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Preface

The XIIth International Workshop on Intelligent Statistical Quality Control took
place in Hamburg, Germany, from August 16 to 18, 2016. The invitational workshop
was jointly organized by Professor S. Knoth from Helmut Schmidt University
in Hamburg, Germany, and Professor W. Schmid from the European University
Viadrina in Frankfurt (Oder), Germany. The former was also the local organizer
of the workshop.

This book consists of 20 chapters that were carefully selected and reviewed by the
scientific program committee. The focus of the book is on major areas of statistical
quality control (SQC). The majority of the chapters address statistical process
control (SPC), which is now often called statistical process monitoring (SPM).
Important fields such as design of experiments (DOE) and acceptance sampling are
also treated.

The book is divided into three parts. The subject of Part I is SPC. Part II is devoted
to DOE, and in Part III, related fields are considered.

Part I: Statistical Process Control

In recent years, control charts have not been exclusively applied within Phase II
analyses to monitor data. It has been shown that they can be successfully applied
in Phase I analyses to identify a stable in-control process. Capizzi and Masarotto
present the R package dfphase 1 which provides implementations of many recently
proposed distribution-free methods for Phase I analysis. The application of the
package is illustrated using data from an oil refinery.

In practice, there are many possible types of changes that may affect an in-control
process. M. Testik, Weiß, Koca, and O. Testik analyze the use of a Shewhart chart for
Phase I analysis. In their study, they assume independent and normally distributed
observations. The behavior of the chart is analyzed for several mean shifts and
contamination rates. The authors vary the width of the Shewhart control limits to
assess the performance in Phase I implementations. Various performance metrics
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such as the true and false alarm percentages, the number of iterations to complete
estimation, and the mean squared error of the estimates are investigated.

Knoth addresses a combined CUSUM–Shewhart mean control chart. He com-
pares several numerical techniques to calculate the average run length (ARL) of
this chart for both the one-sided and the two-sided case. To obtain the ARL, an
integral equation is numerically solved. Assuming normally distributed samples, he
employs new numerical techniques such as collocation to determine the ARL. These
procedures enable an accurate calculation of this quantity.

In the chapter of Polunchenko, a numerical study is provided to examine the
effect of a headstart on the performance of a Shiryaev–Roberts (SR) chart for the
mean of an independent normal process. The main result of the author consists in
the observation that a fast initial response SR with a carefully designed optimal
headstart is not just quicker to react to an initial out-of-control situation but is also
nearly the fastest uniformly over the potential change point positions.

Morais and Knoth consider the problem of monitoring the traffic intensity of a
queuing system. Their aim is to detect an increase or decrease in the traffic intensity.
In their contribution, they focus on a single server queue and discuss the M/G/1,
GI/M/1, and GI/G/1 systems in more detail. Three control statistics are proposed,
all having a Markovian structure. The intention of the authors is to obtain ARL-
unbiased charts, i.e., charts in which the out-of-control ARL is always smaller than
or equal to the in-control ARL. They derive the ARLs of the proposed charts and
use the Markov chain approach to calculate these quantities.

Tang and Gan investigate an application of SPC in public health. In this chapter,
a risk-adjusted EWMA charting procedure for monitoring surgical procedures
is developed. It is based on two or more outcomes. The monitoring statistic is
obtained by combining log-likelihood ratio statistics for detecting improvement and
deterioration. The properties of the procedure are determined, and the procedure is
compared with the risk-adjusted CUSUM chart using a surgical data set. The risk-
adjusted EWMA procedure turns out to be an attractive alternative because of its
good performance and ease of interpretation.

Saniga, Davis, and Lucas compare visitor data for two websites generated by a
variety of commercial analytics packages and discuss the issues of data accuracy,
consistency, and unavailability of important measures. How control charts can be
used for Phase I and Phase II analyses to monitor the website effectiveness is
described. Since the number of visitors is a count variable, the c chart and the
CUSUM chart for counts are applied. Another interesting quantity of website
effectiveness is the bounce rate which can be monitored using a p chart or a binomial
CUSUM chart.

Epprecht, Aparisi, and Ruiz discuss a problem from multivariate statistical
process control. They consider the case in which some quality characteristics are
more expensive and/or more difficult to measure than others. The authors make
use of the recently introduced variable dimension approach. This means that the
“non-expensive” variables are monitored, whereas only if there is a hint of an out-
of-control signal are the “expensive” quantities measured. They review and compare
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several variants of the approach that may lead to significant savings in terms of
production costs.

Sparks and Chakraborti describe a sewerage treatment plant where it is of
relevance to monitor the dispersions of certain environmental quantities that have
skewed distributions. In their chapter they focus on bivariate data. Four different
monitoring strategies are discussed. One control procedure is based on the Box-Cox
transformation, two approaches are based on robust regression, and one attempt uses
the concept of data depth. The introduced schemes are compared within a simulation
study for many different skewed distributions.

The aim of the chapter of Nishina, Kawamura, Okamoto, and Takahashi is to
monitor causal relationships among variables. Such results are important to protect
a system against cyberattacks, for example. The authors propose a method of
diagnosis for isolating an unusual causal relationship in a process causal model. The
nearest unusual model is identified by utilizing the Mahalanobis distance between
some supposed unusual models and the data to indicate the out-of-control region
in Q charts. The proposed method is analyzed within a simulation study for two
examples of causal models.

In many complex processes, a large number of variables are monitored simul-
taneously. The chapter of Yashchin addresses multistage data where very large
amounts of data are collected at various process stages. In practice, it is not
only necessary to detect a change in the production process as early as possible;
rather, a methodology to diagnose the stage that is the most likely culprit is also
needed. He describes the quality early warning system for variables (QEWSV) data
and discusses an example related to monitoring the characteristics of tape storage
devices. The detection algorithm is based on the CUSUM–Shewhart methodology.

Weiß considers monitoring of categorical time series. A brief survey of
approaches for modeling and analyzing serially dependent categorical processes
is given. Two scenarios of monitoring are discussed: a sample-based approach, in
which the dependence within the samples has to be considered, and a continuous
monitoring approach, in which the dependence between successive observations
has to be taken into account for chart design. For both cases, appropriate control
charts are proposed and their performance is investigated through simulations.

Hryniewicz and Kaczmarek-Majer address monitoring of short time series. In
their chapter, the case in which the information from the available data is insufficient
for good estimation of the model is considered. A new method for the construction
of Shewhart control charts for residuals is proposed. The inspiration for the
introduced methodology comes from the concept of Bayesian model averaging. The
novelty of the proposed XWAM (X-weighted average model) control chart is the
usage of computational intelligence methodology for the construction of alternative
models and the calculation of their weights.

In Lazariv and Schmid’s contribution, different approaches for monitoring
nonstationary multivariate time series are discussed. Control charts for a very
general family of time series are introduced. It is assumed that the in-control process
is a multivariate state-space process. The out-of-control process is modeled by a
general change point model which includes shifts and drifts. Using the likelihood
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ratio, the sequential probability ratio and the Shiryaev–Roberts approach control
charts with a reference value are derived. Moreover, generalized control schemes
without reference values are also obtained. Using various performance criteria, the
introduced control charts are compared via a simulation study.

Part II: Design of Experiments

Montgomery and Silvestrini review several important new developments regarding
the field of design of experiments. The role of designed experiments in innovation
is examined, and new developments and applications of the methods are discussed.
Design of experiments provides a structured methodology for experimentation,
and this can greatly aid creative thinking. The authors emphasize that statistical
methodology is an important aid in the innovative process and should be employed
to obtain improved results.

The precision of measurement results can be quantified by using variance com-
ponents of random effect models. In Yasui and Ojima’s chapter, the measurement
results are statistically modeled using a nested design. Although balanced nested
designs are widely used, staggered nested designs, which are one type of unbalanced
nested design, have the statistical advantage that the degrees of freedom in all
stages except for the top stage are equal. The authors identify D-optimal three-stage
unbalanced nested designs for the determination of measurement precision.

Part III: Related Areas

Wilrich addresses Type I censored sampling plans for inspection by variables which
have the advantage that the test time is fixed in advance. The lifetime of the product
is assumed to obey a Weibull distribution with unknown parameters. The considered
sampling plan is based on the logarithm of the lifetime. These quantities follow
a Gumbel distribution. The sampling plan uses maximum likelihood estimators
of the parameters of a Gumbel distribution. In a simulation study, the operating
characteristic function of the sampling plan is analyzed under various conditions.

Yamamoto and Jin note that an important problem in assessing the risk of
failure events of a system is the choice of the timescale. Although there should
be genuine timescales for each failure phenomenon, the field data may not be
sufficient to provide evidence for them. There are many uncontrollable factors in
the field. Their chapter attempts to build a bridge between two useful approaches:
alternative timescales and cumulative-exposure models by assuming stationarity of
the increments of these measurements within a system.

Bayesian approaches are increasingly popular within the statistics community.
However, they do not seem to be widely applied within the field of industrial
statistics. Vining examines some of the basic reasons for this lack of applications.
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He reviews Box’s perspective on the scientific method and discovery and Deming’s
concepts of analytic versus enumerative studies. The chapter addresses applications
of Bayesian methods to process monitoring and experimental design and analysis.
The author examines the use of Bayesian approaches and concludes that in some
cases, the appropriate tools are Bayesian if they are used with care.

Collani critically discusses the quality of the current practice of performing
medical statistics. He analyzes the standards of laboratories and demonstrates the
requirements using a clinical trial. Based on several examples, he tries to illustrate
that the quality of medical statistics is not good and that this is also due to the
statistical methodology and statistical methods themselves. He casts doubt on the
practical usage of significance tests in medicine.

The level of a workshop on Intelligent Statistical Quality Control is determined
by the quality of its chapters. We believe that this volume truly represents the
frontiers of statistical quality control. The editors would like to express their deep
gratitude to the members of the scientific program committee, who carefully invited
researchers from around the world and the reviewers of all submitted chapters:

Sven Knoth, Germany
Fadel Megahed, USA

Yoshikazu Ojima, Japan
Wolfgang Schmid, Germany
Peter-Th. Wilrich, Germany
William H. Woodall, USA
Kwok L. Tsui, Hong Kong
Emmanuel Yashchin, USA

Moreover, we thank Springer, Heidelberg, for the continuing collaboration.

Hamburg, Germany Sven Knoth
Frankfurt (Oder), Germany Wolfgang Schmid
September 2017



To the Memory of Elart von Collani

Elart von Collani passed away on February
25, 2017. He struggled with a serious dis-
ease for several years. Elart participated in the
first Workshop on Intelligent Statistical Quality
Control in Berlin, 1980. He regularly partici-
pated in the workshops and was the organizer
of the sixth Workshop in Würzburg, 1998. After
missing the Sydney workshop in 2013, we were
very glad to welcome him in Hamburg in 2016.

Elart was a highly respected colleague. He
was very creative, had many new ideas, criti-
cally reflected upon existing statistical method-
ologies, and was able to find new paths for
statistics.

We will miss him both as a researcher and as
a very friendly and kind colleague.
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Phase I Distribution-Free Analysis
with the R Package dfphase1

Giovanna Capizzi and Guido Masarotto

Abstract Phase I distribution-free methods have received an increasing atten-
tion in the recent statistical process monitoring literature. Indeed, violations of
distributional assumptions may largely degrade the performance and sensitivity
of parametric Phase I methods. For example, the real false alarm probability,
i.e., the probability to declare unstable a process that is actually stable, may be
substantially larger than the desired value. Thus, several researchers recommend
to test the shape of the underlying IC distribution only after process stability has
been established using a distribution-free control chart. In the chapter, we describe
the R package dfphase1 which provides an implementation of many of recently
suggested Phase I distribution-free methods. Indeed, because of the relatively high
computational complexity of some of these methods, we believe that their diffusion
can be helpfully encouraged supporting practitioners with an easy-to-use dedicated
software. The use of the package is illustrated with real data from an oil refinery.

Keywords Change point · Control charts · Nonparametric · Statistical process
monitoring

1 Introduction

Control charts are well known techniques used in statistical process monitoring
(SPM) to establish whether a process is “in-control” (IC) or “out-of-control” (OC),
i.e. whether it is operating under random or assignable causes of variations that need
to be detected as soon as possible (Montgomery 2009; Qiu 2013). Control charts are
conceived and designed differently according to the full or partial knowledge on the
underlying IC process distribution. When a full knowledge on process distribution,
and on all its parameters, is available, data are prospectively charted in Phase II

G. Capizzi · G. Masarotto (�)
Department of Statistical Sciences, University of Padua, Padua, Italy
e-mail: giovanna.capizzi@unipd.it; guido.masarotto@unipd.it
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for promptly detecting an OC situation. However, whether either the underlying IC
distribution or some parameters of that distribution are unknown, a Phase I analysis
is conducted to characterize process variation under stable conditions and estimate
a set of accurate control limits for on-line monitoring in Phase II.

Phase I control charts aim to test retrospectively whether observations on a
univariate (or multivariate) quality characteristic X, collected in m subgroups each
of size n ≥ 1, all come from a common IC distribution or from a distribution
whose parameters have changed. In recent years, attention and emphasis for Phase
I analysis have progressively grown among researchers and users because of some
critical aspects and issues of SPM that, when not appropriately faced and addressed
in Phase I, can seriously degrade the performance of Phase II control charts (see,
for example, Chakraborti et al. 2009; Jones-Farmer et al. 2014; Capizzi 2015). One
of the most challenging tasks in Phase I is evaluating process stability with respect
to a specified parametric model. Indeed, the uncertainty on the correct specification
of the underlying IC model makes parametric control charts quite unpredictable in
terms of their ability to distinguish true OC points from IC points coming from a
misspecified IC process distribution. Hence, when the specification of a correct IC
statistical model is a point of concern, the identification of OC conditions without
any a priori selection of a model can be more useful to practitioners. For all these
reasons, researchers have recently stressed the importance of using distribution-free
control charts in Phase I (see for example Jones-Farmer et al. 2009; Jones-Farmer
and Champ 2010; Graham et al. 2010; Human et al. 2010; Bell et al. 2014; Capizzi
and Masarotto 2013b; Cheng and Shiau 2015; Capizzi 2015; Woodall 2017; Capizzi
and Masarotto 2017).

Despite of their documented effectiveness in Phase I, there is still some reluc-
tance to practically apply distribution-free procedures, because they are based on
control statistics not very familiar to users and because their practical design and
implementation can show some mathematical and/or computational complexity. The
availability of an easy-to-use software implementing recent nonparametric Phase I
proposals can make their usage much more appealing to practitioners.

Thus, in this chapter we illustrate the R package dfphase1 implemented to
perform the Phase I analysis of either univariate or multivariate data. The package
complements the functionalities offered by other R packages such as qcc (Scrucca
2004), changepoint (Killick and Eckley 2014), cpm (Ross 2015), and spc
(Knoth 2016). The dfphase1 package covers the design and use of different
distribution-free procedures recently proposed for testing the stability of process
location and variation. It also implements the combination of some distribution-
free Phase I methods, originally conceived to test for the stability of only one
of these two process parameters. The R package also allows the distribution-free
design of some univariate and multivariate methods developed for the parametric
framework. All methods implemented in the package attain a desired false alarm
probability (FAP) with no assumption on the underlying probability distribution of
quality characteristics. Coherently to the “standard framework” handled in the SPM
literature, in this chapter we assume that (1) the number of data points is larger than
number of the variables, and (2) when the process is IC, the observation vectors
are independent and identically distributed. Extensions to the high-dimensional
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and/or time-dependent framework will require further research. Notwithstanding
these limitations, the implemented methods provide a distribution-free design of
several Phase I procedures frequently used in many practical situations.

The chapter is organized as follows. In Sect. 2, we briefly argue why the SPM lit-
erature has recently been paying increasing attention to a distribution-free approach
to Phase I analysis. Then, in Sect. 3, the main approaches to the distribution-free
Phase I analysis of univariate and multivariate data are shortly reviewed, also
outlining some possible drawbacks in their design and implementation, above all
in the multivariate framework. Some details on the dfphase1 package are given
in Sect. 4. In Sect. 5, an example is discussed. Some concluding remarks are given
in Sect. 6.

2 Why Distribution-Free Methods in Phase I?

Performances of Phase I methods are usually evaluated in terms of alarm proba-
bilities. In particular, the control limits of Phase I control charts are determined
so that, at least approximately, the FAP, i.e., the overall probability of giving at
least one false alarm, attains a nominal value. Control limits are often computed
under the assumption of a known underlying probability distribution, such as
normal, exponential, gamma, etc. However, as anticipated in the Introduction, in
Phase I stability with respect to a parametric model is often tested when a little
information is available to validate distributional assumptions. A misspecification of
the underlying IC process distribution may result in inflated false alarm probabilities
but also in an incorrect classification of an observation as an “outlier” or “out-of-
control” point. Indeed:

1. The attained FAP can be very different from the nominal value when the real
process distribution deviates from the assumed parametric model. For example in
the univariate case, when m = 50 and n = 5, the attained FAP of a retrospective
Shewhart X-S control chart, designed to give a FAP equal to 0.05 under the
normality assumption, is equal to 0.528 and 0.749 when Phase I data actually
come from a Student’s t5 and an Exponential, respectively. The IC performance
is even more degraded in the multivariate framework. For example a T2 control
chart designed to give a FAP equal to 0.05 for multivariate normally distributed
data, provides an attained FAP equal to 0.72 (m = 50, n = 5) and 0.97 (m=100
and n = 5) when is applied to data coming from a five dimensional Student’s t3.
Even when more Phase I data are available (m = 100 and n = 10), the attained
FAP reaches an unacceptably high value equal to 0.87.

2. On the other hand, the classification of an observation as an “outlier” strictly
depends on the strength of its evidence against the model chosen as more
appropriate for representing a stable process. The standard Phase I practice,
consisting in iteratively identifying, removing OC points and recomputing
control limits, leads to a “reference” sub-sample easily consistent with the
hypothesized parametric model but not necessarily representative of the true
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stable underlying probability distribution (see Capizzi (2015), for an example
and additional discussions).

3 Distribution-Free Phase I Control Charts: A Brief Review

A distribution-free (or nonparametric) control chart is defined in terms of its IC
behavior. If the IC properties are the same for (at least) all continuous distributions,
the resulting control charts are called distribution-free (see Chakraborti et al. (2001),
Chakraborti (2007), Chakraborti et al. (2009), and Chakraborti (2011), for some
reviews covering much of the recent SPM nonparametric literature).

Two possible approaches can be followed for implementing a distribution-free
Phase I analysis.

1. Plot distribution-free control statistics, such as mean ranks, sign statistics or
median-based statistics. This approach has been adopted for example by Jones-
Farmer et al. (2009), Jones-Farmer and Champ (2010) and Graham et al. (2010).
When compared with control charts based on standard control statistics, such as
the standard Shewhart-type X and S control charts, this approach can produce
an inferior performance in the normal or nearly normal case which, however,
is compensated by an efficiency gain when the process distribution strongly
deviates from the normal assumption. A practical disadvantage associated with
this approach is the need to learn and use new summary statistics not very
familiar to users. Further, it is difficult to generalize distribution-free statistics,
such as those based on the ranks, to the multivariate framework. Indeed, such a
generalization only involves the family of elliptical IC probability distributions
(see Oja (2010) for a general discussion and Bell et al. (2014) and Cheng and
Shiau (2015) for two specific proposals).

2. Plot well-known control statistics, such as the subgroup means or the Hotelling
T2s, but modify the control limits to account for a possible non-normality of
the process distribution. According to this approach, the distribution-free design
of control charts does not require, also in the multivariate framework, any
specification of the underlying process distribution. The control limits, computed
via a resampling method (booststrap, permutation, etc.) are able, exactly or
approximately, to guarantee the desired FAP both in the normal and nonnormal
scenarios. The limits can be quickly computed also using a low-end personal
computer. In particular, in dfphase1, we mainly consider the permutation
approach (Pesarin 2001; Good 2005; Lehmann and Romano 2005) since it is
able to exactly achieve a prescribed FAP regardless of the underlying process
distribution, at least for independent and identically distributed observations.
Furthermore, at least in many practical scenarios, there is no performance loss in
using the permutation-based limits. Indeed, a Monte Carlo study has shown that
the considered approach enjoys an “oracle property”, i.e., the resulting schemes
perform at least as well as if the shape of the process distribution were known a
priori and used to compute the control limits (e.g. Capizzi and Masarotto 2013a).
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4 The dfphase1 Package

Table 1 summarizes the Phase I methods implemented in the package dfphase1.
The package is written in R. The more computational demanding procedures have
been written in C++ using the Rcpp interface (Eddelbuettel 2013).

Table 1 Phase I methods implemented in package dfphase1

1. Univariate methods

a. Shewhart-type control charts

(i) X control chart (Montgomery 2009, chapter 6), with permutation-based control
limits

(ii) S control chart (Montgomery 2009, chapter 6), with permutation-based control
limits

(iii) Rank-based control chart for location (Jones-Farmer et al. 2009)
(iv) Rank-based control chart for scale (Jones-Farmer and Champ 2010)
(v) Balanced combination of (i)–(ii) or (iii)–(iv) for simultaneously testing location and

scale and giving a desired overall FAP (Capizzi 2015)

b. Methods for change-point detection
Sullivan and Woodall (1996) control chart, also adapted to subgrouped data, with
permutation-based limits (see also Qiu 2013, chapter 6)

c. Hybrid
RS/P method (Capizzi and Masarotto 2013b)

2. Multivariate methods

a. Shewhart-type control charts

(i) Hotelling T2 control chart, with permutation-based control limits (Montgomery
2009, chapter 11, equation 11.19)

(ii) Normal likelihood control chart for monitoring process variability, with
permutation-based control limits (Montgomery 2009, chapter 11, equation 11.34)

(iii) Analogous of (i) and (ii) but based on the marginal ranks (Lung-Yut-Fong et al.
2011), spatial signs or ranks (Oja 2010) and signed ranks (Hallin and Paindaveine
2004, 2008)

(iv) Balanced combination of the previous Shewhart-type schemes

b. Methods for change-point detection

(i) Sullivan and Woodall (2000) control chart, also adapted to subgrouped data, with
permutation-based limits (see also Qiu 2013, chapter 6 and 7)

(ii) Analogous control charts based on the marginal ranks (Lung-Yut-Fong et al. 2011),
spatial signs or ranks (Oja 2010) and signed ranks (Hallin and Paindaveine 2004,
2008)

c. Hybrid
A model identification approach, based on the forward search and the LASSO algorithms,
for detecting multiple location shifts with arbitrary patterns (Capizzi and Masarotto 2017)
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Control statistics in Table 1 can be based on several estimates of the common
process parameters. For example, as illustrated in Sect. 5, the multivariate Shewhart
control chart can be based on the classical estimates of the multivariate location and
variability (e.g. Montgomery 2009, equations 11.17a-c) but also on the highly robust
minimum covariance determinant (MCD) estimate (Maronna et al. 2006; Jensen
et al. 2007).

The package handles applications in the standard univariate and multivariate
framework. However, as shown in Sect. 5, it can also be used in more complex
situations where not necessarily the original observations have to be monitored,
but some of their features, such as principal components, model parameters,
etc. Nevertheless, in order to guarantee the validity of the implemented Phase I
procedures, the “extraction” must be equivariant under a permutation of the original
data.

The choice of the implemented methods reflects the idea that the detection
of location and/or scale changes is of particular interest in most applications.
Observe, that dfphase1 also allows to implement two simultaneous control charts
originally designed to detect separately location and scale shifts. As discussed by
Capizzi (2015), the control limits of the two charts are adjusted so that

(a) The overall FAP is guaranteed, i.e.,

Prob
(
one or both of the two charts give a false signal

) = FAP0.

where FAP0 is a desired value of the FAP.
(b) The FAP is evenly balanced between the two charts, i.e.,

Prob
(
first chart gives a false signal

) = Prob
(
second chart gives a false signal

)
.

The R functions are easy to use. The only needed arguments are the Phase I data,
organized as follows.

– Univariate control charts: an n × m matrix, where n and m are the size of each
subgroups and the number of subgroups, respectively. A vector of length m is
accepted in the case of individual data, i.e., when n = 1.

– Multivariate control charts: a p × n × m array, where p denotes the number of
monitored variables. A p × m matrix is accepted in the case of individual data.

All the functions in dfphase1 compute the control limits using Monte Carlo
simulations. For the implemented Phase I methods, the default number of Monte
Carlo replications has been differently set to provide an high accuracy of the attained
FAP. However, users can run a different number Monte Carlo replications changing
the default value of the L argument. For example, for the computation of the
permutation-based control limits, users can set L∝ (n × m)! to run a number of
Monte Carlo replications proportional to the number of permutations.
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5 An Example

5.1 Description of the Data

To illustrate the use of the package, we consider a dataset of 564 near-infrared (NIR)
gasoline spectra measured at wavelengths from 900 to 1700 nm (in 2 nm intervals).
In particular, 12 gasoline samples have been collected each day for a period of 47
(consecutive) days in an oil refinery. The command

> NIR <- as.matrix(read.table("NIR"))

loads in memory a matrix, named NIR, of dimension

> dim(NIR)

[1] 564 401

containing the spectra (one for each row). Note that values are the logarithms of the
absorbances.

Following the suggestions of the production engineers, each day is handled as a
rational subsample. Hence, we assume that the dataset comprises

> m <- 47

subgroups of observations, each of size

> n <- 12

Figure 1a, b shows the plot of all the 564 spectra and of those collected during
the first day, respectively. They have been obtained with the following commands.

> library(lattice)
> wavelength <- seq(900,1700,by=2)
> xyplot(NIR~rep(wavelength,rep(564,401)),
+ groups=rep(1:564,401), type="l",

(continued)
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+ xlab="nm",ylab=expression(log(Absorbance)))
> samples <- reorder(rep(1:12,401),
+ rep(c(9:12,5:8,1:4),401))
> xyplot(NIR[1:12,]~rep(wavelength,rep(12,401))|samples,
+ type="l",
+ xlab="nm", ylab=expression(log(Absorbance)))

Here, we are clearly facing a profile monitoring problem. As often done with
functional data (see Ramsay and Silverman (2005), and Ramsay et al. (2009), for a
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Fig. 1 Gasoline NIR spectra: (a) all the 564 spectra (superimposed); (b) 12 spectra collected
during the first day; (c) scree plot; (d) first four eigenvectors
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general discussion; Yu et al. (2012), for a specific application to SPM), we reduce
the dimensionality of data via principal component analysis (PCA). Observe that

1. When NC components are retained, PCA provides the “regression-like” repre-
sentation of the ith NIR spectrum

NIRi(nm) = μ(nm) +
NC∑

j=1

xi,jξj(nm) + ri(nm)

where xi,j is the jth principal component, and NIRi(nm), μ(nm), ξj(nm) and
ri(nm) are the logarithm of the absorbance, the log-absorbance mean, the jth
eigenvector and the residual term at the wavelength (nm). Hence, because for
profile data, such as the gasoline spectra, the eigenvectors are relatively smooth
functions, testing for the stability of the principal components xi,j over time is
similar to testing for the stability of the coefficients of a (mixed) regression model
describing the profiles.

2. At least in its standard implementation, the principal components are equivariant
under a (row) permutation of the original dataset. Hence, permutation- and rank-
based Phase I methods maintain their distribution-free properties.

The scree plot of the NIR data, obtained with the command

> plot(pca <- prcomp(NIR),main="")

and displayed in Fig. 1c, suggests to retain the first 4 principal components.
Figure 1d, displaying the corresponding eigenvectors, can be obtained using the
following commands

> eigv <- gl(4,401,labels=4:1)
> xyplot(pca$rotation[,1:4]~rep(wavelength,4)|eigv,
+ type="l", layout=c(1,4),
+ xlab="nm",ylab=expression(log(Absorbance)))

As often done in SPM, we also retain the additional variable

Qi = 1

401

∑

nm=900,...,1700

|ri(nm)|,

which reflects the size of the residual term. The following code “extracts” the
first four principal components, computes “Q” and, as required by dfphase1,
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organizes the results in a 5 × n × m array,

> fitted <- t(tcrossprod(pca$rotation[,1:4], pca$x[,1:4])
+ +pca$center)
> r <- NIR-fitted
> x <- array(rbind(t(pca$x[,1:4]),rowMeans(abs(r))),
+ c(5,n,m))
> dimnames(x) <- list(c(paste("PCA",1:4,sep=""),"Q"),
+ NULL,NULL)

5.2 Phase I Analysis

The package can be loaded during an R session using

> library(dfphase1)

The mshewhart function can be used to obtain different multivariate Shewhart
control charts (see Table 1). When the data array is the only argument,

> u <- mshewhart(x)

the function provides the graph displayed in Fig. 2a. The two panels show the
standard control statistics used for monitoring the stability of the mean and
dispersion of a multivariate normal distribution, respectively (see Montgomery
2009, equations 11.19 and 11.34). However, the control limits

> u$limits

[1] 25.802370 6.715327

are computed by permutation so that the desired FAP is guaranteed for each
multivariate distribution. In dfphase1, the default value of the FAP is 5%, but
it can be easily changed using the FAP argument.

The lower panel in Fig. 2a suggests that the dispersion was probably OC during
days 33, 35, 36 and 37. Then, observe that control statistics of days 32 and 34 are
below the limit but larger than the values of the other “in-control” days (see the
lower panel). Indeed, when the observations collected on days 33, 35, 36 and 37 are
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Fig. 2 Combination of an Hotelling T2 control chart and a control chart for monitoring the
stability of the covariance matrix, based on standard and MCD estimates of location and scatter
parameters. Standard estimates: (a) all the data; (b) days 33, 35, 36, 37 deleted; (c) days from 32
to 37 deleted. MCD estimates: (d) all the data; (e) days 35, 36, 37 deleted; (f) days from 32 to 37
deleted
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deleted, days 32 and 34 are flagged as OC for the dispersion. See Fig. 2b which is
produced by the following command

> mshewhart(x,subset=-c(33,35:37))

As shown by Fig. 2c, obtained with the following command

> mshewhart(x,subset=-(32:37))

no other subgroup is flagged as OC when observations from day 32 to day 37 are
not considered.

In dfphase1, alternative estimates of process parameters can be used adding
the optional argument loc.scatter in the call to mshewhart. Figure 2d, e,
and f, produced using the commands

> mshewhart(x,loc.scatter="MCD")
> mshewhart(x,subset=-(35:37),loc.scatter="MCD")
> mshewhart(x,subset=-(32:37),loc.scatter="MCD")

show that days from 32 to 37 are also flagged as OC when the standard estimates
of multivariate location and dispersion (e.g. Montgomery 2009, equations 11.17a-c)
are replaced with the high-breakdown MCD estimates (e.g. Maronna et al. 2006,
chapter 6).

The mchangepoint function can be used to detect a sustained shift. An
example is provided by Fig. 3a produced using

> mchangepoint(x,score="Signed Ranks")

The upper panel shows the control statistics for verifying the presence of a shift
either in the multivariate location or dispersion (see Sullivan and Woodall 2000;
Qiu 2013). Since, for many days, the values are greater than the permutation-based
control limit, the hypothesis of a stable process is rejected, and, in particular, the
graph points to a possible shift on day 32. The middle and lower panel show the
decomposition of the control statistic in the two parts due to changes in the location
and dispersion, respectively (see Sullivan and Woodall 2000). For the NIR data,
these diagnostic graphs clearly point to a shift in the dispersion. Note the optional
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Fig. 3 Multivariate change-point detection: (a) all the data; (b) observations up to day 31;
(c) observations after days 31; (d) observations after days 37

argument score which asks for a suitable multivariate rank transformation. An
analogous argument can also be used for mshewhart.

Having divided the observations in two periods (before and after day 32), it is
also useful to see if there is evidence of other shifts within these periods. Recursive
application of mchangepoint suggests that the process was stable before days 32
(Fig. 3b) but that another dispersion shift was probably present starting on day 38
(Fig. 3c). No additional shift is detected after day 38 (Fig. 3d). The commands used
to produce Fig. 3b–d are
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> mchangepoint(x,subset=1:31,score="Signed Ranks")
> mchangepoint(x,subset=32:47,score="Signed Ranks")
> mchangepoint(x,subset=38:47,score="Signed Ranks")

The four principal components and the additional variable Q are expected to
be (more or less) independent. Hence, for these data, process stability can be also
assessed applying separately one or more univariate Phase I control charts to the five
variables. For reasons of space, we will only show the application of three different
schemes to the second principal component.

The shewhart function can be used to plot some univariate Shewhart-type
control charts. Figure 4a–c shows the iterative application to the second principal
component of the combined X − S control chart with control limits computed by
permutation. Analogously, Fig. 4d and e illustrate the joint use of the two rank-
based control charts proposed by Jones-Farmer et al. (2009) and Jones-Farmer and
Champ (2010) for monitoring the univariate location and dispersion, respectively.
These five Subfigures have been obtained using the commands

> shewhart(x[2,,])
> shewhart(x[2,,],subset=-c(32:33,35:37))
> shewhart(x[2,,],subset=-(32:37))
> shewhart(x[2,,],stat="Rank")
> shewhart(x[2,,],subset=-(32:37),stat="Rank")

The rsp function implements the RS/P method suggested by Capizzi and
Masarotto (2013b). In particular, Fig. 4f can be obtained with the following
command

> rsp(x[2,,])

Observe that no iterative use of rsp is usually needed since this method tries to
detect multiple isolated and step changes.

Figure 4a–f indicates an increased variability in the second principal component
for days from 32 to 37. Similar results have also been observed for the third and
fourth principal components (but not for the first component and Q).

Globally speaking, the application of univariate and multivariate control charts
signals the presence of an OC condition in the interval [32; 37]. The instability
was attributed to a transitory malfunction of the automatic process adjustments. By
deleting data collected in these days, the hypothesis of a stable process is accepted.
Hence, observations up to day 31 and after day 37 can be used to study the process
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capability and design a Phase II control chart for prospectively monitoring the
process.

6 Conclusions

We have illustrated the motivations and use of an R package developed for the
distribution-free Phase I analysis of univariate and multivariate data. The package,
which is available from the Comprehensive R Archive Network (https://cran.r-
project.org/package=dfphase1), has been developed with the aim to facilitate and
diffuse the use of distribution-free Phase I methods among practitioners.
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Assessment of Shewhart Control Chart
Limits in Phase I Implementations Under
Various Shift and Contamination
Scenarios

Murat Caner Testik, Christian H. Weiß, Yesim Koca, and Özlem Müge Testik

Abstract In Phase I implementations of control charts, the unknown parameters
required in calculating the Phase II control limits are estimated. This retrospective
study requires analyses of observations all at once to characterize a stable process
by identifying and eliminating the observations corresponding to out-of-control
process states. Hence, it is aimed to obtain an in-control reference set of observations
for estimation. Nevertheless, there are many possibilities for parameter shifts and
contaminations of observations due to out-of-control process states in industrial
settings. As a simple but effective tool, Shewhart control charts are recommended
in the literature for Phase I use.

In this study, the width of the Shewhart control limits is altered to assess the
performance in Phase I implementations. Out-of-control states of a process are
simulated using various mean shifts and contamination percentages of subgroups
for normally distributed observations. Considering various combinations of the
number of subgroups and the number of observations in each subgroup as control
factors as well as the mean shifts and contamination percentages of the sample as
uncontrollable factors, performance metrics such as true and false alarm percent-
ages, number of iterations to complete estimation, and mean squared error of the
parameter estimates are investigated. Robustness to uncontrollable factors through
control limit width selection is studied.
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1 Introduction

Monitoring of a process or product characteristic using a control chart requires the
determination of parameter values, such as the in-control process mean and standard
deviation, to be used in the design of the chart. Since these parameters are often
unknown in many real world applications, a retrospective control chart application,
called Phase I, becomes necessary to estimate the unknown parameters. Utilizing a
set of observations that are assumed to be clean from the effects of assignable causes
of variation, unknown parameters are estimated and then used in designing the chart
for online monitoring, i.e. for the Phase II application of a control chart. Although
a Phase I study is frequently necessary in practical applications, most research on
control charts focused on Phase II development and performance evaluation, treating
the control chart parameters as known.

Recently, a topic that deserved considerable attention from researchers is the
effect of parameter estimation on the control chart properties. Interested readers
are referred to Jensen et al. (2006) for a review of the literature. In the studies,
variability due to estimation is taken into account. Assuming control chart designs
with estimated parameters, conditional and marginal performances in the Phase II
of control charts are evaluated and some recommendations on sample sizes are
provided (see, for example, Weiß and Testik 2011; Testik 2007; Testik et al. 2006;
Jones et al. 2001), or adjustments to Phase II control limits are proposed (see, for
example, Albers and Kallenberg 2004, 2005). In these works, it is emphasized that
collecting representative samples of sufficient size will ensure the desired Phase II
performance. Nevertheless, these studies intrinsically considered that the Phase I
observations are clean in the sense that they are obtained from a statistically in-
control process.

But obtaining a reference set of in-control observations from a process is often
a difficult task for an analyst, and such judgments may require process knowledge.
Even with a good process knowledge, the stability of a process should be checked.
As Shewhart (1939) notes, “In the majority of practical instances, the most difficult
job of all is to choose the sample that is to be used as the basis for establishing
tolerance range. If one chooses such a sample without respect to the assignable
causes present, it is practically impossible to establish a tolerance range that is not
subject to a huge error. Before choosing the sample, therefore, it is desirable to try
to detect the presence of assignable causes and to discover the nature of these so that
their influence may be foretold.” Yet, research on methods to obtain an in-control
reference set of observations has received less emphasis (Jones-Farmer et al. 2014).

In this study, obtaining a reference sample that is representative of the in-control
state of the process is considered. Parameter estimation in Phase I applications
is studied by simulating different levels of contaminations to represent effects of
the presence of assignable causes of variation in fixed-size sets of samples of
observations. The iterative steps of the Phase I analysis using conventional Shewhart
control charts are simulated for detecting the presence of assignable causes of
variation, and these are then removed to obtain statistically in-control reference
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sets of observations. To better handle the detection of assignable causes, Shewhart
control limits’ width is adjusted as a control factor. The Mean Squared Error (MSE)
criterion is used to evaluate the estimates of the unknown parameters.

The chapter is organized as follows. In Sect. 2, the Phase I application of control
charts is explained. Design of the Shewhart control charts for monitoring the mean
and the variability of a normally distributed characteristic is given next (Sect. 3).
Following the description of the simulation methodology in Sect. 4, results are
discussed and recommendations on the control limit widths to obtain approximately
optimal MSE for the mean are given (Sects. 5 and 6). Then the chapter is concluded.

2 Phase I Application of Control Charts

Phase I applications are essential if the values of parameters required for designing
a control chart are unknown. The aim is to identify the in-control state of the
process for characterizing the quality characteristic and designing the control chart
to be used in Phase II for online monitoring. For this purpose, robust estimators or
change-point procedures can be considered as alternatives in Phase I. The readers
are referred to Schoonhoven and Does (2012) and Zwetsloot et al. (2014) for
studies on the use of robust estimators in Phase I, and to Samuel et al. (1998a,b)
for the use of change point procedures to estimate the time of a process change.
Yet, the standard textbook recommendation (see, for example Montgomery 2009)
and the most commonly used approach in practice is a retrospective application of
standard Shewhart control charts in Phase I. In the Phase I stage of a control chart
implementation, a fixed-size set of observations on a characteristic to be monitored
is gathered during a time period when the process is considered to be in-control.
To assess the process stability, the set of observations is iteratively tested for the
presence of assignable causes of variation. Hence, Phase I is an attempt to determine
out-of-control situations retrospectively (Montgomery 2009; Quevedo et al. 2016).

Phase I analysis for parametric control charts begins with the identification
of an appropriate probabilistic model for the characteristic of interest and the
corresponding control statistic to be monitored. Then the parameters required for
designing a Phase I control chart selected are estimated. Shewhart type control
charts are often recommended in Phase I, and the iterative implementation of the
use of these charts is as follows (see, Weiß and Testik 2015; Dasdemir et al. 2016).
Initial parameter estimates are obtained first by using a fixed-size Phase I set of
observations, and trial control limits are determined. Then the trial control limits are
used to test if there are control statistic values exceeding the limits. Observations
corresponding to control statistic values that exceed the limits are investigated for
the presence of assignable causes of variation. Corrective actions are taken for the
identified assignable causes of variation and the corresponding observations are
ignored in the subsequent iteration. Using the remaining observations in the Phase I
set of observations, parameter estimates and the control limits are revised, control
statistic values are tested with the revised control limits, corrective actions are taken
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for identified assignable causes of variation, and the observations corresponding to
these are ignored in the subsequent iteration. This is iterated until all the points are
within the control limits. Final parameter estimates are then used in designing the
Phase II control chart. Note that, if observations corresponding to out-of-control
states of a process are not omitted when estimating the parameters, these will reflect
themselves in the parameter estimates, effects of which will be propagated to the
Phase II performance of the chart.

3 x and s Control Charts

In practice, a widely used approach for determining a reference set of observations
for estimation in Phase I is to use Shewhart control charts. This is due to the
ease of construction and interpretation, effectiveness in detecting large sustained
shifts in the parameters, outliers, measurement errors, data recording errors and the
like (Montgomery 2009). Therefore, following the recommendations of standard
textbooks, the Shewhart control charts x and s are considered for the Phase I analysis
in this study.

Suppose that m subgroups of size n observations on a characteristic x are used at
an iteration of a Phase I application. Let x be the subgroup average,

x = x1 + x2 + · · · + xn

n
,

and s be the subgroup standard deviation,

s =
√∑n

i=1(xi − x)2

n − 1
.

The upper control limit (UCL), center line (CL), and lower control limit (LCL) for
the x control chart are as follows;

UCL = x + L s

c4
√

n
,

CL = x,

LCL = x − L s

c4
√

n
,

where L is the distance of a control limit from the center line in terms of standard
deviation units, x is the average of m subgroup averages,

x = 1

m

m∑

i=1

xi,



Assessment of Shewhart Control Chart Limits 25

s is the average of m subgroup standard deviations,

s = 1

m

m∑

i=1

si,

and c4 = c4(n) is a constant depending on n such that s/c4 is an unbiased estimator
of the process standard deviation σ : c4(n) = √

2/(n − 1) �( n
2 ) / �( n−1

2 ).

Since the standard deviation of s is σ

√
1 − c2

4, a common textbook recommen-
dation for the UCL, CL, and LCL of the s control chart are,

UCL = s + L
s

c4

√
1 − c2

4,

CL = s,

LCL = s − L
s

c4

√
1 − c2

4,

respectively. The distribution of s is not symmetric, so the use of symmetric control
limits for the s chart (see recommendation in, e.g., Section 6.3.1 in Montgomery
(2009)) is an approximation. Note that the x control chart is used to detect shifts
in the mean, whereas the s control chart is used to detect shifts in the variability.
In Phase I applications, the practitioner simultaneously uses these control charts,
and the signals of the charts are evaluated for the presence of assignable causes of
variation. The iterative use of these charts is as described in the previous section.

Besides the parameters m, n defining the number and size of subgroups, the
practitioner also has to choose a value for the factor L of the control limits. This
design parameter is often selected to be 3 in conventional use. To study the effect of
the choice of L on the Phase I performance of the charts, we shall vary its value in the
simulation study presented below and compare the results to those of the standard
choice L = 3 (benchmark value for L).

4 Phase I Simulations Using Shewhart Control Charts

Two-sided x and s control charts are considered in this study to identify the
presence of assignable causes of variation in Phase I. For a fixed-size set of Phase I
observations, it is assumed that the cleaner the set of observations, the better will be
the parameter estimates. The process model, simulation details and metrics used in
evaluations are provided below.

Let the observations on the characteristic of interest be independent and normally
distributed. For simplicity but without loss of generality, consider that the in-control
mean is μ0 = 0 and the in-control standard deviation is σ0 = 1. As a sampling
strategy, it is assumed that consecutive samples are taken to minimize the chance of
variability due to assignable causes within a subgroup and to maximize the chance
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of variability between subgroups when assignable causes of variation are present,
i.e. rational subgroups are considered. Consequently, process state changes due to
assignable causes of variation are assumed to be shifts in the means between two
successive subgroups, which affect all the observations within a subgroup after the
change. Note that this is the snapshot approach as discussed in Montgomery (2009).

In the simulations, an out-of-control process due to the presence of assignable
causes was modeled by a change in the mean from μ0 = 0 to a new level μ1, but
the standard deviation σ0 = 1 was kept constant. Considering m initial subgroups
each having a size of n observations, and a total of N = mn observations in the
Phase I dataset, a percentage c of the total observations (i.e. mc subgroups) were
contaminated such that the contaminated subgroup mean becomes μ1.

As controllable factors, the distance of a control limit from the center line in
terms of standard deviation units (L), initial number of subgroups (m), and the
number of observations within each subgroup (n) were studied in the simulation
experiments. In addition, the contamination percentage (c) and shifted mean (μ1)
were considered as uncontrollable factors (although these factors are controllable
for the purpose of simulation tests). Considered cases of interest are: L = 1–5
with increment size 0.1, m = 25, 50, 100, 200, 1000, n = 5, 10, μ1 = 1, 2, 3,
and c = 0, 4 and 8%. Note that c = 0 corresponds to the case where there are no
effects of assignable causes of variation in the Phase I data set.

For each combination of controllable and uncontrollable factors, a simulation
study with 100,000 replications was performed by generating a Phase I data set for
each replication, and by iterating the Phase I steps until all the points were within
the control limits. Here, it is assumed that a point exceeding the Phase I limits
is an indication of the existence of an assignable cause and is therefore ignored
in the calculations of the subsequent iteration. Several performance metrics were
calculated as follows for evaluating the Phase I applications:

• Average Number of Iterations (ANI) for evaluating the computational effort to
reach a final decision that the process is in-control, is obtained by counting the
number of iterations in each replication, and by taking the average of these.

• True Alarm Percentage (TAP) for determining the power in detecting assignable
causes is

E

[
T

mc

]
× 100,

where T is the number of subgroups that trigger an out-of-control signal with
either of the charts when the subgroup actually corresponds to an assignable
cause. The ratio of the number of true signals to the number of contaminated
samples is taken in each replication, and the average of these is calculated.

• False Alarm Percentage (FAP) for determining the performance in falsely
detecting in-control subgroups as if assignable causes are present is

E

[
F

m − mc

]
× 100,



Assessment of Shewhart Control Chart Limits 27

where F is the number of subgroups that trigger an out-of-control signal with
either of the charts when the subgroup actually corresponds to an in-control
process. The ratio of the number of false signals to the number of clean samples
is taken in each replication, and the average of these is calculated.

• Mean squared error (MSE) for determining the accuracy of estimation for the
mean and standard deviation is

MSE(x) = E
[
(x − μ0)

2],

MSE(s/c4) = E
[
(s/c4 − σ0)

2],

respectively. The square of the difference of the final parameter estimate from its
true value was calculated in each replication, and the average of these was taken.

5 Results of Simulations

Subgroups are tested for the presence of assignable causes of variation in Phase I
applications. The trial control limits are revised as out-of-control process states are
detected, and subgroups corresponding to these are removed. This is iterated until
all the points are within the control limits. To understand the effect of the distance
L of a control limit from the center line on ANI, simulation results are provided in
Figs. 1 and 2 for c = 4%, respectively for n = 5 and n = 10. Additional results with
c = 8% can be found in Figs. 10 and 11 in Appendix 1. In the figures, each panel
corresponds to a mean value μ1, where the left panels (shift = 0) are the in-control
results (without contamination) for comparison. In each panel, the ANI graphs for
the tested number of initial subgroups m are provided against L.

With regard to Figs. 1 and 2, as well as to Figs. 10 and 11, it can be seen that the
ANI has a peak in between L values of 1 and 2 for all of the cases. This is due to
many points plotting outside the tight control limits. Note that the points outside
the control limits are not necessarily true signals for the existence of assignable
causes of variation. True and false signal percentages, as well as their effect on
the accuracy of estimation, will be discussed later. As expected, up to a point,
ANI decreases with increasing L, which corresponds to wider control limits and
less signals. Furthermore, the larger the number of initial subgroups m, the higher
the ANI for a given L. Note that more signals can be expected as the number of
observations increase, which, in turn, lead to more iterations.

For the shift values μ1 = 0 and μ1 = 1, the ANI approaches 1 in the interval
3–5 for L. That is, the estimation is completed in a single iteration on average since
the charts do not signal much with the wider control limits. Yet, the convergence to
this limiting ANI value is slower with the shift value 1, compared to 0.

On the other hand, for the moderate shift value μ1 = 2 and n = 5, there are local
minimums greater than the limiting value 1 for the ANI graphs in the interval 2–4
for L. With the L values greater than the ones corresponding to the local minimums,
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Fig. 1 ANI at the end of Phase I analyses for various shifts in the mean (panels) with contamina-
tion c = 4%, number of subgroups m (graphs), and distance L of control limit from center line,
when the number of observations n within subgroups is 5
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tion c = 4%, number of subgroups m (graphs), and distance L of control limit from center line,
when the number of observations n within subgroups is 10
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the ANI may slightly increase first and then decrease below this local minimum.
This slight increase in the ANI with an increase in L from the corresponding local
minimum can be explained by having less signals in the initial iterations but as
these are detected and removed, slowly the control limits get tighter for detection of
the remaining points in the subsequent iterations. Hence, the number of iterations
increase up to a point. Then, with the decrease of detection capability due to wider
control limits, the ANI starts to decrease with less and less signals to trigger new
iterations. Considering the shift value of μ1 = 2 but with n = 10, the minimums
of ANI are achieved in the interval 2–4 for L, where the global minimums are
approximately 2 for ANI. With an increase of the detection power in contrast to
n = 5, the effect of increasing L from the corresponding minimum value of ANI
is more visible. Although there is a decrease of detection capability due to wider
control limits with increasing L, the ANI starts to increase with less signals that are
detected. So the control limits get tighter slowly, resulting in the detection of the
remaining points in the subsequent iterations. The shift value of μ1 = 3, both with
n equal to 5 and 10, achieves the minimums of ANI in the interval 3–5 for L, where
the global minimums are again approximately 2. Taking altogether, the benchmark
choice L = 3 usually goes along with a relatively low ANI, which certainly is
attractive for practice.

Now consider the effect of the distance L of a control limit from the center
line on the type of signals of the control chart. Figure 3 plots the FAP results for
the combinations of c and n in a panel, with the graphs in the panels representing
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Fig. 3 FAP at the end of Phase I analyses against L values for the combinations of number of
observations within subgroups n and contamination percentage c (panels) for the shifts considered
(graphs)
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Fig. 4 TAP at the end of Phase I analyses for various shifts in the mean (panels) with contamina-
tion c = 4%, number of subgroups m (graphs), and distance L of control limit from center line,
when the number of observations n within subgroups is 5

the combinations of m and shift values. Simulation results for the TAP are provided
in Figs. 4 and 5 for c = 4%, respectively for n = 5 and n = 10. Additional results
with c = 8% can be found in Figs. 12 and 13 in Appendix 2. In these figures, the
FAP and TAP graphs in each panel are very close to each other and, hence, FAP
and TAP are sensitive mostly to the shifted values of the mean, μ1, but not to the
number m of subgroups.

The FAP of the charts under the different cases considered are all similar. The
FAP graphs are monotonically decreasing as L gets larger. At L = 1, FAP is close to
60% and with the L value of 2.5 or greater (including the benchmark choice L = 3),
these graphs are close to 0, indicating that false signals are rare. Yet, a slightly larger
FAP can be observed with the larger shift value μ1 = 3.

While the behavior of the FAP is quite unique and reasonably low for L > 2.5,
the TAP results are more complex. Consider first the shift value μ1 = 1. While most
of the out-of-control subgroups are detected in a Phase I study with an L value in the
interval 1–2, there is a steep decrease of the true alarm percentages in the interval
2–3 for L when n = 5. However, this decrease in power is slower with n = 10. As
L approaches 5, TAP approaches 0 indicating that the charts lose the capability to
detect true signals when the shift in the mean is small.

For the moderate sized shift value μ1 = 2, most of the out-of-control subgroups
are detected with the L values in the interval 1–3 when n = 5. As L approaches 5,
TAP approaches 30%. For n = 10, the interval for a good detection power gets
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Fig. 5 TAP at the end of Phase I analyses for various shifts in the mean (panels) with contamina-
tion c = 4%, number of subgroups m (graphs), and distance L of control limit from center line,
when the number of observations n within subgroups is 10

visibly larger, and L values between 1 and 4 result in a very high TAP. In this
case, as L approaches 5, TAP approaches 90%. Hence, there is a clear performance
advantage in true signals when n = 10, compared to n = 5. So while the number m
of subgroups has only little effect on the TAP, their size n should be carefully chosen.
On the other hand, for the large shift case μ1 = 3, almost all of the out-of-control
subgroups are detected when an L value is selected to be between 1 and 5. When L is
5, TAP is close to 90% with n = 5, and even close to 100% with n = 10. Altogether,
in view of the FAP, the value of L should not fall below 2.5, while an upper bound as
implied by the TAP depends on the size of the shifts to be considered. For moderate
to large shifts, the benchmark choice L = 3 appears to be a reasonable choice in
view of FAP and TAP.

A control chart signal may be either true or a false. The total number of signals at
the end of a Phase I study is composed of both the true and false signals. The average
of the total number of signals is a monotonically decreasing function of L, since
the control limits get wider as L increases and the probability of a point plotting
outside these limits gets smaller. Consider again the ANI graphs for the moderate
shift value μ1 = 2 with contamination 4%. These graphs have a local minimum
around 3. Here, the total number of signals, dominated by false signals, starts
decreasing as L increases. With the increase of L to 3, although the total number
of signals is less, these are mostly true signals. When L is increased more, the ANI
starts to increase first, since a high percentage of true out-of-control subgroups are
detected but with more iterations. With larger L, the true alarm percentage starts
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dropping steeper and the true out-of-control subgroups become mostly undetectable
with the wider control limits. Hence, the ANI starts to decrease since there are less
signals to trigger subsequent iterations.

Finally, let us turn to the mean squared errors of the mean and standard deviation
estimates as obtained to the end of Phase I analysis. Before discussing the simulation
results, let us point out that the limit L → ∞ corresponds to the case of computing
estimates from the full initial data set. For the shift scenarios considered here, and
using the well-known identity MSE = Var + Bias2, the corresponding MSE values
are computed exactly as

MSE(x) = σ 2
0

m n
+
( c

100
(μ1 − μ0)

)2 = 1

m n
+
(c μ1

100

)2
,

MSE(s/c4) = σ 2
0 (1 − c2

4)

m c2
4

+ 02 = 1 − c2
4

m c2
4

.

So the limiting behaviour of the mean estimates’ MSE depends on the shift size μ1.
Since these limiting values express the MSE if not doing any data filtering, these
can be interpreted as benchmark values; such values of L are desirable that lead to
an MSE close to or preferably below the respective limiting value.

For each fixed-size initial set of Phase I observations, the MSEs for the mean
estimates are presented in Figs. 6 and 7 for the c = 4% with n = 5 and n = 10,
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Fig. 6 MSE of the mean estimates at the end of Phase I analyses for various shifts in the mean
(panels) with contamination c = 4%, number of subgroups m (graphs), and distance L of control
limit from center line, when the number of observations n within subgroups is 5
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Fig. 7 MSE of the mean estimates at the end of Phase I analyses for various shifts in the mean
(panels) with contamination c = 4%, number of subgroups m (graphs), and distance L of control
limit from center line, when the number of observations n within subgroups is 10

respectively. The results for c = 8% cases are provided in Figs. 14 and 15 in
Appendix 3. In these figures, the left panels are the in-control cases for comparisons.
In each panel, the MSE graphs for the tested number of initial subgroups m are
provided against the distance L of control limits from the center line.

The sensitivity of the MSE to L can be seen by a comparison of the MSE graphs
within and between panels in each figure. For the out-of-control cases (panels with
shifts ≥ 1), the MSE graphs are U-shaped, with a large MSE either for small L (then
too many in-control subgroups are removed from the Phase I data set), or for large L
(then contaminated subgroups are not detected). In particular, there always exist
values of L leading to an MSE below the limiting value, i.e., these Phase I analyses
lead to an improvement compared to the initial situation. A further comparison
indicates that larger shifts in the mean may result in smaller MSE values for a given
value of L and m. This is due to the increase of the detection performance of the x
chart with larger mean shifts, and the effect can be seen better with smaller subgroup
sizes m. However, for a given out-of-control shift and L value, the MSE can be
larger with the higher contamination percentage c = 8%, since some observations
representing the out-of-control process cannot be detected.

For the larger shifts μ1 = 2 and μ1 = 3, the minimum of the MSE value is
located close to the benchmark choice L = 3. On the other hand, flatness of the
MSE graphs can be observed around the L values that provide the minimum MSE
value. Accordingly, one can identify alternative L values for given m and n pairs
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Fig. 8 MSE of the standard deviation estimates at the end of Phase I analyses for various shifts in
the mean (panels) with contamination c = 4%, number of subgroups m (graphs), and distance L of
control limit from center line, when the number of observations n within subgroups is 5

to yield minimum or close to minimum MSE of mean estimates. As expected, the
greater the initial number m of subgroups or the subgroup size n, the smaller the
MSE.

Now consider the MSE graphs for the standard deviation estimates given in
Figs. 8 and 9 for the c = 4% cases with n = 5 and n = 10, respectively, and
the c = 8% cases presented in Figs. 16 and 17 in Appendix 3. Since rational
subgroups are considered and the mean shifts are assumed to be between subgroups,
the standard deviation estimates are essentially only affected by the number of
samples used for estimation for a given m and n. The number of subgroups used
for estimation at the end of a Phase I application decreases with an increase of the
mean shift, since more signals are expected to be triggered by the x chart. Therefore,
the MSE of the standard deviation estimates are slightly greater in a figure, for a
given m and L, as the shift increases. On the other hand, flatness of the MSE graphs
around the minimum MSE can be clearly seen for a wide interval of L values. The
MSE graphs generally have an approximate minimum with the L values greater than
3 for n = 5, whereas the approximate minimum is achieved with L values greater
than 2.3 for n = 10.
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Fig. 9 MSE of the standard deviation estimates at the end of Phase I analyses for various shifts in
the mean (panels) with contamination c = 4%, number of subgroups m (graphs), and distance L of
control limit from center line, when the number of observations n within subgroups is 10

6 MSE Optimal and Robust L Values for Phase I Charts

In industrial settings, there are many possibilities of shift sizes and contamination
levels for out-of-control observations from a process. Therefore, a generalization
for the L value used in the estimation under various levels of these uncontrollable
factors is important for practical use. In the following, L values that are robust to a
variety of uncontrollable factor levels in estimating the mean are investigated.

It was mentioned earlier that MSE graphs are almost flat around the L values that
provide the minimum MSE, and therefore alternative L values can be identified
for given m and n pairs to yield minimum or close to minimum MSE of mean
estimates. To provide suggestions for practitioners, we searched for L values that
are robust over the considered contamination percentages c = 4 and 8%, the shifts
μ1 = 0, 1, 2, 3, as well as their combinations. For this purpose, an upper deviation
bound of 5% from the minimum MSE value is selected, and L values satisfying
this condition were searched. Hence, intervals for L for each combination of m, n,
c and μ1 were identified. For each m and n pair, which are controllable factors for
practitioners, L values were determined by an interval intersection rule developed.
According to this rule, intersection of the intervals for L values were searched. For
example, if one is looking for robust L values over all of the considered shifts
and contamination percentages, there are seven intervals (1 in-control and 3 out-
of-control shift cases each with 2 contamination percentages) for each of the m
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and n pairs. If an interval of L that satisfies all of these 7 intervals could be found,
this interval is considered to have a robust performance in estimation. Since this
is not possible for all cases, majority voting is used when an intersection of all
intervals cannot be found. Note that one should also consider the MSE of the
standard deviation estimates in selecting an L value for Phase I analysis. Among
the alternative L values for the mean, one can select the larger ones to reduce the
MSE of the standard deviation estimates.

Considering the joint operation of x and s charts with the use of the same L value
for both charts, L values that provide approximately MSE optimal estimates of the
mean for rational subgroups are provided in Table 1. In the table, “*” indicates that
majority voting is used. Note also that an upper deviation bound of 5% is used
here. Since the change in the MSE may be very small outside this bound in some
cases, alternative bounds can also be considered to reduce the variation in L among
different cases.

Overall, it becomes clear that the MSE optimal L values are often close to the
benchmark choice of 3 σ limits (L = 3.0), and such a choice is further supported
in view of having a low false alarm rate (see the above FAP results), and of having
a reasonable power to detect the moderate to large shifts (TAP results for μ1 =
2, 3). Table 1 indicates that the MSE optimal L should be slightly lower than 3.0
for situations where at most small mean shifts are to be expected, while it should be
slightly larger than 3.0 in the case of larger mean shifts.

7 Conclusions

The Phase I implementation of Shewhart control charts is generally essential,
especially in practical settings, to design various control charts for monitoring in
Phase II. In fact, the Phase II performance of control charts in terms of false alarms
and detection often depends on the design of the chart with the use of estimated
parameters.

In this study, the Phase I implementation of the Shewhart control chart for
a normally distributed process is simulated under the assumption of rational
subgroups. Considering scenarios for mean shifts and contamination percentages
of the initial subgroups, the distance L of a control limit from the center line, as the
Shewhart control chart parameter, is altered for various numbers of initial subgroups
and observations in each subgroup.

The computational requirements for the Phase I implementation are expressed
through the average number of iterations metric. It is shown that if the subgroups
have no mean shift or a mean shift of 1 standard deviation, Phase I implementations
will be completed in a few iterations when the conventional 3 σ limits are used. With
larger shifts in the mean, the number of iterations required may be larger.

Since a control chart signal may be either true or a false, and the total number
of signals at the end of a Phase I study is composed of both the true and false
signals, the performance of Shewhart control charts in Phase I implementations is
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also studied by using the true alarm percentage (power) and false alarm percentage
(size) metrics. It is observed that the false alarm percentages of the charts under the
different cases considered are similar, and they monotonically decrease as L gets
larger. Furthermore, the true alarm percentages may be dramatically low for a mean
shift of 1 standard deviation.

In order to evaluate the accuracy of parameter estimation at the end of a Phase I
implementation, mean squared errors for the mean and standard deviation estimates
were computed. Robust values of L for estimating the mean by minimizing the mean
squared error metric were investigated. It turned out that often, the optimal choice
for L is close to 3, i.e. the conventional 3 σ limits appear to be a reasonable guideline
for Phase I chart design in view of having a small MSE together with low false alarm
percentages and reasonably large true alarm percentages.

Appendix 1: Average Number of Iterations for the Cases
of c = 8%

See Figs. 10 and 11.
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Fig. 10 ANI at the end of Phase I for various shifts in the mean with contamination c = 8% and
when the number of observations within subgroups n is 5



Assessment of Shewhart Control Chart Limits 39

7

6

5

4

3

2

1

1 2 3 4 5 1 2 3 4 5

1

Shift = 0

m = 25
m = 50
m = 100
m = 200

m = 1000

Shift = 1

n = 10, contamination = 8%
Average Number of Iterations vs L

L

A
ve

ra
g

e 
N

u
m

b
er

 o
f 

It
er

at
io

n
s

Shift = 2 Shift = 3

2 3 4 5 1 2 3 4 5

Fig. 11 ANI at the end of Phase I for various shifts in the mean with contamination c = 8% and
when the number of observations within subgroups n is 10

Appendix 2: True Alarm Percentages for the Cases of c = 8%

See Figs. 12 and 13.
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Fig. 12 TAP at the end of Phase I for various shifts in the mean with contamination c = 8% and
when the number of observations within subgroups n is 5
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Fig. 13 TAP at the end of Phase I for various shifts in the mean with contamination c = 8% and
when the number of observations within subgroups n is 10

Appendix 3: Mean Square Errors for the Cases of c = 8%

See Figs. 14, 15, 16, and 17.
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Fig. 14 MSE of the mean estimates at the end of Phase I for various shifts in the mean with
contamination c = 8% and when the number of observations within subgroups n is 5
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Fig. 15 MSE of the mean estimates at the end of Phase I for various shifts in the mean with
contamination c = 8% and when the number of observations within subgroups n is 10
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Fig. 16 MSE of the standard deviation estimates at the end of Phase I for various shifts in the
mean with contamination c = 8% and when the number of observations within subgroups n is 5
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Fig. 17 MSE of the standard deviation estimates at the end of Phase I for various shifts in the
mean with contamination c = 8% and when the number of observations within subgroups n is 10
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New Results for Two-Sided
CUSUM-Shewhart Control Charts

Sven Knoth

Abstract Already Yashchin (IBM J Res Dev 29(4):377–391, 1985), and of course
Lucas (J Qual Technol 14(2):51–59, 1982) 3 years earlier, studied CUSUM chart
supplemented by Shewhart limits. Interestingly, Yashchin proposed to calibrate the
detecting scheme via P∞(RL > K) ≥ 1−α for the run length (stopping time) RL in
the in-control case. Calculating the RL distribution or related quantities such as the
ARL (Average Run Length) are slightly complicated numerical tasks. Similarly to
Capizzi and Masarotto (Stat Comput 20(1):23–33, 2010) who utilized Clenshaw-
Curtis quadrature to tackle the ARL integral equation, we deploy less common
numerical techniques such as collocation to determine the ARL. Note that the two-
sided CUSUM chart consisting of two one-sided charts leads to a more demanding
numerical problem than the single two-sided EWMA chart.

Keywords Average Run Length · Fredholm Integral Equation of the Second
Kind · Collocation · Numerical Accuracy

1 Introduction

It is a more or less established pattern, that Shewhart charts are powerful tools
to detect large changes quickly, while the more complex EWMA (exponentially
weighted moving average) or CUSUM (cumulative sum) charts are well suited
to trace small and medium size changes. All three have been on the market for
a long time now—Shewhart (1926), Roberts (1959) and Page (1954) initiated
the research and usage a long time ago. Then a combination of the simple and
among the three most popular device, the Shewhart chart, with one of the more
subtle siblings seems to be a good idea. To the best of our knowledge, Westgard
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et al. (1977) introduced it into statistical process control (SPC) literature. For an
application in clinical chemistry, they proposed CUSUM-Shewhart combinations.
However, their two-sided CUSUM chart is not the well-known pair of two one-
sided schemes. It resembles a CUSUM phenotype which was described later on in
Crosier (1986) explicitly. Moreover, Westgard et al. (1977) provided an unorthodox
presentation of CUSUM charts, calculated an operations characteristic look-alike
measure via 1/ARL (Average Run Length) and performed many Monte Carlo
studies to supply, eventually, nomograms for further application of the new scheme.
Afterwards, Lucas (1982) and Yashchin (1985b) discussed the combination of
two-sided Shewhart charts with the more common construction of a two-sided
CUSUM procedure by running two one-sided CUSUMs. Both authors analyzed
one-sided designs as well. While Lucas (1982) calculated the zero-state ARL for
normal distribution by modifying the popular Markov chain approximation, did
Yashchin (1985b) a more elaborated study by dealing with the zero- and steady-
state ARL and RL quantiles for normal, χ2 (normal variance) and Poisson data. He
applied Markov chain approximation too. More publications regarding distributions
different to normal are Abel (1990) for Poisson, Morais and Pacheco (2006) and
Henning et al. (2015) for binomial and Qu et al. (2011) for exponentially distributed
data. For the more popular normal case, Starks (1988), Blacksell et al. (1994), and
Gibbons (1999) reported application cases, while Reynolds and Stoumbos (2005)
and Abujiya et al. (2013) provided more methodological insights and developments.
This is, of course, not a complete list of references. Definitely, CUSUM-Shewhart
combos became part of standard quality literature, see, for example, Montgomery
(2009), chapter 9.1.5. But it is not a popular strand of SPC research. In particular, the
ARL calculation was not questioned so far after its first treatment in Lucas (1982)
and Yashchin (1985b). This is, more or less, the aim of this contribution. We start
with the simpler case of one-sided combos, before the subtle two-sided scheme is
touched. Examples are provided, technical details moved into Appendix, and some
conclusions complete the chapter.

2 One-Sided CUSUM-Shewhart Chart

Henceforth, denote {Xi} a sequence of independent and normally distributed data
with mean μ which is under risk to change, and with some known and fixed variance
σ 2 that is set to 1 without loosing generality. In this section, we are interested
in detecting increases in the mean from μ0 = 0 to μ1 = δ > 0. This is done
by combining the very popular Shewhart X chart and one of the more known
“modern” competitors, the CUSUM chart. First, some math is collected to provide
the necessary notions.

Shewhart rule �S = inf{i ≥ 1 : Xi > cS} .

Z0 = z0 = 0 , Zi = max{0, Zi−1 + Xi − k} ,



New Results for Two-Sided CUSUM-Shewhart Control Charts 47

CUSUM rule �c = inf{i ≥ 1 : Zi > h} .

combo rule � = min{�S, �c} .

ARL = Eμ(�) .

ARL function L(z) = Eμ(� | z0 = z) .

The terms ARL and ARL function label the well-known Average Run Length both
per se and as function of the initializing value z0. Apparently, the CUSUM-Shewhart
combo consists of three parameters, the alarm thresholds cS (Shewhart) and h
(CUSUM), and CUSUM’s reference value k, which is typically set to (μ0+μ1)/2 =
δ/2. In all, they control the detection performance of the combo. Typically, some in
advance chosen large false alarm level, here denoted by A, and several prominent
shifts, δ, are utilized to find an effective triple (cS, h, k) so that E0(�) = A, and
{Eδ(�)}, in some way, are minimized.

Proper choice of cS implies k < cS < h + k. For cS ≤ k, the above combo
would be reduced to a pure Shewhart chart. This is due to the fact that as long as the
Shewhart component is not signaling, hence Xn ≤ cS ≤ k, the CUSUM statistic Zn

will not increase. Thus the Shewhart component will never signal after the CUSUM
component. Moreover, a CUSUM chart with h = 0 and k > 0 is equivalent to a
Shewhart chart (by setting k = cS). Therefore, the reference value k of a proper
(h > 0) CUSUM chart is smaller than the alarm threshold cS with the same in-
control ARL. On the other hand, if h + k ≤ cS then the combo is equivalent to a
standalone CUSUM chart. Namely, each Xn that triggers a Shewhart chart alarm is
now larger than h+k so that the corresponding Zn ≥ Zn−1 +Xn −k > Zn−1 +h ≥ h.
Hence, the CUSUM component signals too. Basically, the k < cS < h+ k condition
is needed for technical reasons.

For a standalone CUSUM chart, Fig. 1 illustrates the relationship between k and
h for an in-control ARL of 1000. The reference value k is usually much smaller
than the Shewhart threshold cS. The actual interval of admissible cS values is even
tighter—the lower limit is given by the threshold of a standalone Shewhart chart, the
normal quantile 	−1(1−1/A), the upper one by the threshold halone of a standalone
CUSUM chart increased by k:

	−1(1 − 1/A) ≤ cS ≤ halone(k, A) + k . (1)

In the sequel we assume that (1) is fulfilled. From Fig. 2 we see that for small k < 1,
the interval could be even more reduced, because for cS > 4.5 the threshold h does
not really change anymore.

Let ε = cS − k with 0 < ε < h. Then the ARL function of the combo solves the
following integral equation:

L(s) = 1 + 	(k − s)L(0) +
∫ min{h,ε+s}

0
ϕ(z + k − s)L(z) dz . (2)
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Fig. 1 CUSUM setup: relationship between reference value k and threshold h for an in-control
ARL 1000. Admissible k values belong to the interval
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Fig. 2 Combinations of Shewhart threshold cS and CUSUM’s h (k ∈ {1, 0.5, 0.2, 0.1}) for an
overall (of the combo) in-control ARL 1000

The functions 	() and ϕ() constitute the cumulative distribution and probability
density function of a standard normal distribution. Replacing the upper integral
limit with the constant value h leads to the well-known equation from Page (1954),
Lucas (1976), and Vance (1986). Numerical solution of the above integral equation
with an integral limit depending on the argument s is not straightforward. See, for
instance, Capizzi and Masarotto (2010) for a similar treatment of the EWMA-
Shewhart combo. They applied an aptly chosen Clenshaw-Curtis quadrature to
obtain satisfying numerical accuracy. Most of the work for combo charts rely
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on modified Markov chain approximations—see, e. g., Lucas (1982), Yashchin
(1985b), Reynolds and Stoumbos (2005), and Wu et al. (2008). Here, we want to
exercise collocation with piecewise defined Chebyshev polynomials—see Knoth
(2006) for their successful application in case of calculating the ARL of CUSUM
charts deploying the sample variance S2. First, we decompose the interval [0, h] in
r subintervals.

[0, h] = [0, h − (r − 1)ε
] ∪ (h − (r − 1)ε, h − (r − 2)ε

] ∪ . . . ∪ (h − ε, h
]
.

The integer r is determined from r = 	h/ε
 = 	h/(cS − k)
. From Fig. 3 one
concludes, that for large k = 1 (and k = 0.5 too), the value r = 2 seems to be
the typical value, at least for the chosen A = 1000. Returning to the subinterval
design we ascertain that except the usually shorter first one, all subintervals have
the same width ε. The Chebyshev polynomials are defined on all these r intervals
accordingly. The collocation framework is described for the simple case r = 2—
the general case is taken care of in Appendix. Hence, we distinguish for L(s) the
intervals 0 ≤ s ≤ h − ε and h − ε < s ≤ h. The constant L(0) seems to be
another value to be calculated, but because of the continuity of the ARL function it
is covered by the first interval. Now, we approximateL(s) on the mentioned intervals
with two different linear combinations of Chebyshev polynomials up to order N −1,
namely with

N∑

j=1

c1jT1j(s) and
N∑

j=1

c2jT2j(s) .
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The polynomials T1j(s) and T2j(s) are derived from the standard Chebyshev
polynomials

uj(z) = cos
(
j arccos(z)

)
, j = 0, 1, . . . , N − 1 , z ∈ [−1, 1]

thru mapping [−1, 1] to the related subinterval and adjusting the numbering in j
(0 → 1).

For the first interval, 0 ≤ s ≤ h − ε, we obtain

N∑

j=1

c1jT1j(s) = 1 + 	(k − s)L(0) +
N∑

j=1

c1j

∫ h−ε

0
ϕ(z + k − s)T1j(z) dz

+
N∑

j=1

c2j

∫ ε+s

h−ε

ϕ(z + k − s)T2j(z) dz ,

while for the second one, h − ε < s ≤ h, we receive

N∑

j=1

c2jT2j(s) = 1 + 	(k − s)L(0) +
N∑

j=1

c1j

∫ h−ε

0
ϕ(z + k − s)T1j(z) dz

+
N∑

j=1

c2j

∫ h

h−ε

ϕ(z + k − s)T2j(z) dz .

Both equations are evaluated at the roots of the Chebyshev polynomial uN(z)
shifted to each of the considered intervals. Hence, a linear equation system with
dimension 2N has to be solved, eventually. The remaining unknown constant L(0)

is substituted by

L(0) =
N∑

j=1

c1jT1j(0) =
N∑

j=1

c1j(−1)j+1 .

In the following subsection the framework is applied for some examples.

2.1 Examples for One-Sided Designs

In order to demonstrate the numerical performance of the collocation design, we
look firstly at one configuration utilized in Yashchin (1985b): k = 1, h = 3, cS =
3.5. Consequently, r = 	3/(3.5 − 1)
 = 2. With n = 10 (matrix dimension 20)
we obtain the final ARL approximation, 1510.0 (Monte Carlo with 109 replicates
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Fig. 4 (In-control) ARL approximation vs. matrix dimension; k = 0.25, h = 8, cS = 4. (a)
Markov chain. (b) Collocation

resulted in 1509.94 with s.e. 0.048), which differs considerably from the value from
Yashchin (1985b) in the table printed as Fig. 4, 1507.3.

To illustrate potential accuracy issues, we study the more elaborated results from
Lucas (1982) and consider k = 0.25 (the smaller k the more severe are the accuracy
problems), h = 8 and cS = 4 which results in ε = 2.13 and r = 3 intervals. In Fig. 4
the related ARL approximations are plotted versus matrix dimension. In Fig. 4a we
display besides the “raw” Markov chain values three popular frameworks to improve
convergence—the designs deployed by Lucas (1982), Brook and Evans (1972) and
Lucas and Saccucci (1990). These utilize 4, 3 and 5 single Markov chain results,
respectively, and plug them into the same linear model. For the sake of visibility,
we omit some segments for the highly varying profile following Brook and Evans
(1972). From Fig. 4a and b we conclude that collocation is more powerful in terms
of accuracy. The two bullets mark the selections of N used in Lucas (1982) and for
the comparison done in Table 1. In Fig. 5 we illustrate the complete ARL function,
based on collocation. The three intervals are marked. Moreover, we want to compare
the highly accurate numerical procedure with the Markov chain based results in
Lucas (1982). From Lucas (1982), Table 2/Part 3 we take some numbers from the
first block. Note that Lucas (1982) calculated his results adjusting all entries within
the transition matrix of the Markov chain which correspond to an observation that
would violate the Shewhart limit cS. Then, by calculating the ARL approximation
for 10, 20, 30 and 40 states and plugging the results into a simple regression model,
he obtained the final results which surprisingly well match the collocation based
numbers.
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Table 1 Some ARL results from Table 2/Part 3 (upper entry) in Lucas (1982) vs. collocation
(middle entry) and Monte Carlo simulation (lower entry, 109 rep.)

Parameters Shift δ

h k cS 0.00 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00

6 0.25 3 202.1 48.19 20.16 11.94 8.344 5.062 3.461 2.471 1.820

202.0 48.17 20.16 11.93 8.340 5.058 3.458 2.469 1.819

202.0 48.17 20.15 11.93 8.340 5.058 3.458 2.469 1.819

6 0.25 3.5 241.7 50.79 20.77 12.29 8.640 5.384 3.852 2.910 2.239

241.8 50.81 20.77 12.29 8.642 5.387 3.855 2.914 2.244

241.8 50.81 20.77 12.29 8.642 5.387 3.855 2.914 2.244

6 0.25 4 249.7 51.27 20.89 12.36 8.713 5.487 4.013 3.143 2.525

249.7 51.28 20.89 12.36 8.712 5.487 4.013 3.142 2.525

249.7 51.27 20.89 12.36 8.712 5.487 4.013 3.142 2.525

8 0.25 3 395.8 73.98 27.04 15.42 10.58 6.194 4.045 2.733 1.912

396.0 74.02 27.05 15.43 10.58 6.196 4.045 2.732 1.911

396.0 74.02 27.05 15.43 10.58 6.196 4.045 2.732 1.911

8 0.25 3.5 646.4 82.12 28.44 16.17 11.20 6.835 4.760 3.451 2.511

645.5 82.12 28.43 16.17 11.20 6.834 4.760 3.450 2.511

645.5 82.12 28.43 16.17 11.20 6.834 4.760 3.450 2.511

8 0.25 4 725.2 83.75 28.72 16.34 11.36 7.051 5.082 3.888 3.010

723.6 83.74 28.72 16.34 11.36 7.048 5.078 3.883 3.005

723.6 83.74 28.72 16.34 11.36 7.048 5.078 3.882 3.005

10 0.25 3 571.3 101.7 33.68 18.75 12.68 7.202 4.509 2.903 1.955

571.7 101.7 33.68 18.74 12.68 7.202 4.511 2.905 1.956

571.7 101.7 33.68 18.74 12.68 7.202 4.511 2.905 1.956

10 0.25 3.5 1441 119.9 36.09 20.00 13.71 8.222 5.584 3.897 2.706

1436 119.9 36.10 20.01 13.71 8.227 5.591 3.904 2.711

1436 119.9 36.10 20.01 13.71 8.227 5.591 3.904 2.711

10 0.25 4 1974 124.0 36.62 20.31 13.99 8.596 6.119 4.586 3.445

1956 124.0 36.62 20.31 13.99 8.594 6.116 4.583 3.441

1956 124.0 36.62 20.31 13.99 8.594 6.116 4.583 3.441

Two further figures illustrate the detection performance of the combo in terms
of the zero-state ARL. Thereby, we consider two different k ∈ {0.5, 0.2}. Three
different cS are selected: 5, 10 or 20% within the interval of admissible cS

measured from the lower bound (threshold of the standalone Shewhart chart 3.090
and, for example, 3.214, 3.338, 3.586 for k = 0.5). From the profiles in Fig. 6
we conclude that for smaller k the impact of cS is more specific. For both k
in {0.2, 0.5}, unquestionably, adding a Shewhart limit improves considerably the
detection performance for changes larger than 2.5. In summary, it looks like a handy
improvement of the prim CUSUM procedure.
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3 Two-Sided Case

First prominent discussions of two-sided CUSUM-Shewhart combo’s ARL are
Lucas and Crosier (1982) and Yashchin (1985a,b). Before we return to them in
more detail, we introduce further notation:

Shewhart rule �
(2)
S = inf{i ≥ 1 : |Xi| > cS} .

Z+
0 = z+

0 = 0 , Z+
n = max{0, Z+

n−1 + Xn − k} ,

upper CUSUM rule �+
c = inf{n ≥ 1 : Z+

n > h} .
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Z−
0 = z−

0 = 0 , Z−
n = max{0, Z−

n−1 − Xn − k} ,

lower CUSUM rule �−
c = inf{n ≥ 1 : Z−

n > h} .

2-sided CUSUM rule �(2)
c = min{�+

c , �−
c } .

combo rule �(2) = min{�(2)
S , �(2)

c } .

Note that we restrict ourselves to the simple and quite popular CUSUM setup where
both reference values (k) and thresholds (h) are equal. The validity of the here
presented findings for the general case has to be proved yet.

First, we consider the ARL function for the two-sided CUSUM chart alone, �(2)
c .

By writing L(s+, s−) for the corresponding ARL function, we report the following
ARL integral equation, which was derived by considering the values of X (within
the usual total probability arguments) and not, as usual, the values of the CUSUM
statistic:

L(s+, s−) = 1 +
∫ h+k−s+

max{k−s+,s−−k}
ϕ(x)L(s+ + x − k, 0) dx

+ (	(k − s+) − 	(s− − k)
)L(0, 0) (vanishes if 2k ≤ s+ + s−)

+
∫ min{k−s+,s−−k}

−h−k+s−
ϕ(x)L(0, s− − x − k) dx

+
∫ min{s−−k,h+k−s+}

max{k−s+,−h−k+s−}
ϕ(x)L(s+ + x − k, s− − x − k) dx .

It turns out that it is reasonable to distinguish the cases (i) s+ + s− ≤ 2k, (ii)
2k < s+ + s− ≤ h + 2k, and (iii) h + 2k < s+ + s− ≤ 2h. Starting with (i), we write

L(s+, s−) = 1 +
∫ h+k−s+

k−s+
ϕ(x)L(s+ + x − k, 0) dx

+ (	(k − s+) − 	(s− − k)
)L(0, 0)

+
∫ s−−k

−h−k+s−
ϕ(x)L(0, s− − x − k) dx . (3)
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Hence, for s+ + s− ≤ 2k, the ARL function is driven exclusively from L(·, 0),
L(0, ·), and L(0, 0). For slightly larger s+ + s−, case (ii), we observe

L(s+, s−) = 1 +
∫ h+k−s+

s−−k
ϕ(x)L(s+ + x − k, 0) dx

+
∫ s−−k

k−s+
ϕ(x)L(s+ + x − k, s− − x − k) dx

+
∫ k−s+

−h−k+s−
ϕ(x)L(0, s− − x − k) dx . (4)

And the most simple and practically less important case, (iii), yields the following
identity:

L(s+, s−) = 1 +
∫ h+k−s+

−h−k+s−
ϕ(x)L(s+ + x − k, s− − x − k) dx . (5)

Conveniently, the arguments of L() in case (iii) do not appear in the integrals of
cases (i) and (ii). Hence, to determine the ARL for all possible head-starts, it is
sufficient to solve (i) and (ii). Then we deploy the fact that in case (iii) the sum of
arguments in L() under the integral is s+ + s− − 2k, hence the original s+ + s−
is shrunk. This is already smaller than h + 2k or another observation has to be
considered. In the most extreme case, s+ + s− = 2h, 	h/(2k) − 1
 steps has to be
taken. Finally, by using the solution of L(s+, s−) for s+ + s− ≤ h + 2k, one iterates
up to the initial extreme pair (s+, s−).

From Lucas and Crosier (1982) we take the much nicer formula eq. (A.1) for
s+ + s− ≤ h + 2k—hence (i) and (ii), but not (iii)—to link L(s+, s−) to the ARL
function of the simpler one-sided CUSUM chart

L(s+, s−) = L+(s+)L−(0) + L+(0)L−(s−) − L+(0)L−(0)

L+(0) + L−(0)
. (6)

It turns out that it solves the integral equation (i)+(ii)—for details see Appendix.
Moreover, the restriction introduced by Lucas and Crosier (1982) does not block
the simple calculation of the ARL for even more extreme head-start values as in
case (iii). As already mentioned, by using the solution for the less extreme values
from (i)+(ii) and some quadrature rule based iteration procedure for the integrals,
the complete set of possible head-start values could be treated.

Now, we want to modify the integral equation framework in order to incorporate
the impact of the additional Shewhart limit cS. Essentially, max{−cS, lower} and
min{cS, upper} replace the original limits lower and upper. Second, in case (ii) only
the limits of integrals with L(·, 0) or L(0, ·) are changed. In case (i), this is true by
construction.
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Could it be possible that using the results from the previous section and
formula (6) would work? For some configurations it would. The subtlety consists
in the fact that in (4) for s− > cS + k the first integral vanishes. Similarly the
third integral gets zero for s+ > cS + k. Then the mechanism of the proof elicited
for the standalone CUSUM in Appendix could not be used anymore. For the
configuration of the combo in Yashchin (1985b), it stays intact because for k = 1,
h = 3, and cS = 3.5 the aforementioned inequalities never hold. In general, for
h ≤ cS + k the formula (6) provides again an accurate ARL calculation tool. For the
configurations considered in Table 1 from Lucas (1982), k = 0.25, h ∈ {6, 8, 10},
and cS ∈ {3, 3.5, 4}, this does not hold anymore. However, we could use it as handy
approximation. In the following section it is demonstrated, how it works in both
scenarios.

Hence, the zero-state ARL of a two-sided CUSUM-Shewhart scheme could be
calculated as for the standalone two-sided CUSUM chart by deploying the nice
formula (A.1) in Lucas and Crosier (1982)—here (6).

3.1 Examples for Two-Sided Designs

Again we start with a result from Yashchin (1985b). We re-collect some numbers
from Yashchin’s Fig. 6 and new results in Table 2. Both, the results by Yashchin
(1985b) and the new ones look convincing. The first ones, because despite being 30
years old they are quite close to the true values, and the last ones while being nicely
matched by the Monte Carlo confirmation runs. At least the latter should be not too
surprising because their accuracy could be “proved”.

Turning to similar calculations in Lucas (1982), we have to face two problems.
First, Lucas’ results seem to be less accurate than Yashchin’s ones. Second, the
new results based on “believing” the nice rule (6) differ to the Monte Carlo derived
results. Again, this does not surprise because we already announced that for the
herewith considered configuration, rule (6) is an approximation only. However, the
results in Table 3 are reasonably well. To indicate the nearly non-visible differences
between rule (6) and the Monte Carlo numbers, all significant (5 % level) differences
are marked with bold letters.

Table 2 Two-sided CUSUM-Shewhart ARL results from Yashchin (1985b) and new ones,
numerical and Monte Carlo (109 rep.); k = 1, h = 4, cS = 3.5

z+
0 z−

0 Yashchin (1985b) Numerical MC MC s.e.

0 0 753.6 754.98 754.98 0.024

1.63 1.63 725.3 726.45 726.46 0.024

1.63 1.83 718.1 719.30 719.32 0.024
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Table 3 Some ARL results from Table 2/Part 1 (upper entry) in Lucas (1982) vs. collocation
(middle entry) and Monte Carlo simulation (lower entry, 109 rep.)

Parameters Shift δ

h k cS 0.00 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00

6 0.25 3 99.05 45.51 19.86 11.81 8.244 4.974 3.382 2.419 1.789

101.0 46.12 20.05 11.92 8.338 5.058 3.458 2.469 1.819

101.0 46.13 20.05 11.92 8.338 5.058 3.458 2.469 1.819

6 0.25 3.5 121.6 49.78 20.79 12.31 8.667 5.419 3.901 2.977 2.319

120.9 49.63 20.75 12.29 8.641 5.387 3.855 2.914 2.244

120.9 49.63 20.75 12.29 8.641 5.387 3.855 2.914 2.244

6 0.25 4 124.8 50.22 20.86 12.35 8.704 5.474 3.990 3.105 2.473

124.9 50.24 20.87 12.36 8.712 5.487 4.013 3.142 2.525

124.8 50.24 20.88 12.36 8.712 5.487 4.013 3.142 2.525

8 0.25 3 188.9 68.01 26.08 14.96 10.24 5.933 3.855 2.640 1.893

198.0 70.76 26.88 15.40 10.58 6.196 4.045 2.732 1.911

198.1 70.82 26.89 15.41 10.58 6.196 4.045 2.732 1.911

8 0.25 3.5 325.4 81.65 28.51 16.23 11.25 6.894 4.829 3.520 2.567

322.8 81.19 28.41 16.17 11.20 6.834 4.760 3.450 2.511

322.8 81.20 28.41 16.17 11.20 6.834 4.760 3.450 2.511

8 0.25 4 361.4 83.27 28.69 16.32 11.34 7.021 5.034 3.820 2.942

361.8 83.30 28.71 16.34 11.36 7.048 5.078 3.883 3.005

361.8 83.30 28.71 16.34 11.36 7.048 5.078 3.883 3.005

10 0.25 3 301.5 101.9 34.92 19.49 13.25 7.628 4.797 3.032 1.987

285.8 96.02 33.41 18.71 12.67 7.202 4.511 2.905 1.956

286.0 96.17 33.44 18.72 12.67 7.202 4.511 2.904 1.956

10 0.25 3.5 704.1 117.2 35.72 19.78 13.49 7.958 5.263 3.585 2.511

718.1 118.6 36.06 20.00 13.71 8.227 5.591 3.904 2.711

718.2 118.6 36.06 20.00 13.71 8.227 5.591 3.904 2.711

10 0.25 4 975.5 124.4 36.73 20.36 14.03 8.651 6.224 4.759 3.682

978.3 123.7 36.61 20.31 13.99 8.594 6.116 4.583 3.441

978.3 123.7 36.61 20.31 13.99 8.594 6.116 4.583 3.441

The accuracy problems are more pronounced for the head start results in
Table 4—the head start is set to half of the alarm threshold h.

Hence, the here presented method provides quite good approximations, but they
do not attain the traditional accuracy of ARL integral equation related methods.
Compared, however, to the much more demanding bivariate Markov chain model
of Lucas (1982), which is much less accurate in particular for large values of h, it
works convincingly well.
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Table 4 Some ARL results from Table 2/Part 2 (upper entry) in Lucas (1982) vs. collocation
(middle entry) and Monte Carlo simulation (lower entry, 109 rep.); CUSUM part with head-start at
h/2

Parameters Shift δ

h k cS 0.00 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00

6 0.25 3 79.33 33.53 12.94 7.219 4.951 3.063 2.228 1.752 1.453

81.47 34.15 13.08 7.286 5.004 3.125 2.310 1.846 1.538

81.49 34.17 13.08 7.287 5.005 3.125 2.310 1.846 1.538

6 0.25 3.5 96.75 36.33 13.34 7.366 5.053 3.175 2.391 1.983 1.732

96.66 36.35 13.33 7.361 5.048 3.168 2.371 1.932 1.638

96.67 36.35 13.33 7.361 5.049 3.168 2.371 1.932 1.638

6 0.25 4 99.14 36.57 13.35 7.364 5.048 3.166 2.374 1.952 1.684

99.63 36.72 13.37 7.371 5.053 3.169 2.372 1.932 1.638

99.63 36.72 13.37 7.371 5.053 3.169 2.372 1.932 1.638
8 0.25 3 161.9 51.10 16.63 8.959 6.070 3.667 2.585 1.954 1.550

171.8 53.62 17.15 9.201 6.247 3.815 2.722 2.068 1.630

171.9 53.68 17.16 9.203 6.247 3.815 2.722 2.068 1.630
8 0.25 3.5 278.3 60.74 17.77 9.406 6.385 3.951 2.881 2.233 1.774

277.4 60.58 17.72 9.377 6.363 3.931 2.871 2.254 1.838

277.5 60.58 17.72 9.377 6.363 3.930 2.871 2.254 1.838

8 0.25 4 306.4 61.72 17.80 9.402 6.379 3.949 2.897 2.290 1.895

310.4 61.96 17.82 9.409 6.387 3.962 2.927 2.355 1.992

310.4 61.96 17.82 9.409 6.387 3.962 2.928 2.355 1.992

10 0.25 3 275.8 78.59 21.93 11.49 7.777 4.765 3.412 2.560 1.926

261.0 73.72 20.95 11.04 7.452 4.478 3.123 2.306 1.757

261.2 73.89 20.98 11.05 7.452 4.478 3.123 2.306 1.757

10 0.25 3.5 633.5 87.78 21.73 11.26 7.574 4.575 3.231 2.426 1.880

650.3 89.18 21.91 11.36 7.667 4.691 3.381 2.598 2.041

650.4 89.22 21.91 11.36 7.668 4.692 3.380 2.598 2.041

10 0.25 4 877.2 92.93 22.16 11.45 7.732 4.772 3.514 2.785 2.241

884.3 92.65 22.09 11.42 7.715 4.752 3.475 2.738 2.225

884.3 92.65 22.09 11.42 7.715 4.752 3.475 2.738 2.225

4 Conclusions

New numerical methods are presented that provide high and medium accuracy
for the ARL of one- and two-sided CUSUM-Shewhart schemes, respectively, for
detecting changes in the normal mean over a broad range of potential shifts.
A more elaborated numerical algorithm (two-dimensional) in the lines of the
collocation procedure in Sect. 2 could and should be created to resolve the remaining
accuracy gap. Notwithstanding, the numerical performance is sufficient for practical
problems.
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Appendix 1: Collocation Design for More Than r = 2 Intervals

Here we provide the generalization from r = 2, dealt with in Sect. 2, to general
r ∈ {2, 3, . . .}. To start with the first interval, 0 ≤ s ≤ h − ε, we simply state that
the shape of the collocation design does not change for greater r. For the succeeding
intervals, h− (r −m+1)ε < s ≤ h− (r −m)ε with m = 2, . . . , r −1, the following
structure is utilized.

N∑

j=1

cmjTmj(s) = 1 + 	(k − s)L(0)

+
N∑

j=1

c1j

∫ h−(r−1)ε

0
ϕ(z + k − s)T1j(z) dz

+
m∑

t=2

N∑

j=1

ctj

∫ h−(r−t)ε

h−(r−t+1)ε

ϕ(z + k − s)Ttj(z) dz

+
N∑

j=1

cm+1,j

∫ ε+s

h−(r−m+1)ε

ϕ(z + k − s)Tm+1,j(z) dz .

Note that these equations are not present for r = 2. However, the last interval,
h−ε < s ≤ h, is considered for all r ≥ 2. The general structure of the corresponding
collocation equation is similar to the above one (now with m = r) except for the
upper limit of the last integral where ε + s has to be replaced by h.

Appendix 2: Two-Sided CUSUM Chart

Starting with case (i), s+ + s− ≤ 2k, and re-writing the corresponding integral
equation results in:

L(s+, s−) = 	(k − s+)L(0, 0) +
∫ h+k−s+

k−s+
ϕ(x)L(s+ + x − k, 0) dx

+ 	(k − s−)L(0, 0) +
∫ h+k−s−

k−s−
ϕ(−x)L(0, s− + x − k) dx

+ 1 − L(0, 0) .
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Setting s+ or s− to zero in (6) yields:

L(0, 0) = L+(0)L−(0)

L+(0) + L−(0)
,

L(s+, 0) = L+(s+)L−(0)

L+(0) + L−(0)
, L(0, s−) = L+(0)L−(s−)

L+(0) + L−(0)

Using this, the first line of the integral equation’s right-hand side changes to

L−(0)

L+(0) + L−(0)

(

	(k − s+)L+(0) +
∫ h+k−s+

k−s+
ϕ(x)L+(s+ + x − k) dx

)

Substituting x = z + k − s in (2) while replacing the upper limit by h results in

L(s) − 1 = 	(k − s)L(0) +
∫ h+k−s

k−s
ϕ(x)L(s + x − k) dx , (7)

so that the line under analysis simplifies heavily to

L−(0)(L+(s+) − 1)

L+(0) + L−(0)
.

In a similar way we treat the second line ending in

L+(0)(L−(s−) − 1)

L+(0) + L−(0)
.

For the second line we made use of ϕ(−x) = ϕ(x) in the in-control case (δ = 0),
while for δ �= 0 we have to change the sign of δ, hence ϕδ(−x) = ϕ−δ(x). All
together resembles (the “1” consumes the disturbing parts of the above two ratios)

L+(s+)L−(0) + L−(s−)L+(0) − L+(0)L−(0)

L+(0) + L−(0)
which confirms (6).

Turning to case (ii), 2k < s+ + s− ≤ h + 2k, we recall the shape of the related
integral equation:

L(s+, s−) = 1 +
∫ h+k−s+

s−−k
ϕ(x)L(s+ + x − k, 0) dx

+
∫ s−−k

k−s+
ϕ(x)L(s+ + x − k, s− − x − k) dx

+
∫ k−s+

−h−k+s−
ϕ(x)L(0, s− − x − k) dx .
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First we plug (6) into and transform the second line

∫ s−−k

k−s+
ϕ(x)L(s+ + x − k, s− − x − k) dx

= L−(0)

L+(0) + L−(0)

∫ s−−k

k−s+
ϕ(x)L+(s+ + x − k) dx

+ L+(0)

L+(0) + L−(0)

∫ s−−k

k−s+
ϕ(x)L−(s− − x − k) dx

− L−(0)L+(0)

L+(0) + L−(0)

∫ s−−k

k−s+
ϕ(x) dx ,

with the last integral subsequently reduced to 	(s− − k) − 	(k − s+). We rewrite
the first line as for case (i) and merge, borrowing L−(0)/

(L+(0) + L−(0)
)
,

L−(0)

L+(0) + L−(0)

+ L−(0)

L+(0) + L−(0)
	(k − s+)L+(0)

+ L−(0)

L+(0) + L−(0)

∫ s−−k

k−s+
ϕ(x)L+(s+ + x − k) dx

+ L−(0)

L+(0) + L−(0)

∫ h+k−s+

s−−k
ϕ(x)L+(s+ + x − k) dx

to get

L+(s+)L−(0)

L+(0) + L−(0)

by applying again (7). Exploiting 	(s− − k) = 1 − 	(k − s−) we proceed in a
similar way with the third line by collecting after transforming both integrals as in
the first case

L+(0)

L+(0) + L−(0)

+ L+(0)

L+(0) + L−(0)
	(k − s−)L−(0)
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+ L+(0)

L+(0) + L−(0)

∫ k−s+

s−−k
ϕ(x)L−(s− + x − k) dx

+ L+(0)

L+(0) + L−(0)

∫ h+k−s−

k−s+
ϕ(x)L−(s− + x − k) dx

which results in

L−(s−)L+(0)

L+(0) + L−(0)
.

The two “borrowed” terms

− L−(0)

L+(0) + L−(0)
− L+(0)

L+(0) + L−(0)
= −1

are compensated with the 1 on the right-hand side of the original equation. The last
remaining term forms together with the two others

L+(s+)L−(0) + L−(s−)L+(0) − L+(0)L−(0)

L+(0) + L−(0)
.

This completes the proof.
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Optimal Design of the Shiryaev–Roberts
Chart: Give Your Shiryaev–Roberts a
Headstart

Aleksey S. Polunchenko

Abstract We offer a numerical study of the effect of headstarting on the perfor-
mance of a Shiryaev–Roberts (SR) chart set up to control the mean of a normal
process. The study is a natural extension of that previously carried out by Lucas
and Crosier (Technometrics 24(3):199–205,1982. https://doi.org/10.2307/1268679)
for the CUSUM scheme. The Fast Initial Response (FIR) feature exhibited by a
headstarted CUSUM turns out to be also characteristic of an SR chart (re-)started
off a positive initial score. However, our main result is the observation that a FIR
SR with a carefully designed optimal headstart is not just faster to react to an initial
out-of-control situation, it is nearly the fastest uniformly, i.e., assuming the process
under surveillance is equally likely to go out of control effective any sample number.
The performance improvement is the greater, the fainter the change. We explain
our optimization strategy, and tabulate the optimal initial score, control limit, and
the corresponding “worst possible” out-of-control Average Run Length (ARL),
considering mean-shifts of diverse magnitudes and a wide range of levels of the
in-control ARL.

Keywords Quality control · Shirayev–Roberts chart · Fast Initial Response (FIR)
feature

1 Introduction

The main problem addressed in this work is that of optimal design of the Shiryaev–
Roberts (SR) chart, originally proposed by Shiryaev (1961, 1963) and Roberts
(1966), and later generalized by Moustakides et al. (2011). Recall that the classical
SR chart set up to detect a possible change in the baseline mean of a series of
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independent samples X1, X2, . . . drawn from a normal unit-variance population at
regular time intervals involves sequential evaluation of the SR statistic {Rn}n≥0 using
the recurrence Rn = (1 + Rn−1) exp{Sn}, n = 1, 2, . . ., with R0 = 0, and where the
quantity

Sn � μ
(

Xn − μ

2

)
(1)

is a numerical score that captures the severity of the deviation of the n-th sample
point Xn from the target mean-value in either direction; the score function Sn

assumes that the intended (target) mean-value of the data is zero, but it is anticipated
to change abruptly and permanently to a known off-target value μ �= 0. The n-
th observation Xn might represent a single reading or the average of a batch of
observations from a designated routine sampling plan. The chart triggers an alarm
at the first stage, SA, such that RSA ≥ A, where A > 0 is a control limit (detection
threshold) set in advance in accordance with the desired level of the false alarm
risk; more formally, SA � min{n ≥ 1 : Rn ≥ A}, where A > 0 is given. Hence the
process {Xn}n≥1 is considered to be in control until stage SA. The random variable,
SA, referred to as the run length, is the stage at which sampling stops and appropriate
action is taken. A brief account of the history of the SR chart was recently offered
by Pollak (2009). For an up-to-date summary of the classical as well as Generalized
SR charts’ optimality properties, see, e.g., Polunchenko and Tartakovsky (2012).

Though nowhere nearly as known and as widespread as Page’s (1954) celebrated
CUSUM “inspection scheme”, the SR chart did receive some attention in the
applied literature. One of the earliest investigations of the chart’s characteristics
is due to Roberts (1966), who offered a performance comparison of the chart
against a host of other statistical process control procedures, including the CUSUM
scheme and the EWMA chart (also introduced by Roberts (1959)). A similar
type of SR-vs-CUSUM comparison (but with respect to a different criterion and
for a different data model) was also later performed by Mevorach and Pollak
(1991). See also, e.g., Tartakovsky and Ivanova (1992), Tartakovsky et al. (2009),
and Moustakides et al. (2009). Certain data-analytic advantages of the chart over the
CUSUM scheme were pointed out by Kenett and Pollak (1996). Kenett and Pollak
(1986) provided an example of an application of the SR chart in the area of software
reliability.

In the (more theoretical) area of quickest change-point detection, the SR chart
received far more attention. To a large extent this is due to the fundamental work
of Shiryaev (1961, 1963) who proved that the chart solves a particular Bayesian
version of the quickest change-point detection problem; see also Girshick and Rubin
(1952). The chart then remained unnoticed until recently Pollak and Tartakovsky
(2009) and Shiryaev and Zryumov (2009) discovered that it solves yet another so-
called multi-cyclic or generalized Bayesian version of the quickest change-point
detection problem; the multi-cyclic setup is instrumental in such applications as
cybersecurity (see, e.g., Tartakovsky et al. 2013), financial monitoring (see, e.g.,
Pepelyshev and Polunchenko 2017), and economic design of control charts (which
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is a major area of research in quality control that originated in the fundamental
work of Duncan (1956)). This brought the SR chart back into the spotlight.
Polunchenko et al. (2017) performed a robustness analysis of the SR chart’s
multi-cyclic capabilities when the post-change distribution involves a misspecified
parameter. Moustakides et al. (2011) observed that by starting the SR statistic
{Rn}n≥0 off a positive initial value, i.e., setting R0 = r > 0, the SR chart can be made
nearly the best (in the minimax sense of Pollak (1985)). Roughly, this means the SR
chart is almost the fastest to react to a change in the observations’ distribution when
the corresponding unknown change-point is equally likely to be any point in time;
see Sect. 2 for a formal definition. As a matter of fact Polunchenko and Tartakovsky
(2010) and Tartakovsky and Polunchenko (2010) demonstrated that in two specific
change-point scenarios the SR chart with a carefully designed headstart is the fastest
(in the sense of Pollak (1985)). This result was then extended by Tartakovsky et al.
(2012) who proved that the SR chart whose headstart is selected in a specific fashion
is almost the “best one can do” (again, in the sense of Pollak (1985)) asymptotically,
as the false alarm risk tends to zero, in a general change-point scenario.

In spite of the aforementioned strong theoretically established optimality prop-
erties of the SR chart, and the fact that no such properties are exhibited by either
the CUSUM scheme or the EWMA chart, applications of the SR chart in quality
control remain very few. In part, this may be due to the lack of existing resources
offering pre-computed, for a variety of cases, optimal headstart and control limit
values. To the best of our knowledge, the work of Tartakovsky et al. (2009) and
that of Polunchenko and Sokolov (2014) have heretofore been the only sources
with such data (computed assuming the observations are exponential). This work’s
goal is to optimize the SR chart for yet another model, namely, the standard
Gaussian model widely used in the quality control literature as a testbed for charts’
performance analysis. The specific optimization strategy is presented in Sect. 2. The
optimization itself is carried out in Sect. 3 using the numerical framework developed
by Moustakides et al. (2011) and then improved upon by Polunchenko et al.
(2014a,b). The obtained optimal headstart and control limit values are reported in
Sect. 3 as well. Conclusions follow in Sect. 4.

2 The Shiryaev–Roberts Chart, Its Properties
and Optimization

To control the mean of a standard Gaussian process, the headstarted tweak of the
classical SR chart proposed by Moustakides et al. (2011) operates by sequentially
updating the statistic {Rr

n}n≥0 via the recurrence

Rr
n = (1 + Rr

n−1) exp{Sn}, n = 1, 2, . . . with Rr
0 = r ≥ 0, (2)
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where Sn is the score function defined in (1); the initial score Rr
0 = r ≥ 0 is a

design parameter also referred to as the headstart, which is the original terminology
of Lucas and Crosier (1982) who suggested to headstart the CUSUM scheme. The
corresponding run length is as follows:

Sr
A � min{n ≥ 1 : Rr

n ≥ A}, (3)

where A > 0 is the control limit (detection threshold) selected in advance so as
to keep the chart’s false alarm characteristics tolerably low. Note that if r = 0
then the chart is the classical SR chart (with no headstart) of Shiryaev (1961,
1963) and Roberts (1966). For this reason Tartakovsky et al. (2012) coined the term
“Generalized SR chart” (or the GSR chart for short) to refer to the headstarted SR
chart defined by (2) and (3). It is also worth reiterating that the score function (1)—
and hence also the statistic (2)—is indifferent to the direction of the mean-shift, i.e.,
the sign of μ �= 0 is irrelevant.

In quality control, the operating characteristics of a control chart are customarily
assessed by means of two major performance indices: the in-control Average Run
Length (ARL) and the out-of-control ARL. It is of note that while the in-control
ARL has a clear definition (it is simply the average number of samples taken by
the chart before a false out-of-control signal), its out-of-control counterpart is not as
straightforward, and can refer, e.g., to the zero-state ARL, or to the cyclical steady-
state ARL, or to the conditional steady-state ARL. See, e.g., Knoth (2006) for an
overview of the various ways to define the out-of-control ARL used in the quality
control literature. In this work, we shall adapt the (more exhaustive) approach used
in the quickest change-point detection literature. Let Pk (Ek) denote the probability
measure (expectation) induced by the data {Xn}n≥1 assuming the change-point is at
time moment k = 0, 1, 2, . . . ,∞, i.e., assuming the process {Xn}n≥1 is in-control
until sample number k inclusive, and is out-of-control starting from sample number
k + 1 onward. The notation k = 0 (k = ∞) is to be understood as the case when the
process under surveillance is out of control ab initio (never, respectively).

In change-point detection, the main in-control characteristic of a control chart is
the Average Run Length (ARL) to false alarm ARL(T) � E∞[T], As is evident
from the definition, it is the average number of samples taken by the chart before
an erroneous out-of-control signal is given. This is precisely what is known in
the quality control literature as the in-control ARL. It is apparent that the higher the
ARL to false alarm, the lower the level of the false alarm risk. For the GSR chart,
the general inequality ARL(Sr

A) ≥ A − r can be used to design A > 0 and r ∈ [0, A]
so as to have ARL(Sr

A) no lower than a desired margin γ > 1. It is of note that this
inequality holds in general, whatever the statistical structure of the observations be.
A more accurate result is the asymptotic (as A → +∞) approximation ARL(Sr

A) ≈
A/ξ − r, which is actually known to be quite accurate, even if A > 0 is not high;
see, e.g., (Pollak 1987, Theorem 1) or Tartakovsky et al. (2012). Here ξ denotes the
so-called “limiting average exponential overshoot”—a model-dependent constant
(taking values between 0 and 1) computable using nonlinear renewal-theoretic
methods; see, e.g., Woodroofe (1982). For the Gaussian model considered in this
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work it follows, e.g., from Woodroofe (1982, Example 3.1, pp. 32–33), that the
following formula can be used:

ξ = 2

μ2 exp

{

−2
∞∑

m=1

1

m
	

(
−|μ|

2

√
m

)}

, (4)

where

	(x) � 1√
2π

∫ x

−∞
e− t2

2 dt

is the standard Gaussian cumulative distribution function. Note from the foregoing
formula that ξ is an even function of μ �= 0. The formula was put to use by
Woodroofe (1982) who computed ξ for various values of μ > 0; see Woodroofe
(1982, Table 3.1, p. 33) for the obtained results.

To quantify the capabilities of a control chart T when the process is no longer
in control, Pollak (1985) suggested to use the “worst-case” (Supremum) Average
Detection Delay (SADD), conditional on no false alarm having been sounded.
Formally,

SADD(T) � max
0≤k<∞

ADDk(T),

where ADDk(T) � Ek[T−k|T > k], k = 0, 1, 2, . . .. Incidentally, the limiting ADD
value limk→∞ ADDk(T) is known in the quality control literature as the conditional
steady-state ARL; see, e.g., Knoth (2006) and the references therein.

Pollak’s (1985) criterion has a simple interpretation: for any fixed but finite k =
0, 1, 2, . . ., the condition T > k guarantees that it is an actual detection (i.e., not a
false alarm), so that each ADDk(T) is the average number of samples it takes the
chart past the change-point k to realize that the process under surveillance is not in
control anymore, and because k is unknown, it is reasonable to assume it equally
likely to be any number (0, 1, 2, . . .) and consider the worst possible case, i.e., take
the maximal of the ADDk(T)’s. For the CUSUM scheme with no headstart and for
the classical SR chart (also headstart-free) it can be shown that k = 0 is when the
ADD is the highest, i.e., SADD(T) = ADD0(T). As a result, it suffices to restrict
attention to just ADD0(T), and it is this quantity that the quality control community
calls the zero-state out-of-control ARL. However, things are not as simple when the
chart has a positive headstart, for, in that case, it is no longer obvious which of the
delays ADDk(Sr

A)’s for k = 0, 1, 2, . . . is the highest. As a matter of fact we shall
see in the next section that the “bump” of the sequence {ADDk(Sr

A)}k≥0 has a highly
unpredictable behavior in terms of its location on the time axis.

Let �(γ ) � {T : ARL(T) ≥ γ } be the class of control charts (identified with a
generic run length T) whose ARL to false alarm is at least as high as a desired pre-set
level γ > 1. Pollak’s (1985) minimax change-point detection problem consists in
finding Topt ∈ �(γ ) such that SADD(Topt) = minT∈�(γ ) SADD(T) for any given
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γ > 1. In general, this problem is still an open one, although there has been a
continuous effort to solve it. To that end, for at least two specific data models, the
answer was shown to be the GSR chart with “finetuned” threshold and headstart
values; see Polunchenko and Tartakovsky (2010) and Tartakovsky and Polunchenko
(2010). Moreover, for a general data model, the GSR chart (properly optimized)
was also shown (by Tartakovsky et al. 2012) to solve Pollak’s (1985) problem
asymptotically as γ → +∞. Specifically, this means that if A and r are selected
so that ARL(Sr

A) ≥ γ with γ > 1 given, i.e., Sr
A ∈ �(γ ), then

SADD(Sr
A) − min

T∈�(γ )
SADD(T) → 0 as γ → +∞, (5)

provided, however, that r/A → 0 as A → +∞; see Tartakovsky et al. (2012),
who also supply a high-order large-γ expansion of SADD(Sr

A). The foregoing is
a strong optimality property known in the literature on change-point detection as
asymptotic minimax optimality of order three, or asymptotic near minimaxity. It
is noteworthy that the CUSUM chart, whether headstarted or not, does not have
such strong “nearly-best” detection capabilities. Moreover, nor does the EWMA
chart. Hence, our interest in the GSR chart. To provide an idea as to the difference
made by a positive headstart, we remark that the classical SR chart (with zero
headstart) is asymptotically (as γ → +∞) minimax of order two, i.e., the difference
SADD(SA) − minT∈�(γ ) SADD(T) goes to a positive constant as γ → +∞.
Moreover, since the constant is the higher, the fainter the change, giving an SR
chart a positive headstart is especially beneficial when the out-of-control behavior
of the process differs from its in-control behavior only slightly.

Yet another strong optimality property of the GSR chart is its exact multi-cyclic
or generalized Bayesian optimality. Specifically, Pollak and Tartakovsky (2009) and
Shiryaev and Zryumov (2009) proved that the classical SR chart (with no headstart)
minimizes the so-called Integral ADD

IADD(T) �
∞∑

k=0

Ek[max{0, T − k}], (6)

and the so-called Relative IADD (RIADD)

RIADD(T) � IADD(T)/ ARL(T) =
∞∑

k=0

P∞(T > k)

ARL(T)
ADDk(T), (7)

both inside the class �(γ ) defined above, for any γ > 1. The meaning of this result
can be explained by analyzing the structure of the definition (7) of RIADD(T).
Specifically, on the one hand, the latter can be viewed as being the average of the
delays Ek[max{0, T − k}], k = 0, 1, 2, . . ., taken with respect to the change-point k
assuming that the latter has an improper uniform distribution on the set {0, 1, 2, . . .}.
The improper uniformity of the change-point is a core assumption of the generalized
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Bayesian change-point detection problem. On the other hand, RIADD(T) can also
be regarded as the average of the ADDk(T)’s taken with respect to k assuming that
the probability mass function of k is given by the ratio P∞(T > k)/ ARL(T), k =
0, 1, 2, . . .; note that Pk(T > k) ≡ P∞(T > k) for any k = 0, 1, 2, . . ., and that
ARL(T) = ∑∞

k=0 P∞(T > k). For yet another, viz. multi-cyclic interpretation,
see Pollak and Tartakovsky (2009) and Shiryaev and Zryumov (2009), who showed
that the RIADD(T)-metric defined in (7) is mathematically equivalent to the so-
called Stationary ADD (STADD) which is formally defined next.

The RIADD-optimality of the classical SR chart was generalized in (Pol-
unchenko and Tartakovsky 2010, Lemma 1) where it was shown that the GSR chart,
whose control limit A > 0 and headstart r ≥ 0 are such that ARL(Sr

A) ≥ γ for a
given γ > 1, minimizes the Stationary ADD (STADD)

STADD(T) � (r ADD0(T) + IADD(T))
/
(ARL(T) + r) (8)

inside class �(γ ), for any γ > 1; recall that IADD(T) is as in (6). Formally,
for any γ > 1, and any A > 0 and r ≥ 0, it holds true that STADD(Sr

A) =
minT∈�(γ ) STADD(T), provided that ARL(Sr

A) ≥ γ is satisfied. Also, observe that
STADD(Sr

A) reduces to RIADD(Sr
A) when r = 0. It is also of note that STADD(T)

is not the same as the limit limk→∞ ADDk(T): in the quality control literature, the
latter limit, as we indicated earlier, is known as the conditional steady-state ARL,
while the STADD(T)-metric is known as the cyclical steady-state ARL. See, e.g.,
Pollak and Tartakovsky (2009), Shiryaev and Zryumov (2009), and Knoth (2006).

More importantly, it also turns out that the quantity STADD(Sr
A) provides a

universal lowerbound on the unknown value of minT∈�(γ ) SADD(T), and this
lowerbound is valid for any γ > 1 and r ≥ 0 such that Sr

A ∈ �(γ ).
See Polunchenko and Tartakovsky (2010, Lemma 1 and Theorem 1). Specifically,
introducing SADD(Sr

A) ≡ STADD(Sr
A), the following double inequality holds:

SADD(Sr
A) ≤ min

T∈�(γ )
SADD(T) ≤ SADD(Sr

A), (9)

for any A > 0 and r ≥ 0 such that ARL(Sr
A) ≥ γ , and any given γ > 1;

cf. Moustakides et al. (2011, Inequality (2.12), p. 579).
A few important comments are now in order:

1. On the one hand, the double inequality (9), namely, its left part, implies that
the lowerbound SADD(Sr

A) ≡ STADD(Sr
A), where STADD(T) is defined in (8),

can be used as a benchmark to get an idea as to how much room there is for
improvement in the way of SADD for a chart of interest. Should it so happen
that the SADD of the chart of interest with the ARL to false alarm level set to
γ > 1 is only a tiny bit greater than SADD(Sr

A) assuming ARL(Sr
A) = γ > 1,

then the chart is almost minimax optimal in the sense of Pollak (1985).
2. On the other hand, the double inequality (9) also suggests the following

optimization strategy for the GSR chart: for a given γ > 1, pick the chart’s
detection threshold A > 0 and headstart r ≥ 0 in such a way so as to make
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the difference SADD(Sr
A) − SADD(Sr

A) as close to zero as is possible without
violating the inequality ARL(Sr

A) ≥ γ . More formally, the optimal detection
threshold A∗ and headstart r∗ values are to be selected as follows:

(r∗, A∗) = arg min
r,A≥0

{
SADD(Sr

A) − SADD(Sr
A)
}
, but ARL(Sr

A) = γ, (10)

where γ > 1 is given; it goes without saying that both A∗ and r∗ are functions of
γ > 1. The foregoing optimization strategy is originally due to Moustakides et al.
(2011), and, in this work, we shall adapt it as well.

3. As we shall demonstrate in the next section, if the GSR chart’s detection
threshold A and initial score r are set to A∗ and r∗, respectively, where A∗ and
r∗ are as in (10) with γ > 1 given, then, conditional on ARL(Sr

A) = γ , the
difference SADD(Sr

A) − SADD(Sr
A) is nearly zero, even if γ > 1 is on the order

of hundreds. Therefore, the GSR chart’s third-order asymptotic optimality (5)
does not necessarily require γ to be large.

While the constrained optimization problem (10) is generally infeasible to solve
analytically, it can be solved numerically with any desired accuracy, e.g., with
the aid of the numerical method proposed by Moustakides et al. (2011) and
subsequently improved upon by Polunchenko et al. (2014a,b). This is precisely the
object of the next section, and the results obtained in it are the main contribution of
this work.

3 Experimental Results

We now examine the performance of the GSR chart given by (2) and (3) under
different parameter settings, including (and especially) the optimal choice given
by the solution of the constrained optimization problem (10). Specifically, the
necessary performance characteristics of the GSR chart are computed numerically
as solutions of certain integral (renewal) equations, which have previously been
obtained by Moustakides et al. (2011) and by Polunchenko et al. (2014a,b). The
need to treat the integral equations numerically is because an analytic solution is
not an option. The specific numerical method used to solve the integral equations
is a collocation-type method first proposed by Moustakides et al. (2011) and then
also improved upon by Polunchenko et al. (2014a,b) who also provided tight error
bounds for the method enabling one to judge the proximity of the numerical solution
to the actual (infeasible to obtain) exact solution. As it may be relevant, we also note
that we set up the numerical method so as to guarantee that its accuracy is on the
order of a fraction of a percent.

We begin with an examination of the level of the ARL to false alarm, i.e.,
ARL(Sr

A), treated as a function of the headstart r ≥ 0, the detection threshold A > 0,
and the magnitude of the change in the mean μ �= 0. With regard to the latter, for
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lack of space, let us consider only two cases: μ = 0.2 and μ = 0.5. The former may
be considered a faint change, while the latter is a moderate change. Figure 1 depicts
ARL(Sr

A) as a function of r ∈ [0, A] and A ∈ [0, 1000]. Specifically, Fig. 1a is for
μ = 0.2 and Fig. 1b is for μ = 0.5. As can be seen from either figure, the bivariate
function ARL(Sr

A) is almost linear in A (with r fixed) as well as in r (with A fixed).
This is in perfect agreement with the aforementioned fact that ARL(Sr

A) ≈ A/ξ − r
where ξ is given by (4). Since, according to Woodroofe (1982, Table 3.1, p. 33),
the value of ξ for μ = 0.2 is roughly 0.89004 versus approximately 0.74762 for
μ = 0.5, the sensitivity of the ARL to false alarm level to the detection threshold is
higher, the stronger the change. Figure 1a, b also include contours (shown as bold
dark curves) corresponding the different fixed levels γ > 1 of the ARL to false
alarm. Specifically, each of the contours is the solution set (r, A) of the equation
ARL(Sr

A) = γ for the appropriate value of γ = {100, 200, . . . , 900, 1000}. These
contours are important because the process of optimization of the GSR chart begins
with picking a value for γ > 1, and then, with γ > 1 set and fixed, restricting
attention to only those values of A > 0 and r ≥ 0 for which the constraint
ARL(Sr

A) = γ is satisfied. Due to space limitations, in this work we shall consider
only three values of γ , namely, γ = {100, 500, 1000}.

Let us next look at Figs. 2 and 3 which show ADDk(Sr
A) as a function of r ≥ 0

and k = 0, 1, 2, . . . under the constraint ARL(Sr
A) = γ with γ = {100, 500, 1000}.

Specifically, Fig. 2 assumes μ = 0.2 while Fig. 3 assumes μ = 0.5. With regard
to the level γ > 1 of the ARL to false alarm, Figs. 2a and 3a assume γ = 100,
Figs. 2b and 3b are for γ = 500, and Figs. 2c and 3c assume γ = 1000. There are
two important observations to make from either set of figures. First, it is evident
that giving the SR chart a positive headstart equips the chart with the Fast Initial
Response (FIR) feature: the chart becomes more sensitive to initial out-of-control
situations. However, the flip side of the FIR feature is that the chart gets slower in
situations when the process is initially in control but goes out of control later. It is
worth reiterating that in order to retain the level of the ARL to false alarm assigning
a higher value to the headstart is offset by an appropriate upward adjustment of the
control limit. The second observation is that the maximal ADD, i.e., SADD(Sr

A) �
max0≤k<∞ ADDk(Sr

A), is a sophisticated function of r, and the specific value of
k at which the maximum is attained is hard to predict. As an aside, it is worth
pointing out that the convergence of the ADD’s to the steady-state regime is faster
for μ = 0.5 than for μ = 0.2, which is consistent with one’s intuition.

To better illustrate the FIR feature at work, let us look at Figs. 4 and 5, which
are effectively the projections of the 3D surfaces shown in Figs. 2 and 3 onto
the (k, ADDk(Sr

A))-plane, made for a selection of values of r. Specifically, Fig. 4
assumes μ = 0.2 and Fig. 5 is for μ = 0.5. The corresponding levels γ > 1
of the ARL to false alarm are given in the figures’ subtitles. The figures clearly
demonstrate that, as the headstart increases, the performance of the GSR chart
for initial of early out-of-control situation improves. However, the performance
in situations when the process goes out of control later degrades. The interesting
question is whether it is possible to optimize this tradeoff. This question is hard to
answer properly without getting the lowerbound SADD(Sr

A) involved, as is done in
Figs. 6 and 7.
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Specifically, Figs. 6 and 7 provide an idea as to the manner in which SADD(Sr
A)

and SADD(Sr
A) each depend on the headstart, assuming, as before, that every

change in the headstart is accompanied by the appropriate adjustment of the detec-
tion threshold, so that the ARL to false alarm constraint is kept intact. More
specifically, Fig. 6 corresponds to μ = 0.2 and Fig. 7 are for μ = 0.5. The respective
levels γ of the ARL to false alarm are again given in the subtitles.

It is evident from the figures that, regardless of the contrastness of the shift in the
mean μ �= 0 and no matter the ARL to false alarm level γ > 1, the lowerbound
is an upward arching smooth function of the initial score, and it has a distinct
maximum. The figures also clearly indicate that the maximal ADD as a function
of r has a minimum with the appearance of a down pointing cusp; the cusp is an
indication that the way the maximal element of the sequence {ADDk(Sr

A)}k≥0 and
its location within the sequence depend on the headstart is highly nonlinear. The
essential observation is that the lowerbound appears to peak at approximately the
same (slightly smaller actually) headstart value as that at which the maximal ADD
is minimized. Moreover, although the maximal ADD’s minimum is higher than the
lowerbound’s maximum, the difference is not practically significant, even if γ is as
low as 100, and is smaller, the higher the value of γ . Therefore, any other chart with
the same level of the ARL to false alarm cannot possibly detect the shift in the mean
with a detection delay substantially lower than that delivered by the optimized GSR
chart, especially if the shift in the mean is contrast.

To draw a line under this section, in Tables 1 and 2, we give the optimal
headstart and detection threshold values that have been computed by solving the
constrained optimization problem (10) for γ = {100, 200, . . . , 900, 1000} and
μ = {0.1, 0.2, . . . , 0.9, 1.0}. Recall also that our data model is symmetric with
respect to the sign of μ �= 0. The tables also include the corresponding SADD(Sr

A)

and SADD(Sr
A) values. One can see from the tables that SADD(Sr

A) ≈ SADD(Sr
A),

which is to say that the detection capabilities of the optimized GSR chart are almost
the best. One can also see that the effect of headstarting is the stronger, the fainter
the anticipated shift in the mean. If the latter is fairly contrast, the optimal headstart
value is close to zero. In addition, the tables also suggest that the optimal headstart
value, as a function of the ARL to false alarm level γ > 1, has a finite limit as
γ → +∞; the convergence to the limiting value is the slower, the weaker the
change. However, a closed-form formula for this limiting value is prohibitively
difficult to obtain.

4 Concluding Remarks

In summary we see that

1. Starting an SR chart off a nonzero initial score lessens the ARL to false alarm,
so that the chart’s in-control performance is worse than when no headstart is
used. On the flip side, however, the chart becomes more sensitive to initial out-
of-control situations. This is precisely the FIR phenomenon.
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2. The drop in the ARL to false alarm caused by a positive headstart value can be
compensated by an increase of the control limit. While this would negatively
affect the chart’s out-of-control performance, the magnitude of the effect appears
to be not substantial.

3. The FIR feature comes at the price of poorer performance in situations when the
process under surveillance is initially in control but goes out of control later.
In particular, if the process is not expected to shift out of control for a long
while, then no headstarting is necessary, because the SR chart’s steady-state
performance would degrade otherwise.

The same observations were previously made by Lucas and Crosier (1982) about
the CUSUM chart.

Our additional and more important contribution consists in a deeper investigation
of the headstart-vs-control-limit tradeoff: the overall performance of the GSR chart
optimized not only with respect to the headstart but also with respect to the control
limit proved to be nearly the best one can get amid complete uncertainty as to when
the observed process may go out of control. This is a direct implication of the GSR
chart’s strong optimality properties established by Pollak and Tartakovsky (2009),
Shiryaev and Zryumov (2009), Tartakovsky and Polunchenko (2010), Polunchenko
and Tartakovsky (2010), and by Tartakovsky et al. (2012). The optimal headstart
and control limit values, and the corresponding out-of-control performance and its
lowerbound, for a variety of cases, are given in Tables 1 and 2.

The benefits of optimizing the GSR chart are the greater, the fainter the change.
From a practical standpoint, this means that if one is interested in detecting a faint
change, then the GSR chart with optimally selected control limit and headstart is
the way to go. The size of the actual efficiency improvement can be estimated using
Tables 1 and 2. However, if the anticipated change to be detected is more or less
contrast, then the GSR chart, whether optimized or not, will not offer any substantial
advantage (in terms of the speed of detection) over the CUSUM scheme or the
EWMA chart.
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On ARL-Unbiased Charts to Monitor
the Traffic Intensity of a Single Server
Queue

Manuel Cabral Morais and Sven Knoth

Abstract We know too well that the effective operation of a queueing system
requires maintaining the traffic intensity ρ at a target value ρ0.

This important measure of congestion can be monitored by using control charts,
such as the one found in the seminal work by Bhat and Rao (Oper Res 20:955–966,
1972) or more recently in Chen and Zhou (Technometrics 57:245–256, 2015).

For all intents and purposes, this chapter focus on three control statistics chosen
by Morais and Pacheco (Seq Anal 35:536–559, 2016) for their simplicity, recursive
and Markovian character. Since an upward and a downward shift in ρ are associated
with a deterioration and an improvement (respectively) of the quality of service,
the timely detection of these changes is an imperative requirement, hence, begging
for the use of ARL-unbiased charts (Pignatiello et al., The performance of control
charts for monitoring process dispersion. In: 4th industrial engineering research
conference, pp 320–328, 1995), in the sense that they detect any shifts in the traffic
intensity sooner than they trigger a false alarm.

In this chapter, we focus on the design of these type of charts for the traffic
intensity of the three single server queues mentioned above.
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1 Introduction

The first contributions on queueing theory (QT) can be traced back to three
pioneering chapters by A.K. Erlang (1878–1929). Erlang (1909, 1917, 1920) were
in any case a response to concrete congestion problems arising in teletraffic.

Curiously, we have to leap to the late 1950s and 1960s for the earliest chapters
referring to the statistical inference in QT: Clarke (1957) (resp. Beneš 1957) focused
on the MLE for λ, μ and the traffic intensity of a M/M/1 (resp. M/M/∞) system,
ρ = λ/μ; Cox (1965) and Lilliefors (1966) derived confidence intervals for the
traffic intensity of a M/M/1 system.

In the following decade, the seminal work by Bhat and Rao was published and
addressed the monitoring of the traffic intensity. Bhat and Rao (1972) proposed what
we consider an unusual chart for the traffic intensity of the M/G/1 (resp. GI/M/1)
queueing systems because:

• its rule to trigger a signal does not coincide with any of the ten sensitizing rules
for Shewhart control charts in Montgomery (2009, p. 197, Table 5.1), such as the
Western Electric run rules (Western Electric 1956); the traffic intensity is deemed
out-of-control only if the control statistic exceeds (resp. does not exceed) the
upper (resp. lower) control limit cu (resp. cl) longer than a pre-assigned number
du (resp. dl) of consecutive transitions;

• the run length (RL) is not considered as a performance measure and the control
limits are not defined so as to achieve, for instance, a specific in-control average
run length (ARL);

• the control limit cu (resp. cl) is the smallest (resp. largest) nonnegative integer for
which the probability of having an observation above (resp. not above) cu (resp.
cl) is at most αu (resp. αl), and the positive integer du (resp. dl) is such that, when
the control statistic has gone above (resp. not above) cu (resp. cl), it returns to a
state ≤ cu (resp. > cl) in du (resp. dl) or fewer steps with probability of at least
1 − βu (resp. 1 − βl);

• the chart assumes that the system is observed under equilibrium or steady state
conditions.

The thorough review on regulation techniques for the traffic intensity in
Morais and Pacheco (2015, On control charts and the detection of increases in
the traffic intensity, p. 44, unpublished manuscript) led Morais and Pacheco (2016)
to add that the monitoring ρ can be basically divided in categories depending on:

• the control statistic being used, e.g.

– the number of customers in the system at departure/arrival epochs (Bhat and
Rao 1972; Rao et al. 1984; Shore 2000; Chen et al. 2011; Zobu and Saǧlam
2013),

– the number of arrivals while the nth customer is being served, etc. (Jain and
Templeton 1989);
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• the statistical technique used to detect changes in the traffic intensity

– a control chart (Bhat and Rao 1972; Shore 2000, 2006; Kim et al. 2007;
Chen et al. 2011; Hung et al. 2012; Chen and Zhou 2015),

– a sequential probability ratio test (Rao et al. 1984; Bhat 1987; Jain and
Templeton 1989; Jain 2000; Zobu and Saǧlam 2013).

1.1 Three Control Statistics: Xn, X̂n and Wn

To monitor the traffic intensity of a single server queue and keep it at a target level
ρ0, Morais and Pacheco (2015, On control charts and the detection of increases in
the traffic intensity, p. 44, unpublished manuscript; 2016) used the three following
control statistics:

• Xn, the number of customers left behind in the M/G/1 system by the nth

departing customer;
• X̂n, the number of customers seen in the GI/M/1 system by the nth arriving

customer;
• Wn, the waiting time of the nth arriving customer to the GI/G/1 system.

These three control statistics have been chosen by Morais and Pacheco (2016)
for their simplicity, recursive and Markovian character. Their recursive is apparent
if we note that these statistics can be rewritten as follows: where

System Control statistic

M/G/1 Xn+1 = max{0, Xn − 1} + Yn+1

GI/M/1 X̂n+1 = max{0, X̂n + 1 − Ŷn+1}
GI/G/1 Wn+1 = max{0, Wn + Sn+1 − An+1}

• Yn+1 denotes the number of customers arriving during the service of the (n+1)th

customer,
• Ŷn+1 represents the number of customers served between the arrivals of cus-

tomers n and (n + 1),
• Sn+1 − An+1 depends on the service time of the nth customer, Sn+1, and on the

time between the arrivals of customers n and (n + 1), An+1,

for n ∈ N0.

1.2 Xn and the M/G/1 System

The reader should be reminded of some important facts: customers arrive to the
M/G/1 queueing system according to a Poisson process with rate λ and are served
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one at a time by the single server; the service times are independent and identically
distributed (i.i.d.) positive random variables (r.v.), which are in turn independent of
the interarrival times; S, FS(s) and E(S) = μ−1 stand from now on for the service
time, its cumulative distribution function (c.d.f.) and expected value.

Kendall (1951, 1953) noted that {Xn, n ∈ N} forms a discrete time Markov chain
(DTMC), termed the M/G/1 embedded Markov chain, with transition probability
matrix (TPM)

P =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎣

α0 α1 α2 α3 · · ·
α0 α1 α2 α3 · · ·
0 α0 α1 α2

. . .

0 0 α0 α1
. . .

0 0 0 α0
. . .

...
...

...
...

. . .

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎦

, (1)

where αi denotes the probability that exactly i customers arrive during a service time
S. In addition,

αi =
∫ +∞

0
e−λs (λs)i

i! dFS(s), i ∈ N0 (2)

(Adan and Resing 2015, p. 63). Another revealing fact: Yn
i.i.d.∼ Y, n ∈ N, with

common probability function (p.f.) given by PY(i) = αi, i ∈ N0.

1.3 X̂n and the GI/M/1 System

The GI/M/1 queueing system is characterized by: interarrival times that are i.i.d.
positive r.v. with common c.d.f. FA(a) and expected value E(A) = λ−1; i.i.d.
exponentially distributed service times, with expected value μ−1 and independent
of the interarrival times.

Kendall (1951) established that {X̂n, n ∈ N} also forms a DTMC, the GI/M/1
embedded Markov chain, whose TPM is equal to

P̂ =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

p̂00 α̂0 0 0 0 · · ·
p̂10 α̂1 α̂0 0 0 · · ·
p̂20 α̂2 α̂1 α̂0 0 · · ·
p̂30 α̂3 α̂2 α̂1 α̂0

. . .

... · · · . . .
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

, (3)
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where α̂i denotes the probability of serving i customers during an interarrival time
U given that the server remains busy during this interval. Please note that

α̂i =
∫ +∞

0
e−μa (μa)i

i! dFA(a), i ∈ N0, (4)

and p̂i0 = 1 −∑i
j=0 α̂j, i ∈ N0 (Adan and Resing 2015, p. 82). Expectedly, Ŷn

i.i.d.∼
Ŷ, n ∈ N, with common p.f. PŶ(i) = α̂i, i ∈ N0.

1.4 Wn and the GI/G/1 System

This single-server queueing system is associated with: interarrival (resp. service)
times that are i.i.d. positive r.v. with common c.d.f. FA(a) (resp. FS(s)) and mean
E(A) = λ−1 (resp. E(S) = μ−1); service times are once more independent of the
interarrival times.

{Wn, n ∈ N0} also forms a DTMC (Kendall 1953) and Sn −An
i.i.d.∼ S−A, n ∈ N.

Bear in mind that this DTMC has a continuous state space R
+
0 if the interarrival

or the service times are absolutely continuous r.v.
Following Morais and Pacheco (1998), we consider a discretized approximating

DTMC with:

• state space N0;
• its first state corresponding to the singleton {0};
• its state j associated with interval (( j−1)�, j�], for j ∈ N, where � denotes the

common range of all the intervals and is taken to be very small so as to improve
the approximation;

• the interval (( j − 1)�, j�] represented by point ( j − 1/2) �, for j ∈ N.

The TPM of this approximating DTMC is given by

P̃ =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

F(0) F(�) − F(0) F(2�) − F(�) · · ·
F
(−�

2

)
F
(

�
2

)− F
(−�

2

)
F
(

3�
2

)
− F

(
�
2

) · · ·
F
(
− 3�

2

)
F
(−�

2

)− F
(
− 3�

2

)
F
(

�
2

)− F
(−�

2

) · · ·
...

...
...

. . .

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

, (5)

where the c.d.f. F ≡ FS−A. Note that its first row differs slightly from the one
following Brook and Evans (1972) and used by Greenberg (1997) and Morais
and Pacheco (2016), who considered that state j is associated with interval (( j −
1/2)�, ( j + 1/2)�], for j ∈ N0, and that the interval (( j − 1/2)�, ( j + 1/2)�] is
represented by point j �, for j ∈ N0.
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We feel bound to point out that αi, α̂i, and FS−A(t) have fairly simple and closed
expressions for some typical queueing systems with interarrival or service times
with an Erlang distribution with k (k ∈ N) phases, as shown in Appendix. This
certainly proves to be convenient if we want to describe in detail the run length
performance of the associated control charts.

A quick look at the expressions of αi, α̂i, and FS−A(t) in Appendix leads us to
conclude that FS−A(x) depends upon both λ and μ, unlike αi and α̂i. Consequently,
the entries of P̃ will not depend exclusively on ρ like P and P̂.

1.5 On the Probability of Null Values of the Control Statistics

A closer look at the control statistics of the Xn-, X̂n- and Wn-charts suggests that
they take null values quite frequently, as long as single server queueing systems are
able to reach equilibrium, that is, if the traffic intensity is less than one.

Firstly, when it comes to the monitoring the traffic intensity of a GI/G/1
queueing system, we can certainly state that the “most frequent” value of Wn is
zero because this statistic has an atom in that point and a continuous branch in R

+.
Secondly, the limiting distribution of the number of customers seen in the

GI/M/1 queueing system by the nth arriving customer is geometric with parameter
(1−σ), where σ is the root in the interval (0, 1) of the following equation involving
the Laplace-Stieltjes transform of the common c.d.f. of the interarrival times:

σ = F̃A[μ(1 − σ)] =
∫ +∞

a=0
e−μ(1−σ) adFA(a) (6)

(Kleinrock 1975, p. 251; Adan and Resing 2015, p. 83). Thus, zero is surely the most
frequent value of the control statistic when the GI/M/1 system is in equilibrium.

Thirdly, the limiting probability generating function (p.g.f.) of the number of
customers left behind in the M/G/1 queueing system by the nth departing customer
is equal to

E(zX) = (1 − ρ) F̃S[λ(1 − z)] (1 − z)

F̃S[λ(1 − z)] − z
, |z| ≤ 1, (7)

where F̃S(t) = ∫ +∞
s=0 e−t sdFS(s) is the Laplace-Stieltjes transform of the common

c.d.f. of the service times, according to Adan and Resing (2015, p. 65). Furthermore,
Cohen (1982, p. 238) adds that the limiting probability of zero is equal to (1 − ρ);
as a consequence the most frequent value of the control statistic Xn is surely zero
if ρ ≤ 0.5 while dealing with a M/G/1 queueing system. Adan and Resing (2015,
p. 65) go on to say that inverting E(zX) is usually very difficult but, in case F̃S(s)
is a quotient of polynomials in s (such as when the service times have an Erlang
distribution), the limiting p.g.f. can be decomposed into partial fractions, and the
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associated limiting p.f. can be easily determined. For instance, if S has an Erlang
distribution with two phases and expected value 1/μ then, after some algebraic
manipulation, we obtain

E(zX) = 1 − ρ

(1 − z/z1) (1 − z/z2)
, |z| ≤ 1, (8)

P(X = i) = (1 − ρ)

[
z1

z1 − z2

(
1

z2

)n

− z2

z1 − z2

(
1

z1

)n]
, i ∈ N0, (9)

where z1 = (2/ρ + 1/2) + √
2/ρ + 1/4, z2 = (2/ρ + 1/2) − √

2/ρ + 1/4
and z1 z2 = 4/ρ2. This specific limiting p.f. leads us to conclude that
P(X = 0) > P(X = 1) if ρ2 + 4ρ − 4 < 0, that is, if ρ <

√
8 − 2 for the

M/E2/1 queueing system in equilibrium.
Finally, the high frequency of zero when compared to other values of these three

control statistics plays an important role in the design of the Xn-, X̂n- and Wn-charts.
Indeed, if we are to set a chart to monitor the traffic intensity with a reasonably large
in-control ARL, the LCL has to be equal to zero and the chart is inherently upper
one-sided.

In the following section, we briefly describe three simple charts to monitor
increases in the traffic intensity and go on to derive their ARL-unbiased versions
whose in-control ARL is equal to a pre-specified value ARL� and whose ARL curves
attain a maximum when the traffic intensity is on target.

In Sect. 3, we present some instructive examples of ARL-unbiased charts for
the traffic intensity of various single server queues, with small/medium/large target
values, and compare competing control charts in terms of the RL under different
out-of-control scenarios.

Section 4 wraps up the chapter with a few comments and recommendations for
future work.

2 Detecting Upward and Downward Shifts in the Traffic
Intensity

Since many production and service systems can be modelled as queueing systems
(Chen and Zhou 2015), control charts can be used to efficiently monitor their traffic
intensity. Keep in mind that downward (resp. upward) shifts in the traffic intensity
can correspond to a decreasing (resp. increasing) interest in the offered services,
thus calling for a timely detection.

The charts, whose performance we are going to describe at the end of this section,
give protection to both increases and decreases in the traffic intensity, unlike the
upper one-sided charts described by Chen and Zhou (2015) and Morais and Pacheco
(2016) and designed to detect solely upward shifts in ρ.
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2.1 Three Upper One-Sided Charts for the Traffic Intensity

The traffic intensity is deemed larger from its target level ρ0 if the control statistic—
be it Xn, X̂n or Wn (n ∈ N)—is above an upper control limit. Furthermore, if the
monitoring of the traffic intensity started with an empty system, which is common
practice (Chen et al. 2011), then the number of samples taken until a signal is
triggered is given by

RL = min{n ∈ N : Zn > U | Z0 = 0}, (10)

where:

• Zn ≡ Xn, X̂n, Wn is the control statistic we adopted to monitor ρ;
• U ≡ UZ is a positive integer (resp. real) upper control limit in case Zn = Xn, X̂n

(resp. Zn = Wn).

According to Morais and Pacheco (2016), RL denotes the identity of the first:

• departing (resp. arriving) customer who left behind (resp. found) in the M/G/1
(resp. GI/M/1) system a number of customers larger than U;

• arriving customer to the GI/G/1 system whose waiting time is above U.

In the Xn-chart case, the RL is related to the distribution of the time to absorption
of a DTMC with transient states {0, . . . , U} and TPM represented in partitioned
form

[
Q (I − Q) 1
0� 1

]
, (11)

where: Q = [pij]U
i,j=0; I is the identity matrix with rank (U + 1); 1 (resp. 0�) is a

column vector (resp. row vector) of (U + 1) ones (resp. zeros).
When we deal with the X̂n-chart we have to consider: the corresponding UCL,

U ≡ UX̂ ; Q = [p̂ij]U
i,j=0.

Adopting the Wn-chart means the approximate distribution of the RL is related
to the time to absorption of a DTMC, say {W̃n, n ∈ N0}, with transient states
{0, 1, . . . , ỹ − 1, ỹ} corresponding to {0} ∪ {(( j − 1)�, j�], j = 1, . . . , ỹ}, where:
U ≡ UW = ỹ �, that is to say U coincides with the upper limit of the last interval;
ỹ is a pre-specified large positive integer leading to a very small range � = U/ỹ;

Q = [p̃ij]ỹ
i,j=x̃. The resulting approximate run length is also denoted by RL for mere

convenience.
The exact ARL of the Xn- and X̂n-charts and the approximate ARL of the Wn-

chart can be written as

ARL0 = e�
0 × (I − Q)−1 × 1, (12)
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where ej represents the ( j + 1)th vector of the orthonormal basis of RUX+1, RUX̂+1

and R
ỹ+1, when Zn = Xn, X̂n, W̃n.

2.2 A Brief Review of ARL-Unbiased Charts

The chart control limits should be set in a way that a peak of the ARL curve is
produced at the in-control situation, while maintaining a pre-specified in-control
ARL, say ARL�. A chart with the first feature was termed by Pignatiello et al. (1995)
an ARL-unbiased chart.

As put by Morais (2016), considerable attention has been given to ARL-
unbiased charts for parameters of absolutely continuous quality characteristics. Here
is a partial list of works in chronological order: Uhlmann (1982, pp. 212–215),
Krumbholz (1992), Pignatiello et al. (1995), Ramalhoto and Morais (1995, 1999),
Acosta-Mejía and Pignatiello (2000), Huwang et al. (2010), Knoth (2010), Pascual
(2010), Cheng and Chen (2011), Huang and Pascual (2011), Pascual (2012), Knoth
and Morais (2013, 2015), Guo et al. (2014), and Guo and Wang (2015). The control
statistics being used are in most cases independent, in contrast to the Markovian-
type statistics Xn, X̂n and Wn.

Existing ARL-unbiased designs involving discrete distributions are more recent
and scarcer. Yang and Arnold (2015) propose an ARL-unbiased exponentially
weighted moving average proportion chart to monitor the variance for process
data with non-normal or unknown distributions. Paulino et al. (2016a) explore the
notions of randomization of the emission of a signal and uniformly most powerful
unbiased tests (UMPU) to eliminate the bias of the ARL function of the c-chart for
i.i.d. Poisson counts and bring the in-control ARL exactly to a pre-specified value;
this same technique was used by Morais (2016) to derive an ARL-unbiased np-chart,
and by Morais (2017) to obtain ARL-unbiased counterparts of the geometric chart
and the cumulative count of conforming chart under group inspection. Paulino et al.
(2016b) derive an ARL-unbiased design to detect both increases and decreases in
the mean of first-order integer-valued autoregressive (INAR(1)) Poisson counts.

As for regulation techniques for the traffic intensity, it is our impression that
we did not stumble across any reference tackling the detection of both upward
and downward shifts by using a control chart or a combination of two one-sided
charts, SPRT or general likelihood procedures. Nonetheless, we ought to make a
few comments before we proceed with the description of the ARL-unbiased charts
to monitor the traffic intensity of single server queueing systems.

• Bhat and Rao (1972) do not use ARL as a performance measure and only
provide two tables for the limits (cu, cl) and (du, dl), for the queueing systems
M/Ek/1 (k = 1, 2, 3, 4, 5, 10, 15,∞), ρ0 = 0.1, 0.2, . . . , 0.8, 0.9 (in short
ρ0 = 0.1(0.1)0.9 throughout the text), and αl = αu = 0.01, 0.05, 0.1, 0.25.
One of the things that strikes us most forcibly is that this control chart had the
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potential to detect increases and decreases in the traffic intensity and was not
used with that particular purpose.

• Interestingly, Figure 6 of Chen and Zhou (2015), referring to the ARL compar-
ison between a CUSUM chart and a generalized likelihood ratio (GLR) chart,
has the ARL profiles of upper and lower one-sided charts for the traffic intensity.
Their combined use could have led to the detection of both upward and downward
shifts in the traffic intensity.

2.3 Deriving ARL-Unbiased Charts for the Traffic Intensity

In order to derive ARL-unbiased charts for the traffic intensity when the con-
trol statistic is Xn, we can capitalize on the ARL-unbiased c-chart proposed by
Paulino et al. (2016b) for the mean of INAR(1) Poisson counts; after all the control
statistic employed by those authors and Xn are governed by DTMC with discrete
state spaces.

As a consequence, the ARL-unbiased chart used to monitor the traffic intensity
of the M/G/1 queueing system should trigger a signal at the nth departure with:

• probability one if the number of customers left behind by the nth departing
customer, xn, is larger than the upper control limit U;

• probability γL (resp. γU) if xn is equal to L ≡ 0 (resp. U).

As duly noted by Paulino et al. (2016b), randomizing the emission of a signal
means considering the sub-stochastic matrix Q ≡ Q(γL, γU) given by

⎡

⎢
⎢
⎢
⎢
⎢
⎣

pL L × (1 − γL) pL L+1 . . . pL U−1 pL U × (1 − γU)

pL+1 L × (1 − γL) pL+1 L+1 . . . pL+1 U−1 pL+1 U × (1 − γU)
...

...
. . .

...
...

pU−1 L × (1 − γL) pU−1 L+1 . . . pU−1 U−1 pU−1 U × (1 − γU)

pU L × (1 − γL) pU L+1 . . . pU U−1 pU U × (1 − γU)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (13)

Since X0 = 0 the exact ARL is equal to ARL0 = e�
0 × [I − Q(γL, γU)]−1 × 1.

Even though L ≡ 0, we used the iterative search procedure thoroughly described by
Paulino et al. (2016b) to obtain both control limits and the associated randomization
probabilities—to bring the in-control ARL to ARL� and to eliminate the bias of the
ARL function. This search procedure is omitted to keep this chapter to a practical
length.

Paulino et al. (2016a) note that the randomization of the emission of the signal
can be done in practice by simply using a software to generate a pseudo-random
number from a Bernoulli distribution with parameter γL (resp. γU) every time the
control statistic equals L (resp. U).

Needless to say, the ARL-unbiased chart meant to control the traffic intensity of
the GI/M/1 system can be obtained in a similar fashion.
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Like the Xn- and X̂n-charts, the one meant to monitor the traffic intensity of a
GI/G/1 queue relies on a control statistic governed by a DTMC. There similarity
ends because we are now dealing with a nonnegative mixed control statistic. This
fact begs for another change: there is no need to randomize the emission of a signal
when Wn = U because this event has zero probability.

Since we are supposed to trigger a signal with probability γL when Wn = L ≡ 0,
the sub-stochastic matrix is equal to

Q̃(γL) =

⎡

⎢⎢
⎢
⎢
⎢
⎣

p̃L L × (1 − γL) p̃L L+1 . . . p̃L U−1 p̃L U

p̃L+1 L × (1 − γL) p̃L+1 L+1 . . . p̃L+1 U−1 p̃L+1 U
...

...
. . .

...
...

p̃U−1 L × (1 − γL) p̃U−1 L+1 . . . p̃U−1 U−1 p̃U−1 U

p̃U L × (1 − γL) p̃U L+1 . . . p̃U U−1 p̃U U

⎤

⎥⎥
⎥
⎥
⎥
⎦

, (14)

and the ARL is given by ARL0 = e�
0 × [I − Q̃(γL)]−1 × 1 because W0 = 0.

Alternatively, we can obtain the ARL by solving an integral equation,1 using
the collocation method that leads to higher accuracy than currently established
methods (Knoth 2005) such as the Markov chain approach. For more details on this
alternative to the Markov chain approach, the reader is referred to Knoth (2005).

As for the search procedure responsible for the obtention of γL and U, it follows
the same lines as the algorithm used by Knoth and Morais (2013, 2015) to obtain the
control limits of the ARL-unbiased EWMA−S2 chart for the variance of a normally
distributed quality characteristic.

3 Preliminary Results

Several programs for the statistical software system R (R Core Team 2013) were
used to obtain the ARL-unbiased designs and the corresponding ARL profiles.

Tables 1, 2, 3 and 4 summarize the control limits, the randomization probabilities,
and the in-control and two out-of-control ARL values of the ARL-unbiased designs
we obtained, by considering the target value of the traffic intensity and the pre-
specified in-control ARL equal to ρ0 = 0.1(0.1)0.9 and ARL� = 500. These ARL-
unbiased designs were obtained using the Markov chain approach (in the case of
the Xn- and X̂n-charts) and the collocation method (in the case of the Wn-chart) and
refer to the control statistics (resp. queueing systems):

• Xn (M/M/1, M/E2/1 and M/E100/1);
• X̂n (M/M/1, E2/M/1 and E5/M/1);
• Wn (M/M/1, M/E2/1 and E2/M/1, either with fixed arrival rate or with fixed

service rate).

1L(z) = 1 + (1 − γL) × FS−A(−z) ×L(0) + ∫ U
0 fS−A(y − z) × L(y) dy, where L(z) represents the

ARL of the Wn-chart when W0 = z; the default value of z is zero.
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Table 1 ARL-unbiased Xn-chart: control limits, randomization probabilities, in-control and out-
of-control ARL values—ρ0 = 0.1(0.1)0.9 and ARL� = 500

System ρ0 [L, U] (γL, γU) ARL(0.95 ρ0) ARL(ρ0) ARL(1.05 ρ0)

M/M/1 0.1 [0, 4] (0.002160, 0.629778) 499.816 500.000 499.805

0.2 [0, 5] (0.002377, 0.302403) 499.466 500.000 499.418

0.3 [0, 6] (0.002664, 0.080576) 498.884 500.000 498.748

0.4 [0, 8] (0.003044, 0.445146) 497.977 500.000 497.669

0.5 [0, 10] (0.003568, 0.609947) 496.526 500.000 495.881

0.6 [0, 12] (0.004332, 0.214732) 494.133 500.000 492.841

0.7 [0, 15] (0.005548, 0.016981) 489.888 500.000 487.347

0.8 [0, 21] (0.007769, 0.929236) 481.579 500.000 476.808

0.9 [0, 30] (0.013043, 0.709996) 462.258 500.000 455.964

M/E2/1 0.1 [0, 3] (0.002152, 0.068181) 499.838 500.000 499.829

0.2 [0, 4] (0.002370, 0.082010) 499.497 500.000 499.454

0.3 [0, 5] (0.002656, 0.073351) 498.923 500.000 498.793

0.4 [0, 7] (0.003041, 0.968999) 497.982 500.000 497.664

0.5 [0, 8] (0.003566, 0.320705) 496.497 500.000 495.810

0.6 [0, 10] (0.004342, 0.423160) 493.949 500.000 492.499

0.7 [0, 13] (0.005584, 0.929120) 489.339 500.000 486.316

0.8 [0, 17] (0.007876, 0.687065) 480.059 500.000 473.905

0.9 [0, 24] (0.013475, 0.066710) 457.401 500.000 447.720

M/E100/1 0.1 [0, 3] (0.002147, 0.328369) 499.855 500.000 499.848

0.2 [0, 4] (0.002365, 0.931684) 499.519 500.000 499.479

0.3 [0, 4] (0.002640, 0.085670) 498.998 500.000 498.880

0.4 [0, 5] (0.003024, 0.183917) 498.072 500.000 497.768

0.5 [0, 6] (0.003558, 0.170932) 496.514 500.000 495.797

0.6 [0, 7] (0.004350, 0.004998) 493.773 500.000 492.141

0.7 [0, 9] (0.005617, 0.027111) 488.750 500.000 485.099

0.8 [0, 13] (0.007995, 0.946832) 478.189 500.000 469.929

0.9 [0, 19] (0.014002, 0.943674) 450.843 500.000 434.972

By considering the M/E2/1, M/E100/1, E2/M/1 and E5/M/1 queueing systems,
we cover different sorts of interarrival or service times, in particular with a
coefficient of variation not larger than a unit.

The corresponding ARL-profiles can be found in Figs. 1, 2, 3 and 4, for ρ0 =
0.1, 0.5, 0.9 and ARL� = 500. The profiles in Figs. 1 and 2 (resp. Figs. 3 and 4)
were obtained using the Markov chain approach (resp. the collocation method).

The results in those tables and the plots in these figures suggest that we are indeed
dealing with charts with:

• in-control ARL very close to the pre-stipulated value ARL� = 500;
• ARL curves with a maximum when the traffic intensity is equal to its target

value ρ0.
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Table 2 ARL-unbiased X̂n-chart: control limits, randomization probabilities, in-control and out-
of-control ARL values—ρ0 = 0.1(0.1)0.9 and ARL� = 500

System ρ0 [L, U] (γL, γU) ARL(0.95 ρ0) ARL(ρ0) ARL(1.05 ρ0)

M/M/1 0.1 [0, 4] (0.002160, 0.634850) 499.816 500.000 499.805

0.2 [0, 5] (0.002377, 0.307742) 499.467 500.000 499.419

0.3 [0, 6] (0.002664, 0.086407) 498.888 500.000 498.753

0.4 [0, 8] (0.003043, 0.464904) 497.985 500.000 497.681

0.5 [0, 10] (0.003567, 0.651244) 496.545 500.000 495.914

0.6 [0, 12] (0.004329, 0.254463) 494.179 500.000 492.931

0.7 [0, 15] (0.005541, 0.068832) 490.009 500.000 487.605

0.8 [0, 20] (0.007746, 0.088495) 481.923 500.000 477.610

0.9 [0, 29] (0.012936, 0.221365) 463.558 500.000 458.852

E2/M/1 0.1 [0, 3] (0.002039, 0.876869) 499.898 500.000 499.886

0.2 [0, 4] (0.002148, 0.859637) 499.582 500.000 499.521

0.3 [0, 5] (0.002323, 0.731068) 499.016 500.000 498.846

0.4 [0, 6] (0.002580, 0.423089) 498.092 500.000 497.709

0.5 [0, 7] (0.002955, 0.065346) 496.559 500.000 495.751

0.6 [0, 9] (0.003520, 0.097782) 493.990 500.000 492.361

0.7 [0, 12] (0.004438, 0.304139) 489.378 500.000 486.143

0.8 [0, 16] (0.006149, 0.182911) 480.157 500.000 473.960

0.9 [0, 24] (0.010323, 0.532068) 458.093 500.000 449.697

E5/M/1 0.1 [0, 2] (0.002004, 0.238163) 499.973 500.000 499.967

0.2 [0, 3] (0.002046, 0.652609) 499.731 500.000 499.668

0.3 [0, 4] (0.002148, 0.925662) 499.178 500.000 498.977

0.4 [0, 5] (0.002324, 0.825244) 498.234 500.000 497.768

0.5 [0, 6] (0.002600, 0.408281) 496.673 500.000 495.704

0.6 [0, 8] (0.003040, 0.976148) 493.932 500.000 491.935

0.7 [0, 10] (0.003771, 0.442419) 489.010 500.000 484.988

0.8 [0, 13] (0.005166, 0.020108) 478.917 500.000 470.893

0.9 [0, 20] (0.008666, 0.133624) 453.910 500.000 441.644

Interestingly enough, some additional results lead us to believe that, even though
taking X0 = X̂0 = W0 = 0 could be considered giving a head-start to the three
ARL-unbiased charts (especially when ρ0 = 0.9), these designs seem to give proper
protection to false alarms. In fact for ρ0 = 0.9, P[RL0(ρ0) = 1] (resp. P[RL0(ρ0) ≤
10]) do not exceed 0.0072 = 3.6×(ARL�)−1 (resp. 0.042), for the M/M/1, M/E2/1
and E2/M/1 queueing systems.

3.1 M/G/1 Queueing System

Before we continue to comment on the results, we should remind the reader of a
known property of the M/G/1 queueing systems in equilibrium.
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Table 3 ARL-unbiased Wn-chart, FIXED SERVICE RATE: upper control limit, randomization
probability, in-control and out-of-control ARL values—ρ0 = 0.1(0.1)0.9 and ARL� = 500

System ρ0 U γL ARL(0.95 ρ0) ARL(ρ0) ARL(1.05 ρ0)

M/M/1 0.1 7.077585 0.002068 499.949 500.000 499.948

0.2 8.010018 0.002235 499.784 500.000 499.775

0.3 9.071026 0.002487 499.457 500.000 499.419

0.4 10.335393 0.002839 498.866 500.000 498.753

0.5 11.912665 0.003335 497.823 500.000 497.533

0.6 13.984468 0.004065 495.951 500.000 495.260

0.7 16.890639 0.005227 492.431 500.000 490.858

0.8 21.370674 0.007344 485.203 500.000 481.863

0.9 29.461491 0.012315 467.940 500.000 463.249

M/E2/1 0.1 4.738168 0.002095 499.925 500.000 499.923

0.2 5.563324 0.002287 499.711 500.000 499.695

0.3 6.471000 0.002556 499.307 500.000 499.248

0.4 7.538379 0.002921 498.599 500.000 498.434

0.5 8.863481 0.003433 497.372 500.000 496.960

0.6 10.604398 0.004186 495.194 500.000 494.228

0.7 13.059001 0.005393 491.102 500.000 488.900

0.8 16.890368 0.007621 482.601 500.000 477.780

0.9 24.001438 0.013020 461.564 500.000 453.861

E2/M/1 0.1 6.423954 0.002006 499.989 500.000 499.988

0.2 6.924320 0.002055 499.896 500.000 499.888

0.3 7.634301 0.002180 499.644 500.000 499.608

0.4 8.557287 0.002399 499.124 500.000 499.014

0.5 9.757652 0.002741 498.137 500.000 497.836

0.6 11.375280 0.003272 496.264 500.000 495.500

0.7 13.693807 0.004144 492.567 500.000 490.692

0.8 17.357775 0.005776 484.579 500.000 480.155

0.9 24.234798 0.009750 464.162 500.000 456.334

The expected number of customers left behind by a departing customer can be
obtained by using the Pollaczek-Khinchin mean-value formula (Kleinrock 1975, p.
187), it is equal to ρ + [(1 + k)/(2k)] × ρ2/(1 − ρ) when we are dealing with Ek

service times, and, thus, it is not severely affected by k, in particular for small values
of the traffic intensity.

We believe that this last property is in part responsible for the apparent similarity
of ARL profiles in Fig. 1, for the M/M/1, M/E2 and M/E100/1 systems and a fixed
target value ρ0, namely when ρ = 0.1.

The ARL results in Table 1 and the plots in Fig. 1 also suggest that the larger
the target value ρ0 the quicker is the average detection time of small upward and
downward shifts in the traffic intensity by the Xn-chart.
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Table 4 ARL-unbiased Wn-chart, FIXED ARRIVAL RATE: upper control limit, randomization
probability, in-control and out-of-control ARL values—ρ0 = 0.1(0.1)0.9 and ARL� = 500

System ρ0 U γL ARL(0.95 ρ0) ARL(ρ0) ARL(1.05 ρ0)

M/M/1 0.1 0.911543 0.002198 499.505 500.000 499.400

0.2 1.979006 0.002441 498.848 500.000 498.588

0.3 3.253009 0.002750 497.952 500.000 497.459

0.4 4.810239 0.003154 496.688 500.000 495.834

0.5 6.773410 0.003706 494.831 500.000 493.402

0.6 9.353440 0.004506 491.943 500.000 489.572

0.7 12.950170 0.005774 487.093 500.000 483.168

0.8 18.438763 0.008086 477.988 500.000 471.750

0.9 28.254818 0.013579 457.637 500.000 451.070

M/E2/1 0.1 0.590423 0.002200 499.450 500.000 499.313

0.2 1.333646 0.002447 498.719 500.000 498.380

0.3 2.263006 0.002760 497.722 500.000 497.076

0.4 3.437682 0.003171 496.316 500.000 495.197

0.5 4.957663 0.003733 494.249 500.000 492.373

0.6 6.999475 0.004552 491.027 500.000 487.895

0.7 9.904859 0.005855 485.578 500.000 480.306

0.8 14.440527 0.008257 475.177 500.000 466.442

0.9 22.822927 0.014126 451.037 500.000 440.365

E2/M/1 0.1 0.807874 0.002049 499.785 500.000 499.733

0.2 1.705269 0.002171 499.279 500.000 499.099

0.3 2.744663 0.002360 498.488 500.000 498.091

0.4 3.993490 0.002631 497.298 500.000 496.538

0.5 5.554374 0.003021 495.474 500.000 494.093

0.6 7.602153 0.003604 492.537 500.000 490.065

0.7 10.471464 0.004549 487.439 500.000 482.987

0.8 14.911901 0.006309 477.480 500.000 469.575

0.9 23.099001 0.010632 453.865 500.000 443.251

It is interesting to confirm that all the LCL we obtained are equal to zero, unlike
the LCL of the ARL-unbiased charts with discrete control statistics derived so far
by Paulino et al. (2016a,b) and Morais (2016, 2017).

Another striking feature of the ARL-unbiased Xn-chart: the values of γL≡0 tend
to be much smaller than the ones of γU . As a result, this chart is more prone to
trigger a signal when the control statistic is equal to the UCL than when the control
statistic takes a zero value. This follows from the need to achieve a fixed and fairly
large in-control ARL in the presence of very frequent zero values of the control
statistic.

We can also add that larger target values of the traffic intensity require,
expectedly, larger upper control limits to achieve the same pre-specified in-control
ARL and give proper protection to early false alarms.
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Fig. 1 ARL profiles of the ARL-unbiased Xn-chart—M/M/1, M/E2/1 and M/E100/1 systems
with ρ0 = 0.1, 0.5, 0.9

3.2 GI/M/1 Queueing System

When it comes to the X̂n-chart for the traffic intensity of the M/M/1, E2/M/1
and E5/M/1 systems, though comparable for a fixed ρ0 and different interarrival
time distributions, the ARL profiles are dissimilar for distinct target values ρ0, as
illustrated by Fig. 2.

In addition, as the coefficients of variation k−1 (k = 1, 2, 5) of the interarrival
times become smaller and the times between consecutive arrivals become more
regular for a fixed target value ρ0, the smaller (resp. larger) is the detection speed
of the X̂n-chart in the presence of small and medium (resp. small) size upward and
downward shifts in the traffic intensity, as illustrated by the ARL profiles in Fig. 2
(resp. the out-of-control values in Table 2).

The ARL-unbiased design is also associated with null LCL in all cases and small
randomization probabilities γL, and therefore agrees with what has been previously
said and with the results referring to the M/G/1 queueing system.

We ought to note that the X̂n- and Xn-charts have similar performances when it
comes to the monitoring of the traffic intensity of the M/M/1 system, judging by
the corresponding ARL profiles in Figs. 1 and 2.
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Fig. 2 ARL profiles of the ARL-unbiased X̂n-chart — M/M/1, E2/M/1 and E5/M/1 systems
with ρ0 = 0.1, 0.5, 0.9

3.3 GI/G/1 Queueing System

Since the RL of the Wn-chart explicitly depends upon the arrival and service rates,
the discussion of the results refers now to two scenarios:

• the traffic intensity changes due to change in λ, while the service rate μ is fixed;
• ρ is off-target as a result of a change in μ, whereas the arrival rate λ remains the

same.

In both scenarios the probability of triggering a signal when Wn = L ≡ 0 does
not exceed 1.5% for any of the queueing systems we have considered, like the Xn-
and X̂n-charts. The importance of this small randomization probability γL lies in its
ability to transform these three upper one-sided charts into monitoring schemes that
are capable of also detecting decreases in the traffic intensity.

The detection speed of the Wn-chart becomes all the more clearer by looking at
the ARL profiles in Figs. 3 and 4:

• the ARL profiles change considerably with the target value ρ0, as they did for the
Xn- and X̂n-charts;
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Fig. 3 ARL profiles of the ARL-unbiased Wn-chart, FIXED SERVICE RATE—M/M/1, M/E2/1
and E2/M/1 systems with ρ0 = 0.1, 0.5, 0.9

• when the service rate μ is fixed, a change in ρ is due to an increase or decrease
of the arrival rate and it seems to be more easily detected if we are monitoring
the traffic intensity of the M/M/1 and M/E2/1 systems than the traffic intensity
of a E2/M/1 queueing system, judging by the corresponding plots in Fig. 3;

• when λ is fixed, the ARL profiles, in Fig. 4, associated with the M/M/1 and
M/E2/1 queueing systems are very similar for the same target value ρ0, as we
have previously mentioned in the discussion of the results concerning the Xn-
chart;

• it is also apparent from Fig. 4 that the Wn-chart seems to take longer to detect
decreases in the traffic intensity of the E2/M/1 system with a fixed arrival rate
than in the one of the M/M/1 and M/E2/1 queueing systems;

• by comparing the ARL profiles in Figs. 3 and 4, we can conclude that a small
change in the traffic intensity seems to be detected more swiftly by the Wn-chart
if that decrease (resp. increase) in ρ is due to an increase (resp. a decrease) in the
service rate than to a decrease (resp. an increase) in the arrival rate, regardless of
the queueing system and the target value ρ0.
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Fig. 4 ARL profiles of the ARL-unbiased Wn-chart, FIXED ARRIVAL RATE—M/M/1, M/E2/1
and E2/M/1 systems with ρ0 = 0.1, 0.5, 0.9

3.4 Mixed vs. Discrete Control Statistics

We end this section with a brief discussion on whether or not the ARL-unbiased Wn-
chart leads, in average, to swifter detections than its discrete counterparts, the ARL-
unbiased Xn- and X̂n-charts, which require less bookkeeping and are computationally
less demanding as far as their design is concerned.

We limit the confrontations to the Xn- (resp. X̂n-) and Wn-charts meant to control
the traffic intensity of the M/M/1 and M/E2/1 (resp. E2/M/1) queueing systems.

Programs for Mathematica (Wolfram Research, Inc. 2015) were used to produce
Fig. 5 (resp. 6), where we can find the plots of the percentage reduction in ARL,

[
1 − ARLWn(ρ)

ARLXn(ρ)

]
× 100% (resp. [1 − ARLWn(ρ)/ARLX̂n

(ρ)] × 100%)

when the Xn-chart (resp. X̂n-chart) is replaced with the Wn-chart. The curves were
drawn resorting to the Markov chain approach with (250 + 1) transient states.
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Fig. 5 Plots of the relative ARL reduction, [ARLWn (ρ)/ARLXn (ρ)−1]×100%—M/M/1 (top) and
M/E2/1 (bottom) systems with ρ0 = 0.1, 0.5, 0.9 and ARL� = 500; fixed service (resp. arrival)
rate corresponds to the solid (resp. dashed) lines

Fig. 6 Plots of the relative ARL reduction, [ARLWn (ρ)/ARLX̂n
(ρ)−1]×100%—M/M/1 (top) and

E2/M/1 (bottom) systems with ρ0 = 0.1, 0.5, 0.9 and ARL� = 500; fixed service (resp. arrival)
rate corresponds to the solid (resp. dashed) lines

Figures 5 and 6 suggest that the ARL profiles of both charts with discrete control
statistics compare unfavourably to the one of the Wn-chart, as noted by Morais and
Pacheco (2016), when the arrival rate has been fixed (dashed line).

It is also very interesting to see that the smaller the target value of the traffic
intensity, the larger seems to be the relative reduction in ARL due to the adoption
of the Wn-chart. Thus, extra bookkeeping makes a worthwhile improvement to the
detection of shifts in the traffic intensity due to changes in the service rate when
ρ0 = 0.1.

The solid lines in these two figures suggest that replacing the Xn- and X̂n-charts
with a Wn-chart does not pay-off in terms of ARL performance, when the service
rate has been fixed. Strictly speaking, relying on the number of customers seen in the
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queueing system by the departing or arriving customer seems to be more beneficial
than the waiting time of an arriving customer, when the shifts in the traffic intensity
are due entirely on changes in the arrival rate.

For instance, when the traffic intensity of a E2/M/1 queueing system shifts from
its target value ρ0 = 0.1 to ρ = 0.6, then we would expect to see the first arriving
customer, who would have:

• to see at least three customers in upon arrival, to be approximately arrival number
30;

• to wait longer than U = 6.423954 time units until being served, to be roughly
arrival number 184.

This corresponds to a weighty 509% relative increase in the ARL of the X̂n-chart.
The reader should be aware that in Santos (2016) there is also evidence that using

the upper one-sided Wn-chart, to monitor exclusively increases in the traffic intensity
when the arrival (resp. service) rate is unaltered, does (resp. does not) improve the
detection speed of charts based on the discrete control statistics Xn and X̂n.

4 Conclusion

The aim of this chapter is twofold.
On the one hand, we intend to draw the attention of quality practitioners and

operation researchers alike to the use of control charts to monitor the traffic intensity
of (single-server) queueing systems.

On the other hand, we make a point of deriving three ARL-unbiased charts
associated with two discrete-valued and one mixed-valued control statistics. These
charts can be easily implemented and are designed in such way that:

• their in-control ARL take a pre-stipulated value ARL�;
• the associated ARL curves attain a maximum when the traffic intensity is on

target, thus it takes us less time (in average) to be alerted to any increase or
decrease of the traffic intensity than to run into a false alarm.

By relying on the randomization probabilities (resp. probability) γL and γU (resp.
γL) to trigger a signal when the control statistic is equal to the LCL or the UCL (resp.
LCL), the ARL-unbiased Xn- and X̂n-charts (resp. Wn-chart) for the traffic intensity
can definitively handle the curse of the null values of the control statistics and still
detect decreases in ρ in a timely fashion.

The preliminary results we obtained so far should be complemented with:

• further ARL-unbiased designs, namely referring to other interarrival time distri-
butions such as the hyperexponential and hypoexponential, commonly used in
QT and in practice;

• additional comparisons between the two charts with discrete control statistics Xn

and X̂n and the one that makes use of the waiting time Wn, in a scenario suggested
by Santos (2016) where the traffic intensity shifts from its target value ρ0 to
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a different value ρ1 because the arrival and service rates change proportionally
from their target values λ0 and μ0 to λ1 = √

ρ1/ρ0 λ0 and μ1 = √
ρ0/ρ1 μ0,

respectively; these comparisons should rely not only on ARL but also on the RL
percentage points and its standard deviation (SDRL).

A direction of future research comprises the derivation of ARL-unbiased versions
of the WZ, the nL and the sophisticated CUSUM charts proposed by Bhat and Rao
(1972), Chen et al. (2011) and Chen and Zhou (2015) (respectively), in order to
detect not only increases and but also decreases in the traffic intensity of (single-
server) queueing systems in an expedient manner.
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Appendix

If the service times of an M/G/1 queueing system have an Erlang distribution with
k (k ∈ N) phases and probability density function (p.d.f.) given by

fS(s) = (kμ)k sk−1 e−kμs/(k − 1)!, s ≥ 0,

then

αi =
(

k + i − 1

k − 1

)(
ρ

k + ρ

)i ( k

k + ρ

)k

, i ∈ N0 (15)

(Feller 1971, p. 57). In other words, Y has a negative binomial distribution with
parameters k and k(k + ρ)−1, when we are dealing with the M/Ek/1 queueing
system.

If the GI/M/1 queueing system is associated with interarrival times with an
Erlang distribution with density

fA(a) = (kλ)k ak−1 e−kλa/(k − 1)!, a ≥ 0,
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Morais and Pacheco (2016) adds that

α̂i =
(

k + i − 1

k − 1

)(
k−1

k−1 + ρ

)i (
ρ

k−1 + ρ

)k

, i ∈ N0. (16)

This is to say that Y has a negative binomial distribution with parameters k and
ρ (k−1 + ρ)−1, for the Ek/M/1 queue.

When it comes to the GI/G/1 queueing system, the results derived by Nadarajah
and Kotz (2005), for the c.d.f. and p.d.f. of a linear combination (αX + βY) of
exponential (X) and gamma (Y) independent r.v. (with α > 0), come in handy.

For the M/M/1 queueing system with arrival rate λ = 1/E(A) and service rate
μ = 1/E(S), Morais and Pacheco (2016) wrote

FS−A(x) =
{

μ eλx

λ+μ
, x ≤ 0

1 − λ e−μx

λ+μ
, x > 0.

(17)

Similar calculations led Morais and Pacheco (2016) to conclude that:

FS−A(x) =

⎧
⎪⎨

⎪⎩

eλx
(

kμ
kμ+λ

)k
, x ≤ 0

FGamma(k,kμ)(x) + eλx
(

kμ
kμ+λ

)k
F̄Gamma(k,kμ+λ)(x), x > 0,

(18)

for the M/Ek/1 queueing system; and

FS−A(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F̄Gamma(k,kλ)(−x)

−e−μx
(

kλ
kλ+μ

)k
F̄Gamma(k,kλ+μ)(−x), x ≤ 0

1 − e−μx
(

kλ
kλ+μ

)k
, x > 0,

(19)

for the Ek/M/1 system.
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Risk-Adjusted Exponentially Weighted
Moving Average Charting Procedure
Based on Multi-Responses

Xu Tang and Fah Fatt Gan

Abstract Quality control charting procedures like cumulative sum (CUSUM)
and exponentially weighted moving average (EWMA) charting procedures are
traditionally used for monitoring the quality of manufactured products. Unlike a
manufacturing process where the raw material is usually reasonably homogeneous,
patients’ risks of various surgical outcomes are usually quite different. The risks
will have to be taken into consideration when monitoring surgical performances.
A risk-adjusted CUSUM charting procedure for monitoring surgical performances
has already been developed in the literature. In this chapter, we develop a risk-
adjusted EWMA charting procedure based on two or more outcomes. The properties
of this procedure are studied. It is also compared with the risk-adjusted CUSUM
procedure using a real surgical data set. Our study shows that the risk-adjusted
EWMA procedure is an attractive alternative because of its performance and ease
of interpretation.

Keywords Cumulative sum charting procedure · Odds ratio · Parsonnet scores ·
Patient mix · Proportional odds logistic regression model · Quality monitoring ·
Surgical outcomes

1 Introduction

The need for effective monitoring of surgical performances has gained much
attention in recent years after the public was alerted to a high profile case of
professional misconduct over the quality of heart surgeries (BRI Inquiry Panel
2001). Treasure et al. (1997), Waldie (1998) and Treasure et al. (2004) have
also highlighted several other critical cases. The importance of effective online
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monitoring procedures cannot be understated because such procedures allow prompt
detection of any deterioration in surgical performance, and hence investigations of
possible causes and eventually reduction in undesirable outcomes.

In a manufacturing process, raw material fed into the process is often quite
homogeneous. The added complexity in monitoring surgical performances is that
patients usually have different health conditions which affect the surgical outcomes
directly. If the heterogeneity of patients is not taken into consideration, then
monitoring procedures could lead to misleading inferences (Steiner et al. 2000).
To estimate the risk of death from a cardiac operation, Parsonnet (1989) proposed
an additive scoring system based on a patient’s health condition like age, blood
pressure, existence of certain disease such as diabetes, morbid obesity etc. This
score is commonly known as the Parsonnet score. Steiner et al. (2000) for example,
fitted a binary logistic regression model using the Parsonnet score as the explanatory
variable to estimate the probability of death from a cardiac operation. The Euroscore
which was developed by Roques et al. (1999) for estimating the probability of
death was also obtained by fitting a binary logistic regression model. Their model
is based on 19,030 cardiac surgeries, using various measures of health condition
as explanatory variables. For three or more surgical outcomes, Tang et al. (2015)
fitted a proportional odds logistic regression model using the Parsonnet score as the
explanatory variable to estimate the probabilities of various surgical outcomes.

The earliest risk-adjusted monitoring procedure was developed by Lovegrove et
al. (1997, 1999) and Poloniecki et al. (1998). Their simple risk-adjustment is done
using the difference between the surgical outcome (0 for survival within 30 days
and 1 for death) and the estimated probability of death. The main disadvantage of
this procedure is the lack of a proper signaling rule. The risk-adjusted cumulative
sum (CUSUM) charting procedure developed by Steiner et al. (2000) is based on
accumulating the log likelihood ratio derived from testing the odds ratio that a
patient dies. This chart is also based on the same binary outcomes. A more general
risk-adjusted CUSUM procedure obtained by testing the probability of death was
given by Gan et al. (2012). In order to improve the effectiveness of this procedure,
Tang et al. (2015) developed a risk-adjusted CUSUM procedure based on two or
more outcomes: death and different grades of survival. Grigg and Spiegelhalter
(2007) developed a risk-adjusted exponentially weighted moving average (EWMA)
chart for exponential family data. Steiner and Jones (2010) developed a risk-adjusted
EWMA chart based on survival time. Their EWMA chart is only feasible for
monitoring surgical performances with two outcomes. However, more effective
procedures can be obtained by classifying the surgical outcomes into more than
two outcomes as explained in Tang et al. (2015). None of the binary risk-adjusted
EWMA procedures is a special case of our proposed procedure. A recent review
chapter on monitoring surgical outcomes can be found in Woodall et al. (2015).

In this chapter, we will develop a risk-adjusted EWMA chart based on two
or more outcomes. In Sect. 2, a proportional odds logistic regression model is
used to estimate the probabilities of various surgical outcomes. We then develop
a risk-adjusted statistic based on the likelihood ratio approach. The properties of
this statistic are investigated and conditions are derived for it to be a reasonable
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monitoring statistic. In Sect. 3, we develop a risk-adjusted EWMA charting pro-
cedure based on this statistic. The risk-adjusted EWMA and CUSUM procedures
are used to study the performance of three surgeons based on a real data set in
Sect. 4. Similarities and differences between these two procedures are compared.
Conclusions are given in Sect. 5.

2 Proportional Odds Logistic Regression Model and Log
Likelihood Ratio Statistic

The Parsonnet score S measures the mortality risk of a patient undergoing a cardiac
surgery. The outcome is usually determined after 30 days of an operation and it can
be represented by a discrete random variable Y which takes a value from 0 to J. Let
Y = 0 when a patient has a fully recovery, Y = 1, 2, . . . , J − 1 denote various states
of partial recovery, with a smaller number associated with a better state of recovery
and Y = J when a patient dies.

We will follow the notation used by Tang et al. (2015). Conditional on a patient’s
risk score S = s, the distribution Y is denoted as

P(Y = k|S = s) = πk(s), k = 0, 1, . . . , J.

The cumulative logit is defined as

logit[P(Y ≤ k|S = s)] = log

[
P(Y ≤ k|S = s)

1 − P(Y ≤ k|S = s)

]
= log

[
π0(s) + · · · + πk(s)

πk+1(s) + · · · + πJ(s)

]
,

where k = 0, . . . , J − 1. The cumulative distribution function of Y can be estimated
using the proportional odds logistic regression model (McCullagh 1980) as

logit[P(Y ≤ k|S = s)] = αk + βs, k = 0, . . . , J − 1, (1)

based on a historical data set of patients’ risk scores and surgical outcomes. The
model is based on the assumption that the cumulative logits share the same slope
β but with different intercepts, αk’s. The assumption of parallel logit surfaces is
known as the proportional odds assumption. For this application, the parameter αk

is increasing in k because the probability P(Y ≤ k|S = s) increases in k for all
s and the logit is an increasing function of this probability. Also, the cumulative
probability P(Y ≤ k|S = s) decreases with increasing risk score s and hence the
parameter β is negative.

Following the notation used by Tang et al. (2015), we let the probability density
function (pdf) of the risk score of a patient be f (s). The joint density of (S, Y)

is then given as f (s, y) = πy(s)f (s), y = 0, . . . , J. We consider testing the null
hypothesis H0 : f0(s, y) against the alternative hypothesis HA : fA(s, y) where
(π0(s), . . . , πJ(s)) = (π0

0 (s), . . . , π0
J (s)) under the null hypothesis and (π0(s), . . . ,

πJ(s)) = (πA
0 (s), . . . , πA

J (s)) under the alternative hypothesis.
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The nth log likelihood ratio statistic is given by

Wn = log( fA(Sn, Yn)/f0(Sn, Yn)).

The statistic Wn is hence obtained by risk-adjusting Yn using Sn. The joint pdf’s
under the null and alternative hypotheses are given by f0(sn, yn) = π0

yn
(sn)f (sn) and

fA(sn, yn) = πA
yn

(sn)f (sn) respectively, hence,

Wn = log(πA
Yn

(Sn)/π
0
Yn

(Sn)). (2)

The statistic Wn does not contain f (sn) because the risk distribution is assumed to
be the same for both hypotheses.

Based on the multi-response proportional odds logistic regression model, a
natural way of defining performance of a surgeon is to use the one based on
cumulative probabilities,

k∑

i=0
π∗

i (s)

1 −
k∑

i=0
π∗

i (s)

= Rk

k∑

i=0
πi(s)

1 −
k∑

i=0
πi(s)

, (3)

k = 0, · · · , J − 1 where Rk is the odds ratio of cumulative probabilities of recovery.
In order for the probabilities π∗

k (s), k = 0, · · · , J to be in [0, 1], Tang et al. (2015)
showed that the odds ratios must satisfy the condition

α0 + log(R0) ≤ α1 + log(R1) ≤ · · · ≤ αJ−1 + log(RJ−1). (4)

In practice, we may assume that R0 = . . . = RJ−1 = 1 under the null hypothesis
which means that the performance under the null hypothesis is characterized by the
fitted logistic regression model. The values of Rk’s can then be set to be greater than
1 for detecting improvement and less than 1 for detecting deterioration. Once an
alternative hypothesis is chosen, the monitoring statistic W(Y, S) is then defined by
Eq. (2).

Let the target alternative performance be π+
Y (S) based on odds ratios R+

0 , · · · ,
R+

J−1 for detecting improvement and π−
Y (S) based on R−

0 , · · · , R−
J−1 for detecting

deterioration. Then, the statistics for detecting improvement and deterioration can
be determined using Eq. (2) as

W+(Y, S) = log(π+
Y (S)/π0

Y(S)),

and

W−(Y, S) = log(π−
Y (S)/π0

Y(S)),
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respectively. One could use a charting procedure based on W+(Y, S) for monitoring
improvement and another procedure based on W−(Y, S) for monitoring deteriora-
tion but this would involve two procedures. We propose the statistic

Wa(Y, S) = W+(Y, S) − W−(Y, S). (5)

as the monitoring statistic. This statistic has some attractive properties. The statistic
can be expressed as

Wa(Y, S) = log(π+
Y (S)/π−

Y (S)).

It is the log likelihood ratio of the probability of an outcome Y given a risk score S
assuming a surgeon performing better than average to that of a surgeon performing
worst than average. This provides mathematical support for the use of this statistic
for monitoring.

The statistic Wa(Y, S) can also be viewed meaningfully as a penalty-reward score
for monitoring. In general, a reward score is given for a successful operation and a
penalty score is given for a failed operation. The penalty-reward score is a positive
number if it is a reward, and a negative number if it is a penalty. Given a particular
outcome Y = k, k = 0, · · · , J, the penalty-reward score should increase as the risk
score increases. This means that for detecting deterioration, a surgeon should be
given a lower penalty score for a higher-risk patient given the same outcome. Also,
for detecting an improvement, a surgeon should be given a higher reward score for a
higher-risk patient given the same outcome. For a given risk score s, we also require
Wa(0, s) > Wa(1, s) > · · · > Wa(J, s) to be satisfied. This defines a proper ordering
of the penalty-reward score for all the outcomes.

In order for Wa(Y, S) to satisfy the property that Wa(y, s) is an increasing
function of s and a decreasing function of y, it only requires the condition in
Theorem 1 to be true. The proof of this theorem is given in Appendix 1.

Theorem 1 Assume Eqs. (1), (2) and (3) hold. Suppose R+
0 , · · · , R+

J−1 define
π+

Y (S), and R−
0 , · · · , R−

J−1 define π−
Y (S). Then the condition

R+
0 /R−

0 = · · · = R+
J−1/R−

J−1 > 1,

is necessary and sufficient for Wa(y, s) to be (i) an increasing function of s given y,
and (ii) a decreasing function of y given s.

Additional properties of the statistic are given in Theorem 2. The proof of this
theorem is given in Appendix 2.

Theorem 2 Assume Eqs. (1), (2) and (3) hold. If

R+
0 /R−

0 = · · · = R+
J−1/R−

J−1 = R+/R− > 1,
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then Wa(y, s) satisfies the following condition:

1. Wa(0, s) > 0.
2. Wa(J, s) < 0.
3. Wa(0, s) → 0 when s → −∞, Wa(J, s) → 0 when s → ∞.
4. For y ∈ {0, · · · , J − 1}, Wa(y, s) → log(R+/R−) when s → ∞.
5. For y ∈ {1, · · · , J}, Wa(y, s) → −log(R+/R−), when s → −∞.

Note that Theorems 1 and 2 do not require R+
0 = · · · = R+

J−1 = R+ and R−
0 =

· · · = R−
J−1 = R−. They only require R+

0 /R−
0 , · · · , R+

J−1/R−
J−1 to be the same as the

ratio R+/R−. The condition R+
0 = · · · = R+

J−1 = R+ and R−
0 = · · · = R−

J−1 = R−
is just a special case and the more natural one to use. Hence, in this chapter, we will
be using R+

0 = · · · = R+
J−1 = R+ and R−

0 = · · · = R−
J−1 = R−.

The properties of Wa(y, s) as stated in Theorems 1 and 2 can be explained further
using Fig. 1 which shows a plot of Wa(y, s) against s for y = 0, 1 and 2. This figure
shows that as reward, the score Wa(y, s) is positive and as penalty, negative. Results
1 and 2 of Theorem 2 show that the penalty-reward score Wa(0, s) is positive for full
recovery and negative for death. For partial recovery, results 4 and 5 of Theorem 2
show that Wa(k, s) < 0 for s less than some s∗ and Wa(k, s) > 0 for s greater than
s∗. Thus, for a patient with a risk s less than s∗, the penalty-reward score is negative
(a penalty) if the patient makes a partial recovery. On the other hand, for a patient
with a risk s greater than s∗, the penalty-reward is positive (a reward) if the patient
makes a partial recovery. This is reasonable because if a high-risk patient makes
even a partial recovery, this is considered a desirable outcome, whereas if a low-risk
patient who is more likely to make a full recovery, makes only a partial recovery,
this is not considered a desirable outcome. Note that the score Wa(0, s) is always

0 10 20 30 40 50 60 70 80 90 100

Parsonnet score s

−1.0

−0.5

0.0

0.5

1.0

Wa(y, s)

y = 0 (Full recovery) y = 1 (Partial recovery)

y = 2 (Death)

Fig. 1 Plots of Wa(y, s) against the Parsonnet score s for y = 0, 1, 2 when J = 2, R+ = 2 and
R− = 0.5
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a reward and Wa(J, s) is always a penalty. The score Wa(k, s), k = 1, . . . , J − 1
can be viewed either as a penalty or a reward depending on the Parsonnet score of
a patient and the state of partial recovery. Furthermore, it can be seen from result
4 of Theorem 2 that for a very high risk patient who makes a partial recovery, the
reward given is very close to that of a full recovery. This means that any state of
partial recovery is considered almost as good as a full recovery for a very high risk
patient. Similarly, result 5 of Theorem 2 implies that for a very low risk patient,
the penalty given for any partial recovery is very close to that of a patient who dies.
This means that any state of partial recovery is considered almost as bad as dead for
a very low risk patient. For a very low-risk patient, the only desirable outcome is a
full recovery.

3 Risk-Adjusted Exponentially Weighted Moving Average
Charting Procedure

Suppose Xn is the monitoring statistic based on the nth sample obtained. Let the
mean and variance of Xn be μ and σ 2 respectively. The EWMA chart is obtained by
plotting

Zn = (1 − λ)Zn−1 + λXn,

against the sample number n where λ is a smoothing parameter such that 0 < λ ≤ 1.
The starting value Z0 is usually taken to be Z0 = μ. The statistic Zn can also be
expressed as

Zn = λ

n−1∑

i=0

(1 − λ)iXn−i + (1 − λ)nZ0.

It can be shown that if Z0 = μ, then E(Zn) = μ. The variance of Zn can be shown
to be Var(Zn) = σ 2λ[1 − (1 − λ)2n]/(2 − λ) and hence the asymptotic variance of
Zn is given as σ 2λ/(2−λ). The upper and lower control limits for the EWMA chart
are typically set as

UCL = μ + L1

√
λ

2 − λ
σ = H,

and

LCL = μ − L2

√
λ

2 − λ
σ = h,
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respectively where L1 and L2 are some constants. The constants L1 and L2 are
usually chosen to achieve a specific in-control average run length (ARL). If the risk
distribution can be determined, the ARL can be approximated using the collocation
procedure presented by Knoth (2005) based on the integral equation derived by
Crowder (1987). The details are described in Appendix 3.

We can now summarize the procedure of constructing a risk-adjusted EWMA
chart for monitoring surgical performances.

Step 1. Fit a proportional odds logistic regression model (1) using some past
surgical data to estimate the probabilities of various outcomes πk(s),
k = 0, . . . , J, given a Parsonnet score s.

Step 2. Set the alternative hypothesis H+ : R0 = R1 = · · · = RJ−1 =
R+ > 1 for detecting improvement and the alternative hypothesis H− :
R0 = R1 = · · · = RJ−1 = R− < 1 for detecting deterioration. The
probabilities of various outcomes π∗

k (s), k = 0, . . . , J, given a Parsonnet
score s, assuming the odds ratios R0, R1, . . . , RJ−1 for a surgeon can be
determined using Eq. (3). The penalty-reward score Wa(y, s) can then be
calculated using Eq. (5).

Step 3. Plot Zn = λWa(Sn, Yn) + (1 − λ)Zn−1 against n and signal if Zn > H or
Zn < h.

4 Evaluation of the Performances of Three Surgeons

In this section, we will construct risk-adjusted EWMA and CUSUM charts of three
surgeons and compare their performances. These three surgeons are among a group
of seven surgeons who performed heart bypass operations on 6449 patients. A
patient is considered to have died (Y = 2) if the patient dies within 30 days of
the surgery. A patient is considered to have a partial recovery (Y = 1) if the patient
survives more than 30 days but died later before the study concluded. A patient who
survives throughout the entire period of study is considered a full recovery (Y = 0).
Our classification of the three outcomes is only approximate and quite likely not
the best possible classification. A surgeon should be able make a more appropriate
classification. For the three-outcome data, we first fit a proportional odds logistic
regression model using the data set as

log
[ π0(s)

π1(s) + π2(s)

]
= α0 + βs,

log
[π0(s) + π1(s)

π2(s)

]
= α1 + βs, (6)

where α0 = 3.057, α1 = 3.691 and β = −0.078. A score test performed for
the proportional odds assumption gives a p-value of 0.36 which is not significant,
thus it is reasonable to use the proportional odds logistic regression model. The
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probabilities of the three outcomes can be obtained using Eq. (6) as π0(s) =
exp(3.057−0.078s)/[1+exp(3.057−0.078s)],π2(s) = 1/[1+exp(3.691−0.078s)],
π1(s) = 1 − π0(s) − π2(s). These probabilities assume the average performance of
surgeons in the entire data set. For a surgeon whose performance is characterized
by R0 and R1, these probabilities can be calculated using Eq. (3). Note that if the
risk distribution of a surgeon is different from this data set, the in-control run length
performance will be affected. The simulation-based method developed by Zhang
and Woodall (2015) can be used to ensure a desired ARL.

We will highlight the performances of three surgeons. The risk-adjusted EWMA
charts constructed for surgeons A, B and C are displayed in Figs. 2, 3 and 4
respectively. The smoothing constant λ for these charts is set to be 0.01. A very
small λ is used here because of the large variability of the penalty-reward score. The
large variability is natural for this type of data. The chart limits are chosen such that
the in-control ARL is about 100. Unlike an industrial process, the in-control ARL
for this application should ideally be chosen to be small so that it will signal earlier
should there be any deterioration in surgical performance. Surgeon A operated on
986 patients. Figure 2 shows that his performance remained stable for about the first
700 patients and then started to improve steadily after that. Surgeon B operated on
1654 patients. Figure 3 shows that his performance deteriorated for approximately
the first 550 patients but turned around after that and continued to improve for the
rest of the patients. Surgeon C operated on 568 patients. Figure 4 shows that his
performance is stable for approximately the first half of the patients but deteriorated
for the rest of the patients.

The risk-adjusted CUSUM charts for the three surgeons are displayed in
Figs. 5, 6 and 7 respectively. The upper-sided CUSUM chart is designed to be

0 200 400 600 800

Patient Number

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

EWMA

Fig. 2 Plot of risk-adjusted EWMA chart for Surgeon A
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Fig. 3 Plot of risk-adjusted EWMA chart for Surgeon B
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Fig. 4 Plot of risk-adjusted EWMA chart for Surgeon C

optimal in detecting R = 2 and the lower-sided CUSUM chart is designed to be
optimal in detecting R = 0.5. The inferences drawn from these CUSUM charts are
similar to those drawn from the EWMA charts. The EWMA chart has the advantage
of ease of interpretation.
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Fig. 5 Risk-adjusted CUSUM charts for detecting improvement (R = 2) and deterioration (R =
0.5) for Surgeon A. (a) Detecting improvement (R = 2). (b) Detecting deterioration (R = 0.5)
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Fig. 6 Risk-adjusted CUSUM charts for detecting improvement (R = 2) and deterioration (R =
0.5) for Surgeon B. (a) Detecting improvement (R = 2). (b) Detecting deterioration (R = 0.5)
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Fig. 7 Risk-adjusted CUSUM charts for detecting improvement (R = 2) and deterioration (R =
0.5) for Surgeon C. (a) Detecting improvement (R = 2). (b) Detecting deterioration (R = 0.5)
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5 Conclusions

Steiner et al. (2000) developed a risk-adjusted CUSUM charting procedure for
monitoring surgical performances based on binary outcomes: survival or death.
However, for a patient who survives an operation, there can be many different grades
of survival. In order to improve the effectiveness of the CUSUM procedure, Tang et
al. (2015) developed a risk-adjusted CUSUM procedure based on three or more out-
comes. The EWMA procedure is known to have run length properties similar to the
CUSUM procedure but with the advantage of ease of interpretation. In this chapter,
we develop a risk-adjusted EWMA procedure based on two or more outcomes.
The monitoring statistic is a statistic obtained by combining the log likelihood ratio
statistics for detecting improvement and deterioration. The properties of this statistic
are studied and conditions are established to ensure that there is a proper ordering
according to the severities of surgical outcomes. We compare the performances of
these two competing charting procedures by analysing three surgeons’ surgical data.
A more comprehensive comparison can be done using ARL. The performances of
the two procedures were found to be similar. The EWMA procedure is an attractive
alternative with the advantage of ease of interpretation.

Acknowledgements The first author is supported by Academic Research Fund Tier 1 (R-155-
000-159-112), Ministry of Education, Singapore. We are grateful to Dr Zhang Lingyun and Dr
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Appendix 1: Proof of Theorem 1

To prove sufficiency, let R+
0 /R−

0 = · · · = R+
J−1/R−

J−1 = R+/R− ≥ 1. From the
proportional odds logistic regression model

logit[P(Y ≤ k|S = s)] = αk + βs, k = 0, . . . , J − 1,

we can obtain the conditional probability

πk(s) = P(Y ≤ k|S = s) − P(Y ≤ k − 1|S = s)

= exp(αk + βs)

1 + exp(αk + βs)
− exp(αk−1 + βs)

1 + exp(αk−1 + βs)

= exp(βs)[exp(αk) − exp(αk−1)]
[1 + exp(αk + βs)][1 + exp(αk−1 + βs)] ,

where k = 0, · · · , J, α−1 = −∞ and αJ = ∞. From Eq. (3), we have

log

( k∑

i=0

π+
i (s)/

[
1 −

k∑

i=0

π+
i (s)

]
)

= log(R+
k ) + αk + βs.
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Then, we have

π+
k (s) = exp(βs)[exp(αk + log(R+

k )) − exp(αk−1 + log(R+
k−1))]

[1 + exp(αk + log(R+
k ) + βs)][1 + exp(αk−1 + log(R+

k−1) + βs)]

where k = 0, · · · , J, and R+
−1 = R+

J = 1. Similarly,

π−
k (s) = exp(βs)[exp(αk + log(R−

k )) − exp(αk−1 + log(R−
k−1))]

[1 + exp(αk + log(R−
k ) + βs)][1 + exp(αk−1 + log(R−

k−1) + βs)]

where k = 0, · · · , J, and R−
−1 = R−

J = 1. Hence,

Wa(k, s) = log[π+
k (s)/π−

k (s)]
= Dk + log(1 + exp(αk + log(R−

k ) + βs)) + log(1 + exp(αk−1

+log(R−
k−1) + βs)) − log(1 + exp(αk + log(R+

k ) + βs))

−log[1 + exp(αk−1 + log(R+
k−1) + βs)],

where

Dk = log[exp(αk + log(R+
k )) − exp(αk−1 + log(R+

k−1))]
−log[exp(αk + log(R−

k )) − exp(αk−1 + log(R−
k−1))] = log(R+/R−).

Taking the first derivative with respect to s, we obtain

∂Wa(k, s)

∂s
= β

[ exp(αk + log(R−
k ) + βs)

1 + exp(αk + log(R−
k ) + βs)

+ exp(αk−1 + log(R−
k−1) + βs)

1 + exp(αk−1 + log(R−
k−1) + βs)

− exp(αk + log(R+
k ) + βs)

1 + exp(αk + log(R+
k ) + βs)

− exp(αk−1 + log(R+
k−1) + βs)

1 + exp(αk−1 + log(R+
k−1) + βs)

]

= β
[ 1

1 + exp(αk + log(R+
k ) + βs)

+ 1

1 + exp(αk−1 + log(R+
k−1) + βs)

− 1

1 + exp(αk + log(R−
k ) + βs)

− 1

1 + exp(αk−1 + log(R−
k−1) + βs)

]

= βE,
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where

E = 1

1 + exp(αk + log(R+
k ) + βs)

− 1

1 + exp(αk + log(R−
k ) + βs)

+ 1

1 + exp(αk−1 + log(R+
k−1) + βs)

− 1

1 + exp(αk−1 + log(R−
k−1) + βs)

.

Note that R+
0 /R−

0 = · · · = R+
J−1/R−

J−1 = R+/R− ≥ 1, this implies E ≤ 0. In
addition, note that β < 0 from earlier discussion. Thus, ∂Wa(k, s)/∂s ≥ 0. It follows
that Wa(y, s) is an increasing function of s given y.

In addition, let � = log(R+/R−) ≥ 0. Define gk(�) = Wa(k + 1, s) − Wa(k, s).
Then

gk(�) = log(1 + exp(αk+1 + log(R−
k+1) + βs))

−log(1 + exp(αk+1 + log(R−
k+1) + � + βs))

−log(1 + exp(αk−1 + log(R−
k−1) + βs))

+log(1 + exp(αk−1 + log(R−
k−1) + � + βs)).

It is clear that gk(0) = 0. Take the first derivative of gk(�),

g′
k(�) = − exp(αk+1 + log(R−

k+1) + � + βs)

1 + exp(αk+1 + log(R−
k+1) + � + βs)

+ exp(αk−1 + log(R−
k−1) + � + βs)

1 + exp(αk−1 + log(R−
k−1) + � + βs)

= 1

1 + exp(αk+1 + log(R−
k+1) + � + βs)

− 1

1 + exp(αk−1 + log(R−
k−1) + � + βs)

.

Note that αk+1 + log(R−
k+1) ≥ αk−1 + log(R−

k−1), thus g′
k(�) ≤ 0. Hence, gk(�) ≤ 0

for � ≥ 0. Thus, Wa(k + 1, s) ≤ Wa(k, s). In other words, Wa(y, s) is a decreasing
function of y conditional on s. This proves the sufficiency.

Note that π+
Y (S) and π−

Y (S) are defined as:

k∑

i=0
π+

i (s)

1 −
k∑

i=0
π+

i (s)

= R+
k

k∑

i=0
πi(s)

1 −
k∑

i=0
πi(s)

,
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and

k∑

i=0
π−

i (s)

1 −
k∑

i=0
π−

i (s)

= R−
k

k∑

i=0
πi(s)

1 −
k∑

i=0
πi(s)

.

It follows that

k∑

i=0
π+

i (s)

1 −
k∑

i=0
π+

i (s)

= R+
k

R−
k

k∑

i=0
π−

i (s)

1 −
k∑

i=0
π−

i (s)

. (7)

In other words, the odds ratios of π+
Y (S) related to π−

Y (S) is given by R+
k /R−

k .
To prove necessity, assume Wa(y, s) is a decreasing function of y conditional on

s: Wa(0, s) ≥ Wa(1, s) ≥ · · · ≥ Wa(J, s). Equivalently,

π+
0 (s)

π−
0 (s)

≥ π+
1 (s)

π−
1 (s)

≥ · · · ≥ π+
J (s)

π−
J (s)

.

Then, we have

π+
0 (s)

π−
0 (s)

≥ π+
0 (s) + π+

1 (s)

π−
0 (s) + π−

1 (s)
≥ · · · ≥

J−1∑

i=0
π+

i (s)

J−1∑

i=0
π−

i (s)

≥

J∑

i=0
π+

i (s)

J∑

i=0
π−

i (s)

= 1, (8)

π+
J (s)

π−
J (s)

≤ π+
J−1(s) + π+

J

π−
J−1(s) + π−

J (s)
≤ · · · ≤

J∑

i=1
π+

i (s)

J∑

i=1
π−

i (s)

≤

J∑

i=0
π+

i (s)

J∑

i=0
π−

i (s)

= 1. (9)

Based on the odds ratio of cumulative probabilities defined in Eq. (7), we obtain

k∑

i=0
π+

i (s)

k∑

i=0
π−

i (s)

= R+
k /R−

k

1 −
k∑

i=0
π−

i (s) + R+
k /R−

k

k∑

i=0
π−

i (s)

, k = 0, · · · , J − 1, (10)

J∑

i=k+1
π+

i (s)

J∑

i=k+1
π−

i (s)

= 1

1 −
k∑

i=0
π−

i (s) + R+
k /R−

k

k∑

i=0
π−

i (s)

, k = 0, · · · , J − 1. (11)
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Substitute (10) into (8) and (11) into (9), we get

R+
0 /R−

0

1 − π−
0 (s) + R+

0 /R−
0 · π−

0 (s)
≥ R+

1 /R−
1

1 −
1∑

i=0
π−

i (s) + R+
1 /R−

1

1∑

i=0
π−

i (s)

≥ · · ·

≥ R+
J−1/R−

J−1

1 −
J−1∑

i=0
π−

i (s) + R+
J−1/R−

J−1

J−1∑

i=0
π−

i (s)

≥ 1, (12)

and

1

1 −
J−1∑

i=0
π−

i (s) + R+
J−1/R−

J−1

J−1∑

i=0
π−

i (s)

≤ 1

1 −
J−2∑

i=0
π−

i (s) + R+
J−2/R−

J−2

J−2∑

i=0
π−

i (s)

≤ · · · ≤ 1

1 − π−
0 (s) + R+

0 /R−
0 · π−

0 (s)
≤ 1. (13)

From the definition of risk score, if s → ∞, π−
J (s) → 1, thus

k∑

i=0
π−

i (s) → 0 for

k = 0, · · · , J − 1 and we obtain the following from Eq. (12)

R+
0 /R−

0 ≥ R+
1 /R−

1 ≥ · · · ≥ R+
J−1/R−

J−1 ≥ 1. (14)

Similarly, if s → −∞, π−
0 (s) → 1, thus

k∑

i=0
π−

i (s) → 1 for k = 0, · · · , J − 1 and

we obtain the following from Eq. (13)

1 ≥ R−
0 /R+

0 ≥ R−
1 /R+

1 ≥ · · · ≥ R−
J−1/R+

J−1. (15)

(14) and (15) imply

R+
0 /R−

0 = R+
1 /R−

1 = · · · = R+
J−1/R−

J−1 ≥ 1.

Appendix 2: Proof of Theorem 2

Let � = log(R+/R−). Note that � > 0.

Wa(k, s) = � + log(1 + exp(αk + log(R−
k ) + βs))

+log(1 + exp(αk−1 + log(R−
k−1) + βs))

−log(1 + exp(αk + log(R+
k ) + βs))

−log[1 + exp(αk−1 + log(R+
k−1) + βs)].
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1. For Y = 0 and α−1 = −∞, then

Wa(0, s) = � + log(1 + exp(α0 + log(R−
0 ) + βs))

−log(1 + exp(α0 + log(R−
0 ) + � + βs))

= log(1 + exp(α0 + log(R−
0 ) + βs))

−log(exp(−�) + exp(α0 + log(R−
0 ) + βs)).

Since � > 0, exp(−�) < 1 and hence Wa(0, s) > 0.
2. For Y = J and αJ = ∞, then

Wa(J, s) = log(1 + exp(αJ−1 + log(R−
J−1) + βs))

−log(1 + exp(αJ−1 + log(R−
J−1) + � + βs))

Since � > 0, Wa(J, s) < 0.
3. This is clear from the functions of Wa(0, s) and Wa(J, s) given in parts 1 and 2.

4 and 5. For Y = k ∈ {1, · · · , J − 1},

Wa(k, s) = � + log(1 + exp(αk + log(R−
k ) + βs))

−log(1 + exp(αk + log(R−
k ) + � + βs))

−log(1 + exp(αk−1 + log(R−
k−1) + � + βs)).

Note that β < 0 for our logistic model. Let s → ∞, then Wa(k, s) → � < 0. Let
s → −∞, then Wa(k, s) → −� > 0.

For Y = 0, from the function Wa(0, s) obtained in part 1, let s → ∞, then
Wa(0, s) → �. For Y = J, from the function Wa(J, s) obtained in part 2, we can
show that

Wa(J, s) = log(1 + exp(αJ−1 + log(R−
k−1) + βs))

−log(1 + exp(αJ−1 + log(R−
k−1) + � + βs))

= −� + log(1 + exp(αJ−1 + log(R−
k−1) + βs))

−log(exp(−�) + exp(αJ−1 + log(R−
k−1) + βs)).

Let s → −∞, then Wa(J, s) → −� > 0.
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Appendix 3: Average Run Length of EWMA Chart

Page (1954) introduced an integral equation method for evaluating the ARL of
a CUSUM chart, and Crowder (1987) derived a similar integral equation for the
EWMA chart. Let L(u) denote the ARL of the EWMA chart that starts at Z0 = u,
then the integral equation for the ARL can be shown as

L(u) = 1 + 1

λ

∫ H

h
L(x)fa

(x − (1 − λ)u

λ

)
dx,

where fa(·) is the pdf of Wa(Y, S). The function L(u) can be approximated
numerically by using the collocation method (Knoth 2005).
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A Primer on SPC and Web Data

Erwin Saniga, Darwin Davis, and James M. Lucas

Abstract In this chapter we compare the website visitor data generated by a variety
of commercially available analytics packages and discuss issues of data accuracy,
consistency and unavailability of some important measures. We also discuss some
common and perhaps new SPC methods for monitoring website effectiveness using
this data.

Keywords SPC · Web Data · Markov Chains

1 Introduction

In this chapter we investigate the use of statistical process control tools in monitor-
ing web site visitor data generated by a variety of commercially available analytics
packages. In doing this study we implemented several analytics packages on two
web sites currently in use. One has less than one hundred visitors per month while
the other has several thousand visitors per month.

We find there may be issues with data quality on particular analytics software
and outline possible reasons for this shortcoming. We provide a comparative table
of the software we employ based upon various characteristics that may be necessary
to provide information required to employ particular SPC monitoring tools. We also
show that useful information may be difficult to obtain on the analytics software
we employ. While our investigation is limited to a few popular analytics software
packages, some general conclusions may be drawn.
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Given the data available, some common process monitoring tools are described.
In addition, we investigate the use of Markov chains as a model for the flow of a
visitor through the website and discuss the value of monitoring this Markov chain
for changes over time or for determining the effectiveness of website interventions.
We also discuss a statistical tool for monitoring this variable.

2 The Study

We implemented several popular analytics packages on two websites. The first was
a personal site experiencing less than 100 visits per month. The second was a subset
of a large commercial site experiencing more than 30,000 visits per month.

Our first interest in this study is to compare the results of the various analytics
software in terms of the accuracy of their reporting of the actual number of visitors
and the path they traversed through the site.

Table 1 compares the results of these counts for various analytics software, for
the small website, for a 4 week period.

Note that there are substantial differences in the count data of visitors between
the four analytics software packages. Comparing total users (new + returning) over
the 7 week period shows an average of 24.89 visits per week (new plus returning
users) across all software but averages of 26.85, 24.57, 22 and 25.5 for the four
respective sites Google Analytics,1 w3 counter,2 statcounter3 and WP SLimstat4

Analytics.
We implemented three software analytics packages on the large commercial site

(Google Analytics, Clicky5 and Statcounter) over a 3 month period and obtained
the results depicted in Table 2. Note again the disparity between the numbers of
visitors reported by the three software packages. If we apply a c chart to this data
we can find UCL = 36, 758 and LCL = 35, 617. One can see that two of the three
outcomes are outside the three sigma control limits. (We calculated the average
count as c̄ = (35291 + 36676 + 35967)/3. Recall that for a c chart, the variance is
c̄. We use three-sigma limits.)

What are the reasons for this disparity? One might be where the tracking code
is installed on the site. One might investigate whether it is installed correctly. For
example, if it is installed near the bottom of the page of HTML code and the page
does not completely load then that particular visit may not be logged. On the other
hand if it is installed in the top of the page and the page does not completely load
then that may be counted as a visit.

1www.google.com/analytics/.
2https://www.w3counter.com/.
3https://statcounter.com/.
4http://www.wp-slimstat.com/.
5https://clicky.com/.

www.google.com/analytics/
https://www.w3counter.com/
https://statcounter.com/
http://www.wp-slimstat.com/
https://clicky.com/


A Primer on SPC and Web Data 135

T
ab

le
1

V
is

it
s

to
a

sm
al

lw
eb

si
te

as
re

co
rd

ed
by

va
ri

ou
s

an
al

yt
ic

s
pa

ck
ag

es

G
oo

gl
e

an
al

yt
ic

s
w

3c
ou

nt
er

St
at

sc
ou

nt
er

W
PS

li
m

st
at

an
al

yt
ic

s

M
ar

ch
13

–2
0

N
ew

us
er

s
9

11
11

In
st

al
le

d
on

21
st

M
ar

ch
R

et
ur

ni
ng

us
er

s
7

0
3

In
st

al
le

d
on

21
st

M
ar

ch

M
ar

ch
21

–2
7

N
ew

us
er

s
26

28
18

15
R

et
ur

ni
ng

us
er

s
4

0
5

1

M
ar

ch
28

–A
pr

il
3

N
ew

us
er

s
17

16
13

11
R

et
ur

ni
ng

us
er

s
3

0
3

2

A
pr

il
4–

10
N

ew
us

er
s

40
29

30
5

R
et

ur
ni

ng
us

er
s

0
7

9
39

A
pr

il
11

–1
7

N
ew

us
er

s
36

23
16

6
R

et
ur

ni
ng

us
er

s
3

3
3

28

A
pr

il
18

–2
4

N
ew

us
er

s
12

21
13

20
R

et
ur

ni
ng

us
er

s
6

3
6

3

A
pr

il
25

–M
ay

1
N

ew
us

er
s

24
30

23
22

R
et

ur
ni

ng
us

er
s

1
1

1
1



136 E. Saniga et al.

Table 2 Visits to a large commercial website as recorded by various analytics packages

Google analytics Clicky StatCounter

Sessions/Visits April 14–May 5, 2016 35,291 36,676 35,967

A second reason for disparity might be that there are IP (Internet Protocol)
addresses being blocked for bots (automated computer programs that enter the site).
For example Google Analytics filters out “known” bot traffic by default. It is a
complex process that is described by Sharif (2014). Further reading on the issue
of bots is described by Zeifman (2015).

A practical solution to this problem is to host one’s website on an internal server.
Then one can run one’s own counter of visits and other desired measures to ensure
that tracking was accurate. On one of our sites this code was implemented along
with Google Analytics and it was found that the latter software reported roughly 30–
40% less traffic than the internal server logs would report. Nonetheless, the problem
remains messy. As Chimphlee et al. (2006, p. 372) note: “Web log files contain
a large amount of erroneous, misleading and incomplete information”, and they
recommend the elimination of items that are not requested by the user, in particular,
graphics.

One interest in this study is to analyze the capability of the analytics packages in
terms of their ability to provide the data in a form one can use in the process control
analyses one might find effective in monitoring websites.

One analysis we discuss is the use of a Markov Chain model to model the flow of
a visitor through the website. To build this model one needs to generate the flow for
each user and combine these for all users for a particular time period. Table 3 shows
the transition matrices for several consecutive weeks for the small website. This
data was generated by the inefficient method of individually tracking each user’s
flow (where each user is identified by their IP address) and combining these for
each week’s data, a time consuming process. Of the four software packages we
investigated only Google Analytics and Statcounter enabled us to find this users
flow through the website. Nevertheless, we found that there are some problems with
the data obtained from Google Analytics.

One problem is that the users flow for the 5 week period as reported on the users
flow link in Google analytics was reported as 100% drop off by visitors after they
reached the home page of the small site. Since the data we report in Table 3 is
generated by tabulating the flow of each user as identified by their IP address we
can argue that Table 3 data is correct insofar as users flow is concerned. (Although
Table 1 does show disparity between the count of visitors by software.)

On the large site we have found that the user flow data on Google Analytics does
show visitor tracks throughout the website. We have observed, however, that this
data is incomplete. For example, on the large site the transition counts from one
page to the next are incomplete, being reported simply as some number of “other
pages visited” and is exhaustive when listed.
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In summary, we advise caution when using the data generated by the various soft-
ware analytics packages. We have found a disparity between the results generated by
these packages and in one case an incomplete reporting of the results. While we have
identified some possible reasons why this disparity exists we wish to emphasize that
in practice one might wish to implement their own analytics code and methodology
to generate Web analytics data. Nonetheless, there is a data wrangling issue that
must be addressed when employing data for SPC from the commercially available
software we investigate.

3 Monitoring Web Data

Software such as Google Analytics presents many different measures of users
actions on a particular Website. Consider as an example one of the common
measures-new visitors to a Website. Many sites would find interest in monitoring
this variable as it indicates significant shifts in the public’s interest in their site The
count of new visitors is a count variable and can be monitored using a c chart (see,
e.g., Montgomery 2005) or a CUSUM chart for counts (see Lucas 1985).

Alternatively, variables such as bounce rate may be important when monitoring
a commercial Website where purchases may be made. There, managers would be
interested in the proportion of people that travel to a particular product page and
“bounce” out before clicking on a purchase request. Obviously, a smaller bounce
rate here would be preferred and additionally, monitoring this bounce rate over
time would be advantageous as well. Another application would be to find if an
intervention to improve bounce rate was effective. Bounce rate is measured by a
proportion and thus can be monitored by a p chart or a binomial CUSUM chart.
See, e.g. Montgomery (2005) or Hawkins and Olwell (1998).

In addition to signaling the occurrence of an event over time that is out of
control or statistically significant in this context, we have found that the use of
CUSUM plots for these discrete variables can be of importance in identifying
regimes where lower or higher rates of counts or proportions occur. Saniga et al.
(2009) illustrate the use of these plots in an actual business setting. This reliance
on visual information is of great value in that long term regimes of higher or lower
counts may be deemed important to the user even though these regimes are not
significant. In addition, this visual presentation allows the communication of results
to be done at a much higher level than reporting that a shift in a CUSUM chart is
significant, say.

One interesting type of monitoring not usually addressed is the monitoring of the
transition probability matrix of traffic through a site. Researchers have addressed the
issue of modeling traffic using Markov chains but little has been done on monitoring
these chains in an SPC sense. Some examples of modeling traffic research are the
use of a Markov model to predict where a user will visit on the site given a sequence
of pages the user has already visited. Chimphlee et al. (2006) summarize some of
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this work and discuss prediction using higher order Markov models other than the
usual first order model.

Marques and Belo (2011) use Markov Chains to help identify usage profiles (i.e.,
understand how users are using the web resources provided by teachers). They do
not show a way to track changes in usage patterns or give statistical methods for
determining changes in website effectiveness.

Huang et al. (2004) study the use of continuous time models requiring the
estimation of both the transition probabilities and the expected transition rates,
assuming the time spent in a state follows an exponential distribution. The focus
of their research is building a model to make the following predictions:

• What page will a user visit next, and when will they transition to that page.
• The transition count from one web page to another.
• How many people visit a web page within some period of time.

They do not, however, provide any tools for tracking changes in web site
performance.

Zhu et al. (2002a,b) use an m-order Markov Model (assumes the users next step
is only dependent on the last m pages visited) to make link predictions that assist
new users as they navigate an adaptive web site. These m-order models lead to very
large, sparse transition matrices. A clustering algorithm is used to identify groups of
web pages with similar transition behaviors, which is then used with a compression
algorithm to create a smaller transition probability matrix that is denser that the
original transition matrix.

A key difference between our focus and what we see in much of the above
literature is as follows. Many articles are focused on prediction, such as which page
will a visitor will go to next. Researchers have built models for such predictions,
some based only on the page the user is now on, and some based on a longer history
of pages visited by the user. Our focus is not on prediction, but on monitoring
website quality/effectiveness. Tools developed for prediction do not seem to be
of use for monitoring quality and signaling changes. An essential element of
monitoring for quality/effectiveness is for the site owner to define the purpose of
the site and how effectiveness can best be measured.

For example, in our focus on SPC, one can use a Phase I approach to determine
the longer term average transition probabilities. These can be used to study and also
predict typical user flow through a site and use marketing methods, say, to take
advantage of this knowledge. One can use the method of Chatfield (1973) to test the
suitability of a kth order Markov chain as an appropriate model which will aid in
this process.
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One can also use the resulting Markov chain in a Phase II sense. That is, it
would be of value to monitor the typical users flow through a site to determine
when change has occurred. This would be of value in Web redesign or in many
other applications one can envision. Tests that would be valuable in this context
are discussed by Anderson and Goodman (1957) who present methods to test if the
transition probabilities of a first order Markov chain are constant and are specified
numbers, and a test that the process is an ith order chain versus the alternative that it
is a jth order chain. They also find maximum likelihood estimates of the transition
probabilities. Agresti (2013) also presents inference methods for Markov chains.

For the small site on our study we present some weekly data illustrating the
transition probability matrices derived from the Statcounter analytics package.
These are presented for illustration purposes. In practice the determination of the
sampling interval (here it is a week) would be an important decision that would
have to be made in Phase I or Phase II studies. Generally, we would expect the
sampling interval would be long if no interventions to the Website are made. If
an intervention were to be made to redirect the flow of the users, the inference
methods of Anderson and Goodman (1957) could be used to see if the intervention
was effective in redirecting user flow through the system. Note that if one monitors a
probability with a p chart, these charts may not be homogeneous when the process is
in-control because of shorter and longer seasonal factors including time of day, day
of week, week of month, month, or even longer seasons. Sparks (2017) has shown
the efficacy of using adaptive EWMA charts to handle this problem.

Most well-designed websites have the purpose of ensuring that the user takes
the quickest route to a designated page; e.g. a commercial site would like the
customer to get to the “purchase” page as quickly as possible. One could measure
departures from this route to measure the effectiveness of the design of the site
and continuously monitor this over time to see if there is a need for redesign.
Many different types of measures of user visits to a website are presented in the
various analytics packages we tested in this chapter. A summary of some of the
common ones are presented in Table 4, which presents the variable of interest, the
measure of that variable, the type of control method recommended for monitoring,
and the reference regarding design of that control method for the advanced user.
Most of these are self-explanatory, except for the one labeled engagement, which is
a frequency distribution of the number of sessions classified by session duration and
the number of page views classified by session duration.
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4 Conclusions

We have employed several commercially available Web Analytics packages on two
websites and presented some data representing user visits to these sites as well
as users flow for one of the sites. Our observations are that some disparity exists
between the data generated by this software and that a data wrangling issue does
exist in this context.

We have also addressed the use of SPC tools for Phase I and II studies including
the use of Markov chain models to monitor website effectiveness.
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and compare the several variants of the approach, the last one being an EWMA
version. The approach may lead to significant savings in sampling costs (the savings
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1 Introduction

With multivariate processes, it may happen that some quality variables are more
expensive and/or difficult to measure than the other ones, or they may demand much
more time to measure. Their measurement may even be destructive. Aparisi et al.
(2012) give as an example a process of producing an electronic component, whose
quality variables are two easily measured voltages and a third voltage which is the
voltage that will burn it.

For monitoring such processes, the variable dimension approach was recently
proposed. The idea is to measure always (at each sampling time) the “non-
expensive” variables and to measure the expensive ones only when the values of
the non-expensive variables give some level of evidence that the process may be
out of control. An underlying assumption (validity condition) of the approach is
that the variables are correlated and, although the inexpensive variables provide
some information about the state of the process, the measurements of the expensive
variables add more statistical evidence, increasing the probability of a signal when
the process is out of control.

The approach can lead to significant savings in sampling costs (the gain
depending, of course, on the ratio between the costs of measuring the “expensive”
and the “inexpensive” variables). Also, in many cases, contradicting the intuition,
the incorporation of the variable dimension approach to a control chart may even
increase its speed in detecting special causes.

The general principle of the approach has been formalized concretely in a number
of process control charts proposals, which differ in their specific forms. The purpose
of this chapter is to review and compare the several variants of the approach. The
first one to appear was the variable-dimension T2 (VDT2) chart (Aparisi et al. 2012).

The procedure bears much similarity with the one of variable parameters (or
adaptive) control charts, pioneered by Reynolds et al. (1988); other examples,
far from being exhaustive, are Costa (1999) and, regarding the T2 chart, Aparisi
(1996) and Aparisi and Haro (2001). In these, the sample size and/or the sampling
interval and/or other parameter of the control chart (such as the control limits or
the smoothing parameter in EWMA schemes) are made variable according to the
most recent sample information. The variable dimension approach differs though
from the variable parameters approach in that it is not the sample size or sampling
interval or control limits that are made dynamically variable, but rather the very
variables being measured (thus the name “variable dimension”).

Note that there is a difference between the variable dimension approach and all
previous approaches that aim to reduce the dimensionality of the variable space,
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such as principal components (Jackson 1980, 2003), latent variables or PLS meth-
ods, which are mostly used in the chemical industry (Kourti and MacGregor 1996;
Nomikos and MacGregor 1995; Ferrer 2007, 2014), the U2 chart (Runger 1996)
and other similar approaches (Bodnar and Schmid 2005). Namely, all approaches
cited, although reducing the dimension of the space considered for process control,
require nevertheless measuring all variables (in the original high dimension space)
prior to the transformation that leads to the dimensionality reduction. The variable
dimension approach aims to reduce the number of variables actually measured. The
goals are different, as are the underlying assumptions or context. The motivation
of the previous approaches cited is the difficulty in interpreting and/or analyzing a
huge number of variables (whereas there may be no problem in measuring them; for
instance, the PLS approach is typically applied in data-rich environments in which
sensors easily provide measurements of many variables with a high frequency). On
the other hand, the variable-dimension approach is devised for situations in which,
even if the number of variables may be small, some variables are much more costly
to measure than the other ones.

An approach whose motivation is closer to the one of the variable-dimension
approach is the variable selection method proposed by González and Sánchez
(2010); with this, however, the dimensionality reduction is permanent: some
variables are never measured. In the variable-dimension approach the number of
variables measured is, as its name says, variable, in an adaptive way—that is,
according to the information provided by the last sample statistic.

In the univariate case, Steiner (2000) has a similar motivation of reducing the
cost of measurements through an adaptive procedure. His procedure differs from
the variable dimension approach not only in being univariate but also in that what is
made variable is the measurement system or device: he proposes alternating between
“a fast but relatively inaccurate measurement system (. . . ) and a more accurate
and expensive, and possibly slower, alternative measurement device”. The work
deserves being mentioned here because of the similar idea of alternating measures
in order to reduce the general cost, even if the particular context and concrete
procedure are quite different from the ones of the variable dimension approach.

Four process control charts based on the variable-dimension approach have been
developed. They are described, in chronological order, in the next four sections. The
final section summarizes the main points.

2 The Variable-Dimension T2 (VDT2) Control Chart

The VDT2 chart, developed by Aparisi et al. (2012), is one-sided. In its most general
version, it has a pair of upper control limits (CL1 and CL2) and a pair of warning
limits (w1 and w2), where the subscript “1” refers to the samples that have only the
p1 variables that are cheap and easy to measure and the subscript “2” refers to the
samples that have all the p variables. When the sample has only p1 variables, the T2

statistic is computed only with the corresponding covariance submatrix.
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When the sampling point (T2
i , i = 1, 2), exceeds the corresponding control limit,

the process is declared out of control; when wi ≤ T2
i ≤ Ci the next sample is taken

with all p variables, and when T2
i < wi, the next sample is taken with only the p1

“inexpensive” variables.
The analysis of a large spectrum of cases in the chapter showed that the deteriora-

tion in performance was negligible when the warning limits were made equal (w1 =
w2 = w); also, CL1 could be made equal to infinity without significant effect on
the chart performance. Making CL1 equal to infinity is equivalent to have no control
limit for samples with p1 variables, and implies that a signal cannot occur with
a sample with the p1 variables. The performance is not impaired though, because
this enables tightening the control limit (relatively to the CL2 of the chart with two
control limits) since a false alarm cannot occur with p1 variables. On average, this
compensates for the delay imposed by the need of a sample with p variables to have a
signal: the resulting average run length is practically not reduced. The result of hav-
ing only one control limit and one warning limit is a simpler control chart to operate.

For the details, the reader is referred to Aparisi et al. (2012).
The analysis showed that the VDT2 chart can considerably reduce the sampling

costs and, quite surprisingly, even reduce the out-of-control ARL. This apparently
paradoxical result can be ascribed to the aforementioned tightening of the control
limit; this bears some analogy with the greater efficiency of adaptive control charts
relative to fixed parameter charts, which comes from a better allocation of sampling
effort. Another way of viewing this, as suggested by the editor of the journal in
which the chapter was published,1 is that the chart has some kind of memory, since
another sample point is needed for a signal when a T2 value from a sample with p1
variables exceeds the warning limit. This constitutes a sort of “run rule”.

For preserving space, we do not reproduce here the three pages of tables of the
given reference, but the results were that in most cases analyzed the VDT2 chart
exhibited an out-of-control ARL shorter than even the ARL of the T2 chart on all p
variables, together with a significant reduction in the sampling cost (the p variables
having to be measured only part of the times). This refers to optimized designs. A
computer program running in Windows and with a user-friendly interface was made
available for such optimization. The percentage of times all variables are measured,
%p, is thus a result of the optimization, and depends on the shifts in the mean vector
used for optimization. Only for very small shifts (for which the T2 chart is quite
inefficient though) this percentage is high as 70 or 80%; for large shifts it can be as
low as 5%. The savings are quite relevant (%p ranges from 10 to 50%) for moderate
shifts.

For moderate shifts, the reduction in the ARL provided by the variable-dimension
approach is substantial; only for large shifts (that are quickly signalled even by the
T2 chart) there is no reduction or there is even a small increase, but this also results
in small ARLs, of the order of 2 or less. On the other hand, these are cases where
samples with all the variables are taken less than 20% of the times, and often less

1Daniel Apley.
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than 10%. In addition, a sensitivity analysis has shown a considerable robustness of
the optimal solutions with respect to the choice of the shifts for which to perform
the optimization.

3 The Double-Dimension T2 (DDT2) Control Chart

An idea that naturally comes to the mind is “When the sampling point exceeds
the warning limit, why to wait for the next sampling time to measure the costly
variables? Why not to measure them immediately?”

This idea has an intuitive appeal, by the analogy it bears (in operational terms)
with double-sampling procedures (although with a distinction that is similar to the
one between the VDT2 chart and variable-parameter control charts, namely that
what is being increased is the number of variables rather than the sample size).
At each sampling time, a sample is initially taken with p1 variables only and the
corresponding T2 statistic (T2

p1
) is calculated; if this is not sufficient to make a

decision on the state of the process, then the “expensive” p−p1 remaining variables
are measured, the overall T2 statistic based on the p dimensions (T2

p ) is calculated
and compared with another control limit. The performance of the so-called double-
dimension T2 (DDT2) chart was investigated by Epprecht et al. (2013).

The DDT2 chart has, as double-sampling plans and double-sampling control
charts (Croasdale (1974), Daudin (1992), Steiner (1999), Costa and De Magalhães
(2005), Rodrigues et al. (2011); and specifically for the T2 chart, Champ and
Aparisi (2008)), a pair of thresholds for T2

p1
obtained from the initial sample with

p1 variables (in the case, a warning limit w and a control limit UCLp1 ) and a control
limit for the statistic T2

p obtained from the full dimension sample. The expensive

variables are only measured when w ≤ T2
p1

< UCLp1 .
The mathematical model for obtaining the ARLs of the DDT2 chart is conceptu-

ally more involved than the one for obtaining the ARLs of the VDT2 chart since it
requires as an intermediate step the distribution of the difference T2

p − T2
p1

.
As with the VDT2 chart in Aparisi et al. (2012), a user-friendly program was

also made available for optimization of the design of the DDT2 chart, and used
for performance and sensitivity analyses. The analyses have shown that, however
appealing the idea of not waiting for the next sampling time to measure the costly
variables could be, the DDT2 chart did not reveal itself more efficient than the VDT2
chart: it presented in general ARLs similar to or larger than the ones of the VDT2
chart for the same shifts. Only in a very few cases the DDT2 chart ARLs were
smaller, but not significantly. We will not linger on the DDT2 chart, for this reason.

Given the good results of the variable dimension approach (proven reduction
in sampling costs, often accompanied by reduction in the out-of-control ARLs),
a natural follow-up to the work on the VDT2 and DDT2 charts would be the
investigation of more efficient versions of them. In particular, their performance,
although good and even superior to the one of the T2 chart on all variables, is poor
for small shifts. Since the VDT2 chart exhibited equal or better performance than



148 E. K. Epprecht et al.

the DDT2 chart, two extensions have been proposed to it: a variable sample size
version of it, the VSSVDT2 chart (Aparisi et al. 2014) and an EWMA version of it,
the VDEWMA-T2 chart (Epprecht et al. 2018). These are described next.

4 The Variable-Sample-Size Variable-Dimension T2

(VSSVDT2) Control Chart

The VSSVDT2 control chart (Aparisi et al. 2014) combines, as its name indicates,
the variable-dimension approach with the variable-sample-size (VSS) procedure
proposed by Prabhu et al. (1993) and by Costa (1994). Several other VSS charts
were proposed thereafter, being of particular interest in our context the VSST2 chart
by Aparisi (1996).

The idea underlying the VSSVDT2 chart is the same of adaptive charts in
general: to intensify inspection when there is more evidence that the process may
be out of control (and to reduce it otherwise, in order not to increase the average
inspection effort). For this purpose, the chart is constructed with two control limits,
CLp1 and CLp, and a (single) warning limit, w. When the T2 statistic of a sample
exceeds the warning limit (but not the respective control limit), the next sample is
taken with all p variables and sample size n2; when it does not exceed w, the next
sample is taken with only the p1 “non-expensive” variables and sample size n1.
When using only p1 variables and sample size n1, the control limit to be considered
is CLp1 and, when using all p variables and sample size n2, the control limit to be
considered is CLp. The very first sample, for the beginning of the monitoring or
for resuming it after an alarm and intervention in the process, can be taken with
p1 variables and sample size n1 or with all p variables and sample size n2; this is
an operational decision. In the chapter cited, the authors considered that this first
sample is of small dimension and size.

The chart is illustrated in Fig. 1.

Fig. 1 VSSVDT2 chart

w

CLp1

CLp

p1 variables, sample size n1 p variables, sample size n2
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Similarly to the VDT2 chart, the performance analysis revealed that very often
the control limit for samples with p1 variables can be eliminated without any effect
of practical significance on the performance of the VSSVDT2 chart. This makes the
chart operationally simpler.

The optimization of the design of the chart is more complex (or more computa-
tionally intensive) than the ones of the VDT2 and DDT2 charts, because the number
of decision variables is larger, since the chart has four or five design parameters: n1,
n2, CLp, (and CLp1 for the chart with two control limits), w. And to the constraint
on the ARL0, constraints are added on the average sample size (which should equal
a specified value n0) and on the maximum value acceptable for the larger sample
size n2. A program has also been developed, using a Markov chain model for the
calculations and genetic algorithms for the optimization.

In contrast with the VDT2 and the DDT2 control charts, in which the economy
in sampling costs is a straightforward function of the proportion of samples with
p variables (so that this proportion can be used as a measure of the gain in
sampling cost), with the VSSVDT2 chart, the relationship between the gain and
this proportion is less direct, because the samples with p variables have larger size.
The expected (or average) cost of a sample is given by

ACS = %p

100
· Cp1(a · n2 − n1) + n1 · Cp1

where a is the ratio between the costs Cp, of measuring p variables, and Cp1 ,
of measuring p1 variables. Therefore, denoting by %p the percentage of times
(samples) with p variables, the percent economy in sampling cost (relative to the
T2 chart) achieved with the VSSVDT2 chart can be straightforwardly derived as

%p · (a · n2 − n1) + 100n1

n0 · a

This ratio tends to the lower bound %p · n2/n0 when a tends to infinity.
The ACS of the VSSVDT2 chart with average sample size n0 is higher than the

ACS of the VDT2 chart with (fixed) sample size n0. The ratio between them is

%p · (a · n2 − n1) + 100n1

%p · n0(a − 1) + 100n0

which tends to n2/n0 when a tends to infinity.
These costs should be taken into account when deciding between using or not a

VSSVDT2 chart. The performance analysis has shown that the VSSVDT2 chart
provides great improvement in the ARL performance of the (fixed sample size)
VDT2 chart: depending on the shifts considered, the ARLs can be reduced in 44–
83%. This benefit should be balanced against the costs, which vary according to n1,
n2 and a.

Again, a complete and more concrete picture of the performance of the
VSSVDT2 chart would require a large number of tables, which are not pertinent
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here, but are available in Aparisi et al. (2014). We just summarize below a couple
of additional conclusions of the performance analysis in that chapter.

The ARL performance of the VSSVDT2 chart can never match the ARL
performance of the VSST2 chart (Aparisi 1996) on all p variables (in contrast with
the VDT2 chart, which outperforms the T2 chart on all p variables). But the cost of
the VSST2 chart on all p variables is larger, and the ARL differences are small. So,
the VSSVDT2 chart remains an interesting option when a is large.

For large process shifts the VDT2 chart shows better, equal or very close
performance to the one of the VSSVDT2 chart and becomes then the best choice,
given its smaller sampling cost.

The higher cost of the VSSVDT2 chart relative to the VDT2 chart motivates
investigating other enhancements to the VDT2 chart that do not increase its sam-
pling cost. The EWMA procedure is one of the approaches known to speed up the
detection of small to moderate shifts, with no increase in the cost of sampling (for a
same value of %p) and is operationally simpler than adaptive procedures (such as the
VSS one). An EWMA version of the VDT2 chart is the subject of the next section.

5 The Variable-Dimension EWMA T2 (VDEWMA-T2)
Control Chart

The traditional multivariate EWMA chart is the MEWMA chart by Lowry et al.
(1992). In this chart, at every sampling time, first the measures of all variables
are smoothed separately, yielding (or rather updating) as many EWMA statistics as
different variables, and then these EWMA statistics are combined into a single T2

statistic. In that chapter, the choice of proceeding to the smoothing first was justified
by the performance analysis, carried out by those authors, of this procedure and of
the alternative procedure of smoothing the T2 statistics of the successive samples,
that would be computed for each sample prior to being entered into a single EWMA
recursive expression. The analysis had shown that smoothing the data first led to
faster detection of shifts in the process mean.

With the variable-dimension approach, however, it wouldn’t make sense to
smooth the successive values of the costly variables that would have been measured
at irregular time intervals (skipping different numbers of sampling intervals), and,
moreover, to compute T2 statistics combining the EWMA values obtained this way
(as if they were meaningful) with EWMA values of variables that would have
been measured at regular time intervals. For this reason, the VDEWMA-T2 chart
(Epprecht et al. 2018) computes the T2 values first and next smooths them.

A difficulty remains, nevertheless: how to combine T2 values from samples
of different dimensions (T2 values with different degrees of freedom) in a single
EWMA statistic? The solution found was to scale these statistics, or to reduce them
to a same measurement unit, so that they become comparable. Namely, a probability
integral transformation is made, which is simply to compute the value of the cdf of
the T2 value of each sample, that is, to compute FT2

p1
(T2) in the case of the samples
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with p1 variables and FT2
p
(T2) in the case of the samples with p variables, where

FT2
p1

(·) and FT2
p
(·) denote the cdfs of the in-control T2 statistic from samples with

p1 and with p variables, respectively. These are measures of the statistical evidence
that the process might be off-target. This way, at each sampling time, a T2 statistic
is calculated and its cdf value is obtained. Next, to make easier the operation of the
chart, the cumulative probability thus obtained is converted to a Z score, by use of
the inverse cumulative standard normal distribution. The normal distribution was
chosen just for convenience; the point is that the result is a value of the N(0, 1)

distribution that has the same exceedance probability as the T2 value obtained from
the sample, regardless of the number of variables in it. These Z values can then be
smoothed in an EWMA statistic.

The VDEWMA-T2 chart has one control limit and one warning line. Also, a
reflecting boundary (lower bound for the EWMA statistic) was added to make the
chart more sensitive to shifts in the process mean. The use of such a bound for one-
sided EWMA charts was proven effective by Gan (1993) and adopted since by other
authors.

A VDEWMA-T2 chart is depicted in Fig. 2.
The chart operation is as follows: at every sampling time, a sample is taken. It will

consist of measures of only the subset of p1 “inexpensive” variables if the previous
point fell below the warning line; and it will consist of measures of all the variables
if the previous point fell between the warning line and the control limit. A point
above the control limit is a signal; the first sample after a signal (after investigation
for special causes and resuming the monitoring) may consist of measures of only
the subset of p1 variables or of measures of all the variables; this is up to the user,
a decision of practical nature. The performance analysis in Epprecht et al. (2018)
considered that it would consist only of measures of the subset of p1 variables, for
economy and because after the intervention it is more likely that the process is in
control.

Taken the sample, the T2 statistic is computed, either with p1 − 1 or with
p − 1 degrees of freedom (according to the sample dimension) and the cumulative

Fig. 2 VDEWMA-T2 chart

samples with p1 variables samples with p variables
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probability of that T2 value is converted to a Z score by:

zt = 	−1
(

Fχ2
ν

(
T2

v (t)
))

It is the Z score which is smoothed into an EWMA statistic:

Et = max
{
B, rzt + (1 − r)Et−1

}

where r is the smoothing constant and E0 = B.
After a signal and intervention, for resuming the monitoring, the initial value of

the EWMA is returned to E0 = B.
In contrast with the VDT2 chart, whose control limit is active only with samples

of p variables, the single control limit of the VDEWMA-T2 chart is always active.
This makes sense because it applies to an EWMA value that combines data from
several samples, of both dimensions (p1 and p), and which had been put to a
same “scale” through the probability integral transformation (which yields the
corresponding cumulative probability) and computation of the Z score.

Just for the record, the authors had analyzed another EWMA scheme, consisting
of two charts: a VDT2 chart (with only one control limit and one warning line)
combined with an EWMA chart on the Z score, computed the same way as indicated
above. The differences are that the decision for switching from p1 to p variables
(and vice-versa) is based on the T2 value in the VDT2 chart, and that this chart can
also signal.

The performance analysis has been carried out using Markov chain models for
computing the ARLs. These models were also used by computer programs for
optimization of the charts design. The programs, also running in Windows and with
user-friendly interfaces, take as entries the desired ARL0 and the shift for which
the (steady-state) out-of-control ARL (ARL1) should be minimized. The decision
variables are the charts limits, the reflecting boundary and the smoothing constant.

The analysis has shown that the two versions of EWMA schemes (the
VDEWMA-T2 chart and the joint VDT2 and EWMA charts) performed quite
similarly. Then the VDEWMA-T2 chart was the only retained and described in
detail in the chapter, because it is operationally simpler. The Markov chain model
of the joint scheme is much more involved, too, and its optimization is more
time-consuming in processing time.

An interesting result is that the optimization based on ARL1 minimization leads
almost always to solutions where p variables are measured in all samples or in
a quite large (over 95%) proportion of samples. That is, the variable-dimension
procedure degenerates into a fixed-dimension one. This should be intuitively
expected, weren’t it the fact that with the VDT2 chart the same ARL1 minimization
criterion leads to solutions in which the p variables are measured only a small
proportion of the times. This contrasting behavior of the optimal solutions for the
VDEWMA-T2 chart is not fully understood; maybe (this is only a conjecture) the
reason is that, unlike the VDT2 chart, the VDEWMA-T2 chart cannot benefit from
the non-existence of a control limit for samples with p1 variables to reduce the
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control limit for samples with p variables, and, as the EWMA statistic “drifts”
slowly (in contrast with the serial independence of the T2 values in the VDT2 chart),
taking the samples with all variables will make the VDEWMA-T2 chart signal out-
of-control conditions faster.

This observation showed the need to introduce a constraint on the percentage of
times that all variables are sampled (denoted by %p) in the optimization problem.
The program admits this as an input from the user. The solutions satisfying this
constraint still have smaller out-of-control ARLs than the ones of the VDT2 chart.

The user can then set %p at any desired value, say 50% or 30%. They can also try
different values to choose a solution based on cost-benefit analysis. The average cost

of one sample is ACS =
(

1 + a · %p
100

)
Cp1 , where Cp1 is the cost of a sample with

only p1 variables and the cost of a sample with all variables is aCp1 . With a sampling
interval of h, the sampling cost per time equals ACS/h. The benefit is the detection
speed, which is the reciprocal of the average detection delay AATS = (ARL1−0.5)h.
The product

(ACS/h) · AATS =
(

1 + a · %p

100

)
Cp1(ARL1 − 0.5)

(note how h cancels out in the right-hand side number) corresponds to cost per time
over detection speed. It can be used as an objective function. The user can then
try different values of %p, get the solutions, calculate the quantity above and the
solution that minimizes it is the most efficient. Then, h can be determined according
to a maximum feasible/tolerated sampling cost per time ACS/h (and the AATS
will be minimized according to this constraint). Alternatively, one can determine
h according to a constraint on the AATS (and the sampling cost per time will be
minimized).

The reader is referred to Epprecht et al. (2018) for more details and extensive
tables of results, but in general, for small and moderate shifts in the process mean,
with constraints of %p = 30% and 50%, the reductions in the ARL with respect to
the VDT2 chart range from 30% to 50%, approximately (larger %p leading to larger
reductions, naturally).

The VDEWMA-T2 chart presents two additional advantages over the VSSVDT2
chart: namely, it always outperforms the VDT2 chart (while the VSSVDT2 chart
not always does), and it can be used with samples of small size and even size 1 (the
VSSVDT2 chart requires a pair of sample sizes, a smaller and a larger one).

6 Summary

In multivariate process control, when some of the quality variables are much
more costly to measure than the other ones, the variable-dimension approach can
lead to substantial reduction in the sampling costs, being still very effective in
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signalling out-of-control situations. We reviewed the existing charts using this
approach. Surprisingly, the variable-dimension T2 chart (VDT2 chart) can signal
mean shifts even faster than its fixed-dimension counterpart, requiring measuring
all variables only a limited proportion of the times. The double dimension T2

chart (DDT2) chart exhibits equivalent behavior. The variable-dimension EWMA-
T2 chart (VDEWMA-T2 chart) is still faster than them. The variable-sample-size
VDT2 chart (VSSVDT2 chart) is another enhancement to the VDT2 chart. User-
friendly software was developed for every one of these charts, for automatically
performing the optimization of the chart design, thus making the techniques
applicable in practice. For a more detailed presentation and analysis of each of these
charts, the reader is referred to the original chapters.
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Distribution-Free Bivariate Monitoring
of Dispersion

Ross Sparks and Subha Chakraborti

Abstract This chapter focuses on evaluating practical approaches to monitoring the
dispersion for a wide range of positively distributed and correlated bivariate data. It
provides good practical advice regarding monitoring the dispersion of variables with
skewed distributions.

Keywords Asymmetric distributions · Statistical process control · Variance

1 Introduction

Sewerage treatment plants (STP) deal with volatile and noisy inputs (e.g., see
Hamed et al. 2004) and, therefore, need to regulate their treatment processes
accordingly (e.g., Choi and Park 2001) to have effluent output that will do as
little harm as possible when discharged to the surrounding environment. STPs
typically monitor Biological Oxygen Demand, Chemical Oxygen Demand, Total
Organic Carbon and Total Suspended Solids (TSS) as well as Total Nitrogen,
Ammonium Nitrogen, Nitrate, Phosphorus, Temperature and pH. In addition, it
provides information on the out-going effluent quality and treatment efficiency. The
volatility in these variables often provides us with information about the underlying
control process of the STP. In the STP application in this chapter, the two variables
we have near complete data on are TSS and Total Residual Chlorine(TRC), and
so we are going to use these variables to demonstrate processes for monitoring of
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bivariate volatility as an assessment of control process of the STP (e.g, see Saby
et al. 2002). Although this example does not solve the problem of monitoring the
volatility of full STP process, it does demonstrate it for the bivariate case before
moving onto the more difficult multivariate case. This bivariate case will be covered
in the application section later after developing the monitoring methodology.

Non-parametric (distribution-free) charts are growing in popularity in the lit-
erature because control measures often have asymmetric distributions and the
distribution of the control variables are generally unknown. In particular, envi-
ronmental measures such as e-coli, chlorophyll, nutrient loads, turbidity, etc. are
all positive right-skewed measures. Often the log-normal distribution is assumed
for these measures as a matter of convenience (e.g., Sukumar et al. 2002). The
assumption that the variables are log-normally distributed is inappropriate at times
(e.g., see Dodds et al. 1998). The monitoring of log-normal distribution data is
handled in two ways, firstly on the log-scale (which separates the mean and disper-
sion parameters, e.g., Morrison (1958) and Joffe and Sichel (1968)), and secondly
on the untransformed scale (Ferrell 1958; Cheng and Xie 2000). The option of
transforming the data using a Box-Cox (Box and Cox 1964) transformation and then
applying the S-chart has been demonstrated as unreliable, particularly for flagging
changes in dispersion. Therefore, alternatives need to be investigated that are more
reliable.

This chapter focuses on evaluating practical approaches to monitoring the
dispersion for a wide range of positively distributed bivariate data. It plans to
provide good practical advice to those monitoring variables which typically follow
an unknown skewed distribution. In this chapter we explore Liu ’s (1990)’s data
depth function in R as a means of assessing outliers or out-of-control situations. As
an alternative to this methodology we explore regressing ordered statistics against
their expected values conditional on the data being in-control. Assume that we have
a rational subgroup of twenty observations, then we order these from smallest to
largest value and compare these to their expected values when the observations are
drawn from an in-control distribution. Let the ordered rational subgroup of size n
for the kth time period be denoted

x(1)
k ≤ x(2)

k ≤ . . . x(n)
k .

Let E
(
x(j)

k

) = μ
(j)
k and therefore μ

(1)
k ≤ μ

(2)
k ≤ . . . ≤ μ

(10)
k .

Then we build the regression model

x(j)
ik = αk + βkμ

(j)
k + eik .

Theoretically when the rational subgroup values are in-control, then αk is equal
to zero and βk is equal to one. However, we estimate the μ

(j)
k ’s values using the

Phase I data and therefore these are not without error. Hence αk = 0 and βk = 1
is not always true in practice. In addition, we need fairly large rational subgroups
to estimate these regression coefficients accurately. If this regression model is fitted
using only rational subgroup sample sizes of 10 or less, then these estimates can vary
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substantially from the values expected theoretically. Therefore, we assume a rational
subgroup of 20 for the remainder of the chapter, but note that traditional rational
subgroups of size 20 are fairly rare in practice. Our focus on dispersion means we
examine how βk differs from the expected value of one. If it is significantly larger
than one, then the rational subgroup has a larger standard deviation than in the in-
control case. If it is significantly smaller than one, then the rational subgroup has a
smaller standard deviation than in the in-control case.

2 Bivariate Control Charts: Monitoring Changes
in Dispersion

Now we explore bivariate control charts with the aim of extending these to
multivariate control charts for dispersion. The first idea was to look at data depth
as a way of flagging increases in dispersion.

2.1 Bivariate Dispersion Monitoring Using Data Depth

A sample of 10,000 training data of rational subgroups of 20 observations were
generated from one of the distributions. This training data were used to estimate
the number of in-control points that are expected to have Liu (1990)’s data depth
score of zero where a depth of zero indicates an outlier (see also Stoumbos et al.
2001; Liu et al. 1999). If we know that these outlying points don’t cluster in a small
region in the bivariate space then this is likely to be an outbreak in dispersion. In
other words, too many extreme points that don’t cluster in the two dimensional
space indicates an increase in dispersion. The Liu (1990)’s depth score is not useful
for assessing decreases in dispersion, but it can indicate increases in dispersion if
we can demonstrate that these are not related to a shift in location. We decided to
use the count of the number of Liu (1990)’s depth scores of zeros in the rational
subgroup as a way of flagging increases in dispersion recognizing that this out-
of-control criteria does not differentiate between changes in location and changes in
dispersion. Despite this drawback, this statistic works comparatively well at flagging
changes in dispersion as will be demonstrated later.

For normally distributed data in 10,000 simulation runs and a rational subgroup
of 20: 12 of the 10,000 rational subgroups had one observation with a depth of zero
and one with two zeros. Therefore the decision rule for declaring the process is
out-of-control is taken when either:

1. Any rational subgroup of size 20 with two or more observations have depth equal
to zero; or

2. Two or more consecutive rational subgroups of size 20 have one depth equal to
zero.
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Table 1 The number of flags for increased (decreased) dispersion for the various approaches; log-
normal distribution

d(a, b) Box-Cox Transformation

Log Log Data depth

Volume Perimeter (2 or more

thresholds Robust Robust depths=0 or

Upper Upper regression regression two

(Lower) (Lower) (Pi) (Qi) consecutive

LN(μ, σ ) (7.5393) (5.6227) h = 6.259469 hq = 5.33291 one depth=0)

X ∼ LN(0, 1) , 9 7 9 11 8

Z ∼ LN(0,
√

0.75) (17) (15)

X ∼ LN(0, 1.25) , 278 655 567 588 291

Z ∼ LN(0,
√

0.75) (4) (2)

X ∼ LN(0, 1.5) , 1728 3680 2205 2391 1756

Z ∼ LN(0,
√

0.75) (0) (0)

X ∼ LN(0, 1.75) , 4063 7042 4480 4631 4236

Z ∼ LN(0,
√

0.75) (0) (0)

X ∼ LN(0, 2) , 6504 8940 6413 6473 6180

Z ∼ LN(0,
√

0.75) (0) (0)

X ∼ LN(0, 1) , 199 131 120 117 310
Z ∼ LN(0,

√
1.25) (2) (0)

X ∼ LN(0, 1) , 537 325 251 244 1104
Z ∼ LN(0,

√
1.5) (0) (3)

X ∼ LN(0, 1) , 872 533 478 467 1757
Z ∼ LN(0,

√
1.75) (0) (0)

X ∼ LN(0, 1) , 1400 886 909 811 3032
Z ∼ LN(0,

√
2) (0) (0)

X ∼ LN(0, 1) , 2028 1384 1558 1263 4006
Z ∼ LN(0,

√
2.25) (0) (0)

X ∼ LN(0, 1) , 2646 1865 2145 1746 4918
Z ∼ LN(0,

√
2.5) (0) (0)

X ∼ LN(0, 1) , 3165 2429 2820 2247 5612
Z ∼ LN(0,

√
2.75) (0) (0)

The bold numbers in the table are the lowest ARL values for detecting the simulated outbreaks

For in-control normally distributed data this provides 1 to 2 false discoveries in
10,000 simulations. This same approach will be tried for all examples of bivariate
data. We demonstrate in Table 1 that these rules for flagging an increase in
dispersion work reasonably well.

The major issue with data depth measures is that it does not distinguish
between changes in location and changes in dispersion, and the rules above fail
to flag decreases in dispersion. The approach considered in the next section does
differentiate between changes in location and dispersion as well as differentiating
between increases and decreases in variation.
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2.2 Bivariate Approach Using an Extension of the Robust
Regression Approach: Outline for Univariate Distributions

Establish the median order statistic value across all 1000 rational subgroups of size
20 for both bivariate datasets (k = 1, 2), i.e., denote these μ

(1)
k ≤ μ

(2)
k ≤ . . . ≤ μ

(n)
k

such that μ
(j)
k = median(x(j)

1,k, x(j)
2,k, . . . , x(j)

1000,k) for all j = 1, 2, . . . , n. The median
is selected rather than the mean because it was more robust across the broad range
of distributions considered. The values

μ
(1)
k ≤ μ

(2)
k ≤ . . . ≤ μ

(n)
k

are the reference values as defined in the introduction section for the bivariate data
k = 1, 2 which are used to gauge whether the dispersion of a rational subgroup of
size 20 has increased.

Denote

Xq =

⎛

⎜
⎜
⎜
⎜
⎝

μ
(1)
1 μ

(1)
2

μ
(2)
1 μ

(2)
2

...
...

μ
(n)
1 μ

(n)
2

⎞

⎟
⎟
⎟
⎟
⎠

and Xi =

⎛

⎜
⎜
⎜
⎜
⎝

x(1)
i,1 x(1)

i,2

x(2)
i,1 x(2)

i,2
...

...

x(n)
i,1 x(n)

i,2

⎞

⎟
⎟
⎟
⎟
⎠

with

X̃q = Xq − 1t
nXq/n and X̃i = Xi − 1t

nXi/n

where 1n is an n by 1 column vector of ones. Note that β̂i1 is the robust estimate
of the regression slope using the rlm function in the MASS (Venables and Ripley
2002) package of R. Applying the usual quadratic form, we flag significant changes
in dispersion when

Pi = (β̂i1 − 1 β̂i2 − 1
)
X̃

′
iX̃i

(
β̂i1 − 1
β̂i2 − 1

)
/ tr
(
X̃

′
iX̃i
)

> h .

An alternative criterion that is more closely aligned with the traditional quadratic
form that flags significant changes in dispersion when

Qi = (β̂i1 − 1 β̂i2 − 1
)
X̃

′
qX̃q

(
β̂i1 − 1
β̂i2 − 1

)
/ tr
(
X̃

′
qX̃q
)

> hq .

Next, we outline the process of estimating the threshold necessary for deliv-
ering an acceptable false alarm rate for flagging significant bivariate changes in
dispersion. We simulate ten thousand in-control rational sub-groups (i), estimate
the parameters of the following simple linear model for the kth variable: x(j)

ik =
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αk +βkμ
(j)
k + eik. Denote these slope estimates β̂ik for simulated rational subgroups

i = 1, . . . , 10,000 and k = 1, 2. These are used to establish the threshold for
significant increases in dispersion by calculating Qi/Pi for i = 1, 2, . . . , 10,000.
Estimate the quantile values for these statistics that correspond to an acceptable
out-of-control false alarm rate. The statistics (Pi or Qi) do not distinguish between
increases and decreases in dispersion but if these are represented as a two dimen-
sional plot of (β̂i1β̂i2) with the control limit as an ellipse as described in Sparks
(1992), then diagnosing the nature of the significant changes is easy. Alternatively,
observing the β̂ij values independently for each j provides the necessary information
for diagnosing the nature of significant changes.

2.3 Transformation to a Normal Distribution

Here we consider using a Box-Cox transformation to normality and then use charts
derived for normally distributed bivariate data. The main advantage of this approach
is that the plan simply involves finding the appropriate Box-Cox transformation,
and then the existing traditional design of the chart for the normal distribution
applies. However, this is not as simple as it sounds. For example, with log-normal
data we know that the logarithm transform is the appropriate transform if the
correlated variables X1 and X2 = Xβ

1 Z where X1 and Z are log-normally distributed.
Then notice that X2 is log-normally distributed. This means that the thresholds for
log(X1) and log(X2) = log(Xβ

1 Z) = β log(X1) + log(Z) are easy to simulate and
deliver appropriate thresholds. This is not that easy when the response variables
select different transformations for the two variables X1 and X2 to individually
approximate to normality. If f1 and f2 are the two transformations, then we need
an approximation that simulates the appropriate thresholds for the bivariate normal
approximation that will apply to bivariate variables f1(X1) and f2(X2). Assume that
X and Z are independent random variables and that X1 = X and X2 = 0.5X + Z
but this is hidden (unknown). We then find E

(
f1(X1)

) = μ1, E
(

f2(X2)
) = μ2,

Var
(

f1(X1)
) = σ 2

1 , Var
(

f2(X2)
) = σ 2

2 and Cov
(

f1(X1), f2(X2)
) = σ12 and this

provides us with the appropriate normal distribution for setting up the thresholds
for the control variables to follow. Although this approach is feasible, it at times
fails to deliver a reasonable plan as we will see later in the section discussing the
simulated examples. If we knew that X1 = X and X2 = 0.5X + Z, then we would
tranform Z = X2 − 0.5X to approximate normal, say using f3(Z) and then used
f2(X2) = 0.5f1(X) + f3(Z). This would be deliver better results.

Mathematically if we knew the in-control covariance matrix �0 and the trans-
formed sample covariance matrix S, then a control variable could be a function
of the eigenvalues of �−1

0 S. The difficulty is, this is not a meaningful measure
for the control engineer. If we took instead the determinant of �0 denoted |�0|,
then this is a measure of the volume of space (or area in the bivariate case) the
in-control data usually “occupies” in the multivariate space, and the trace of �0
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denoted tr(�0) is proportional to the perimeter of space the data “occupies”. These
are both meaningful measures of variation and therefore tr(S) and |S| are meaningful
statistics worth monitoring. We flag increases in dispersion when either:

tr(S) > tr(�0) + htr,upper or |S| > |�0| + hd,upper

and flagging a decrease in variation when

tr(S) < tr(�0) − htr,lower or |S| < |�0| − hd,lower

where ha,upper and ha,lower are positive values with a = tr or d depending on
whether the trace or determinant is used, respectively. These thresholds are trained
to deliver a specified false alarm rate. This does mean that these thresholds need to
be trained as the in-control variance changes, but it is better to have a meaningful
measure for the control engineer to use than one that is not. These thresholds are
trained using normally distributed data. All of these relate to the eigenvalues of
the sample covariance matrix or equivalently the singular values of the singular
value decomposition (svd) of the departures the observations are from their sample
means. These singular values are used because it limits the computational effort
involved in the control plans. The product and sum of svd singular values of matrix
[X1 − x̄1 X2 − x̄2] are proportional to the volume and perimeter, respectively.
The thresholds for these are found by simulation based on the assumption that the
transformed data are normally distributed. If the distribution is known, then we
can do better than this by simulating data from this known distribution to find the
thresholds.

2.4 Some Simulation Results

All bivariate distributions considered in this chapter are two parameter distributions
denoted by d(a, b) with parameters a and b. The simulated data used had x ∼
d(a, b1) and y ∼ 0.5x + z where z ∼ d(a, b2) independent of x, and a, b1
and b2 are defined in Table 1. The simulation results are included in Table 1.
The bivariate in-control data were simulated using the distributions in red ink.
Each simulation generated 10,000 independent rational subgroups and recorded the
number of alarms in these 10,000 simulations.

The out-of-control simulated data are in black ink with either both control vari-
ables changing when the distribution of X1 departs from the in-control distribution,
or for the second variable (X2) changing when only the Z variable changes from its
in-control distribution. The thresholds were trained using a bootstrap sample from a
Phase I dataset of 10,000 observation from the known distribution (but hidden from
the user). An exception is the data depth method where the rules defined earlier
were used. The in-control false alarms were then checked using in-control data and
distribution-free methods; these are reported in Tables 1, 2, 3, 4, 5, 6 and 7, for
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Table 2 The number of flags for increased (decreased) dispersion for the various approaches;
inverse Gaussian distribution

d(a, b) Box-Cox Transformation

−0.06 −0.03

Volume Perimeter

thresholds

Upper Upper

(Lower) (Lower) Robust Robust

1.0464 6.8207 regression (Pi) regression (Qi)

IG(μ, σ ) (0.3790) (6.4754) h = 3.09924 hq = 2.595764 Data depth

X ∼ IG(1, 1) , 16 9 14 10 9

Z ∼ IG(1,
√

0.75) (3) (23)

X ∼ IG(1, 1) , 98 60 55 62 278
Z ∼ IG(1,

√
1.25) (0) (16)

X ∼ IG(1, 1) , 218 81 84 97 477
Z ∼ IG(1,

√
1.5) (0) (0)

X ∼ IG(1, 1) , 413 124 138 104 1619
Z ∼ IG(1,

√
1.75) (2) (3)

X ∼ IG(1, 1) , 573 199 169 125 2750
Z ∼ IG(1,

√
2) (0) (3)

X ∼ IG(1, 1) , 890 312 231 18 3520
Z ∼ IG(1,

√
2.25) (1) (1)

X ∼ IG(1, 1) , 1086 384 325 178 3269
Z ∼ IG(1,

√
2.5) (0) (0)

X ∼ IG(1, 1) , 1086 384 325 178 3269
Z ∼ IG(1,

√
2.5) (0) (0)

X ∼ IG(1, 1) , 3667 1889 603 467 8792
Z ∼ IG(1,

√
4.75) (0) (0)

X ∼ IG(1, 1) , 6316 4993 784 628 9931
Z ∼ IG(1,

√
8.75) (0) (0)

X ∼ IG(2, 1) , 114 0 4491 4105 638

Z ∼ IG(1,
√

0.75) (0) (2270)

X ∼ IG(3, 1) , 308 0 7931 7726 2999

Z ∼ IG(1,
√

0.75) (0) (4928)

X ∼ IG(4, 1) , 0 0 8886 8697 3709

Z ∼ IG(1,
√

0.75) (559) (6415)

The bold numbers in the table are the lowest ARL values for detecting the simulated outbreaks

a number of distributions. In Table 1, e.g., for log-normal data the false alarms are
very similar as 9, 11 and 8 in the 10,000 simulations for robust regression using P, Q
and data depth, respectively. For the log-normal X and Y, we assumed that we know
that X1 = X and X2 = 0.5X + Z and this helps improve the design of the bivariate
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Table 3 The number of flags for increased (decreased) dispersion for the various approaches;
Weibull distribution

d(a, b) Box-Cox Transformation

0.27 0.22

Volume Perimeter

thresholds

Upper Upper

(Lower) (Lower) Robust Robust

7.8774 8.0077 regression (Pi) regression (Qi)

WEI(μ, σ ) (2.8452) (6.1948) h = 1.707337 hq = 1.470695 Data depth

X ∼ WEI(1, 1) , 36 12 32 9 19

Z ∼ WEI(1,
√

0.75) (44) (20)

X ∼ WEI(1.5, 1) , 134 649 701 321 130

Z ∼ WEI(1,
√

0.75) (56) (1)

X ∼ WEI(2, 1) , 224 3433 6933 1287 950

Z ∼ WEI(1,
√

0.75) (35) (0)

X ∼ WEI(2.5, 1) , 331 6598 8133 3255 2521

Z ∼ WEI(1,
√

0.75) (37) (0)

X ∼ WEI(3, 1) , 514 8613 9500 6064 4402

Z ∼ WEI(1,
√

0.75) (35) (0)

X ∼ WEI(1, 0.7) , 922 469 1697 1434 1002

Z ∼ WEI(1,
√

0.75) (3) (23)

X ∼ WEI(1, 0.6) , 2509 1346 3357 3193 2878

Z ∼ WEI(1,
√

0.75) (0) (24)

X ∼ WEI(1, 0.5) , 5272 3328 5707 5581 5488

Z ∼ WEI(1,
√

0.75) (35) (13)

X ∼ WEI(1, 0.4) , 8181 6015 7706 7595 7942

Z ∼ WEI(1,
√

0.75) (0) (19)

X ∼ WEI(1, 0.3) , 9696 8447 9011 8906 9605

Z ∼ WEI(1,
√

0.75) (0) (14)

The bold numbers in the table are the lowest ARL values for detecting the simulated outbreaks

control charts, otherwise it is difficult to get acceptable false alarm rates (e.g., if
we don’t assume this knowledge, estimate the correlation between X1 and X2, and
then the in-control false alarms are 66 on the high-side and 86 on the low side for
the measure of data volume and 47 on the high-side and 31 on the low side for the
measure of data perimeter). This can be considered the best case scenario when the
appropriate transformation to normality is known to be log. For the log-normal case
in Table 1, notice that the data depth measure was more efficient at detecting the
out-of-control situations than the measures of data volume and data perimeter when
the change occurs in the second variable only.
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Table 4 The number of flags for increased (decreased) dispersion for the various approaches;
Gamma distribution

d(a, b) Box-Cox Transformation

0.32 0.225

Volume Perimeter

thresholds

Upper Upper

(Lower) (Lower) Robust Robust

7.5292 8.8335 regression (Pi) regression (Qi)

Ga(shape, rate) (2.6899) (7.5664) h = 0.6425606 hq = 0.5919475 Data depth

X ∼ Ga(3, 2) , 30 23 31 34 13

Z ∼ Ga(3,
√

1.75) (9) (9)

X ∼ Ga(3, 1.5) , 99 1548 584 476 128

Z ∼ Ga(3,
√

1.75) (3) (0)

X ∼ Ga(3, 1) , 422 9466 6418 4960 2590

Z ∼ Ga(3,
√

1.75) (0) (0)

X ∼ Ga(3, 0.8) , 746 9984 9089 8158 5429

Z ∼ Ga(3,
√

1.75) (0) (0)

X ∼ Ga(3, 0.6) , 1211 10,000 9947 9785 9127

Z ∼ Ga(3,
√

1.75) (0) (0)

X ∼ Ga(3, 2) , 94 142 202 219 33

Z ∼ Ga(3,
√

1.25) (8) (2)

X ∼ Ga(3, 2) , 175 432 606 657 152

Z ∼ Ga(3, 1) (1) (0)

X ∼ Ga(3, 2) , 441 1370 1989 1960 718

Z ∼ Ga(3,
√

0.75) (1) (0)

X ∼ Ga(3, 2) , 1026 4226 5354 5132 2300

Z ∼ Ga(3,
√

0.5) (0) (0)

X ∼ Ga(3, 2) , 2689 9202 9451 9322 7615

Z ∼ Ga(3, 0.5) (0) (14)

The bold numbers in the table are the lowest ARL values for detecting the simulated outbreaks

We have only simulated out-of-control data with increased dispersion for the
rational subgroup because this is the usual out-of-control case. However, we
recognize that this does not convey the full value for the robust regression method
or the approaches using the Box-Cox transformations which are capable of flagging
reduced dispersion as well. Firstly, note that the Box-Cox transformation to
normality plans can’t always deliver a reasonable plan that adequately controls the
in-control false alarm rates. For example, note that the Inverse Gamma and Pareto2
distributions fail to deliver reasonable plans based on normal approximations, i.e.,
Inverse Gamma plan has false alarm rates out of 10,000 trials for high-side (low-
side) of 0(9512) for the volume (area) measure and 154(37) for the perimeter
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Table 5 The number of flags for increased (decreased) dispersion for the various approaches;
inverse Gamma distribution

d(a, b) Box-Cox Transformation

−0.15 −0.2

Volume Perimeter

thresholds

Upper Upper

(Lower) (Lower) Robust Robust

2.3849 6.1934 regression (Pi) regression (Qi)

IGa(μ, σ ) (0.8289) (4.4893) h = 740.709 hq = 659.1923 Data depth

X ∼ IGa(2, 1) , 0 154 20 22 9

Z ∼ IGa(2,
√

0.75) (9512) (37)

X ∼ IGa(2, 1.25) , Plan is not adequate 1143 1114 271

Z ∼ IGa(2,
√

0.75)

X ∼ IGa(2, 1.5) , 5331 5403 2365

Z ∼ IGa(2,
√

0.75)

X ∼ IGa(2, 1.75) , 8813 8767 5636

Z ∼ IGa(2,
√

0.75)

X ∼ IGa(2, 2) , 9815 9819 8023

Z ∼ IGa(2,
√

0.75)

X ∼ IGa(2, 2.25) , 9973 9977 9408

Z ∼ IGa(2,
√

0.75)

X ∼ IGa(2, 1) , 251 192 600
Z ∼ IGa(2,

√
1.25)

X ∼ IGa(2, 1) , 832 451 1732
Z ∼ IGa(2,

√
1.5)

X ∼ IGa(2, 1) , 1921 1027 3271
Z ∼ IGa(2,

√
1.75)

X ∼ IGa(2, 1) , 3504 2873 4653
Z ∼ IGa(2,

√
2)

X ∼ IGa(2, 1) , 5085 4363 5856
Z ∼ IGa(2,

√
2.25)

X ∼ IGa(2, 1) , 6434 5894 6932
Z ∼ IGa(2,

√
2.5)

The bold numbers in the table are the lowest ARL values for detecting the simulated outbreaks

measures, respectively. While the Pareto2 distribution example has 495(125) for
the volume (area) measure and 320(32) for the perimeter measure when we are
aiming for (14)14. Therefore, these plans do not always provide a solution and for
this reason it is not recommended as a routinely acceptable approach. However, it
may have merit if it is known that the transformation to normality is appropriate as
is the case for log-normal data.
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Table 6 The number of flags for increased (decreased) dispersion for the various approaches;
Pareto distribution

d(a, b) Box-Cox Transformation

log log

Volume Perimeter

thresholds

Upper Upper

PARETO2 = Pa (Lower) (Lower) Robust Robust

76.9411 19.9683 regression (Pi) regression (Qi)

Pa(μ, σ ) (20.0488) (9.7517) h = 74, 930.24 hq = 39, 975.8 Data depth

X ∼ Pa(2, 1) , 495 320 25 33 6

Z ∼ Pa(2,
√

0.5) (125) (32)

X ∼ Pa(2, 0.7) , Plan is not adequate 75 110 80

Z ∼ Pa(2,
√

0.5)

X ∼ Pa(2, 0.6) , 265 278 341
Z ∼ Pa(2,

√
0.5)

X ∼ Pa(2, 0.5) , 964 1004 1165
Z ∼ Pa(2,

√
0.5)

X ∼ Pa(2, 0.4) , 2572 3003 3152
Z ∼ Pa(2,

√
0.5)

X ∼ Pa(2, 0.3) , 6433 6862 6294

Z ∼ Pa(2,
√

0.5)

X ∼ Pa(2, 1) , 277 250 29

Z ∼ Pa(2,
√

0.3)

X ∼ Pa(2, 1) , 1128 1140 118

Z ∼ Pa(2,
√

0.2)

X ∼ Pa(2, 1) , 5097 5106 1510

Z ∼ Pa(2,
√

0.1)

The bold numbers in the table are the lowest ARL values for detecting the simulated outbreaks

The robust regression and depth measures seem to be good alternatives. Note
that when the change is consistent with the correlation structure (i.e., the change is
in the X variable), then generally the robust regression methods is more efficient.
While if it is in-consistent with the correlation structure by the change being in the
Z variable (and therefore only in variable X2), then the data depth is generally more
efficient. The Pareto and Reverse Gumbel cases are exceptions to this rule. It seems
as if a robust plan should involve a combination of depth and robust regression. The
advantages this has, besides delivering a robust plan, are: firstly it will differentiate
between a location shift and an increase in dispersion, and secondly it will flag
decreases in dispersion via the robust regression method. There is not much of
a difference between the two robust regression plans but the P statistic appears
to have the slight edge over the more traditional quadratic form. Although more
work is needed on this topic, but the early signs are that depth measures and robust
regression methods are worth further investigations in follow-up research.
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Table 7 The number of flags for increased (decreased) dispersion for the various approaches;
reverse Gumbel distribution

d(a, b) Box-Cox Transformation

−2.68 −2.61

Volume Perimeter

thresholds

Upper Upper

(Lower) (Lower) Robust Robust

1.2774 0.4498 regression (Pi) regression (Qi)

RG(μ, σ ) (0.4452) (0.3397) h = 0.7894239 hq = 0.6935926 Data depth

X ∼ RG(13, 1) , 9 33 27 28 8

Z ∼ RG(13,
√

1.5) (14) (23)

X ∼ RG(13, 1.5) , 363 668 1752 1277 1201

Z ∼ RG(13,
√

1.5) (1) (133)

X ∼ RG(13, 2) , 2380 2467 6631 5804 5307

Z ∼ RG(13,
√

1.5) (2) (216)

X ∼ RG(13, 3) , 7423 6521 9818 9661 9072

Z ∼ RG(13,
√

1.5) (1) (189)

X ∼ RG(13, 4) , 9091 8442 9995 9986 9879

Z ∼ RG(13,
√

1.5) (1) (139)

X ∼ RG(13, 5) , 9577 9204 10,000 9999 9987

Z ∼ RG(13,
√

1.5) (2) (130)

X ∼ RG(13, 1) , 386 105 832 752 682

Z ∼ RG(13,
√

3) (0) (5)

X ∼ RG(13, 1) , 1309 188 2301 2042 2161

Z ∼ RG(13,
√

4) (0) (5)

X ∼ RG(13, 1) , 4216 489 5734 5065 5132

Z ∼ RG(13,
√

6) (0) (5)

X ∼ RG(13, 1) , 6573 1052 8026 7412 6854

Z ∼ RG(13,
√

8) (0) (1)

X ∼ RG(13, 1) , 8010 1693 9074 8641 7999

Z ∼ RG(13,
√

10) (0) (2)

The bold numbers in the table are the lowest ARL values for detecting the simulated outbreaks

3 Example of Application

An application of bivariate control charts is in effluent monitoring of non-filterable
residues (NFR) and total residual chlorine (TRC) at sewerage treatment plants.
These are typically not normally distributed (e.g., Park 2007), and are routinely
monitored over time at all treatment plants. The data we have involves daily
measures of NFR and TRC from 1 July 1996 to 24 June 1999. A scatterplot of
the data is provided in Fig. 1.

The number of observations in this dataset is not quite sufficient for both Phase
I and Phase II SPC, therefore we took the first half of the data and fitted a best
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Fig. 1 Scatterplot of the sewerage treatment plant data

Box-Cox transform of the data to normality and then used a parametric bootstrap
approach to set up the Phase II SPC process, and applied this to the second half
of the data. The best transform for FCR was the value plus 0.11 inverted, and the
best transform of TRC is the logarithm of the total of this measure plus one. The
correlation between these two variables is not high at 0.05184, but nevertheless
they are positively correlated. We construct bootstrap samples of the transformed
TRC using 1/(x + 0.11) + 0.1855z ∼ n(3.65, 1.397) and z ∼ n(0, 1) and the
transformed NFR using log(y + 1) + 0.1855z ∼ n(1.233, 0.316) and the small
positive correlation is induced by the normally distributed variable z ∼ n(0, 1). The
autocorrelation for NFR is 0.279 and TRC is 0.563. The autocorrelation and partial
autocorrelation functions suggested an AR(1) model for both transformed NFR and
TRC. Therefore, we simulated the process x1 = log(y+1) ∼ n(1.233 = 0.889/(1−
0.279), 0.316−0.18552 = 0.2814/(1−0.2792)) and x2 = 1/(x+0.11) ∼ n(3.65 =
1.5987/(1−0.562), 1.397−0.18552 = 0.9322/(1−0.5622)). Similarly, this means
that we simulate x2t = 1.5987 + 0.562 × x2t + e1t where et ∼ N(0, 0.9322) and
x1t = 0.889 + 0.279 × x1t + e2t where et ∼ N(0, 0.2814). Now 0.1855z is added to
both of these and then simulated NFR and TRC values are taken as exp(x1t − 1 and
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Fig. 2 Bivariate application flagging changes in dispersion of NFR and TRC using the robust
regression method

1/x2t − 0.11, respectively. These are used to find the thresholds for the dispersion
monitoring plan using a parametric bootstrap approach.

The boostrap population NFR = exp(x1t) − 1 and TRC = 1/x2t − 0.11 is used to
set up simulated data for training the bivariate process control charts for the second
half of the data. This bootstrap sample indicated 279 false alarm signals in 10,000
in-control bootstrap samples for depth (this is a higher false alarm rate than we
would like). The two robust regression procedures lead to identical conclusions
and therefore only one is reported. In the robust regression cases we were able to
train the methods to have a false alarm rate of 0.0027. The results are reported in
Fig. 2. Notice that the robust regression approach only flags a change in dispersion
for rational subgroup for data starting on 1998-06-18, whereas data depth flags
whenever 2 or more depths are zero in the rational subgroup (equal to or above
the depth red line in Fig. 3) and when two consecutive rational subgroups with exact
one depth equal to zero (these are indicated by placing a cross at both the locations
this occurs). In Fig. 4,

T = tr(S)/(tr(�0) + htr,upper) and D = |S|/(|�0| + hd,upper)

So we are only signaling increases in variance.
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Fig. 3 Bivariate application flagging outliers for NFR and TRC using data depth method
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4 Concluding Remarks

The distribution-free method proposed in this chapter based on ranks does not work
as well as the plan based on robust regression methods.

The biggest disadvantage with the robust regression approach is that many more
numbers of rational subgroup samples are needed in Phase I to set-up this plan
for Phase II monitoring. Although in many environmental settings data have been
collected for decades and in several applications such data would be sufficient to
establish the plan and in these cases data availability should not be a restriction. This
is certainly the case in the Sydney Waterways. If we train the methods for a false
alarm rate of 1 in 100, then we could get away with smaller samples in the Phase
I stage, and so more work is needed in establishing the Phase I information needed
to effectively design the robust regression plan. The other advantage that the robust
regression has is that it distinguishes between increases in spread and decreases in
spread, whereas data depth can’t easily find reductions in dispersion. In addition,
data depth will flag changes in location and therefore does not distinguish between
changes in location and spread, but the robust regression approach does. In terms of
their performance in detecting changes in dispersion quickly, there is little difference
between the approaches, with the differences mostly being small except in the cases
of the Inverse Gaussian distribution and the Inverse Gamma distribution. So the
choice of which method to apply is going to depend on the individual application.

The relative performance for the robust regression is encouraging and therefore
this plan is worth further investigation in settings that don’t only involve positive
measures. If users wish their monitoring plan to separate out the parameter
influences on the process measures, then selecting the appropriate scale is important.
This is demonstrated by the log-normal distribution where the log-scale applying the
S-chart only flag changes in variance but not location.
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Monitoring and Diagnosis of Causal
Relationships Among Variables

Ken Nishina, Hironobu Kawamura, Kosuke Okamoto, and Tatsuya Takahashi

Abstract In statistical process control (SPC) there are two situations where moni-
toring multivariate is needed. One is that all of the variables monitored are product
ones. The other is that the variables monitored are some product and process ones.
In these cases, there are correlations among the variables. Therefore, application of
multivariate control charts to such process control is useful.

In this chapter, the latter case of monitoring causality is addressed. It is known
that T2–Q control charts, which are modified from standard multivariate control
charts utilizing Mahalanobis distance, are an effective SPC tool. However, in using
multivariate control charts, diagnosis is not so easy. The objective in this chapter is
to propose a diagnostic method for identifying an unusual causal relationship in a
process causal model and then to examine its performance.

Our proposed method is to identify the nearest unusual model by utilizing
the Mahalanobis distance between some supposed unusual models and the data
indicating the out of control in Q charts.

Keywords Statistical process control · T2–Q control charts · Unusual causal
relationship · Mahalanobis distance

1 Introduction

In statistical process control (SPC) there are two situations where monitoring
multivariate is needed.

One is that all of the variables monitored are product ones; for example,
the remaining film thickness on the wafer surface after polishing in chemical
mechanical polish process of semiconductor manufacturing process (see Nishina
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et al. 2011). In this case, correlations among the variables are strongly positive.
Therefore, applying multivariate control charts to such process control is useful.

The other is that the variables monitored are some process and product ones; for
example, some equipment parameters and product characteristics are monitored.
In this case, it can be supposed that monitoring causality among the variables
is needed. A case in which an environmental variable, which has an interaction
with an equipment parameter, is suddenly varied can be illustrated as an unusual
causal relationship. Another example is to lose control completely by a cyberattack.
Applying multivariate control charts is also useful.

In this chapter, the latter case of monitoring causality is addressed. It is known
that T2–Q control charts, which are modified from standard multivariate control
charts utilizing Mahalanobis distance, are an effective SPC tool (see Jackson and
Mudholkar 1979).

The causal model consists of variables and causal relationships between the
variables. In using multivariate control charts, diagnosis is not so easy because an
unusual event may affect more than one variable. Moreover, if an unusual event
may affect the causal relationship as mentioned above, it is more difficult to isolate
the source of the causal unusualness. The objective of this chapter is to propose a
method of diagnosis for isolating an unusual causal relationship in a process causal
model and then to examine its performance.

Our proposed method is to identify the nearest unusual model by utilizing
the Mahalanobis distance between some supposed unusual models and the data
indicating the out of control in Q charts.

In our proposal, an unusual variable is isolated in the first step to narrow
down the unusual causal relationship and then in the second step the unusual
causal relationship is isolated. Kourti and MacGregor (1996) proposed a diagnostic
method, called contribution plots, to isolate the unusual variable. Higashide et al.
(2014) made slight improvement on the method. Another method is diagnosis by
the MT (Mahalanobis–Taguchi) method (see Tatebayashi et al. 2008), which is a
variable selection by using the two levels orthogonal array.

In our study, it is assumed that the causal relationship of the variables in the
manufacturing process is known by causal analysis.

2 Outline of T2–Q Control Charts and Their Application

T2–Q control charts are modifications of the multivariate control charts using
Mahalanobis distance. The statistic T2, which is the Mahalanobis distance, is
composed of major Principal Component Scores (PCSs). On the other hand, the
statistic Q, which is the Euclidean distance, is composed of minor PCSs.

It is well known that the Mahalanobis distance D2 in the p variables can be
expressed as PCS zk (k = 1, 2, . . . , p) in Eq. (1).

D2 = (1/λ1)z
2
1 + (1/λ2)z

2
2 + · · · + (1/λm)z2

m + · · · + (1/λp)z
2
p , (1)
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where λk (k = 1, 2, . . . , p) is the kth eigenvalue of the correlation coefficient matrix.
The T2 and Q statistic are modified slightly from the decomposition as shown in
Eq. (1).

T2
i =

m∑

k=1

(1/λk)z
2
ik (2)

Qi =
p∑

k=m+1

z2
ik (3)

Decomposition of the Mahalanobis distance has a statistical meaning. Consider
Eq. (1). In the Mahalanobis distance D2, each minor PCS is divided by the much
smaller eigenvalue, respectively. However, the much smaller eigenvalues are not
so precise. This can lead to a much greater increment of type I error. On the other
hand, the Q statistic is not affected by the much smaller eigenvalues because it is not
Mahalanobis distance but Euclidean distance (see Nishina et al. 2011). Especially,
when the number of variables becomes very large, the Mahalanobis distance D2

faces singularity problems. T2–Q control charts overcome this problem (see Kourti
2005).

Similarly, decomposition of Mahalanobis distance D2 has a practical meaning.
The T2 and Q statistic have different roles in the process control, respectively. As
mentioned earlier, the T2 statistic consists of major PCS. This means that the T2

statistic can monitor usual process variation. Out of control in T2 charts indicates
that the usual process variation becomes large; however, at that time the correlative
structure does not change. On the other hand, the Q statistic can monitor unusual
process variation. Out of control in Q charts indicates that the correlative structure
changes. For example, process variation due to a parts deterioration is a usual
variation. Such a variation is monitored by T2 chart. Q charts have a role to control
other miscellaneous factors, which may make the correlative structure change.

In this chapter, we focus on monitoring and diagnosis of causal relationships
among variables. Therefore, in discussing hereafter, Q charts have an important role.
In the simulation study of this chapter, m is determined as follows:

m = arg min
k

{λk − 1.0 | λk ≥ 1.0} .

The control lines (the control limits and the center line) of T2–Q control charts are
given as follows:

Control limits of T2 charts:

UCLα = m(n + 1)(n − 1)

n(n − m)
Fα(m, n − m)

where Fα(φ1, φ2) is the upper 100α% percentile point of F distribution with
(φ1, φ2) degrees of freedom and n is the sample size.
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Center line of T2 charts:

CL = m(n + 1)(n − 1)

n(n − m − 2)
.

The statistic Q can be approximated to the standard normal distribution by trans-
forming to the statistic c as follows (see Jackson and Mudholkar 1979):

c = θ1
[
(Q/θ1)

h0 − 1 − {θ2h0(h0 − 1)/θ2
1 }]

√
2θ2h2

0

,

θi =
p∑

r=m+1

λi
r

(
i = 1, 2, 3

)
, h0 = 1 − (2θ1θ3/3θ2

2

)
.

Therefore, the control limits of Q charts using c statistic are obtained the same as X
control charts.

3 Proposals on Diagnosis

3.1 Isolation of the Unusual Variable

As mentioned earlier, the first step in the diagnosis of the source of causal
unusualness is to narrow down the unusual variables. We evaluate two methods,
that is, the contribution plots by Kourti and MacGregor (1996) and the MT method
by Tatebayashi et al. (2008).

3.1.1 Modified Contribution Plots

The contribution plots can be extracted from the underlying PCA model. As shown
in Eq. (3), the statistic Q consists of PCSs. The kth PCS of the ith sample (tik) can
be decomposed as follows:

tik = wk1xi1 + wk2xi2 + · · · + wkpxip ,

where xj (j = 1, 2, . . . , p) is the jth centralized (or normalized) variable and wkj

(k = 1, 2, . . . , p) is the element of eigenvector corresponding to the kth largest
eigenvalue λk. Therefore, the original contribution of the variable xj to the statistic
Q can be measured as shown in Eq. (4) (see Kourti and MacGregor 1996).

p∑

r=m+1

(wrjxj)
2 ( j = 1, 2, . . . , p) (4)
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Higashide et al. (2014) gave slight modification for the original contribution plots
as shown in Eq. (5).

Cj =
p∑

r=m+1

{
I(r)wrjxj

}2 (5)

I(r) =
{

1 if sgn(tr) = sgn(wrjxj)

0 if sgn(tr) �= sgn(wrjxj)
(6)

Equation (6) shows an essential point of the modification. This means that the degree
to contribution of xj, which is responsible for making the absolute value |tk| large,
is inflated.

3.1.2 Diagnosis of Variables by MT System

The diagnosis of variables by the MT (Mahalanobis–Taguchi) system has been
originally utilized as a method for selecting the variables so as to detect an unusual
condition with more sensitivity. In the variable diagnosis the method is utilized to
narrow down the unusual variable.

In this method, the orthogonal array with two factor levels is used. The
candidate variables are assigned on each column; for example, in the case of using
L8 orthogonal array and lining up four candidate variables x1, x2, x3 and x4 an
assignment is shown in Table 1. The level-0 means that the variable concerned is
deleted and the level-1 means vice versa; for example, the causal model supposed in
No. 7 experiment is that the variable x1 and x2 are retained but x3 and x4 are deleted.
However, we regard the average of the result of other seven experiments as the result
of No. 1 experiment.

The response is the Mahalanobis distance between the average of the usual
dataset and the ith sample, which indicates the out of control, as follows:

Di = (xi(J) − x̄(J))
′ S−1

(J) (xi(J) − x̄(J))

Table 1 Assignment to L8
orthogonal array for diagnosis
of variables

No. x1 x2 x3 x4

1 0 0 0 0

2 0 0 1 1

3 0 1 0 1

4 0 1 1 0

5 1 0 0 1

6 1 0 1 0

7 1 1 0 0

8 1 1 1 1
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where xi(J) and x̄(J) is the ith observation vector and the average of the data set
from the usual process, respectively; in addition the suffix (J) stands for “without
the J variable set corresponding to the level-0 in the orthogonal array.” S(J) is the
submatrix of S (covariance matrix of the usual dataset) without the J variable set.

As the result of the factorial effects, the variable, which has the largest factorial
effect, is regarded as the unusual variable of the effect side in the unusual causal
relationship.

3.2 Diagnosis of Unusual Causal Relationship

In our proposal for diagnosis of unusual causal relationship, the fundamental
analysis is the Mahalanobis distance between the average of the dataset under a
supposed unusual causal model, x̄(u), and the ith sample xi, which indicates the out
of control in Q chart:

Du = (xi − x̄(u))
′ S−1

(u) (xi − x̄(u)) . (7)

In the preceding step the unusual variable have been already isolated. In the next step
the unusual causal relationship should be isolated among the causal relationships,
which have the arrow line indicating the causality contained in the unusual variable
isolated in the preceding step. Figure 1 shows a causal model. In the case of Fig. 1,
if the isolated unusual variable is X4, then the causal relationships to become an
unusual candidate are α41, α42 and α43.

Now let the supposed unusual causal relationships be u and let the path coefficient
of the causal relationship be α. Based on Eq. (7), the following u∗ can be determined.
As the result, the causal relationship u∗ is isolated, that is, the unusual model with
the shortest Mahalanobis distance among the supposed unusual models is regarded
as the unusual causal relationship.

u∗ = arg min
u

[
min

α
(xi − x̄(α;u))

′ S(u)(α)−1 (xi − x̄(α;u))
]

Fig. 1 An example of causal
model
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4 Examination of the Proposed Method by Simulation

4.1 Simulation Models and Simulation Experiments

We suppose the causal model shown in Fig. 1 again. The model is very simple,
consisting of four variables; however, has the three kinds of causal relationships,
which are the direct effect, indirect effect and the pseudo effect. The structural
equations shown in Fig. 1 are as follows:

X1 = ε1

X2 = α21X1 + ε2

X3 = α31X1 + α32X2 + ε3

X4 = α41X1 + α42X2 + α43X3 + ε4

where αs and εs are path coefficients and random variables, respectively. Their
variances, Var(ε)s, are determined so that Var(X)s form a unit. The random numbers
are generated by NtRand of Mersenne twister. We suppose that one of the six paths
in the model changes to an unusual situation.

We examine the proposed method in unusual cases of the two patterns shown in
Table 2. As it is assumed that a unusual model has an unusual path coefficient, we
suppose the 12 unusual models shown in Table 2; for example, one unusual model
in the pattern 1 is that α21 = −2.1, α31 = α32 = α41 = α42 = α43 = 0.4. The pass
coefficients of the unusual models in Table 2 are set to be ARL � 4.0 of the Q chart.

Our simulation study is carried out as follows: the sample size for determining
the control limit, which is shown in Sect. 2, is 200. After constructing the control
limit, 200 data under a unusual model are generated. Whenever Q chart indicates out
of control, the unusual variable is isolated and then the unusual causal relationship
is isolated. This is a simulation set. The set is carried out in 100 trials.

Table 2 Unusual models in our simulation study

Path Pattern 1 Pattern 2

coefficient Usual model Unusual model Usual model Unusual model

α21 0.4 −2.1 0.6 −2.2

α31 0.4 −2.1 0.7 −1

α32 0.4 −2.1 0.4 −1.4

α41 0.4 −2.2 0.2 −2.7

α42 0.4 −2.2 −0.8 2

α43 0.4 −2.2 0.3 −2.9
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Let Ci and Di be the successful count of the isolation of the unusuality and
the count of searching the unusuality in the ith set of simulation, respectively. The
performance index, which is called the success rate hereafter, is

100∑

i=1

Ci

Di
(8)

where Di is about 50.

4.2 Comparison of Methods of Isolating Unusual Variable

As described in Sect. 3.1, we introduce two methods for isolation of an unusual
variable. One is the modified contribution plots and the other is the diagnosis of
variables by MT system. In this section we compare the performance of the methods.
The performance is measured as the success rate shown in Eq. (8).

The results of the simulation study (the success rate of the isolation) are shown
in Table 3. Table 3 indicates that the large difference of the performance appears
in two cases of pattern 2, in which α31 and α32 are unusual. The reason is that
the contribution plots are based on the correlation coefficient matrix. As known
well, the correlation does not necessarily represent the causality. Table 3 shows
that the performance of the MT system is not necessarily superior to the modified
contribution plots with all cases, but the MT system can overcome the weak point
of the modified contribution plots. We choose the diagnosis of variables by the MT
system.

Table 3 Success rate of the isolation of unusual variable

Pattern 1 Pattern 2

Unusual path Modified Modified
coefficient contribution plots MT system contribution plots MT system

α21 0.985 0.814 0.931 0.893

α31 0.950 0.985 0.249 0.939

α32 0.948 0.985 0.491 0.954

α41 0.874 0.993 0.957 0.960

α42 0.884 0.996 0.868 0.964

α43 0.848 0.993 0.945 0.977
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4.3 Performance of the Proposed Method

Based on the results of Sect. 4.2, we choose MT method as the method for isolating
an unusual variable. Table 4 shows the performance of the proposed method. The
performance index in Table 4 is the success rate of the isolation of the unusual causal
relationship in the cases of the twelve unusual models shown in Table 2.

Table 4 indicates that in the case of pattern 1 the success rates of the proposed
method are relatively high but the results of some models in the case of pattern 2 are
not so high. We examine the difference of the correlation coefficient matrix between
the usual condition and the unusual condition for an example with the unusual path
coefficient α43. The success rate of this case is lowest in all the unusual models
shown in Table 2. Table 5 shows the difference between the correlation coefficient
matrices.

Table 5 indicates that r14 (correlation coefficient between X1 and X4) is quite
different between the usual and the unusual as well as r34, although α43 is unusual.
It should be noted that this introduces the low success rate of the isolation of unusual
relationships. The procedure for proposed method consists of the two steps, the
isolation of the unusual variable and the isolation of an unusual relationship. As
shown in this case, the proposed method may not isolate an unusual relationship
and may simply show the priority order of the search. Even if the success rate of the
isolation of unusual relationship is not so high, the unusual variable can be isolated.
It is a remarkable property. In practice, after isolating an unusual variable, a method
to search for unusuality in the order of the path with the small value of the Eq. (9),

Table 4 Success rate of the
isolation of unusual causal
relationship

Unusual path
coefficient Pattern 1 Pattern 2

α21 0.814 0.893

α31 0.824 0.631

α32 0.828 0.639

α41 0.742 0.628

α42 0.756 0.842

α43 0.703 0.589

Table 5 Difference of the
correlation coefficient
matrices between the usual
and the unusual conditions
(upper: usual causality;
lower: unusual causality)

X1 X2 X3 X4

X1 1.000 0.600 0.940 0.002

X2 0.600 1.000 0.820 −0.434

X3 0.940 0.820 1.000 −0.168

X4 0.002 −0.434 −0.168 1.000

X1 X2 X3 X4

X1 1.000 0.600 0.940 −0.857

X2 0.600 1.000 0.820 −0.871

X3 0.940 0.820 1.000 −0.960

X4 −0.857 −0.871 −0.960 1.000
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Table 6 Success rate
including the second
candidate

Unusual path
coefficient Pattern 1 Pattern 2

α41 0.954 0.935

α42 0.958 0.913

α43 0.955 0.962

the Mahalanobis distance, is recommended.

min
α

(xi − x̄(u))
′ S(α)−1 (xi − x̄(u)) . (9)

Table 6 shows the success rate including the value to the second candidate by Eq. (9)
in the cases of α41, α42 and α43. The values indicate high rate. The result means that
the alternative method proposed above proposed is useful.

5 Conclusive Remarks

In this chapter, we have proposed the diagnosis method in applying the T2–Q charts.
In general, it is not easy to make a diagnosis even if the multi-variate control chart
indicates an out of control signal. Some methods have been proposed but the aim
of these methods is to isolate an unusual variable. In this chapter, we can propose
the diagnosis method with the aim of isolating an unusual relationship using the
Mahalanobis distance.

In near future, we will try to apply the our proposed method to the process control
of the facilities collection process such as the semiconductor process.
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Statistical Monitoring of Multi-Stage
Processes

Emmanuel Yashchin

Abstract In many complex processes, such as semiconductor manufacturing or
production of mass storage systems, a large number of variables are monitored
simultaneously. These variables can typically be impacted by several points of the
manufacturing process, necessitating efforts that include not only monitoring but
also diagnostics involving establishing change-points, regimes and potential stages
of influence. We discuss statistical methods used to handle such multi-stage data
and give examples of applying these methods in large-scale monitoring systems.

Keywords Average run length · Detection · False alarms · Statistical process
control

1 Introduction

In today’s applications of statistical process control one typically needs to handle
large amounts of information produced by complex industrial and business pro-
cesses. A number of publications address this aspect of process control, emphasizing
the need for advanced statistical techniques. For example, Capizzi (2015) discusses
the use of control charts in conjunction with variable selection methods. Woodall
and Montgomery (2014) discuss current methods and directions in conjunction
with large-scale monitoring applications, such as profile monitoring, health metrics
monitoring and spatiotemporal analysis. Shmueli and Burkom (2010) discuss
methods for detecting early outbreak of epidemics. Sparks (2015) discusses methods
of detecting changes in communication rates between parties of interest in social
networks. Duchesne et al. (2012) discuss the problem of image analysis and
monitoring in process industries. Golosnoy et al. (2011) discuss the problem of
detecting changes in weights of financial portfolio components. Yashchin (2012)
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describes a system for monitoring lifetime data and warranty data. Hryniewicz and
Kaczmarek (2016) describe an approach to monitoring short series of dependent
observations.

Every practical problem related to monitoring tends to have its own data
setup, models, analytic/graphical component and decision framework. The common
thread, however, is that methodologies that have proven statistical power tend to be
of special value in large-scale applications, since achieving a high signal-to-noise
ratio (or false alarm/sensitivity tradeoff) becomes imperative.

In this chapter, we discuss a large-scale monitoring system for multi-stage
processes. Consider, for example, a semiconductor manufacturing line. Over the
course of manufacturing (that can last several months), chips are processed as part
of wafers—only in the last phase of the process are wafers diced into individual
chips. Wafers are typically processed as parts of a lot (about 25 wafers per
lot), and lots begin their journey as a collection of raw wafers (basically, silicon
platters about 450 mm in diameter) and go through hundreds of operations, such
as reactive ion etch (RIE), semiconductor device building stages, oxide deposition,
chemical-mechanical planarization (CMP), rinsing, wiring, and multiple measuring
and testing steps. The objective of the process is to make sure that the product
characteristics (speed, reliability, thermal performance) are satisfactory and that the
yields are acceptably high.

In the multi-stage process, we collect very large amounts of data related to
various process stages, and one of the key issues is how to use this data to detect
unfavorable trends. For example, consider the clock speed of chips and suppose that
the target is 4 GHz. Many of the factors affecting speed are related to early stages of
manufacturing and device formation. However, measurements of chip clock speeds
are typically done at later stages; suppose that at some point we detected that the
prevailing clock speed is 3.5 GHz. At this point, some defective product is likely
to be present in the pipeline—so, it is very important to detect such a change as
early as possible. Generally, we need more than just detection, as a number of early
stages could be responsible for the drop in performance: we need methodology
that will help us diagnose the stage that is the most likely culprit. The concept of
timeslide analysis discussed in the chapter is the key instrument used in the problem
of detection and diagnostics. The proposed methodology can be used in conjunction
with other approaches and models for multi-stage processes, e.g. those described in
Shi and Zhou (2009).

In the chapter, we will also describe a system for analysis of multi-stage process
data, named QEWSV (Quality Early Warning System for Variables data). This
system can be viewed as a kind of a search engine that sifts through the data on
a periodic basis and selects stages and operations that merit engineering attention.
In Sect. 2 we introduce the main components of the data setup. In Sect. 3 we discuss
the basic system inputs and outputs. In Sect. 4 we discuss detection algorithms. In
Sect. 5 we discuss some of the alarm attributes produced by the search engine. In
Sect. 6 we discuss several operational and implementation issues.
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2 Variables, Operations and Timeslides

The QEWSV system is organized around three basic notions that are referred to
as Variables, Operations and Timeslides. The behavior of selected variables is
monitored based on acceptable and unacceptable characteristics of the underlying
process. These characteristics are converted to rules of the decision-making scheme
used to decide whether a variable is “flagged” or not. Operations refer to points
in the process that have a potential of influencing the stochastic behavior of the
variables and are thus considered as prime suspects in cases where variables show
unacceptable behavior. Timeslides are data structures that organize measurements
pertaining to a particular variable with respect to a given operation of interest.

2.1 Variables

In many applications, variables correspond to measurements taken at particular
points in the process (e.g., film thickness measurements in a process of semicon-
ductor manufacturing). These variables can be continuous, discrete or mixed—the
key assumption in QEWSV is that the variables are univariate. We will refer to these
variables in terms of a character string that consists of a letter “v” and a set of four
digits, e.g. v0001. The variables themselves can relate to process means, standard
deviations, quantiles, multivariate characteristics (e.g., correlation coefficients or
principal components), percentages of defective items and so forth. Associated with
a variable is a name represented by an alphanumeric string; in what follows, this
name is referred to as “Meas_Name”. Furthermore, associated with a variable is
a set of characteristics that establish what constitutes acceptable or unacceptable
stochastic behavior, as well as additional quantities that are used in decisions on
whether this variable is to be flagged. Variables typically correspond to Items that
are measured. For example, a measurement of film thickness is usually taken on a
semiconductor wafer—so, items corresponding to this particular variable are wafers.

In this chapter, we assume that the variables are constructed in a way that the
Cusum-Shewhart procedure for detection of unfavorable changes can be relied upon
to provide sufficient statistical power when detecting a change in the variable’s
mean from its acceptable region to the unacceptable region. This assumption holds,
for example, for independent and identically distributed (iid) random variables
belonging to the exponential family of distributions, by virtue of linearity of
statistics corresponding to likelihood ratio tests, see Moustakides (1986). In most
practical situations, one can transform variables in such a way that the above
assumption is satisfied. Even when variables show serial correlation, it is often
possible to transform them (or define them) in a way that this assumption holds. In
what follows we assume, that all the necessary data pre-processing has been done
and thus application of the straight Cusum-Shewhart detection scheme is justified.
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2.2 Operations

In a typical data generating process, such as manufacturing process, variables are
associated with points in the process that might influence their behavior. We refer to
these points as “Operations”. For example, consider the process of semiconductor
manufacturing and a variable “Avg_Speed” that measures the average speed of
a set of chips related to a given production lot. There are a number of points
in the manufacturing process where “Avg_Speed” can be affected: e.g., at the
point where a particular insulating film is deposited, at the point where metal wires
connecting circuits are produced—and even at the point where the measurements
of speed are taken (malfunctions of measurement systems are a real possibility in
many processes). Our focus is on the set of Operations that can potentially affect
“Avg_Speed”—this set must be pre-specified. In some cases, the set could cover
hundreds of physical operations or measurement processes—but typically there will
be just a few operations of real interest for any given variable under consideration.

A given Operation is typically associated with a set of Tools that also play a
role in QEWSV processing. For example, the aforementioned process of depositing
an insulating film can be performed in one of several tools or chambers of tools
operating in parallel. For a given value of a Variable and a given Operation, it is
assumed that one (and only one) of the Tools was associated with this value. The
value of a Variable is related to an Item on which the measurement was taken—
and this Item could be processed no more than by a single tool during a particular
Operation.

When an Item is processed by a Tool in a course of an Operation, we record a
timestamp that plays a key role in QEWSV processing. The timestamp corresponds
to a moment in time, recorded up to the desired degree of accuracy. Notice that the
timestamp has nothing to do with variables—it is a characteristic of an item with
respect to a particular tool performing the operation.

2.3 Timeslides

Consider a given Variable and a set of Operations that are deemed to be of potential
importance with respect to it. For every Operation, we can order the values of this
Variable in accordance with timestamps pertaining to Items recorded for Tools of
this Operation. This type of an ordering is called a Timeslide. The main value of
a Timeslide is related to its ability to assist in detection of changes, visualization
of these changes and diagnostics. For example, if a particular tool has a negative
impact on a given variable, and we order the values of the variable in accordance
with processing time by the said tool, then we are likely to see some patterns. In
particular, one could find that all variable values corresponding to items processed
prior to a certain point in time are much higher than values corresponding to items
processed later. This type of problem signature can be detected through QEWSV
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analysis, leading to a flagged condition. Timeslides are typically tool-specific; it is
quite possible that only one of the tools of a given Operation is causing problems—
and we will rely on a Timeslide for this tool to detect that. If a particular operation
is unrelated to changes in the variable of interest, then the corresponding Timeslides
are not likely to show any signatures, and thus these Timeslides are not likely to be
prioritized highly by the QEWSV analysis. Our focus on Timeslides reflects the fact
that in a typical monitoring system, one is not only interested in detecting issues
affecting the monitored variables, but also in diagnostics.

3 Multi-Stage Data Flow

In this section, we discuss an example related to monitoring characteristics of
tape storage devices, where wrap loss measurements describe properties of the
magnetic tape observed in performance tests. Consider the situation where three
variables are of importance: v7022, v7023 and v7024 (called “Wrap_loss_2”,
“Wrap_loss_3” and “Wrap_loss_4”, respectively) and these variables are
expected to be influenced by operations named Oper8002, Oper9050 and Oper9070.
We will typically be able to establish the data structure of type shown in Fig. 1. A

Fig. 1 Data structure used in multi-stage process monitoring as compiled at the time of data
processing, Tp. For the sake of brevity, we are not identifying tools that were used in the operations
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row of this data structure represents a unit of a product (for example, a wafer in
a semiconductor manufacturing context). The row gives the values of all relevant
variables available for the unit at the time of processing. It also gives timestamps
that are associated with the relevant operations. In what follows, we refer to the
time of data processing as Tp.

For example, at the time of processing Tp, the unit “Lot01_U1” accumulated
enough data to provide the values 0.81 and −0.85 for the variables v7022 and
v7023, but not enough data for v7024. This unit “saw” all three operations, and
the timestamp associated with the operation Oper9070 was 2016-06-21-15:13. In
contrast, the unit “Lot02_U2” (row 6) had enough data to provide the value
v7024 = −3.11 (but not v7022, v7023)—and this unit did not (maybe, yet) go
through any of the three operations of interest. Note that the data structure is
generally richer than that shown in Fig. 1: for example, it also identifies the tools
that were associated with the three operations. In particular, Oper8002 is typically
associated with tools of type “GHBx” (where x is a digit), Oper9050—with tools of
type “GHMx” and Oper9070—with tools of type “GHUx”.

Now let us prepare, based on the data in Fig. 1, timeslides for the variable v7022
(see Fig. 2). All the timeslides in Fig. 2 are sorted by the timestamp, as required.
Note that the top two timeslides (against Oper8002 and Oper9050) have the same

Fig. 2 Timeslides for the variable v7022 with respect to tools of Oper8002, Oper9050 and
Oper9070 as compiled at the time of data processing, Tp based on data in Fig. 1. The tools involved
in the operations are shown in the timeslides. Note that timeslides are always sorted by timestamp
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seven values, but they are sorted in a different order. Two of these values (0.81 and
0.84) are also present in the bottom timeslide of v7022 against Oper9070.

As we will see from Sect. 4, the target mean for v7022 is 0.8 and standard
deviation typically observed for this variable is σ = 0.04. Let us assume that (a)
the distribution is Gaussian and (b) values of the mean that differ from the target
by s or higher are considered unacceptable. Now let us produce control charts (say,
of Cusum type) for all three timeslides. Then the top two timeslides are likely to
produce alarms (i.e., get “flagged”), and the bottom timeslide will not show any
alarms. Our immediate conclusion will be that there is a problem with the variable
v7022—and this problem merits engineering attention. However, we can say more
than that, based purely on the timeslide data analysis. Consider the top timeslide:
it starts with values (0.81, 0.84) which are in line with the target behavior—but the
next five measurements (0.78, 0.76, 0.74, 0.75, 0.73) are clearly more compatible
with out-of-control regime. So, this timeslide indicates crisply that the tool GHB5 of
Oper8002 might be considered the primary suspect: it looks as if something might
have happened to (or around) 2016-06-15-14:22 and 2016-06-15-16:16. In contrast,
the signal in the second timeslide is considerably weaker, as high and low values are
intermixed in the range of timestamps (2016-06-17-04:53,2016-06-17-06:42) of the
tool GHM1. Finally, the third timeslide does not provide any evidence that the tool
GHU2 is related to the detected unfavorable trend. The above argument illustrates
usefulness of timeslide analysis for diagnostics. The main role of QEWSV is thus to
provide a framework for detection and diagnostics based on analysis of timeslides.

3.1 The Process Inputs

The key part of the analysis is to make sure that data structures of type shown in
Fig. 1 are, at least in principle, constructible based on the data in the multi-stage
process. This will ensure that any plausible unfavorable trends can be detected by
compiling a rich enough collection of data sets of this type and related timeslides.
Let us focus on a given segment of data flow (for example, that limited to
variables and operations discussed above. We can then specify, for example, that
the timeslides “Oper8002 vs v7022”, “Oper9050 vs v7022” and “Oper9070 vs
v7022” are present in the list of requested timeslides—and this will ensure that
the analysis of type shown above will be performed. In principle, one could include
all the possible timeslides in the list—however, in practice this list will be limited
to combinations that are considered relevant. For example, in the semiconductor
manufacturing situation, it would make no sense to include timeslides of clock speed
measurements against operations related to dicing of wafers into chips because there
is no plausible way in which these operations could be related to slower clock
speeds.

Next, one needs to ensure that the actual timeslides are present at the time
of analysis (they can be either pre-compiled en masse or produced on demand).
Finally, for every segment of the manufacturing process we also need to specify the
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Fig. 3 A typical parameter file used in QEWSV analysis. Column B contains parameters for the
variable v7022. We use these parameters to analyze timeslide of the variable v7022 with respect to
Operation 8002

Fig. 4 Rows of the parameter file

parameters that govern detection and analysis. An example of this file is shown in
Fig. 3. The columns of this file are related to monitored variables for which timeslide
analysis is required. The upper-left cell of the file contains the ID of the analysis (i.e.,
ID of the parameter file) and the first row contains the names of the variables. The
other entries in the parameter file columns are described in Fig. 4.

Consider, for example, the column G of the parameter file shown in Fig. 3.
This column specifies control characteristics for the variable v9570 (named
Wrap_Loss6). The value of Sigma that the designer wishes to use for this variable
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is 0.03 and the process should ideally be centered at zero. However, if the process
mean deviates from zero and settles at the acceptable level of 0.05—this deviation
is not considered a reason for concern. A signal triggered under these conditions
would be considered a false alarm. If, however, the process level (i.e., population
mean) settles as far as 0.1 or beyond—this is considered unacceptable, and we
expect to detect such a condition as quickly as possible. Between 0.05 and 0.1 lies
the “grey zone”: alarms will tend to be relatively rare when the mean is near 0.05
and they will become increasingly likely when the mean gets close to 0.1. The
detection scheme is one-sided: we are only interested in detection of the process
changes up. The rate of false alarms of 1000 (default value) indicates that for the
process level 0.05 (i.e. the edge of the acceptable zone) the rate of alarms should be
1 in 1000 points.

Now consider the column D (variable v7024 named Wrap_loss3). This
variable has assigned Sigma of 0.0003 and Target = 0. The process level of −0.0003
is considered acceptable, and the level of −0.0006 is considered unacceptable. Since
we require one-sided control for this variable, the configuration of acceptable and
unacceptable levels indicates that we would like to detect the process level changes
down.

Finally, consider the column E (variable v7025 named Wrap_loss4). Its
assigned Sigma is 0.2 and Target = 1.2. The process level of 1.21 is considered
acceptable (i.e., there is a very small amount of “wiggling room”) and the level
of 1.26 is considered unacceptable. Since we are requesting two-sided control, the
levels of mean between 1.2 and 1.2 − 0.01 = 1.19 are also considered acceptable,
and the levels of mean below 1.2 − 0.06 = 1.14 are considered unacceptable, by
symmetry.

The outlined design only handles the case of symmetric two-sided monitoring;
if asymmetric monitoring is required, we will define, in the parameter file, two
identically valued variables (with different names) and then apply one-sided upper
and lower detection schemes to these variables.

3.2 Outputs

As a result of QEWSV processing, we obtain information on variables (timeslides)
that are flagged as well as alarm attributes that are useful in diagnostics and alarm
prioritization. In addition, the output contains supporting information, including
graphics that help one to further analyze data involved in monitoring or prepare
reports.

One of the key output files is the analysis logbook file; it contains lines
corresponding to analyses performed, one line per analysis. As noted earlier,
QEWSV operates as a search engine that sifts through all timeslides specified for
a run. The number of timeslides can run into millions, considering the fact that a
given variable can be timeslided against hundreds of operations that can potentially
(and mostly negatively) affect the distribution of its values. The logbook records
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Fig. 5 The analysis logbook. A total of 12 analyses were performed. Three timeslides, corre-
sponding to red boxes in column D, are flagged (Color figure online)

give summaries of timeslide analysis (one row per timeslide) and the logbook is the
primary driver of the user interface, such as dashboard or list of timeslides flagged
during the course of the search engine run. The logbook corresponding to example
discussed earlier is shown in Fig. 5. In this case, QEWSV performed 12 analyses.
Consider the first analysis, based on timesliding the variable v7022 with respect to
the operation 8002. One can see that there are two tools involved in the operation
8002: GHB1 and GHB5. The first line of the logbook file is related to analysis of
GHB1. The column D contains the return code of the analysis: a negative return
code indicates that the analysis was flagged. The value −2675 of the return code,
also marked as LastBad, gives the number of minutes that elapsed since the last
data point that can be attributed to unacceptable process level; this amounts to 1.86
days. The value 7.442 in column E is the severity of detected deviation from the
acceptable process behavior. This is a logarithmic measure, and one can think of it as
a kind of a “Richter scale”. The value −387 (2nd return code, marked as Bad2End)
gives the number of minutes elapsed between the timestamp corresponding to the
last bad point and the timestamp of the last data point. The value −1 would have
indicated that the detected bad condition persisted till the end of the data in the
timeslide—however, in our case it appears that the data points observed within the
last 387 min of the data showed behavior consistent with the acceptable level. The
columns G-I tell us that the data consisted of 67 points, and that the mean and
standard deviation of these points were 0.774 and 0.0361, respectively. The columns
J and K are related to forgiveness conditions (see Sect. 5.3). The column K indicates
that the last five data points supported the evidence that the process might have
returned to acceptable behavior. However, 1 in column J tells us that the degree of
forgiveness (0–9) is very low. The value 62 in column L gives us the index of the
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Fig. 6 Columns of the logbook file shown in Fig. 5

last data point consistent with unacceptable behavior. The value −1 in column M
tells us that the last bad condition was related to the process mean being too low.
Note that the analysis could detect several bad conditions present in the data, and
the severity index of the analysis would reflect that. However, the focus in columns
J-M is on the nature of the last bad condition, as it is likely to be most relevant as
far as diagnostics, prioritization or corrective actions are concerned.

In the next section, we will show supplemental information (chart, table)
pertaining to this analysis. The summary of fields of the logbook file is given in
Fig. 6.

Information contained in the logbook file is sufficient for many objectives of
monitoring: for example, it can be used as a basis for multi-layer dashboards or
displays with sortable columns. In essence, the subset of flagged rows of this file can
be viewed as an output of a search engine that can be further manipulated in order
to establish priorities. These priorities will depend on the role of the analyst. For
example, people responsible for assessing a financial impact of flagged conditions
might be more interested in cases where most severe violations of acceptable
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behavior have been detected. On the other hand, people responsible for process
control might be most interested in conditions where the severity is low but the
RC is close to −1, reflecting “freshness” of the detected bad condition. In the initial
phases of the developing problem, we are not likely to see a very severe violation of
the acceptable behavior. The severity index of such condition is likely to be low—yet
sufficient for flagging the analysis, placing the detected weak signal on the “radar
screen”. Focusing on “fresh” signals would enable one to spot such brewing bad
conditions early. A flagged analysis with high severity (even with RC close to −1,
indicating ongoing bad behavior) is likely not to be new—such results could persist
for a while until the effects of corrective actions become sufficiently transparent.

It is also important to keep in mind the timesliding dimension of the analysis. As
noted earlier, a given variable can participate in a number of analyses (timeslides)
corresponding to different operations of potential impact. If the data for this variable
contains a sufficiently high number of points consistent with the unacceptable
process level, then this variable will end up flagged for several (and sometimes
all) timeslides. Under such conditions, we might need to do some detective work to
establish the relative degree of importance of the flagged timeslides for this variable,
and this is where other alarm attributes can be handy. Of special importance to the
problem of timeslide comparison are also visualization techniques—and this is why
supplemental information is provided for every flagged condition. This information
consists of chart/table pairs, and we describe it next. Let us explore a particular
chart/table pair corresponding to the variable 7022, see Figs. 7 and 12. The alarm
attributes corresponding to this flagged analysis are given in line 1 of the logbook file
and discussed above. The parameters used in the analysis are given in the Column
B of the parameter file, see Fig. 3.

The plot contains of a pair of horizontal strips: the upper strip gives the data plot
and the bottom strip gives the corresponding evidence chart. On the top plot, the
horizontal lines are shown for the Target (black) and for the unacceptable levels
(dashed blue). The “Rng” in the plot header gives the range of timestamps for
the 67 points included in the analysis. In the upper-right corner is the date of the
analysis. The x-axis gives indices of points, and further information about the points
is available in the accompanying table, see Fig. 12.

The bottom plot gives the two-sided Page’s (Cusum-Shewhart) chart. We call
it the Evidence Chart. The term “Evidence” helps users who are not familiar with
the Cusum Technique to understand the meaning of the chart: when the data is
explained better by the acceptable process level than by the unacceptable level, the
Evidence trajectory will take on values near zero. When the data is better explained
by the unacceptable level, the evidence trajectory will take off towards the threshold
(signal level). A horizontal slope of the trajectory indicates that the data is equally
consistent with both acceptable and unacceptable levels. The upper part of the chart
is responsible for detecting changes of the process level up, and the lower part is
responsible for detecting changes down. We found that users who absorb just this
basic information are able, after some experience, to interpret the charts correctly.

We can see that an alarm was produced by the lower evidence chart. The severity
of the detected condition (7.442) is shown in the footer line of the plot and the last
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Fig. 7 Timeslide of v7022 with respect to the Operation 8002. Only the subset of data correspond-
ing to the tool GHB1 is used in the analysis. The data set contains 67 points. The last bad point
(no. 62) is marked by the dashed vertical line. The horizontal lines on the top plot correspond to
the target and unacceptable levels

bad point (No. 62) is marked. Therefore, only 67 − 62 = 5 last points provide
information on the degree of forgiveness, as reported in the first line of the logbook
file, see Fig. 5. The timestamps of points 62 and 67 are 2011-06-30-14:11:30 and
2011-06-30-20:38:28; they are separated by 387 min—this is also reported in the
logbook file (Col. F). Note that the acceptable/unacceptable levels (see bottom
line of the plot) are represented in terms of deviation from the Target: according
to the v7022 column of the parameter file, the acceptable/unacceptable levels of
the process mean are 0.8 and 0.85, respectively—so the acceptable/unacceptable
deviations from the Target are 0 and 0.05.

4 The Detection Algorithms

Consider a data set X1, X2, . . . , XN consisting of N points and the problem of
detecting unacceptable deviations in the underlying process mean. Based on the
“Type_of_Control” setting in the parameter file (Fig. 3), we apply either a one-
sided or two-sided detection algorithm.
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4.1 One-Sided Detection Schemes

Denote the acceptable and unacceptable levels of the underlying process mean by
μ0 and μ1, respectively. Let us assume that our task is to detect process changes up
(i.e., μ0 < μ1). In such case, we should specify Target < μ0, i.e., the acceptable
level must be closer to the Target than the unacceptable level. Let us transform the
data process to the process of control scheme values S0, S1, . . . , SN in the following
way:

S0 = 0, Si = max [0, Si−1 + (Xi − k)], i = 1, 2, . . . , N (1)

where

k = (μ0 + μ1)/2. (2)

As mentioned in Sect. 3.2, in QEWS modules, we refer to the set Si, i =
0, 1, . . . , N as the Evidence Chart. In the literature, the process Si is known as
the one-sided (upper) Page’s scheme, see Hawkins and Olwell (1998). Since it can
be viewed as representation of the degree of evidence that the process is better
explained by the unacceptable level than by acceptable level, here and in what
follows we will refer to Si as “Evidence”, e.g. see the y-axis label “Evidence” in
Fig. 7.

A timeslide represented by a data set Xi, i = 1, . . . , N is flagged if for some i the
value of the scheme (1) exceeds a threshold h. The value of h is selected so as to
achieve a pre-specified rate of false alarms defined as “False_Alarms_Rate”
in the parameter file, see Fig. 3. This value is the on-target Average Run Length
(ARL0). It is computed under the assumption that the process mean is μ0 and that
the process standard deviation is equal to Sigma specified in the parameter file.

Note that as the length N of the data series increases, the probability that the
corresponding scheme flags this series increases as well. For example, if ARL0 =
1000 and our data series (timeslide) is of length N = 2000, then the probability
of the analysis getting flagged is approximately 1 − exp [−(1/1000)*2000] = 1 −
exp[−2] = 0.86, i.e., quite high. Therefore, if it is known a priori that length of
timeslides typically encountered in the analysis is around 2000, then the choice of
ARL0 = 1000 is unsuitable. Generally, it is a good policy to select ARL0 at least
50× the expected window size N; in this case, the false flagging probability per
analysis is about 1 − exp[−1/50] ≈ 1/50 = 0.02.

Once the value ARL0 has been established, the corresponding value of the
threshold h can be obtained by solving the equation

ARL(h|k, μ0, s) = ARL0, (3)

where ARL(h|k, μ0, s) is the theoretical value of the Average Run Length as a
function of h, computed under the assumption that the scheme (1) is applied to
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the data, the mean of the data is at the edge of the acceptable region (i.e., μ0) and
its standard deviation is s (i.e., the nominal Sigma, see Fig. 3). Equation (3) can
be solved using the Markov Chain modeling of Cusum-Shewhart schemes, e.g., see
Yashchin (1985). However, in many cases one can make additional assumptions that
(a) the data sequence Xi is Gaussian and (b) its terms are independent and identically
distributed. In such cases, we can also use the approximation

ARL(h|k, μ0, s) ≈ 2h̃2 ∗ 1

(2a)2 [exp(−2a) − 2a + 1] (4)

where

h̃ = h/σ + 1.16, a = −h̃ ∗ (k − μ0)/σ, (5)

motivated by the Brownian Motion approximation for the Cusum process, e.g., see
Bagshaw and Johnson (1975) and Siegmund (1985).

Finding h enables one to establish the primary detection rule. However, in
practice we need supplemental rules that enhance our ability to detect very large
changes quickly. As noted in Hawkins and Olwell (1998), this can be achieved by
introducing a supplemental Shewhart’s limit c and flagging the analysis if Xi > c
for some i . The value c used in QEWSV analysis is chosen based on the equation

c = k + ca (6)

where the value ca is chosen so as to have a minimal impact on the nominal false
alarm rate. In particular, the decrease in ARL0 caused by the additional signal
criterion is about 5%.

One can see that use of Cusum-Shewhart methodology here is specific to the
problem of timeslide analysis. In many applications of the Cusum technique, one
can preserve the state of analysis in terms of the scheme values: at the next time
point of analysis, it is only necessary to update these values using the new data. In
contrast, new data in timeslides can appear anywhere in the time series, as sorting
can re-shuffle the data points in accordance with the new timestamp information.
Therefore, the whole data set typically needs to be re-analyzed from scratch at every
time point of analysis.

An example of the upper scheme for the variable v9570 (timeslided against the
operation 9050, tool GHM3) is shown in Fig. 8; the parameters of the monitoring
process are shown in Fig. 3, col. G.

4.2 Lower and Two-Sided Detection Schemes

In case of one-sided control with μ0 > μ1, we are interested in detecting changes
down. Since the problem of detection of change in the sequence {Xi} down is
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Fig. 8 Timeslide of the variable v9570 with respect to the Operation 9050 (upper scheme). Only
the subset of data corresponding to the tool GHM3 is used in the analysis. Parameters governing
the analysis are shown in Fig. 3, col. G

equivalent to the problem of detection of changes in the reflected sequence {−Xi}
up, the corresponding one-sided lower detection scheme can be defined as follows:

S−
0 = 0, S−

i = max [0, S−
i−1 + (−Xi − k−)], i = 1, 2, . . . , N (7)

where

k− = −(μ0 + μ1)/2, (8)

i.e., the reference value k− is also defined in terms of the reflected sequence. One
can see that the lower scheme is also non-negative, so that the threshold h− ≥ 0 is
applied in order to decide whether the analysis is to be flagged. The supplemental
Shewhart’s limit c− is defined automatically, in a way similar to (6). In practice,
however, it is often convenient to represent the lower scheme with a negative y-axis,
effectively plotting the reflected values of the scheme, see Fig. 9. This figure shows
the timeslide for the variable v7024 with respect to the operation 8002, tool GHB1;
the corresponding parameters are shown in Fig. 3, col. D.

Two-sided schemes. Two-sided monitoring is implemented as a combination of
upper and lower Page’s schemes.
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Fig. 9 Data and lower Page’s scheme plots corresponding to variable v7024 with respect to the
Operation 8002, tool GHB1

5 Alarm Attributes

In the wake of an alarm (flagging) event, it is important to provide alarm attributes
to facilitate diagnostics and alarm prioritization. Accordingly, the logbook file
(Fig. 5) gives a number of fields that serve this purpose. In this section, we describe
algorithms related to the three main attributes: severity, last good period and
forgiveness.

5.1 Severity

Severity reflects the degree of deviation from acceptable process conditions detected
over the course of analysis. This attribute consists of two components: (a) severity
associated with the maximal value of the Page’s scheme (i.e., Evidence) achieved
in the run and (b) severity based on the end value of the Evidence trajectory. First,
consider a one-sided scheme Si computed using (1) and values X1, X2, . . . , XN of
the monitored variable. Denote S = max(S1, S2, . . . , SN).

The statistic S can be used as a basis of a test that the process mean remained in
the acceptable region throughout the process. Let s be the value of S observed in the
run. Then Sev1, the first component of severity, is defined as a base-10 logarithm of
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the test p-value:

Sev1 = −ln10[Prob{S > s|N, s, μ = μ0}] (9)

Similarly, let sN be the end value of the evidence trajectory observed for the data
set. Then Sev2, the second component of severity is related to the p-value of the test
based on SN ,

Sev2 = −ln10[Prob{SN > sN |N, s, μ = μ0}]. (10)

This test puts emphasis on the last portion of the data set. The combined severity
Sev is a function of the individual severities; for example, one can use the average

Sev = (Sev1 + Sev2)/2. (11)

It is this measure of severity that is shown in tables and plots of this chapter.
The exact computations of severity components are quite complex; for the first

component, we can use the approximation

Prob{S > s|N, σ, μ = μ0} ≈ 1 − exp

[
− tN

ARL(s|k, μ0, σ )

]
, (12)

computed based on formulas (4)–(5) with the coefficient t = 1 in the above formula.
For the second component, we can use the approximation

Prob{SN > sN |N, σ, μ = μ0} ≈
1 − max

{
0, 1 − t ∗ exp

[
−
(

2(k−μ0)
σ

) ( sN
σ

+ 0.65
)]}

(13)

computed based on Brownian Motion approximation to the distribution of the
endpoint of Evidence trajectory (e.g., see Cox and Miller (1977)) with the continuity
correction. The value t = 1 is used in (13), as in the earlier formula.

For lower schemes one can use the same formulas: as noted earlier, these
detection schemes can be treated as instances of upper control schemes applied
to reflected values of the variable. For two-sided schemes, we define the values
S and SN as maxima of the respective values for one-sided schemes, e.g., S =
max{S(upper), S(lower)}. The severity for two-sided schemes is computed based
on (9)–(11), with the value t = 2 used in formulas (12)–(13).

5.2 Last Good Period

In general, severity by itself is not sufficient to decide on how to prioritize a flagged
analysis. The fact that the deviation from the acceptable process level is severe does
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not tell us, for example, how long ago were bad trends last seen in the data, i.e.,
how recent was the last detected alarming condition. In order to find the “last bad
point” corresponding to the last unfavorable data regime, we use the procedure that
inspects segments of data starting from the last point and going progressively deeper
into history. For example, just an examination of the last point could lead one to a
conclusion that the process level is unacceptable at this point, effectively terminating
the search. On termination, the search will yield the “Index of the last bad point”
(see Fig. 5, Col. E and Fig. 6).

For a one-sided (upper) scheme, the search returns a window of depth M
corresponding to indices ranging from i = N − M + 1 to N if a window of depth
M0 > M can be identified for which each of the following four conditions is met:

1. Starting from zero at time i0 = N − M0, the scheme of type (1) does not exceed
the threshold h that is used for scheme flagging;

2. Starting from zero at time i0 = N − (M0 + 1), however, the scheme (1) does
exceed the threshold h.

3. The maximum value of the scheme (1), when started from zero at the index i0 =
N − (M0 + 1) is achieved at time imax = N − M.

4. For none of the last M points was the Shewhart’s supplemental criterion
triggered, i.e., Xi < c for every i = N, N − 1, . . . , N − M + 1.

Computations for a one-sided lower case are analogous. For a two-sided case, we
first establish the type of condition associated with the last bad regime. This is
achieved by examining the values of the scheme and information about the indices
for which either primary or supplemental criteria exceeded respective thresholds.
Once we know, for example, that the last bad condition was associated with
abnormally high process levels, the last bad point can be established via analysis
of the one-sided (upper) scheme, as described above.

The window M obtained via the above algorithm is referred to as the length
of the last good period (LGP). This value can be inferred from the column in the
logbook file that gives the index of the last bad point imax. and the column “Npoints”
that gives the number of points in the series. For example, for the first row of the
logbook file (v7022 vs Oper8002, Fig. 5) the number of points is 67 and the index of
the last bad point is 62; therefore, the last good period consists of M = 67 − 62 = 5
points.

The LGP plays a critical role in alarm prioritization. For example, in Fig. 10
we show a display of flagged timeslides for the segment of a semiconductor
manufacturing line. The cases (rows) of the table can be rank-ordered by alarm
attributes, and this table is ordered by severity. Such an ordering might be of
importance to people dealing with financial impact of out-of-control conditions:
indeed, high severity signals are usually associated with more severe financial
consequences. Moreover, severity is one of the factors helping one to identify the
operations/tools that are more likely to be the culprits or are, in some sense, “close”
to the likely culprits. On the other hand, people dealing with early warning are more
likely to rank order the flagged timeslides by the return code (named “days ago”
in Fig. 10) or by the LGP. Indeed, a freshly emerging unfavorable condition is not
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Fig. 10 Display of selected timeslides (i.e., those that got flagged) in the segment of a semicon-
ductor manufacturing line

likely to be of high severity—however, alarm attributes like return code or LGP
(possibly, jointly with forgiveness factors defined in the next section) will typically
identify such a condition as “fresh” and ongoing.

5.3 Forgiveness Criteria

Even in cases where there is some history suggesting that the process level might be
returning to the acceptable region, there is still a question on the statistical strength
of the evidence. The forgiveness index enables one to judge the degree of statistical
significance in the observed “return to normal” process. Note that dashboard-level
decisions on turning off alarm lights will typically take the forgiveness index into
account—however, information that is external to QEWSV might also play an
important role.

Forgiveness attribute of a flagged analysis is governed by two parameters
described below. In general, degree of forgiveness depends on the amount of
evidence that the process mean has returned to a level that is considered satisfactory.
This level is governed by δ ∈ [0, 1]. The default level is δ = 0.5. The forgiveness
level μ0δ for a one-sided (upper) control scheme is defined as follows:

μ0δ = μ0 + δ(k − μ0), (14)

where k is the reference value (2). Selection of δ = 0 would require the data following
the last bad point (as defined in Sect. 5.2) to support strongly the hypothesis that the
process mean μ has settled at μ0 or lower. Selection of δ = 1 leads to a weaker
requirement: the data needs to support the hypothesis μ ≤ k at a high level of
statistical significance.

The strength of evidence that μ ≤ μ0δ is measured in terms of the “return” level
of confidence (1 − εr), which is the second parameter governing forgiveness. Its
default value is 0.95, i.e., εr = 0.05.
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Based on the LGP value M obtained in Sect. 5.2, we compute the scores

Zm = X̄[m] − μ0δ

σ/
√

m
, m = 1, 2, . . . , M (15)

where

X̄[m] = XN + XN−1 + . . . + XN−m+1

m
, m = 1, 2, . . . , M (16)

Let us denote the corresponding p-values p[m] = 	(Zm), m = 1, 2, . . . , M (	 is
the standard normal cdf) and by m∗ the value of m that maximizes p[m] (i.e., the
window of the worst observed significance). The value 9 of the forgiveness index
is returned if both p[M] < εr and p[m∗] < 0.5, i.e., not only is the estimate of the
process mean based on the LGP value M in the acceptable domain μ ≤ μ0δ with
high degree of confidence, but also every sub-segment of m last points supports the
hypothesis that the process level has “returned to normal”, at least to some degree.
The value 8 is returned if p[M] < εr, but p[m∗] ≥ 0.5, i.e., the overall evidence
for the “return to normal” hypothesis is strong—however, there exist sub-segments
which do not support it strongly. The summary of the forgiveness indices is given in
Fig. 11.

Forgiveness indices for the one-sided lower case are computed in a similar way.
In the case of two-sided detection scheme, one needs first to establish the type of
condition associated with the last bad regime, see the end of Sect. 5.2. Once we know
the nature of the last bad regime (i.e., whether it is associated with unacceptable
changes in the process level up or down), we can compute the forgiveness index
based on the corresponding one-sided detection scheme.

Fig. 11 Values of the
forgiveness index returned by
QEWSV analysis. Note that
the value 0 is also returned in
cases when the corresponding
analysis was not flagged (i.e.,
forgiveness is not needed)
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Fig. 12 Output table accompanying the plot in Fig. 7
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6 Discussion

Change detection techniques based on Likelihood Ratios are most promising in the
modern high-volume and high-intensity data environments. Of special importance
is the Cusum-Shewhart methodology, which provides high statistical power while
maintaining good designability and interpretability. In our experience, these prop-
erties are highly valued by the users. Over the years, several large-scale systems
based on use of this methodology were deployed in IBM, the earliest one described
in Yashchin (1985). These systems were used not only for manufacturing operations
(semiconductors, storage, personal systems, servers) but also for business processes
such as finance, pension fund management and investment portfolio monitoring,
e.g., see Philips et al. (2003).

In this chapter, our primary focus is on statistical methodology used in con-
junction with multi-stage process data. In practice, management of EWSs is much
more complex; it requires substantial analytics and data-handling capabilities that
we could not describe in detail. We refer the readers to Baseman et al. (2010), Civil
et al. (2013) and Negandhi et al. (2015) for information related to implementation
and system properties.

In many implementations, the issue of outlier management is of critical
importance. We found it useful to address the outlier issue prior to submitting the
data to the search engine. The robustness issue is also very important: one needs
to be well prepared to handle situations when the assumptions outlined in Sect. 2
cannot be justified. Some forms of assumption violations can be accommodated
through manipulation of process parameters. For example, when a moderate (and
known) amount of serial correlation is present, one could get away with simple
adjustment of the acceptable false alarm rate in the parameter file (see Fig. 3).
Effects of other types of violations, e.g., some skewness or presence of discretized
data instead of the assumed continuous data, can be ameliorated by manipulating
Sigma in the parameter file. In general, however, one needs to be ready for applying
transformations and running timeslide analysis in the transformed space.

Composition of the QEWSV engine output files, including logbook, is another
important implementation issue. For example, in some applications one could
prefer reporting individual measures of severity (9)–(10) instead of the combined
measure (11). The engine must provide enough attributes in the logbook to enable
operation of the user interface, such as a dashboard. In general, dashboards
deploy their own logic, and statistical information provided by the engine needs
to be supplemented by operational or business information to decide on prioritizing
alarms, disregarding them, or taking other actions. Indeed, from the perspective of
the dashboard administrator, achievement of the highest forgiveness index may not
be sufficient for declaring that the process has returned to acceptable conditions,
and de-prioritizing the alarm. If the forgiveness computation is based, say, on only 2
days of fresh data, the dashboard logic could demand at least three additional days
of conforming data before changing the alarm status.
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Finally, management of computing resources related to engine deployment needs
to be carefully planned. If the engine is activated at pre-specified time points, one
needs to make sure that the mode of deployment can support the pace. For example,
if the data intensity is high and the engine is activated every second, one could
choose the deployment mode that limits production of graphics, or eliminates it
altogether. The use of multi-processor hardware typically enables one to enhance
efficiency substantially due to parallel nature of timeslide processing.
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Control Charts for Time-Dependent
Categorical Processes

Christian H. Weiß

Abstract The monitoring of categorical processes received increasing research
interest during the last years, but usually on the premise of the underlying process
being serially independent. We start with a brief survey of approaches for modeling
and analyzing serially dependent categorical processes. Then we consider two
general strategies for monitoring a categorical process: if the process evolves too
fast to be monitored continuously, then segments are taken in larger intervals
and a corresponding statistic is plotted on a control chart; here, one has to
carefully consider the serial dependence within the sample. If a continuous process
monitoring is possible, then the serial dependence between the plotted statistics has
to be taken into account. For both scenarios, we propose appropriate control charts
and investigate their performance through simulations.

Keywords Attributes data · Categorical time series · Pearson chart · Gini chart ·
CUSUM chart · Literature survey

1 Introduction

Methods of statistical process control (SPC) help to monitor and improve processes
in manufacturing and service industries. For such a process, relevant quality
characteristics are measured at times t ∈ N = {1, 2, . . .} thus leading to a stochastic
process (Xt)N of continuous-valued or discrete-valued random variables (variables
data or attributes data, respectively). The most important SPC tool is the control
chart, which requires the relevant quality characteristics to be measured online.
Control charts are applied to a process operating in a stable state (in control), i.e.,
(Xt)N is assumed to be stationary according to a specified in-control model. As a new
measurement arrives, this is used to compute a statistic (possibly also incorporating
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past values of the quality characteristic) which is then plotted on the chart with its
control limits. If the statistic violates the limits, an alarm signals that the process may
not be stable anymore (out of control) and requires corrective actions. More details
about these terms and concepts can be found in the textbook by Montgomery (2009)
or in the survey chapters by Woodall (2000), Woodall and Montgomery (2014).

In this article, we shall be concerned with a particular type of attributes data
processes (Xt)N: the range of Xt is assumed to be of categorical nature. So Xt has
a discrete and non-metric range consisting of a finite number m + 1 of categories
with m ∈ N (state space). In some applications, the range exhibits at least a natural
ordering; it is then referred to as an ordinal range. In other cases, not even such
an inherent order exists (nominal range). Here, we shall consider this latter, most
general case, i.e., even if there would be some ordering, we would not make use
of it but assume that each random variable Xt takes one of a finite number of
unordered categories. To simplify notations, it is assumed that the range of (Xt)N
is coded as S = {0, . . . , m}. But as emphasized before, this does not imply that
there is any natural order between the states in S, except a lexicographic order. In
view of quality-related applications, Xt often describes the result of an inspection
of an item, which either leads to classification Xt = i for an i = 1, . . . , m iff the
tth item was non-conforming of type ‘i’, or Xt = 0 for a conforming item. In the
example described by Mukhopadhyay (2008), a non-conforming ceiling fan cover
is classified according to the most predominant type of paint defect, e.g., ‘poor
covering’ or ‘bubbles’, while Ye et al. (2002) reports the monitoring of network
traffic data with different types of audit events.

Since a few years, there seems to be increasing research interest in the monitoring
of categorical processes, which manifests itself in some recent articles like Chen
et al. (2011) (traditional χ2-chart, see Sect. 3 below, but with additional inspection
error), or Ryan et al. (2011) and Weiß (2012) (charts for continuous process
monitoring, see Sect. 4 below); further references can be found in Woodall (1997),
Topalidou and Psarakis (2009). But when looking for existing literature, it is
important to precisely define the kind of data one is concerned with. In this article,
we do not only concentrate on unordered categories, but also on mutually exclusive
ones (i.e., different categories cannot appear together). This is in contrast to the
recent articles by Li et al. (2012) and Yashchin (2012), which are “multivariate” in
a sense by considering “multi-attribute processes”. Finally, we restrict to statistical
methods, while part of the literature is about methods based on fuzzy theory instead
(Woodall 1997; Topalidou and Psarakis 2009).

Although more and more articles deal with categorical attributes data processes,
there is one important restriction with all these works: the underlying process
is assumed to be serially independent in its in-control state, i.e., X1, X2, . . . are
independent and identically distributed (i.i.d.). Probably the main reason why
researchers and practitioners are often ill at ease when being concerned with time-
dependent categorical data is that concepts for expressing categorical forms of serial
dependence are not well communicated yet, and also simple stochastic models for
such processes, i.e., which are of a simplicity being comparable to that of the well-
known autoregressive moving average (ARMA) models for autocorrelated variables
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data processes, are not known to a broader audience. Therefore, we start in Sect. 2
with a brief survey of approaches for modeling and analyzing categorical processes.
Then we consider two general strategies for monitoring a categorical process: if
the process evolves too fast to be monitored continuously, one may take segments
from the process at selected times. Then a statistic is computed from the resulting
sample and plotted on a control chart, see Sect. 3. Here, it is important to carefully
consider the serial dependence within the sample. In other cases, it is possible to
continuously monitor the process, but then the serial dependence has to be taken into
account between the plotted statistics, see Sect. 4. For any of these two scenarios,
we propose appropriate control charts and investigate their performance through
simulations. Finally, we outline possible directions for future research in Sect. 5.

2 Modeling and Analyzing Categorical Processes

If being concerned with stationary real-valued time series, then a huge toolbox for
analyzing and modeling such time series is readily available and well-known to a
broad audience. To highlight a few basic approaches, the time series is visualized
by simply plotting the observed values against time, marginal properties such as
location and dispersion may be measured in terms of mean and variance, and serial
dependence is commonly quantified in terms of autocorrelation. Depending on the
observed dependence structure, a model of the ARMA family itself might turn out
to be appropriate, or one of its innumerable extensions, see the recent survey by
Holan et al. (2010) or any textbook about time series analysis.

Things change if the available time series is categorical. In the ordinal case, a
time series plot is still feasible by arranging the possible outcomes in their natural
ordering along the Y axis, and location could be measured at least by the median. In
the purely nominal case as considered in this article, not even these basic analytic
tools are applicable. Therefore, tailor-made solutions are required when analyzing
a (stationary) categorical process (Xt)Z with range S = {0, . . . , m}, m > 1. In the
sequel, we denote the time-invariant marginal probabilities by π := (π0, . . . , πm)�
with πi := P(Xt = i) ∈ (0; 1) and π0 = 1 − π1 − . . . − πm. As their sample
counterpart, we consider the vector π̂ of relative frequencies computed from the
process’ segment X1, . . . , XT being of length T.

Although there are a few proposals for a visual analysis of a categorical time
series (Weiß 2008), a reasonable substitute of the simple time series plot is still
missing. But a number of non-visual tools are available. Concerning location, the
(empirical) mode seems to be the only established solution. Categorical dispersion
measures compare the actual marginal distribution with the two possible extremes
of a one-point distribution (no dispersion; maximal concentration) and a uniform
distribution (maximal dispersion; no concentration). Several measures have been
proposed for this purpose, see the survey in Appendix A of Weiß and Göb (2008).
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In the author’s opinion, the (empirical) Gini index,

νG = m+1
m (1 −∑m

j=0 π2
j ) and ν̂G = m+1

m
T

T−1 (1 −∑m
j=0 π̂2

j ), (1)

is the most preferable dispersion measure, not only because of its simplicity, but
also because of attractive stochastic properties of the empirical Gini index ν̂G
(like unbiasedness in the i.i.d. case; see Section 3 in Weiß (2013a) for a detailed
discussion). The theoretical Gini index νG has range [0; 1], where increasing values
indicate increasing dispersion, with the extremes νG = 0 iff Xt has a one-point
distribution, and νG = 1 iff Xt has a uniform distribution.

Since autocorrelation is not defined in the categorical case, several alternative
measures of serial dependence have been proposed, see the references in Weiß
and Göb (2008), Weiß (2013a). These measures usually rely on lagged bivariate
probabilites, pij(k) := P(Xt = i, Xt−k = j), with the empirical counterpart p̂ij(k)
being the relative frequency of (i, j) within the pairs (Xk+1, X1), . . . , (XT , XT−k).
Again, there seems to be a preferable solution, namely (empirical) Cohen’s κ

κ(k) =
∑m

j=0

(
pjj(k) − π2

j

)

1 −∑m
j=0 π2

j

and κ̂(k) := 1

T
+
∑m

j=0

(
p̂jj(k) − π̂2

j

)

1 −∑m
j=0 π̂2

j

. (2)

The range of κ(k) is given by [−
∑m

j=0 π2
j

1−∑m
j=0 π2

j
; 1], where 0 corresponds to serial

independence. So it includes both positive and negative values in analogy to the
range of the autocorrelation function. In fact, Weiß and Göb (2008) argued that κ(k)
is a measure of signed serial dependence: While we have perfect (unsigned) serial
dependence at lag k ∈ N iff for any j, the conditional distribution p·| j(k) is a one-
point distribution, we have perfect positive (negative) dependence iff all pi|i(k) = 1
(all pi|i(k) = 0). So like positive autocorrelation implies that large values tend to be
followed by large values, for instance, positive dependence implies that the process
tends to stay in the state it has reached (and vice versa). Besides this analogy
to the autocorrelation function, again the empirical version, κ̂(k), has attractive
properties (also see below). Among others, it is nearly unbiased in the i.i.d. case,
and its distribution is well approximated by the normal distribution N(0, σ 2) with
T σ 2 = 1 − (1 + 2

∑m
j=0 π3

j − 3
∑m

j=0 π2
j

)
/
(
1 −∑m

j=0 π2
j

)2
, which, in turn, allows

to test for significant serial dependence in a categorical time series (Weiß 2011).
Next, we turn to the question of how to model a categorical process. Perhaps the

most obvious approach is to use a Markov model. (Xt)Z is said to be a pth order
Markov process with p ∈ N if for all t and for each xt ∈ S, we have

P(Xt = xt | Xt−1 = xt−1, . . .) = P(Xt = xt | Xt−1 = xt−1, . . . , Xt−p = xt−p).

(3)

The special case p = 1 (“memory of length 1”) is usually referred to as a Markov
chain, with its stochastic properties being solely determined by the (one-step)
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transition probabilities pi| j = P(Xt = i | Xt−1 = j) or the corresponding transition
matrix P = (pi| j)i,j, respectively (Feller 1968, Chapter XV). General pth order
Markov processes (i.e., where the conditional probabilities are not further restricted
by parametric assumptions), however, have the practical disadvantage of a huge
number of model parameters, (m + 1)p · m. For this reason, more parsimonious
models for categorical processes have been proposed in the literature, e.g., the
variable length Markov model by Bühlmann and Wyner (1999) or the mixture
transition distribution model by Raftery (1985).

An even more parsimonious model class, which also allows for non-Markovian
forms of serial dependence, are the new discrete ARMA (NDARMA) models by
Jacobs and Lewis (1983),1 which are motivated by the standard ARMA models for
real-valued processes. As shown in Weiß and Göb (2008), the NDARMA process
(Xt)Z can be defined as follows:

Let (εt)Z be i.i.d. with marginal distribution π and, independently, let

Dt = (αt,1, . . . , αt,p, βt,0, . . . , βt,q)

be a (p + q + 1)-dimensional vector, where exactly one of the components takes the
value 1 (either an αt,i with probability φi or a βt,j with probability ϕj; φ1+. . .+ϕq =
1) and all others are equal to 0. Both εt and Dt are assumed to be independent of
(Xs)s<t. Then (Xt)Z defined by the random mixture

Xt = αt,1 · Xt−1 + . . . + αt,p · Xt−p + βt,0 · εt + . . . + βt,q · εt−q (4)

is said to be an NDARMA process of order (p, q).
Although written down in an ARMA-like manner, recursion (4) states that Xt

chooses either one of Xt−1, . . . , Xt−p or εt, . . . , εt−q. Therefore, this approach
is applicable to categorical processes. In fact, it can be applied to any kind of
processes, but already for ordinal data, the selection mechanism would not be very
plausible anymore because it is not able to deal with an order between the possible
outcomes. If q > 0, then (Xt)Z is not Markovian, while the model order (p, 0) leads
to a special type of pth order Markov process, the DAR process of order p. In the
latter case, the transition probabilities are given by

P(Xt = x0 | Xt−1 = x1, . . . , Xt−p = xp) = ϕ0πx0 +∑p
r=1 δx0,xrφr, (5)

where δa,b denotes the Kronecker delta. Generally, the NDARMA process is
stationary with marginal distribution π , and if serial dependence is measured in
terms of Cohen’s κ , then κ(k) satisfies a set of Yule-Walker-type equations in
analogy to the standard ARMA case (Weiß and Göb 2008):

κ(k) = ∑p
j=1 φj · κ(|k − j|) + ∑q−k

i=0 ϕi+k · r(i) for k ≥ 1, (6)

1The ARMA model discussed by Biswas and Song (2009) is equivalent to the NDARMA model.
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where the r(i) are determined by r(i) = 0 for i < 0, r(0) = ϕ0, and

r(i) = ∑i−1
j=max {0,i−p} φi−j · r( j) + ∑q

j=0 δi,j · ϕj for i > 0.

This implies to use the empirical version, κ̂(k), not only for uncovering significant
serial dependence, but also for identifying the model order of an NDARMA process
and for estimating the model parameters in analogy to the method of moments. The
empirical analyses in Weiß (2013a), Maiti and Biswas (2018) showed that κ̂(k) is
often better suited for this purpose than alternative measures of serial dependence.

3 Sample-Based Monitoring of Categorical Processes

From now on, we turn to the question of monitoring a categorical process. If the
process (Xt)N cannot be monitored continuously, then (non-overlapping) segments
Xtk, . . . , Xtk+n−1 from the process (of a certain length n > 1, taken at times t1, t2, . . .
with tk−tk−1 > n sufficiently large) are analyzed and evaluated. Here, it is important
to carefully consider the serial dependence within the segments. But since the time
distance tk − tk−1 between successive segments is assumed to be quite large, at least
the serial dependence between the segments can be ignored.

Remark 1 (Bulk Sampling) As stated before, we shall assume the sample size n > 1
in the sequel. The reviewer pointed out that in the field of bulk sampling, also the
inspection of single items (i.e., n = 1) is common, still with negligible between-
sample dependence due to a large distance between successive items (exceeding the
“correlation length”). The methods described in this section rely on frequencies,
so sample size n > 1 is essential. But the methods described in Sect. 4 could be
used instead for bulk sampling, because we may understand the case n = 1 as a
continuous monitoring of the virtually i.i.d. process (Xtk)k∈N.

3.1 Sample-Based Monitoring: Binary Case

In the special case of a binary process with range {0, 1}, one commonly determines
either the sample sum Nk

(n) = Xtk + . . . + Xtk+n−1 (e.g., count of non-conforming
items) or the corresponding sample fraction of ‘1’s. Then this count or fraction is
either plotted directly on a Shewhart-type chart (np chart or p chart, respectively,
see Montgomery (2009)), or this quantity is used for an advanced control scheme
like an exponentially weighted moving average (EWMA) chart or cumulative sum
(CUSUM) chart, see Gan (1990, 1993) for instance.

Concerning the distribution of the sample count (the sample fraction differs from
the count only by the factor 1/n), the serial dependence structure of the underlying
binary process (Xt)N is important. If (Xt)N is i.i.d. with P(Xt = 1) = π ∈ (0; 1)
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(e.g., probability for a non-conforming item), then each sample sum Nk
(n) = Xtk +

. . . + Xtk+n−1 is binomially distributed according to Bin(n, π), and the statistics
(Nk

(n))N constitute themselves an i.i.d. process of binomial counts. But if (Xt)N
exhibits serial dependence, in contrast, the distribution of Nk

(n) will deviate from a
binomial one.

In Deligonul and Mergen (1987), Bhat and Lal (1990), Weiß (2009), the case
of (Xt)N being a binary Markov chain with success probability π ∈ (0; 1) and
autocorrelation parameter ρ ∈ (

max { −π
1−π

,− 1−π
π

}; 1
)

is considered, i.e., with
transition matrix

P =
(

p0|0 p0|1
p1|0 p1|1

)
=
(

(1 − π)(1 − ρ) + ρ (1 − π)(1 − ρ)

π(1 − ρ) π(1 − ρ) + ρ

)
. (7)

In this case, Nk
(n) = Xtk + . . . + Xtk+n−1 follows the so-called Markov binomial

distribution MB(n, π, ρ) (which coincides with Bin(n, π) iff ρ = 0). While the
mean of Nk

(n) is not affected by the serial dependence, especially the variance
changes (extra-binomial variation if ρ > 0):

E
[
N(n)

k

] = nπ, V
[
N(n)

k

] = nπ(1 − π)
1 + ρ

1 − ρ

(
1 − 2ρ(1 − ρn)

n(1 − ρ2)

)

︸ ︷︷ ︸
≈1 for large n

;

these and further well-known properties of the MB-distribution are summarized in
Table II in Weiß (2009). If the time distance tk − tk−1 between successive segments
from (Xt)N is sufficiently large, the resulting process of counts (Nk

(n))N can still
be assumend to be approximately i.i.d. (note that the correlation ρ|t−s| between
Xt and Xs decays exponentially), but with a marginal distribution being different
from a binomial one. This difference in the distribution of Nk

(n) certainly has to be
considered very carefully when designing a corresponding control chart (see Weiß
(2009) for the case of an np or EWMA chart). An alternative approach was recently
proposed by Adnaik et al. (2015), who do not use the sample sums Nk

(n) as the
chart’s statistics, but compute a likelihood ratio statistic for each segment.

3.2 Sample-Based Monitoring: i.i.d. Case

Let us return to the truly categorical case, i.e., where the range of (Xt)N consists of
more than two states, S = {0, . . . , m} with m > 1, and has time-invariant marginal
probabilities π := (π0, . . . , πm)�, see Sect. 2. If the number of different states,
m + 1, is small, it would be feasible to monitor the process by m simultaneous
binary charts, e.g., by using the p-tree method described in Duran and Albin (2009).
But here, we shall concentrate on such charting procedures, where the information
about the process is comprised in a univariate statistic: after having taken a sample
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or segment from the process, we first compute the resulting frequency distribution
as a summary, which then serves as the base for deriving the statistic to be plotted
on the control chart. To keep it consistent with the binary case from before, we
concentrate on absolute frequencies: Nk

(n) = (Nk; 0
(n), . . . , Nk; m

(n))� with Nk; i
(n)

being the absolute frequency of the state ‘i’ in the sample Xtk , . . . , Xtk+n−1 such that
Nk; 0

(n) + . . . + Nk; m
(n) = n. If the underlying categorical process (Xt)N is serially

independent (hence i.i.d.), then the distribution of each Nk
(n) is a multinomial one.

Remark 2 (Multinomial Distribution) The multinomial distribution is defined by
summing up n independent copies of a binary random vectorY, where exactly one of
the components takes the value 1, all others are equal to 0. So the possible range of Y
consists of the unit vectors e0, . . . , em ∈ {0, 1}m+1, where ej = (ej,0, . . . , ej,m)� is
defined by ej,i = δj,i (ej has a one in its jth component) for j = 0, . . . , m, and
P(Y = ej) = πj is assumed. Then N :=∑n

i=1 Yi ∼ MULT(n; π0, . . . , πm) has the
range

{
n ∈ {0, . . . , n}m+1

∣
∣ n0 + . . . + nm = n

}
, and its probability mass function

(PMF) is given by

P(N = n) =
(

n

n0, . . . , nm

)
· πn0

0 · · · πnm
m .

The covariance matrix equals

n · �, where � = (σij) is given by σij =
{

πi(1 − πi) if i = j,
−πiπj if i �= j.

Each component Nj of N is binomially distributed according to Bin(n, πj).
The importance of the multinomial distribution for i.i.d. categorical samples

arises from the fact that the binary random vector Y can be understood as a
binarization of a categorical random variable X, by defining Y = ej if X = j.
Then N represents the realized absolute frequencies of n independent replications
of X.

So according to Remark 2, the categorical process (Xt)N might be represented
equivalently by the process (Yt)N of its binarizations, and hence Nk

(n) = Ytk
(n) +

. . . + Ytk+n−1
(n) in analogy to the above binary situation.

Using that Nk
(n) is multinomially distributed if (Xt)N is i.i.d., Duncan (1950),

Marcucci (1985), Nelson (1987), and Mukhopadhyay (2008) proposed to plot
Pearson’s χ2-statistic on a control chart,

C(n)
k =

m∑

j=0

(Nk; j − n π0; j)
2

n π0; j
, (8)

where π0 := (π0; 0, . . . , π0; m)� refers to the in-control values of the categorical
probabilities. So in the in-control case, the process (Ck

(n))N is i.i.d. with a
marginal distribution that might be approximated by a χ2

m-distribution (Horn 1977).
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This approximate distribution may be used for chart design, i.e., for finding an
appropriate upper control limit uC.

As an alternative, Weiß (2012) proposed to use a control statistic based on
a categorical dispersion measure such as the Gini index (1). This suggestion is
motivated by the fact that for most production processes, the probability of a
unit being conforming, say π0; 0, is much larger than any defect probability, i.e.,
π0; 0 � π0; 1, . . . , π0; m and thus we have low categorical dispersion. A relevant out-
of-control scenario, in turn, will be one where π0 gets reduced, while π1, . . . , πm are
increased (leading to increased categorical dispersion). Therefore, an upper-sided
Gini chart is reasonable for quality-related applications. If (Xt)N is i.i.d., following
the in-control model, then

G(n)
k = 1 − n−2 ∑m

j=0 N2
k; j

1 −∑m
j=0 π2

0; j

(9)

is approximately normally distributed with mean 1 − 1/n and variance
4
n

(∑m
j=0 π3

0; j − (
∑m

j=0 π2
0; j)

2
)
/
(
1 − ∑m

j=0 π2
0; j

)2
, see Weiß (2011), which can

be used to determine an appropriate upper limit uG.

Remark 3 (np Chart) In the situation described before, where π0 expresses the
probability of a unit being conforming and where π1, . . . , πm are the defect
probabilities, a further alternative for process monitoring could be to use the np chart
from Sect. 3.1 by only distinguishing between conforming and non-conforming.
Certainly, we loose the information about the defects’ distribution with such a
monitoring strategy, but we shall include it as a benchmark in our performance
analyses in Sect. 3.4.

Remark 4 (Ordinal Data) As already briefly pointed out in Sect. 1, in some appli-
cations, the possible categories might exhibit an inherent order, i.e., the categorical
data are indeed ordinal data. All control charts discussed in this article could be
applied to such ordinal data, too. In fact, such an example is given by Marcucci
(1985), where the above χ2-chart (designed for nominal data) is applied to ordinal
data from a brick manufacturing process. However, the ordinal nature of the data is
completely ignored by such a monitoring approach.

There are a few proposals for sample-based control charts, which make use of
the inherent order in the range of an i.i.d. ordinal process. Tucker et al. (2002)
assume a latent variable Zt with a continuous distribution behind each ordinal
observation Xt, e.g., following a normal distribution. The real axis is partitioned into
m+1 intervals, and if (the unobservable) Zt falls into the jth interval, then Xt takes the
category j. To obtain a control statistic from the kth sample, the maximum likelihood
estimate (MLE) of the location parameter of Zt’s distribution is computed, and the
standardized MLE is then plotted on a control chart.
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Another approach is used by Cozzucoli (2009), who picks up the idea of a
demerits control chart (Jones et al. 1999). Each category is assigned a weight, which
reflects the severeness of the respective type of quality defect (and which accounts
for the ordinality of the range in this way). Using these weights, the control statistic
for the kth sample is defined as a weighted sum of the observed defect proportions.

We conclude this section by pointing out the relationship between the sample
frequencies and so-called compositional data.

Remark 5 (Compositional Data) If the number n of replications becomes very
large, say n → ∞, then the vector of random proportions becomes a continuous
random vector with the (m + 1)-part unit simplex as its range,

S
m+1 := {

x ∈ (0; 1)m+1
∣
∣ x0 + . . . + xm = 1

}
.

The corresponding data, which express the “proportions of some whole” (Aitchison
1986, p. 1), are referred to as compositional data (CoDa). Excellent books about this
topic are the ones by Aitchison (1986); Pawlowsky-Glahn and Buccianti (2011).
Approaches for monitoring i.i.d. compositional data have been investigated by
Boyles (1997) and Vives-Mestres et al. (2014a,b).

3.3 Sample-Based Monitoring of Serially Dependent
Categorical Processes

From now on, we allow (Xt)N to be serially dependent. Then, in general, the
distribution of Nk

(n) will not be multinomial anymore, and consequently, also the
distributions of Ck

(n) and Gk
(n) will deviate from the ones given above for the

i.i.d. case. As argued in Weiß (2012), especially Ck
(n) is extremely sensitive with

respect to serial dependence. This is also illustrated by the asymptotic results in
Weiß (2013a), which refer to the case of an underlying NDARMA process (see (4)
before). If we define the model-dependent constant (remember the Yule-Walker
equations (6) for Cohen’s κ (2))

c := 1 + 2 ·∑∞
i=1 κ(i) < ∞ (c = 1 in the i.i.d. case),

then Ck
(n)/c is approximately χ2

m-distributed, and the distribution of Gk
(n) is still

approximately normal, but with the mean being deflated by the factor (n−c)/(n−1)

and the variance being inflated by the factor c (Weiß 2013a).
For illustration, we discuss the example of an underlying DAR(1) process (as an

instance of a Markov chain) in more detail. To keep the notation consistent with the
above binary Markov chain, we denote ρ := φ1. Using formula (5), the transition
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matrix of (Xt)N follows as

P = (pi| j)i,j =

⎛

⎜⎜
⎜
⎜
⎝

π0(1 − ρ) + ρ π0(1 − ρ) · · · π0(1 − ρ)

π1(1 − ρ) π1(1 − ρ) + ρ
...

...
. . .

πm(1 − ρ) πm(1 − ρ) · · · πm(1 − ρ) + ρ

⎞

⎟⎟
⎟
⎟
⎠

, (10)

and we have c = (1 + ρ)/(1 − ρ) since κ(i) = ρi according to (6). The
distribution of Nk

(n) is called the Markov multinomial distribution by Wang and
Yang (1995), say MM(n; π0, . . . , πm; ρ). A closed-form formula for the joint
probability generating function of Nk

(n) is provided by Wang and Yang (1995). An
asymptotic approximation of the distribution is derived in Weiß (2013a), a normal
distribution with mean vector nπ and covariance matrix c · n�, where � is given
as in Remark 2. So compared to the multinomial distribution (case ρ = 0), the
(asymptotic) covariance matrix of MM(n; π0, . . . , πm; ρ) is inflated by the factor c.
Note that the jth component Nk; j

(n) follows the MB(n, πj, ρ) distribution, since for
this particular type of Markov chain, also each component of the binarization (Yt)N
is itself a binary Markov chain.

Remark 6 (Multinomial CUSUM Chart) Besides plotting the statistics Ck
(n)

or Gk
(n) on a Shewhart-type control chart, one may also consider a type of CUSUM

control chart (Page 1954) as an alternative. Generally, such CUSUM charts are
known to be more sensitive to small changes in the process, since they accumulate
information about the process’ past in contrast to the memoryless Shewhart charts.
Picking up a proposal by Steiner et al. (1996) and Ryan et al. (2011) defined
a multinomial CUSUM chart based on the log-likelihood ratio of the process
(Nk

(n))k∈N (such an approach was also considered by Höhle (2010) in the context
of a categorical logit model). Due to (Nk

(n))N being i.i.d., the contribution to the log-
likelihood ratio by the kth sample simply equals Lk = ln

(
Pπ1(Nk

(n))/Pπ0(Nk
(n))
)
,

where π1 expresses a likely out-of-control scenario that is to be detected.
Furthermore, since (Xt)N is i.i.d., Nk

(n) is multinomially distributed (Remark 2), so
the expression for Lk simplifies to

Lk =
m∑

j=0

N(n)
k; j ln

π1; j

π0; j
.

Now the CUSUM statistics are defined in the usual way as Sk = max {0, Sk−1 + Lk}.
The CUSUM statistics are easily computed in the above i.i.d. situation, and as

shown by Ryan et al. (2011), the CUSUM chart quickly detects an out-of-control
situation provided that this situation is in the direction anticipated by π1. Things
change, however, if the underlying process (Xt)N becomes serially dependent. As
we have seen before, a closed-form formula for the PMF of Nk

(n) is not yet known
even in the case of the rather simple Markov dependence. As a consequence,
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the computation of the CUSUM statistics becomes difficult. An exception is the
boundary case n = 1 (continuous process monitoring, see Sect. 4 below); a feasible
CUSUM chart for the case n > 1 (truly sample-based monitoring) appears to be a
relevant issue for future research.

3.4 Sample-Based Monitoring: ARL Performance

Design and performance of the Pearson chart (8) with upper limit uC as
well as of the Gini chart (9) with upper limit uG are investigated through
simulations. As some relevant in-control scenarios, we choose marginal
distributions that have already been analyzed in the literature, namely π0 =
(0.54, 0.25, 0.12, 0.09)� (Duncan 1950), π0 = (0.65, 0.24, 0.07, 0.04)�,
(0.83, 0.104, 0.04, 0.026)�, (0.99, 0.005, 0.004, 0.001)� (Cozzucoli 2009), and
π0 = (0.769, 0.081, 0.059, 0.021, 0.023, 0.022, 0.025)� (Mukhopadhyay 2008),
with dispersion νG ≈ 0.831, 0.685, 0.397, 0.026 and 0.463, respectively. For
these marginals, we consider both the i.i.d. case (ρ = 0) as well as DAR(1)
dependence with parameter value ρ > 0. While the serial dependence within the
samples Xtk , . . . , Xtk+n−1 being used for computing Ck

(n) and Gk
(n), respectively, is

explicitly considered, we assume that the resulting processes (Ck
(n))N and (Gk

(n))N
are i.i.d. (since the time distance tk − tk−1 between successive samples is sufficiently
large). So as for any Shewhart chart, we can define uC and uG as appropriate
quantiles from the in-control distributions of Ck

(n) and Gk
(n), respectively. Since

the ARL is computed as

ARLC(π) = 1

Pπ (Ck
(n) > uC)

and ARLG(π) = 1

Pπ (Gk
(n) > uG)

,

respectively, we always determine the (1 − 1/ARL0)-quantile for a specified in-
control level ARL0. Here, we choose ARL0 ∈ {100, 200, 370, 500}, and the sample
size as n ∈ {50, 100, 150, 200, 250}.
Remark 7 (ARL vs. ATS) An ARL-based chart design has to be treated with some
caution. If we have fixed sampling intervals tk−tk−1 = K > n, say tk := k·K−n+1,
for instance, and if the chart triggers its first alarm after plotting the rth sample
statistic (corresponds to run length r), then the number of manufactured items until
this alarm is much larger, given by r · K. Therefore, it would be preferable to look at
the average time to signal (ATS) instead, where “time” refers to the original process
(Xt)N, not to the number of plotted statistics. In the given example, we have ATS =
K · ARL. But for the sake of simplicity, we shall continue the simulation study by
considering the ARL performance of the control charts.

The main focus of our investigations is on finding an appropriate in-control design.
For this purpose, 1 million i.i.d. samples Nk

(n) are simulated for each situation,
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Table 1 Asymptotic compared to exact chart design of Pearson and Gini chart for n = 150,
π0 = (0.83, 0.104, 0.04, 0.026)� , ARL0 = 370

ρ ARLC; as uC; as uC ARLG; as uG; as uG

0 221.1 14.154 15.554 476.4 1.4250 1.4147

0.25 128.4 23.590 30.512 467.5 1.5462 1.5317

0.5 84.0 42.462 63.989 605.3 1.7277 1.6933

0.75 50.9 99.079 189.423 1508.3 2.0955 1.9677

and Ck
(n) and Gk

(n) are always computed. Then we determine

• the true ARL if deriving uC, uG from the asymptotic approximations, and
• the true limits uC, uG as the (empirical) (1 − 1/ARL0)-quantiles.

The complete tables of control limits and ARLs are available from the author
upon request; here, we just summarize and illustrate the main findings. First
of all, in nearly any case, the asymptotic approximation of uC or uG is rather
bad, so these approximations can only be recommended as a starting value when
searching for the true value. For the Pearson chart (8), the asymptotic limits are
always too small (hence, also the true in-control ARL becomes too small), and
the difference becomes worse with decreasing n, with decreasing dispersion in π0,
and with increasing ρ. For the Gini chart (9), in contrast, except for situation
π0 = (0.99, 0.005, 0.004, 0.001)�, the asymptotic limits are always too large, and
now worse with increasing dispersion in π0, see Table 1 as an example. In the case
of distribution π0 = (0.99, 0.005, 0.004, 0.001)� with its extremely low degree of
dispersion, we have uG; as < uG.

Next, we analyze the effect of serial dependence in more detail. Table 1 already
indicated that the actual dependence level ρ has to be considered when designing
the control chart (widened limits for increasing ρ). In fact, if we just take the i.i.d.
design (ρ = 0) but apply it to a DAR(1) process with ρ > 0, the resulting ARL
is severely affected. Already values of ρ being only slightly above 0 lead to an
enormous decrease in the ARL, independent of the marginal distribution π0 and
of the sample size n, but even more severely for the Pearson chart (8) than for the
Gini chart (9). This is illustrated by Fig. 1, which shows the ARL against ρ in the
situation π0 = (0.769, 0.081, 0.059, 0.021, 0.023, 0.022, 0.025)� (Mukhopadhyay
2008) with n = 150 and ARL0 = 370. On the other hand, this implies that especially
the Pearson chart might be used for uncovering increases in ρ. Figure 1 also includes
the ARLs of the upper-sided np chart (dotted line) as a benchmark, see Remark 3,
which are quite close to those of the Gini chart. Note that for ρ > 0, the ARLs of
the np chart are determined by the Markov binomial distribution MB(n, 1 − π0, ρ),
see the discussion before Remark 6 as well as Table II in Weiß (2009), and can thus
be computed numerically.

Even if the chart design is chosen appropriately with respect to the serial
dependence level ρ, we usually will observe an effect on the out-of-control
performance. As an example, assume that the probability π0 of having no



224 C. H. Weiß

0.0 0.2 0.4 0.6

0
10

0
20

0
30

0
40

0
AR

L
l

l

l

l

l

l
l

l
l l l l l l l l l l l l l l l l l l l l l l l

l

l

l

l

l

l

l

l
l

l
l

l l l l l l l l l l l l l l l l l l l l

l

l

l

n=150, i.i.d. design:

Pearson chart
Gini chart
np chart

n=150, i.i.d. design:

Pearson chart
Gini chart
np chart

r

Fig. 1 ARL performance of Pearson (uC = 22.3043), Gini (uG = 1.324642) and np chart (unp =
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Fig. 2 ARL performance of Pearson, Gini and np chart (ARL0 ≈ 370) concerning π1; 0 = (1 −
shift) π0; 0, n = 150, π0 = (0.769, 0.081, 0.059, 0.021, 0.023, 0.022, 0.025)�

defect is shifted downwards by a certain relative amount, i.e., π1; 0 =
(1 − shift) π0; 0, and all other probabilities are increased in equal measure,

π1; k = 1−shift·π0; 0
1−π0; 0

π0; k. Independent of the marginal distribution π0, it can be
observed that the out-of-control performance becomes worse for increasing ρ.
As an illustration, Fig. 2 shows some ARL graphs for the marginal distribution
π0 = (0.769, 0.081, 0.059, 0.021, 0.023, 0.022, 0.025)�, where all charts are
designed to give roughly the same in-control ARL. Again the np chart is included
as a benchmark, although its in-control ARLs show more variation than those of the
other charts. For this particular out-of-control scenario, the Gini chart is preferable,
which is reasonable since the dispersion strongly increases with increasing shift
size (the ARL performance is again similar to that of the np chart). In some other
scenarios, e.g., if π1; k = π0; k for k = 1, . . . , m− 1 and π1; m = π0; m +π0; 0 −π1; 0
as suggested by Cozzucoli (2009), the Pearson chart is superior (at least for larger
shift amounts), but again with a worse performance for increasing ρ.
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4 Continuous Monitoring of Categorical Processes

In this section, we consider the case, where a continuous monitoring of the
categorical process (Xt)N is possible. In this case, it would still be possible to
form adjacent segments and to calculate the corresponding sample statistics, like
for the strategy discussed in Sect. 3. Such a strategy, however, does not appear to
be particularly useful: one would have to deal with two kinds of dependence, the
within-sample dependence and the between-sample dependence, and the minimal
delay of detecting an out-of-control situation could not become smaller than
the sample size, also see the discussion in Remark 7. For this reason, only the
following type of continuous monitoring is considered here: as a new categorical
observation Xt arrives, the next statistic is computed and plotted on the control chart.

4.1 Continuous Monitoring: Binary Case

Again, we start by looking at the binary case first. Perhaps the most well-known
approach for (quasi) continuously monitoring a binary process is by plotting run
lengths on the chart, i.e., the number of ‘0’s between two successive ‘1’s (Bourke
1991; Xie et al. 2000). This is a reasonable approach especially for high-quality
processes, where π = P(Xt = 1) is very small. If ‘1’s are observed more frequently,
and hence the usual runs become quite short, one may modify the definition of a
run, e.g., by waiting until the rth occurrence of a ‘1’ (Bourke 1991) or until the
occurrence of a segment of ‘1’s (Weiß 2013b). Bourke (1991) also proposed a
CUSUM procedure to monitor the run lengths in (Xt)N. This geometric CUSUM
control chart is essentially equivalent to the Bernoulli CUSUM control chart of
Reynolds and Stoumbos (1999) and shall be discussed in some more detail below.
Generally, while it is quite natural to check for runs in a binary process, it is
more difficult to define a run for the truly categorical case in a reasonable way.
One possible solution was discussed in Weiß (2012), but as pointed out there, also
waiting times for different types of patterns might be relevant. Because of this
ambiguity, we shall not further consider the monitoring of runs in a categorical
process here.

Another approach for continuously monitoring a binary process would be the
EWMA chart (Roberts 1959), which was applied to binary processes by, among
others, Yeh et al. (2008) and Weiß and Atzmüller (2010). In view of generalizing
to the truly categorical case and of incorporating serial dependence, however,
it appears that again the CUSUM approach is more feasible (an EWMA-based
categorical approach is discussed by Ye et al. (2002)). A CUSUM chart for an i.i.d.
binary process (Xt)N was first proposed by Reynolds and Stoumbos (1999), and
it was extendend to the case of a binary Markov chain as in (7) by Mousavi and
Reynolds (2009). Here, the idea is as sketched in Remark 6: the contribution to the
log-likelihood ratio by the tth observation equals Lt = ln

(
Pπ1(Xt)/Pπ0(Xt)

)
(i.i.d.
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case) or Lt = ln
(
Pπ1(Xt|Xt−1)/Pπ0(Xt|Xt−1)

)
(Markov case), respectively, which

is then used to compute the tth CUSUM statistic. Again, π1 refers to the relevant
out-of-control parameter value of π , while π0 represents the in-control value.

4.2 Continuous Monitoring: Categorical Case

At this point, let us return to the truly categorical case, where (Xt)N has range
S = {0, . . . , m} with an m > 1. The true marginal probabilities are denoted again
by π := (π0, . . . , πm)�, with π0 representing the corresponding in-control value.
For defining a CUSUM monitoring scheme, we also have to consider a relevant
out-of-control value, say π1. Such a CUSUM scheme, assuming that the underlying
process is i.i.d., was proposed by Ryan et al. (2011) (also see the discussion in
Remark 6 before). If Lt = ln

(
Pπ1(Xt)/Pπ0(Xt)

)
, then the CUSUM statistic at

time t is

St = max {0, St−1 + Lt}, where S0 := 0. (11)

Note that Pπ (Xt = i) just equals πi, so we can denote Pπ (Xt) = πXt , and hence
Lt = ln

(
π1; Xt/π0; Xt

)
. An alarm is triggered once St violates the upper control limit

h > 0 for the first time.
In analogy to Mousavi and Reynolds (2009), we can extend this categorical

CUSUM approach to any kind of Markov-dependent categorical process by defining

Lt = ln

(
Pπ1(Xt|Xt−1, . . . , Xt−p)

Pπ0(Xt|Xt−1, . . . , Xt−p)

)
.

For illustration, to keep it simple, we shall focus again on the special case of an
underlying DAR(1) process (10), where we denote the dependence parameter by
ρ := φ1 as before. It then follows that

Lt = ln

(
(1 − ρ) π1; Xt + δXt,Xt−1 ρ

(1 − ρ) π0; Xt + δXt,Xt−1 ρ

)
for t ≥ 2, L1 = ln

(
π1; X1

π0; X1

)
.

(12)

4.3 Continuous Monitoring: ARL Performance

To investigate the effect of serial dependence on the categorical CUSUM chart,
we pick up the four situations discussed by Ryan et al. (2011). The assumed
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Table 2 CUSUM chart (11) with i.i.d. design and adjusted design, CUSUM chart (12)

CUSUM (11) CUSUM (11) CUSUM (12)

Case ρ h ARL0 ARL1 h ARL0 ARL1 h ARL0 ARL1

1 0 2.95 280.4 21.9

0.25 2.95 116.3 20.9 4.3 278.4 31.1 2.85 304.5 30.6

0.5 2.95 72.0 20.3 6.1 274.0 43.4 2.5 306.0 41.0

0.75 2.95 59.6 21.8 9.5 280.6 65.0 1.9 289.4 59.6

2 0 2.8 501.8 36.3

0.25 2.8 245.7 37.2 3.85 509.8 52.4 2.55 503.4 45.6

0.5 2.8 170.8 39.3 5.2 500.2 72.6 2.25 508.4 58.8

0.75 2.8 155.2 48.3 7.6 500.7 107.8 1.7 514.7 86.0

4 0 3.25 284.6 20.6

0.25 3.25 103.9 18.9 4.7 285.7 28.9 3 293.0 27.6

0.5 3.25 52.9 17.0 6.9 280.8 40.8 2.6 289.1 37.1

0.75 3.25 35.2 15.6 11.5 284.6 63.1 2.05 298.1 56.9

in-control marginal distributions and the corresponding anticipated out-of-control
scenarios are

Case 1: π0 = (0.65, 0.25, 0.10)�, π1 = (0.4517, 0.2999, 0.2484)�;
Case 2: π0 = (0.94, 0.05, 0.01)�, π1 = (0.8495, 0.0992, 0.0513)�;
Case 3: π0 = (0.994, 0.005, 0.001)�, π1 = (0.9848, 0.0099, 0.0053)�;
Case 4: π0 = (0.65, 0.20, 0.10, 0.05)�,π1 = (0.3960, 0.3283, 0.1734, 0.1023)�.

The first three cases have three states and show decreasing dispersion (νG ≈
0.758, 0.171, 0.018), while the fourth case has four states (νG = 0.7).

Ryan et al. (2011) assumed the categorical process to be i.i.d. and, hence, applied
the CUSUM chart (11) for process monitoring. The corresponding chart designs h
for Cases 1, 2 and 4 (Case 3 is discussed separately for reasons explained below)
are shown in the first block of Table 2, together with simulated (zero-state) ARL
values (100,000 replications). Here, ARL0 always refers to the in-control marginal
distribution π0, while ARL1 refers to the special out-of-control situation π1.

If the chart design is done assuming i.i.d. observations, but if serial dependence
according to a DAR(1) model with parameter value ρ > 0 is present (see the
first block of Table 2), then the true in-control performance deviates heavily from
the expected one. The values for ARL0 decrease severely with increasing ρ such
that false alarms will be observed much too often. One solution is to retain chart
type (11) but with adjusted control limit h, as it is shown in the second block of
Table 2. It can be observed that the control limit has to be widened to make the
chart sufficiently robust (which, inevitably, goes along with a worse out-of-control
performance).

The recommended solution, however, is to use the CUSUM chart (12), which is
designed to deal with DAR(1) dependence. Appropriate chart designs are shown in
the third block of Table 2. Although the out-of-control performance is still worse
than in the i.i.d. case (the price one has to pay for serially dependent data), it is
visibly better than for the adjusted i.i.d.-CUSUM (11).
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Finally, let us have a look at Case 3. Here, π0 shows very little dispersion, most
of the probability mass concentrates on the state ‘0’. Certainly, if serial dependence
is present but ignored, the chart’s performance is affected, see

ARL0 if ρ = ARL1 if ρ =
0 0.25 0.5 0.75 0 0.25 0.5 0.75

500.8 488.5 543.6 839.8 124.2 143.7 184.9 309.4

However, for such an extreme marginal distribution, a monitoring of the process is
rather problematic if additional serial dependence is present, since then the process
nearly always leads constant sample paths. For instance, if ρ = 0.75, then p0|0 ≈
0.9994 according to (10), so we will hardly ever leave the state ‘0’. This increasing
tendency to constantly observing ‘0’ also explains the non-monotonic behaviour
observed for ARL0 before.

5 Conclusions and Future Research

Two scenarios of monitoring a serially dependent categorical process were dis-
cussed: a sample-based approach, where the dependence within the samples has
to be considered, and a continuous monitoring approach, where the dependence
between successive observations has to be taken into account for chart design.
Concerning the first scenario, a Shewhart chart based on a dispersion measure
is plausible in view of quality-related applications, while a likelihood-ratio-based
CUSUM approach is feasible in the second scenario. In both cases, simulations are
required for chart design and performance evaluation. As already pointed out in
Remark 6, the development of a sample-based CUSUM chart for serially dependent
categorical processes would be an interesting direction for future research.

Besides this, much more work is required concerning both models and control
charts for serially dependent ordinal data (Remark 4). In view of Remark 5,
the development of control charts being able to deal with both time-dependent
categorical and compositional data would be a promising topic for future research.
It also seems that the Phase I application of categorical control charts, in particular,
the effect of parameter estimation on the charts’ performance (Jensen et al. 2006;
Jones-Farmer et al. 2014), has not been investigated yet.

Finally, another traditional SPC topic has been ignored completely until now
regarding categorical data: process capability analysis. A popular tool for evaluating
the actual process capability are process capability indices. If it is possible to define
a specification region for the categorical distribution π in a reasonable way, then
one may pick up the idea of Perakis and Xekalaki (2005) and define an index based
on the actual “proportion of conformance”. The estimation of such an index from
time-dependent categorical in-control data has to be investigated.
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Monitoring of Short Series of Dependent
Observations Using a XWAM Control
Chart

Olgierd Hryniewicz and Katarzyna Kaczmarek-Majer

Abstract Many different control charts have been proposed during the last 30
years for monitoring processes with autocorrelated observations (measurements).
The majority of them are developed for monitoring residuals, i.e., differences
between the observed and predicted values of the monitored process. Unfortunately,
statistical properties of these chart are very sensitive to the accuracy of the estimated
model of the underlying process. In this chapter we consider the case when the
information from the available data is not sufficient for good estimation of the
model. Therefore, we use the concept of model weighted averaging in order to
improve model prediction. The novelty of the proposed XWAM control chart
consists in the usage of computational intelligence methodology for the construction
of alternative models, and the calculation of their weights.

Keywords Control chart · Residuals · Autocorrelated data · Short time series ·
XWAM control chart

1 Introduction

Control charts were originally devised for monitoring production processes when
long series of quality-related measurements are observed. Later on, they have
also been successfully applied in cases of short production runs. Problem arise,
however, when consecutive observations are statistically dependent. First pioneering
works in the area of process control in presence of dependent (autocorrelated)
data, such as, e.g., Box et al. (1974), were published in the 1970s. Since that time
many chapters devoted to this problem have been published, and they can be, in
general, divided into two groups. Authors of the first group of chapters, such as,
e.g., Vasilopoulos and Stamboulis (1978), Montgomery and Mastrangelo (1991),
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Maragah and Woodall (1992), Yashchin (1993), Schmid (1995) or Zhang (1998),
propose to adjust design parameters of classical control charts (Shewhart, CUSUM,
EWMA) in order to accommodate the impact of autocorrelation in data on chart’s
statistical properties. The origin of the second group of chapters is the chapter by
Alwan and Roberts (1988) who proposed a control chart for residuals. In their
approach a mathematical model of the observed process has to be identified using
the methodology developed for the analysis of time series. The deterministic part
of this model is used for the computation of predicted values of observations, and
differences between predicted and observed values of the process, named residuals,
are plotted on a control chart. Properties of different control charts for residuals
have been investigated by many authors, such as, e.g., Wardell et al. (1994), Zhang
(1997), Kramer and Schmid (2000). Both approaches have been compared in many
chapters, such as, e.g., Lu and Reynolds (1999). It has to be noted, however, that
the applicability of the charts for residuals in SPC was a matter of discussion (see,
e.g., the chapter by Runger (2002)), but now this approach seems to be prevailing.
Recently, more complicated procedures have been proposed. For example, the
ARMA chart proposed by Jiang et al. (2000), the chart proposed by Chin and Apley
(2006) based on second-order linear filters, the chart proposed by Apley and Chin
(2007) based on general linear filters or the PCA-based procedure for the monitoring
multidimensional processes proposed by De Ketelaere et al. (2015).

A proper design of a control chart for autocorrelated data requires the knowledge
of the mathematical model of the monitored process. When series of observations
(production runs) are long enough to determine an appropriate model of dependence
several solutions have already been proposed for the calculation of such charac-
teristics like the ARL. Even in this case, however, serious problems arise when
we want to calculate chart’s characteristics when the monitored process goes out
of control. The situation is even worse when the amount of available data is not
sufficient for the identification of the underlying model of dependence. In such a
case only few analytical results exist (see, e.g., the chapter by Kramer and Schmid
(2000) or the chapter by Apley and Lee (2008)). These difficulties stem mainly from
the fact that for imprecisely (or wrongly) identified model of dependence not only
observations, but residuals as well, are autocorrelated. Unfortunately, this happens
in practice when, e.g., the monitored process is in its prototype phase or when we
monitor patients in a health-care system. The latter example gives motivation for the
research described in this chapter.

It seems to be rather unquestionable that proper identification of the dependence
model is equivalent to finding a good predictor for future observations. When
we do not have enough data for building a good model, i.e., when the available
time series is too short, one can use methods developed by econometricians
for prediction purposes in short economic time series. In such situations they
prefer to use Bayesian methods combined with the Markov Chain Monte Carlo
simulation methodology. A very good description of this approach can be found
in the book by Geweke (2005). What is specific in this approach is the concept
of model averaging. The Bayesian model in this approach contains not only prior
knowledge about model parameters, but also prior knowledge about several possible
models that can be used for prediction. In practice, non-informative priors are
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used, and MCMC simulations are used for the evaluation of predictive posterior
distributions. Hryniewicz and Katarzyna Kaczmarek-Majer (2016a) proposed to
use some computational intelligence methods for the construction of the prior
distribution on the pre-chosen set of models. Their algorithm appears to be highly
competitive when compared to the best available algorithms used for the prediction
in short time series. In this chapter we try to adopt a similar approach for the
construction of Shewhart control charts for residuals.

This chapter is an extended and re-worked version of the chapter Hryniewicz
and Katarzyna Kaczmarek-Majer (2016b) published in the proceedings of the
international conference ISQC 2016 held in Hamburg. In particular, it contains
results of new and extensive computer simulations that allow to evaluate properties
of the proposed new control chart in more realistic, from a practical point of view,
setting. The chapter is organized as follows. In the next section we describe the
assumed mathematical model of the monitored process, and present the algorithm
for the construction of the proposed XWAM chart. Section 3 is devoted to the
description of methods that have been used for building alternative models of
the monitored process. Simulation methods have been used for the evaluation of
statistical properties of the proposed control chart. Comprehensive experiments
have been performed, but due to the limited volume of this chapter only some
representative results have been described in Sect. 4. The chapter is concluded in
the last section where we also outline possible areas of future investigations.

2 Mathematical Model and the Design of an XWAM Control
Chart

2.1 Introductory Remarks

Control charts perform well when they are designed using sufficient amount of data.
In the case of classical control charts the amount of statistical data is sufficient for
design purposes if it allows to estimate process parameters with good precision. The
situation is much more difficult in the case of control charts for residuals. In this case
the data is used for the estimation of the underlying model of the process, and the
parameters of the probability distribution of residuals. In this section we propose
an alternative design of the X chart for residuals that can be used when available
samples are small.

2.2 Mathematical Model

Consider random observations described by a series of random variables X1, X2, . . ..
In the context of statistical quality control these random variables may describe
individual observations or observed values of sample statistics, such as, e.g.,
averages plotted on a Shewhart X̄-chart. The full mathematical description of such a
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series can be done using a multivariate (possibly infinitely-dimensional) probability
distribution. Unfortunately, in practice this usually cannot be done. Therefore,
statisticians introduced simpler and easier tractable mathematical models, based on
the notion of conditionality. In the most popular model of this kind the random
variable representing the current observation is given as the sum of a deterministic
part depending on the observed values of previous observations, and a random
part whose probability distribution does not depend upon the previously observed
values, i.e.,

Xi = f (x1, . . . .xi−1) + εi, i = 1, . . . . (1)

In the simplest version of (1) we usually assume that random variables εi, i = 1, . . .

are mutually independent and identically distributed. On the other hand, we often
assume that the deterministic part f (x1, . . . , xi−1) has a form that assures stationarity
of the time series X1, X2, . . .. In this chapter we make even stronger assumption that

Xi = a1xi−1 + . . . + apxi−p + εi, (2)

where εi, i = 1, . . . are normally distributed independent random variables with
the expected value equal to zero, and the same finite standard deviation. Thus, our
assumed model describes a classical autoregressive stochastic process of the pth
order AR(p). The comprehensive description of the AR(p) process can be found
in every textbook devoted to the analysis of time series, e.g., in the seminal book
by Box et al. (2008) or a popular textbook by Brockwell and Davis (2002). In
these books one can find the description of more general models, such as, e.g., the
ARMA(p, q) which are also special cases of (1), and are widely used in the statistical
analysis of time series.

Estimation of the model AR(p), given by (2), is relatively simple when we know
the order p of the considered model. In order to do this we have to calculate first p
sample autocorrelations r1, r2, . . . , rp, defined as

ri = n
∑n−i

t=1(xt − μ̂)(xt+i − μ̂)

(n − i)
∑n

t=1(xt − μ̂)2 , i = 1, . . . , p, (3)

where n is the number of observations (usually, it is assumed that n ≥ 4p), and μ̂

is their average. Then, the parameters a1, . . . , ap of the AR(p) model are calculated
by solving the Yule-Walker equations (see, Brockwell and Davis 2002)

r1 = a1 + a2r1 + . . . + aprp−1

r2 = a1r1 + a2 + . . . + aprp−2

. . .

rp = a1rp−1 + a2rp−2 + . . . + ap

(4)

In practice, however, we do not know the order of the autoregression process, so we
need to estimate p from data. In order to do this let us first define a random variable,
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called the residual.

Zi = Xi − (a1xi−1 + . . . + apxi−p), i = p + 1, . . . , N. (5)

The probability distribution of residuals is the same as the distribution of random
variables εi, i = 1, . . . in (2), and its variance can be used as a measure of
the accuracy of predictions. For given sample data of size n the variance of
residuals is decreasing with the increasing values of p. However, the estimates of
p models parameters a1, . . . , ap become less precise, and thus the overall precision
of prediction with future data deteriorates. As the remedy to this effect several
optimization criteria with a penalty factor which discourages the fitting of models
with too many parameters have been proposed. In this research we use the BIC
criterion proposed by Akaike (1978), and defined as

BIC = (n − p) ln[nσ̂ 2/(n − p)] + n(1 + ln
√

2π) + p ln[(
n∑

t=1

x2
t − nσ̂ 2)/p], (6)

where xt are process observations transformed in such a way that their expected
values are equal to zero, and σ̂ 2 is the observed variance of residuals. The fitted
model, i.e., the estimated order p and parameters of the model â1, . . . , âp minimizes
the value of BIC calculated according to (6).

It is a well known fact that the accuracy of prediction in time series strongly
depends upon the number of available observations. In Sect. 4 we will present some
numerical illustration of this effect. The problem begins, however, when the number
of available observations is strongly limited. In the context of SPC this means that
we have, e.g., to design a control chart for a short production run. In such a case
the accuracy of the estimated model of a monitored process may be completely
insufficient if we follow recommendations applicable in the case of a control chart
for independent observations.

The problem mentioned above arises in many areas when only short time series
are available, such as, e.g., in the case of economic data. In order to overcome
this econometricians proposed an empirical (objective) Bayesian approach to the
analysis of time series. One of the most important aspects of this approach is
the averaging of models. According to Geweke (2005) we define a set M =
{M1, M2, . . . , MJ} of multiple alternative probabilistic models of a considered
process. Then, the posterior density of a vector of interest ω (e.g., some consecutive
predicted values of a process) is defined as follows (Geweke 2005)

p(ω|y, M) =
J∑

j=1

p(Mj|y, M)p(ω|y, Mj), (7)

where y is a series of observations, p(ω|y, Mj) is the posterior density of the vector
of interest conditional on model Mj, and p(Mj|y, M) are the prior model probability



238 O. Hryniewicz and K. Kaczmarek-Majer

distributions. In this chapter we will use the concept of model averaging for the
construction of a control chart. Different AR(p) models will be used as alternative
probabilistic models of a monitored process, and their prior probabilities (weights)
will be computed using, for example, a methodology described in Sect. 3 of this
chapter.

2.3 Design of the XWAM Control Chart

SPC for processes with autocorrelated data using a control chart for residuals was
firstly proposed by Alwan and Roberts (1988). Their methodology is applicable for
any class of processes, so it is also applicable for the AR(p) process considered in
this chapter. According to the methodology proposed by Alwan and Roberts (1988)
the deterministic part of (1) is estimated from sample data, and then used for the
calculation of residuals. This methodology is also known under the name “filtering”.
In our case it is the deterministic part of the AR(p) process estimated according to
the methodology described in Sect. 2.2 from a sample of n elements. We denote this
estimated model as M0, and its parameters by a vector (a1,0, . . . .ap0,0). We assign
to this estimated model a certain weight w0 ∈ [0, 1]. We also consider k alternative
models Mj, j = 1, . . . , k, each described by a vector of parameters (a0

1,j, . . . , a0
pj,j

).
In general, any model with known parameters can be used as an alternative one,
but in this chapter we restrict ourselves to the models chosen according to the
algorithm described in Sect. 3. Let w

′
1, . . . , w

′
k denote the weights assigned to

models M1, . . . , Mk by the algorithm described in Sect. 3 when only alternative
models are considered. Because the total weight of the chosen alternative models
is 1 − w0, in the construction of our control chart, coined XWAM (X Weighted
Average Model chart), to the estimated model we assign the weight w0, and to each
chosen alternative model we will assign a weight wj = (1 − w0)w

′
j, j = 1, . . . , k.

When we model our process using k + 1 models (one estimated from data
and k alternative) each process observation generates k + 1 residuals. In the case
considered in this chapter they are calculated using the following formula

zi,j = xi − (a1,jxi−1 + . . . + apj,jxi−pj), j = 0, . . . , k; i = pj + 1, . . . . (8)

In (8) we have assumed that for a model with pj, j = 0, . . . , k parameters we need
exactly pj previous consecutive observations in order to calculate first residual.
Therefore, we need imin = max(p0, . . . , pk) + 1 observations for the calculation
of all residuals in the sample. For the calculation of the parameters of the XWAM
control chart we use n − imin + 1 weighted residuals calculated from the formula

z�
i =

k∑

j=0

wjzi,j, i = imin, . . . , n. (9)
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Note, that the number of observed weighted residuals in the sample is smaller than
the sample size. Thus, the effective sample size used for the design of a control chart
is smaller than the number of available observations from the process. The central
line of the chart is calculated as the mean of z�

i , and the control limits are equal to
the mean plus/minus three standard deviations of z�

i , respectively.
The operation of the XWAM control chart is a classical one. First decision is

made after imin observations. The weighted residual for the considered observation
is calculated according to (9), and compared to the control limits. An alarm is
generated when the weighted residual falls beyond the control limits.

3 Similarity Measures of Series of Observations

3.1 Introductory Remarks

Finding one appropriate probabilistic model, and estimating its parameters, may
become a very challenging task for short series of observations. In this section, we
explain the proposed approach of selecting k alternative models that describe the
monitored process. The selection is determined by distances learned between the
monitored process and the training series from a template database. The training
database consists of sample realizations of template predictive models. Within
the proposed approach, distances between the monitored process and the training
series are evaluated, and as a result of their aggregation, prior model probabilities
(weights) are established for the chosen k alternative models. This combination is
inspired by Bayesian averaging, as extensively described by Geweke (2005).

3.2 Similarity Measures of Series of Observations

The similarity of two time series is evaluated by calculating the distance between
them. Within the proposed approach, the Dynamic Time Warping (DTW) algorithm
for measuring the distance between two series as introduced by Berndt and Clifford
(1994) is adapted. DTW is the classical elastic measure that enables to calculate the
smallest distance between two series of observations independently of certain non-
linear variations in the time dimension. Therefore, DTW calculates the best match
between two given series allowing similar shapes to match even if they are out of
phase in time axis. For the recent survey and the experimental comparison of various
similarity measures for time series data, see e.g., Wang et al. (2013). Wang et al.
(2013) conclude that especially on small data sets elastic measures like DTW can be
significantly more accurate than the Euclidean distance or other lock-step measures
because the elastic (non-linear) measures take into account the dilatation in time.
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Let X = {x1, x2, . . . , xN} and Z = {z1, z2, . . . , zM} denote time series to be
compared. To find the best alignment between X and Z, we first construct a N-by-M
(cost) matrix where (ith, jth) element of it corresponds to the local cost function. The
local cost function d(i, j) is the distance between two points xi and zj of compared
time series

d(i, j) = f (xi, zj) ≥ 0 (10)

The magnitude of the difference d(i, j) = |xi − zj| (Manhattan) or square of the
difference d(i, j) = (xi − zj)

2 (Euclidean) are some of the most common local
cost functions considered in applications. In the experiments of this research, the
Euclidean local cost distance is used. Then, to find the best match between two
given series X and Z, we retrieve a path (the so called warping path) through the
cost matrix that minimizes the cumulative distance. The following recursive relation
defines the cumulative distance g(i, j) for i ∈ {1, . . . , N} and j ∈ {1, . . . , M}

g(i, j) = d(i, j) + min[g(i − 1, j), g(i − 1, j − 1), g(i, j − 1)] (11)

The cumulative distance g(i, j) is the sum of the distance between current elements
and the minimum of the cumulative distances of the neighboring points. Two points
(xi, zj) and (xi∗, zj∗) on the N-by-M cost matrix are called neighboring if

(|i − i ∗ | = 1 and |j − j ∗ | = 0) or (|i − i ∗ | = 0 and |j − j ∗ | = 1) (12)

The warping path is found using the dynamic programming and the algorithm’s
complexity is O(NM). When the X and Z series are of the same length, then the
value of g(N, M) defines the DTW distance between them.

In Fig. 1, the performance of the Euclidean and DTW distances are compared
for three exemplary short series of observations (five observations each) generated
from three different autoregressive processes, namely AR(−0.9), AR(−0.5), and
AR(0.0).

In general, time series generated from white noise AR(0.0) should be more
similar to time series generated from AR(−0.5) process than to time series generated
from AR(−0.9) process because of their autoregressive characteristics. However,
as observed, the Euclidean distance between series from AR(0.0) and AR(−0.9)

amounts to 3.7, and between series from AR(0.0) and AR(−0.5) it results to 4.1,
which is contradictory to intuition. At the same time, the DTW distance between
series from AR(0.0) and AR(−0.9) amounts to 3.7, whereas the distance between
series from AR(0.0) and AR(−0.5) is smaller and amounts to 3.5. It this context, the
DTW similarity measure provides appropriate results that are in line with intuition.
Time series with stronger autocorrelations have similar patterns even if they are
dilated in time.

Further numerical experiments will be presented in Sect. 4. They confirm the
good properties of the DTW measure, especially for time series with identified
dilatation in time.
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Fig. 1 Euclidean and DTW distances for exemplary series of observations

3.3 Construction of Prior Probabilities (Weights)

Having defined the distance between two time series, the proposed method of
selecting k alternative models is explained. The input for the algorithm is the
monitored process y, the desired number of alternative models k and definitions
of the AR processes to be considered in the template database. We adapt stationary
AR processes of different orders as template models M. It needs to be stated, that in
numerical experiments the order is usually assumed less or equal 2.

The output of the algorithm is in form of definitions of alternative models
{M1 . . . , Mk} to be considered in predictions of the monitored process and their
respective weights {w1, . . . , wk} such that

∑k
h=1 wh = 1.

Algorithm 1 depicts a high-level description of the proposed approach. It consists
of the following steps:

Step 1. Generation of the template database YJ,s.
The template database consists of models {M1, . . . , MJ} that are stationary AR
processes of order less or equal p. For each of the J models (processes) its s
realizations (training time series) are generated and considered for similarity
calculations. For the clarity reasons, the length of generated series is the same
as length of the considered monitored process.

Step 2. Calculating distances between the monitored process y and the training
time series from the template database using the DTW distance.
For m ∈ J and their realizations i ∈ s, the distance between the training time
series and the considered monitored series of observations is calculated

distm,i = DTW(ym,i, y) (13)
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Algorithm 1 Building alternative models of the monitored process (BAM)

� Input:
1: y - monitored process,
2: p - max order of the AR process considered to build template database,
3: s - number of sample time series from each of the template AR processes,
4: α - min difference between autoregressive coefficients of AR models in template database,
5: k - number of alternative models to be considered

� Output:
6: M1, . . . , Mk - alternative models to be considered for the monitored process,
7: w1, . . . , wk - weights for the alternative models
8: procedure BAM(y, p, s, α, k)
9: l ← length(y)

10: J ← 0
11: for order = 0 to p do � Step 1. Generation of template database
12: for θ = −1 + α to 1 add α do
13: if generateAR(length=l, order, θ) is stationary then
14: for i = 1 to s do
15: Yi,order,θ ← generateAR(length=l, order, θ) � θ is a list of autoregressive

parameters for AR order greater or equal 2

16: J ← J + 1
17: for m = 1 to J do � Step 2. Calculating similarity of monitored process y to time series

from the template database
18: for i = 1 to s do
19: distm,i ← distanceDTW( y, ym,i)

20: distm ← meanDistance(Mm)
21: for m = 1 to J do � Step 3. Aggregating similarities to establish weights
22: M1, . . . , Mk ← selectAlternativeModels(distm , k)
23: w1, . . . , wk ← scaleWeights(M, k)

return M1, . . . , Mk, w1, . . . , wk

Step 3. Aggregating similarities to establish weights corresponding to models
{M1 . . . , Mk}.

The mean aggregation operator is considered to construct weights for each model
based on distances retrieved for each of the s sample time series. For model Mm

where m ∈ J having s realizations, the average distance between the training time
series and the considered monitored series of observations is calculated as follows

distm =
∑s

i=1 distm,i

s
(14)

Having evaluated the average distance for each of the template models
{M1, . . . , MJ}, the k models with smallest distance are selected. Then, the prior
weights {w1, . . . , wk} are calculated

wi = disti
∑k

h=1 disth
. (15)
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4 Numerical Experiments

4.1 Properties of X Charts and X Charts for Residuals

Let consider Shewhart X control charts, both for raw data and for residuals, whose
parameters are designed using information from relatively small samples. In the
case of raw data and independent observations the basic characteristic of a chart
with estimated control limits, the average run length (ARL), can be computed using
the approach proposed by Chakraborti (2000). Previously, the effect of parameter
estimation on properties of the classical Shewhart control chart has been investigated
by many authors using mainly Monte Carlo simulations. In the case of independent
observations they found that estimated control limits, in general, are too wide.
Thus, the values of the ARL are larger than expected, and special corrections are
needed, such as, e.g., proposed by Albers and Kallenberg (2004). The same effect
has been observed in the case of autocorrelated data. When we use a Shewhart
control chart for residuals, and we have enough data to estimate the underlying
model of the process, and the variance of residuals, sufficiently precisely, then the
chart for residuals behaves like a classical Shewhart control chart. However, when
we do not have enough data, and this is a usual case in practice, the value of ARL
of the chart for residuals is, as it was proved by Kramer and Schmid (2000), smaller
than in the case of the classical Shewhart control chart applied for original (raw)
observations. In order to illustrate these well known features we have performed a
simulation experiment in which N = 50,000 (200,000 in the case of independent
observations) charts were designed, and for each of them NR = 5000 process runs
of maximum MR = 500,000 observations (curtailment value) were simulated. We
have performed this experiment for the ordinary Shewhart X chart for individual
observations, and for the Shewhart X-chart for residuals. The charts of both types
have been designed using the information coming from the simulated sample of n
items. Note, that in the case of a control chart for residuals the underlying model
was estimated using a methodology described in Sect. 2. For each of the considered
charts we have calculated the average run length (ARL), and the median run length
(MRL). Then, in order to compare both types of charts we have computed the
following characteristics of the respective distributions: average of the distribution
of ARL’s (AvgARL), standard deviation of the distribution of ARL’s (StdARL),
median the distribution of ARL’s (MedARL), skewness of the distribution of
ARL’s (SkewARL), average of the distribution of MRL’s (AvgMRL), standard
deviation of the distribution of MRL’s (StdMRL), median of the distribution of
MRL’s (MedMRL), and skewness of the distribution of MRL’s (SkewMRL). In the
case of independent consecutive observations (both in the sample used for design
purposes, and the monitored process) the characteristics of the distribution of ARL’s
are presented in Table 1, and the characteristics of the distribution of MRL’s are
presented in Table 2.

The results of simulations presented in Tables 1 and 2 confirm many of well
known facts. First, consider the case of the X chart for direct, and independent,
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Table 1 Characteristics of the ARL distributions for X charts, and X charts for residuals—
independent observations

X-chart X-chart (residuals)
n AvgARL StdARL MedARL SkewARL AvgARL StdARL MedARL SkewARL

20 1554.7 9228.1 256.9 23.0 485.6 5106.4 66.5 47.5

30 863.7 3326.9 287.6 37.2 369.9 1924.4 114.4 66.2

40 674.0 1730.8 306.3 30.5 342.9 801.6 150.2 14.4

50 578.1 988.5 315.4 10.9 341.2 637.1 180.0 13.8

100 455.9 401.2 342.3 4.1 345.8 315.1 258.1 5.7

200 408.6 225.0 355.6 2.1 356.2 194.6 309.5 2.0

500 385.0 125.3 364.9 1.2 365.9 118.8 346.4 1.2

1000 377.2 85.1 367.0 0.8 369.4 83.1 359.2 0.8

2000 374.2 59.1 369.2 0.5 371.4 58.3 366.6 0.5

Table 2 Characteristics of the MRL distributions for X charts, and X charts for residuals—
independent observations

X-chart X-chart (residuals)
n AvgMRL StdMRL MedMRL SkewMRL AvgMRL StdMRL MedMRL SkewMRL

20 1134.3 8650.3 178.0 35.6 353.9 4792.8 47.0 70.1

30 601.2 2571.7 200.0 63.9 258.9 1665.9 80.0 154.3

40 467.5 1217.0 212.5 33.7 238.8 557.4 105.0 14.5

50 401.0 685.4 219.0 10.8 237.6 441.5 126.0 13.8

100 316.2 278.2 237.0 4.1 240.7 218.4 180.0 5.7

200 283.4 156.1 246.5 2.2 248.0 135.0 216.0 2.0

500 267.0 87.0 253.0 1.2 254.8 82.5 241.0 1.2

1000 261.6 59.1 254.5 0.8 257.2 57.7 250.0 0.8

2000 259.5 41.2 256.0 0.5 258.4 40.6 255.0 0.5

observations (columns 2–5). The distribution of ARL’s (over a set of possible control
charts) for small samples is in this case extremely positively skewed. Averaging of
ARL’s and MRL’s yields for small samples strongly positively biased estimators
of the theoretical values of these characteristics (370.4 and 256.4, respectively).
On the other hand, medians of ARL’s and MRL’s are negatively biased, but this
bias seems to be visibly smaller. In both cases the bias results from imprecise
estimation of control limits. When we consider the X chart for residuals (columns
6–9) the situation is different. In this case the uncertainty related to imprecisely
calculated control limits (positive bias) is combined with the uncertainty related
to the computation of residuals (negative, as it was proved in Kramer and Schmid
(2000)). Paradoxically, a false assumption of dependence that leads to the usage
of a control chart for residuals, for small and medium sample sizes leads to better
characteristics of this chart in comparison to the X chart for individual observations
designed under the assumption of independent observations. Only for large sample
sizes control charts designed using both approaches have similar characteristics,
as it is expected in theory. Note, that in the case of a control chart for residuals
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Table 3 Properties of the X chart for residuals with dependent observations—negative autocorre-
lation

ρ = −0.9 ρ = −0.5
n AvgARL MedARL MedMRL SkewARL AvgARL MedARL MedMRL SkewARL

20 2212.6 165.7 115.0 19.3 763.5 84.4 59.5 34.4

30 928.1 203.0 141.0 42.7 503.5 132.3 92.0 57.1

40 589.6 225.3 157.0 91.6 419.8 171.7 120.0 30.3

50 524.4 244.4 204.0 97.5 388.5 199.7 139.0 18.5

100 395.1 293.8 204.0 3.9 368.7 273.8 190.0 3.9

200 377.5 327.3 227.0 2.3 369.6 320.7 223.0 2.1

500 371.4 351.0 244.0 1.1 370.8 351.2 244.0 1.2

1000 370.7 360.6 250.0 0.8 370.9 360.8 251.0 0.8

2000 371.0 366.7 254.0 0.5 371.1 366.2 254.0 0.5

Table 4 Properties of the X chart for residuals with dependent observations—positive autocorre-
lation

ρ = 0.9 ρ = 0.5
n AvgARL MedARL MedMRL SkewARL AvgARL MedARL MedMRL SkewARL

20 1304.8 70.5 49.0 24.7 629.3 67.7 47.3 40.5

30 654.3 116.0 81.0 48.3 457.3 119.1 83.0 70.5

40 461.7 155.3 108.0 83.8 398.2 160.4 112.0 31.8

50 390.9 184.4 128.0 183.4 374.8 191.2 133.0 19.3

100 361.4 266.3 185.0 4.3 364.9 270.5 188.0 3.9

200 365.4 318.2 221.0 2.2 368.4 319.6 222.0 2.1

500 369.2 349.7 243.0 1.2 370.6 350.5 243.5 1.2

1000 370.5 360.0 250.0 0.8 370.9 360.7 250.5 0.8

2000 371.3 366.3 254.0 0.5 371.1 366.2 254.0 0.5

the combined bias of the estimators of ARL and MRL, based on averaging, is not a
monotonic function of the sample size n, and attains its minimum at n approximately
equal to 40. On the other hand, when we use estimators based on the medians of
ARL’s and MRL’s the negative bias is monotonically decreasing with the increase
of sample sizes.

In Tables 3 and 4 we present the results of similar simulation experiments for
autocorrelated data when the autocorrelation is described by the autoregression
model of the first order—AR(1) model. We consider four cases of the strength of
dependence, described by the autocorrelation coefficients equal to −0.9, −0.5, 0.5,
and 0.9, respectively.

The interpretation of the results presented in Tables 3 and 4 is similar to that
in the case of independent data, and confirms findings of many other researchers.
In general, the estimators of ARL’s and MRL’s, based on averaging, are positively
biased, and those based on medians are biased negatively. The estimators based on
averaging are more sensitive to the strength of dependence in the case of negative
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dependence. In case of the positive dependence the observed bias practically does
not depend on the strength of dependence (except for very small sample sizes).

Extreme skewness of the distributions of ARL’s and MRL’s has a very negative
impact on the investigations based on computer simulations. If we use averages
(over a set of simulated control charts) for the estimation purposes even in the case of
thousands of simulated charts few outlying cases, that make the value of skewness so
high, may dramatically change the results of estimation. Therefore, one would prefer
to use the median as the more robust estimator of ARL’s and MRL’s. However, in
the case of averages we have a commonly accepted benchmark value, the ARL for
an in-control state equal to 370.4, but for the median of ARL’s such a benchmark
does not exist. Therefore, in this chapter we will focus on the approach in which
we use the average of ARL’s, noting that in future research the approach with the
median will be more appropriate.

Let us look at the problem described above from a different point of view. When
sample sizes are small it is always possible to design a control chart with too wide
control lines. In such a case even large shifts of the process level will not be detected.
Therefore, if we observe a long sequence of observations between the control lines
we can only say that the process is either in the in-control state or the control limits
are too wide. In such situation one can think about an additional decision rule: to
stop monitoring after MR observations, and to redesign the chart. In this research we
consider the case when the curtailment value is set to 1000 observations, and applied
only in the case of samples not greater than 100. The impact of this curtailment on
properties of the distributions of ARL’s and MRL’s can be inferred from the data
contained in Tables 5, 6, and 7

The comparison of the results presented in Tables 1, 2, 3, 4 and Tables 5, 6, 7
shows that all considered characteristics for curtailed experiments are, especially
for small sample sizes, significantly smaller than those for (practically) uncurtailed
ones. It is worth noting than in the case of a classical Shewhart control charts with
known process parameters the curtailment at 1000 observations decreases the ARL
from 370 to 345. In the considered in this chapter case of the X chart for residuals
with estimated control lines this decrease seems to be more significant. Therefore,
we cannot use the value of 370 as the target value of the ARL. The choice of such
target value, especially when we estimate control lines from small samples, seems
to be a still open question.

Table 5 Characteristics of the ARL and MRL distributions for X charts for residuals—
independent observations, runs curtailed at 1000

ARL MRL
n AvgARL StdARL MedARL SkewARL AvgMRL StdMRL MedMRL SkewMRL

20 159.1 211.8 66.2 2.0 142.8 237.3 47.0 2.6

30 199.3 209.1 113.8 1.6 175.8 237.8 80.0 2.3

40 224.4 201.2 151.0 1.4 195.0 231.8 106.0 2.2

50 243.0 193.6 178.4 1.2 208.8 224.4 125.0 2.1

100 288.3 159.7 253.4 0.9 236.8 183.9 180.0 2.0
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Table 6 Properties of the X chart for residuals with dependent observations—negative autocorre-
lation, runs curtailed at 1000

ρ = −0.9 ρ = −0.5

n AvgARL MedARL MedMRL SkewARL AvgARL MedARL MedMRL SkewARL

20 295.1 165.5 115.0 0.97 196.2 83.6 59.0 1.7

30 294.8 201.1 141.0 0.95 227.4 132.3 92.0 1.4

40 296.7 222.7 157.0 0.93 249.0 149.6 118.5 1.2

50 301.2 241.2 170.5 0.88 264.5 200.0 140.0 1.1

100 315.3 284.2 204.0 0.75 301.3 267.6 191.0 0.82

Table 7 Properties of the X chart for residuals with dependent observations—positive autocorre-
lation, runs curtailed at 1000

ρ = 0.9 ρ = 0.5

n AvgARL MedARL MedMRL SkewARL AvgARL MedARL MedMRL SkewARL

20 190.8 70.0 49.0 1.7 172.5 67.8 48.0 1.9

30 220.0 117.4 82.0 1.4 214.1 119.2 83.0 1.5

40 241.0 156.8 109.0 1.3 249.1 169.3 113.0 1.3

50 255.0 187.4 131.0 1.1 259.7 193.7 135.0 1.1

100 296.8 262.8 187.0 0.82 299.5 265.8 189.0 0.83

4.2 Properties of XWAM Charts for Residuals

The results of experiments presented in the previous section can be used for
comparison purposes when we investigate properties of the newly proposed XWAM
chart for residuals. The properties of the XWAM chart, described in Sect. 2, have
been analyzed using extensive simulation experiments. The outer loop of the
experiment consisted of the generation of NC XWAM control charts, and for each
chart NR process runs have been generated in the inner loop of the experiment.
All runs were curtailed at a predefined value MR. Then, four characteristics have
been calculated: average ARL (AvgARL), median ARL (MedARL), average MRL
(AvgMRL), and median MRL (MedMRL), where MRL is the median of observed
run lengths.

In order to illustrate the design of the proposed XWAM chart consider the case
when a chart has to be designed basing on 20 observations from a monitored process.
The data presented below have been generated from an autoregressive process of the
second order, AR(2), with the parameters 0.7 and −0.9, respectively.

−0.94, −1.35, −1.4, −0.34, 0.71, 0.14, −0.49, −1.08, 1.41, 2.25
−0.05, −2.74, −1.02, 2.95, 4.03, 0.43, −2.67, −2.45, 1.98, 4.25,

The autoregression model estimated from these data using the BIC criterion
is the AR(2) model with the parameters (0.6094, −0.8236). Using the algorithm
described in Sect. 3 we have found five best alternative models. All of them are
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Table 8 Chart in-control characteristics for different weights assigned to the estimated model

w0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

ARL 97.1 184.5 279.7 352.4 387.7 395.2 383.3 357.7 327.9 292.8 260.9

MRL 68.0 132.0 202.0 260.0 296.0 305.0 292.0 262.0 235.0 207.0 186.0

AR(2) models with parameters (−0.1, −0.5), (0.1, −0.4), (0.4, −0.7), (−0.5, −0.5),
and (0.3, −0.7), respectively. The weights assigned to these alternative models
were approximately the same (w

′
i = 0.2, i = 1, . . . , 5). The estimated model is

different from the original model used in simulations, but not too much. However,
the alternative models are not very close to the original one, as one could expect.

For the control chart designed using this sample and respective models of the
process we have generated, from the original (0.7, −0.9) model, 5000 runs of
the process, curtailed at MR = 1000. The values of its characteristics, ARL and
MRL, are presented in Table 8 for different values of the weight w0 assigned to the
estimated model.

The results presented in Table 8 illustrate the role of alternative models. Their
inclusion widens the control limits, and thus increases the values of chart’s
characteristics such as ARL and MRL. This feature is easily explained if we notice
that residuals calculated using the estimated model are minimal or close to minimal
possible (minimal possible residuals can be obtained when Burg’s algorithm, not
considered in this chapter, is used for the estimation of the process model). Thus,
sample residuals calculated using any other model (even the true one!) are usually
larger, and their inclusion leads to the widening of control lines, and thus to the
increase of ARL’s and MRL’s. Therefore, the inclusion of alternative models is
beneficiary only when the run lengths of a chart designed using an estimated model
are shorter than expected. In this particular case the optimal weight of the estimated
model seems to be close to 0.7. For bigger and smaller weights the number of false
alarms is too high.

The model’s parameters describing the sample considered above are not so much
different from the parameters used in simulations. However, when sample sizes are
small, it may not be the case. Consider, for example, the following sample that has
been generated using the same model.

−3.48 0.82 2.70 1.44 −1.72 −3.19 −0.91 3.01 2.07 −0.74
−1.12 −0.12 −1.73 −0.25 −1.32 −2.3 1.48 6.52 3.13 −3.83

The autoregression model estimated from these data using the BIC criterion is the
AR(2) model with the parameters (0.379, −0.6094). Using the algorithm described
in Sect. 3 we have found five best alternative models, and all of them are AR(2)
models with parameters (0.8, −0.8), (0.6, −0.8), (0.9, −0.6), (0.4, −0.7), and
(−0.7, −0.4), respectively. The weights assigned to these alternative models were
approximately the same (w

′
i = 0.2, i = 1, . . . , 5). It has to be noted that in the case

of this particular sample the estimated model differs from the original one.
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Table 9 Chart in-control characteristics for different weights assigned to the estimated model—
extreme sample

w0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

ARL 947.4 966.7 980.3 988.4 991.9 994.2 997.4 998.7 999.4 999.7 999.8

MRL 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0

Table 10 Average in-control ARL for different weights assigned to the estimated model, n = 20

Model/w0: 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

AR(−0.9) 256.6 290.7 322.6 348.1 368.1 383.4 395.3 404.4 411.2 416.0 419.3

AR(−0.5) 200.2 212.7 226.1 240.4 255.3 270.5 285.3 299.3 312.0 322.9 331.7

AR(0) 177.4 185.3 194.3 204.5 216.0 229.2 244.4 261.7 281.4 303.2 326.3

AR(0.5) 165.8 185.0 204.2 222.7 239.7 254.5 267.1 275.0 284.8 289.5 291.4

AR(0.9) 155.5 173.5 181.3 182.0 178.4 172.3 164.9 157.1 149.2 141.7 134.6

AR(0.7 , −0.9) 201.2 381.6 466.0 507.2 526.8 533.3 531.5 524.5 514.0 501.2 487.3

Table 11 Median in-control ARL for different weights assigned to the estimated model, n = 20

Model/w0: 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

AR(−0.9) 131.7 161.9 187.0 214.7 230.6 243.6 252.8 260.4 271.9 285.2 419.3

AR(−0.5) 87.1 100.7 111.5 124.6 139.0 155.1 173.1 187.7 198.7 218.8 229.4

AR(0) 69.8 76.2 82.8 90.7 99.2 112.4 123.2 140.5 164.5 187.8 213.1

AR(0.5) 66.5 76.9 87.5 104.8 118.3 132.5 140.5 150.7 158.7 168.6 173.2

AR(0.9) 55.2 61.5 60.5 57.5 55.0 49.9 48.0 45.6 43.1 40.7 38.5

AR(0.7 , −0.9) 96.6 233.0 370.5 478.0 519.3 539.5 517.2 487.7 450.8 416.8 377.4

In Table 9 we present the results of a similar simulation experiment as in the case
of the first considered sample. The residuals calculated from the estimated model
are, in this case, large, and thus the values of ARL and MRL are much larger from
expected. Therefore, by adding alternative models (even if they are closer to the
original one) we do not improve the situation, and the values of ARL and MRL
remain too high.

The results presented in Tables 8 and 9 illustrate the operation of the proposed
algorithm for particular samples. More general properties of the proposed XWAM
control chart have been investigated in numerous simulation experiments for
different models describing autocorrelation. In Tables 10 and 11 we present the
average and median values of ARL’s evaluated from 1000 generated control charts,
and 5000 process runs generated for each control chart, i.e., from all together
5,000,000 simulated process runs. In all these runs the simulated process was
in the in-control state, and the length of one run was curtailed at 1000 process
observations.

The results presented in Tables 10 and 11 are very interesting from many points
of view. First, let us notice that the values of averages ARL’s in the in-control
state (Table 10) are significantly different from the respective values of medians
of averages (Table 11), and this difference is greater than in the cases described
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in Tables 5, 6, and 7, where we simulated 50,000 charts. Moreover, the values of
average and median ARLs obtained in the case when only a simulated sample was
used for the design of the chart (classical X chart for residuals, w = 1) are lower
than their counterparts from Tables 5, 6, and 7. These differences tell us that the
number of samples (charts) used for the evaluation of properties of the XWAM chart
(1000), and the sample sizes used, are not sufficient for precise estimation of ARL’s.
Unfortunately, the simulation of XWAM charts is time consuming (due to the time
used for finding alternative models), and simulation of a much larger number of
considered charts is, unfortunately, infeasible. Therefore, the results presented in
the following part of this section have, as for now, rather qualitative character. The
second, and the most important, feature of the XWAM chart that can be inferred
from Tables 10 and 11 is the following: by taking into account alternative models
we usually increase the values of ARL’s in the in-control state. However, for strong
positive correlations (ρ = 0.9) or more complicated models (AR(0.7, −0.9)) this
behavior is slightly different. With a decreasing value of w0 the value of ARL
increases, then attains a maximum and for smaller values of w0 decreases. This
phenomenon is possibly due to imprecise estimation of model’s parameters for very
small samples (n = 20), and processes of these types. When we use a classical X
control chart for residuals (w0 = 1) the averages (and medians) of ARL’s are rather
small, and this means that the rate of false alarms may be too high. By using the
XWAM chart with the parameter w0 < 1.0 we significantly decrease the rate of
false alarms. The question arises then if the discriminative power of such charts is
sufficiently good. The answer to this question is presented in the following part of
this section.

The results presented in Tables 10 and 11 show how the concept of the XWAM
control chart works in practice when monitored processes are in the in-control state.
What is equally important, however, it is the ability of a chart to detect shifts of
a monitored process. In this chapter we consider only shifts of the average value,
measured in units of standard deviation. Let us begin this analysis from considering
the case of independent sample and process observations. The respective values
of the averaged over 1000 considered charts values of the ARL are presented in
Table 12.

Table 12 Average ARL for different weights assigned to the estimated model and different shifts
of the process level, ρ = 0, n = 20

Shift/w0: 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

−3 4.9 4.8 4.8 4.7 4.7 4.7 4.7 4.8 4.8 5.0 5.2

−2 9.8 9.7 9.6 9.6 9.6 9.8 10.0 10.4 11.0 12.0 13.5

−1 46.9 48.3 50.0 52.3 55.0 58.6 62.9 68.4 75.2 84.0 95.4

0 177.4 185.3 204.6 220.2 237.3 255.9 276.1 297.3 318.6 339.2 358.0

1 50.0 51.3 53.0 55.0 57.6 60.8 64.8 70.0 76.6 85.1 96.4

2 10.4 10.3 10.2 10.2 10.2 10.4 10.6 11.0 11.6 12.5 13.9

3 5.0 4.9 4.8 4.8 4.8 4.8 4.8 4.8 4.9 5.0 5.2
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Table 12 shows a very interesting feature of the XWAM chart for residuals. When
we decrease the weight w0 assigned to the estimated model the respective values of
the average ARL’s are increasing when shifts of the process mean are either not
present (the in-control state) or are small (e.g., the shift of one standard deviation).
For larger shifts these values for the XWAM chart are similar or even smaller (!)
than in the case of the classical X chart for residuals (w0 = 1). It means that for
the XWAM chart for residuals the rate of false alarms is smaller than in the case of
the X chart for residuals. However, the rate of (expected) alarms is similar or even
smaller for large shifts of the process level. Thus, the newly proposed chart seems
to be more effective than the classical control chart for residuals.

Let us consider now the same problem when consecutive observations are
autocorrelated. In Table 13 we show the average values of ARL for different shifts
when we use a sample of 20 elements, and the observations are positively, but not
very strongly, correlated (ρ = 0.5).

From Table 13 it can be seen quite clearly that the behavior of the XWAM chart in
this case is nearly the same as in the case of independent observations. The XWAM
chart has better discriminative power, calculated as the quotient of the ARL in the
out-of-control state (shifted process) and the ARL in the in-control state. Respective
values of the coefficient of discriminative power are presented in Table 14. It is
interesting that in this case an “optimal” behaviour is to neglect the estimated model
(w0 = 0). Observed sample is used in this case only for finding good alternative

Table 13 Average ARL for different weights assigned to the estimated model and different shifts
of the process level, ρ = 0.5, n = 20

Shift/w0: 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

−3 16.7 16.3 15.7 15.0 14.2 13.5 12.8 12.2 11.8 11.4 11.2

−2 43.0 47.0 45.8 46.4 46.6 46.4 45.9 45.1 44.1 43.1 42.2

−1 107.2 117.2 126.4 135.0 142.7 149.2 154.3 158.0 160.3 161.4 161.5

0 165.8 185.0 204.2 222.7 239.7 254.5 267.1 275.0 284.8 289.5 291.4

1 105.2 115.3 124.6 132.7 139.5 144.6 148.1 150.2 151.3 151.5 151.0

2 42.0 44.0 45.3 46.0 46.3 46.1 45.7 44.9 43.9 42.6 41.4

3 16.2 15.9 15.4 14.7 14.0 13.3 12.5 11.9 11.4 11.1 10.8

Table 14 Discriminative power of the XWAM chart for different shifts of the process level, ρ =
0.5, n = 20

Shift/w0: 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

−3 0.101 0.088 0.077 0.067 0.059 0.053 0.048 0.044 0.041 0.039 0.038

−2 0.259 0.254 0.224 0.208 0.194 0.182 0.172 0.164 0.155 0.149 0.145

−1 0.647 0.634 0.619 0.606 0.552 0.586 0.578 0.575 0.563 0.558 0.554

0 1 1 1 1 1 1 1 1 1 1 1

1 0.634 0.623 0.610 0.596 0.582 0.568 0.554 0.546 0.531 0.523 0.518

2 0.253 0.238 0.222 0.207 0.193 0.181 0.171 0.163 0.154 0.147 0.142

3 0.100 0.086 0.075 0.066 0.058 0.052 0.047 0.043 0.040 0.038 0.037
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Table 15 Average ARL for different weights assigned to the estimated model and different shifts
of the process level, ρ = −0.5, n = 20

Shift/w0: 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

−3 3.1 3.1 3.1 3.1 3.2 3.2 3.2 3.2 3.2 3.3 3.4

−2 4.3 4.3 4.4 4.5 4.6 4.7 4.8 5.0 5.2 5.4 5.8

−1 23.5 24.8 26.2 27.8 29.5 31.4 33.5 35.9 38.6 41.7 45.2

0 200.2 212.7 226.1 240.4 255.3 270.5 285.3 299.3 312.0 322.9 331.7

1 23.0 24.3 25.7 27.3 29.0 30.9 33.0 35.5 38.3 41.6 45.6

2 4.3 4.4 4.4 4.5 4.6 4.7 4.9 5.2 5.2 5.5 5.8

3 3.1 3.1 3.1 3.2 3.2 3.2 3.2 3.2 3.3 3.3 3.4

Table 16 Discriminative power of the XWAM chart for different shifts of the process level, ρ =
−0.5, n = 20

Shift/w0: 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

−3 0.016 0.015 0.014 0.013 0.012 0.012 0.011 0.011 0.010 0.010 0.010

−2 0.021 0.020 0.019 0.019 0.018 0.017 0.017 0.017 0.017 0.017 0.017

−1 0.117 0.117 0.116 0.116 0.116 0.116 0.117 0.120 0.124 0.129 0.136

0 1 1 1 1 1 1 1 1 1 1 1

1 0.115 0.114 0.114 0.114 0.114 0.114 0.117 0.119 0.123 0.129 0.137

2 0.021 0.021 0.020 0.019 0.018 0.017 0.017 0.017 0.017 0.017 0.017

3 0.016 0.015 0.014 0.013 0.012 0.012 0.012 0.011 0.011 0.010 0.010

models. One should also note that a simple widening of control limits for a classical
chart for residuals will increase the in-control ARL to the required value, but—
contrary to the case of the XWAM chart—also automatically will increase the value
of ARLs for shifted processes. In such a case, the average time to alarm signal for
large shifts will be much greater than the respective time for the proposed XWAM
chart. The results of similar experiment performed for other autoregression models
show a similar behavior of the XWAM chart.

Interesting case is presented in Tables 15 and 16. In these tables we consider the
case of negative dependence of medium strength (ρ = −0.5). The value of w0 for
which the discriminative power is the best is in this case about 0.5. Therefore, if we
need to balance somehow the requirement for small rate of false alarms and good
discrimination properties we should use an “optimal” value of w0 from an interval
[0, 0.5]. It means that in this case for the construction of a control chart we should
use appropriately weighted modes, both estimated and alternative.

Finally, let’s consider the influence of a sample size on the performance of
XWAM chart. This problem is rather seldom considered in literature (see Köksal
et al. (2008) for more information). In Table 17 we present the comparison between
the values of ARL’s for two sample sizes, 20 and 50. The process used for
comparisons is the autoregressive process of the first order AR(0.9). We have
deliberately chosen this process, as in this case the performance of the classical
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Table 17 Values of ARL for different sample sizes, ρ = 0.9

w0 = 1.0 w0 = 0.8 w0 = 0.6 w0 = 0.4 w0 = 0.2 w0 = 0.0

Shift/n 20 50 20 50 20 50 20 50 20 50 20 50

−3.0 107.8 167.0 114.2 177.4 107.9 169.4 99.2 155.2 91.0 140.2 83.5 126.1

−2.0 130.5 206.5 144.0 230.0 138.9 226.9 128.3 212.9 117.3 195.8 107.2 178.4

−1.0 148.5 239.7 169.5 276.5 165.9 279.8 153.5 267.2 139.3 248.7 126.2 228.7

0.0 155.5 254.8 181.3 298.1 178.4 305.0 164.9 293.4 149.2 274.1 134.6 252.3

1.0 148.2 243.5 174.2 281.1 169.4 285.5 155.5 273.0 140.2 254.1 126.3 233.2

2.0 129.5 210.3 151.1 233.7 143.8 231.4 129.9 217.5 116.5 199.8 104.8 181.8

3.0 105.9 168.8 121.1 178.1 112.6 170.1 100.3 156.0 89.3 140.6 80.1 126.4

Table 18 Discriminative power of the XWAM chart for different sample sizes, ρ = 0.9

w0 = 1.0 w0 = 0.8 w0 = 0.6 w0 = 0.4 w0 = 0.2 w0 = 0.0

Shift/n 20 50 20 50 20 50 20 50 20 50 20 50

−3.0 0.69 0.66 0.63 0.60 0.60 0.56 0.60 0.53 0.61 0.51 0.62 0.50

−2.0 0.84 0.81 0.79 0.77 0.78 0.74 0.78 0.73 0.79 0.71 0.80 0.71

−1.0 0.95 0.94 0.93 0.93 0.93 0.92 0.93 0.91 0.93 0.91 0.94 0.91

0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 0.95 0.96 0.96 0.94 0.95 0.94 0.94 0.93 0.94 0.93 0.94 0.92

2.0 0.84 0.83 0.83 0.78 0.81 0.76 0.79 0.44 0.78 0.73 0.78 0.72

3.0 0.68 0.66 0.67 0.60 0.63 0.56 0.61 0.53 0.60 0.51 0.60 0.50

X chart for residuals is, as it was already noticed by many authors, very poor.
Therefore, the question is if the usage of the XWAM chart helps in this difficult
case.

The results of simulations presented in columns 2 and 3 of Table 17 confirm
already known results that classical X charts for residuals perform very badly. The
rate of false alarms is extremely high, and, on the other hand, average times to alarm
are also very high, even for very large shifts of process levels. This is also confirmed
in Table 18 where respective coefficients of discriminative power are displayed.

The performance of a classical control chart for residuals (w0 = 1) for a
very small sample size (n = 20) is very bad. The rate of false alarms is high,
and discrimination rate is unsatisfactory (even large shifts of the process level are
detected with a large delay). This bad behavior is due to the correlation of residuals
which affects the estimated standard deviation. When we increase the sample size
to n = 50 the false alarm rate is, as expected, significantly decreased. However, the
discrimination rate is only slightly better. The performance of respective XWAM
charts is slightly better if we take the value of w0 from an interval [0.4, 0.6]. The
false alarm rate is for both considered sample sizes lower, and the discrimination
rate slightly better. Thus, similarly to previously considered cases, the performance
of the newly proposed XWAM chart is better than the performance of the classical
X chart for residuals.
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5 Conclusions

In the chapter we have proposed a new method for the construction of the Shewhart
X control chart for residuals. The inspiration of the proposed methodology comes
from the concept of the Bayesian model averaging, already successfully applied
by econometricians in the analysis of economic short time series. The novelty of
the proposed approach consists in the new method for the calculation of weights.
Following our previous experience with prediction models for short time series, we
propose to compute these weights using methods of data mining. In this particular
research we use the methodology of Dynamic Time Warping (DTW) for finding
alternative models for the considered sequence of observations. We use artificially
generated template time series, and find these series (and in consequence their
models) our data are similar to. Then, the degrees of similarity are used for the
computation of model weights. In this research the template time series have been
generated from simple autoregressive models. However, the proposed approach is
more general, and allows to use as a template any well identified time series.

In order to evaluate the proposed methodology we have performed many
simulation experiments. In this chapter, due to a limit for its volume, we have
presented the results of only some of them. The presented results can be regarded
as a positive “proof of concept”. Control charts designed according to the proposed
methodology have better properties than traditionally designed Shewhart X control
charts for residuals. However, the properties of these improved charts are often
unsatisfactory from a practical point of view. Therefore, there is a need to apply
the proposed methodology for such control charts for residuals as EWMA or
CUSUM, which have been proved to perform better than the X chart. Moreover,
further research is needed with the aim to find good alternative models using less
computational effort.
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Challenges in Monitoring
Non-stationary Time Series

Taras Lazariv and Wolfgang Schmid

Abstract Different approaches for monitoring non-stationary processes are dis-
cussed. Besides the transformation method, a more general procedure is described
which makes use of the probability structure of the underlying in-control process.
Here, the in-control process is assumed to be a multivariate state-space process. The
out-of-control state is described by a general change point model which covers shifts
and drifts in the components. Control charts with a reference vector are derived
using the likelihood ratio, the sequential probability ratio, and the Shiryaev–Roberts
approach. Moreover, the generalized likelihood ratio, the generalized sequential
probability ratio, and the generalized modified Shiryaev–Roberts approach are used
to obtain charts without reference parameters. All the introduced schemes are
compared with each other assuming that a univariate unit root process with drift
is present. We make use of several measures of the performance of control charts,
such as the average run length, the worst average delay, and the limit average delay.
This chapter also analyses how the charts with a reference parameter depend on the
choice of this quantity.

Keywords Control charts · Statistical process control · Change-point detection ·
Time series · State-space model

1 Introduction

In the last 30 years, monitoring problems have been discussed in many areas,
e.g., in economics (Frisén 2008), medicine (Kass-Hout and Zhang 2010), and the
environmental sciences (Chou 2004). It has turned out that there are many further
applications beyond engineering, the original field of its application (e.g., Mont-
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gomery 2009). In order to apply control charts to these new areas it was necessary
to adapt the idea behind control schemes to these processes and sometimes to extend
and modify the original approaches. In many situations the underlying processes are
time series, the data have a memory and the variables are no longer independent.

In nearly all of the chapters just referred to, the underlying time series is assumed
to be (weakly) stationary in the in-control state. Nowadays, the literature often
distinguishes between residual charts and modified schemes. Residual charts are
based on the idea of transforming the original data so that the transformed variables
are independent. Then the well-known approaches of statistical process control
for independent and identically distributed random variables can be applied to the
transformed quantities. In contrast, modified schemes make use of the original
observations. They are obtained by taking into account the probability structure of
the underlying time series process. Residual charts have been discussed by Alwan
and Roberts (1988), Wardell et al. (1994a,b), and Lu and Reynolds (1999), among
others, while modified charts have been treated by, e.g., Nikiforov (1975) and
Schmid (1995, 1997a,b).

In many applications, however, especially in economics, the process of interest
frequently turns out to be close to non-stationarity or even is non-stationary: either
it is not oscillating around a common mean or its variance and autocovariances
are changing over time. The existing techniques fail at monitoring such processes.
Therefore, it is important to have tools that can correctly detect changes in non-
stationary processes. Monitoring non-stationary processes is a new field and it has
not yet received much attention. Of course it is impossible to distinguish between a
non-stationary process and a non-stationary process with change if no information
on the probability structure of the underlying in-control non-stationary process is
given.

Schmid and Steland (2000) applied nonparametric kernel control charts to a
non-stationary process to analyse whether its derivative has significantly changed.
Nonparametric procedures for monitoring time series have been proposed by, e.g.,
Steland (2002, 2005, 2007, 2010). Triantafyllopoulos and Bersimis (2016) proposed
a Bayesian approach to monitor a possibly non-stationary process. A parametric
approach was chosen by Lazariv and Schmid (2015). They used state-space models
to model the underlying in-control process. These processes are very flexible and
allow modeling a large family of non-stationary processes. Several control charts
for detecting a mean shift were derived.

In the current chapter we want to discuss various techniques for deriving control
charts for non-stationary processes. Nonparametric techniques are not employed.
One approach is based on differencing, i.e. the original data are transformed by
successively calculating the differences between two successive observations. This
procedure is applied until the resulting process is stationary. Such an approach is
frequently applied in econometrics. In relation to monitoring, it has been studied
by Steland (2005, 2007), among others, to detect a change in a unit root process
(see, e.g., Hayashi 2000). Similar to residual charts for stationary processes, this
technique is based on suitably transforming the original data, here to a stationary
process. Another attempt is to directly describe the possibly non-stationary in-
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control process by a stochastic model and to derive charts by making use of the
probability structure of the underlying process using the likelihood approach, the
Shiryaev–Roberts method, etc. In the present chapter as well we will employ this
approach. As in Lazariv and Schmid (2015), state-space models will be used to
model the in-control process, but instead of a mean shift model we consider a more
general out-of-control situation covering, e.g., mean drifts as well. In this chapter,
the resulting charts are compared with the charts obtained by differencing. The
underlying process is a random walk with drift.

2 Handling Non-stationary Processes

In practice there are different approaches to handling non-stationary processes. In
economics, a popular approach is to transform the original process in a suitable way.
If the underlying process is a unit root process, differencing is a widely applied
procedure (e.g., Hayashi 2000). That approach will be briefly described in the next
section. Another possibility is of course to directly model the non-stationary process
by a suitable model. In this regard, state-space models are frequently applied, since
they are on the one hand very flexible and on the other hand there are computational
techniques that enable carrying out the statistical analysis of these processes very
quickly.

2.1 Unit Root Problems

One of the major issues in finance is how to model the probability distribution of
stock prices. In many areas of finance the standard model is the random walk in
discrete time or its counterpart in continuous time, the Brownian motion (Ruppert
2004). In discrete time, this means

Yt = Yt−1 + εt, t ≥ 1 (1)

with Y0 = y0. The differences between two successive observations, here {εt}, are
usually assumed to follow a white noise process. In the following, however, {εt}
may be a (weakly) stationary process. Now it may happen that after some time
the process drifts away. In finance it is important to detect such a drift as early as
possible. This situation can be described by the following change point model.

Xt =
{

Yt for 1 ≤ t < τ

Yt + (t − τ + 1)a for t ≥ τ
. (2)
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Fig. 1 Facebook share prices with estimated trend (â = 0.1171 in the out-of-control period)

Here {Xt} denotes the observed process and {Yt} the target (in-control) process,
while τ is the unknown position of the change point. In the in-control state, i.e. for
τ = ∞, the observed process is a random walk, but in the out-of-control situation it
is a random walk with drift.

Now the target process may have a deterministic trend as well. In that case,

Yt = Yt−1 + βt + εt, t ≥ 1 (3)

with Y0 = y0. This is a random walk with deterministic trend. Applying (2), the
out-of-control process describes a random walk with deterministic trend and drift.

An example of such behaviour is presented in Fig. 1, where the daily closing
prices of Facebook from May 18, 2012 to May 29, 2016 are plotted. The period
from May 18, 2012 to August 1, 2013 shows the possible in-control behaviour.

2.2 State-Space Models

State-space models have been widely used in engineering. In recent years, more
applications in economics have been found (Durbin and Koopman 2012). State-
space models are quite flexible and cover a huge variety of processes.
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We suppose that the in-control process {Yt} is a p-dimensional time series
following a state-space model, i.e. {Yt} satisfies the set of equations

Yt = GtSt + Wt, t = 1, 2, . . . , where (4a)

St+1 = FtSt + Vt, t = 1, 2, . . . . (4b)

Equation (4a) is called the observation equation. The process {Yt} is obtained from
{St} by applying a linear transformation and adding a random noise variable Wt.
The state equation (4b) is q-dimensional and it describes the evolution of the state
St over time.

In the next sections we will assume the following.

(A1) Suppose that, for all t ≥ 1,

E

(
Vt

Wt

)
= 0, E(VtV′

t) = Qt, E(WtW′
t) = Rt, E(VtW′

t) = Ut.

Furthermore, {Qt}, {Rt}, and {Ut} are specified sequences of q × q, p × p and
q × p matrices, respectively.

(A2) Assume that S1, (V′
1,W

′
1)

′, (V′
2,W

′
2)

′, . . . are uncorrelated.
(A3) Suppose E(Y0V′

t) = 0 and E(Y0W′
t) = 0 for all t ≥ 1.

The parameter matrices Ft,Gt,Qt,Rt,Ut are defined very generally. However, in
many applications they are not time-varying and many notations can be simplified
and the index t in that case is omitted.

The best one-step ahead linear predictor Ŝt of St given Y0,. . . , Yt−1 and

the corresponding error covariance matrices �t = E
(
(St − Ŝt)(St − Ŝt)

′
)

for

model (4) can be calculated using the Kalman recursions (Brockwell and Davis
2009) as

Ŝt+1 = FtŜt + �t�
−1
t (Yt − GtŜt) (5)

with
⎧
⎪⎪⎨

⎪⎪⎩

�t = Gt�tG′
t + Rt

�t = Ft�tG′
t + Ut

�t+1 = Ft�tF′
t + Qt − �t�

−1
t �′

t

(6)

for t ≥ 1 and the starting conditions

Ŝ1 = P(S1|Y0), �1 = E(S1S′
1) − E(Ŝ1Ŝ

′
1).

Here P(S1|Y0) denotes the projection of the ith component S1i of S1 on the span
of Y0.
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In order to start the Kalman filter it is necessary to know the mean and the
covariance matrix of S1. In our simulation study we fix these values. In practice,
however, they are unknown and have to be suitably determined. Various proposals
have been made to do this (see, e.g., Koopman 1997; Durbin and Koopman 2012).

Ŝt+1 can be rewritten as a linear combination of Y0, . . . , Yt

Ŝt+1 =
t∑

j=1

At+1,jYj + at+1(Y0) (7)

with At+1,j = (
Et · · ·Ej+1

)
�j�

−1
j and Et = Ft − �t�

−1
t Gt. at+1(Y0) =

(Et · · ·E1) Ŝ1 is a function of Y0.
Similarly, there can be obtained the best linear predictor Ŷt of Yt given Y0,. . . ,

Yt−1, using the presentation (7)

Ŷt = GtŜt =
t−1∑

j=1

Bt,jYj + bt(Y0) (8)

for t ≥ 1 with Bt,j = GtAt,j and bt(Y0) = Gtat(Y0).
Let �t denote the covariance matrix of Yt − Ŷt. Then for t ≥ 1,

�t = Gt�tG′
t + Rt.

In this chapter we assume that the parameters of the target process are known. In
practice, however, they should be estimated using historical data. The influence of
the parameter estimation is an important question, but we will not discuss it in the
present chapter.

2.3 Modeling the Out-of-Control Process

In the following we want to consider a more general change-point model

Xt =
{
Yt for 1 ≤ t < τ

Yt + Dt,τa for t ≥ τ
, (9)

where Dt,τ denotes a known p×p matrix and a ∈ R
p an unknown parameter vector.

Choosing Dt,τ = (t − τ + 1)I we obtain the above drift model and setting Dt,τ = I
a mean shift model is obtained. Here I stands for the p × p identity matrix. Of
course it is also possible to take the standard deviation of the process into account.
Then, e.g., we have to choose Dt,τ = diag(

√
Var(Yt1), . . .

√
Var(Ytp)) for the shift

model (see Lazariv and Schmid 2015). Of course it is also possible that there are
some components with a drift and others with a shift. This can be handled by the
presented approach as well.
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3 Control Charts for Non-stationary Processes

There are different approaches to derive control charts for non-stationary processes.
The easiest one is to transform the original data so that the transformed data follow
a stationary process. Then all the well-known procedures for stationary processes
can be applied to the transformed quantities. This method is briefly described in the
next section. In Sects. 3.2 and 3.3 we introduce control charts for the generalized
change point model assuming the in-control process is a state-space model. In
Sect. 3.2 the charts are obtained by applying the likelihood ratio approach, the
sequential probability ratio method, and the Shiryaev–Roberts procedures. These
charts depend on the unknown parameter a, which has to be replaced in practice by
a suitable reference value. In Sect. 3.3 some generalized procedures are considered,
where the corresponding probability density is maximized over a so that the
resulting chart does not depend on a.

3.1 The Transformation Approach

The transformation method works similar to the residual approach for stationary
processes. This method works well for unit root problems. In that case, the
differences of two successive observations are calculated until the resulting process
is stationary. If, e.g., the in-control process is a simple univariate unit root process
as in (1) and the out-of-control process is a drift model as in (2), then

X∗
t = Xt − Xt−1 =

{
εt for 1 ≤ t < τ

εt + a for t ≥ τ
, X0 = 0.

Thus differencing leads to the problem of detecting a shift in a stationary problem,
which has been intensively discussed in the literature (e.g., Hayashi 2000). This
procedure can be applied to more unit root problems as well. However, it is restricted
to a certain limited family of time series.

3.2 Control Charts with Reference Parameters for State-Space
Models

Here we want to consider the problem of monitoring for more general non-stationary
processes. We consider processes which can be described by a state-space process in
the in-control state. This model class has been chosen because it is able to describe
many types of non-stationary processes, including unit root processes. Moreover,
recursive procedures are available for the statistical analysis of these processes,
which makes them quite attractive in practice since the computational calculations
can be done in a reasonable amount of time.
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Lazariv and Schmid (2015) introduced several control charts for state-space
models if a mean shift is present. Using the (generalized) likelihood ratio approach,
the (generalized) sequential probability ratio test, and the (generalized) Shiryaev–
Roberts procedure, they obtained control schemes with and without reference
parameters. In an extensive simulation study, all these charts were compared with
each other.

Here we extend their approach to the change point model (9). Replacing the
matrix Dt = diag(

√
Var(Yt1), . . .

√
Var(Ytp)) in Lazariv and Schmid (2015) by an

arbitrary known matrix Dt,τ , t ≥ τ , it is possible to obtain control charts for further
out-of-control situations, such as, e.g., drifts, drifts and shifts, etc.. This approach
is briefly sketched in the following. In order to determine the likelihood function
we need additional assumptions. It is demanded that (A1) and (A3) are fulfilled and
that

(A2∗) Let S1, (V′
1,W

′
1)

′, (V′
2,W

′
2)

′,. . . be independent.
(A4) Assume that S1, (V′

1,W
′
1)

′, (V′
2,W

′
2)

′,. . . are normally distributed.
(A5) Assume that �t have full rank for all t ≥ 1.

For more details we refer to Lazariv and Schmid (2015).
Let us rewrite the densities of X1,. . . , Xn in the in-control (f0) and in the out-of-

control (fτ ) states. Then it holds that

f0(X1, . . . ,Xn) = (2π)−np/2

(
n∏

t=1

det �t

)−1/2

exp

{

−1

2

n∑

t=1

(Xt − X̂t)
′�−1

t (Xt − X̂t)

}

,

(10)

where �t = Gt�tG′
t + Rt stands for the error covariance matrix and X̂t is the best

linear one-step predictor

X̂t = bt(X0) +
t−1∑

j=1

Bt,jXj (11)

for t ≥ 1.
According to the change-point model defined in (2) the likelihood function is

given by

fτ (X1, . . . ,Xn) = f0(X1, . . . ,Xτ−1,Xτ − Dτ,τa, . . . ,Xn − Dn,τa) (12)

= (2π)−np/2

(
n∏

t=1

det �t

)−1/2

exp

{

−1

2

n∑

t=1

(Zt − Ẑt)
′�−1

t (Zt − Ẑt)

}

,

where

Zt =
{
Xt for 1 ≤ t < τ

Xt − Dt,τa for τ ≤ t ≤ n
,
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and

Ẑt = bt(Z0) +
t−1∑

j=1

Bt,jZj = bt(X0) +
t−1∑

j=1

Bt,jXj −
t−1∑

j=τ

Bt,jDj,τa

= X̂t −
t−1∑

j=τ

Bt,jDj,τa = X̂t − Gt

t−1∑

j=τ

At,jDj,τa = X̂t − GtHt,τa for t ≥ 1

with

Ht,τ =

⎧
⎪⎨

⎪⎩

0 for 1 ≤ t ≤ τ
t−1∑

j=τ

At,jDj,τ for τ < t ≤ n
. (13)

Thus we get with Mt,τ = GtHt,τ − Dt,τ that

Zt − Ẑt =
{
Xt − X̂t for 1 ≤ t < τ

Xt − X̂t + Mt,τa for τ ≤ t ≤ n
.

3.2.1 The Likelihood Ratio Chart

The likelihood ratio (LR) approach is often used to derive control statistics for
different types of target processes. Schmid (1997a) constructed a mean chart and
Lazariv et al. (2013) a variance chart for a univariate stationary process using the
LR method. The idea behind it is to consider for some fixed sample size n the testing
problem that under H0 the process is in-control (τ > n) while under the alternative
hypothesis a change occurs at time position τ (1 ≤ τ ≤ n).

A detailed derivation of the control statistic is similar to that in Lazariv and
Schmid (2015). Here only the final results are presented. The run length of the LR
chart is given by

NLR(c; a∗) = inf{n ∈ N : max{0,−gn;LR(a∗)} > c}. (14)

where

gn;LR(a) = min
1≤i≤n

(
n∑

t=i

(
(Xt − X̂t + 1

2
Mt,ia)′�−1

t Mt,ia
))

.

Here, a∗ denotes a reference value for the unknown shift a.
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3.2.2 The Sequential Probability Ratio Chart

The sequential probability ratio test (SPRT) was introduced by Wald (1947). It was
used in Page (1954) to derive a mean chart for independent samples. Lazariv and
Schmid (2015) derived an SPRT chart for a mean shift assuming the in-control
process to be a state-space model. Following Lazariv and Schmid (2015), we get
that the run length of the SPRT chart is equal to

NSPRT(c, a∗) = inf{n ∈ N : max
0≤i≤n

{gn;SPRT(a∗) − gi;SPRT(a∗)} > c} (15)

where

gn;SPRT(a) = −
n∑

t=1

(Xt − X̂t + 1
2Mt,1a)′�−1

t Mt,1a.

and g0;SPRT = 0. As before, a∗ is a reference value of the unknown parameter a.
Note that the control statistic can be recursively calculated, which dramatically

simplifies its determination.

3.2.3 The Shiryaev–Roberts Chart

In this section, we present a control chart based on the Shiryaev–Roberts (SR)
procedure (Shiryaev 1963; Roberts 1966) for detecting changes in state-space
models (see also Lazariv and Schmid 2015). Its run length is equal to

NSR(c, a∗) = inf{n ∈ N : gn;SR(a∗) > c} (16)

with

gn;SR(a) =
n∑

τ=1

exp

{

−
n∑

t=τ

(Xt − X̂t + 1
2Mt,τa)′�−1

t Mt,τa

}

.

3.3 Control Charts without Reference Parameters for
State-Space Processes

One of the main problems of the control charts with a reference or smoothing
parameter concerns the prior choice of these quantities. The optimal choice depends
on the unknown quantities of the out-of-control model, such as, e.g., the size of the
shift. Frequently, such information is not available, so the choice of the reference
value is sometimes like a lottery. For that reason, statements about the robustness
of the charts with respect to the choice of the reference parameter are important.
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Another possibility is the choice of the generalized likelihood function where the
maximum over the unknown shift a is taken as well.

Consequently the quantity

sup
a�=0

log fτ (X1, . . . ,Xn) −→ max,

is employed, where the likelihood is maximized over all possible sizes of the shift.
This is the idea behind the Generalized LR (GLR), the Generalized SPRT

(GSPRT), and the Generalized Modified SR (GMSR) schemes. The details are
presented below. The derivation of the charts follows using the same arguments
as in Lazariv and Schmid (2015) where, however, the quantity Dt must be replaced
by Dt,τ . For that reason we do not want to focus on the derivation of the results and
we will directly give the final result.

3.3.1 The GLR Chart

The run length of GLR chart is given by

NGLR(c) = inf {n ∈ N : max {0,

max
1≤i≤n

(

−
n∑

t=i

(Xt − X̂t + 1

2
Mt,iãi,n)

′�−1
t Mt,iãi,n

)}

> c

}

, (17)

where ãτ,n is the solution of the equation

(
n∑

t=τ

M′
t,τ�

−1
t Mt,τ

)

ãτ,n =
n∑

t=τ

M′
t,τ�

−1
t (Xt − X̂t).

3.3.2 GSPRT Chart

In this case, the run length is obtained as

NGSPRT(c) = inf

{
n ∈ N : max

0≤i≤n

(
gn;GSPRT − gi;GSPRT

)
> c

}
(18)

where

gn;GSPRT = −
n∑

t=1

(Xt − X̂t + 1

2
Mt,1ãn)

′�−1
t Mt,1ãn

and ãn = ã1,n.
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3.3.3 GMSR Chart

The generalization of the SR chart leads to the problem that the maximum over some
exponential sums must be calculated. In order to avoid this problem, we employ the
sum over the individual likelihoods. This leads to

NGMSR(c) = inf
{

n ∈ N : a∗
n
′S̈na∗

n > c
}

(19)

where a∗
n is any solution of the equation S̈na = −Ṡn and

Ṡ
′
n =

n∑

i=1

n∑

t=i

(Xt − X̂t)
′�−1

t Mt,i, S̈n =
n∑

i=1

n∑

t=i

M′
t,i�

−1
t Mt,i.

4 Comparison Study

In this section we want to compare the above discussed control charts. We focus on
a univariate in-control process. Here we present our results for a unit root process as
defined in (1) with y0 = 0 and {εt} independent and standard normally distributed.
The out-of-control process is given by the drift model (2).

4.1 Comparison Study Based on the Average Run Length

First, the average run length (ARL) is used as a performance measure. The in-
control ARL is set equal to 500. The control limits for all charts were determined
such that this calibration is fulfilled. After that the out-of-control ARLs of all charts
are compared with each other. In our study, the reference value a∗ takes values
within the set {0.5, 1.0, . . . , 3.0}. Moreover, an EWMA chart is applied to the first
differences. The possible values of the smoothing parameter are taken from the set
{0.1, 0.2, . . . , 1.0}. Since there is no available explicit formula for the ARL, it is
estimated by means of a simulation study based on 105 independent samples.

The results of our simulation study are given in the following table. The table
shows the smallest out-of-control ARL over all reference values and smoothing
parameters chart for a fixed drift size (Table 1).

The overall best scheme is the GSPRT scheme. It dominates all other schemes.
Among the other charts the difference chart behaves the best for small drifts while
for larger drifts the LR and the SPRT scheme dominate. The SR scheme is slightly
worse than the LR and SPRT approaches, but a little bit better than the EWMA
chart applied to the differences if the drift is large. It is interesting that the best LR
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Table 1 ARLs for all control charts

a LR SPRT SR GLR GSPRT GMSR EWMA

0.5 25.90(0.5) 25.76(0.5) 29.00(0.5) 36.34 17.77 64.71 24.31(0.1)

1.0 9.13(1.0) 9.15(1.0) 9.73(1.5) 11.90 6.26 33.36 8.86(0.2)

1.5 4.83(1.5) 4.84(1.5) 5.02(2.0) 6.21 3.44 22.48 4.80(0.3)

2.0 3.08(2.0) 3.06(2.0) 3.13(2.0) 4.01 2.30 16.92 3.13(0.4)

2.5 2.16(2.5) 2.15(2.5) 2.20(3.0) 2.80 1.72 13.55 2.23(0.6)

3.0 1.63(3.0) 1.64(3.0) 1.64(3.0) 2.15 1.39 11.30 1.68(0.7)

Table 2 Average delays of all control charts

a LR SPRT SR GLR GSPRT GMSR EWMA
0.5 τ = 1 25.90 25.84 29.00 36.34 17.77 64.71 24.31

τ = 50 22.03 21.95 21.18 31.59 31.08 42.77 22.82
1.5 τ = 1 4.83 4.84 5.02 6.21 3.44 22.48 4.80

τ = 50 3.58 3.60 3.50 4.76 8.54 12.11 3.72
3.0 τ = 1 1.63 1.64 1.64 2.15 1.39 11.30 1.68

τ = 50 1.62 1.62 1.62 2.08 3.58 5.48 1.68

and SPRT chart is the chart where the reference value is equal to the true drift size.
The GLR chart behaves worse than the other schemes. However, the overall worst
scheme is the GMSR chart, whose out-of-control ARL is much larger than those of
the other charts.

4.2 Comparison Study Based on the Average Delay

The disadvantage of the ARL consists in the fact that the change is assumed to occur
already at the first time point (τ = 1). This is rarely the case in practice. Therefore
the average detection delay (AD) is frequently used as an alternative performance
criterion. The average delay is equal to the average number of observations from the
shift at position τ to the time point of the signal. In Table 2 the ARL and the average
delay for τ = 50 are given for all considered charts.

In the literature, usually it is the limit of the average delay as τ → ∞ and the
worst average delay over all τ that are taken as performance measures. A further
analysis shows that except for the GSPRT chart, the worst average delay over 1 ≤
τ ≤ 50 is always already attained at τ = 1, i.e. it is equal to the ARL. For these
schemes the average delay is decreasing in τ . Thus we get the same ranking as
for the ARL. The GSPRT chart behaves completely differently, since the average
delay is increasing with τ and the results are worse. The chart seems to favour
changes at the beginning but has problems detecting changes at later time points. If
we consider the value of the average delay at τ = 50 the SR scheme turns out to be
the best. It is slightly better than the LR and the SPRT schemes, which are slightly
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better than the EWMA approach. The table shows as well that CUSUM procedures
have a better worst-case performance than the SR approach. This behaviour was
already described by Yashchin (1993). The results for the generalized charts are
worse. The best generalized procedure for small changes is the GSPRT approach
while for medium changes the GLR chart is better than the GSPRT attempt. The
GMSR chart behaves much worse.

4.3 Robustness Study with Respect to the Choice
of the Reference Value

Up to now we have always considered for a fixed change the minimal ARL and
the minimal average delay over all reference values and smoothing parameters.
However, in most cases the practitioner does not know the true magnitude of
the change. How good are the charts if instead of the best reference value and
best smoothing parameter another value is taken? Here a robustness study is of
importance. In Table 3 we give the worst average delay if a∗ is chosen smaller
(above) or larger (below) than the value leading to the minimum ARL. Note that in
our analysis we have chosen a∗ ∈ {0.5, 1.0, . . . , 3.0} and λ ∈ {0.1, 0.2, .., 1.0}. For
example, the optimal choice of a∗ for the LR chart is a∗ = 1.5 if the expected shift
is a = 1.5. In this case we get an average run length of 4.83. The direct neighbours
of a∗ = 1.5 are 1.0 and 2.0. If one chooses a∗ = 1.0, the ARL is 5.15 (6.63%,
above). For the choice a∗ = 2.0, we obtain ARL = 5.04 (4.50%, below).

The table shows that the charts react differently to the choice of a∗. Nevertheless,
the out-of-control ARLS are in all cases smaller than those of the GLR and the
GMSR charts. Thus a small deviation from the optimal choice leads to acceptable
results and there is no need to apply a generalized chart.

If, however, we consider the worst average run length over all possible values of
a∗ and for a fixed value of a, the results of the EWMA, LR, SPRT and SR charts are
very bad. Assuming a = 0.5, the worst ARL for the SPRT (EWMA) chart is 87.54
(115.11); it is attained at a∗ = 3.0 (λ = 1.0). For a = 1.5 we get 6.90 (11.86) for
the SPRT (EWMA) scheme. These values are much worse than those of the GLR
chart, which must be favoured in this case.

Table 3 Influence of the wrong choice of reference parameter, for all control charts

a LR SPRT SR GLR GSPRT GMSR EWMA

0.5 25.90(0.5) 25.84(0.5) 29.00(0.5) 36.34 17.77 64.71 24.31(0.1)

+18.26% +19.27% +1.19% – – – +22.86%
1.5 +6.63% +5.98% +1.29% – – – +1.13%

4.83(1.5) 4.84(1.5) 5.02(2.0) 6.21 3.44 22.48 4.80(0.3)

+4.50% +4.37% +11.84% – – – +3.93%
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4.4 Conclusions

Summarizing the above results we can give the following recommendations. We
do not recommend the use of the GMSR chart since the results are in general
much worse than those of the other schemes. The reason may be that instead of
maximizing the sum of the likelihoods we maximized the sum of the logarithms
of the likelihoods. This may have led to the deterioration. Moreover, the GSPRT
scheme must be carefully applied since it favours changes at the beginning and it
has huge problems detecting a change at a later time point.

If some information about the magnitude of the change is known, then either the
LR chart or the SPRT chart should be applied. If no information about the change is
known, the GLR chart provides the best results.

5 Challenges and Problems

The monitoring of non-stationary processes is a challenging task and it has to be
done carefully, since there are many hidden problems. Lazariv and Schmid (2015)
showed that for some processes and change-point models the expectation of the
run length does not exist. This is a very important issue since the ARL is the most
popular measure for the performance of control charts. We want to address this
problem in this chapter and check whether the same issue arises for the present
change-point model (9).

For this purpose we have calculated a table of frequencies, namely, the fre-
quencies with which the in-control run length will fall into certain intervals (see
Table 4). The table shows the relative frequencies (in percentages) of P(N(c) = i)
for i = 1, . . . , 5, P(1000 · i ≤ N(c) < 1000 · (i + 1)) for i = 1, . . . , 5 and
P(5000 ≤ N(c) ≤ 10,000). The results are based on simulating 105 independent
random samples of a unit root process.

Table 4 Distributions of the
in-control run lengths of the
considered charts

i LR SPRT SR GLR

1 0.00 0.00 0.00 0.01

2 0.00 0.01 0.00 0.04

3 0.05 0.03 0.00 0.05

4 0.09 0.07 0.00 0.09

5 0.07 0.11 0.02 0.05

· · · · · · · · · · · · · · ·
[1000, 2000] 11.15 11.56 11.54 11.14

[2000, 3000] 1.57 1.53 1.76 1.10

[3000, 4000] 0.21 0.20 0.20 0.09

[4000, 5000] 0.01 0.03 0.00 0.00

[5000, 10,000] 0.00 0.00 0.00 0.00
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The table shows that there is no evidence of heavy tails. The Hill plot and the
Pickands plot (see, e.g., Resnick 2007) are presented for the run length of the SPRT
chart in order to analyse the tail behaviour and to check for the existence of the
expectation of the run length. The run length is estimated using a simulation study
using 105 repetitions. Figure 2 shows that the tail index is definitely larger than 1,
which implies that the expectation of the run length exists.

Note that this result is different from the findings of Lazariv and Schmid (2015),
where it was found that the average run lengths do not exist. How can this be
explained? Of course in the present chapter another out-of-control case is studied
in the comparison study and for that reason other control statistics are used.
Nevertheless, this result is a little bit surprising.

A closer look at the structure of the control statistics shows that the matrix Mt,τ

greatly influences the control statistics of all the control charts ((14), (15), (16),
(17), (18) and (19)). The problem is that for the change-point model in Lazariv and
Schmid (2015), the matrix Mt,τ tends to 0 as a function of t and for fixed τ because
of Dt. The quantity Dt models the variance of the target process in the univariate
case and it seems to tend to infinity for a target process as in Lazariv and Schmid
(2015). In this chapter, however, Dt,τ depends on τ as well and it hence Mt,τ = −1,
i.e. it is constant.

6 Summary

In the present chapter we discussed different schemes for monitoring non-stationary
processes. We considered the transformation method, where the original data are
suitably transformed to a stationary process, e.g., by detrending or differencing.
Then all well-known control charts for stationary processes can be applied to the
transformed quantities. The problem with this procedure is that it only works for
special type of processes, such as, e.g., unit root processes. Another approach (see,
e.g., Lazariv and Schmid 2015) is to use the probability structure of the underlying
process to derive the control charts. Here, the in-control process is assumed to be
a multivariate state-space process. The considered change point is quite general,
including drifts and shifts in the components. Using the likelihood ratio, the
sequential probability ratio, and the Shiryaev–Roberts procedure, control charts
with a reference vector have been derived. Applying the generalized likelihood ratio,
the generalized sequential probability ratio, and the generalized modified Shiryaev–
Roberts procedure, control schemes without reference values have been obtained.

All the charts have been compared with each other, assuming that the in-control
process is a unit root process and that a linear drift in the process may occur.
Different performance criteria have been used to evaluate the introduced charts. The
average run length, the worst average delay and the limit of the average delay have
been considered. Moreover, it has been analysed how the charts with a reference
value react if the optimal reference value leading to the smallest ARL is not used,
but another value, that is either close to the optimal one or further away. It has been
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Fig. 2 Hill plot (above) and Pickands plot (below)

shown that the LR and the SPRT charts should be favoured if some knowledge of
the expected drift is available. However, if no information about the drift is given,
the GLR chart provides the best results.
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In Lazariv and Schmid (2015), it was shown that the average run length of the
introduced charts does not exist. Our approach is a generalization of that of Lazariv
and Schmid (2015). Using the Hill plot and the Pickands plot, the tails of the run
lengths of the introduced charts have been analysed and it has been concluded that in
the present case the average run length exists. The reason for the different behaviour
lies in the consideration of a different out-of-control model.

References

Alwan, L. C., & Roberts, H. V. (1988). Time-series modeling for statistical process control. Journal
of Business & Economic Statistics, 6(1), 87–95.

Brockwell, P. J., & Davis, R. A. (2009). Time Series: Theory and Methods. Berlin: Springer.
Chou, C. J. (2004). Groundwater monitoring: Statistical methods for testing special background

conditions. In: G. B. Wiersma (Ed.), Environmental Monitoring. Boca Raton, FL: CRC Press.
Durbin, J., & Koopman, S. J. (2012). Time Series Analysis by State Space Methods. Oxford: Oxford

University Press.
Frisén, M. (2008). Financial Surveillance (Vol. 71). Hoboken, NJ: John Wiley & Sons.
Hayashi, F. (2000). Econometrics. Princeton, NJ: Princeton University Press.
Kass-Hout, T., & Zhang, X. (2010). Biosurveillance: Methods and Case Studies. Boca Raton, FL:

CRC Press.
Koopman, S. J. (1997). Exact initial Kalman filtering and smoothing for nonstationary time series

models. Journal of the American Statistical Association, 92(440), 1630–1638.
Lazariv, T., & Schmid, W. (2015). Surveillance of non-stationary processes Discussion Paper
Lazariv, T., Schmid, W., & Zabolotska, S. (2013). On control charts for monitoring the variance of

a time series. Journal of Statistical Planning and Inference, 143(9), 1512–1526.
Lu, C. W., & Reynolds, M. (1999). Control charts for monitoring the mean and variance of

autocorrelated processes. Journal of Quality Technology, 31(3), 259–274
Montgomery, D. C. (2009). Introduction to Statistical Quality Control (6th ed.). Hoboken, NJ:

John Wiley & Sons.
Nikiforov, I. (1975). Sequential analysis applied to autoregression processes. Automation and

Remote Control, 36, 1365–1368
Page, E. (1954). Continuous inspection schemes. Biometrika, 41, 100–115.
Resnick, S. I. (2007). Extreme Values, Regular Variation, and Point Processes. Berlin: Springer.
Roberts, S. (1966). A comparison of some control chart procedures. Technometrics, 8(3), 411–430.
Ruppert, D. (2004). Statistics and Finance: An Introduction. Berlin: Springer.
Schmid, W. (1995). On the run length of a Shewhart chart for correlated data. Statistical Papers,

36(1), 111–130.
Schmid, W. (1997a). CUSUM control schemes for Gaussian processes. Statistical Papers, 38(2),

191–217
Schmid, W. (1997b). On EWMA charts for time series. In Frontiers in Statistical Quality Control

(Vol. 5, pp. 115–137). Berlin: Springer.
Schmid, W., & Steland, A. (2000). Sequential control of non-stationary processes by nonparametric

kernel control charts. Allgemeines Statistisches Archiv (Journal of the German Statistical
Association), 84, 315–336.

Shiryaev, A. N. (1963). On optimum methods in quickest detection problems. Theory of Probability
& Its Applications, 8(1), 22–46.

Steland, A. (2002). Nonparametric monitoring of financial time series by jump-preserving
estimators. Statistical Papers, 43, 361–377

Steland, A. (2005). Random walks with drift – a sequential approach. Journal of Time Series
Analysis, 26(6), 917–942.



Challenges in Monitoring Non-stationary Time Series 275

Steland, A. (2007). Monitoring procedures to detect unit roots and stationarity. Econometric
Theory, 23(06), 1108–1135.

Steland, A. (2010). A surveillance procedure for random walks based on local linear estimation.
Journal of Nonparametric Statistics, 22(3), 345–361.

Triantafyllopoulos, K., & Bersimis, S. (2016). Phase II control charts for autocorrelated processes.
Quality Technology & Quantitative Management, 13(1), 88–108.

Wald, A. (1947). Sequential Analysis. New York: Wiley.
Wardell, D. G., Moskowitz, H., & Plante, R. D. (1994a) Run-length distributions of residual control

charts for autocorrelated processes. Journal of Quality Technology, 26(4), 308–317.
Wardell, D. G., Moskowitz, H., & Plante, R. D. (1994b). Run-length distributions of special-cause

control charts for correlated processes. Technometrics, 36(1), 3–17.
Yashchin, E. (1993). Performance of CUSUM control schemes for serially correlated observations.

Technometrics, 35(1), 37–52.



Part II
Design of Experiments



Design of Experiments: A Key
to Successful Innovation

Douglas C. Montgomery and Rachel T. Silvestrini

Abstract An important theme in this chapter is that the use of statistical method-
ology, such as design of experiments, can aid innovation. Design of experiments
is viewed as part of a process for enabling both breakthrough innovation and
incremental innovation, without which Western society will fail to be competitive.
Quality engineering technology in general is part of a broader approach to innova-
tion and business improvement called statistical engineering. The most powerful
statistical technique in statistical engineering is design of experiments. Several
important developments in this field are reviewed, the role of designed experiments
in innovation examined, and new developments and applications of the methods
discussed.

Keywords Quality engineering · The scientific method · Optimal design ·
Computer experiments

1 Introduction

In June 2007 (http://www.bloomberg.com/news/articles/2007-06-10/at-3m-a-
struggle-between-efficiency-and-creativity) Brian Hindo wrote an article in
Bloomberg News entitled “At 3M, A struggle Between Efficiency and Creativity.”
The article strongly suggests that programs such as Six Sigma and Total Quality
Management (TQM) stifle innovation if they become engrained within a company’s
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culture. Hindo writes “Efficiency programs such as Six Sigma are designed to
identify problems in work processes. . . When these types of initiatives become
ingrained in a company’s culture, as they did at 3M, creativity can easily get
squelched. After all, a breakthrough innovation is something that challenges existing
procedures and norms.” In the article, this opinion seems to be shared with several
other CEOs as well as a number of business school professors based on quotations
throughout his piece. While Hindo presents many good points about invention and
innovation needing room for unstructured discovery, we believe that programs such
as Six Sigma and TQM, with toolboxes that include Design of Experiment, can still
coexist with creativity, innovation, and invention.

In this chapter we explore the larger context of whether or not the use of
statistically methodologies stifle innovation. Spoiler alert, we do not think that
these methodologies suppress innovation. On the contrary, we illustrate their place
and appropriate use and illustrate examples of success. Statisticians view one such
statistical method, design of experiments, as part of a process for enabling both
breakthrough and incremental innovation. Montgomery and Woodall (2008) provide
an overview of the statistical methods, including design of experiments, used within
Six Sigma, and the impact of Six Sigma in practice.

There are some notable authors who discuss the use of experimentation and the
role experimentation plays in innovation. In his book entitled, “Experimentation
Matters,” Thomke (2003a) argues that “experimentation fuels the discovery and
creation of knowledge and thereby leads to the development and improvement of
products, processes, system, and organizations.” Another article, appearing in the
same year, Thomke (2003b) further adds that, “for hundreds, if not thousands, of
years, systematic experimentation has been at the heart of all innovation.” Bisgaard
(2012) discusses how specific methodologies such as Design for Six Sigma (DFSS)
can be applied to achieve quality via product innovation, which in turn should
provide enhanced value to customers. Statistical programs such as Six Sigma, DFSS
and TQM, as well as the formal process of design of experiments, generally fall
under the Quality Engineering realm.

Quality engineering technology in general is part of a broader approach to
innovation and business improvement called statistical engineering. Readers should
reference Hoerl and Snee, who present two chapters (2010a, 2010b), which discuss
aspects of statistical engineering and how best to use statistical methods for
improved results. Also see the chapters by Anderson-Cook et al. (2012a,b), Box and
Woodall (2012) and Hockman and Jensen (2016). Antony et al. (2011) discuss and
illustrate how designed experiments can promote innovative solutions to complex
problems in non-manufacturing and service organizations.

We believe that the most powerful statistical technique in statistical engineering
is design of experiments. In this chapter we explore what innovation is, how it is
different from invention, and its place within research and development. We also
discuss design of experiments and its relationship with the scientific method. Finally,
we present important developments in this field of experimental design, the role of
designed experiments in innovation, and applications of the methods illustrated.
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2 Innovation and Invention

Innovation is the successful exploitation of new ideas for products, services or
processes. This includes both radical new ideas (breakthrough innovation) and
changes to existing ones (incremental innovation). Successful innovation is a key
factor in higher and more sustainable profitability, staying ahead of your competition
and providing higher value to customers. Thus, all businesses should innovate in
order to thrive. Innovation offers a way of meeting challenges both inside and
outside a business and allows businesses to compete effectively in the increasingly
competitive global environment.

What is the difference between innovation and invention? The two are listed as
synonyms of each other. An invention is described as a unique or novel device or
discovery. Like innovation this can be in the form of a breakthrough or built on a pre-
existing idea. An invention that is not derived from an existing model or idea, or that
achieves a completely unique function, discovery, or result, may be a breakthrough.
An invention may also be an improvement upon something that already exists. The
difference between innovation and invention is subtle. A 2015 Wired article, entitled
“Innovation vs. Invention: Make the Leap and Reap the Rewards,” by Bill Walker
discusses these subtleties (http://www.wired.com/insights/2015/01/innovation-vs-
invention/). Walker emphasizes that innovation deals with the concepts of use while
invention pertains to a thing.

In his article on efficiency and creativity, Hindo cites three examples of innova-
tion within 3M in his 2007 article: masking tape, Thinsulate, and the Post-it note. We
believe these are both inventions and innovations. All of these products provided a
fundamentally new product—a thing—to the market and fulfilled an unmet need—
a use. All three of these products can be classified in the breakthrough category.
Interestingly, Post-it notes were an innovative idea founded on a failed invention.
Dr. Spencer Silver is credited with the development of the adhesive chemical used
in Post-it notes, however it was Art Fry, a colleague of Silver’s, who came up with
the idea of using the product in the post-it style. Originally, Dr. Silver was trying
to develop a super-strong adhesive product, but accidentally created a reusable light
adhesive product.

Forbes regularly publishes a list of the “Most Innovative Companies.” Among
that list in the past 10 years include companies such as Apple, Google, 3M, Toyota,
Microsoft, GE, P&G, Nokia, Starbucks, and IBM. In 2015, Tesla ranked number
1 (http://www.forbes.com/innovative-companies/list/#tab:rank). A brief survey of
the list reveals a list of companies that are both innovative and inventive and thus
have an edge in the market. Many of these companies have strong, well-known
activities that embrace statistics and statistical engineering, including the use of
designed experiments. A large portion of the innovation and invention activities in
many organizations takes place within Research and Development (R&D).

Type research and development into your web browser and the first thing that
pops up is a definition. The definition is “(in industry) work directed towards
the innovation, introduction, and improvement of produces and processes.” While

http://www.wired.com/insights/2015/01/innovation-vs-invention/
http://www.wired.com/insights/2015/01/innovation-vs-invention/
http://www.forbes.com/innovative-companies/list/#tab:rank
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R&D is listed as an umbrella term, we feel that it is important to distinguish the
two. Research is the area of a company that is directed to take risks and allow
failures. Surprises are both rewarded and celebrated, especially when they result in
a novel discovery. In contrast, Development would like no surprises as they can lead
to catastrophic failure. The customer of the development department is generally
manufacturing or the fulfillment process, where consistency and lack of variability
are key quality metrics.

Breakthrough innovation and invention within a company often occurs within
the research team. Incremental innovation is more typically found in development
organizations. The R&D sector within a company has a long history of relying on
the scientific method to aid in discovery. In the next section of this chapter we will
discuss the scientific method and its relationship with design of experiments.

3 The Scientific Method and Design of Experiments

Scientists and engineers solve problems of interest to society by the efficient
application of scientific principles. This is usually accomplished by either refining
an existing product or process, or by designing a new product or process that meets
customers’ needs. The scientific (or engineering) method is the approach typically
used in formulating and solving these problems. Montgomery and Runger (2014)
identify the steps in the scientific (or engineering) method as follows:

1. Develop a clear and concise description of the problem.
2. Identify, at least tentatively, the important factors that affect this problem or that

may play a role in its solution.
3. Propose a model for the problem, using scientific or engineering knowledge of

the phenomenon being studied. This model may be a theory or hypothesis about
how the phenomena of interest behaves. State any limitations or assumptions of
the model.

4. Conduct appropriate experiments and collect data to test or validate the tentative
model or conclusions made in steps 2 and 3.

5. Refine the model on the basis of the observed data.
6. Manipulate the model to assist in developing a solution to the problem.
7. Conduct an appropriate experiment to confirm that the proposed solution to the

problem is both effective and efficient.
8. Draw conclusions or make recommendations based on the problem solution.

The steps in the scientific method are shown in Fig. 1. Many of the fields of
science are employed in the scientific method: the physics and the mechanical
sciences (statics, dynamics), fluid science, thermal science, electrical science, the
science of materials, chemistry, biochemistry and biological sciences. Notice that
the scientific method features a strong interplay between the problem, the factors
that may influence its solution, a model of the phenomenon, and experimentation
to verify the adequacy of the model and the proposed solution to the problem.
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Fig. 1 The scientific (or engineering) method adapted from Montgomery and Runger (2014)

Steps 2–4 in Fig. 1 are enclosed in a box, indicating that several cycles or iterations
of these steps may be required to obtain an appropriate solution. The boxed steps
should not suggest that these steps can be bypassed, in fact, they are critical to the
process and as we argue, necessary for innovation.

Scientists and engineers must know how to efficiently plan experiments, collect
data, analyze and interpret the data, and understand how the observed data are
related to the model they have proposed for the problem under study. An experiment
is a test or series of tests in which purposeful changes are made to the input variables
of a process or system so that we may observe and identify the reasons for changes
that may be observed in the output response. We usually want to determine which
input variables are responsible for the observed changes in the response, develop
or refine a model relating the response to the important input variables and to use
this model for process or system improvement or other decision-making. In R&D
activities we are often trying to discover how some system behaves or performs, or
to validate a theory about how the system should perform.

There are at least three distinct strategies of experimentation. In the best-guess
approach the experimenter makes an educated guess based on his or her experience
and scientific/engineering knowledge about the phenomena being studied behaves.
Based on the outcome of this experiment, another experiment or series of experi-
ments is planned and conducted. This process is continued until either (1) success
is achieved, (2) no further guesses about the problem are forthcoming so testing is
halted, or (3) the organization abandons the effort. Best-guess experimentation is
sometimes very successful, but it can take a long time and there is no assurance that
any solution found is the best one. This approach is one in which the experimenter
decides appropriate levels of factors to tests at and makes adjustments based on
subject matter knowledge or trial in error. In this method, sometimes factors are
varied simultaneously, other times, only one factor is varied at a time. The range of
experimentation may stay relatively consistent, or be wildly different. While using
the best-guess approach may be successful regarding a single solution, it usually
results in less knowledge about the system as a whole.

The one-factor-at-a-time or OFAT strategy is very popular in some fields. In this
approach, a list of potential factors to be studied is constructed and then experiments
are performed in which all factors but one are held constant at some reference or
baseline level while one factor is varied over its range. This is repeated until all
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factors have been varied over their range while simultaneously holding all others
constant. Then a decision is made about the problem by examining the one-factor-
at-a-time results. This decision is often a pick-the-winner process, where the best
combination of factors is read from a series of plots. The well-known disadvantage
of this approach is that any interaction between the factors will not be discovered.
Interactions occur relatively often and in many cases they are the key to problem
solution.

Statistically designed experiments are the recommended strategy. Usually these
are experiments based on the idea of factorial designs (see Montgomery 2012). This
approach varies factors together which among other things facilitates the discovery
of interaction effects. The famous statistician George Box was often quoted as
saying that if “. . . scientists and engineers only knew about the simplest factorial
design (the 2k) and only knew how to visually examine the data this would have a
huge impact on innovation and competitive position in this country” (see Box 1990).

Some argue that successful invention and innovation requires creativity and
original thinking and that the use of formal statistical methods like designed
experiments stifles or retards the creative ‘trial and error’ process. We think of
designed experiments as an efficient and well-organized approach to trial-and-
error experiments. Perhaps a key difference is that a sound approach to designed
experiments is that a pre-experimental planning activity is highly recommended.
Refer to Coleman and Montgomery (1993) and Chapter 1 of Montgomery (2012),
including the supplemental material for that chapter and the additional references
therein. Charles Hicks, a famous professor of statistics and mathematics at Purdue
University, is said to have told his design of experiments students that “. . . if
you have 10 weeks to solve a problem, you should spend 8 weeks planning the
experiment, one week running it, and one week analyzing the data.” It is important
to remember that all experiments are designed experiments. Ones that are poorly
planned and executed will usually deliver disappointing results, while careful pre-
experimental planning and execution of an experiment will usually produce results
helpful and even essential in eventual problem solution.

It is often a capital mistake in invention and innovation activities to over-rely
on theory. An example of this occurred early in the history of powered flight. In the
early part of the twentieth century Samuel P. Langley was the most famous authority
in aerodynamics of his era. He was sponsored by the US government to develop a
flying machine. Langley built an airplane based entirely on his understanding of
theoretical aerodynamic principles. At the same time, Orville and Wilbur Wright,
two bicycle mechanics from Dayton, Ohio, were building an airplane based on
their experimental work. They developed a working knowledge of aerodynamics
from a home-built wind tunnel in which they conducted numerous experiments.
Their experiments included flying kites and eventually gliders at Kitty Hawk, North
Carolina. They also developed control systems for the airplane based on the wing-
warping technique and developed a propulsion system experimentally. This work
took place over a period of several years. Langley tested his airplane by launching
it from a ramp. It fell into the Potomac River and never flew. The Wright brothers
were highly successful, becoming the founding fathers of modern aviation. Good
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pre-experimental planning which brings in a variety of backgrounds, viewpoints,
and experiences is often effective in avoiding over-reliance on theory.

4 The Role of Design of Experiments in Innovation

As noted in the introduction, Hindo and others think that statistical methodologies
can stifle innovation. In fact, many people believe that any specific framework, for
example, Design Thinking, may suppress creative thinking or in general the creative
thinking process. We are proponents of using appropriate toolsets when warranted.
For example, control charting, and specifically a Shewhart chart, cannot be used
until there is a process in place in which measurement may be taken and thus
sampling and charting can be applied.

Misguided use of methodologies and a lack of understanding of toolsets can
lead to failure or lack of success. It is wrong for a manager to say, “Use design
of experiments to innovate me a new product.” Design of experiments will not
produce results; people will produce results. It is more appropriate to understand
that design of experiments can provide a very effective and efficient aid that leads to
innovation and invention. Hindo argues that “defenders of Six Sigma at 3M claim
that a more systematic new-product introduction process allows innovations to get
to market faster.” Six sigma is about reducing variability in key product quality
characteristics, not a tool to create a new-product. See Montgomery (1992, 1999) for
a more thorough discussion of statistical process control and the role of experimental
design within process control.

So, when should Design of Experiments be applied for innovation? The process
can be used when an idea has been formed regarding use or development of a thing.
Noting back to flight testing, a notion of an airplane and flight was developed.
Determining the notion of flight leads way into the first step of design of experiments
“statement or recognition of a problem.” Prior to figuring out what this statement is,
the design of experiments framework cannot begin. Once the statement is formed,
or the problem is recognized, then design of experiment may be applied.

Based on the notion of ‘creating a vehicle that can fly,’ it was important to
determine how to fly and what factors might influence flight. In order to determine
the how and why, it is important to conduct experiments. Whether it is a small or
large number of tests or trials, design of experiments can be extremely effective for
determining what to test, where to test, and how much to test.

5 Barriers Hindering the Use of Design of Experiments

We believe that designed experiments should be much more widely used in
invention and innovation activities. As alluded to earlier in the quote attributed to
Box, even the use of simple techniques such as 2k factorial designs, has the potential
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to greatly spark innovation and research and development productivity. So, why
aren’t the basic design of experiments concepts and techniques more widely used?
We think there are several barriers that hinder the more widespread use of design
experiments and probably statistical methods in general.

Resistance to change is certainly an issue. Many scientists and engineers were
educated in an environment where the OFAT approach was used in their university
laboratory courses. In many cases it’s not just the scientists and engineers, but
often the managers and executives responsible for R&D that have this experience
in their background. This can make it difficult to effectively integrate designed
experiments as a standard part of R&D activities. Furthermore, many individuals
may view the use of designed experiments as more time-consuming and difficult
that the traditional approach such as an OFAT.

Prior negative experiences with statistical methods including designed experi-
ments may also be a factor. Prior experiments may not have been successful because
appropriate design and analysis techniques were not used. For example, one of us
was engaged as a consultant by a company to provide some training on design of
experiments to their R&D organization. It turned out that there had been a previous
round of training by a consultant who had focused exclusively on Taguchi methods.
However, most of the experiments actually conducted in this organization were
mixture experiments and the scientists and engineers quickly became disillusioned
with deigned experiments when they were unable to see how to use the L18 and
L27 orthogonal array for the kind of problems they encountered. There was a
lot of negative energy to overcome to convince them that there were appropriate
techniques that would be useful to them.

Sometimes a failed experiment could be the result of poor pre-experimental
planning. As noted in Coleman and Montgomery (1993) and Montgomery (2012),
good experimental design is almost always a team effort. Letting one person design
the experiment is almost always a mistake, especially if that person is an expert in
the field. This often results in a situation where the expert already knows the answer
and as a result designs an experiment to prove his or her conjecture. This can lead to
an experiment that is too narrow in scope and that produces disappointing results.

Sometimes scientists and engineers have a weak statistical background that
inhibits their understanding and use of designed experiments. Sadly, many scientific
and engineering disciplines don’t recognize the value of statistics and require very
minimal (if any) university education in the field. Equally sadly, university courses
are sometimes poorly taught. Often the statistics course for engineers and scientists
is a service course and assigned to someone with little interest in how the subject
matter could actually be used by the students. Sometimes the course disintegrates
into a semester-long exposition of balls and urns and almost nothing that illustrates
the power and beauty of using statistical methods to solve real problems is actually
covered. Sometimes even a full course in design of experiments is not taught well.
Many faculty members lack practical experience with designed experiments and
don’t have full appreciation of its use in an R&D environment. They do not present
real and meaningful examples and case studies in class. Furthermore, students are
not encouraged to conduct a real experiment as a course term project requirement.
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Finally, many university design of experiments courses really don’t focus enough on
design, with too much course content devoted to analysis. Integration of computer
software into the course could change that emphasis.

Over-reliance on knowledge of underlying theory is another all-to-common
problem; team leadership believes that the project can be addressed by relying
on first principles. So the product or system design is carried out using a purely
theoretical modeling and analysis approach. Utilizing one’s knowledge of the
underlying theory is an integral part of the successful use of the scientific method
but it needs to be integrated into a well-thought-out approach to research and
development that also makes use of sound experimental strategy at important steps
along the way. The first principles approach often leads to viewing experimentation
as confirmation only, and testing comes too late in the development cycle to take
advantage of the discovery and exploration aspects of good experimental strategy.
The story of Samuel Langley and the Wright brothers discussed previously is an
excellent example of how things can go wrong when we rely too much on first
principles.

6 Recent Developments in Design of Experiments

There have been several developments in recent years in the design of experiments
field that have great potential to enhance innovation and drive more efficient product
and process development. Here we mention only a few of these.

The first of these is new design methodology that can reduce the amount of
experimentation, reduce resources required for testing, and reduce development
time. The use of non-regular fractional factorial designs can be very useful in
this regard. These are designs in which many of the factorial effects are not
completely aliased. Jones and Montgomery (2010) identify a class of designs for
6–8 two-level factors in 16 runs that do not alias any main effects with two-factor
interactions and no two-factor interactions are completely aliased with each other
(although they are correlated). These designs are good alternatives to the usual
resolution IV fractions in which the two-factor interactions are completely aliased.
If there are significant two-factor interactions the usual resolution IV designs would
require follow-on experimentation to identify which two-factor interactions are
active. Unless there are many two-factor interactions these non-regular designs
allow experimenters to identify important main effects and two-factor interactions
without additional experimentation. The ability to isolate both main effects and two-
factor interactions from a single relatively small experiment has the potential to
greatly accelerate the development cycle. Shinde et al. (2014) explore the projection
properties of these designs and provide some insight on potential analysis methods.
Krishnamoorthy et al. (2015) demonstrate how one modern regression technique,
the Dantzig selector, can be used to analyze these designs. In a subsequent chapter
Jones et al. (2015a) present 16-run designs for 9–14 two-level factors that do
not completely alias any main effects with two-factor interactions and no two-
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factor interactions are completely aliased with each other, although these effects are
correlated. These designs can be thought of as alternative to the regular resolution
III 16-run fractions.

The definitive screening designs developed by Jones and Nachtsheim (2011) are
three-level designs that require only one more run than twice the number of factors.
These designs are small enough to allow efficient screening of potentially many
factors yet they can accommodate many second-order effects without additional
runs. These designs have the following desirable properties:

1. The number of required runs is only one more than twice the number of factors.
Consequently, these are very small designs.

2. Unlike resolution III designs, main effects are completely independent of two-
factor interactions. As a result, estimates of main effects are not biased by the
presence of active two-factor interactions, regardless of whether the interactions
are included in the model.

3. Unlike resolution IV designs, two-factor interactions are not completely aliased
with other two-factor interactions, although they may be correlated.

4. Unlike resolution III, IV and V designs with added center points, all quadratic
effects can be estimated in models comprised of any number of linear and
quadratic main effect terms.

5. Quadratic effects are orthogonal to main effects and not completely aliased
(although they are correlated) with interaction effects.

6. With six or more factors, the designs are capable of estimating all possible
full quadratic models involving three or fewer factors with very high levels of
statistical efficiency.

These designs are an excellent compromise between Resolution III fractions
for screening and small RSM designs. They also admit the possibility of moving
directly from screening to optimization using the results of a single experiment.
Jones and Nachtsheim found these designs using an optimization technique they
had previously developed for finding minimum aliasing designs. This procedure
minimizes the sum of squares of the elements of the alias matrix subject to a
constraint on the D-efficiency of the resulting design. These designs can also be
constructed directly from conference matrices.

Griffin et al. (2012) discuss the extensive use of simulation models as an aid
to innovation. They state, “serial innovators typically have these types of hard
data [powerful data supported by evidence] because they run detailed experiments
testing their models of how things work.” Both physical and computer simulations
can utilize experimental design methods. Experimental designs for deterministic
computer models is another relatively new area of application that has great
potential to accelerate innovation. Many engineering design activities make use
of these types of models which include finite element models, computational fluid
dynamics models, computational thermodynamic models, environmental models,
and electrical circuit and device design software. Some of these models have many
variables that must be studied and they can have very long execution times even
on very fast computers. A widely used way to use these models is to deploy an
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experimental design on the computer model and then fit a response surface of
some type as a meta-model to the resulting output. Standard experimental design
techniques such as factorial designs and response surface designs often do not work
well in these applications because the low-order models that these designs support
don’t usually lead to an approximating meta-model that fits the response surface
with the desired accuracy.

The approach that is widely used in practice is to use a space-filling design and fit
the meta-model using the Gaussian process model. Jones and Johnson (2009) give
an introduction and overview of these methods. Other useful references on space-
filling designs and associated modeling techniques include Johnson et al. (2011),
Silvestrini et al. (2013), and Jones et al. (2015b). Space-filling designs are not
recommended for use in modeling response surfaces with low-order polynomials
because of undesirable prediction variance properties, see Johnson et al. (2010).

7 Conclusions

It is our view that design of experiments is the most statistical powerful tool that
is useful in enhancing both breakthrough and incremental innovation. Yet it is not
as widely used as it could be. Based on research of 3M practice, Hindo discusses
that “for a long time, 3M had allowed researchers to spend years testing products.”
Design of experiments could greatly improve the testing process and Six Sigma
practice can be used to reduce noise when the product is formed and being produced.
Making statements that a culture of quality stifles activities such as testing seems
to be a misunderstanding of toolsets. Aside from this misunderstanding, we have
identified four main reasons for barriers to design of experiments, but which can be
thought of as barriers to any formal statistical toolset:

1. Resistance to change
2. Prior negative experiences with statistical methods
3. Lack of statistical knowledge of key personnel in the organization
4. Over-reliance on underlying theory or a first-principles approach

Design of experiments provides a structured methodology for experimentation
and this can greatly aid in creative thinking. This structured methodology can
improve creative thinking in many instances because it allows one the ability to
iterate through ideas in a very efficient manner. There is always struggle with
regards to innovation and invention. The struggle cannot and should not be removed.
Creating the starting point, that leads the way to the use of designed experiments
takes time and energy, but will be very rewarding. Applying statistical methodology
is an important aid in the innovative process and should be employed for improved
results.
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D-Optimal Three-Stage Unbalanced
Nested Designs for the Determination
of Measurement Precision

Seiichi Yasui and Yoshikazu Ojima

Abstract The precision of measurement results can be quantified by variance
components of random effect models. The variance components are estimated from
measurement results that are obtained by performing a collaborative assessment
experiment. The measurement results are statistically modeled by a nested design.
Although balanced nested designs are widely used, staggered nested designs, which
are one type of unbalanced nested designs, have the statistical advantage that the
degrees of freedom in all stages except for the top stage are equal. Thus, balanced
nested designs do not necessarily have a better performance from the statistical point
of view. In this study, D-optimal designs are identified in general nested designs that
include both balanced and unbalanced designs and consider the practical feasibility
of collaborative assessment experiments as well.

Keywords Random effect · Sample size · Repeatability · Reproducibility ·
Sensitive analysis

1 Introduction

Nested designs are used to statistically determine the precision of measurement
results in ISO 5725-3 (1994). In ISO 5725-1 (1994), the precision of measurement
is defined as “the closeness of agreement between independent test results obtained
under stipulated conditions”. This definition implies that the precision depends on
the conditions under which objects are measured. Two important conditions are
repeatability and reproducibility conditions. Repeatability conditions are defined
as “conditions where independent test results are obtained with the same method
on identical test items in the same laboratory by the same operator using the same
equipment within short intervals of time”. Reproducibility conditions are defined as
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“conditions where test results are obtained with the same method on identical test
items in different laboratories with different operators using different equipment”.
In other words, repeatability conditions are conditions in which the dispersion of
measurement results is minimal, whereas reproducibility conditions are conditions
in which the dispersion of measurement results is maximal in the range of our
interest. The precisions under such conditions are called repeatability precision and
reproducibility precision, respectively.

These precisions are quantitatively determined as the variances of measurement
results that are obtained from nested designs. Measurement results from nested
designs are modeled by hierarchical random effect models, and the precisions are
usually estimated by a linear combination of the variance component estimators
based on an analysis of variance.

Although balanced nested designs are widely used, staggered nested designs,
which are one type of unbalanced nested designs, have the statistical advantage
that the degrees of freedom in all stages except for the top stage are equal. Thus,
balanced nested designs do not necessarily have a better performance from the
statistical point of view, and there are favorable situations for unbalanced nested
designs. In our study, we focus on three stage nested designs, and D-optimal designs
with respect to the estimation of repeatability, intermediate, and reproducibility
precisions are investigated in some situations regarding the magnitudes of the
variance components and given sample sizes.

Gold and Gaylor (1970) investigated three stage nested designs for the estimation
of precision by variance components with respect to A-, D-, and adjusted (scaled)
A-optimality and found optimal designs under the quite restricted situation that
the sample sizes are multiples of 12. They assumed that the three-stage nested
design with 12 observations is replicated as a block. We find D-optimal designs for
any sample size under some variance component configurations by developing an
effective algorithm to search all unbalanced nested designs in which all the degrees
of freedom are non-zero.

In Sect. 2, we discuss appropriate estimators of the precision of measurements.
In Sect. 3, D-optimal designs for some sample sizes are shown under some variance
component configurations, and Sect. 4 is the conclusion.

2 D-Optimality for the Determination of Measurement
Precision

The statistical model for unbalanced nested designs with three stages is

yijk = μ + αi + βij + εijk

i = 1, . . . , a, j = 1, . . . , bi, k = 1, . . . , rij

αi ∼ i.i.d.N(0, σ 2
A), βij ∼ i.i.d.N(0, σ 2

B), εijk ∼ i.i.d.N(0, σ 2
E) , (1)
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Table 1 ANOVA table

Source Sum of squares Degrees of freedom Mean square Expected mean square

A SSA φA = a − 1 MSA = SSA/φA σ 2
E + lABσ 2

B + lAAσ 2
A

B SSB φB = b − a MSB = SSB/φB σ 2
E + lBBσ 2

B

A SSE φE = n − b MSE = SSE/φE σ 2
E

where μ is a general mean (constant). The variances σ 2
A , σ 2

B , and σ 2
E are called

variance components.
The variance components are estimated by an analysis of variance (ANOVA)

which is widely used in practice. Such an estimation and its estimator are called
ANOVA estimation, and ANOVA estimator, respectively. An ANOVA table is
shown in Table 1. The lAA, lAB, and lBB in Table 1 are constants which are derived
by Leone et al. (1968) and Ojima (1984).

The ANOVA estimator of the variance components is the solution of the equation

⎛

⎝
MSA
MSB
MSE

⎞

⎠ =
⎛

⎝
lAA lAB 1
0 lBB 1
0 0 1

⎞

⎠

⎛

⎝
σ̂ 2

A
σ̂ 2

B
σ̂ 2

E

⎞

⎠ . (2)

Let the coefficient matrix of the equation be L−1. Then, the ANOVA estimator is L�v
where �v = (MSA, MSB, MSE)′, and L is the inverse of L−1 .

In experiments to determine the precision of measurement results, the variances
under repeatability conditions, intermediate conditions, and reproducibility condi-
tions are defined as

σ 2
A + σ 2

B + σ 2
E (reproducibility variance),

σ 2
B + σ 2

E (intermediate variance),

σ 2
E (repeatability variance),

respectively. Their ANOVA estimators are provided by replacing (σ 2
A, σ 2

B , σ 2
E )

by their estimators (σ̂ 2
A, σ̂ 2

B , σ̂ 2
E ). Thus, the estimator of these precisions can be

expressed as �C�L�v where

�C =
⎛

⎝
1 1 1
0 1 1
0 0 1

⎞

⎠ . (3)

The elements of CL�v in order from the top are the estimators of the repeatability, the
intermediate, and the reproducibility variance, respectively. Note that the estimator
of the variance components is expressed by matrix form as C = I, where I is the
identity matrix.
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The variance-covariance matrix of CL�v is �C�LV(�v)�L′ �C′. The determinant of the
matrix is

|CLV(�v)�L′ �C′| = 1

l2AAl2BB

|V(�v)|, (4)

due to

�L =
⎛

⎝
1/lAA −lAB/(lAAlBB) (lAB − lBB)/(lAAlBB)

0 1/lBB −1/lBB

0 0 1

⎞

⎠ . (5)

Gold and Gaylor (1970) provided the variances and the covariances of estimators
of the variance components LV(�v)L′ in three-stage unbalanced nested designs.
Ojima (1984) derived the variances and the covariances of sums of squares
based on the canonical form induced by the orthogonal transformation in three-
stage unbalanced nested designs. From Ojima (1984), due to the covariances
Cov(SSA, SSE) = 0 and Cov(SSB, SSE), the determinant of the variance-covariance
matrix of the estimators of the variances is

1

l2AAl2BBφ2
Aφ2

Bφ2
E

V(SSE) [V(SSA)V(SSB) − Cov(SSA, SSB)] . (6)

The matrix �C can be generalized under the restriction of non-singularity. Then,
since the determinant of the variance-covariance matrix of the precision estimators
is proportional to the Eq. (4), the D-optimal design for the general nonsingular C is
the same as that for the matrix (3). However, the matrix

C =
⎛

⎝
1 1 0
1 0 1
0 0 1

⎞

⎠ .

does not make sense because such estimators are not meaningful for the precision
of measurements. In particular, the lower rank matrix such as a 2 × 3 matrix results
is “without replication” in a certain stage. For example, If the matrix is

C =
(

1 1 1
0 1 1

)
,

the replication in the third stage is not necessary, in other word, the design with φE =
0 is available in this case, since it is only enough to estimate σ 2

B +σ 2
E . Consequently,

we consider the D-optimal designs obtained by minimising the determinant (6).
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3 D-Optimal Three-Stage Unbalanced Nested Designs

3.1 Derivation of the Optimal Designs

The D-Optimal Designs in the general case where there is no restriction regarding
a, the bi’s, and the rij’s are mathematically interesting. However, in such a situation,
unfeasible or unrealistic designs might be picked up as the optimal designs. In
collaborative experiments to determine the precision of measurements, a is the
number of the participating laboratories, bi is the number of the measurement
operators in the laboratory, and rij is the number of replications of the measurement.
For example, the design with a = 2, b1 = 5, and b2 = 1 is too unbalanced to
be practical so that a cost problem could occur. Hence, we consider the restricted
designs that consist of the five fundamental structures (d1, d2, d3, d4, d5) shown in
Fig. 1.

The D-optimal design exists in all possible combinations of fundamental struc-
tures such that all the degrees of freedom are positive. For each given number of
observations n, such combinations are generated, the determinant (6) is calculated
for each combination and the D-optimal design for n observations is identified.

The unbalanced nested design constituted from fundamental structures is denoted
as D = (m1, m2, m3, m4, m5), where mi is the number of the fundamental structure
di in D. Thus, the total number of observations n is equal to 4m1 + 3m2 + 2m3 +
2m4+m5. In order that it is possible to estimate all the variance components, at least
one of the designs d1 or d2 or (d3, d4) is necessary in D. If only either d1 or d2 is

d1 d2 d3 d5 

1 

2 

3 

2 2 2 1 1 1 1 

4 3 2 1 ni

rij

2 2 2 1 bi 

d4

2 

1 

2 

Fig. 1 Fundamental structures
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included in the design, two or more structures are drawn so that m1 + m2 ≥ 1 and∑5
i=1 mi ≥ 2. On the other hand, if both d3 and d4 are included in the design, this

design is always feasible, i.e. all the degrees of freedom for this design are non-zero.
Hence, n = 4 is the minimum number of observations, and the possible designs

are D1 = (0, 1, 0, 0, 1) and D2 = (0, 0, 1, 1, 0). In case of n = 5, there
are five possible designs which are D1 = (1, 0, 0, 0, 1) , D2 = (0, 1, 1, 0, 0),
D3 = (0, 1, 0, 1, 0), D4 = (0, 1, 0, 0, 2), and D5 = (0, 0, 1, 1, 1). Let optD(Dl)

be the value of the determinant (6) for the design Dl. We calculate optD(D1) =
55.73, optD(D2) = 61.41, optD(D3) = 80.64, optD(D4) = 80.58 and optD(D5) =
120.04 in σ 2

A = σ 2
B = σ 2

E = 12, and D1 is identified as the D-optimal design with
n = 5 under the situation where all the variances in the stages are one.

The D-optimal designs for n = 4(1)60 are calculated by generating all the
combinations with repetitions exhaustively. Table 2 shows the list of D-optimal
designs for sample sizes n = 5, 10, 20, 30, 60 under several situations (ρA, ρB),
where ρA = σ 2

A/σ 2
E and ρB = σ 2

B/σ 2
E . For n ≥ 20, the balanced design or a nearly

balanced design is optimal in situations where ρA ≤ 2. For n = 60, the balanced
design is optimal in any situation except for (ρA, ρB) = (8, 8).

The triplet in Table 3 denotes the degrees of freedom (φA, φB, φE) of the D-
optimal design. φA is close to φB for any n, ρA, and ρB. If ρA and ρB are larger, there
is less difference among the degrees of freedom φA, φB, and φE. This result means
that the staggered nested designs provide more accurate estimates in situations of
larger φA and φB with respect to the generalized variances of the estimators of
variance components and their linear combinations.

3.2 Sensitivity of the Generalized Variance to Sample Size n

The precision of the estimators and the sampling cost, i.e. the choice of the sample
sizes, are important aspects when determining the preferable experiment design.
Often the optimality with respect to the precision of the estimators is less important
than the effort regarding the number of replications in the three stages. Or in other
words, in practice one would prefer a slightly less precision if it needs less sampling
effort. Hence, in this section the relationship between the generalized variance
expressed as Eq. (6) and the sample size n is determined.

The determinants for the optimal designs depend on three parameters: the ratios
ρA, ρB and the sample size n. Since the exact Eq. (6) for the determinant vn = Vn(ρA,
ρB) as a function of n is too complicated we approximate it by a linear equation.

vn is strong nonlinearly related to n in the region of small sample sizes n < 10.
From a practical perspective, designs with small sample sizes n < 10 should not
be used and hence, we do not need to investigate possible cost reductions for these
sample sizes. For n ≥ 10 and any ρA and ρB an empirical relation between the
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Table 2 Optimal designs

ρB

n = 5 0.125 0.25 0.5 1.0 2.0 4.0 8.0

ρA 0.125 (1,0,0,0,1) (1,0,0,0,1) (1,0,0,0,1) (0,1,1,0,0) (0,1,1,0,0) (0,1,1,0,0) (0,1,1,0,0)
0.25 (1,0,0,0,1) (1,0,0,0,1) (1,0,0,0,1) (0,1,1,0,0) (0,1,1,0,0) (0,1,1,0,0) (0,1,1,0,0)
0.5 (1,0,0,0,1) (1,0,0,0,1) (1,0,0,0,1) (0,1,1,0,0) (0,1,1,0,0) (0,1,1,0,0) (0,1,1,0,0)
1.0 (1,0,0,0,1) (1,0,0,0,1) (1,0,0,0,1) (1,0,0,0,1) (0,1,1,0,0) (0,1,1,0,0) (0,1,1,0,0)
2.0 (1,0,0,0,1) (1,0,0,0,1) (1,0,0,0,1) (1,0,0,0,1) (0,1,1,0,0) (0,1,1,0,0) (0,1,1,0,0)
4.0 (1,0,0,0,1) (1,0,0,0,1) (1,0,0,0,1) (1,0,0,0,1) (1,0,0,0,1) (0,1,1,0,0) (0,1,1,0,0)
8.0 (1,0,0,0,1) (1,0,0,0,1) (1,0,0,0,1) (1,0,0,0,1) (1,0,0,0,1) (0,1,1,0,0) (0,1,1,0,0)

ρB

n = 10 0.125 0.25 0.5 1.0 2.0 4.0 8.0

ρA 0.125 (2,0,0,1,0) (2,0,1,0,0) (2,0,1,0,0) (2,0,1,0,0) (2,0,1,0,0) (2,0,1,0,0) (0,2,2,0,0)

0.25 (2,0,0,1,0) (2,0,1,0,0) (2,0,1,0,0) (2,0,1,0,0) (2,0,1,0,0) (2,0,1,0,0) (0,2,2,0,0)

0.5 (2,0,0,1,0) (2,0,0,1,0) (2,0,1,0,0) (2,0,1,0,0) (2,0,1,0,0) (2,0,1,0,0) (0,2,2,0,0)

1.0 (2,0,0,1,0) (2,0,0,0,2) (2,0,1,0,0) (1,0,0,0,1) (2,0,1,0,0) (2,0,1,0,0) (0,2,2,0,0)

2.0 (2,0,0,0,2) (2,0,0,0,2) (2,0,1,0,0) (1,0,0,0,1) (2,0,1,0,0) (2,0,1,0,0) (0,2,2,0,0)

4.0 (2,0,0,0,2) (2,0,0,0,2) (2,0,0,0,2) (2,0,0,0,2) (2,0,1,0,0) (2,0,1,0,0) (1,2,0,0,0)

8.0 (2,0,0,0,2) (2,0,0,0,2) (2,0,0,0,2) (2,0,0,0,2) (2,0,1,0,0) (2,0,1,0,0) (1,2,0,0,0)

ρB

n = 20 0.125 0.25 0.5 1.0 2.0 4.0 8.0

ρA 0.125 (5,0,0,0,0) (5,0,0,0,0) (5,0,0,0,0) (5,0,0,0,0) (5,0,0,0,0) (4,0,2,0,0) (4,0,2,0,0)
0.25 (5,0,0,0,0) (5,0,0,0,0) (5,0,0,0,0) (5,0,0,0,0) (5,0,0,0,0) (4,0,2,0,0) (4,0,2,0,0)
0.5 (5,0,0,0,0) (5,0,0,0,0) (5,0,0,0,0) (5,0,0,0,0) (5,0,0,0,0) (4,0,2,0,0) (4,0,2,0,0)
1.0 (5,0,0,0,0) (5,0,0,0,0) (5,0,0,0,0) (5,0,0,0,0) (5,0,0,0,0) (4,0,2,0,0) (4,0,2,0,0)
2.0 (5,0,0,0,0) (5,0,0,0,0) (5,0,0,0,0) (5,0,0,0,0) (5,0,0,0,0) (4,0,2,0,0) (4,0,2,0,0)
4.0 (5,0,0,0,0) (5,0,0,0,0) (5,0,0,0,0) (5,0,0,0,0) (5,0,0,0,0) (4,0,2,0,0) (2,4,0,0,0)

8.0 (5,0,0,0,0) (5,0,0,0,0) (5,0,0,0,0) (5,0,0,0,0) (5,0,0,0,0) (2,4,0,0,0) (0,6,1,0,0)

ρB

n = 30 0.125 0.25 0.5 1.0 2.0 4.0 8.0

ρA 0.125 (7,0,0,1,0) (7,0,1,0,0) (7,0,1,0,0) (7,0,1,0,0) (7,0,1,0,0) (7,0,1,0,0) (7,0,1,0,0)

0.25 (7,0,0,1,0) (7,0,1,0,0) (7,0,1,0,0) (7,0,1,0,0) (7,0,1,0,0) (7,0,1,0,0) (7,0,1,0,0)

0.5 (7,0,0,1,0) (7,0,0,1,0) (7,0,1,0,0) (7,0,1,0,0) (7,0,1,0,0) (7,0,1,0,0) (7,0,1,0,0)

1.0 (7,0,0,1,0) (7,0,0,0,2) (7,0,0,0,2) (7,0,1,0,0) (7,0,1,0,0) (7,0,1,0,0) (7,0,1,0,0)

2.0 (7,0,0,1,0) (7,0,0,0,2) (7,0,0,0,2) (7,0,1,0,0) (7,0,1,0,0) (7,0,1,0,0) (7,0,1,0,0)

4.0 (7,0,0,1,0) (7,0,0,0,2) (7,0,0,0,2) (7,0,1,0,0) (7,0,1,0,0) (7,0,1,0,0) (7,0,1,0,0)

8.0 (7,0,0,1,0) (7,0,0,0,2) (7,0,0,0,2) (7,0,1,0,0) (7,0,1,0,0) (7,0,1,0,0) (0,10,0,0,0)

ρB

n = 60 0.125 0.25 0.5 1.0 2.0 4.0 8.0

ρA 0.125 (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0)

0.25 (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0)

0.5 (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0)

1.0 (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0)

2.0 (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0)

4.0 (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0)

8.0 (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (15,0,0,0,0) (0,20,0,0,0)



300 S. Yasui and Y. Ojima

Table 3 Degrees of freedom for each optimal design

ρB

n = 5 0.125 0.25 0.5 1.0 2.0 4.0 8.0

ρA 0.125 (1,1,2) (1,1,2) (1,1,2) (1,2,1) (1,2,1) (1,2,1) (1,2,1)
0.25 (1,1,2) (1,1,2) (1,1,2) (1,2,1) (1,2,1) (1,2,1) (1,2,1)
0.5 (1,1,2) (1,1,2) (1,1,2) (1,2,1) (1,2,1) (1,2,1) (1,2,1)
1.0 (1,1,2) (1,1,2) (1,1,2) (1,1,2) (1,2,1) (1,2,1) (1,2,1)
2.0 (1,1,2) (1,1,2) (1,1,2) (1,1,2) (1,2,1) (1,2,1) (1,2,1)
4.0 (1,1,2) (1,1,2) (1,1,2) (1,1,2) (1,1,2) (1,2,1) (1,2,1)
8.0 (11,1,2) (1,1,2) (1,1,2) (1,1,2) (1,1,2) (1,2,1) (1,2,1)

ρB

n = 10 0.125 0.25 0.5 1.0 2.0 4.0 8.0

ρA 0.125 (2,2,5) (2,3,4) (2,3,4) (2,3,4) (2,3,4) (2,3,4) (3,4,2)

0.25 (2,2,5) (2,3,4) (2,3,4) (2,3,4) (2,3,4) (2,3,4) (3,4,2)

0.5 (2,2,5) (2,2,5) (2,3,4) (2,3,4) (2,3,4) (2,3,4) (3,4,2)

1.0 (2,2,5) (3,2,4) (2,3,4) (2,3,4) (2,3,4) (2,3,4) (3,4,2)

2.0 (3,2,4) (3,2,4) (2,3,4) (2,3,4) (2,3,4) (2,3,4) (3,4,2)

4.0 (3,2,4) (3,2,4) (3,2,4) (2,3,4) (2,3,4) (2,3,4) (2,3,4)

8.0 (3,2,4) (3,2,4) ((3,2,4) (2,3,4) (2,3,4) (2,3,4) (2,3,4)

ρB

n = 20 0.125 0.25 0.5 1.0 2.0 4.0 8.0

ρA 0.125 (4,5,10) (4,5,10) (4,5,10) (4,5,10) (4,5,10) (5,6,8) (5,6,8)
0.25 (4,5,10) (4,5,10) (4,5,10) (4,5,10) (4,5,10) (5,6,8) (5,6,8)
0.5 (4,5,10) (4,5,10) (4,5,10) (4,5,10) (4,5,10) (5,6,8) (5,6,8)
1.0 (4,5,10) (4,5,10) (4,5,10) (4,5,10) (4,5,10) (5,6,8) (5,6,8)
2.0 (4,5,10) (4,5,10) (4,5,10) (4,5,10) (4,5,10) (5,6,8) (5,6,8)
4.0 (4,5,10) (4,5,10) (4,5,10) (4,5,10) (4,5,10) (5,6,8) (5,6,8)

8.0 (4,5,10) (4,5,10) (4,5,10) (4,5,10) (4,5,10) (5,6,8) (6,7,6)

ρB

n = 30 0.125 0.25 0.5 1.0 2.0 4.0 8.0

ρA 0.125 (7,7,15) (7,8,14) (7,8,14) (7,8,14) (7,8,14) (7,8,14) (7,8,14)

0.25 (7,7,15) (7,8,14) (7,8,14) (7,8,14) (7,8,14) (7,8,14) (7,8,14)

0.5 (7,7,15) (7,7,15) (7,8,14) (7,8,14) (7,8,14) (7,8,14) (7,8,14)

1.0 (7,7,15) (8,7,14) (8,7,14) (7,8,14) (7,8,14) (7,8,14) (7,8,14)

2.0 (7,7,15) (8,7,14) (8,7,14) (7,8,14) (7,8,14) (7,8,14) (7,8,14)

4.0 (7,7,15) (8,7,14) (8,7,14) (7,8,14) (7,8,14) (7,8,14) (7,8,14)

8.0 (7,7,15) (8,7,14) (8,7,14) (7,8,14) (7,8,14) (7,8,14) (9,10,10)

ρB

n = 60 0.125 0.25 0.5 1.0 2.0 4.0 8.0

ρA 0.125 (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30)

0.25 (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30)

0.5 (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30)

1.0 (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30)

2.0 (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30)

4.0 (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30)

8.0 (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (14,15,30) (19,20,20)



Optimal Designs of Unbalanced Nested Designs 301

Table 4 Results for (7) given various variance ratios ρA and ρB: upper value—β̂0, lower—β̂1

ρB

0.125 0.25 0.5 1.0 2.0 4.0 8.0

ρA 0.125 5.203 4.834 5.900 7.509 9.581 11.924 14.398

−3.574 −3.293 −3.303 −3.332 −3.365 −3.380 −3.371

0.25 4.606 5.200 6.166 7.665 9.657 11.958 14.415

−3.269 −3.274 −3.280 −3.306 −3.342 −3.364 −3.362

0.5 5.258 5.784 6.632 7.969 9.819 12.03 14.452

−3.250 −3.253 −3.254 −3.272 −3.308 −3.338 −3.347

1.0 6.152 6.598 7.351 8.504 10.145 12.198 14.531

−3.234 −3.231 −3.232 −3.240 −3.240 −3.299 −3.319

2.0 7.233 7.620 8.288 9.309 10.723 12.537 14.701

−3.211 −3.214 −3.212 −3.216 −3.230 −3.253 −3.279

4.0 8.433 8.789 9.407 10.347 11.578 13.139 15.025

−3.209 −3.200 −3.197 −3.203 −3.205 −3.213 −3.225

8.0 9.720 10.057 10.640 11.532 12.658 14.010 15.618

−3.203 −3.193 −3.188 −3.192 −3.192 −3.185 −3.182

logarithm of the determinant vn and the logarithm of the sample size n,

ln vn = β0 + β1 ln n + εn, n ≥ 10, (7)

is assumed, and the coefficients β0 and β1 are calculated as β̂0 and β̂1 by ordinary
least squares. For all the situations Table 4 shows in each cell β̂0 as the upper value
and β̂1 as the lower value. For all the situations the coefficients of determination are
larger than 0.99, all the slopes β̂1 are negative, which means that the generalized
variance decreases with increasing sample size. The intercepts β̂0 are increasing if
ρA and ρB become larger.

In order to consider the possibility to choose a smaller sample size and preserve
an acceptable precision, the sensitivity of the empirical relation (7) is considered.
The prediction function of the empirical relation (7) is

vn = eβ̂0nβ̂1, n ≥ 10. (8)

The first derivate of Eq. (8) is

dvn

dn
= eβ̂0 β̂1nβ̂1−1, n ≥ 10. (9)

If the generalized variance vn is not considerably increasing if the sample size is
reduced, the less precise design with smaller sample size is acceptable in practice.
Let AL be an acceptable limit of the maximal deterioration of vn that can be ignored
in practice. Thus, if for the optimal design with sample size n, |dvn/dn| ≤ AL
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A

B B B

AL = 0.1 AL = 0.5 AL = 1.0 

Fig. 2 The smallest sample size n∗ for a given acceptable limit AL

holds, the design is called a practically acceptable optimal design in this chapter.
The smallest sample size n∗ is

⌈ (
−ALe−β̂0/β̂1

) 1
β̂1−1

⌉
, (10)

where β̂1 is assumed to be negative.
Contours of the smallest sample sizes n∗ that satisfy the acceptable limit AL are

shown in Fig. 2. For instance, if ρA = 4.0, ρB = 4.0 and AL = 1.0, the smallest
sample size is n∗ = 30. The optimal design with n = 30 is given in Table 2 as
(7, 0, 1, 0, 0).

Hence, an acceptable design might be determined based on both a precision of
the estimator (8) and a sensitivity (9). However, it should be noted that the variance
ratios ρA and ρB are unknown and must be predicted based on past empirical data.

4 Conclusions

We obtain D-optimal designs for the determination of the precision of measurement
under 49 variance component configurations. Balanced designs are optimal in a
wide range of these configurations. If the variance components of both the first
and the second upper stage are much larger than that of the third stage variance
component, e.g., ρA = ρB = 8.0, staggered or nearly staggered nested designs are
optimal.

In order to choose the optimal design, practitioners have to specify the unknown
ratios of variance components ρA and ρB by a priori assumptions. Though the exact
specification of the values of the variance component ratios is difficult in practice,
there are situations in which they can be predicted approximately.

Since the lowest stage corresponds to measurement under repeatability con-
ditions and the highest stage corresponds to measurement under reproducibility
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conditions, the variance components have a coherent relation σ 2
E ≤ σ 2

B ≤ σ 2
A , or

in other words, 1 ≤ ρB ≤ ρA. In such a region, for n ≥ 30, the optimal design
is unique except for ρA = ρB = 8.0, e.g. (7, 0, 1, 0) and (15, 0, 0, 0) are optimal
designs for n = 30 and n = 60, respectively. For the case of extreme variance ratios
(ρA = ρB = 8.0 or more) and n = 30, 60, it is found that the staggered nested
designs are preferable.

In Chap. 3, we developed a procedure to find the optimal design from a given
acceptable limit for the overall precision of estimation. The acceptable limit
regarding the precision of the estimators of the variance components (8) and its
sensitivity (9) should be supplied by the practitioners. For instance, if ρA = 4.0
and ρB = 4.0 are assumed and an acceptable limit is determined as AL = 1.0, we
find that the smallest sample size is n∗ = 30 and from Table 2 the optimal design
with n = 30 is (7, 0, 1, 0, 0). In addition, even if ρA and ρB are different from the
assumed values the design (7, 0, 1, 0, 0) remains suitable.

This chapter provides theoretical rather than practical features regarding the
performance of precision experiments based on unbalanced nested designs. In
practice additional aspects must be taken into consideration: measurement cost (the
number of replications or sample size), the precision of estimation, the problems of
the variance components to be unknown, and so on. Thus, the practical optimality
must be formulated in a decision-making theory framework. If the utility function
with arguments ρA and ρB can appropriately be defined, we are able to obtain
the preferable optimal design systematically by mathematical programming. This
is an issue of our future work. Furthermore, optimal designs in more general
unbalanced nested designs should be found and investigated in future work. In
general unbalanced cases, the number of candidate designs rapidly increases
according to sample size. Combinatorial optimization should be invoked to solve
the problem.
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Sampling Inspection by Variables
Under Weibull Distribution
and Type I Censoring

Peter-Th. Wilrich

Abstract The lifetime (time to failure) of a product is modeled as Weibull
distributed (with unknown parameters); in this case the logarithms of the lifetimes
are Gumbel distributed. Lots of items shall be accepted if their fraction p of noncon-
forming items (items the lifetime of which is smaller than a lower specification limit
tL) is not larger than a specified acceptable quality limit. The acceptance decision
is based on the r ≤ n observed lifetimes of a sample of size n which is put under
test until a defined censoring time tC is reached (Type I censoring). A lot is accepted
if r = 0 or if the test statistic y = μ̂ − kσ̂ is not smaller than the logarithm of the
specification limit, xL = log(tL), where k is an acceptance factor and μ̂ and σ̂ are the
Maximum Likelihood estimates of the parameters of the Gumbel distribution. The
parameters of the sampling plan (acceptance factor k, sample size n and censoring
time tC) are derived so that lots with p ≤ p1 shall be accepted with probability
not smaller than 1 − α. On the other hand, lots with fractions nonconforming
larger than a specified value p2 shall be accepted with probability not larger than
β. n and tC are not obtained separately but as a function that relates the sample
size n to the censoring time tC. Of course, n decreases if the censoring time tC
is increased. For tC → ∞ the smallest sample size, i.e. that of the uncensored
sample, is obtained. Unfortunately, the parameters of the sampling plan do not
only depend on the two specified points of the OC, P1(p1, 1 − α) and P2(p2, β),
but directly on the parameters τ and δ of the underlying Weibull distribution or
equivalently, on the parameters μ = log(τ ) and σ = 1/δ of the corresponding
Gumbel distribution. Since these parameters are unknown we assume that the hazard
rate of the underlying Weibull distribution is nondecreasing (δ ≥ 1). For the design
of the sampling plan we use the limiting case δ = 1 or σ = 1/δ = 1. A simulation
study shows that the OC of the sampling plan is almost independent of σ if the
censoring time tC is not smaller than the specification limit tL.
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Keywords Sampling inspection · Inspection by variables · Variables sampling ·
Lifetime · Life test · Weibull distribution · Gumbel distribution · Censoring

1 Introduction

The lifetime (time to failure) is an important quality characteristic of many types of
product. If a lower specification limit tL for the lifetime is established an item is non-
conforming if its lifetime t is smaller than tL. In order to test whether the fraction
of nonconforming items in a lot of a product, p, is small so that it can be accepted,
or that p is large so that it should be rejected, a sample of size n is put on test and
the lifetimes of the samples items are noted. In sampling inspection by attributes the
number of lifetimes of the sample being smaller than the lower specification limit
is used for the acceptance decision whereas in sampling inspection by variables the
lifetimes of the sample are statistically evaluated for the acceptance decision.

Technical Report TR 3 (1961), Technical Report TR 4 (1962), Technical Report
TR 6 (1963), Technical Report TR 7 (1965), based on Goode and Kao (1961, 1962,
1963) present sampling plans for inspection by attributes for the lifetime assumed
to be Weibull distributed with known shape parameter δ and specification limits
established for the mean life, the hazard rate or the reliable life. Since it is known
that sampling by attributes requires larger sample sizes than sampling by variables
in order to work with equal efficiency it seems favorable to apply sampling plans
for inspection by variables. Most of the existing sampling plans for inspection by
variables as, e.g. ISO 3951-1 (2005), ISO 3951-2 (2005), cannot be applied to
lifetimes because they assume a normal distribution of the quality characteristic
which is unrealistic for lifetimes, and they require the lifetimes of all sampled items
to be measured. Instead of the normal distribution the Weibull distribution is very
often an appropriate assumption for the distribution of lifetimes. And economical
considerations require the life test to be finished when only a specified number r of
items of the sample have failed (Type II censoring) or a specified test time tC has
elapsed (Type I censoring).

Type II censored sampling plans for inspection by variables under Weibull
distribution have been presented by Fertig and Mann (1980) and Hosono et al.
(1981). They used best linear unbiased estimators (BLUEs) of the parameters
of the Weibull distribution for the acceptance decision which need tables of the
coefficients being available only for small sample sizes. Schneider (1989) based
the acceptance procedure on Maximum Likelihood estimators and their asymptotic
normal distribution.

I deal with Type I censored sampling plans for inspection by variables which
have the advantage of the test time tC being fixed in advance. Section 2 presents
the Weibull distribution and the Gumbel distribution as the underlying model.
Section 3 describes the sampling plans and their design. Section 4 gives an example.
Section 5 presents a graphical procedure that uses Weibull probability chapter.
The Maximum Likelihood estimators of the parameters of the Gumbel distribution
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and the asymptotic variance of the test statistic are derived in Annexes A and B,
respectively.

2 The Model

The lifetime of a product is modelled as a random variable T that is Weibull
distributed with the probability density function

fT(t) = δ

τ

( t

τ

)δ−1
exp

(
−
( t

τ

)δ
)

; x > 0 (1)

where τ > 0 is a scale parameter and δ > 0 is a shape parameter. The cumulative
distribution function of T is

FT(t) = P(T ≤ t) = 1 − exp

(
−
( t

τ

)δ
)

, (2)

the survival function is

GT(t) = P(T > t) = exp

(
−
( t

τ

)δ
)

(3)

and the failure rate (hazard rate) is

hT(t) = fT(t)

1 − FT(t)
= δ

τ

( t

τ

)δ−1
; (4)

hT(t) is monotonically increasing (decreasing) for δ > 1 (δ < 1). For δ = 1, hT(t)
is constant, hT(t) = 1/τ ; in this case T follows the exponential distribution.

The transformed random variable X = ln T has the survival function

GX(x) = P(ln T > x) = P(T > ex) = GT(ex) (5)

= exp(−(ex/τ)δ) = exp(− exp(δ(x − ln τ )) = exp(− exp((x − μ)/σ)).

This location and scale parameter distribution with location parameter μ =
ln τ ∈ R and scale parameter σ = 1/δ > 0 (Note: μ and σ are not expectation
and standard deviation of X) is the Type I asymptotic distribution of the smallest
extreme value in a sample of size n → ∞, often denoted as Gumbel distribution.

The linear transformation Z = (X − μ)/σ transforms this distribution into the
standardized Gumbel distribution with the survival function

GZ(z) = exp(− exp(z)) (6)
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and the probability density function

fZ(z) = exp(z − exp(z)) = exp(z)GZ(z); (7)

it has no parameters. In the following we use the Gumbel distribution of X = ln T
instead of the Weibull distribution of T because, as a location and scale distribution,
it has many advantages in the design of sampling plans.

3 The Sampling Plan

A lower limit tL for the lifetime T of the items of a product is specified. An item is
nonconforming if its lifetime is smaller than tL, T < tL. A lot of items is acceptable
if its fraction of nonconforming items, p, is not larger than a specified value p1. The
sampling plan shall accept a lot with p ≤ p1 with probability not smaller than 1−α.
On the other hand, lots with fractions nonconforming larger than a specified value
p2 shall be accepted with probability not larger than β. (p1, 1 − α) and (p2, β) are
design specifications for the sampling plan. We put n items on a life test and note
the lifetimes t(1) ≤ t(2) ≤ . . . ≤ t(r) of all items that fail until an established test
time tC is reached, i.e. the sample is censored at the right with censoring time tC.
Note that r is a random variable. Based on the logarithms xi = ln t(i) of the lifetimes
t(i) the Maximum Likelihood estimators μ̂ and σ̂ of the parameters μ and σ of the
Gumbel distribution are calculated; see Annex A.

The lot is accepted if the test statistic

y = μ̂ − kσ̂ (8)

is not smaller than xL = ln tL,

y = μ̂ − kσ̂ ≥ xL (9)

where k is the acceptance factor of the sampling plan (k, n, tC), or equivalently

(xL − μ̂)/σ̂ ≤ −k (10)

or

p̂ = FZ((xL − μ̂)/σ̂ ) ≤ FZ(−k) = pcrit, (11)

where p̂ is an estimate of the fraction nonconforming in the lot. k, n and tC shall be
fixed so that the probabilities of acceptance of the lot are 1−α and β if the fractions
of nonconforming items in the lot are p1 and p2, respectively. Since the test statistic
and the estimate of the fraction nonconforming cannot be calculated if the observed
number of failures is r = 0 the decision rules (9) and (11) are amended by the rule
to accept the lot if r = 0; this causes a very small increase of the probability of
acceptance of a lot.
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Asymptotically, the test statistic y = μ̂ − kσ̂ is normally distributed with
expectation E(y) = μ − kσ and variance V(y) = σ 2

y = V(μ̂) + k2V(σ̂ ) −
2kCov(μ̂, σ̂ ); see Annex B.

The operating characteristic function (OC), i.e. the probability of acceptance of
the lot as a function of its fraction nonconforming, p, is

L(p) = P(y ≥ xL|p) = P(μ̂ − kσ̂ ≥ xL|p)

= P

(
(μ̂ − kσ̂ ) − (μ − kσ)

σy
≥ xL − μ + kσ

σy

)

= P

(
U ≥ 1

A

(
xL − μ

σ
+ k

)
|p
)

= 1 − P

(
U ≤ 1

A
(zL + k)|p

)

= 1 − 	

(
1

A
(zp + k)

)
(12)

where U is the standardized normal variable and

A = σy/σ ; (13)

	(·) is the cumulative distribution function of the standardized normal distribution.
The standardized lower specification limit zL = (xL − μ)/σ is equal to the p-
quantile zp = ln(− ln(1−p)) of the standardized Gumbel distribution if the fraction
nonconforming in the lot is p.

A and k are obtained by solving the equations

L(p1) = 1 − 	

(
1

A
(zp1 + k)

)
= 1 − α

L(p2) = 1 − 	

(
1

A
(zp2 + k)

)
= β (14)

for A and k. From the first equation we get 	( 1
A (zp1 + k)) = α or

1

A
(zp1 + k) = uα, (15)

and from the second equation

1

A
(zp2 + k) = u1−β, (16)

where up is the p-quantile of the standardized normal distribution. Equations (15)
and (16) have the solutions

k = zp1u1−β − zp2uα

uα − u1−β

(17)
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and

A = zp1 − zp2

uα − u1−β

. (18)

The OC of the sampling plan passes through the two points P1(p1, 1 − α) and
P2(p2, β) if the parameters of the sampling plan are k and A according to (17)
and (18). The value of A according to (18) has to be equal to A = σy/σ according
to (19):

A = zp1 − zp2

uα − u1−β

=
√

v11 + k2v22 − 2kv12√
n

= f (k, zC)√
n

(19)

or

n = f 2(k, zC)

A2 , (20)

where v11, v12 and v22 are the elements of the asymptotic covariance matrix of the
estimators μ̂ and σ̂ according to (49).

The parameters of the sampling plan, k and A, being fixed according to (17)
and (18), this equation defines a series of pairs (zC, n) for which the design
requirement is met. For zC → ∞, i.e. for the case of no censoring, n takes its
smallest value,

nmin = 1 + 6(k+1−γ )2

π2

A2 (21)

according to (54), where γ = 0.57721566490 . . . is Euler’s constant (see Erdélyi
(1954), p. 148). Depending on the cost of sampled items and test time the user of
the sampling plan can choose smaller test times with larger sample sizes and vice
versa.

In order to calculate the right hand side of (20) we need the standardized
censoring time zC = (xC − μ)/σ . However, we have only the established censoring
time xC = ln tC, and we cannot convert it into the standardized censoring time zC

because μ and σ are unknown.
We solve this problem with the assumption that the failure rate of the Weibull

distribution of the lifetime is nondecreasing, i.e. that the failure rate of an item
does not decrease if its lifetime increases. This corresponds to the case where
the shape parameter of the Weibull distribution is larger or equal to 1, δ ≥ 1,
and the scale parameter of the Gumbel distribution is not larger than 1, σ =
1/δ ≤ 1. We fix σ at σ0 = 1 (and discuss this choice in Sect. 4). Since
the fraction nonconforming in the lot is p = FZ(zL) = FZ((xL − μ)/σ0) the
unknown parameter μ now only depends on the fraction nonconforming p. We
then choose μ so that the corresponding p = FZ(xL − μ)/σ0) = p50% is the
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indifferent quality of the sampling plan, i.e. that the probability of acceptance
according to (12) is 50%, L(p50%) = 50%. For this case, zp = (xL − μ)/σ0 =
zp50% = −k and we see that, according to (11), p50% = pcrit. With μ =
xL + kσ0 we finally obtain zC = (xC − μ)/σ0 = (xC − xL)/σ0 − k = xC −
xL − k.

If we calculate the standardized censoring time as

zC = xC − xL − k = ln tC − ln tL − k (22)

and hence,

n = f 2(k, ln tC − ln tL − k)

A2 , (23)

we get a sampling plan the OC’s of which pass through the indifference point
(pcrit, 50%) and for σ = 1 (δ = 1) through the design points P1(p1, 1 − α) and
P2(p2, β).

If we choose the censoring time (test time) tC equal to the specification limit
(specified lifetime) tL the sample size n is only slightly smaller than the sample size
natt of the sampling plan for inspection by attributes with the same OC curve (in
the example of Sect. 4 we find n = 103 and natt = 109). Hence, one might decide
to use the attributes sampling plan in order to avoid the assumption of a Weibull
distribution of the lifetime. However, in contrast to attributes sampling variables
sampling allows to choose a test time tC that is different from the specified lifetime
tL. If the test time is larger than the specified lifetime, e.g. tC = 2tL, the sample size
n is much smaller than natt (n = 75 in the example of Sect. 4) whereas the sample
size is much larger if tC is smaller than tL (see Fig. 2). Larger test times require a
smaller number of items to be put on test and vice versa. An appropriate choice of
n and tC should be based on cost considerations.

The parameters of the sampling plan, k and n, are derived under the assumption
that the test statistic y is normally distributed. This assumption is based on the
asymptotic normality of the estimators μ̂ and σ̂ . In order to check this assumption
I have performed simulations for different design points P1(p1, α) and P2(p2, β)

resulting in different sample sizes n. In all cases the normal distribution was a
good approximation of the distribution of the test statistic y and even better of the
estimator p̂ of the fraction nonconforming. Hence, the simulated OC curves were
in very good agreement with the asymptotic OC’s passing through P1(p1, α) and
P2(p2, β) (see also Fig. 1).
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tL = 5 , tC = 5
n = 103 , k = 1.83 , pcrit = 0.148

designed OC
simulated OC, σ = 1
simulated OC, σ = 0.5
simulated OC, σ = 0.2

Fig. 1 The asymptotic OC curve (blue) of the sampling plan (k, n, tC) = (1.83, 103, 5) that
passes through the points P1(p1 = 0.1, 1 − α = 0.95) and P2(p2 = 0.2, β = 0.1). The black,
red, green curves are the simulated OC curves for σ = 1, 0.5, 0.2, respectively (solid: numerical
acceptance decision, dashed: graphical acceptance decision, see Sect. 5). Each point represents the
average of 104 simulation runs

4 An Example

The lifetime T of a particular product is assumed to be Weibull distributed. An
item of the product is defined as nonconforming if its lifetime t is smaller than the
lower specification limit tL = 5. A sampling plan for inspection by variables has
to be designed so that lots with fraction nonconforming p1 = 0.1 are accepted
with probability 1 − α = 0.95, and lots with fraction nonconforming p2 = 0.2 are
accepted with probability β = 0.1.

According to (17) and (18) the parameters of the sampling plan are k = 1.83 and
A = 0.256; the critical fraction nonconforming according to (11) is pcrit = 0.148.
A lot is accepted if, according to (9), the test statistic y is not smaller than the
lower specification limit xL = ln tL = 1.61, or equivalently according to (11), if
the estimate p̂ is not larger than the critical fraction nonconforming, pcrit = 0.148.
The blue curve of Fig. 1 shows the OC curve of this sampling plan. The two blue
points on this curve are the design points P1(p1 = 0.1, 1 − α = 0.95) and P2(p2 =
0.2, β = 0.1). The black point P0(pcrit = 0.148, L = 0.5) indicates the indifferent
quality.

Figure 2 is a plot of the sample size n as a function of the censoring time tC. If
we choose the censoring time as tC = 2tL, tL, tL/2 we obtain the sample sizes n =
75, 103, 296, respectively. The smallest sample size, for the case of no censoring,
is nmin = 63. The corresponding attributes sampling plan is (natt = 109, c = 16):
if not more than 16 lifetimes are smaller than tL = 5 the lot is accepted. For such
an attribute sampling plan, the life test can always be finished at tL, and hence, the
censoring time is equal to the specification limit, tC = tL. It is interesting to note that
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Fig. 2 The sample size n as a function of the censoring time tC for the sampling plan the OC of
which passes through the points P1(p1 = 0.1, 1 − α = 0.95) and P2(p2 = 0.2, β = 0.1). For
the censoring times tC = 2tL (green), tC = tL (black), tC = tL/2 (red) we obtain the sample sizes
n = 75, 103, 296, respectively. The smallest sample size, for the case of no censoring, is nmin = 63
(blue). The orange point indicates the sample size of the corresponding attributes sampling plan,
natt = 109

the sample size of the attributes sampling plan, natt = 109 (orange point in Fig. 2),
is not much larger than the sample size of the variables sampling plan for tC = tL,
n = 103.

We now start sampling with the censoring time tC = tL = 5. In a simulation
experiment we choose σ = 1, 0.5, 0.2, calculate for various p the corresponding
μ = xL − zpσ , generate samples of size n = 75 with censoring time tC = tL = 5
and count the number of simulation runs in which the test statistic is larger than
xL = ln tL = 1.61. The black, red, green curves of Fig. 1 are the simulated OC
curves for σ = 1, 0.5, 0.2, respectively, which are almost equal to the theoretical
OC. If we now fix the censoring time at tC = tL/2 = 2.5 the sampling plan is
(k, n, tC) = (1.83, 296, 2.5). Figure 3 shows that the OC’s now depend very much
on the standard deviation σ of the distribution of the log-lifetime, i.e. on the shape
parameter δ = 1/σ of the distribution of the lifetime. We note that the sampling
plan becomes less efficient (OC more flat) if the standard deviation is smaller than
the value that had been used for the design of the sampling plan, σ0 = 1.

Figure 4 gives an explanation of this unexpected behavior of the sampling plan.
In the upper graph the censoring time is tC = tL = 5, in the lower graph it is
tC = tL/2 = 2.5. The green simulated distributions of the test statistic y belong
to σ = 1(δ = 1) of the underlying lifetime distribution, the blue distributions
to σ = 0.5(δ = 2). The solid distributions belong to the fraction p1 = 0.1 of
nonconforming items in the lot, the dashed distributions to p2 = 0.2. In the upper
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tL = 5 , tC = 2.5
n = 296 , k = 1.83 , pcrit = 0.148
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Fig. 3 The asymptotic OC curve (blue) of the sampling plan (k, n, tC) = (1.83, 296, 2.5) that
passes through the points P1(p1 = 0.1, 1 − α = 0.95) and P2(p2 = 0.2, β = 0.1). The black,
red, green curves are the simulated OC curves for σ = 1, 0.5, 0.2, respectively (solid: numerical
acceptance decision, dashed: graphical acceptance decision). Each point represents the average of
104 simulation runs

graph for p1 = 0.1 the fraction of accepted lots (area of the distribution to the right
of the specification limit xL = ln 5 = 1.61, indicated as red vertical line) is 0.948
if σ = 1 (solid green) and 0.945 if σ = 0.5 (solid blue). For p2 = 0.2 it is 0.102
(dashed green) if σ = 1 and 0.103 if σ = 0.5. All these results of 104 simulation
runs are in excellent agreement with the specified values 1 −α = 0.95 and β = 0.1,
respectively. However, in the lower graph for p1 = 0.1 the fraction of accepted lots
is 0.896 if σ = 1 (solid green) and 0.374 if σ = 0.5 (solid blue). For p2 = 0.2
it is 0.065 (dashed green) if σ = 1 and 0.319 if σ = 0.5. Whereas for σ = 1
the fractions of accepted lots are in agreement with the specified values, they are
extremely different from them if σ = 0.5. A comparison of the blue distributions
with the green distributions of y shows that they have a smaller standard deviation
if σ = 0.5(δ = 2) than if σ = 1(δ = 1), and this would increase the efficiency
of the sampling plan. On the other hand, the distributions (and the expected values
of the test statistic y, indicated as points) are shifted towards the specification limit
if σ decreases (δ increases), and this stronger effect decreases the efficiency of the
sampling plan. Simulations show that the choice of a smaller σ0 than σ0 = 1 is no
practical solution: it slightly turns all OC’s clockwise around the point of indifferent
quality, however this efficiency increasing effect is small and the price is a much
larger sample size n. The best recommendation is not to use censoring times tC
smaller than the specification limit tL. Figure 2 demonstrates another reason for this
recommendation: for censoring times decreasing from the specification limit to 0
the sample size increases sharply.
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0.5 1.0 1.5 2.0 2.5
test statistic, y

ll ll

0.5 1.0 1.5 2.0 2.5
test statistic, y

ll ll

Fig. 4 The distributions of the test statistic y for censoring time tC = tL = 5 (upper graphs),
tC = tl/2 = 2.5 (lower graphs), σ = 1 (green), σ = 0.5 (blue), p1 = 0.1 (solid) and p2 = 0.2
(dashed) obtained by 104 simulation runs. The expected values of the test statistic are indicated as
points on the horizontal axis. The specification limit xL = 1.61(tL = 5) is indicated as red vertical
line

5 A Graphical Approach

The cumulative distribution function of the Weibull distribution is

F = 1 − exp

(
−
( t

τ

)δ
)

. (24)

By taking twice the logarithm of 1 − F we get

ln(− ln(1 − F)) = δ(ln t − ln τ ). (25)

This equation relates ln(− ln(1 − F)) linearly to ln t. Hence, in a coordinate system
with a logarithmic horizontal axis for t and a vertical axis according to ln(− ln(1−F)

for F the cumulative distribution function of any Weibull distribution is represented
as a straight line. The slope of this straight line is equal to the parameter δ and
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Fig. 5 In this particular example of the application of our sampling plan (n = 103, k =
1.83, pcrit = 0.148, tL = 5, tC = 5) 9 lifetimes t(1), . . . , t(9) have been observed and are plotted
against 1/(n + 1), . . . , 9/(n + 1) (black points). The “best fit” straight line (black) intersects with
the vertical line through tL = 5 in the green part for which the estimate p̂ is smaller than pcrit and
hence, the lot is accepted (the blue lines demonstrate how the parameters of the Weibull distribution
can be estimated graphically)

the parameter τ is the lifetime t for which the cumulative distribution is equal to
1−exp(−1) = 0.632. Graph chapter with such a coordinate system exists as Weibull
probability chapter.

We can use the Weibull probability chapter for the application of the sampling
plans based on the Weibull distribution (but not for its design). We plot the points
(t(i),E(FT(t(i))) = i/(n+1)) and draw a “best fit” straight line through these points.
At the intersection of this straight line with the vertical line through the specification
limit tL we can read an estimate p̂ of the fraction of nonconforming items in the lot.
If p̂ is not larger than the critical fraction pcrit given by the sampling plan we accept
the lot. Figure 5 shows a particular example of the application of our sampling plan
(n = 103, k = 1.83, pcrit = 0.148, tL = 5, tC = 5). 9 lifetimes t(1), . . . , t(9) have
been observed and are plotted against 1/(n + 1), . . . , 9/(n + 1) (black points). The
“best fit” straight line (black) intersects with the vertical line through tL = 5 in the
green part for which the estimate p̂ is smaller than pcrit and hence, the lot is accepted.
If the intersection were in the red part of the vertical line p̂ were larger than pcrit and
the lot would be rejected.

In our simulation experiment we have used the graphical procedure parallel to the
numerical procedure of Sect. 3. The dashed curves of Fig. 1 are the simulated OC
curves of the graphical procedure corresponding to the solid curves of the numerical
procedure. The OC curves are a little more flat, i.e. the graphical procedure is
slightly less efficient. However, the graphical procedure depends on the visually
fitted straight line and this fit might cause dispute if the intersection with the vertical
line is close to the critical value pcrit.
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6 Conclusions

The lifetime (time to failure) of a product is modeled as Weibull distributed (with
unknown parameters); in this case the logarithms of the lifetimes are Gumbel
distributed. Lots of items shall be accepted if their fraction p of nonconforming
items (items the lifetime of which is smaller than a lower specification limit tL) is
not larger than a specified acceptable quality limit. The acceptance decision is based
on the r ≤ n observed lifetimes of a sample of size n which is put under test until a
defined censoring time tC is reached (Type I censoring). A lot is accepted if r = 0 or
if the test statistic y = μ̂ − kσ̂ is not smaller than the logarithm of the specification
limit, xL = log(tL), where k is an acceptance factor and μ̂ and σ̂ are the Maximum
Likelihood estimates of the parameters of the Gumbel distribution. The parameters
of the sampling plan (acceptance factor k, sample size n and censoring time tC) are
derived so that lots with p ≤ p1 shall be accepted with probability not smaller than
1 − α. On the other hand, lots with fractions nonconforming larger than a specified
value p2 shall be accepted with probability not larger than β. n and tC are not
obtained separately but as a function that relates the sample size n to the censoring
time tC. Of course, n decreases if the censoring time tC is increased. For tC → ∞ the
smallest sample size, i.e. that of the uncensored sample, is obtained. Unfortunately,
the parameters of the sampling plan do not only depend on the two specified points
of the OC, P1(p1, 1 − α) and P2(p2, β), but directly on the parameters τ and δ of
the underlying Weibull distribution or equivalently, on the parameters μ = log(τ )

and σ = 1/δ of the corresponding Gumbel distribution. Since these parameters are
unknown we assume that the hazard rate of the underlying Weibull distribution is
nondecreasing (δ ≥ 1). For the design of the sampling plan we use the limiting case
δ = 1 or σ = 1/δ = 1. A simulation study shows that the OC of the sampling plan is
almost independent of σ if the censoring time tC is not smaller than the specification
limit tL.

If the censoring time tC is chosen smaller than the specification limit tL then the
sample size of the sampling plan is rather large, if tC = tL the sample size is not
much smaller than the sample size of the corresponding attributes sampling plan,
whereas for tC larger than tL the sample size is, e.g. for tC = 2tL, about 10–30%
smaller than that of the corresponding attributes sampling plan.

Annex A: Maximum Likelihood Estimation of the Parameters
of the Gumbel Distribution

r lifetimes t(1) ≤ t(2) ≤ . . . ≤ t(r) (assumed to be Weibull distributed) are observed
in a life test with n items put on test and the test finished at time tC (Type I censoring
to the right); all n − r unobserved lifetimes t(r+1) ≤ t(r+2) ≤ . . . ≤ t(n) are larger
than tC; r = 0, 1, . . . , n is a random variable.
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We transform the lifetimes t(i) to xi = ln t(i). The likelihood function of the
sample is

L(μ, σ ) =
r∏

i=1

fX(xi) · Gn−r
X (xC) = 1

σ r

r∏

i=1

fZ(zi) · Gn−r
Z (zC)

= 1

σ r

r∏

i=1

exp(zi − exp(zi))(exp(− exp(zC)))n−r (26)

with zi = (xi − μ)/σ and zC = (xC − μ)/σ . The loglikelihood function is

l(μ, σ ) = −r ln σ +
r∑

i=1

(zi − exp(zi)) − (n − r) exp(zC). (27)

With ∂zi/∂μ = −1/σ and ∂zi/∂σ = −xi/σ
2 we obtain the first derivatives of the

loglikelihood as

∂ l(μ, σ )

∂μ
= − 1

σ

[
r∑

i=1

(1 − exp(zi)) − (n − r) exp(zC)

]

(28)

= − 1

σ

[

r − exp(−μ/σ)

(
r∑

i=1

exp(xi/σ) + (n − r) exp(xC/σ)

)]

and

∂l(μ, σ)

∂σ
= − r

σ
− 1

σ 2

[
r∑

i=1

(xi − xi exp(zi)) − (n − r)xC exp(zC)

]

(29)

= − r

σ
−
∑r

i=1 xi

σ 2
− exp(−μ/σ)

σ 2

[
r∑

i=1

xi exp(xi/σ) + (n − r)xC exp(xC/σ)

]

.

The Maximum Likelihood estimates are the roots of the equations ∂l(μ,σ )
∂μ

= 0

and ∂l(μ,σ )
∂σ

= 0. With (28) and (29) we find

exp(−μ̂/σ̂ ) = r
∑r

i=1 exp(xi/σ̂ ) + (n − r) exp(xC/σ̂ )
(30)

exp(−μ̂/σ̂ ) = rσ̂ +∑r
i=1 xi∑r

i=1 xi exp(xi/σ̂ ) + (n − r)xC exp(xC/σ̂ )
, (31)
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respectively, and by Eqs. (30) and (31) we obtain a nonlinear equation for the
determination of σ̂ :

σ̂ +
∑r

i=1 xi

r
−
∑r

i=1 xi exp(xi/σ̂ ) + (n − r)xC exp(xC/σ̂ )
∑r

i=1 exp(xi/σ̂ ) + (n − r) exp(xC/σ̂ )
= 0. (32)

From (30) we finally obtain

μ̂ = −σ̂ ln

(
r

∑r
i=1 exp(xi/σ̂ ) + (n − r) exp(xC/σ̂ )

)
. (33)

It shall be noted that the estimation of the parameters is not possible if r = 0 (no
lifetime observed).

Annex B: The Variance of the Test Statistic y = μ̂ − kσ̂

We write the likelihood of a single observation z = (x − μ)/σ = (ln t − μ)/σ as

L(μ, σ ) = f I
Z(z)G1−I

Z (z) (34)

where

I =
{

1 : z ≤ zC

0 : z > zC.
(35)

indicates that z is observed. The loglikelihood is

l = l(μ, σ ) = I(− ln σ + z − exp(z)) − (1 − I) exp(zC)

With ∂z/∂μ = −1/σ and ∂z/∂σ = −z/σ the first partial derivatives of l become

∂ l

∂μ
= − 1

σ

[
I(1 − exp(z)) − (1 − I) exp(zC)

]
(36)

∂ l

∂σ
= − 1

σ

[
I(1 + z − exp(z)) − (1 − I) exp(zC)

]
. (37)

The second derivatives of l are

∂2l

∂μ2
= − 1

σ 2

[
I exp(z) + (1 − I) exp(zC)

]
(38)

∂2l

∂μ∂σ
= − 1

σ 2

[
I(−1 + exp(z)) + (1 − I) exp(zC)

]
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− 1

σ 2

[
Iz exp(z) + (1 − I)zC exp(zC)

]

= − 1

σ 2

[
−σ

∂l

∂μ
+ Iz exp(z) + (1 − I)zC exp(zC)

]
(39)

∂2l

∂σ 2
= − 1

σ 2

[
I(1 + z − z exp(z)) − (1 − I)zC exp(zC)

]

− 1

σ 2

[
I(−1 − z + z exp(z) + 1 + z2 exp(z)) − (1 − I)(−zC exp(zC) − z2

C exp(zC))
]

= − 1

σ 2

[
−2σ

∂l

∂σ
+ I(1 + z2 exp(z)) + (1 − I)z2

C exp(zC)

]
(40)

The expectations of the second derivatives are, with E(I) = P(Z ≤ zC) = FZ(zC),
E( ∂l

∂μ
) = 0 and E( ∂l

∂σ
) = 0 :

E

(
∂2l

∂μ2

)
= − 1

σ 2

[∫ zC

−∞
exp(z)fZ(z)dz + (1 − FZ(zC)) exp(zC)

]
. (41)

By partial integration with u = exp(z), v′ = fZ(z), u′ = exp(z), v = FZ(z) and
u′v = exp(z)FZ(z) = exp(z) − exp(z)GZ(z) = exp(z) − fZ(z) we obtain

∫ zC

−∞
exp(z)fZ(z)dz = exp(zC)FZ(zC) −

∫ zC

−∞
(exp(z) − fZ(z)) dz

= −(1 − FZ(zC) exp(zC) + FZ(zC)

and hence,

E

(
∂2l

∂μ2

)
= − 1

σ 2 FZ(zC) = − 1

σ 2 f11. (42)

For zC → ∞ we have f11 → f11,∞ = 1.

E

(
∂2l

∂μ∂σ

)
= − 1

σ 2

[∫ zC

−∞
z exp(z)fZ(z)dz + (1 − FZ(zC))zC exp(zC)

]
.

By partial integration with u = z exp(z), v′ = fZ(z), u′ = (1 + z) exp(z), v = FZ(z)
and u′v = (1 + z) exp(z)FZ(z) = (1 + z) exp(z) − (1 + z) exp(z)GZ(z) = (1 +
z) exp(z) − (1 + z)fZ(z) we obtain

∫ zC

−∞
z exp(z)fZ(z)dz = zC exp(zC)FZ(zC) −

∫ zC

−∞
(1 + z) (exp(z) − fZ(z)) dz,

∫ zC

−∞
(1 + z) (exp(z) − fZ(z)) dz =

∫ zC

−∞
(1 + z) exp(z)dz

︸ ︷︷ ︸
J1

+
∫ zC

−∞
(1 + z)fZ(z)dz

︸ ︷︷ ︸
J2
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J1 = exp(zC) + zC exp(zC) − exp(zC)

J2 = −zC exp(zC)(1 − FZ(zC)) +
∫ zC

−∞
(1 + z)fZ(z)dz

�⇒
∫ zC

−∞
(1 + z)(exp(z − fZ(z))dz = zC exp(zC)FZ(zC) +

∫ zC

−∞
(1 + z)fZ(z)dz

and hence,

E

(
∂2l

∂μ∂σ

)
= − 1

σ 2

∫ zC

−∞
(1 + z)fZ(z)dz = − 1

σ 2 f12. (43)

With the substitution u = exp(z), f12 becomes for zC → ∞

f12,∞ =
∫ ∞

−∞
(1 + z)fZ(z)dz = 1 +

∫ ∞

0
ln u exp(−u]du = 1 − γ (44)

where γ = 0.57721566490 . . . is Euler’s constant (see Erdélyi (1954), p. 148).

E

(
∂2l

∂σ 2

)
= − 1

σ 2

[∫ zC

−∞
(1 + z2 exp(z))fZ(z)dz + (1 − FZ(zC))z2

C exp(zC)

]

= − 1

σ 2

[∫ zC

−∞
fZ(z)dz +

∫ zC

−∞
z2 exp(z)fZ(z)dz + (1 − FZ(zC))z2

C exp(zC)

]

By partial integration with u = z2 exp(z), v′ = fZ(z), u′ = (2z + z2) exp(z), v =
FZ(z) and u′v = (2z+z2) exp(z)FZ(z) = (2z+z2) exp(z)−(2z+z2) exp(z)GZ(z) =
(2z + z2) exp(z) − (2z + z2)fZ(z) we obtain

∫ zC

−∞
z2 exp(z)fZ(z)dz = z2

C exp(zC)FZ(zC) −
∫ zC

−∞
(2z + z2) exp(z)FZ(z)dz,

= z2
C exp(zC)FZ(zC) −

∫ zC

−∞
(2z + z2) exp(z)dz

︸ ︷︷ ︸
J3

+
∫ zC

−∞
(2z + z2)fZ(z)dz,

J3 = 2
∫ zC

−∞
z exp(z)dz + z2

C exp(zC) − 2
∫ zC

−∞
z exp(z)dz = z2

C exp(zC)

�⇒
∫ zC

−∞
z2 exp(zC)fZ(z)dz = −(1 − FZ(zC))z2

C exp(zC) +
∫ zC

−∞
(2z + z2)fZ(z)dz

and hence,

E

(
∂2l

∂σ 2

)
= − 1

σ 2

∫ zC

−∞
(1 + z)2fZ(z)dz = − 1

σ 2
f22. (45)
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With the substitution u = exp(z), f22 becomes for zC → ∞

f22,∞ = 1+2
∫ ∞

−∞
zfZ(z)dz+

∫ ∞

−∞
z2fZ(z)dz = 1+2

∫ ∞

0
ln u exp(−u)du

︸ ︷︷ ︸
J4

+
∫ ∞

0
ln2 u exp(−u)du

︸ ︷︷ ︸
J5

.

With J4 = −γ according to (43) and J5 = γ 2 + π2

6 (see Erdélyi (1954), p. 149) we

get f22,∞ = (1 − γ )2 + π2

6 .
The equations for f11, f12 and f22 in (42), (43) and (45) are equivalent to equations

derived in Harter and Moore (1968). The integrals in (43) and (45) cannot be solved
directly. Escobar and Meeker (1986) present series expansions

f12 = FZ(zC) +
∞∑

j=1

(−1) j+1

j!
(

zC − 1

j

)
(exp(zC)) j

f22 = 2f12 − FZ(zC) +
∞∑

j=1

(−1) j+1

j!

((
zC − 1

j

)2

+ 1

j2

)

(exp(zC)) j (46)

and recommend to use these series expansions if zC < 0 and to split the integrals
into

∫ zC

−∞
(1 + z)fZ(z)dz =

∫ 1

−∞
(1 + z)fZ(z)dz +

∫ zC

1
(1 + z)fZ(z)dz

= 0.2720757938345342 +
∫ zC

1
(1 + z)fZ(z)dz

∫ zC

−∞
(1 + z)2fZ(z)dz n =

∫ 1

−∞
(1 + z)2fZ(z)dz +

∫ zC

1
(1 + z)2fZ(z)dz

= 1.475933122158450 +
∫ zC

1
(1 + z)2fZ(z)dz (47)

for zC ≥ 1 and to calculate the integrals on the right hand side by numerical
integration.

The Fisher information matrix of a sample of size n is

F = −n

⎛

⎝
E

(
∂2l
∂μ2

)
E

(
∂2l

∂μ∂σ

)

E

(
∂2l

∂μ∂σ

)
E

(
∂2l
∂σ 2

)

⎞

⎠ = n

σ 2

(
f11 f12

f12 f22

)
(48)

with f11, f12, f22 according to (42), (43), (45), respectively.



Sampling Inspection by Variables Under Weibull Distribution and Type I Censoring 325

The asymptotic covariance matrix of the estimators μ̂ and σ̂ is the inverse of the
Fisher information matrix,

V =
(

σ 2
μ̂

σμ̂σ̂

σμ̂σ̂ σ 2
σ̂

)

= F−1 = σ 2

n

(
f11 f12

f12 f22

)−1

= σ 2

n

(
v11 v12

v12 v22

)
. (49)

We note that the inverse ( fij)−1 = (vij) only depends on the standardized censoring
time zC = (xC − μ)/σ .

For zC → ∞ the Fisher information matrix is

F∞ = n

σ 2

(
f11,∞ f12,∞
f12,∞ f22,∞

)
= n

σ 2

(
1 1 − γ

1 − γ (1 − γ )2 + π2

6

)

, (50)

and the asymptotic covariance matrix is

V∞ = F∞−1 = σ 2

n
· 6

π2

(
(1 − γ )2 + π2

6 γ − 1
γ − 1 1

)

. (51)

The asymptotic variance of the test statistic y = μ̂ − kσ̂ becomes

σ 2
y = σ 2

μ̂ + k2σ 2
σ̂ − 2kσμ̂σ̂ = σ 2

n

(
v11 + k2v22 − 2kv12

)
= σ 2A2 (52)

with

A = σy

σ
=
√

v11 + k2v22 − 2kv12√
n

= f (k, zC)√
n

(53)

where the numerator f (k, zC) only depends on the acceptance factor k and the
standardized censoring time zC, and the denominator only on the sample size n.
For zC → ∞ we get

A = σy

σ
=

√
6
π2

(
(1 − γ )2 + π2

6 + k2 + 2k(1 − γ )
)

√
nmin

= f (k)√
nmin

(54)
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Approximate Log-Linear Cumulative
Exposure Time Scale Model
by Joint Moment Generating
Function of Covariates

Watalu Yamamoto and Lu Jin

Abstract Online monitoring data contain various measurements of system activity.
The amount of work resulting from system activity is also measured in various
ways. When we model the reliability of a system, i.e., the intensity or risk of failure
events, we need to choose a time scale. Though there should be genuine time scales
for each failure phenomenon, the field data, including online monitoring data, may
not provide evidence for them. There are many uncontrollable factors in the field.
Many variables increase monotonically and are highly correlated with each other
within a system. Yet they also represent the differences among systems. This article
attempts to build a bridge between two useful approaches, alternative time scale and
cumulative exposure model, by assuming the stationarity of the increments in these
measurements within a system.

Keywords Cumulative exposure model · Accelerated failure-time model ·
Approximation · Moment generating function

1 Time Scale Models

When it is natural to model the failure time distribution of a system with the
age on the chronological time, say T0, we call it as the time scale for the failure
time. Following the tradition of reliability engineering, we call the target subjects
observed failure times and covariates as systems. The calendar time is a typical time
scale. But it is not the only one. The total operating time, T1, may be the time scale,
if the total hours of operation vary among systems. The total usage amount, T2,
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on a work amount scale may be the time scale, if the contents of operation vary
among systems. The examples of total usage amounts include the total mileage of
an automobile, and the number of sheets printed by a copier. The total operating
time is also an example of the total usage amount.

Let us assume that we observe a set of variables, T0, T1, . . ., Tp, each of
which measures the failure time on a candidate time scale. T0 is the chronological
failure time. We conduct statistical inference of either the choice among them or
the synthesis of them, based on the observed data. If the engineering knowledge
suggests that Tk is suitable for modeling the failure time with a probability
distribution F (t), then a series of goodness-of-fit tests or a statistical comparison
of the estimates of Kullback-Leibler divergences between the data on individual
time scales and the failure time distribution allows us to check that suggestion. If
more than one time scale could be bases of the time scale, then the synthesis is
investigated using the time scale models.

Farewell and Cox (1975) were possibly the first authors to investigate combining
multiple time scales to obtain a more suitable time scale in the context of life testing.
The problem of time scales was also investigated by Kordonsky and Gertsbakh
(1993, 1995a,b, 1997). They considered the so called linear time scale model,

UL = β0T0 + β1T1 + · · · + βpTp, (1)

and investigated properties by estimating parameters with a minimum coefficient
of variation. The choice of the estimating criterion was made because it is scale
invariant. In their studies, the parameter space was

�L =
{

β; βk ≥ 0, k = 0, . . . , p and
∑

k

βk = 1

}

. (2)

There is also another time scale model,

UM = T0
β0T1

β1 · · · Tp
βp,

called the multiplicative time scale model.
Duchesne and Lawless (2000) called these models as alternative time scales.

Both models coincide with Tk if βk = 1 and βk′ = 0 for k′ �= k hold.
In the study of time scales, it is assumed that the random quantity synthesized

with a time scale model, UL or UM , is distributed with a common failure time
distribution. This assumption holds under the condition of collapsibility, proposed
by Oakes (1995). A time scale model is collapsible if the probability to survive
at a point

(
T0, T1, . . . , Tp

)
in the time space depends only on that point and does

not depend on the life path HT0 = {(
t, T1 (t) , . . . , Tp (t)

) ; 0 ≤ t ≤ T0
}

to that
point. Under this condition, the endpoints

(
T0, T1, . . . , Tp

)
of individual paths are

sufficient for estimating parameters of time scale models. Duchesne and Lawless
(2002) propose a semiparametric estimator of the parameters under the collapsibility
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condition using the theory of estimating functions, which doesn’t need to assume a
specific distribution of the time scale.

As for failure time data, the endpoint of the life path,
(
T0, T1, . . . , Tp

)
, is the

only available record. Recently, there have been studies on assessing the reliability
of products under continuous on-line surveillance, which allows us to observe the
path HT0 up to the failure. Hong and Meeker (2013) proposed to use Nelson’s
cumulative damage model to model the effect of use rate variation onto the failure-
time of a product and predict the failure-time distribution by estimating the use-rate
process. Use rates are the derivatives dTk (t) /dt, k = 1, . . . , p, of individual time
variable Tk (t), k = 1, . . . , p, with respect to the chronological time t. Hong et al.
(2015) modeled a physical degradation process using the dynamic measurements
of the environmental conditions. They applied a smoothing regression technique to
estimate the trends in degradation paths. We believe that the cumulative damage
model is also useful for the problem of time scales.

2 Cumulative Exposure Time Scale Model

When the path to the failure time is observed, it is convenient to choose the
chronological time as the reference time t. To construct the cumulative exposure
time scale, the derivative process Xk (t) = dTk (t) /dt, k = 1, . . . , p of the lifetime
progress serves as covariates of the cumulative exposure model. Furthermore we
denote the observed version of Xk (t)’s as xk (t), k = 1, . . . , p.

A general cumulative damage model is specified by a pair of formulas, cumula-
tive damage,

u (T) |H∞ =
∫ T

0
D (s;Hs) ds, (3)

and distribution on the cumulative damage time scale

T |H∞ ∼ F (u (t)) , (4)

whereHt is the history of the covariate process up to time t. This model is a dynamic
scale-accelerated failure-time model with covariate process. D (t;Ht) is the speed
of the progress of time at t. This speed can be affected by the covariate process. If
the sample path is linear in t, D (t;Ht) is constant through the time. In that case,
this model results in the scale accelerated failure time model (Escobar and Meeker
2006).

F (u) is usually chosen from log the location scale family which has a density
function of the form

f (u; μ, σ) = 1

uσ
f0

(
log u − μ

σ

)
= 1

uσ
f0

(

log

(
u

exp μ

)1/σ
)

. (5)
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Bagdonavic̆ius and Nikulin (2001) called scale-shape family. D (t;Ht) is defined
to be D (t;Ht) ≡ 1 under the standard constant condition x (t) ≡ x0 =(
x10, x20, . . . , xp0

)
. Then μ and σ are the parameters of the failure-time distribution

under the constant condition x0.
Generally the speed of the progress of time D (t;Ht) may depend on the history

up to t, Ht . However, it is difficult to model in such a flexible manner. Therefore,
we restrict ourselves to model failure time data with continuous monitoring as

D (Ht) ≈ D (x (t)) . (6)

This model can be used for modeling the time scale under continuous monitoring.
D (s; x (s)) can assess how the variations in xk (t)’s affects the failure time.

Since our interest lies in the modeling of time scales, we restrict our attention to
cases with dynamic use-rates as covariates, as in Hong and Meeker (2010). A use
rate is defined as the increment in some usage variable or a time scale variable per
unit reference time. Note that

∫ T0
0 ds is the failure time on the chronological time

scale.
There are two primary choices of parametric models. One is the linear model,

DL (x (t)) = β0 + β1x1 (t) + · · · + βpxp (t) . (7)

This model is derived from a general model by approximating with Taylor expansion
around the standard condition x0;

DL (x (t)) ≈ DL (x0) +
∑

k

(xk(t) − xk0)
∂D

∂xk

∣∣
∣
∣
xk=xk0

. (8)

This model is same as the linear time scale model, UL. However the parameter space
does not need to be positive.

Another typical class of time scales is the log-linear cumulative exposure model;

DM (x (t)) = x1
β1 (t) · · · xp

βp (t) = exp
(
β1x̃1 (t) + · · · + βpx̃p (t)

)
, (9)

where x̃k (t) = log xk (t). The log-linear model is derived from a general model by
approximating the logarithm with Taylor expansion around x0;

logDM (x (t)) ≈ logDL (x0) +
∑

k

(x̃k − x̃k0)
∂ logDM

∂ x̃k

∣∣
∣
∣
x̃k=x̃k0

. (10)

Unlike the linear model, the log-linear model is not the same as the multiplicative
time scale model. We developed a useful relationship between this model and an
accelerated failure time model.

Note that the addition of a constant term to Eq. (9) might cause aliasing of the
scale parameter for scale-shape family.



Approximated Cumulative Exposure Time Scale Model 331

3 Formulas for Maximum Likelihood Estimation

Before going into detail of our proposition, we present the formulas for maximum
likelihood estimation of the parameters of cumulative exposure models. Hereafter
we denote x̃ as x.

We assume that an online monitoring scheme collects the sample path of its
covariate process Xi,∞, time of event ti, and type of event δi, from each system
to be monitored. The term δi = 1 indicates that the system failed and δi = 0
indicates that is was censored. Let xi (t) be the vector of all variables xi1 (t), . . . ,
xip (t) which correspond to the observation of the covariate process on i-th sample.
The contribution of each system to the log-likelihood is

log Li = δi
{
β ′xi (ti) + log f

(
u
(
ti; β

∣∣Xi,∞
) ; θ

)}

+ (1 − δi) log
{
1 − F

(
u
(
ti; β

∣
∣Xi,∞

) ; θ
)}

where β ′xi (ti) is log ∂u
(
t; β

∣
∣Xi,∞

)
/∂ t evaluated at t = ti. We abbreviate

u
(
ti; β

∣
∣Xi,∞

)
as ui and u

(
ti; β̂

∣
∣Xi,∞

)
as ûi.

The score vector consists of

∂

∂β
log Li = δixi (ti) + δi

∂u
(
ti; β

∣
∣Xi,∞

)

∂β

∂

∂u
log f (u; θ)

∣
∣∣
∣
u=ui

+ (1 − δi)
∂u
(
ti; β

∣
∣Xi,∞

)

∂β

∂

∂u
log {1 − F (u; θ)}

∣
∣
∣
∣
u=ui

and

∂

∂θ
log Li = δi

∂

∂θ
log f (ui; θ)

+ (1 − δi)
∂

∂θ
log {1 − F (ui; θ)} .

The observed Fisher information matrix consists of

∂2

∂β∂β ′ log Li = δi
∂2u

(
ti; β

∣
∣Xi,∞

)

∂β∂β′
∂

∂u
log f (u; θ)

∣
∣∣
∣
u=ui

+ (1 − δi)
∂2u

(
ti; β

∣
∣Xi,∞

)

∂β∂β ′
∂

∂u
log {1 − F (u; θ)}

∣
∣
∣
∣
u=ui

.

+ δi
∂u
(
ti; β

∣
∣Xi,∞

)

∂β

∂

∂β t

[
∂

∂u
log f (u; θ)

∣
∣
∣
∣
u=ui

]
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+ δi
∂u
(
ti; β

∣
∣Xi,∞

)

∂β

∂

∂β t

[
∂

∂u

∂

∂θ
log {1 − F (u; θ)}

∣
∣∣
∣
u=ui

]

∂2

∂θ∂θ ′ log Li = δi
∂2

∂θ∂θ ′ log f (ui; θ)

+ (1 − δi)
∂2

∂θ∂θ ′ log {1 − F (ui; θ)}

and off diagonal components

∂2

∂θ∂β′ log Li = δi
∂

∂θ

[
∂

∂u
log f (u; θ)

∣
∣
∣
∣
u=ui

]
∂u
(
ti; β

∣
∣Xi,∞

)

∂β ′

+ (1 − δi)
∂

∂θ

[
∂

∂u
log {1 − F (u; θ)}

∣
∣
∣
∣
u=ui

]
∂u
(
ti; β

∣
∣Xi,∞

)

∂β ′ .

(11)

The first and second derivatives with respect to θ given β are readily available on
many packages or software programs for log-location scale family, which help us in
fitting parametric failure time distributions to the failure data that include censoring.
So it is rather straightforward to solve the set of equations

n∑

i=1

∂

∂θ
log Li

(
ûi
) = 0, (12)

where Li
(
ûi
)

is the likelihood contribution with u = ûi.
However, the derivatives with respect to the components of parameter β require

numerical integration for each system every time we need to evaluate.

4 Log-Linear Cumulative Exposure Model as Approximate
Accelerated Failure Time Model

We discuss further the cumulative exposure model by Hong and Meeker (2013) as
a time scale model. We focused on the integral processes of work amounts (or use
rates) among many types of covariates. If the covariate process Xi,∞ is stationary,

u
(
t; β

∣∣Xi,∞
)
/t = 1

t

∫ t

0
exp

(
β ′x (s)

)
ds (13)
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is a nonparametric estimate of the joint moment generating function

MX (β) = E
[
exp

(
β ′X (t)

)]
(14)

with respect to the joint distributions of X (t). Under certain regularity conditions
for the existence of the moment generating function, this estimate, also called the
empirical moment generating function, is consistent.

Csörgő (1980) and Feuerverger (1989) proved that for all β for which MX (β)

exists,

sup
∣
∣
∣M̂X (β) − MX (β)

∣
∣
∣ = sup |eX (β)| → 0 (15)

as t → ∞, and that

t1/2
{

M̂X (β) − MX (β)

}
= t1/2eX (β) (16)

converges to Gaussian as t → ∞. From these results,

∫ t1

t0
exp

(
β0X0 (s) + β1X1 (s) + · · · + βpXp (s)

)
ds → (t1 − t0) MX (β) (17)

as t1 → ∞ and t1 − t0 → ∞. Thus, the log-linear cumulative exposure is
approximated as

∫ t

0
exp

(
β ′x (s)

)
ds � MX (β) t. (18)

Hence, MX (β) plays a role of the acceleration factor for the accelerated failure time
model as

T
∣
∣Xi,∞ ∼ F (MX (β) t) . (19)

Once the empirical moment generating function of the covariate process is
estimated as M̂X (β), we can approximate the cumulative exposure as

u
(
t; β

∣
∣Xi,∞

) � M̂ bmX (β) t. (20)

This approximation also establishes the relationship between the cumulative expo-
sure model and accelerated failure time model. The empirical moment generating
function M̂X (β) serves as an acceleration factor for the latter.

The marginal distribution is much easier to identify than the joint distribution.
For example, if the covariate processes are stationary and are distributed marginally
with multivariate normal distribution, we can reduce the amount of calculation for U
by substituting the estimates of mean vector μ and covariance matrix � to calculate
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the moment generating function. By plugging the estimates of the first two moments
μ̂ and �̂ into the joint moment generating function, we have the Gaussian type
moment generating function as

M̂X (β) = exp

(
μ̂

′
β + 1

2
β ′�̂β

)
. (21)

Note that the model by Hong and Meeker (2013) allows us to assess the effects
of covariates of a wider class than the class we assume. The covariates and integral
processes do not need to be positive or monotone for their purposes.

5 Further Approximations of Empirical Moment Generating
Function

The amount of computation required for the evaluation of M̂X (β) for a given β is the
same as that for the evaluation of U

(
t; β

∣
∣Xi,∞

)
. The estimation of the cumulative

exposure model requires the evaluation of this function for each individual product
within the online monitoring data. If we want to regularly monitor the changes
in fitting of the model, the total amount of computation for this model increases
at every moment we receive a new record. Therefore, it is useful to decrease the
amount of computation.

The simplest way is Taylor series approximation of the moment generating
function. If this function exists, it has the Taylor-series expansion

MX (β) = 1 + β ′μ + 1

2
β ′ (μμ′ + �

)
β + · · · (22)

around the origin of the space of β. The first order approximation of the moment
generating function is

M̃1 (β) = 1 + β ′μ. (23)

A moment estimator of μ is the vector of the sample means of xik (t). This
approximation holds under the first order stationarity where the expected values of
covariates do not depend on time, i.e., E [Xi (t)] = μi. Furthermore if the covariate
process is a line, then this model coincides with the linear time scale in Eq. (1).

The second order approximation provides another formula

M̃2 (β) = 1 + β ′μ + 1

2
β ′ (μμ′ + �

)
β. (24)

This approximation holds under the second order stationarity where the covariance
functions as well as autocorrelation functions do not depend on time. Further
expansions are also possible.
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If the marginal distribution is unimodal and symmetric, an approximation by the
normal distribution

M̃F (β) = exp

(
β ′μ + 1

2
β ′�β

)
(25)

can be considered.
If the covariates are conditionally independent of each other within a system,

the joint moment generating function is a product of the moment generating
functions of the marginal distributions of each covariate. Therefore, we have another
identification by

M̃X (β) =
∏

j

M̃Xj

(
βj
)
. (26)

6 Simulation Study

A set of simulations was conducted to compare the approximate cumulative
exposure models introduced in the previous section. Two covariates X1 (t) and
X2 (t) were continuously observed on each system. The log X1 (t) and log X1 (t)
were assumed to be distributed with normal distributions with means μ1 and μ2,
variances 0.82, and to be independent with each other. The means μ1 and μ2 were
also assumed to vary among systems and distributed with normal distributions with
means 0, variances 0.52, and to be independent with each other. The sample sizes
were set as 100 and 200. U is assumed to be distributed with Weibull distribution
with shape parameter 4. The simulated failure data were then censored as type II.

We applied four estimation procedures to the same simulated data.

1. Estimation using the original cumulative exposure model.
2. Estimation using the approximate cumulative exposure model with Eq. (23).
3. Estimation using the approximate cumulative exposure model with Eq. (24).
4. Estimation using the approximate cumulative exposure model with Eq. (25).

The resulting sampling distributions are shown in Figs. 1, 2, 3, and 4.
Figures 2 and 3 suggest that both models with Eqs. (23) and (24) cannot

reproduce the sampling distributions of the cumulative exposure model, as shown
in Fig. 1. The effects of approximation include large variances that have not been
affected by censoring. The approximated estimator also has a bias. These results
indicate that even though the cumulative exposure time scale model with the delta
method described as Eq. (23) is related to the linear time scale in Eq. (1), Taylor
approximation may not be a good choice for formulating the acceleration factor
in (20).

Figure 4 shows that Eq. (25) leads to smaller variances of parameter estimates
than the previous two, though these variances seem less sensitive in the presence
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Fig. 1 Boxplots of sampling distributions of parameter estimates using original cumulative
exposure model under various censoring rates (horizontal axes indicate censoring ratios and
vertical axes indicate estimated values)
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Fig. 2 Boxplots of sampling distributions of parameter estimates using approximate cumulative
exposure model (23) under various censoring rates (horizontal axes indicate censoring ratios and
vertical axes indicate estimated values)
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Fig. 3 Boxplots of sampling distributions of parameter estimates using approximate cumulative
exposure model (24) under various censoring rates (horizontal axes indicate censoring ratios and
vertical axes indicate estimated values)
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Fig. 4 Boxplots of sampling distributions of parameter estimates using approximate cumulative
exposure model (25) under various censoring rates (horizontal axes indicate censoring ratios and
vertical axes indicate estimated values)
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of censoring again. We would like to investigate the characteristics and properties
of the approximation of the cumulative exposure time scale with an accelerated life
time model with a parametric moment generating function of the covariate process
as the acceleration factor.

7 Remarks

There are other ways of approximation, and we now discuss two of them. One is the
combination of a rough grid and multilinear interpolation. By preparing the values
of M̂X (β) for the set of specified points β1, . . . ,βp, the multilinear interpolation is
obtained as

M̃L (β) =
∑

k

NkM̂X
(
βk

)
, (27)

where Nk is the normalizing constant, which depends on both β and the set of points{
β1, . . . ,βp

}
.

The other way is to have a random set of points
{
β1, . . . ,βp

}
and construct

multi-dimensional spline interpolation by multiple adaptive regression splines
(Friedman 1991) or generalized additive models (Hastie and Tibshirani 2004).
Note that though there are many flexible and useful interpolation techniques, they
tend to increase the amount of computation.
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A Critique of Bayesian Approaches
within Quality Improvement

G. Geoffrey Vining

Abstract Bayesian approaches are increasingly popular within the statistics com-
munity. However, they currently do not seem to find wide application within the
industrial statistics/quality improvement community. This chapter examines some
of the basic reasons why. It begins by reviewing Box’s perspective on the scientific
method and discovery. It then examines Deming’s concepts of analytic versus
enumerative studies. Together, these concepts provide a framework for evaluating
when Bayesian approaches make good sense, where they make little sense, and
where they fall somewhere in between. This chapter touches on statistical sampling
plans, statistical process monitoring, and the design and analysis of experiments.

Keywords Design of experiments · Scientific method · Statistical process
monitoring · Analytic studies · Prior distributions

1 Introduction: Scientific Method—Box and Deming

For centuries now, the scientific method has been the fundamental approach for
developing solutions to scientific and engineering problems. The proper use of the
scientific method has been the major reason for much of modern progress in science
and engineering.

Box (1999) provides an excellent overview of the role of the scientific method,
which is an iterative inductive/deductive process that involves constant interplay
between the concrete and abstract universes. The actual problem and its context
form the concrete universe. Historically, first principle mathematical models form
the abstract universe used to explain the behavior of the concrete. More recently,
people use complex mathematical algorithms. These mathematical models provide
useful approximations to the true behavior within the concrete universe. Scientists
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and engineers develop solutions based on the insights gained from these approx-
imations. Ultimately, however, people must interact with the concrete universe to
confirm the adequacy of these proposed solutions. This interaction with the concrete
universe requires the collection and the interpretation of data.

A succinct summary of the scientific method:

1. Define the problem (inductive)
2. Propose an educated theory, idea or model (inductive)
3. Collect data to test the theory (deductive)
4. Analyze the results (deductive)
5. Interpret the data and draw conclusions (deductive)

This process continues until a reasonable solution emerges. Ultimately, the scientific
method is a sequential learning strategy, which is the basic point to Box! The proper
application of the scientific method requires:

• Model building
• Data collection
• Data analysis
• Data interpretation

These methods provide the opportunity to test the adequacy of the abstract formu-
lation of the problem for modeling the actual concrete problem. It is for this reason
that Marquardt (1987) called statistics the “handmaiden of the scientific method.”
Vining (2011) and Freeman et al. (2013) discuss the importance of the scientific
method for the proper design and analysis of experiments in more detail.

Clearly, data are essential for the scientific method. A fundamental principle is
that the data must stand purely upon themselves. Researcher bias, both in terms
of the data themselves and in terms of the analysis, must be treated with great
caution. Obviously, there is a major difference between data cleaning, which is
fundamental in any real scientific/engineering study, and eliminating “inconvenient”
data, inconvenient in the sense that they are not consistent with the researcher’s
hypothesis/model. However, in both cases the researcher may claim simply that
he/she simply removed “outliers.” Bias in the analysis is much more subtle. Frankly,
bias in either area must raise serious concerns about any conclusions that result from
the analysis, especially if data cleaning and data analytic procedures are not clearly
stated in the final report.

2 Box and Deming

Box began his career as a chemist. He learned experimental design during World
War II when he served as a sergeant dealing with toxic agents (see Box for more
details). Box never really stopped being a scientist over his entire career. His
instincts as a scientist strongly shaped his approach to statistics.
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For Box, statistics is essential for scientists and engineers in their discovery
processes. The focus on discovery is fundamental. Discovery is not mathematically
coherent; rather, it is a journey involving a series of phases or steps. Each new phase
builds upon what is discovered (learned) from the previous. Each phase has a dif-
ferent purpose, and each specific purpose guides how the scientist should approach
that specific problem. For Box, discovery is a sequential learning adventure based
on the scientific method. Discovery always is an investigation!

The early phases are pure exploration, trying to see how first principles and
previous experimentation apply to the investigation at hand. In the early phases,
no one truly knows what factors are of real interest. People may not even know
what responses to measure. There is no single model to be estimated/tested. Rather,
the goal is to begin to develop what appear to be the truly important factors and
how they relate to the critical responses that reflect the problem at hand. Over time,
the important factors and an approximate model emerge. In the final phases, the
researchers seek to confirm the model and to provide very good estimates of the
important parameters.

The discovery process is extremely dynamic, changing, often dramatically, from
phase to phase. Experimentation must support model robustness as the researchers
seek to develop reasonable models to explain the concrete behavior. The models
proposed are never correct, but they are useful. Especially in the early phases, the
models proposed can be simultaneously under and over-specified. These models
may not reflect all of the important factors. The proposed ranges for the factors
being studied may not be close to their “optimal” values.

During the 1970s, Box and Kiefer, the father of optimal experimental design
theory, had a fierce debate. Especially interesting is an issue of Biometrika in
1975. Kiefer (1975) appeared just a few pages before Box and Draper (1975).
Kiefer discussed robustness to the choice of variance based criterion for selecting
an optimal design. Box and Draper discussed robustness to the model and other
assumptions, in particular outliers.

It is clear from this discussion that Kiefer’s focus was on confirmation. He
assumes that the model is correct and the real purpose of the experiment is
the precise estimation (think final estimation) of the model parameters. Model
robustness is of no concern to him. Confirmation is an important phase in the
discovery process; however, it is only one phase, the final phase. The confirmation
phase is much closer to a static situation than the entire discovery process.

The issue of discovery versus confirmation, dynamic versus static is similar
to Deming (1986) concepts of analytic versus enumerative studies. Deming’s real
contributions to statistics are in sampling. A census is a classic example of an
enumerative study. The goal is to describe a static population at a specific point in
time. Analytic studies, on the other hand, deal with dynamic processes. For Deming,
control charts are a classic example of an analytic study on a dynamic process, and
hypothesis tests are classic examples of enumerative studies on a static population.
A process being monitored by a control chart is not static but subject to change at any
time. As a result, to view a control chart as a series of hypothesis tests completely
violates Deming’s world view. It lacks profound knowledge. Of course, Deming’s
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world view does not include the differences between Phase I (very dynamic)
and Phase II (much more static, especially under Deming’s basic assumptions
about assignable causes) control charts. Nonetheless, the point is valuable: Static
processes lend themselves to different analytical techniques than dynamic, just as
discovery involves a great deal more than confirmation.

3 Basic Issues with Bayesian Methods

The key to Bayesian analysis is the posterior distribution of the data, which has the
form (following Casella and Berger (2002), p. 324)

π(θ |y) = f (y|θ)π(θ)

m(y)

where

• y is the vector of the observed data
• π(θ) is the prior distribution on the parameter vector θ

• f (y|θ) is the likelihood function
• m(y) = ∫ f (y|θ)π(θ)dθ is the marginal distribution of Y.

Bayesian analysis requires strong distributional assumptions, unlike ordinary least
squares that only makes second moment assumptions. First, the Bayesian analysis
assumes a strong distributional form for the fundamental likelihood function. It
then adds another strong distributional assumption for the prior distribution. Often
Bayesian analysts soften the strength of their assumptions by assuming diffuse or
non-informative priors. We discuss this issue in more detail later in this section.

Bayesian inference uses the posterior distribution to calculate the risk function
(see Casella and Berger, p. 349). Let δ(y) be an estimator of θ . The risk function,
R(θ, δ), is given by

R(θ, δ) = Eθ [�(θ, δ(Y)] ,

where �(θ, δ(Y)) is an appropriate loss function. Analysts often use squared error
loss of the form �(θ, a) = (a − θ)2. The “best” parameter estimate minimizes the
risk function. A Bayesian optimal experimental design optimizes the appropriate
risk function both over the parameter space and over the experimental region.

Our discussion requires us to focus on the dependence of the analysis on the prior
distribution. The key point is that formal Bayesian approaches impart bias. This bias
is extremely useful if it reflects the truth. The problem is that the prior distribution
never completely represents the truth. However, if the prior information closely
reflects reality, then the Bayesian analysis can speed the investigation precisely
because we allow the prior distribution to bias the data in the “correct” direction. On
the other hand, the prior distribution also can impede the speed of the investigation
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because the prior distribution can dominate the data, especially for small data sets.
However, even for moderate to large sample sizes, the prior can be so strong that
it continues to dominate. Of especial danger are prior distributions that are much
stronger than the analyst understands.

Consider the situation where one can model the data by a normal distribution
with a known variance σ 2 and unknown mean μ and with a normal prior distribution
with mean μ0 and variance τ 2. Please note that τ 2 controls the strength of the prior
distribution. Let μp be the posterior mean, and let σ 2

p be the posterior variance.
Under the assumption of squared error loss function, μp minimizes the Bayes risk
function. Let yn be the sample mean for a random sample of n observations. With
quite a bit of algebra, one can show that

μp = σ 2μ0 + nτ 2yn

σ 2 + nτ 2 . (1)

We note that as τ 2 → 0, μp → θ without regard to the data! The message is clear:
The stronger the prior, the less important are the data. We also can show that

σ 2
p = τ 2σ 2

σ 2 + nτ 2
.

We now note that as τ 2 → ∞, μp → yn and σ 2
p → σ 2

n . As a result, the posterior
mean is simply the standard frequentist estimate, which does not even require the
assumption of normality by the Central Limit theorem. Casella and Berger, p. 326
make similar points. The key observation for this chapter is that the analyst gains
nothing by the use of the diffuse prior at the expense of much stronger assumptions.

The assumption of the point prior (τ = 0) is obviously extreme; however, it does
make a basic point. At what point do the data overwhelm the prior information? In
the next section, we illustrate that much less extreme and actually plausible priors
have a huge influence on the posterior mean. However, for the moment, we need to
consider the naive practitioner, who does not understand how the prior biases the
posterior mean.

For example, I have worked with a Bayesian statistician at NASA who has fallen
in love with WINBUGS, a popular software for performing Bayesian analyses based
on Markov chain Monte Carlo (website: winbugs-development.mrc-bsu.cam.ac.uk).
I remember how proud he was of an analysis he did on some of our preliminary data.
He had assumed a prior distribution and then analyzed some updated data. He was
extremely proud that WINBUGS could even plot the posterior distribution, which
he claimed maximum likelihood could not. Ironically, his plot was bimodal. The
actual data were not consistent with his prior distribution. The sample size was too
small to allow the data to overwhelm his prior. Of course, the final irony was that the
maximum likelihood estimate asymptotically followed a normal distribution. As a
result, the maximum likelihood analysis did provide a plot for the resulting estimate,
and that plot was much more intuitive (single peaked).
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Good Bayesian analysts understand the basic issues. They recognize that the
quality of the resulting inference requires that the prior distribution is essentially
correct. The common use of diffuse or non-informative priors occurs when the
analyst has very little information about the possible values for the parameters.
Diffuse priors allow all of the possible values for the parameter to be considered,
unlike some strong priors which give very little or no possibility for portions of
the parameter space. However, in general diffuse priors provide almost no benefit
over standard frequentist analysis at the expense of stronger assumptions. This is
especially true within the experimental design community where estimation is based
on least squares and inference assumes Central Limit theory. The real benefit as well
as the real risk comes from the use of stronger prior distributions, generally based
on recent historical data. We then run the risk of falling into the trap of my NASA
colleague.

In the enumerative study or confirmation experiment, the researchers may have
valid, strong prior information about the system because it is much more static
and stable. In such a case, Bayesian analysis based on a strong prior seems very
reasonable. However, in the analytic study or the discovery process, the system is
extremely dynamic. The researchers have some idea about the nature of the system,
but the quality of that information is questionable because it may not be relevant,
in which case it has strong potential to bias the analysis. In a dynamic situation,
the available prior information often does not provide a good basis for the use of a
strong prior.

4 Applications of Bayesian Approaches to Process
Monitoring

Consider a simple illustrative example involving a batch production process. The
monitoring scheme focuses on the sample mean of a continuous characteristic.
The organization uses a modification of a control chart; thus, it rejects the batch
if the sample mean exceeds a threshold value. A common Bayesian approach uses
a normal distribution as the prior distribution. The resulting posterior distribution is
also normal, and Eq. (1) gives the resulting posterior mean.

The first question is how to choose the prior distribution. Many practitioners
would borrow the concepts of Phase I and Phase II from statistical process
monitoring. Phase I in this situation uses a base period of m batches to define
the prior distribution. A common practitioner view of the prior distribution is the
historic behavior of the process. Treating the Phase I estimates as the basis for
defining the prior distribution follows naturally, especially in the absence of any
other information. This situation uses the Type I period slightly differently from
standard control charts, where the focus is on purely “in-control” rational subgroups.
In this application, the Type I period uses all batches, both accepted and rejected, in
order to define the true variability in the batch means.
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In the previous section, we established that using a non-informative, diffuse
prior is little different than using the frequentist estimate of μ. Suppose that the
organization has m batches as the Phase I period. Let yij be the jth observation
sampled from the ith batch for i = 1, 2, . . . , m and j = 1, 2, . . . , n. Let y.. be the
sample mean for the quality characteristic over the base period. In the tradition
of treating the Phase I “historic” estimate of the parameter as the true value, then
μ0 = y... Let σ 2

b be the historic batch-to-batch variability, and let σ 2 be the historic
within batch variability. It can be shown that the variance of y.. is

1

m

[
σ 2

b + σ 2

n

]
,

which a practitioner has valid reasons to use as an appropriate variance for the prior
distribution for μ in Phase II. It is the variance for the empirical Bayes estimate of
μ for an extremely diffuse prior in Phase I.

Assume that σ 2
b = kσ 2, where kσ 2 represents the historic batch-to-batch

variability. Typically, a reasonable guess is that 1 ≤ k ≤ 5. For simplicity, assume
that m > 50 and that n is of moderate size. A reasonable approximation for τ 2, the
variance of the prior distribution, is

τ 2 = 1

m

[
σ 2

b + σ 2

n

]
= k + 1/n

m
≈ kσ 2

m
. (2)

Let yi. be the observed sample mean for the ith batch. The posterior batch mean then
becomes

μp = μ0 + k
m nyi.

k
m n + 1

.

Phase II control charts recognize that we can treat the sequential monitoring
of a process as a sequence of hypothesis tests. For simplicity assume that the
organization rejects a batch only if it believes that the batch’s true mean is too large.
Casella and Berger, pp. 379 and 380, outline a Bayesian test for such a situation. Let
θ0 > μ0 be a suitably chosen constant. Their test is defined in terms of the observed
sample mean for the ith batch, yi., and rejects the batch if

yi. > θ0 + σ 2(θ0 − y..)

nτ 2 .

which is equivalent to rejecting the batch if its posterior mean for the ith batch is
greater than θ0. By applying (2), the decision becomes to reject the batch if

yi. > θ0 + m(θ0 − y..)

kn
.
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An important question is at what point does the sample mean begin to overwhelm
the prior distribution. Let ν be the relative weight given to the sample mean. The
sample size required to give at least ν weight to the sample mean is

n ≥ mν

k(1 − ν)
.

Consider the case where m = 50, k = 5, and we wish to have a sample size that gives
exactly the same weight to the sample mean and the mean of the prior (ν = 0.5).
The resulting sample size is n = 10. Giving the sample mean only equal weight
is not really dominating. Consider the same scenario with ν = 0.9. The resulting
sample size is n = 90. Even larger sample sizes are required as m increases because
we have more precision for the prior distribution.

Given what we know about Phase I control charts, requiring a minimum number
of batches of 50 for the base period is quite reasonable. Yet, it is clear that the
resulting prior distribution is quite strong and almost surely much stronger than
the naive analyst assumes. Once again, if the data are consistent with the prior,
everything is OK. However, the point of the monitoring scheme is to protect the
organization from shipping a bad batch.

The reality is that all production processes are truly dynamic except for relatively
short periods of time. The primary purpose for k in our argument is to account for
the typical batch-to-batch variability. However, the typical batch-to-batch variability
probably does not reflect the more serious quality issues that this process faces over
longer periods of time. Treating the process as static (performing an enumerative
study) creates serious problems with overconfidence about the monitoring scheme’s
ability to detect serious problems.

The reviewer rightfully points out that “. . . sampling and process monitoring
cannot start with the assumption of a constant general mean because they are
intended to find out a change in the general mean.” I cannot agree more with
this statement. In this specific example the naive practitioner defines the general
mean as the mean for the entire production process, not the mean for the acceptable
production from this process. Recall, the practitioner used both the accepted and the
rejected batches to define the prior distribution. His/her approach is quite legitimate
for that approach. It essentially is an empirical Bayes estimate of this overall
mean, assuming that the base period accurately accounts for the total batch-to-batch
variability.

One may argue, quite legitimately, that the problem here is a very naive use
of Bayesian analysis. Once again, I cannot agree more. However, there is little
guidance for practitioners of how to construct reasonable prior distributions other
than non-informative, diffuse ones. Converting available historical information into
valuable priors is essential for the success of Bayesian approaches in the practitioner
world! It is too easy for the naive user to create an extremely strong prior distribution
without realizing it. As a result, this practitioner commits an error of the third kind:
an elegant solution to the wrong problem. Essentially, the practitioner is applying an
enumerative/confirmation approach to a analytic/discovery problem. Unfortunately,
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practitioners make such mistakes on a too regular basis, particularly in applying
Bayesian inference.

As a final note, the beginning of Section 2 of Box (1980) uses the Bayesian pre-
dictive distribution to assess the reasonableness of the posterior mean. Essentially,
Box is assessing the reasonableness of the prior distribution given the data. Box
notes that the prior distribution is part of the model for the data, and, of course, for
Box all models are wrong. Model robustness to the choice of prior deserves much
more discussion in the practical literature.

Originally, I had hoped to discover a much richer literature on Bayesian statistical
monitoring procedures. I was disappointed to find very little. The purpose of this
section was to highlight a possible reason. I should have paid more attention to
Woodall and Montgomery (2014), who note “These (Bayesian) methods do not
seem widely used.” I had expected to see issues with inertia, and I was curious
to see what approaches authors used to combat that problem.

5 Experimental Design and Analysis

Freeman et al. (2013) outline the basic stages in planning experiments as:

1. Define the Problem and the Specific Objective for the Experiment
2. Select the Responses
3. Determine Appropriate Factors
4. Define the Region of Operability (the set of all possible values for the factors)
5. Define the Specific Experimental Region (the set of values for the specific

experiment)
6. Identify Nuisance Factors
7. Define Tentative Model
8. Understand What Are Alternative Models
9. Choose the Design

10. Check for an Error of the Third Kind (an elegant solution to the wrong
problem!)

11. Train People to Conduct the Experiment
12. Collect the Data
13. Analyze the Data in Light of the Actual Experiment Conducted

It is vital to note that all experiments are sequential! They build, either formally
or informally, upon previous experimentation. Subject matter expertise and insight,
both based on discipline specific first principles and on experience, are essential for
success, especially for determining the factors, the experimental regions, and the
initial tentative model.

A valid question is why do so many people view experiments as “one-shot”? A
very basic answer is that most textbooks illustrate experiments in that manner. The
focus is on the analysis more than the actual planning phases. The planning reflects
the true sequential nature of experimentation. For example, a classic textbook
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example is an agricultural field trial. In most parts of the world, a researcher has only
one growing season per year to conduct experimentation. As a result, she/he plans
an experiment to obtain as much information as possible. The resulting experiment
appears to be stand alone. The reality, however, is that each year’s experiment
builds upon what was learned from the previous years experience. A “one-shot”
agricultural field trial may reflect the contribution of a masters’ level student’s thesis.
The Ph.D. dissertation, however, reflects the full sequential nature of the experiment,
including the full sequential learning.

Box clearly shows the sequential nature of industrial experimentation. He notes
two primary reasons: immediacy and sequentiality. Even in the 1950s, a researcher
could conduct an experiment, especially in a pilot plant 1 week, analyze the results
the next week, and then conduct a follow up experiment the next. The ability to get
results almost immediately (unlike the agricultural field trial) allows the researcher
to conduct a true experimental campaign consisting of series of experiments within
a sequential learning strategy.

Classical approaches to planning experiments clearly embrace the need for prior
information; however, it also understands the limitations on that prior information,
particularly its relevance or potential lack thereof, especially in the early phases
of an experimental campaign. Is the purpose of the specific phase discovery or
confirmation? Do we seek to build a useful model or do we seek to provide very
good estimates of the parameters for a “final” model? There is a fundamental
difference between subject matter expertise and insight and the formal prior belief
summarized by a prior distribution.

Until now, our focus on Bayesian approaches is on the analysis of data already
collected. However, the experimental design community is now embracing the use
of Bayesian approaches for constructing the experimental design, especially within
the optimal design community. The issue of bias in the analysis carries over very
strongly into bias in the location of the design runs.

The choice of experimental design always depends upon the approach to the
analysis. Traditional optimal designs for regression models use criteria such as
the maximum determinant of the information matrix or the integrated prediction
variance over the region of interest. However, traditional optimal design criteria for
regression models do not depend upon the parameters being estimated. A legitimate
entre point for Bayesian approaches in choosing the experimental design occurs
when the information matrix depends on the parameters to be estimated. The
information matrix determines the points of support for the model to be estimated.
These points of support are the primary candidate runs for the “optimal” design.
Examples where the information matrix depends on the parameters to be estimated
include:

• Non-Linear Regression Models
• Generalized Linear Models
• Reliability Experiments, especially with the Weibull Distribution
• Robust Parameter Design—Mean/Variance.
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The crucial point becomes what is the fundamental purpose of the experiment:
discovery or confirmation? If the purpose is discovery, then the Bayesian approach
requires non-informational priors that offer little benefit at the expense of much
stronger assumptions. On the other hand, if the purpose is confirmation, then
the researcher may have sufficient prior information that can be converted into
meaningful and insightful prior distributions.

Bates and Watts (1988) briefly discuss Bayesian optimal designs for nonlinear
regression models. They make the basic point that starting with a good classical
linear regression model based design is a very good option because it corresponds to
the Bayesian choice for an extremely noninformative prior. Their recommendation
is perfectly consistent with experiments primarily for discovery.

One of the most promising applications for the use of Bayesian optimal experi-
mental design is nonlinear regression in areas like pharmacokinetics. Typically, the
model involves only one factor, time, and the researchers justify the basic nonlinear
model form using first principles based on the solutions to differential equations.
Particularly in a pharmacokinetics study, there are previous studies which should be
quite relevant to the new experiment. As a result, the researchers should have the
background information to create a meaningful, relatively strong prior distribution.
Finally, the purpose of most pharmacokinetics studies is confirmation. The key
difference here from the Bates and Watts recommendation is confirmation after a
great deal of formal information rather than discovery.

It is important to note that the pharmacokinetics context is quite unique. There
are many situations involving nonlinear regression models where the first principles
strongly suggest a specific nonlinear model form; however, there is too little prior
information available/relevant to create a meaningful prior distribution. The use
of apparently very diffuse prior distributions can lead to some interesting results,
especially very inconvenient factor settings. I personally question the use of such
priors.

Another popular area for Bayesian optimal designs is generalized linear models,
especially logistic regression. Maximum likelihood is the most widely accepted
method for estimating a logistic model. Maximum likelihood estimation requires
data in the factor space representing the transition from all success to all failures,
i.e. the probability of success is truly between 0 and 1. This requirement can present
serious challenges, especially if the purpose of the study is discovery.

Once again, the issue is the quality of the information available prior to running
the experiment. Using a strong prior with a logistic regression during discovery can
lead to the worst case scenario of all success or all failures. Such a consequence
should be very rare. On the other hand, not having any runs in the transition region
of the factor space is a very serious issue and occurs more frequently than desirable.

Other issues with generalized linear models, especially for discovery, is the lack
of a first principles justification for the model form. Nonlinear regression often has
a solid first principles basis. Ultimately, most generalized linear models are nothing
more than low-order Taylor series approximations in the linear predictor. Model
robustness issues arise as a result.
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6 Final Comments

The scientific method is an important sequential problem solving approach that has
proved very useful over the centuries. The successful application of the scientific
method requires that the data stand on their own. Issues of bias, even the potential
of bias, have serious consequences for the integrity of the investigation.

The early phases of the scientific method tend to focus on discovery. The
scientific method depends heavily on subject matter expertise and insight. However,
in the early phases of the investigation, it is highly questionable that this expertise
and insight translate well into formal mathematical prior distributions. Too much is
unknown in the early phases.

Formal Bayesian approaches can have great success as the prior information
becomes better defined and thus more amenable to translation as formal mathe-
matical priors. As the investigation closes onto a solution, the more likely the prior
distributions provide an accurate basis for inclusion in the analysis. Some areas
where there is strong potential are

• Experiments Involving Systems of Systems

– Subsystems Are Well Understood
– The System of Subsystems Is Not

• Situations with Well Understood Fundamental Mechanisms with Good Insights
from Other Experiments

• Final Stage Confirmation of the Model Produced from the Discovery Process.

Ultimately, we need to use the right tool for the right job. In some cases, the
appropriate tools are Bayesian, if they are used with care. When determining
the proper tools, it is vital to understand that discovery is a different world than
confirmation. In most experimental situations, success depends on the proper
understanding of the experimental context and the experimental goals.
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A Note on the Quality of Biomedical
Statistics

Elart von Collani

Abstract During the last decades numerous articles were published dealing with
the bad quality of biomedical statistics. However, most of the relevant chapters
confine themselves to describe misunderstandings, misinterpretations and misuses
of statistical methods. In contrast, in this chapter it is argued that the bad quality
of biomedical statistics is also due to the statistical methodology and statistical
methods themselves. This claim is illustrated by several examples. Special empha-
size is laid on significance testing the most often applied statistical method in
biostatistics. This chapter aims at raising the awareness of the statistical community
for what is going on in medicine and hoping that this will lead to some fundamentals
improvements in statistics.

Keywords Laboratory medicine · Evidence-based medicine · Significance test ·
Probability · Jakob Bernoulli

1 Introduction

During the last 5 years I came in very close contact with medicine and especially
the use of statistical methods in medicine. I remember one of the first disturbing
moments occurred when my oncologist told me that I should not compare my blood
values determined by different laboratories because even the examination results of
the same blood sample may differ greatly. This could lead to different therapeutic
measures and thus endanger the success of a treatment.
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When discussing with physicians my concerns with respect to statistical methods
in medicine, I generally meet complete agreement. However, many of them told me
the following:

• Physicians not only feel left alone by statistics, but that statisticians propose the
methods and interpretations which they apply and which are afterwards criticized
by other statisticians.

• The education of physicians does not qualify them to be able to judge statistical
methods and once working as physicians they have no time and opportunity to
catch up on statistics.

• Many physicians feel that the critique of their use of statistical methods is
unjustified because statistics is not their field of expertise.

During the discussions some of the physicians indicated that medicine had
already reacted on the existing weaknesses by developing the so-called evidence-
based medicine (EbM). They told me that EbM would provide serious evidence
with respect to diagnosis and treatment. As a matter of fact EbM was new to me
and their words intrigued me. I will come back later to it. To begin with lets have a
closer look to laboratory medicine.

2 Laboratory Medicine

From Wikipedia we learn: “A medical laboratory or clinical laboratory is a
laboratory where tests are usually done on clinical specimens in order to obtain
information about the health of a patient as pertaining to the diagnosis, treatment,
and prevention of disease.” And “Credibility of medical laboratories is paramount
to the health and safety of the patients relying on the testing services provided by
these labs. The international standard in use today for the accreditation of medical
laboratories is ISO 15189 - Medical laboratories - Requirements for quality and
competence” (ISO 15189 2012). Thus, if something goes wrong with laboratory
medicine then it is due to an ISO standard. Actually, ISO 15189 appears to be
one of the fastest growing international quality standards in the world. By 2013
the standard was adopted by medical laboratories in over 60 countries. The quality
of medical laboratories is controlled via round robin tests aiming at improving
comparability of the results of different laboratories. The overall goal is that for
any parameter which is determined by different laboratories the results must be
comparable.

In view of this goal, my personal experiences with several commercial and
hospital laboratories which were all accredited according to ISO 15189 show that it
has not been reached so far. I noticed the following:

• Different laboratories use different units. This may cause errors of inexperienced
personal and represents a potential danger for patients. In fact, it is a miracle to
me that the units in laboratory reports may change from laboratory to laboratory.
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The units should be fixed and any deviation should necessarily lead to the loss of
accreditation.

• The laboratory results are given by single numbers and these numbers can differ
greatly from laboratory to laboratory. In fact, according to my experience a
differences of 20% is not uncommon and even 30% from the same blood sample
may occur. This is, of course, due to measurement uncertainty. The relevant part
of the standard reads as follows:

ISO 15189: 5.6.2. The laboratory shall determine the uncertainty of results, where
relevant and possible. Uncertainty components, which are of importance, shall be taken
into account. Sources that contribute to uncertainty may include sampling, sample
preparation, sample portion election, calibrators, reference materials, input quantities,
equipment used, environmental conditions, condition of the sample and changes of
operator.

However, when checking the laboratory reports, I have never seen anything which
could be interpreted as uncertainty of the given measurement result.

• When trying to figure out the reasons for not revealing the underlying uncertainty
of measurement, I learnt that the uncertainties were hidden in the reference
ranges. Actually, each laboratory has specific reference ranges. Accordingly, for
many values the following citation is valid: “The reference values and the values
obtained may differ significantly from laboratory to laboratory”.

The following example shall illustrate the above:

The CRP-value (C-reactive protein) is used as a marker of inflammation and belongs to
the most often determined parameters in laboratory medicine. From the reports of two
laboratories we find the following statements:

Laboratory A Range of reference Unit

0.00–0.50 mg/l

Laboratory B Range of reference Unit

0.00–8.00 mg/dl

Since the values of many of the examined parameters may range by several orders of
magnitude, mistakes may easily be made, whenever an unexpected unit is used or if the
range of reference deviates from the familiar one.

The consequence of not stating the uncertainty of the values in the laboratory
reports is that the results may be misinterpreted and thus endanger health or even
life of patients. Therefore, if the laboratory is not known to the physician in charge,
the measurement are not trusted and, therefore, repeated.

Thus, to obtain comparable laboratory data, it is necessary that measurement
uncertainty is clearly stated in the reports. Hiding measurement uncertainty by labo-
ratory specific reference ranges does not help much and may, in some circumstances,
even promote misunderstandings. Therefore, simple and straightforward methods
are needed to determine the uncertainty of measurement. The reference ranges, on
the other hand, should be determined by the relevant health organizations and be
identical for all the accredited laboratories.
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Unfortunately, statistics neglects measurement uncertainty and has left the field
to metrology. More than 20 years ago the “Guide to the Expression of Uncertainty in
Measurement (GUM)” (Joint Committee for Guides in Metrology 2008) was pub-
lished and is still in use. However, from the very beginning the proposed methods
were criticized, because they are questionable and at the same time too complicated.
Since measurements are the most important means for quality control, I appeal to the
statistical community to turn to this eminently important field and make available
simple and easy to understand methods for determining measurement uncertainty.
Actually, such methods are already available—see Collani and Dräger (2001) at
least for some special cases.

Next let me turn to “evidence-based medicine” which is often looked upon as a
means to avoid wrong recommendations in making diagnosis and determining on
therapies in all areas of medicine.

3 Evidence-Based Medicine (EbM)

The evidence-based medicine (EbM ) has developed since the 1990s (see Sack et
al. 1996). EbM is defined as the medical care and treatment of patients on the basis
of the best available sources of knowledge and information. Therefore, it aims at
defining requirements that only those medical procedures are recommended and
should be incorporated into guidelines and principles, whose positive effects have
been proven. For EbM, two types of studies (called “gold standards”) are primarily
considered as giving evidence, namely “randomized controlled clinical trials” and
“meta-studies”.

• Randomized controlled clinical trials:
A clinical study is called “controlled” if there is both an experimental group

and a control group. “Randomized” means that the assignment of subjects to
experimental or control group is random, that is, each subject is assigned with
equal probability to the experimental group or to the control group. In addition,
randomized controlled trials are usually double-blind that is, both the subject
itself and the experimenter do not know whether the subject is part of the
experimental or the control group.

• Meta-Studies:
The second basis of EbM are meta-studies. Often the same treatment is inves-

tigated by several clinical trials, although contradictory results are published.
A meta-study attempts to combine the results of several randomized controlled
clinical trials. The results of the various published studies are compared with
each other and then evaluated together. It is thereby hoped to get an overall larger
sample size and thus to better sound results.

For each clinical trial, the study design and the evaluation method must be
distinguished. The study design determines which indicators are to be observed
when, how often, and for which of the study subjects. This depends on the specific
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medical procedures to be applied and especially on the aim of the study, the type
of treatment to be tested and of the study indication. Depending on the study
objective there are different study designs, such as the single case study, the cohort
study, the case-control study, etc. Once the observations are available, they must be
analyzed statistically. This is done using the evaluation method which covers all the
requirements, models and statistical methods that are to be used. In contrast to the
study design, the evaluation method is less determined by the medical purpose of
the study. This is primarily due to statistics that offers many models and methods
for evaluation of one and the same situation. The user therefore faces the problem
to select an adequate method among the various competing statistical tools. The
steadily growing number of statistical analysis methods that are available in a given
case lead on to errors and misinterpretation. This is one of the many reasons for the
large number of articles in medical literature that report on the big rate of medical
chapters with erroneous statistical analysis. Already 35 years ago, Stanton Glantz
(Glantz 1980) wrote in an article entitled “Biostatistics: how to detect, correct and
prevent errors in the medical literature”:

Critical reviewers of the biomedical literature have consistently found that about half the
articles that used statistical methods did so incorrectly.

This state has not changed until today as the following quote from a work by
Lang and Altman (2013) shows which was published in 2013:

The first major study of the quality of statistical reporting in the biomedical literature was
published in 1966. Since then, dozens of similar studies have been published, every one of
which has found that large proportions of articles contain errors in the application, analysis,
interpretation, or reporting of statistics or in the design or conduct of research. Further, large
proportions of these errors are serious enough to call the authors’ conclusions into question.
The problem is made worse by the fact that most of these studies are of the world’s leading
peer-reviewed general medical and specialty journals.

Before the EbM approach shall be evaluated with respect to quality, we must first
answer the question which claims are to be placed on a trial so that the study results
may be judged as evidence or proof. In this context it is necessary to distinguish
between “assertion” and “assumption”. The goal of a proof is to show that the
assertion follows necessarily from the assumption. If this goal is met, the assertion
can be considered as true, if the made assumptions are recognized as being correct.
The central criterion is the consistency of the model assumptions with reality. In
order to check the consistency, the trial must meet certain requirements which shall
make manipulations difficult and the results verifiable by the statistical community.

The statistical community is responsible for the validation of new findings
whenever the results are obtained by applying statistical methods. Note that the
requirements are not intended to regulate clinical trials, because that would be
an unjustified restriction of academic freedom and would only hinder scientific
progress.
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• Requirements to prevent manipulations:

1. The aim of the study must be stated clearly and unambiguously. The assertion
to be derived must be consistent with the target in line. If one of these
requirements is not satisfied, it remains unclear if the objective has been really
achieved. If the aim of the study is not clear and unambiguous, then the trial
is like a shooter who shoots on a large barn and then paints the target around
the bullet hole.

2. The study design must define clearly, when the data recording is finished
and the data analysis may start. If the end of data collection is not fixed, the
procedure is similar to a horse race in which it remains open when the race is
over and the race ends when your own horse is ahead.

3. All assumptions and statistical methods by means of which the assertion shall
be deduced, must be stated right at the start. If this requirement is not met,
assumptions and methods could be selected later on the basis of the observed
data. Or in other words, one could try all possible statistical methods, until a
procedure is found that leads to a “significance”. This result would then be
published.

• Requirement to make the result verifiable:

4. Immediately after completion of the data collection, all raw data that have
been collected during the study (including those later eliminated as outliers)
must be made available to the public. If this requirement is not met, then the
study results cannot be verified and should therefore not be taken as evidence.
Actually, clinical trials are often conducted by companies which refuse to
publish the raw data, because they represent “business secrets”. If the data
are business secrets then the results are also business secrets and must not be
looked upon as evidence but rather as marketing tools.

These four requirements are prerequisites for a clinical trial so that the results
may be considered as evidence. Whether actually evidence is given, must be
examined by a review of the evaluation method and by reproducing the results. Of
course, one would have to develop criteria for this review, because statistics contain
many questionable methods and concepts. These include the significance test which
is almost always used in clinical trials and which is briefly examined later.

In view of these requirements it must be noted that the two “gold standards” of
EbM do not fulfill them. Instead, EbM stipulates a study design which makes only
sense if a comparison between at least two different methods of treatment should
be made. If this is not the case, the implementation of a controlled trial makes little
sense. But even in the case where a comparison by means of a controlled clinical trial
should be done, this can lead to evidence at best if the above requirements would be
met which however is not demanded by the EbM approach. The establishment of a
control group implies two additional problems. First of all the ethical issue has to
be considered which emerges when ill persons are given a non-effective treatment.
Moreover, the overall sample size is cut in half by the control group. This makes a
study unnecessarily expensive.
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Instead of demanding the above specified requirements the gold standard
includes randomization. Randomization means that the available subjects are
allocated randomly to the given groups. The aim of the allocation is to form
as homogeneous groups as possible in view of the comparison’s objective.
Homogeneity refers to all the characteristics of the subjects which could play a
role in the comparison. In such a situation the allocation of subjects should not be
left to chance, but the subjects should be specifically selected so that the groups
are as equivalent as possible with respect to the planned intervention. If the groups,
as is the case for randomized trials, are randomly occupied, then it cannot be
ruled out that the study is conducted with groups that are not at all homogeneous.
Maybe randomization in medical studies is so common, because it makes a targeted
manipulation of the grouping at least difficult.

Scientific claims must be verifiable by the corresponding scientific community
otherwise they should not be accepted as evidence. This applies in particular in
medicine, where it comes to the health and lives of people. By the assessment
of randomized controlled trials as “gold standard” they take a position which
they do not deserve. The mere fact of a randomized controlled trial makes many
physicians believe in the evidence of the results. This is particularly serious because
randomized controlled trials are generally used in the drug development process and
the results are the basis for the regulatory decisions of the authorities. The statistical
community is therefore called upon to clarify the corresponding misunderstandings
and to show the way to achieve real evidence.

4 Test of Significance

The significance test is the most widely used statistical method in applications. At
the same time it is also one of the most questionable one. For many decades articles
are published dealing with shortcomings and false interpretations of the results of
the significance tests in medicine. Nonetheless articles based on significance testing
are still published in scientific journals. In many cases published chapters contain
contradictory results that have led and lead to wrong decisions. Moreover reports of
fraud and forgery in the application of significance tests are almost daily occurrence.

Verifiability i.e. reproducibility of results is a necessary condition for science.
To allow verifiability of a scientific method it must yield with high probability a
correct and sufficiently accurate result. If this condition is not met by a method,
as for example by methods applied in astrology, then the method cannot be looked
upon as part of science. In numerous publications it is shown that the significance
test does not usually fulfill its promises. The article “A Critical Assessment of
Null Hypothesis Significance Testing in Quantitative Communication Research” by
Levine et al. (2008) not only lists the main shortcomings of the significance tests,
but also contains a bibliography of the many works that deal with this issue.
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The significance test of today, hereinafter referred to as modern significance test,
was developed from two sources: the significance test of Fisher, which is described
in the work “Statistical Methods for Research Workers” (Fisher 1934) and the
hypothesis test of Neyman-Pearson, which was published in 1933 in the chapter
“On the issue of the Most Efficient tests of Statistical Hypotheses” (Neyman and
Peason 1933). Unfortunately, neither Fisher nor Neyman and Pearson succeeded in
displaying the meaning and purpose of their respective procedures sufficiently clear.
So it is no wonder that their work has been misunderstood and it has come to the
present day confusion.

4.1 Fisher’s Significance Test

The word “significant” appeared already at the end of the nineteenth century in
the statistical literature, but the “significance test” was only introduced by R.A.
Fisher (1934) in his famous book “Statistical Methods for Research Workers”,
whose first edition was published in 1925. Fisher’s approach had from the beginning
two fundamental weaknesses: Fisher does not explain the meaning and purpose
of a “test” nor did he clarify the meaning of the word “significant”. The goal of
a significance test is solely to obtain a significant result. A significant result is
achieved if the so-called p-value is smaller than one of some predetermined levels
of significance which Fisher set as 0.10, 0.05, 0.02 and 0.01. A significant result
is interpreted as an objective indication that the treatment has the desired effect.
Accordingly, the significance test of Fisher may have one of only two results. Either
the target (significance) is reached or not. The latter case means that the significance
test was a failure, and therefore a decision about the desired effect is impossible. It
follows that a wrong decision can be made only, if a significance is falsely achieved.
A failure means no wrong decision, as no decision is made. It simply means that the
test does not allow a decision.

Fisher’s significance test is characterized by the following issues:

• The test admits only one simple hypothesis which may be selected rather freely
making manipulation of the test result possible.

• It is designed for small sample sizes, i.e. only when the difference between
hypothesis and reality is considerable, the target will be reached.

• No significance level is set before the start of the experiment. Whether a
significance test is successful or not, is determined only after the p-value has
been calculated and compared with the proposed four levels of significance.
This creates a certain arbitrariness, which should actually be avoided in scientific
procedures.

• The goal is to provide a first (preliminary) indication that a particular course of
action (therapy) has a desired effect. Only when such an indication exists, a larger
experiment is performed and the decision about the possible effect is made.
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4.2 Neyman-Pearson Hypotheses Test

In 1933 Jerzy Neyman and Egon Pearson published in the “Philosophical Trans-
actions” of the Royal Society of London a chapter entitled “On the Problem of
the Most Efficient Tests of Statistical Hypotheses”. Unlike Fisher’s book, which
is intended for non-mathematicians Neyman and Pearson’s chapter is a very
mathematical work. In contrast to the significance test of Fisher it is not easy to
find a meaningful example for the hypothesis test of Neyman-Pearson, because of
the rather unrealistic assumptions about the situation to be examined.

The Neyman-Pearson hypotheses test is characterized by the following issues:

• The test refers to two hypotheses H0 and H1 and has two possible results, namely
acceptance of H0 or acceptance of H1.

• The hypothesis H0 represents that situation where an error (Type 1 error) has
serious consequences, while H1 represents that situation where an error (Type 2
error) is less severe.

• The probability of a Type 1 error is limited by the significance level which is
defined prior to testing.

• At the specified significance level, the critical region (rejection region) for H0 is
determined so that two conditions are met: The probability of a Type 1 error is
equal to the predetermined level of significance, while the probability of a Type
2 error is minimized.

• In contrast to Fisher’s significance test, the goal of the hypotheses test of
Neyman-Pearson is the final evaluation of a situation.

• Simple and composite hypothesis H0 are admitted by Neyman and Pearson. How-
ever, the latter case is mathematically rather difficult and therefore applications
are restricted generally to simple hypothesis H0.

To make the hypothesis test of Neyman-Pearson meaningful, it would be
necessary to admit significance levels for each of the two hypotheses. Only in this
way it can be avoided, that the probability of a Type 2 error may be uncontrolled
large.

4.3 Significance Test Versus Hypotheses Test

Obviously, both methods have different objectives and are based on different
assumptions implying that they are not comparable. Nevertheless, Fisher and
Neyman argued about which method is the better one. This dispute is hardly
understandable, because Fisher’s test aims at excluding one single given hypothesis,
while the hypotheses test aims at detecting which of two hypotheses is the right one.

This strange controversy might also be a reason for the misunderstandings of the
two methods which finally led to the “modern significance test”.
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4.4 Modern Significance Test

The modern significance test is a blend of the significance test of Fisher and the
hypotheses test of Neyman-Pearson. Its development began in the 1940s in the
social sciences. From there, the modern significance test has spread to all other
areas of science and is now by far the most commonly used statistical method. It
is characterized by no generally agreed rules for interpretations of the numerical
results and the admissible decisions. This is certainly one of the reasons for the
many reports of misuse and misinterpretation when applying a significance test.

The modern significance test and the significance test of Fisher have in common
the name and the p-value. By analogy with the hypotheses test of Neyman-
Pearson, there are two hypotheses namely the null hypothesis H0 and the alternative
hypothesis H1. The alternative hypothesis represents that what one expects as a
result of the test. The null hypothesis is then the complement to the alternative
hypothesis. Similar to the significance test of Fisher, a significance level is often not
set in the outset of the experiment. A significant result is obtained by calculating
the p-value. If the value obtained is less than 0.01, the result is called “highly
significant”, if the result is between 0.01 and 0.05 it is called “significant” and if
it between 0.05 and 0.10 “low-significant”. The null hypothesis is simple or can
be attributed to a simple one, which makes it possible to calculate a p-value. The
probability of the Type 2 error is not minimized. A significant result is achieved
if the null hypothesis is rejected, which is tantamount to the acceptance of the
alternative hypothesis. There are also cases in which the result is specified as
acceptance of the null hypothesis or the alternative hypothesis. It is interesting to
note that the words “rejection” or “acceptance” do not occur in Fisher’s original
work, just as the term “null hypothesis”. Only later, the term null hypothesis is
introduced, possibly inspired by the symbol H0 introduced by Neyman and Pearson.
The modern significance test combines two different methods and borrows not only
the weaknesses of the two method, but also adds new deficits.

Fisher intended his significance test for small samples in order to obtain a
first, cost-effective and objective indication. The modern significance test demands
large sample sizes making the weakness caused by the simple hypothesis a fortiori
virulent. This is especially the case in so-called meta-studies in which the results
of different studies are combined to increase the sample size and allegedly the
reliability of results. The goal of modern significance tests, is similar to the
significance test of Fisher, the rejection of the null hypothesis. If this is not possible,
the procedure is a failure, i.e., it has not brought new insights. Nevertheless, in such
cases the result is often stated as acceptance of the null hypothesis or rejection of
the alternative hypothesis. The initial goal of the significance test of Fisher was to
be an indication of the existence of an effect. In contrast, the modern significance
test aims at a final judgment.
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4.5 The Emergence of the Modern Significance Tests

How it could happen that such a questionable procedure as the modern significance
test was developed and was able to win such a market-dominating position in
science? The most important reason is probably the fact that the basic concept of
statistics, the probability, is not explained clearly and each user may choose an own
interpretation. By this, statistics goes against a fundamental principle of science and
this fact is reflected in the statistical methods.

The modern significance test was developed with the presumably most important
goal to get a “significance” and thus a publication. To achieve this goal, even
questionable interpretations of the numerical results were considered. Unfortu-
nately, there is no institution in statistics, which could exert a control function to
stigmatize questionable methods and interpretations because the basis of statistics
itself is questionable. The problems with the significance test is by no means a
purely statistical problem but affects the whole science because the significance
test is applied in all branches of science. For example the spectacular detection of
new elementary particles in physics was made by means of significance tests. The
may test lead in virtually all branches of science to wrong decisions. However, in
medicine that deals with the health and lives of people it is especially misplaced.

5 Conclusions

Besides the above there are many more problematic issues in biomedical statistics
like, for example, the widespread use of relative terms which generally assumes
controlled clinical studies. Actually, many of these weaknesses may be traced back
to the ambiguity of the fundamental term probability in statistics.

Two years ago I performed a survey among statisticians about the meaning of
the concept “probability”. The answers revealed that only very few statisticians are
concerned with this question, although most of them judge it as being essential. A
majority of surveyed statisticians seems to espouse the frequentist interpretation,
while another big part of them are fans of the Bayes interpretation. Another
surprisingly large part deems right both, the frequentist and the Bayes interpretation.

The concept probability aims at quantifying what is known as “randomness”.
Having this in mind it is easy to see that none of these opinions makes sense.
The first one assumes a series of experiments, but randomness is independent of
any series of experiments. The second one denies the existence of randomness and
thereby moves statistics close to religion, while the third is simply out of question.
The survey also revealed that the oldest attempt to quantify randomness is almost
unknown to statisticians. Already more than 300 years ago, when Newton tried to
introduce something he called mass, Jakob Bernoulli defined the concept probability
of a future event as the degree of certitude of its occurrence (Bernoulli 1713). This
definition reflects the fact that a future event may occur or may not occur depending
on the event and the given circumstances. It is an objective quantity that exists
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and is independent of any experiments and of any belief and it is in particular
unambiguous. Unfortunately Jakob Bernoulli’s efforts to quantify uncertainty and
introduce it to science were not understood by his contemporary scientists and as
a result science was developed based on certainty while uncertainty was simply
discarded.

If statistics should become an acknowledged branch of science then Jakob
Bernoulli’s interpretation must be accepted by the entire statistical community.
Moreover, results obtained by statistical methods must become verifiable, i.e.
reproducible. This means that the results must occur with a known and sufficiently
high probability. Any method which does not yield results meeting this requirement
should be abandoned. Finally, models should be developed not following mathemat-
ical or philosophical principles, but should be guided by reality, i.e. for one situation
should be only one model.

All these changes seem to be straightforward and attainable without big difficul-
ties. The only problem is that they challenge tradition and necessitate entrenched
habits. But if statistics should get rid of its bad image which let people say: “Never
trust statistics you didn’t fake yourself,” and if the quality of biomedical statistics
should be improved then these changes must come true. If statistics is not able to
change then it will share at one time or another the fate of astrology or alchemy
which are not anymore considered as part of science.
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