its own right.

Theorem 2.24 Let M : S n → R
m be a linear transformation and let F = {X ∈

S n
+ : M (X) = b}. Assume that M (S n

+) is closed and let X∗ ∈ relint(F ). Then

(i) M (face(X ,S n
+))⊆ face(b,M (S n

+)) for any X ∈F .
(ii) M (face(X∗,S n

+)) =M (face(F ,S n
+)) = face(b,M (S n

+)).

Proof. Let X ∈F . Then obviously, X lies in relint(face(X ,S n
+)). Hence, by The-

orem 1.21, it follows that M (X) = b lies in relint(M (face(X ,S n
+))). Note that

M (face(X ,S n
+)) is not necessarily a face of M (S n

+). However, obviously b lies
in relint(face(b,M (S n

+)). Thus, Theorem 1.28 implies that M (face(X ,S n
+)) ⊆

face(b,M (S n
+)).

To prove Statement (ii), let F = S n
+ ∩ M−1(face(b,M (S n

+))) and note that
M (F) = face(b,M (S n

+)) and F = S n
+ ∩ M−1(b). Then obviously, F ⊆ F .

Moreover, by Theorem 1.29, F is a face of S n
+. But b lies in relint(face(b,M (S n

+))).
Thus, Theorem 1.21 implies that there exists X in relint(F) such that M (X) = b,
i.e., F ∩ relint(F) �= /0. Therefore, by Corollary 1.2, face(F ,S n

+) = F and thus,
Statement (ii) holds since face(F ,S n

+) = face(X∗,S n
+).

�

Example 2.5 To illustrate the previous theorem, let M : S 2 → R
2, where

M (

[
x z
z y

]
) =

[
x
y

]
.

Then M (S 2
+) = R

2
+ = {x ∈ R

2 : x1 ≥ 0,x2 ≥ 0}. Let b = e. Then M−1(b) =

{
[

1 z
z 1

]
: z ∈ R} and thus F = S 2

+ ∩M−1(b) = {
[

1 z
z 1

]
: z2 ≤ 1}. As a result,

face(b,M (S 2
+)) = R

2
+ since b lies in the relative interior of M (S 2

+). Notice
that F satisfies Slater’s condition. Now let X∗ = I. Then X∗ ∈ int(F ) and thus
face(X∗,S n

+) =S n
+. Therefore, M (face(X∗,S n

+)) = R
2
+ = face(b,M (S 2

+)).
On the other hand, let X̄ = eeT . Then X̄ lies in the boundary of F and

face(X̄ ,S n
+) = {zeeT : z ≥ 0}. Thus, M (face(X̄ ,S n

+)) = R
2
+∩{x ∈ R

2 : x1 = x2}.



Chapter 3
Euclidean Distance Matrices (EDMs)

This chapter provides an introduction to Euclidean distance matrices (EDMs). Our
primary focus is on various characterizations and basic properties of EDMs. The
chapter also discusses methods to construct new EDMs from old ones, and presents
some EDM necessary and sufficient inequalities. It also provides a discussion of the
Cayley–Menger matrix and Schoenberg Transformations.

An n×n matrix D = (di j) is called a Euclidean distance matrix (EDM) if there
exist points p1, . . . , pn in some Euclidean space such that

di j = ||pi − p j||2 for i, j = 1, . . . ,n.

The dimension of the affine span of these points is called the embedding dimension
of D. If the embedding dimension of D is r, we always assume that p1, . . . , pn are
points in R

r. Of particular interest throughout the monograph is the EDM associated
with the standard simplex, i.e., Δ = E − I, where E is the n×n matrix of all 1’s and
I is the identity matrix of order n. Clearly, the embedding dimension of Δ is n−1.
Observe that if di j = 0 for some i �= j, then the ith and the jth columns (rows) of
D are identical. Conversely, if the ith and the jth columns (rows) of D are identical,
then di j = 0 since dii = 0. Consequently, D has no repeated columns (rows) iff the
off-diagonal entries of D are all nonzero iff no two of the generating points of D
coincide.

Let the embedding dimension of D be r, then the n× r full column rank matrix

P =

⎡

⎢
⎣

(p1)T

...
(pn)T

⎤

⎥
⎦ (3.1)

is called a configuration matrix of D. Consequently, the Gram matrix of points
p1, . . . , pn is the n×n matrix

B = PPT . (3.2)

Thus, B is positive semidefinite (PSD) and of rank r. Moreover, the entries of D can
be expressed in terms of the entries of B as follows.

© Springer Nature Switzerland AG 2018
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di j = ||pi − p j||2
= (pi)T pi +(p j)T p j −2(pi)T p j

= bii +b j j −2bi j.

Denote the vector of all 1’s by e, and the vector consisting of the diagonal entries
of a matrix A by diag(A). Define the linear operator K : S n →S n by

K (A) = diag(A)eT + e(diag(A))T −2A. (3.3)

Then, it is immediate that an EDM D can be expressed in terms of the Gram matrix
of its generating points as

D =K (B). (3.4)

Gram matrix B is invariant under orthogonal transformations since for any r× r
orthogonal matrix Q, it follows that (PQ)(PQ)T = PPT . However, B is not invariant
under translations. Let a be a nonzero vector in R

r and let P′ and B′ be, respectively,
the images of P and B under a translation along a. Then P′ =P−eaT and hence B′ =
B+aT aeeT −PaeT − eaT PT . Note that K (aT aeeT −PaeT − eaT PT ) = 0. Placing
the origin at a particular point removes these r translational degrees of freedom. This
amounts to requiring the configuration matrix P, and hence the Gram matrix B, to
satisfy PT s = 0 or Bs = 0 for some nonzero vector s in R

n. For example, if s = e/n,
then Bs= 0 is equivalent to placing the origin at the centroid of the generating points
p1, . . . , pn. On the other hand, if s = ei, where ei is the ith standard unit vector in
R

n, then Bs = 0 is equivalent to placing the origin at point pi. A remark is in order
here regarding the possible choices of such a vector s. Suppose that for some given
s, PT s �= 0. Then there exists a translation such that B′s = 0 only if eT s �= 0 since
P′T = PT −aeT . This fact will be manifest in the definition of the linear operator T
in the next section.

Example 3.1 Consider the EDM D =

⎡

⎣
0 18 36

18 0 18
36 18 0

⎤

⎦ generated by points lying on a

hypersphere of radius 3.

Let s1 = [1/2 0 1/2]T , then D has a configuration matrix P =

⎡

⎣
−3 0

0 3
3 0

⎤

⎦ satisfy-

ing PT s1 = 0. In this case, the hypersphere is centered at the origin since ||p1|| =
||p2||= ||p3||= 3, while the centroid of the generating points is PT e/3 = [0 1]T .

Now let s2 = e/3, then D also has a configuration matrix P =

⎡

⎣
−3 −1

0 2
3 −1

⎤

⎦ satis-

fying PT s2 = 0. In this case, the hypersphere is centered at a = [0 −1]T , while the
centroid of the generating points coincides with the origin.
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Example 3.2 Consider the EDM D =

⎡

⎢⎢
⎣

0 10 10 4
10 0 4 2
10 4 0 2
4 2 2 0

⎤

⎥⎥
⎦. Let s1 = e/4. Then D has a

configuration matrix P=

⎡

⎢
⎢
⎣

0 −2
−1 1

1 1
0 0

⎤

⎥
⎥
⎦ satisfying PT s1 = 0. Now let s2 = [1 1 1 −3]T .

Notice that eT s2 = 0 and PT s2 happened to be 0. However, if PT s �= 0 for some s
perpendicular to e, then D has no configuration matrix P′ satisfying P′T s = 0.

3.1 The Basic Characterization of EDMs

In this section we focus on the basic characterization of EDMs. Other characteriza-
tions will be discussed later in this chapter.

Let e⊥ denote the orthogonal complement of e in R
n; i.e.,

e⊥ = {x ∈ R
n : eT x = 0}.

Two vectors are of particular importance in the theory of EDMs. First, vector e
plays a fundamental role as it is part of the definition of K . Second, vector s, where
eT s = 1, also plays an important role since it used to eliminate the Gram matrix
translational degrees of freedom. In most of this monograph, we will be interested
in the case where s = e/n. In this case, one should keep in mind that e is playing a
dual role.

Let Q = I− seT , where eT s = 1. Then, obviously, Q is a projection matrix. More
precisely, Q is the projection matrix onto e⊥ along s. This follows since Qs = 0 and
eT Qx = 0 for any x; i.e., s and e are, respectively, in the null space and the left null
space of Q. Evidently, if s = e/n, then Q is the orthogonal projection matrix onto
e⊥.

Define the linear operator T : S n →S n by

T (A) =−1
2
(I − esT )A(I − seT ), (3.5)

where sT e = 1. The motivation behind this definition is given in the next lemma,
which establishes the connection between operators K and T . The operators K
and T were introduced by Critchley in [67], where several of their properties are
discussed. Let S n

h and S n
s be the two subspaces of S n defined as follows:

S n
h = {A ∈S n : diag(A) = 0} (3.6)

S n
s = {A ∈S n : As = 0}. (3.7)
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Lemma 3.1 (Critchley [67]) The operator T , restricted to S n
h , and the operator

K , restricted to S n
s are mutually inverse; i.e.,

T |S n
h
= (K |S n

s
)−1 and K |S n

s
= (T |S n

h
)−1.

Proof. Let A ∈ S n
h , then T (A) = −(A− AseT − esT A+ sT As eeT )/2. Hence,

diag(T (A))=As−(sT As/2) e. Thus, diag(T (A))eT +e(diag(T (A))T = 2T (A)+
A. Therefore, K (T (A)) = A.

On the other hand, let A ∈ S n
s . Then K (A)s = diag(A) + (sT diag(A))e since

As= 0 and eT s= 1. Consequently, sTK (A)s= 2sT diag(A). Moreover, K (A)seT =
diag(A)eT + sT diag(A) eeT . Therefore,

−2T (K (A)) =K (A)−diag(A)eT − e(diag(A))T =−2A

or T (K (A)) = A.
�

It is worth noting that dim S n
h = dim S n

s = n(n − 1)/2. The following two
lemmas are easy consequences of the definitions of K and T [25].

Lemma 3.2 The image of K =S n
h and the kernel of K = {aeT + eaT : a ∈ R

n}.

Lemma 3.3 The image of T =S n
s and the kernel of T = {aeT + eaT : a ∈ R

n}.

Schoenberg [167] and Young and Householder [200] established the basic char-
acterization of EDMs. The following theorem is a restatement, due to Gower [93],
of their result.

Theorem 3.1 (Schoenberg, Young and Householder) Let D be an n×n real sym-
metric matrix whose diagonal entries are all 0’s. Then D is an EDM if and only if D
is negative semidefinite on e⊥; i.e., if and only if

T (D)� 0.

Moreover, the embedding dimension of D is given by the rank of T (D).

Proof. Assume that D is an EDM of embedding dimension r. Then D = K (B)
where B, the Gram matrix of the generating points of D, satisfies Bs = 0. Thus,
T (D) =T (K (B)) = B is PSD of rank r.

On the other hand, assume that B = T (D) is PSD of rank r. Then, it follows
from (3.5) that Bs = 0. Moreover, B can be decomposed as B = PPT , where P is an
n× r full column rank matrix. Therefore, D = K (T (D)) = K (PPT ), and hence
D is an EDM generated by the points p1, . . . , pn, where (pi)T is the ith row of P.

�

We should point out that if D has a negative entry, then obviously D is not an
EDM. To see how this follows from Theorem 3.1, assume wlog that d12 < 0 and let
xT = [1 − 1 0T ]. Then clearly x ∈ e⊥ and xT Dx = −2d12 > 0, and hence D is not
negative semidefinite on e⊥.
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The following two observations made in [92] shed more light on vector s in T .
First, a nonzero D is never a PSD matrix since diag(D) = 0. Hence, B = T (D) is
PSD only if I− seT is singular. But det(I− seT ) = 0 iff eT s = 1. Second, Ds �= 0. To
see this, assume to the contrary that s ∈ null(D). Then eT s = 0 since e ∈ col(D) (see
Theorem 3.9 below).

In the next subsection, Theorem 3.1 is refined by exploiting the facial structure
of the positive semidefinite cone S n

+.

3.1.1 The Orthogonal Projection on e⊥

Different choices of projection matrices onto e⊥ amount to different choices of the
origin. In most situations, we will find it convenient to place the origin at the centroid
of the generating points of D; i.e., to set s = e/n. Accordingly, let J denote the
orthogonal projection matrix onto e⊥; i.e.,

J = I − eeT

n
. (3.8)

Throughout this monograph we make the following assumption:

Assumption 3.1 Unless otherwise stated, we assume that the Gram matrix B of an
EDM D satisfies Be = 0; i.e., the origin coincides with the centroid of the generating
points p1, . . . , pn.

Under this assumption, we have

T (D) =−1
2

JDJ. (3.9)

Different choices of a basis for e⊥ give rise to different factorizations of J. Next,
we present two such factorizations. The first one corresponds to a sparse, albeit
nonorthogonal, basis of e⊥, while the other one corresponds to an orthonormal,
albeit dense, basis.

To obtain the first factorization, let [25]

U =

[−eT
n−1

In−1

]
. (3.10)

Then, clearly, the columns of U form a (nonorthogonal) basis of e⊥. Consequently, J
can be factorized as J =UU†, where U† is the Moore–Penrose inverse of U . That is,
J = U(UTU)−1UT . As will be shown later, this factorization is particularly useful
for pencil-and-paper computations.

To obtain the second factorization, let V be the n×(n−1) matrix whose columns
form an orthonormal basis of e⊥. In other words, V satisfies

V T e = 0 and V TV = In−1. (3.11)



56 3 Euclidean Distance Matrices (EDMs)

Hence, J = VV T . This factorization of J is most useful for theoretical purposes.
As an immediate consequence of (3.11), we have the following fact which will be
used later in the monograph. Every (n− 1)× (n− 1) submatrix of V is nonsingu-
lar. To see this, let V̄ denote the submatrix of V obtained by deleting, say, its nth
row, and assume that V̄ is singular. Then there exists a nonzero ξ ∈ R

n−1 such that
ξ TV̄ = 0. Let ρT = [ξ T 0]. Then ρTV = 0 and thus rank(V )≤ n−2 since ρ �= e, a
contradiction.

Obviously, V is not unique and many choices of V are possible. One such choice
[21] is

V =

[
yeT

n−1
In−1 + xen−1eT

n−1

]
, where y =− 1√

n
and x =− 1

n+
√

n
. (3.12)

This particular choice of V is related to Householder matrices as will become clear
below. It is worth noting that

V =U(In−1 + xen−1eT
n−1) (3.13)

and
U =V (In−1 +

x
y

en−1eT
n−1). (3.14)

Let V1 and V2 be two n1 × (n1 − 1) and n2 × (n2 − 1) matrices, respectively, as
defined in (3.11). When dealing with 2×2 block matrices, we are often faced with
the problem of constructing an n× (n−1) matrix satisfying (3.11) out of V1 and V2,
where n = n1 +n2 (see, e.g., Theorem 3.20 below). To this end, let

V =

[
V1 0 αen1

0 V2 βen2

]
, (3.15)

where α and β are scalars. Hence, V satisfies (3.11) iff αn1 +βn2 = 0 and α2n1 +

β 2n2 = 1. Therefore, V satisfies (3.11) if α =
√

n2
nn1

and β =−
√

n1
nn2

.

Recall that the translational degrees of freedom can be eliminated by requiring
the Gram matrix B to satisfy the constraint Be = 0. As we show next, this constraint
can be dropped if instead of B, we use the corresponding projected Gram matrix.

3.1.2 The Projected Gram Matrix

It is an immediate consequence of Corollary 2.10 that set F = {A ∈S n
+ : Ae = 0}

is a maximal proper face of S n
+. Let Dn denote the set of n× n EDMs. Then Dn

is the image of F under the linear operator K . Moreover, F , by Corollary 2.9, can
be expressed as F = {A : A = V XV T , where X ∈S n−1

+ }, where V is as defined in
(3.11). This motivates the introduction [21] of the following two linear transforma-
tions: KV : S n−1 →S n

h and TV : S n
h →S n−1 defined by KV (X) =K (V XV T )

and TV (A) =V TT (A)V . That is,
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KV (X) = diag(V XV T )eT + e(diag(V XV T ))T −2V XV T (3.16)

TV (A) = −1
2

V T AV. (3.17)

Lemma 3.4 T (A) =VTV (A)V T for all A ∈S n.

Proof. Let A ∈ S n, then T (A)e = 0. Thus, VTV (A)V T = VV TT (A)VV T =
T (A) since VV T = J and since T (A)e = 0.

�

The next lemma is especially useful in the study of the geometry of the EDMs.

Lemma 3.5 ([21]) The adjoint of KV is given by

K ∗
V (A) = 2V T (Diag(Ae)−A)V.

Proof. Let A ∈S n. Then trace(AKV (X)) = 2 trace(V T (Diag(Ae)−A)V X) and
the result follows.

�

Note that KV has a trivial kernel since the kernel of K = {aeT + eaT : a ∈ R
n}.

The following lemma is analogous to Lemma 3.1.

Lemma 3.6 ( [21]) The transformation TV , restricted to S n
h , is the inverse of the

transformation KV ; i.e.,

TV |S n
h
= (KV )

−1 and KV = (TV |S n
h
)−1.

Proof. Let X ∈ S n−1, then TV (KV (X)) = V TT (K (V XV T ))V = X . On the
other hand, let A ∈ S n

h then T (A)e = 0. Thus KV (TV (A)) = K (VTV (A)V T ) =
K (T (A)) = A.

�

An immediate consequence of the definition of T and Lemma 3.4 is the fact that
if A ∈ S n

h , then rank(T (A)) = rank(TV (A)) and T (A) � 0 iff TV (A) � 0. As a
result, the following theorem is a restatement of Theorem 3.1.

Theorem 3.2 ([24, 21]) Let D be an n× n real symmetric matrix whose diagonal
entries are all 0’s. Then D is an EDM if and only if

TV (D)� 0.

Moreover, the embedding dimension of D is given by the rank of TV (D).

As a result, Dn is the image of S n−1
+ under the linear transformation KV ; and

S n−1 is the image of Dn under the linear transformation TV . Furthermore, if D is an
EDM, then T (D) is the Gram matrix of D. Accordingly, the matrix TV (D) is called
the projected Gram matrix of D. As we will see below, projected Gram matrices
have a geometric interpretation in terms of the volume of the simplex defined by the
generating points of D.

The following characterization, which follows as a corollary of Theorem 3.2, is
particularly useful for pencil-and-paper computation for small n.
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Theorem 3.3 ([25]) Let D =

[
0 dT

d D̄

]
be an n×n real symmetric matrix whose di-

agonal entries are all 0’s, where d ∈ R
n−1. Then D is an EDM if and only if

deT
n−1 + en−1dT − D̄ � 0. (3.18)

Moreover, the embedding dimension of D is given by rank(deT
n−1 + en−1dT − D̄).

Proof. D is an EDM iff (−V T DV ) � 0. But V = UA where U is as defined in
(3.10) and A is the nonsingular matrix given in (3.13). Thus, D is an EDM iff
−UT DU � 0. The result follows since UT DU = −deT

n−1 − en−1dT + D̄ and since
rank(UT DU) = rank(V T DV ).

�

As an application of Theorem 3.3, we present a proof of the obvious fact that if
D is an EDM, then the square roots of its entries satisfy the triangular inequality.

Theorem 3.4 Let n ≥ 3 and let D be an n× n EDM. Then for any distinct indices
i, j,k, we have

|√di j −
√

d jk| ≤
√

dik ≤
√

di j +
√

d jk.

Proof. Wlog assume that i = 1, j = 2,z = 3, and that d12 = a, d13 = b and d23 = c.
Then it follows from Theorem 3.3 that

[
2a a+b− c

a+b− c 2b

]
� 0.

Thus,

4ab− (a+b− c)2 = (2
√

a
√

b−a−b+ c) (2
√

a
√

b+a+b− c)≥ 0.

Hence, we have two possibilities. The first one is:

(2
√

a
√

b−a−b+ c)≥ 0 and (2
√

a
√

b+a+b− c)≥ 0

or (
√

a−√
b)2 ≤ c ≤ (

√
a+

√
b)2.

The second possibility is (2
√

a
√

b−a−b+c)≤ 0 and (2
√

a
√

b+a+b−c)≤ 0;
or (

√
a+

√
b)2 ≤ c ≤ (

√
a−√

b)2, a contradiction.
�

As the following example shows, the converse of Theorem 3.4 is false for n ≥ 4.

Example 3.3 Consider the matrix A=

⎡

⎢⎢
⎣

0 1 1 α
1 0 1 α
1 1 0 α
α α α 0

⎤

⎥⎥
⎦. The square roots of the entries

of A satisfy the triangular inequality for α = 0.3 since
√

0.3 > 0.54, i.e.,
√

α >
1/2. However, A is not an EDM. In fact, A is an EDM iff α ≥ 1/3. Moreover, the
embedding dimension of A is 2 iff α = 1/3.



3.2 The Gale Matrix Z 59

The following example shows the advantage of Theorem 3.3 for pencil-and-paper
computations.

Example 3.4 Let D =

⎡

⎢
⎢
⎣

0 10 10 4
10 0 4 2
10 4 0 2
4 2 2 0

⎤

⎥
⎥
⎦. Then D is an EDM of embedding dimension

2 since deT
3 + e3dT − D̄ =

⎡

⎣
20 16 12
16 20 12
12 12 8

⎤

⎦ is PSD and of rank 2.

As noted earlier, the choice of V in (3.12) is related to Householder matrices.
This fact, which is established next, leads to yet another characterization of EDMs.
Let Q be the n×n Householder matrix

Q = I −2
vvT

vT v
, where v =

[
1+

√
n

en−1

]
. (3.19)

Then, vT v = 2(n+
√

n) and

2
vvT

vT v
=

[
1+1/

√
n eT

n−1/
√

n
en−1/

√
n en−1eT

n−1/(n+
√

n)

]
.

Hence,

Q =

[
y yeT

n−1
yen−1 In−1 + xen−1eT

n−1

]
=

[
yeT

V T

]
.

Hence, the following theorem is a simple corollary of Theorem 3.2. One should
keep in mind that Q = QT .

Theorem 3.5 (Hayden and Wells [102]) Let D be an n× n real symmetric matrix
whose diagonal entries are all 0’s, and let Q be the householder matrix defined in
(3.19). Then D is an EDM if and only if the submatrix of (−QDQT ) obtained by
deleting the first row and the first column is positive semidefinite. Moreover, the
embedding dimension of D is given by the rank of this submatrix.

3.2 The Gale Matrix Z

The notion of Gale transform, which plays a key role in the theory of polytopes
[84, 99], also plays an important role in the theory of EDMs. The Gale space of an
n×n EDM D of embedding dimension r, denoted by gal(D), is defined as

gal(D) = null(

[
PT

eT

]
) = null(PT )∩null(eT ), (3.20)
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where P is a configuration matrix of D. Accordingly, the dimension of gal(D) is
given by

r̄ = n−1− r. (3.21)

Let P′ be a configuration matrix of D obtained from P by a translation along a. Thus
P′ = P − eaT . Hence, null(P′T ) ∩ null(eT ) = null(PT ) ∩ null(eT ). Consequently,
gal(D) is uniquely determined by D. Gale space can also be defined in terms of

the null space of the Gram matrix B =T (D). More precisely, gal(D) = null(

[
B
eT

]
)

since null(PT ) = null(B).
Any n× r̄ matrix Z whose columns form a basis of gal(D) is called a Gale matrix

of D. Let (zi)T be the ith row of Z, i.e., let

Z =

⎡

⎢
⎣

(z1)T

...
(zn)T

⎤

⎥
⎦ . (3.22)

Then z1, . . . ,zn are called Gale transforms of p1, . . . , pn, respectively. As we will
see in this monograph, in some cases it is more convenient to use Gale matrix Z,
whereas in other cases, using Gale transforms z1, . . . ,zn is more convenient.

Observe that the columns of Z encode the affine dependency of the generating
points of D. As a result, Gale matrices are particularly useful in characterizing points
in general position. Points p1, . . . , pn in R

r are said to be in general position in R
r if

every r+1 of these points is affinely independent; i.e., if every r+1 of these points
affinely spans Rr. For instance, points in the plane are in general position if no three
of them are collinear since three collinear points affinely span a straight line. An
immediate consequence of this definition is that if n points are in general position
in R

r and if n ≥ r+ 2, then any n− 1 of these points will continue to affinely span
R

r. In other words, deleting one point from a configuration of n (n ≥ r+ 2) points
in general position in R

r does not decrease the dimension of the affine hull of the
remaining points.

An EDM D of embedding dimension r is said to be in general position if its gen-
erating points are in general position in R

r. The following lemma relates the affine
dependence of a point configuration to the linear dependence of the corresponding
Gale transforms.

Lemma 3.7 Let z1, . . . ,zn ∈ R
n−r−1 be Gale transforms of p1, . . . , pn ∈ R

r, respec-
tively. Let I be a subset of {1, . . . ,n} of cardinality r + 1. Then {pi : i ∈ I }
are affinely dependent if and only if {zi : i ∈ Ī } are linearly dependent, where
Ī = {1, . . . ,n}\I .

Proof. Wlog assume that I = {1, . . . ,r + 1}, i.e., assume that p1, . . . , pr+1

are affinely dependent. Then there exists a nonzero λ = (λi) ∈ R
r+1 such that

∑r+1
i=1 λi pi = 0 and ∑r+1

i=1 λi = 0. Let x be the vector in R
n such that x =

[
λ
0

]
. Then

∑n
i=1 xi pi = 0 and ∑n

i=1 xi = 0; i.e., x ∈ gal(D). As a result, if Gale matrix Z is parti-
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tioned as Z =

[
Z1

Z2

]
, where Z1 is (r+1)× (n− r−1). Then

x =

[
λ
0

]
=

[
Z1

Z2

]
ξ ,

for some nonzero ξ ∈ R
n−r−1. Consequently, the square matrix Z2 is singular.

Therefore, the rows of Z2, i.e., zr+2, . . . ,zn are linearly dependent. The result fol-
lows since each of the above steps is reversible.

�

As an immediate corollary of Lemma 3.7, we have the following characterization
of point configurations in general position.

Corollary 3.1 ([6]) Let D be an n× n EDM of embedding dimension r, r ≤ n− 2,
and let Z be a Gale matrix of D. Then D is in general position if and only if every
submatrix of Z of order (n− r−1) is nonsingular.

More useful properties of Gale matrices are given next. Assume that p1, . . . , pr+1

are affinely independent and that Gale matrix Z is partitioned as Z =

[
Z1

Z2

]
, where

Z2 is (n−1−r)×(n−1−r). Then Z2 is nonsingular. Moreover, the matrix obtained
by multiplying Z from the right with Z−1

2 is also a Gale matrix. Consequently, by
relabelling the nodes if necessary, we always have a Gale matrix of the form Z =[

Z̄
In−1−r

]
.

Another useful property of Gale space is its connection with the null space of pro-
jected Gram matrices. This connection will be used repeatedly in this monograph.

Lemma 3.8 ([2]) Let D be an n× n EDM of embedding dimension r ≤ n− 2, and
let X =TV (D) be the projected Gram matrix of D. Let Z and P, PT e = 0, be a Gale
matrix and a configuration matrix of D. Further, let U and W be the matrices whose
columns form orthonormal bases of null(X) and col(X), respectively. Then

1. VU = ZA for some nonsingular matrix A; i. e., VU is a Gale matrix of D.
2. VW = PA′ for some nonsingular matrix A′.

Proof. X = V T PPTV . Thus XU = 0 iff PTVU = 0. But eTVU = 0. Hence, the
columns of VU form a basis of gal(D) and thus Statement 1 follows. Statement 2
follows since ZTVW = A−TUTV TVW = 0 and eTVW = 0.

�

More properties are given in Chap. 7, where Gale transform is revisited.

3.3 Basic Properties of EDMs

Several properties of EDMs follow from their characterizations in the previous sec-
tion. Theorems 3.1 and 1.5 imply that an n× n EDM D has at least n− 1 nonposi-
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tive eigenvalues. But diag(D) = 0 and hence trace(D) = 0. Consequently, a nonzero
EDM has exactly one positive eigenvalue. A real symmetric matrix with exactly one
simple positive eigenvalue is called elliptic. Moreover, an elliptic matrix C is said to
be special elliptic [80] if diag(C) = 0. For example,

C =

[
0 1
1 0

]
(3.23)

is a special elliptic matrix. Accordingly, the set of nonzero EDMs is a proper sub-
set of the set of nonnegative special elliptic matrices [80]. To see that not every
nonnegative special elliptic matrix is an EDM, consider the matrix

C′ =
[

C 0
0 0

]
,

where C is the matrix in (3.23). Obviously, C′ is a nonnegative special elliptic matrix,
but it is not an EDM.

The sign of the determinant of a nonsingular elliptic matrix is easily determined.

Lemma 3.9 Let A be an n×n nonsingular elliptic matrix. Then the determinant of
A has sign (−1)n−1.

Proof. A has exactly n− 1 negative eigenvalues since A is nonsingular and has
exactly one positive eigenvalue. Therefore, sign det(A) = (−1)n−1 since the deter-
minant of A is the product of its eigenvalues.

�

The set of special elliptic matrices is characterized in the following theorem.

Theorem 3.6 (Fiedler [80]) The set of n × n, n ≥ 2, special elliptic matrices is
given by

{C ∈S n : C = aaT −A �= 0, where A � 0, A �= 0 and diag(C) = 0}.

Proof. Let C be a special elliptic matrix and let λ be its positive eigenvalue with
corresponding normalized eigenvector x. Further, let C = λxxT −WΛW T be the
spectral decomposition of C, where (−Λ ) is the diagonal matrix consisting of the
nonpositive eigenvalues of C. Therefore, C = aaT −A where A = WΛW T � 0 and
a =

√
λ x.

On the other hand, assume that C = aaT − A �= 0, where A � 0, A �= 0 and
diag(C) = 0. Then since trace(C) = 0 and C �= 0, it follows that C has at least one
positive eigenvalue. Now let L = a⊥. Then dim(L ) = n− 1. Moreover, for each
y ∈L , we have yTCy =−yT Ay ≤ 0. Therefore, by Theorem 1.5, C has at least n−1
nonpositive eigenvalues; i.e., C has at most one positive eigenvalue. Consequently,
C has exactly one positive eigenvalue and the result follows.

�

It should be pointed out that the set of n× n special elliptic matrices, for n ≥ 4,
is not convex [80] since the matrix
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1
2

[
C 0
0 0

]
+

1
2

[
0 0
0 C

]
,

where C is the matrix in (3.23), is not elliptic.
Next, we establish the connection between Gale matrices and EDMs.

Lemma 3.10 Let D be a nonzero EDM and let Z be a Gale matrix of D. Further, let
B =T (D) be the Gram matrix of D. Then

DZ = eξ T ,

where ξ = ZT diag(B).

Proof. This follows directly from the definition of K in (3.3) since D =K (B).
�

Theorem 3.7 Let D be a nonzero n×n EDM and let gal(D) be its Gale space. Then

null(D)⊆ gal(D).

Proof. Let x ∈ null(D) and let B = T (D). Then it follows from the definition
of T in (3.9) that 2xT Bx = −(eT x)2eT De/n2 ≤ 0. But since B is PSD and since
eT De > 0, it follows that eT x = 0 and xT Bx = 0. Consequently, x ∈ gal(D).

�

An immediate consequence of Theorem 3.7 is that the rank of an n×n nonzero
EDM can assume only two values, and that these values are independent of n.

Theorem 3.8 (Gower [93]) Let D be a nonzero n× n EDM of embedding dimen-
sion r. Then

rank(D) = r+1 or rank(D) = r+2.

Proof. On the one hand, it follows from Eq. (1.7) and the definition of K that
rank(D) ≤ r + 2. On the other hand, by Theorem 3.7, rank(D) ≥ r + 1 since dim
gal(D) = n− r−1. Thus the result follows.

�

Another consequence of Theorem 3.7 is that e is always in the column space of
a nonzero EDM.

Theorem 3.9 (Gower [93]) Let D be a nonzero n×n EDM. Then

e lies in col(D) or DD†e = e,

where D† is the Moore–Penrose inverse of D.

Proof. This follows from Theorem 3.7 since gal(D)⊥ ⊆ col(D) and since
e ∈ gal(D)⊥. Recall that DD† is the orthogonal projection on col(D).

�

The following theorem exploits the freedom to choose an origin.
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Theorem 3.10 Let D be a nonzero EDM and let Dw = e, then there exists a config-
uration matrix P of D such that PT w = 0.

Proof. The existence of w follows from Theorem 3.9. If eT w �= 0, let the Gram
matrix be B = − 1

2 (I − ewT/(eT w))D(I − weT/(eT w)). Then Bw = 0 and hence
PT w = 0. In this case, the centroid of the generating points of D is PT e/n.

On the other hand, if eT w = 0, then let B = −(I − esT )D(I − seT )/2 for some s
such that eT s = 1. Thus, Bw = 0 since D(I − seT )w = e. Hence PT w = 0.

�

Example 3.5 Consider the EDM D =

⎡

⎢⎢
⎣

0 1 9 16
1 0 4 9
9 4 0 1

16 9 1 0

⎤

⎥⎥
⎦. Then Dw = e yields w =

1
6 [1 − 1 − 1 1]T and hence eT w = 0. Let B = −JDJ/2 then the configuration

matrix is P =

⎡

⎢⎢
⎣

−2
−1

1
2

⎤

⎥⎥
⎦. Note that PT w = 0 as well as PT e = 0. In this case, the

centroid of the generating points coincides with the origin.

The following theorem presents a necessary and sufficient condition for a special
elliptic matrix to be an EDM.

Theorem 3.11 (Crouzeix and Ferland [68]) Let D be a nonzero real symmetric
matrix whose diagonal entries are all zeros. Assume that D has exactly one pos-
itive eigenvalue. Then D is an EDM if and only if there exists w ∈ R

n such that
Dw = e and wT e ≥ 0.

Proof. Assume that D is an EDM. Then by Theorem 3.9, there exists w such that
Dw = e. If eT w = 0, there is nothing to prove. Therefore, assume that eT w �= 0.
Thus, we can assume that the origin is chosen such that PT w = 0. Then it follows
from the definition of K that Dw = eT w diag(B)+diag(B)T w e = e. Hence,

eT w diag(B) = (1−wT diag(B))e. (3.24)

Thus, 2eT w wT diag(B) = wT e and hence wT diag(B) = 1/2. Hence, it follows from
(3.24) that eT w > 0 since diag(B)≥ 0. Therefore, if D is an EDM, then either eT w =
0 or eT w > 0.

To prove the reverse direction, assume that there exists w such that Dw = e and
eT w ≥ 0. We consider two cases.

Case 1: wT e> 0. Then the matrix S = [w V ] is nonsingular, where V is as defined
in (3.11). Moreover,

ST DS =

[
wT e 0

0 V T DV

]
.

Therefore, since D has exactly one positive eigenvalue, it follows from Sylvester
law of inertia that ST DS has exactly one positive eigenvalue, namely eT w. Hence,
V T DV is negative semidefinite. Consequently, D is an EDM since TV (D) is PSD.
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Case 2: wT e = 0. Let V = [w V̄ ] and thus the matrix S′ = [e w V̄ ] is nonsingu-

lar. Moreover, S′T DS′ =

⎡

⎣
eT De n eT DV̄

n 0 0
V̄ T De 0 V̄ T DV̄

⎤

⎦. Note that the Schur complement of

[
eT De n

n 0

]
is

V̄ T DV̄ − [V̄ T De 0]
[

0 1/n
1/n −eT De/n2

][
eT DV̄

0

]
= V̄ T DV̄ .

Therefore, let

E =

⎡

⎣
1 0 0
0 1 0
0 −V̄ T De/n I

⎤

⎦ . Then E(S′T DS′)ET =

⎡

⎣
eT De n 0

n 0 0
0 0 V̄ T DV̄

⎤

⎦ .

But

[
eT De n

n 0

]
has one positive and one negative eigenvalue since its determinant

is negative. Therefore, it follows from Sylvester law of inertia and the fact that D
has exactly one positive eigenvalue that V̄ T DV̄ is negative semidefinite and hence

V T DV =

[
0 0
0 V̄ T DV̄

]
is negative semidefinite.

�

It should be pointed out that if D is an EDM and if Dw= e, then whether eT w= 0
or eT w > 0 has a geometric significance. This issue will be investigated in great de-
tail in Chap. 4. We conclude this section with the following theorem which extends
the notion of the polynomial of a graph to EDMs [110].

Theorem 3.12 Let D be a nonzero n×n EDM. Then there exists a polynomial g(D)
such that

g(D) = γxxT , (3.25)

where x ∈ R
n is the Perron eigenvector of D and γ is a scalar.

Proof. Let the distinct eigenvalues of D be λ > −μ1 > · · · > −μk. Therefore,
(D−λ I)x = 0. Since D is symmetric, the minimal polynomial of D implies that

m(D) = (D−λ I)(D+μ1I) · · ·(D+μkI) = (D−λ I)
k

∏
i=1

(D+μiI) = 0.

Therefore, ∏k
i=1(D+ μiI) = xyT for some vector y. But since D is symmetric, this

implies that

g(D) =
k

∏
i=1

(D+μiI) = γxxT

for some scalar γ .
�
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3.4 The Cayley–Menger Matrix

The Cayley–Menger determinant [52, 143, 144, 46, 45, 66] is used to compute the
volume of a simplex. As will be shown in this section, this volume can also be
computed using the corresponding projected Gram matrix. Moreover, the Cayley–
Menger matrix and the Cayley–Menger determinant provide yet another characteri-
zation of EDMs.

Let D be an EDM, then M =

[
0 eT

e D

]
is called the Cayley–Menger matrix of D,

and det(M) is called the Cayley–Menger determinant of D. It should be pointed out
that M, not D, is what Menger [143] calls a distance matrix. As it is shown next, the
Cayley–Menger determinant is independent of the labeling of the generating points
of D.

Theorem 3.13 Let D be an n× n EDM and let Q be an n× n permutation matrix.
Then

det(

[
0 eT

e QT DQ

]
) = det(

[
0 eT

e D

]
).

Proof. By definition of Q, Qe = e and QT e = e. Therefore,
[

1 0
0 QT

][
0 eT

e D

][
1 0
0 Q

]
=

[
0 eT

e QT DQ

]
,

and the result follows.
�

Suppose that D is nonsingular and let Dw = e. Further, assume that eT w =
1/(2ρ2)> 0. Then the inverse of the Cayley–Menger matrix M is given by

[
0 eT

e D

]−1

= 2ρ2
[−1 wT

w D−1/(2ρ2)−wwT

]
. (3.26)

The entries of M−1 have an interesting geometric interpretation which is discussed
in the next chapter.

The following theorem is a special case of a more general result of Chabrillac
and Crouzeix [53]. It provides a characterization of EDMs in terms of M.

Theorem 3.14 (Hayden and Wells [102] and Fiedler [80]) Let D be a nonzero
real symmetric n × n matrix whose diagonal entries are all zeros and let

M =

[
0 eT

e D

]
. Then D is an EDM if and only if M has exactly one positive eigen-

value, in which case, rank(M) = r+2, where r is the embedding dimension of D.
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Proof. Let Q =

[
0 1 0

e/
√

n 0 V

]
, then QT MQ =

⎡

⎢
⎣

1
n eT De

√
n 1√

n eT DV√
n 0 0

1√
nV T De 0 V T DV

⎤

⎥
⎦. Note

that Q is orthogonal and that the Schur complement of

[
eT De/n

√
n√

n 0

]
is

V T DV − [
1√
n

V T De 0]
[

0 1/
√

n
1/
√

n −eT De/n2

][
eT DV/

√
n

0

]
=V T DV.

Thus, let

E =

⎡

⎣
1 0 0
0 1 0
0 −V T De/n I

⎤

⎦ . Then E(QT MQ)ET =

⎡

⎣
eT De/n

√
n 0√

n 0 0
0 0 V T DV

⎤

⎦ .

Now,

[
eT De/n

√
n√

n 0

]
has one positive and one negative eigenvalue since its de-

terminant is negative. Therefore, it follows from Sylvester law of inertia that M
has exactly one positive eigenvalue if and only if V T DV is negative semidefinite.
Observe that rank(M) = rank(V T DV )+2.

�

It should be noted that Theorem 3.14 still holds if e in M is replaced by (−e).
The volume of a simplex can be computed in terms of its corresponding Cayley–

Menger determinant. The area of a triangle of vertices at p1, p2, and p3 in R
2 is

given by
1
2!

det(

[
1 1 1
p1 p2 p3

]
).

This formula generalizes to simplices in higher dimensions. Let p1, . . . , pn be in
R

n−1 and let V (p1, . . . , pn) denote the volume of the simplex whose vertices are at
p1, . . . , pn. Then

V(p1, . . . , pn) =
1

(n−1)!
det(

[
1 1 · · · 1
p1 p2 · · · pn

]
) =

1
(n−1)!

det(

[
eT

PT

]
).

Theorem 3.15 (Menger [144]) Let D be an n× n EDM of embedding dimension
n−1 and let V(p1, . . . , pn) denote the volume of the simplex defined by the generat-
ing points of D. Then

V2(p1, . . . , pn) =
(−1)n

2n−1((n−1)!)2 det(

[
0 eT

e D

]
).

Proof. Using the fact that det(AT ) = det(A), we obtain that

((n−1)!)2 V2(p1, . . . , pn) = det(
[

e P
][ eT

PT

]
) = det(

[
eeT +PPT

]
).
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But this last determinant is obviously equal to det(

[
1 eT

0 eeT +PPT

]
), which in turn

is equal to det(

[
1 eT

−e B

]
). This follows by subtracting row 1 from rows 2 to n. Now

this last determinant is equal to det(

[
0 eT

−e B

]
) since its (1,1) cofactor is det(B) = 0.

But,

det(

[
0 eT

−e B

]
) =

1
(−2)n det(

[
0 eT

2e −2B

]
) =

2
(−2)n det(

[
0 eT

e −2B

]
),

where the first equality follows by multiplying rows 2 to n+ 1 with −2; and the
second equality follows by factoring 2 out of the first column. Moreover,

det(

[
0 eT

e −2B

]
) = det(

[
0 eT

e diag(B)eT + e(diag(B))T −2B

]
) = det(

[
0 eT

e D

]
),

where the first equality follows by adding to row i, i = 2, . . . ,n+ 1, bi−1i−1 times
row 1; and by adding to column j, j = 2, . . . ,n+ 1, b j−1 j−1 times column 1. Thus
the result follows.

�

Observe that (−1)n det(M) is positive. This follows as a simple consequence of
Lemma 3.9 and Theorem 3.14.

The volume of a simplex can be, equivalently, expressed in terms of its corre-
sponding projected Gram matrix as shown by the following two corollaries.

Corollary 3.2 Let D be an n × n EDM of embedding dimension n − 1 and let
V(p1, . . . , pn) denote the volume of the simplex defined by the generating points of
D. Then

V2(p1, . . . , pn) =
n

((n−1)!)2 det(TV (D)).

Proof. The proof of Theorem 3.14 implies that det(M) = −n det(V T DV ) =
(−1)n2n−1n det(TV (D)).

�

Corollary 3.3 Let D =

[
0 dT

d D̄

]
be an n× n EDM of embedding dimension n− 1;

and let V(p1, . . . , pn) denote the volume of the simplex defined by the generating
points of D. Then

V2(p1, . . . , pn) =
1

2n−1((n−1)!)2 det(deT
n−1 + en−1dT − D̄).

Proof. Recall from Eq. (3.13) that V = UA where A = In−1 + xen−1eT
n−1.

Hence, det(A) = 1+ x(n− 1) = 1/
√

n. Moreover, det(TV (D)) = 2−n+1 (det(A))2

det(−UT DU).
�



3.4 The Cayley–Menger Matrix 69

Example 3.6 Consider the simplex with vertices at p1 = e1, p2 = e2, p3 = e3,
and p4 = 0, where e1,e2, and e3 are the standard unit vectors in R

3. The EDM
generated by this configuration and the corresponding projected Gram matrix are

D=

⎡

⎢⎢
⎣

0 2 2 1
2 0 2 1
2 2 0 1
1 1 1 0

⎤

⎥⎥
⎦ and X =TV (D) = 1

36

⎡

⎣
35 −1 5
−1 35 5

5 5 11

⎤

⎦, respectively, where we used V

as in (3.12). Then det(M) = 8. Hence, the volume of this simplex is 1/6. Moreover,
det(X) = 1/4. Hence, the volume of this simplex is also 1/6.

Now X ′ = deT + edT − D̄ =

⎡

⎣
4 2 2
2 4 2
2 2 2

⎤

⎦. Thus det(X ′) = 8. Hence, again, the vol-

ume of this simplex is 1/6.

As an application of Corollary 3.3 we derive Heron’s formula for the area of a
triangle. The square of the area of a triangle with side lengths of a,b, and c is thus

1
16

det(

[
2a2 a2 +b2 − c2

a2 +b2 − c2 2b2

]
) =

1
16

(4a2b2 − (a2 +b2 − c2)2).

As we noted earlier, the Cayley–Menger determinant provides yet another char-
acterization of EDMs.

Theorem 3.16 (Blumenthal [45]) Let D be a nonzero n×n symmetric real matrix

whose diagonal entries are all 0’s. Let M =

[
0 eT

e D

]
and let Δi be the ith leading

principal minor of M. Then the following two statements are equivalent:

(i) D is an EDM of embedding dimension r ≤ n− 1, where the first r+ 1 of the
generating points are affinely independent.

(ii) (−1)i−1Δi > 0 for i = 3, . . . ,r+2; and for each i, j: r+3 ≤ i < j ≤ n+1, we
have

(a) The principal minor of M induced by [1, . . . ,r+2, i] is zero,
(b) The principal minor of M induced by [1, . . . ,r+2, j] is zero,
(c) The principal minor of M induced by [1, . . . ,r+2, i, j] is zero,

Proof. Assume that Statement (i) holds, then since the first r+1 of the generating
points are affinely independent, it follows that V(p1, . . . , pi−1) �= 0 for i = 3, . . . ,r+
2. Hence, it follows from Theorem 3.15 that for i = 3, . . . ,r + 2, (−1)i−1Δi > 0
since V2(p1, . . . , pi−1) > 0. Moreover, V(p1, . . . , pr+1, pi−1) = 0 for each i = r +
3, . . . ,n + 1; and V(p1, . . . , pr+1, pi−1, p j−1) = 0 for each r + 3 ≤ i < j ≤ n + 1.
Thus, Statement (ii) follows from Theorem 3.15 since the principal minors of M
induced by [1, . . . ,r + 2, i] and [1, . . . ,r + 2, i, j] are proportional, respectively, to
V2(p1, . . . , pr+1, pi−1) and V2(p1, . . . , pr+1, pi−1, p j−1).
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To prove the reverse direction, assume that Statement (ii) holds. Let D=

[
0 dT

d D̄

]

and let S =

⎡

⎣
1 0 0
0 1 0

−d −e I

⎤

⎦. Then SMST =

⎡

⎣
0 1 0
1 0 0
0 0 UT DU

⎤

⎦, where U is as defined in

(3.10). Let Δ ′
i denote the ith leading principal minor of UT DU . Then Δi =−Δ ′

i−2 for
i = 3, . . . ,n+1. Hence, (−1)iΔ ′

i > 0 for i = 1, . . . ,r; i.e., the first r leading principal
minors of UT DU are nonzero. Therefore, there exists elementary matrix S′ such that

S′(UT DU)S′T =

[
Γ 0
0 A

]
, where Γ = Diag(γ1, . . . ,γr), and A = (ai j) is (n− r−1)×

(n− r−1). Note that for i = 1, . . . ,r, we have Δ ′
i = γ1 · · ·γi. Hence, γ1, . . . ,γr are all

negative and hence Γ is negative definite.
Now let r + 3 ≤ i < j ≤ n + 1, then the principal minors of M induced by

[1, . . . ,r+2, i] and [1, . . . ,r+2, i, j] are, respectively, equal to

det(

⎡

⎢⎢
⎣

0 1 0 0
1 0 0 0
0 0 Γ 0
0 0 0 aii

⎤

⎥⎥
⎦) and det(

⎡

⎢⎢⎢⎢
⎣

0 1 0 0 0
1 0 0 0 0
0 0 Γ 0 0
0 0 0 aii ai j

0 0 0 a ji a j j

⎤

⎥⎥⎥⎥
⎦
).

Therefore, aii = 0 for all i = 1, . . . ,n − r − 1. Consequently, ai j = 0 for all
i, j = 1, . . . ,n − r − 1. Hence A = 0. Therefore, UT DU is negative semidefinite
and of rank r. Thus Statement (i) holds.

�

Example 3.7 To illustrate Theorem 3.16, consider the matrix D =

⎡

⎢
⎢
⎣

0 1 4 9
1 0 1 4
4 1 0 t
9 4 t 0

⎤

⎥
⎥
⎦ and

let r = 1. Then Δ3, the third leading principal minor of M is equal to 2. Moreover,
the principal minors of M induced by [1,2,3,4], [1,2,3,5] and [1,2,3,4,5] are:

det(

⎡

⎢⎢
⎣

0 1 1 1
1 0 1 4
1 1 0 1
1 4 1 0

⎤

⎥⎥
⎦) = det(

⎡

⎢⎢
⎣

0 1 1 1
1 0 1 9
1 1 0 4
1 9 4 0

⎤

⎥⎥
⎦) = 0 and det(M) =−2(t −1)2.

Thus, D is an EDM of embedding dimension 1 iff t = 1.

3.5 Constructing New EDMs from Old Ones

In this section we show how to construct new EDMs from old ones. In particular, we
show how to construct a new EDM D′ from an EDM D1 and its Perron eigenvector,
and from two EDMs D1 and D2 and their two Perron eigenvectors. We, also, show



3.5 Constructing New EDMs from Old Ones 71

how to use Kronecker products to construct new EDMs. We begin with the following
useful lemmas.

Lemma 3.11 Let Λ � 0, a ∈ R
n and let σ > 0 be a scalar. Then

Λ 1/2(I −σΛ 1/2aaT Λ 1/2)Λ 1/2 � 0 if and only if 1−σaT Λa ≥ 0.

Proof. If a ∈ null(Λ), the result follows trivially. Thus assume that Λa �= 0. The
sufficiency part is obvious. To prove the necessity part assume, to the contrary, that
1−σaT Λa< 0. Then aT Λ 1/2(I−σΛ 1/2aaT Λ 1/2)Λ 1/2a= (1−σaT Λa)aT Λa< 0,
a contradiction.

�

Lemma 3.12 Let D be an n× n EDM and let Dw = e. Further, let (λ ,x) be the
Perron eigenpair of D and assume that x is normalized. Then

(eT x)2 ≥ λeT w,

with equality holding if and only if x = e/
√

n.

Proof. Let D = λxxT −WΛW T be the spectral decomposition of D, where Λ � 0.
Then

wTWΛW T w = λ (xT w)2 −wT Dw =
(xT Dw)2

λ
− eT w =

(eT x)2

λ
− eT w ≥ 0.

Now if x = e/
√

n, then w = e/λ since De = λe. Thus (eT x)2 = n = λeT w. On the
other hand, assume that (eT x)2/λ − eT w = 0. Then wTWΛW T w = 0 and hence
ΛW T w = 0. Moreover, λxT w = xT Dw = xT e. Consequently, Dw = λ (xT w)x =
eT x x = e. Hence, x = e/eT x and thus (eT x)2 = n. Therefore, x = e/

√
n.

�

The significance of Lemma 3.12 will become clear in the next chapter where we
study regular EDMs. The following theorem shows how to construct a new EDM of
order n+1 from an old EDM of order n and its Perron eigenvector.

Theorem 3.17 (Hayden et al. [105]) Let D be an n× n EDM and let (λ ,x) be the
Perron eigenpair of D and assume that x is normalized. Further, let Dw = e and let

αl =
λ

eT x+
√

λeT w
and αu =

{
+∞ if eT x =

√
λeT w,

λ
eT x−

√
λeT w

otherwise.

Then

D′ =
[

0 txT

tx D

]

is an EDM if and only if αl ≤ t ≤ αu.

Proof. By Theorem 3.3, D′ is an EDM iff t(xeT + exT )−D � 0.
Let D = λxxT −WΛW T be the spectral decomposition of D where Λ � 0. Then
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[
xT

W T

]
(t(xeT + exT )−D)[x W ] =

[
2teT x−λ t eTW

t W T e Λ

]
. (3.27)

But, by Lemma 3.12, eT x =
√

λeT w iff x = e/
√

n iff W T e = 0. Therefore, if x =
e/
√

n, i.e., if W T e = 0, then D′ is an EDM iff

t ≥ λ
2eT x

=
eT De
2n
√

n
.

But in this case, eT x =
√

λeT w and hence, αl = λ/2eT x and αu = +∞. Therefore,
the result follows in this case.

On the other hand, if W T e �= 0, then D′ is an EDM iff

t >
λ

2eT x
and Λ − t2

(2teT x−λ )
W T eeTW � 0.

Therefore, assume that x �= e/
√

n and t > λ
2eT x

. But since e = Dw and DW =−WΛ ,
we have W T e =−ΛW T w. Hence,

Λ − t2

2teT x−λ
W T eeTW = Λ 1/2(I − t2

2teT x−λ
Λ 1/2W T wwTWΛ 1/2)Λ 1/2.

Thus, by Lemmas 3.11 and 3.12, D′ is an EDM iff t > λ/2eT x and

1− t2

2teT x−λ
wTWΛW T w = 1− t2

2teT x−λ
(
(eT x)2

λ
− eT w)≥ 0;

i.e.,

t >
λ

2eT x
and ((eT x)2 −λeT w)t2 −2eT xλ t +λ 2 ≤ 0.

The roots of this quadratic equation are

λ
eT x±

√
λeT w

(eT x−
√

λeT w)(eT x+
√

λeT w)
=

λ
eT x±

√
λeT w

.

To complete the proof we need to show that αu ≥ αl > λ/2eT x. But this follows
since eT x >

√
λeT w.

�

Two remarks are in order. First, eT w is well defined since e ∈ col(D), i.e., e is
orthogonal to null(D). Thus, if y ∈ null(D), then D(w+ y) = e. However, eT (w+
y) = eT w. Second, if eT w = 0, then αl = αu = λ/eT x.
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Example 3.8 Consider the EDM D =

⎡

⎢⎢
⎣

0 2 4 2
2 0 2 4
4 2 0 2
2 4 2 0

⎤

⎥⎥
⎦. Then λ = 8, x = e/2 and w =

e/8. Thus eT x =
√

λeT w = 2. Hence, αu =+∞ and D′ is an EDM for all t ≥ αl = 2.

Example 3.9 Consider the EDM D =

⎡

⎣
0 0 1
0 0 1
1 1 0

⎤

⎦. Then λ =
√

2, x = 1
2 [1 1

√
2]T

and w = 1
2 [1 1 2]T . Thus

αl =
2√

2+1+25/4
and αu =

2√
2+1−25/4

.

Example 3.10 Consider the EDM D =

⎡

⎢⎢
⎣

0 5 4 5
5 0 5 16
4 5 0 5
5 16 5 0

⎤

⎥⎥
⎦. Then λ = 10+ 2

√
34, w =

1
6 [−1 1 −1 1]T and

x =
1

√
136+12

√
34

⎡

⎢⎢
⎣

5
3+

√
34

5
3+

√
34

⎤

⎥⎥
⎦ .

Thus eT w = 0 and eT x = (8+
√

34)/
√

34+3
√

34. Therefore,

αl = αu =
10+2

√
34

8+
√

34

√
34+3

√
34.

Next, we turn our attention to the problem of constructing an EDM of order
n1 + n2 from two EDMs of orders n1 and n2. Let (λ ,x) and (μ ,y) be the Perron
eigenpairs of EDMs D1 and D2, respectively. Then the off-diagonal blocks in the
new EDM are txyT and tyxT , where t is a positive scalar. First, we discuss the case
where t �=√λ μ followed by the case where t =

√
λ μ . In these two cases, we

assume that at least one Perron eigenvector is not equal to e. After that, we discuss
the case where both Perron eigenvectors are equal to e. The significance of an EDM
having e as a Perron eigenvector will become clear in the next chapter.

Theorem 3.18 (Hayden et al. [105]) Let D1 and D2 be two EDMs of orders n1 and
n2 respectively. Let (λ ,x) and (μ ,y) be the Perron eigenpairs of D1 and D2, respec-
tively. Assume that x and y are normalized and assume that either x �= en1/

√
n1 or

y �= en2/
√

n2. Further, let D1w1 = en1 , D2w2 = en2 , and t2 �= λ μ . Then

D′ =
[

D1 txyT

tyxT D2

]



74 3 Euclidean Distance Matrices (EDMs)

is an EDM if and only if the following three conditions hold:

1. t2 > λ μ ,
2.
(
(eT x)2 −λ (eT w1 + eT w2)

)(
(eT y)2 −μ(eT w1 + eT w2)

)≥ 0,
3. αl ≤ t ≤ αu, where

αl =
eT x eT y−

√
((eT x)2 −λ (eT w1 + eT w2))((eT y)2 −μ(eT w1 + eT w2))

( (e
T x)2

λ + (eT y)2

μ − eT w1 − eT w2)
.

and

αu =
eT x eT y+

√
((eT x)2 −λ (eT w1 + eT w2))((eT y)2 −μ(eT w1 + eT w2))

( (e
T x)2

λ + (eT y)2

μ − eT w1 − eT w2)
.

Proof. The proof uses Theorem 3.11. Thus we show, first, that D′ has exactly
one positive eigenvalue iff t >

√
λ μ . Let D1 = λxxT −W1Λ1W T

1 and D2 = μyyT −
W2Λ2W T

2 be the spectral decompositions of D1 and D2, respectively, where Λ1 � 0
and Λ2 � 0. Then

⎡

⎢⎢
⎣

xT 0
W T

1 0
0 yT

0 W T
2

⎤

⎥⎥
⎦D′

[
x W1 0 0
0 0 y W2

]
=

⎡

⎢⎢
⎣

λ 0 t 0
0 −Λ1 0 0
t 0 μ 0
0 0 0 −Λ2

⎤

⎥⎥
⎦ .

Now trace

[
λ t
t μ

]
> 0. Thus, D′ has exactly one positive eigenvalue iff det

[
λ t
t μ

]
≤

0; i.e., iff t ≥√λ μ . But since t2 �= λ μ , assume that t >
√

λ μ .
Next we find w such that D′w = e. Since we are interested in eT w, it suffices to

find one such w. For if y ∈ null(D′), then eT (w+ y) = eT w. To this end, we have to
solve for a ∈ R

n1 and b ∈ R
n2 such that
[

D1 txyT

tyxT D2

][
a
b

]
=

[
en1

en2

]
.

Thus, we have D1a + txyT b = en1 or D1a + txyT D2b/μ = en1 . Similarly, D2b +
tyxT D1a/λ = en2 . Hence,

D1a = en1 −
t
μ

eT y x+
t2

λ μ
xxT D1a, (3.28)

or

(In1 −
t2

λ μ
xxT )D1a = en1 −

t
μ

eT y x.

But

(In1 −
t2

λ μ
xxT )−1 = In1 +

t2

(λ μ − t2)
xxT .
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Therefore,

D1a = en1 +
t

(λ μ − t2)
(teT x−λeT y)x.

Now D†
1 = xxT/λ −W1Λ †

1 W T
1 . Thus D†

1x = x/λ and D†
1e = w1. Therefore,

a = w1 +
t

(λ μ − t2)
(

t
λ

eT x− eT y) x.

Similarly,

b = w2 +
t

(λ μ − t2)
(

t
μ

eT y− eT x) y,

and thus

w =

[
w1 +

t
(λ μ−t2)

( t
λ eT x− eT y) x

w2 +
t

(λ μ−t2)
( t

μ eT y− eT x) y

]

satisfies D′w = e. Next we require that eT w ≥ 0, or

eT w1 + eT w2 − t
(t2 −λ μ)

(
t
λ
(eT x)2 +

t
μ
(eT y)2 −2eT x eT y)≥ 0.

Note that t2 �= λ μ . Thus

(eT w1 + eT w2)(t
2 −λ μ)− (

t2

λ
(eT x)2 +

t2

μ
(eT y)2 −2teT x eT y)≥ 0,

and hence

(
(eT x)2

λ
+

(eT y)2

μ
−eT w1 −eT w2)t

2 −2teT x eT y+λ μ(eT w1 +eT w2)≤ 0. (3.29)

Note that, by Lemma 3.12, the coefficient of t2 in (3.29) is > 0 since x �= e/
√

n1

or y �= e/
√

n2. The discriminant of this quadratic equation is given by

(eT x)2 (eT y)2 −λ μ(eT w1 + eT w2)(
(eT x)2

λ
+

(eT y)2

μ
− eT w1 − eT w2)

which is equal to

(eT x)2 ((eT y)2 −μ(eT w1 + eT w2)
)−λ (eT w1 + eT w2)

(
(eT y)2 −μ(eT w1 + eT w2)

)

which in turn can be factorized as
(
(eT x)2 −λ (eT w1 + eT w2)

)(
(eT y)2 −μ(eT w1 + eT w2)

)
.

Thus, Condition 2 of the theorem amounts to requiring this discriminant to be ≥ 0,
in which case, Inequality (3.29) holds iff αl ≤ t ≤ αu. Notice that Inequality (3.29)
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does not hold for any t if this discriminant is negative.
�

Next we consider the case where t =
√

λ μ .

Theorem 3.19 (Hayden et al. [105]) Let D1 and D2 be two EDMs of orders n1 and
n2, respectively. Let (λ ,x) and (μ ,y) be the Perron eigenpairs of D1 and D2, respec-
tively. Assume that x and y are normalized. Further, let D1w1 = en1 , D2w2 = en2 and
t2 = λ μ . Then

D′ =
[

D1 txyT

tyxT D2

]

is an EDM if and only if the following two conditions hold:

1.
√μ eT x =

√
λ eT y,

2.
√

λ μ (eT w1 + eT w2)≥ eT x eT y.

Proof. The proof is similar to that of Theorem 3.18. We saw in the proof of
Theorem 3.18 that D′ has exactly one positive eigenvalue if t2 ≥ λ μ . In this case,
Eq. (3.28) reduces to

D1a = en1 −
t
μ

eT y x+ xxT D1a,

or
(I − xxT )D1a = en1 −

t
μ

eT y x. (3.30)

Equation (3.30) has a solution iff its RHS lies in x⊥, i.e., iff xT (en1 − t
μ eT y x) =

eT x−
√

λ√μ eT y = 0. Thus, assume that

√
μ eT x =

√
λ eT y.

Therefore, Eq. (3.30) reduces to

(I − xxT )D1a = (I − xxT )e.

Thus, D1a = e+αx for some scalar α . But since we are interested in only one
solution of D′w = e, we set α = 0. Hence,

a = D†
1e = w1.

Now

D2b = en2 −
tyxT D1a

λ
= en2 −

teT x
λ

y.

Thus

b = D†
2(e−

teT x
λ

y) = w2 − teT x
λ μ

y = w2 − eT x
√

λ μ
y.

Therefore, eT w = eT a+ eT b = eT w1 + eT w2 − eT x eT y/
√

λ μ ≥ 0 is equivalent to
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√
λ μ (eT w1 + eT w2)≥ eT x eT y.

�

The lower and upper limits αl and αu in Theorem 3.18 have simpler forms in
the following three cases. The interpretation of these cases in terms of the different
classes of EDMs is given in the next chapter.

Case 1: Assume that eT w1 = eT w2 = 0. Then αl = 0 and

αu = 2λ μ
eT x eT y

μ(eT x)2 +λ (eT y)2 .

Now for a > 0 and x > 0, f (x) = ax+ 1/(ax) attains its minimum value of 2 at
x = 1/a. Thus for x > 0, 1/ f (x) attains its maximum value of 1/2 at x = 1/a.
Hence,

λ μ
eT x eT y

μ(eT x)2 +λ (eT y)2 =
√

λ μ
1

√
μ
λ

eT x
eT y

+
√

λ
μ

eT y
eT x

≤ 1
2

√
λ μ.

Therefore, αu ≤
√

λ μ . Hence, by Theorem 3.18, D′ is not an EDM for all t >
√

λ μ
since Condition 1 of Theorem 3.18 requires that t2 > λ μ . Moreover, for t =

√
λ μ ,

Theorem 3.19 implies that D′ is not an EDM since Condition 2 does not hold. Con-
sequently, D′ is not an EDM for all t. Another way to see this is to let cT = [wT

1 wT
2 ].

Then obviously, c ∈ e⊥. Moreover, cT D′c = 2txT w1 yT w2 = 2teT x eT y/(λ μ) > 0
for all t > 0. As a result, D′ is not negative semidefinite on the subspace e⊥ for all
t > 0.

Case 2: Assume that eT w1 = 0 and y = e/
√

n2. Then it follows from Lemma 3.12
that (eT y)2 = μeT w2. Thus αl = αu = λeT y/eT x. As a result, D′ is an EDM for
t = αl iff αl ≥

√
λ μ .

Case 3: Assume that D1 = D2 and let a = λ 2 eT w1
(eT x)2−λeT w1

. Then

[αl ,αu] =

⎧
⎨

⎩

[a,λ ] if (eT x)2 > 2λeT w1,
[λ ,λ ] if (eT x)2 = 2λeT w1,
[λ ,a] if (eT x)2 < 2λeT w1.

As a result, if (eT x)2 > 2λeT w1, then D′ is not an EDM for all t since Condition
1 of Theorem 3.18 requires t > λ . On the other hand, if (eT x)2 = 2λeT w1, then
the conditions of Theorem 3.19 hold and thus D′ is an EDM iff t = λ . Finally, if
(eT x)2 < 2λeT w1, then D′ is an EDM for all t : λ ≤ t ≤ a.

Example 3.11 To illustrate Case 2, consider the EDMs D1 =

⎡

⎣
0 1 4
1 0 1
4 1 0

⎤

⎦ and D2 =

[
0 1
1 0

]
. Then λ = 2+

√
6, eT x =

√
6+2

√
6/2 and eT w1 = 0; and μ = 1, eT y =

√
2
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and eT w2 = 2. Therefore, αl and αu for D′ =
[

D1 txyT

tyxT D2

]
are

αl = αu = λ
eT y
eT x

=
4+2

√
6

√
3+

√
6
.

Note that
√

λ μ =
√

2+
√

6 < αu. D′ is an EDM iff t = αl .

Example 3.12 To illustrate Case 3, consider the EDM D1 =

⎡

⎣
0 0 1
0 0 1
1 1 0

⎤

⎦. Then λ =

√
2, eT x = (2+

√
2)/2 and eT w1 = 2. Thus (eT x)2 = 3/2+

√
2 and 2λeT w1 = 4

√
2.

Therefore, D′ =
[

D1 txxT

txxT D1

]
is an EDM for all t ∈ [λ ,a], where a = 4/(3/2+

√
2−

2
√

2) = 8/(3−2
√

2).

Example 3.13 Again to illustrate Case 3, consider the EDM D1 =

⎡

⎣
0 1 4
1 0 1
4 1 0

⎤

⎦. Then

λ = 2+
√

6, eT x =
√

6+2
√

6/2 and eT w1 = 0. Therefore, (eT x)2 > 2λeT w1 and
thus D′ is not an EDM for all t. Note that αl = a = 0 and αu = λ = 2+

√
6.

So far, we have assumed that at least one Perron eigenvector is not equal to e.
Next, we discuss the case where both Perron eigenvectors are equal to e.

Theorem 3.20 (Jaklič and Modic [117]) Let D1 and D2 be two EDMs of orders n1

and n2, respectively. Let (λ ,x) and (μ ,y) be the Perron eigenpairs of D1 and D2,
respectively. Assume that x = en1/

√
n1 and y = en2/

√
n2. Then

D′ =
[

D1 txyT

tyxT D2

]

is an EDM iff

t ≥ n1μ +n2λ
2
√

n1n2
.

Proof. Let V be the block matrix defined in (3.15). Then

V T D′V =

⎡

⎣
V T

1 D1V1 0 0
0 V T

2 D2V2 0
0 0 (n1μ +n2λ −2t

√
n1n2)/n

⎤

⎦ .

Thus, TV (D′)� 0 iff t ≥ n1μ+n2λ
2
√

n1n2
.

�

Note that if D1 = D2 in Theorem 3.20, then D′ is an EDM iff t ≥ λ . On the other
hand, in this case (eT x)2 = n1 and λeT w1 = n1. Thus Condition 2 of Theorem 3.19
holds and hence Theorem 3.19 also implies that D′ is an EDM for t = λ .
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Example 3.14 Let D1 = En1 − In1 and D2 = En2 − In2 be two EDMs of orders n1

and n2. Let n = n1 + n2. Then λ = n1 − 1 and μ = n2 − 1. Moreover, x = en1/
√

n1

and y = en2/
√

n2. Thus, D′ =
[

D1 txyT

tyxT D2

]
is an EDM iff t ≥ 2n1n2−n

2
√

n1n2
.

Example 3.15 Consider the EDMs D1 =

[
0 1
1 0

]
and D2 =

⎡

⎢⎢
⎣

0 2 4 2
2 0 2 4
4 2 0 2
2 4 2 0

⎤

⎥⎥
⎦. Then λ = 1,

x = e2/
√

2, w1 = e, μ = 8, y = e4/2, and w2 = e2/8. Thus, D′ =
[

D1 txyT

tyxT D2

]
is an

EDM iff t ≥ n1μ+n2λ
2
√

n1n2
= 5/

√
2.

Example 3.16 Consider the EDM D1 =

⎡

⎢⎢
⎣

0 2 4 2
2 0 2 4
4 2 0 2
2 4 2 0

⎤

⎥⎥
⎦. Then λ = 8, x = e4/2 and

w1 = e2/8. Thus, D′ =
[

D1 txxT

txxT D1

]
is an EDM iff t ≥ n1λ

n1
= λ = 8.

We conclude this section by showing how to use Kronecker product to construct
new EDMs. Such construction will prove useful when studying Manhattan distances
matrices on rectangular grids. Recall that E is the matrix of all 1’s.

Theorem 3.21 ([12]) Let D1 be an m×m EDM of embedding dimension r1 and let
D2 be an n×n EDM of embedding dimension r2. Then

D = Em ⊗D2 +D1 ⊗En

is an EDM of embedding dimension r = r1 + r2.

Proof. Since Imn = Im ⊗ In and Emn = Em ⊗En, it follows that

T (Em ⊗D2) = −1
2
(Im ⊗ In − 1

nm
Em ⊗En)(Em ⊗D2)(Im ⊗ In − 1

nm
Em ⊗En)

= −1
2
(Em ⊗ (D2 − 1

n
(EnD2 +D2En)+

1
n2 EnD2En))

= Em ⊗T (D2)� 0.

Similarly, T (D1⊗En)=T (D1)⊗En � 0. Hence, T (D)=T (Em⊗D2)+T (D1⊗
En)� 0 and thus D is an EDM.

Finally, (Em ⊗T (D2))(T (D1)⊗ En)) = (T (D1)⊗ En))(Em ⊗T (D2)) = 0.
Thus, it follows from Theorem 1.12 that rank(T (D)) = rank(T (Em ⊗ D2)) +
rank(T (D1 ⊗En)). Hence, r = r1 + r2.

�
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3.6 Some Necessary and Sufficient Inequalities for EDMs

Lower and upper bounds on the smallest eigenvalue of a real symmetric matrix
A give rise to sufficient and necessary conditions for the positive semidefiniteness
of A. These conditions, in turn, give rise to sufficient and necessary conditions for
EDMs if A =T (D) or TV (D). In this section, we present such conditions using two
different approaches to bound the smallest eigenvalue of a real symmetric matrix.

3.6.1 The Trace Approach

In this approach, lower and upper bounds on the smallest eigenvalue of a real sym-
metric matrix A are given in terms of trace(A) and trace(A2). These bounds are de-
rived by solving a nonlinear optimization problem or by using Cauchy–Schwarz
inequality.

Theorem 3.22 (Wolkowicz and Styan [196, 197]) Let A be an n×n real symmet-
ric matrix of nonzero eigenvalues λ1 ≥ ·· · ≥ λr, r ≥ 2, and let

m =
trace(A)

r
, and s2 =

trace(A2)

r
− (

trace(A)
r

)2.

Then, the smallest nonzero eigenvalue λr satisfies

m− s
√

r−1 ≤ λr ≤ m− s√
r−1

.

Proof. Let λ = (λi) ∈ R
r be the vector consisting of the nonzero eigenvalues of

A and let J = Ir − ereT
r /r. Then m = eT λ/r and s2 = λ T Jλ/r. Let w ∈ R

r. Then,
since J2 = J, Cauchy–Schwarz inequality implies that

|wT Jλ | ≤ (wT Jw)1/2(λ T Jλ )1/2.

But λ T Jλ = rs2. Thus,

−s
√

r(wT Jw)1/2 ≤ wT Jλ ≤ s
√

r(wT Jw)1/2.

Now let w be the rth standard unit vector. Then wT Jw = (r − 1)/r and wT Jλ =
λr −m. Hence,

−s
√

r−1 ≤ λr −m ≤ s
√

r−1.

This establishes the lower bound. To establish the upper bound, note that ∑r
i=1(λi −

λr) = rm− rλr, and (λi − λr)(λ j − λr) ≥ 0 for all i and j since λr is the smallest
eigenvalues of A. Consequently, ∑i �= j(λi −λr)(λ j −λr)≥ 0. Thus

r2(m−λr)
2 = (

r

∑
i=1

(λi −λr))
2 ≥

r

∑
i=1

(λi −λr)
2 = ∑

i
λ 2

i −2rmλr + rλ 2
r .
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But ∑r
i=1 λ 2

i = rs2 + rm2. Thus, ∑r
i=1(λi −λr)

2 = rs2 + r(m−λr)
2. Hence,

(r−1)(m−λr)
2 ≥ s2.

Therefore, m−λr ≥ s/
√

r−1 and this establishes the upper bound.
�

Theorem 3.23 (Alfakih and Wolkowicz [19]) Let D �= 0 be an n× n nonnegative
real symmetric matrix, n ≥ 3, whose diagonal entries are all 0’s.

1. If
2
n

eT D2e− (n−3)
n2(n−2)

(eT De)2 ≥ trace(D2), (3.31)

then D is an EDM.
2. If D is an n×n EDM, then

2
n

eT D2e ≥ trace(D2).

Proof. Let rank(−V T DV ) = r, then obviously r ≤ n−1. Let λr denote the small-
est eigenvalue of (−V T DV ). To prove Statement 1, it suffices to show that if (3.31)
holds, then λr ≥ 0. To this end, using Theorem 3.22, we have

m =
trace(−V T DV )

r
=

trace(−DJ)
r

=
eT De

nr

since trace(D) = 0. Now,

s2 =
1
r

trace(D2)−2
eT D2e

rn
+

1
rn2 (e

T De)2 − 1
r2n2 (e

T De)2,

=
1
r

trace(D2)−2
eT D2e

rn
+

(r−1)
r2n2 (eT De)2.

Moreover,

m2 − (r−1)s2 = − (r−1)
r

trace(D2)+2
(r−1)eT D2e

rn
− (r−2)

rn2 (eT De)2,

=
r−1

r
(−trace(D2)+2

eT D2e
n

− (r−2)
(r−1)n2 (e

T De)2).

Now f (r) = (r− 2)/(r− 1) is an increasing function. Thus f (r) ≤ f (n− 1). Con-
sequently,

m2 − (r−1)s2 ≥ r−1
r

(−trace(D2)+2
eT D2e

n
− (n−3)

(n−2)n2 (e
T De)2)≥ 0.

Hence, m2 ≥ (r−1)s2 or m ≥ s
√

r−1 since m > 0. Therefore, λr ≥ 0.
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To prove Statement 2, assume that D is an EDM and assume, by way of contra-
diction, that 2eT D2e/n < trace(D2). Then

m2 − s2

(r−1)
=

1
r(r−1)

(−trace(D2)+2
eT D2e

n
).

Hence, m2 − s2/(r−1)< 0 or m− s/
√

r−1 < 0 since m > 0. Therefore, λr < 0, a
contradiction.

�

Two remarks concerning the sufficient condition in Theorem 3.23 are in order.
First, the assumption that D is nonnegative cannot be dropped since D appears
quadratically. Thus, if D satisfies the sufficient condition, then so does (−D). Sec-
ond, if n = 3, then this sufficient condition becomes also necessary.

Corollary 3.4 Let D �= 0 be a 3× 3 nonnegative real symmetric matrix whose di-
agonal entries are all 0’s. Then D is an EDM if and only if

2
3

eT D2e ≥ trace(D2).

Corollary 3.4 has an interesting interpretation in terms of the triangular inequal-
ity. Let D be a 3×3 EDM and let d12 = a, d13 = b and d23 = c. Then

D2 =

⎡

⎣
a2 +b2 bc ac

bc a2 + c2 ab
ac ab b2 + c2

⎤

⎦. Thus, trace(D2) = 2(a2 + b2 + c2) and

eT D2e = trace(D2)+2(ab+ac+bc). Hence,

2
3

eT D2e ≥ trace(D2) iff − (a2 +b2 + c2)+2(ab+ac+bc)≥ 0.

But
−(a2 +b2 + c2)+2(ab+ac+bc) = 4ab− (a+b− c)2.

Thus, it follows from the proof of Theorem 3.4 that the condition of Corollary 3.4
is equivalent to the triangular inequality.

Theorem 3.23 did not make use of the rank of D. Let rank(D) = k and assume
that k ≤ n−1. Let r = rank(−V T DV ). Then r ≤ k. Note that we cannot assume that
r ≤ k−1 since we have not established yet that D is an EDM. Also, note that k ≥ 2
since trace(D) = 0 and D �= 0. Therefore, the sufficient condition of Theorem 3.23
can be weakened. On the other hand, as the proof of Statement 2 of Theorem 3.23
shows, the necessary condition of Theorem 3.23 is independent of k.

Theorem 3.24 (Alfakih and Wolkowicz [19]) Let D �= 0 be an n× n nonnegative
real symmetric matrix, n ≥ 3, whose diagonal entries are all 0’s. Assume that
rank(D) = k where k ≤ n−1. If

2
n

eT D2e− (k−2)
n2(k−1)

(eT De)2 ≥ trace(D2),

then D is an EDM.
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3.6.2 The Norm Approach

This approach, due to Bénasséni [40], is based on a result of Bauer and Fike [37].
Let α > 0 and let Δ = α(E − I), i.e., Δ is the EDM associated with the standard
simplex. Then TV (Δ) = αIn−1/2. Let D be a nonzero nonnegative matrix whose
diagonal entries are all 0’s. If TV (D) is close to TV (Δ), then we expect D to be
an EDM. Thus, an upper bound on the norm ||TV (D)−TV (Δ)|| gives rise to a
sufficient condition for D to be an EDM.

Let A and B be two real symmetric matrices and let λ be an eigenvalue of A with
corresponding eigenvector x. Then (λ I −B)x = (A−B)x. Assume that λ is not an
eigenvalue of B, then x = (λ I −B)−1(A−B)x. Thus, for any induced matrix norm
we have ||x|| ≤ ||(λ I−B)−1|| ||A−B|| ||x|| since induced matrix norms are submul-
tiplicative. Hence, for the matrix norm induced by the Euclidean vector norm, we
have

1
||(λ I −B)−1||2 ≤ ||A−B||2 ≤ ||A−B||F , (3.32)

where ||.||F denotes the Frobenius norm.
Let D be a nonzero nonnegative matrix whose diagonal entries are all 0’s. Further,

let A = TV (D), B = TV (Δ) and let λ be an eigenvalue of TV (D) and assume that
λ �= α/2. Then

||(λ In−1 −TV (Δ))−1||2 = ||(λ −α/2)−1In−1||2 = 1
|λ −α/2|

since ||In−1||2 = 1. Therefore, it follows from (3.32) that

|λ −α/2| ≤ ||TV (D)−TV (Δ)||F . (3.33)

Now since each eigenvalue of TV (D) either satisfies (3.33) or is equal to α/2, we
conclude that all eigenvalues of TV (D) lie in a disk centered at α/2 and of ra-
dius ||TV (D)−TV (Δ)||F . Therefore, if we can find α > 0 such that ||TV (D)−
TV (Δ)||F ≤ α/2, then the eigenvalues of TV (D) are all nonnegative and conse-
quently, D is an EDM.

Let f (α) = α2/4−||TV (D)−TV (Δ)||2F . We need to find α∗, as a function of D,
which maximizes f (α) and then find a condition on D such that f (α∗)≥ 0. To this
end,
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4||TV (D)−TV (Δ)||2F = ||V T (D−αE +αI)V ||2F
= trace(J(D−αE +αI)J(D−αE +αI))

= trace((D−DeeT/n+αJ)(D−DeeT/n+αJ))

= trace(D2)+
(eT De)2

n2 −2
eT D2e

n
+α2(n−1)−2α

eT De
n

.

Thus, 4 f (α) is maximized at α∗ = eT De/(n(n−2)) and

4 f (α∗) =−trace(D2)− (n−3)
n2(n−2)

(eT De)2 +2
eT D2e

n
.

Hence, the condition f (α∗)≥ 0 implies the sufficient condition of Theorem 3.23.
Bénasséni derived a stronger sufficient condition by considering ||D − Δ ||F

instead of ||TV (D − Δ)||F . To this end, ||TV (D − Δ)||2 = ||V T (D − Δ)V ||2 ≤
||V T ||2 ||V ||2 ||D − Δ ||2. But ||V T ||2 = ||V ||2 = 1. Thus, ||TV (D − Δ)||2 ≤ ||D −
Δ ||2 ≤ ||D−Δ ||F . Therefore, if ||D−Δ ||F ≤ α/2, then ||TV (D−Δ)||F ≤ α/2 and
thus D is an EDM. Therefore,

4||D−Δ ||2F = ||D−αE +αI||2F
= trace((D−αE +αI)(D−αE +αI))

= trace(D2)+(n2 −n)α2 −2αeT De.

Let g(α) = α2/4−||D−Δ ||2F . We need to find α∗, as a function of D, which max-
imizes g(α) and then find a condition on D such that g(α∗) ≥ 0. Therefore, 4g(α)
is maximized at α∗ = eT De/(n2 −n−1) and

4g(α∗) =−trace(D2)+
(eT De)2

n2 −n−1
.

Hence, the condition that g(α∗) ≥ 0 leads to the following stronger sufficient con-
dition (weaker result) for EDMs.

Theorem 3.25 (Bénasséni [40]) Let D �= 0 be an n×n nonnegative real symmetric
matrix whose diagonal entries are all 0’s. If

(eT De)2

n2 −n−1
≥ trace(D2),

then D is an EDM.

The sufficient condition of Theorem 3.25 can be interpreted in terms of the vari-
ance of the off-diagonal entries of D. The mean of D is d̄ = ∑i, j di j/(n(n− 1)) =
eT De/(n(n−1)). Thus

var(D) = ∑
i, j

d2
i j/(n

2 −n)− (d̄)2 =
1

n2 −n
trace(D2)− 1

(n2 −n)2 (e
T De)2.
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Therefore, the sufficient condition of Theorem 3.25 [40] is equivalent to

var(D)≤ 1
n2(n−1)2(n2 −n−1)

(eT De)2.

Example 3.17 To illustrate the sufficient condition of 3.23, consider the 5×5 ma-

trix D(t) =

[
0 teT

te E − I

]
. Then it follows from Theorem 3.3 that D(t) is an EDM for

all t ≥ 3/8. This result can also be obtained by using Theorem 3.17. Indeed, in this
case, x= e/2, λ = 3, w= e/3 and t ′ = 2t. Thus, αl = 3/4 and αu =∞. Consequently,
D(t ′) is an EDM iff t ′ ≥ αl .

Now

2
n

eT (D(t))2e =
8
5
(5t2 +6t +9),

(n−3)
n2(n−2)

(eT D(t)e)2 =
32
75

(4t2 +12t +9),

trace(D2) = 4(2t2 +3).

Thus, the sufficient condition in Theorem 3.23 holds iff −32t2 + 84t − 27 ≥ 0, i.e.,
iff

3
8
≤ t ≤ 18

8
.

Observe that D(1) is the EDM of the standard simplex. Thus, as expected, the suffi-
cient condition of Theorem 3.23 holds for values of t close enough to 1.

3.7 Schoenberg Transformations

This section addresses the following natural question. What real functions f , when
applied entrywise, map EDMs to EDMs? A characterization of such functions was
obtained by Schoenberg [169, 170] and thus, they are known as Schoenberg trans-
formations. A good reference on Schoenberg transformations in data analysis is
[38]. Recall that f [D] = ( f (di j)) denotes the matrix obtained from D by applying f
to D entrywise.

Theorem 3.26 (Schoenberg [168, 169, 170] ) Let D=(di j) be an EDM. Then f [D]
is an EDM if and only if

f (d) =
∫ ∞

0

(1− e−td)

t
g(t)dt,

where g(t) is nonnegative for t ≥ 0 such that
∫ ∞

1 g(t)dt/t exists.

Note that f (0) = 0 and f ′(d) =
∫ ∞

0 e−tdg(t)dt. Hence, it readily follows that f (d)
satisfies



86 3 Euclidean Distance Matrices (EDMs)

(−1)i−1 f (i)(d)≥ 0 for all d > 0 and for all i ≥ 1, (3.34)

where f (i) denotes the ith derivative of f (d). In what follows, we present several
examples of Schoenberg transformations.

Corollary 3.5 (Schoenberg [168]) Let D = (di j) be an EDM. Then [D]a is an EDM
for all a : 0 < a < 1.

Proof. Let g(t) = at−a/Γ (1−a), where Γ (1−a) is the well-known gamma func-
tion, i.e.,

Γ (1−a) =
∫ ∞

0
t−ae−tdt.

Observe that Γ (1−a)≥ 0 since a < 1. Thus

f (d) =
a

Γ (1−a)

∫ ∞

0

(1− e−td)

ta+1 dt.

Let y = td, then
∫ ∞

0

(1− e−td)

ta+1 dt = da
∫ ∞

0

(1− e−y)

ya+1 dy.

Integrating by parts, we get

∫ ∞

0

(1− e−y)

ya+1 dy =

[
1− e−y

aya

]0

∞
+

1
a

∫ ∞

0
y−ae−ydy =

Γ (1−a)
a

.

Hence, f (d) = da is a Schoenberg transformation.
�

It is worth noting that f (d) = da, 0 < a < 1, satisfies (3.34) since f (i)(d) =
a(a−1) · · ·(a− i+1)da−i. Also, note that f (1)(d) = a/Γ (1−a)

∫ ∞
0 t−ae−tddt.

Let D =

⎡

⎣
0 1 4
1 0 1
4 1 0

⎤

⎦. Then it is easy to verify that D is an EDM of embedding

dimension 1 and
√
[D] is an EDM of dimension 2. On the other hand, [D]2 is not

an EDM. Trivially, D = (
√
[D])2. Therefore, for an arbitrary EDM D and for a > 1,

[D]a may or may not be an EDM.

Corollary 3.6 Let D = (di j) be an EDM and let a > 0. Then D′ = E− exp[−aD] is
an EDM.

Proof. Let g(t) = aδ (t −a) where δ is the Dirac delta function. Then

f (d) =
∫ ∞

0

(1− e−td)

t
aδ (t −a)dt = 1− e−ad .

Hence, f (d) = 1− e−ad is a Schoenberg transformation.
�
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Corollary 3.6 can also be proved directly [70] using Theorem 2.8. Indeed, assume
that D is generated by points p2, . . . , pn+1, and assume that the embedding dimen-
sion of D is r. Let p1 be any point in R

r and let di = ||p1 − pi||2 for i = 2, . . . ,n+1.

Thus, by construction,

[
0 dT

d D

]
is an (n + 1)× (n + 1) EDM. Hence, it follows

from Theorem 3.3 that a(edT + deT −D) is PSD. Moreover, by Theorem 2.8, B =
exp[a(edT +deT −D)] is PSD, where bi j = exp(adi +ad j −adi j). Let S = (si j) be
the diagonal matrix where sii = exp(−adi). Then exp[−aD] = SBS is PSD since
(SBS)i j = siibi js j j = exp(−adi j). Moreover, diag(exp[−aD]) = e. Therefore,

K (exp[−aD]) = 2E −2exp[−aD]

is an EDM. Next, two more Schoenberg transformations are given.

Example 3.18 Let g(t) = e−at , where a > 0. Then

f (d) =
∫ ∞

0
(e−at − e−t(a+d))

dt
t
= ln(1+

d
a
).

Thus, if D is an EDM, then so is D′ = (d′
i j) where d′

i j = ln(1+d/a).

Example 3.19 Let g(t) = te−t . Then

f (d) =
∫ ∞

0
(1− e−td)e−tdt = 1− 1

d +1
=

d
d +1

.

Thus, if D = (di j) is an EDM, then so is D′ = (d′
i j) where d′

i j = di j/(di j + 1). Fur-
thermore, D′′ = (d′′

i j) where d′′
i j = da

i j/(d
a
i j +1) is an EDM for 0 < a < 1.

Finally, it should be pointed out that all Schoenberg transformations f (d) con-
sidered above satisfy (3.34) and f (0) = 0.

3.8 Notes

Schoenberg [167] considered only the cases where s = e/n and e = ei, while Young
and Householder [200] considered the case where s= en, the nth standard unit vector
in R

n. Gower [93] generalized Schoenberg and Young–Householder result to all s
such that eT s = 1. The case x = e/

√
n1 and y = e/

√
n2 in Theorem 3.18 was not

considered in Hayden et al. [105]. It was first considered by Jaklič and Modic in
[117].



Chapter 4
Classes of EDMs

Euclidean Distance Matrices fall into two classes: spherical and nonspherical. The
first part of this chapter discusses various characterizations and several subclasses
of spherical EDMs. Among the examples of spherical EDMs discussed are: regular
EDMs, cell matrices, Manhattan distance matrices, Hamming distance matrices on
the hypercube, distance matrices of trees and resistance distance matrices of electri-
cal networks. The second part focuses on nonspherical EDMs and their characteri-
zation. As an interesting example of nonspherical EDMs, we discuss multispherical
EDMs.

An EDM matrix D is said to be spherical if the generating points of D lie on a
hypersphere. Otherwise, D is said to be nonspherical.

4.1 Spherical EDMs

Since EDMs are either spherical or nonspherical, any characterization of spherical
EDMs is at the same time a characterization of nonspherical EDMs. This section
presents six different characterizations of spherical EDMs. In the theorem that fol-
lows, we provide the first of these characterizations.

Theorem 4.1 (Tarazaga et al. [186]) Let D be a nonzero EDM of embedding di-
mension r. Let P (PT e = 0) be a configuration matrix of D and let B = PPT be the
Gram matrix of D. Further, let J denote the orthogonal projection on e⊥. Then D is
spherical if and only if there exists a ∈ R

r such that

Pa =
1
2

Jdiag(B),

in which case, the generating points of D lie on a hypersphere centered at a and of
radius

ρ = (aT a+
1

2n2 eT De)1/2. (4.1)
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Proof. Assume that the generating points of D lie on a hypersphere centered at
a and of radius ρ = (aT a + eT De/2n2)1/2. After a translation along a, the con-
figuration matrix becomes P − eaT . Hence, diag((P − eaT )(PT − aeT )) = ρ2e.
Thus, diag(B)− 2Pa + aT ae = (aT a + eT De/2n2)e. Therefore, 2Pa = diag(B)−
(eT De/2n2)e. Multiplying both sides by J, we get 2Pa = Jdiag(B) since eT P = 0.

To prove the other direction, assume that there exists a such that Pa =
1
2 Jdiag(B). Then, after a translation along a, the configuration matrix be-
comes P − eaT . Thus, the Gram matrix becomes B′ = (P − eaT )(PT − aeT ).
Thus, B′ = B − Jdiag(B)eT/2 − ediag(B)T J/2 + aT aeeT . Thus, diag(B′) =
(I − J)diag(B)+ aT ae = (eT diag(B)/n+ aT a)e. But eT De = 2neT diag(B). There-
fore, diag(B′) = (eT De/2n2 +aT a)e = ρ2e.

�

Example 4.1 Consider the EDM D =

⎡

⎣
0 18 36

18 0 18
36 18 0

⎤

⎦ with configuration matrix P =

⎡

⎣
−3 −1

0 2
3 −1

⎤

⎦. Then diag(B) =

⎡

⎣
10
4

10

⎤

⎦ and hence Jdiag(B)/2 =

⎡

⎣
1

−2
1

⎤

⎦. Thus, the

equation Pa = Jdiag(B)/2 has solution a = [0 − 1]T . It is easy to verify that
the generating points of D lie on hypersphere centered at a and of radius ρ =
(aT a+ eT De/2n2)1/2 = 3.

Example 4.2 Consider the EDM D =

⎡

⎢⎢
⎣

0 1 4 17
1 0 1 16
4 1 0 17

17 16 17 0

⎤

⎥⎥
⎦ with configuration matrix

P =

⎡

⎢
⎢
⎣

−1 −1
0 −1
1 −1
0 3

⎤

⎥
⎥
⎦. Then diag(B) =

⎡

⎢
⎢
⎣

2
1
2
9

⎤

⎥
⎥
⎦ and hence Jdiag(B)/2 = 1

4

⎡

⎢
⎢
⎣

−3
−5
−3
11

⎤

⎥
⎥
⎦. It is easy

to verify that Jdiag(B)/2 is not in the column space of P and thus D is not spherical.

An easy consequence of Theorem 4.1 is that all n× n EDMs of embedding di-
mension n−1 are spherical.

Corollary 4.1 Let D be an n× n EDM of embedding dimension r = n− 1. Then
rank(D) = n and D is spherical

Proof. If r = n − 1, then rank(D) = n since rank(D) ≥ r + 1. Moreover,
rank(P) = n − 1 and hence col(P) = e⊥. The result follows since Jdiag(B) lies
in e⊥.

�

We turn, next, to the characterization of spherical EDMs of embedding dimen-
sion ≤ n−2. But first, we will need the following lemma.

Lemma 4.1 ([18]) Let D be an n×n EDM of embedding dimension r ≤ n−2 and
let Z be a Gale matrix of D. Then null(D) = gal(D) if and only if there exists a
scalar β such that βeeT −D � 0.
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Proof. Let P be a configuration matrix of D, (PT e = 0), and let B = PPT be
the Gram matrix of D. Then, it follows from the definition of K that (−PT DP) =
2(PT P)2. Thus, (−PT DP) is PD since P has full column rank.

Lemma 3.10 implies that DZ = e(diag(B))T Z and hence PT DZ = ZT DZ = 0. Let
S = [P Z e]. Then S is nonsingular and

ST (βeeT −D)S =

⎡

⎣
−PT DP 0 −PT De

0 0 −ZT De
−eT DP −eT DZ βn2 − eT De

⎤

⎦ .

Now assume that βeeT − D � 0, then eT DZ = n (diag(B))T Z = 0 and hence
(diag(B))T Z = 0. Therefore DZ = 0 and consequently gal(D) ⊆ null(D). But
null(D)⊆ gal(D) (Theorem 3.7). Therefore, gal(D) = null(D).

On the other hand, assume that gal(D) = null(D), i.e., DZ = 0. Now, by Schur

complement,

[−PT DP −PT De
−eT DP βn2 − eT De

]
is PSD iff

n2β − eT De− 1
2

eT DP(PT P)−2PT De ≥ 0,

where we have substituted (−PT DP) = 2(PT P)2. Therefore, βeeT −D is PSD for a
sufficiently large β .

�

Three additional characterizations of spherical EDMs are given in the following
theorem.

Theorem 4.2 Let D be an n×n EDM of embedding dimension r ≤ n−2. Then the
following statements are equivalent:

1. D is spherical.
2. null(D) = gal(D), i.e., DZ = 0, where Z is a Gale matrix of D.
3. rank(D) = r+1.
4. There exists a scalar β such that βeeT −D � 0.

Proof. The equivalence between Statements 2 and 4 follows from Lemma 4.1.
Moreover, Statements 2 and 3 are equivalent since dim gal(D) = n− r−1 and since
null(D)⊆ gal(D). Next, we prove the equivalence between Statements 1 and 2.

Assume that D is spherical. Therefore, by Theorem 4.1, there exists a such that
2Pa = Jdiag(B) and thus 2ZT Pa = ZT Jdiag(B) = ZT diag(B) = 0. Hence, it follows
from Lemma 3.10 that DZ = 0 and thus gal(D) ⊆ null(D). But null(D) ⊆ gal(D)
(Theorem 3.7). Therefore, gal(D) = null(D) and hence, Statement 2 holds. On
the other hand, assume that Statement 2 holds. Then ZT diag(B) = 0 and thus
diag(B) = Pa′+γe for some vector a′ and scalar γ . Hence, Jdiag(B) = Pa′ and thus
D is spherical.

�

The equivalence between Statements 1 and 2 was proven by Alfakih and
Wolkowicz in [18]. The equivalence between Statements 1 and 3 was proven by
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Gower in [93]. Finally, the equivalence between Statements 1 and 4 was proven by
Neumaier in [153] and was later independently proven by Tarazaga et al. in [186].

As the next theorem shows, the minimum value of β in Theorem 4.2 can be
expressed in terms of the radius ρ .

Theorem 4.3 (Neumaier [153]) Let D be an n×n spherical EDM of radius ρ and
let β ∗ be the minimum scalar such that β ∗eeT −D � 0. Then

β ∗ = 2ρ2. (4.2)

Proof. It follows from the proof of Lemma 4.1 above that

n2β ∗ = eT De+
1
2

eT DP(PT P)−2PT De.

Moreover, 2Pa = Jdiag(B) and hence 2a = (PT P)−1PT diag(B). On the other hand,
PT De = nPT diag(B). Therefore, 2na = (PT P)−1PT De. Accordingly,

β ∗ = 2(
1

2n2 eT De+aT a) = 2ρ2.

�

Example 4.3 Consider the EDM D of Example 4.1. Then it is easy to verify that
rank(D) = 3 = r+ 1. Let β = 18β ′, then using double-sided Gaussian elimination
we have that (βeeT −D) = (β ′eeT −D/18)� 0 iff

⎡

⎢
⎣

β ′ . .

. 2β ′−1
β ′ .

. . 4(β ′−1)
2β ′−1

⎤

⎥
⎦� 0.

Thus, (βeeT −D)� 0 iff β ′ ≥ 1; i.e., iff β ≥ 18 = 2ρ2.

The following theorem is an easy consequence of Theorem 4.3.

Theorem 4.4 (Kurata and Sakuma [124]) Let D be an n× n spherical EDM of
radius ρ . Let D̂ = ∑k

i=1 λi QiDQiT , where ∑k
i=1 λi = 1 and where Qi is a permutation

matrix and λi ≥ 0 for i = 1, . . . ,k. Then D̂ is a spherical EDM of radius ρ̂ ≤ ρ .

Proof. Clearly D̂ is an EDM since it is a convex combination of EDMs. Now
Theorem 4.3 implies that 2ρ2eeT −D � 0. Thus, Qi(2ρ2eeT −D)QiT = 2ρ2eeT −
QiDQiT � 0. Hence, ∑k

i=1 λi(2ρ2eeT −QiDQiT ) = 2ρ2eeT −∑k
i=1 λi QiDQiT � 0.

Therefore, D̂ is a spherical EDM of radius ρ̂ and by Theorem 4.3, ρ̂ ≤ ρ .
�

We say that points pi and p j are antipodal if dki+dk j = di j for all k= 1, . . . ,n; that
is, D.i +D. j = di je, where D.i denotes the ith column of D. Then it is an immediate
consequence of Theorem 4.3 that each entry di j is ≤ 2β ∗, with equality holding if
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and only if pi and p j are antipodal. This fact was observed by Neumaier [152] who
gave a direct proof of it without appealing to Theorem 4.3.

Example 4.4 Consider the EDM D in Example 4.1. Then ρ = 3 and hence β ∗ = 18.
Moreover, d13 = 36 = 2β ∗ and thus points p1 and p3 are antipodal. Notice that
D.1 +D.3 = 36e = d13e.

Let D† denote the Moore–Penrose inverse of an EDM D. Then it follows from
Theorem 3.9 that e lies in col(D) or DD†e = e. The solution of the system of equa-
tions Dw = e is w = D†e+(I −D†D)z where z is any vector in R

n. Thus

eT w = wT Dw = eT D†e. (4.3)

In addition to the above characterizations, spherical EDMs have two more char-
acterizations in terms of w. The first of these characterizations is given next.

Theorem 4.5 (Gower [93, 92]) Let D be a nonzero EDM and let Dw = e. Then D
is spherical if and only if eT w > 0, in which case, the generating points of D lie on
a hypersphere of radius

ρ = (
1

2eT w
)1/2.

Proof. eT w ≥ 0 since D is an EDM (Theorem 3.11). Assume that eT w > 0 and let
B =−(I − ewT/(eT w))D(I −weT/(eT w))/2. Then −2B = D− eeT/(eT w). There-
fore, diag(B) = 1

2eT w
e = ρ2e and hence D is spherical.

On the other hand, assume that eT w = 0. Then by Theorem 3.10, there exists a
configuration matrix P such that PT w = 0. Therefore, w ∈ gal(D). But Dw = e, thus
null(D) �= gal(D) and hence D is nonspherical.

�

Remark 4.1 w in Theorem 4.5 is not unique. If y ∈ null(D), then D(w+ y) = e.
However, e ⊥ null(D) since e ∈ col(D). Thus, ρ is well defined since eT (w+ y) =
eT w.

Example 4.5 Consider the EDM of Example 4.1 and let w = 1
36 [1 0 1]T . Then

Dw = e and eT w = 1/18. Note that ρ2 = 1/(2eT w) = 9.

The second characterization of spherical EDMs in terms of w is given in the
following theorem.

Theorem 4.6 Let D be a nonzero EDM and let Dw = e. Further, let B be the Gram
matrix of D such that Bw = 0. Then

wT diag(B) =
1
2

or 1. (4.4)

Moreover, D is spherical if and only if wT diag(B) = 1
2 .



94 4 Classes of EDMs

Proof. The existence of a Gram matrix B such that Bw = 0 follows from The-
orem 3.10. Also, it follows from Theorems 3.11 and 4.5 that eT w ≥ 0 and D is
spherical iff eT w > 0.

Observe that e = Dw = wT diag(B) e+ eT w diag(B) and thus eT w = wT Dw =
2wT diag(B) eT w. Therefore,

(1−wT diag(B)) e = eT w diag(B) (4.5)

and
(1−2wT diag(B)) eT w = 0. (4.6)

Now if eT w > 0, then Eq. (4.6) implies that wT diag(B) = 1
2 . Furthermore, since

B �= 0, Eq. (4.5) implies that wT diag(B) = 1 if and only if eT w = 0. As a result, (4.4)
holds since eT w ≥ 0. Consequently, eT w > 0 iff wT diag(B) = 1

2 .
�

Remark 4.2 Assume that D is a spherical EDM and Bw = 0. Then diag(B) = ρ2e
(see the proof of Theorem 4.5). Thus, it follows from Theorem 4.5 that wT diag(B) =
ρ2eT w = 1/2.

Example 4.6 Consider the EDM D of Example 4.1, where w = 1
36 [1 0 1]T . Thus,

a configuration matrix P of D that satisfies PT w = 0 is P =

⎡

⎣
−3 0

0 3
3 0

⎤

⎦. Hence,

diag(B) = 9e and therefore wT diag(B) = 1/2.

On the other hand, if we use configuration matrix P′ =

⎡

⎣
−3 −1

0 2
3 −1

⎤

⎦, then B′w �= 0.

In this case, we have wT diag(B′)= 5/9. Consequently, it is imperative that the Gram
matrix B in Theorem 4.6 satisfies Bw = 0 .

Now consider the EDM D of Example 4.2, where w = 1
2 [1 − 2 1 0]T . Thus,

a configuration matrix P of D that satisfies PT w = 0 is P =

⎡

⎢⎢
⎣

1 −1
0 −1

−1 −1
0 3

⎤

⎥⎥
⎦. Hence,

diag(B) = [2 1 2 9]T and thus wT diag(B) = 1.

Next, we collect the above sixth characterizations of spherical EDMs in the fol-
lowing theorem.

Theorem 4.7 Let D be a nonzero n× n EDM of embedding dimension r. If r =
n−1, then D is spherical. Otherwise, if r ≤ n−2, then the following statements are
equivalent:

1. D is spherical.
2. There exists a ∈R

r such that Pa = 1
2 Jdiag(B), where B is the Gram matrix of D

such that B =−JDJ/2; i.e., Be = 0.
3. null(D) = gal(D); i.e., DZ = 0, where Z is a Gale matrix of D.
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4. rank(D) = r+1.
5. There exists a scalar β such that βeeT −D � 0.
6. eT w > 0, where Dw = e, in which case, the generating points of D lie on a

hypersphere of radius

ρ = (
1

2eT w
)1/2.

7. wT diag(B)= 1
2 , where Dw= e and B=−(I−ewT/(eT w))D(I−weT/(eT w))/2;

i.e., Bw = 0.

Two observations regarding Theorem 4.7 are discussed next. These observations,
which are immediate consequences of parts 3 and 5, were made in [186, 184].

First, assume that the Gram matrix B satisfies Be = 0. Then, since ZT D =
ZT diag(B) eT , it follows from part 3 that D is spherical iff ZT diag(B) = 0 iff
diag(B) lies in col([P e]). Note that Theorem 4.1 implies that D is spherical iff
Jdiag(B) ∈ col(P).

Second, suppose that D is an EDM such that βE −D = A � 0 for some scalar β .
Then xT Dx = β (eT x)2 − xT Ax ≤ β (eT x)2 for all x. Thus,

sup{ xT Dx
(eT x)2 : x �∈ e⊥} ≤ β . (4.7)

Conversely, assume that (4.7) holds. Then xT (D−βE)x ≤ 0 for all x �∈ e⊥. More-
over, if x ∈ e⊥, then xT Dx ≤ 0 since D is an EDM. As a result, xT (D−βE)x ≤ 0 for
all x and hence βE −D is PSD. Therefore, it follows from part 5 that D is spherical
iff sup{ xT Dx

(eT x)2 : x �∈ e⊥}< ∞. Finally, we should mention that a detailed investigation

of vector s = w/eT w = 2ρ2w is given in [188].
Now assume that D is a nonsingular spherical EDM and let X be its projected

Gram matrix. Then X is nonsingular. Consequently, the Moore–Penrose inverse of
B, the Gram matrix of D, is given by B† = V X−1V T and hence B†B = VV T = J.
Note that in case X is singular, i.e., if rank(B) ≤ n− 2, then it is easy to verify
that B† = P(PT P)−2PT , where P is a configuration matrix of D. As the following
theorem shows, D−1 can be expressed in terms of B†.

Theorem 4.8 (Styan and Subak-Sharpe [182]) Let D be a nonsingular spherical
EDM and let B =−JDJ/2 be its Gram matrix. Further, let Dw = e and let ρ be the
radius of the hypersphere containing the generating points of D. Then

D−1 =−1
2

B† +2ρ2wwT . (4.8)

Proof. It follows from the definition of K that

B†D = B†diag(B) eT −2I +
2
n

eeT . (4.9)

Thus, multiplying (4.9) by D−1 yields
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B† =−2D−1 +(B†diag(B)+
2
n

e)wT . (4.10)

Moreover, B†e = 0 implies that

B†diag(B)+
2
n

e = 4ρ2w. (4.11)

Therefore, substituting (4.11) into (4.10) yields

B† =−2D−1 +4ρ2wwT .

�

The significance of Theorem 4.8 will be come clear when we discuss, below, the
distance matrices of trees and the resistance distance matrices of electrical networks.

An immediate consequence of Theorem 4.8 is that if D is a nonsingular spherical
EDM, then the inverse of the Cayley–Menger matrix M given in (3.26) is also given
by

M−1 = 2ρ2
[−1 wT

w −B†/(4ρ2)

]
. (4.12)

We should point out that Eq. (4.12) was also obtained in [79, 81, 182] and that
Theorem 4.8 was generalized by Balaji and Bapat in [32].

At this point, making a connection with Jung’s Theorem is in order.

Theorem 4.9 (Jung [119]) Let S be a compact set in R
r and let d be the diameter

of S; i.e., d = max{||pi − p j|| : pi, p j ∈ S}. Then S is contained in a ball of radius
ρ , where

ρ2 ≤ d2 r
2(r+1)

.

Let D be a spherical n× n EDM of embedding dimension r and let dmax be the
maximum entry of D. Then Jung’s Theorem implies that

aT a+
eT De
2n2 ≤ dmax

rank(D)−1
2 rank(D)

. (4.13)

Furthermore, equality holds in (4.13) if D = Δ = E − I is the EDM of the standard
simplex. This follows since in this case, 2ρ2 = 1−1/n, dmax = 1 and rank(D) = n.

Before proceeding to discuss several subclasses of spherical EDMs, we show,
next, how to construct a new spherical EDM from two old ones by using Kronecker
product.

Theorem 4.10 ([12]) Let D1 and D2 be two spherical EDMs of orders m and n, and
of radii ρ1 and ρ2, respectively. Then

D = Em ⊗D2 +D1 ⊗En

is a spherical EDM generated by points that lie of a hypersphere of radius
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ρ = (ρ2
1 +ρ2

2 )
1/2.

Proof. Let D1w1 = em and D2w2 = en where eT
mw1 > 0 and eT

n w2 > 0. Then

D(w1 ⊗w2) = (Em ⊗D2)(w1 ⊗w2)+(D1 ⊗En)(w1 ⊗w2)

= Emw1 ⊗ en + em ⊗Enw2

= eT
mw1 em ⊗ en + em ⊗ eT

n w2 en

= (eT
mw1 + eT

n w2)emn.

Let w = (w1 ⊗w2)/(eT
mw1 + eT

n w2). Then Dw = e and

eT w =
1

(eT
mw1 + eT

n w2)
(eT

m ⊗ eT
n )((w1 ⊗w2) =

1
(eT

mw1 + eT
n w2)

(eT
mw1 eT

n w2)> 0.

Therefore, D is a spherical EDM. Furthermore,

ρ2 =
1

2eT w
=

1
2(eT

mw1 eT
n w2)

(eT
mw1 + eT

n w2) = ρ2
2 +ρ2

1 .

�

In the following subsections, we discuss several subclasses of spherical EDMs.

4.1.1 Regular EDMs

An important subclass of spherical EDMs is that of regular EDMs. A spherical
EDM D is regular if the generating points of D lie on a hypersphere centered at
the centroid of these points; i.e., if a = 0 in Eq. (4.1) (assuming that the centroid
coincides with the origin). Consequently, the generating points of a regular EDM
lie on a hypersphere of radius ρ = (eT De/2n2)1/2. As a result, Inequality (4.13) in
case of a regular EDM reduces to

eT De
n2 ≤ dmax

rank(D)−1
rank(D)

. (4.14)

An example of a regular EDM is Δ , the EDM of the standard simplex. Regular
EDMs have properties that mirror those of adjacency matrices of regular graphs.
A generalization of regular EDMs is given in [188]. We begin, first, with the fol-
lowing simple characterization of regular EDMs. We should point out here that, by
Rayleigh–Ritz Theorem, the Perron eigenvalue λ1 ≥ eT De/n for any EDM D.

Theorem 4.11 (Hayden and Tarazaga [101]) Let D be a nonzero n×n EDM, then
D is regular if and only if (eT De/n,e) is the Perron eigenpair of D.

Proof. Assume that D is regular then diag(B) = ρ2e. Hence, D = 2ρ2eeT − 2B.
Thus, De = 2nρ2e = (eT De/n) e; i.e., (eT De/n,e) is the Perron eigenpair of D.
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To prove the reverse direction, assume that De=(eT De/n) e and let eT De/(2n2)=
ρ2. Then by the definition of T , we have that B = T (D) = −(D− 2ρ2eeT )/2.
Thus, Be = 0 and diag(B) = ρ2e and hence, D is regular.

�

The following corollary is an immediate consequence of Theorems 3.12 and 4.11.
It extends the Hoffman polynomial of graphs [110] to EDMs.

Corollary 4.2 Let D be an n×n EDM and let λ >−α1 > · · ·>−αk be the distinct
eigenvalues of D. Then there exists a polynomial f (D) such that f (D) = E if and
only if D is regular, in which case

f (D) = n
∏k

i=1(D+αiI)

∏k
i=1(

eT De
n +αi)

. (4.15)

f is called the Hoffman polynomial of D.

Proof. By Theorem 3.12, there exists a polynomial g such that g(D) = γxxT ,
where x is the Perron eigenvector of D. Assume that D is regular. Then x = e and
thus there exists g(x) = γE. Hence, f (x) = g(x)/γ . Now to find the scalar γ , notice
that (D+αiI)e = (eT De/n+αi)e. Therefore, g(D)e = ∏k

i=1(e
T De/n+αi)e = nγe

and thus γ = ∏k
i=1(e

T De/n+αi)/n.
On the other hand, assume that an EDM D satisfies (4.15) and let De = u.

Then D commutes with E since DE = D f (D) = f (D)D = ED. Consequently,
DE = ueT = ED = euT . Thus u = (uT e/n)e and hence D is regular.

�

Example 4.7 Consider the EDM D =

⎡

⎢⎢
⎣

0 2 4 2
2 0 2 4
4 2 0 2
2 4 2 0

⎤

⎥⎥
⎦ with configuration matrix P =

⎡

⎢⎢
⎣

−1 0
0 −1
1 0
0 1

⎤

⎥⎥
⎦. Then De = 8e. Obviously, the generating points of D lie on a hyper-

sphere centered at the origin and of radius ρ = eT De/2n2 = 1. Moreover, w = e/8
and diag(B) = e. Thus wT diag(B) = 1/2. Note that β ∗ = 2ρ2 = 2 and hence, p1

and p3 are antipodal since d13 = 2β ∗ = 4. Likewise, p2 and p4 are antipodal.
The eigenvalues of D are 8,0,−4,−4. Thus k = 2, α1 = 0, α2 = 4. Hence, γ =

∏2
i=1(

eT De
n +αi)/n = 24. Therefore, the Hoffman polynomial of D is

f (x) =
1

24
x(x+4).

We saw earlier that a spherical EDM can be constructed from two spherical
EDMs by using Kronecker product. The same result also applies to regular EDMs.

Theorem 4.12 Let D1 and D2 be two regular EDMs of orders m and n, respectively.
Then
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D = Em ⊗D2 +D1 ⊗En

is a regular EDM.

Proof. D is an EDM by Theorem 4.10. Thus, it suffices to show that e is an
eigenvector of D. To this end,

De = (Em ⊗D2)(em ⊗ en)+(D1 ⊗En)(em ⊗ en)

= (m eT
n D2en/n+n eT

mD1em/m)(em ⊗ en)

=
1

mn
eT De e.

�

Next, we turn to another subclass of spherical EDMs.

4.1.2 Cell Matrices

An n×n matrix D = (di j) is called a cell matrix if for i �= j, we have

di j = ci + c j for some c ≥ 0 in R
n.

Consequently, D is a cell matrix if D = ecT + ceT − 2Diag(c) for some c ≥ 0. For
example, Δ =E−I, the EDM of the standard simplex, is a cell matrix corresponding
to c = e/2. Cell matrices, which were introduced by Jaklič and Modic in [116],
model a star graph; i.e., a tree with one root node and n−1 adjacent leaves.

It is readily seen that cell matrices are EDMs since the projected Gram matrix
of a cell matrix D is TV (D) =V T Diag(c)V � 0. Furthermore, T (D) = JDiag(c)J.
Consequently, the Gram matrix of D is given by B = Diag(c)− ceT/n− ecT/n+
eT c eeT/n2. Assume that c has s ≥ 2 zero entries and wlog assume that cn−s+1 =
· · ·= cn = 0. Then, the following two facts are immediate consequence of the defi-
nition. First, pn−s+1 = · · ·= pn since di j = 0 for all i, j = n− s+1, . . . ,n. This fact
is used, next, to determine the embedding dimension of a cell matrix. Second, the
last s columns (hence rows) of D are identical since for all i, di j = ci (independent
of j) for all j = n− s+1, . . . ,n.

Lemma 4.2 Let c in R
n be ≥ 0 and let D be the cell matrix corresponding to c.

Let s denote the number of zero entries of c. Then the embedding dimension of D is
given by

r =

{
n−1 if s = 0 or s = 1,
n− s if s ≥ 2.

Proof. Recall that V , as defined in (3.11), has full column rank and every (n−1)×
(n− 1) submatrix of V is nonsingular. Let Diag(

√
c)V x = 0. If s = 0, then V x = 0

and hence x = 0. Also, if s = 1, then again x = 0. Thus, if s ≤ 1, null(Diag(
√

c)V )
is trivial and hence rank(Diag(

√
c)V ) = n− 1. Consequently, r = rank TV (D) =

rank(V T Diag(c)V ) = rank(Diag(
√

c)V ) = n−1.
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Now assume that s ≥ 2 and wlog assume that cn−s+1 = · · · = cn = 0. Then ob-
viously, pn−s+1 = · · · = pn. Thus r, the embedding dimension of D, is equal to the
embedding dimension of the EDM generated by p1, . . . , pn−s+1; i.e., r is equal to
the embedding dimension of the cell matrix corresponding to c̄ = [c1 · · · cn−s+1]

T .
Notice that c̄ has one zero entry. Therefore, by the previous case, it follows that
r = n− s+1−1 = n− s.

�

Therefore, Lemma 4.2 implies that, if c has s ≥ 2 zero entries, say, cn−s+1 =
· · ·= cn = 0, then p1, . . . , pn−s+1 are affinely independent and pn−s+2 = · · ·= pn =
pn−s+1. Hence, rank(D) = n−s+1 since the (n−s+1) leading principal submatrix
of D is spherical of embedding dimension n− s; and since the last s columns of D
are identical. Moreover, it is easy to see that in this case, i.e., if s ≥ 2, then

Z =

⎡

⎣
0

Is−1

−eT
s−1

⎤

⎦

is a Gale matrix of D. As a result, cell matrices are spherical EDMs.

Theorem 4.13 (Jaklič and Modic [116]) Cell matrices are spherical Euclidean
distance matrices.

The proof of Theorem 4.13 in [116] is based on Theorem 3.11 and part 6 of
Theorem 4.7. However, this theorem is an immediate consequence of part 3 of The-
orem 4.7 since it is easy to verify that DZ = 0 if s ≥ 2. Note that if s = 0 or s = 1,
then D is obviously spherical. Also, this theorem follows from part 4 of Theorem 4.7
since if s = 0 or 1, then r, the embedding dimension of D, is equal to n− 1. Oth-
erwise, if s ≥ 2, then r = n− s. Accordingly, the result follows since in this case
rank(D) = n− s+1 = r+1.

Example 4.8 Let c = [1 2 3 0]T . Then, the cell matrix corresponding to c is

D =

⎡

⎢⎢
⎣

0 3 4 1
3 0 5 2
4 5 0 3
1 2 3 0

⎤

⎥⎥
⎦ .

The embedding dimension of D is r = 3 and the generating points of D are affinely
independent.

Now let c′ = [cT 0]T . Then, the cell matrix corresponding to c′ is D′ =
[

D c
cT 0

]
.

Moreover, the embedding dimension of D′ is again r = 3 and in this case p4 = p5.

Next, we turn to a third subclass of spherical EDMs, namely, the Manhattan
distance matrices on grids.
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4.1.3 Manhattan Distance Matrices on Grids

In this subsection, we focus on rectangular grids of unit squares with m rows and
n columns. First, we consider the special case when m = 1. Let Gn = (gi j) be the
n×n Manhattan distance matrix of a rectangular grid of 1 row and n columns. Then

gi j = |i− j|.

Let p1, . . . , pn be the points in R
n−1 such that the first i− 1 entries of pi are 1’s

and the remaining n− i entries are 0’s. Thus, p1 coincides with the origin and pn =
en−1. Moreover, ||pi − p j||2 = |i− j| for all i, j = 1, . . . ,n. Hence, Gn is an EDM
with embedding dimension r = n− 1 generated by p1, . . . , pn. Let a = e/2, then
||pi − a||2 = (n− 1)/4 for all i = 1, . . . ,n. As a result, the points p1, . . . , pn lie on
a hypersphere centered at a = e/2 and of radius ρ = 1

2 (n− 1)1/2 and hence G is a
spherical EDM. Another way to show that Gn is spherical is to observe that gi1 +
gin = n− 1 for all i = 1, . . . ,n. Thus, if we let w = [1 0 · · · 0 1]T/(n− 1), then
Gnw = e and eT w = 2/(n−1)> 0.

Now consider a rectangular grid of m rows and n columns and let d̂i j,kl be the
Manhattan distance between the grid points at (i, j) and (k, l). Then

d̂i j,kl = |i− k|+ | j− l|.

To represent these distances as the entries of an mn×mn matrix, we replace the
double indices i j and kl by single indices s and t, respectively. First, let s = j +
n(i− 1) for i = 1, . . . ,m and j = 1, . . . ,n. This relation produces a lexicographic
ordering, i.e,

11,12, . . . ,1n,21,22, . . . ,2n, . . . ,m1,m2, . . . ,mn.

In terms of s, the indices i and j are given by i = �s/n� and j = s− n(�s/n�− 1).
Similarly, let t = l +n(k−1) for k = 1, . . . ,m and l = 1, . . . ,n. Thus, k = �t/n� and
l = t −n(�t/n�−1).

Consider (A⊗B) where A and B are any two matrices of orders m and n, respec-
tively. Then

(A⊗B)st = aikb jl . (4.16)

It is important to keep in mind that s depends on the first indices i and j of the
entries of A and B, while t depends on the second indices. For example, let m = 2
and n = 3. Then the lexicographic ordering is

11,12,13,21,22,23.

and a12b11 = (A⊗B)14. This follows since in this case, i j = 11 and kl = 21 and thus
s = 1 and t = 4. Similarly, a21b13 = (A⊗B)43 and a22b23 = (A⊗B)56.

Therefore,

(Em ⊗Gn)st = (Em)ik(Gn) jl = (Gn) jl = | j− l|.
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and
(Gm ⊗En)st = (Gm)ik(En) jl = (Gm)ik = |i− k|.

Thus, the mn×mn matrix D = (d̂i j,kl) is given by

D = Em ⊗Gn +Gm ⊗En. (4.17)

Consequently, Theorem 4.10 implies that D is a spherical EDM generated by points
that lie on a hypersphere of radius ρ = 1

2 (n+m− 2)1/2; and Theorem 4.3 implies
that

1
2
(n+m−2)E −D � 0. (4.18)

It should be noted that (4.18) was first obtained by Mettlemann and Peng in [146].

Example 4.9 Consider the rectangular grid with unit squares of two rows and three
columns. Then

G2 =

[
0 1
1 0

]
and G3 =

⎡

⎣
0 1 2
1 0 1
2 1 0

⎤

⎦ .

Thus, D = E2 ⊗G3 +G2 ⊗E3 is given by

D =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 1 2 0 1 2
1 0 1 1 0 1
2 1 0 2 1 0
0 1 2 0 1 2
1 0 1 1 0 1
2 1 0 2 1 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

+

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 1 2 1 2 3
1 0 1 2 1 2
2 1 0 3 2 1
1 2 3 0 1 2
2 1 2 1 0 1
3 2 1 2 1 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

Let w2 = e2 and w3 =
1
2 [1 0 1]T . Then G2w2 = e2 and G3w3 = e3. Now let w=w2⊗

w3/(eT
2 w2 +eT

3 w3) = 1
6 [1 0 1 1 0 1]T . Then Dw = e and eT w = 2/3. Accordingly,

the generating points of D lie on a hypersphere of radius ρ =
√

3/2.

The fourth subclass of spherical EDMs is that of Hamming distance matrices on
the hypercube.

4.1.4 Hamming Distance Matrices on the Hypercube

Let Qr denote the r-dimensional hypercube; i.e., the vertices of Qr are all points
in R

r whose entries are either 0 or 1. Let p1, . . . , p2r
be the vertices of Qr and let

D = (di j) be the 2r × 2r matrix such that di j is the Hamming distance between pi

and p j. Thus

di j =
r

∑
k=1

|pi
k − p j

k|=
r

∑
k=1

(pi
k − p j

k)
2 = ||pi − p j||2,
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where the second equality follows since pi
k − p j

k is either 1 or 0. Therefore, D is an
EDM of embedding dimension r. Let a be the centroid of the generating points of
D. Then a = e/2 and hence, these points lie on a hypersphere centered at a and of
radius ρ = 1

2 r1/2. Consequently, D is a regular EDM. Notice that, for these matrices,
the origin coincides with one of the generating points and not with their centroid.

Note that, for r ≥ 2, det(D) = 0 since D is of order 2r and rank(D) = r + 1.
However, some nonzero minors of D have a simple form.

Theorem 4.14 (Graham and Winkler [96]) Assume that the vertices p1, . . . , pr+1

of the hypercube Qr form a simplex. Then the determinant of the submatrix of D
induced by these points is given by

(−1)r r 2r−1.

Proof. Let D′ denote the (r+1)×(r+1) submatrix of D induced by p1, . . . , pr+1.
Then, it follows from Theorem 3.15 that

V2(p1, . . . , pr+1) =
(−1)r+1

2r((r)!)2 det(

[
0 eT

e D′

]
).

But, V(p1, . . . , pr+1) = 1/r! since the parallelepiped generated by these points is the
unit hypercube. Therefore,

det(

[
0 eT

e D′

]
) = (−1)r+1 2r.

Now by Schur complement,

det(

[
0 eT

e D′

]
) = det(D′)det(0− eT D′−1e) =−(eT D′−1e) det(D′).

But since D is a regular EDM of radius ρ =
√

r/2, it follows that D′ is a spherical
EDM of the same radius. Thus, eT D′−1e = eT w = 1/(2ρ2) = 2/r and hence det(D′)
= (−1)rr2r−1.

�

Distance matrices of trees are the fifth subclass of spherical EDMs.

4.1.5 Distance Matrices of Trees

Let T be a tree on n nodes. The distance matrix of T is the n× n matrix D = (di j)
where di j is the number of edges in the path between node i and node j. For example,
di j = 1 for every edge {i, j} of T . By definition, dii = 0. As will be shown in this
subsection, distance matrices of trees are spherical EDMs [32, 33]. Moreover, these
matrices form a subset of the resistance distance matrices of electrical networks
[121] to be discussed the following subsection.
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Example 4.10 Let T be the tree depicted in Fig. 4.1. Then the distance matrix of T
is

D =

⎡

⎢⎢⎢⎢
⎣

0 1 2 2 3
1 0 1 1 2
2 1 0 2 3
2 1 2 0 1
3 2 3 1 0

⎤

⎥⎥⎥⎥
⎦
.

5 4 2

1

3

Fig. 4.1 The tree of Example 4.10

Distance matrices of trees have nice properties. For instance, the determinant
and the inverse of these matrices have simple forms. More precisely, as shown by
the following remarkable theorem, the determinant of a distance matrix of a tree T
has a surprisingly simple form which is independent of the structure of T .

Theorem 4.15 (Graham and Pollak [95]) Let D be the distance matrix of a tree
on n nodes. Then

det(D) = (−1)n−1(n−1)2n−2.

Proof. Wlog assume that n is a leaf node adjacent to node n−1. Then it is easy to
see that din = din−1 + 1 for i = 1, . . . ,n− 1. Therefore, by subtracting the (n− 1)th
column ((n−1)th row) of D from the nth column (nth row), the (n,n)th entry of D
becomes (−2) and all other entries in the nth column and the nth row become 1’s.
Now let Tn−1 be the tree obtained by deleting node n and edge {n,n−1}. Let node i
be a leaf of Tn−1 and let node j be adjacent to i. Then by subtracting the jth column
( jth row) of D from the ith column (ith row), the (i, i)th entry of D becomes (−2),
the (i,n)th and (n, i)th entries become 0’s and all other entries in the ith row and the
ith column become 1’s. By repeating this process, assuming that the last remaining
node is node 1, we arrive at a bordered diagonal matrix whose determinant is easy
to compute. More precisely, we get that

det(D) = det(

⎡

⎢
⎢⎢
⎣

0 1 · · · 1
1 −2 · · · 0
... 0

. . . 0
1 0 · · · −2

⎤

⎥
⎥⎥
⎦
) = det(

⎡

⎢
⎢⎢
⎣

n−1
2 0 · · · 0
1 −2 · · · 0
... 0

. . . 0
1 0 · · · −2

⎤

⎥
⎥⎥
⎦
),

where the last determinant is obtained by adding (row 2 + · · · + row n)/2 to row 1.
Consequently, det(D) = (−2)n−1(n−1)/2.

�
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An immediate consequence of Theorem 4.15 is that distance matrices of trees are
nonsingular elliptic matrices.

Theorem 4.16 (Graham and Pollak [95]) Let D be the distance matrix of a tree
on n nodes. Then D has exactly one positive and n−1 negative eigenvalues.

Proof. The proof is by induction on n. The assertion is obviously true for n = 2
since the tree consists of one edge and thus the eigenvalues of D are clearly ±1.
Thus, assume that the assertion is true for n = k and consider the (k+ 1)× (k+ 1)

matrix D =

[
D̄ d
dT 0

]
, where D̄ is of order k and d ∈ R

k. Therefore, by Cauchy

interlacing theorem, matrix D has one positive eigenvalue, k − 1 negative eigen-
values and one eigenvalue which can be either positive or negative. However, by
Theorem 4.15, this last eigenvalue must be negative since det(D) has sign (−1)k.
Therefore, D has exactly k negative eigenvalues.

�

Similar to the determinant, the inverse of the distance matrix of a tree has a simple
form as shown by the following theorem.

Theorem 4.17 (Graham and Lovász [94]) Let D be the distance matrix of a tree
T on n nodes. Let L denote the Laplacian of T and deg denote the vector of the
degrees of the nodes of T . Then

D−1 =−1
2

L+
1

2(n−1)
(2e−deg)(2e−deg)T .

Two remarks are in order here. First, Theorem 4.17 is a special case of Theo-
rem 4.8. Second, suppose that node i is a leaf of T and let T ′ be the tree obtained
from T by deleting node i and the edge incident with it. Let D′ be the distance ma-
trix of T ′. Hence, the (i, i)-cofactor of D is equal to det(D′) = (−1)n−2(n−2)2n−3.
Consequently, the (i, i)th entry of D−1 is

(−1)n−2(n−2)2n−3

(−1)n−1(n−1)2n−2 =− n−2
2(n−1)

which is independent of i. This agrees, as should be the case, with the implication
of Theorem 4.17 that the (i, i)th entry of D−1 is

−1
2
+

1
2(n−1)

=
2−n

2(n−1)
.

We should point out that alternative proofs of Theorems 4.15 and 4.17 are given
in [32, 33].

Example 4.11 Consider the matrix D of Example 4.10. Then
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D−1 =
1
8

⎡

⎢⎢
⎢⎢
⎣

−3 3 1 0 1
3 −11 3 4 −1
1 3 −3 0 1
0 4 0 −8 4
1 −1 1 4 −3

⎤

⎥⎥
⎥⎥
⎦
.

Observe that D−1
11 = D−1

33 = D−1
55 =−3/8 since nodes 1, 3, and 5 are leaves of T .

In the theorem that follows, we establish that the distance matrix of a tree is a
spherical EDM and we determine its radius.

Theorem 4.18 Let D be the distance matrix of a tree on n nodes. Then D is a spher-
ical EDM of radius

ρ =
(n−1)1/2

2
.

Proof. Recall that D is elliptic. Let Dw = e. Then w = D−1e = (2e−deg)/(n−1)
since Le= 0 and since eT deg= 2(n−1). Consequently, eT w= eT D−1e= 2/(n−1).
The result follows from Theorem 4.7.

�

As we mentioned earlier, distance matrices of trees form a subset of resistance
distance matrices of electrical networks which we discuss next.

4.1.6 Resistance Distance Matrices of Electrical Networks

Let us regard a simple connected graph G as an electrical network where each edge
of G is a unit resistor [73, 175]. Identify two nodes of G as a source node s and a
sink node t and connect s and t to the terminals of a battery. Let the voltage across s
and t be vs − vt and the current flowing into s and out of t be ist . Then the effective
resistance between s and t, denoted by ωst , is defined as

ωst =
vs − vt

ist
.

As a result, graph G is equivalent to one edge {s, t} with resistance ωst . Let the
resistances of two edges of G be ω1 and ω2. It is well known that these two edges
can be replaced by a single edge of resistance ω1 +ω2 if they are in series, and of
resistance (ω−1

1 +ω−1
2 )−1 if they are in parallel. Consequently, for series-parallel

graphs, ωst can be calculated by iteratively using these two rules.

Example 4.12 Consider the electrical network of unit resistors of Fig. 4.2, where
node 1 is identified as the source node s and node 4 is identified as the sink node t.
It is easy to see that the effective resistance across s, t is ωst = (2−1 +2−1 +1−1)−1

= 1/2.
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s= 1 t = 4

2

3

s tωst = 1/2

Fig. 4.2 The electrical network of unit resistors of Example 4.12. Node 1 is identified as the source
node s, while node 4 is identified as the sink node t

As will be shown in this subsection, the matrix of all pair-wise effective resistors
of G is a spherical EDM [121, 182]. To this end, assume that the magnitude of the
current flowing into s and out of t is 1. Thus, since each edge of G is a unit resistor,
Kirchhoff current law, based on the conservation of electric charge, implies that

∑
k:{k, j}∈E(G)

(v j − vk) = δ js −δ jt for all j = 1, . . . ,n (4.19)

where δi j is the Kronecker delta. Let iext = es − et , where es and et are the sth and
the tth standard unit vectors in R

n; i.e.,

iext
j =

⎧
⎨

⎩

1 if j = s
−1 if j = t

0 otherwise.

Also, let v in R
n be the vector consisting of the voltages on the nodes of G. Then

(4.19) can be written in matrix form as

Lv = iext , (4.20)

where L is the Laplacian of G. Hence, v = L†iext , where L† is the Moore–Penrose
inverse of L. Observe that v+αe satisfies (4.20) for any scalar α since Le= 0. Hence
v is not unique. This should come as no surprise since voltages are not measured in
absolute but in relative terms. Therefore, the effective resistance [121, 182] between
s and t is given by

ωst = vs − vt = (es − et)T L†(es − et) = L†
ss +L†

tt −2L†
st .

As a result, the matrix of pair-wise effective resistances of G is given by

Ω =K (L†), (4.21)

where K is as defined in (3.3). Moreover, since L is PSD of rank n− 1 (graph G
is connected) and Le = 0, it follows that L =V ΦV T for some (n−1)× (n−1) PD
symmetric matrix Φ , where V is as defined in (3.11). Consequently, L† =V Φ−1V T
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and thus L† is PSD of rank n−1 and satisfies L†e = 0. As a result, Ω is a spherical
EDM of embedding dimension n−1 and L† is the Gram matrix of Ω . Furthermore,
the projected Gram matrix of Ω is X =V T L†V = Φ−1. Therefore,

Ω =KV (X), where X = (V T LV )−1. (4.22)

Let C = L+E/n and let Q= [V e/
√

n]. Then C =Q

[
Φ 0
0 1

]
QT and hence C−1 =

Q

[
X 0
0 1

]
QT = L† +E/n. Therefore,

L† = (L+
1
n

E)−1 − 1
n

E. (4.23)

Let the generating points of Ω lie on a hypersphere of center a and radius ρ . Next,
we calculate a and ρ . To this end, the configuration matrix of Ω is P =V X1/2. Part
2 of Theorem 4.7 implies that 2Pa = Jdiag(L†) or 2V X1/2a = Jdiag(L†). Thus,

2a = X−1/2V T diag(L†)

and hence,
4aT a = (diag(L†))T L diag(L†).

On the other hand, eT De = 2n trace(L†). Consequently,

ρ2 = aT a+ eT De/(2n2) =
1
4
(diag(L†))T L diag(L†)+

1
n

trace(L†). (4.24)

(4.24) can be alternatively obtained as follows. Premultiplying Eq. (4.11) by
diag(B)T yields

(diag(B))T B†diag(B)+
2
n

eT diag(B) = 4ρ2wT diag(B).

But since n = wT De = n wT diag(B)+ eT diag(B) eT w, it follows that wT diag(B) =
1− eT diag(B)/2nρ2. Thus, (4.24) follows by setting B = L†.

Example 4.13 The Laplacian and its Moore–Penrose inverse of the graph of Ex-
ample 4.12 are

L =

⎡

⎢⎢
⎣

3 −1 −1 −1
−1 2 0 −1
−1 0 2 −1
−1 −1 −1 3

⎤

⎥⎥
⎦ and L† =

1
16

⎡

⎢⎢
⎣

3 −1 −1 −1
−1 5 −3 −1
−1 −3 5 −1
−1 −1 −1 3

⎤

⎥⎥
⎦ .

Consequently, the matrix of resistance distances is
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Ω =K (L†) =
1
8

⎡

⎢⎢
⎣

0 5 5 4
5 0 8 5
5 8 0 5
4 5 5 0

⎤

⎥⎥
⎦

and ρ2 = 17/64.

Example 4.14 Consider the electrical network corresponding to the complete
graph Kn. The Laplacian and its Moore–Penrose inverse are given by L = nI −E
and L† = J/n. Therefore, the matrix of resistance distances is Ω = 2(E − I)/n.

Finally, showing that distance matrices of trees is a subset of resistance distance
matrices of electrical networks [121] is straightforward. For assume that G is a tree,
say T . Then the path between any two nodes s and t of T is unique. Consequently,
the effective resistance between s and t is equal to the distance between s and t.

4.2 Nonspherical EDMs

Evidently, many characterizations of spherical EDMs give rise to characteriza-
tions of nonspherical ones. For example, if D is an EDM of embedding dimen-
sion r, then it follows at once from Theorems 4.7 and 3.8 that D is nonspherical iff
rank(D) = r+ 2. Also, an immediate consequence of Theorem 4.5 is that an EDM
D is nonspherical if and only if eT w = 0 where Dw = e. As we remarked earlier,
such w is not unique, for if y ∈ null(D), then D(w+ y) = e and eT (w+ y) = 0 since
e ∈ col(D) and since col(D) is orthogonal to null(D). However, there is a unique η
such that Dη = e and η ⊥ (e⊕null(D)). Such unique η plays an important role in
determining the eigenvalues of nonspherical EDMs as well as in the characteriza-
tions of their null and column spaces.

Theorem 4.19 Let D be an n× n nonspherical EDM of embedding dimension r.
Then gal(D) = null(D)⊕ span(η), where η is the unique vector in R

n such that

Dη = e, η ⊥ (e⊕null(D)). (4.25)

Proof. Let Z be a Gale matrix of D and as always, let r̄ = n − r − 1. Then
Lemma 3.10 implies that DZ = eξ T , where ξ = (ξi) = ZT diag(B)∈R

r̄. If r = n−2,
i.e., if r̄ = 1, then D is nonsingular since rank(D) = r+2 = n and Z is n×1. There-
fore, DZ = ξ1e and hence η = Z/ξ1 = D−1e. Consequently, in this case, gal(D) =
span(η) and null(D) is trivial. Note that eT η = 0.

Now assume that r ≤ n−3 and wlog assume that ξ1 �= 0. Let w = Z.1/ξ1 where
Z.1 is the first column of Z. Then Dw = e. Define the r̄× r̄ nonsingular upper trian-
gular matrix
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S =

⎡

⎢
⎢⎢
⎣

ξ−1
1 −ξ2 · · · −ξr̄

0 ξ1 · · · 0

0
. . . ξ1 0

0 · · · 0 ξ1

⎤

⎥
⎥⎥
⎦
.

Then ξ T S = [1 0] and thus eξ T S = [e 0]. On the other hand, ZS = [w Z̄] is a Gale
matrix where Z̄ is n× (r̄ − 1). Consequently, DZS = D[w Z̄] = [e 0]. Therefore,
col(Z̄) ⊆ null(D). But dim null(D) = n− r−2 = r̄−1, thus col(Z̄) = null(D). Let
Q = (I− Z̄(Z̄T Z̄)−1Z̄T ) be the orthogonal projection onto null(Z̄T ) and let η = Qw.
Then η ∈ null(Z̄T ) and hence, η ⊥ null(D). Moreover, Dη =Dw= e (since DZ̄ = 0)
and eT η = eT w = 0. Therefore,

gal(D) = col(ZS) = col([η Z̄]) = span(η)⊕null(D).

To show that η is unique, assume that Dη ′ = e where η ′ ⊥ null(D). Thus, η −η ′
lies in null(D). But, η −η ′ is ⊥ null(D). Hence, η −η ′ = 0.

�

Remark 4.3 If gal(D) = null(D)⊕ span(x), then x ⊥ e since e ⊥ gal(D). However,
x may or may not be ⊥ null(D). In Theorem 4.19, gal(D) = null(D)⊕ span(w) =
null(D)⊕ span(η). Both w and η are ⊥ e, but only η is ⊥ null(D).

Recall that DD† is the orthogonal projection on col(D) and that DD† =D†D since
D is symmetric. Also, recall that Dw = e implies that w = D†e+(I −D†D)z where
z is an arbitrary vector. We saw above that η is the orthogonal projection of w onto
null(Z̄T ) and that col(Z̄) = null(D). Thus η is, in fact, the orthogonal projection of
w onto col(D). Consequently,

η = DD†w = D†e.

Therefore, for nonspherical EDMs, we have

eT η = ηT Dη = eT D†e = 0.

Example 4.15 Consider the nonspherical EDM D =

⎡

⎢⎢⎢
⎢
⎣

0 1 4 9 16
1 0 1 4 9
4 1 0 1 4
9 4 1 0 1

16 9 4 1 0

⎤

⎥⎥⎥
⎥
⎦

with config-

uration matrix P =

⎡

⎢⎢⎢⎢
⎣

−2
−1

0
1
2

⎤

⎥⎥⎥⎥
⎦

. Then null(D) = col(

⎡

⎢⎢⎢⎢
⎣

−1 −3
3 8

−3 −6
1 0
0 1

⎤

⎥⎥⎥⎥
⎦
) and η = 1

14

⎡

⎢⎢⎢⎢
⎣

2
−1
−2
−1

2

⎤

⎥⎥⎥⎥
⎦

.

Moreover, diag(B) = [4 1 0 1 4]T and hence, ηT diag(B) = 1.

As an immediate consequence of the above characterizations of spherical EDMs,
we have the following characterizations of nonspherical EDMs.
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Theorem 4.20 Let D be an n× n EDM of embedding dimension r ≤ n− 2 and let
Z be a Gale matrix of D. Then the following statements are equivalent:

1. D is nonspherical.
2. eT η = 0 where Dη = e.
3. DZ �= 0.
4. rank(D) = r+2.
5. ηT diag(B) = 1, where Dη = e and B =−JDJ/2 .

An interesting subclass of nonspherical EDMs is that of multispherical EDMs.
We discuss this subclass next.

4.2.1 Multispherical EDMs

A nonspherical EDM is multispherical if its generating points lie on two or more
concentric hyperspheres. More precisely, let D be an n× n nonspherical EDM and
let n1, . . . ,nk be positive integers such that n1 + · · ·+ nk = n. Then D is said to be
k-multispherical if there exists a sequence of k, 2 ≤ k ≤ n−1, distinct hyperspheres,
each centered at the origin, such that the ith hypersphere contains ni points. A vector
x ∈ R

n is said to have a k-block structure, 2 ≤ k ≤ n− 1, if the entries of x assume
exactly k distinct values. For example, ei, the ith standard unit vector, has a 2-block
structure. Therefore, since the hyperspheres are centered at the origin, it immedi-
ately follows that D is k-multispherical if and only if diag(B), where B is the Gram
matrix; i.e., Bi j = (pi)T p j, has a k-block structure. It is worth emphasizing here that
the rank of B may not be equal to the embedding dimension of D since B may not
be derived as B =T (D) (see Example 4.16 below).

Multispherical EDMs are characterized in the following two theorems.

Theorem 4.21 (Hayden et al. [104]) Let D be an n× n EDM. Then the following
two statements are equivalent:

(i) D is k-multispherical.
(ii) There exists v ∈ R

n such that eT v > 0 and Dv has a k-block structure.

Proof. Assume that Statement (ii) holds and let the Gram matrix of D be B =
−(I − evT/eT v)D(I − veT/eT v)/2. Thus Bv = 0 and consequently

Dv = vT diag(B) e+ eT v diag(B). (4.26)

Thus, diag(B) has a k-block structure and hence Statement (i) holds.
Conversely, assume that Statement (i) holds and wlog assume that p1, . . . , pn1

lie on the first hypersphere, pn1+1, . . . , pn1+n2 lie on the second hypersphere and so
on. Let B = (bi j = (pi)T p j) be the corresponding Gram matrix. Then diag(B) has
k-block structure. Now let x be any nonzero vector in null(B). If eT x > 0, set v = x
and thus, as in (4.26), Dv has a k-block structure. On the other hand, if eT x = 0
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for every x ∈ null(B), then null(B)⊆ e⊥, or equivalently, e ∈ col(B). Therefore, let
Bv = e. Then vT Bv = eT v > 0 and

Dv = (vT diag(B)−2) e+ eT v diag(B).

Therefore, Dv has a k-block structure.
�

As a result, if D is k-multispherical, then there exists a system of coordinates,
fixed by v, such that D =T (B), where diag(B) has a k-block structure.

Example 4.16 Let D be the EDM generated by p1 =

[−1
1

]
, p2 =

[
1
1

]
and p3 =

[
0
1

]
. Then obviously, D is 2-multispherical. The null space of the corresponding

Gram matrix B is the span of x = [1 1 −2]T . Notice that B is not derived as T (D)
since its rank is 2, while the embedding dimension of D is 1. Thus, eT x= 0 and hence
e ∈ col(B). Therefore, Bv = e, where v = [0 0 1]T . Then the new Gram matrix is
B′ =−(I−evT )D(I−veT )/2 = [1 −1 0]T [1 −1 0]. Obviously, rank(B′) = 1 and
diag(B′) = [1 1 0]T .

Theorem 4.22 (Kurata and Matsuura [123]) Let D be an n× n EDM. Then the
following two statements are equivalent:

(i) D is k-multispherical, where p1, . . . , pn1 lie on the first hypersphere, pn1+1, . . .,
pn1+n2 lie on the second hypersphere and so on.

(ii) There exist scalars β1, . . . ,βk such that

⎡

⎢⎢⎢
⎣

2β1En1 (β1 +β2)En1,n2 · · · (β1 +βk)En1,nk

(β1 +β2)En2,n1 2β2En2 · · · (β2 +βk)En2,nk

· · · · · · . . . · · ·
(β1 +βk)Enk,n1 (β2 +βk)Enk,n2 · · · 2βkEnk

⎤

⎥⎥⎥
⎦
−D � 0, (4.27)

where Eni and Eni,n j are the matrices of all 1’s of orders ni × ni and ni × n j

respectively.

Proof. Assume that Statement (i) holds. Then, by the previous theorem, there
exists v such that eT v = 1 and Dv has a k-block structure. Let B =−(I− evT )D(I−
veT )/2. Then, diag(B) = Dv− vT Dve/2 = [β1eT

n1
· · · βkeT

nk
]T and

D =K (B) =

⎡

⎢
⎣

β1en1
...

βkenk

⎤

⎥
⎦ [eT

n1
· · ·eT

nk
]+

⎡

⎢
⎣

en1
...

enk

⎤

⎥
⎦ [β1eT

n1
· · ·βkeT

nk
]−2B. (4.28)

Thus Statement (ii) holds.
Conversely, assume that Statement (ii) holds and let the left-hand side of (4.27)

be equal to 2B′. Then diag(B′) = [β1eT
n1

· · · βkeT
nk
]T and thus (4.27) can be written
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as diag(B′)eT + e(diag(B′))T −D = 2B′. Hence, K (B′) = D and thus B′ is a Gram
matrix of D. Therefore, D is k-multispherical and hence Statement (i) holds.

�

Observe that if k = 1, then Theorem 4.22 reduces to part 5 of Theorem 4.7. More-
over, as was the case for a spherical EDM, the βi’s in Theorem 4.22 are related to the
radii of the concentric hyperspheres. We should point out that Kurata and Tarazaga
[125] obtained other characterizations of multispherical EDMs. Also, Tarazaga et
al. [188] discussed the case where the centroid of the points in each of the concen-
tric hypersphere coincides with the origin. Finally, Hayden et al. [104] presented a
mixed-integer linear programming algorithm for finding the minimum number of
concentric hyperspheres that contain the generating points of a given EDM.

We conclude this chapter by remarking that another interesting subclass of non-
spherical EDMs, namely nonspherical centrally symmetric EDMs is considered in
Chap. 6, where we study the eigenvalues of EDMs.



Chapter 5
The Geometry of EDMs

The geometric properties of EDMs are inherited from those of PSD matrices. Let
Dn denote the set of EDMs of order n. This chapter focuses on the geometry of Dn.
In particular, we study the facial structure of Dn and its polar, and we highlight the
similarities between Dn and the positive semidefinite cone S n

+.

5.1 The Basic Geometry of Dn

Recall that Dn is the image of S n−1
+ under the linear transformation KV . As a result,

the geometric properties of Dn are closely connected with those of S n
+. In partic-

ular, Dn is a pointed closed convex cone whose interior consists of all EDMs of
embedding dimension n−1. Consequently, the interior of Dn is made up of spheri-
cal EDMs, while the boundary of Dn is made up of both spherical and nonspherical
EDMs. Moreover, the following theorem is an immediate consequence of part 4 of
Theorem 4.2.

Theorem 5.1 (Tarazaga [184]) The set of spherical EDMs is convex.

Proof. Let D1 and D2 be two spherical matrices. Then the two matrices β1E −D1

and β2E −D2 are PSD for some scalars β1 and β2. Hence, for any λ : 0 ≤ λ ≤ 1,
it follows that (λβ1 + (1 − λ )β2)E − (λD1 + (1 − λ )D2) is PSD. Consequently,
λD1 +(1−λ )D2 is a spherical EDM.

�

Now, Dn is the closure of the set of spherical EDMs. To see this, observe that
for any EDM D and for any α > 0, D′ = D+α(E − I) is an EDM of embedding
dimension n− 1 since TV (D′) = TV (D)+ (α/2)I is PD. Hence, for any EDM D
and for any ε > 0, there exists a spherical EDM D′ such that ||D′ −D|| ≤ ε . In other
words, every nonspherical EDM is the limit of a sequence of spherical EDMs.
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Recall that cell matrices, i.e., matrices of the form D = ceT + ecT − 2Diag(c)
for some c ≥ 0, are spherical EDMs. Let T : Rn →S n where T (x) = xeT + exT −
2Diag(x). Then, obviously, the set of cell matrices is the image of the nonnegative
orthant, Rn

+, under T . A cone K ∈ V is said to be polyhedral if it is the conic hull of
a finite number of vectors in V . Clearly, Rn

+ is a polyhedral cone since every c ∈R
n
+

can be written as c = ∑n
i=1 ciei, where ci ≥ 0 and ei is the ith standard unit vector

in R
n. Accordingly, every cell matrix can be written as D = T (c) = ∑n

i=1 ciT (ei).
Consequently, cell matrices form a polyhedral convex cone in S n. This result was
obtained by Tarazaga and Kurata in [187, 126] where the geometric properties of
cell matrices are discussed.

Also recall that TS(x̂), the tangent cone of convex set S at x̂, is the closure of
FS(x̂), the cone of feasible directions of S at x̂; i.e.,

FS(x̂) = {β (x− x̂) : for all x ∈ S and for all β ≥ 0}.
The set E n = {A ∈S n

+ : diag(A) = e}, i.e., the set of correlation matrices, is called
the elliptope. Clearly, E, the matrix of all 1’s, lies in E n. Moreover, the cone of
feasible direction of the elliptope at E is given by

FE n(E) = {D′ = β (A−E) : for all A ∈ E n and for all β ≥ 0}. (5.1)

Let D′ ∈ FE n(E). Then obviously diag(D′) = 0 and T (−D′) � 0. Consequently,
(−D′) is an EDM, and more precisely, (−D′) is a spherical EDM (Theorem 4.7).
On the other hand, if D is a spherical EDM, then (−D) lies in FE n(E). As a re-
sult, −FE n(E) is exactly the set of spherical EDMs. Therefore, we have proved the
following theorem.

Theorem 5.2 (Deza and Laurent [70]) The EDM cone, Dn, is the negative of the
tangent cone of the elliptope at E.

Next, we characterize the polar of Dn and we investigate more geometric con-
nections between Dn and the elliptope E n.

5.2 The Polar of Dn

We use two different approaches to find the polar of Dn. The first one is direct and
uses the adjoint of KV , while the second one is indirect and uses the geometric
structure of the elliptope. We begin, first, with the direct approach.

Theorem 5.3 The polar of Dn is given by

(Dn)◦ = {D′ : D′ = A+Diag(y), where Ae = 0,A � 0 and y ∈ R
n}.

Proof. Let K = {D′ : D′ = A+Diag(y), where Ae = 0,A � 0 and y ∈R
n}. Let

D′ ∈ K and let D ∈Dn. Note that D′e = y. Then, since diag(D) = 0, it follows that

trace(D′D) = trace(AD)+ trace(Diag(y)D) = trace(AKV (X)) = trace(K ∗
V (A)X)

where X ∈S n−1
+ . But, Lemma 3.5 implies that
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trace(K ∗
V (A)X) = 2 trace(V T (Diag(Ae)−A)V X) =−2 trace(V T AV X)≤ 0.

Hence, K ⊆ (Dn)◦.
To prove the other direction, let D′ ∈ (Dn)◦ and let D ∈Dn. Then

trace(D′D) = trace(D′KV (X)) = trace(K ∗
V (D′)X)≤ 0.

Therefore, −K ∗
V (D′) � 0 and hence V T (D′ − Diag(D′e))V � 0. Let A =

D′ − Diag(D′e). Then Ae = 0 and hence VV T AVV T = JAJ = A � 0. Therefore,
D′ = A+Diag(D′e). Moreover, D′ ∈ K (set D′e = y). Hence (Dn)◦ ⊆ K.

�

Next, we turn to the indirect approach for finding (Dn)◦. It is an immediate con-
sequence of Theorems 5.2 and 1.42 that the polar of Dn is the negative of NE n(E),
the normal cone of the elliptope at E. Therefore, the characterization of (Dn)◦ fol-
lows from the following characterization of NE n(E).

Theorem 5.4 (Laurent and Poljak [131]) The normal cone of the elliptope at E is
given by

NE n(E) = {C : C =−A+Diag(y), where Ae = 0,A � 0 and y ∈ R
n}.

Proof. Let K = {C : C = −A+Diag(y), where Ae = 0,A � 0 and y ∈ R
n}. Let

C ∈ K and let Y ∈ E n. Then

trace(CE)− trace(CY ) = trace(Diag(y)E)+ trace(AY )− trace(Diag(y)Y )

= eT y+ trace(AY )− eT y

= trace(AY )≥ 0.

Therefore, C ∈ NE n(E) and hence K ⊆ NE n(E).
To prove the reverse direction, let C ∈ NE n(E) and consider the following pair of

dual SDP problems:

(P) max trace(CY ) (D) min eT y
subject to diag(Y ) = e subject to Diag(y) �C

Y � 0

Hence, Y = E is an optimal solution of (P). Consequently, by SDP strong duality,
there exists y such that Diag(y)−C = A � 0 and eT y = trace(CE). Therefore,
C = Diag(y)−A. Moreover, eT y = eTCe = eT y− eT Ae and hence, Ae = 0. There-
fore, C ∈ K and thus NE n(E)⊆ K.

�
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5.3 The Facial Structure of Dn

The facial structure of the EDM cone is inherited from that of the positive semidefi-
nite cone S n

+ [103]. Now by setting T =KV and TV |S n
h

in Theorem 1.30, we obtain
the following:

Theorem 5.5 Let D1 and D2 be in Dn. Then D2 ∈ face(D1,D
n) if and only if

TV (D2) ∈ face(TV (D1),S
n−1
+ ).

Therefore, using Theorem 2.16, we have

Theorem 5.6 (Tarazaga [184] and Alfakih [5]) Let D1 ∈ Dn. Then the minimal
face of Dn containing D1 is given by

face(D1,D
n) = {D ∈Dn : null(TV (D1))⊆ null(TV (D))}.

Next, the minimal face of Dn containing D1 and its relative interior is character-
ized in terms of the Gale space of D1. This should come as no surprise since the Gale
space of D is closely connected with the null space of its projected Gram matrix.

Theorem 5.7 (Tarazaga [184] and Alfakih [5]) Let D1 ∈ Dn. Then the minimal
face of Dn containing D1 is given by

face(D1,D
n) = {D ∈Dn : gal(D1)⊆ gal(D)}.

Moreover, the relative interior of face(D1,D
n) is given by

relint(face(D1,D
n)) = {D ∈Dn : gal(D1) = gal(D)}.

Proof. Let U1 be the matrix whose columns form an orthonormal basis of
null(TV (D1)). Then col(VU1) is a basis of gal(D1) (Lemma 3.8). Let P be a con-
figuration matrix of D such that PT e = 0. Then TV (D)U1 = 0 iff PTVU1 = 0 iff
col(VU1) ⊆ gal(D) iff gal(D1) ⊆ gal(D). To complete the proof, note that D ∈
relint(face(D1,D

n)) iff D ∈ face(D1,D
n) and D1 ∈ face(D,Dn).

�

It should be pointed out that Gale space is constant over the relative interior of
a face of Dn. Also, a characterization of the minimal faces of Dn in terms of the
column space is given in Hayden et al. [103] and Tarazaga et al. [186].

Example 5.1 Consider the two EDMs

D1 =

⎡

⎢
⎢
⎣

0 1 2 1
1 0 1 2
2 1 0 1
1 2 1 0

⎤

⎥
⎥
⎦ and D2 =

⎡

⎢
⎢
⎣

0 1 4 1
1 0 1 0
4 1 0 1
1 0 1 0

⎤

⎥
⎥
⎦

with configuration and Gale matrices as follows:
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P1 =
1
2

⎡

⎢⎢
⎣

−1 1
1 1
1 −1

−1 −1

⎤

⎥⎥
⎦ , P2 =

⎡

⎢⎢
⎣

−1
0
1
0

⎤

⎥⎥
⎦ and Z1 =

⎡

⎢⎢
⎣

1
−1

1
−1

⎤

⎥⎥
⎦ , Z2 =

⎡

⎢⎢
⎣

1 0
−2 1

1 0
0 −1

⎤

⎥⎥
⎦ .

Then Z1 = Z2e2 and thus gal(D1)⊂ gal(D2). Consequently, D2 lies in face(D1,D
n).

Similar to the positive semidefinite cone, the EDM cone is facially exposed. That
is, for every face F of Dn, there exists a hyperplane H such that F =Dn ∩H.

Theorem 5.8 (Tarazaga [184]) Let F be a proper face of Dn. Let D1 ∈ relint(F)
and let Z1 be a Gale matrix of D1. Further, let H = {D ∈Dn : trace(ZT

1 DZ1) = 0}.
Then F =Dn ∩H.

Proof. Note that F = face(D1,D
n). Also, note that H is a supporting hyperplane

to Dn since for all D =KV (X) ∈Dn, we have

trace(DZ1ZT
1 ) = trace(XK ∗

V (Z1ZT
1 )) =−2 trace(ZT

1 V XV T Z1)≤ 0. (5.2)

Let D ∈ F and let Z be a Gale matrix of D. Then, Z1 = ZA for some matrix A.
Moreover, DZ1 = DZA = e ξ T A (Lemma 3.10). Thus ZT

1 DZ1 = 0. Consequently,
D ∈ H and thus F ⊆ (Dn ∩H).

To prove the reverse inclusion, let D ∈ (Dn ∩ H). Then (5.2) implies that
trace(ZT

1 DZ1) = −2trace(ZT
1 T (D)Z1) = 0 and hence ZT

1 T (D)Z1 = 0. There-
fore, T (D)Z1 = 0 and thus gal(D1) ⊆ gal(D). As a result, D ∈ F and hence
(Dn ∩H)⊆ F .

�

Let G be a connected graph on n nodes and m edges and let π be the linear trans-
formation that maps an n×n symmetric matrix A to the vector a ∈R

m consisting of
the entries of A indexed by the edges of G. That is, π : S n → R

m such that

(π(A))i j = ai j if {i, j} ∈ E(G). (5.3)

Consequently, the adjoint of π is given by

(π∗(a))i j =

{
ai j if {i, j} ∈ E(G),
0 otherwise.

(5.4)

As the next theorem shows, π(Dn) is closed. π(Dn) is called the coordinate
shadow of Dn.

Theorem 5.9 (Drusvyatskiy et al. [75]) The coordinate shadow of the cone of
EDMs is closed, i.e., π(Dn) is closed.

Proof. Let D be an EDM such that π(D) = 0. Since G is a connected graph on n
nodes, it follows that p1 = · · · = pn and thus D = 0. The result follows from [160,
Theorem 9.1, page 73].

�
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Note that π(S n
+) is not necessarily closed. For example, let π(

[
a b
b c

]
) =

[
a
b

]
).

Then obviously π(S 2
+) = (0,0)∪{x ∈ R

2 : x1 > 0} is not closed.
Next, we specialize Theorem 2.23 to EDMs. Let D be a given EDM and let G be

a given simple connected graph. Further, let

X (F ) = {X ∈S n−1
+ : π(KV (X)) = π(D)};

i.e., X (F )1 is the set of projected Gram matrices of all n× n EDMs which agree
with D in the entries defined by G. It is easy to see that the adjoint of π(KV ) is given
by

(π(KV ))
∗(ω) =K ∗

V (π∗(ω)) = 2V T (Diag(π∗(ω)e)−π∗(ω))V. (5.5)

Thus, if we define Ω = Diag(π∗(ω)e)−π∗(ω), then

Ωi j =

⎧
⎨

⎩

−ωi j if {i, j} ∈ E(G),
0 if i �= j,{i, j} �∈ E(G),

∑n
k=1 ωik if i = j.

(5.6)

Ω is called a stress matrix. Let Ω ′ =V T ΩV . Then K ∗
V (π∗(ω)) = 2V T ΩV = 2Ω ′.

Observe that Ωe = 0. Thus Ω = V Ω ′V T . Consequently, Ω is PSD of rank k iff Ω ′
is PSD of rank k. As a result, Theorem 2.23 reduces to

Theorem 5.10 (Drusvyatskiy et al. [75]) Let D be an EDM of embedding dimen-
sion r, r ≤ n− 2. Let d = π(D) and let X (F ) = {X ∈ S n−1

+ : π(KV (X)) = d}.
Assume that rank(X) ≤ r for all X ∈ X (F ). Then the following statements are
equivalent:

(i) The singularity degree of X (F ) is 1.
(ii) ω exposes face(d,π(Dn)).

(iii) Ω ′ exposes face(X (F ),S n−1
+ ).

(iv) Ω � 0, dT ω = 0 and rank(Ω) = n− r−1.

The reader should recall that unlike the faces of Dn, the faces of π(Dn) may
or may not be exposed. We should also point out that Theorem 5.10 is implicit in
Gortler and Thurston [90].

5.4 Notes

Theorem 5.7 was first obtained by Tarazaga in [184] without explicitly stating it
in terms of Gale spaces. More specifically, Tarazaga defines a space LGS in terms
of null(D) if D is spherical, and in terms of null(D) and the span of η if D is
nonspherical (see Theorem 4.19). A closer look at LGS reveals that it is identical to
Gale space.

1 This set will be discussed in great detail in Chap. 8, where the rationale for this notion will
become clear.



Chapter 6
The Eigenvalues of EDMs

The focus of this chapter is on the eigenvalues of EDMs. In the first part, we present
a characterization of the column space of an EDM D. This characterization is then
used to express the eigenvalues of D in terms of the eigenvalues of its Gram ma-
trix B =T (D) =−JDJ/2. In case of regular and nonspherical centrally symmetric
EDMs, the same result can also be obtained by using the notion of equitable parti-
tion. In the second part, we discuss some other topics related to eigenvalues such as:
a method for constructing nonisomorphic cospectral EDMs; the connection between
EDMs, graphs, and combinatorial designs; EDMs with exactly two or three distinct
eigenvalues and the EDM inverse eigenvalue problem.

It should be pointed out that the eigenvalues of Gram matrix B are precisely the
eigenvalues of the projected Gram matrix X with one extra zero eigenvalue; i.e., the
characteristic polynomials of B and X satisfy χB(μ) = μ χX (μ). This is easy to see
since [

eT/
√

n
V T

]
B [e/

√
n V ] =

[
0 0
0 X

]
.

In the next section, we show how to exploit a characterization of the column
space of D to express the eigenvalues of D in terms of those of B.

6.1 The Eigenvalues via the Column Space of D

Let D be an EDM of embedding dimension r and let B = −JDJ/2 be its Gram
matrix. Let B = WΛW T be the spectral decomposition of B, where Λ is the r ×
r diagonal matrix consisting of the positive eigenvalues of B, and W is the n× r
matrix whose columns are the orthonormal eigenvectors of B corresponding to these
positive eigenvalues. It is convenient in this chapter to let the configuration matrix
be

P =WΛ 1/2.

Thus, PT DP = PTK (B)P =−2PT BP =−2Λ 1/2W T BWΛ 1/2 =−2Λ 2.
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Example 6.1 Let D =

⎡

⎢⎢
⎣

0 2 6 2
2 0 6 2
6 6 0 6
2 2 6 0

⎤

⎥⎥
⎦. Then B =T (D) =

⎡

⎢⎢
⎣

1 0 −1 0
0 1 −1 0

−1 −1 3 −1
0 0 −1 1

⎤

⎥⎥
⎦ has Λ =

Diag(1,1,4). Hence, P =

⎡

⎢
⎢
⎣

−0.0674 0.8137 0.5774
−0.6710 −0.4652 0.5774

0.0000 0.0000 −1.7321
0.7384 −0.3485 0.5774

⎤

⎥
⎥
⎦.

The cases of spherical and nonspherical EDMs are treated separately. We begin
first with spherical EDMs.

6.1.1 The Eigenvalues of Spherical EDMs

Let D be a nonzero spherical EDM and let Z be a Gale matrix of D. Then, The-
orem 4.2 implies that null(D) = gal(D) = col(Z) and hence the columns of [P e]
form a basis of col(D). Let Q = [W e/

√
n] = [PΛ−1/2 e/

√
n]. Then, the nonzero

eigenvalues of D are equal to the eigenvalues of QT DQ. But

QT DQ =

[
−2Λ 1√

nΛ−1/2PT De
1√
n eT DPΛ−1/2 1

n eT De

]

. (6.1)

Notice that QT DQ as given in (6.1) is a bordered diagonal matrix. Also, notice that
the nonzero eigenvalues of D are interlaced by the nonzero eigenvalues of (−2B).
This was also observed, in the case of regular EDMs, by Hayden and Tarazaga in
[101]. Therefore, the characteristic polynomial of QT DQ is

χQT DQ(μ) =
r

∏
i=1

(ai −μ)

[

(
1
n

eT De−μ)−
r

∑
i=1

b2
i

(ai −μ)

]

.

Here, ai =−2λi, where λ1, . . . ,λr are the positive eigenvalues of B, i.e.,

a =−2 diag(Λ), (6.2)

and

b =
1√
n

Λ−1/2PT De. (6.3)

Hence, the characteristic polynomial [4] of D is given by

χD(μ) = (−μ)n−r−1

[

(
1
n

eT De−μ)
r

∏
i=1

(ai −μ)−
r

∑
i=1

b2
i

r

∏
j=1, j �=i

(a j −μ)

]

. (6.4)

Notice that if r = 1, then
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χD(μ) = (−μ)n−2
[
(

1
n

eT De−μ)(a1 −μ)−b2
1

]
.

Example 6.2 Consider the EDM D of Example 6.1.

QT DQ =

⎡

⎢⎢
⎣

−2 0
−2 0

−8 −2
√

3
0 0 −2

√
3 12

⎤

⎥⎥
⎦ .

Thus, a1 =−2λ1 =−2, a2 =−2λ2 =−2 and a3 =−2λ3 =−8. Also, b1 = b2 = 0,
b3 =−2

√
3 and eT De/4 = 12. Therefore,

χD(μ) = (12−μ)(−2−μ)2(−8−μ)−12(−2−μ)2

= (μ +2)2(μ2 −4μ −108).

Note that the coefficient of μ3 is zero since trace(D) = 0. Thus, the eigenvalues of
D are μ1 = μ2 =−2 , μ3 = 2−4

√
7, and μ4 = 2+4

√
7.

Three remarks are in order here. First, the coefficient of μn−1 in χD(λ ) must
be zero since trace(D) = 0. This is indeed the case since the coefficient of μr in
the expression ( 1

n eT De − μ)∏r
i=1(ai − μ) is eT De/n + ∑r

i=1 ai = eTK (B)e/n −
2trace(B) = 0. This follows since eTK (B)e/n = 2eT diag(B) = 2trace(B). Note
that the highest possible power of μ in the expression ∑r

i=1 b2
i ∏r

j=1, j �=i(a j − μ) is

r−1 and thus this expression does not contribute to the coefficient of μn−1 in χD(μ).
Second, suppose that bi0 = 0 for some 1 ≤ i0 ≤ r. Then μi0 =−2λi0 . To see this,

observe that in this case, (ai0 −μ) is a factor of the expression ∑r
i=1 b2

i ∏r
j=1, j �=i(a j−

μ). In Example 6.2 we saw that b1 = b2 = 0 and μ1 = μ2 =−2.
Third, suppose that bi �= 0 for all i = 1, . . . ,r and suppose that λi0 is an eigenvalue

of B with multiplicity k. Then μi0 = −2λi0 is an eigenvalue of D with multiplicity
k − 1. This follows since in this case, (ai0 − μ)k−1 is a factor of the expression
∑r

i=1 b2
i ∏r

j=1, j �=i(a j −μ).
The characteristic polynomial χD(μ) in (6.4) gives rise to a new characterization

of regular EDMs. To this end, we need the following lemma.

Lemma 6.1 Let D be a nonzero n× n spherical EDM of embedding dimension r.
Let P be a configuration matrix of D, PT e = 0, and let B be its Gram matrix. Then
the following statements are equivalent:

(i) The r negative eigenvalues of D are precisely the nonzero eigenvalues of
(−2B).

(ii) The Perron eigenvalue of D is equal to eT De/n.
(iii) PT De = 0.

Proof. Suppose that Statement (i) holds. Then, since trace(D) = 0, it follows that
the positive eigenvalue of D is equal to −∑r

i=1 ai = 2 trace(B) = eT De/n and thus
Statement (ii) holds.
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Now assume that Statement (ii) holds. Then χD(eT De/n) = 0 and therefore,
∑r

i=1 b2
i ∏r

j=1, j �=i(a j − eT De/n) = 0. But ai < 0 for all i = 1, . . . ,r. Thus, for all

i = 1, . . . ,r, we have ∏r
j=1, j �=i(a j − eT De/n) = (−1)r−1ci where ci > 0. Conse-

quently, b1 = · · ·= br = 0 and hence PT De = 0; i.e., Statement (iii) holds.
To complete the proof, observe that Statement (iii) trivially implies Statements

(i) and (ii).
�

Theorem 6.1 (Hayden and Tarazaga [101] and Alfakih [4]) Let D be a nonzero
n× n EDM of embedding dimension r and let B = −JDJ/2 be its Gram matrix.
Then D is regular if and only if the negative eigenvalues of D are precisely the
nonzero eigenvalues of (−2B); i.e.,iff the characteristic polynomial of D is

χD(μ) = (−μ)n−r−1(
1
n

eT De−μ)
r

∏
i=1

(ai −μ). (6.5)

Proof. Assume that D is regular. Then, obviously, D is spherical and its Perron
eigenvalue is eT De/n. Thus, the result follows from Lemma 6.1.

To prove the other direction, assume that the negative eigenvalues of D are pre-
cisely the nonzero eigenvalues of (−2B). Thus, rank(D) = r + 1 and hence D is
spherical. Therefore, by Lemma 6.1, eT De/n is an eigenvalue of D. Consequently, it
follows from Corollary 1.1 that e is the Perron eigenvector of D. Hence, D is regular.

�

The characteristic polynomial χD(μ) in (6.5) is alternatively obtained below by
using the notion of equitable partition. Next, we turn to nonspherical EDMs.

6.1.2 The Eigenvalues of Nonspherical EDMs

Let D be an n× n nonspherical EDM of embedding dimension r, then rank(D) =
r + 2. Moreover, by Theorem 4.19, gal(D) = null(D)⊕ span(η), where η is the
unique vector in R

n such that Dη = e, η ⊥ e and η ⊥ null(D). Thus, η ∈ col(D)
and hence the columns of [P e η ] form a basis for col(D).

Similar to the spherical case, let P =WΛ 1/2 and let

Q = [PΛ−1/2 e/
√

n η/(ηT η)1/2].

As a result, the nonzero eigenvalues of D are the eigenvalues of QT DQ. But

QT DQ =

⎡

⎢
⎣

−2Λ 1√
nΛ−1/2PT De 0

1√
n eT DPΛ−1/2 eT De/n

√
n/
√

ηT η
0

√
n/
√

ηT η 0

⎤

⎥
⎦ . (6.6)

Then
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χQT DQ(μ) =
r

∏
i=1

(ai −μ)det(

[
eT De/n−μ −∑r

i=1
b2

i
(ai−μ)

√
n/
√

ηT η√
n/
√

ηT η −μ

]

)

=
r

∏
i=1

(ai −μ)

(

μ2 −μeT De/n+μ
r

∑
i=1

b2
i

(ai −μ)
−n/ηT η

)

=

(
μ2 −μ

eT De
n

− n
ηT η

) r

∏
i=1

(ai −μ)+μ
r

∑
i=1

b2
i

r

∏
j=1, j �=i

(a j −μ),

where a and b are as defined in (6.2) and (6.3), respectively. Therefore, the charac-
teristic polynomial of D is given by [4]

χD(μ) = (−μ)n−r−2χQT DQ(μ). (6.7)

Notice that if r = 1, then

χD(μ) = (−μ)n−3
(
(μ2 −μ

eT De
n

− n
ηT η

)(a1 −μ)+μb2
1

)
.

Similar to the spherical case, the coefficient of μn−1 should be 0 since trace(D) = 0.
Indeed, this is the case here since the coefficients of μr and μr−1 in the expression
∏r

i=1(ai − μ) are (−1)r and (−1)r−1 ∑r
i=1 ai, respectively. Thus, the coefficient of

μn−1 is (−1)r+1eT De/n+(−1)r−1 ∑r
i=1 ai = 0. Also, similar to the spherical case,

if bi0 = 0 for some 1 ≤ i0 ≤ r, then ai0 is an eigenvalue of D.

Example 6.3 Consider the nonspherical EDM D =

⎡

⎢
⎢
⎣

0 1 4 2
1 0 1 1
4 1 0 2
2 1 2 0

⎤

⎥
⎥
⎦ with configuration

matrix P =

⎡

⎢
⎢
⎣

1/4 1
1/4 0
1/4 −1

−3/4 0

⎤

⎥
⎥
⎦. Then η = 1

2 [1 −2 1 0]T , and Λ =

[
3/4

2

]
. Moreover,

b = 1√
nΛ−1/2PT De = [ 1

2
√

3
0]T . Thus,

χD(μ) = (μ2 − 11
2

μ − 8
3
)(−3/2−μ)(−4−μ)+μ

1
12

(−4−μ)

= (−4−μ)(−μ3 +4μ2 +11μ +4).

Hence, the eigenvalues of D are −4 (note that b2 = 0), −1.5159, −0.4428, and
5.9587.

Recall that regular EDMs have the property that PT De = 0. A subclass of non-
spherical EDMs is defined, next, that also satisfies this property. A nonspherical
EDM is said to be centrally symmetric [4] if its configuration matrix can be written,
after a possible relabeling of the generating points, as
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P =

⎡

⎣
P1

−P1

P3

⎤

⎦ , (6.8)

where P3 is either vacuous or the zero matrix. As a result, if D is a nonspherical
centrally symmetric EDM, then it is easy to verify that PT De = 0. Thus, the charac-
teristic polynomial of D, in this case, reduces to

χD(μ) = (−μ)n−r−2
(

μ2 −μ
eT De

n
− n

ηT η

) r

∏
i=1

(ai −μ). (6.9)

As a result, we have the following theorem.

Theorem 6.2 (Alfakih [4]) Let D be an n × n nonspherical centrally symmetric
EDM with embedding dimension r and let B = −JDJ/2. Then r of the negative
eigenvalues of D are equal to the nonzero eigenvalues of (−2B), the (r+1)th nega-

tive eigenvalue of D is equal to eT De
2n −

√
(eT De)2

4n2 + n
ηT η , and the Perron eigenvalue

of D is equal to eT De
2n +

√
(eT De)2

4n2 + n
ηT η .

The characteristic polynomial χD(μ) in (6.9) is alternatively obtained below us-
ing the notion of equitable partitions.

Example 6.4 Consider the EDM D =

⎡

⎢⎢⎢⎢
⎣

0 4 2 4 8
4 0 2 8 4
2 2 0 2 2
4 8 2 0 4
8 4 2 4 0

⎤

⎥⎥⎥⎥
⎦

with configuration matrix P =

⎡

⎢⎢
⎢⎢
⎣

−1 −1
1 −1
0 0

−1 1
1 1

⎤

⎥⎥
⎥⎥
⎦

. The positive eigenvalues of the corresponding Gram matrix B are 4

with multiplicity 2. Note that η = 1
8 [1 1 − 4 1 1]T and thus 5/ηT η = 16.

Also, eT De/5 = 16. Now by relabeling the generating points, or by observing that
PT De = 0, we conclude that D is nonspherical centrally symmetric. Therefore,

χD(μ) =−μ(μ2 −16μ −16)(−8−μ)2.

Hence, the nonzero eigenvalues of D are −8, −8, and 8±4
√

5.

6.2 The Eigenvalues via Equitable Partitions

As we remarked earlier, the characteristic polynomials of regular and nonspherical
centrally symmetric EDMs in the previous section can also be derived using equi-
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table partitions. This section closely follows [8]. The notion of equitable partitions
in algebraic graph theory was introduced by Sachs [163] and is related to auto-
morphism groups of graphs and distance regular graphs [87]. Equitable partitions
were used by Schwenk [172] to find the eigenvalues of graphs and by Hayden et
al. [104], under the name block structure, to investigate multispherical EDMs. As
we show next, the notion of equitable partitions easily extends to EDMs with many
results mirroring those of graphs.

Let N = {1, . . . ,n} and let pi, i ∈ N, be the generating points of an n× n EDM
D. An m-partition π of D is a sequence π = (N1,N2, . . . ,Nm) of nonempty disjoint
subsets of N whose union is N. The subsets N1, . . . ,Nm are called the cells of the par-
tition. The n-partition where each cell is a singleton is called the discrete partition,
while the 1-partition with only one cell is called the single-cell partition.

An m-partition π of D is said to be equitable if for all i, j = 1, . . . ,m (case i = j
included), there exist nonnegative scalars αi j such that for each k ∈ Ni, the sum of
the squared Euclidean distances between pk and all pl , l ∈ Nj, is equal to αi j; i.e.,

∀i, j = 1, . . . ,m; and ∀k ∈ Ni, ∑
l∈Nj

dkl = αi j. (6.10)

Let ni = |Ni| and let D[Ni,Nj ] denote the submatrix of D whose rows and columns are
indexed by Ni and Nj, respectively. Then (6.10) is equivalent to

∀i, j = 1, . . . ,m;D[Ni,Nj ]en j = αi jeni . (6.11)

It immediately follows from (6.11) that the discrete partition of D is always equitable
with αi j = di j. On the other hand, the single-cell partition of D is equitable if and
only if D is regular, in which case, α11 = eT De/n.

Example 6.5 Let D be the nonspherical centrally symmetric EDM considered in
Example 6.4. Then π1 = (N1 = {1,2},N2 = {3},N3 = {4,5}) is equitable since

D[N1,N1] = D[N3,N3] =

[
0 4
4 0

]
, D[N2,N2] = [0], D[N1,N2] = D[N3,N2] =

[
2
2

]
, D[N2,N3] =

D[N2,N1] =
[

2 2
]
, D[N1,N3] =

[
4 8
8 4

]
. In this case, the αi j’s can be collected in the

following matrix ⎡

⎣
4 2 12
4 0 4

12 2 4

⎤

⎦ .

Note that the matrix of the αi j’s is not symmetric. On the other hand, the partition

π2 = (N1 = {1,2,4,5},N2 = {3}) is also equitable since D[N1,N1] =

⎡

⎢⎢
⎣

0 4 4 8
4 0 8 4
4 8 0 4
8 4 4 0

⎤

⎥⎥
⎦,
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D[N1,N2] =

⎡

⎢⎢
⎣

2
2
2
2

⎤

⎥⎥
⎦, D[N2,N1] =

[
2 2 2 2

]
, and D[N2,N2] = [0]. The αi j’s can be collected

in the following matrix

[
16 2
8 0

]
.

For a partition π , define the n×m matrix Cπ = (ci j) where

ci j =

{
1√n j

if i ∈ Nj,

0 otherwise.
(6.12)

Cπ is called the normalized characteristic matrix [88] of π since its jth column is
equal to n−1/2

j times the characteristic vector of Nj, and since CT
π Cπ = Im.

Note that each row of Cπ has exactly one nonzero entry since each i in N belongs
to exactly one cell of the partition. For example, Cπ1 and Cπ2 of the partitions π1 and
π2 of Example 6.5 are given by

Cπ1 =

⎡

⎣
e2/

√
2 0 0

0 1 0
0 0 e2/

√
2

⎤

⎦ and Cπ2 =

⎡

⎣
e2/2 0

0 1
e2/2 0

⎤

⎦ .

The following lemma is the EDM equivalent of Godsil and McKay lemma for
graphs [88].

Lemma 6.2 (Godsil and McKay [88]) Let π be an m-partition of an n× n EDM
D. Then π is equitable if and only if there exists an m×m matrix S = (si j) such that

DCπ =Cπ S, (6.13)

in which case, S =CT
π DCπ , i.e., si j = (ni/n j)

1/2αi j.

Proof. Assume that π is equitable and let si j = (ni/n j)
1/2αi j. Then, for all k ∈ Ni

and j = 1, . . . ,m, we have

(DCπ)k j =
n

∑
l=1

dklcl j = ∑
l∈Nj

dkl
1√
n j

=
1√
n j

αi j,

and

(Cπ S)k j =
n

∑
l=1

cklsl j =
1√
ni

si j =
1√
ni

√
ni√
n j

αi j =
1√
n j

αi j.

Hence, DCπ =Cπ S.
To prove the other direction, assume that DCπ = Cπ S. Then for all k ∈ Ni and

j = 1, . . . ,m, we have

(DCπ)k j = ∑
l∈Nj

dkl
1√
n j

= (Cπ S)k j =
1√
ni

si j.
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Hence, ∑l∈Nj
dkl =

(
n j
ni

)1/2
si j =αi j is independent of k. Consequently, the partition

π is equitable and si j =
(

ni
n j

)1/2
αi j.

�

It is worth pointing out here that S is symmetric since S =CT
π DCπ . Another way

to see this is to note that D[Ni,Nj ] = (D[Nj ,Ni])
T . Thus D[Ni,Nj ]en j = αi jeni . Therefore,

eT
ni

D[Ni,Nj ] en j = ni αi j = eT
n j

D[Nj ,Ni] eni = n j α ji.

Hence,
αi j =

n j

ni
α ji,

and thus si j = s ji. For example, matrices S1 and S2 of partitions π1 and π2 of Exam-
ple 6.5 are given by

S1 =

⎡

⎣
4 2

√
2 12

2
√

2 0 2
√

2
12 2

√
2 4

⎤

⎦ and S2 =

[
16 4
4 0

]
.

Let π be an equitable partition of D where m ≤ n−1. Recall that CT
π Cπ = Im. Let

C̄π be the n× (n−m) matrix such that [Cπ C̄π ] is an n× n orthogonal matrix. For

instance, C̄π1 of Example 6.5 is given by C̄π1 =
1
2

⎡

⎢⎢
⎢⎢
⎣

−1 1
1 −1
0 0
1 1

−1 −1

⎤

⎥⎥
⎥⎥
⎦

.

Theorem 6.3 (Alfakih [8]) Let π be an equitable m-partition of an n×n EDM D,
where m ≤ n−1. Then

χD(μ) = χS(μ) χS̄(μ), (6.14)

where S̄ = C̄T
π DC̄π and S is as defined in (6.13).

Proof. Equation (6.13) implies that CT
π D= SCT

π . Recall that S is symmetric. Thus,
it follows from the definition of C̄π that CT

π DC̄π = SCT
π C̄π = 0. The result follows

since

χD(μ) = det

[[
CT

π
C̄T

π

]
D[Cπ C̄π ]−μIn

]
= det

[
CT

π DCπ −μIm 0
0 C̄T

π DC̄π −μIn−m

]
.

�

Note that in the case of discrete partition, i.e., if m= n, we have S =D since Cπ =
I. Thus χD(μ)= χS(μ) follows trivially. An analogous result for graphs, namely that
the characteristic polynomial of S divides the characteristic polynomial of a graph
was obtained by Mowshowitz [150] and by Schwenk [172]. The following theorem
shows that if μi is an eigenvalue of S̄, then −μi/2 is an eigenvalue of T (D).
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Theorem 6.4 ([8]) Let π be an equitable m-partition of an n× n EDM D, where
m ≤ n−1, and let B =−JDJ/2 be the Gram matrix of D. Then

χS̄(μ) divides χ(−2B)(μ), (6.15)

where S̄ is as defined in Theorem 6.3.

Proof. First, observe that if x is a vector in R
n that is constant on each cell Ni,

then x lies in the column space of Cπ . For instance, De lies in the column space of
Cπ since if k ∈ Ni, then (De)k = ∑m

j=1 αi j, which is independent of k. Moreover, e is
also in the column space of Cπ . Therefore, C̄T

π De = 0 and C̄T
π e = 0. Thus,

C̄T
π BC̄π =−1

2
C̄T

π DC̄π =−1
2

S̄.

Moreover, it follows from (6.13) that C̄T
π DCπ = C̄T

π Cπ S = 0. Thus,

C̄T
π BCπ =−1

2
C̄T

π DCπ = 0.

The result follows since

χ(−2B)(μ) = det

[
−2

[
CT

π
C̄T

π

]
B [Cπ C̄π ]−μIn

]

= det

[−2CT
π BCπ −μIm 0

0 −2C̄T
π BC̄π −μIn−m

]

= χ(−2CT
π BCπ )

(μ) χS̄(μ).

�

For instance, in Example 6.5, S̄ = C̄T
π1

DC̄π1 =

[
0 0
0 −8

]
. Thus χS̄(μ) = μ(−8−

μ). On the other hand, χ(−2B)(μ) = μ3(−8−μ)2.
In the following two subsections, we use Theorem 6.3 to derive the characteristic

polynomials of regular and nonspherical centrally symmetric EDMs.

6.2.1 The Eigenvalues of Regular EDMs

As was remarked earlier, the single-cell partition π is equitable for regular EDMs.
Thus, in this case m = 1 and Cπ = e/

√
n. Hence, C̄π = V where V is as defined in

(3.11). Moreover, S = eT De/n and S̄ = V T DV = −2V T BV , where B = −JDJ/2.
Therefore,

χS(μ) = (μ − eT De/n) and χS̄(μ) = (−μ)n−r−1
r

∏
i=1

(ai −μ),
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where λ1, . . . ,λr are the positive eigenvalues of B and ai = −2λi for i = 1, . . . ,r.
Thus, Theorem 6.3 provides an alternative derivation to the characteristic polyno-
mial of a regular EDM given in (6.5).

6.2.2 The Eigenvalues of Nonspherical Centrally Symmetric EDMs

Let D be a 2n×2n nonspherical centrally symmetric EDM of embedding dimension

r with configuration matrix P =

[
P1

−P1

]
, where P1 is n× r. Observe that PT e2n = 0

and B = PPT = −JDJ/2. Let B1 = P1PT
1 and note that PT

1 en is not necessarily 0.
Then

D =

[
D1 A1

A1 D1

]
,

where D1 =K (B1) and

A1 = en(diag(B1))
T +diag(B1)e

T
n +2B1.

The partition π of D corresponding to

Cπ =
1√
2

[
In

In

]
and C̄π =

1√
2

[
In

−In

]

is obviously equitable, where

S =CT
π DCπ = A1 +D1 = 2(en(diag(B1))

T +diag(B1)e
T
n ) (6.16)

and
S̄ = C̄T

π DC̄π = D1 −A1 =−4B1.

Now

B =

[
B1 −B1

−B1 B1

]
=

[
1 −1

−1 1

]
⊗B1.

Thus, the nonzero eigenvalues of B are equal to twice the nonzero eigenvalues of B1.
Hence, the nonzero eigenvalues of S̄ are equal to −2 times the nonzero eigenvalues
of B. Hence,

χS̄(μ) = χ(−2B)(μ) = (−μ)n−r
r

∏
i=1

(ai −μ).

Therefore, to find χD(μ), it remains to determine χS(μ). To this end, note that

PT De2n = [PT
1 −PT

1 ]

[
(D1 +A1)en

(D1 +A1)en

]
= 0.

Hence, De2n lies in the null space of PT , i.e., De2n lies in span(e2n) ⊕ null(D) ⊕
span(η). But, since De2n lies in col(D), it follows that De2n = αe2n +βη for some
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scalars α and β . Now eT
2nDe2n = α2n since D is nonspherical and thus eT

2nη = 0.
Furthermore, ηT De2n = 2n = βηT η . Therefore,

De2n =

[
(D1 +A1)en

(D1 +A1)en

]
=

1
2n

eT
2nDe2n

[
en

en

]
+

2n
ηT η

[
ξ
ξ

]
,

where ηT = [ξ T ξ T ]. Consequently,

Sen = (D1 +A1)en =
1
2n

eT
2nDe2n en +

2n
ηT η

ξ .

Note that (6.16) implies that V T SV = 0. Also, note that eT
n ξ = 0 since eT

2nη = 0.
Therefore,

χS(μ) = det

[[
eT

n√
n

V T

]

S [
en√

n
V ]−μIn

]

= det

[
1

2n eT
2nDe2n −μ 2

√
n

ηT η ξ TV
2
√

n
ηT η V T ξ −μIn−1

]

= (−μ)n−2
(

μ2 −μ
1

2n
eT

2nDe2n − 4n
(ηT η)2 ξ TVV T ξ

)
.

Now ξ TVV T ξ = ξ T ξ = ηT η/2. Therefore, Theorem 6.3 provides an alternative
derivation of the characteristic polynomial of nonspherical centrally symmetric
EDMs given in Theorem 6.2.

Example 6.6 Consider the EDM D =

⎡

⎢⎢
⎣

0 5 16 5
5 0 5 4

16 5 0 5
5 4 5 0

⎤

⎥⎥
⎦, where D is nonspherical cen-

trally symmetric with configuration matrix P =

⎡

⎢⎢
⎣

−2 0
0 −1
2 0
0 1

⎤

⎥⎥
⎦. The partition π where

Cπ = 1√
2

⎡

⎢⎢
⎣

1 0
0 1
1 0
0 1

⎤

⎥⎥
⎦ and C̄π = 1√

2

⎡

⎢⎢
⎣

1 0
0 1

−1 0
0 −1

⎤

⎥⎥
⎦ is equitable. In this case, S =

[
16 10
10 4

]

and S̄ =

[−16 0
0 −4

]
. Therefore, χS(μ) = μ2 −20μ −36, χS̄(μ) = (μ +16)(μ +4)

and χ(−2B)(μ) = μ2(μ + 16)(μ + 4). Note that η = 1
6 [1 − 1 1 − 1]T and thus

n/ηT η = 36 and eT De/n = 20. Also, note that
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De =

⎡

⎢⎢
⎣

26
14
26
14

⎤

⎥⎥
⎦= 20

⎡

⎢⎢
⎣

1
1
1
1

⎤

⎥⎥
⎦+6

⎡

⎢⎢
⎣

1
−1

1
−1

⎤

⎥⎥
⎦=

1
n

eT De e+
n

ηT η
η .

6.3 Constructing Cospectral EDMs

Two n×n EDMs D1 and D2 are said to be isomorphic if there exists a permutation
matrix Q such that D2 = QD1QT , and they are said to be cospectral if χD1(μ) =
χD2(μ). Obviously, isomorphic EDMs are cospectral, but the converse is not true.
In this section, we show how to construct cospectral nonisomorphic EDMs.

Let D1 be an n × n regular EDM of embedding dimension r generated by
points p1, . . . , pn in R

r. Let γ > 1 and assume that D1 is not centrally symmet-
ric. Let D− and D+ be the two 2n× 2n EDMs generated as follows. D− is gener-
ated by the points p1, . . . , pn,−γ p1, . . . ,−γ pn; and D+ is generated by the points
p1, . . . , pn,γ p1, . . . ,γ pn. Thus, the configuration matrices of D− and D+ are

P− =

[
P1

−γP1

]
and P+ =

[
P1

γP1

]

respectively, where P1 is the configuration matrix of D1. Let B1 = −JD1J/2. Then

diag(B1) = ρ2e = eT D1e
2n2 e since D1 is regular. Consequently,

D− =

[
D1 A1

A1 γ2D1

]
, and D+ =

[
D1 A2

A2 γ2D1

]
,

where

A1 =
1

2n2 (γ
2 +1)eT D1e E +2γB1,

and

A2 =
1

2n2 (γ
2 +1)eT D1e E −2γB1.

Moreover, A1e = A2e = (γ2 +1) eT D1e
2n e.

It is worth pointing out that D− and D+ are nonspherical by construction. Fur-
thermore, P−D−e2n = P+D+e2n = 0 since D1 is regular. The implication of this fact
will be highlighted below.

The 2-partition π of both D− and D+ where

Cπ =
1√
n

[
e 0
0 e

]
and C̄π =

[
V 0
0 V

]

is equitable since
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D−Cπ =
eT D1e
n
√

n

[
e γ2+1

2 e
γ2+1

2 e γ2e

]

=Cπ S−

and

D+Cπ =
eT D1e
n
√

n

[
e γ2+1

2 e
γ2+1

2 e γ2e

]

=Cπ S+,

where

S− = S+ =
eT D1e

n

[
1 γ2+1

2
γ2+1

2 γ2

]

.

Therefore,

χS−(μ) = χS+(μ) = μ2 −μ(γ2 +1)
eT D1e

n
− (γ2 −1)2

4
(eT D1e)2

n2 . (6.17)

Consequently,
χS−(μ) = χS+(μ) = (μ1 −μ)(μ2 −μ),

where

μ1 = (1+ γ2 +
√

2γ4 +2)
eT D1e

2n
and μ2 = (1+ γ2 −

√
2γ4 +2)

eT D1e
2n

. (6.18)

Note that μ2 < 0 since γ > 1. Also, note that

eT
2nD−e2n

2n
=

eT
2nD+e2n

2n
= (γ2 +1)

eT D1e
n

and

η− = η+ =
n

eT D1e
2

γ2 −1

[−e
e

]
and thus

2n

η−T η− =
(γ2 −1)2

4
(eT D1e)2

n2 .

As a result, (6.17) should come as no surprise since P−D−e2n = P+D+e2n = 0.
Now V T A1V = 2γV T B1V =−γV T D1V and similarly V T A2V = γV T D1V . Recall

that V T D1V =−2X1, where X1 is the projected Gram matrix of D1. Therefore,

S̄− = C̄T
π D−C̄π =

[
V T D1V −γV T D1V

−γV T D1V γ2V T D1V

]
=

[
1 −γ

−γ γ2

]
⊗ (−2X1),

and

S̄+ = C̄T
π D+C̄π =

[
V T D1V γV T D1V

γV T D1V γ2V T D1V

]
=

[
1 γ
γ γ2

]
⊗ (−2X1).

Let

B− = P−P−T
=

[
1 −γ

−γ γ2

]
⊗B1 and B+ = P+P+T

=

[
1 γ
γ γ2

]
⊗B1.
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It is easy to see that the matrices

[
1 −γ

−γ γ2

]
and

[
1 γ
γ γ2

]
have the same eigenvalues,

namely γ2 +1 and 0. Consequently, B− and B+ are cospectral as well as S̄− and S̄+.
Recall that X1 and B1 have the same nonzero eigenvalues. Let λ1, . . . ,λr be the

nonzero eigenvalue of B− and let λ ′
1, . . . ,λ ′

r be the nonzero eigenvalue of B1. Then

λi = (γ2 +1)λ ′
i for i = 1, . . . ,r.

Moreover,

χS̄−(μ) = χS̄+(μ) = (−μ)2n−r−2
r

∏
i=1

((γ2 +1)a′i −μ), (6.19)

where a′i =−2λ ′
i for i = 1, . . . ,r, or

χS̄−(μ) = χS̄+(μ) = (−μ)2n−r−2
r

∏
i=1

(ai −μ), (6.20)

where ai = −2λi for i = 1, . . . ,r. Again (6.20) should come as no surprise since
P−D−e2n = P+D+e2n = 0. As a result, by Theorem 6.3, the characteristic polyno-
mial of D− and D+ is given by

χD−(μ) = χD+(μ) = (−μ)2n−r−2(μ1 −μ)(μ2 −μ)
r

∏
i=1

((γ2 +1)a′i −μ),

where μ1 and μ2 are as defined in (6.18). Since μ1, μ2, and a′i’s are nonzero, it fol-
lows that rank(D−) = rank(D+) = r+2 as expected since D− and D+ are nonspher-
ical with embedding dimension r. Moreover, D− and D+ are not isomorphic since
D1 is not centrally symmetric. Clearly, this assumption on D1 cannot be dropped.

An example of two nonisomorphic cospectral EDMs is given next.

Example 6.7 Consider the regular EDM D1 = E − I. Then T (D1) = J/2 and

eT D1e = n2 − n. Thus, A1 = (γ2+1)(n−1)
2n eeT + γJ and A2 = (γ2+1)(n−1)

2n eeT − γJ.
Therefore, for γ = 2 and n = 3, we have A1 = 2I3+E3 and A2 = 7E3/3−2I. Hence,

D− =

[
E3 − I3 2I3 +E3

2I3 +E3 4(E3 − I3)

]
and D+ =

[
E3 − I3 −2I3 +7E3/3

−2I3 +7E3/3 4(E3 − I3)

]

are two nonisomorphic EDMs. Moreover, the nonzero eigenvalues of B1 are λ ′
1 =

λ ′
2 = 1/2. Hence, a′1 = a′2 =−1. Therefore,

χD−(μ) = χD+(μ) = (−μ)2(5+
√

34−μ)(5−
√

34−μ)(−5−μ)2.
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6.4 EDMs, Graphs, and Combinatorial Designs

We investigate in this section the connections among EDMs, adjacency matrices of
graphs and combinatorial designs. We begin by showing that the smallest eigenvalue
of the adjacency matrix of a graph, or of an EDM, can be used to construct a new
EDM.

Theorem 6.5 (Neumaier [152]) Let A be the n×n adjacency matrix of a graph G
and assume that its minimum eigenvalue λn = −α < 0. Then D′ = α(E − I)−A is
a spherical EDM.

Theorem 6.6 ([153]) Let D an n×n EDM and assume that its minimum eigenvalue
λn =−α < 0. Then D′ = α(E − I)−D is a spherical EDM.

These two theorems are simple corollaries to Theorem 4.2 since in both cases
αE −D′ is PSD. Note that the nonnegativity of d′

i j for all i, j follows since, for
example in the EDM case, the nonnegativity of 2×2 principal minors of αE −D′ =
αI +D imply that α ≥ di j. The reader should recall that, if D is an EDM, then
D′′ = ε(E − I)+D is a spherical EDM for any ε > 0.

The number of distinct off-diagonal entries of an EDM D is called the degree
of D. Notice that the construction given in Theorem 6.5 yields EDMs of degree 2.
Recall that f [D] = ( f (di j)) denotes the matrix obtained from D by applying function
f to D entrywise. Thus, for a nonnegative integer k, [D]k denotes the matrix whose
(i, j)th entry is dk

i j. Here, 00 = 1 by definition and thus [D]0 = E and [D]1 = D. An
n× n EDM D is said to have strength t if for every nonnegative integers k and l
where k+ l ≤ t, there exists a polynomial fkl(x) of degree ≤ min{k, l} such that

([D]k[D]l)i j = fkl(di j). (6.21)

The strength of D is a measure of its inner regularity. Notice that if D has strength t,
then D has strength t ′ for all t ′ ≤ t; and [D]kE = [D]k[D]0 = const E for all k ≤ t since
fk0(x) must have degree 0. Let f00(x) = n, i.e., f00(x) is the constant polynomial n.
Then for any EDM D, we have [D]0[D]0 = EE = nE. Hence, every EDM D has
strength zero. The theorem that follows characterizes EDMs of strength one.

Theorem 6.7 (Neumaier [152]) Let D be an n×n EDM. Then D has strength 1 if
and only if D is regular.

Proof. An EDM D is regular iff DE = λE, where λ = eT De/n. Therefore, D is
regular iff [D]1[D]0 = DE = λE. The result follows by setting f10(x) = λ .

�

For instance, the EDM of the simplex EDM D = γ(E − I), where γ > 0, has
strength 1 since D is regular; i.e., DE = λE, where λ = γ(n−1).

A graph is said to be regular if all its nodes have the same degree. In particular,
G is k-regular if each of its nodes has degree k. Consequently, graph G is k-regular
iff its adjacency matrix A satisfies AE = kE.

We saw earlier how to construct a spherical EDM D from the adjacency matrix A
of a graph G. The following theorem shows that such D is regular iff G is a regular.
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Theorem 6.8 (Neumaier [152]) Let A be the n× n adjacency matrix of graph G.
Let λn, the minimum eigenvalue of A, be equal to −α < 0 and of multiplicity s.
Further, let D = α(E − I)−A. Then graph G is regular if and only if D is a regular
EDM, in which case the embedding dimension of D is equal to n−1− s.

Proof. D is regular iff DE = α(n − 1)E − AE = λE iff AE = kE, where
k = α(n− 1)− λ and λ = eT De/n. This proves the first part. Now the projected
Gram matrix of D is X = TV (D) = (αIn−1 +V T AV )/2. Thus, the embedding di-
mension of D is equal to the rank of αIn−1 +V T AV . Assume that G is k-regular and
let A = keeT/n+VΛV T be the spectral decomposition of A, where the diagonal
entries of Λ = V T AV are precisely the n− 1 eigenvalues of A other than k. Hence,
the rank of αIn−1 +V T AV is equal to n−1− s.

�

Notice that if G = Kn, then A = E − I and thus α = 1 and s = n− 1. Therefore,
in this case, D = 0. A characterization of EDMs of strength two is given next.

Theorem 6.9 (Neumaier [152]) Let D be an n×n real symmetric matrix with zero
diagonal. Then D is an EDM of strength 2 if and only if

DE = λE, D2 +αD =
λ (λ +α)

n
E, (6.22)

for some positive scalars λ and α , where λ/α is an integer.

Remark 6.1 Suppose that D is a regular EDM with three distinct eigenvalues λ >
0 >−α . Then it follows from Corollary 4.2 that D satisfies

DE = λE, f (D) = n
D(D+αI)
λ (λ +α)

= E, (6.23)

where λ = eT De/n and f is the Hoffman polynomial of D. Consequently, Condi-
tion 6.23 is identical to Condition 6.22.

Proof of Theorem 6.9. Assume that (6.22) holds and let B′ = λE/n−D. Then

B′2 =−λ 2E/n+D2 =−αD+λαE/n = αB′.

Therefore, the eigenvalues of B′ are either 0 or α . Hence, B′ is PSD since α > 0.
Observe that B′ = 2T (D) = −JDJ. Therefore, D is a regular EDM and thus has
strength 1.

Now, ([D]1[D]1)i j = (D2)i j = f11(di j), where f11(x) =−αx+λ (λ +α)/n. Also,
([D]2[D]0)i j = ([D]2E)i j = ∑k d2

ik. Moreover, (6.22) implies that (D2)ii = λ (λ +
α)/n, a constant. But (D2)ii = ∑k d2

ik. Hence, [D]2[D]0 = λ (λ +α)/n E and thus
f20(di j) = λ (λ +α)/n. Therefore, D has strength 2.

To prove the other direction, assume that D is an EDM with strength 2. Then
D has strength 1 and thus DE = λE where λ > 0. Moreover, there exists a poly-
nomial f11(x) = −αx+ β such that (D2)i j = −αdi j + β . Thus D2 = −αD+ βE.
But on the one hand, D2E = −αDE + nβE = (−αλ + nβ )E, and on the other
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hand, D2E = λ 2E. Thus β = λ (λ + α)/n. To complete the proof we need to
show that α > 0 and λ/α = k, where k is a positive integer. To this end, let
B′ = 2T (D) = λE/n−D. Therefore, B′2 = αB′. Thus, the eigenvalues of B′ are
either 0’s or α’s and hence α > 0. Moreover, let k be the multiplicity of the eigen-
value α . Then trace(B′) = λ = kα and thus λ/α = k.

�

As we saw in the proof of Theorem 6.9, the Gram matrix B = T (D) of any
EDM that satisfies (6.22) has eigenvalues 0 or α/2. Therefore, by Theorem 6.1, the
negative eigenvalues of such EDMs are all equal to (−α). Moreover, if k denotes
the multiplicity of the eigenvalue (−α), then k = λ/α since trace(D) = λ −kα = 0.

Example 6.8 The EDM of the simplex D = γ(E − I) has strength 2. This follows
since D2 =−γD+γ2(n−1)E. Thus, D satisfies (6.22) with α = γ and λ = γ(n−1).
Note that λ/α = n− 1 is an integer. In fact, D = γ(E − I) has strength t for all
positive integers t. This follows since [D]k = γk−1D for all positive integers k. Thus,
[D]k[D]0 = γk−1DE = γk(n−1)E and [D]k[D]l = γk+l−2D2 =−γk+l−1D+γk+l(n−
1)E for all positive integers k and l.

We saw in the beginning of this section how to construct a new EDM D′ from an
old EDM D using the smallest eigenvalue of D. The following theorem shows that
this construction preserves the strength t for t ≤ 2.

Theorem 6.10 ([152]) Let D be an n× n EDM and let its smallest eigenvalue be
λn =−α < 0. Let D′ = α(E − I)−D. Then

1. D′ has strength 1 iff D has strength 1.
2. D′ has strength 2 iff D has strength 2.

Proof. D′E = α(n− 1)E −DE. Thus, D′E = λ ′E iff DE = (α(n− 1)−λ ′)E =
λE, where λ ′+λ = α(n−1). This proves Statement 1.

To prove Statement 2, note that (D′)2 =−αD′+α2(n−1)E−2αλE+D2+αD,
where we substituted αI = αE −D−D′. But

λ ′(λ ′+α)/n = α2(n−1)−2αλ +λ (λ +α)/n.

Thus,
(D′)2 =−αD′+λ ′(λ ′+α)E/n−λ (λ +α)E/n+D2 +αD.

Hence, (D′)2 =−αD′+λ ′(λ ′+α)E/n if and only if D2+αD−λ (λ +α)E/n = 0.
Therefore, Statement 2 holds by setting α ′ = α .

�

A similar result for D with strength ≥ 3 is not true in general [152]. The fact
that α ′ = α should come as no surprise since V T D′V = −αIn−1 −V T DV . But the
nonpositive eigenvalues of D are exactly the eigenvalues of V T DV . Therefore, if D
has eigenvalues (−α) with multiplicity k and zero with multiplicity n−1− k, then
D′ has eigenvalues 0 with multiplicity k and (−α) with multiplicity n−1− k.
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Example 6.9 Let D =

⎡

⎢⎢
⎣

0 2 4 2
2 0 2 4
4 2 0 2
2 4 2 0

⎤

⎥⎥
⎦ be the EDM considered in Example 4.7. D is

regular with eigenvalues 8,0,−4,−4 and with Hoffman polynomial f (x) = x(x+
4)/24. Thus, D2 +4D = 24E and therefore D satisfies (6.22) with α = 4 and λ = 8.
Hence, D has strength 2.

Now D′ = α(E − I)−D =

⎡

⎢⎢
⎣

0 2 0 2
2 0 2 0
0 2 0 2
2 0 2 0

⎤

⎥⎥
⎦. Hence, D′ is also a regular EDM with

eigenvalues 4,0,0,−4. Note that α ′ = α and λ ′ = 4. The Hoffman polynomial of D′
is f ′(x) = x(x+4)/8. Therefore, (D′)2+4D′ = 8E. As a result, D′ also has strength
2.

Next, we turn to combinatorial designs. Let P be a collection of subsets of
{1, . . . ,n} called blocks, and let l be a positive integer and k be an integer such that
2 ≤ k ≤ n−1. Then P is called an (n,k, l) 2-design if the following two conditions
hold.

(i) Each block has cardinality k.
(ii) Each pair i and j is contained in exactly l blocks.

For example,

P = {{1,2,4},{2,3,5},{3,4,6},{4,5,7},{1,5,6},{2,6,7},{1,3,7}}

is a (7,3,1) 2-design. Also, the edges of the complete graph Kn is an (n,2,1) 2-
design. In this case, there are n(n− 1)/2 blocks, k = 2 since each edge contains
exactly two vertices and l = 1 since each pair of vertices is contained in exactly one
edge.

Let b be the number of blocks. Then the n×b, (0−1) matrix A, where ai j = 1 iff i
is in block j, is called the incidence matrix of P . Now AT en = keb since each block
has cardinality k. Also, it can be proven that Aeb = ren where r is a positive integer
to be determined next. Thus, eT

b AT en = kb and hence b = nr/k. Furthermore,

AAT = lE +(r− l)I (6.24)

since

(AAT )i j = ∑
k

aika jk =

{
l if i �= j,
r if i = j .

To find r, we calculate AAT en in two ways. On the one hand, AT en = keb and thus
AAT en = kAeb = kren. On the other hand, it follows from (6.24) that AAT en = ((n−
1)l + r)en. Thus r = l(n− 1)/(k − 1). Note that r �= l since k �= n. Consequently,
AAT is nonsingular. Hence, null(AT ) is trivial and thus AT has full column rank, i.e.,
rank(AT ) = n. Therefore, n ≤ b. For instance, in case of Kn, r = n− 1 since each
vertex is in n−1 edges.
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Therefore,
D = rE −AAT = (r− l)(E − I) (6.25)

is a standard simplex EDM with γ = r − l. Note that (AT A)ii = ∑k aki = k. Thus
diag(AT A) = keb. Hence, D′ = kE −AT A is a spherical EDM since kE −D′ = AT A
is PSD.

6.5 EDMs with Two or Three Distinct Eigenvalues

The eigenvalues of a nonzero EDM D cannot all be equal since trace(D) = 0. As a
result, EDMs have two or more distinct eigenvalues. EDMs with two distinct eigen-
values are easily characterized as those corresponding to the standard simplex.

Theorem 6.11 Let D be an n×n EDM. Then D has exactly two distinct eigenvalues
if and only if D = γ(E − I) for some positive scalar γ .

Proof. The sufficiency part is immediate since the eigenvalues of E − I are n−1
with multiplicity 1 and (−1) with multiplicity n−1. To prove the necessity part, let
D have two distinct eigenvalues, say λ > 0 and −γ < 0. Then λ is the Perron eigen-
value and (−γ) has multiplicity n−1. Moreover, λ = (n−1)γ since trace(D) = 0.
Let x be the normalized Perron eigenvector of D. Then D = γ((n−1)xxT −W1W T

1 )
is the spectral decomposition of D. But W1W T

1 = I − xxT , thus D = γ(nxxT − I).
Furthermore, since diag(D) = 0, it follows that nx2

i = 1 for i = 1. . . . ,n and hence
x = e/

√
n. Therefore, D = γ(E − I).

�

There is no complete characterization of EDMs with exactly three distinct eigen-
values. Nevertheless, few partial results are known.

Theorem 6.12 Let D be an n× n EDM. Then D is singular with strength 2 if and
only if the distinct eigenvalues of D are λ = eT De/n, 0 with multiplicity n− 1− k
and (−α) with multiplicity k, where 1 ≤ k ≤ n−2.

Proof. Assume that the distinct eigenvalues of D are λ = eT De/n, 0 with multi-
plicity n− 1− k and (−α) with multiplicity k, where 1 ≤ k ≤ n− 2. Then λ = kα
and D is obviously regular and singular. Moreover, the spectral decomposition of D

is D = λE/n−VΛV T , where Λ =

[
αIk 0
0 0

]
. Therefore, D2 =−αD+λ (λ +α)E/n

and hence D satisfies (6.22).
To prove the other direction, assume that D is singular with strength 2. Then

the spectral decomposition of D is D = λE/n−VΛV T , where Λ � 0. Moreover,
(6.22) implies that VΛ 2V T = αVΛV T and hence, Λ 2 = αΛ , i.e., Λi(Λi−α) = 0 for
i = 1, . . . ,n. But Λ �= 0 and Λ �= αI since diag(D) = 0 and D is singular. Therefore,
the nonpositive eigenvalues of D are (−α) with multiplicity k and 0 with multiplic-
ity n−1− k for some k : 1 ≤ k ≤ n−2.

�
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Recall that the standard simplex EDM D = E − I has strength t for all positive
integer t. Hence, it has strength 2 and has two distinct eigenvalues namely, n− 1
and (−1). However, D is nonsingular. The following theorem follows from a more
general result of Neumaier. Recall that the degree of an EDM is the number of its
distinct off-diagonal entries.

Theorem 6.13 (Neumaier [152]) Let D be an n× n EDM of strength 2 and of de-
gree 2 or 3. Then any two rows (columns) of D are obtained from each other by a
permutation.

Proof. Assume that the degree of D is 3 and let its distinct off-diagonal entries be
β1,β2, and β3. The proof of the case where the degree is 2 is similar.

For k = 1,2,3, let Ak = (ak
i j) be the (0−1) matrix such that

ak
i j =

{
1 if di j = βk,
0 otherwise.

Thus, D = β1A1 +β2A2 +β3A3 and A1 +A2 +A3 = E − I. Moreover, since D has
strength 2, we have De = λe and

[D]2e = diag(D2) =
1
n

λ (λ +α)e. (6.26)

Thus,
(E − I)e = A1e+A2e+A3e = (n−1)e,

De = β1A1e+β2A2e+β3A3e = λe,
[D]2e = β 2

1 A1e+β 2
2 A2e+β 2

3 A3e = (λ (λ +α)/n)e.

Therefore, by grouping together the ith equation from each of the above three
systems we obtain for i = 1, . . . ,n

⎡

⎣
1 1 1
β1 β2 β3

β 2
1 β 2

2 β 2
3

⎤

⎦

⎡

⎣
(A1e)i

(A2e)i

(A3e)i

⎤

⎦=

⎡

⎣
n−1

λ
λ (λ +α)/n

⎤

⎦ .

This system is Vandermonde since the β ’s are distinct and hence its solution is
unique. Therefore, for k = 1,2,3, (Ake)i is independent of i and thus Ake = γke.
That is, for k = 1,2,3, the entry βk appears exactly γk times in each row. Note that
γ1 + γ2 + γ3 = n−1.

�

Example 6.10 Let D be the regular EDM considered in Example 6.9. The eigen-
values of D are 8,0,−4,−4. Thus, α = 4 and λ = 8. Moreover, β1 = 2, β2 = 4
and

A1 =

⎡

⎢⎢
⎣

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤

⎥⎥
⎦ and A2 =

⎡

⎢⎢
⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤

⎥⎥
⎦ .
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Clearly, A1e = 2e and A2e = e.
To illustrate the proof of Theorem 6.13 for this case, note that
[

1 1
2 4

][
(A1e)i

(A2e)i

]
=

[
3
8

]
and thus

[
(A1e)i

(A2e)i

]
=

1
2

[
4 −1

−2 1

][
3
8

]
=

[
2
1

]
.

So far, we considered regular EDMs with three distinct eigenvalues. Next, we use
Theorem 3.17 to construct nonregular EDMs with three distinct eigenvalues from
the simplex EDM D = E − I.

Theorem 6.14 Let t ≥ (n−1)/2n, t �= 1. Then

D′ =
[

0 teT

te En − In

]

is a nonregular EDM with exactly three distinct eigenvalues, namely μ1,μ2, each
with multiplicity 1, and (−1) with multiplicity n−1, where

μ1 =
1
2
(n−1+

√
(n−1)2 +4nt2)

and

μ2 =
1
2
(n−1−

√
(n−1)2 +4nt2).

Proof. By Theorem 3.17, D′ is an EDM for all t
√

n ≥ (n− 1)/2
√

n, i.e., for all
t ≥ (n−1)/2n. Let

Q =

[
0 1 0

e/
√

n 0 V

]
.

Then

QT D′Q =

⎡

⎣
n−1 tn1/2 0
tn1/2 0 0

0 0 −In−1

⎤

⎦

and the result follows.
�

Observe that if t = 1 in the previous theorem, then D′ is the standard simplex
EDM of order n+1. Also, observe that in this case, D′ has two distinct eigenvalues
since μ1 = n and μ2 =−1.

6.6 The EDM Inverse Eigenvalue Problem

Let (C) be a given class of matrices and let λ1, . . . ,λn be given scalars. The (C)
inverse eigenvalue problem [55] is the problem of constructing a matrix in (C) with
eigenvalues λ1, . . . ,λn, or proving that no such matrix exists. In particular, if C is
the EDM cone Dn, then the corresponding problem is known as the EDM inverse
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eigenvalue problem (EDMIEP). There is no satisfactory solution for the EDMIEP
for all n. More specifically, if n is an integer for which a Hadamard matrix of order
n exists, then there is an elegant simple solution for such order [105]. However, for
other orders, only partial results, based on Theorems 3.17, 3.18, 3.19 and 3.20, are
known [105, 117, 151]. In what follows, we present the Hadamard matrix based
solution.

A Hadamard matrix Hn is a (1,−1)-matrix of order n that satisfies

HT
n Hn = nI.

For example, H2 =

[
1 1
1 −1

]
and H4 = H2 ⊗H2 =

[
H2 H2

H2 −H2

]
are two Hadamard

matrices. In fact, it is an immediate consequence of the definition that the Kronecker
product of two Hadamard matrices is a Hadamard matrix. Consequently, Hadamard
matrices of orders 2k exist for every nonnegative integer k.

Another consequence of the definition is that Hadamard matrices are closed un-
der the multiplication of any column or row by (−1). As a result, we can assume
wlog that e is the first column of Hn. This implies that n = 1,2 or 4k, for some
positive integer k, is a necessary condition for the existence of Hn. Whether this
condition is also sufficient is an open problem. However, it has been a long-standing
open conjecture that there exists a Hadamard matrix Hn for every n = 4k. The small-
est n for which the existence of Hn is in doubt is n = 668 [120].

The EDM inverse eigenvalue problem is solved for all n for which a Hadamard
matrix of order n exists.

Theorem 6.15 (Hayden et al. [105]) Assume that n is a positive integer for which
a Hadamard matrix of order n exists. Let λ1 > 0 ≥ λ2 ≥ ·· · ≥ λn be scalars such
that ∑n

i=1 λi = 0. Then there exists a regular EDM with eigenvalues λ1, . . . ,λn.

Proof. Assume that Hn = [e H̄] is a Hadamard matrix and let Q = Hn/
√

n.
Let Λ = Diag(λ1, . . . ,λn) and let D = QΛQT = (λ1eeT + H̄Λ̄ H̄T )/n where
Λ̄ = Diag(λ2, . . . ,λn). Then obviously D and Λ are cospectral since Q is orthog-
onal. Observe that Dii = ∑n

k=1 λk(qik)
2 = (∑n

k=1 λk)/n = 0 and thus diag(D) = 0.
Moreover, H̄ = VA for some nonsingular A since the columns of H̄ is a basis of
e⊥. Consequently, TV (D) = −V T (λ1eeT +VAΛ̄ATV T )V/(2n) = −AΛ̄AT/(2n) is
PSD. Moreover, eT De/n = λ1. As a result, D is a regular EDM with eigenvalues
λ1, . . . ,λn.

�



Chapter 7
The Entries of EDMs

This chapter focuses on two problems concerning the individual entries of an EDM.
The first problem is how to determine a missing or an unknown entry of an EDM.
We present two methods for solving this problem, the second of which yields a com-
plete closed-form solution. The second problem is how far an entry of an EDM can
deviate from its current value, assuming all other entries are kept unchanged, be-
fore the matrix stops being an EDM. We present explicit formulas for the intervals,
within which, entries can vary, one at a time, if the matrix is to remain an EDM.
Moreover, we present a characterization of those entries whose intervals have zero
length; i.e., those entries where any deviation from their current values renders the
matrix non-EDM.

7.1 Determining One Missing Entry of an EDM

Suppose that one entry of an EDM of order n+ 2 is missing or unknown. By re-
labelling the points if necessary, we can assume wlog that the missing entry is in
positions (1,n+2) and (n+2,1). More precisely, suppose that

D̃ =

⎡

⎣
0 dT α
d D c
α cT 0

⎤

⎦

is an (n+ 2)× (n+ 2) EDM, where D is of order n, and where α is an unknown
scalar. We first assume that n ≥ 2 and later we consider the case n = 1. Let

D1 =

[
0 dT

d D

]
and D2 =

[
D c
cT 0

]
.

Then obviously, D, D1, and D2 are EDMs of embedding dimensions, say, r, r1, and
r2, respectively. Clearly, r ≤ r1,r2 ≤ r+1.
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We present two methods for determining α . The first one is algorithmic and
rather intuitive. However, in case there are multiple values of α , this method has the
disadvantage of yielding only one such value. The second method is rather cumber-
some, but it obtains a complete closed-form solution of the problem of finding α . It
should be pointed out that a proof of the existence of a solution for this problem is
given in [31] together with a condition for its uniqueness. Also, it should be pointed
out that this problem has interesting consequences for the EDM completion problem
to be discussed in the next chapter.

7.1.1 The First Method for Determining α

Assume that D �= 0 and let

B1 =−1
2
(I − e(e2)T )D1(I − e2eT )

and

B2 =−1
2
(I − e(e1)T )D2(I − e1eT )

be the Gram matrices of D1 and D2, where e1 and e2 are the first two standard unit
vectors in R

n+1. Further, let

P1 =

⎡

⎢⎢
⎢
⎣

(p1)T

(p2)T

...
(pn+1)T

⎤

⎥⎥
⎥
⎦
=

[
(p1)T

P

]
and P2 =

⎡

⎢⎢
⎢
⎣

(p′2)T

...
(p′n+1)T

(p′n+2)T

⎤

⎥⎥
⎥
⎦
=

[
P′

(p′n+2)T

]

be (n+ 1)× r1 and (n+ 1)× r2 configuration matrices of D1 and D2 obtained by
factorizing B1 = P1PT

1 and B2 = P2PT
2 . Observe that, as a result of the above choice

of the projection matrix on e⊥, the origin, in both systems of coordinates, is fixed at
the second point, i.e., p2 = 0 and p′2 = 0.

Note that P and P′ are two “configuration matrices”1 of D in R
r1 and R

r2 , where
D = K (PPT ) = K (P′P′T ). Also, note that r1, r2, and r may be different. As a
result, we consider three cases:

Case 1: r1 = r2 = r. In this case, p1 lies in the affine span of {p2, . . . , pn+1} and
p′n+2 lies in the affine span of {p′2, . . . , p′n+1}. Since the origin is fixed at the second
point, it follows that P′ = PQ for some orthogonal matrix Q. That is, P′ is obtained
from P by an orthogonal transformation. Consequently,

1 Recall that a configuration of D is obtained by factorizing T (D), the Gram matrix of D. Hence, all
configuration matrices of D have a full column rank which is equal to the rank of T (D). As a result,
P and P′ are not configuration matrices of D in the technical sense. Nonetheless, D =K (PPT ) and
D =K (P′P′T ).
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P1Q =

[
(p1)T Q

PQ

]
=

[
(p1)T Q

P′

]

is a configuration matrix of D1. Therefore, aligning the common points in both con-
figuration matrices implies that

P̃ =

⎡

⎣
(p1)T Q

P′
(p′n+2)T

⎤

⎦

is a configuration matrix of D̃. Consequently,

α = ||p1||2 + ||p′n+2||2 −2(p1)T Qp′n+2. (7.1)

Observe that ||p1||2 = D̃2,1 = d1 and ||pn+2||2 = D̃2,(n+1) = c1 since the origin is
fixed at the second point.

Case 2: r1 �= r2. Wlog assume that r1 < r2. Then obviously, r1 = r and r2 = r+1.
Hence, in this case, p1 lies in the affine span of {p2, . . . , pn+1}, while p′n+2 is not in
the affine span of {p′2, . . . , p′n+1}.

Let U ′ be the matrix whose columns form an orthonormal basis of null(P′) and
let W ′ be the matrix such that [W ′ U ′] is orthogonal. Observe that U ′ is n × 1.
Since configuration matrices are closed under multiplication from the right with an
orthogonal matrix, it follows that the n× r matrix P′W ′ is a configuration matrix of
D. Hence, there exists an orthogonal matrix Q such that P′W ′ = PQ. As a result,

P1Q =

[
(p1)T Q

PQ

]
=

[
(p1)T Q

P′W ′

]
and P2[W

′ U ′] =
[

P′W ′ 0
(p′n+2)TW ′ (p′n+2)TU ′

]

are configuration matrices of D1 and D2, respectively. Again, aligning the common
points in both configuration matrices implies that

P̃ =

⎡

⎣
(p1)T Q 0

P′W ′ 0
(p′n+2)TW ′ (p′n+2)TU ′

⎤

⎦ .

is a configuration matrix of D̃. Consequently, α is given by

α = ||p1||2 + ||p′n+2||2 −2(p1)T QW ′T p′n+2. (7.2)

Case 3: r1 = r2 = r + 1. Let U and U ′ be the matrices whose columns form or-
thonormal bases of null(P) and null(P′), respectively. Observe that U and U ′ are
n×1 since the embedding dimension of D is r. Let W and W ′ be the matrices such
that the matrices [W U ] and [W ′ U ′] are orthogonal. Hence, the n× r matrices PW
and P′W ′ are configuration matrices of D. Therefore, there exists an orthogonal ma-
trix Q such that P′W ′ = PWQ. Consequently,
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P1[W U ]

[
Q 0
0 1

]
=

[
(p1)TWQ (p1)TU

PWQ 0

]
=

[
(p1)TWQ (p1)TU

P′W ′ 0

]

and

P2[W
′ U ′] =

[
P′W ′ 0

(p′n+2)TW ′ (p′n+2)TU ′

]

are configuration matrices of D1 and D2, respectively. Again, by aligning the com-
mon points in both configuration matrices, it follows that

P̃ =

⎡

⎣
(p1)TWQ (p1)TU

P′W ′ 0
(p′n+2)TW ′ (p′n+2)TU ′

⎤

⎦ .

is a configuration matrix of D̃. Thus, α is given by

α = ||p1||2 + ||p′n+2||2 −2(p1)T (WQW ′T +UU ′T )p′n+2. (7.3)

Example 7.1 Consider the EDM

D̃ =

⎡

⎢⎢
⎢⎢
⎣

0 1 2 5 α
1 0 1 4 1
2 1 0 1 2
5 4 1 0 5
α 1 2 5 0

⎤

⎥⎥
⎥⎥
⎦
,

where α is unknown. Then the embedding dimensions of D1, D2, and D are r1 = 2,
r2 = 2, and r = 1, respectively. Hence, Case 3 applies. Then

P1 =

[
(p1)T

P

]
=

⎡

⎢⎢
⎣

0 1
0 0
1 0
2 0

⎤

⎥⎥
⎦ and P2 =

[
P′

(p5)T

]
⎡

⎢⎢
⎣

0 0
−1/

√
2 −1/

√
2

−√
2 −√

2
−1/

√
2 1/

√
2

⎤

⎥⎥
⎦ .

Consequently,

[W U ] = I2 and [W ′ U ′] =
1√
2

[
1 1
1 −1

]
.

Therefore,

PW =

⎡

⎣
0
1
2

⎤

⎦ ,P′W ′ =

⎡

⎣
0

−1
−2

⎤

⎦ and thus Q =−1.

As a result,

P̃ =

⎡

⎢⎢⎢⎢
⎣

0 1
0 0

−1 0
−2 0

0 −1

⎤

⎥⎥⎥⎥
⎦
.
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Therefore, α = 4. Note that α is not unique. In fact, α can be any scalar between 0
and 4.

7.1.2 The Second Method for Determining α

This second method, unlike the first, obtains a complete closed-form solution of
the problem of finding α . To this end, Theorem 3.3 implies that D1 is an EDM
iff edT + deT −D is PSD, where, as always, e denotes the vector of all 1’s in R

n.
Recall that, in the first method, the origin was fixed at the second point. Here we
fix the origin at the centroid of the generating points of D. Thus, B = −JDJ/2 and
X = V T BV are the Gram and the projected Gram matrices of D. Let X = WΛW T

be the spectral decomposition of X where Λ is the diagonal matrix consisting of
the r positive eigenvalues of X . Also, let U be the matrix whose columns form an
orthonormal basis of null(X). Note that Λ =W TV T PPTVW , where P =VWΛ 1/2 is
a configuration matrix of D. Define the two orthogonal matrices

Q1 = [V
e√
n
] and Q2 =

[
W U 0
0 0 1

]
.

Then QT
2 QT

1 (edT +deT −D)Q1Q2 is equal to

⎡

⎣
2Λ 0

√
n W TV T (d −De/n)

0 0
√

n UTV T (d −De/n)√
n (d −De/n)TVW

√
n (d −De/n)TVU 2eT d − eT De/n

⎤

⎦ .

Therefore, since D1 is an EDM and in light of Lemma 3.8, it follows that

ZT (d − De
n
) = 0, (7.4)

where Z is a Gale matrix of D, and

2eT d − eT De
n

− n
2
(d − De

n
)T B†(d − De

n
)≥ 0, (7.5)

where we have used Schur complement and the fact that B† =VWΛ−1W TV T . It is
important to note that equality holds in (7.5) if and only if r1 = r.

Similarly, since D2 is an EDM, it follows that

ZT (c− De
n
) = 0, (7.6)

and

2eT c− eT De
n

− n
2
(c− De

n
)T B†(c− De

n
)≥ 0, (7.7)
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where equality holds in (7.7) if and only if r2 = r. An immediate consequence of
(7.4) and (7.6) is that

ZT (d − c) = 0.

Now Theorem 3.3 implies that D̃ is an EDM iff
[

deT + edT −D d − c+αe
dT − cT +αeT 2α

]
� 0.

Define the two orthogonal matrices

Q′
1 =

[
V e/

√
n 0

0 0 1

]
and Q′

2 =

[
W U 0
0 0 I2

]
.

Then, D̃ is an EDM if and only if

Q′T
2 Q′T

1

[
deT + edT −D d − c+αe
dT − cT +αeT 2α

]
Q′

1Q′
2 � 0. (7.8)

But (7.8), using Schur complement, is equivalent to
[

n f (d,d)
√

n (α −g)√
n (α −g) 2α −h

]
� 0, (7.9)

where

f (x,y) =
eT (x+ y)

n
− eT De

n2 − 1
2
(x− De

n
)T B†(y− De

n
), (7.10)

g =
1
2
(d − De

n
)T B†(d − c)− eT (d − c)

n
,

and

h =
1
2
(d − c)T B†(d − c). (7.11)

The function f (x,y) plays an important role in determining α . Moreover, it is
straightforward to verify that g and h can be expressed in terms of f (x,y) as fol-
lows.

g = f (d,c)− f (d,d). (7.12)

h = 2 f (d,c)− f (d,d)− f (c,c). (7.13)

An immediate consequence of (7.5) and (7.7) is that f (d,d)≥ 0 and f (c,c)≥ 0.
Similar to the first method, we have to consider three cases.

Case 1: r1 = r2 = r. In this case, it follows from (7.5) and (7.7) that f (d,d) =
f (c,c) = 0. Thus g = h/2. As a result, it follows from (7.9) that D̃ is an EDM if and
only if

α = g =
h
2
= f (d,c).
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Therefore, in this case, α is unique and the matrix in (7.9) is zero. Hence, the em-
bedding dimension of D̃ = r.

Case 2: r1 = r and r2 = r+1. Hence, in this case, f (d,d) = 0 and f (c,c)> 0. Thus
g > h/2. Consequently, D̃ is an EDM if and only if

α = g = f (d,c).

Therefore, in this case, α is also unique and the matrix in (7.9) has rank 1. Hence,
the embedding dimension of D̃ = r+1.

Case 3: r1 = r2 = r+1. Hence, in this case f (d,d) > 0 and f (c,c) > 0. Thus, by
Schur complement, (7.9) holds iff

2α −h− 1
f (d,d)

(α −g)2 ≥ 0

or
α2 −2α(g+ f (d,d))+g2 + f (d,d)h ≤ 0. (7.14)

In light of (7.12) and (7.13), the quadratic inequality (7.14) reduces to

α2 −2α f (d,c)+ f (d,c)2 − f (d,d) f (c,c)≤ 0.

Therefore, the roots are:

αl = f (d,c)−
√

f (d,d) f (c,c) and αu = f (d,c)+
√

f (d,d) f (c,c).

Observe that (7.11) implies that h ≥ 0. Thus 2 f (c,d)≥ f (d,d)+ f (c,c). More-
over, by the arithmetic mean-geometric mean inequality, we have

f (c,d)≥
√

f (d,d) f (c,c)

Hence, αl ≥ 0. Therefore, D̃ is an EDM if and only if αl ≤ α ≤ αu.
So far, we have considered the case where D is of order n ≥ 2. We now consider

the case n = 1. Hence, D = 0 and thus

D̃ =

⎡

⎣
0 d α
d 0 c
α c 0

⎤

⎦

is 3×3 and d and c are scalars. Using triangular inequality, it is immediate that D̃ is
an EDM iff

(
√

d −√
c)2 ≤ α ≤ (

√
d +

√
c)2.

However, in this case, B† = 0 and hence f (d,c) = c+d, f (d,d) = 2d and f (c,c) =
2c. Consequently,

f (d,c)−
√

f (d,d) f (c,c)=(
√

d −√
c)2 and f (d,c)+

√
f (d,d) f (c,c)=(

√
d+

√
c)2.

As a result, we have proved the following theorem.
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Theorem 7.1 Let

D1 =

[
0 dT

d D

]
and D2 =

[
D c
cT 0

]

be two given (n+ 1)× (n+ 1) EDMs of embedding dimensions r1 and r2. Assume
that D is of order n and of embedding dimension r. Let B = −JDJ/2 be the Gram
matrix of D and let

D̃ =

⎡

⎣
0 dT α
d D c
α cT 0

⎤

⎦ .

Further let

f (x,y) =
eT (x+ y)

n
− eT De

n2 − 1
2
(x− De

n
)T B†(y− De

n
).

Then D̃ is an EDM if and only if αl ≤ α ≤ αu, where

αl = f (d,c)−
√

f (d,d) f (c,c) and αu = f (d,c)+
√

f (d,d) f (c,c).

Moreover, (i) the embedding dimension of D̃ = r if and only if f (d,d) = f (c,c) = 0,
(ii) f (d,d) = 0 if and only if r1 = r, and (iii) f (c,c) = 0 if and only if r2 = r.

Example 7.2 Consider the matrix D̃ of Example 7.1. Then c= d and r1 = r2 = r+1.

B† =
1
4

⎡

⎣
1 0 −1
0 0 0

−1 0 1

⎤

⎦ .

Therefore, f (c,d) = f (d,d) = f (c,c) = 2 and hence αl = 0 and αu = 4.

7.2 Yielding and Nonyielding Entries of an EDM

We saw in the previous section how to recover a missing entry of an EDM. Now
suppose that a given entry of an EDM D is allowed to vary, while all other entries
are kept fixed. In this section, we are interested in determining the interval within
which this entry can vary if D is to remain an EDM. Clearly, depending on D and
the given entry, this interval can have a zero or a nonzero length.

More precisely, let Ei j denote the n×n symmetric matrix with 1’s in the (i, j) and
( j, i) positions and zeros elsewhere. Further, let li j ≤ 0 and ui j ≥ 0 be the two scalars
such that D+ tEi j is an EDM if and only if li j ≤ t ≤ ui j. That is, D remains an EDM
iff its entry in the (i, j) and ( j, i) positions varies between di j + li j and di j + ui j,
while all other entries are kept unchanged. The closed interval [li j,ui j] is called the
yielding interval of entry di j. Furthermore, entry di j is said to be unyielding if its
yielding interval has zero length, i.e., if li j = ui j = 0. Otherwise, if the yielding
interval of an entry di j has a nonzero length, i.e., if li j �= ui j, then di j is said to be
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yielding. Gale transform, which we revisit next, plays a crucial role in establishing
whether a given entry of an EDM is yielding or unyielding.

7.2.1 The Gale Matrix Z Revisited

In addition to the properties of Gale transform discussed in Chap. 3, more useful
properties are given in this subsection. We begin, first, with the following simple
proposition and its corollary.

Proposition 7.1 Let D be an n×n, n ≥ 3, EDM of embedding dimension r ≤ n−2.
Let Z and P be, respectively, a Gale matrix and a configuration matrix of D, where
PT e = 0. Then

null(PT )∩null(ZT ) = col(e).

Proof. This is an immediate consequence of the definition of Z.
�

Corollary 7.1 (Alfakih [15]) Let D be an n×n, n ≥ 3, EDM of embedding dimen-
sion r ≤ n− 2. Let Z and P be, respectively, a Gale matrix and a configuration
matrix of D, where PT e = 0. Let i and j be two distinct indices in {1, . . . ,n}.

1. If zi = 0, then pi �= 0 and pi is not in the affine hull of {p1, . . . , pn}\{pi}.
2. If zi = z j = 0, then pi �= 0, p j �= 0 and pi − cp j �= 0 for all scalars c.
3. If zi �= 0, z j �= 0 and zi = c′z j for some nonzero scalar c′, then pi − c′p j �= 0.

Proof. To prove part 1, assume that zi = 0. Then ei, the ith standard unit vector
in R

n, lies in null(ZT ). Now, by way of contradiction, assume that pi = 0. Then ei

is also in null(PT ) and hence ei ∈ null(PT )∩null(ZT ), a contradiction since ei �= e
(n ≥ 3).

For ease of notation and wlog assume that i = 1, i.e., z1 = 0. Now assume, to
the contrary, that p1 lies in the affine hull of {p2, . . . , pn}. Then there exist scalars
λ2, . . . ,λn such that [

p1

1

]
=

n

∑
i=2

λi

[
pi

1

]
.

Let x= [−1 λ2 · · · λn]
T . Thus, PT x= 0 and eT x= 0 and hence there exists ξ �= 0 in

R
n−r−1 such that x = Zξ . Consequently, −1 = (z1)T ξ , a contradiction. Therefore,

p1 is not in the affine hull of {p2, . . . , pn}.
To prove part 2, assume wlog that z1 = z2 = 0. Then by part 1, p1 �= 0 and p2 �= 0.

Assume, by way of contradiction, that p1 − cp2 = 0 for some scalar c and let x be
the vector in R

n such that x = [1 − c 0]T . Then x lies in null(PT )∩ null(ZT ) and
x �= e since x has at least one zero entry (n ≥ 3). Thus, we have a contradiction.

To prove part 3, assume wlog that z1 �= 0, z2 �= 0 and z1 = c′z2 for some scalar
c′. Assume, by way of contradiction, that p1 − c′p2 = 0 and let x be the vector in
R

n such that x = [1 − c′ 0]T . Then x ∈ null(PT )∩ null(ZT ) and hence we have a
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contradiction since x �= e.
�

It should be pointed out that in part 3 of Corollary 7.1, pi may be parallel to p j,
say pi = cp j, but c cannot be equal to c′ as illustrated in the following example.

Example 7.3 Consider the EDM D =

⎡

⎢⎢
⎣

0 0 1 1
0 0 1 1
1 1 0 4
1 1 4 0

⎤

⎥⎥
⎦ of embedding dimension 1.

A configuration matrix of D is P =

⎡

⎢⎢
⎣

0
0

−1
1

⎤

⎥⎥
⎦. Thus, a Gale matrix of D is

Z =

⎡

⎢
⎢
⎣

−2 0
0 −2
1 1
1 1

⎤

⎥
⎥
⎦. Note that z3 = z4 and p3 = −p4; i.e, p3 is parallel to p4 but

c �= c′.

Next, we characterize the yielding entries of an EDM in terms of Gale transform.

7.2.2 Characterizing the Yielding Entries

We consider two cases, depending on whether or not the generating points of D are
affinely independent. Let r be the embedding dimension of the n×n EDM D.

We begin, first, with the case where r = n−1; i.e., the case where the generating
points of D are affinely independent.

Theorem 7.2 Let D be an n× n EDM of embedding dimension r = n− 1. Then
every entry of D is yielding.

Proof. Let 1 ≤ k < l ≤ n. Then D+ tEkl is an EDM iff 2X − tV T EklV � 0, where
X is the projected Gram matrix of D and V is as defined in (3.11). But, X is PD
since X is of order n−1 and rank(X) = r = n−1. Thus, obviously, there exists t �= 0
such that 2X − tV T EklV � 0. Consequently, dkl is yielding and the result follows.

�

Next, we consider the case where r ≤ n− 2; i.e., the case where the generating
points of D are affinely dependent. The following lemma is crucial for our results.

Lemma 7.1 Let D be an n×n nonzero EDM of embedding dimension r ≤ n−2, and
let Z and P be a Gale matrix and a configuration matrix of D, respectively, where
PT e = 0. Further, let X be the projected Gram matrix D. Then 2X − tV T EklV � 0 iff

[
2(PT P)2 − t (pk(pl)T + pl(pk)T ) −t (pk(zl)T + pl(zk)T )

−t (zk(pl)T + zl(pk)T ) −t (zk(zl)T + zl(zk)T )

]
� 0.
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Proof. Let W and U be the two matrices whose columns form orthonormal bases
of col(X) and null(X), respectively, and thus Q = [W U ] is orthogonal. Hence,
2X − tV T EklV � 0 iff

QT (2X − tV T EklV )Q =

[
2W T XW − t W TV T EklVW −t W TV T EklVU

−t UTV T EklVW −t UTV T EklVU

]
� 0.

But, it follows from Lemma 3.8 that VU = ZA and VW = PA′, where A and A′
are nonsingular. Hence, 2X − tV T EklV � 0 iff

[
2(PT P)2 − t (pk(pl)T + pl(pk)T ) −t (pk(zl)T + pl(zk)T )

−t (zk(pl)T + zl(pk)T ) −t (zk(zl)T + zl(zk)T )

]
� 0.

�

Note that (PT P)2 is PD since P has full column rank. As the following theorem
shows, the yielding entries of D are characterized in terms of Gale transform.

Theorem 7.3 (Alfakih [15]) Let D be an n×n nonzero EDM of embedding dimen-
sion r ≤ n− 2, and let z1, . . . ,zn be Gale transforms of the generating points of D.
Then entry dkl is yielding if and only if zk is parallel to zl; i.e., iff there exists a
nonzero scalar c such that zk = czl .

Proof. Let 1 ≤ k < l ≤ n. Entry dkl is yielding iff there exists t �= 0 such that
D+ tEkl is an EDM or equivalently, iff 2X − tV T EklV � 0.

Assume that zk is parallel to zl , i.e., zk = czl for some nonzero scalar c. Then
zk(zl)T + zl(zk)T = 2czl(zl)T � 0 and pk(zl)T + pl(zk)T = (pk + cpl)(zl)T . Hence,
null(zl(zl)T ) = null((zl)T ) ⊆ null((pk + cpl)(zl)T ). Consequently, it follows from
Lemma 7.1 that there exists t �= 0 such that 2X − tV T EklV � 0 and therefore dkl is
yielding.

To prove the reverse direction, assume that zk and zl are not parallel and assume,
to the contrary, that entry dkl is yielding. Therefore, there exists t �= 0 such that
2X − tV T EklV � 0. Thus, it follows from Lemma 7.1 that there exists t �= 0 such
that −tzk(zl)T + zl(zk)T � 0 and null(zk(zl)T + zl(zk)T ) ⊆ null(pk(zl)T + pl(zk)T ).
We consider two cases.

Case 1: zk = 0 and zl �= 0. Thus zk(zl)T + zl(zk)T = 0. Moreover, by Corollary 7.1
(part 1), pk �= 0 and thus pk(zl)T + pl(zk)T ) = pk(zl)T �= 0. Hence, we have a con-
tradiction since null(0) �⊆ null(pk(zl)T ).

Case 2: Both zk and zl are nonzero. Again, in this case we have a contradiction
since Proposition 1.2 implies that zk(zl)T + zl(zk)T is indefinite. As a result, dkl is
unyielding.

�

Example 7.4 Let D̃ be the EDM considered in Example 7.1 with α = 4. Then a
Gale matrix of D̃ is
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Z =

⎡

⎢⎢
⎢⎢
⎣

0 1
1 −2

−2 0
1 0
0 1

⎤

⎥⎥
⎥⎥
⎦
.

Therefore, entries d15 and d34 are yielding, while all other entries are unyielding.

When the generating points of D are in general position, Theorem 7.3 implies the
following two corollaries.

Corollary 7.2 ([15]) Let D be an n× n EDM of embedding dimension r = n− 2.
Then D is in general position in R

r if and only if every entry of D is yielding.

Proof. In this case, z1, . . . ,zn are scalars since r̄ = n− r− 1 = 1. Assume that D
is in general position. Then it follows from Corollary 3.1 that z1, . . . ,zn are nonzero.
Thus, zk is parallel to zl for all 1 ≤ k < l ≤ n, and hence every entry of D is yielding.

To prove the other direction, assume that one entry of D say, dkl , is unyielding.
Then zk is not parallel to zl . Thus, either zk = 0 or zl = 0, but not both. Therefore,
Corollary 3.1 implies that D is not in general position.

�

Corollary 7.3 ([15]) Let D be an n×n EDM of embedding dimension r ≤ n−3. If
D is in general position in R

r, then every entry of D is unyielding.

Proof. Assume, to the contrary, that one entry of D, say dkl , is yielding. Thus, it
follows from Theorem 7.3 that zk = czl for some nonzero scalar c. Note that in this
case, r̄ = n− r−1 ≥ 2. Hence, any r̄× r̄ submatrix of Z containing (zk)T and (zl)T

is singular. This contradicts Corollary 3.1 and the proof is complete.
�

Observe that if a matrix is nonsingular, then, obviously, every two of its columns
(rows) are linearly independent; i.e., nonparallel. However, the converse is not true;
i.e., if every two columns (rows) of a matrix are linearly independent, then this
matrix may be singular. Consequently, the converse of Corollary 7.3 is not true.

Example 7.5 Consider the EDM D =

⎡

⎢⎢⎢⎢
⎣

0 1 4 9 1
1 0 1 4 0
4 1 0 1 1
9 4 1 0 4
1 0 1 4 0

⎤

⎥⎥⎥⎥
⎦

of embedding dimension 1. A

configuration matrix and a Gale matrix of D are

P =
1
5

⎡

⎢⎢⎢
⎢
⎣

−7
−2

3
8

−2

⎤

⎥⎥⎥
⎥
⎦

and Z =

⎡

⎢⎢⎢
⎢
⎣

1 0 0
−2 1 −1

1 −2 0
0 1 0
0 0 1

⎤

⎥⎥⎥
⎥
⎦
.
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Obviously, D is not in general position in R
1 since p2 = p5. However, every entry of

D is unyielding.

Finally, the following important consequence of Theorem 7.2 and Corollaries 7.2
and 7.3 is worth pointing out. If an n× n EDM D of embedding dimension r is in
general position, then the entries of D are either all yielding (if n= r+1 or n= r+2)
or all unyielding (if n ≥ r+3).

We determine, next, yielding intervals of the yielding entries of an EDM.

7.2.3 Determining Yielding Intervals

Let D be a given EDM and let B = −JDJ/2 be its Gram matrix. Further, let P
be a configuration matrix of D and hence PT e = 0. It is easy to verify that B† =
P(PT P)−2PT . Let B† = SST ; i.e., let S = P(PT P)−1. As we show next, the yielding
intervals of D can be expressed in terms of S.

Let dkl be a yielding entry of D. Then either r = n− 1 or zk is parallel to zl .
Consequently, to determine the yielding interval of dkl , we have to consider the
following three cases: (i) r = n−1; (ii) r ≤ n−2 and zk = zl = 0; and (iii) r ≤ n−2,
zk �= 0, zl �= 0 and zk = czl for some nonzero scalar c. As we will see below, in the
first two cases, 0 lies in the interior of the yielding interval, while in the third case,
0 is an endpoint.

Proposition 7.2 Let D be an n× n (n ≥ 3) EDM matrix of embedding dimension
r = n − 1 and let P be a configuration matrix of D such that PT e = 0. Let S =
P(PT P)−1 and let (si)T be the ith row of S; i.e., si = (PT P)−1 pi. Then sk and sl are
nonzero and nonparallel for all k �= l.

Proof. Assume, to the contrary, that sk = 0. Then pk = 0 and thus PT ek = 0,
where ek is the kth standard unit vector in R

n. Since PT e = 0 and since e and ek are
linearly independent, this implies that rank(PPT ) = r ≤ n− 2, a contradiction. To
complete the proof, assume, to the contrary, that sk = csl for some nonzero scalar
c, where k �= l. Then pk = cpl and thus PT (ek − cel) = 0, and again we have a
contradiction.

�

The following theorem establishes the yielding interval in case (i), where r =
n−1.

Theorem 7.4 (Alfakih [15]) Let D be an n×n (n ≥ 3) EDM of embedding dimen-
sion r = n−1 and let P be a configuration matrix of D such that PT e = 0. Further,
let S = P(PT P)−1 and let (si)T be the ith row of S. Then, the yielding interval of
entry dkl is given by [

2
λr

,
2
λ1

]
,

where λ1 = (sk)T sl + ||sk|| ||sl || and λr = (sk)T sl −||sk|| ||sl ||.
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Proof. Let 1 ≤ k < l ≤ n and let X be the projected Gram matrix of D. Let X =
WΛW T be the spectral decomposition of X . Thus, Λ is PD and W is orthogonal
since r = n− 1. Hence, D+ tEkl is an EDM if and only if 2X − tV T EklV � 0 iff
2W T XW −tW TV T EklVW � 0. But W T XW =W TV T PPTVW . Thus, it follows from
Lemma 3.8 that 2W T XW − tW TV T EklVW � 0 iff

2(PT P)2 − tPT EklP � 0. (7.15)

But Eq. (7.15) holds iff

2In−1 − t(PT P)−1PT EklP(PT P)−1 = 2In−1 − tST EklS � 0.

In light of Propositions 1.2 and 7.2, let λ1 > 0 > λr be the nonzero eigenval-
ues of ST EklS = sk(sl)T + sl(sk)T . Thus, 2In−1 − tST EklS � 0 iff 2− tλ1 ≥ 0 and
2− tλr ≥ 0. As a result, D+ tEkl is an EDM iff 2/λr ≤ t ≤ 2/λ1.

�

Note that λ1 =B†
kl +
√

B†
kkB†

ll . Consequently, the yielding interval in Theorem 7.4
can also be expressed as

2

B†
kkB†

ll −B†2
kl

[
−
√

B†
kkB†

ll −B†
kl ,

√
B†

kkB†
ll −B†

kl

]
, (7.16)

where B =−JDJ/2. Observe that this yielding interval contains 0 in its interior.

Example 7.6 Let D = E − I be the EDM of the standard simplex of order n. Then
B = J/2 and hence B† = 2J. Thus, for any 1 ≤ k < l ≤ n, we have B†

kk = B†
ll =

2(n − 1)/n and B†
kl = −2/n. Consequently, the yielding interval of entry dkl is

equal to [−1 , n/(n−2)]. As a result,

0 ≤ dkl ≤ 2
n−1
n−2

. (7.17)

Observe that Interval (7.17) could have been calculated using Theorem 7.1. In fact,
in this case f (c,d) = f (d,d) = f (c,c) = (n− 1)/(n− 2), where we replaced n in
Theorem 7.1 with (n−2) to agree with the notation of this example.

Example 7.7 Let D =

⎡

⎣
0 1 5/2
1 0 5/2

5/2 5/2 0

⎤

⎦. Then D is an EDM of embedding dimen-

sion 2. A configuration matrix of D is P =

⎡

⎣
−1/2 −1/2

1/2 −1/2
0 1

⎤

⎦. Thus, S = P(PT P)−1 =

⎡

⎣
−1 −1/3

1 −1/3
0 2/3

⎤

⎦. Hence, ||s1||2 = ||s2||2 = 10/9 and ||s3||2 = 4/9. Moreover, (s1)T s2 =

−8/9 and (s1)T s3 = (s2)T s3 =−2/9. Note that
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B† = SST =
1
9

⎡

⎣
10 −8 −2
−8 10 −2
−2 −2 4

⎤

⎦ .

Consequently, the yielding interval of d12 is

[−1 , 9],

while the yielding interval of d13 is equal to the yielding interval of d23 is equal to

[−
√

10+1 ,
√

10+1].

Note that, in this case, these intervals could have been calculated using triangular
inequalities.

Next, we turn to case (ii), where r ≤ n−2 and zk = zl = 0.

Theorem 7.5 (Alfakih [15]) Let D be an n×n (n ≥ 4) EDM of embedding dimen-
sion r ≤ n− 2 and let Z and P be a Gale matrix and a configuration matrix of D
respectively, where PT e = 0. Further, let S = P(PT P)−1 and let (si)T be the ith row
of S. If zk = zl = 0, then the yielding interval of entry dkl is given by

[
2
λr

,
2
λ1

]
,

where λ1 = (sk)T sl + ||sk|| ||sl || and λr = (sk)T sl −||sk|| ||sl ||.
Proof. It follows from Corollary 7.1 (part 2) that sk and sl are nonzero and non-
parallel. Moreover, in this case

[
2(PT P)2 − t (pk(pl)T + pl(pk)T ) −t (pk(zl)T + pl(zk)T )

−t (zk(pl)T + zl(pk)T ) −t (zk(zl)T + zl(zk)T )

]

reduces to [
2(PT P)2 − t PT EklP 0

0 0

]
.

The proof proceeds along the same line as in the proof of Theorem 7.4.
�

Finally, we turn to case (iii), where r ≤ n−2, zk �= 0,zl �= 0 and zk = czl for some
nonzero scalar c.

Theorem 7.6 (Alfakih [15]) Let D be an n×n (n ≥ 3) EDM of embedding dimen-
sion r ≤ n− 2 and let Z and P be a Gale matrix and a configuration matrix of D
respectively, where PT e = 0. Further, let S = P(PT P)−1 and let si be the ith row of
S, i.e., si = (PT P)−1 pi. If both zk and zl are nonzero and zk = czl for some nonzero
scalar c , then the yielding interval of entry dkl is given by

[ −4c
||sk − csl ||2 , 0

]
if c > 0,
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and [
0 ,

4 |c|
||sk − csl ||2

]
if c < 0.

Proof. Assume that zk and zl are nonzero and zk = czl , where c �= 0. Let 1 ≤ k <
l ≤ n and let X be the projected Gram matrix of D. Then D+ tEkl is an EDM iff
2X − tV T EklV � 0. In light of Lemma 7.1, D+ tEkl is an EDM iff

[
2(PT P)2 − t (pk(pl)T + pl(pk)T ) −t (pk + cpl)(zl)T )

−t (zl(pk + cpl)T ) −t 2czl(zl)T

]
� 0. (7.18)

Assume that r = n−2, i.e., r̄ = n−r−1 = 1. Then zl is a nonzero scalar. Now Schur
complement implies that Eq. (7.18) holds iff

tc ≤ 0 and 2(PT P)2 +
t

2c
(pk − cpl)(pk − cpl)T � 0, (7.19)

which is equivalent to

tc ≤ 0 and 2Ir +
t

2c
(sk − csl)(sk − csl)T � 0.

This in turn is equivalent to

tc ≤ 0 and 2+
t

2c
||sk − csl ||2 ≥ 0.

The result follows from Corollary 7.1 (part 3) since sk − csl �= 0.
Now assume that r ≤ n−3, i.e., r̄ ≥ 2. Let Q′ = [ zl

||zl || M] be an r̄× r̄ orthogonal

matrix and define the (n− 1)× (n− 1) matrix Q =

[
Ir 0
0 Q′

]
. Thus, obviously Q is

orthogonal. By multiplying the LHS of Eq. (7.18) from the left with QT and from
the right with Q we get that D+ tEkl is an EDM iff

[
2(PT P)2 − t (pk(pl)T + pl(pk)T ) −t (pk + cpl) ||zl ||)

−t ||zl || (pk + cpl)T ) −t 2c ||zl ||2
]
� 0. (7.20)

Again, using Schur complement we arrive at Eq. (7.19) and thus the proof is com-
plete.

�

The following example illustrates cases (ii) and (iii).

Example 7.8 Consider the EDM D =

⎡

⎢⎢
⎣

0 0 1 1
0 0 1 1
1 1 0 2
1 1 2 0

⎤

⎥⎥
⎦ of embedding dimension 2. A

configuration matrix, a Gale matrix, and the Moore–Penrose inverse of the Gram
matrix of D are given by
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P =
1
4

⎡

⎢⎢
⎣

−1 −1
−1 −1

3 −1
−1 3

⎤

⎥⎥
⎦ ,Z =

⎡

⎢⎢
⎣

−1
1
0
0

⎤

⎥⎥
⎦ and B† =

1
2

⎡

⎢⎢
⎣

1 1 −1 −1
1 1 −1 −1

−1 −1 2 0
−1 −1 0 2

⎤

⎥⎥
⎦ .

Thus, entries d12 and d34 are yielding, while all other entries are unyielding. To
calculate the yielding intervals, note that

s1 = s2 =
1
2

[
3 1
1 3

]
1
4

[−1
−1

]
=

1
2

[−1
−1

]
.

Moreover, z2 = −z1, i.e., c = −1. Therefore, the yielding interval of d12 is [0 , 2].

On the other hand, (s3)T s4 − ||s3|| ||s4|| = B†
34 −

√
B†

33B†
44 = −1 and (s3)T s4 +

||s3|| ||s4||= 1. Therefore, the yielding interval of d34 is [−2 , 2].

We conclude this chapter by remarking that, for two unyielding entries in a col-
umn (row), one can define the notion of jointly yielding entries. Such notion is
defined and several results are presented in [15].



Chapter 8
EDM Completions and Bar Frameworks

This chapter has three parts. Part one addresses the problem of EDM completions.
Part two is an introduction to the theory of bar-and-joint frameworks. Such frame-
works, which are interesting in their own right, are particularly useful in the study of
various uniqueness notions of EDM completions. In the third part, we discuss stress
matrices, which play a pivotal role in the theory of bar-and-joint frameworks. The
chapter concludes with the classic Maxwell–Cremona theorem. We begin first with
EDM completions.

8.1 EDM Completions

Let G = (V,E) be a simple incomplete connected graph and let |V (G)| = n and
|E(G)| = m. An n × n matrix A = (ai j) is said to be symmetric G-partial if the
entry ai j is defined (or specified) if and only if {i, j} ∈ E(G), and ai j = a ji for all
{i, j} ∈ E(G). A G-partial EDM A is a symmetric G-partial matrix such that for
each maximal clique K of G, the principal submatrix of A indexed by the nodes of
K is an EDM. Evidently, the diagonal entries of a G-partial EDM are all zeros.

Let A be a given G-partial EDM. Then matrix D is said to be an EDM completion
of A if: (i) D is an EDM and (ii) di j = ai j for all {i, j} ∈ E(G); i.e, π(D) = π(A),
where π : S n → R

m is the linear transformation defined in (5.3). The problem of
finding an EDM completion of A, or showing that no such completion exists, is
called the EDM completion problem (EDMCP). Let r be a given positive integer.
The rEDM completion problem (rEDMCP) is the EDMCP with the additional re-
quirement that the embedding dimension of D = r. The EDMCP is closely related
to the positive semidefinite matrix completion problem [98, 128, 129, 130].

Let G = (V,E,a) be a given edge-weighted simple graph, where edge {i, j} has
a positive weight ai j. A realization of G in R

r is a mapping of the nodes of G to
points in R

r, where node i is mapped to point pi, such that

||pi − p j||2 = ai j for all {i, j} ∈ E(G).
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The problem of finding a realization of G in R
r is known as the r-graph realiza-

tion problem (rGRP). Likewise, the problem of finding a realization of G in some
Euclidean space is known as the graph realization problem (GRP). Clearly, the
rEDMCP is equivalent to the rGRP and the EDMCP is equivalent to the GRP.

Saxe [164] proved that the rGRP, for graphs with positive integer weights, is NP-
hard for all r ≥ 1. Observe that if G = Cn, the cycle on n nodes, then the partition
problem reduces to the 1GRP. This establishes the NP-hardness of the 1GRP since
the partition problem is well known to be NP-hard [85]. Saxe also proved that the
1GRP remains NP-hard even if the weights ai j’s are restricted to 1 and 2. It should be
pointed out that the NP-hardness of the rGRP was independently proven by Yemini
[199].

The complexity of the EDMCP is unknown and its membership in NP is open.
However, for chordal graphs, the EDMCP can be solved exactly. On the other hand,
for general graphs, the EDMCP can be formulated as a semidefinite programming
problem (SDP) and thus can be solved approximately, up to any given accuracy, in
polynomial time. For more details on the complexity of the EDMCP, see, e.g., [130].
Next, we discuss the EDMCP for chordal graphs.

8.1.1 Exact Completions

Let G be a connected chordal graph. Then there exists a sequence of connected
chordal graphs G = G0,G1, . . . ,Gm̄ = Kn such that, for i = 1, . . . , m̄, Gi is obtained
from Gi−1 by adding one new edge [98]. To prove this, assume that 1, . . . ,n is a
perfect elimination ordering of the nodes of G and assume that G �= Kn. Let j =
max{i ∈ V (G) : {i,k} �∈ E(G) for some k > i}. Hence, the set {i ∈ V (G) : i > j},
which obviously contains k, induces a clique in G. Let

N+
G ( j) = {i ∈V (G) : { j, i} ∈ E(G), i > j}.

Then N+
G ( j) is not empty since G is connected. Moreover, k is adjacent to all nodes

in N+
G ( j). Consequently, G1 = G∪{ j,k} is a chordal graph since 1, . . . ,n is also a

perfect elimination ordering for G1. Clearly, this process can be repeated until the
complete graph Kn is obtained. An example of such sequence is given in Fig. 8.1.

Theorem 8.1 (Bakonyi and Johnson [31]) Let A be a G-partial EDM, where G is
a connected chordal graph. Then A admits an EDM completion.

Proof. Assume, wlog, that 1, . . . ,n is a perfect elimination ordering of G and let
G = G0, G1, . . . ,Gm̄ = Kn be a sequence of chordal graph such that Gi is obtained
from Gi−1 by adding the new edge { ji,ki} as discussed above. The unspecified en-
tries of A will be determined, one at a time, in the following order: A j1k1 , . . . ,A jm̄km̄ .

To determine A j1k1 , wlog, assume that the partial submatrix of A indexed by the
nodes { j1}∪N+

G ( j1)∪{k1} is
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1 2

3

4

G

1 2

3

4

G1

1 2

3

4

G2 = K4

Fig. 8.1 A sequence of chordal graphs

D̃ =

⎡

⎣
0 dT α
d D c
α cT 0

⎤

⎦ ,

where α is the unspecified entry A j1k1 . Then α is determined by using Theorem 7.1.
The other unspecified entries A j2k2 , . . . ,A jm̄km̄ are determined similarly.

�

Example 8.1 Let A =

⎡

⎢⎢
⎣

0 1
1 0 1 1

1 0 2
1 2 0

⎤

⎥⎥
⎦ be a G-partial EDM, where G is the chordal

graph depicted in Fig. 8.1. Then the unspecified entries of A are determined in the
following order: A13, A14. Applying Theorem 7.1 to the submatrix of A whose rows

and columns are induced by {1,2,3}, namely

⎡

⎣
0 1 α
1 0 1
α 1 0

⎤

⎦, yields that 0 ≤ α ≤ 4.

Choose α = 2. Next, we apply Theorem 7.1 to the G1-partial EDM

⎡

⎢⎢
⎣

0 1 2 β
1 0 1 1
2 1 0 2
β 1 2 0

⎤

⎥⎥
⎦,

where β is the unspecified entry A j2k2 . In this case, B = 1
4

[
1 −1

−1 1

]
and thus B† =

[
1 −1

−1 1

]
. Hence, f (c,d) = f (d,d) = f (c,c) = 2. Consequently, 0 ≤ β ≤ 4 and

hence D =

⎡

⎢⎢
⎣

0 1 2 4
1 0 1 1
2 1 0 2
4 1 2 0

⎤

⎥⎥
⎦ is an EDM completion of A. Obviously, A has no unique

EDM completion.

Bakonyi and Johnson [31] also presented the following example, which shows
that for any nonchordal graph G, there exists a G-partial EDM A such that A has no
EDM completion. Let G be a nonchordal graph and assume that 1,2, . . . ,k ( k ≥ 4),
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is an induced chordless cycle of G. Let V1 = {1, . . . ,k} and V2 = {k + 1, . . . ,n}.
Consider the G-partial EDM A, where

ai j =

⎧
⎪⎪⎨

⎪⎪⎩

0 if |i− j|= 1 and i, j ∈V1,
1 if (i = 1, j = k or i = k, j = 1),
0 if {i, j} ∈ E(G) and i, j ∈V2,
1 if {i, j} ∈ E(G) and (i ∈V1, j ∈V2 or i ∈V2, j ∈V1).

Let K be a maximal clique of G and let AK be the submatrix of A whose rows and
columns are indexed by the nodes of K. Then K contains either zero, one, or two
nodes of V1. Now if K does not contain any node of V1, then AK = 0. On the other

hand, if K contains exactly one node in V1, then AK =

[
0 eT

e 0

]
. Furthermore, if K

contains exactly two nodes in V1, then either {1,k} is a subset of clique K, in which

case AK =

⎡

⎣
0 1 eT

1 0 eT

e e 0

⎤

⎦; or {1,k} �⊂ K, in which case AK =

⎡

⎣
0 0 eT

0 0 eT

e e 0

⎤

⎦. It is easy to

see that in all these cases AK is an EDM. Consequently, A is a G-partial EDM.
Now the only nonzero specified entry in the kth leading principal submatrix of A

is 1 in the (1,k) and (k,1) positions. Consequently, for any EDM completion of A,
we must have d12 = d23 = · · · = dk−1k = 0 and d1k = 1, an impossibility. Thus, A
has no EDM completion.

Next, we consider the EDMCP and the rEDMCP for general graphs.

8.1.2 Approximate Completions

Let A be a G-partial EDM . A fairly intuitive approach for solving the rEDMCP is
to formulate it as a global optimization problem. In particular, the rEDMCP can be
posed as a global minimization problem where the objective function is

f (P) = ∑
i j:{i, j}∈E(G)

(||pi − p j||2 −ai j)
2, (8.1)

where p1, . . . , pn are the unknown points in R
r. Clearly, P̄ solves the rEDMCP if and

only if f (P̄)= 0. The disadvantage of this approach is that finding a global minimum
of f is an intractable problem since f is not convex and has a large number of local
minima. For more details on this approach, see, e.g., [66, 106, 147, 148, 190, 77,
135, 100, 66]. In what follows, we focus on SDP approaches for the r-EDMCP and
the EDMCP.
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SDP Formulations of the EDMCP

Let A be a G-partial EDM and let H be the adjacency matrix of graph G. Observe
that if G is disconnected, then the problem breaks down into at least two independent
problems of lower dimensions. As a result, assume that G is connected. Wlog, assign
0 to all unspecified entries of A. Thus A = π∗(π(A)), where π and its adjoint π∗ are
the linear transformations defined in (5.3) and (5.4).

The following is an intuitive formulation of the EDMCP as an SDP.

min 0
subject to H ◦KV (X) = H ◦A,

X � 0
(8.2)

where KV is defined in (3.16) and (◦) denotes the Hadamard product. Note that the
feasible region of this problem is convex. SDP problems can be solved, up to any
given precision, in polynomial time by interior-point methods [198]. Since the ob-
jective function is 0, any feasible solution of Problem (8.2) is optimal. Furthermore,
if X∗ is an optimal solution of Problem (8.2), then D =KV (X∗) is an approximate
solution of the EDMCP. It should be pointed out that Slater’s condition may fail in
Problem (8.2) which warrants the use of facial reduction. An SDP formulation for
the rEDMCP is obtained by adding the constraint rank(X) = r to Problem (8.2).
Unfortunately, the presence of this rank constraint, in general, makes the feasible
region nonconvex and renders the problem intractable.

The following quadratic formulation of the EDMCP, where Slater’s condition is
guaranteed to hold, was given in [21].

Let B =TV (A) where TV is defined in (3.17); and for X ∈S n−1, let

f (X) = ||H ◦ (A−KV (X))||2F = ||H ◦KV (B−X)||2F , (8.3)

where || . ||F denotes the Frobenius norm. Then, by Theorem 3.2, A has an EDM
completion if and only if there exists X � 0 such that f (X) = 0. As a result, the
EDMCP can be formulated as the following SDP problem

(P) μ∗ = min f (X)
subject to X � 0.

Evidently, μ∗ = 0 iff A has an EDM completion. Observe that the feasible region of
this problem is rather simple since it is precisely S n−1

+ , the cone of PSD matrices of
order n−1. Put differently, all the complications of this problem lie in the objective
function. The optimality conditions of Problem (P) are derived next. Let

L(X ,Λ) = f (X)− trace(XΛ) (8.4)

denote the Lagrangian of (P). It is easy to see that (P) is equivalent to

μ∗ = min
X�0

max
Λ�0

L(X ,Λ) = min
X

max
Λ�0

L(X ,Λ).
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Note that the semidefinite constraint on X can be treated as redundant since the inner
max problem is unbounded unless X � 0. Also, note that Slater’s condition trivially
holds for (P). Thus, strong duality holds and

μ∗ = max
Λ�0

min
X�0

L(X ,Λ) = max
Λ�0

min
X

L(X ,Λ),

and μ∗ is attained for some Λ � 0. To obtain the dual problem, since the inner min-
imization is unconstrained, we differentiate with respect to X to get the equivalent
problem

μ∗ = max
Λ�0,∇ f (X)−Λ=0.

f (X)− trace(XΛ).

Therefore, the dual problem is

(D) μ∗ = max f (X)− trace(XΛ)
subject to ∇ f (X)−Λ = 0,

Λ � 0(X � 0).

For any two matrices X and Y , trace(Y H ◦KV (X)) = ∑{i, j}∈E(G)Yi j(KV (X))i j =
trace(H ◦YKV (X)) = trace(K ∗

V (H ◦Y )X)). Therefore,

∇ f (X) = 2K ∗
V (H ◦KV (X −B)),

where K ∗
V is given in Lemma 3.5. Next, we show that Slater’s condition holds for

the dual problem.

Lemma 8.1 ([21]) Let H be the adjacency matrix of a connected graph G. Then

K ∗
V (H ◦KV (I))� 0

Proof. Clearly, KV (I) = 2(E − I) and thus H ◦KV (I) = 2H. Hence, K ∗
V (H ◦

KV (I)) = 4V T LV , where L = Diag(He)−H is the Laplacian of G. But L is PSD
and Le = 0. Moreover, rank(L) = n− 1 iff H is connected. Therefore, it follows
from the spectral decomposition of L that L = V ΦV T , where Φ is PD. Hence,
K ∗

V (H ◦KV (I)) = 4Φ .
�

An immediate consequence of this lemma is that Slater’s condition holds for the
dual since there exists a positive scalar α such that X̄ = B+αI � 0. Therefore,
K ∗

V (H ◦KV (X̄ −B)) = Λ̄ is PD. Consequently, the optimality conditions are:

X � 0 primal feasibility,
2K ∗

V (H ◦KV (X −B))−Λ = 0,Λ � 0 dual feasibility,
trace(XΛ) = 0 complementarity slackness.

Now consider the following related problem known as the closest EDM problem
(CEDMP): Given any matrix A′, find the closest EDM to A′ in Frobenius norm
[21, 24, 25, 23]. It is easy to see that the CEDMP can be formulated as a special case
of Problem (P), where H = E − I. In other words, the CEDMP can be formulated as
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μ∗ = min ||A′ −KV (X)||2F
subject to X � 0.

One special case of the EDMCP, which received a great deal of attention recently,
is the sensor network localization problem. This problem is discussed next.

The Sensor Network Localization Problem

Consider an ad hoc wireless sensor network in R
r (r = 2 or r = 3) consisting of m

anchors and n sensors. The sensors are allowed to move freely, while the anchors
have fixed known locations. Hence, the distance between any two anchors is known.
On the other hand, the distance between any two sensors or between a sensor and
an anchor is known only if it is within a given range. The problem of determining
the positions of all the sensors is known as the sensor network localization problem
(SNLP). Clearly, the SNLP is a special case of the rEDMCP.

Next, we present two approaches, based on SDP relaxation, for finding an ap-
proximate solution of the SNLP. The first approach [71, 122] makes no distinction
between anchors and sensors. More precisely, it treats the SNLP as an rEDMCP,
(r = 2 or 3) where G is a graph on m+ n nodes and contains a clique of size m in-
duced by the nodes corresponding to anchors. In other words, the only role anchors
play in this approach is to induce a clique in G. Clearly, the presence of a clique in
G results in the failure of Slater’s condition. This failure is turned into an advantage,
via facial reduction, by reducing the size of the problem.

In the second approach [43, 179], the nodes corresponding to the anchors are
pinned down, and thus the only coordinates to be considered as those of the sen-
sors. Let c1, . . . ,cm be the known coordinates of the anchors and let pm+1,. . .,pm+n

be the unknown coordinates of the sensors. Let CT = [c1 · · · cm] and PT =
[pm+1 · · · pm+n]. Assume that the origin is fixed at the centroid of the anchors;
i.e., CT em = 0. Then the Gram matrix of the anchors and sensors is

[
C
P

]
[CT PT ] =

[
C 0
0 In

][
Ir PT

P PPT

][
CT 0
0 In

]
. (8.5)

Let Y be an (r+n)× (r+n) symmetric matrix partitioned as Y =

[
Y11 Y12

Y T
12 Y22

]
, where

Y11 is of order r. We will identify Y12 as PT and Y22 as a relaxation of PPT ; i.e.,
Y22 −PPT � 0. Further, let E12(G) = {{i, j} ∈ E(G) : i ≤ m, j ≥ m+ 1} and let
E22(G) = {{i, j} ∈ E(G) : i, j ≥ m+1}. Then, in this approach [43, 179], the SNLP
is formulated as
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min trace(0 Y )
subject to Y11 = Ir,

[(ci)T (−e j)T ]Y

[
ci

−e j

]
= ai j for all {i, j} ∈ E12(G),

[0 (ei − e j)T ]Y

[
0

ei − e j

]
= ai j for all {i, j} ∈ E22(G),

Y � 0,

(8.6)

where ei is the ith standard unit vector in R
n. It should be pointed out that even

though Y is of order r+ n, Slater’s condition may still fail in Problem (8.6), which
necessitates the use of facial reduction. Also, note that the rank of the optimal solu-
tion of Problem (8.6) is ≥ r. Moreover, the SNLP has an exact solution iff the rank
of this optimal solution is r, in which case, Y22 = Y T

12Y12 = PPT .
The uniqueness of EDM completions [3, 134] is best studied in the context of

the rigidity of bar-and-joint frameworks. The remainder of this chapter serves as an
introduction to such frameworks, and the remaining chapters of this monograph are
dedicated to various notions of rigidity of bar-and-joint frameworks.

8.2 Bar Frameworks

A bar-and-joint framework (a bar framework or a framework for short)1 (G, p) in R
r

is a simple incomplete connected graph G whose vertices are points p1, . . . , pn in R
r,

and whose edges are line segments between pairs of these points. We will refer to
p = (p1, . . . , pn) as the configuration of (G, p). Framework (G, p) is r-dimensional
if its configuration p affinely spans R

r. A bar framework can be viewed as a me-
chanical linkage consisting of rigid bars (edges) and universal joints (vertices). An
example of two frameworks is given in Fig. 8.2.

1

2 3

4

(G, p)

1

2 4

3

(G,q)

Fig. 8.2 Two equivalent two-dimensional bar frameworks (G, p) and (G,q) in the plane, where
G =C4, the cycle on four nodes

1 In this monograph we are only interested in bar-and joint frameworks.
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Observe that if two adjacent nodes of (G, p) coincide, then these two nodes can
be merged into a single super node, with all possible multiple edges changed to
single edges, to create a new framework with one less node. Thus, wlog, we make
the following assumption:

Assumption 8.1 In any bar framework (G, p), there are no edges of zero length;
i.e., no two adjacent nodes coincide.

Clearly, each framework (G, p) defines an EDM Dp = (di j = ||pi − p j||2). Fur-
thermore, framework (G, p) also defines a G-partial EDM A in the natural way; i.e.,
ai j is specified iff {i, j} ∈ E(G), in which case, ai j = di j. In this monograph, we
always make the following assumption:

Assumption 8.2 The configuration of every given r-dimensional bar framework
(G, p) is in R

r. That is, the configuration p of (G, p) lies in R
r, where r is the

embedding dimension of Dp.

Two r-dimensional frameworks (G, p) and (G,q) are congruent if Dp = Dq; i.e.,
if the two configurations p and q are obtained from each other by a rigid motion
(translation, rotation, or reflection). On the other hand, an r-dimensional framework
(G, p) is said to be equivalent to an s-dimensional framework (G,q), s need not be
equal to r, if H ◦Dp = H ◦Dq; i.e., if each edge of (G, p) has the same (Euclidean)
length as the corresponding edge of (G,q). Observe that (G, p) and (G,q) are equiv-
alent iff π(Dp) = π(Dq), where π is the linear transformation defined in (5.3). An
example of two equivalent two-dimensional frameworks is given in Fig. 8.2. It is a
natural problem to characterize all frameworks that are equivalent to a given frame-
work (G, p). This problem is discussed in the following subsection.

8.2.1 The Cayley Configuration Spectrahedron

Viewing framework (G, p) as a mechanical linkage, let the Cayley configuration
space [176] of (G, p) denote the set of all possible distances between each pair
of nonadjacent vertices of (G, p) . Let A be the G-partial EDM defined by (G, p).
Evidently, characterizing the Cayley configuration space of (G, p) is equivalent to
characterizing all EDM completions of A.

Theorem 3.2 implies that (G, p′) is equivalent to (G, p) iff

H ◦ (Dp′ −Dp) = 0 iff H ◦KV (X
′ −X) = 0, (8.7)

where X ′ and X are the projected Gram matrices of (G, p′) and (G, p), respectively.
We begin, first, by finding a basis of the kernel of H ◦KV . For i �= j, let Ei j be the
n×n symmetric matrix with 1’s in the (i, j) and ( j, i) positions and zeros elsewhere,
and let

Mi j =TV (E
i j) =−1

2
V T Ei jV. (8.8)
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We will find it convenient to work with Ē(Ḡ), the edge set of the complement
graph Ḡ, i.e., the set of missing edges of G.

Lemma 8.2 ([1]) The set {Mi j : {i, j} ∈ Ē(Ḡ)} is a basis of the kernel of H ◦KV .

Proof. Lemma 3.6 implies that KV (Mi j) = Ei j since diag(Ei j) = 0. Therefore,
H ◦KV (Mi j) = 0 for each {i, j} ∈ Ē(Ḡ).

Now let ∑i j αi jMi j = 0. Then KV (∑i j αi jMi j) = ∑i j αi jEi j = 0. Hence, αi j = 0
for all {i, j} ∈ Ē(Ḡ).

�

Let X be the projected Gram matrix of a given framework (G, p). Let m̄ denote
the cardinality of Ē(Ḡ) and let X : Rm̄ →S n−1 be the linear transformation such
that

X (y) = X + ∑
{i, j}∈Ē(Ḡ)

yi jM
i j. (8.9)

Let
F = {y ∈ R

m̄ : X (y)� 0}. (8.10)

The set F is called the Cayely configuration spectrahedron of (G, p). As the follow-
ing theorem shows, F is a translation of the Cayley configuration space of (G, p),
and X (F ) is the set of projected Gram matrices of all bar frameworks that are
equivalent to (G, p). An important point to keep in mind is that all congruent bar
frameworks have the same projected Gram matrix.

Theorem 8.2 (Alfakih [16]) Let F be the Cayely configuration spectrahedron of a
given r-dimensional bar framework (G, p) and let X ′ be the projected Gram matrix
of bar framework (G, p′). Then (G, p′) is equivalent to (G, p) if and only if

X ′ ∈X (F ),

in which case, (G, p′) is s-dimensional iff rank(X ′) = s, and

||p′i − p′ j||2 = ||pi − p j||2 + yi j for each {i, j} ∈ Ē(Ḡ).

Proof. The first part is an immediate consequence of Lemma 8.2 and Eq. (8.7).
To prove the second part, note that

||p′i − p′ j||2 = (KV (X
′))i j = (KV (X))i j + ∑

{k,l}∈Ē(Ḡ)

ykl(KV (M
kl))i j.

But (KV (Mkl))i j = (Ekl)i j = δkiδl j. Consequently, ||p′i − p′ j||2 = ||pi − p j||2 + yi j

if {i, j} ∈ Ē(Ḡ). Obviously, ||p′i − p′ j||2 = ||pi − p j||2 if {i, j} ∈ E(G).
�

Evidently, F is a closed convex set that always contains 0 since X (0) = X is
PSD. Moreover, an immediate consequence of Theorem 8.2 is that F is bounded if
and only G is connected. An example of set F is given in Fig. 8.3.

The definition of the Cayley configuration spectrahedron given in (8.10) is con-
venient for theoretical purposes. However, for pencil-and-paper calculations and as
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we remarked earlier, it is more convenient to use matrix U defined in (3.10). Re-
call that V = US, where S is a nonsingular matrix given in (3.13). Consequently, a
simple calculation yields that the Cayely configuration spectrahedron of (G, p) is
equivalently given by

F = {y ∈ R
m̄ : −UT (Dp + ∑

{i, j}∈Ē(Ḡ)

yi jE
i j)U � 0, (8.11)

where Dp is the EDM defined by framework (G, p).

y13

y24

4

4

(−2,−2)

(4,−4)

(−4,4)

Fig. 8.3 The Cayley configuration spectrahedron of Example 8.2

Example 8.2 Consider the framework (G, p) depicted in Fig. 8.2,2 where

Dp =

⎡

⎢⎢
⎣

0 1 5 4
1 0 4 5
5 4 0 1
4 5 1 0

⎤

⎥⎥
⎦ .

Thus,

−UT (Dp + y13E13 + y24E24)U =

⎡

⎣
2 2+ y13 −y24

2+ y13 10+2y13 8+ y13

−y24 8+ y13 8

⎤

⎦ .

Since a symmetric matrix is PSD if and only if all of its principal minors are non-
negative, it is easy to see that the Cayley configuration spectrahedron of (G, p) is
given by

2 This example was discussed in Schoenberg [171] from a Cayley–Menger determinant point of
view.
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F = {y ∈ R
2 : −4 ≤ y13 ≤ 4,

−4 ≤ y24 ≤ 4,
(y13 + y24)(y13y24 +5(y13 + y24)+16)≤ 0}.

Thus F , depicted in Fig. 8.3, is defined by

y24 ≤−y13, and y24 ≥−5y13 +16
y13 +5

.

It is worth pointing out that framework (G,q) in Fig. 8.2 corresponds to y13 =
y24 = −2 shown in Fig. 8.3. Also, the points (4,−4) and (−4,4) correspond to
the two one-dimensional frameworks obtained by “flattening” (G, p). Finally, it is
rather obvious that the origin corresponds to (G, p).

8.3 The Stress Matrix

Stresses and stress matrices play a key role in various rigidity problems of bar frame-
works. Stress matrices resemble Laplacians and can be interpreted in various ways.

A stress (also called an equilibrium stress) of bar framework (G, p) is a real-
valued function ω on E(G) such that

∑
j:{i, j}∈E(G)

ωi j(pi − p j) = 0 for each i = 1, . . . ,n. (8.12)

Clearly, the set of stresses is a subspace of Rm. This fact will be elaborated on when
we discuss the rigidity matrix in the next chapter. Note that if ∑ j:{i, j}∈E(G) ωi j �= 0,
then point pi can be expressed as an affine combination of its neighbors.

Let ω be a stress of framework (G, p). Then the n × n symmetric matrix Ω ,
where

Ωi j =

⎧
⎨

⎩

−ωi j if {i, j} ∈ E(G),
0 if {i, j} ∈ Ē(Ḡ),

∑k:{i,k}∈E(G) ωik if i = j,
(8.13)

is called a stress matrix of (G, p). A point to keep in mind is that if Ω is a stress
matrix of (G, p), then so is (−Ω ).

Example 8.3 Consider the bar framework (G, p) depicted in Fig. 8.4. It is easy to
see that ω12 = ω23 = 2, ω14 = ω34 = 0, and ω13 =−1 is a stress of (G, p). Hence,
the corresponding stress matrix is

Ω =

⎡

⎢⎢
⎣

1 −2 1 0
−2 4 −2 0

1 −2 1 0
0 0 0 0

⎤

⎥⎥
⎦ .
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1

2

3

4

Fig. 8.4 The bar framework of Example 8.3. Edge {1,3} is drawn as an arc to make edges {1,2}
and {2,3} visible

It should be noted that the two frameworks depicted in Fig. 8.2 have no nonzero
stress.

The following theorem is an immediate consequence of the definition of a stress
matrix.

Theorem 8.3 Let P be a configuration matrix of an r-dimensional bar framework
(G, p) and let Ω be a symmetric matrix of order n. Then Ω is a stress matrix of
(G, p) if and only if

Ωe = 0,ΩP = 0 and Ωi j = 0 for all {i, j} ∈ Ē(Ḡ). (8.14)

Proof. Assume that Ω satisfies (8.14). Then, for all i = 1, . . . ,n, we have Ωii =
−∑k:{i,k}∈E(G) Ωik. Hence,

(ΩP)i j = Ωii p
i
j + ∑

k:{i,k}∈E(G)

Ωik pk
j = ∑

k:{i,k}∈E(G)

Ωik(−pi + pk) j = 0 (8.15)

for all j = 1, . . . ,r. As a result, ω = (ωi j = −Ωi j) is a stress of (G, p) and Ωii =

∑k:{i,k}∈E(G) ωik.
On the other hand, assume that Ω is a stress matrix of (G, p). Then the fact

that Ωe = 0 and Ωi j = 0 for all {i, j} ∈ Ē(Ḡ) follows immediately from (8.13).
Furthermore, (8.13), (8.12), and (8.15) imply that ΩP= 0 and the proof is complete.

�

An immediate consequence of Theorem 8.3 is that the maximum possible rank
of a stress matrix is n− r− 1 since its null space contains e and the columns of P.
Stress matrices of maximal rank play a pivotal role in the following chapters, where
rigidity theory of bar frameworks is discussed.

The definition of projected Gram matrices necessitates the definition of projected
stress matrices. Thus, the matrix Ω ′ = V T ΩV is called a projected stress matrix.
Evidently, Ω = V Ω ′V T and thus Ω is PSD of rank k iff Ω ′ is PSD of rank k. Let
X and B = V XV T be the projected Gram and the Gram matrix of (G, p). Then
V Ω ′XV T = ΩB and V T ΩBV = Ω ′X . Hence, Ω ′X = 0 iff ΩB = 0. As a result, a
symmetric matrix Ω ′ is a projected stress matrix of (G, p) iff
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Ω ′X = 0 and (V Ω ′V T )i j = 0 for all {i, j} ∈ Ē(Ḡ). (8.16)

Let
Fi j = (ei − e j)(ei − e j)T , (8.17)

where ei is the ith standard unit vector in R
n. Then, it readily follows that

Ω = ∑
{i, j}∈E(G)

ωi jF
i j,

and
(K (B))i j = trace(Fi jB). (8.18)

The first interpretation of the stress matrix was already alluded to in (5.6). More
precisely, Ω = Diag(π∗(ω)e)−π∗(ω), where π∗ is defined in (5.4). Hence,

Ω =
1
2
K ∗(π∗(ω)) and Ω ′ =

1
2
K ∗

V (π∗(ω)). (8.19)

The second interpretation of the stress matrix will be given after we discuss the
relationship between the stress matrix and the Gale matrix.

8.3.1 The Stress Matrix and the Gale matrix

The stress matrix Ω of a bar framework (G, p) has two aspects: a geometric one
dictated by the configuration p and a combinatorial one dictated by graph G. Equa-
tion (8.14) suggests a close connection between the geometric aspect of Ω and Gale
matrix Z. As is shown in the following theorem, these two aspects can be separated
by factorizing Ω as Ω = ZΨZT , where the geometric aspect of Ω is captured in Z
and the combinatorial one is captured in Ψ .

Theorem 8.4 (Alfakih [9]) Let Z be a Gale matrix of an r-dimensional bar frame-
work (G, p) on n nodes, r ≤ n− 2. Then Ω is a stress matrix of (G, p) if and only
if

Ω = ZΨZT

for some symmetric matrix Ψ of order n− r−1 such that

(zi)TΨz j = 0 for all {i, j} ∈ Ē(Ḡ).

Proof. Assume that Ω is a stress matrix. Then, by Theorem 8.3, Ω = ZA for
some matrix A. But Ω is symmetric. Hence, Ω = ZΨZT for some symmetric matrix
Ψ . The reverse direction simply follows from Theorem 8.3.

�

An immediate consequence of Theorem 8.4 is that col(Ω)⊆ col(Z). Hence, if Ω
has maximal rank, i.e., if rank(Ω) = n− r− 1, then col(Ω) = col(Z) and thus any
matrix whose columns form a basis of col(Ω) is a Gale matrix of framework (G, p).
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Moreover, if in addition (G, p) is in general position, then we have the following
lemma, which we will use in Chap. 10.

Lemma 8.3 Let (G, p) be an r-dimensional bar framework with n nodes, r ≤ n−2.
Let Ω be a stress matrix of (G, p) of rank n− r−1. If (G, p) is in general position
in R

r, then any n× (n− r−1) submatrix of Ω is a Gale matrix of (G, p).

Proof. By the preceding remark, it suffices to show that any n− r − 1 columns
of Ω are linearly independent. To this end, assume to the contrary that this is not
the case and thus, wlog, assume that the first n− r − 1 columns of Ω are linearly
dependent. Then there exists a nonzero λ ∈ R

n−r−1 such that Ωx = ZΨZT x = 0,
where xT = [λ T 0]. But Z has full column rank and Ψ is nonsingular. Therefore,
ZT x = 0 and thus the first n− r−1 rows of Z are linearly dependent, a contradiction
to Corollary 3.1.

�

8.3.2 Properties of PSD Stress Matrices

Evidently, a set of n points can affinely span a space of at most n− 1 dimensions,
where the maximum dimensional space is obtained when these points are affinely
independent. Let (G, p) be an r-dimensional bar framework on n nodes, where r ≤
n− 2. A natural question to ask is whether there exists an (n− 1)-dimensional bar
framework (G,q) that is equivalent to (G, p). In other words, it is of interest to
know whether (G, p), when viewed as a mechanical linkage, can be flexed to a
configuration in which its nodes are affinely independent. The following theorem
uses stress matrices to answer this question.

Theorem 8.5 (Alfakih [10]) Let (G, p) be an r-dimensional bar framework on n
nodes, r ≤ n−2. Then there exists an (n−1)-dimensional framework (G,q) that is
equivalent to (G, p) if and only if there does not exist a nonzero positive semidefinite
stress matrix Ω of (G, p).

Proof. Let X be the projected Gram matrix of (G, p). By Theorem 8.2, there ex-
ists an (n−1)-dimensional bar framework (G,q) that is equivalent to (G, p) iff there
exists y such that X +∑{i, j}∈Ē(Ḡ) yi jMi j � 0. But by Corollary 2.3, such y exists iff
there does not exist Y � 0, Y �= 0, such that trace(XY ) = 0 and trace(Y Mi j) = 0
for all {i, j} ∈ Ē(Ḡ). Now trace(XY ) = 0 iff XY = 0 iff Y = UΨUT for some
Ψ � 0, where U is the matrix whose columns form an orthonormal basis of null(X).
Consequently, (G,q) exists iff there does not exist a nonzero Ψ � 0 such that
trace(UΨUT Mi j) = 0 for all {i, j} ∈ Ē(Ḡ). But by Lemma 3.8, VU is a Gale matrix
of (G, p), i.e., VU = Z. Thus, trace(UΨUT Mi j) = −(ZΨZT )i j/2 and hence the
result follows from Theorem 8.4.

�
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4

1

2

5

3

Fig. 8.5 The bar framework of Example 8.4. The set of missing edges is Ē(Ḡ) = { {2,4},{3,5} }

Example 8.4 To illustrate Theorems 8.4 and 8.5, consider the framework (G, p)
depicted in Fig. 8.5. A Gale matrix of (G, p) is

Z =

⎡

⎢⎢⎢⎢
⎣

−2 −2
1 0
0 1
1 0
0 1

⎤

⎥⎥⎥⎥
⎦
.

To find a stress matrix Ω , we have to find Ψ such that (z2)TΨz4 = (z3)TΨz5 = 0.

Hence, Ψ =

[
0 1
1 0

]
. Consequently,

Ω = ZΨZT =

⎡

⎢
⎢⎢⎢
⎣

8 −2 −2 −2 −2
−2 0 1 0 1
−2 1 0 1 0
−2 0 1 0 1
−2 1 0 1 0

⎤

⎥
⎥⎥⎥
⎦
.

Observe that Ω is not PSD and rank(Ω) = rank(Ψ) = 2. Therefore, there exists
a four-dimensional bar framework (G,q) that is equivalent to (G, p) since (G, p)
admits no nonzero PSD stress matrix. It is worth pointing out here that the Cayley
configuration spectrahedron of (G, p) is a square; i.e., is polyhedral in this case.

The following lemma establishes a connection between the stress matrix and the
degrees of the node of graph G.

Lemma 8.4 Let (G, p) be an r-dimensional bar framework with n nodes and as-
sume that (G, p) is in general position in R

r. Let Ω be a PSD stress matrix of (G, p)
of rank n− r−1. Then deg(i)≥ r+1 for every node i of G.

Proof. By way of contradiction, assume that deg(v) ≤ r for some node v and
let z j1 , . . . ,z jk be Gale transforms of the nodes of (G, p) that are not adjacent
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to v. Then k ≥ n − 1 − r and thus, by Corollary 3.1, z j1 , . . . ,z jk span R
n−1−r.

Hence, there exist scalars λ1, . . . ,λk such that zv = ∑k
i=1 λiz ji . Now by Theorem 8.4,

Ω = ZΨZT where Ψ is PD. Thus (zv)TΨz ji = 0 for all i = 1, . . . ,k. Consequently,
(zv)TΨzv = ∑k

i=1 λi (zv)TΨz ji = 0 which implies that zv ∈ null(Ψ), a contradiction.
�

Lemma 8.4 will be strengthened in Chap. 10 (Lemma 10.5) by dropping the re-
quirement that Ω is PSD.

Now we are ready to present the second interpretation of the stress matrix. Let X
be the projected Gram matrix of (G, p) and consider the SDP problem

(P) min 0
subject to X +∑{i, j}∈Ē(Ḡ) yi jMi j � 0.

Thus, the projected Gram matrix of every bar framework (G,q) that is equivalent
to (G, p) is an optimal solution of (P) since the objective function is 0. The dual
problem of (P) is

(D) max −trace(XY )
subject to trace(Mi jY ) = 0 for all {i, j} ∈ Ē(Ḡ),

Y � 0.

Let Ω be a PSD stress matrix of (G, p). Then, by Theorem 8.4 and Lemma 3.8,
Ω =VUΨUTV T , where U is the matrix whose columns form an orthonormal basis
of null(X), and trace(UΨUT Mi j) = 0 for all {i, j} ∈ Ē(Ḡ). Thus, the projected
stress matrix Ω ′ = V T ΩV = UΨUT is an optimal solution of (D) since XΩ ′ = 0.
A similar observation in the context of sensor networks was made by So and Ye in
[178].

The following theorem presents another interesting property of PSD stress ma-
trices.

Theorem 8.6 (Alfakih [10]) Let Ω be a stress matrix of bar framework (G, p). If
Ω is positive semidefinite, then Ω is a stress matrix of every bar framework (G, p′)
that is equivalent to (G, p).

Proof. Let (G, p′) be equivalent to (G, p) and let X and X ′ be the projected
Gram matrices of (G, p) and (G, p′), respectively. Then X ′ = X +∑{i, j}∈Ē(Ḡ) yi jMi j

for some y = (yi j) ∈ R
m̄. Let Ω ′ = V T ΩV be the corresponding projected stress

matrix. Then, by Eq. (8.16), it suffices to show that Ω ′X ′ = 0. To this end, we have
Ω ′X = 0 and trace(Ω ′Mi j) =−trace(ΩEi j)/2 =−Ωi j/2 = 0 for all {i, j} ∈ Ē(Ḡ).
Therefore, trace(Ω ′X ′) = 0 and thus Ω ′X ′ = 0 since both matrices Ω ′ and X ′ are
PSD. As a result, Ω is a stress matrix of (G, p′).

�

The condition that Ω is positive semidefinite cannot be dropped in Theorem 8.6
as shown by the following example.

Example 8.5 Let (G, p) be the framework depicted in Fig. 8.5. Let (G, p′) be the
two-dimensional framework obtained from (G, p) by folding (G, p) across the edges
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{1,2} and {1,4} so that points 3 and 5 coincide. Clearly, (G, p′) is equivalent to
(G, p) but Ω is not a stress matrix of (G, p′).

Now let (G2, p) and (G2, p′) be the frameworks obtained from (G, p) and (G, p′)
by adding edge {2,4}. Hence, {1,2,4} is a clique of G2. Clearly, (G2, p) and (G, p)
have the same configuration and hence the same Gale matrix Z. To find a stress
matrix for (G2, p), Ψ2 has to satisfy only (z3)TΨ2z5 = 0. Therefore, (G2, p) admits a

PSD stress matrix Ω2 = ZΨ2ZT = Z.1ZT
.1 by choosing Ψ2 =

[
1 0
0 0

]
. Here, Z.1 denotes

the first column of Z. One can easily verify that Ω2 is also a stress matrix of (G2, p′).

The following two corollaries are immediate consequences of Theorem 8.6.

Corollary 8.1 Let (G, p) be an r-dimensional bar framework on n vertices and let
Ω be a positive semidefinite stress matrix of (G, p). Assume that rank(Ω) = k and
let (G, p′) be an s-dimensional bar framework that is equivalent to (G, p). Then
s ≤ n−1− k.

Proof. Let X ′ be the projected Gram matrix of (G, p′) and let Ω ′ be the corre-
sponding projected Gram matrix. Then rank(Ω ′) = k and X ′Ω ′ = 0. As a result,
rank(X ′)≤ n−1− k.

�

Corollary 8.2 Let (G, p) be an r-dimensional bar framework on n vertices and let
Ω ′ be a nonzero positive semidefinite projected stress matrix of (G, p). Further, let
F be the Cayley configuration spectrahedron of (G, p). Then X (F ) is contained
in the hyperplane

H = {A ∈S n−1 : trace(AΩ ′) = 0}.
Proof. Let X ∈X (F ), then X is the projected Gram matrix of a bar framework
(G, p′) that is equivalent to (G, p). Hence, XΩ ′ = 0.

�

In the theorem that follows, we characterize frameworks with a positive semidef-
inite stress matrix of rank one.

Theorem 8.7 (Alfakih [2]) Let (G, p) be an r-dimensional bar framework. Then
(G, p) admits a positive semidefinite stress matrix of rank one if and only if G has a
clique whose nodes are affinely dependent.

Proof. Assume that G has a clique whose nodes are affinely dependent and wlog
assume that this clique consists of the nodes {1, . . . ,k}. Thus, k ≥ r+2. Let λ = (λi)
be a nonzero vector in R

k such that ∑k
i=1 λi pi = 0 and ∑k

i=1 λi = 0. Further, let

ξ =

[
λ
0

]
∈ R

n. Then, it is easy to see that Ω = ξ ξ T is a PSD stress matrix of

(G, p) of rank 1.
To prove the reverse direction, assume that Ω = ξ ξ T is a nonzero stress matrix of

(G, p) and let I = {i : ξi �= 0}. Then, PT ξ = 0 and eT ξ = 0 and thus ∑i∈I ξi pi = 0
and ∑i∈I ξi = 0. Hence, the points {pi : i ∈ I } are affinely dependent. Further-
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more, {i, j} ∈ E(G) for all i, j ∈I since Ωi j �= 0 for all i, j ∈I . Thus, the nodes
of G induced by I form a clique and the proof is complete.

�

Example 8.6 Consider the framework (G, p) depicted in Fig. 8.4. Clearly, the
nodes {1,2,3}, which induce a clique in G, are affinely dependent. It is also clear
that (G, p) admits a PSD stress matrix of rank 1.

It should be pointed out that a bar framework can admit a PSD stress matrix of
rank ≥ 2 without admitting a PSD stress matrix of rank one. See, e.g., the framework
(G, p) depicted in Fig. 10.4 of Chap. 10.

8.3.3 The Maxwell–Cremona Theorem

In this subsection, we assume that (G, p) is a three-connected two-dimensional pla-
nar bar framework, where no two of its nodes coincide, and where no two of its
edges cross. Hence, wlog, we assume that all inner faces of (G, p), as well as the
periphery, are convex polygons. Consequently, every edge separates exactly two dis-
tinct faces of (G, p). A polyhedral terrain is the image (graph) of a piece-wise linear
continuous real function of two variables. That is, a polyhedral terrain is a surface in
R

3 consisting of connected polygonal faces, and thus it can be represented by a fam-
ily of affine functions. The Maxwell–Cremona Theorem [141, 142, 192, 193, 65]
establishes a correspondence between stressed two-dimensional planar bar frame-
works and polyhedral terrains.

Theorem 8.8 (Maxwell–Cremona) Every polyhedral terrain H that projects to a
three-connected two-dimensional planar bar framework (G, p) defines a stress ω
on (G, p). Conversely, every stressed three-connected two-dimensional planar bar
framework (G, p) can be lifted to a polyhedral terrain H which is unique up to the
addition of an affine function.

i

j

L R
F1

Fig. 8.6 A patch (i, j,L,R) and a Jordan curve in the interior of the faces of a face-cycle

The remainder of this subsection is dedicated to a proof of this theorem (see
[193, 65, 111, 159]). First, we begin with a few definitions. A face-path of (G, p)
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is a sequence of faces of (G, p), say Fs,F2, . . . ,Fk,Ft , such that any two consecutive
faces in this sequence have a common edge, and no face is repeated. A face-cycle
of (G, p) is a face-path that begins and ends at the same face, i.e., Fs = Ft .

Evidently, every inner edge {i, j} separates exactly two inner faces of (G, p). By
orienting the edge {i, j}, we can denote these two faces by L (left) and R (right) as
in Fig. 8.6. The ordered quadruple (i, j,L,R) is called a patch. Clearly, (i, j,L,R) =
( j, i,R,L). Therefore, a face-path consists of successive patches (ik, jk,Lk,Rk) where
the common edges {ik, jk} are properly oriented by the order of the faces in the face-
path.

Assume that (G, p) is embedded in the plane {p ∈ R
3 : p3 = 1} of R

3. Then
(G, p) can be lifted to a polyhedral terrain H by assigning a p3-coordinate, i.e., a
height h(pi), to each of its nodes such that the nodes of a face remain coplanar. Let
H be a polyhedral terrain lifted from (G, p), and let h(p) = (ak)T p+αk = (āk)T p̄
be the restriction of H to face Fk, where

āk =

[
ak

αk

]
∈ R

3 and p̄i =

[
pi

1

]
∈ R

3.

Then, since H is continuous on edge {i, j} of patch (i, j,L,R) , it follows that

(aR −aL)T (pi − p j) = 0, (8.20)

that is, aR − aL is proportional to (pi − p j)⊥. As a result, for any patch (i, j,L,R),
let

āR = āL +ωi j( p̄i × p̄ j), (8.21)

where (×) denotes the usual cross product. Then aR −aL = ωi j

[
(pi − p j)2

−(pi − p j)1

]
and

thus satisfies (8.20). Moreover, let p̄0 =

[
p0

1

]
be an arbitrary point that is not

collinear with any edge {i, j}, i.e., the points p̄0, p̄i and p̄ j are affinely independent
for all i, j = 1, . . . ,n. Recall that the signed area of the triangle defined by p0, pi, p j

is given by

1
2

det([ p̄0 p̄i p̄ j]) =−1
2

det(

[
(p0 − pi)1 (p0 − pi)2

(p j − pi)1 (p j − pi)2

]
) =−1

2
(p0 − pi)× (p j − pi).

The sign of this area is determined by the usual right-hand rule. For example, in a
patch (i, j,L,R), this area is positive if p0 lies in the interior of L and negative if p0

lies in the interior of R. As a result, it follows from (8.21) that

ωi j =
(āR − āL)T p̄0

det([ p̄0 p̄i p̄ j])
. (8.22)

Note that ωi j is the same for patches (i, j,L,R) and ( j, i,R,L). Moreover, suppose
that q̄0 is chosen in (8.22) instead of p̄0. Then (8.21) and (8.22) imply that
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(āR − āL)T q̄0 = ωi j det([q̄0 p̄i p̄ j]) =
det([q̄0 p̄i p̄ j])

det([ p̄0 p̄i p̄ j])
(āR − āL)T p̄0.

Consequently,
(āR − āL)T q̄0

det([q̄0 p̄i p̄ j])
=

(āR − āL)T p̄0

det([ p̄0 p̄i p̄ j])
.

That is, ωi j is independent of the choice of p̄0.
Now let C be a face-cycle around a node i; i.e., i belongs to every face of C and

let Fk ∈ C . Then (8.21) implies that

āk = āk + ∑
j:{i, j}∈E(G)

ωi j( p̄i × p̄ j).

Thus,

∑
j:{i, j}∈E(G)

ωi j( p̄i × p̄ j) = ( ∑
j:{i, j}∈E(G)

ωi j( p̄i − p̄ j))× p̄i = 0

since p̄i × p̄ j =− p̄ j × p̄i and p̄i × p̄i = 0. But ( p̄i − p̄ j)3 = 0 and p̄i
3 = 1. Therefore,

∑
j:{i, j}∈E(G)

ωi j(pi − p j) = 0.

As a result, every polyhedral terrain that projects to (G, p) induces a stress in (G, p)
given by (8.22). This proves the first part of the Maxwell–Cremona Theorem.

To prove the second part, we need the following simple observation. Let V1 be a
subset of vertices of (G, p) of cardinality ≥ 2. Then since ωi j = ω ji, it follows that

∑
i∈V1, j∈V1:{i, j}∈E(G)

ωi j( p̄i × p̄ j) = 0. (8.23)

Lemma 8.5 Let ω be a stress of (G, p) and assume that ā1, the vector associated
with face F1, is given. Then Eq. (8.21) consistently assigns vectors āi’s to all inner
faces Fi’s of (G, p).

Proof. Let Ft be an inner face other than F1. It suffices to show that the vector āt ,
calculated by successive application of (8.21), is independent of the face-path from
F1 to Ft we choose. Put differently, it suffices to show that ā′1 = ā1 where ā′1 is the
vector obtained by successively applying (8.21) to the face-cycle C = F1,F2, . . . ,F1.

To this end, let J be a Jordan curve through the interior of the faces of C and
let V1 and V2 be the sets of nodes of (G, p) inside and outside J , respectively (see
Fig. 8.6). Then

ā′1 = ā1 + ∑
i∈V1, j∈V2:{i, j}∈E(G)

ωi j( p̄i × p̄ j).

Now if |V1|= 1, i.e., if V1 = {i}, then
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ā′1 = ā1 + ∑
j:{i, j}∈E(G)

ωi j( p̄i × p̄ j)

= ā1 +( ∑
j:{i, j}∈E(G)

ωi j( p̄i − p̄ j))× p̄i

= ā1,

where the last equality follows from the definition of a stress ω . Therefore, assume
that |V1| ≥ 2. But in this case, Eq. (8.23) implies that

∑
i∈V1, j∈V2:{i, j}∈E(G)

ωi j( p̄i × p̄ j) = ∑
i∈V1, j:{i, j}∈E(G)

ωi j( p̄i × p̄ j)

= ∑
i∈V1

( ∑
j:{i, j}∈E(G)

ωi j( p̄i − p̄ j))× p̄i

= 0.

Hence, ā′1 = ā1.
�

Therefore, every two-dimensional planar bar framework with a nontrivial stress
can be lifted, using Eq. (8.21), to a nontrivial polyhedral terrain. A polyhedral terrain
H is trivial if all faces are coplanar; i.e., H is affine on R

2. Moreover, H is unique
up to the addition of an affine function. This proves the second part of the Maxwell–
Cremona Theorem.

The following lemma establishes the connection between the signs of the stresses
on the inner edges of (G, p) and the local convexity of H.

Lemma 8.6 Let (i, j,L,R) be a patch and assume that ωi j > 0. Let pl and pr be two
points in the interiors of L and R, respectively. Then

h(pl) = (āL)T p̄l < (āR)T p̄l

or equivalently
(āL)T p̄r > (āR)T p̄r = h(pr),

where p̄l =

[
pl

1

]
and p̄r =

[
pr

1

]
.

Proof. This follows from Eq. (8.21) since

(āR)T p̄l − (āL)T p̄l = ωi j det([ p̄l p̄i p̄ j]) =−ωi j(pl − pi)× (p j − pi)> 0

by the right-hand rule.
�

As a result, the “mountain” (“valley”) edges in H correspond to the inner edges
of (G, p) with ωi j > 0 (ωi j < 0). It should be pointed out that in the literature, some
authors define the stresses ωi j’s with the opposite sign from our definition in (8.21).
Consequently, their mountain (valley) stress correspondence is opposite to ours.



Chapter 9
Local and Infinitesimal Rigidities

This chapter focuses on the problems of local rigidity and infinitesimal rigidity of
bar frameworks. These problems have a long and rich history going back at least as
far as Cauchy [51]. The main tools in tackling these problems are the rigidity matrix
R and the dual rigidity matrix R̄. While R is defined in terms of the underlying
graph G and configuration p, R̄ is defined in terms of the complement graph Ḡ and
Gale matrix Z. Nonetheless, both matrices R and R̄ carry the same information. The
chapter concludes with a discussion of generic local rigidity in dimension 2, where
the local rigidity problem reduces to a purely combinatorial one depending only
on graph G. The literature on the theory of local and infinitesimal rigidities is vast
[59, 57, 66, 97, 194]. However, in this chapter, we confine ourselves to discussing
only the basic results and the results pertaining to EDMs.

9.1 Local Rigidity

We start with the definition of local rigidity. Recall that Dp is the EDM defined
by configuration p and H is the adjacency matrix of graph G. Also, recall that (◦)
denotes the Hadamard product

Definition 9.1 Let (G, p) be an r-dimensional bar framework. Then (G, p) is said to
be locally rigid if there exists an ε > 0 such that there does not exist an r-dimensional
bar framework (G,q) that satisfies: (i) ||qi− pi|| ≤ ε for all i= 1, . . . ,n, (ii) H ◦Dq =
H ◦Dp and (iii) Dq �= Dp.

In other words, an r-dimensional bar framework (G, p) is locally rigid if there
exists a neighborhood of p such that any r-dimensional bar framework (G,q) that is
equivalent to (G, p) and within this neighborhood is actually congruent to (G, p). We
say that (G, p) is locally flexible if it is not locally rigid. Evidently, local rigidity has
two aspects: a combinatorial one dictated by graph G and a geometric one dictated
by configuration p. Furthermore, it is equally evident that one can find a graph G
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and two configurations p and q in R
r such that (G, p) is locally rigid while (G,q) is

locally flexible.
Assume that r = n− 1, i.e., framework (G, p) is of dimension n− 1 and, as al-

ways, assume that G �= Kn, where Kn denotes the complete graph on n nodes. Then
X , the projected Gram matrix of (G, p), is PD. Hence, for a sufficiently small δ > 0
and for some y ∈ R

m̄ such that ||y|| ≤ δ , we have

X (ty) = X + ∑
{i, j}∈Ē(Ḡ)

tyi jM
i j � 0 for all t : 0 ≤ t ≤ 1.

Therefore, (G, p) is locally flexible.
Let Snr denote the set of real n× r matrices. Following Asimow and Roth [28,

29], for a graph G on n nodes and m edges, let fG =( f i j
G ) :S nr →R

m be the function
defined by

f i j
G (P) = ||pi − p j||2 for each {i, j} ∈ E(G),

where (pi)T is the ith row of P. In other words, for framework (G, p),

fG(P) = π(Dp),

where π : S n → R
m is as defined in (5.3). fG is called the rigidity map of (G, p) or

the edge function of G. Hence, f−1
G ( fG(P)) = f−1

G (π(Dp)) is the set of all configu-
rations q in R

r such that (G,q) is equivalent to (G, p). Moreover, it readily follows
that f−1

Kn
( fKn(P)) = f−1

Kn
(Dp) is the set of all configurations q in R

r such that (G,q)
is congruent to (G, p). Clearly

f−1
Kn

( fKn(P))⊆ f−1
G ( fG(P)).

Consequently, the structure of f−1
G ( fG(P)) in a neighborhood of P is key to estab-

lishing the local rigidity or the local flexibility of (G, p). More precisely, (G, p) is
locally rigid if and only if there exists a neighborhood W of P in S nr such that

f−1
G ( fG(P))∩W = f−1

Kn
( fKn(P))∩W.

We should point out that f−1
Kn

( fKn(P)) is a smooth manifold. Moreover, f−1
G ( fG(P))

is a real algebraic variety and f−1
Kn

( fKn(P)) is a subvariety of f−1
G ( fG(P)). Set S in

S nr is a real algebraic variety if it is the zero set of a finite number of polynomials
with real coefficients.

Next, we present two other equivalent definitions of local rigidity and hence local
flexibility. Let δ > 0 be sufficiently small. A continuous flex of (G, p) is a continuous
path γ(t) for all t : 0 ≤ t ≤ δ , such that: (i) γ(t) is n× r and (ii) γ(0) = P. If, in
addition, γ(t) is analytic, then we say that γ(t) is an analytic flex of (G, p). As a
result, we have the following two definitions of local rigidity in terms of γ(t).

Definition 9.2 Bar framework (G, p) is locally rigid if every continuous flex of
(G, p) in f−1

G ( fG(P)) lies entirely in f−1
Kn

( fKn(P)).
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Definition 9.3 Bar framework (G, p) is locally rigid if every analytic flex of (G, p)
in f−1

G ( fG(P)) lies entirely in f−1
Kn

( fKn(P)).

Theorem 9.1 (Gluck [86]) The above three definitions of local rigidity are equiva-
lent.

Proof. Clearly, Definition 9.2 implies Definition 9.3. Now assume that framework
(G, p) is locally rigid by Definition 9.1 and assume that (G, p′) is an r-dimensional
framework such that P′ ∈ f−1

G ( fG(P))\ f−1
Kn

( fKn(P)). Then ||p′i − pi||> ε for some
i. Hence, (G, p) is locally rigid by Definition 9.2.

On the other hand, assume that (G, p) is locally flexible by Definition 9.1. Then
for every neighborhood W of P, there exists an r-dimensional framework (G, p′)
such that P′ ∈ W and P′ ∈ f−1

G ( fG(P))\ f−1
Kn

( fKn(P)). But f−1
G ( fG(P)) is a real

algebraic variety and f−1
Kn

( fKn(P)) is a subvariety of f−1
G ( fG(P)). Therefore, by

the curve selection lemma (see, e.g., Wallace [191, Lemma 18.3] and Milnor [145,
Lemma 3.1]), there exists an analytic flex of (G, p) in f−1

G ( fG(P))\ f−1
Kn

( fKn(P)) and
thus framework (G, p) is locally flexible by Definition 9.3. Hence, Definition 9.3
implies Definition 9.1

�

Figure 9.1 depicts two bar frameworks. Framework (a) is locally flexible, while
Framework (b) is locally rigid. Note that Framework (a) is locally flexible since it
can be continuously deformed into a family of rhombi.

(a) (b)

Fig. 9.1 An example of 2 two-dimensional bar frameworks. Framework (a) is locally flexible,
while framework (b) is locally rigid

9.2 Infinitesimal Rigidity and the Rigidity Matrix R

The local rigidity problem turns out to be quite difficult. Therefore, instead of tack-
ling this problem directly, it is sensible to consider the relatively simpler problem
of infinitesimal rigidity. Infinitesimal rigidity is a linearized version of local rigidity
which readily lends itself to linear algebraic tools.
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Consider the process of smoothly deforming a bar framework (G, p) into a one-
parameter family of equivalent bar frameworks (G,q(t)), with q(0) = p, where
edges are allowed to pass through one another. It is helpful to think of the parameter
t as time. Obviously, during such a process, ||qi(t)− q j(t)||2 must remain constant
for each edge {i, j}. By differentiating with respect to t and setting t = 0, we get

(pi − p j)T (δ i −δ j) = 0 for all {i, j} ∈ E(G), (9.1)

where we have substituted qi(0) = pi and q′i(0) = δ i. Any nonzero vector δ =

[δ 1T
. . . δ nT ]T in R

nr that satisfies (9.1) is called an infinitesimal flex of (G, p).
An infinitesimal flex is called trivial if it results from a rigid motion of (G, p) and
is called nontrivial otherwise. Obviously, every bar framework (G, p) has trivial
infinitesimal flexes. If (G, p) has only trivial infinitesimal flexes, then it is called
infinitesimally rigid. Otherwise, i.e., if (G, p) has also nontrivial infinitesimal flexes,
then it is called infinitesimally flexible.

System of Eq. (9.1) can be written in matrix form as Rδ = 0, where R is the
m×nr matrix whose columns and rows are indexed, respectively, by the nodes and
the edges of G such that the (i, j)th row is given by

· · · node i · · · node j · · ·
...

edge {i, j}
...

⎡

⎢⎢
⎣

...
...

...
...

...
0 · · ·0 (pi − p j)T 0 · · ·0 (p j − pi)T 0 · · ·0

...
...

...
...

...

⎤

⎥⎥
⎦ .

(9.2)

More specifically, R has r columns for each node and one row for each edge, where
the row corresponding to edge {i, j} has all zeros except (pi − p j)T in the columns
corresponding to node i and (p j − pi)T in the columns corresponding to node j. R is
called the rigidity matrix of framework (G, p). An important point to bear in mind
is that, by Assumption 8.1, no row of R has all zero entries.

Clearly, δ is a (trivial or nontrivial) infinitesimal flex of (G, p) if and only if
δ ∈ null(R). Evidently, there are r translations and r(r−1)/2 rotations in R

r. Hence,
trivial infinitesimal flexes form a subspace of Rnr of dimension r(r+ 1)/2. Conse-
quently, dim(null(R))≥ r(r+1)/2 and thus

rank(R)≤ nr− 1
2

r(r+1).

As a result, (G, p) is infinitesimally rigid if and only if the null space of R consists
only of trivial infinitesimal flexes; i.e., dim(null(R)) = r(r+1)/2.

Theorem 9.2 Let (G, p) be an r-dimensional bar framework on n nodes and let R
be the rigidity matrix of (G, p). Then (G, p) is infinitesimally rigid if and only if

rank(R) = nr− r(r+1)
2

.
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An immediate consequence of Theorem 9.2 is that if m < nr− r(r+ 1)/2, then
framework (G, p) is infinitesimally flexible. This is intuitively clear since the fewer
edges G has, the less likely that (G, p) is locally rigid.

Next, we establish the relationship between infinitesimal rigidity and local rigid-
ity. The Jacobian of the rigidity map fG at P, denoted by d fG(P), is the m× nr
matrix

d fG(P) = (
∂ f i j

∂ pk )
k=1,...,n
i j=1,...,m = 2R,

where R is the rigidity matrix. Let

k = max{rank(d fG(P)) : P ∈S nr}.

P in S nr is called a regular point of fG if rank(d fG(P)) = rank(R) = k and is called
a singular point otherwise. Let

g(P) = ∑{(det(RIJ ))2 : RIJ is a k× k submatrix of R}.

Thus, P is a regular of fG if and only if g(P) �= 0. Consequently, the set of regular
points of fG is open and dense in S nr. As a result, “almost all” points of S nr are
regular.

The following theorem is a special form of the well-known implicit function
theorem.

Theorem 9.3 (Implicit Parameterization [30, p. 32]) Let fG : S nr →R
m and as-

sume that f i j
G , for all {i, j} ∈ E(G), are differentiable functions on a neighborhood

W of the point P in S nr. Further, assume that fG(P) = π(Dp). If d fG has a constant
rank k on W with k < nr. Then there exists a neighborhood U of 0 ∈ R

nr−k and a
differentiable mapping γ : U →W such that

γ(0) = P and fG(γ(y)) = π(Dp) for y ∈U.

Thus, the implicit parameterization theorem asserts that if P is a regular point
of S nr, then by the lower semicontinuity of the rank function, rank(d f ) = k on
neighborhood W of P. Hence, f−1

G ( fG(P)) is a smooth manifold of dimension nr−k
on W and f−1

Kn
( fKn(P)) is a submanifold of f−1

G ( fG(P)).
As the following theorem shows, the notion of infinitesimal rigidity of a bar

framework is stronger than that of local rigidity.

Theorem 9.4 (Gluck [86]) If a bar framework (G, p) is infinitesimally rigid, then
it is locally rigid.

Proof. Assume that (G, p) is infinitesimally rigid and let P be a configuration ma-
trix of (G, p). Then rank(R) = rank(d fG(P)) = nr−r(r+1)/2. Hence, P is a regular
point and rank(R) is constant on a neighborhood W of P. Moreover, by the Implicit
Parameterization Theorem, nr−k = r(r+1)/2. Hence, f−1

G ( fG(P)) = f−1
Kn

( fKn(P))
on W . That is, all bar frameworks in W that are equivalent to (G, p) are in fact
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congruent to it. Consequently, (G, p) is locally rigid.
�

The converse of this theorem is not true as shown by the following example.

1

2 3

4

5

Fig. 9.2 An example of a two-dimensional bar framework which is both locally rigid and infinites-
imally flexible

Example 9.1 Consider the bar framework (G, p) depicted in Fig. 9.2. It is easy to
see that δ1 = δ2 = δ3 = δ4 = 0 and δ5 = [0,−1]T is a nontrivial infinitesimal flex.
Hence, (G, p) is infinitesimally flexible. On the other hand, it is also easy to see that
(G, p) is locally rigid. Moreover, P is a singular point of fG since rank(R) = 6 and
this rank increases to 7 if p5 is slightly perturbed so that p2, p5, and p3 are not
collinear.

As the following theorem shows, local rigidity and infinitesimal rigidity coincide
at regular points.

Theorem 9.5 (Asimow and Roth [28]) Let (G, p) be an r-dimensional bar frame-
work on n nodes. Let P and R be a configuration matrix and the rigidity matrix of
(G, p). Assume that P is a regular point of fG in S nr. Then (G, p) is locally rigid if
and only if

rank(R) = nr− r(r+1)
2

.

As a result, (G, p) is either locally rigid on all regular points or locally flexible
on all regular points [28].

The rigidity matrix R has more uses than just to establish the infinitesimal rigidity
of a given bar framework (G, p). In fact, while the null space of R contains the space
of infinitesimal flexes of (G, p), its left null space contains the space of stresses of
(G, p). More precisely, the following theorem is a direct consequence of the defini-
tions of a stress and R in (8.12) and (9.2).

Theorem 9.6 Let (G, p) be an r-dimensional bar framework and let R be its rigidity
matrix. Then ω ∈ R

m is a stress of (G, p) if and only if ω lies in the left null space
of R; i.e., iff

ωT R = 0.
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Note that the left null space of R is null(RT ). Consequently, by the definition of the
rank of a matrix, we have that, for any bar framework (G, p), the dimension of the
space of stresses of (G, p) is equal to

m−nr+
1
2

r(r+1)+dim of the space of nontrivial infinitesimal flexes. (9.3)

1 2

3 4

5 6

(a)

1 2

3 4

5 6t

(b)

Fig. 9.3 The two-dimensional locally flexible bar framework of Example 9.2

Example 9.2 Consider the framework (G, p) depicted in Fig. 9.3a, where

p1 =

[
0
0

]
, p2 =

[
3
0

]
, p3 =

[
0
2

]
, p4 =

[
3
2

]
, p5 =

[
1
1

]
and p6 =

[
4
1

]
.

(G, p) is locally flexible since p1 =

[
0
0

]
, p2 =

[
3
0

]
, p3 =

[
2sin(t)
2cos(t)

]
,

p4 =

[
3+2sin(t)

2cos(t)

]
, p5 =

[
cos(t)+ sin(t)
cos(t)− sin(t)

]
, p6 =

[
3+ cos(t)+ sin(t)

cos(t)− sin(t)

]

is a continuous deformation of (G, p) as shown in Fig. 9.3b.
The rigidity matrix R of (G, p) is 9×12 and of rank 8. Thus, the dimension of the

space of stresses is 1 and the dimension of nontrivial infinitesimal flexes of (G, p)
is also 1. Moreover, P is a singular point of fG since any slight perturbation of the
second coordinate of p6 increases the rank of R to 9. Hence, (G, p′′) is locally rigid
on all regular points P′′ of fG.

Example 9.3 Consider the framework (G, p′) depicted in Fig. 9.4. Similar to frame-
work (G, p) of Fig. 9.3a, rank(R) = 8 and thus P′ is a singular point of fG. But unlike
(G, p), framework (G, p′) is locally rigid since any potential continuous deforma-
tion of (G, p′) would increase the distance between p′5 and p′6.
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1 2

3 4

5 6

Fig. 9.4 The two-dimensional locally rigid bar framework of Example 9.3

9.3 Static Rigidity

In this section we discuss the notion of static rigidity, which turns out to be equiv-
alent to that of infinitesimal rigidity. Let L denote the space of trivial flexes of
framework (G, p). Recall that L is a subspace of Rnr of dimension r(r+ 1)/2. A
load on (G, p) is a vector

F =

⎡

⎢
⎣

F1

...
Fn

⎤

⎥
⎦ ∈ R

nr

where F1, . . . ,Fn ∈ R
r are external forces acting on the nodes of (G, p). A load is

said to be an equilibrium load if F ∈L ⊥, the orthogonal complement of L in R
nr.

To gain a better understanding of this condition, we first determine a basis of L .
As always, let e j denote the jth standard unit vector in R

r and let Qkl be the r× r
skew-symmetric matrix with 1 in the (k, l) position, (−1) in the (l,k) position and
zeros elsewhere. Further, let τ j and ρkl be the two vectors in R

nr such that

τ j =

⎡

⎢
⎣

e j

...
e j

⎤

⎥
⎦ and ρkl =

⎡

⎢
⎣

Qkl p1

...
Qkl pn

⎤

⎥
⎦ .

Then {τ1, . . . ,τr} and {ρkl : 1≤ k < l ≤ r} are bases of the trivial infinitesimal flexes
resulting from the r translations and the r(r − 1)/2 rotations in R

r, respectively.
Consequently,

{τ1, . . . ,τr}∪{ρkl : 1 ≤ k < l ≤ r}
is a basis of L . As a result, the condition F ∈L ⊥ amounts to two equalities. First,

(τ j)T F =
n

∑
i=1

(Fi) j = 0 for all j = 1, . . . ,r

and hence,
n

∑
i=1

Fi = 0.
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That is, the net force exerted by F on (G, p) is zero. Second,

(ρkl)T F =
n

∑
i=1

(pi)T QklFi = 0 for all 1 ≤ k < l ≤ r. (9.4)

Equation (9.4), for r = 3, is equivalent to the assertion

n

∑
i=1

pi ×Fi = 0,

where (×) denotes the usual cross product in R
3. That is, the net torque exerted by

F on (G, p) is zero. Therefore, a load is an equilibrium load if it results in a zero net
force and a zero net torque.

An equilibrium load is resolved by framework (G, p) if there exist scalars wi j,
for all {i, j} ∈ E(G), such that

Fi = ∑
j:{i, j}∈E(G)

wi j(pi − p j) for each i = 1, . . . ,n.

It should be pointed out here that a stress on framework (G, p) is a resolution of the
trivial zero load. Framework (G, p) is said to be statically rigid if every equilibrium
load is resolved by (G, p). That is, (G, p) is statically rigid if and only if the system

RT w = F, (9.5)

where R is the rigidity matrix of (G, p), has a solution w ∈R
m for every equilibrium

load F . Now System (9.5) has a solution for every F ∈ L ⊥ if and only if L ⊥ ⊆
col(RT ) if and only if null(R)⊆L . But L ⊆ null(R). Therefore, framework (G, p)
is statically rigid if and only if null(R) =L . Hence, we have proven the following
theorem.

Theorem 9.7 (Whiteley and Roth [195]) A bar framework is statically rigid if and
only if it is infinitesimally rigid.

9.4 The Dual Rigidity Matrix R̄

The rigidity matrix R is a function of p1, . . . , pn and hence it is not invariant under
rigid motions. Consequently, to establish the infinitesimal rigidity of a bar frame-
work, one has to take into account the space of trivial infinitesimal flexes, and hence
the factor r(r+ 1)/2 appears in Theorems 9.2 and 9.5. In this section, we discuss
an alternative approach [7] to infinitesimal rigidity which circumvents the need to
account for rigid motions. This approach is based on projected Gram matrices and
leads to a dual rigidity matrix R̄. Our presentation follows closely [7].

Let X be the projected Gram matrix of r-dimensional framework (G, p), r ≤
n−2, and thus X is PSD of rank r. Recall from (8.10) and (8.9) that
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F = {y ∈ R
m̄ : X (y)� 0}

is the Cayley configuration spectrahedron of (G, p), where

X (y) = X + ∑
{i, j}∈Ē(Ḡ)

yi jM
i j.

Also, recall that {X (y) : y ∈F} is the set of projected Gram matrices of all frame-
works that are equivalent to (G, p). No attention will be paid to rigid motions since
all frameworks that are congruent to (G, p) have the same projected Gram matrix X .
Let

M (y) = ∑
{i, j}∈Ē(Ḡ)

yi jM
i j. (9.6)

Let ζ be a sufficiently small neighborhood of zero in R
m̄. Since X =X (0), it fol-

lows that
{X (y) : y ∈ ζ ,X (y)� 0 and rank(X ) = r}

is the set of projected Gram matrices of all r-dimensional frameworks near (G, p)
that are equivalent to (G, p). To characterize such frameworks, we need the follow-
ing lemma which is an immediate consequence of Schur complement.

Lemma 9.1 Let

M =

[
A B

BT C

]

be a symmetric matrix, where A is an r× r positive definite matrix. Then matrix M
is positive semidefinite with rank r if and only if C−BT A−1B = 0.

Let U be the matrix whose columns form an orthonormal basis of null(X) and
let X =WΛW T be the spectral decomposition of X , where Λ is the diagonal matrix
consisting of the r positive eigenvalues of X . Hence, Q = [W U ] is an orthogonal
matrix of order n−1. Moreover, X (y) is PSD with rank r if and only if

QTX (y)Q =

[
Λ +W TM (y)W W TM (y)U

UTM (y)W UTM (y)U

]

is PSD of rank r. Now Λ +W TM (y)W � 0 for all y ∈ ζ . Therefore, it follows from
Lemma 9.1 that for y ∈ ζ , X (y) is PSD with rank r if and only if

Φ(y) =UTM (y)U −UTM (y)W (Λ +W TM (y)W )−1W TM (y)U = 0. (9.7)

Hence, the linearization of Φ(y) near y = 0 is given by

UTM (δ̄ )U = 0. (9.8)

Therefore, (G, p) is infinitesimally flexible if and only if there exists a nonzero δ̄ in
R

m̄ satisfying Eq. (9.8). Let
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E (y) = ∑
{i, j}∈Ē(Ḡ)

yi jE
i j. (9.9)

Hence, M (y) = −V TE (y)V/2. The following theorem follows directly from
Eq. (9.8), Lemmas 3.8 and (8.8). Recall that (n − 1)-dimensional frameworks
are locally flexible.

Theorem 9.8 (Alfakih [7]) Let (G, p) be an r-dimensional bar framework with n
nodes, r ≤ n− 2. Let Z be a Gale matrix of (G, p). Then (G, p) is infinitesimally
flexible if and only if there exists a nonzero δ̄ in R

m̄ such that

ZTE (δ̄ )Z = 0. (9.10)

The dual rigidity matrix R̄ is derived by writing Eq. (9.10) in matrix form. To this
end, we need a few definitions.

Given an n×n symmetric matrix A, let svec(A) denote the n(n+1)
2 vector formed

by stacking the columns of A from the main diagonal downwards after having mul-
tiplied the off-diagonal entries of A by

√
2. For example, if A is a 3× 3 matrix,

then

svec(A) =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

a11√
2 a21√
2 a31

a22√
2 a32

a33

⎤

⎥
⎥⎥⎥⎥⎥
⎦

. (9.11)

Let B be an m× n matrix and let A be an n× n symmetric matrix. The symmetric
Kronecker product between B and itself, denoted by B⊗s B, is defined such that

(B⊗s B) svec(A) = svec(BABT ). (9.12)

For more details on the symmetric Kronecker product, see [27].

Definition 9.4 Let Z be a Gale matrix of r-dimensional bar framework (G, p) and
let R̄T be the submatrix of Z ⊗s Z obtained by keeping only rows corresponding to
Ē(Ḡ), the missing edges of G. Then the matrix R̄ is called the dual rigidity matrix
of (G, p).

As always, let
r̄ = n−1− r.

Recall that zi is a Gale transform of pi given by the ith row of Z. Then the dual
rigidity matrix R̄ is the r̄(r̄+1)

2 × m̄ matrix whose columns are indexed by Ē(Ḡ),

where the (i, j)th column is equal to 1√
2

svec(ziz jT + z jziT ). For example, if Ē(Ḡ) =

{(i1, j1), . . . ,(im̄, jm̄)}, then

R̄ =
1√
2
[ svec(zi1z j1 T

+ z j1zi1 T
) . . . svec(zim̄ z jm̄ T

+ z jm̄ zim̄ T
) ]. (9.13)
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That is,

R̄ =

⎡

⎢⎢⎢⎢
⎢
⎣

√
2 zi1

1 z j1
1

√
2 zi2

1 z j2
1 . . .

√
2 zim̄

1 z jm̄
1

zi1
2 z j1

1 + zi1
1 z j1

2 zi2
2 z j2

1 + zi2
1 z j2

2 . . . zim̄
2 z jm̄

1 + zim̄
1 z jm̄

2
zi1

3 z j1
1 + zi1

1 z j1
3 zi2

3 z j2
1 + zi2

1 z j2
3 . . . zim̄

3 z jm̄
1 + zim̄

1 z jm̄
3

. . . . . . . . . . . .√
2 zi1

r̄ z j1
r̄

√
2 zi2

r̄ z j2
r̄ . . .

√
2 zim̄

r̄ z jm̄
r̄

⎤

⎥⎥⎥⎥
⎥
⎦
, (9.14)

where zl
k denotes the kth coordinate of vector zl . A justification of the definition of

R̄ is given in the following theorem.

Theorem 9.9 (Alfakih [7]) Let R̄ be the dual rigidity matrix of an r-dimensional
bar framework (G, p). Then (G, p) is infinitesimally rigid if and only if R̄ has a
trivial null space, i.e., if and only if

rank (R̄) = m̄. (9.15)

Proof. This follows from Eq. (9.10) and the definition of R̄ since ZTE (δ̄ )Z = 0 if
and only if R̄δ̄ = 0.

�

Before presenting an example to illustrate the dual rigidity matrix R̄, we make the
following four observations. First, as the graph becomes denser, i.e., as the number
of edges of G increases, the number of rows in the rigidity matrix R increases, while
the number of columns of R̄ decreases and vice versa. Second, R̄ is a function of
Gale matrix and thus is invariant under rigid motions. Hence, unlike Theorem 9.2,
the term r(r+1)/2 is absent from Eq. (9.15). Third, R̄ is in general sparse since the
Gale matrix Z can be chosen sparse. Fourth, the rank of R̄ does change if the factors
of

√
2 are dropped from the definition of R̄. These factors are kept in order to make

the definition of R̄ in terms of the symmetric Kronecker product simple.

Example 9.4 Consider the framework (G, p) depicted in Fig. 9.2. A Gale matrix of
(G, p) is given by

Z =

⎡

⎢⎢⎢⎢
⎣

1 0
0 1
0 1

−2 0
1 −2

⎤

⎥⎥⎥⎥
⎦
.

Then

R̄ =

⎡

⎣

√
2 0 −2

√
2

−2 0 4
0
√

2 0

⎤

⎦

where the columns of R̄ are indexed in the order {1,5},{2,3},{4,5}. Note that the
rigidity matrix R of (G, p) is 7× 10. Also, note that δ̄ = [2 0 1]T is a basis of the
null space of R̄ and x = [2

√
2 0]T is a basis of the left null space of R̄. Therefore,

(G, p) is infinitesimally flexible.
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Example 9.5 Consider the framework (G, p) depicted in Fig. 9.3a. A Gale matrix
of (G, p) is given by

Z =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

3 0 0
0 3 0
0 0 3
3 3 −3

−5 −2 −3
−1 −4 3

⎤

⎥⎥⎥
⎥⎥⎥
⎦

.

Then

R̄ =

⎡

⎢⎢⎢⎢⎢⎢
⎣

9
√

2 −3
√

2 0 0 0 −15
√

2
9 −12 0 −15 0 −21

−9 9 0 0 −3 6
0 0 0 −6

√
2 0 −6

√
2

0 0 9 −9 −12 −3
0 0 0 0 9

√
2 9

√
2

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

The columns of R̄ are indexed in the order {1,4},{1,6},{2,3},{2,5},{3,6},{4,5}.
Note that the rigidity matrix R of (G, p) is 9×12. Also note that

δ̄ = [2 1 −2 −1 −1 1]T

is a basis of the null space of R̄ and

x = [1 2
√

2 3
√

2 −5 0 1]T

is a basis of the left null space of R̄. Therefore, (G, p) is infinitesimally flexible. In
fact, as we showed in Example 9.2, (G, p) is locally flexible.

Example 9.6 Consider the framework (G, p) depicted in Fig. 9.4. A Gale matrix of
(G, p) is given by

Z =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

1 0 0
0 1 0
0 0 1
1 1 −1

−1 2 −3
−1 −4 3

⎤

⎥
⎥⎥⎥⎥⎥
⎦

.

Then

R̄ =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

√
2 −√

2 0 0 0 −√
2

1 −4 0 −1 0 1
−1 3 0 0 −1 −2

0 0 0 2
√

2 0 2
√

2
0 0 1 −3 −4 −5
0 0 0 0 3

√
2 3

√
2

⎤

⎥⎥⎥⎥
⎥⎥
⎦

.
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The columns of R̄ are indexed in the order {1,4},{1,6},{2,3},{2,5},{3,6},{4,5}.
Note that

δ̄ = [2 1 −2 −1 −1 1]T

is a basis of the null space of R̄ and

x = [1 2
√

2 3
√

2 1 0 1]T

is a basis of the left null space of R̄. Therefore, framework (G, p) is infinitesimally
flexible. However, as we showed in Example 9.3, (G, p) is locally rigid.

9.4.1 Similarities and Dissimilarities Between R and R̄

We begin with the following theorem characterizing the left null space of R̄.

Theorem 9.10 (Alfakih [7]) Let (G, p) be an r-dimensional bar framework and let
R̄ be its dual rigidity matrix. Further, let Z be a Gale matrix of (G, p). Then Ω =
ZΨZT is a stress matrix of (G, p) if and only if (svec(Ψ))T R̄ = 0.

Proof. By Theorem 8.4, Ω = ZΨZT is a stress matrix of (G, p) if and only if
(ZΨZT )i j = 0 for all {i, j} ∈ Ē(Ḡ). But, by the definition of the symmetric Kro-
necker product, svec(ZΨZT ) = (Z ⊗s Z) svec(Ψ). Hence, Ω is a stress matrix of
(G, p) if and only if ((Z⊗s Z) svec(Ψ))i j = 0 for all {i, j} ∈ Ē(Ḡ). However, by the
definition of R̄, this last statement is equivalent to R̄T svec(Ψ) = 0.

�

Example 9.7 Let (G, p) be the framework depicted in Fig. 9.2. We found in Exam-
ple 9.4 that x = [2

√
2 0]T is a basis of the left null space of R̄. Moreover, it can be

shown that

ω = (ω12 =−1,ω13 =−1,ω14 = 4,ω24 = 2,ω25 =−1,ω34 = 2,ω35 =−1)

is a stress of (G, p) with corresponding stress matrix

Ω =

⎡

⎢
⎢⎢⎢
⎣

2 1 1 −4 0
1 0 0 −2 1
1 0 0 −2 1

−4 −2 −2 8 0
0 1 1 0 −2

⎤

⎥
⎥⎥⎥
⎦
= ZΨZT ,

where Ψ =

[
2 1
1 0

]
. Note that svec(Ψ) = x = [2

√
2 0]T .

The following theorem establishes the relationship between the null spaces and
the left null spaces of R and R̄.

Theorem 9.11 (Alfakih [7]) Let R and R̄ be, respectively, the rigidity and the dual
rigidity matrices of r-dimensional bar framework (G, p). Then
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1. null(R̄T ) is isomorphic to null(RT ).

2. dim of null(R̄) = dim of null(R)− r(r+1)
2

.

Proof. The left null space of R is isomorphic to the space of stress matrices of
(G, p) which, by Theorem 9.10, is isomorphic to the left null space of R̄. To prove
Statement 2, note that

dim null(R) = dim null(RT )+nr−m

and

dim null(R̄) = dim null(R̄T )+ m̄− r̄(r̄+1)
2

.

But, since dim null(RT ) = dim null(R̄T ), we have

dim null(R̄)−dim null(R) = m+ m̄−nr− r̄(r̄+1)
2

=− r(r+1)
2

.

�

Next, we show that for each infinitesimal flex of (G, p), i.e., for each vector in
the null space of R, there corresponds a vector y in the null space of R̄, which can be
determined explicitly.

Theorem 9.12 (Alfakih [7]) Let δ ∈ R
nr be an infinitesimal flex of (G, p) and let

Δ T = [δ 1 · · · δ n], i.e., Δ T is an r× n matrix. Then, there exists a vector δ̄ in the
null space of R̄ such that

E (δ̄ ) =K (PΔ T +ΔPT ).

That is,

E (δ̄ ) = diag(PΔ T +ΔPT )eT + e(diag(PΔ T +ΔPT ))T −2(PΔ T +ΔPT ), (9.16)

where P is a configuration matrix of (G, p) and E (y) is as defined in (9.9).

Proof. It is straightforward to verify that

2(pi − p j)T (δ i −δ j) = (PΔ T +ΔPT )ii +(PΔ T +ΔPT ) j j −2(PΔ T +ΔPT )i j.

Let L denote the space of n× n symmetric matrices A = (ai j) such that ai j = 0 if
i = j or if {i, j} ∈ E(G). Then, since (pi− p j)T (δ i−δ j) = 0 for all {i, j} ∈ E(G), it
follows that the right-hand side of Eq. (9.16) belongs to L . Therefore, there exists
δ̄ ∈ R

m̄ that satisfies Eq. (9.16) since the set {Ei j : {i, j} ∈ Ē(Ḡ)} forms a basis of
L . Now multiplying Eq. (9.16) from left and right by ZT and Z, respectively, yields
ZTE (δ̄ )Z = 0. Thus, δ̄ belongs to null(R̄).

�

Now if δ is a trivial infinitesimal flex resulting from a translation, then Δ T =
e jeT

n , where e j is the jth standard unit vector in R
r. On the other hand, if δ is a
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trivial infinitesimal flex resulting from a rotation, then Δ T = QklPT , where Qkl is
the skew-symmetric matrix defined above. It is easy to verify that in both of these
cases, the right-hand side of Eq. (9.16) is identically zero. Consequently, if δ is
a trivial infinitesimal flex of (G, p), then δ̄ = 0. As a result, if δ̄ in Eq. (9.16) is
nonzero, then δ is a nontrivial infinitesimal flex.

Example 9.8 Let (G, p) be the framework depicted in Fig. 9.2, where δ1 = δ2 =
δ3 = δ4 = 0 and δ5 = [0,−1]T is a nontrivial infinitesimal flex. Hence, Eq. (9.16)
yields that δ̄ = [4 0 2]T , where the missing edges are listed in the order {1,5},{2,3}
and {4,5}. This agrees with Example 9.4, where we found that δ̄ = [2 0 1]T is a
basis of null(R̄).

Example 9.9 Consider the framework depicted in Fig. 9.4, where the missing edges
are listed in the order {1,4},{1,6},{2,3},{2,5},{3,6},{4,5}; and where

p1 =

[
0
0

]
, p2 =

[
3
0

]
, p3 =

[
0
2

]
, p4 =

[
3
2

]
, p5 =

[
1
1

]
and p6 =

[
2
1

]
.

We found, in Example 9.6, that

δ̄ = [2 1 −2 −1 −1 1]T

is a basis of null(R̄). On the other hand, one can verify that

δ 1 =

[−7
−3

]
,δ 2 =

[−7
3

]
,δ 3 =

[
7

−3

]
,δ 4 =

[
7
3

]
δ 5 =

[
0

−10

]
and δ 6 =

[
0

10

]

is a nontrivial infinitesimal flex of (G, p). Consequently, Eq. (9.16) yields that

δ̄ = 54[2 1 −2 −1 −1 1]T .

9.4.2 Geometric Interpretation of R̄

Let (G, p) be an r-dimensional bar framework where r ≤ n− 2. In this subsection,
we assume that the Cayley configuration spectrahedron F of (G, p) is full dimen-
sional; i.e., we assume that there exists ŷ ∈F such that X (ŷ) is PD. In other words,
we assume that there exists an (n−1)-dimensional framework that is equivalent to
(G, p). Then the rows of R̄ have a geometric interpretation in terms of the normal
cone of F at the origin [1, 2].

Lemma 9.2 ( [1]) Let (G, p) be an r-dimensional bar framework on n nodes, where
r ≤ n−2, and let F be its Cayley configuration spectrahedron as defined in (8.10).
Assume that there exists ŷ ∈F such that X (ŷ) is positive definite. Then the normal
cone NF (y0) is given by

NF (y0) = {c ∈ R
m̄ : ci j =−trace(Mi jY ), for some Y � 0 : trace(X (y0)Y ) = 0}.
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Proof. Let c = (ci j) in R
m̄, where ci j = −trace(Mi jY ) for some Y � 0 such that

trace(X (y0)Y ) = 0, and let y be any point in F . Then

cT (y0 − y) = trace((M (y)−M (y0))Y ) = trace((X (y)−X (y0))Y )≥ 0

since trace(X (y0)Y ) = 0, and since both matrices X (y) and Y are PSD. Therefore,
c ∈ NF (y0).

To prove the reverse direction, let c = (ci j) ∈ NF (y0) and consider the following
pair of dual SDP problems:

(P) max cT y (D) min trace(XY )
s. t. X +M (y) � 0 s. t. −trace(Mi jY ) = ci j for {i, j} ∈ Ē(Ḡ),

Y � 0,

where X is the projected Gram matrix of framework (G, p). Hence, y0 is
an optimal solution of (P). Moreover, Slater’s condition holds by our as-
sumption. Consequently, by SDP strong duality, there exists Y � 0 such that
cT y0 = trace(XY ) and ci j = −trace(Mi jY ) for all {i, j} ∈ Ē(Ḡ). The result fol-
lows since cT y0 − trace(XY ) =−trace(M (y0)+X)Y ) =−trace(X (y0)Y ) = 0.

�

The following corollary is an immediate consequence of Lemmas 9.2 and 3.8.

Corollary 9.1 ([2]) Let (G, p) be an r-dimensional bar framework on n nodes,
where r ≤ n− 2. Assume that there exists ŷ ∈ F such that X (ŷ) is positive defi-
nite. Let Z be a Gale matrix for (G, p). Then

NF (0) = {c ∈ R
m̄ : ci j = trace(ZT Ei jZΦ) for some Φ ∈S r̄

+}. (9.17)

Proof. Set y0 = 0 in Lemma 9.2. Then trace(XY ) = 0 implies that XY = 0
since both matrices X and Y are PSD. Let U be the matrix whose columns form
an orthonormal basis of null(X). Then Y = UΦUT for some r̄ × r̄ PSD matrix
Φ . Therefore, −trace(Mi jY ) = trace(V T Ei jVUΦUT )/2. The result follows from
Lemma 3.8.

�

As always, let e1, . . . ,er̄ denote the standard unit vectors in R
r̄. Then the follow-

ing r̄(r̄+1)/2 matrices:

ψkk = ekekT
for all k = 1, . . . , r̄,

ψkl =
1√
2
(ekelT

+ elekT
)+ ekekT

+ elelT
for all 1 ≤ k < l ≤ r̄

are obviously symmetric PSD and linearly independent. Thus, their conic hull is
a full-dimensional subset of S r̄

+, the PSD cone of order r̄; i.e., the dimension of
their conic hull is r̄(r̄ + 1)/2. Moreover, the conic hull of the r̄(r̄ + 1)/2 vectors
ckl = (ckl

i j) ∈ R
m̄, where
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ckl
i j =

1√
2

trace(ZT Ei jZψkl),

is a subset of NF (0). But

ckl
i j =

{√
2 zi

kz j
k if k = l

zi
kz j

l + z j
kzi

l +
√

2zi
kz j

k +
√

2zi
lz

j
l if k �= l,

where zl
k denotes the kth coordinate of the lth Gale transform zl . Hence,

ckl =

{
the (k,k)th row of R̄ if k = l,
the sum of the (k, l)th, (k,k)th and (l, l)th rows of R̄ if k �= l,

Hence, if rank(R̄) = m̄, then dim NF (0) = m̄. As a result, if a bar framework
(G, p), with full dimensional Cayley configuration spectrahedron F , is infinitesi-
mally rigid, then NF (0) is full dimensional; i.e., dim NF (0) = m̄.

Example 9.10 Consider the two-dimensional framework (G, p) depicted in Fig. 8.2
and discussed in Example 8.2. In this case, r̄ = 1 and Z = [1 −1 1 −1]T . Then

NF (0) = {c ∈ R
2 : c13 = 2ψ,c24 = 2ψ, where ψ ≥ 0}.

Obviously, NF (0) is one-dimensional in R
2 and (G, p) is infinitesimally flexible.

Note that the dual rigidity matrix in this case is R̄ = [
√

2
√

2].
Now consider the one-dimensional framework (G, p′) corresponding to y0 =

(y13 = 4 and y24 =−4) in Fig. 8.3. In this case, r̄ = 2 and

Z =

⎡

⎢
⎢
⎣

1 0
−2 1

0 1
1 −2

⎤

⎥
⎥
⎦ .

Then

NF (y0)= {c∈R
2 : c13 = trace(

[
0 1
1 0

]
ψ),c24 = trace(

[−4 5
5 −4

]
ψ), where ψ � 0}.

In this case,

c11 =

[
0

−2
√

2

]
,c22 =

[
0

−2
√

2

]
and c12 =

[
1

5−4
√

2

]
.

Obviously, NF (y0) is two-dimensional and (G, p′) is infinitesimally rigid. Note that
the dual rigidity matrix in this case is

R̄ =

⎡

⎣
0 −2

√
2

1 5
0 −2

√
2

⎤

⎦ .
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9.5 Combinatorial Local Rigidity

Suppose we restrict ourselves to bar frameworks with “typical” or generic configu-
rations, i.e., configurations possessing no special structure. Then in this case, as is
shown in this section, the local rigidity of framework (G, p) depends only on graph
G and not on configuration p. In other words, the local rigidity problem becomes
a purely combinatorial one [139, 97]. More formally, bar framework (G, p) is said
to be generic if the coordinates of p1, . . . , pn are algebraically independent over the
rationals. That is, if p1, . . . , pn do not satisfy any nonzero polynomial with ratio-
nal coefficients. Put differently, these coordinates can be treated as indeterminates.
Evidently, generic bar frameworks are regular points of the rigidity map fG. As a
result, the notions of local rigidity and infinitesimal rigidity coincide for generic
frameworks and such frameworks are either all locally flexible or all locally rigid.
In other words, local rigidity is a generic property of bar frameworks.

A graph G is said to be generically locally rigid in dimension r if there exists a
locally rigid r-dimensional generic bar framework (G, p). In this section, we char-
acterize generically locally rigid graphs in dimensions one and two. We begin first
with the one-dimensional case [128].

Theorem 9.13 Let (G, p) be a one-dimensional bar framework on n nodes. Then
(G, p) is locally rigid if and only if G is connected.

Proof. If G is not connected, then each connected component of G can be moved
relative to the other components and thus (G, p) is locally flexible.

To prove the reverse direction, assume that G is connected and note that the
rigidity matrix R in this case has rank ≤ n− 1. Let M be the node-edge incidence
matrix of G. Hence, rank(M) = n− 1 since G is connected. Moreover, the rigidity
matrix of (G, p) is given by R = QMT , where Q is the m × m diagonal matrix,
whose diagonal entries are indexed by the edges of G, where the diagonal en-
try corresponding to edge {i, j} is equal to pi − p j, up to a minus sign. Now by
Assumption 8.1, pi − p j �= 0 for each {i, j} ∈ E(G) and thus Q is nonsingular.
Consequently, rank(R) = n−1. As a result, (G, p) is infinitesimally rigid and hence
is locally rigid since R has maximal rank.

�

Next, we turn to the two-dimensional case. Let G = (V,E) be a given graph and
let V ′ ⊂ V (G) and E ′ ⊂ E(G). We say that V ′ spans E ′, or E ′ is spanned by V ′,
if E ′ = {{i, j} ∈ E(G) : i, j ∈ V ′}. Furthermore, we say that G′ = (V ′,E ′) is an
induced subgraph of G = (V,E) if V ′ spans E ′. A graph G, with n nodes and m
edges, is called a Laman graph if it satisfies the following two conditions:

(i) m = 2n−3.
(ii) Every induced subgraph with n′ ≥ 2 nodes spans at most 2n′ −3 edges.

We will refer to Conditions (i) and (ii) as Laman Conditions. An immediate conse-
quence of this definition is that a Laman graph G on n ≥ 3 nodes cannot have a leaf,
i.e., a node of degree 1. This follows since if G has a leaf, say v, then the vertices
of G other than v span m− 1 > 2(n− 1)− 3 edges, a contradiction. Moreover, the
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nodes of G cannot all have degrees ≥ 4. To see this, suppose that every node of G has
degree ≥ 4. Then m ≥ 2n > 2n− 3, also a contradiction. As a result, every Laman
graph on n ≥ 3 nodes has at least one node of degree either 2 or 3. For example, the
complete graph Kn is a Laman graph if n = 2 or 3, but not if n ≥ 4.

We say that graph G admits a Henneberg construction [107] if there exists a
sequence of graphs K2 = G0,G1, . . . ,Gk−1,Gk = G such that Gi+1 is obtained from
Gi by either one of the following two steps:

H1: Add one new node and two new edges connecting this new node to two
existing nodes of Gi.

H2: Delete an existing edge of Gi. Add one new node and three new edges, where
two of these new edges connect the new node to the end nodes of the deleted
edge, and the third new edge connects the new node to any other existing node
of Gi.

The following lemma shows that Laman graphs are closed under H1 and H1 in
reverse.

Lemma 9.3 Let Gi be a Laman graph with n ≥ 3 nodes. If Gi+1 is a graph obtained
from Gi by Henneberg step H1, then Gi+1 is also a Laman graph. On the other hand,
if Gi has a node, say v, of degree 2, then there exists a Laman graph Gi−1 such that
Gi is obtained from Gi−1 by Henneberg step H1.

Proof. To prove the first part of the lemma, note that Gi+1 clearly satisfies Laman
Condition (i). Now let v be the node added by the H1 step. Then obviously deg(v) =
2. Let G′ be an induced subgraph of Gi+1 where |V (G′)| ≥ 2. If v �∈V (G′), then G′
is an induced subgraph of Gi and thus G′ automatically satisfies Laman Condition
(ii). Hence, assume that v ∈V (G′). Here we have to consider three cases: (a) V (G′)
contains v but none of its neighbors, (b) V (G′) contains v and one of its neighbors
and (c) V (G′) contains v and both of its neighbors. Let us consider case (c) first.
In this case, the nodes of G′ other than v span at most 2(|V (G′)| − 1)− 3 edges.
Thus, V (G′) spans at most 2(|V (G′)|−1)−3+2= 2|V (G′)|−3 edges. By a similar
argument, V (G′) spans at most 2|V (G′)| − 5 in case (a) and at most 2|V (G′)| −
4 in case (b). Hence, in all these three cases, G′ satisfies Laman Condition (ii).
Consequently, Gi+1 is a Laman graph.

To prove the second part, let Gi−1 be the graph obtained from Gi be deleting
node v and the two edges incident with it. Then obviously, Gi−1 satisfies Laman
Condition (i). Moreover, any induced subgraph of Gi−1 is also an induced subgraph
of Gi and hence automatically satisfies Laman Condition (ii). Consequently, Gi−1 is
a Laman graph.

�

Laman graphs are also closed under H2 and H2 in reverse.

Lemma 9.4 Let Gi be a Laman graph with n ≥ 4 nodes. If Gi+1 is a graph obtained
from Gi by Henneberg step H2, then Gi+1 is also a Laman graph. On the other hand,
if Gi has a node, say v, of degree 3, then there exists a Laman graph Gi−1 such that
Gi is obtained from Gi−1 by Henneberg step H2.
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Proof. To prove the first part of the lemma, note that Gi+1 obviously satisfies
Laman Condition (i). Now let v be the node added by the H2 step. Then obvi-
ously deg(v) = 3. Let G′ be an induced subgraph of Gi+1 where |V (G′)| ≥ 2. If
v �∈ V (G′), then G′ is an induced subgraph of Gi and hence G′ automatically satis-
fies Laman Condition (ii). Hence, assume that v ∈ V (G′). Consider the case where
all three neighbors of v are in V (G′). Then the nodes of G′ other than v span at most
2(|V (G′)|−1)−4 edges since one edge between the neighbors of v is deleted. Thus,
V (G′) spans at most 2(|V (G′)|−1)−4+3 = 2|V (G′)|−3. The cases where one or
more of the neighbors of v are not in V (G′) also span at most 2|V (G′)| − 3. Thus,
Gi+1 satisfies Laman Condition (ii) and consequently, Gi+1 is a Laman graph.

To prove the second part, we need the following two claims. For i = 1,2,3, let Hi

be an induced subgraph of Gi−1 with ni nodes and mi edges. Following [138], we
say that V (Hi) is tight if mi = 2ni −3.

Claim 1: Let both V (H1) and V (H2) be tight and assume that |V (H1)∩V (H2)| ≥ 2.
Then V (H1)∪V (H2) is tight.

A useful observation is that V (H1)∩V (H2) spans the edges of E(H1)∩E(H2),
while E(H1)∪E(H2) is a subset of the edges of Gi−1 spanned by V (H1)∪V (H2).
This follows since an edge {i, j} where i ∈V (H1) and j ∈V (H2) is in the latter set
but not in the former one.

Proof of Claim 1: Let m′ = |E(H1)∩E(H2)|, n′ = |V (H1)∩V (H2)|, m = |E(H1)∪
E(H2)| and n = |V (H1)∪V (H2)|. Then m = m1 +m2 −m′ and n = n1 + n2 − n′.
Moreover, m− 2n+ 3 = −m′ + 2n′ − 3. But, m′ ≤ 2n′ − 3 since n′ ≥ 2 and thus
m ≥ 2n−3. But m ≤ 2n−3 and hence m = 2n−3.

Claim 2: Let i, j,k be the neighbors of v in Gi and assume that i, j are in V (H1),
i,k are in V (H2) and j,k are in V (H3). Then, at least one of the sets V (H1),V (H2)
and V (H3) is not tight.

Proof of Claim 2: By way of contradiction, assume that V (H1),V (H2), and V (H3)
are all tight. We need to consider two cases:

Case 1: |V (H1)∩V (H2)|= |V (H1)∩V (H3)|= |V (H2)∩V (H3)|= 1. Then V (H1)∩
V (H2)∩V (H3) = /0. Let m = |E(H1)∪E(H2)∪E(H3)|, then m = m1 +m2 +m3.
Now let n = |V (H1)∪V (H2)∪V (H3)|, thus n = n1 + n2 + n3 − 3. Since by as-
sumption mi = 2ni − 3 for i = 1,2,3, it follows that m = 2(n+ 3)− 9 = 2n− 3;
i.e., V (H1)∪V (H2)∪V (H3) is tight. Consequently, the subgraph of Gi induced by
V (H1)∪V (H2)∪V (H3)∪{v} spans ≥ m+3 = 2n > 2(n+1)−3, a contradiction.

Case 2: At least one of the above three cardinalities, say |V (H1)∩V (H2)|, is ≥ 2.
Let m = |E(H1)∪E(H2)| and n = |V (H1)∪V (H2)|. Then {i, j,k}⊆V (H1)∪V (H2).
Now by assumption V (H1) and V (H2) are tight and thus, by claim 1, V (H1)∪V (H2)
is tight. Therefore, the subgraph of Gi induced by V (H1)∪V (H2)∪{v} spans ≥ m+
3= 2n> 2(n+1)−3, a contradiction. Hence, in both cases, we have a contradiction
and the proof of Claim 2 is complete.

Now assume that H1 is not tight and thus |E(H1)| < 2|V (H1)| − 3. By taking
V (H1) = {i, j}, we conclude that {i, j} �∈ E(Gi). Let Gi−1 be the graph obtained
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from Gi be deleting node v and the three edges incident with it and adding edge
{i, j}. Then obviously Gi−1 satisfies Laman Condition (i). Now let G′ be an induced
subgraph of Gi−1. If either i or j is not in V (G′), then G′ is an induced subgraph
of Gi and hence automatically satisfies Laman Condition (ii). Therefore, assume
that both i and j are in V (G′). Thus, V (G′) = V (H1) and E(G′) = E(H1)∪{i, j}.
Consequently, |E(G′)| = |E(H1)|+ 1 ≤ 2|V (G′)| − 3 and thus G′ satisfies Laman
Condition (ii). As a result, Gi+1 is a Laman graph.

�

As the following theorem shows, Laman graphs are precisely those graphs which
admit a Henneberg construction.

Theorem 9.14 A graph G is a Laman graph if and only if it admits a Henneberg
construction.

Proof. This follows from Lemmas 9.3 and 9.4 since every Laman graph on n ≥ 3
nodes must have either a node of degree 2 or a node of degree 3.

�

Next, we show that generically locally rigid Laman graphs are closed under H1.

Lemma 9.5 Let (G, p) be a generic two-dimensional bar framework with n nodes
and m edges, where G is a Laman graph. Assume that G is obtained from Laman
graph G′ by Henneberg step H1. Further, assume that (G′, p′) is locally rigid, where
p′ is the restriction of p to G′. Then (G, p) is locally rigid.

Proof. Let R and R′ be the rigidity matrices of (G, p) and (G′, p′), respectively.
Wlog assume that node 1 is the new node of G and that nodes 2 and 3 are adjacent
to node 1. Also, wlog assume that the first two rows of R are indexed by the edges
{1,2} and {1,3}, respectively. Then

R =

⎡

⎣
(p1 − p2)T (p2 − p1)T 0 0 · · · 0
(p1 − p3)T 0 (p3 − p1)T 0 · · · 0

0 R′
.2 R′

.3 R′
.4 · · · R′

.n

⎤

⎦ ,

where R′
. j denotes the two columns of R′ associated with node j. Let ωT =

[α β λ T ], where α and β are scalars and λ ∈ R
m−2. Then ωT R = 0 implies,

by examining the first two columns of R, that α = β = 0 since p1, p2, p3 are not
collinear. Therefore, λ = 0 since the rows of R′ are linearly independent. Conse-
quently, the rows of R are linearly independent and thus rank(R) = m.

�

Generically locally rigid Laman graphs are also closed under H2.

Lemma 9.6 Let (G, p) be a generic two-dimensional bar framework with n nodes
and m edges, where G is a Laman graph. Assume that G is obtained from Laman
graph G′ by Henneberg step H2. Further, assume that (G′, p′) is locally rigid, where
p′ is the restriction of p to G′. Then (G, p) is locally rigid.

Proof. Let R and R′ be the rigidity matrices of (G, p) and (G′, p′), respectively.
Wlog assume that nodes 2, 3 and 4 are adjacent to node 1, the new node of G; and
that {2,3} is the deleted edge. Further, assume, wlog, that the first three rows of R
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are indexed by the edges {1,2}, {1,3} and {1,4}. Following [138], let us consider
configuration q where q1 = (q2 +q3)/2 and (q1 −q4) is not parallel to q2 −q3 (see
Fig. 9.5). Obviously, q is nongeneric. To prove the lemma, it suffices to show that
R for (G,q) has rank m since this would imply that rank(R) ≥ m for any generic
(G, p). To this end,

R =

⎡

⎢⎢
⎣

1
2 (q

3 −q2)T 1
2 (q

2 −q3)T 0 0 0 · · · 0
1
2 (q

2 −q3)T 0 1
2 (q

3 −q2)T 0 0 · · · 0
(q1 −q4)T 0 0 (q4 −q1)T 0 · · · 0

0 R̄′
.2 R̄′

.3 R̄′
.4 R̄′

.5 · · · R̄′
.n

⎤

⎥⎥
⎦ ,

where R̄′
. j denotes the two columns of R′, after deleting the row of R′ indexed by

edge {2,3}, associated with node j. Let ωT = [α β γ λ T ], where α , β , and γ are
scalars and λ ∈ R

m−3. Then ωT R = 0 implies, by examining the first two columns
of R, that α = β and γ = 0 since (q1 − q4) is not parallel to q2 − q3. Therefore,
ωT R = 0 reduces to

[α/2 λ T ]

[
(q2 −q3)T (q3 −q2)T 0 0 · · · 0

R̄′
.2 R̄′

.3 R̄′
.4 R̄′

.5 · · · R̄′
.n

]
= [α/2 λ T ]R′ = 0.

Hence, α = 0 and λ = 0 since the rows of R′ are linearly independent. Conse-
quently, the rows of R are linearly independent and thus rank(R) = m.

�

It should be pointed out that the proofs of Lemmas 9.5 and 9.6 amount to showing
that the considered frameworks admit only zero stresses. In fact, if (G, p) is a two-
dimensional framework with n nodes and m = 2n−3 edges, then (9.3) implies that
the dimension of the space of stress of (G, p) is equal to the dimension of its space of
nontrivial infinitesimal flexes. As a result, framework (G, p) is infinitesimally rigid
if and only if it does not admit any nonzero stress.

4 1

2

3

Fig. 9.5 The bar framework (G,q) of Example 9.11. Note that (G,q) has one missing edge namely
{2,3}

Example 9.11 To illustrate the proof of Lemma 9.6, let (G,q) be the two-
dimensional nongeneric framework depicted in Fig. 9.5 and let R be its rigidity
matrix. Then G is obtained from K3 by an H2 step. Clearly, (G,q) admits no
nonzero stress and hence rank(R) = 5. Another way to see this is to note that the
dual rigidity matrix of (G,q) is R̄ =

√
2, i.e., rank(R̄) = m̄ = 1.
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Theorem 9.15 (Laman [127]) Let G be a graph with n nodes and m = 2n − 3
edges. Then G is generically locally rigid in dimension 2 if and only if G is a Laman
graph.

Proof. To prove the “only if” part, assume that G is not a Laman graph and let
(G, p) be a generic two-dimensional framework with rigidity matrix R. Then there
exists an induced subgraph G′ such that |E(G′)| > 2|V (G′)| − 3. Hence, the rows
of R indexed by E(G′) are linearly dependent. Therefore, the rows of R are linearly
dependent and thus rank(R)< m. Consequently, (G, p) is not locally rigid.

The “if” part is proved by induction on n with induction base n = 2 since K2 is
obviously locally rigid. The induction steps use Lemmas 9.3, 9.4, 9.5, and 9.6 and
the fact that every Laman graph must have at least one node of degree either 2 or 3.

�

1 32

4 5 6

G1

1 32

4 5 6

G2

Fig. 9.6 The graphs of Example 9.12

Example 9.12 Consider the two graphs depicted in Fig. 9.6. Graph G1 is a Laman
graph and thus is generically locally rigid in dimension 2, while graph G2 is not a
Laman graph and thus is generically locally flexible in dimension 2. The subgraph
of G2 induced by the nodes V ′ = {1,2,4,5} spans six edges and thus violates Laman
Condition (ii).

Let (G, p) be a two-dimensional locally rigid framework. We say that (G, p) is
minimally locally rigid if it becomes locally flexible upon the deletion of any of its
edges. Hence, if (G, p) is minimally locally rigid, then m= 2n−3. Evidently, Laman
graphs are the generically minimally locally rigid graphs in dimension 2. Using
matroid theory, Lovász and Yemini [139] slightly generalized Laman theorem. Let
(G, p) be a generic two-dimensional bar framework. The generic degree of freedom
of a graph G, denoted by φ(G), is defined as

φ(G) = 2n−3− rank(R),

where R is the rigidity matrix of (G, p). Hence, (G, p) is locally rigid if and only if
φ(G) = 0. A collection of nonempty subsets E1, . . . ,Ek of E(G) is called a partition
of E(G) if Ei ∩E j = /0 whenever i �= j and E1 ∪·· ·∪Ek = E(G).
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Theorem 9.16 (Lovász and Yemini [139]) The generic degree of freedom of graph
G on n nodes, n ≥ 2, is given by

φ(G) = 2n−3−min
k

∑
i=1

(2ni −3) (9.18)

where the minimum is taken over all partitions E1, . . . ,Ek of E(G) and ni is the
number of nodes incident to Ei.

Corollary 9.2 (Lovász and Yemini [139]) Let (G, p) be a generic two-dimensional
bar framework on n nodes. Then (G, p) is locally rigid if and only if

2n−3 ≤
k

∑
i=1

(2ni −3) (9.19)

for every partition E1, . . . ,Ek of E(G), where ni denotes the number of nodes inci-
dent to Ei.

Consider the partitioning of E(G) into m subsets each consisting of a single edge.
Then ∑m

i=1(2ni −3) = m. As a result, any graph that satisfies Inequality (9.19) must
have at least 2n−3 edges. Next, we show that Corollary 9.2 is equivalent to Laman
Theorem. Let G have n nodes and m = 2n−3 edges.

Now assume that (G, p) is locally rigid by Corollary 9.2 and let G′ be an in-
duced subgraph of G with n′ nodes and m′ edges. Consider the partition of E(G)
into m−m′ + 1 subsets such that E1 = E ′(G′) and each of the remaining subsets
E2, . . . ,Em−m′+1 consists of a single edge of E(G)\E ′(G′). Let n1 denote the num-
ber of nodes incident to E ′(G′), then n1 ≤ n′ since both end nodes of every edge in
E ′(G′) are in G′. Therefore, Inequality (9.19) implies that

m ≤ 2n1 −3+m−m′.

Therefore, m′ ≤ 2n′ −3 and thus (G, p) is locally rigid by Laman Theorem.
To prove the reverse direction, assume that (G, p) is locally rigid by Laman Theo-

rem and let E1, . . . ,Ek be a partition of E(G) where |Ei|=mi. For i= 1, . . . ,k, let V ′i
be the set of nodes incident to Ei and let ni = |V ′i|. Let G′1, . . . ,G′k be the subgraphs
of G induced by V ′1, . . . ,V ′k, respectively, and let m′

i = |E ′(G′i)|. Then Ei ⊆ E ′(G′i)
and thus mi ≤ m′

i. Moreover, for each i = 1, . . . ,k, we have m′
i ≤ 2ni −3. Therefore,

k

∑
i=1

(2ni −3)≥
k

∑
i=1

m′
i ≥ m.

Hence, (G, p) is locally rigid by Corollary 9.2.
We conclude this chapter by noting that generically locally rigid graphs in dimen-

sion 2, i.e., Laman graphs, can be recognized by a fast algorithm due to Jacobs and
Hendrickson [115] known as the pebble game (see also [133]). Laman graphs can
also be efficiently recognized by matroidal methods [157, 83, 139]. On the other
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hand, a characterization of generically locally rigid graphs in dimension 3 is not
known. In fact, the three-dimensional analogue of Laman Conditions namely:

(i) |E(G)|= 3|V (G)|−6,
(ii) |E(G′)| ≤ 3|V (G′)|−6 for each induced subgraph G′ with |V (G′)| ≥ 3,

are not sufficient for generic local rigidity in dimension 3 as shown by the so-called
double banana graph [173, p. 14]. It should be pointed out that Condition (ii) triv-
ially holds if |V (G′)|= 3 or 4.



Chapter 10
Universal and Dimensional Rigidities

In this chapter, we study the universal rigidity problem of bar frameworks and the
related problem of dimensional rigidity. The main tools in tackling these two prob-
lems are the Cayley configuration spectrahedron F , defined in (8.10), and Ω , the
stress matrix, defined in (8.13). The more general problem of universally linked pair
of nonadjacent nodes is also studied and the results are interpreted in terms of the
Strong Arnold Property and the notion of nondegeneracy in semidefinite program-
ming.

10.1 Definitions and Basic Results

Recall that Dp is the EDM defined by configuration p and H is the adjacency matrix
of graph G. Also, recall that (◦) denotes the Hadamard product.

Definition 10.1 Let (G, p) be an r-dimensional bar framework with n nodes. Then
(G, p) is said to be universally rigid if for any integer s : 1 ≤ s ≤ n− 1, there does
not exist an s-dimensional bar framework (G, p′) such that H ◦Dp′ = H ◦Dp and
Dp′ �= Dp.

In other words, (G, p) is universally rigid if every bar framework (G, p′) that is
equivalent to (G, p) is actually congruent to it. Note that the notion of universal
rigidity is equivalent to the uniqueness of EDM completions, i.e., a given EDM
completion is unique if and only if the corresponding bar framework is universally
rigid. Moreover, from a geometric viewpoint, (G, p) is universally rigid if and only
if its Cayley configuration spectrahedron is a singleton, i.e., F = {0}. We should
remark here that the notion of unique localizability of So and Ye [179] is very close,
but not identical, to the notion of universal rigidity. Evidently, universal rigidity
implies local rigidity but the converse is not true. As a result, universal rigidity is a
stronger notion than local rigidity.
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As will be shown below, the notions of affine motions and dimensional rigidity
are indispensable for the study of universal rigidity. An affine motion in R

r is a map
f : Rr → R

r of the form
f (pi) = Api +b (10.1)

for all pi ∈ R
r, where A is an r× r nonsingular matrix1 and b is a vector in R

r. Ob-
serve that if A is orthogonal, then the affine motion is a rigid motion. The following
lemma is an immediate consequence of (10.1).

Lemma 10.1 Let (G, p) and (G, p′) be two r-dimensional bar frameworks on n
nodes. Then configuration p′ is obtained from configuration p by an affine motion if
and only if the Gale spaces of (G, p) and (G, p′) are equal.

Proof. The “only if” part is obvious. To prove the “if” part, assume that (G, p) and
(G, p′) have the same Gale space and let P and P′ be two configuration matrices of
(G, p) and (G, p′), respectively. Then col([P′ e]) = col([P e]). Hence, P′ = PA+ebT

for some r× r matrix A and some b ∈ R
r. Wlog assume that PT e = P′T e = 0. Then

b = 0 and thus A is nonsingular since both P and P′ have rank r.
�

Let (G, p) be an r-dimensional bar framework. (G, p) is said to admit a nontrivial
affine flex if there exists an r-dimensional bar framework (G, p′) such that: (i) (G, p′)
is equivalent, but not congruent, to (G, p) and (ii) configuration p′ is obtained from
configuration p by an affine motion; in which case, we say that (G, p′) is obtained
from (G, p) be a nontrivial affine flex. For example, in Fig. 10.1, framework (a),
unlike framework (b), admits a nontrivial affine flex.

Lemma 10.2 Let (G, p) be an r-dimensional bar framework with n nodes, r ≤ n−
2. Let X be the projected Gram matrix of (G, p) and let U be the matrix whose
columns form an orthonormal basis of null(X). Then the following two statements
are equivalent:

(i) (G, p) admits a nontrivial affine flex.
(ii) There exists a nonzero y ∈ R

m̄ such that

M (y)U = 0, (10.2)

where M (y) is defined in (9.6).

Proof. Assume that (G, p′) is obtained from (G, p) by a nontrivial affine flex. Let
X and X ′ be the projected Gram matrices of (G, p) and (G, p′), respectively. Then

X ′ = X +M (y)

for some nonzero y ∈R
m̄ and the Gale spaces of (G, p) and (G, p′) are equal. There-

fore, by Lemma 3.8, M (y)U = (X ′ −X)U = 0 and thus Statement (i) implies State-
ment (ii).

1 Affine motions are often defined without the nonsingularity assumption on A. However, this
assumption is more convenient for our purposes.
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To prove the other direction, assume that there exists a nonzero y ∈R
m̄ such that

M (y)U = 0. Let X = WΛW T be the spectral decomposition of X , where Λ is the
diagonal matrix consisting of the positive eigenvalues of X . Thus Q = [W U ] is
orthogonal. Let X ′ = X + tM (y), where t is a scalar. Now X ′ is the projected Gram
matrix of an r-dimensional framework (G, p′) that is equivalent, but not congruent,
to (G, p) if and only if X ′ is PSD of rank r. But

QT X ′Q =

[
Λ + tW T M (y)W 0

0 0

]
.

Therefore, X ′ is PSD of rank r for a sufficiently small t > 0. Moreover, (G, p′) is
obtained from (G, p) by a nontrivial affine flex since X ′U = 0.

�

In order to provide a geometric interpretation of Lemma 10.2, let F denote the
Cayley configuration spectrahedron of (G, p) and recall that face(x,F ) denotes the
smallest face of F containing x. Also, recall from Theorem 2.21 that the affine hull
of face(0,F ) is given by

aff(face(0,F )) = {y ∈ R
m̄ : M (y)U = 0}.

Consequently, (G, p) admits a nontrivial affine flex if and only if the dimension of
the affine hull of face(0,F ) is ≥ 1; i.e., aff(face(0,F )) �= {0}.

Next, we turn to the notion of dimensional rigidity.

Definition 10.2 Let (G, p) be an r-dimensional bar framework with n nodes, r ≤
n− 2. Then (G, p) is said to be dimensionally rigid if for any integer s : r + 1 ≤
s ≤ n− 1, there does not exist an s-dimensional bar framework (G, p′) such that
H ◦Dp′ = H ◦Dp.

In other words, if an r-dimensional bar framework (G, p) is dimensionally rigid
and if (G, p′) is equivalent to (G, p), then (G, p′) is of dimension r or less. Fur-
thermore, from a geometric viewpoint, (G, p) is dimensionally rigid if and only if
r ≥ rank(X (y)) for all y ∈F if and only if 0 lies in the relative interior of F (The-
orem 2.20). Clearly, universal rigidity implies dimensional rigidity but the converse
is not true. For example, in Fig. 10.1, framework (a) is dimensionally rigid since
it does not have an equivalent three-dimensional framework. Put differently, every
framework that is equivalent to (a) is of dimension 2 or 1. On the other hand, frame-
work (b) is not dimensionally rigid since it has an infinite number of equivalent
three-dimensional frameworks.

As the following theorem shows, the universal rigidity problem, i.e., the problem
of determining whether or not a given bar framework (G, p) is universally rigid, can
be split into two independent problems: the affine flexing problem, i.e., whether or
not (G, p) admits a nontrivial affine flex, and the dimensional rigidity problem, i.e.,
whether or not (G, p) is dimensionally rigid.

Theorem 10.1 (Alfakih [6]) Let (G, p) be an r-dimensional bar framework with n
nodes, r ≤ n− 2. Then (G, p) is universally rigid if and only if the two following
conditions hold.
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(i) (G, p) is dimensionally rigid.
(ii) (G, p) does not admit a nontrivial affine flex.

We present two proofs of this theorem, the second of which is geometric.
First proof. The “only if” part is obvious. To prove the “if” part assume, by way
of contradiction, that Conditions (i) and (ii) hold and (G, p) is not universally rigid.
Then, there exists a framework (G, p′) such that (G, p′) is equivalent, but not con-
gruent, to (G, p). Let X and X ′ be the projected Gram matrices of (G, p) and (G, p′),
respectively. Then X ′ =X (y) = X +M (y) for some nonzero y in R

m̄. Now, for a
sufficiently small δ > 0, X (ty) = X + tM (y) is PSD for all t : 0 ≤ t ≤ δ . More-
over, by the lower semicontinuity of the rank function, rank(X (ty)) ≥ r for all
t : 0 ≤ t ≤ δ . Hence, by Condition (i), rank(X (ty)) = r for all t : 0 ≤ t ≤ δ .

Let U be the matrix whose columns form an orthonormal basis of null(X) and
let X =WΛW T be the spectral decomposition of X , where Λ is the diagonal matrix
consisting of the positive eigenvalues of X . Thus Q = [W U ] is orthogonal. Hence,

QTX (ty)Q =

[
Λ + t W T M (y)W t W T M (y)U

t UT M (y)W t UT M (y)U

]

is PSD and of rank r for all t : 0 ≤ t ≤ δ . Therefore, UTM (y)U = 0 and thus
W TM (y)U = 0. Consequently, M (y)U = 0, which, in light of Lemma 10.2, con-
tradicts Condition (ii).

�

Second proof. Again the “only if” part is obvious. Now Condition (i) implies that
0 lies in the relative interior of F , where F denotes the Cayley configuration
spectrahedron of (G, p). Hence, by Theorem 2.20, face(0,F ) = face(F ,F ) =F .
On the other hand, Condition (ii) implies that aff(face(0,F )) = {0}. Therefore,
F = {0} and hence, (G, p) is universally rigid.

�

1

2

3

4

(a)

1 2 3

4

(b)

Fig. 10.1 Two two-dimensional bar frameworks. Edge {1,3} in framework (a) is drawn as an
arc to make edges {1,2} and {2,3} visible. Framework (a) is dimensionally rigid and admits a
nontrivial affine flex. Framework (b) is not dimensionally rigid and does not admit a nontrivial
affine flex
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Consider the frameworks of Fig. 10.1. Both frameworks are not universally rigid
since framework (a) admits a nontrivial affine flex, while framework (b) is not di-
mensionally rigid.

Theorem 10.1 allows us to tackle the universal rigidity problem by tackling the
affine flexing problem and the dimensional rigidity problem separately.

10.2 Affine Flexes

We present two characterizations of bar frameworks that admit nontrivial affine
flexes. These characterizations are then used to identify four cases where a given
bar framework does not admit a nontrivial affine flex. As a result, in these cases,
universal rigidity coincides with dimensional rigidity. The first of these characteriza-
tions, given in the following lemma, is in terms of E(G), the edges of the underlying
graph, and the points p1, . . . , pn of configuration p.

Lemma 10.3 (Connelly [61]) Let (G, p) be an r-dimensional bar framework. Then
the following two statements are equivalent:

(i) (G, p) admits a nontrivial affine flex.
(ii) There exists a nonzero symmetric r× r matrix Φ such that

(pi − p j)T Φ(pi − p j) = 0 for all {i, j} ∈ E(G). (10.3)

Proof. Assume that Statement (i) holds and let (G, p′) be a bar framework ob-
tained from (G, p) be a nontrivial affine flex. Then

||pi − p j||2 = ||p′i − p′ j||2 = (pi − p j)T AT A(pi − p j) for all {i, j} ∈ E(G).

Therefore, (pi− p j)T Φ(pi− p j) = 0 for all {i, j} ∈E(G), where Φ = I−AT A. Note
that Φ is symmetric and nonzero since A is not orthogonal.

On the other hand, assume that Statement (ii) holds and observe that I − εΦ is
PD for a sufficiently small ε > 0. Then I − εΦ can be factorized as I − εΦ = AT A,
where A is nonsingular. Note that A is not orthogonal since ε > 0. Let p′i = Api for
i = 1, . . . ,n. Then ||p′i − p′ j||2 = (pi − p j)T (I − εΦ)(pi − p j) = ||pi − p j||2 for all
{i, j} ∈ E(G). Hence, (G, p′) is obtained from (G, p) by a nontrivial affine flex and
thus Statement (i) holds.

�

Let C be the m× (r(r + 1)/2) matrix whose rows are indexed by the edges of
(G, p), where the row indexed by edge {i, j} is given by

(pi − p j)T ⊗s (pi − p j)T . (10.4)

Evidently, there exists an r× r nonzero symmetric Φ satisfying (10.3) if and only if
C has a nontrivial null space. Few remarks are in order here. First, if a bar framework
satisfies Condition (ii) of Lemma 10.3, then we say that the edge directions of (G, p)
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lie on a conic at infinity [61]. Second, we saw earlier that (n− 1)-dimensional bar
frameworks are locally flexible. Now by Lemma 10.3, such frameworks actually
admit nontrivial affine flexes. This follows since for r = n− 1 and for incomplete
graphs, the null space of A is nontrivial since m < n(n− 1)/2. Third, as a result of
Assumption 8.1, any one-dimensional bar framework with at least one edge does not
admit a nontrivial affine flex. As a result, universal rigidity and dimensional rigidity
coincide on the line.

Using Lemma 10.3, we present, next, the first case where framework (G, p) does
not admit a nontrivial affine flex.

Theorem 10.2 (Connelly [61]) Let (G, p) be an r-dimensional bar framework. If
(G, p) is generic and if deg(i)≥ r for every node i of G. Then (G, p) does not admit
a nontrivial affine flex.

Proof. First, note that, by the premise of the theorem, the number of edges of G is
m≥ nr/2≥ r(r+1)/2. Thus, matrix C as defined in (10.4) has at least as many rows
as columns. Also, note that it suffices to prove that the result is true for a particular
framework, not necessarily generic. The proof is by induction on r. For r = 2, (G, p)
has at least 3 edges. If no two of these edges are parallel, then null(C) = {0} and
the assertion of the theorem is true.

Now assume that the assertion of the theorem is true for r = k and consider the
(k+ 1)-dimensional bar framework (G, p), where pn = 0 and p1, . . . , pn−1 lie in a
hyperplane, say [138] H = {p ∈ R

k+1 : pT e1 = 1}, where e1 is the first standard

unit vector in R
k+1. Thus, pi =

[
1
p′i

]
for i = 1, . . . ,n− 1. Let G′ be the graph ob-

tained from G by deleting node n and the edges incident to it. Wlog assume that the
edges incident to node n are {1,n}, . . . ,{s,n} where s ≥ k+ 1. Let (G′, p′) be the
k-dimensional bar framework where p′ = (p′1, . . . , p′n−1) and assume that (G′, p′)
is generic. Obviously, deg(i)≥ k for each node i of G′.

Let (pi − p j)T Φ(pi − p j) = 0 for all {i, j} ∈ E(G) and assume that Φ is par-

titioned as Φ =

[
σ ρT

ρ Φ ′

]
, where Φ ′ is k × k, ρ ∈ R

k and σ is a scalar. Clearly,

E(G) = E(G′)∪{{1,n}, . . . ,{s,n}}.
Then, for all {i, j} ∈ E(G′), the equation (pi − p j)T Φ(pi − p j) = 0 reduces to

[0 (p′i − p′ j)T ]

[
σ ρT

ρ Φ ′

][
0

p′i − p′ j

]
= (p′i − p′ j)T Φ ′(p′i − p′ j) = 0.

Hence, by the induction hypothesis, Φ ′ = 0. Consequently, for edge {i,n}, the equa-
tion (pi − p j)T Φ(pi − p j) = 0 reduces to

[1 (p′i)T ]

[
σ ρT

ρ 0

][
1
p′i

]
= [1 (p′i)T ]

[
σ
2ρ

]
= 0.

As a result, for edges {1,n}, . . . ,{k+1,n}, the equation (pi − p j)T Φ(pi − p j) = 0
reduces to
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⎡

⎢
⎣

1 (p′1)T

...
...

1 (p′k+1)T

⎤

⎥
⎦
[

σ
2ρ

]
= 0. (10.5)

But since (G′, p′) is generic, the points p′1, . . . , p′k+1 are affinely independent.
Hence, the matrix in (10.5) is nonsingular and thus σ = 0 and ρ = 0. Therefore,
Φ = 0 and the result follows.

�

The second characterization of bar frameworks that admit nontrivial affine flexes,
given in the following lemma, is in terms of Ē(Ḡ), the missing edges of the underly-
ing graph, and Gale matrix Z of configuration p. This characterization allows us to
replace the generic assumption in Theorem 10.2 by a general position assumption
and a rank assumption on the stress matrix.

Lemma 10.4 (Alfakih [9]) Let (G, p) be an r-dimensional bar framework with n
nodes, r ≤ n−2. Let Z be a Gale matrix of (G, p). Then the following two statements
are equivalent:

(i) (G, p) admits a nontrivial affine flex.
(ii) There exists a nonzero y ∈ R

m̄ such that

V TE (y)Z = 0, (10.6)

where E (y) is defined in (9.9) and V is defined in (3.11).

Proof. In light of Lemma 3.8, this is just a restatement of Lemma 10.2.
�

By definition, if (G, p) admits a nontrivial affine flex, then (G, p) is infinitesi-
mally flexible. Thus, in light of Theorem 9.8 and Lemma 10.4, it should come as no
surprise that if V TE (y)Z = 0 for some nonzero y, then ZTE (y)Z = 0.

Example 10.1 Consider the frameworks of Fig. 10.1. A Gale matrix of both frame-
works is Z = [1 − 2 1 0]T . Note that V TE (y)Z = 0 is equivalent to E (y)Z = eζ .
Thus, for framework (a), the system of equation E (y)Z = eζ , i.e.,

⎡

⎢⎢
⎣

0 0 0 y14

0 0 0 0
0 0 0 y34

y14 0 y34 0

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1
−2

1
0

⎤

⎥⎥
⎦=

⎡

⎢⎢
⎣

ζ
ζ
ζ
ζ

⎤

⎥⎥
⎦

has a solution y14 =−y34 = 1, ζ = 0. Accordingly, framework (a) admits a nontriv-
ial affine flex. On the other hand, for framework (b), the only solution of

⎡

⎢⎢
⎣

0 0 y13 0
0 0 0 0

y13 0 0 0
0 0 0 0

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1
−2

1
0

⎤

⎥⎥
⎦=

⎡

⎢⎢
⎣

ζ
ζ
ζ
ζ

⎤

⎥⎥
⎦
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is the trivial solution y13 = ζ = 0. Accordingly, framework (b) does not admit a
nontrivial affine flex.

It is worth pointing out that matrix Φ of Lemma 10.3 can be written explicitly in
terms of vector y of Lemma 10.4 and vice versa. To this end, Eq. (10.3) is equivalent
to H ◦K (PΦPT ) = 0. Hence,

PΦPT = E (y)+aeT + eaT ,

where 2a = diag(PΦPT ). Consequently, by multiplying this equation from the left
by V T and from the right by Z, we obtain Eq. (10.6). Moreover, assuming that PT e=
0, we have

Φ = (PT P)−1PTE (y)P(PT P)−1,

E (y) = −1
2
K (PΦPT ).

Lemma 10.4 is particularly useful when the framework (G, p) is in general po-
sition. In fact, Lemma 10.4 is used to identify several cases where a bar framework
does not admit a nontrivial affine flex. But before we proceed, let us prove a stronger
version of Lemma 8.4 by dropping the requirement that Ω is PSD.

Lemma 10.5 Let (G, p) be an r-dimensional bar framework with n nodes and as-
sume that (G, p) is in general position in R

r. Let Ω be a stress matrix of (G, p) of
rank n− r−1. Then deg(i)≥ r+1 for every node i of G.

Proof. Let Ω = ZΨZT , then Ψ is nonsingular. By way of contradiction, assume
that deg(v) ≤ r for some node v. Then the vth column of Ω must have at least
r̄ = n−1− r zero entries. Wlog, assume that v = n and that the first r̄ entries of the
nth column of Ω are all zeros; i.e., the first r̄ entries of ZΨzn are all zeros. But by
Lemma 3.1, the square submatrix of Z indexed by the first r̄ rows and columns is
nonsingular. Thus, we have a contradiction since Ψ is nonsingular and zn �= 0.

�

Before we present another case of frameworks not admitting a nontrivial affine
flex, we need the following crucial lemma, which we will use repeatedly in the
sequel.

Lemma 10.6 ([16]) Let (G, p) be an r-dimensional bar framework on n nodes, r ≤
n−2, and let Ω be a nonzero stress matrix of (G, p). Then the systems of equations
V TE (y)Ω = 0 and E (y)Ω = 0 are equivalent, where E (y) is as defined in (9.9).

Proof. Obviously, if E (y)Ω = 0 for some y, then V TE (y)Ω = 0. Now assume
that V TE (y)Ω = 0. Then E (y)Ω = eζ T for some ζ in R

n. Hence, to complete the
proof, it suffices to show that ζ = 0. To this end, recall that Ωi j = 0 if {i, j} ∈ Ē(Ḡ)
and E (y)i j = 0 if either i = j or {i, j} ∈ E(G). Therefore, for i = 1, . . . ,n, we have
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(E (y)Ω)ii =
n

∑
j=1

E (y)i jΩ ji

= E (y)iiΩii + ∑
j:{i, j}∈E(G)

E (y)i jΩ ji + ∑
j:{i, j}∈Ē(Ḡ)

E (y)i jΩ ji

= 0.

Thus, diag(E (y)Ω) = ζ = 0.
�

Theorem 10.3 (Alfakih and Ye [20]) Let (G, p) be an r-dimensional bar frame-
work with n nodes, r ≤ n− 2. If (G, p) is in general position in R

r and if (G, p)
admits a stress matrix Ω of rank n− 1− r, then (G, p) does not admit a nontrivial
affine flex.

Proof. Let Ω be a stress matrix of (G, p) with rank r̄ = n− r− 1. Let Z be the
matrix consisting of the first r̄ columns of Ω . Then by Lemma 8.3, Z is a Gale matrix
of (G, p). Let V TE (y)Z = 0 for some y. Then, it follows from Lemma 10.6 that

E (y)Z = 0 (10.7)

But System (10.7) consists of n equations, one for each node of G, where the equa-
tion corresponding to node i is given by

∑
j:{i, j}∈Ē(Ḡ)

yi jz
j = 0. (10.8)

Now, by Lemma 10.5, deg(i) ≥ r+1 for every node i of G and thus the number of
nodes of G not adjacent to i is at most r̄−1. Therefore, the LHS of (10.8) is a linear
combination of at most r̄− 1 of the Gale transforms z1, . . . ,zn. But by Lemma 3.1,
each r̄ of the vectors z1, . . . ,zn are linearly independent. Consequently, the only
solution of Eq. (10.7) is y = 0 and the result follows.

�

Theorem 10.3 was strengthened and generalized in [17]. The third case of frame-
works not admitting a nontrivial affine flex is given in the following theorem.

Theorem 10.4 Let (G, p) be an r-dimensional bar framework with n nodes, r ≤
n−2. Assume that (G, p) is in general position in R

r. If deg(i)≥ r for all nodes i of
G and deg(v) = n−1 for some node v, then (G, p) does not admit a nontrivial affine
flex.

Proof. Let E (y)Z = eζ T for some ζ ∈ R
n−1−r. If deg(v) = n− 1, then the vth

row of E (y) has all zeros. Therefore, ζ = 0 and the rest of the proof proceeds as in
the proof of Theorem 10.3.

�

Finally, we present the fourth case of frameworks not admitting a nontrivial affine
flex.
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Theorem 10.5 Let (G, p) be an r-dimensional bar framework with n nodes, r ≤
n− 2. If (G, p) has a clique of size r+ 1 and if the nodes of this clique are affinely
independent, then (G, p) does not admit a nontrivial affine flex.

Proof. Wlog assume that the nodes of this clique are 1, . . . ,r + 1 and thus
p1, . . . , pr+1 are affinely independent. Let Z be a Gale matrix of (G, p). Then by

Lemma 3.7, we can assume that Z is of the form Z =

[
Z̄
Ir̄

]
, where r̄ = n−1− r. As

always, let ek denote the vector of all 1s in R
k. Then, clearly eT

r+1Z̄ =−eT
r̄ . Assume

that E (y) is partitioned as

E (y) =

[
0 E1(y1)

E T
1 (y1) E2(y2)

]
,

where E2(y2) is r̄× r̄. Then, E (y)Z = eζ T implies that

E1(y1) = er+1ζ T and E T
1 (y1)Z̄ +E2(y2) = er̄ζ T .

Hence, E2(y2) = er̄ζ T + ζ eT
r̄ . But diag(E2(y2)) = 0. Therefore, ζ = 0 and thus

E1(y1) = 0 and E2(y2) = 0. Consequently, y = 0 and the result follows.
�

Consider the r-dimensional bar framework (G, p) representing an ad hoc wireless
sensor network. If the number of anchors of (G, p) is ≥ r+ 1 and if these anchors
are affinely independent, then these anchors can be thought of as inducing a clique
of G. Consequently, by Theorem 10.5, framework (G, p) does not admit a nontrivial
affine flex.

Next, we turn to dimensional rigidity.

10.3 Dimensional Rigidity

The stress matrix Ω plays a crucial role in the dimensional rigidity problem. The
following theorem presents a sufficient condition for dimensional rigidity in terms
of Ω . As Example 10.2 below shows, this sufficient condition is not necessary in
general. We will elaborate on this point later in this section.

Theorem 10.6 (Alfakih [6]) Let (G, p) be an r-dimensional bar framework with n
nodes, r ≤ n− 2. If (G, p) admits a PSD stress matrix Ω of rank n− 1− r, then
(G, p) is dimensionally rigid.

Proof. We prove the contrapositive statement. Hence, assume that (G, p) is not
dimensionally rigid and let X be the projected Gram matrix of (G, p). Therefore,
there exists y �= 0 such that X (y) = X +M (y)� 0 and rank(X (y))≥ r+1. Let W
and U be the two matrices whose columns form orthonormal bases of col(X) and
null(X), respectively, and thus Q = [W U ] is orthogonal. Hence,
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QTX (y)Q =

[
W T XW +W TM (y)W W TM (y)U

UTM (y)W UTM (y)U

]
� 0.

Consequently, UTM (y)U � 0, �= 0 and null(UTM (y)U)⊆ null(W TM (y)U).
Now by Lemma 3.8, UTM (y)U � 0, �= 0 if and only if

ZTE (y)Z = ∑
{i, j}∈Ē(Ḡ)

yi j(z
iz jT + z jziT )� 0, �= 0. (10.9)

But, by the homogeneous Farkas lemma (Corollary 2.4), (10.9) holds if and only if
there does not exist Ψ � 0 such that ziTΨz j = 0 for all {i, j} ∈ Ē(Ḡ). Consequently,
in light of Theorem 8.4, (10.9) holds if and only if (G, p) admits no PSD stress
matrix Ω of rank n−1− r.

�

The reader is encouraged to find a simple geometric proof of Theorem 10.6. By
combining Theorems 10.6 and 10.1 we obtain the following sufficient condition for
universal rigidity.

Theorem 10.7 (Connelly [57, 60] and Alfakih [6]) Let (G, p) be an r-dimensional
bar framework with n nodes, r ≤ n−2. If the following two conditions hold:

(i) (G, p) admits a PSD stress matrix Ω of rank n−1− r.
(ii) (G, p) does not admit a nontrivial affine flex,

then (G, p) is universally rigid.

Theorem 10.7 will be strengthened below (Theorem 10.13). Also, combining
Theorems 10.6, 10.1 and 10.3, we have

Theorem 10.8 (Alfakih and Ye [20]) Let (G, p) be an r-dimensional bar frame-
work with n nodes, r ≤ n− 2. If (G, p) is in general position in R

r and if (G, p)
admits a PSD stress matrix Ω of rank n−1− r, then (G, p) is universally rigid.

Recall that the maximum possible rank of a stress matrix is n− 1− r. Now as
we mentioned earlier and as the next example shows, the converse of Theorem 10.6
is not true in general [6]. That is, if (G, p) is dimensionally rigid, then it may or
may not admit a PSD stress matrix of maximal rank. This issue will be investigated
in detail in this and the next section. An important point to bear in mind is that
if (G, p) is dimensionally rigid, then Theorem 8.5 guarantees that (G, p) admits a
stress matrix Ω of rank ≥ 1. What is not guaranteed, however, is that rank(Ω) =
n− 1− r. In fact, by Theorem 5.10 and as will be discussed later in this section,
Ω attains its maximum rank if and only if the singularity degree of F , the Cayley
configuration spectrahedron of (G, p), is 1.

Now suppose that (G, p) does not admit a PSD stress matrix Ω of rank n− r−1.
Then, by Corollary 2.4, there exists a nonzero y such that UTM (y)U is a nonzero
PSD matrix. However, it could happen, as illustrated in the following example, that
null(UTM (y)U) �⊆ null(W TM (y)U) and consequently we cannot conclude that
X (y) = X +M (y) is PSD, i.e., we cannot conclude that (G, p) is not dimensionally
rigid.
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1

2

3

4

5

Fig. 10.2 The bar framework (G, p) of Example 10.2. Edge {4,5} is drawn as an arc to make
edges {2,4} and {2,5} visible. (G, p) is dimensionally rigid, however, it does not admit a PSD
stress matrix of rank n−1− r = 2

Example 10.2 ([6]) Consider the framework (G, p) depicted in Fig. 10.2. A config-
uration matrix and a Gale matrix of (G, p) are given by

P =

⎡

⎢⎢⎢⎢
⎣

−3 −5
1 2
0 −1
2 0
0 4

⎤

⎥⎥⎥⎥
⎦

and Z =

⎡

⎢⎢⎢⎢
⎣

2 0
0 2

−6 0
3 −1
1 −1

⎤

⎥⎥⎥⎥
⎦
.

Obviously, (G, p) is dimensionally rigid, in fact it is also universally rigid. In order
to find a stress matrix Ω , we have to find a 2× 2 symmetric matrix Ψ such that

z1TΨz2 = 0 and z3TΨz4 = 0. Thus, Ψ =

[
0 0
0 1

]
and hence (G, p) does not admit a

PSD stress matrix of rank n−1− r = 2.
Now let y12 = 1 and y34 =−2/3. Then

ZTE (y)Z = y12(z
1z2T

+ z2z1T
)+ y34(z

3z4T
+ z4z3T

) =

[
24 0
0 0

]
.

Moreover,

PTE (y)Z = y12(p1z2T
+ p2z1T

)+ y34(p3z4T
+ p4z3T

) =

[
10 −6
6 −32/3

]
.
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Clearly, null(ZTE (y)Z) � ⊆ null(PTE (y)Z), i.e., null(UTM (y)U) � ⊆ null
(W TM (y)U).

Observe that the framework (G, p) of Example 10.2, obviously, is not in general
position since p2, p4, and p5 are collinear. This raises the following question: Is
the converse of Theorem 10.6 true under the general position assumption? As the
following example shows [17], the answer is no.

1

2

3

4

5

6

(G, p) 1

2

3

4

5

6
7

(G′, p′)

Fig. 10.3 The bar frameworks of Example 10.3

Example 10.3 ([17]) Consider the framework (G, p) depicted in Fig. 10.3. A con-
figuration matrix and a stress matrix of (G, p) are given by

P =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

−2 −2
2 0
0 2

−1 −1
1 0
0 1

⎤

⎥
⎥⎥⎥⎥⎥
⎦

and Ω =

[
3I3 +E3 −6I3

−6I3 12I3 −2E3

]
,

where I3 and E3 are, respectively, the identity matrix and the matrix of all 1’s of
order 3. Since deg(i) = 3 for each node i and since (G, p) is in general position, it
follows that, for each node i, the system of equations

∑
j:{i, j}∈E(G)

ωi j(pi − p j) = 0

has a unique solution, up to multiplication by a scalar. Consequently, if we set Ω12 =
−ω12 = 1, then Ω is unique. Now (3I3 +E3) is PD and

(12I3 −2E3)−6I3(3I3 +E3)
−1 6I3 = (12I3 −2E3)−12(I3 − 1

6
E3) = 0.

Hence, by Schur complement, Ω is PSD of rank 3. Therefore, by Theorem 10.8,
framework (G, p) is universally rigid and thus dimensionally rigid.
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Now consider the framework (G′, p′) depicted also in Fig. 10.3. (G′, p′) is ob-
tained from (G, p) by adding one node, namely 7, and connecting it to nodes 2,3, and
6 such that (G′, p′) is in general position. Hence, (G′, p′) is also universally rigid
and thus dimensionally rigid. Let ω ′ be a stress on (G′, p′) and set Ω ′

12 = Ω12 = 1.
Then, by the uniqueness of Ω , it follows that Ω ′

13 = Ω13, Ω ′
14 = Ω14. Hence,

Ω ′
45 = Ω45 and Ω ′

46 = Ω46, which in turn implies that Ω ′
52 = Ω52 and Ω ′

56 = Ω56.
Again by the uniqueness of Ω , this implies that Ω ′

63 = Ω63 and Ω ′
67 = 0. Conse-

quently, Ω ′
73 = Ω ′

72 = 0 and thus Ω ′
23 = Ω23. As a result, the row and the column

of Ω ′ corresponding to node 7 have all zeros. Consequently, Ω ′ is PSD of rank 3.
Hence, the converse of Theorem 10.6 does not hold true under the general position
assumption.

Evidently, the genericity assumption is much stronger than that of general po-
sition and thus the following characterization of universal rigidity of generic bar
frameworks should come as no surprise.

Theorem 10.9 Let (G, p) be an r-dimensional bar framework on n nodes, r ≤ n−2.
Assume that (G, p) is generic. Then the following statements are equivalent:

(i) (G, p) is universally rigid.
(ii) (G, p) admits a PSD stress matrix Ω of rank n− r−1.

The fact that Statement (ii) implies Statement (i) is an immediate consequence of
Theorem 10.7, Theorem 10.2 and Lemma 10.5. Also, it trivially follows from The-
orem 10.8. On the other hand, the fact that Statement (i) implies Statement (ii) was
conjectured in [9] and proved by Gortler and Thurston in [90]. The following is a
rough sketch of their proof. Assume that Statement (i) holds and let Dp be the EDM
defined by (G, p). Let d = π(Dp), where π is defined in (5.3). Then the embed-
ding dimension of Dp is r and rank(X) ≤ r for all X � 0 such that π(KV (X)) = d.
Moreover, Theorem 5.9 implies that π(KV (S

n−1
+ )) = π(Dn) is closed. Thus, by

Theorem 5.10, it suffices to show that face(d,π(KV (S
n−1
+ ))) is exposed. But d is

generic since (G, p) is generic. Therefore, by Straszewicz Theorem (Theorem 1.43),
face(d,π(KV (S

n−1
+ ))) is exposed.

Connelly and Gortler obtained a characterization of dimensional rigidity without
the genericity assumption [63]. Before we present a refined version of this charac-
terization, we need the following definition. An n×n symmetric matrix Ω is said to
be a quasi-stress matrix of (G, p) if it satisfies the following properties:

(a) Ωi j = 0 for all {i, j} ∈ Ē(Ḡ).

(b) Ωe = 0.

(c) PT ΩP = 0, (10.10)

where P is a configuration matrix of (G, p) such that PT e = 0.
An immediate consequence of this definition is that if a quasi-stress matrix Ω is

PSD, then Ω is a stress matrix since in this case PT ΩP = 0 implies that ΩP = 0.
The following theorem is a refined version of the Connelly–Gortler characterization
of dimensional rigidity [63].
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Theorem 10.10 ([14]) Let (G, p) be an r-dimensional framework on n vertices in
R

r, r ≤ n− 2. Let P be a configuration matrix of (G, p) such that PT e = 0. Then
(G, p) is dimensionally rigid if and only if there exist nonzero quasi-stress matrices:
Ω 0,Ω 1, . . . ,Ω k, for some k ≤ n− r−2, such that:

(i) Ω 0 � 0, U T
1 Ω 1U1 � 0, . . . , U T

k Ω kUk � 0,
(ii) rank(Ω 0)+ rank(U T

1 Ω 1U1)+ · · ·+ rank(U T
k Ω kUk) = n− r−1,

(iii) PT Ω 1ρ1 = 0, . . . , PT Ω kρk = 0,

where ρ1, U1, . . . ,Uk and ξ1, . . . ,ξk are full column rank matrices defined as fol-

lows: col(ρ1) = null(

⎡

⎣
Ω 0

PT

eT

⎤

⎦), col(ξi) = null(ρT
i Ω iρi), Ui = [P ρi] for i = 1, . . . ,k

and ρi+1 = ρiξi for all i = 1, . . . ,k−1.

Proof. Let X (F ) = {X ∈ S n−1
+ : π(KV (X)) = d}. Let Fi j be as de-

fined in (8.17), i.e., Fi j = (ei − e j)(ei − e j)T . Then X (F ) = {X ∈ S n−1
+ :

trace(V T Fi jV X) = di j for all {i, j} ∈ E(G)}. Therefore, by setting Ai =V T Fi jV , it
follows from the semidefinite Farkas lemma (Theorem 2.22) that (G, p) is dimen-
sionally rigid iff there exist nonzero matrices Ω 0, . . . ,Ω k such that:

(i) Ω l = ∑{i, j}∈E(G) ω l
i jF

i j for l = 0,1, . . . ,k for some scalars ω l
i j,

(ii) V T Ω 0V � 0, U ′
1

TV T Ω 1VU ′
1 � 0, . . . , U ′

k
TV T Ω kVU ′

k � 0,
(iii) rank(V T Ω 0V )+ rank(U ′

1
TV T Ω 1VU ′

1 ) + · · ·+ rank(U ′
k

TV T Ω kVU ′
k ) = n−

r−1,
(iv) trace(PPT Ω l) = 0 for l = 0,1, . . . ,k,

where U ′
1 , . . . ,U

′
k+1 and W ′

0 , . . . ,W
′

k are full column rank matrices such that: for i =

0,1, . . . ,k, we have col(W ′
i ) = null(U ′

i
TV T Ω iVU ′

i ), U
′

i+1 =U ′
i W

′
i and U ′

0 = In−1.
Let us set Ui =VU ′

i for all i = 1, . . . ,k.
Since Ω 0e= 0, it follows that V T Ω 0V is PSD iff Ω 0 is PSD and rank(V T Ω 0V ) =

rank(Ω 0). Moreover, trace(PT Ω 0P) = 0 implies that PT Ω 0P = 0, which in turn
implies that Ω 0P = 0. Consequently, Ω 0 is a PSD stress matrix of (G, p).

Now if rank(Ω 0) = n− r−1, then we are done. Thus, assume that rank(Ω 0) =
n − r − 1 − δ1, where δ1 ≥ 1. Let null(Ω 0) = col([P e ρ1]), where ρ1 is n ×
δ1, and assume that eT ρ1 = 0 and PT ρ1 = 0. Since col(W ′

0 ) = null(V T Ω 0V ) =
null(Ω 0V ) and since PT e = 0, it follows that col([V T P V T ρ1]) is in null(Ω 0V ).
But rank(V T Ω 0V ) = n− r− 1− δ1. Therefore, dim(null(Ω 0V )) = r+ δ1 and thus
U ′

1 =W ′
0 = [V T P V T ρ1]. Moreover, U1 =VU ′

1 = [P ρ1]. Now since

U T
1 Ω 1U1 =

[
PT Ω 1P PT Ω 1ρ1

ρT
1 Ω 1P ρT

1 Ω 1ρ1

]
� 0,

it follows that PT Ω 1P � 0 and ρT
1 Ω 1ρ1 � 0. But, trace(PPT Ω 1) = 0. Therefore,

PT Ω 1P = 0 and thus PT Ω 1ρ1 = 0. Accordingly, Ω 1 is a quasi-stress matrix of
(G, p).
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If ρT
1 Ω 1ρ1 is nonsingular, i.e., if it has rank δ1, then we are done. Otherwise, let

col(ξi) = null(ρT
i Ω iρi). Then

col(W ′
1 ) = null(U T

1 Ω 1U1) = null(

[
0 0
0 ρT

1 Ω 1ρ1

]
) = col(

[
I 0
0 ξ1

]
).

Therefore, U ′
2 =U ′

1W
′

1 = [V T P V T ρ1ξ1] and thus U2 =VU ′
2 = [P ρ1ξ1] = [P ρ2].

The rest of the proof for Ω 2, . . . ,Ω k proceeds along the same line.
�

Example 10.4 Let (G, p) be the dimensionally rigid framework depicted in
Fig. 10.2 and considered in Example 10.2. Then

Ω 0 = [0 2 0 −1 −1]T [0 2 0 −1 −1]

and thus ρ1 = [6 4 −18 7 1]T . Therefore,

U1 = [P ρ1] =

⎡

⎢⎢⎢⎢
⎣

−3 −5 6
1 2 4
0 −1 −18
2 0 7
0 4 1

⎤

⎥⎥⎥⎥
⎦
.

To calculate Ω 1 = (ω1
i j), set ω1

25 = ω1
45 = 0. Hence, PT Ω 1P = 0 and PT Ω 1ρ1 = 0

is a system of five equation in six variables whose solution yields

Ω 1 =

⎡

⎢⎢⎢⎢
⎣

2 0 −6 3 1
0 30 −18 −12 0

−6 −18 18 0 6
3 −12 0 9 0
1 0 6 0 −7

⎤

⎥⎥⎥⎥
⎦
.

Therefore,

U T
1 Ω 1U1 =

[
PT Ω 1P PT Ω 1ρ1

ρT
1 Ω 1P ρ1Ω 1ρ1

]
=

[
0 0
0 10082

]
.

As a result, rank(Ω 0)+ rank(U T
1 Ω 1U1) = 2. Note that Ω 1 is not PSD and thus, it

is only a quasi-stress matrix.

We conclude this section by pointing out that unlike local rigidity, universal rigid-
ity is not a generic property of bar frameworks. That is, as shown in the following
example, for some graph G, there exist generic configurations p and p′ such that
(G, p) is universally rigid, while (G, p′) is not universally rigid. It is worthy of note
that framework (G, p) admits a PSD stress matrix of rank 2, but it does not admit a
PSD stress matrix of rank 1.

Example 10.5 Consider the two frameworks depicted in Fig. 10.4. A configuration
matrix and a Gale matrix of (G, p) are
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a b

4
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(G, p)

1

4

2

3

5

(G, p′)

Fig. 10.4 An example of 2 two-dimensional bar frameworks. Framework (a) is universally rigid,
while framework (b) is not universally rigid. Framework (b) has three- and four-dimensional equiv-
alent frameworks. Both frameworks are locally rigid

P =

⎡

⎢⎢⎢
⎢
⎣

−2 1
1 1
1 −1

−2 −1
2 0

⎤

⎥⎥⎥
⎥
⎦

and Z =

⎡

⎢⎢⎢
⎢
⎣

3 0
0 3
8 5

−5 −2
−6 −6

⎤

⎥⎥⎥
⎥
⎦
.

Thus, (G, p) has a unique, up to a multiplication by a scalar, stress matrix Ω = ZΨZ,

where Ψ =

[
5 −8

−8 20

]
. As a result, Ω is PSD and with rank 2. In fact, as long as

node 5 is not in the convex hull of the other four nodes, (G, p) is dimensionally rigid.
On the other hand, a configuration matrix and a Gale matrix of (G, p′) are

P′ =

⎡

⎢
⎢⎢⎢
⎣

−2 1
1 1
1 −1

−2 −1
0 0

⎤

⎥
⎥⎥⎥
⎦

and Z′ =

⎡

⎢
⎢⎢⎢
⎣

3 0
0 3
4 1

−1 2
−6 −6

⎤

⎥
⎥⎥⎥
⎦
.

Thus, (G, p′) has a unique, up to a multiplication by a scalar, stress matrix Ω ′ =

Z′Ψ ′Z′, where Ψ ′ =
[

1 −4
−4 −2

]
. Accordingly, (G, p) does not admit a nonzero PSD

stress matrix and thus, by Theorem 8.5, there exists a four-dimensional framework
that is equivalent to (G, p′). As a result, (G, p′) is not dimensionally rigid and re-
mains so, as long as node 5 lies in the convex hull of the other four nodes.

10.4 (r+1)-lateration Bar Frameworks

In this section, we investigate classes of graphs for which the converse of Theo-
rem 10.8 is true. In other words, we investigate classes of graphs whose correspond-
ing universally rigid bar frameworks in general position admit a PSD stress matrix
of maximal rank. We start first with the generalization of trilateration graphs.



228 10 Universal and Dimensional Rigidities

Definition 10.3 A graph G on n nodes, n ≥ r+1, is said to be an (r+1)-lateration
graph if there exists a permutation π of the nodes of G such that:

(i) The first (r+1) nodes, π(1), . . . ,π(r+1), induce a clique in G.
(ii) Each remaining node π( j), for j = r+ 2, . . . ,n, is adjacent to exactly (r+ 1)

nodes in the set {π(1), . . . ,π( j−1)}.

As a result, an (r+1)-lateration graph on n nodes has n(r+1)− (r+1)(r+2)/2
edges and the nodes π(1), . . . ,π(r+2) induce a clique in G. It should be pointed out
that in Condition (ii) of Definition 10.3, if the neighbors of π( j) in {π(1), . . . ,π( j−
1)} induce a clique, i.e., if π( j) and its neighbors, for each j = r+2, . . . ,n, induce a
clique of size r+2, then the (r+1)-lateration graph is called an (r+1)-tree graph
[39]. Note that 1-tree graphs are the usual trees.

Evidently, an r-dimensional bar framework in general position in R
r whose un-

derlying graph is an (r+ 1)-lateration graph is universally rigid [177, 201]. More-
over, the converse of Theorem 10.8 is true for such frameworks.

Theorem 10.11 (Alfakih et al. [22]) Let (G, p) be an r-dimensional bar frame-
work on n nodes in general position in R

r, r ≤ n− 2, such that G is an (r + 1)-
lateration graph. Then (G, p) admits a positive semidefinite stress matrix Ω of rank
n−1− r.

The proof of Theorem 10.11 is constructive, i.e., an algorithm is presented to
construct the desired stress matrix Ω . Our proof follows closely the one given in
[13]. Recall from Theorem 8.4 that if there exists a symmetric matrix Ψ such that
(ZΨZT )i j = 0 for each {i, j} ∈ Ē(Ḡ), then ZΨZT is a stress matrix of (G, p). Wlog,
assume that G has a lateration order 1, . . . ,n. Thus, the nodes 1, . . . ,r+ 1,r+ 2 in-
duce a clique and for j = r + 3, . . . ,n, node j is adjacent to r + 1 nodes in the set
{1, . . . , j−1}. As always, let r̄ = n−1− r.

Clearly, ZZT is a PSD matrix of rank r̄. Hence, if it happens that (ZZT )i j = 0
for each {i, j} ∈ Ē(Ḡ), then ZZT is the desired stress matrix and we are done. Oth-
erwise, we generate a sequence of matrices ZZT = Ω n,Ω n−1, . . ., Ω k, . . . ,Ω r+2,
where each matrix Ω k of this sequence satisfies: (i) Ω k = ZΨ kZT for some sym-
metric matrix Ψ k, (ii) Ω k is PSD and of rank r̄, and (iii) each entry in the last n− k
columns (rows) of Ω k corresponding to a missing edge is zero. Consequently, Ω r+2

is the desired stress matrix. In other words, the above algorithm repeatedly modifies
Ψ k, starting from Ψ n = Ir̄, in order to “zero out” the entries of ZΨ kZT which should
be zero, but are not. This “zeroing out” is done one column (row) at a time, start-
ing from the nth column. Obviously, the algorithm terminates when the (r + 2)th
column (row) is reached since the nodes 1, . . . ,r + 2 induce a clique. That is, no
“zeroing out” is needed in the upper left (r+ 2)× (r+ 2) square submatrix of the
desired stress matrix.

For j ≥ r+3, let

N̄( j) = {i ∈V (G) : i < j and {i, j} ∈ Ē(Ḡ)}.

Thus, |N̄( j)|= j− r−2 since j is adjacent to r+1 nodes in the set {1, . . . , j−1}.
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We first show how to obtain Ω n−1 by “zeroing out” the entries, corresponding
to missing edges, in the nth column (nth row) of Ω n. Let Z̄n be the submatrix of Z
whose rows are indexed by the nodes in N̄(n)∪{n}. Then Z̄n is a square matrix of
order r̄ and thus nonsingular (Corollary 3.1 ). Let bn be the vector in R

r̄, where

bn
i =

{−Ω n
in if i ∈ N̄(n)

1 if i = n,

and let ξn be the unique solution of

Z̄nξn = bn.

Then we have the following lemma.

Lemma 10.7 Let Ω n−1 = Ω n +Zξnξ T
n ZT = Z(Ir̄ +ξnξ T

n )ZT . Then

(i) Ω n−1 is PSD and of rank n−1− r.
(ii) Ω n−1

in = 0 for each i < n such that {i,n} ∈ Ē(Ḡ).

Proof. Part (i) is obvious since Ir̄ +ξnξ T
n is PD. Also, part (ii) is immediate since

for i < n such that {i,n} ∈ Ē(Ḡ), we have Ω n−1
in = Ω n

in +bn
i bn

n = Ω n
in +bn

i = 0.
�

Similarly, we continue constructing Ω n−2, . . . ,Ω k, . . . ,Ω r+2 by, respectively,
“zeroing out” the entries of columns n−1, . . . ,r+3 corresponding to missing edges.
More precisely, suppose that Ω k = ZΨ kZT is PSD and of rank r̄ and that Ω k

i j = 0

for all j = k+1, . . . ,n such that {i, j} ∈ Ē(Ḡ). Let Z̄k be the submatrix of Z whose
rows are indexed by the nodes in N̄(k)∪{k,k+1, . . . ,n}. Then Z̄k is a nonsingular
square matrix of order r̄. Let bk be the vector in R

r̄, where

bk
i =

⎧
⎨

⎩

−Ω k
ik if i ∈ N̄(k)

1 if i = k
0 if i = k+1, . . . ,n.

Now let ξk be the unique solution of

Z̄kξk = bk.

Lemma 10.8 Let Ω k−1 = Ω k +Zξkξ T
k ZT . Then

(i) Ω k−1 is PSD and of rank n−1− r.
(ii) Ω k−1

i j = 0 for each i < j and for all j = k, . . . ,n such that {i, j} ∈ Ē(Ḡ).

Proof. Part (i) is obvious. Now for each i < k such that {i,k} ∈ Ē(Ḡ) we have
Ω k−1

ik = Ω k
ik + bk

i bk
k = 0. Moreover, for each i < j and j = k + 1, . . . ,n such that

{i, j} ∈ Ē(Ḡ) we have Ω k−1
i j = Ω k

i j + bk
i bk

j = Ω k
i j = 0, i.e., the entries in columns

k+1, . . . ,n of Ω k−1 are unchanged from Ω k.
�



230 10 Universal and Dimensional Rigidities

Proof of Theorem 10.11. Clearly, the matrix

Ω r+2 = Ω r+3 +Zξr+3ξ T
r+3ZT = Z(Ir̄ +ξnξ T

n + · · ·+ξr+3ξr+3)Z
T

is PSD and of rank r̄. Moreover, Ω r+2
i j = 0 for all {i, j} ∈ Ē(Ḡ). Hence, Ω r+2 is the

desired stress matrix of (G, p).
�

As we show next, if the (r+ 1)-lateration graph is an (r+ 1)-tree graph, then a
PSD stress matrix of rank n− r−1 can be obtained directly without the need for the
“zeroing out” steps in the above algorithm [22].

Let
N(k) = {i ∈V (G) : i < k and {i,k} ∈ E(G)}

and for j = 1, . . . ,n− r − 1, let x = (xi j) ∈ R
r+1 be the solution of the system of

equations

∑
i: i∈N( j+r+1)

xi j

[
pi

1

]
=−

[
p j+r+1

1

]
. (10.11)

Note that the set {i : i ∈ N( j + r + 1)} has cardinality r + 1 and thus under the
general position assumption, System of Eq. (10.11) has a unique solution. Now let
Ẑ = (ẑi j) be the Gale matrix defined as follows:

ẑi j =

⎧
⎨

⎩

1 if i = j+ r+1
xi j if i ∈ N( j+ r+1)
0 otherwise.

We claim that if {i, j} ∈ Ē(Ḡ), then ẑikẑ jk = 0 for every k. To see this, assume, to
the contrary, that ẑik �= 0 and ẑ jk �= 0 for some k. Then we have either one of the
following four cases:

Case 1: i = k+ r+1 and j = k+ r+1. Thus i = j, a contradiction.

Case 2: i = k+ r+1 and j ∈ N(k+ r+1). Thus j ∈ N(i), a contradiction.

Case 3: j = k+ r+1 and i ∈ N(k+ r+1). Thus i ∈ N( j), a contradiction.

Case 4: i ∈ N(k+ r+1) and j ∈ N(k+ r+1). Hence, it follows from the definition
of an (r+1)-tree graph that the nodes i and j belong to a clique in G. Thus, {i, j} ∈
E(G), a contradiction.

Accordingly, let Ω = ẐẐT . Then, for each {i, j} ∈ Ē(Ḡ), we have

Ωi j =
n−r−1

∑
k=1

ẑikẑ jk = 0.

As a result, Ω is the desired stress matrix.
Recall that chordal graphs have a perfect elimination ordering. Hence, with a

slight modification, the above procedure for (r+1)-tree graphs can be used to con-
struct PSD stress matrices of maximal rank for universally rigid bar frameworks
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whose underlying graphs are chordal [11]. Finally, we point out that the universal
rigidity problem for complete bipartite bar frameworks is investigated in [118, 64].

1

2

3

4

5

6

Fig. 10.5 The framework of Example 10.6 whose underlying graph is a trilateration graph. Ob-
serve that in this case, G is a 3-tree graph

Example 10.6 Consider the bar framework (G, p) depicted in Fig. 10.5, where G is
a 3-lateration graph with missing edges Ē(Ḡ) = {{1,5},{1,6},{2,6}}. A configu-
ration matrix and a Gale matrix of (G, p) are

P =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

−2 0
−1 1
−1 −1

1 1
1 −1
2 0

⎤

⎥⎥⎥⎥
⎥⎥
⎦

and Z =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

1 0 0
0 1 0
0 0 1

−2 −2 −1
−2 −1 −2

3 2 2

⎤

⎥⎥⎥⎥
⎥⎥
⎦

.

Ω 6 = ZZT . Thus, Z̄6 is the square submatrix of Z whose rows are indexed by 1,2,
and 6. Therefore,

Z̄6 =

⎡

⎣
1 0 0
0 1 0
3 2 2

⎤

⎦ ,b6 =

⎡

⎣
−3
−2

1

⎤

⎦ , and hence ξ 6 = (Z̄6)−1b6 =

⎡

⎣
−3
−2

7

⎤

⎦ .

Consequently,

Ω 5 =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

10 6 −21 −11 16 0
5 −14 −8 11 0

50 20 −44 9
18 −10 −9

45 −18
18

⎤

⎥
⎥⎥⎥⎥⎥
⎦

.

Hence, Z̄5 is the square submatrix of Z whose rows are indexed by 1,5, and 6; and

b5 =

⎡

⎣
−16

1
0

⎤

⎦. Therefore, ξ 5 =

⎡

⎣
−16

17
7

⎤

⎦ and thus
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Ω 4 =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

266 −266 −133 133 0 0
294 105 −161 28 0

99 −43 −37 9
99 −19 −9

46 −18
18

⎤

⎥⎥
⎥⎥⎥⎥
⎦

is a PSD stress matrix of (G, p) of rank 3. On the other hand, since G is a 3-tree
graph, we have

Ẑ =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

2 0 0
−2 1 0
−1 −1 1/2

1 −1 −1/2
0 1 −1
0 0 1

⎤

⎥⎥⎥⎥
⎥⎥
⎦

.

Hence, ẐẐT is a PSD stress matrix of (G, p) of rank 3.

10.5 Universally Linked Nodes

The notion of universal rigidity applies to the bar framework as a whole. In this
section, we discuss the equivalent notion for a pair of nonadjacent nodes.

Definition 10.4 Let {k, l} be a missing edge of bar framework (G, p). Nodes k and
l are said to be universally linked if ||pk − pl ||= ||qk −ql || in every bar framework
(G,q) that is equivalent to (G, p).

In other words, even though nodes k and l are nonadjacent, the distance between
them remains the same as if they are joined by an edge. Consequently, (G, p) is
universally rigid if and only if every pair of nonadjacent nodes of G is universally
linked.

The following lemma is an immediate consequence of the definition and Theo-
rem 8.2.

Lemma 10.9 (Alfakih [16]) Let F be the Cayley configuration spectrahedron of
bar framework (G, p) and let {k, l} ∈ Ē(Ḡ). Then k and l are universally linked if
and only if F is contained in the subspace {y ∈ R

m̄ : ykl = 0} of Rm̄.

The fact that (G, p) is universally rigid iff F = {0} follows as an immediate
corollary of Lemma 10.9. The following lemmas are needed to establish a sufficient
condition for universal linkedness.

Lemma 10.10 Let F be the Cayley configuration spectrahedron of bar framework
(G, p) and let Ω be a nonzero positive semidefinite stress matrix of (G, p). Then

ΩVX (y)V T = 0 for all y ∈F ,
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where X (y) is as defined in (8.9).

Proof. Let y ∈F . Then

trace(ΩVX (y)V T ) = trace(ΩV XV T )− 1
2 ∑
{i, j}∈Ē(Ḡ)

yi jtrace(ΩEi j) = 0.

Therefore, ΩVX (y)V T = 0 since both Ω and VX (y)V T are PSD.
�

Lemma 10.11 Let F be the Cayley configuration spectrahedron of bar framework
(G, p) and let Ω be a nonzero positive semidefinite stress matrix of (G, p). Then F
is contained in the subspace

{y ∈ R
m̄ : ΩE (y) = 0},

where E (y) is as defined in (9.9).

Proof. Lemma 10.10 implies that ΩVX (y)V T = −ΩVV TE (y)VV T/2 = 0 for
all y ∈F . Thus, ΩE (y)V = 0 since Ω(I − eeT/n) = Ω and since V T has full row
rank. Hence, by Lemma 10.6, ΩE (y) = 0.

�

The following theorem establishes a sufficient condition for universal linkedness.

Theorem 10.12 (Alfakih [16]) Let (G, p) be an r-dimensional bar framework on
n nodes, r ≤ n − 2, and let {k, l} ∈ Ē(Ḡ). Further, let Ω be a nonzero positive
semidefinite stress matrix of (G, p). If the following condition holds

there does not exist ykl �= 0 such that ΩE (y) = 0, (10.12)

then nodes k and l are universally linked.

Proof. Suppose that Condition 10.12 holds. Then, by Lemma 10.11, F is con-
tained in the subspace {y ∈ R

m̄ : ykl = 0}. Therefore, the result follows from
Lemma 10.9.

�

An important point to bear in mind is that Condition 10.12 is equivalent to the
following condition

there does not exist ykl �= 0 such that E (y)W = 0, (10.13)

where W is any matrix whose columns form a basis of col(Ω).

Example 10.7 Consider the framework (G, p) depicted in Fig. 10.6. Then a basis
of a stress matrix of (G, p) is given by W = [−2 1 0 1 0]T . Thus E (y)W = 0, i.e.,
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4

1

2

5

3

Fig. 10.6 The bar framework of Example 10.7. The edge {2,4} is drawn as an arc to make edges
{1,2} and {1,4} visible. Nodes 2 and 5; and nodes 3 and 4 are universally linked while nodes 3
and 5 are not universally linked

⎡

⎢⎢⎢⎢
⎣

0 0 0 0 0
0 0 0 0 y25

0 0 0 y34 y35

0 0 y34 0 0
0 y25 y35 0 0

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

−2
1
0
1
0

⎤

⎥⎥⎥⎥
⎦
=

⎡

⎢⎢⎢⎢
⎣

0
0
0
0
0

⎤

⎥⎥⎥⎥
⎦

has a solution y34 = y25 = 0 and y35 is free. Consequently, nodes 3 and 4; and
nodes 2 and 5 are universally linked, while nodes 3 and 5 are not universally linked.
Obviously, (G, p) is not universally rigid since it can fold across the edge {2,4}.

As a corollary of Theorem 10.12, we can strengthen Theorem 10.7 as follows.

Theorem 10.13 (Alfakih [16]) Let (G, p) be an r-dimensional bar framework on n
nodes, r ≤ n−2, and let Ω be a nonzero positive semidefinite stress matrix of (G, p).
If the following condition holds:

there does not exist y �= 0 such that ΩE (y) = 0, (10.14)

then (G, p) is universally rigid.

Theorem 10.13 is stronger than Theorem 10.7 since Ω does not have to be of
maximal rank, i.e., rank(Ω) need not be n−1−r. Moreover, if rank(Ω) = n−1−r,
then Condition 10.14 is equivalent to the assertion that the framework does not admit
a nontrivial affine flex (Lemmas 10.4 and 10.6 ) since any matrix whose columns
form a basis of col(Ω) is a Gale matrix of (G, p).

Example 10.8 Consider the framework (G, p) depicted in Fig. 10.2. As discussed
in Example 10.2, (G, p) is universally rigid even though it does not admit a PSD
stress matrix of rank 2. Thus, the universal rigidity of (G, p) cannot be inferred from
Theorem 10.7. However, in this case E (y)W = 0, i.e.,
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⎡

⎢⎢
⎢⎢
⎣

0 y12 0 0 0
y12 0 0 0 0
0 0 0 y34 0
0 0 y34 0 0
0 0 0 0 0

⎤

⎥⎥
⎥⎥
⎦

⎡

⎢⎢
⎢⎢
⎣

0
2
0

−1
−1

⎤

⎥⎥
⎥⎥
⎦
=

⎡

⎢⎢
⎢⎢
⎣

0
0
0
0
0

⎤

⎥⎥
⎥⎥
⎦

has a unique solution y12 = y34 = 0. Accordingly, the universal rigidity of (G, p)
can be inferred from Theorem 10.13.

Condition 10.14 of Theorem 10.13 has interpretations in terms of the Strong
Arnold Property of matrices and in terms of the notion of nondegeneracy of semidef-
inite programming [26, 132].

Let G be a given graph and let A be a nonzero matrix in S n such that Ai j = 0
for all {i, j} ∈ Ē(Ḡ). A is said to satisfy the Strong Arnold Property (SAP) [56] if
Y = 0 is the only matrix in S n that satisfies: (i) Yi j = 0 if i = j or if {i, j} ∈ E(G),
i.e., Y = E (y) for some y, and (ii) AY = 0. Therefore, Condition 10.14 is equivalent
to the assertion that the stress matrix Ω satisfies the SAP.

Let Ω be a nonzero PSD stress matrix of (G, p). Let F be the Cayley configura-
tion spectrahedron of framework (G, p) and consider the following SDP problem

(P) min 0
subject to X +M (y)� 0.

Thus, every y in F is an optimal solution of (P) since the objective function is
identically 0. Assume that (G, p) admits a nonzero PSD stress matrix Ω . Then,
clearly, V T ΩV is an optimal solution of the dual SDP problem

(D) max −trace(XY )
subject to trace(Mi jY ) = 0 for all {i, j} ∈ Ē(Ḡ),

Y � 0.

Let U ′ be the matrix whose columns form an orthonormal basis of null(V T ΩV ).
Then, by Eq. (2.5), Ω is nondegenerate iff

{M (y) : y ∈ R
m̄}∩{C : C =U ′ΦU ′T}= {0}

iff the only solution of the system

V T ΩVM (y) =−1
2

V T ΩE (y)V = 0 (10.15)

is y = 0. Hence, by multiplying (10.15) from the left by V and using Lemma 10.6,
it follows that Ω is nondegenerate iff Condition 10.14 holds. As a result, Theo-
rem 10.13 follows from Theorem 2.15.



Epilogue

The primary focus of this monograph is on Euclidean distance matrices (EDMs).
Among the various aspects of EDMs discussed are: characterizations, classes, eigen-
values, geometry, and completions. As is well known, EDMs of order n are in one-
to-one correspondence with positive semidefinite (PSD) matrices of order n−1. As
a result, a substantial portion of this monograph is dedicated to various aspects of
PSD matrices.

EDM completion problems are best understood in the context of rigidity theory,
which has a long history going at least as far back as Cauchy. Hence, the secondary
focus of this monograph is on rigidity theory. The use of Cartesian coordinates has
been the traditional and dominant approach in the study of rigidity theory. In partic-
ular, a configuration of n points in r dimensions is usually represented as a vector in
rn dimensions. By exploiting the correspondence between EDMs and PSD matri-
ces, and by representing point configurations by their projected Gram matrices, this
monograph discusses a new approach to rigidity theory. This new approach gives
rise to alternative tools such as the dual rigidity matrix and Gale matrices. Also, this
approach puts the semidefinite programming (SDP) machinery at our disposal by
reducing the universal rigidity problem to an SDP problem.

Two topics in rigidity theory, namely global rigidity and tensegrity frameworks,
are notably absent from this monograph. An r-dimensional bar framework (G, p)
is globally rigid if every r-dimensional bar framework (G, p′) that is equivalent
to (G, p) is actually congruent to (G, p). In other words, (G, p) is globally rigid
if there does not exist a configuration p′ satisfying: (i) H ◦Dp = H ◦Dp′ , (ii) the
embedding dimension of Dp′ = r, and (iii) Dp �= Dp′ . Here, H is the adjacency
matrix of graph G, (◦) is the Hadamard product, and D′

p is the EDM defined by
p′. Hence, a globally rigid r-dimensional bar framework can have equivalent bar
frameworks of dimensions ≥ r+1. Consequently, the notion of global rigidity, while
stronger than that of local rigidity, is weaker than the notion of universal rigidity.

Restricting the embedding dimension of Dp′ is equivalent to restricting the rank
of the corresponding projected Gram matrix. This renders the global rigidity prob-
lem nonconvex and thus not amenable to the SDP machinery. As a result, tackling
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the global rigidity problem requires tools different from those used in this mono-
graph. For a discussion of the global rigidity problem, the reader is referred to
[58, 61, 114, 91, 174, 183] and the references therein.

A tensegrity graph is a simple graph where the nodes are labelled 1, . . . ,n, and
where each edge is labelled as either a bar, a cable or a strut. Thus, a tensegrity
graph is denoted by G = (V,B ∪C ∪ S), where B is the set of bars, C is the set
of cables, and S is the set of struts. A tensegrity framework is a tensegrity graph
whose nodes are mapped onto points p1, . . . , pn in R

r. In any flexing of a tensegrity
framework, the distance between the end points of a bar must stay the same, while
the distance between the end points of a cable (strut) can decrease (increase) or stay
the same, but not increase (decrease). Consequently, a bar is equivalent to a cable
plus a strut. Furthermore, a bar framework is a tensegrity framework that consists
only of bars. The various notions of rigidity for bar frameworks extend easily to
tensegrity frameworks. However, special care must be taken in the definition of a
stress matrix. In particular, whereas the stress on a bar can be either positive or
negative, the stress on a cable (strut) must be positive (negative). Rigidity theory for
tensegrity frameworks is not discussed in this monograph due to space limitations.
Instead, the reader is referred to [162, 158, 62] and the references therein.
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tech. 9, 87–98 (1813)
52. A. Cayley, On a theorem in the geometry of position. Camb. Math. J. 2, 267–

271 (1841)
53. Y. Chabrillac, J.-P. Crouzeix, Definiteness and semidefiniteness of quadratic

forms revisited. Linear Algebra Appl. 63, 283–292 (1984)
54. Y.-L. Cheung, Preprocessing and Reduction for Semidefinite Programming via

Facial Reduction: Theory and Practice. PhD thesis, University of Waterloo,
2013

55. M.T. Chu, Inverse eigenvalue problems. SIAM Rev. 40, 1–39 (1998)
56. Y. Colin De Verdière, Sur un nouvel invariant des graphes et un critère de
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A
Affine flex, 212
Affine motion, 212
Algebraic independence, 203
Analytic flex, 186
Antipodal, 92

B
Bar framework, 170

congruent, 171
equivalent, 171

C
Cayley configuration space, 171
Cayley configuration spectrahedron, 172
Cauchy interlacing theorem, 6
Cauchy–Schwarz inequality, 2
Cayley–Menger determinant, 66
Clique, 164, 181
Clique sum, 14
Column space, 9
Combinatorial designs, 139
Cone, 15

dual, 35
of feasible directions, 26
normal, 25, 117
pointed, 15
polar, 23, 35, 116
polyhedral, 116
tangent, 26, 116

Conic at infinity, 216
Continuous flex, 186
Coordinate shadow, 119

E
EDM, 51

cell matrix, 99, 116

centrally symmetric, 125
completion problem, 163
r-completion problem, 163
configuration matrix, 51
cospectral, 133
degree of, 136
embedding dimension, 51
isomorphic, 133
multispherical, 111
nonspherical, 89
regular, 97
spherical, 89
strength of, 136

EDM completion, 163
EDM entry

unyielding, 152
yielding, 153
yielding interval of, 152

Effective resistance, 106
Eigenpair, 4
Elliptope, 116
Equilibrium load, 192
Equitable partition, 127

F
Face path, 182
Facial reduction, 44, 48
Farkas lemma, 35
Feasible

region, 38
solution, 38

G
Gale matrix, 59–61, 63, 90, 91, 94, 100, 109,

111, 119, 122, 149, 153–156, 159, 160,
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Gale space, see Gale matrix
Gale transform, see Gale matrix
Generic bar framework, 203
Generic degree of freedom, 208
Global rigidity, 237
Graph

adjacency matrix, 13
chordal, 13, 164, 230
Laplacian, 13, 168, 174
leaf, 13
planar, 14
regular, 136
series-parallel, 13, 106
tree, 13

r-graph realization problem, 164

H
Hadamard matrix, 143
Hadamard product, 12, 167, 185, 211
Henneberg construction, 204, 206
Heron’s formula, 69
Hoffman polynomial, 98, 137
Hull

affine, 15
conic, 15, 116
convex, 15

I
Induced subgraph, 203
Inertia, 5
Infinitesimal flex, 188
Infinitesimally flexible, 188
Infinitesimally rigid, 188
Inner product, 2
Inner product space, 2

K
Kirchhoff law, 107
Kronecker product, 12, 79, 96

symmetric, 195

L
Laman graph, 203
(r+1)-lateration graph, 228
Linkage, 170
Load, 192
Locally flexible, 185
Locally rigid, 185
Lower semicontinuous function, 11

M
Matrix

bordered diagonal, 104, 122
Cayley–Menger, 66

diagonalizable, 4
elliptic, 62, 64
Euclidean distance, see EDM
Frobenius norm, 7
Gale, 60
Gram, 32, 51
Householder, 56, 59
induced norm, 7
nonnegative, 7
norm, 7
oblique projection, 9
orthogonal projection, 9, 53
positive, 7
positive definite, 12, 29
positive semidefinite, 12, 29
primitive, 8
projected Gram, 57
projection, 9, 53
special elliptic, 62
stress, 120
submultiplicative norm, 7
symmetric partial, 163

Minimally locally rigid, 208
Minkowski sum, 15
Minor

kth leading principal, 3, 31
principal, 3, 32

Missing edges, 13
Moore–Penrose inverse, 9, 107
Multiplicity

algebraic, 6
geometric, 6

N
Node

degree of, 13
Node-edge incidence matrix, 13, 203
Normalized characteristic matrix of π , 128
Normed vector space, 2
Null space, 9

left, 9

O
Operator K , 52
Operator T , 53

P
G-partial EDM, 163
Patch, 182
Perfect elimination ordering, 14, 164
Perron eigenpair, 8
Point

extreme, 18
interior, 15
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relative interior, 16
Points in general position, 60
Polyhedral terrain, 181
Polynomial

characteristic, 4
minimal, 7
monic, 7

Q
Quasi-stress matrix, 224

R
Real algebraic variety, 186
Regular point, 189
Rigid

universally, 211, 213
Rigidity map, 186
Rigidity matrix, 188

S
Schur complement, 30
SDP nondegeneracy, 39
Semidefinite programming, 37

dual problem, 37
primal problem, 37
strong duality theorem, 38
weak duality theorem, 38

Sensor network, 169, 220
Separation

proper, 20
strong, 21

Set
minimal face of, 18
affine, 15
boundary of, 16
bounded, 15
closed, 15
closure of, 15
compact, 15
convex, 15
exposed face of, 20
face of, 17
open, 15
relative boundary of, 17
relatively open, 17

Singular point, 189
Singularity degree, 46, 221
Slater’s condition, 38, 42, 44, 167–170, 201
Spectrahedron, 41, 48

Spectral decomposition, 4
Spectral radius, 8
Static rigidity, 192, 193
Stress, 174
Stress matrix, 174

projected, 175
Strong Arnold property, 235
Submatrix, 3

kth leading principal, 3, 31
principal, 3

Subspace S n
h , 53

Subspace S n
s , 53

Sylvester law of inertia, 6, 30

T
Tangent space, 39
Tensegrity framework, 238
Tensegrity graph, 238
Theorem

Cayley–Hamilton, 6
Jung, 96
Menger, 69
Moreau, 25
Perron, 7
projection, 21
Rayleigh–Ritz, 5
Schur product, 12
separation, 22
spectral, 4
Straszewicz, 28
strong separation, 21, 22
supporting hyperplane, 22
Weierstrass, 21

Transformation
adjoint, 3

(r+1)-tree graph, 228, 230
Transformation KV , 56
Transformation TV , 56

U
Universally linked, 232

V
Vector

k-block structure, 111
positive, 7
standard unit, 6

Vector space, 1
k-vertex connected, 13
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