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Chapter 1
Introduction

Abstract This chapter provides an introduction to the different approaches avail-
able for sampling from a given probability distribution. We start with a brief history
of the Monte Carlo (MC) method, one of the most influential algorithms of the
twentieth century and the main driver for the current widespread use of random
samples in many scientific fields. Then we discuss the need for MC approaches
through a few selected examples, starting with two important classical applications
(numerical integration and importance sampling), and finishing with two more
recent developments (inverse Monte Carlo and quasi Monte Carlo). This is followed
by a review of the three types of “random numbers” which can be generated
(“truly” random, pseudo-random, and quasi-random), a brief description of some
pseudo-random number generators and an overview of the different classes of
random sampling methods available in the literature: direct, accept/reject, MCMC,
importance sampling, and hybrid. Finally, the chapter concludes with an exposition
of the motivation, goals, and organization of the book.

Anyone who considers arithmetical methods of producing random digits is, of course, in a
state of sin.

John von Neumann (1940)1

1.1 The Monte Carlo Method: A Brief History

Several techniques to perform random experiments have been used since, at least,
the beginning of the nineteenth century. For example, Georges-Louis Leclerc (comte
de Buffon) formulated (and solved) in 1777 what has come to be known as Buffon’s
needle problem, the earliest problem in geometric probability [73]. He found

1This sentence simply means that there are no true random “numbers,” just means to produce them,
and that “a strict arithmetic procedure is not such a method” [34].
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analytically that, given an infinite plane ruled with parallel lines uniformly separated
a distance d, the probability that a needle of length ` < d cast at random intersects
one of the lines is 2`

�d . Much later on, in 1812, Laplace noted that Buffon’s needle
experiment could be used to approximate � [70], and during the second half of the
nineteenth century a number of people performed experiments in which they threw
a needle in a haphazard manner (i.e., “randomly”) onto a board ruled with parallel
straight lines and tried to infer the value of � [51].2

In spite of other isolated and undeveloped instances during the nineteenth and
the beginning of the twentieth centuries, widespread interest and development of
statistical sampling techniques did not start until the advent of the first electronic
computers in 1945. Apparently, Stanislaw Ulam had the original idea in 1946, while
convalescing from an illness and playing solitaires [33], of calculating probabilities
by repeatedly performing an experiment and counting the number of outcomes of
each type. Then, in the spring of 1946, after attending the review of the results of
a preliminary computational model of a thermonuclear reaction on the ENIAC (the
world’s first electronic digital computer, built at the University of Pennsylvania),
he realized the potential of the digital computers for the implementation of this
approach and discussed the idea with John von Neumann [89]. Von Neumann
noticed immediately the potential of Ulam’s idea and, on March 11, 1947, he sent a
letter to Robert Richtmyer, the Theoretical Division Leader at Los Alamos, where he
provided a detailed outline of the first Monte Carlo method3: an approach to solving
the problem of neutron diffusion in fissile material [33, 89]. This was followed by the
publication of Metropolis and Ulam’s classical paper [90], which provided an open
name for the new method4 and sparked a large interest on it, with a first symposium
devoted exclusively to it celebrated that same year [56].

The main requirement to use the Monte Carlo method for simulation of a physical
system is that it must be possible to describe the system in terms of a probability
density function (or a cumulative distribution function). Once the density function
of a system is known, then the simulation begins to generate random numbers from
this density. There must be a rule available, based on some reasonable mathematical
and/or physical theory, to decide the outcome of such a trial. Many trials are
conducted and outcomes of all of these trials are recorded. The final step in the
Monte Carlo method is estimating the behavior of the overall system by computing
the average of the outcomes of the trials.

After the development of the generic Monte Carlo framework, the next milestone
came in 1953, when Metropolis et al. developed an efficient algorithm to calculate
the properties of equilibrium systems [91]. The Metropolis algorithm, which has

2Interestingly, the most accurate experiment, performed by Lazzarini in 1901 [72], has been
recently discredited as a fraud [6].
3According to Emilio Segré, Enrico Fermi’s student and collaborator, Fermi had already invented
the Monte Carlo method nearly fifteen years earlier, without naming it or publishing anything about
it, and used it to perform remarkably accurate predictions of experimental results [89, 102].
4It seems that it was Nick Metropolis who suggested the obvious name for the new method [89],
which was “used in meetings” at Los Alamos [56].
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Table 1.1 Some milestones in Monte Carlo research

1949 The Monte Carlo method (N. Metropolis and S. Ulam [90])

1951 Rejection sampling (John von Neumann [113])

1953 The Metropolis algorithm (N. Metropolis et al. [91])

1954–55 Sequential sampling (J. Harmersly and K. Morton [52]; A. Rosenbluth and
M. Rosenbluth [100])

1956 Importance sampling (A. Marshall [85])

1970 Metropolis-Hastings algorithm (W. K. Hastings [53])

1987 Sampling importance resampling (D. B. Rubin [101])

1993 Particle filters (Gordon et al. [48])

1995 Reversible jump MCMC (Peter J. Green [49])

1996–2004 Adaptive importance sampling (P. Zhang [120], O. Cappé et al. [17])

become the basic building block of many Monte Carlo algorithms, was cited in
Computing in Science and Engineering as being among the top ten algorithms
having the “greatest influence on the development and practice of science and
engineering in the twentieth century.” Since then, the Monte Carlo method has
found widespread use in several scientific fields, and many other milestones have
followed. Table 1.1 summarizes the most important steps in the development of the
Monte Carlo approach.

Furthermore, because of the great potential of this methodology, various tech-
niques are still actively being developed by researchers. Recent advances on Monte
Carlo algorithms include rejection control [77, 79], umbrella sampling [118],
density-scaling Monte Carlo [110], multigrid Monte Carlo [47], hybrid Monte Carlo
[31], simulated annealing [62, 82], simulated tempering [84], parallel tempering
[42, 106], multiple try Metropolis [75, 77, 80], adaptive and sequential MCMC
[2, 43], adaptive importance sampling [97], sequential Monte Carlo [10, 27], particle
filtering [5, 11, 29, 30, 37, 48, 67, 78, 98], etc.

There is also a current trend in studying and analyzing population-based methods
[17, 43, 59, 77]. The underlying idea is to generate a collection of random variables
in parallel and then incorporate an additional step of information exchange. For
instance, population-based Markov chain Monte Carlo operates by embedding the
target into a sequence of related probability measures and simulating N parallel
chains (the population). In addition, the chains are allowed to interact via various
crossover moves.

Finally, let us remark that many algorithms developed in different fields are
related, and sometimes they are even identical. For instance, the configuration bias
Monte Carlo [103, 104] is equivalent to a sequential importance sampler combined
with the Metropolis-Hastings algorithm with independent proposal (transition)
density. Similarly, the multiple try Metropolis [75, 77, 80] is an extension of a
technique described in [39], the exchange Monte Carlo [55] recalls the parallel
tempering [42, 106] approach, and sequential Monte Carlo and particle filtering are
often used as synonymous.
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1.2 The Need for Monte Carlo

The range of applications of Monte Carlo (MC) algorithms is enormous, from
statistical physics problems [100, 103, 104] (e.g., simulating galaxy formation [95])
to nuclear medicine applications [81] (e.g., predicting the exact path of photons,
electrons, or ˛-particles that traverse different regions of the body [105]). Other
examples of applications arise in finance [58], genetics [50], state space models
(e.g., in epidemiology [116] and meteorology [119]), time series analysis [7],
mixture models for inference [38], or operations research [64] (e.g., in traffic con-
trol, quality control, and production optimization). Monte Carlo methods are also
employed in many areas of engineering, e.g., to simulate the turbulent combustion
of a diesel engine spray injection [96] or to track moving targets and estimate their
positions [5].

Monte Carlo techniques have been applied to all of these problems in order to
calculate complicated integrals, to simulate a complex phenomenon or to reduce
the amount of computation. The resulting algorithms are often concurrent and well
suited to implementation on parallel computers. In the sequel, in order to introduce
the basic MC approach we focus our attention on the problem of approximating
integrals numerically.

1.2.1 Numerical Integration

The best known (and maybe the most important) applications of Monte Carlo tech-
niques involve the approximation of complicated integrals. Given an m-dimensional
variable, x 2 R

m, a crucial part of many scientific problems is the computation of
integrals of the form, e.g.,

I D 1

jDj
Z

D
f .x/dx; (1.1)

where D � R
m is some domain of interest and jDj < 1 indicates the measure

of D. Let us assume that we are able to generate N random samples x.1/; : : : ; x.N/

uniformly distributed inside D. Then we can approximate the integral I as

OIN D 1

N

�
f .x.1//C : : :C f .x.N//

�
: (1.2)

Furthermore, given a collection of independent random variables X1; : : : ;XN with
common mean � and finite variances, the strong law of large numbers [25, 61, 117]
states that

X1 C : : :C XN

N
! �
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almost surely when N ! C1. Hence, based on this result we can claim that

lim
N!C1

OIN ! I; (1.3)

with probability 1. This is the basic formulation of the Monte Carlo technique
for numerical integration. We can provide further theoretical ground for the
methodology by invoking the central limit theorem [25, 61, 117], which ensures
that the error of the approximation converges in distribution to a normal random
variable, i.e.,5

p
N.OIN � I/ ! N .0; �2/ (1.4)

as N ! C1, where �2 D varŒ f .x/�. It is important to remark that this variance
�2 measures how the random variable f .x/ is distributed over D (e.g., if f .x/ is
constant in D the variance is zero, i.e., �2 D 0). Moreover, given Eq. (1.4), we can
state that the Monte Carlo approximation error .OIN � I/ ! 0 decays to zero with
a rate proportional to 1=

p
N, regardless of the dimensionality6 of x 2 R

m. This is
probably the main advantage of the Monte Carlo techniques when we compare them
with their deterministic counterparts (see, e.g., [16, 69]).

To see how the Monte Carlo methodology works in multidimensional problems,
let us first consider the simplest case, i.e., m D 1. In this situation, we can carry
out a deterministic approximation of I, such as the Riemann approximation [69],
obtaining an error rate that decays as 1=N, better than the Monte Carlo method.
Moreover, using more sophisticated deterministic algorithms, such as Simpson’s
rule or Newton-Cote’s rule, we can improve the approximation [69]. However,
these deterministic methods are computationally expensive when the dimension m
increases, since the number of points required is typically O.Nm/. For instance, for
m D 20we need to evaluate N20 grid points in the Riemann approximation to obtain
an accuracy O.1=N/. On the contrary, drawing N points x.1/; : : : ; x.N/ uniformly in
D, the Monte Carlo scheme has a theoretical accuracy O

�
1=

p
N
�
, regardless of the

dimension of D. From this point of view, some researches have argued that the
Monte Carlo approach beats the “curse of dimensionality” [77, 99].

In practice, however, there are relevant drawbacks to the Monte Carlo method-
ology. For example, one should bear in mind that the errors of the deterministic
algorithms (trapezoidal rule, Simpson’s rule, Newton-Cote’s rule, etc.) are deter-
ministic, whereas the error of the Monte Carlo approach is random, so we can only
characterize it through its variance. Moreover, when the dimensionality increases,
the “crude” Monte Carlo technique has further problems [77, 99]:

• The variance �2 can be very large.
• The accuracy O

�
1=

p
N
�

is only a probabilistic bound.

5In the sequel, N .�; �2/ denotes a Gaussian distribution with mean � and variance �2.
6Specifically, the approximation error can be proved to have an upper bound of the form cp

N
,

where c is a constant independent of N, but possibly dependent on the dimension m.
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• Specific features of the integrand f .x/ are not exploited.
• We may not be able to draw samples uniformly inside D.

The second issue implies that there is no guarantee that the expected accuracy
is achieved in a specific calculation. Moreover, the third point remarks that the
probabilistic bound O

�
1=

p
N
�

is obtained under very weak regularity conditions,
but we do not make any improvements from any additional properties of f .x/.
For instance, f .x/ could have a sharp peak, so that drawing samples x.1/; : : : ; x.N/

uniformly inside D would yield an inefficient estimator, i.e., an estimator with high
variance.

1.2.2 Importance Sampling

In order to overcome some of the aforementioned difficulties, the concept of
importance sampling (IS)[29, 30, 85, 99] has been introduced in the literature.
This approach consists in drawing N samples x.1/; : : : ; x.N/ from a non-uniform
probability density function (pdf), �.x/, that concentrates more probability mass on
the “important” parts of the region D in order to save the computational resources.
In this case, the approximation of I is given by7

OIN D 1

NjDj
�

f .x.1//
�.x.1//

C : : :C f .x.N//
�.x.N//

�
: (1.5)

This estimator is unbiased and it has a variance �2 D var� Œ f .x/=�.x/�. In a
“fortunate” case, if f .x/ is non-negative and I is finite, we may select �.x/ / f .x/
so that OIN D I. However, in most practical problems we can only try to find a
good proposal density �.x/ that is reasonably close in shape to f .x/. Therefore,
the challenge in this case is being able to find a good proposal from which random
samples can be efficiently drawn.

If the measure jDj < 1 of the support domain D is unknown, or if we know the
analytic form of the proposal density �.x/ only up to a multiplicative constant (i.e.,
we know a non-negative unnormalized function �u.x/ / �.x/), we can construct a
biased estimator,

OIN D 1

w.1/ C : : :C w.N/
�
w.1/f .x.1//C : : :C w.N/f .x.N//

�
; (1.6)

where w.i/ D 1=�u.x.i//, i D 1; : : : ;N. With this approach, we can effectively use
an unnormalized function �u.x/ and, moreover, OIN often has a smaller mean square
error than the unbiased estimator of Eq. (1.5). However, we remark that the choice of

7If different proposal pdfs are jointly used, alternative IS approximations of I are possible and
provide more robust estimations, albeit at the expense of an increased computational cost [35, 36]
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� (or �u) is crucial to the performance of both estimators, i.e., a good choice of the
proposal can reduce drastically the variance of the estimate [77, 99].

Bayesian Inference via IS

Bayesian methods have become very popular in statistics, machine learning, and
signal processing during the past decades [77, 99]. Monte Carlo techniques are
often required for the implementation of optimal a posteriori estimators. More
specifically, in Bayesian inference it is often necessary to compute integrals of
the type

I D Epo Œ f .X/� D
Z

D
f .x/po.xjy/dx; (1.7)

D 1

Z

Z

D
f .x/p.xjy/dx (1.8)

where X � po.xjy/ D 1
Z p.xjy/ and po.xjy/ represents the posterior pdf of the

variable of interest x given the observed data y. Moreover, f .x/ is an integrable
function w.r.t. po.xjy/. A direct Monte Carlo approach follows these two steps: (a)
draw N independent samples x.i/, i D 1; : : : ;N from the posterior po.xjy/ and (b)
compute OIN D 1

N

PN
iD1 f .x.i//. However, in many applications, it is not possible to

draw directly from po.xjy/ so that a direct Monte Carlo approach cannot be applied.
An alternative strategy is suggested by the following equality

I D Epo Œ f .X/� D 1

Z

Z

D
f .x/p.xjy/dx (1.9)

D 1

Z

Z

D
f .x/

p.xjy/
�.x/

�.x/dx; (1.10)

D E� Œ f .X/w.X/�; (1.11)

where w.X/ D p.Xjy/
�.X/ and �.x/ is a suitable proposal density. Therefore, if the

normalizing constant Z D R
D p.xjy/dx of the posterior is known, a possible IS

estimator is

OIN D 1

NZ

NX

iD1
w.i/f .x.i//;

where x.i/ � �.x/ and w.i/ D p.x.i/jy/
�.x.i//

. Otherwise, if Z is unknown, an alternative IS
approximation is given by

OIN D 1
PN

nD1 w.n/

NX

iD1
w.i/f .x.i//:
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1.2.3 Quasi-Monte Carlo

Another important class of algorithms introduced to overcome the drawbacks of the
basic Monte Carlo methodology includes the so-called quasi-Monte Carlo methods
[41, 92, 114]. The basic idea of a quasi-Monte Carlo technique is replacing the
random samples in a Monte Carlo method by well-chosen deterministic points,
often termed nodes or quasi-random numbers. These nodes are chosen judiciously
in order to guarantee a small error in the numerical approximation of the integral I.
The selection criterion is based on the concepts of uniformly distributed sequence
and discrepancy, which is a measure of the deviation from the uniform distribution
[92]. For a suitable choice of N nodes, quasi-Monte Carlo methods can obtain a
deterministic error bound O.N�1 log.N/m�1/, where m is the dimension of the space.

1.2.4 Inverse Monte Carlo

The term inverse Monte Carlo (IMC) is often used to identify a class of Monte Carlo
algorithms designed to solve inverse problems [32, Chap. 7]. For instance, consider
the integral

I.k/.yk;�/ D 1

jDj
Z

D
f .x; yk;�/dx; (1.12)

where yk and � are different parameters. In a direct Monte Carlo problem, the
goal is estimating the value of the integral I.k/ assuming that the parameters are
known in advance. On the other hand, in some inverse problems, we are interested
in approximating � given the outcomes of several integrals, I.k/ for k D 1; : : : ;K.
Namely, we are essentially trying to solve a parameter estimation problem: we know
the value of the integral I.k/ for different values of yk and we want to infer the
parameter vector � . A general and simple Monte Carlo scheme to solve such inverse
problem consists of the following steps [32, Chap. 7]:

1. Choose an initial value O�0.
2. Given the current estimate of the parameter vector, O� t, compute the approxima-

tions, OI.k/.yk; O� t/ for k D 1; : : : ;K, using a suitable Monte Carlo approach (recall
that all the values yk are known).

3. Compare the estimates OI.k/.yk; O� t/ with the true values, Ik.yk;�/ for k D
1; : : : ;K:

• If they are “good enough,” then set O� D O� t and stop.
• Otherwise, set t D t C 1, propose a new value O� tC1 (following some pre-

defined procedure), and go back to step 2.
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1.3 Random Number Generation

Random number generation is the core issue of Monte Carlo simulations. A reliable
random number generator is critical for the success of a Monte Carlo method.
Indeed, the accuracy of Monte Carlo calculations depends on the pertinence and
suitability of the underlying stochastic model, but also on the “quality” of the
random numbers that simulate the random variables in the model.

Random numbers are required in a variety of areas. We have emphasized their
application in Monte Carlo methods, but they also play a crucial role in many
other simulation problems in different areas, such as computational statistics,
VLSI testing, finance, cryptography, bioinformatics, computational chemistry and
physics, etc. [24, 40, 92]. In all these scientific fields we need to draw samples from
po.x/, the non-uniform pdf associated to the complex system of interest, where x
denotes the (random) configuration of the system. For instance, in the analysis of a
macromolecule, x could represent the three-dimensional coordinates of all the atoms
in the molecule. Hence, the target density in this example would correspond to the
so-called Boltzmann distribution [45, 75, 77],

po.x/ D 1

Z.T/
exp

�
�V.x/

kT

�
;

where k � 1:38�10�23 J/K is the Boltzmann constant, T is the system’s temperature
(in Kelvin degrees), V.x/ is the energy function, and Z.T/ is the partition function,
which is difficult to calculate in general and plays the role of a normalizing constant,
since it does not depend on x. In Bayesian statistical inference, x usually represents
the missing data jointly with the unknown parameter values and po.x/ often denotes
the joint posterior pdf of these variables.

There is another (broad) class of applications where we come across optimization
problems that can be conveniently tackled by generating random samples [4, 82].
Indeed, let us consider the problem of minimizing a generic cost function V.x/. This
is equivalent to maximizing another function p.x/ D exp.�V.x/=T/ with T > 0. If
p.x/ is integrable for all T > 0, we can define the target density

po.x/ / p.x/ D exp.�V.x/=T/:

Thus, if we are able to draw samples from po.x/ when T is small enough, the
generated samples are located (with high probability) in a region close to the global
minimum of V.x/ [77, 99].

1.3.1 Random, Pseudo-Random, Quasi-Random

There are several types of “random numbers”:

• “Truly” random numbers are generated using a physical device as the source
of randomness. Examples found in the literature include coin flipping, roulette
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wheels, white noise, and the count of particles emitted by a radioactive source
[115].

• Pseudo-random numbers correspond to a deterministic sequence that passes tests
of randomness. The standard procedures for generating sequences of pseudo-
random numbers are based on recursive methods and yield sequences that can be
periodic (with a very large period) [40, Chap. 1], [92, Chap. 7] or chaotic8 [1, 13].

• Quasi-random numbers refer to a deterministic number sequence that presents a
low discrepancy with respect to (w.r.t.) a given distribution. Deterministic con-
structions have been studied to build low-discrepancy point sets and sequences
(using, for example, digit and fractional expansions) [92, Chap. 3].

The general requirements that are usually placed on random number generation
methods can be divided into four categories [24, 40, 92]:

1. Computational requirements: they refer to the computational cost and the
resources needed to generate the random numbers.

2. Structural requirements: they include, e.g., the period length (in periodic
sequences of pseudo-random numbers) and the lattice structure.

3. Statistical requirements: the produced numbers are expected to pass statistical
tests related essentially to their distribution and certain statistical independence
properties.

4. Complexity-theoretic requirements: some definitions of “randomness” for a finite
string of random digits have been presented in the literature [20, 21, 65, 66, 86].
These represent a collection of conditions that a finite sequence has to satisfy in
order to be considered “random.”

In computational statistics, random variate generation is usually divided into two
steps:

(1) generating “imitations” of independent and identically distributed (i.i.d.) ran-
dom numbers having a uniform distribution and

(2) applying some transformation and/or selection techniques such that these
i.i.d. uniform samples are converted into variates from the target probability
distribution.

These two steps are essentially independent. The expression pseudo-random num-
ber generator usually refers to an algorithm used for the first step, while the term
sampling method is usually associated to an algorithm used in the second step.
In particular, a sampling technique assumes that some random or pseudo-random
number generator with a known distribution (typically uniform) is available. Ran-
dom sampling algorithms are also termed non-uniform random variate generators.
Figure 1.1 summarizes this classification.

8In fact, we note that most chaotic random number generators actually yield pseudo-chaotic
sequences, since they are implemented using finite precision arithmetic.
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Fig. 1.1 General scheme of random number generation

1.4 Pseudo-Random Number Generators

The focus of this book is on random sampling methods. However, it is instructive to
pay some attention at this point to pseudo random number generators. As shown in
the previous section, several applications require “random-like” sequences that must
also be reproducible. These reproducible random-like sequences are called pseudo-
random number (PRN) streams. In order to ensure reproducibility, PRNs are usually
generated using deterministic recursive equations. In this section, we provide a brief
overview of some of the most relevant pseudo-random number generators (PRNGs).

1.4.1 Nonlinear Recursions

Most PRNGs can be formally represented as discrete-time dynamical systems. If
we intend to produce a one-dimensional PRN stream, such systems consist of a
nonlinear recursion of the form

ynC1 D f .yn/; n D 0; 1; 2; : : : (1.13)

where y0 2 R is a user-defined initial condition and f is a non-linear function or
map. The sequence fyngC1

nD0 , known as orbit or trajectory, is produced by applying
Eq. (1.13) recursively.

Invariant Sets

For any starting value y0 2 R, and after a transient period, the dynamical
system described by Eq. (1.13) converges to an attractive invariant set, i.e., for
a sufficiently large value of n, the recursion (1.13) produces iterates that take values
from an invariant set. To be specific, the asymptotic behavior of the sequence
fyngC1

nD0 generated by system (1.13) can be classified as follows [1]:

• Fixed point: For n � n� the system reaches a single value y� which is maintained
for the rest of the trajectory, i.e., yn D y� for n � n�.

• Periodic sequence or limit cycle: After n� iterations the system reaches a
periodic solution, i.e., yn D yn�T for n � n�, where T 2 N

C is the period of the
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corresponding cyclic trajectory. In the frequency domain the signal is composed
of a finite collection of harmonically related frequencies.

• Quasi-periodic sequence: After n� iterations the system reaches a “periodic-
like” solution, i.e., a sequence which looks periodic but does not meet exactly
the definition of periodicity. In the frequency domain these signals are composed
of two or more incommensurate natural frequencies.

• Chaotic sequence: The sequence yn behaves in a “random-like” manner for n �
n� in spite of having been generated by a deterministic system (i.e., the system
does not diverge, but never reaches a fixed point, a limit cycle or a quasi-periodic
solution). In the frequency domain they are characterized by a continuous wide-
band spectrum.

The asymptotic behavior of the system can be different depending on the choice of
the starting point y0. Consequently, a map can have different invariant sets which
can be stable (i.e., attractive) or unstable (i.e., repulsive).

1.4.2 Chaotic Pseudo-Random Number Generators

Chaotic dynamical systems are particularly appealing, both intuitively and theoreti-
cally, as PRNGs, since the sequences they generate naturally enjoy certain properties
that greatly resemble what we perceive as randomness. Formally, it is possible
to associate an invariant probability density function, denoted �.y/, to a chaotic
attractor, based on the fact that some regions of the state space are visited more
frequently than others by the sequence fyngC1

n�n� [13, 71]. Given a generic map,
f .y/ W D ! D, an invariant density �.y/ is defined as a function that satisfies

Z

A
�.y/dy D

Z

f �1.A/
�.y/dy; (1.14)

for any subset A � D, where f �1.A/ represents the preimage of all points contained
in A. Below we provide some specific examples of uniform and non-uniform
invariant densities.

Example 1.1 (Logistic Map) The best known discrete-time one-dimensional
chaotic system is probably the logistic map9

ynC1 D �yn.1 � yn/; (1.15)

9The Belgian mathematician P.F. Verhulst proposed in 1838 the logistic equation [111],
dN.t/=dt D rN.t/.1�N.t/=K/ with r;K > 0, whose exact solution is N.t/ D K=Œ1CCK exp.�rt/�
with C D 1=N.0/ � 1=K [112], as a continuous-time alternative to the Malthusian model of
population growth [83]. Much later on, the Australian biologist Robert May showed that the
discrete-time version of the logistic equation, f .x/ D �x.1 � x/ with 0 < � � 4, so-called
logistic map since then, could exhibit fixed points, limit cycles and chaotic behavior depending on
the value of the bifurcation parameter � [87, 88].
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for some � 2 .0; 4�, and y0 2 .0; 1/. When � D 4, almost the whole domain of the
logistic map, Œ0; 1�,10 is a chaotic attractor with an associated invariant density

�.y/ D 1

�
p

y.1 � y/
; 0 < y < 1; (1.16)

which is a Beta pdf, p.y/ / y��1.1 � y/	�1, with � D 	 D 0:5 [46, 93].

Example 1.2 (Tent and Bernoulli Shift Maps) Two simple maps with uniform
invariant density in .0; 1/, i.e.,

�.y/ D 1; 0 < y < 1; (1.17)

are the tent map,

ynC1 D
(
2yn; 0 � yn � 0:5I
2.1� yn/; 0:5 < yn � 1;

(1.18)

and the Bernoulli shift map [1],

ynC1 D 2yn mod 1 D
(
2yn; 0 � yn � 0:5I
2yn � 1; 0:5 < yn � 1;

(1.19)

with a starting point y0 2 .0; 1/. More generally, the class of Bernoulli shift maps
(also known as sawtooth maps), which also have a uniform invariant density, is often
expressed as

ynC1 D ayn mod 1; (1.20)

where a D 1=M, with M 2 N
C being the number of intervals of the map. This type

of recursions are related to the linear congruential generators described in Sect. 1.4.4
below.

Besides the collection of well-studied discrete-time chaotic systems that can be
found in the literature, it is also possible, given a prescribed invariant pdf �.y/,
to design a piece-wise map displaying chaotic behavior and with its trajectories
distributed over the state space according to �.y/ [13].

Although chaotic maps can be used to produce sequences with good statistical
properties, they also suffer from some significant limitations:

• The produced sequences still present certain structure.

10Note that scattered within this interval we may find fixed points (e.g., y D 0 and y D 0:75) and
limit cycles with arbitrarily large periods (e.g., y D .5 � p

5/=8 and y D .5 C p
5/=8 form a

period two limit cycle).
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• The finite precision of computing devices causes the generated sequence to be
pseudo-chaotic. Hence, it can get stuck in a low period limit cycle or even a
stable fixed point.

For these reasons, other approaches are often used to produce PRN streams.

1.4.3 The Middle-Square Generator

Probably the first PRNG ever employed to generate uniform numbers in a computer
is the middle-square method, proposed by John von Neumann already in 1946 [63],
although it was not published until 1951 [113]. The procedure starts from an initial
number. Then, it iteratively takes the square of the previous number and extracts the
middle digits to generate a new element. More precisely, the algorithm consists of
the following steps11:

1. Initialization. Select an initial four-digit state, x0 D 0:d01d
0
2d
0
3d
0
4 with d0i

representing natural numbers uniformly distributed12 within .0; 1/. Set n D 1.
2. Iteration. Assume xn�1 is available. The next number in the sequence, xn, is

obtained by taking the square of xn�1 and extracting the middle four digits, i.e.,
let yn D x2n�1 D 0:Qdn

1
Qdn
2
Qdn
3
Qdn
4
Qdn
5
Qdn
6
Qdn
7
Qdn
8 and set xn D 0:Qdn

3
Qdn
4
Qdn
5
Qdn
6.

The middle-square method was developed at a time when computers were just
starting and was extensively used, since it was simple and much faster than any other
method available at that time. However, by current standards its quality is quite poor,
since its output can get stuck at a fixed point or a short limit cycle, or degenerate
quickly to zero [63].

1.4.4 Linear Congruential Generators

The linear congruential method (LCG) was proposed by Lehmer in 1951 [74]. It is
often known also as the multiplicative LCG, Lehmer generator or, more formally, as
the prime modulus multiplicative linear congruential generator (PMMLCG) [94]. It
has become a classical and still very popular approach for the generation of uniform
PRNs within the Œ0; 1/ interval [58, 63, 92].

11In the sequel, the notation xn D 0:dn
1dn
2dn
3dn
4 is used to indicate that xn D dn

1 � 10�1 C dn
2 �

10�2 C dn
3 � 10�3 C dn

4 � 10�4 .
12The initial state was originally obtained from a mechanical device that generated truly random
numbers, from a table of random digits or manually by the user (e.g., rolling out a ten-sided dice
or dealing out cards).
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The generator has the following parameters:

• The modulus, M > 0, which should be large positive integer.
• The multiplier, a 2 f1; 2; : : : ;M � 1g, which is a positive integer such that

gcd.a;M/ D 1, where gcd.x; y/ denotes the greatest common divisor of the
natural numbers x and y.

• The increment, c 2 f0; 1; : : : ;M � 1g, which is a non-negative integer.
• An initial value, y0 2 f0; 1; : : : ;M � 1g, usually called the seed.

A sequence of non-negative integers, fyng1
nD0 2 f0; 1; : : : ;M � 1g, is generated by

the recursion

ynC1 D .ayn C c/ mod M; n D 0; 1; 2; : : : (1.21)

and the linear congruential pseudo-random numbers are

xn D yn

M
2 Œ0; 1/; n D 0; 1; 2; : : : (1.22)

Although the sequence fxng1
nD0 may seem random, it is actually periodic with

period T � M (see [58], [92, Chap. 7]). The parameters a and c should be
appropriately chosen in order produce a sequence with the largest possible period,
i.e.., T D M, in which case the generator is said to have a full period.

The choice of the modulus M is usually made according to the word length of
the machine, e.g., we might choose M � 232 for single-precision, M � 248 for
extended-precision and even M � 264 for high-precision calculations.13

General LCGs

Higher order linear recursive equations have been used in order to improve the
“random features” of the sequences generated by the LCG. Let M be a large
prime number, let K � 2 be the order of the recursion and choose coefficients
aj 2 f0; 1; : : : ;M�1g, with j D 1; : : : ;K and a1 ¤ 0. We can generate a sequence of
non-negative integers, fyng1

nD0 with yn 2 f0; 1; : : : ;M � 1g, by way of the recursion

yn D
KX

jD1
ajyn�j mod M; n 2 N; (1.23)

where the initial values y1; : : : ; yK should not all be equal to zero. The pseudo
uniform random numbers are again obtained using Eq. (1.22). In this case the

13In fact, we must choose M ¤ 2b, since the resulting generator would not have a full period
otherwise [94]. Hence, the word length of the machine only provides the order of magnitude of M.
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two sequences, fxng1
nD0 and fyng1

nD0, are both periodic with the same period T �
MK � 1 [40].

Example 1.3 (Fibonacci Generator) A classical example is obtained using K D 2

and a0 D a1 D 1, which leads to the recursion

yn D .yn�1 C yn�2/ mod M; n 2 N; (1.24)

known as the basic Fibonacci generator, because it replicates the construction of
Fibonacci numbers [14].

1.5 Random Sampling Methods

Non-uniform random numbers are also referred to simply as random variates.
The field of non-uniform random variate generation is an area in the crossroad of
mathematics, statistics, and computer science. It is often considered a subarea of
statistical computing and simulation methodology [40, 45, 54, 75, 77, 109].

Sampling techniques can be classified in three large categories that we describe
briefly in the following sections: direct methods, accept/reject methods, and Markov
chain Monte Carlo (MCMC) methods. This classification is summarized graphically
in Fig. 1.2. In all cases, the random sampler can be interpreted as a device or
algorithm to transform a random number produced by the available source (typically
uniform) into a sample from some desired probability distribution. This is illustrated
by the simple scheme shown in Fig. 1.3.

Real Random
Numbers

Pseudo Random
Numbers

Quasi Random
Numbers

Pseudo 
Random

generators

Sampling
methods

Direct
methods

Accept/reject
methods

MCMC 
methods

Independent samples

Fig. 1.2 General scheme of random number generation and random sampling categories
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Sampling
method

x ∼ po(x)ξ ∼ π(ξ)

Fig. 1.3 Schematic representation of a general sampling method, which converts a sample 
0 from
an available random source and distributed according to �.
/ (often termed the proposal density)
into another random sample x0 distributed according to the target pdf, po.x/

1.5.1 Direct Methods

These techniques apply an appropriate transformation or a direct random mecha-
nism to convert the samples provided by an available random source into samples
with the desired statistical properties [54, Chap. 2]. These methods use known
relationships among random variables, transformations, mixtures, convolutions or,
more generally, different mathematical representations of the target distribution.

In general, direct methods are fast and the samples generated are independent.
For this reason, when a direct method is available, it is often the best random
sampling algorithm. However, in many practical situations a suitable transformation
or, more generally, a direct connection is unknown, and alternative approaches must
be considered. Chapter 2 is devoted to describe this class of techniques.

1.5.2 Accept/Reject Methods

Given samples from an available random source, these algorithms accept or discard
those samples by performing an adequate test. The main benefit of this class of
techniques is that their range of applicability is greater than that of direct methods.
Indeed, they are often termed universal samplers, since they can be applied to
draw samples from virtually any kind of target distribution. Moreover, the generated
samples are still independent, as in the case of direct methods.

One inconvenience of this approach is that an analytic construction of a proposal
distribution or the knowledge of an upper bound of the target pdf is required.
However, their main drawback is that the acceptance rate can be very low, implying
that the computational cost can be very high. For these two reasons, many adaptive
schemes have been proposed in order to:

(a) build automatically a good proposal distribution and
(b) improve the probability of accepting candidate samples [44], [54, Chap. 4].

An in-depth description of this class of methods is provided in Chaps. 3 and 4.
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1.5.3 Markov Chain Monte Carlo (MCMC)

The techniques in this class rely on the ability to construct a Markov chain that
converges to a prescribed stationary distribution [45, 99]. On the one hand, the
main advantage of this methodology is that it can be applied almost universally. On
the other hand, its main drawback is that MCMC algorithms produce sequences of
correlated variates. Due to this correlation among samples, the transient (or burn-in)
period of the chain can be very long. Hence, a considerable computational effort is
invested in generating a set of samples that have to be discarded later. Furthermore,
if the target distribution is multimodal, the chain can get trapped in a local mode and
fail to adequately explore the complete space where the target density has support.
As a consequence, MCMC estimators tend to have greater variance than those based
on independent samples. A particular sub-class of these techniques that produces
asymptotically independent samples is described in Chap. 6.

1.5.4 Importance Sampling

The importance sampling technique, that we have briefly introduced in Sect. 1.2.1, is
another class of broadly used Monte Carlo methods. However, importance sampling
cannot be considered as a random sampling algorithm. Indeed, the importance
sampling procedure approximates a probability distribution with a set of weighted
samples, but it does not produce random numbers from the target pdf. Some
authors classify importance sampling within the category of variance reduction
techniques [99].

1.5.5 Hybrid Techniques

Many mixed strategies have been proposed that combine the methods from the
different categories previously discussed [15, 18, 23, 26, 77]. For instance, many
authors have tried to integrate the MCMC techniques within particle filters [9, 45,
60]. One example is the resample-move algorithm [8], which combines sequential
importance resampling (SIR) with MCMC sampling. Recently, a technique termed
particle MCMC [3] that employs particle filters to construct efficient MCMC kernels
has become very popular because of its broad applicability.

Another interesting mix of different classes is provided by algorithms that
combine rejection and importance sampling. Some examples are the so-called
weighted rejection sampling and rejection control algorithms [15, 19, 77, 79].
Other methods, such as partial rejection control [77] and rejection particle filters
[12, 57, 68, 107, 108], combine rejection sampling with sequential importance
sampling [79]. All of these techniques are accept/reject methods that re-incorporate



1.6 Goal and Organization of This Book 19

(in different ways) the discarded samples into the computed estimators. For a
detailed comparison of the performance of rejection and importance sampling
estimators, see [18, 22, 76].

Last but not least, the ratio-of-uniforms (RoU) technique combines features from
the direct and accept/reject approaches in an appealing manner. In Chap. 5 we
describe the RoU method and its generalizations in detail.

1.6 Goal and Organization of This Book

1.6.1 Motivation and Goals

This monograph is concerned with the theory and practice of pseudo-random
variate generation, an issue which is at the core of Monte Carlo simulations and,
hence, of practical importance for a large number of applications in various fields,
including computational statistics, cryptography, computer modeling, games, etc.
The focus will be placed on independent and exact sampling methods, as opposed to
techniques that produce approximate (e.g., importance sampling) and/or correlated
populations (e.g., MCMC).

A number of relevant references can be found in the literature related to these
topics [24, 28, 40, 54]. In this monograph, we distinctly aim at:

• Presenting a comprehensive and unified view of independent random sam-
plers, that includes the most relevant classes of methods and emphasizes
their generality—as opposed to the common trend of investigating algorithms
“tailored” to specific problems.

• Exploring in depth the connections, relationships, and relative merits of the
different families of techniques, including systematic comparisons with non-
independent samplers, such as MCMC methods and importance samplers.

• Consolidating the considerable body of knowledge that has been generated
during the last decade, concerning principally a broad class of new and flexible
adaptive samplers.

Although our main interests are in the theory and methodologies for independent
random sampling, we have made a special effort in the choice of application
examples that enjoy a clear practical interest. In this respect, we expect that the
materials included in this book may be of interest to engineers working in signal
processing and statisticians interested in computational methods, but they should
also be useful to scientists working in the fields of biology, quantitative finance, or
physics, where complex models that demand Monte Carlo computations are needed.
Computer code of the examples and the main algorithms is provided in a companion
website.
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1.6.2 Organization of the Book

The rest of the book is organized as follows. Chapter 2 describes the so-called direct
methods: a collection of classical and modern techniques used for random sampling
based on suitable transformations and/or specific connections among random
variables. All of them assume the availability of a random source with known
distribution, and all of them are aimed to produce independent and identically
distributed (i.i.d.) samples. Many of them are intrinsically connected, and we make
a special effort to remark the relationships among different techniques or different
categories of methods. Indeed, we note that some techniques can be classified
within more than one category of algorithms and can be derived in different ways
(e.g., the Box-Muller method). These different points of view are explored and the
connections among categories are highlighted.

Chapters 3 and 4 are devoted to accept/reject methods, also known as rejection
sampling (RS) algorithms. The basic RS approach, which is described in Chap. 3,
was suggested by John von Neumann as early as in 1946, although it was not
published until 1951, and it is a classical technique for universal sampling. In an
accept/reject method, each sample is either accepted or rejected by an adequate test
of the ratio of the proposal and the target pdfs, and it can be proved that accepted
samples are actually distributed according to the target density. The fundamental
figure of merit of a rejection sampler is the mean acceptance rate, i.e., the expected
number of accepted samples over the total number of proposed candidates. To
attain good acceptance rates, adaptive rejection sampling (ARS) schemes, which
are the focus of Chap. 4, have been proposed in the literature. These techniques
aim at sequentially building proposal functions that become closer and closer to the
target pdf as the algorithm is iterated (i.e., as more samples are drawn and more
accept/reject tests are carried out). In these two chapters we present the standard
RS and ARS schemes, together with various recent developments, and including
some original material. Again, the connections and relationships among different
methods are highlighted, and we also explore some of the main applications of the
methodology.

In Chap. 5 we focus on the ratio of uniforms (RoU) method, which is a classical
technique that combines both of the approaches of the previous chapters: suitable
transformations and rejection sampling. Assume that p.x/ is the target density from
which it is needed to generate samples. The RoU technique aims at calculating
a bounded region A such that points drawn independently and uniformly inside
A yield i.i.d. samples from p.x/ in a very straightforward manner. Since uniform
samples within A cannot be obtained usually by direct methods, in practice the RoU
is often combined with the RS approach. In this chapter, we present the standard
RoU method and some extensions first. Then we focus on adaptive implementations
of the RoU technique, including some original contributions. The connection of the
RoU approach, both with transformation methods and with the accept/reject class
of techniques, is highlighted and several application examples are also provided.
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The theory and applications in the previous chapters deal with sampling from
scalar (i.e., one-dimensional) random variables. While relatively simple for a few
special and well-known cases (e.g., Gaussian random variables), the design of
general methods to draw samples from multidimensional distributions (i.e., to
generate random vector-samples) which can be efficiently implemented is a hard
problem. Some methods have been proposed, though, and we review them in
Chap. 6. Most of them are only partially general, as they involve a number of
constraints on the target distributions. Others are more general, e.g., the multivariate
extension of the RoU and ARS techniques discussed in Chaps. 5 and 4, but the
computational complexity can be prohibitive. Both theoretical constraints and
computational limitations are explored, and illustrated by way of a few examples.

The goal of Chap. 7 is introducing another family of samplers which is widely
used in the literature: MCMC algorithms. MCMC methods [75, 99] are Monte Carlo
techniques that produce a Markov chain of correlated samples whose stationary
distribution is known. From the perspective of this work (the generation of i.i.d.
samples), they present two drawbacks: the correlation of the samples drawn and
the fact that the samples only come exactly from the desired distribution when the
chain is in its stationary distribution, which is not straightforward to determine.
In this chapter we describe special classes of MCMC approaches that produce
“asymptotically” independent samples. This means that the MCMC sampler tends
to become an exact sampler as the number of iterations grows or as a parameter of
the algorithm is increased, thus ensuring that the correlation among samples quickly
vanishes to zero and the samples generated eventually become i.i.d. Finally, Chap. 8
provides the conclusions and a discussion about future research directions in the
field.

Matlab code, related to the algorithms and numerical examples presented in thedif-
ferent chapters, is provided at https://github.com/BookIndRandSamplingMethods/
code.

References

1. K. Alligood, T. Sauer, J.A. York, Chaos: An Introduction to Dynamical Systems (Springer,
New York, 1997)

2. C. Andrieu, N. de Freitas, A. Doucet, Sequential MCMC for Bayesian model selection, in
Proceedings of the IEEE HOS Workshop (1999)

3. C. Andrieu, A. Doucet, R. Holenstein, Particle Markov chain Monte Carlo methods. J. R.
Stat. Soc. B 72(3), 269–342 (2010)

4. M.J. Appel, R. Labarre, D. Radulovic, On accelerated random search. SIAM J. Optim. 14(3),
708–730 (2003)

5. M.S. Arulumpalam, S. Maskell, N. Gordon, T. Klapp, A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188
(2002)

6. L. Badger, Lazzarini’s lucky approximation of � . Math. Mag. 67(2), 83–91 (1994)

https://github.com/BookIndRandSamplingMethods/code
https://github.com/BookIndRandSamplingMethods/code


22 1 Introduction

7. R. Bellazzi, P. Magni, G. De Nicolao, Bayesian analysis of blood glucose time series from
diabetes home monitoring. IEEE Trans. Biomed. Eng. 47(7), 971–975 (2000)

8. C. Berzuini, W. Gilks, Resample-move filtering with cross-model jumps, in Sequential Monte
Carlo Methods in Practice, ed. by A. Doucet, N. de Freitas, N. Gordon, Chap. 6 (Springer,
New York, 2001)

9. C. Berzuini, N.G. Best, W. Gilks, C. Larizza, Dynamic conditional independence models and
Markov chain Monte Carlo methods. J. Am. Stat. Assoc. 92, 1403–1412 (1996)

10. A. Beskos, D. Crisan, A. Jasra, On the stability of sequential Monte Carlo methods in high
dimensions. Ann. Appl. Probab. 24(4), 1396–1445 (2014)

11. E. Bolviken, G. Storvik, Deterministic and stochastic particle filters in state-space models,
in Sequential Monte Carlo Methods in Practice, ed. by A. Doucet, N. de Freitas, N. Gordon,
Chap. 5 (Springer, New York, 2001), pp. 97–116

12. E. Bolviken, P.J. Acklam, N. Christophersen, J.M. Stordal, Monte Carlo filters for non-linear
state estimation. Automatica 37(2), 177–183 (2001)

13. A. Boyarsky, P. Góra, Laws of Chaos: Invariant Measures and Dynamical Systems in One
Dimension (Birkhäuser, Boston, 1997)

14. R.P. Brent, Uniform random number generators for supercomputers, in Proceedings of the
5th Australian Supercomputer Conference, Melbourne (1992), pp. 95–104

15. B.S. Caffo, J.G. Booth, A.C. Davison, Empirical supremum rejection sampling. Biometrika
89(4), 745–754 (2002)

16. J. Candy, Bayesian Signal Processing: Classical, Modern and Particle Filtering Methods
(Wiley, Hoboken, 2009)

17. O. Cappé, A. Gullin, J.M. Marin, C.P. Robert, Population Monte Carlo. J. Comput. Graph.
Stat. 13(4), 907–929 (2004)

18. G. Casella, C.P. Robert, Rao-Blackwellisation of sampling schemes. Biometrika 83(1), 81–94
(1996)

19. G. Casella, C.P. Robert, Post-processing accept-reject samples: recycling and rescaling. J.
Comput. Graph. Stat. 7(2), 139–157 (1998)

20. G. Chaitin, On the length of programs for computing finite binary sequences. J. ACM 13,
547–569 (1966)

21. G. Chaitin, On the length of programs for computing finite binary sequences: statistical
considerations. J. ACM 16, 145–159 (1969)

22. R. Chen, Another look at rejection sampling through importance sampling. Stat. Probab. Lett.
72, 277–283 (2005)

23. R. Chen, J.S. Liu, Mixture Kalman filters. J. R. Stat. Soc. B 62, 493–508 (2000)
24. J. Dagpunar, Principles of Random Variate Generation (Clarendon Press, Oxford/New York,

1988)
25. M.H. DeGroot, M.J. Schervish, Probability and Statistics, 3rd edn. (Addison-Wesley, New

York, 2002)
26. P. Del Moral, Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with

Applications (Springer, New York, 2004)
27. P. Del Moral, A. Doucet, A. Jasra, Sequential Monte Carlo samplers. J. R. Stat. Soc. Ser. B

Stat. Methodol. 68(3), 411–436 (2006)
28. L. Devroye, Random variate generation for unimodal and monotone densities. Computing

32, 43–68 (1984)
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Chapter 2
Direct Methods

Abstract In this chapter we look into a collection of direct methods for random
sampling. The term direct is used here to indicate that i.i.d. random draws with
exactly the desired probability distribution are produced by applying a transforma-
tion that maps one (or many) realizations from the available random source into a
realization from the target random variable. Most often, this transformation can be
described as a deterministic map. However, we also include here techniques that rely
on either discrete or continuous mixtures of densities and which can be interpreted
as (pseudo)stochastic transformations of the random source.

Furthermore, many of the techniques proposed in the literature are found to be
closely related when studied in sufficient detail. We pay here specific attention to
some of these links, as they can be later exploited for the design of more efficient
samplers, or simply to attain a better understanding of the field.

2.1 Introduction

In this chapter we describe in detail various classes of methods for direct random
sampling, i.e., techniques that map one or more samples from a (pseudo)random
source into one or more samples of the target probability distribution without
requiring any approximations, convergence periods, or (stochastic) acceptance tests.
We have classified these methodologies into three broad classes: transformation
techniques, universal sampling schemes, and tailored (distribution-specific) proce-
dures.

The chapter is organized as follows. After briefly introducing the main notational
conventions to be used throughout the book in Sect. 2.2, we devote Sect. 2.3 to the
study of transformation-based techniques. This term refers to schemes that take one
or more random variates as input and apply a deterministic mapping to produce a
collection of output variates. We study various forms of transformations, including
invertible and non-invertible functions and many-to-one maps. We also include
mixture densities (both continuous and discrete) in this section. Note that a discrete
mixture can be viewed as a deterministic map that takes a collection of random
variates (from the distributions in the mixture) and a uniform sample in the (0,1)
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interval (from where the mixture component is chosen) into a single output. Sorting
transformations (i.e., order statistics) are also reviewed.

Section 2.4 contains different general strategies to build a transformation that
relates the target density to another pdf from which samples can be easily drawn.
In this section a collection of universal sampling techniques is presented. They rely
on the ability to evaluate the target pdf and often demand additional assumptions.
These methods are termed “universal” because, theoretically, they allow sampling
from any target distribution. In practice, they can be used to generate a broad class
of random variates but are subject to significant limitations too.

Section 2.5 includes sampling techniques that can be applied when the target
density satisfies further (and more demanding) assumptions, such as convexity or a
certain recursive structure. Therefore, they are tailored to generating samples from
more specific classes of distributions.

In Sect. 2.6 we present a collection of examples that we consider relevant, not
only to illustrate the techniques described earlier but also to introduce a number
of specific relationships, derivations, and “tricks” that will be useful in subsequent
chapters. Finally, we conclude with a brief summary (in Sect. 2.7), including some
tables for quick reference to frequently used transformations.

2.2 Notation

2.2.1 Vectors, Points, and Intervals

Scalar magnitudes are denoted using regular face letters, e.g., x and X, while
vectors are displayed as boldface letters, e.g., x and X. The scalar coordinates of
a column vector in n-dimensional space are denoted with square brackets, e.g.,
x D Œx1; : : : ; xn�

>. Often, it is more convenient to interpret x as a point in an
n-dimensional space. When needed, we emphasize this representation with the
alternative notation x D .x1; : : : ; xn/.

We use a similar notation for the intervals in the real line. Specifically, for two
boundary values a � b, we denote a closed interval as Œa; b� D fx 2 R W a � x � bg,
while

.a; b� D fx 2 R W a < x � bg;

and

Œa; b/ D fx 2 R W a � x < bg;

are used to indicate half-open intervals and .a; b/ D fx 2 R W a < x < bg is an open
interval.
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2.2.2 Random Variables, Distributions, and Densities

We indicate random variables (r.v.’s) with uppercase letters, e.g., X and X, while
lowercase letters are used to denote the corresponding realizations, e.g., x and x.
Often, when we draw a collection of samples from a r.v., we use the superscript
notation x.i/ or x.i/, where i indicates the sample number.

We use lowercase letters, e.g., q.	/, to denote the probability density function
(pdf) of a random variable or vector, e.g., q.y/ is the pdf of Y. The conditional pdf
of X given Y D y is written as p.xjy/. The cumulative distribution function (cdf)
of a r.v. X is written as FX.	/. The probability of an event, e.g., X � x, is indicated
as ProbfX � xg. In particular, FX.a/ D ProbfX � ag. The target pdf from which
we wish to draw samples is denoted as po.x/ while p.x/ is a function proportional to
po.x/, i.e., p.x/ / po.x/. We often denote as c D R

D p.x/dx the normalizing constant
of p(x).

The uniform distribution in an interval Œa; b� is indicated as U.Œa; b�/. The
Gaussian distribution with mean � and variance �2 is denoted as N .�; �2/, while
N .xI�; �2/ represents a Gaussian density. The symbol � means that a r.v. X or a
sample x0 have the indicated distribution, e.g., X � U.Œa; b�/ or x0 � N .�; �2/, or a

given pdf, e.g., X � po.x/. Finally, the expression X
dD Z denotes that the two r.v.’s

X and Z are “equal in distribution,” i.e., they have the same cdf.

2.2.3 Sets

Sets are denoted with calligraphic uppercase letters, e.g., R. The support of the r.v.
of interest X is denoted as D � R, i.e., D is the domain of the target pdf po.x/. In
some cases, without loss of generality, we may consider D D R for convenience.
When needed, we denote with C the support of auxiliary variables.

Finally, we write the indicator function on the set S as IS.x/. This function takes
a value equal to one if x 2 S and zero otherwise, i.e.,

IS.x/ D
(
1; if x 2 S;
0; if x … S:

(2.1)

2.3 Transformations of Random Variables

Sampling methods rely on the assumption that a random source is available that
produces samples from a known distribution which, in general, differs from the
target distribution. Fortunately, in some cases of interest we can find adequate
transformations that convert the samples provided by the available random source
into samples distributed according to the target pdf. In this section, we review several
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such transformations. The resulting connections between various families of random
variables will be useful throughout the rest of the book.

2.3.1 One-to-One Transformations

In this section, we handle transformations that map a random variable into another
one. We consider the monotonic (invertible) case and the non-monotonic (non-
invertible) case separately.

Invertible Transformations

Consider two random vectors Y D ŒY1;Y2; : : : ;Ym�
> 2 R

m and Z D
ŒZ1;Z2; : : : ;Zm�

> 2 R
m with joint pdfs p.y1; y2; : : : ym/ and q.z1; z2; : : : ; zm/,

respectively, related through an invertible transformation  D Œ 1; : : : :;  m�
>,

i.e., Y D  .Z/, such that

8
<̂

:̂

Y1 D  1.Z1;Z2; : : : ;Zm/;
:::

Ym D  m.Z1;Z2; : : : ;Zm/;

and the inverse transformation is given by

8
<̂

:̂

Z1 D  �1
1 .Y1;Y2; : : : ;Ym/;

:::

Zm D  �1
m .Y1;Y2; : : : ;Ym/;

i.e., Z D  �1.Y/, where �1 D Œ �1
1 ; : : : :;  �1

m �>. The two joint pdfs, p and q, are
linked by the relationship [8, 10, 24]

p.y1; : : : ym/ D q
�
 �1
1 .y1; : : : ; ym/; : : : ;  

�1
m .y1; : : : ; ym/

� ˇˇdet J�1ˇˇ ; (2.2)

where J�1 is the Jacobian matrix of the inverse transformation, i.e.,

J�1 D

2

6
6
4

@ �1
1

@y1

@ �1
1

@y2
	 	 	 @ �1

1

@ym
:::

:::
: : :

:::
@ �1

m
@y1

@ �1
m
@y2

	 	 	 @ �1
m

@ym

3

7
7
5 :

Hence, if we are able to draw samples z0 D .z0
1; z

0
2; : : : ; z

0
m/ from q.z1; z2; : : : ; zm/,

then we can also obtain samples y0 D .y0
1; y

0
2; : : : ; y

0
m/ from p.y1; y2; : : : ; ym/
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simply by computing y0 D  .z0/. Similarly, if we are able to draw samples y0 D
.y0
1; y

0
2; : : : ; y

0
m/ from p.y1; y2; : : : ; ym/, then we can generate z0 D .z0

1; z
0
2; : : : ; z

0
m/

from q.z1; z2; : : : ; zm/ using the inverse relationship z0 D  �1.y0/.
In Sect. 2.4, we consider some transformations of this class that often turn out

to be useful. Before that, we highlight the importance of this simple relationship by
recalling two examples that have been broadly used in the literature.

Example 2.1 Given a random vector .U1;U2/ uniformly distributed on .0; 1� �
.0; 1�, the Box-Muller transformation [4],

8
<

:

X1 D  1.U1;U2/ D p�2 log U1 cos.2�U2/;

X2 D  2.U1;U2/ D p�2 log U1 sin.2�U2/;
(2.3)

yields two independent standard Gaussian r.v.’s, Xi � N.0; 1/, i D 1; 2. The
Box-Muller transformation can be derived in different ways, see, for instance,
Example 2.12 in Sect. 2.4.2.

Example 2.2 The inversion method (see Sect. 2.4.1) connects a uniform r.v. U
and the variable of interest X using the inverse function of the target cdf FX.x/.
Specifically, we have X D F�1

X .U/ with U � U.Œ0; 1�/.

Non-invertible Transformations

In this section we assume that the relationship between two univariate random
variables Y and X (with densities q.y/ and po.x/, respectively) can be expressed
through a non-monotonic transformation Y D  .X/ [22]. Consider a generalization
of the inverse function defined as the family of sets

 �1.y/ D fx 2 R W  .x/ D yg; y 2 R:

Since  is not monotonic, for a generic value y the set  �1.y/ contains more than
one solution, i.e., in general  �1.y/ D fx1; : : : ; xng, so that the inverse function is
not uniquely defined. Therefore, if we are able to draw a sample y0 from q.y/, we
still have to choose adequately one solution x0 out of the n elements in  �1.y0/ in
order to ensure that x0 is distributed according to po.x/.

For simplicity, let us consider the case n D 2, i.e.,  �1.y/ D fx1; x2g for all
possible values of y. This means that the function  .x/ can be decomposed into
two monotonic (and invertible) parts. Namely, for each value of y it is possible to
find a value xc 2 R such that  1.x/ ,  .x/ is a monotonic function in the domain
x 2 .�1; xc� and  2.x/ ,  .x/ is another monotonic function for x 2 Œxc;C1/.
Using the notation

x1 D  �1
1 .y/; x2 D  �1

2 .y/
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to indicate the two solutions of the equation y D  .x/, the pdf of the r.v. Y D  .X/
can be expressed as

q.y/ D po. 
�1
1 .y//

ˇ
ˇ̌
ˇ
d �1

1 .y/

dy

ˇ
ˇ̌
ˇC po. 

�1
2 .y//

ˇ
ˇ̌
ˇ
d �1

2 .y/

dy

ˇ
ˇ̌
ˇ ; (2.4)

where po.x/ is the pdf of X. Then, given a sample y0 from q.y/, we can obtain a
sample x0 from po.x/ selecting x0

1 D  �1
1 .y0/ with probability

w1 D
po. 

�1
1 .y0//

ˇ̌
ˇ d �1

1 .y0/

dy

ˇ̌
ˇ

q.y0/

D
po. 

�1
1 .y0//

ˇ
ˇ
ˇ d �1

1 .y0/

dy

ˇ
ˇ
ˇ

po. 
�1
1 .y0//

ˇ
ˇ
ˇ

d �1
1 .y0/

dy

ˇ
ˇ
ˇC po. 

�1
2 .y0//

ˇ
ˇ
ˇ

d �1
2 .y0/

dy

ˇ
ˇ
ˇ
;

(2.5)

or choosing x0
2 D  �1

2 .y0/ otherwise with probability w2 D 1� w1. Moreover, since

ˇ
ˇ̌
ˇ
d �1

i .y0/
dy

ˇ
ˇ̌
ˇ D

ˇ
ˇ
ˇ̌
ˇ
ˇ

1

d . �1
i .y0//

dx

ˇ
ˇ
ˇ̌
ˇ
ˇ

D
ˇ
ˇ
ˇ̌
ˇ
1

d .x0
i/

dx

ˇ
ˇ
ˇ̌
ˇ

D
ˇ
ˇ
ˇ
ˇ
d .x0

i/

dx

ˇ
ˇ
ˇ
ˇ

�1
; i D 1; 2;

we can rewrite the weight w1 in Eq. (2.5) (that represents the probability of accepting
x0
1) as

w1 D
po.x0

1/
ˇ
ˇ
ˇ d .x0

1/

dx

ˇ
ˇ
ˇ
�1

po.x0
1/
ˇ
ˇ
ˇ d .x0

1/

dx

ˇ
ˇ
ˇ
�1 C po.x0

2/
ˇ
ˇ
ˇ d .x0

2/

dx

ˇ
ˇ
ˇ
�1

D
po.x0

1/
ˇ
ˇ
ˇ

d .x0
2/

dx

ˇ
ˇ
ˇ

po.x0
1/
ˇ
ˇ
ˇ

d .x0
2/

dx

ˇ
ˇ
ˇC po.x0

2/
ˇ
ˇ
ˇ

d .x0
1/

dx

ˇ
ˇ
ˇ
:

(2.6)

In summary, if we have a non-monotonic transformation Y D  .X/, and the
equation x D  �1.y/ has n D 2 possible solutions, we can use the algorithm in
Table 2.1 to draw from po.x/. Furthermore, considering n generic possible solutions,
it is straightforward to show that the probability of choosing the kth solution
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Table 2.1 Drawing samples using a non-monotonic transformation (n D 2)

1. Set i D 1. Let N be the number of desired samples from po.x/

2. Draw a sample y0 � q.y/ in Eq. (2.4)

3. Set x0
1 D  �1

1 .y0/ and x0
2 D  �1

2 .y0/

4. Draw u0 � U.Œ0; 1�/

5. If u0 � po.x
0
1/

ˇ
ˇ
ˇ̌ d .x0

2 /

dx

ˇ
ˇ
ˇ̌

po.x
0
1/

ˇ̌
ˇ
ˇ

d .x0
2 /

dx

ˇ̌
ˇ
ˇCpo.x

0
2/

ˇ̌
ˇ
ˇ

d .x0
1 /

dx

ˇ̌
ˇ
ˇ

then set x.i/ D x0
1 . Otherwise,

set x.i/ D x0
2

6. Update i D i C 1. If i > N then stop, else go back to step 2

(1 � k � n) is

wk D
po.x0

k/
ˇ
ˇ
ˇ

d .x0
k/

dx

ˇ
ˇ
ˇ
�1

Pn
iD1 po.x0

i/
ˇ
ˇ
ˇ

d .x0
i /

dx

ˇ
ˇ
ˇ
�1 :

Example 2.3 When the non-monotonic transformation is Y D po.X/, i.e., the
transformation  .x/ D po.x/ is exactly the pdf of X, the density q.y/ of Y is called
the vertical density [19, 26, 27]. See Sect. 2.4.2 for a detailed description of the
vertical density approach.

2.3.2 Many-to-One Transformations

Given Z1;Z2; : : : ;Zm r.v.’s, such that Zi 2 Ci, i D 1; : : : ;m, and with joint
pdf q.z1; z2; : : : ; zm/, one possibility to design a random sampler based on a
transformation is to find a function � W [m

iD1Ci � R
m ! R such that

X D �.Z1; : : : ;Zm/ (2.7)

is distributed according to the target pdf po.x/. Hence, if we are able to draw
.z0
1; : : : ; z

0
m/ from q.z1; : : : ; zm/, the sample x0 D �.z0

1; : : : ; z
0
m/ is distributed

according to po.x/.
In order to determine the relationship between q.z1; : : : ; zm/ and po.x/, we have

to study the following system of equations [8, 10],

8
ˆ̂̂
<

ˆ̂
:̂

X D �.Z1; : : : ;Zm/;

Y2 D Z2;
:::

Ym D Zm;

(2.8)
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where the last m � 1 random variables involved in the equations,

Y2 D Z2; : : : :;Ym D Zm;

are chosen arbitrarily. We also assume that � can be inverted w.r.t. z1, i.e., @�

@z1
¤ 0,

and the inverse transformation is given by

8
ˆ̂
<̂

ˆ̂
:̂

Z1 D ��1.X;Y2; : : : ;Ym/;

Z2 D Y2;
:::

Zm D Ym;

(2.9)

where ��1 represents the solution of the equation x D �.z1; z2; : : : ; zm/ w.r.t. the
variable z1, i.e., z1 D ��1.x; z2; : : : ; zm/. The Jacobian matrix of the transformation
in Eq. (2.9) is

J�1 D

2

66
6
6
4

@��1

@x
@��1

@y2
	 	 	 @��1

@ym

0 1 	 	 	 0
:::

:::
: : :

:::

0 0 	 	 	 1

3

77
7
7
5
;

implying that j det J�1j D
ˇ
ˇ̌ @��1

@x

ˇ
ˇ̌, and Eq. (2.2) reduces to

p.x; y2; : : : ym/ D q
�
��1.x; y2; : : : ; ym/; y2; : : : ; ym

�
ˇ
ˇ
ˇ
ˇ
@��1

@x

ˇ
ˇ
ˇ
ˇ ; (2.10)

where p.x; y2; : : : ym/ is the joint density of the vector .X;Y2; : : : :;Ym/. Finally, we
have to marginalize Eq. (2.10) in order to obtain the target pdf po.x/, i.e.,

po.x/ D
Z

C2
: : :

Z

Cm�1

Z

Cm„ ƒ‚ …
m�1

p.x; y2; : : : ym/dy2 : : : dym

D
Z

C2
: : :

Z

Cm

q
�
��1.x; y2; : : : ; ym/; y2; : : : ; ym

�
ˇ
ˇ
ˇ̌@�

�1

@x

ˇ
ˇ
ˇ̌ dy2 : : : dym:

(2.11)

Example 2.4 The first equation of the Box-Muller transformation (see Exam-
ple 2.1),

X D �.U1;U2/ D p�2 log U1 cos.2�U2/;
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converts two r.v.’s U1 and U2 uniformly distributed on .0; 1�, into a standard
Gaussian r.v. X � N .0; 1/.

Example 2.5 Other relevant transformations are:

• The sum of random variables. For instance, for m D 2 we have

X D Z1 C Z2;

where Z1, Z2 2 C have joint pdf q.z1; z2/ and

po.x/ D
Z

C
q .x � y; y/ dy:

If Z1 � q1.z1/ and Z2 � q2.z2/ are independent, then

po.x/ D
Z

C
q1.x � y/q2.y/dy;

and this technique is also known as the convolution method.
• The product or ratio of two random variables:

X D Z1Z2;

or

X D Z1
Z2
:

In the first case, we have

po.x/ D
Z

C

1

jyjq

�
x

y
; y

�
dy; (2.12)

and in the second,

po.x/ D
Z

C
jyjq .xy; y/ dy:

See Example 2.7 and Sects. 2.4.4–5.2 for some specific applications.

Example 2.6 A convolution method can be used for sampling the so-called Erlang
distribution, that is a special class of Gamma distribution. Consider the target pdf

po.x/ / p.x/ D x˛�1e�ˇx; x � 0; ˛; ˇ > 0;
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that is a Gamma pdf. We also indicate as X � G.˛; ˇ/ a r.v. X that has a Gamma
density with parameters ˛ and ˇ. When ˛ is an integer, the Gamma pdf becomes an
Erlang pdf. Given a value ˛ 2 N

C, it is possible to write

X D 1

ˇ

X̨

iD1
Ei;

where X � G.˛; ˇ/ and Ei, i D 1; ::; ˛, are exponential r.v.’s with scale parameter
1. Moreover, since it is possible to sample from exponential pdfs applying a log-
transformation to a uniform random variable, i.e., Ei D � ln Ui (see Sect. 2.4.1),
then we also have

X D � 1
ˇ

X̨

iD1
ln Ui D � 1

ˇ
ln

"
Y̨

iD1
Ui

#

:

Scale Transformation

A particular case of the many-to-one transformations is the product of two r.v.’s,
where a r.v. X can be expressed as the product

X D SZ: (2.13)

We can interpret that the r.v. S controls the scale of Z, i.e., given S D s0, then s0Z is
a scaled version of Z, and Eq. (2.13) is often termed a scale mixture [10, 15]. This
kind of transformation has a wide use for generating samples from several target
distributions (see, for instance, Sects. 2.4.2 and 2.4.4).

Example 2.7 Consider the following pdf

po.x/ / exp.�jxj�/; x 2 R; � > 0;

as target distribution, and let X � po.x/. This distribution is often called exponential
power or generalized Gaussian [10]. The parameter � allows us to control the
kurtosis of the pdf. This family includes the standard Gaussian pdf for � D 2, the
Laplacian pdf for � D 1, and the uniform pdf for � ! C1. It is possible to write

X D SY1=�;

where S � U.Œ�1; 1�/ and Y � G.1C 1=�; 1/, namely Y has a Gamma pdf

q.y/ / y1=� exp.�y/; y � 0:
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Then, the r.v. Z D Y1=� has pdf

h.z/ / z exp.�z�/z��1 D z� exp.�z�/; z � 0:

An alternative scale mixture for po.x/ can be obtained choosing S as a discrete
random variable taking two possible values f�1; 1g with equal probability, and
Y � G.1=�; 1/.

One-to-Many Transformations This is the case of a system of equations convert-
ing one random variable into M other random variables. This kind of transformation
generates distributions called singular, i.e., pdfs defined over a curve (variety of
dimension 1) embedded into an M-dimensional space. See Chap. 6, specifically
Sect. 6.7, for further details.

2.3.3 Deconvolution Method

Let us consider two r.v.’s X and Z, with known joint pdf f .x; z/, such that X has
a density po.x/, x 2 D. Furthermore, let us assume that there is some known
relationship among them,

Y D '.X;Z/; (2.14)

where the r.v. Y is distributed according to q.y/, y 2 C, and assume that we are able
to evaluate q.y/ and to draw from it. Our goal is to generate samples from po.x/. If
' is invertible w.r.t. the variable z, Eq. (2.10) can be rewritten as

p.x; y/ D f .x; '�1.x; y//
ˇ̌
ˇ
ˇ
@'�1.x; y/

@y

ˇ̌
ˇ
ˇ ;

where we have substituted z D '�1.x; y/. Moreover, q.y/ is a marginal density of
p.x; y/, i.e., q.y/ D R

D p.x; y/dx and, obviously, po.x/ is the other marginal pdf, i.e.,
po.x/ D R

C p.x; y/dy. Therefore, since we can express the joint pdf as p.x; y/ D
h.xjy/q.y/, we can draw from po.x/ following the procedure:

1. Generate y0 � q.y/.
2. Draw x0 � h.xjy0/, where

h.xjy/ D p.x; y/

q.y/
D 1

q.y/
f .x; '�1.x; y//

ˇ̌
ˇ
ˇ
@'�1.x; y/

@y

ˇ̌
ˇ
ˇ : (2.15)

Clearly, we need to be able to draw from h.xjy/. This technique is usually known
as the “deconvolution” method, because it was first developed for the specific
transformation '.X;Z/ D X C Z [10].
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2.3.4 Discrete Mixtures

Let us assume that the target pdf can be expressed as

po.x/ D !1h1.x/C !2h2.x/C : : :C !nhn.x/ D
nX

iD1
!ihi.x/; (2.16)

where !i � 0, for i D 1; : : : ; n,
Pn

iD1 !i D 1 and the functions hi.x/ are densities
from which we can easily draw. The sum in Eq. (2.16) is usually referred to as a
discrete mixture of densities [24]. In order to draw from po.x/ we can follow these
two simple steps:

1. Draw an index j0 2 f1; : : : ; ng, according to the weights !i, i; : : : ; n. Namely,
generate a random index j0 with probability mass function (pmf) Probf j0 D ig D
!i.

2. Draw x0 � hj0.x/.

Two particular cases of discrete mixtures are described in the next two subsections.

Partition into Intervals

It is often useful to divide the domain of the target distribution, in order to split
the sampling problem into different (maybe easier) independent subproblems. In
this case, given a partition of the domain D D [n

iD1Di, such that Di \ Dj D ;
for i ¤ j, each density of the mixture is defined as hi.x/ D p.x/ for all x 2 Di,
i D 1; ::; n, and the problem reduces to being able to draw from po.x/ restricted to
different subsets of its domain, using possibly a different sampling method in each
subset. This strategy is also known as composition or decomposition method [15,
Chap. 2], [12, Chap. 4] and it is often used jointly with the rejection sampling (RS)
technique (see Chaps. 3 and 4). For instance, examples of such approach are the
so-called patchwork algorithms [18, 25, 29] or the adaptive RS (ARS) techniques
[13, 14].

Pdf Expressed as an Infinite Series

If the target density can be expressed as an infinite series of densities, i.e.,

po.x/ D
C1X

iD1
!ihi.x/; (2.17)

then it is also possible to draw from po.x/, as long as we are able to sample from
the discrete pmf Probfig D !i, i D 1; : : : ;C1, as well as from each of the
densities hi.x/, for i D 1; : : : ;C1 [12, Chap. 2], [15, Chap. 3]. Note that it is always
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possible to draw from the pmf!i using the method described in Sect. 2.4.1, inverting
numerically the cumulative distribution.

When the target is expressed as in Eq. (2.17), it is also possible to apply the
RS principle to draw from po.x/ (Sect. 3.8.3). Interesting applications of discrete
mixtures are also given in Sects. 2.6.3 and 2.6.4, for drawing from polynomial
densities.

2.3.5 Continuous Mixtures: Marginalization

In some cases, a joint distribution p.x; y/ is known such that the target pdf is one of
its marginals, i.e.,

po.x/ D
Z

C
p.x; y/dy; (2.18)

where C is the support of y. Moreover, since we can express the joint pdf as p.x; y/ D
h.xjy/q.y/, we can also write

po.x/ D
Z

C
h.xjy/q.y/dy: (2.19)

Therefore, if we are able to draw a sample y0 � q.y/ and then x0 � h.xjy0/, the
sample x0 has density po.x/. The variable y plays the role of an auxiliary variable.

This method is also known as continuous mixture of densities [10, Chap. 1] since
the marginal pdf q.y/ can be considered as a weight function and h.xjy/ as an
uncountable collection of densities indexed by y. More specifically, the weight q.y�/
is associated to the density h.xjy�/. The methods in Sects. 2.3.2 and 2.3.3 can also
be seen as applications of this idea.

Example 2.8 Consider, for instance, h.xjy/ D y exp.�yx/ and q.y/ D exp.�y/ for
x � 0 and y � 0 (i.e., two exponential pdfs). Then, we have

po.x/ D
Z

y�0
h.xjy/q.y/dy;

D
Z

y�0
y exp.�yx/ exp.�y/dy D 1

.1C x/2
:

2.3.6 Order Statistics

Let us consider n i.i.d. r.v.’s, X1;X2; : : : :Xn, with each r.v. Xi having a pdf q.x/
and a cdf FX.x/ D R x

�1 q.z/dz. The corresponding order statistics are denoted
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as Xs1 ;Xs2 ; : : : ;Xsn , for sk 2 f1; : : : ; ng and k D 1; : : : ; n, such that Xs1 � Xs2 �
: : : : � Xsn . Note that order statistics have practical importance in many statistical
applications [6, 8, 10].

Methods for simulating order statistics are usually divided into two different
classes: (1) algorithms for generating independent replications of a single order
statistic (e.g., the minimum, the maximum or the median of the entire population)
and (2) algorithms for generating all the order statistics, namely generating n
ordered samples (Sect. 3.8.1 provides an example).

An important observation, especially for the first class of methods, is that each
variable Xsi has density [10, 15]

gsi.x/ / q.x/FX.x/
i�1.1 � FX.x//

n�i; (2.20)

where q.x/ and FX.x/, are respectively, the pdf and the cdf of the r.v. Xi, i D 1; : : : ; n.

Example 2.9 For uniform (in Œ0; 1�) r.v.’s Us1 ;Us2 ; : : : ;Usn we have

gsi.x/ D �.n C 1/

�.i/�.n � i C 1/
xi�1.1 � x/n�i; x 2 Œ0; 1�; (2.21)

where �.	/ is the Gamma function [8]. Namely, the uniform ordered r.v.’s have a
beta distribution [24] with parameters i and n � i C 1. For instance, the r.v.’s Us1 ,
Us2 and Us3 are distributed as 3.1 � x/2, 6x.1 � x/ and 3x2, respectively. Therefore,
note that ordering uniform r.v.’s with support in Œ0; 1� we can draw samples from
beta distributions.

We can easily derive an important special case of the problem tackled in the
previous example: the distribution of Usn D max.U1; : : : ;Un/, i.e., the maximum of
n uniform r.v.’s in Œ0; 1�. In this case, we can write

Probfmax.U1; : : : ;Un/ � xg D ProbfU1 � x; : : : ;Un � xg

D
nY

iD1
ProbfUi � xg D xn; x 2 Œ0; 1�: (2.22)

Therefore, we have seen that the distribution is xn, i.e., the pdf is gsn.x/ D nxn�1 for
x 2 Œ0; 1�. Moreover, since we can write

ProbfU � xng D ProbfU1=n � xg D xn;

where U � U.Œ0; 1�/, then Usn D max.U1; : : : ;Un/ is distributed as the r.v. U1=n.
By a similar argument, it is possible to show that the maximum of n i.i.d. r.v.’s,
X1;X2; : : : ;Xn, has cdf ŒFX.x/�n D Qn

iD1 FX.x/ where FX.x/ is the cdf of each r.v.
Xi, i.e.,

Probfmax.X1; : : : ;Xn/ � xg D ŒFX.x/�
n : (2.23)
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In a similar vein, one can show that

Probfmin.X1; : : : ;Xn/ � xg D 1 � Œ1 � FX.x/�
n : (2.24)

Finally, let us remark that the order statistics are also related to the so-called uniform
spacings Dj, that are obtained by taking the differences between uniform order
statistics, i.e.,

Dj D Usj � Usj�1 ; for 2 � j � n:

Uniform spacings are useful to draw exactly in simplices and polytopes, as we
describe in Chap. 6.

2.4 Universal Direct Methods

The techniques described in this section rely on the ability to evaluate, at least,
the target pdf, but they often demand additional assumptions. They are termed
“universal” because they can be applied (at least theoretically) to a very large class
of target distributions.

2.4.1 Inversion Method

Let X be a random variable with pdf po.x/ and related cdf

FX.x/ D ProbfX � xg D
Z x

�1
po.v/dv; (2.25)

which is always a non-decreasing function. We define its generalized inverse as

F�1
X .y/ , inffx 2 D W FX.x/ � yg: (2.26)

The following theorem provides a very useful tool to generate samples distributed
according to the target density po.x/ using a uniform random distribution U.Œ0; 1�/
as the random source.

Theorem 2.1 ([10, 24]) If U � U.Œ0; 1�/, then the r.v. Z D F�1
X .U/ has density

po.x/.

Proof The generalized inverse function satisfies, by definition,

f.u; x/ 2 R
2 W F�1

X .u/ � xg D f.u; x/ 2 R
2 W u � FX.x/g:
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Therefore, we have

FZ.z/ D ProbfZ D F�1
X .U/ � zg D ProbfU � FX.z/g D FX.z/: (2.27)

Thus, X and Z have the same cdf, X
dD Z, and the same density po.x/. �

Theorem 2.1 implies that when we have an analytical expression for the inverse
function F�1

X .	/, then we can first generate a sample u0 � U.Œ0; 1�/, transform it,
obtaining x0 D F�1

X .u0/, and the resulting sample x0 is distributed according to po.x/.
In general, it is straightforward to show that, given a r.v.’s Y with cdf FY.y/, the

r.v.’s defined through the monotonic transformation

Z D F�1
X .FY.Y// (2.28)

is distributed according to po.x/, i.e., X
dD Z. Table 2.2 provides some examples of

application of the inversion method for generating standard distributions. The last
column of Table 2.2 provides a simplified form obtained noting that 1�u � U.Œ0; 1�/
(if u � U.Œ0; 1�/) and making use of the periodicity of F�1

X in the last case.
The inversion method enables us to easily generate i.i.d. random numbers from a

generic pdf po.x/, but we need to know the cdf FX and its inverse F�1
X analytically.

In many practical cases both steps are intractable. In other cases, we are able to find
FX.x/, but it is impossible to invert it [10, Chaps. 3–7],[9, 21].

Table 2.2 Examples of known FX and F�1
X for applying the inversion method

pdf po.x/ FX.x/ F�1
X .u/ Simplified form

Exponential

�e��x, 1� e��x � 1
�

log.1� u/ � 1
�

log.u/

x � 0

Triangular
2
a .1� x

a /,
2
a .x � x2

2a / a.1� p
1� u/ a.1� p

u/

0 � x � a

Pareto
˛b˛

x˛C1 , 1� �
b
x

�˛ b
.1�u/1=˛

b
u1=˛

x � b > 0

Weibull

���x��1e�.�x/� , 1� e�.�x/�
�� 1

��
log.1� u/

�1=� �� 1
��

log.u/
�1=�

x � 0

Cauchy
1
�

a
x2Ca2 , 1

2
C 1

�
arctan

�
x
a

�
a tan

�
�.u � 1

2
/
�

a tan .�u/

x 2 R
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Numerical Inversion of FX.x/ D u

In many cases, the cdf FX.x/ is known but it is impossible to invert it analytically,
i.e., F�1

X is unknown. A straightforward way to tackle this difficulty is to solve
numerically the equation FX.x/ D u. For instance, we could use the well-known
bisection method, the secant method, or the Newton-Raphson method [1, 5]. A
complete analysis of the different performances can be found in [10, Chap. 2].

For continuous r.v.’s, the inversion method is exact only when an explicit expres-
sion for F�1

X is available, since any numerical technique used will only provide
an approximate solution. On the other hand, for discrete r.v.’s the time required to
obtain an exact inversion is finite and the method can be exact. Alternative strategies,
when FX is given but F�1

X is unknown, can be found in Sects. 3.6.2 and 3.7.

Example 2.10 The cdf of a univariate standard Gaussian density cannot be com-
puted analytically and, as a consequence, the inverse cdf is unknown. However,
both functions (the cdf and its inverse) can be expressed as an infinite series [1, 23].
Therefore, they can be approximately calculated (with a known approximation
degree) truncating the infinite sum to a finite number of terms. Hence, the numerical
(i.e., approximate) inversion method can be applied to generate samples.

Truncated Random Variables

Let X 2 D be a r.v. with pdf po.x/ and cdf FX.x/. Moreover, consider a r.v.

XT � q.x/ D
�

1

FX.b/� FX.a/

	
po.x/;

taking values in a restricted interval Œa; b� 
 D. The easiest procedure for generating
samples from q.x/ is to use the inversion method in the following way:

1. Compute a0 D FX.a/ and b0 D FX.b/.
2. Draw a sample u0 uniformly in Œa0; b0� 
 Œ0; 1�.
3. Calculate x0 D F�1

X .u0/.

Order Statistics

A sequence of order statistics Xs1 ; : : : ;XsN (see Sect. 2.3.6) of N i.i.d. r.v.’s
X1; : : : ;XN with the same cdf FX.x/ can be obtained as

Xsi D F�1
X .Usi/;

where each Usi is an order statistic of a sequence of uniform r.v.’s in Œ0; 1�. It is
interesting to observe that this procedure can be more efficient than generating the
Xi, i D 1; : : : ;N, (when possible) and then sorting them [10, 15].
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Maximum of N i.i.d. Random Variates

Given N i.i.d. random variables X1; : : : ;XN with cdf FX.x/, four alternative pro-
cedures to generate the maximum Z D max.X1; : : : ;XN/ are the following [10,
Chaps. 2 and 14]:

1. Generate all the Xi, i D 1; : : : ;N, using some appropriate algorithm and then
take the maximum Z D max.X1; : : : ;XN/.

2. Generate N uniform i.i.d. random variables Ui � U.Œ0; 1�/, take the maximum
value Y D max.U1; : : : ;UN/ and then set Z D F�1

X .Y/.
3. Generate a uniform r.v. U � U.Œ0; 1�/ and compute Z D .FN

X /
�1.U/ where

.FN
X /

�1 represents the inverse function of

FN
X .z/ D ŒFX.z/�

N :

We recall that Z has cdf FN
X .z/ (see Sect. 2.3.6).

4. Generate a uniform r.v. U � U.Œ0; 1�/ and calculate Z D F�1
X .U1=N/ (we recall

that U1=N is distributed as the maximum of N i.i.d. uniform random variables,
see Sect. 2.3.6).

The last three procedures involve the inversion method.

Dependent Random Variates

The inversion method can also be used to draw correlated random variates [12, 15].
Consider, for instance, two random variates X and Y with cdfs FX and FY ,
respectively. They can be generated using inversion by drawing two uniform r.v.’s,
U � U.Œ0; 1�/ and V � U.Œ0; 1�/, and then taking X D F�1

X .U/ and Y D F�1
X .V/.

Note that, if U and V are dependent, then X and Y will be dependent as well.
Maximal positive or negative dependencies are obtained when U D V or U D 1�V .
For further details, see Chap. 6.

Inversion for Multivariate Targets

The inversion method cannot be directly applied to multivariate distributions
because the many-to-one cdf FX does not have a proper inverse in this case (see
Chap. 6, specifically Sect. 6.3.2). However, since the target density can be factorized
as

po.x/ / p.x1/p.x2jx1/ 	 	 	 p.xMjx1; : : : ; xM�1/; (2.29)



2.4 Universal Direct Methods 45

where x D Œx1; : : : ; xM�
>, it is straightforward to apply the chain rule to draw a

sample x0 from po.x/:

1. draw u0
1 � U.Œ0; 1�/ and set x0

1 � F�1
X1
.u0
1/,

2. draw u0
2 � U.Œ0; 1�/ and set x0

2 � F�1
X2jX1Dx0

1
.u0
2/,

:::

M) draw u0
M � U.Œ0; 1�/, set x0

M � F�1
X2jX1Dx0

1;:::;XMDx0
M
.u0

M/ and x0 D Œx0
1; : : : ; x

0
M�

>.

Here FXjjX1;:::;Xj�1 .xj/ represents the cdf corresponding to the conditional density
p.xjjx1; : : : ; xj�1/, j D 1; : : : ;M.

2.4.2 Vertical Density Representation (VDR)

In the previous section, we have studied the transformation of the r.v. of interest X
by way of its cdf FX and found that U D FX.X/ � U.Œ0; 1�/.

In this section, we consider the r.v. Z D p.X/, where X is distributed as po.x/ D
1
c p.x/, c D R

D p.x/dx, i.e., the transformation is the pdf of X [26–28]. First of all,
for the sake of simplicity, we consider a monotonically decreasing pdf po.x/. In this
case, the pdf of Z is

q.z/ D po. p�1.z//
ˇ
ˇ̌
ˇ
dp�1.z/

dz

ˇ
ˇ̌
ˇ / �z

dp�1.z/
dz

; for 0 < z � M; (2.30)

where p�1.z/ is the inverse function of p.x/ and M D maxx2D p.x/ < C1. The
density q.z/ is called vertical density since it can be interpreted as the density of
the ordinate of p.x/ [26–28]. More generally, for a non-monotonic multivariate pdf,
po.x/ / p.x/, x 2 R

m, the vertical density q.z/ is defined as

q.z/ / �z
dA.z/

dz
; (2.31)

where A.z/ D jO.z/j is the Lebesgue measure of the set

O.z/ D fx 2 D W p.x/ � zg: (2.32)

Figure 2.1 depicts an example of the set O.z/ for a generic univariate and unimodal
pdf.

From a practical point of view, the VDR is really interesting when q.z/ is easy
to draw from. In this case a simple random sampler can be designed as outlined in
Table 2.3.
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Fig. 2.1 A generic pdf po.x/
and the set O.z/ for a given
value z

y

x

po(x) ∝ p(x)

O(z)

z

Table 2.3 Vertical density representation (VDR)

1. Set i D 1. Let N be the number of desired samples from po.x/
2. Generate a sample z0 from the vertical density q.z/ in Eqs. (2.30) and (2.31)

3. Generate a sample x.i/ uniformly on the set C.z0/ D fx 2 D W p.x/ D z0g
i.e., the boundary of O.z0/, and set i D i C 1

4. If i > N then stop, else go back to step 2

The main advantages of the VDR approach are [28]:

• The vertical density q.z/ is always a univariate pdf, even if po.x/ is multivariate,
i.e., x 2 R

m.
• If po.x/ is bounded, the domain of the vertical pdf q.z/ is always bounded, i.e.,

z 2 .0;M�, where M D maxx2D p.x/.
• If po.x/ is unimodal, then q.z/ is a monotonic function, and there are specific

methods to draw from monotonic pdfs (see, for instance, Sect. 3.6.1).

Due to these appealing features, the VDR strategy is really interesting to draw from
multivariate target pdfs. However, its applicability is related to the ability of drawing
efficiently from q.z/ and generating uniform samples in fx 2 D W p.x/ D z0g. In the
sequel, we provide some examples.

Example 2.11 Consider an exponential target pdf po.x/ D �e��x, x � 0, � > 0. In
this case, we have

q.z/ D �z
d.� 1

�
log.z//

dz
D 1

�
; 0 < z � �;

i.e., the vertical density of an exponential pdf is a uniform distribution in .0; ��.
Then, to draw from po.x/ we should

1. Draw z0 � U..0; ��/.
2. Take x0 D � 1

�
log.z0/.

Indeed, the set C.z0/ D fx 2 D W p.x/ D z0g contains only one point x0 D � 1
�

log.z0/.

Example 2.12 Consider now a multivariate standard Gaussian distribution

po.x/ D 1

.2�/m=2
exp

�
�1
2

x>x
�
; x 2 R

m: (2.33)
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The set O.z/ is a hypersphere with volume1

A.z/ D �m=2

m
2
�
�

m
2

�
��2 logŒ.2�/m=2z�

�m=2
: (2.34)

Hence, the vertical density is

q.z/ D 2�m=2

�
�

m
2

�
��2 logŒ.2�/m=2z�

�m=2�1
; 0 < z � 1

.2�/m=2
: (2.35)

Note that q.z/ is a monotonic function for all m 2 N. When m is even, there is a
direct method to draw from it by multiplying i.i.d. uniform r.v.’s, as described in
Sect. 2.6.1.

For m D 1, the vertical density is q.z/ D 2p
�2 log.

p
2�z/

for 0 < z � 1p
2�

. In

this case, the method would be to (a) draw a sample z0 � q.z/ and (b) set x0 D
C
q

�2 log.
p
2�z0/ or x0 D �

q
�2 log.

p
2�z0/ with probability 1=2 in both cases.

The most interesting case occurs for m D 2, since

q.z/ D 2�; 0 < z � 1

2�
;

becomes a uniform distribution. Therefore, for m D 2, i.e. x D Œx1; x2�>, we can
sample from po.x/ applying the following procedure:

1. Draw z0 � U..0; 1
2�
�/.

2. Choose a point uniformly in a circumference with radius r.z0/ D p�2 log.2�z0/,
since

C.z/ D fŒx1; x2�> 2 R
2 W x21 C x22 D Œr.z0/�2g:

This can be easily done by drawing 
 0 � U.Œ0; 2��/ and setting

x0
1 D r.z0/ sin.
 0/; x0

2 D r.z0/ cos.
 0/;

so that x0 D Œx0
1; x

0
2�

> � po.x/.

Note that this case coincides exactly with the Box-Muller transformation (see
Example 2.1).

Example 2.13 Consider the class of multivariate exponential power distributions

po.x/ D cm exp
��.x>x/m=2

�
; x 2 R

m;m � 1: (2.36)

1Note that �m=2

m
2 �.

m
2 /

is the volume of the unit sphere.
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It is possible to show [20, 28] that the vertical density corresponding to po.x/ is a
uniform distribution in .0; cm�, i.e.,

q.z/ D 1

cm
; 0 < z � cm:

Hence sampling from po.x/ can be accomplished by drawing first z0 � U..0; 1cm
�/

and then sampling uniformly on the set

C.z/ D
(

x 2 R
m W jjxjj2 D �

�
log

�
z0

cm

�	2=m
)

:

Example 2.14 The relationship between the vertical density and the corresponding
pdf can be used in both directions. For instance, consider as a target pdf the
following density

q.z/ / Œ�2 log.z/�m=2�1 ; 0 < z � 1;

shown in Eq. (2.35). To draw samples from it, we can (a) generate a sample x0 D
Œx1; : : : ; xm� 2 R

m where xi � N .0; 1/ for i D 1; : : : ;m, and (b) compute z0 D
p.x0/ D exp

�� 1
2
x0>x0�.

An Alternative Interpretation of the VDR Approach

The VDR method can be seen as the continuous mixture (see Sect. 2.3.5)

po.x/ D
Z M

0

h.xjz/q.z/dz; (2.37)

where q.z/ is the vertical density corresponding to po.x/, M D maxx2D po.x/, and
the conditional pdf h.xjz/ is a uniform distribution on C.z/.

Example 2.15 In Example 2.12 with m D 1, the vertical density is q.z/ D
2p

�2 log.
p
2�z/

and the conditional distribution h.xjz/ is formed by two delta func-

tions, i.e.,

h.xjz/ D 1

2
ı.x � g.z//C 1

2
ı.x C g.z//;

with g.z/ D
q

�2 log.
p
2�z/.

It is interesting to observe that the VDR version shown previously is only one
possible solution to obtain a continuous mixture like Eq. (2.37) where h.xjz/ is
uniform and q.z/ is a univariate pdf with bounded domain. Indeed, considering

A.z/ D jO.z/j; (2.38)
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where jO.z/j is the Lebesgue measure of O.z/ D fx 2 D W p.x/ � zg, another
possible VDR-type method is given by the following steps:

1. Draw z0 according to A.z/ D jO.z/j,
2. Generate x0 uniformly in O.z/ (not just in the boundary C.z/).

This method is called VDR-type 2 in [11] and coincides exactly with the inverse-
of-density method described in Sect. 2.4.4, where A.z/ is denoted as p�1.z/. The
inverse-of-density approach is also based on a basic result of simulation theory
recalled below.

2.4.3 The Fundamental Theorem of Simulation

Many broadly applied Monte Carlo sampling techniques (inverse-of-density
method, rejection sampling, slice sampling, etc.) rely on a simple result that we
enunciate below.

Theorem 2.2 ([24, Chap. 2]) Drawing samples from a unidimensional r.v. X with
density po.x/ / p.x/ is equivalent to sampling uniformly on the bidimensional
region defined by

A0 D f.x; y/ 2 R
2 W 0 � y � p.x/g: (2.39)

Namely, if .x0; y0/ is uniformly distributed on A0, then x0 is a sample from po.x/.

Proof Let us consider a random pair .X;Y/ uniformly distributed on the region A0

in Eq. (2.39), and let q.x; y/ be its joint pdf, i.e.,

q.x; y/ D 1

jA0j IA0 .x; y/; (2.40)

where IA0 .x; y/ is the indicator function on A0 and jA0j is the Lebesgue measure of
the set A0. Clearly, we can also write q.x; y/ D q.yjx/q.x/. The theorem is proved
if the marginal density q.x/ is exactly po.x/.

Since .X;Y/ is uniformly distributed on the set A0 defined in Eq. (2.39), we have
q.yjx/ D 1=p.x/ for 0 � y � p.x/, or, in a more compact form,

q.yjx/ D 1

p.x/
IA0 .x; y/: (2.41)

Therefore, we can express the joint pdf as

q.x; y/ D q.yjx/q.x/ D q.x/

p.x/
IA0 .x; y/: (2.42)
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Fig. 2.2 The area A0 below
the target function
p.x/ / po.x/ A0

x

p(x)
p(x')

x'
0
}

y

y'

Taking Eqs. (2.40) and (2.42) together and solving for q.x/ yields

q.x/ D 1

jA0jp.x/ D po.x/: (2.43)

�
Theorem 2.2 states that, if we are able to draw a pair .x0; y0/ uniformly distributed

on the region A0, the coordinate x0 is marginally distributed according to po.x/.
Many Monte Carlo techniques simulate jointly the random variables .X;Y/ and
then consider only the first sample x0. The variable Y plays the role of an auxiliary
variable.

Figure 2.2 depicts a target function po.x/ / p.x/ and the shaded area correspond-
ing to the set A0.

This result can be extended to more general multivariate uniform distributions
with non-uniform marginals, where at least one of these marginals is the target pdf.
The same approach is also valid if the random variable X is a vector. This is also an
example of construction of a continuous mixture described in Sect. 2.3.5.

The inverse-of-density method, described below, and the rejection sampling
principle (Chap. 3) are clear examples of how this simple idea can be used to design
Monte Carlo sampling algorithms.

2.4.4 Inverse-of-Density Method

In this section, we present the inverse-of-density method (IoD) [10, Chap. 4],
[16], also known as Khintchine’s method [17]. First we consider monotonic target
densities, but it can be easily extended to more generic pdfs.

IoD for Monotonic Univariate Target pdfs

Given a monotonic target pdf po.x/ and defining y D po.x/, we indicate as p�1
o .y/

the corresponding inverse function of the target density. Note that p�1
o .y/ is also a

normalized density, since it describes the same regionA0 defined by po.x/, as shown
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A0

po(x)

x'

po(x')

0
0

y

y'

x

(a)

A0

x'

0
0

y' y

x
p0

1(y)

p0
1(y ')

(b)

Fig. 2.3 Two alternative ways to draw a random point .x0; y0/ uniformly in the area A0. (a) We can
first draw x0 � po.x/ and then y0 � U.Œ0; po.x0/�/. (b) Alternatively, we can first draw y0 � p�1

o .y/
and then x0 � U.Œ0; p�1

o .y0/�/

in Fig. 2.3. Therefore, we can write

A0 D f.x; y/ 2 R
2 W 0 � y � po.x/g D f.y; x/ 2 R

2 W 0 � x � p�1
o .y/g:

Thus in order to generate samples .x0; y0/ uniformly in A0 we can proceed in two
alternative ways:

1. Draw x0 from po.x/ and then y0 uniformly in the interval Œ0; po.x0/�, i.e, y0 �
U.Œ0; po.x0/�/ (see Fig. 2.3a),

2. Draw y0 from p�1
o .y/ and then x0 uniformly in the interval Œ0; p�1

o .y0/�, i.e., x0 �
U.Œ0; p�1

o .y0/�/ (see Fig. 2.3b).

Both procedures generate points .x0; y0/ uniformly distributed on the region A0.
Moreover, from the fundamental theorem of simulation, the first coordinate x0 is
distributed according to the target pdf po.x/, while the second coordinate y0 is
distributed according to the inverse pdf p�1

o .y/. Hence, if we are able to draw
samples y0 from p�1

o .y/, we can use the second procedure to generate samples x0
from po.x/.

Note that generating a sample x0 uniformly in the interval Œ0; a�, i.e., x0 �
U.Œ0; a�/, is equivalent to drawing a sample z0 uniformly in Œ0; 1� and then
multiplying it by a, i.e. x0 D z0a. Similarly, given a known value y0, drawing a sample
x0 uniformly in the interval Œ0; p�1

o .y0/�, i.e. x0 � U.Œ0; p�1
o .y0/�/, is equivalent to

generating a sample z0 uniformly in Œ0; 1� and then taking x0 D z0p�1
o .y0/. The

algorithm described in Table 2.4 uses exactly the latter procedure. Obviously, to
use this technique we need the ability to draw from the inverse pdf p�1

o .y/.
The IoD method can be summarized by the following relationship

X D Up�1
o .Y/; (2.44)

where X has density po.x/, U � U.Œ0; 1�/ and Y is distributed according to p�1
o .y/.
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Table 2.4 IoD algorithm for monotonic target densities (version 1)

1. Set i D 1. Let N be the number of desired samples from po.x/

2. Draw a sample y0 � p�1
o .y/

3. Draw u0 uniformly in Œ0; 1�, i.e., z0 � U.Œ0; 1�/
4. Set x.i/ D u0p�1

o .y0/ and i D i C 1

5. If i > N then stop, else go back to step 2

IoD for Generic Target pdfs

More generally, for a non-monotonic multivariate pdf po.x/ / p.x/ with x 2 D �
R

m, the inverse pdf p�1
o .y/ can be defined as

p�1
o .y/ D A.y/ D jO.y/j; (2.45)

where A.y/ D jO.y/j is the Lebesgue measure of the set

O.y/ D fx 2 D W p.x/ � yg:

In this general case, if we can draw samples from p�1
o .y/, we can use the following

algorithm to generate samples from po.x/:

1. Draw y0 from p�1
o .y/,

2. Draw x0 uniformly on O.y0/.

This technique coincides exactly with the VDR type 2 method [11, 16] that we
briefly described in the final part of Sect. 2.4.2.

Example 2.16 Consider a standard Gaussian distribution,

po.x/ D 1p
2�

exp

�
�x2

2

�
:

The corresponding inverse pdf is

p�1
o .y/ D 2

p�2 log.2�y/; 0 < y � 1

2�
:

Therefore, if y0 is drawn from p�1
o .y/, then

x0 � U.Œ�p�2 log.2�y0/;
p�2 log.2�y0/�/;

is marginally distributed according to po.x/.
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Table 2.5 Khintchine’s algorithm for a monotonic target pdf (IoD version 2)

1. Set i D 1. Let N be the number of desired samples from po.x/

2. Draw a sample w0 from q.w/ in Eq. (2.46)

3. Draw u0 � U.Œ0; 1�/
4. Set x.i/ D u0w0 and i D i C 1

5. If i > N then stop, else go back to step 2

Khintchine’s Method for Monotonic Target pdfs

In the literature, it is possible to find the IoD method in an alternative form. For
the sake of simplicity, we consider a monotonic target density po.x/ but the results
can be extended to more general pdfs [16]. Consider the transformed variable W D
p�1

o .Y/, where Y has a pdf p�1
o .y/. As a consequence, the density of W is given by

q.w/ D p�1
o . po.w//

ˇ
ˇ
ˇ
ˇ
dpo

dw

ˇ
ˇ
ˇ
ˇ D w

ˇ
ˇ
ˇ
ˇ
dpo

dw

ˇ
ˇ
ˇ
ˇ: (2.46)

The function q.w/ in Eq. (2.46) is the vertical density associated to the inverse pdf
p�1

o .y/ (see Sect. 2.4.2). This is yet another link between the IoD and the VDR
approaches [16]. Using the r.v. W, we can express Eq. (2.44) as

X D UW; (2.47)

where U � U.Œ0; 1�/ and W is distributed according to q.w/ in Eq. (2.46). Table 2.5
outlines this alternative form of the IoD method.

2.5 Tailored Techniques

In this section, we describe some algorithms designed to generate samples from
specific classes of distributions. Therefore, they are not universal tools that one can
always rely upon (as some of the methods described earlier are). However, when
applicable, they can be fast and efficient, and may be preferred over more general
methods.

2.5.1 Recursive Methods

In this section, we provide an example of recursive techniques taken from [10,
Chap. 4]. Consider three random variables Y � h.x/, Z � q.x/ and X � po.x/,
such that their densities are related by way of a mixture,

h.x/ D ˛q.x/C .1 � ˛/po.x/; (2.48)
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where 0 < ˛ < 1. We assume that q.x/ is easy to draw from and assume that there
is a known transformation

X D �.Y;W/; (2.49)

where W is a r.v. with pdf g.w/ easy to draw from and recall Y � h.x/. Our goal is
to generate samples according to po.x/. We can observe that:

• In order to use the relationship in Eq. (2.49), we need realizations of Y and W,
i.e., we need to draw from h.x/ and, clearly, also from g.w/.

• To draw from h.x/, we need to generate a sample from q.x/ with probability ˛ or
a sample from po.x/ with probability 1 � ˛.

Therefore, we obtain that, with probability ˛, X
dD �.Z;W/ and, with probability

1 � ˛,

X
dD �.X0;W/ dD �.�.Y 0;W 0/;W/; (2.50)

where .Y 0;W 0/ is a random vector with the same distribution as the pair .Y;W/.
These considerations lead to the algorithm shown in Table 2.6.

Note that we never use, or draw from, the pdf h.x/, and we do not evaluate po.x/
either. The expected number of iterations in the loop from step 4 and 6 is 1=˛,
since the number of uniform r.v.’s u0 to be sampled is geometrically distributed with
parameter ˛.

Example 2.17 Consider a Gamma target density

po.x/ D 1

�.˛/
x˛�1 exp.�x/; x > 0; (2.51)

with 0 < ˛ < 1. Given this po.x/ in Eq. (2.51), we can write

x
dpo

dx„ƒ‚…
h.x/

D ˛
1

�.˛ C 1/
x˛ exp.�x/

„ ƒ‚ …
q.x/

C.1 � ˛/po.x/;

Table 2.6 Recursive method

1. Set i D 1. Let N be the number of desired samples from po.x/, given

the relationships in Eqs. (2.48) and (2.49)

2. Draw w0 � g.w/ and z0 � q.x/

3. Set x0 D �.z0;w0/

4. Draw u0 � U.Œ0; 1�/
5. If u0 � ˛, then set x.i/ D x0 and i D i C 1

6. If u0 > ˛, then set x0 D �.x0;w0/ and repeat from step 4

7. If i > N then stop, else go back to step 2
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where q.x/ is another Gamma pdf with parameter ˛ C 1. There are efficient
generators for the Gamma pdf with parameter greater than 1 [6, 7]. Moreover, using
the Khintchine’s method [see Eq. (2.47)], we know that

X D �.Y;U/ D UY;

where X has pdf po.x/, whereas U � U.Œ0; 1�/ and Y has density h.x/ D x dpo
dx .

Therefore the recursive algorithm in Table 2.6 can be applied and, in this case, it
can be elegantly summarized as

X D Z
LY

iD1
Ui; (2.52)

where Z � q.x/ is a Gamma r.v. with parameter ˛ C 1, Ui � U.Œ0; 1�/, i D 1; : : :L,
and L has a geometric pmf with parameter ˛.

2.5.2 Convex Densities

Consider a decreasing target po.x/ with support x 2 Œ0;C1/ and satisfying

d2po.x/

dx2
� 0;

i.e., po.x/ is a convex function. Different methods tailored to this class of pdfs are
available [10]. The algorithm described here is based on the scale transformation

X D VY; (2.53)

where V has a triangular pdf, q.v/ D 2.1 � v/, v 2 Œ0; 1�, and Y is distributed as

g.y/ D y2

2

d2po.y/

dy2
; y � 0; (2.54)

with d2po.y/
dy2

� 0.2 In other words, using Eq. (2.12), the target po.x/ has the following
integral representation

po.x/ D
Z C1

x

1

y
2

�
1 � x

y

�
g.y/dy; (2.55)

2Note that g.y/ is always a proper normalized pdf. This can be easily proved integrating by parts
twice.



56 2 Direct Methods

Table 2.7 Generator for convex densities

1. Set i D 1. Let N be the number of desired samples from a convex

po.x/ / p.x/

2. Generate u1; u2 � U.Œ0; 1�/ and set v0 D min.u1; u2/

3. Draw y0 from g.y/ D y2

2

d2p
dy2

4. Set x.i/ D v0y0 and i D i C 1

5. If i > N then stop, else go back to step 2

where 1
y is the determinant of the Jacobian matrix of the transformation (2.53). To

prove that Eq. (2.55) holds, we replace Eq. (2.54) in (2.55) obtaining

Z C1

x

2

y

�
1� x

y

�
y2

2

d2po

dy2
dy D

Z C1

x

�
y

d2po

dy2
� x

d2po

dy2

�
dy

D
Z C1

x
y

d2po

dy2
dy � x

Z C1

x

d2po

dy2
dy

D
Z C1

x
y

d2po

dy2
dy � x

dpo

dy

and integrating by parts

Z C1

x
y

d2po

dy2
dy � x

dpo

dy
D x

dpo

dy
�
Z C1

x

dpo

dy
dy � x

dpo

dy
D po.x/:

The algorithm based on the relationship given by Eq. (2.53) relies on the ability to
draw from g.y/. It is summarized in Table 2.7. Note that, given U1;U2 � U.Œ0; 1�/,
the r.v. V D min.U1;U2/ is distributed as a triangular distribution q.v/ D 2.1� v/,
v 2 Œ0; 1�.

2.6 Examples

We now present a collection of examples that serve both to illustrate the methods in
Sects. 2.3–2.5 and to introduce a few derivations and “tricks” that will be useful in
subsequent chapters.

2.6.1 Multiplication of Independent Uniform Random Variates

The multiplication and the ratio of i.i.d. uniform r.v.’s play a relevant role in
many random sampling schemes. First, let us consider two independent r.v.’s Ui �



2.6 Examples 57

U.Œ0; 1�/, for i D 1; 2, and the product r.v.

X2 D U1U2: (2.56)

As we have seen in Sect. 2.3.2, to find the distribution of X2 we can consider the
transformation

(
X2 D U1U2;

Y D U2;

and the corresponding inverse transformation

(
U1 D X2=Y;

U2 D Y;

Since the determinant of the Jacobian matrix is 1=Y, following the procedure in
Sect. 2.3.2, the joint pdf of the vector .X2;Y/ is

p.x2; y/ D q

�
x2
y
; y

� ˇˇ
ˇ
ˇ
1

y

ˇ
ˇ
ˇ
ˇ ; 0 � x2 � 1; x � y � 1;

where q.u1; u2/ D 1 for .u1; u2/ 2 Œ0; 1� � Œ0; 1�, is the joint pdf of the vector
.U1;U2/. Through marginalization we obtain

po.x2/ D
Z 1

x2

q

�
x2
y
; y

� ˇˇ
ˇ
ˇ
1

y

ˇ
ˇ
ˇ
ˇ dy

D
Z 1

x2

1

y
dy D � log.x2/;

for all x2 2 Œ0; 1�, i.e., X2 D U1U2 is distributed as po.x2/ D � log.x2/ for 0 � x2 �
1. Now, let us consider

X3 D U1U2U3; (2.57)

which can be rewritten as

X3 D X2U3;

where X2 has a pdf po.x2/ D � log.x2/ independent from U3. As suggested in
Sect. 2.3.2, to obtain the pdf of X3 we can consider again the system of equations

(
X3 D X2U3;

Y D U3;
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so that
(

X2 D X3=Y;

U3 D Y;

The determinant of the Jacobian of this inverse transformation is again 1=Y.
Therefore,

p.x3; y/ D q

�
x3
y
; y

� ˇˇ
ˇ̌1
y

ˇ
ˇ
ˇ̌ ;

where q.x2; u3/ D � log.x2/ for .x2; u3/ 2 Œ0; 1� � Œ0; 1� is the joint pdf of .X2;U3/.
Then through marginalization

po.x3/ D
Z 1

x3

� log

�
x3
y

�
1

y
dy D Œlog.x3/�2

2
:

Proceeding in the same way it is possible to obtain the pdf of the r.v. obtained
multiplying n i.i.d. uniform r.v.’s,

Xn D U1U2 	 	 	 Un D
nY

iD1
Ui;

by an induction argument, leading to the expression

p.xn/ D .�1/n�1

.n � 1/Š
Œlog.xn/�

n�1; for 0 � xn � 1; n 2 N: (2.58)

Densities of the type of Eq. (2.58) are needed, e.g., for generating multivariate
Gaussian distributions, as we have shown in Example 2.12.

2.6.2 Sum of Independent Uniform Random Variates

Another relevant case is the sum of n i.i.d. uniform r.v.’s, i.e.,

Xn D
nX

iD1
Ui;
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where Ui � U.Œ0; 1�/. It is possible to prove that the cdf of Xn is [10]

FXn.x/ D 1

nŠ

nX

iD0
.�1/i

 
n

i

!

.x � i/nC

D 1

nŠ

 

xnC �
 

n

1

!

.x � 1/nC C
 

n

2

!

.x � 2/nC C : : :C .x � n/nC

!

;

where .	/C denotes the positive part of the argument, i.e., .g.x//C D maxfg.x/; 0g.
For instance, with n D 2 we have

FX.x/ D 1

2

�
x2C � 2.x � 1/2C C .x � 2/2C

�
;

so that the pdf of X2 is

po.x2/ D xC � 2.x � 1/C C .x � 2/C D

8
ˆ̂
<

ˆ̂
:

0 for x � 0;

x for 0 < x � 1;

2 � x for 1 < x � 2;

0 for x > 2:

Namely, the shape of po.x2/ is an isosceles triangle. More generally, po.xn/ is formed
by polynomial pieces of degree n � 1 where each piece is defined in the interval
Ii D .i; i C 1� for i D 0; 1; 2; : : : ; n � 1.

2.6.3 Polynomial Densities with Non-negative Coefficients

Consider a target distribution of the form

po.x/ / p.x/ D
nX

iD0
cix

i; 0 � x � 1;

where ci � 0. Since the ci’s are all non-negative, we can interpret po.x/ as a discrete
mixture of pdfs xi, i D 0; : : : ; n. Hence, we can apply the following procedure to
sample from po.x/:

1. Draw an index j0 2 f0; : : : ; ng according to the pmf wj D cjPn
iD0 ci

, j D 0; : : : ; n.

2. Generate a sample from hj0.x/ D xj0 , for instance, by way of the inversion
method: draw u � U.Œ0; 1�/ and set x0 D u1=.j

0C1/. Note that this approach is
always feasible because the support of x is bounded, i.e., x 2 Œ0; 1�.
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2.6.4 Polynomial Densities with One or More Negative
Constants

Consider, again, a target pdf of the form

po.x/ / p.x/ D
nX

iD0
cix

i; 0 � x � 1; (2.59)

where the ci’s are all real constants. Let us define the sets

A D fk 2 f0; : : : ; ng W ck � 0g; B D fj 2 f0; : : : ; ng W cj < 0g;
i.e., A is the collection of indices k for which ck � 0 whereas B is the collection
of indices j for which cj < 0. If B is not empty, the target in Eq. (2.59) cannot be
interpreted as a discrete mixture. Then, drawing from po.x/ in Eq. (2.59) is not as
straightforward as in the previous section. A possible solution, given by [2, 3, 6, 10],
can be applied whenever

a0 D c0 C
X

j2B
cj � 0:

In this case, we rewrite the target as

po.x/ / p.x/ D a0 C
X

k2A
ckxk �

X

j2B
cj.1 � xj/; 0 � x � 1; (2.60)

where a0 � 0 by assumption. If we denote ak D ck � 0 for k 2 A and aj D �cj > 0

for j 2 B, then it is apparent that the pdf in Eq. (2.60) can be interpreted as a discrete
mixture, with coefficients (weights) w` D a`Pn

iD0 ai
, ` D 0; : : : ; n.

Table 2.8 describes the resulting algorithm, where we have used the fact that the
r.v. Z D U1=ˇ

1 U2 with ˇ > 1 and U1;U2 � U.Œ0; 1�/ is distributed as

q.z/ D ˇ

ˇ � 1
.1 � xˇ�1/; 0 � x � 1:

2.7 Summary

In this chapter we have described several basic random sampling methods which
are often used as building blocks for more sophisticated schemes. We have grouped
these techniques into three categories:

• Transformation methods.
• Universal methods.
• Tailored methods.
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Table 2.8 Sampling from polynomial densities with some negative coefficients

1. Set i D 1. Let N be the number of desired samples from a polynomial

density po.x/ expressed as in Eq. (2.60)

2. Draw a discrete r.v. L D `0 2 f0; : : : ; ng according to the pmf

w` D a`Pn
mD0 am

, ` D 0; : : : ; n

3. If `0 2 A, then draw u � U.Œ0; 1�/, set x.i/ D u1=.`
0C1/ and i D i C 1

4. If `0 2 B, then draw u1; u2 � U.Œ0; 1�/, set x.i/ D u1=.`
0C1/

1 u2
and i D i C 1

5. If i > N then stop, else go back to step 2

For the first group we have established fundamental results relating sets of r.v.’s by
way of deterministic transformations, invertible or not. We have also covered the
use of order statistics and mixtures.

The latter are “raw” techniques. This means that, while sometimes it is possible
to use them directly in application problems, they appear more often as tools to
devise more practical schemes. For instance, they are employed to derive and justify
the so-called universal methods of Sect. 2.3, including the inversion method, the
vertical density representation (VDR), and the inverse-of-density (IoD) method.
These algorithms are termed universal because they are theoretically applicable
to virtually any target pdf. In practice, however, they are subject to significant
constraints, e.g., the need to invert the cdf analytically for the inversion method,
or to invert the pdf (and then draw from the resulting distribution) for the VDR and
IoD methods. We have made a special effort in highlighting the close connections
among the various methods.

In the third group we have included some methods that can only be applied
when the target density satisfies stronger assumptions, e.g., convexity or a certain
recursive structure.

Finally, we have looked into a number of examples that show how some of the
previous methods can be put to work in practice, but also allow us to introduce a few
specific derivations and relationships that will be useful in subsequent chapters. This
includes handling frequently-appearing operations of r.v.’s, as sums and products, or
drawing from pdfs with polynomial form.

To conclude, we summarize some of the main relationships obtained in this
chapter in tabular form, for quick reference when applied in subsequent chapters.
In particular, Table 2.9 displays the main transformations of r.v.’s (inversion, VDR,
IoD and scale transformation for convex pdfs), while Table 2.10 collects several
transformations that work specifically with uniform random variables. The latter
are important because often we need to devise suitable samplers based on the
availability of a uniform source.
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Table 2.9 Summary of the main techniques described in this chapter

Method Transformation Auxiliary variables

Inversion X D F�1.U/ U � U.Œ0; 1�/
Vertical density

representation (VDR) X D p�1
o .Z/ Z � �z

dp�1
o

dz

Inverse-of-density (IoD) X D Up�1
o .Y/ Y � p�1

o .y/

(VDR type 2) U � U.Œ0; 1�/

Khintchine’s method X D UZ Z � �z dpo

dz

(IoD, version 2) Z D p�1
o .Y/ U � U.Œ0; 1�/

Y � p�1
o .y/

Y � y2

2

d2po

dy2

For convex pdfs X D VY V � min.U1;U2/

Ui � U.Œ0; 1�/, i D 1; 2

Table 2.10 Main transformations of uniform random variables in Œ0; 1�

Transformation Density

X D max.U1; : : : ;Un/ q.x/ D nxn�1,

0 � x � 1

X D U1=n q.x/ D nxn�1,

0 � x � 1

X D min.U1; : : : ;Un/ q.x/ D n.1� x/n�1,

0 � x � 1

X D Qn
iD1 Ui q.x/ D .�1/n�1

.n�1/Š
Œlog.xn/�

n�1,

0 � x � 1

X D Pn
iD1 Ui q.x/ D 1

.n�1/Š

Pn
iD0.�1/i

�n
i

�
.x � i/n�1

C ,

0 � x � n
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Chapter 3
Accept–Reject Methods

Abstract The accept/reject method, also known as rejection sampling (RS), was
suggested by John von Neumann in 1951. It is a classical Monte Carlo technique
for universal sampling that can be used to generate samples virtually from any
target density po.x/ by drawing from a simpler proposal density �.x/. The sample
is either accepted or rejected by an adequate test of the ratio of the two pdfs,
and it can be proved that accepted samples are actually distributed according to
the target distribution. Specifically, the RS algorithm can be viewed as choosing a
subsequence of i.i.d. realizations from the proposal density �.x/ in such a way that
the elements of the subsequence have density po.x/.

In this chapter, we present the basic theory of RS as well as different variants
found in the literature. Computational cost issues and the range of applications are
analyzed in depth. Several combinations with other Monte Carlo techniques are also
described.

3.1 Introduction

This chapter is devoted to introduce the rejection sampling (RS) technique, sug-
gested first by John von Neumann in 1951 [43]. The RS method is probably the
most general technique to produce independent samples from a given distribution.
This universality (theoretically, it can be applied to draw from any kind of pdf)
makes it very appealing.

The RS algorithm requires the ability to evaluate the density of interest po.x/ up
to a multiplicative constant (which is most often the case in practical applications).
However, an important limitation of RS methods is the need to analytically establish
a bound for the ratio of the target and proposal densities, since there is a lack of
general procedures for the computation of tight bounds.

The rest of the chapter is organized as follows. We first describe the basic theory
and the RS algorithm in Sect. 3.2. Different variants and generalizations are also
presented in this section, and computational cost issues are analyzed in Sect. 3.3.

Section 3.4 introduces a little-known improvement of the standard RS algorithm
called band rejection [11, 35]. First, we describe a slightly more general version and
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then present the band rejection method introduced in [11, 35] as a special case. The
main limitation of this technique is that it can be applied only when the target has
a bounded domain. However, when it can be applied, better performance than using
the standard RS approach can be obtained, in general.

Section 3.5 presents another variant of the standard RS method, the acceptance-
complement method [20], that needs additional assumptions on the target pdf po.x/.
Specifically, if the target can be expressed as a discrete mixture of two simpler pdfs,
in certain cases the acceptance-complement technique can be applied, turning out to
be more efficient than a standard RS scheme.

In Sect. 3.6, a particular class of rejection samplers (known as strip samplers)
is described, in which samples are drawn from a finite mixture of piecewise
uniform densities with disjoint support. Namely, the proposal pdf consists of disjoint
rectangular pieces. Proposals of this type are simple and intuitive to design yet
flexible enough to attain good acceptance rates. Unfortunately, they can only be
used when the target has a bounded domain. However, in Sect. 3.6.2 a combination
of the inversion and rejection methods is described for the case in which the cdf
FX.x/ is computable, but not invertible. This technique, called inversion-rejection
[12, 13], extends the strip samplers to handle target densities which are not bounded
or have an infinite support.

Section 3.7 describes how to combine efficiently a suitable transformation of a
random variable and the RS algorithm. The resulting technique is called in different
ways: transformed rejection method in [18, 44], almost exact inversion method in
[13, Chap. 3], and also exact-approximation method in [28]. Finally, some relevant
applications of the RS technique are presented in Sect. 3.8 and the use of samples
generated by an RS scheme for building an efficient Monte Carlo estimator is
discussed in Sect. 3.9.

3.2 Rejection Sampling

Consider a function p.x/ / po.x/ and a proposal density �.x/ which is easy to
simulate. Additionally, choose a constant L such that L�.x/ is an envelope function
for p.x/, i.e.,

L�.x/ � p.x/;

for all x 2 D. The constant L is an upper bound for the ratio p.x/=�.x/, i.e.,

L � p.x/

�.x/
8x 2 D:

In the standard rejection sampling algorithm [30, 43], we first draw a sample from
the proposal pdf, x0 � �.x/, and then accept it with probability

pA.x
0/ D p.x0/

L�.x0/
� 1:
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Otherwise, the proposed sample x0 is discarded. In Fig. 3.1, we can see a graphical
representation of the rejection sampling technique. The RS procedure can be
outlined as:

1. Draw x0 from �.x/.
2. Generate v0 uniformly in the interval Œ0;L�.x0/�, i.e., v0 � U.Œ0;L�.x0/�/.
3. If the point .x0; v0/ belongs to the region

A0 D f.x; y/ 2 R
2 W 0 � y � p.x/g

below the target function p.x/, the sample x0 is accepted.
4. Otherwise, when the point .x0; v0/ falls into the region between the functions

L�.x/ and p.x/, the sample x0 is rejected.

We can also summarize this procedure in an equivalent way: first draw a sample x0
from �.x/ and u0 � U.Œ0; 1�/. If u0L�.x0/ � p.x0/, we accept x0. Table 3.1 describes
how we can generate N samples from the target pdf po.x/ / p.x/ according to the
standard rejection sampling algorithm. The RS technique is based on the following
theorem.

x′

p(x)

Lπ(x)
Lπ(x′)

p(x′)

Fig. 3.1 Graphical description of the RS procedure. The green area corresponds to the region A0

defined by p.x/. The red region indicates the area between the functions L�.x/ and p.x/. First, a
sample x0 is generated from the proposal pdf �.x/ and another coordinate v0 � U.Œ0; L�.x0/�/. If
the point .x0; v0/ belongs to the region A0 (green area) the sample x0 is accepted. Otherwise, it is
discarded

Table 3.1 Rejection sampling algorithm

1. Set i D 1. Let N be the number of desired samples from po.x/

2. Draw a sample x0 � �.x/ and u0 � U.Œ0; 1�/

3. If u0 � p.x0/

L�.x0/
, then set x.i/ D x0 and i D i C 1

4. Else, if u0 >
p.x0/

L�.x0/
, then discard x0 and go back to step 2

5. If i > N, then stop. Else go back to step 2
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Theorem 3.1 ([13, 37]) Let the r.v.’s X1 and X2 have pdfs �.x/ and po.x/ / p.x/,
respectively, and let U have a uniform distribution U.Œ0; 1�/. If there exists a bound
L � p.x/=�.x/ 8x 2 D, then

Prob

(

X1 � y

ˇ
ˇ
ˇ
ˇ̌U � p.X1/

L�.X1/

)

D Prob
˚
X2 � y



: (3.1)

Proof Assuming, without lack of generality, that D D R and recalling that U �
U.Œ0; 1�/ and X1 is distributed according to �.x/, we can write

Prob

(

X1 � y

ˇ
ˇ
ˇ
ˇ̌U � p.X1/

L�.X1/

)

D
Prob

(

X1 � y;U � p.X1/
L�.X1/

)

Prob

(

U � p.X1/
L�.X1/

)

D
R y

�1
R p.x/

L�.x/

0 �.x/dudx
R C1

�1
R p.x/

L�.x/

0 �.x/dudx

:

Then, integrating first w.r.t. u and after some trivial calculations, we arrive at the
expression

Prob

(

X1 � y

ˇ
ˇ
ˇ
ˇ
ˇ
U � p.X1/

L�.X1/

)

D
R y

�1 p.x/dx
R C1

�1 p.x/dx
:

Furthermore, since po.x/ / p.x/, i.e., po.x/ D 1
c p.x/ with c D R C1

�1 p.x/dx, we can
rewrite the expression above as

Prob

(

X1 � y

ˇ̌
ˇ
ˇ
ˇ
U � p.X1/

L�.X1/

)

D
R y

�1 cpo.x/dx

c
D
Z y

�1
po.x/dx:

Finally, since the r.v. X2 has density po.x/, we can write

Prob

(

X1 � y

ˇ
ˇ
ˇ
ˇ̌U � p.X1/

L�.X1/

)

D Prob
˚
X2 � y


 D
Z y

�1
po.x/dx;

so that the expression in Eq. (3.1) is verified. �
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3.2.1 Acceptance Rate

The average probability of accepting one proposed sample x0 is usually called
acceptance rate. This is the main figure of merit of a rejection sampler. In the sequel,
we denote the acceptance rate as Oa. In Sect. 3.3, we provide an exhaustive description
of the computational cost of a rejection sampler and show that

Oa D c

L
;

where c D R
D p.x/dx, hence the importance of finding a bound L that is as small as

possible.

Example 3.1 Consider a Gamma density,

po.x/ D 1

�.˛/
x˛�1e�x; x � 0; ˛ > 0:

where �.˛/ is the Gamma function. Several RS schemes, using different proposals
easy to draw from, have been described in the literature [11]. For instance, in [10],
a log-logistic proposal pdf is used,

�.x/ D ��
x��1

.�C x�/2
; x � 0;

with � D ˛�, � D p
2˛ � 1 for ˛ � 1, and � D ˛ for ˛ < 1. The bound L such

that L�.x/ � po.x/ is

L D 4˛˛e�˛

�.˛/
p
2˛ � 1 :

3.2.2 Distribution of the Rejected Samples

Theorem 3.1 clarifies that the distribution of the samples accepted in an RS
algorithm is the target pdf, when the bound L is such that L�.x/ � p.x/, 8x 2 D.
Namely, an accepted sample x0

a is distributed as

qa.x/ D po.x/:

On the other hand, it is straightforward to show that a sample x0
r rejected in the RS

test is distributed as

qr.x/ / L�.x/ � p.x/: (3.2)
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The validity of the RS scheme depends on a suitable choice of L. Indeed, if the
constant L does not guarantee that L�.x/ � p.x/, 8x 2 D, both densities, qa.x/ and
qr.x/, are different, as shown in Sect. 3.2.3.

3.2.3 Distribution of the Accepted and Rejected Samples with
Generic L > 0

In certain cases, it may be necessary to know the distribution of the samples accepted
(x0

a) or rejected (x0
r) in an RS-type step when the inequality L�.x/ � po.x/ is not

guaranteed to hold, i.e., L�.x/ < po.x/ for all x 2 D1 whereas L�.x/ � po.x/ for
all x 2 D2 with D D D1 [ D2 and D1 \ D2 D ; (namely, the RS condition is
satisfied only in certain parts of the domain D). In this case, the accepted samples
are distributed as

qa.x/ / minfp.x/;L�.x/g: (3.3)

Indeed, given x0 drawn from �.x/, if we have L�.x0/ < p.x0/, i.e., x0 2 D1, the
sample x0 is accepted with probability 1. Hence, the samples that belong to the
region D1 are distributed according to �.x/. Otherwise, if the sample x0 belongs to
a region where L�.x0/ � p.x0/, i.e., x0 2 D2, then x0 is distributed according to
po.x/ / p.x/ (as proved in Theorem 3.1). Similarly, we can state that the rejected
samples are distributed as

qr.x/ / �
L�.x/ � p.x/

�
C (3.4)

where .	/C denotes the positive part of .	/.

3.2.4 Different Application Scenarios

The most favorable scenario to use the RS algorithm occurs when p.x/ is bounded
with bounded domain. Indeed, in this case the proposal pdf �.x/ can be chosen
as a uniform density (i.e., the easiest possible proposal). Moreover, the calculation
of the bound L for the ratio p.x/=�.x/ is converted into the problem of finding an
upper bound for the target function p.x/, which is a simpler issue in general (see
Sect. 3.6.1).

Otherwise, when p.x/ is unbounded or its domain is infinite, the proposal �.x/
cannot be uniform and more elaborate schemes have to be sought. Section 3.7 and
Chap. 5 are devoted to describe methods that address this issue by transforming p.x/
so that it is embedded within a finite region.
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Lπ(x)

(a)

Lπ(x)

(b)

Lπ(x)

(c)

A0 A0

A0

p(x)

p(x)

p(x)

x x x

Fig. 3.2 Three possible cases for the density po.x/ / p.x/ with three possible envelope functions
L�.x/: (a) bounded with an infinite domain, (b) unbounded in a finite domain, and (c) bounded
with a finite domain. A uniform proposal distribution can only be used in the last case

Figure 3.2 illustrates these three possible cases described above. There exists a
fourth possible scenario, when the function p.x/ is unbounded with infinite support.
However, we can consider it as a combination of the cases in Fig. 3.2a, b.

3.2.5 Butcher’s Version of the Rejection Sampler

Consider a target density that can be expressed as the product of two functions,

po.x/ / p.x/ D �.x/g.x/; x 2 D; (3.5)

where �.x/ is a pdf easy to draw from, and 0 � g.x/ � 1 (not necessarily a cdf). In
this case, the RS method for generating samples from po.x/ can take the interesting
form described below [6]:

1. Draw x0 � �.x/ and u0 � U.Œ0; 1�/.
2. If u0 � g.x0/, accept x0. Otherwise, if u0 > g.x0/, reject x0.

Indeed, in this case the ratio between target and proposal used in the RS test is
exactly

po.x/

�.x/
D �.x/g.x/

�.x/
D g.x/;

and, since we have assumed 0 � g.x/ � 1, we do not need any additional bound
L. The acceptance rate, i.e., the average probability of accepting one proposed
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sample x0, is

Oa D
Z

D
�.x/g.x/dx;

which is exactly the normalizing constant of po.x/.

Example 3.2 Consider the following truncated Gamma density,

po.x/ / x˛�1e�x; with 0 < x � 1; ˛ > 0:

We can set �.x/ D ˛x˛�1 and g.x/ D e�x. Random samples from �.x/ can be easily
obtained by the inversion method, so that a rejection sampler to draw from po.x/ is
given by the following steps:

1. Draw u1 � U.Œ0; 1�/ and set x0 D u1=˛1 .
2. Draw u2 � U.Œ0; 1�/.
3. If u2 � e�x0

, then accept x0.

3.2.6 Vaduva’s Modification of the Butcher’s Method

In Butcher’s version the function g.x/ is not necessarily a cdf. If g.x/ can be
expressed as g.x/ D 1 � FQ.x/ or g.x/ D FQ.x/, where FQ.x/ is the cdf of a r.v. Q
with pdf q.x/, a modification of the previous RS scheme can be designed. Indeed,
Vaduva [42] proposed the following variant of the RS method for drawing from a
target po.x/ / �.x/Œ1 � FQ.x/�:

1. Draw x0 � �.x/ and z0 � q.x/.
2. If x0 � z0, accept x0. Otherwise, reject x0.

If g.x/ D FQ.x/, we only need to replace x0 � z0 with x0 � z0 in the acceptance step.
Vaduva’s algorithm is entirely equivalent to Butcher’s version of the RS method.
Indeed, considering the inequality x0 � z0 and applying to both sides the (decreasing)
transformation 1 � FQ.x/, we obtain

1 � FQ.x
0/ � 1 � FQ.z

0/:

Since z0 � q.x/, the sample

v0 D FQ.z
0/ � U.Œ0; 1�/;

is uniformly distributed in Œ0; 1� (see the inversion method in Sect. 2.4.1). Moreover,
since u0 D 1 � v0 � U.Œ0; 1�/ and g.x0/ D 1 � FQ.x0/ we can write

g.x0/ � u0;
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which is exactly the acceptance test in Butcher’s version of the RS algorithm.
Considerations in a similar fashion can be done for the case g.x/ D FQ.x/.

When both variants can be applied, the choice between drawing directly u0 and
computing g.x/ D 1 � FQ.x/ on the one hand (Butcher’s method) or generating z0
from q.x/ on the other hand (Vaduva’s method) depends mainly upon the relative
speeds of calculating FQ.x/ and generating z0 with pdf q.x/.

Example 3.3 Consider again the truncated Gamma density of Example 3.2, i.e.,

po.x/ / x˛�1e�x; with 0 < x � 1; ˛ > 0:

Vaduva’s method consists in drawing x0 � �.x/ and z0 � q.x/ D e�x (g.x/ D
1 � FQ.x/ with FQ.x/ D 1 � e�x). The sample is accepted if x0 � z0.

3.2.7 Lux’s Extension

Assume that the target pdf, defined for all x 2 R
C, can be expressed as

po.x/ D �.x/
Z r.x/

�1

 
1

R r�1.y/
0

�.z/dz

!

q.y/dy; x > 0; (3.6)

where r.x/ W RC ! R
C is a strictly decreasing function or

po.x/ D �.x/
Z r.x/

�1

 
1

R C1
r�1.y/ �.z/dz

!

q.y/dy; x > 0; (3.7)

if r.x/ is a strictly increasing function. In these cases, Lux [13, 27] suggested the
following algorithm:

1. Draw x0 � �.x/ and y � q.y/.
2. If y0 � r.x0/ accept x0. Otherwise reject x0.

It is not difficult to show that the acceptance rate in this case is given by

Oa D
Z C1

0

FY.r.x//�.x/dx;

where FY is the cdf of Y � q.y/. Usually, a convenient choice of q.y/ is q.y/ /
R r�1.y/
0

�.z/dz or q.y/ / R C1
r�1.y/ �.z/dz, depending on whether r.x/ is decreasing or

increasing.
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Example 3.4 Consider the Gamma pdf as target density,

po.x/ D 1

�.˛/
x˛�1e�x; x � 0; ˛ > 0;

where �.˛/ is the Gamma function. We can choose r.x/ D x˛�1 (hence, r�1.y/ D
y1=.˛�1/), �.x/ D e�x and

q.y/ D 1

�.˛/
e�y1=.˛�1/

; y � 0; (3.8)

such that

po.x/ D �.x/
Z r.x/

�1

 
1

R C1
r�1.y/ �.z/dz

!

q.y/dy;

D e�x
Z r.x/

�1
1

e�y1=.˛�1/

1

�.˛/
e�y1=.˛�1/

dy;

D 1

�.˛/
e�xx˛�1; x � 0:

Drawing from �.x/ D e�x is straightforward using the inversion method. Therefore,
if we can draw from q.y/, then Lux’s method becomes readily applicable. If ˛ > 1,
note that the r.v. Y � q.y/ can be obtained as Y D Z˛�1, where Z is distributed as

h.z/ D 1

�.˛ � 1/ z˛�2e�z; z � 0;

i.e., another Gamma pdf with parameter ˛ � 1 (that, in some cases, we can draw
from with other sampling methods). Therefore, we have found that a Gamma pdf
with parameter ˛ > 1 can be generated by drawing from another Gamma pdf with
parameter ˛�1 and then sampling (repeatedly, until accepting) from an exponential
density. The acceptance rate of this method is Oa D 21�˛ .

3.3 Computational Cost

The computational efficiency of the RS algorithm depends on three factors:

1. The computational cost of generating samples from the proposal pdf.
2. The computational cost of evaluating the ratio of the target density over the

proposal density, which is needed for the rejection test. In turn, the cost of this
operation depends essentially on the difficulty in evaluating the target (which can
be costly in many problems). The evaluation of the proposal is normally not an
issue.
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3. The acceptance rate. Note that this rate depends strictly on the discrepancy
between the shapes of the proposal and the target pdfs.

Different proposal pdfs are often compared according to the first and last factors.
Namely, two proposal densities to be used within the same RS algorithm (i.e., for
the same target pdf) should be compared in terms of the expected cost of generating
samples from the proposal and the probability of accepting these samples (or,
equivalently, the discrepancy between the target and the proposal densities).

In this section, we analyze the acceptance rate (Sect. 3.3.1) and discuss how to
speed up the computation of the ratio in the RS test (Sect. 3.3.2). Finally, we also
describe a procedure to reduce the mean number of uniform random variates needed
in the RS algorithm (Sect. 3.3.3).

3.3.1 Further Considerations About the Acceptance Rate

The fundamental figure of merit of a rejection sampler is the mean acceptance rate,
i.e., the expected number of accepted samples over the total number of proposed
candidates. In practice, finding a tight upper bound L and, in general, a “good”
envelope function, such that, L�.x/ � p.x/, is crucial for the performance of a
rejection sampling algorithm. We can formally define the acceptance rate as

Oa D Prob

(

U � p.X/

L�.X/

)

; (3.9)

where X � �.x/ and U � U.Œ0; 1�/. The probability in Eq. (3.9) represents the
acceptance condition in an RS scheme and can be calculated as

Oa D
Z

D

"Z p.x/
L�.x/

0

du

#

�.x/dx

D
Z

D

p.x/

L�.x/
�.x/dx D

R
D p.x/dx

L
D c

L
;

(3.10)

where 1=c is the normalization constant of p.x/ and the proposal pdf�.x/ is assumed
to be normalized.1 Note that in cases where p.x/ D po.x/, hence c D 1, the constant
L is necessarily larger or equal than 1, with equality if, and only if, �.x/ D po.x/.
Moreover, for the ratio p.x/=�.x/ to remain bounded, it is necessary that �.x/ has
tails that decay to zero at the same rate or slower than those of p.x/.

1Otherwise, if c� D R
D �.x/dx ¤ 1, the acceptance rate is given by the more general expression

Oa D c
Lc�

.
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Unfortunately, the RS method has an important structural limitation: even if we
are able to find the optimal bound

L� D sup
x2D

p.x/

�.x/
;

the acceptance rate can be far away from 1, depending on the difference in shape
between p.x/ and �.x/. More specifically, the efficiency of the RS algorithm is a
function of the discrepancy between the shapes of �.x/ and p.x/. Let us assume an
unnormalized proposal �.x/ and let us denote as c� D R

D �.x/dx the normalizing
constant of �.x/. Indeed, observe that the probability of rejecting a sample is
Or D 1 � Oa, that is

Or D 1 � c

Lc�
D Lc� � c

Lc�
;

D 1

Lc�

�Z

D
L�.x/dx �

Z

D
p.x/dx

�
;

D 1

Lc�

�Z

D
jL�.x/ � p.x/jdx

�
D 1

Lc�
d.L�; p/; (3.11)

where we have assumed unnormalized �.x/ � 0 and p.x/ � 0, and d.L�; p/
denotes the L1 distance between L�.x/ and p.x/. This drawback is an important
issue, since accept–reject algorithms can generate many “useless” samples when
rejecting. For this reason, different schemes [7, 8, 24, 25] have been proposed
to improve the efficiency of the standard RS method in estimation problems (see
Sect. 3.9). Furthermore, many adaptive accept–reject schemes have been designed.
The basic idea of these methods is to iteratively build up a sequence of “good”
proposal densities f�t.x/gC1

tD0 which become closer and closer to the target density
po.x/ and, as a consequence, improve the acceptance rate. Adaptive schemes are the
topic of Chap. 4.

Example 3.5 The Nakagami distribution is widely used in radio communication
applications to model the wireless fading channel, due to its good agreement
with empirical channel measurements for some urban multi-path environments
[36]. The Nakagami target density is po.x/ D 1

c p.x/, where 1
c D 2mm=.��.m//

and

p.x/ D x2m�1 exp
�
� m

�
x2
�
; x � 0; (3.12)

where m � 0:5 is the fading parameter, which indicates the fading depth, and� > 0

is the average received power. When m is an integer or half-integer (i.e., m D n
2

with
n 2 N), independent samples can be generated through the square root of a sum of
squares of n zero-mean i.i.d. Gaussian r.v.’s [3, 36]. For m ¤ n

2
, several RS schemes

for drawing i.i.d. samples from a Nakagami-m pdf have been proposed [33]. Here,
we first consider the RS method given in [26], where another Nakagami density is
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used as a proposal pdf, i.e.,

�1.x/ / g1.x/ D ˛p x2mp�1 exp

�
� mp

�p
x2
�
; x � 0; (3.13)

with mp D n=2, n D b2mc (and bxc denoting the integer part of x 2 R), and the
remaining parameters (˛p and�p) adjusted to obtain the same location and value of
the maximum in the proposal as in the target,

�p D 2mp

2mp � 1x2max D �
mp.2m � 1/

m.2mp � 1/
;

where xmax is the location of the maximum of the Nakagami pdf, obtained solving
dp.x/

dx D 0, which results in

xmax D
r
.2m � 1/�

2m
: (3.14)

We also set

˛p D p.xmax/

g1.xmax/
D exp.mp � m/

�
�.2m � 1/

2m

�m�mp

:

It is possible to prove that g1.x/ � p.x/, x � 0, 8m � 0:5 and 8� > 0.
Alternatively, in [45] a truncated Gaussian density is suggested as a proposal pdf.
Namely,

�2.x/ / g2.x/ D b exp
� � a.x � xmax/

2
�
; x � 0; (3.15)

with a D m
�

and b D p.xmax/. Once more, we have g2.x/ � p.x/, x � 0, 8m � 0:5

and 8� > 0.
We analyze the performance of these two RS techniques in terms of the

acceptance rate. The acceptance rate of the first scheme can be obtained analytically,

Oa1 D .2e/m�mp
�.m/.2mp � 1/mp

�.mp/.2m � 1/m ; (3.16)

with �.m/ denoting the Gamma function, whereas the acceptance rate of the second
scheme can be approximated for m � 4 as

Oa2 � em� 1
2 �.m/.2m � 1/

1
2�m

p
�2mC 1

2

: (3.17)

Note that in both cases the acceptance rate is independent from the average received
power,�. Figure 3.3 shows the acceptance rate, obtained empirically after drawing



78 3 Accept–Reject Methods

Fig. 3.3 The acceptance
rates of Example 3.5 using
the proposal �1.x/
(continuous line) and �2.x/
(dashed line) for
1 � m � 50. The acceptance
rate is independent of � for
both of the proposed schemes
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N D 6 	 105 independent samples, for both approaches and several values of the
fading depth, m. It can be seen that the first technique, using the proposal �1.x/,
is extremely efficient. Indeed, in this numerical example it provides exact sampling
(i.e., aR1 D 1) when m is integer or half-integer, since the proposal is equal to the
target in these cases.

3.3.2 Squeezing

If we observe carefully the RS algorithm, described in Table 3.1, it is apparent that
testing the acceptance condition is a fundamental but, in some cases, expensive step.
In order to speed up the RS technique, we may seek a simple function '.x/ that is
easy to evaluate and satisfies

'.x/ � p.x/: (3.18)

Such function is often termed a squeeze function. The basic idea of squeezing is to
add a previous test involving the function '.x/ in order to avoid the evaluation of
p.x/. The method can be summarized in the following way:

1. Draw x0 � �.x/ and u0 � U.Œ0; 1�/.
2. If u0L�.x0/ � '.x0/, then accept x0 without evaluating the target function p.x/.
3. Otherwise, if u0L�.x0/ � p.x0/, then accept x0. Else, reject x0.

Figure 3.4 illustrates the squeeze principle. If the point
�
x0; u0L�.x0/

�
belongs to the

area below '.x/ (darker green area), the sample x0 is accepted at step 2. Otherwise,
we check whether the point stays in the lighter green area and in this case we also
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Fig. 3.4 Squeeze principle:
we first check whether the
point

�
x0; u0L�.x0/

�
falls

within the darker green
region, and in such case the
sample x0 is already accepted.
Note that in order to check
this we do not need to
evaluate the function p.x/, but
only the (simpler) squeeze
function '.x/ � p.x/

x′

Lπ(x′)

p(x′)

p(x)

Lπ(x)

ϕ(x)

ϕ(x′)

Table 3.2 Sibuya’s modified RS algorithm

1. Set i D 1. Let N be the number of desired samples from po.x/

2. Draw u0 � U.Œ0; 1�/
3. Draw x0 � �.x/

4. If u0 � p.x0/

L��.x0/
, then set x.i/ D x0, i D i C 1 and go to step 6

5. Else, if u0 >
p.x0/

L��.x0/
, then discard x0 and repeat from step 3

6. If i > N, then stop. Else go back to step 2

accept x0 at step 3. The sample x0 is discarded if the point
�
x0; u0L�.x0/

�
falls within

the red region.

3.3.3 Sibuya’s Modified Rejection Method

In this subsection, we present an alternative procedure to implement the RS scheme
that turns out of theoretical interest, although its applicability is actually limited.
In a standard RS scheme, we must generate a uniform sample u0 each time we
perform an RS test to accept or discard a proposed sample x0. Therefore, one way
in which we can reduce the computational complexity of the rejection sampler is by
minimizing the number of draws from the uniform distribution. Here, we present
an alternative procedure that reduces considerably the number of uniform variates
necessary in an RS method. However, the practical application of this approach
is restricted, since the optimal bound L� is needed and performance turns out
worse than a standard RS scheme [13, Chap. 2], [15] in terms of the acceptance
rate.

If the optimal value L� D sup p.x/
�.x/ is known, it is possible to apply a variant

of RS outlined in Table 3.2. This modified rejection method was proposed by
M. Sibuya in [38] and analyzed later in [15]. Sibuya observed that we can fix a
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uniform sample u0 in the RS test and change only the proposed sample x0 until it is
accepted.

Note that the ratio sup p.x/
L��.x/ can reach the value 1 only if L� D supx2D

p.x/
�.x/ ,

i.e., it is the optimal bound. Sibuya’s method can be applied only in this situation.
Indeed, consider the use of a constant L > L�. In this case, we have

0 < M D sup
p.x/

L�.x/
< 1; for every x 2 D:

Then, if a sample u0 > M is generated in the step 2 of Table 3.2, the algorithm
remains trapped in an infinite loop, since we can never obtain a sample x0 such that

p.x0/

L�.x0/
� u0 (hence we never accept x0).

3.4 Band Rejection Method

A little-known but important improvement of the standard RS algorithm was
proposed by W. Payne [35] and later on extended using non-uniform proposal pdfs
in [11, Chap. 3]. The technique can be applied only when the target has a bounded
domain. In this section, we describe a generalized version and present the so-called
band RS method introduced in [11, 35] as a special case.

3.4.1 Preliminaries

The band rejection (BR) scheme is better described if we consider first an alternative
graphical representation of the RS method. Consider a target pdf po.x/ / p.x/ and
a proposal �.x/, with x 2 D D Œa; b� (i.e., a bounded domain). Given a bound
L � p.x/

�.x/ , Fig. 3.5a depicts the function �.xI L/ D p.x/
L�.x/ , x 2 D, and the acceptance

and rejection sets denoted as

A D f.x; u/ 2 D � Œ0; 1� W u � �.xI L/g

and

R D f.x; u/ 2 D � Œ0; 1� W u > �.xI L/g

respectively. Note that

0 � �.xI L/ � 1

L
sup
x2D

p.x/

�.x/
� 1:
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1 − p(x)

LBπ(x)

(b)

Fig. 3.5 (a) Yet another graphical interpretation of the RS method: A and R represent the
acceptance and rejection sets. (b) An alternative RS scheme with an extended acceptance region

If the optimal bound L D L� D supx2D
p.x/
�.x/ is selected, then the function

�.xI L�/ D p.x/
L��.x/ reaches the value 1 for some x 2 D. Obviously, in order to

obtain good RS schemes we would like the set A to be as large as possible, ideally
including the whole rectangle Œa; b� � Œ0; 1� (see Fig. 3.5a).

Let us assume that we have chosen and fixed a proposal pdf �.x/ and a
bound L. In this case, the only remaining possibility to improve the acceptance
rate of the RS algorithm is to post-process and reuse the rejected samples,
converting them into samples distributed according to the target po.x/. Hence, we
need to relate in some way the points .x; u/ in the region R to the target pdf
po.x/.

In order to clarify how this can be done, we first introduce a (non-practical)
alternative to the standard RS scheme:

• Set LB D 2L.
• Draw x0 � �.x/ and u0 � U.Œ0; 1�/.
• If u0 � �.xI LB/ D p.x/

LB�.x/
, then accept x0.

• Else, if u0 � 1 � �.xI LB/, then accept x0. Otherwise, reject x0.

In this alternative RS technique we have a “second chance” for reusing an initially
rejected sample. However, although the method is valid (as shown in the sequel),
the acceptance rate is exactly the same as in the standard RS method. Figure 3.5b
illustrates the algorithm by depicting the two acceptance regions, A.1/ and A.2/,
corresponding to the two acceptance conditions. The question now is whether it
is possible to modify the previous procedure in a suitable way to increase the
acceptance rate of the standard RS scheme. The answer is positive, as described
below.
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3.4.2 Generalized Band Rejection Algorithm

Let � W Œa; b� ! Œa; b� be a decreasing transformation such that �.a/ D b; �.b/ D a,
and define the pdf

q.x/ / h.x/ D �p.��1.x//
d��1.x/

dx
: (3.19)

Note that, since po.x/ is normalized and po.x/ / p.x/, then

q.x/ D �po.�
�1.x//

d��1.x/
dx

:

Moreover, consider the following upper bound

LB � p.x/C h.x/

�.x/
: (3.20)

We outline the generalized band rejection (GBR) algorithm in Table 3.3 using the
notation just introduced. The GBR algorithm contains two possible acceptance
tests, the first one with probability p.x0/

LB�.x0/
and the second one with probability

h.x0/

LB�.x0/
. Hence, note that the function h.x/ is also involved in the second acceptance

condition (at step 3.3 of Table 3.3).
For ��1.x/ D x the GBR scheme yields the “non practical” method of Sect. 3.4.1,

which has exactly the same acceptance probability as the standard rejection sampler.
However, other choices of � may yield improvements over the standard technique.
A suitable and simple example is ��1.x/ D a C b � x, so that h.x/ D p.a C b � x/.
Figure 3.6 illustrates the acceptance and rejection regions of the GBR sampler for
this choice of �. Comparing Figs. 3.5b and 3.6, it can be observed that the area of
rejection region R (red area) is smaller in Fig. 3.6 than in Fig. 3.5b. This means that
the acceptance rate for the case in Fig. 3.6 is greater.

The validity of the GBR algorithm is granted by the following theorem (a simpler
version can be found [11, Chap. 3]).

Table 3.3 Generalized band rejection algorithm

1. Set i D 1. Let N be the number of desired samples from po.x/

2. Find a suitable upper bound LB � p.x/Ch.x/
�.x/ , with h.x/ given

in Eq. (3.19)

3. Draw samples x0 � �.x/ and u0 � U.Œ0; 1�/

4. If u0 � p.x0/

LB�.x0/
, then accept x.i/ D x0, set i D i C 1 and jump to step 6

5. If u0 > 1� h.x0/

LB�.x0/
, set x.i/ D ��1.x0/ and set i D i C 1. Otherwise, reject x0

6. If i > N, then stop. Else, go back to step 3
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Fig. 3.6 Band rejection with
h.x/ D p.a C b � x/, i.e.,
��1.x/ D a C b � x
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A(2)

1 − h(x)

LBπ(x)

p(x)

LBπ(x)
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Theorem 3.2 Let the r.v.’s X1 and X2 have pdfs �.x/ and po.x/ / p.x/, respectively,
and let U have a uniform distribution U.Œ0; 1�/. If there exists a bound LB �
p.x/Ch.x/
�.x/ ; 8x 2 D D Œa; b�, where h.x/ D �p.��1.x// d��1

dx (with � a decreasing
function such that �.a/ D b and �.b/ D a), then

Ptot.y/ WDProb
˚
X2 � y




D c1
c1 C c2

Prob

(

X1 � y

ˇ
ˇ
ˇ
ˇ̌U � p.X1/

LB�.X1/

)

C c2
c1 C c2

Prob

(

X1 � ��1.y/

ˇ
ˇ
ˇ
ˇ
ˇ
U � 1� h.X1/

LB�.X1/

)

;

(3.21)

where c1 D R b
a p.x/dx and c2 D R b

a h.x/dx are the normalizing constants of po.x/ D
1
c1

p.x/ and q.x/ D 1
c2

h.x/, respectively.

Remark 3.1 Indeed, the probability corresponding to the first acceptance test is

P1.y/ D Prob

(

X1 � y

ˇ̌
ˇ
ˇ
ˇ
U � p.X1/

LB�.X1/

)

;

while the probability of the second acceptance condition can be written as

P2.y/ D Prob

(

�.X1/ � y

ˇ̌
ˇ
ˇ
ˇ
1� U � h.X1/

LB�.X1/

)

D Prob

(

X1 � ��1.y/

ˇ
ˇ̌
ˇ
ˇ
U � 1 � h.X1/

LB�.X1/

)

:

so that the probability describing the whole algorithm is a convex combination of
the previous ones, i.e., Ptot.y/ D c1

c1Cc2
P1.y/C c2

c1Cc2
P2.y/.
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Proof Since the two acceptance tests are disjoint events (corresponding to the green
areas in Fig. 3.6), we can express Ptot.y/ D c1

c1Cc2
P1 C c2

c1Cc2
P2 as

Ptot.y/ D c1
c1 C c2

R y
a

R p.x/
LB�.x/

0 �.x/dudx
R b

a

R p.x/
LB�.x/

0 �.x/dudx

C c2
c1 C c2

R b
��1.y/

R 1
1� h.x/

LB�.x/
�.x/dudx

R b
a

R 1
1� h.x/

LB�.x/
�.x/dudx

:

Then, integrating first w.r.t. u and after some trivial calculations, we arrive at the
expression

Ptot.y/ D c1
c1 C c2

R y
a

p.x/
LB

dx
R b

a
p.x/
LB

dx
C c2

c1 C c2

R b
��1.y/

h.x/
LB

dx
R b

a
h.x/
LB

dx

D c1
c1 C c2

R y
a p.x/dx
R b

a p.x/dx
C c2

c1 C c2

R b
��1.y/ h.x/dx
R b

a h.x/dx

D c1
c1 C c2

c1
R y

a po.x/dx

c1
C c2

c1 C c2

c2
R b
��1.y/ q.x/dx

c2
;

D c1
c1 C c2

Z y

a
po.x/dx C c2

c1 C c2

Z b

��1.y/
q.x/dx:

Furthermore, recalling that q.x/ D �po.�
�1.x// d��1

dx and performing the change
of variables x D �.z/ (recall that ��1.a/ D b by assumption), we can rewrite the
expression above as

Ptot.y/ D c1
c1 C c2

Z y

a
po.x/dx � c2

c1 C c2

Z a

y
po.z/dz;

D c1
c1 C c2

Z y

a
po.x/dx C c2

c1 C c2

Z y

a
po.z/dz;

D c1 C c2
c1 C c2

Z y

a
po.x/dx;

D
Z y

a
po.x/dx D Prob

˚
X2 � y



:

so that Eq. (3.21) is verified. �
Given the previous theorem, it is straightforward to verify that the acceptance

rate of the GBR algorithm is

OaGBR D c1 C c2
LB

; (3.22)
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where c1 D R
D p.x/dx and c2 D R

D h.x/dx. Given a proposal �.x/, the GBR
algorithm can outperform the standard RS method for a proper choice of the upper
bound LB and the transformation �. The Payne-Dagpunar’s scheme, described in the
following section, provides an example of how to choose � in the GBR setup.

3.4.3 Payne-Dagpunar’s Band Rejection

The band rejection (BR) method was introduced in [11, 35] using

��1.x/ D a C b � x; x 2 Œa; b�;

which is the case shown in Fig. 3.6. Observe that in this case we have

h.x/ D p.a C b � x/;

and c1 D c2. If the best LB is available, i.e.,

L�
B D sup

x2D
p.x/C p.a C b � x/

�.x/
;

then one can show that the BR scheme always provides better performance than a
standard RS algorithm with the same proposal and using the best bound,

L� D sup
x2D

p.x/

�.x/
:

Indeed, we have

OaRS D c1
L� � OaBR D 2

c1
L�

B

; (3.23)

where OaRS is the acceptance rate of the standard RS technique and OaBR is the
acceptance rate of the BR method, since

sup
x2D

p.x/C p.a C b � x/

�.x/
� 2 sup

x2D
p.x/

�.x/
;

i.e., L�
B � 2L�. Therefore, using the optimal upper bound the BR scheme always

outperforms or, at least, obtains the same performance as the standard RS algorithm.
Moreover, since L� � L�

B � 2L�, the best scenario for a BR scheme occurs when
L�

B D L�, obtaining OaBR D 2OaRS from Eq. (3.23), i.e., twice the acceptance rate
w.r.t. the corresponding standard RS method.This is exactly the case in the example
below.
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Example 3.6 Consider a triangular density

po.x/ / p.x/ D 1 � x; 0 � x � 1:

Hence, we have x 2 D D Œa D 0; b D 1�, and c1 D R
D p.x/dx D 1

2
. Moreover, we

choose ��1.x/ D 1 � x, so that

q.x/ / h.x/ D p.1 � x/ D x; 0 � x � 1;

and c2 D R
D h.x/dx D 1

2
. We also use a uniform proposal pdf, �.x/ D 1, 0 � x � 1,

and compute the (optimal) upper bound

L�
B D sup

x2Œ0;1�
p.x/C h.x/

�.x/
D sup

x2Œ0;1�
.1 � x C x/ D 1:

Therefore, in this example, the band rejection algorithm provides an exact direct
sampler (i.e., the acceptance rate is c1Cc2

L�
B

D 1). The algorithm to generate the ith
sample is:

• Draw x0 � �.x/ D U.Œ0; 1�/ and another sample u0 � U.Œ0; 1�/.
• If u0 � p.x0/ D 1 � x0, then set x.i/ D x0. Otherwise, set x.i/ D ��1.x0/ D 1 � x0.

Indeed, note that the second acceptance condition u0 > 1 � h.x0/ D 1 � x0
always holds if the previous inequality, u0 � p.x0/ D 1 � x0, is not satisfied. A
careful look at of the algorithm above shows that it can be summarized as (a) draw
u1; u2 � U.Œ0; 1�/ and (b) take x0 D min.u1; u2/. The acceptance rate of a standard
RS algorithm, using the same proposal pdf �.x/ D U.Œ0; 1�/, is OaRS D 1=2.

3.5 Acceptance-Complement Method

If we impose additional assumptions on the target po.x/, then we can construct
variations of the rejection sampling algorithm that turn out to be more efficient for
some problems. Let us assume that we are able to decompose our target pdf as the
sum of two terms

po.x/ D g1.x/C g2.x/; (3.24)

and define !1 D R
D g1.x/dx, !2 D R

D g2.x/dx. Note that, since !1 C !2 D 1, we
can rewrite Eq. (3.24) as the discrete mixture

po.x/ D !1h1.x/C !2h2.x/ D !1h1.x/C .1 � !1/h2.x/; (3.25)

where h1.x/ , g1.x/=!1 and h2.x/ , g2.x/=!2 are proper pdfs. Hence, if we are
able to draw from h1.x/ and h2.x/, we can use the procedure for discrete mixtures
described in Sect. 2.3.4 to generate samples from the target po.x/.
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Let us consider the case in which we are able to draw directly from h2.x/ but not
from h1.x/. However, we assume that there is a known pdf �.x/ such that

�.x/ � g1.x/ D !1h1.x/; (3.26)

and, therefore, it is possible to draw from h1 by rejection sampling. Note that �.x/ is
a normalized density (i.e.,

R
D �.x/dx D 1), unlike g1.x/, as

R
D g1.x/dx D !1 < 1.

For this reason, we can set L D 1 in the inequality L�.x/ � g1.x/, recalling that we
assume Eq. (3.26). Indeed, we will show that the acceptance-complement can only
be applied with L D 1.

In this scenario, the standard procedure to generate a sample x0 from po.x/, as
seen in Sect. 2.3.4, is:

1. Draw an index j0 2 f1; 2g with probabilities given by the weights!1,!2 D 1�!1.
2. If j0 D 2, then generate x0 � h2.x/.
3. If j0 D 1, then:

(a) Draw x0 � �.x/ and u0 � U.Œ0; 1�/.
(b) If u0 � !1h1.x0/

�.x0/
, then return x0.

(c) Otherwise, if u0 > !1h1.x0/

�.x0/
, repeat from step (a).

An interesting variant of this approach, that avoids rejection steps, is the so-called
acceptance-complement method [20, 21]. In order to draw a sample x0 from po.x/,
the acceptance-complement algorithm performs the following steps.

1. Draw x0 � �.x/ and u0 � U.Œ0; 1�/.
2. If u0 � !1h1.x0/

�.x0/
, then accept x0.

3. Otherwise, if u0 > !1h1.x0/

�.x0/
, then draw x00 � h2.x/ and accept it.

Table 3.4 enumerates all the steps required by the acceptance-complement algo-
rithm. Since we avoid any rejection, this approach is computationally more efficient
and faster than the original procedure.

Furthermore, the acceptance-complement technique still yields exact, i.i.d. sam-
ples from the target distribution. This is guaranteed by the following theorem.

Theorem 3.3 ([13, 20]) Let us consider a target pdf po.x/ D g1.x/C g2.x/, where
gj.x/ D !1hj.x/, with j D 1; 2. Moreover, consider three independent r.v.’s X1, X2,
and U such that X1 has pdf �.x/, X2 has pdf h2.x/, U � U.Œ0; 1�/, and �.x/ �
g1.x/ D !1h1.x/, 8x 2 D with D � R. In this case, we can state

P.y/ D Prob



X1 � y

ˇ
ˇ
ˇU � !1h1.X1/

�.X1/

�
CProb



X2 � y

ˇ
ˇ
ˇU >

!1h1.X1/

�.X1/

�
D

D Prob
˚
X3 � y



;

(3.27)

where X3 has density po.x/ / p.x/.
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Table 3.4 Acceptance-complement algorithm

1. Set i D 1. Let N be the number of desired samples from po.x/

2. Find a suitable decomposition of the form of Eq. (3.25), i.e.,

po.x/ D g1.x/C g2.x/,

where gj.x/ D !1hj.x/, with j D 1; 2

3. Draw samples x0 from �.x/ and u0 from U.Œ0; 1�/

4. If u0 � g1.x0/

�.x0/
then accept x.i/ D x0 and set i D i C 1

5. If u0 >
g1.x0/

�.x0/
generate x00 from h2.x/ D g2.x/

!2
, set x.i/ D x00 and set i D i C 1

6. If i > N then stop, else go back to step 3

Proof From Theorem 3.1, we can write

Prob



X1 � y

ˇ
ˇ̌U � !1h1.X1/

�.X1/

�
D !1

Z y

�1
h1.x/dx: (3.28)

Moreover, the second term in (3.27) can be expressed as

Prob

(

X2 � y
ˇ
ˇ
ˇU >

!1h1.X1/

�.X1/

)

D Prob fX2 � yg Prob



U >

!1h1.X1/

�.X1/

�
;

(3.29)

due to the independence of the two events, since the r.v.’s X1, X2, and U are
independent. Thus we can also write

Prob

(

X2 � y
ˇ
ˇ
ˇU >

!1h1.X1/

�.X1/

)

D

D
�Z y

�1
h2.x/dx

��
1 � Prob



U � !1h1.X1/

�.X1/

��

D
�Z y

�1
h2.x/dx

��
1 �

Z C1

�1
!1h1.x/

�.x/
�.x/dx

�

D
�Z y

�1
h2.x/dx

��
1 � !1

Z C1

�1
h1.x/dx

�

D
�Z y

�1
h2.x/dx

�
.1� !1/ ;

(3.30)
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where Eq. (3.30) results from ProbfU � Yg D EŒY� with Y � 1, since U �
U.Œ0; 1�/. Furthermore, since !2 D 1 � !1, we have

Prob

(

X2 � y

ˇ
ˇ
ˇ
ˇ
ˇ
U >

!1h1.X1/

�.X1/

)

D !2

Z y

�1
h2.x/dx: (3.31)

Therefore, given Eqs. (3.28) and (3.31) we can write

P.y/ D !1

Z y

�1
h1.x/dx C !2

Z y

�1
h2.x/dx

D
Z y

�1
po.x/dx D Prob

˚
X3 � y



;

(3.32)

since po.x/ D !1h1.x/C !2h2.x/. �
Finally let us remark that, if we use the acceptance-complement procedure of

Table 3.4 with a proposal �.x/ such that

L�.x/ � g1.x/ D !1h1.x/;

where L ¤ 1, then the generated samples x0 are distributed according to the density

q.x/ D !1

L
h1.x/C

�
1 � !1

L

�
h2.x/; (3.33)

that is different from the target pdf po.x/.

3.6 RS with Stepwise Proposals

One natural way to classify rejection samplers is according to the type of proposal
density they use to generate candidate samples. In this section, we focus on one such
class. In particular, we study strip methods, i.e., RS algorithms in which samples are
drawn from a finite mixture of piecewise uniform densities with disjoint support.
Proposals of this type are simple and intuitive to design, yet flexible enough to attain
good acceptance rates.

We start with a description of standard strip samplers in Sect. 3.6.1, followed
by a generalization (the inversion-rejection method) in Sect. 3.6.2 that extends the
technique to handle target densities which are not bounded or have an infinite
support.
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A0

g(x)p(x)

s1 s2 s3 s4 s5

(a)

A0

y = p(x)

(b)

Fig. 3.7 Examples of construction of a region R formed by four rectangles that covers the region
A0 (A0 � R) below p.x/. The bounded function p.x/ / po.x/ is defined in a bounded domain. (a)
The region R is composed of vertical bars. (b) The region R is composed of horizontal bars

3.6.1 Strip Methods

The goal of this class of algorithms is to make the design of the sampling method as
simple and fast as possible [19, Chap. 5]. Indeed, the central idea is straightforward:
we simply cover the region A0 in Eq. (2.39) below the target pdf po.x/ with a union
of rectangles forming an envelope region for A0, as depicted in Fig. 3.7. Clearly
when the number of rectangles increases, this “strip” approximation of A0 becomes
tighter and tighter.

The resulting algorithms are quite simple and fast, but they only work with
bounded pdfs with finite support in their basic formulation.2 Moreover, it is
necessary to determine where po.x/ is increasing and where it is decreasing. For
this reason, and in order to simplify the treatment, in this section we consider a
monotonically decreasing target pdf po.x/ / p.x/.

A strip method relies on building a stepwise envelope function

g.x/ � p.x/; x 2 D:

There are two possibilities to construct it:

1. The first approach uses vertical strips (see Fig. 3.7a) and is known as Ahrens
method, after J. Ahrens [1, 2, 17].

2. The second way, that uses horizontal strips (see Fig. 3.7b), is also called the
ziggurat method [29].

2However, there exist some variations in the literature [34], [41, Chap. 4] that may extend the
applicability of this technique.



3.6 RS with Stepwise Proposals 91

In the sequel, we focus our attention on the first approach as the scheme with
horizontal strips is equivalent. Consider, for the moment, a bounded pdf po.x/ with
bounded domain D D Œa; b�. We choose a set of support points

S D fs1 D a; s2; : : : ; sn; snC1 D bg
where si 2 D, 8i with s1 < s2 < : : : : < snC1. We can define the n intervals,
Di D Œsi; siC1�, 1 � i � n, that form a partition of the full support, i.e., D D
[n

iD1Di. Moreover, since we assume that the function p.x/ / po.x/ is decreasing
(i.e., p.si/ � p.siC1/ for i D 1; : : : ; n), the rectangular set

Ri , Œsi; siC1� � Œ0; p.si/�;

embeds the area below p.x/ for all x 2 Di. Hence, the region composed by the
union of these rectangular pieces, R D [n

iD1Ri, covers the area below p.x/ for
x 2 D D Œa; b�. Furthermore, the stepwise function

g.x/ ,

8
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
:̂

p.s1/; x 2 D1;

:::

p.si/; x 2 Di;

:::

p.sn/; x 2 Dn:

(3.34)

yields an upper bound for p.x/, i.e., p.x/ � g.x/ 8x. Therefore, we can easily define
a proposal density �.x/ / g.x/ as a mixture of uniform pdfs

�.x/ ,
nX

iD1
!iIDi.x/; (3.35)

where IDi.x/ is the indicator function for the set Di, and the weights are defined as

!i D jRijPn
iD1 jRij ; (3.36)

where jRij D p.si/.siC1 � si/, for i D 1; : : : ; n. Hence, if we first draw an index
j0 with Probfj D j0g D !j0 and a uniform sample x0 from U.Œsj0 ; sj0C1�/, then x0 is
distributed as the proposal pdf �.x/ in Eq. (3.35). Thus, recalling also the envelope
function g.x/ / �.x/ in Eq. (3.34), the algorithm for drawing a sample x0 can be
summarized as follows.

1. Draw x0 � �.x/ in Eq. (3.35) and u0 � U.Œ0; 1�/.
2. If u0 � p.x0/

g.x0/
, then accept x0. Otherwise, discard it.
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Table 3.5 Vertical strip algorithm for a decreasing pdf po.x/

1. Set i D 1. Let N be the number of desired samples from po.x/

2. Draw an index j0 2 f1; : : : ; ng with Probfj D j0g D !j0 ,

as defined in Eq. (3.36)

3. Generate a point .x0; u0
2/ uniformly within the rectangle Rj0 , i.e.,

x0 � U.Œsj0 ; sj0C1�/ and u0
2 � U.Œ0; p.sj0 /�/

4. If u0
2 � p.x0/, then accept x.i/ D x0 and set i D i C 1

5. Otherwise, if u0
2 > p.x0/, discard x0 and go back to step 2

6. If i > N, then stop. Else, go back to step 2

Table 3.5 provides a detailed description of the vertical strip algorithm. Recall that
g.x/ D p.si/ 8x 2 Di.

Different strategies have been studied to choose the positions of the support
points in order to decrease the overall computational cost of the rejection sampler
[13, Chap. 8], [19, Chap. 5], [23]. Moreover, strip methods can easily improve
the proposal pdf by adding new support points adaptively, following the schemes
described in Chap. 4.

The next technique, called inversion-rejection method, can be seen as an exten-
sion of the strip methods to deal with unbounded pdfs or densities with unbounded
domain.

3.6.2 Inversion-Rejection Method

In many cases, we may be able to calculate analytically the cdf FX.x/ but not
to invert it. Therefore, the inversion method in Sect. 2.4.1 cannot be applied. To
overcome this problem, numerical inversion methods have been proposed in the lit-
erature [19, Chap. 7]. However, this approach can only be considered approximate,
since the generated samples are not drawn exactly from po.x/. Furthermore, it can
be computationally demanding.

Other approaches that start from the inversion principle and guarantee exact
sampling have been studied. An example is the inversion-rejection method [12, 13],
which is a combination of the inversion and rejection algorithms for the case when
the cdf FX.x/ is computable but not invertible.

For simplicity, we describe this technique for a bounded and decreasing target
pdf, po.x/, with infinite supportD D Œa;C1/. However, the algorithm can be easily
extended to more general pdfs. Consider an infinite sequence of support points,
sorted in ascending order,

S D fs1 D a; s2; : : : :; si; siC1 : : : :g;

with si 2 D, si < siC1 for i D 1; : : : ;C1.



3.6 RS with Stepwise Proposals 93

Observe that the sequence is fixed but does not need to be stored: we can
compute si from the index i or from the previous point si�1. For instance, equi-
spaced intervals can be chosen such that siC1 � si D ı. This is really a crucial issue
in order to design efficient samplers, as illustrated in [13, Chap. 7]. Moreover, we
assume that the cdf FX.x/ can be evaluated and a global upper bound M is also
available, i.e.,

M � p.x/; (3.37)

where p.x/ / po.x/. The algorithm consists of the following steps.

1. Generate v0 � U.Œ0; 1�/.
2. Find the index j0 such that

FX.s
0
j/ � v0 � FX.sj0C1/: (3.38)

Thus, the interval Dj0 D Œsj0 ; sj0C1� 
 D is chosen with probability Probfj D j0g
D FX.sj0C1/�FX.sj0/. This is always possible, since we can use, e.g., a sequential
search to find sj0 [11, 13, 19].

3. Draw a sample x0 uniformly from Dj0 D Œsj0 ; sj0C1�, i.e., x0 � U.Œsj0 ; sj0C1�/.
4. Generate u0 from U.Œ0; 1�/.
5. If Mu0 � p.x0/, then accept x0.
6. Otherwise, if Mu0 > p.x0/, then discard x0.

Hence, we first select an interval Di D Œsi; siC1� with probability FX.siC1/ � FX.si/

by inversion. Since the interval Di is closed and po.x/ is bounded, we can use a
uniform pdf in Di as proposal density and draw a sample x0 from po.x/ by rejection.
Since we have assumed p.x/ to be a decreasing function, this procedure can be easily
improved if we define a stepwise envelope function, g.x/ D p.si/, 8x 2 Di, so that
g.x/ � p.x/ for all x 2 D to be used in the rejection sampler. The inversion-rejection
algorithm is described in Table 3.6.

Table 3.6 Inversion-rejection algorithm for a decreasing pdf po.x/

1. Set i D 1. Let N be the number of desired samples from po.x/

2. Draw a index j0 with Probfj D ig D FX.siC1/� FX.si/, i D 1; : : : ;C1,

by inversion

3. Generate a pair x0 � U.Œsj0 ; sj0C1�/ and u0 � U.Œ0; g.x0/�/, where

g.x/ D p.sj0 / for all x 2 Œsj0 ; sj0C1�

4. If u0 � p.x0/, then accept x.i/ D x0 and set i D i C 1

5. Otherwise, if u0 > p.x0/, discard x0 and go back to step 2

6. If i > N, then stop. Else, go back to step 2
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Obviously, the algorithm in Table 3.6 is also a strip technique. However, unlike
the strip algorithms in Sect. 3.6.1, this technique can be applied to unbounded pdfs
and densities with infinite support as long as the cdf FX.x/ can be evaluated. Hence,
in this sense the inversion-rejection algorithm can be considered as an extension of
the strip methods. On the other hand, it can also be viewed as a numerical inversion
method with the addition of a rejection step.

The next technique is also related to the inversion algorithm. It tries to replace
a non-invertible cdf, FX.x/, with another invertible function which is as close as
possible to FX.x/.

3.7 Transformed Rejection Method

The transformed rejection method, due to [18, 44], is also called almost exact
inversion method in [13, Chap. 3] and exact-approximation method in [28]. It
is strongly related to the ratio-of-uniforms described in Chap. 5. Before apply-
ing the RS method, this technique transforms a generic target pdf po.x/ into
another density bounded and with a bounded domain.3 This is achieved by
applying a suitable transformation f to the target random variable X. This idea
was suggested by several authors [5, 13, 16, 18, 28, 44] and is summarized in
Table 3.7.

In this section we study the conditions required to obtain suitable transformations
that modify target pdfs of the type displayed in Fig. 3.2a, b (bounded with
unbounded support and unbounded with bounded support, respectively), converting
them into a pdf of the type depicted in Fig. 3.2c (bounded with bounded support).
We provide a detailed description of the different possibilities.

Bounded Target po.x/ with Unbounded Support

Let po.x/ be a bounded density with unbounded support R (see Fig. 3.8a), and let us
consider a monotonic differentiable function f W R ! .0; 1/. If X � po.x/, then the
transformed random variable Z D f .X/ has density

�.z/ D po
�
f �1.z/

�
ˇ
ˇ
ˇ̌
ˇ
df �1.z/

dz

ˇ
ˇ
ˇ̌
ˇ

D p
�
f �1.z/

�jPf �1.z/j; for z 2 .0; 1/; (3.39)

3Indeed, as discussed in Sect. 3.2.4, the simplest scenario to use the RS algorithm occurs when the
target density is bounded with bounded support. In this case, the proposal �.x/ can be a uniform
pdf and other RS schemes such as the band rejection method (Sect. 3.4) can be applied.
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Table 3.7 Transformed rejection sampling algorithm

1. Set i D 1. Let N be the number of desired samples from po.x/

2. Find a suitable transformation Z D f .X/ such that the r.v. Z

has a density �.z/ D po

�
f �1.z/

� ˇˇ̌ df �1.z/
dz

ˇ
ˇ̌

which is bounded

with a bounded domain

3. Draw samples z0 � �.z/ and u0 � U.Œ0; 1�/

4. If u0 � �.z0/

L�.z0/
, then set x.i/ D f �1.z0/ and i D i C 1

5. Otherwise, if u0 >
�.z0/

L�.z0/
, discard z0 and go back to step 3

6. If i > N, then stop. Else, go back to step 3

po(x)

A0

(a)

x

z

f(x)

(b)

x

z

f−1(z)

(c)

Fig. 3.8 (a) A bounded target pdf po.x/ with an unbounded domain. (b) Two possible examples,
monotonically increasing (solid line) and monotonically decreasing (dashed line), of the trans-
formation f .x/ with horizontal asymptotes at x D 0 and x D 1. (c) The corresponding inverse
transformations f �1.z/ with vertical asymptotes at z D 0 and z D 1

where f �1.z/ is the inverse of f .x/ and Pf �1.z/ denotes the first derivative of
f �1.z/. Obviously, the domain of �.z/, DZ D .0; 1/, is bounded. However,
the density �.z/ can still be unbounded (i.e., it may have vertical asymptotes)
depending on the choice of the transformation f .x/. Indeed, taking a closer look
at (3.39), we notice that, although the first term p

�
f �1.z/

�
is bounded (since po.x/

is assumed to be bounded), the second term, jPf �1.z/j, is unbounded in general,
since

lim
z!0

ˇ̌
ˇ
ˇ
df �1.z/

dz

ˇ̌
ˇ
ˇ D lim

z!1

ˇ̌
ˇ
ˇ
df �1.z/

dz

ˇ̌
ˇ
ˇ D 1: (3.40)

This is due to the fact that f .x/ must have horizontal asymptotes, since it is a
monotonic continuous function that converts the infinite support into a finite domain,
DZ D .0; 1/. Figure 3.8b, c provides an example.

Hence, it is clear from (3.39) and (3.40) that the density �.z/ only remains
bounded when the tails of po.x/ decay to zero quickly enough, namely, faster than
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the derivative df �1.z/
dz D

�
df .x/

dx

��1
diverges when z ! z� 2 f0; 1g (where z� denotes

a vertical asymptote). More formally, let us note that the limit

L1 D lim
z!z�

�.z/

D lim
z!z�

p
�
f �1.z/

�ˇ̌Pf �1.z/
ˇ̌

D lim
z!z�

p
�
f �1.z/

�

ˇ
ˇPf .x/ˇˇxDf �1.z/

D lim
x!f �1.z�/

p.x/

jPf .x/j < 1;

with z� 2 f0; 1g, is finite if, and only if, p
�
f �1.z/

�
is an infinitesimal of the same

or higher order than
ˇ
ˇPf .x/ˇˇ

xDf �1.z/
at z D z�. Observe also that better acceptance

rates can be obtained if f .x/ is similar to the cdf FX.x/ of X. Indeed, in this case
the pdf �.z/ becomes flatter and closer to a uniform density. In the limit, i.e., when
f .x/ D FX.x/, then �.z/ is the uniform pdf in DZ D .0; 1/ and the method is exact.
For this reason, this technique is also termed almost exact inversion method by some
authors (see, e.g., [13]).

Unbounded Target pdf po.x/ with Bounded Support

A similar methodology can also be applied when the target pdf, po.x/, is unbounded
but has a bounded support, D D .a; b/. Using again a monotonic, continuous
function, f W .a; b/ ! .0; 1/, with continuous derivative, we can also transform
po.x/ into a bounded density with bounded domain, DZ D .0; 1/. Without loss of
generality, let us assume that po.x/ has only one vertical asymptote at x D x�, i.e.,
limx!x� p.x/ D 1. Now, let us consider Z D f .X/ with X � po.x/. We already
know that the density of Z is given by

�.z/ D po
�
f �1.z/

�ˇˇPf �1.z/
ˇ
ˇ; for z 2 .0; 1/: (3.41)

Unfortunately, although
ˇ̌Pf �1.z/

ˇ̌
is bounded (since we assume Pf �1.z/ to be continu-

ous), �.z/ is unbounded in general, as the first term diverges, i.e.,

lim
z!f .x�/

p
�
f �1.z/

� D lim
x!x�

p
�
x
� D 1:
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However, we notice that now the limit of interest,

L2 D lim
z!f .x�/

�.z/

D lim
z!f .x�/

p
�
f �1.z/

�ˇ̌Pf �1.z/
ˇ̌

D lim
x!x�

p.x/
ˇ
ˇPf �1.z/

ˇ
ˇ
zDf .x/

D lim
x!x�

p.x/
ˇ
ˇPf .x/ˇˇ < 1;

(3.42)

can be finite if
ˇ
ˇPf �1.z/

ˇ
ˇ
zDf .x/

! 0, or equivalently
ˇ
ˇPf .x/ˇˇ ! 1, when x ! x� (since

po.x/ ! 1 when x ! x�). Moreover, the limit L2 is finite if, and only if, 1=
ˇ
ˇPf .x/ˇˇ

is an infinitesimal of equal or higher order than 1=p.x/ at x D x�.

3.7.1 Transformed Rejection and IoD Method

The idea introduced above consists in converting the unbounded area below the
target po.x/ / p.x/ (e.g, see Fig. 2.2), defined by the set A0 in Eq. (2.39), into a
bounded region. As we have seen in Sects. 2.4.3 and 2.4.4, given a monotonic target
pdf, po.x/, we have another density, p�1

o .y/, associated to the set A0. In this section,
we show a complementary study, analyzing suitable transformations h.y/ applied to
the r.v. Y � p�1

o .y/, such that the resulting pdf, q.
/, of the r.v. ‚ D h.Y/ � q.
/,
has a bounded pdf with bounded support. Table 3.8 provides the algorithm for this
case.

Table 3.8 Transformed rejection combined with the IoD method

1. Set i D 1. Let N be the number of desired samples from po.x/

2. Find a monotonic transformation h.y/ so that

q.
/ D p�1
o

�
h�1.
/

�ˇ̌Ph�1.
/
ˇ̌

is bounded with bounded support

3. Draw samples 
 0 � �.
/ and u0 � U.Œ0; 1�/

4. If u0 � q.
 0/

L�.
 0/
, then draw v0 � U.Œ0; 1�/. Set x.i/ D v0h�1.
 0/

and i D i C 1

5. Otherwise, if u0 >
q.
 0/

L�.
 0/
, discard 
 0 and go back to step 3

6. If i > N, then stop. Else go back to step 3



98 3 Accept–Reject Methods

Bounded Target pdf po.x/ with Unbounded Support

Let us consider a monotonically decreasing and bounded target pdf, p.x/, with
unbounded support RC, such that p.0/ D 1 and p.x/ ! 0 when x ! 1. This
implies that the inverse target pdf, p�1

o .y/, is unbounded but has a bounded support,
DY D .0; 1�. The density of ‚ D h.Y/, with Y � p�1

o .y/, is

q.
/ D p�1
o

�
h�1.
/

�ˇ̌Ph�1.
/
ˇ̌

for 
 2 .0; 1�: (3.43)

Now, since p�1
o .y/ ! 1 when y ! y� D 0, a necessary condition to obtain a

bounded pdf q.
/ is

lim

!h.y�/

ˇ̌Ph�1.
/
ˇ̌ D lim

y!y�

ˇ̌Ph.y/ˇ̌�1 D 0:

Once more, focusing on the limit of interest in this case,

L3 D lim

!h.y�/

q.
/

D lim

!h.y�/

p�1
o

�
h�1.
/

�ˇ̌Ph�1.
/
ˇ̌

D lim

!h.y�/

p�1
o

�
h�1.
/

�

ˇ
ˇPh.y/ˇˇ

yDh�1.
/

D lim
y!y�

p�1
o .y/
ˇ
ˇPh.y/ˇˇ ;

we realize that a necessary and sufficient condition to obtain a pdf q.
/ bounded
with a bounded support is that 1=

ˇ
ˇPh.y/ˇˇ is an infinitesimal of equal or higher order

than 1=p�1
o .y/ at y D y� D 0.

Unbounded Target pdf po.x/ with Bounded Support

Consider now an unbounded and monotonically decreasing target pdf, po.x/, with a
vertical asymptote at x D x� D 0 (i.e., limx!x� po.x/ D 1), but bounded support,
D D .0; b�. Hence, the inverse target pdf, p�1

o .y/, is monotonically decreasing
and bounded (0 < p�1

o .y/ � b), but has an unbounded support DY D R
C. Now,

considering a continuous and monotonic transformation, h W RC ! .0; 1/, the r.v.
‚ D h.Y/ with Y � p�1

o .y/ has pdf

q.
/ D p�1
o

�
h�1.
/

�ˇˇPh�1.
/
ˇ
ˇ for 
 2 .0; 1/: (3.44)

Again, although the first term, p�1
o

�
h�1.
/

�
, is bounded, q.
/ may be unbounded,

since the second term is unbounded in general. Indeed, h.y/must reach a horizontal
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asymptote when y ! 1, so that h�1.
/ has a vertical asymptote either at 
 D

� D 1 (when h�1.
/ is increasing) or at 
 D 
� D 0 (when h�1.
/ is decreasing),
implying that

lim

!
�

ˇ
ˇPh�1.
/

ˇ
ˇ D lim

y!h�1.
�/

ˇ
ˇPh.y/ˇˇ�1 D 1:

To obtain a bounded pdf q.
/, the limit of interest is

L4 D lim

!
�

q.
/

D lim

!
�

p�1
o

�
h�1.
/

�ˇˇPh�1.
/
ˇ
ˇ

D lim

!
�

p�1
o

�
h�1.
/

�

ˇ
ˇPh.y/ˇˇ

yDh�1.
/

D lim
y!h�1.
�/

p�1
o .y/
ˇ̌Ph.y/ˇ̌ :

Hence, a necessary and sufficient condition for having L4 < 1 is that p�1
o .y/ is an

infinitesimal of equal or higher order than
ˇ
ˇPh.y/ˇˇ at y D h�1.
�/.

3.8 Examples

In this section, we present some relevant RS schemes that serve both to illustrate
the range of application of the RS technique and also to introduce some method-
ologies that will be used within other sampling algorithms in subsequent chapters.
Furthermore, all the examples given in this section are non-intuitive (i.e., non-
trivial) applications of the RS principle and provide a solution for relevant sampling
problems, such as drawing from a mixture of pdfs with negative coefficients or
drawing from a target pdf expressed as a sequence of functions (where the target
may also be unknown analytically).

3.8.1 RS for Generating Order Statistics

Assume that we wish to generate n ordered samples x1 < x2 < : : : < xn from
po.x/ / p.x/, and consider a proposal �.x/ and a constant L such that L�.x/ � p.x/.
The following RS scheme can be used [13, Chap. 5]:

1. Choose a value m > n.
2. Generate ordered samples x1 < x2 < : : : < xm from �.x/.
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3. Draw m i.i.d. uniform r.v.’s, u1; : : : ; um � U.Œ0; 1�/.
4. For i D 1; : : : ;m, if ui >

po.xi/

L�.xi/
, then delete xi. We obtain a subset of m� ordered

samples with m� < m.
5. If m� < n, then repeat from 2.
6. If m� � n, then delete randomly chosen m� � n samples and stop.

3.8.2 Mixtures with Negative Coefficients

Consider a target density of the form

po.x/ D
1X

iD1
˛ihi.x/; (3.45)

where the functions hi.x/ are normalized pdfs4 and the constants ˛i 2 R are real
numbers such that

1X

iD1
˛i D 1: (3.46)

We remark that the ˛i, i D 1; : : : ;C1, can be either positive or negative. Hence,
it is not straightforward to draw from a target expressed as in Eq. (3.45) (recall
Sect. 2.3.4). However, as long as it is possible to find a decomposition

˛i D ˛C
i � ˛�

i ; ˛C
i � 0; ˛�

i � 0;

such that

C1X

iD1
˛C

i < C1; (3.47)

we can design a valid algorithm based on the RS principle [4]. Indeed, setting

�.x/ /
1X

iD1
˛C

i hi.x/;

4We assume normalized functions for simplicity of presentation. Unnormalized, integrable func-
tions can be handled as well.
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the RS inequality is satisfied, i.e.,

po.x/ � L�.x/ D
C1X

iD1
˛C

i hi.x/;

where L D R
D �.x/dx D PC1

iD1 ˛
C
i < C1, since we have assumed thatR

D hi.x/dx D 1, 8i 2 N. Hence, a simple RS algorithm consists of the following
steps:

1. Draw x0 � �.x/ / P1
iD1 ˛

C
i hi.x/ using the technique described in Sect. 2.3.4

(e.g., using the inversion method). Note that it is not necessary to compute
L D PC1

iD1 ˛
C
i explicitly. However, it is necessary to be able to compute the

majorating series L�.x/ shown above.
2. Generate u0 � U.Œ0; 1�/.
3. If u0 � po.x0/

L�.x0/
, then accept x0. Otherwise, reject x0.

Clearly, this method is also valid for a finite mixture. Let us observe that, sinceP1
iD1 ˛i D 1, then L D PC1

iD1 ˛
C
i � 1. The acceptance rate of the algorithm is

Oa D 1=L.

Example 3.7 Let us consider

po.x/ D 3

4
.1 � x2/; �1 � x � 1;

as the target pdf. Note that, it can be rewritten as

po.x/ D 3

2

�
1

2

�
� 1

2

�
3

2
x2
�
; �1 � x � 1:

Then, we can identify ˛C
1 D 3

2
, ˛C

2 D 0, ˛�
1 D 0 and ˛�

2 D � 1
2
. Consequently, the

proposal, �.x/ / ˛C
1 h1.x/C ˛C

2 h2.x/, is a uniform pdf in Œ�1; 1�

�.x/ D 1

2
; �1 � x � 1;

where h1.x/ D 1
2
, h2.x/ D 3x2

2
, and L D ˛C

1 D 3
2
. The RS ratio is then

po.x/

L�.x/
D 1 � x2;

and the algorithm turns out to be simply the following:

1. Draw x0 � U.Œ�1; 1�/,
2. Draw u0 � U.Œ0; 1�/,
3. If u0 � 1 � .x0/2, then accept x0. Otherwise, reject x0.

The acceptance rate is 1=L D 2=3.
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3.8.3 Pdfs Expressed as Sequences of Functions

Consider a target pdf po.x/ / p.x/ that we are not able to evaluate analytically, but
we know two sequences of functions, 'n.x/ and  n.x/, such that

lim
n!C1'n.x/ D p.x/;

lim
n!C1 n.x/ D p.x/;

'n.x/ � p.x/ �  n.x/; for n D 1; 2; : : : ;1:

(3.48)

Namely, p.x/ can be expressed using two sequences of functions that converge
to it from above and from below, respectively. Furthermore, we assume known a
proposal pdf �.x/ and a bound L, such that

L�.x/ � p.x/;

or, alternatively,

L�.x/ �  n.x/ � p.x/; 8n 2 N:

In both cases the algorithm that we show below is valid. The first case is preferrable
in terms of acceptance rate. However, in the second case we could also construct
a sequence of upper bounds, fLngC1

nD0 , such that Ln�.x/ �  n.x/ to improve the
acceptance rate.

An algorithm for sampling from po.x/ / p.x/ in this case based on the
RS principle is described in Table 3.9 [13, Chap. 5]. Note that 'n.x/ is used as
a squeeze function. Indeed, the proposed sample x0 is accepted immediately if
u0L�.x0/ � 'n.x0/, where u0 � U.Œ0; 1�/. Otherwise, if 'n.x0/ � u0L�.x0/ �  n.x0/,
a better approximation of the target is needed (i.e., n has to be increased) and the
RS tests are repeated. Finally, if u0L�.x0/ >  n.x0/ the sample x0 is definitely
rejected.

Table 3.9 RS for a target pdf expressed as a series

1. Set i D 1. Let N be the number of desired samples from po.x/

2. Draw samples x0 � �.x/ and u0 � U.Œ0; 1�/
3. Set n D 1

4. If u0 � 'n.x0/

L�.x0/
, then set x.i/ D x0, i D i C 1 and go to step 6

5. If u0 �  n.x0/

L�.x0/
, then update n D n C 1 and repeat from 4

Otherwise, if u0 >
 n.x0/

L�.x0/
, reject x0

6. If i > N, then stop. Else, go back to step 2
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Table 3.10 RS for a target expressed as a series with a known upper bound of the remainder

1. Set i D 1. Let N be the number of desired samples from po.x/

2. Draw samples x0 � �.x/ and u0 � U.Œ0; 1�/
3. Set w0 D u0L�.x0/, n D 0, and s0 D 0

4. Update n D n C 1 and s0 D s0 C sn.x0/

5. If jw0 � s0j � RnC1.x0/, then repeat from step 4

6. If w0 > s0, then reject x0 and repeat from step 2

7. If w0 � s0, then set x.i/ D x0 and i D i C 1

8. If i > N, then stop. Else, go back to step 2

An interesting variant occurs when the target can be expressed as a series and the
remainder can be upper-bounded. This case lends itself naturally to be handled with
this scheme. Namely, assume that the target is given by

po.x/ D
C1X

iD1
si.x/ � L�.x/; (3.49)

and an upper bound, RnC1.x/, of the remainder (i.e., the excess error obtained
truncating the series at the nth term of the sum) is known, i.e.,

ˇ
ˇ
ˇ
ˇ
ˇ

C1X

iDnC1
si.x/

ˇ
ˇ
ˇ
ˇ
ˇ

� RnC1.x/: (3.50)

The resulting algorithm [13, Chap. 5] is given in Table 3.10.

3.9 Monte Carlo Estimation via RS

Rejection samplers can be used as random number generators for simulating com-
plex systems or, alternatively, for Monte Carlo integration. Consider, for instance,
the approximation of the integral

I D
Z

D
f .x/po.x/dx: (3.51)

Using RS we can generate a set of samples, fx.i/; i D 1; : : : ;Nag, and then compute
the approximation

OINa D 1

Na

NaX

iD1
f .x.i// � I: (3.52)
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When Na ! 1, OINa ! I under mild assumptions [22, 24, 37]. In order to
obtain Na samples via RS we need to generate Ntot � Na samples, since Nr D
Ntot � Na samples are rejected. However, these rejected samples can be reused
to design better estimators, as shown in the next Sect. 3.9.1. Alternatively, RS
can be mixed with other Monte Carlo approaches (such as importance sampling
and MCMC techniques) as shown in Sect. 3.9.2. Below, we compare the RS
and importance sampling approaches considering the same target and proposal
functions.

Rejection Sampling as a Special Case of Importance Sampling

Let us consider an extended target density defined as

p�.x; y/ /

8
<̂

:̂

L�.x/; if x 2 D; and y 2
�
0;

p.x/

L�.x/

	
;

0; otherwise:

(3.53)

Note that, marginalizing w.r.t. the variable y, we have

p�.x/ D
Z p.x/

L�.x/

0

p�.x; y/dy / p.x/;

i.e., the marginal pdf is p�.x/ D po.x/. Let us define the extended proposal pdf

��.x; y/ /

8
<̂

:̂

�.x/; if x 2 D; and y 2
�
0;

p.x/

L�.x/

	
;

0; otherwise:

(3.54)

Now, drawing Ntot pairs .x.i/; y.i//, i D 1; : : : ;Ntot, from the extended proposal
��.x; y/, the associated importance weights are

w.i/RS D w.x.i/; y.i// D p�.x.i/; y.i//
��.x.i/; y.i//

/

8
<̂

:̂

L; if x 2 D; and y 2
�
0;

p.x/

L�.x/

	
;

0; otherwise:
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and the corresponding importance sampling (IS) estimator is [24, 37]

OIRS
Ntot

D 1
PNtot

nD1 w.n/RS

NtotX

iD1
w.i/RSf .x.i//; (3.55)

D 1

Na

NaX

iD1
f .x.i// D OINa : (3.56)

Namely, OIRS
Ntot

is equivalent to the RS estimator INa in Eq. (3.52) [9]. Note that the

number Na of the samples with w.i/RS D L > 0 coincides with the number of the

auxiliary samples y.i/ such that y.i/ 2
h
0;

p.x/
L�.x/

i
. The standard IS estimator obtained

with the same samples x.i/ � �.x/, i D 1; : : : ;N, is

OIIS
Ntot

D 1
PNtot

nD1 w.n/IS

NtotX

iD1
w.i/IS f .x.i//; with w.i/IS D p.x.i//

�.x.i//
: (3.57)

It is possible to show that the estimator OIRS
Ntot

is less efficient than the estimator OIIS
Ntot

(i.e., with less variance) [9]. Therefore, considering the same proposal pdf, the
standard IS approach is preferable (although an additional study about the bias is
required). However, in the following, we discuss how it is possible to improve the
RS estimators by reusing the rejected samples or combining RS with other Monte
Carlo schemes.

3.9.1 Recycling Rejected Samples

The rejected samples can be “recycled,” with a slight computational overhead, to
provide a better approximation of the target integral [8]. More specifically, let po.x/
be the target pdf and let fy.1/; : : : ; y.Nr/g be the set of samples discarded in the RS
test. As shown in Sect. 3.2.2, the rejected samples are distributed as

qr.y/ D 1

L � 1.L�.y/� po.y//;

where�.x/ is the proposal pdf used in the RS technique. Resorting to the importance
sampling principle we can build an estimator using only the rejected samples

OINr D 1

Nr

NrX

iD1

po.y.i//

qr.y.i//
f .y.i// D 1

Nr

NrX

iD1

.L � 1/po.y.i//

L�.y.i//� po.y.i//
f .y.i//: (3.58)
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Moreover, we can define another estimator as a convex combination of OINa and OINr ,
namely

OINtot;1 D Na

Na C Nr

OINa C Nr

Na C Nr

OINr : (3.59)

All these OINa , OINr , and OINtot;1 are unbiased estimators of I [8, 37]. It appears
intuitive that OINr provides the worst performance among them and that OINtot;1 is the
best estimator (in terms of its variance). A theoretical comparison of these three
estimators is given in [8]. Another possible (but biased) estimator is

OINtot;2 D Na

Na C Nr

OINa C Nr

Na C Nr

 
1

SNr

NrX

iD1
w.y.i//f .y.i//

!

; (3.60)

where

w.y.i// D .L � 1/po.y.i//

L�.y.i//� po.y.i//
and SNr D

NrX

jD1
w.y.j//:

Although OINtot;2 is biased, it can be shown that OINtot;2 outperforms OINtot;1 under certain
conditions [8].

3.9.2 RS with a Generic Constant L > 0

In the previous sections, we have already remarked that finding a suitable constant
L such that

L�.x/ � p.x/; 8x 2 D;

can be a non-trivial task. In this section, we assume that we are using a generic
positive constant L such that the RS condition L�.x/ � p.x/ is not necessarily
fulfilled for every x 2 D. In this case, a sample x0 in the region fx 2 D W
L�.x/ < p.x/g will always be accepted by the RS test. Indeed, the accepted
samples using the RS technique are distributed as q.x/ / minfL�.x/; p.x/g (see
Sect. 3.2.3).

Let us consider again the problem of the approximation of the integral

I D
Z

D
f .x/po.x/dx (3.61)

using samples generated by an RS method with a non-suitable, generic constant
L > 0. In this case, the accepted samples, fx.i/; i D 1; : : : ;Nag, have a pdf q.x/ /
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minfL�.x/; p.x/g, and the estimator

OINa D 1

Na

NaX

iD1
f .x.i//;

is not adequate, i.e., OINa 6! I as Na ! 1. In this section, we consider two
possible solutions: (a) combining the RS method and importance sampling and (b)
combining the RS method with Markov Chain Monte Carlo (MCMC) algorithms.
With some modifications, these schemes could also be used jointly with the previous
considerations in Sect. 3.9.1 for recycling the rejected samples.

Rejection Control

The technique described below, called rejection control (RC) [24], combines the
rejection and the importance sampling techniques. Given a sample x.i/ � �.x/,
accepted in the RS test with a generic positive constant L, the rejection control
works as follows:

• If the accepted sample x.i/ belongs to the region Atrue D fx 2 D W L�.x/ � p.x/g,
it is assigned the weight w.x.i// D 1.

• Otherwise, if the accepted sample x.i/ belongs to the region Afalse D fx 2 D W
L�.x/ < p.x/g, then it is assigned the weight w.x.i// D p.x.i//

L�.x.i//
.

The final estimator, using the accepted samples and the RC weights, is

OINa;RC D 1
PNa

iD1 w.x.i//

NaX

iD1
w.x.i//f .x.i//: (3.62)

Note that the RC method is equivalent to using a modified proposal density in an
importance sampling scheme. Indeed, let us consider the proposal pdf

��.x/ / minfL�.x/; p.x/g; (3.63)

which is the density of the accepted samples with a generic L (see Sect. 3.2.3). The
weights of the RC method become

w.x.i// D p.x.i//

minfL�.x.i//; p.x.i//g ;

where x.i/ � ��.x/. The proposal in Eq. (3.63) is clearly closer to the target po.x/ /
p.x/ than �.x/, thus providing a better estimation of the integral, as stated in the
following theorem.
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Theorem 3.4 ([24]) The rejection control technique reduces the discrepancy
between proposal and target densities w.r.t. a standard importance sampling
scheme. As a consequence, it is possible to show that

var��

�
p.x/

��.x/

	
� var�

�
p.x/

�.x/

	
: �

Rejection Sampling Chains

When a suitable constant L > 0 for an RS scheme is unknown, an MCMC method
can be applied to guarantee that the generated samples are distributed according
to the target, po.x/ / p.x/ [39, 40] (see Chap. 7). For a generic value of L, the
density ��.x/, given by Eq. (3.63) can be used as the proposal pdf in an independent
Metropolis-Hastings (MH) algorithm [14, 24, 31, 32, 37] (see Chap. 7). Given a
sample x0 � ��.x/ and a previous state xt�1 of the Markov chain, the probability of
accepting a new state in the MH method is

˛.xt�1; x0/ D min

�
1;

p.x0/��.xt�1/
p.xt�1/��.x0/

	
: (3.64)

The convergence of the chain to the target po.x/ is guaranteed as t ! C1.
Table 3.11 describes the algorithm: an RS scheme is used to drive an independent
MH algorithm.

Observe that, in Table 3.11, we have used the definition of ��.x/ /
minfL�.x/; p.x/g in the expression of ˛.xt�1; x0/. Note also that in this case the
resulting samples are correlated.

Table 3.11 Rejection sampling chains

1. Set t D 1, choose L > 0 and an initial state x0. Let N be

the maximum number of iterations

2. Draw samples x0 � �.x/ and u0 � U.Œ0; 1�/

3. If u0 >
p.x0/

L�.x0/
then repeat from step 2

4. Otherwise, if u0 � p.x0/

L�.x0/
, set xt D x0 with probability

˛.xt�1; x0/ D min
h
1;

p.x0/minfL�.xt�1/;p.xt�1/g
p.xt�1/minfL�.x0/;p.x0/g

i
;

or xt D xt�1 with probability 1� ˛.xt�1; x0/

5. Update t D t C 1. If t > N, then stop. Else, go back to step 2
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Alternative Expression of the Acceptance Probability ˛

In order to compare an RS chain with a standard MH algorithm using an independent
proposal, it is interesting to observe that (as noted by L. Tierney in [40]), defining
the set

C D fx 2 D W p.x/ � L�.x/g;
the probability ˛.x; y/ of accepting a new state y given a previous state x can be
rewritten as

˛.x; y/ D

8
<̂

:̂

1; for x 2 C;
L�.x/
p.x/ ; for x … C; y 2 C;

min
h
1;

p.y/�.x/
p.x/�.y/

i
; for x … C; y … C:

(3.65)

Equations (3.65) and (3.64) are completely equivalent. Indeed, if x 2 C, the modified
proposal in Eq. (3.63) becomes

��.x/ / minfL�.x/; p.x/g D p.x/; (3.66)

by definition of C and, substituting (3.66) into (3.64) we obtain

˛.x; y/ D min

�
1;

p.y/��.x/
p.x/��.y/

	

D min

�
1;

p.y/p.x/

p.x/minfL�.y/; p.y/g
	

(3.67)

D min

�
1;

p.y/

minfL�.y/; p.y/g
	

D 1;

since the denominator is always smaller than the numerator. The first part of
Eq. (3.65) is hence proved.

Moreover, if x … C and y 2 C, then we have ��.x/ / L�.x/ and ��.y/ /
p.y/. Thus, replacing ��.x/ and ��.y/ in Eq. (3.64), the acceptance probability
becomes

˛.x; y/ D min

�
1;

p.y/��.x/
p.x/��.y/

	

D min

�
1;

p.y/L�.x/

p.x/p.y/

	
(3.68)
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D min

�
1;

L�.x/

p.x/

	

D L�.x/

p.x/
;

since L�.x/ < p.x/ when x … C. Finally, considering x … C and y … C, then
��.x/ / L�.x/ and ��.y/ / L�.y/, and the ˛ in Eq. (3.64) can be rewritten in this
case as

˛.x; y/ D min

�
1;

p.y/��.x/
p.x/��.y/

	

D min

�
1;

p.y/L�.x/

p.x/L�.y/

	

D min

�
1;

p.y/�.x/

p.x/�.y/

	
:

(3.69)

Hence, Eqs. (3.65) and (3.64) are equivalent.

3.10 Summary

In this chapter, we have introduced the basic theory of the rejection sampling (RS)
technique. We have shown that the RS method is an important tool for Monte Carlo
algorithms, since it is a universal sampler that can be used to generate random
samples from arbitrary target densities. Indeed, its applicability is only limited by
the ability of finding a suitable upper bound of the ratio between the target and
the proposal pdfs. We have also discussed performance and computational cost.
The main figure of merit of an RS scheme is the acceptance rate, which depends
strongly on the discrepancy between the shape of the proposal and the target pdfs.
In general, the acceptance rate is improved by constructing more elaborate proposal
functions but, in turn, such construction is often associated to computationally
complex procedures.

In Sect. 3.4, we have introduced a little-known and interesting variant of the
standard RS method: the band rejection (BR) approach. BR provides better per-
formance compared to the standard RS scheme, but can only be applied for target
pdfs with bounded support. Another interesting variant, described in Sect. 3.5, is
the acceptance-complement method, which can be applied when the target can be
expressed as a discrete mixture of two pdfs.

Strip methods have been briefly introduced in Sect. 3.6.1. They are RS algorithms
in which the proposal pdf is a finite mixture of piece-wise uniform densities with
disjoint support. The combination of the RS technique with the inversion method
has been presented in Sect. 3.6.2 whereas the joint use of the RS method with a
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transformation of a random variable has been described in Sect. 3.7.1. We have also
shown the power and versatility of RS methodologies with some relevant examples
(Sect. 3.8), such as sampling a mixture of pdfs with negative coefficients or drawing
from a target that can only be expressed as a series.

Finally, the efficient use of the RS technique for the important problem of
numerical integration has been tackled in Sect. 3.9. First, we have described how
the rejected samples can be recycled to improve the approximation of the target
integral. Then, we have analyzed how proper estimators can be designed when the
RS scheme is run using a generic, non-adequate, constant L > 0. In this case,
we have considered two possibilities: (a) the combination of the RS method with
the importance sampling approach and (b) the use of the RS technique to drive an
MCMC algorithm.
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Chapter 4
Adaptive Rejection Sampling Methods

Abstract This chapter is devoted to describing the class of the adaptive rejection
sampling (ARS) schemes. These (theoretically) universal methods are very efficient
samplers that update the proposal density whenever a generated sample is rejected
in the RS test. In this way, they can produce i.i.d. samples from the target with an
increasing acceptance rate that can converge to 1. As a by-product, these techniques
also generate a sequence of proposal pdfs converging to the true shape of the target
density. Another advantage of the ARS samplers is that, when they can be applied,
the user only has to select a set of initial conditions. After the initialization, they are
completely automatic, self-tuning algorithms (i.e., no parameters need to be adjusted
by the user) regardless of the specific target density. However, the need to construct
a suitable sequence of proposal densities restricts the practical applicability of this
methodology. As a consequence, ARS schemes are often tailored to specific classes
of target distributions. Indeed, the construction of the proposal is particularly hard
in multidimensional spaces. Hence, ARS algorithms are usually designed only for
drawing from univariate densities.

In this chapter we discuss the basic adaptive structure shared by all ARS
algorithms. Then we look into the performance of the method, characterized
by the acceptance probability (which increases as the proposal is adapted), and
describe various extensions of the standard ARS approach which are aimed either
at improving the efficiency of the method or at covering a broader class of target
pdfs. Finally, we consider a hybrid method that combines the ARS and Metropolis-
Hastings schemes.

4.1 Introduction

The main limitation of RS methods is the difficulty of finding a proposal function
�.x/ and a bound L � p.x/=�.x/, such that the envelope function, L�.x/ � p.x/, is
actually “close” enough to the target density, which is required in order to attain
good acceptance rates. One way to tackle this difficulty is by constructing the
proposal �.x/ adaptively.
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In this chapter, different adaptive accept/reject sampling schemes are described.
Whenever they are applicable, adaptive RS techniques should be preferred in
practical applications, because the resulting algorithms are automatic (i.e., black-
box) schemes: they are almost completely self-tuning algorithms (no parameters
need to be selected, except for a set of initial points) regardless of the target
distribution, efficient (after a usually short learning period they produce samples
from the target pdf with probability close to 1) and informative (they generate an
approximation of the target density).

We divide the presentation of the adaptive rejection sampling (ARS) algorithms
into two parts: we describe first the adaptive structure shared by all of the ARS
techniques in Sect. 4.2 and then, in Sect. 4.3, we introduce several different specific
constructions of the proposal pdf, provided so far in the literature. It is important
to remark that the adaptive approach of ARS, described in Sect. 4.2, defines a
universal sampling scheme, applicable theoretically to any generic multimodal and
multidimensional target pdf. However, important limitations to its applicability are
due to the need to design a suitable construction procedure. For this reason, all
ARS schemes proposed in the literature are tailored to specific classes of target
distributions (see Sect. 4.3).

The performance and computational cost of the standard ARS schemes are
discussed in Sect. 4.4. Alternative adaptive approaches are introduced in Sect. 4.5.
These methods do not guarantee that the acceptance rate becomes closer and closer
to 1, as guaranteed using the standard ARS scheme of Sect. 4.2.2, but allow the
user to control the computational cost. For this reason, these alternative schemes
may ease the design of ARS methods for drawing from multidimensional target
densities.

Finally, Sect. 4.6 describes the adaptive rejection Metropolis sampling (ARMS)
method, that combines the ARS and Metropolis-Hastings (MH) algorithms. ARMS
is a universal and efficient sampler: it can be applied for drawing virtually from any
target pdf, since it does not impose any restriction on the proposal (unlike ARS,
which requires a proposal construction mechanism ensuring that Lp.x/ � �.x/ for
all x 2 D), and it also improves the performance of the conventional MH algorithm,
since the proposal is adaptively updated. Another advantage w.r.t. a standard MH
method is that the ARMS procedure can be used as a black-box algorithm, exactly
the same as the ARS scheme. On the other hand, the ARMS method is an MCMC
sampler, implying that the generated samples are correlated (unlike ARS schemes,
which produce i.i.d. samples).

4.2 Generic Structure of an Adaptive Rejection Sampler

In this section, we outline the general structure of an adaptive rejection sampler,
following the basic concepts and ideas that were introduced in [5] and [9]. First, in
Sect. 4.2.1 we describe the conditions needed to build an adequate proposal pdf that
can be used within an ARS scheme. Then, we describe a generic ARS algorithm
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in Sect. 4.2.2. Note that, in the sequel we write �.x/ to denote a normalized
proposal density, whereas N�.x/ is a non-normalized function proportional to �.x/,
i.e., �.x/ / N�.x/.

4.2.1 Proposal Densities

Consider a target pdf po.x/ / p.x/ with x 2 D. Let us define the set of support
points

St , fs1; : : : ; smt g;

where si 2 D, i D 1; : : : ;mt. The variable t 2 N denotes the iteration index
(t D 0; 1; 2; : : :) and the number of points mt can grow with the iteration
index t. The sets of support points are the basis for the construction of suitable
proposal functions that can be used within an ARS framework. In particular,
we aim at obtaining a sequence of non-negative functions, f N�t.x/gC1

tD0 , such
that:

1. N�t.x/ � p.x/; 8x 2 D; 8t 2 N.
2. It is possible to draw samples exactly from �t.x/ / N�t.x/, 8t 2 N.
3. If jStj D mt ! 1, then N�t.x/ converges towards p.x/, i.e.,

lim
mt!1 N�t.x/ D p.x/; (4.1)

almost everywhere in D.

Examples of this kind of constructions can be found in Sect. 4.3. Conditions 1
and 2 enable us to apply the RS principle for drawing from po.x/ / p.x/ using
�t.x/ / N�t.x/ as a proposal density. Condition 3 is needed in order to ensure the
efficiency of the resulting RS scheme and, at the same time, keep the computational
cost of the resulting algorithm bounded.

4.2.2 Generic Adaptive Algorithm

Let us assume that a suitable construction of the sequence f N�t.x/gC1
tD0 is available.

Then, the adaptive rejection sampling (ARS) scheme consists of the following
steps:

1. Set t D 0 and choose an initial set of support points, S0 D fs1; : : : ; sm0g with
si 2 D and i D 1; : : : ;m0. Let N be the number of desired samples distributed
according to po.x/.
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2. Build �t.x/ / N�t.x/ using a suitable procedure given the set St.
3. Draw x0 � �t.x/ and u0 � U.Œ0; 1�/.
4. If u0 � p.x0/= N�t.x0/, then accept x.i/ D x0, set i D i C 1, StC1 D St and t D t C 1.
5. If u0 > p.x0/= N�t.x0/, then reject x0, set StC1 D St [ fx0g and t D t C 1.
6. If i > N stop. Otherwise, go to step 2.

Note that when a candidate sample is accepted in step 4, the set of support points
remains unchanged (i.e., mtC1 D mt). On the other hand, when the candidate
sample is rejected, in step 5, it is added to the set of support points (i.e., mtC1 D
mt C 1).

Essential Features

When a proposed sample is rejected, it is incorporated to the set of support
points for the next iterations, StC1. If the proposal construction approach used is
properly chosen, the proposal �tC1.x/ is then improved w.r.t. �t.x/ and becomes
closer to the target pdf, po.x/. As a consequence, the acceptance rate increases
quickly, tending to 1 asymptotically. Therefore, at the same time, the probability
of rejecting a sample, which is identical to the probability of adding a new point
in StC1, vanishes to zero. This maintains the computational cost of the construction
procedure bounded.

The use of information provided by the rejected samples to improve the proposal
is a key feature: if a sample x0 is rejected this means that the discrepancy between
the proposal and the target is high at x0. Then, it looks appropriate to incorporate this
local information to the construction of a better proposal density, which is closer to
the target. A more detailed analysis of the performance and computational cost of
the algorithm is given in Sect. 4.4.

Parameters of ARS Algorithms

Given a target pdf po.x/ / p.x/, the difference between ARS schemes lies in the
procedure followed for the construction of the sequence of proposal pdfs. Once
this procedure is selected, the unique parameters of the algorithm are the initial
support points, i.e., S0 D fs1; : : : ; sm0g, which can be chosen by the user (using
some prior information available about the target). Otherwise, the algorithm is
completely self-tuning. It is also interesting to note that there is a trade-off between
initial performance and computational cost. Indeed, in order to improve the initial
performance (i.e., to obtain a higher acceptance rate in the first iterations), a larger
number of initial points m0 could be used, but this also implies an increase of the
initial computational cost.
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Advantages and Limitations

The ARS technique can be considered a universal and black-box algorithm. Indeed,
assuming an adequate construction of the proposals is feasible, there are no further
restrictions imposed on the target density po.x/. The algorithm only requires being
able to evaluate the target po.x/ / p.x/, up to a normalizing constant. Moreover, it
ensures high acceptance rates after the initial iterations.

The adaptive rejection sampler described previously can also be applied for
drawing samples from multidimensional target densities. However, the applica-
bility of the adaptive RS scheme in practice is limited by the ability to find
an appropriate procedure to build the sequence of proposals, satisfying the three
conditions described in Sect. 4.2.1. Unfortunately, a general procedure is not
available, although in the literature it is possible to find constructions valid for
several important families of target distributions, as we describe in the sequel.

4.3 Constructions of the Proposal Densities

The main problem when using an RS method is to choose, or design, a “good”
envelope function N�.x/ � p.x/, where “good” means that N�.x/ and p.x/ are similar
in some quantifiable sense (e.g., we may ask that

R
D . N�.x/ � p.x// dx < � for some

� > 0).
We can find a specific envelope function for some simple examples or after a

deep analytical study of the target distribution. In the previous chapter, we have
considered envelope functions of the type N�.x/ D L�.x/, by keeping the proposal
density fixed and then finding an upper bound L � p.x/

�.x/ . However, in this case even

when using the best bound L � supx2D
p.x/
�.x/ the acceptance rate can be very low.

In this section, we consider construction procedures that are completely auto-
matic and provide an acceptance rate that tends to 1 asymptotically. Indeed, the
procedures presented in the sequel enable the construction of a sequence of proposal
densities, f�t.x/gt2N, �t.x/ / N�t.x/, tailored to different families of target densities.
The most appealing feature of these constructions is that each time we draw a sample
from a proposal �t and it is rejected, we can use this sample to build an improved
proposal, �tC1, as required in an adaptive rejection sampler.

4.3.1 Standard Adaptive Rejection Sampling

The original adaptive rejection sampling (ARS) scheme was introduced in [9]
and, hence, we refer to this method as standard, or conventional, ARS algorithm.
Unfortunately, the procedure for the construction of proposal densities in this
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standard method is only suitable for target pdfs which are log-concave (and, hence,
unimodal), which is a stringent limitation for many practical applications.

In order to describe the technique, let us assume that we want to draw from the
target pdf po.x/ / p.x/ � 0 with support in D � R. The standard ARS procedure
can be applied when logŒ p.x/� is concave, i.e., when the potential function1

V.x/ , � logŒ p.x/�; x 2 D � R; (4.2)

is convex. The basic idea is to partition the domain D into several intervals and
construct an envelope function locally on each of these pieces. Let

St D fs1; s2; : : : ; smt g 
 D

be the set of support points available at the tth iteration of the algorithm, sorted in
ascending order

s1 < : : : < smt :

From St we build a piecewise-linear lower hull of V.x/, denoted Wt.x/, formed by
segments of linear functions tangent to V.x/ at the support points sk 2 St. If we
denote as wk.x/ the linear function tangent to V.x/ at sk, then we can define

Wt.x/ , maxfw1.x/; : : : ;wmt .x/g � V.x/ 8x 2 D: (4.3)

Figure 4.1 illustrates the construction of Wt.x/ with three support points for the
convex potential function V.x/ D x2. It is apparent that Wt.x/ � V.x/ by
construction, therefore N�t.x/ D exp.�Wt.x// is an envelope function for p.x/, i.e.,

N�t.x/ D exp.�Wt.x// � p.x/ D exp.�V.x//: (4.4)

Once Wt.x/ is built, we can use it to obtain a piecewise-exponential proposal
density

�t.x/ D ct exp.�Wt.x// / N�t.x/; (4.5)

1We assign a name to the function V.x/ to ease the treatment, so that we can refer directly to it. The
name potential function recalls a physical interpretation. In statistical mechanics, for instance, the
potential energy function V is central to the evaluation of many thermodynamic properties, where V
is used as log-density [31]. To be specific, the estimation of the thermodynamic properties demands
the computation of integrals involving the function exp .�V/. This interpretation of the log-pdf as
a potential is also evoked explicitly in the Hamiltonian MCMC techniques [32].
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Fig. 4.1 (a) Example of construction of the piecewise linear function Wt.x/ with three support
points St D fs1; s2; smtD3g, as carried out by the original ARS technique [9]. The function Wt.x/ ,
maxŒw1.x/;w2.x/;w3.x/� is formed by segments of linear functions tangent to the potential V.x/ D
x2 at the support points in St. (b) The corresponding envelope function exp.�Wt.x// and the target
function p.x/ D exp.�V.x//

where ct D �R
exp.�Wt.x//dx

��1
is the normalizing constant. In Sect. 4.2.1 we

stated three conditions that the proposal densities in an ARS scheme should satisfy
for the method to be efficient. The first condition was that N�.x/ � p.x/ and this is
already fulfilled. In the sequel we show that the standard ARS scheme also satisfies
the other two conditions (as long as the target is log-concave), namely (a) it is
possible to draw samples from �t.x/ and (b) it is possible to improve the proposal
pdf along the iterations.

Drawing from �t.x/

We can draw from �t.x/ easily. Let 
i, i D 1; : : : ;mt � 1, denote the intersection
points between consecutive tangent lines, i.e., the abscissae such that wi.
i/ D
wiC1.
i/, i D 1; : : : ;mt � 1. Moreover, let be I0 D .�1; 
1�, Ii D .
i; 
iC1� for
i D 1; : : : ;mt � 1 and Imt D .
mt ;C1/. First, we calculate the area

!k D
Z

Ik

N�t.x/dx; k D 0; : : : ;mt;

below each piece of N�t.x/ D exp.�Wt.x//. Then we obtain the normalized weights

N!k D !kPmt
kD0 !k

D !k

ct
: (4.6)

where ct D Pmt
kD0 !k is the normalizing constant of N�t.x/, i.e., �t.x/ D ct N�t.x/.

Note that the !k’s can be calculated exactly, as we only need to integrate functions
of the form expf��xg (for a constant �) in different intervals. It is important to note
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that these intervals are defined by the intersection points between two contiguous
tangent lines wi.x/ and wiC1.x/ (then, these intersection points must be calculated).
Hence, in order to draw a sample from �t.x/:

1. first we randomly choose a piece according to the probability masses N!k, k D
0; : : : ;mt,

2. and then we generate a sample x0 from the corresponding truncated exponential
pdf using, for instance, the inversion method (see Sect. 2.4.1).

Improving the Proposal pdf

It is apparent that the previous procedure allows us to build better envelope functions
N�t.x/ and, as a consequence, better proposal pdfs �t.x/ just using a greater number
of support points in the construction.

The adaptive structure in Sect. 4.2.2 suggests that when a sample x0 from �t.x/
is rejected in an RS scheme we incorporate x0 into the set of support points, i.e.,
StC1 D St [ fx0g and mtC1 D mt C 1. Then, we compute a refined lower hull,
WtC1.x/, and a new proposal density �tC1.x/ D ctC1 exp.�WtC1.x// that is closer to
the target pdf. Figure 4.2 illustrates different constructions of the envelope function
N�t.x/ D exp.�Wt.x// using 2, 3, 4, and 5 support points, respectively.

Initial Conditions

The minimum number of initial support point is m0 D 2, S0 D fs1; s2g where
s1 < s2. To obtain a proper initial proposal�0.x/ the derivatives of V.x/ at s1; s2 2 D
must have different signs. This also ensures that the mode of p.x/ is contained in
Œs1; s2�. Clearly more initial support points can be used.

Example 4.1 Take as target pdf a standard Gaussian density, i.e.,

po.x/ / p.x/ D expf�x2=2g:

In this case the potential function is

V.x/ D 1

2
x2;

which is convex (i.e., p.x/ is log-concave). The first derivative of the potential
function is dV

dx D x. Hence, we can apply the ARS method using the construction in
Eq. (4.3). We draw T D 500 i.i.d. samples from po.x/ via ARS using S0 D f�1:3; 2g
as the initial set of support points. The procedure is repeated for 10,000 different
runs.

Figure 4.3a shows the acceptance rate (averaged over the 10,000 runs) for the
ith sample, with 1 � i � 500. We can observe that the acceptance rate converges
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Fig. 4.2 Examples of construction of the envelope function N�t.x/ D exp.�Wt.x// with different
number of support points. With more support points the envelope function N�t.x/ D exp.�Wt.x//
approaches p.x/

quickly to 1, so the ARS method virtually becomes a direct sampler for po.x/. This
is obtained with a bounded computational cost. Indeed, the (empirical) mean final
number of support points used in the ARS scheme (i.e., contained in ST with T D
500) is mT D 15:5. This means that, we discard on average just 13:5 proposed
samples for drawing 500 samples and we can obtain an acceptance rate close to 1
just using on average less than 16 support points.

Figure 4.3b shows the histogram of values of mT for the set of 10,000 simulations.
The minimum and maximum value of this empirical distribution is mT D 9 and
mT D 23 support points, respectively. Since the acceptance rate after accepting
500 samples is close to 1, the probability of rejecting the following samples will be
negligible and, as a consequence, the probability of adding a new support point is
almost zero.

As shown in Fig. 4.3a, the acceptance rate is varying with the iterations. However,
since for drawing 500 samples we need on average 513:5 iterations, the mean
acceptance rate of the overall ARS algorithm is 97:7%.
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Fig. 4.3 (a) The curve of acceptance rates (averaged over 10,000 runs) as a function of the number
of accepted samples. (b) Histogram of the final number of support points after accepting 500
samples for 10,000 different runs of the ARS algorithm
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Fig. 4.4 (a) Example of construction of the squeeze function exp.� OWt.x// with three support
points St D fs1; s2; smtD3g. (b) The corresponding hat and squeeze functions exp.�Wt.x//,
exp.� OWt.x//, together with the target function p.x/ D exp.�V.x//

Applying the Squeeze Principle

If the target density is computationally expensive to evaluate, it is also possible to
construct a squeeze function

exp.� OWt.x// � p.x/ D exp.�V.x//;

for all x 2 D (see Sect. 3.3.2). In order to construct OWt.x/ in such a way that it is also
piecewise linear, we can use the secant lines passing through the points .sk;V.sk//

and .skC1;V.skC1// where sk; skC1 2 St are support points. Obviously, as illustrated
in Fig. 4.4, this construction is possible only in the finite domain Œmin.St/;max.St/�,
hence, we set OWt.x/ ! C1 for any x … Œmin.St/;max.St/�. It is straightforward to
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see that with this construction

exp.�Wt.x// � exp.�V.x// � exp.� OWt.x//; (4.7)

so we can also apply the squeeze technique.

4.3.2 Derivative-Free Constructions for Log-Concave pdfs

A variation of the standard ARS algorithm that avoids the need to compute
derivatives of V.x/ and lends itself to a simpler automatic implementation has been
proposed in [8].

Given the set of support points St D fs1; : : : ; smt g, here we denote with wk.x/
the secant line passing through the points .sk;V.sk// and .skC1;V.skC1//, for k D
1; : : : ;mt � 1. Whereas for k 2 f�1; 0;mt;mtC1g we set

wk.x/ ! �1; (4.8)

as infinite constant values. Consider also the definition of the intervals I0 D
.�1; s1�, Ij D Œsj; sjC1�, j D 1; : : : ;mt and ImtC1 D Œsmt ;C1/. Then, the piecewise
linear function Wt.x/ is constructed as

Wt.x/ , maxŒwk�1.x/;wkC1.x/� for x 2 Ik; k D 0; : : : ;mt: (4.9)

Figure 4.5 illustrates the construction of Wt.x/ using the derivative-free ARS
algorithm with 4 and 5 support points.

xs1 s2 s3 s4

w1(x)

w2(x)

w3(x)

V (x)

Wt (x)

(a)

xs1 s2 s4 s5

w1(x)

w2(x)w3(x)

V (x)

Wt (x)

s3

w4(x)

(b)

Fig. 4.5 Example of construction of the piecewise linear function Wt.x/, as carried out by the
derivative-free ARS technique. The function Wt.x/ is composed by pieces of secant lines passing
through .sk;V.sk// and .skC1;V.skC1//, k D 1; : : : ;mt �1, as described in Eqs. (4.8) and (4.9). (a)
Construction with four support points St D fs1; s2; s3; smtD4g. (b) Construction with five support
points St D fs1; s2; s3; s4; smtD5g
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Fig. 4.6 Example of
stepwise construction (with
the exception of the tails in I0
and Imt ) of Wt.x/ with five
support points

xs1 s2 s3 s4 s5

Wt(x)
B

V (x)

Stepwise Proposal pdfs

Given a log-concave pdf po.x/ / p.x/, assume that an upper bound B � p.x/ is
available. Assume also that the mode x� of p.x/ is contained in the kth interval,2

Ik D Œsk; skC1�. In this case, a simpler alternative construction is possible. Indeed,
we can define

Wt.x/ D

8
ˆ̂<

ˆ̂
:

w1.x/; x 2 I0;
minŒV.sj/;V.sjC1/�; x 2 Ij; with j ¤ k
B; x 2 Ik;

wmt�1.x/; x 2 Imt ;

(4.10)

where j D 1; : : : ;mt, w1.x/ is the secant line passing through the points
.s1;V.s1// and .s2;V.s2// and wmt�1.x/ is the secant line passing through the
points .smt�1;V.smt�1// and .smt ;V.smt //. Figure 4.6 depicts an example with five
support points. The proposal pdf is, again,

�t.x/ / N�t.x/ D exp.�Wt.x//:

Therefore, except for the tails, �t.x/ is formed by constant pieces (i.e., a mixture of
uniform pdfs). Although the approximation of a curve (the target p.x/ in this case)
is less accurate using constant functions than using linear functions, this approach
has two main advantages:

• it is easier to extend this construction for the multidimensional case,
• and an addition of a new support point just varies the construction in one interval

Ik so that in each step it is not necessary to rebuild the complete proposal.

Observe that this can be considered an adaptive version of the strip methods in
Sect. 3.6.1. See Sect. 4.5.2 for an example of application of this construction.

2Note that with simple inspections it is always possible to know the interval including the mode
(for instance, considering the signs of the slopes of the secant lines passing through the support
points).
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Table 4.1 Log-concave
densities

Name Density po.x/ / p.x/ Parameters

Gaussian p.x/ D exp
�
� .x��/2

2�2

�
8�; � 2 R

Exponential power p.x/ D exp .�jxj˛/ ˛ � 1

Weibull p.x/ D xa�1 exp.�xa/ a � 1

Gamma p.x/ D xa�1 exp.�x/ a � 1

Beta p.x/ D xa�1.1� x/b�1 a; b � 1

Planck p.x/ D xa=.ex � 1/ a � 1

Perks p.x/ D 1=.ex C e�x C a/ a � �2

Examples of Log-Concave pdfs

Table 4.1 provides some examples of log-concave pdfs. However, the condition of
logŒ p.x/� being concave rules out many target pdfs of interest. Indeed, in many
practical applications the target is non-log-concave or, in general, multimodal and
the standard (or derivative-free) ARS techniques cannot be applied. In order to deal
with such densities several generalizations of the standard ARS method have been
proposed in the literature and we explore some of them in the sequel.

4.3.3 Concave-Convex ARS

Consider a target pdf po.x/ / p.x/ D exp.�V.x// defined in a bounded domain
x 2 D, where the potential V.x/ can be decomposed into a sum of convex, V1.x/,
and concave, V2.x/, functions, i.e.,

V.x/ D V1.x/C V2.x/: (4.11)

In this case, the concave-convex ARS (CCARS) method [11, 13] can be applied.
The two parts can be analyzed separately in order to obtain two different piecewise
linear functions, Wt;1.x/ and Wt;2.x/, such that

Wt;i.x/ � Vi.x/;

with i D 1; 2. Clearly, the envelope function in this case is

N�t.x/ D exp.�Wt;1.x/ � Wt;2.x// � p.x/ D exp.�V.x//:

Figure 4.7 illustrates the procedures to handle the potentials V1 and V2 with different
concavity.

Given a set of support points St D fs1; s2; : : : ; smt g 
 D, sorted in ascending
order, we already know that we can use pieces of tangent lines at the support points
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Fig. 4.7 Application of the concave-convex ARS method. Example of construction with three
support points St D fs1; s2; smtD3g of the two piecewise linear functions Wt;i.x/, i D 1; 2, such
that Wt;i.x/ � Vi.x/. (a) Since V1.x/ is convex, we can use pieces of lines tangent to V1.x/ at the
support points. (b) Since V2.x/ is concave, the function Wt.x/ is composed by pieces of secant lines
passing through .sk;V.sk// and .skC1;V.skC1//, k D 1; 2, to fulfill the inequality Wt;2.x/ � V2.x/

to build a lower hull Wt;1.x/ for the concave potential V1.x/ as in the standard ARS
technique. For the concave potential V2.x/, we can use the secant lines passing
through .sk;V.sk// and .skC1;V.skC1//, k D 1; : : : ;mt � 1, to obtain a suitable
piecewise linear function Wt;2.x/ such that Wt;2.x/ � V2.x/. Then the proposal pdf is

�t.x/ / N�t.x/ D exp.�Wt;1.x/ � Wt;2.x//;

that is formed by exponential pieces. Hence, the ARS approach can be applied using
�t.x/ as proposal and N�t.x/ as envelope function.

Remark 4.1 It should be noticed that CCARS procedure to build �t.x/ is possible
only in a finite domain, precisely in the interval Œmin.St/;max.St/�. However, if the
tails of the entire potential V.x/ are convex, we can also apply this technique to a
target pdf with unbounded domain. Indeed, in this situation we can handle the tails
separately using tangent lines in order to build a function Wt.x/ � V.x/ (also in the
tails), as in the standard ARS method.

4.3.4 Transformed Density Rejection

The standard construction given in [9] and described in Sect. 4.3.1 can be applied
only when V.x/ D � logŒ p.x/� is convex. In [6, 16, 18, 21], the authors suggested to
replace the log.#/ function with another monotonically increasing transformation

T.#/ W RC ! R
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such that TŒ p.x/� (with po.x/ / p.x/) is concave or, equivalently, the corresponding
potential function

VT.x/ , �TŒ p.x/�; (4.12)

is convex. Equation (4.12) above implies that the target pdf can be expressed as

po.x/ / p.x/ D T�1Œ�VT.x/�: (4.13)

Obviously, we go back to the standard ARS construction procedure by choosing
T.#/ D log.#/. This method is known as transformed density rejection (TDR)
algorithm.

Algorithm

Let us consider a monotonically increasing transformation T.#/. Given a set of
support points St D fs1; s2; : : : ; smt g 
 D, the idea is, again, to replace the convex
potential VT.x/ with a piecewise-linear function Wt.x/, such that Wt.x/ � VT.x/
and formed by segments of linear functions that, for instance, are tangent to VT.x/
at the points .sk;VT.sk// such that sk 2 St. If we let wk.x/ be the linear function
tangent to VT.x/ at sk, then the piecewise linear function Wt.x/ is defined as
Wt.x/ D maxfw1.x/; : : : ;wmt .x/g, exactly as in Sect. 4.3.1. Clearly, the derivative-
free procedures in Sect. 4.3.2 can also be applied to VT.x/. Then, the proposal pdf
has the form

�t.x/ / N�t.x/ D T�1Œ�Wt.x/�; (4.14)

where N�t.x/ � p.x/ by construction. Moreover, if T is adequately chosen, we can
draw easily from �t.x/ (as explained in Sect. 4.3.1) and then apply the RS test (using
the ratio p.x/= N�t.x/) to generate samples from po.x/ / p.x/.

Remark 4.2 This technique extends the standard ARS algorithm in [9] but it still
can be applied only to unimodal target densities, since T is a monotonic (increasing)
function.

Necessary Conditions for T

For this procedure, the key is the identification of an adequate transformation T.#/.
To be useful, T W RC ! R has to satisfy the following conditions:

1. It has to be monotonically increasing.
2. Given the inverse transformation T�1.z/, the integral

QT.z/ D
Z z

�1
T�1.z0/dz0;
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must be bounded for all (finite) possible values of z < C1 in the domain of T�1.
3. It must be possible to compute the integral

QT.b/ � QT.a/ D
Z b

a
T�1.z/dz (4.15)

exactly, where a and b can also be non-finite.
4. The composition .T ı p/.x/ D TŒ p.x/� has to be concave, i.e.,

d2

dx2
TŒ p.x/� D

"
d2T

d#2

#

p.x/

 
dp

dx

!2
C
"

dT

d#

#

p.x/

d2p

dx2
� 0:

The satisfaction of the first condition guarantees that the inverse transformation
T�1 W R ! R

C exists and it is monotonically increasing as well. The second condi-
tion is required to ensure that the integral of the envelope function T�1Œ�Wt.x/� in
a domain bounded or unbounded in one side, i.e.,

Z b

a
T�1Œ�Wt.x/�dx � C1;

where at least one of values a; b is finite.The third condition assures that we are able
to calculate these kind of integral exactly (recall that Wt.x/ is a piecewise linear
function). This is necessary in order to draw from the resulting piecewise proposal
�t.x/. The last condition is necessary to allow the construction of Wt.x/ using
tangent lines such that Wt.x/ � VT.x/ and, correspondingly, T�1Œ�Wt.x/� � p.x/.

Examples of Suitable T-Transformations

In many applications, the most used suitable class of transformations is the family
of power functions,

Tc.#/ D sign.c/#c 8# 2 R
C;8c 2 R n f0; 1g:

Note that Tc.#/ W RC ! R
C is an increasing function for all values of the parameter

c 2 R. The authors in [16, 17] complete the family defining

T0.#/ D log.#/;

which is based on the limit [17, Chap. 4]

lim
�!0

#� � 1
�

D log.#/:
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The most commonly used members of this family are, certainly, T0.#/ D log.#/
and T�1=2.#/ D �1=p# . Note that the integral of T�1.z/ D z1=c, for c > 0, and
T�1.z/ D .�z/1=c, for c < 0 (c ¤ �1), can be calculated analytically and yield
(recalling that QT.z/ D R z

�1 T�1.z0/dz0)

QT.z/ D c

c C 1
z

cC1
c ; c > 0;

QT.z/ D � c

c C 1
.�z/

cC1
c ; c < 0:

(4.16)

Moreover, both functions QT can be inverted analytically to obtain Q�1
T and this

enables us to use the inversion method to draw from each piece forming the
corresponding proposal �t.x/ / T�1

c Œ�Wt.x/� (where Wt.x/ is a piecewise linear
function). The value c D �1 is not feasible because T�1 does not satisfy the
second condition needed for the corresponding proposal �t.x/ / T�1�1 Œ�Wt.x/� to
be a proper pdf.

Remark 4.3 It is important to be aware that the transformation Tc.#/ is applicable
to densities defined in an unbounded domain only for the values c 2 .�1; 0�
[17, Chap. 4].

Example 4.2 Consider a Cauchy target pdf, i.e.,

po.x/ D 1

�.1C x2/
; x 2 R;

and the T-transformation

T�1=2.#/ D �
r
1

#
; # 2 R

C:

Then, the potential function

VT.x/ D �T ı po.x/ D
p
�.1C x2/;

is convex. Using tangent lines we can construct a piecewise linear function Wt.x/ �
VT.x/ using the set of support pointsSt. Hence, the proposal�t.x/ / T�1�1=2Œ�Wt.x/�,

where T�1�1=2.z/ D 1
z2

, is formed by pieces of the form

�t.x/ / N�t.x/ D 1

.aix C bi/2
; Ii D Œsi; siC1�;

where i D 1; : : : ; jStj D mt, and ai, bi are the coefficients of the ith linear piece in
Wt.x/. We can integrate each piece in order to compute suitable weights, and we can
also draw samples from a chosen piece easily using the inversion method.
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We remark again that, since T.#/ has to be a monotonically increasing function
and TŒ p.x/� has to be concave, this procedure can be applied only to unimodal
target pdfs. Moreover, finding a suitable transformation T is not a always an easy
task. For these reasons, different extensions have been investigated in the literature.
We summarize and describe them below.

4.3.5 Extensions of TDR

TDR and Transformed Rejection Method

Let us mention that, despite the similarity in the names, the “transformed rejection
method” of Sect. 3.7 is rather different from the TDR algorithm. Specifically, in the
transformed rejection scheme the transformation is applied to the random variable
X, with pdf po.x/, while in TDR the transformation is applied directly to the density
po.x/.

However, both approaches can be used jointly. Indeed, in certain cases, rather
than working directly with po.x/, it is easier to find a suitable transformation T for
the transformed density

q.y/ D po.�
�1.y//

ˇ
ˇ
ˇ
ˇ
d��1.y/

dy

ˇ
ˇ
ˇ
ˇ

of a r.v. Y, obtained as Y D �.X/ with X � po.x/. Namely, � is a transformation
applied to the r.v. X � po.x/ whereas T is applied to the pdf q.y/. In this case,
an ARS scheme can be used to draw a sample y0 from q.y/ and then we can set
x0 D ��1.y0/.

A typical example, taken from [17, Chap. 4], is given by the family of pdfs po.x/
such that the density of Y D log X (i.e., �.x/ D log.x/),

q.y/ D po.exp.y// exp.y/;

is log- concave (i.e., T.#/ D log.#/). In the literature, pdfs of this class are usually
called log-log-concave densities [17], but this name does not clarify that the first
logarithm function is applied to the r.v. X � po.x/, not directly to the target pdf
po.x/.

Example 4.3 The Indian buffet process (IBP) is a well-known stochastic process
often used in Bayesian nonparametric methodologies [12]. The so-called stick-
breaking construction of IBP [34] demands the ability to draw samples from
univariate pdfs of the form

po.x/ / p.x/ D x1�˛.1 � x/N exp

 

˛

NX

iD1

1

i
.1 � x/i

!

; x 2 Œ0; b�;
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where ˛ > 0, N 2 N and b > 0 are all positive constants. If we choose the
transformation Y D log.X/, then it is possible to prove that the pdf of Y,

q.y/ / exp..1 � ˛/y/.1 � exp.y//N exp

 

˛

NX

iD1

1

i
.1 � exp.y//i

!

;

is log-concave and so the ARS algorithm can be applied.

Extensions for Concave Potentials

The TDR method is not necessarily restricted to the case in which T is mono-
tonically increasing and VT.x/ D �TŒ p.x/� is convex, although it was originally
proposed in this setup [16]. We can extend it in a way similar to the CCARS method
of Sect. 4.3.3.

Indeed, we can consider combinations of increasing and decreasing functions T
with corresponding concave or convex potentials VT . The procedure to construct the
piecewise linear function Wt.x/, however, is different depending on the type of T
and VT at hand. This is briefly analyzed in this section.

Let us recall Eq. (4.13), po.x/ / p.x/ D T�1Œ�VT.x/�. So far, we have considered
the combination of

(1) a monotonically increasing function # D T�1.z/,
(2) with a concave function z D �VT.x/.

In such case, a piecewise linear function z D �Wt.x/ formed by straight lines
tangent to z D �VT.x/ can be used to construct an envelope function T�1Œ�Wt.x/�
such that

T�1Œ�Wt.x/� � T�1Œ�VT .x/�:

The other cases of interest, depending on to the choice of T and the concavity of VT ,
are listed below and summarized in Table 4.2.

• If # D T�1.z/ is increasing and z D �VT.x/ D TŒ p.x/� is convex, a suitable
function z D �Wt.x/ can be constructed using secant lines. However, the
construction is possible only in a bounded domain (see Fig. 4.8a, c).

Table 4.2 Possible combinations of monotonic transformation T and concavity of VT

# D T�1.z/ z D �VT .x/ z D �Wt.x/ Domain Figure

Increasing Concave Tangent lines Unbounded 4.8a, b

Increasing Convex Secant lines Bounded 4.8a, c

Decreasing Convex Tangent lines Unbounded 4.9a, c

Decreasing Concave Secant lines Bounded 4.9a, b
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= T 1(z) z

z1 = Wt (x ')

z2 = VT (x ')
T 1(z1) T 1(z2)

(a)

z

z = VT (x)
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Fig. 4.8 Example of construction of an adequate piecewise linear function z D �Wt.x/, with
three support points St D fs1; s2; s3g, for an increasing function # D T�1.z/. Figures (a)–(c)
consider the increasing function # D T�1.z/ (w.r.t. the variable z), hence, Wt.x/ is built to ensure
�Wt.x/ � �VT .x/. In figure (a), the axis associated to the variable z is vertical
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s1 s2 s3x'
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Fig. 4.9 Example of construction of an adequate piecewise linear function z D �Wt.x/, with three
support points St D fs1; s2; s3g, for a decreasing function # D T�1.z/. Figures (a)–(c) depict the
decreasing function # D T�1.z/, hence we need to build Wt.x/ to ensure that �Wt.x/ � �VT .x/.
Note that the axis associated to the independent variable z in figure (a) is vertical

• If # D T�1.z/ is decreasing and z D �VT.x/ D TŒ p.x/� is concave, an adequate
function z D �Wt.x/ has to be formed by secant lines. Also in this case, the
construction is possible only in a bounded domain (see Fig. 4.9a, b).

• If # D T�1.z/ is decreasing and z D �VT.x/ D TŒ p.x/� is convex, the straight
lines tangent to z D �VT.x/ can also be used to build z D �Wt.x/. The
construction is also possible in an infinite domain (see Fig. 4.9a, c).

Figures 4.8 and 4.9 (jointly with Table 4.2) summarize these different scenarios.
Given an arbitrary x0, it is possible to see that the value T�1Œ�Wt.x0/� (green point)
is always greater than T�1Œ�VT.x0/� (red point), i.e., T�1Œ�Wt.x0/� � T�1Œ�VT.x0/�.
Note that, in Fig. 4.8, given a generic x0 2 D and values z1 D Wt.x0/ and z2 D
�VT.x0/, we have

T�1.z1/ � T�1.z2/:

Since this is true for all x 2 D, the inequality T�1Œ�Wt.x/� � T�1Œ�VT .x/� is always
satisfied. In Fig. 4.8b, c, Wt.x/ needs to stay below V.x/ whereas, in Fig. 4.9b, c,
Wt.x/ needs to stay above V.x/ for all x 2 D.
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All the cases above assume a monotonic transformation T. A generalization for
non-monotonic transformations of the target density is given in Sect. 4.3.6. In the
sequel we discuss how it is possible to handle a generic potential function VT.x/
with second derivative with non-constant sign.

Potential Functions with Known Inflection Points

Consider a target density po.x/ that can be written as

po.x/ / p.x/ D T�1Œ�VT.x/�;

where the potential VT.x/ can possibly be non-convex (it may present several
minima) but we assume that the positions of all its inflection points are known.
The TDR algorithm can be extended to handle this case.

Indeed, we can find a partition of the support D D [n
iD1Di, Di \ Dj D ;, i ¤ j,

where within each Di the function VT.x/ has a second derivative with constant sign.
Therefore, in each interval Di where VT.x/ is convex, we use tangent lines to build
Wt.x/. Alternatively, if VT.x/ is concave in Di, the function Wt.x/ is composed by
secant lines.

Clearly, since this procedure can be applied to non-convex potentials VT.x/,
it could be applied to tackle multimodal target pdfs. In general, however, for
complicated target densities it is not straightforward to study analytically the second
derivative of the potential VT.x/. Furthermore, even if the inflection points are
known, we need that the tails of the potential be convex, as in Sect. 4.3.3, in order
to build a proper proposal.

Recently, another approach has been studied [3] that requires only knowledge
of an interval where an inflection point is located, but not exactly the position
of the inflection point. To apply this method the potential has to be three-times
differentiable, though, and it can be used only with target pdfs with bounded domain.

4.3.6 Generalized Adaptive Rejection Sampling

In this section, we describe another generalization of the adaptive rejection sampling
algorithm proposed in [26, 27]. Let us consider a target pdf po.x/, x 2 D � R, that
can be written as

po.x/ / p.x/ D exp .�V.xI g// D exp

 

�
nX

iD1
NVi.gi.x//

!

; (4.17)
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where the potential function has the form

V.xI g/ ,
nX

iD1
NVi.gi.x//; (4.18)

and g D Œg1; : : : :; gn�
> is a vector of real functions. We assume that

1. the functions NVi.#i/, for i D 1; : : : ; n (hereafter called marginal potentials), are
convex with a minimum at �i and

2. the nonlinearities gi.x/, i D 1; : : : ; n, are either convex or concave (i.e., they have
a second derivative with constant sign).

The potential V.xI g/ in Eq. (4.18) is, in general, a non-convex function. Moreover,
in general it is impossible to study analytically the first and second derivatives of
the potential V.xI g/ of Eq. (4.18) in order to calculate the stationary or inflection
points.

In the simplest case when n D 1 the pdf in Eq. (4.17) is reduced to the form

po.x/ / exp.� NV.g.x///; (4.19)

where NV.#/ is a convex function while g.x/ can be either a convex or a concave
function. It is apparent that if g.x/ is a linear function then we go back to the standard
ARS framework described in Sect. 4.3.1. More generally, given

po.x/ / exp

 

�
nX

iD1
NVi.gi.x//

!

;

if all gi.x/ are linear functions, the potential V.xI g/ ,
Pn

iD1 NVi.gi.x// is convex,
so that we go back again the standard ARS case. Indeed, in general, replacing
each nonlinearity gi.x/ with a linear function ri.x/, i D 1; : : : ; n, i.e., we have
r D Œr1; : : : :; rn�

>, it is straightforward to prove that the modified potential

V.xI r/ D
nX

iD1
NVi.ri.x// (4.20)

is convex. This result follows from each term NVi.ri.x// being convex, namely

d2 NVi.ri.x//

dx2
D d NVi

d#

d2ri

dx2
C
�

dri

dx

�2 d2 NVi

d#2

D 0C
�

dri

dx

�2 d2 NVi

d#2
� 0

(4.21)
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where we have used that

d2ri

dx2
D 0;

because ri is linear, and the convexity of the marginal potentials NVi.#/, i D 1; : : : ; n.
The argument above suggests that a generalized ARS method can be designed based
on constructing suitable piecewise-linear approximations of the nonlinearities gi.

The GARS Algorithm

Let us recall the set of support points at the tth iteration,

St , fs1; s2; : : : ; smt g 
 D;

and sort them in ascending order, s1 < : : : < smt . From the points in St we construct
the closed intervals Ik D Œsk; skC1� for k D 1; : : : ;mt � 1, together with two semi-
open intervals I0 D .�1; s1� and Imt D Œsmt ;C1/.

For each interval Ik, k D 0; : : : ;mt, the GARS method proceeds in two steps.
Consider the interval Ik 
 D. First, every nonlinearity gi.x/ is replaced by a suitable
linear function ri;k.x/. In this way we generate a modified potential V.x; rk/ in Ik,
with

rk.x/ D Œr1;k.x/; : : : ; rn;k.x/�
>;

that lies below the original one, i.e.,

V.x; rk/ � V.x; g/; 8x 2 Ik:

Second, we construct a linear function Wt.x/ that is tangent at an (arbitrary) point
x�

k 2 Ik to the modified potential V.x; rk/. The two steps are described in detail
below.

1. GARS builds suitable linear functions ri;k.x/ such that

NVi.ri;k.x// � NVi.gi.x// ; 8x 2 Ik; (4.22)

for every i D 1; : : : ; n and k D 0; : : : ;mt. As a consequence, substituting g by rk

into the functional V.xI 	/, we obtain the inequality

V.xI rk/ D
nX

iD1
NVi.ri;k.x//

� V.xI g/ D
nX

iD1
NVi.gi.x//;
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8x 2 Ik. Note that, if all the ri;k.x/ are adequately built, expf�V.xI rk/g is already
an envelope function for p.x/, i.e.,

expf�V.xI rk/g � expf�V.xI g/g D p.x/; 8x 2 Ik:

However, in general it is not possible to draw from ��.x/ / expf�V.xI r/g and
we need to seek further simplifications. Full details on the construction of rk are
provided in the next subsection.

2. The modified potential V.xI r/ is convex in Ik as we have shown previously [see
Eq. (4.21)]. Therefore, we can choose a straight line tangent to V.xI rk/ at an
arbitrary point x�

k 2 Ik to build a linear function

Wt.x/ D wk.x/; x 2 Ik;

such that Wt.x/ � V.xI r/ for all x 2 Ik, exactly as in a standard ARS method.
Thus,

N�t.x/ D exp.�Wt.x// � exp.�V.xI rk//

� exp.�V.xI g// D p.x/ 8x 2 Ik;
(4.23)

is an envelope function for p.x/ / po.x/. The built proposal pdf,

�t.x/ / N�t.x/ D expf�Wt.x/g; 8x 2 Ik;

is an exponential pdf within Ik, since Wt.x/ D wk.x/ is linear in this interval,
exactly as in the standard ARS technique in Sect. 4.3.1.

Figure 4.10 illustrates the construction of the piecewise linear function Wt.x/
using the proposed technique for the non-convex potential V.xI g/ D 16� 8x2 C x4

with three support points, St D fs1; s2; smtD3g. Indeed, this potential can be rewritten
as

V.xI g/ D 16� 8x2 C x4 D .4 � x2/2:

so that we can interpret it as a composition of functions . NV1 ıg1/.x/, where NV1.#/ D
#2 and g1.x/ D 4� x2 (i.e., n D 1 and the vector of nonlinearities g D g1 is scalar).
The dashed line shows the modified potentials V.xI rk/, k D 0; : : : ;mt D 3. The
function Wt.x/ consists of segments of linear functions wk.x/ tangent to the modified
potentials V.xI rk/ at arbitrary points x�

k 2 Ik, with k D 0; : : : ;mt D 3.
Using the GARS construction for an ARS scheme, when a sample x0 drawn from

�t.x/ / exp.�Wt.x// is rejected, x0 is incorporated as a support point in the new set
StC1 , St [ fx0g and, as a consequence, a refined lower hull WtC1.x/ is constructed
yielding a better approximation of the potential function V.xI g/.
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Fig. 4.10 Example of construction of the piecewise linear function Wt.x/with three support points
St D fs1; s2; smtD3g, as carried out by the GARS technique. The potential V.xI g/ is shown with
solid line. The modified potential V.xI rk/, for x 2 Ik, is depicted with dashed lines. The piecewise
linear function Wt.x/ (depicted with solid lines) consists of segments of linear functions wk.x/
tangent to the modified potential V.xI rk/ at arbitrary points x�

k 2 Ik, with k D 0; : : : ; 3

Construction of the Linear Functions ri;k

The GARS algorithm relies on the ability to obtain linear functions ri;k.x/ such that
NVi.ri;k.x// � NVi.gi.x// for i D 1; : : : ; n and k D 0; : : : ;mt. In order to build suitable
linear functions we need to introduce the set of simple estimates corresponding to
the nonlinearity gi.x/ as

Xi , fxi 2 R W gi.xi/ D �ig; (4.24)

where �i is the position of the minimum of the marginal potential NVi, i.e.,

�i D min
#

NVi.#/:

The background of the name “simple estimates” is clarified in a later section, when
discussing the applicability of GARS.

We recall that each function gi.x/ is assumed to have a second derivative with
constant sign, hence the equation �i D gi.xi/ can yield zero (jXij D 0, i.e., Xi is
empty), one (jXij D 1), or two (jXij D 2) simple estimates. Clearly, if gi.x/ is a
monotonic function then jXij � 1. Figure 4.11 displays the three possible cases for
a generic concave gi.x/.

We assume that all the simple estimates in Xi, i D 1; : : : ; n, are included in the
initial set of support points S0 (t D 0), i.e.,

Xi 
 S0; for i D 1; : : : ; n:
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Fig. 4.11 Example of the three possible cases for a concave nonlinearity gi.x/. (a) The set Xi is
empty, jXij D 0. (b) There exists one simple estimate xi, i.e., jXij D 1. (c) The nonlinearity gi.x/
is a non-monotonic function and jXij D 2 (Xi D fxi;1; xi;2g)

We remark that this condition is needed for the construction of suitable linear
functions ri;k.x/, i D 1; : : : ; n and k D 0; : : : ;mt.

Remark 4.4 It is possible to build the functions ri;k.x/ adequately without knowing
analytically the simple estimates and the positions of the minima �i as well [23,
Chap. 5]. However, for the sake of simplicity, here we assume that we are able to
compute the simple estimates.

Example 4.4 Consider the bimodal target pdf

po.x/ / p.x/ D exp
��.4 � x2/2

�
; x 2 R;

where the potential is V.xI g/ D .4 � x2/2 D NV1 ı g1.x/ with NV1.#/ D #2 and
g1.x/ D 4�x2 (n D 1). In this case, we have �1 D 0 and the set of simple estimates
is obtained by solving the equation 4 � x2 D 0, i.e.,

X1 D fxi;1 D �2; xi;2 D 2g:

It is easy to see that the inequality (4.22) is satisfied for the class of marginal
potential functions NVi (convex with a minimum at �i) if

j�i � ri;k.x/j � j�i � gi.x/j and (4.25)

.�i � ri;k.x//.�i � gi.x// � 0 (4.26)

jointly, 8x 2 Ik, where �i D arg min
#

NVi.#/. Indeed, if �i � a � b then NVi.a/ �
NVi.b/ because NVi is increasing in .�i;C1/ whereas for b � a � �i we have also
NVi.a/ � NVi.b/ because NVi is decreasing in .�1; �i/. Figure 4.12 illustrates the latter
inequalities. We can see that the green points are always closer to the minimum �i

than the red points, and so they always have a smaller potential value.
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Fig. 4.12 An example of
marginal potential NVi.#i/.
Since we assume that NVi is
convex with a minimum at �i,
we have always
NVi.a/ � NVi.b/ if b � a � �i

or NVi.a0/ � NVi.b0/ if
b0 � a0 � �i
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Fig. 4.13 Example of
construction of the linear
function ri;k.x/ in order to
replace a convex nonlinearity
gi.x/ in different intervals Ik,
using mt D 3 support points,
St D fs1 D xi;1; s2; s3 D xi;2g
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Figure 4.13 depicts the basic idea of how to construct the linear functions ri;k.x/,
k D 0; : : : ; 3, for three support points St D fs1 D xi;1; s2; s3 D xi;2g (s1 and s3
coincide with the two simple estimates). We seek a linear function ri;k.x/ such that
the absolute difference dr D j�i � ri;k.x/j is always less than the distance dg D
j�i � gi.x/j, i.e., dr � dg in an interval Ik. Therefore, in the intervals I0 D Œ�1; s1�
and I3 D Œs3;C1� we should use tangent straight lines while in I1 D Œs1; s2� and
I2 D Œs2; s3� we should use the linear functions passing through the two support
points.

In general, take a non-monotonic function gi.x/ and assume that the set of simple
estimates Xi is not empty. In such case, we can define the interval

Ji D Œxi;1; xi;2�;

limited by the simple estimates associated to the function gi.x/. Clearly, Ji can be
empty or a semi-open interval when gi.x/ is a monotonic function [23, Chap. 5].
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Fig. 4.14 Examples of construction of the appropriate linear functions ri;k.x/, with k D
0; : : : ;mt D 4 for a non-monotonic convex nonlinearity gi.x/. The interval defined by the simple
estimates Ji D Œxi;1; xi;2� is indicated by solid double arrows

Then, the procedure in Fig. 4.13 can be summarized as

1. if Ik 
 Ji (i.e., Ik \ Ji D Ik), use secant lines,
2. otherwise, if jIk \ Jij D 0, use tangent lines.

Recall that we are assuming that all the simple estimates are contained in the initial
set S0 so that we have only two possibilities: either the Ik is completely contained
in Ji or the intersection between Ik and Ji is just one support point.

Figure 4.14 displays two examples of construction with four support points.
Specifically, it shows the construction of the linear functions ri;k.x/ when gi.x/ is
non-monotonic and convex with mt D 4 support points. In Fig. 4.14a the intervals
I0 and I4 are not contained in Ji D Œxi;1; xi;2�, hence we use two tangent lines to
build ri;0.x/ and ri;4.x/. Since I1; I2; I3 � Ji, we use secant lines for ri;1.x/, ri;2.x/
and ri;3.x/. In Fig. 4.14b the intervals I0, I3, and I4 are not contained in Ji, hence
we use tangent lines for ri;0.x/, ri;3.x/ and ri;4.x/. Since I1; I2 � Ji, we use secant
lines for ri;1.x/ and ri;2.x/.

Applicability

Densities of the form of Eq. (4.17) appear naturally in statistical inference problems
[1, 4, 7, 19, 33] where it is desired to draw from the posterior pdf p.xjy/ with y D
Œy1; y2; : : : ; yn� 2 R

n, of a random variable X given a collection of observations

8
ˆ̂
<̂

ˆ̂
:̂

Y1 D Ng1.X/C‚1;

:::

Yn D Ngn.X/C‚n;

(4.27)
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where ‚1; : : : ; ‚n are independent “noise” variables. In fact, writing the noise pdfs
as p.#i/ / expf� NVi.#i/g (with a mode at #�

i D �i), i D 1; : : : ; n, the likelihood
function can be expressed as

p.yjx/ / exp



�

nX

iD1
NVi.yi � Ngi.x//

�
: (4.28)

Therefore, denoting gi.x/ D yi � Ngi.x/ and writing the prior pdf as p.x/ /
expf� NVnC1.gnC1.x//g, the potential function is

V.xI g/ D � logŒ p.xjy/�

D � logŒ p.yjx/p.x/� D
nC1X

iD1
NVi.gi.x//:

(4.29)

Since we are assuming that each p.#i/ / expf� NVi.#i/g has only a mode at #�
i D

�i, if we have only one observation (n D 1, hence we have only one equation, for
instance, Y1 D Ng1.X/ C ‚1) the set of maximum likelihood estimators OX of the
variable of interest x is

OX D fx 2 D W g1.x/ D �1g; (4.30)

where g1.x/ D y1�Ng1.x/. Note that Eq. (4.30) is exactly the definition of the “simple
estimates” [see Eq. (4.24)] for the first nonlinearity g1.x/, hence the choice of the
name.

Example 4.5 The standard ARS algorithm can be interpreted as a method for
sampling from pdfs of the form po.x/ / expf�h.x/g, where h.x/ is a convex
function. From a similar perspective, the proposed GARS algorithm can handle
target pdfs of the form

po.x/ / h.x/ exp .�h.x//

D exp .�h.x/C logŒh.x/�/ ;
(4.31)

where the function h.x/ can be either convex or concave. In fact, in this case we
can write � logŒ po.x/� as a composition of two functions, NV1 ı g1, where NV1.
1/ ,
#1 � logŒ#1� (which is convex with a minimum at �1 D 1) and g1.x/ , h.x/.

Example 4.6 Consider a generic polynomial potential of fourth order,

V.xI g/ D a0 C a1x C a2x
2 C a3x

3 C a4x
4; (4.32)
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with a4 > 0. This can always be written as

V.xI g/ D � C .˛ C ˇx C �x2/2 C .ı C 	x/2

D � C NV1.g1.x//C NV2.g2.x//;
(4.33)

where �, ˛, ˇ, � , 	, ı are real constants, NVi.#i/ D #2i , i D 1; 2, g1.x/ , ˛CˇxC�x2

is a second-order polynomial and g2.x/ , ı C 	x is linear. Since NV1.#/ D NV2.#/
are convex, d2g1

dx2
D � is constant and g2.x/ is linear, it is straightforward to apply the

GARS procedure. The constants �, ˛, ˇ, � , 	, and ı have to satisfy the following
equalities

8
ˆ̂
ˆ̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂
ˆ̂
:̂

�2 D a4;

2ˇ� D a3;

ˇ2 C 2˛� C 	2 D a2;

2˛ˇ C 2ı	 D a1;

˛2 C ı2 C � D a0:

(4.34)

This is a nonlinear system of five equations and six unknowns that can be always
solved if we assume a4 > 0. As a consequence, the composition of the potential is
always possible.

Example 4.7 Consider now a polynomial potential of eighth order,

V.xI g/ D a0 C a1x C a2x
2 C a3x

3 C a4x
4 C a6x

6 C a8x
8; (4.35)

where the coefficients corresponding to the powers 5; 7 are null, i.e., a5 D a7 D 0.
Moreover, if a2; a6; a8 > 0, we can rewrite the polynomial in Eq. (4.35) as

V.xI g/ D � C
�

a1
2
p

a2
C p

a2x

�2
C
�

a3
2
p

a6
C p

a6x
3

�2
C
�

a4
2
p

a8
C p

a8x
4

�2

D � C NV1.g1.x//C NV2.g2.x//C NV3.g3.x//;

where

� D a0 � a21
2a2

� a23
2a6

� a24
2a8

;

and NVi.#i/ D #2i , i D 1; 2; 3. We observe that g1.x/ D a1
2
p

a2
C p

a2x is already

linear, g2.x/ D a3
2
p

a6
C p

a6x3 is concave when x < 0 and convex when x > 0 and

g3.x/ D a4
2
p

a8
C p

a8x4 is always convex. It is important to remark that, although
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the second derivative of g2.x/ does not have a constant sign, it is possible to apply
the GARS procedure because we know the inflection points (x D 0 in this case).

Relationship Between GARS and TDR

The GARS method can be extended and related with the T-transformation technique
described in Sect. 4.3.4 (see also [23, Chap. 5]). The TDR technique enables us to
draw from target pdfs of the type

po.x/ / T�1Œg.x/� D .T�1 ı g/.x/; x 2 D � R;

where T�1.z/ is monotonically increasing and g.x/ is concave.3 The GARS
technique can be expressed in a similar form, that extends the applicability of the
TDR method to non-monotonic transformations. Indeed, let us assume that we are
able to draw from the pdf

f .z/ / H.z/; (4.36)

8z 2 R, with a single mode at �.

Remark 4.5 The argument in this subsection can also be extended to cases where
f .z/, and H.z/, have several modes. Moreover, f .z/ can be an arbitrary function,
not a pdf, if the inverse function f �1 of f .z/ satisfies the conditions discussed in
Sect. 4.3.5 for the transformation T. However, here we consider f .z/ to be a pdf to
simplify the treatment.

To take advantage of the TDR technique, consider a target density of the form

po.x/ D f .g.x// / H.g.x//; (4.37)

where g.x/ is either a concave or a convex function (or a general function with
known inflection points, see [23, Chap. 5]). Hence, the target pdf is a distribution
generated by a transformation of scale g.x/ of the pdf f .z/ [20].

Remark 4.6 The function H.z/ is non-monotonic though, differently from the
transformation T of Sects. 4.3.4 and 4.3.5.

The first step of the standard GARS procedure can be used to replace the
nonlinearity g.x/ with suitable linear functions rk.x/ D akx C bk, for all x 2 Ik

and k D 0; : : : ;mt, such that

H.rk.x// D H.akx C bk/ � H.g.x//; (4.38)

3Table 4.2 in Sect. 4.3.5 summarizes the other three possible cases where the technique is
applicable: T�1.z/ increasing and g.x/ convex, T�1.z/ decreasing and g.x/ concave and finally
T�1.z/ decreasing and g.x/ convex. Note that in all the four cases T�1.z/ is a monotonic function.
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Fig. 4.15 Example of construction of the linear functions rk.x/, k D 0; : : : ;mt D 3 for a convex
nonlinearity g.x/ and a function H.z/ with a single mode at �. The simple estimates s1 and s3 are
solutions of the equation � D g.x/

in order to use

�t.x/ / H.rk.x//

as the proposal pdf in an RS scheme. Since f .z/ / H.z/, it is important to remark
that �t.x/ / f .rk.x// / H.rk.x// is a linearly-scaled version of the pdf f .z/, hence
if we can draw from f then we can generate samples also from �t.x/. We recall that
if the function H is monotonic, then we go back to the scenario in Sect. 4.3.4, where
H.z/ D T�1.z/ (with either � ! C1 if H is increasing, or � ! �1 if H is
decreasing).

The construction of the necessary linear functions is very similar to the standard
algorithm. Given a set of support points

St D fs1; : : : ; smt g;

we aim at finding a linear function rk.x/ in the interval Ik D Œsk; skC1� such that
H.rk.x// � H.g.x//. An example with mt D 3 support points and a convex
nonlinearity g.x/ is shown in Fig. 4.15. The simple estimates (shown with squares)
are calculated as solutions of the equation � D g.x/. The straight lines r0.x/ and
r3.x/ are tangent to g.x/ at s1 and s3, respectively, while r1.x/ and r2.x/ are secant
lines. If� ! ˙1, Fig. 4.15 would show the cases also depicted in Figs. 4.8 and 4.9,
with H.z/ D T�1.z/.4

4The case when the set of simple estimates is empty is similar to the case � ! ˙1, hence the
construction of the linear functions is also similar, but it needs a special care. For further details,
see [23].
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The construction is valid because the inequality in Eq. (4.38) is satisfied. Indeed,
arbitrarily choosing x0 and taking the values z2 D g.x0/ and z1 D rk.x0/ we always
have that H.z1/ � H.z2/.

Therefore, the GARS method can be interpreted as a technique to use rejection
sampling for target densities generated by a transformation of scale [20]. Here, we
have considered target pdfs which are scaled versions of a pdf f .z/ with a single
mode �, but the GARS technique can also be applied when f .z/ has several modes.

4.4 Performance and Computational Cost of the ARS
Schemes

In Sect. 3.3, we have seen that the computational cost of an RS scheme is determined
mainly by the acceptance rate and by the time necessary to draw from the proposal
pdf. Here, we study these two aspects in the ARS methodology.

4.4.1 Acceptance Rate

In an RS scheme a proposed sample x0 is rejected if the discrepancy between the
envelope function N�t.x/ and p.x/ is high (the probability p.x/

N�t.x/
of accepting x0 is

small). An ARS scheme uses the rejected x0 to improve the construction of the
proposal around x0. In this way, �tC1.x/ / exp.�WtC1.x// becomes “closer” to
p.x/ / po.x/ and it can be expected that the mean acceptance rate becomes higher.
This is illustrated, numerically, by Example 4.1.

To be precise, the probability of accepting a sample x 2 D drawn from �t.x/ /
N�t.x/ is

at.x/ D p.x/

N�t.x/
;

and the acceptance rate at the tth iteration, denoted as Oat, is the expected value of
at.x/ with respect to the proposal density, i.e.,

Oat D EŒat.x/� D
Z

D
at.x/�t.x/dx D ct

Z

D

p.x/

N�t.x/
�t.x/dx D cv

ct
� 1; (4.39)

where 1=ct and 1=cv are the normalizing constants of �t.x/ and p.x/, namely

ct D
Z

D
N�t.x/dx
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and

cv D
Z

D
p.x/dx;

respectively. Note that cv
ct

� 1 because N�t.x/ � p.x/, 8x 2 D and 8t 2 N.
From Eq. (4.39), we obtain that Oat D 1 if, and only if, ct D cv or, equivalently,

Oat D 1 if and only if the integral

e.t/ ,
Z

D
Œ N�t.x/� p.x/� dx (4.40)

vanishes, i.e., e.t/ D 0.
The error signal e.t/ can be interpreted as a divergence5 between �t.x/ and p.x/.

In particular if e.t/ decreases, the acceptance rate Oat D cv
ct

increases and, since
N�t.x/ � p.x/, 8x 2 D, e.t/ D 0 if, and only if, N�t.x/ D p.x/ almost everywhere.
Equivalently, Oat D 1 if, and only if, �t.x/ D po.x/ almost everywhere.

4.4.2 Probability of Adding a New Support Point

So far we have seen that the use of more support points improves the proposal pdf
�t.x/ and, as a consequence, provides better acceptance rates. However, the cost of
drawing samples from �t.x/ strictly depends on the number of pieces that form the
proposal, which, in turn, are determined by the total number of support points (see
Sect. 4.3). Then, an increase in the number of points yields higher acceptance rates
but also a higher cost in terms of the time needed to draw from �t.x/.

Fortunately, the probability of incorporating a new support point in St vanishes
quickly as the acceptance rate approaches 1, since in the ARS scheme of Sect. 4.2
the probability of adding a new point coincides exactly with the probability of
discarding a sample, that is exactly 1 � at.x/. Since the expected value of at.x/
converges to 1 then the probability of adding a new support point approaches zero
as t ! C1.

4.5 Variants of the Adaptive Structure in the ARS Scheme

The adaptive scheme given in Sect. 4.2.2 presents several advantages but it is
certainly not unique. Different possibilities can be considered.

5Note that Œ N�t.x/� p.x/� � 0 for all x 2 D.
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A broad discussion about the optimal distribution of the support points is given in
[17, Chap. 4] (see also Sect. 4.5.2 below). Furthermore, the authors in [17, Chap. 4]
introduce a derandomized version of the ARS scheme, in which support points are
chosen according to a deterministic rule: a new point selected deterministically is
added where the discrepancy between the envelope function and the target exceeds
a threshold (previously chosen by the user).

In the sequel, we describe two alternative structures that maintain a stochastic
component in choosing novel support points, i.e., in the construction of the proposal
but enable us to control the computational cost. These variants are especially useful
to design ARS algorithms for drawing samples from multivariate target pdfs (as
shown in Chap. 6).

4.5.1 Deterministic Test for Adding New Support Points

In this subsection, we describe a deterministic test for deciding whether to incorpo-
rate, or not, a new support point to the proposal. We build on ideas introduced in [29]
for similar techniques. The main difference with respect to the derandomized ARS
version in [17, Chap. 4] is that the new points are still adaptively (and randomly)
chosen as in the standard ARS method.

The first important observation is that in the standard ARS structure of
Sect. 4.2.2, the RS test is used to decide, jointly, (a) whether to accept or not
the sample x0 (with probability p.x0/

N�.x0/
) and (b) whether to incorporate or not x0 into

St (with probability 1 � p.x0/

N�.x0/
). However, we could split this test into two parts: first

decide whether to accept the new sample or not and, afterwards, decide whether the
sample should be incorporated as a support point or not. This last test can be chosen
arbitrarily, designing different algorithms, since it affects only the construction
of the proposal but does not interfere with the sampling mechanism, i.e., we can
change this test as we wish and the sampling technique still remains valid. For
instance, a possible algorithm is outlined below.

1. Choose a value � > 0, an initial set S0 D fs1; : : : ; sm0g, si 2 D, i D 1; : : : ;mt,
and set t D 0. Let N be the number of desired samples distributed according
po.x/.

2. Build �t.x/ / N�t.x/ using a suitable procedure (see Sect. 4.3) given the set St.
3. Draw x0 � �t.x/ and u0 � U.Œ0; 1�/.
4. If u0 � p.x0/= N�t.x0/, then accept x.i/ D x0, set i D i C 1. Otherwise, if u0 >

p.x0/= N�t.x0/, reject x0.
5. If j N�t.x0/�p.x0/j > �, then set StC1 D St [x0. Otherwise, i.e., j N�t.x0/�p.x0/j � �,

set StC1 D St.
6. If i < N stop. Otherwise, update t D t C 1 and go to step 2.

The RS test at step 4 ensures that the accepted samples are distributed exactly
according to the target pdf po.x/ / p.x/. The second test, at step 5, adds x0 to
the set of support points if the discrepancy (measured as a the absolute value of
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the difference) between the envelope function N�t.x0/ and the target p.x/ exceeds a
threshold � > 0.

Remark 4.7 Since � is fixed and positive, the main difference with the ARS
structure of Sect. 4.2.2 is that here the adaptation could be stopped at some iteration
t�, i.e.,

�t� .x/ D �t�C1.x/ D : : : D �t�C� .x/ : : : :

if j N�t� .x/� p.x/j < � for all x 2 D. Namely, we have

St� D St�C1 D : : :St�C� D : : :

Therefore, we can choose the threshold � to establish a trade-off between the
acceptance rate that we attempt to obtain and the number of support points. With
bigger �, on average we add a smaller number of support points but obtain also a
smaller acceptance rate. On the contrary, with smaller � we add on average a greater
number of support points but obtain an acceptance rate closer to 1.

The value � D 0 is not admitted, since in this case all proposed samples drawn
from �t.x/ are included in St and, as a consequence, the computational cost grows
without bound. With � ! C1 we never update the proposal so that this ARS
scheme becomes a simple (“static”) RS algorithm.

Parsimonious Adaptive Rejection Sampling (PARS)

In some cases, it is difficult to choose a proper value of the parameter � when no
a-priori information about the range of values of the function d.x/ D j N�t.x/ � p.x/j
is available. A variant of the previous technique can be applied which considers
a threshold value ı 2 Œ0; 1�. This alternative scheme, called Parsimonious ARS
(PARS) [24], is outlined below:

1. Set t D 0 and choose an initial set of support points, S0 D fs1; : : : ; sm0g and a
threshold value ı 2 Œ0; 1�. Let N be the number of desired samples distributed
according to po.x/.

2. Build �t.x/ / N�t.x/ using a suitable procedure given the set St.
3. Draw x0 � �t.x/ and u0 � U.Œ0; 1�/.
4. If u0 � p.x0/= N�t.x0/, then accept x.i/ D x0, and set i D i C 1, StC1 D St.
5. If p.x0/

N�t.x0/
� ı, update StC1 D St [ fx0g. Otherwise, if p.x0/

N�t.x0/
> ı, set StC1 D St.

6. If i < N stop. Otherwise, update t D t C 1 and go to step 2.

Note that if ı D 0, no support points are added so that the method is not adaptive
in this case. If ı D 1, all the generated samples from the proposal pdf �.x/
are incorporated as support points, so that the method becomes computationally
demanding.
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4.5.2 An Adaptive Rejection Sampler with Fixed Number
of Support Points

Except for the initial set, the locations of the rest of support points are chosen
randomly and adaptively in the ARS algorithm introduced in Sect. 4.2. Clearly, if
we fix a number m of points and a given construction procedure of the proposal,
the optimal distribution of support points OS.m/ D fOs1; : : : ; Osmg is the one which
minimizes the discrepancy between N�t.x/ and p.x/. Namely, using the more explicit
notation N�t.xjS.m// and denoting the L1 distance between N�t.xjS.m// and p.x/ as

D.S.m// D
Z

D

ˇ
ˇ N�t.xjS.m//� p.x/

ˇ
ˇ dx D

Z

D
. N�t.xjS.m// � p.x//dx;

then the optimal set of m support points is such that

D. OS.m// D min
S.m/

D.S.m//:

By an argument similar to the discussion in Sect. 4.4.1, it is apparent that the
(optimal) set OS.m/ maximizes the achievable acceptance rate subject to having at
most m points and using a prescribed (suitable) construction procedure.

The rest of this subsection is devoted to the description of an alternative adaptive
structure that uses a fixed total number m of support points, whose positions are still
selected randomly. The parameter m can be selected by the user in order to control
the computational cost of the resulting adaptive rejection sampler (note that m can
also be seen as the maximum allowed number of support points).

The underlying idea relies on the following observation. Equation (4.39) states
that the acceptance rate in an RS scheme is

Oat D cv
ct
;

where ct D R
D N�t.x/dx represents the area below the envelope function N�t.x/

whereas cv D R
D p.x/dx is the area below p.x/. Clearly, in our problem cv is

fixed. As a consequence, to increase the acceptance rate we have to improve the
construction of the envelope function in order to diminish ct (while, obviously,
maintaining N�t.x/ � p.x/). The following algorithm changes the position of the
support points in order to decrease ct.

Cheap Adaptive Rejection Sampling (CARS) Algorithm

Consider the intervals I0 D .�1; s1�, Ij D Œsj; sjC1�, j D 1; : : : ;m and ImC1 D
Œsm;C1/. A possible algorithm with a fixed number of support points, called Cheap
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Adaptive Rejection Sampling (CARS) [25], is given below:

1. Set i D 0, t D 0. Choose m points S.m/0 D fs1; : : : ; smg. Let N be the number of
desired samples distributed according to po.x/ / p.x/.

2. Build �t.x/ / N�t.xjS.m/t / using a suitable procedure given the set S.m/t .
3. Draw x0 � �t.x/ and u0 � U.Œ0; 1�/.
4. If u0 � p.x0/= N�t.x0/, then accept x.i/ D x0, set i D i C 1, S.m/tC1 D S.m/t , t D t C 1

and jump to step 6.
5. If u0 > p.x0/= N�t.x0/, then reject x0 and

(a) Find the interval Ij D Œsj; sjC1� such that x0 2 Ij.
(b) Using the alternative sets

A1 D fs1; : : : ; sj�1; x0; sjC1; : : : ; smg;

A2 D fs1; : : : ; sj; x
0; sjC2; : : : ; smg;

compute c.1/t D R
D N�t.xjA1/dx and c.2/t D R

D N�t.xjA2/dx.

(c) If c.1/t � c.2/t , then set S.m/tC1 D A1, otherwise S.m/tC1 D A2.

6. If i > N stop, otherwise go to step 2.

Note that at each step the set S.m/t either remains the same or just one support point
is substituted. It is apparent that the algorithm produces a sequence of envelope
functions with non-increasing areas, i.e.,

c0 � c1 � : : : ct � ctC1 : : : : � ctC� � : : : : � lim
t!1 ct D c1:

Therefore, the acceptance rate can be expected to grow as the procedure is iterated
but, since the number of points is finite, it will not converge to 1, in general,
even if t ! 1. As a matter of fact, there is also no guarantee that the algorithm
convergences to the optimal distribution of the support points, i.e., S.m/1 ¤ OS.m/
(the final value c1 may not be the minimum possible area). The final stationary
locations of the support points, S.m/1 , attained by the algorithm depend in general
on the initial set S.m/0 . The latter, in turn, can be chosen using the standard ARS
approach in Sect. 4.2. In this sense, the value m can be seen as a maximum total
number of support points.

Applicability

The applicability of this technique depends strictly on the effort required to apply
step 5 of the algorithm, compared to the gain in terms of computational cost using
only m points. A good construction procedure for this algorithm is described in
Sect. 4.3.2, where the proposal pdf is a stepwise function (with the exception of the
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tails). Observe that, with this construction, a change of one support point only varies
two pieces of the built proposal (corresponding to the intervals Ij�1 and Ij) whereas

the rest remains invariant. Therefore, to compute the values c.1/t and c.2/t we need to
rebuild the proposal and recalculate the areas just in these two pieces.

4.6 Combining ARS and MCMC

ARS samplers are very appealing tools for computational inference because of
their efficiency. However, the range of target probability distributions to which
they can be applied is still limited and, hence, there have been attempts to extend
the methodology in the direction of obtaining a fully universal adaptive sampling
scheme that can be used whenever the target pdf can be evaluated point-wise.

An obvious path to pursue the latter goal is to investigate the combination of
the ARS and MCMC methodologies and, in particular, the authors in [10] have
addressed the design of adaptive samplers with intertwined Metropolis-Hastings
acceptance tests. The resulting algorithm, called adaptive rejection Metropolis
sampling (ARMS), broadens the range of applicability of the ARS method (it can be
always applied as long as the target can be evaluated) and improves the performance
of a standard MH technique. Its basic drawback is that the generated samples form
a Markov chain and, therefore, they are no longer independent.

4.6.1 Adaptive Rejection Metropolis Sampling

This method, introduced in [10], is a generalization of the standard ARS algorithm
that includes a Metropolis-Hastings step and can be applied to any target pdf.
Unfortunately, because of the incorporation of MCMC steps, the produced samples
are correlated, i.e., they are not statistically independent. This technique is a
rejection sampling chain [35], as described in Sect. 3.9.2, using an adaptive proposal
pdf.

The main idea is relatively simple. Consider a proposal �t.x/ / N�t.x/ built with
some prescribed procedure. In this case, we do not need N�t.x/ to be an envelope
function, i.e., we can possibly have N�t.x/ < p.x/. Therefore, if we apply an RS
scheme using �t.x/ / N�t.x/, we have seen in Sect. 3.2.3 that the accepted samples
are distributed as

q.x/ / min. p.x/; N�t.x//:
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Table 4.3 Adaptive rejection metropolis sampling algorithm (ARMS)

1. Start with t D 0, k D 0, m0 D 2, S0 D fs1; s2g where s1 < s2 , and

Let N be the number of desired iterations of the chain.

Choose an arbitrary initial state x0

2. Build the proposal pdf �t.x/ / N�t.x/ using St

3. Draw x0 from �t.x/, and u0 from U.Œ0; 1�/

4. If u0 >
p.x0/

N�t.x/
, then reject x0, set StC1 D St [ fx0g and update

mtC1 D mt C 1. Jump to step 8

5. Otherwise, if u0 � p.x0/

N�t.x/
, draw v0 from U.Œ0; 1�/

6. If v0 � min
h
1;

p.x0/min. p.xk/; N�t.xk //

p.xk /min. p.x0/; N�t.x0//

i
then accept x.i/ D x0, set xc D x0

and StC1 D St, mtC1 D mt and i D i C 1

7. If v0 > min
h
1;

p.x0/min. p.xk/; N�t.xk //

p.xk/min. p.x0/; N�t.x0//

i
then reject x0, set x.i/ D xc, and

StC1 D St, mtC1 D mt, i D i C 1

8. If k > N then stop, else increment t D t C 1 and go back to step 2

The generated samples are correlated

To compensate for this distortion, that appears because N�t.x/ is not an envelope
function, a Metropolis-Hastings control test is added to ensure sampling from the
target po.x/ / p.x/. Moreover, exactly as in other ARS schemes, the samples
rejected in the RS test are used to improve the construction of the proposal pdf.
Table 4.3 summarizes the algorithm.

The validity of the method should be proved using the theory of MCMC methods
with an adaptive proposal pdf [22, Chap. 8]. However, since the current state of the
chain is never used for updating the proposal the proof is quite easy [10] (see also
an important and related result in [14, 15]). The ARMS method can be considered
as an MH algorithm with a proposal independent of the current state and the points
in St play the role of auxiliary variables [2, 10].

4.6.2 A Procedure to Build Proposal pdfs for the ARMS
Algorithm

The authors of [10] suggest a specific procedure to build the proposal that we
describe in the sequel. Given a set of support points

St D fs1; : : : ; smt g;

with s1 < : : : < smt , consider the intervals I0 D .�1; s1�, Ij D Œsj; sjC1�, j D
1; : : : ;mt and ImtC1 D Œsmt ;C1/ and a potential V.x/ D � logŒ p.x/�. Moreover,
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let us denote as Lj;jC1.x/ the straight line passing through the points .sj;V.sj// and
.sjC1;V.sjC1// for j D 1; : : : ;mt � 1, and also set

L�1;0.x/ D L0;1.x/ D L1;2.x/;

Lmt ;mtC1.x/ D LmtC1;mtC2.x/ D Lmt�1;mt .x/:

In [10], a piecewise-linear function Wt.x/ is constructed as

Wt.x/ D min
�
Lj;jC1.x/;max

�
Lj�1;j.x/;LjC1;jC2.x/

� �
; (4.41)

with x 2 Ij D .sj; sjC1� and j D 0; : : : ;mt. Hence, the proposal pdf, defined as
�t.x/ / N�t.x/ D exp .�Wt.x// ; is formed by exponential pieces (that are easy to
draw from).

The advantage of using Wt.x/ of the form in Eq. (4.41) is that if V.x/ is convex
(i.e., p.x/ is log-concave) then we have

Wt.x/ D max
�
Lj�1;j.x/;LjC1;jC2.x/

�
; x 2 Ij D .sj; sjC1�;

that is exactly the construction given in Sect. 4.3.2 [see Eq. (4.9)] and a brief
examination shows also that in this case

N�t.x/ D exp .�Wt.x// � p.x/;

so that the ARMS is reduced to the ARS (generating i.i.d. samples) if the target pdf
is log-concave. In [30] it is suggested to use functions Wt.x/ formed by polynomials
of degree 2 (parabolic pieces), instead of linear functions (polynomials of degree 1)
in order to produce a better approximation of the real potential V.x/ and improve the
performance of the algorithm. More recently, other simpler construction procedures
have been proposed and analyzed in [28]. See Chap. 7, for further study of the
performance and drawbacks of ARMS-type methods.

4.7 Summary

The main drawback of the rejection sampling (RS) method is the difficulty to find
an envelope function, L�.x/ � p.x/, “similar enough” to the target density in order
to attain high acceptance rates. In this chapter, we have described a class of adaptive
rejection sampling (ARS) algorithms that adaptively build a sequence of proposal
functions that converge, under suitable conditions, toward the target density. These
methods are very efficient samplers that update the proposal whenever a generated
sample is rejected in the RS test, and produce i.i.d. samples from the target with
acceptance rate close to 1. One further advantage of ARS schemes is that, after
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the selection of initial support points, they are completely automatic, self-tuning
algorithms regardless of the specific target density.

The main limitation for the practical use of this family of techniques is the
ability to build a suitable sequence of proposal densities. While relatively simple
proposal construction procedures are easily available for the univariate case, they
are particularly hard to design in multidimensional spaces. In Sect. 4.2, we have
outlined the general structure of an ARS algorithm and listed the necessary general
conditions that a proposal construction procedure should satisfy for the resulting
functions to be used within an ARS scheme. In Sect. 4.3, we have reviewed different
procedures, tailored to specific classes of target distributions.

The computational cost of an ARS is essentially a result of its acceptance rate
and the effort required to generate a sample from the proposals, as discussed in
Sect. 4.4. In order to control the computational cost, we have also looked into two
variants of the standard adaptive structure. While related to existing “derandomized”
techniques [17, Chap. 4], both alternatives, studied in Sect. 4.5, maintain a stochastic
component in the construction of the proposal densities. These approaches to
proposal construction prove themselves useful when addressing the problem of
drawing samples from multivariate distributions, as shown in Chap. 6.

Finally, in Sect. 4.6, we have described the adaptive rejection Metropolis sam-
pling (ARMS) algorithm. It combines the ARS and Metropolis-Hastings (MH)
methodologies, in order to broaden the range of applicability of the standard ARS
technique and improve the performance of a standard MH algorithm. It has the
disadvantage, though, that the generated samples are correlated, unlike in the ARS
method.
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Chapter 5
Ratio of Uniforms

Abstract This chapter provides a detailed description of the so-called ratio-of-
uniforms (RoU) methods. The RoU and the generalized RoU (GRoU) techniques
were introduced in Kinderman and Monahan (ACM Trans Math Softw 3(3):257–
260, 1977); Wakefield et al. (Stat Comput 1(2):129–133, 1991) as bivariate trans-
formations of the bidimensional region A0 below the target pdf po.x/ / p.x/. To
be specific, the RoU techniques can be seen as a transformation of a bidimensional
uniform random variable, defined over A0, into another two-dimensional random
variable defined over an alternative set A. RoU schemes also convert samples
uniformly distributed on A into samples with density po.x/ / p.x/ (which is
equivalent to draw uniformly from A0). Therefore, RoU methods are useful when
drawing uniformly from the region A is comparatively simpler than drawing
from po.x/ itself (i.e., simpler than drawing uniformly from A0). In general, RoU
algorithms are applied in combination with the rejection sampling principle and they
turn out especially advantageous when A is bounded. In this chapter, we present first
the basic theory underlying RoU methods, and then study in depth the connections
with other sampling techniques. Several extensions, as well as different variants and
point of views, are discussed.

5.1 Introduction

In the previous chapters, we have seen that the best scenario for a rejection sampling
(RS) scheme involves a bounded target pdf taking values on a bounded domain. For
this reason, for example, we have studied the transformed rejection method (TRM),
which, before applying the RS principle, transforms the r.v. X with po.x/ / p.x/
into another r.v. Y with bounded density and bounded domain.

The ratio of uniforms (RoU) method is a sampling algorithm that identifies a
region A (bounded, in the case of interest) connected to the target pdf po.x/ in the
sense that if we are able to draw uniformly from A, then we can also draw samples
from po.x/. The most appealing feature of RoU schemes is that we do not need to
know the boundary of A explicitly, because we are always able to check whether
a point belongs to A or not (using certain simple inequalities). The RoU method is
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closely related to the TRM as we show later in this chapter. We have divided this
material into three main blocks:

1. Basic concepts: Sections 5.2 and 5.4 provide the basic theory of RoU and the
generalized RoU (GRoU) method, respectively. In Sect. 5.3, we also describe an
adaptive RS scheme for the RoU technique. Some relevant properties of GRoU
samplers are discussed in detail in Sect. 5.5.

2. Relationships with other techniques: In Sects. 5.6 and 5.7 we explain the
connections with other sampling techniques, clarifying that the GRoU method
is equivalent to a transformation of a r.v. Y distributed according to the inverse
density p�1.y/ associated to po.x/ / p.x/. To show this, we need to introduce an
extended version of the standard inverse-of-density (IoD) method (Sect. 5.6.1).
This approach is also useful, for instance, to relax certain conditions and extend
the range of applications of GRoU.

Given the previous analysis, in Sect. 5.8 we are able to provide the trans-
formation that used within the GRoU method, achieves a rectangular region A
(clearly, an easy one in order to generate uniform random variates). With the
same procedure, other different shapes of A could be studied. In Sect. 5.8.1,
we analyze the relationship between the GRoU scheme and the two standard
versions of the IoD method described in Chap. 2.

3. Extensions: Section 5.9 is devoted to discuss how we can relax the different
assumptions used in the GRoU theorem. In Sect. 5.10, we describe the general-
ization proposed in [18]. This generalization includes, as particular cases, other
extensions independently introduced in the literature and enables us to see the
GRoU technique from another point of view, as explained in Sect. 5.10.

Some final considerations are made in Sect. 5.11. Before starting with the descrip-
tion of the standard RoU methodology, we clarify an important point about the
notation and the definition of inverse densities.

5.1.1 A Remark on Inverse Densities

As in the previous chapters, all pdfs of interest are assumed to be proper, yet most
often only known up to a proportionality constant. For instance, we usually write the
normalized target pdf as po.x/ D 1

cv
p.x/, with 1

cv
> 0 denoting the normalization

constant, and all the subsequent methods are formulated in terms of p.x/, which is
the unnormalized target function such that

Z

D
p.x/dx D cv; (5.1)

with cv > 0, but cv ¤ 1 in general. The set D denotes the domain of the r.v. X.
In Chap. 2, we have considered sampling methods using the inverse function

p�1.y/ of p.x/. Assume that p.x/ is monotonic. Since p.x/ is unnormalized, p�1.y/
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is also unnormalized with the same normalizing constant
R
DY

p�1.y/dy D cv , where
DY is the domain of the variable y. Note that the domain DY changes depending on
the value of cv . Indeed, we have

p�1
o .y/ D p�1 .cvy/ ;

where p�1
o is normalized and is the inverse function of the normalized target po.x/.

Although 1
cv

p�1.y/ and p�1
o .y/ are both normalized, they are different pdfs, i.e.,

1

cv
p�1.y/ ¤ p�1

o .y/ D p�1 .cvy/ :

However, the techniques to be discussed in the rest of this chapter do not require
the knowledge of the normalizing constant. Sometimes, for the sake of simplicity,
we refer to p.x/ and p�1.y/ as “densities” although they are unnormalized.

5.2 Standard Ratio of Uniforms Method

The basic formulation of the RoU method has been provided in [19, 25]. It is a
sampling technique that relies on the following result.

Theorem 5.1 Let p.x/ � 0 be a pdf known only up to a proportionality constant
(p.x/ / po.x/). If .v; u/ is a sample drawn from the uniform distribution on the set

A D
n
.v; u/ W 0 � u �

p
2p.v=u/

o
; (5.2)

then x D v
u is a sample from po.x/.

Proof Given the transformation .v; u/ ! .x; y/
8
<

:

x D v

u

y D u
; (5.3)

and a pair of r.v.’s .V;U/ uniformly distributed on A, we can write the joint pdf
q.x; y/ of the transformed r.v.’s .X;Y/ as

q.x; y/ D 1

jAj jJ
�1j for all 0 � y �

p
2p.x/; (5.4)

where jAj is the area of A, and J�1 is the Jacobian of the inverse transformation,
i.e.,

J�1 D det

�
y x
0 1

	
D y: (5.5)
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Substituting (5.5) into (5.4) yields

q.x; y/ D

8
<̂

:̂

1

jAjy; 0 � y � p
2p.x/;

0; otherwise:

(5.6)

Then, the marginal density of the r.v. X obtained by integrating the pdf q.x; y/
coincides with po.x/. Indeed,

Z C1

�1
q.x; y/dy D

Z p
2p.x/

0

y

jAjdy D

D 1

jAj

"
y2

2

#p
2p.x/

0

D 1

jAjp.x/;

(5.7)

where the first equality follows from Eq (5.6) and the rest of the calculations
are straightforward. Since po.x/ / p.x/ and

R C1
�1 q.x; y/dy is a proper pdf then,

necessarily, po.x/ D 1
jAj p.x/ (and cv D jAj). �

This theorem provides a way to draw from the target po.x/. Indeed, if we are able
to draw a point .v0; u0/ uniformly on A, then the sample x0 D v0=u0 is distributed
according to po.x/. Therefore, the efficiency of the RoU method depends on the ease
with which we can generate variates uniformly within the region A.

Measure of the Region A

The measure of the regionA is clearly related with the area below p.x/. In fact, from
Eq. (5.7) we can see that 1

jAj is the normalizing constant of p.x/, i.e.,

jAj D cv D
Z

D
p.x/dx: (5.8)

In the case that p.x/ D po.x/, then cv D R
D p.x/dx D 1 so that jAj D 1.

Scaled Versions of the Region A

A simple look to the proof above shows that the region A could be equivalently
redefined as

A D
n
.v; u/ W 0 � u �

p
2cAp.v=u/

o
;
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where cA is a positive constant (in Eq. (5.2), we have cA D 1). In this case, the
measure of A changes, jAj D cAcv , but the method is still valid. In the literature,
several authors define A using cA D 1

2
, i.e.,

A D
n
.v; u/ W 0 � u � p

p.v=u/
o
: (5.9)

For simplicity, in the rest of this section, we assume A given by Eq. (5.9).

5.2.1 Some Basic Considerations

The cases of practical interest are those in which the region A is bounded.
To illustrate how the method works, Fig. 5.1a depicts a (rather arbitrary) two-
dimensional bounded set A. Note that, for every angle ˛ 2 .��=2;C�=2/ rad,
we can draw a straight line that passes through the origin .0; 0/ and contains points
.vi; ui/ 2 A such that x D vi

ui
D tan.˛/, i.e., every point .vi; ui/ in the straight line

with angle ˛ yields the same value of x. From the definition of A and in Eq. (5.3), it
follows that ui � p.x/ and vi D xui � x

p
p.x/. Hence, the boundary of A is defined

parametrically by the system of equations

8
<

:

ub D p
p.x/;

vb D x
p

p.x/;
(5.10)

namely, the points .vb; ub/ that satisfy (5.10) lie on the boundary of A. Thus, the set
A is bounded if, and only if, both functions

p
p.x/ and x

p
p.x/ are bounded. It is

easy to show that the function
p

p.x/ is bounded if, and only if, the target density

u

vv2 = xu2
v2 = x p(x)

u2 = p v2 /u2( )
u2 = p x( )

x =
v1
u1

=
v2
u2

= tan( )

v1

u1

(v2,u2)

A

(a)

inf x p(x)[ ]

u

v

tan( ) = x

sup p(x)[ ]

sup x p(x)[ ]0

A

R

(b)

Fig. 5.1 (a) A bounded region A and the straight line v D xu corresponding to the sample x D
tan.˛/. Every point in the intersection of the line v D xu and the set A yields the same sample x.
The point on the boundary, .v2; u2/, has coordinates v2 D x

p
p.x/ and u2 D p

p.x/. (b) If the two
functions

p
p.x/ and x

p
p.x/ are bounded, the set A is bounded and embedded in the rectangle R
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po.x/ / p.x/ is bounded, while the function x
p

p.x/ is bounded if, and only if, the
tails of p.x/ decay as 1=x2 or faster. For further details see Sect. 5.5.1.

Simplest RoU Scheme

Owing to the definition of the boundary of A, if the supremum of
p

p.x/ and
x
p

p.x/, as well as the infimum of x
p

p.x/, can be found, then we can embed the set
A in the rectangular region

R D
n
.v; u/ W 0 � u � sup

x

p
p.x/; inf

x
x
p

p.x/ � v � sup
x

x
p

p.x/
o
; (5.11)

as depicted in Fig. 5.1b. Once the rectangle R is constructed, it is straightforward to
draw uniformly from A by rejection sampling: simply draw uniformly from R and
then check whether the candidate point belongs to A.

Remark 5.1 Note that in this rejection procedure we do not need to know the
analytical expression of the boundary of the region A. Indeed, Eq. (5.9) provides
a way to check whether a point .v; u/ falls inside A or not.

Table 5.1 summarizes this simple accept/reject scheme.

5.2.2 Examples

Figure 5.2b, d provides two examples in which the regionA corresponds to standard
Gaussian and Cauchy densities (shown in Fig. 5.2a, c, respectively). In the case
of the standard Cauchy pdf, the region A is a semi-circle with radius 1 and
center in .0; 0/. In order to show how RoU works, the pictures also display lines
corresponding to x and y constant (dotted line) and the corresponding straight lines
in the transformed domain v� u. Moreover, Fig. 5.2a depicts the set of points (solid
line) that corresponds in the transformed domain v � u, to a line having v constant
(solid line).

Table 5.1 Rejection via RoU method

1. Start with j D 1

2. Construct the rectangle R 	 A
3. Draw a point .v0; u0/ uniformly from the rectangular region R
4. If u0 � p

p.v0=u0/, then accept the sample x.j/ D x0 D v0

u0 and set j D j C 1

5. Otherwise, if u0 >
p

p.v0=u0/, then reject the sample x0 D v0

u0

6. If j > N then stop, else go back to step 2
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x

y A0

(a)

u
A

(b)

x

y A0

(c)

u

v

A

(d)

v

Fig. 5.2 Examples of the regions A. Each figure shows lines corresponding to x constant (dotted
line), u constant (dashed line), and v constant (solid line). (a), (b) The standard Gaussian density
po.x/ / expf�x2=2g and the corresponding region A. (c), (d) The standard Cauchy density
po.x/ / 1=.1C x2/ and the corresponding region A

In some cases the equation u D p
p.v=u/ can be solved analytically and the

boundary A can be found explicitly. If we assume a monotonic function p.x/, and
indicate with p�1 its inverse, the boundary can be expressed with the equation

v D up�1.u2/: (5.12)

In particular, when

po.x/ / �2

.ıx C ˇ/2
(5.13)

with �, ı, ˇ constant values and a compact support, x 2 Œa; b�, the region A is a
triangle, as depicted in Fig. 5.3a, with one vertex at the origin, v1 D .0; 0/, and the
opposite side, v2 � v3, given by the equation ıv C ˇu D �. Figure 5.3b illustrates
the particular case with ı D 0, when po.x/ becomes a uniform distribution and we
obtain a triangular region with the side v2 � v3 parallel to the axis v. Moreover, if
ˇ D 0 the pdf po.x/ / 1

x2
, x 2 Œa; b�, is a special case of Pareto pdf, also called

reciprocal uniform density (since we can obtain it by taking the reciprocal of a
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A

v1

v2

v3

v

u

(a)

A

v1 v

u

v3v2

(b)

A

v1 v

u

v3

v2

(c)

Fig. 5.3 (a) A triangular region A with a vertex at the origin v1 D .0; 0/ and where the side v2�v3
has a generic slope. It corresponds to a density of the form po.x/ / 1=.ıx C ˇ/2 transformed via
the RoU method. (b) A triangular region A obtained by transforming a uniform pdf by the RoU
method. The side v2 � v3 is parallel to the axis v. (c) A triangular region A obtained transforming
a reciprocal uniform pdf po.x/ / 1=x2 , x 2 Œa; b�, by the RoU method. The side v2 � v3 is parallel
to the axis u

q(x) ∝ a2

(a)

b b+

a

T1

T2

T3

R

v

u

(b)

Fig. 5.4 (a) The shape of a table mountain density q.x/ defined in Eq. (5.14). (b) The region A
obtained with the RoU transformation of the table mountain density is a rectangle, i.e.,A D R. The
rectangular region R can be divided into three non-overlapping triangular parts R D T1 [T2 [T3

uniform random variable U, i.e., 1=U) and the corresponding region A is triangular
with v1 D .0; 0/ and the side v2 � v3 parallel to the axis u, as shown in Fig. 5.3c.

Another example in which A has a closed form occurs for the so-called table
mountain density [13, 16]. In particular, if A D Œb�; bC� � Œ0; a� is a rectangular
region in the v � u domain, then the associated pdf is

q.x/ /

8
ˆ̂<

ˆ̂
:

.b�/2=x2 for x 2 .�1; b�=a�

a2 for x 2 Œb�=a; bC=a�;

.bC/2=x2 for x 2 ŒbC=a;C1/

(5.14)

plotted in Fig. 5.4a (up to a proportionally constant). If we divide the rectangular
region R into three non-overlapping triangular parts, R D T1[T2[T3 as illustrated
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in Fig. 5.4b, then we can see that each part of q.x/ is related to each triangular part
Ti, i D 1; 2; 3, by comparing Fig. 5.4a, b.

5.3 Envelope Polygons and Adaptive RoU

Previously, we have seen that, in the cases of interest, the region A can be contained
within a rectangle R as illustrated in Fig. 5.1b. This allows the design of a simple
RS scheme: draw uniformly a point in R, and accept it if belongs to A (reject it
otherwise). Clearly, there are other possibilities to design an RS technique jointly
with the RoU. In the sequel, we provide some examples.

The adaptive rejection sampling idea has been implemented jointly with the RoU
method in [20, 21]. Indeed, if the region A is convex it is possible to construct
adaptively a bounding region Pt, such that A � Pt, with a polygonal boundary. The
underlying idea is that drawing from the polygon Pt is easier than drawing from
A. Indeed, the ability to draw from Pt readily enables an accept/reject procedure to
draw uniformly from A. To be specific consider a set of support points

St D fs1; s2; : : :; smt g

where si D Œvi; ui�, i D 1; : : :;mt, are points on the boundary of A in the v � u
space. The envelope region Pt can be built using the straight lines tangent at si to
the boundary of the convex region A. Figure 5.5 shows an example of bounding set
Pt with polygonal boundary built using mt D 5 support points.

As the next step, note that it is always possible to calculate the first derivative
of the boundary of A if the function p.x/ is differentiable, without knowing the
explicit equation of the contour. Indeed, the boundary of A can be described
parametrically as

8
<

:

u D u.x/ D
p

p.x/

v D v.x/ D x
p

p.x/
; (5.15)

Fig. 5.5 Example of
construction of a bounding
polygon Pt using the tangent
lines at the support points si,
i D 1; : : :;mt D 5, to the
boundary of the convex
region A. The polygon can be
divided into mt � 2 D 3

non-overlapping triangles,
i.e., Pt D [3

kD1Tk u

v

T1

T2 T3

A
s1

s2

s3
s4

s5
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in the case of the standard RoU method. Hence, we can use the chain rule for
computing the derivative and write

dv

du
D dv

dx

dx

du
D
 
p

p.x/C x

2
p

p.x/

dp

dx

!

.du=dx/�1

D
 
p

p.x/C x

2
p

p.x/

dp

dx

!0

@ 1
1

2
p

p.x/
dp
dx

1

A

D 2
p.x/

Pp.x/ C x;

where x D v
u and Pp D dp

dx .
Furthermore, it is straightforward to draw samples uniformly from the polygon

Pt by dividing it into mt � 2 non-overlapping triangular areas Tk, i.e., Pt D [mt�2
kD1 Tk

where Ti\Tj D ; whenever i ¤ j. Note that it is straightforward to sample uniformly
from a triangle Tk using only two uniform random variables, as will be shown in
Sect. 6.6.1.

Therefore, to generate samples uniformly from Pt, we first have to randomly
select a triangle with probabilities proportional to the areas jTkj, k D 0; : : :;mt � 2,
and then draw from the selected triangular subset. For the first step, we define the
normalized weights

wk , jTkj
Pmt�2

iD0 jTij
; (5.16)

and then we choose a triangular piece by drawing an index k0 2 f0; : : :;mt �2g from
the probability distribution P.k/ D wk. For the second step, we easily generate a
point .v0; u0/ uniformly in the selected triangular region Tk0 using the procedure in
Sect. 6.6.1 (see also [11]).

If the point .v0; u0/, generated using this two-step procedure, belongs to A, we
accept the sample x0 D v0=u0 and set mtC1 D mt, StC1 D St and PtC1 D Pt.
Otherwise, we discard the sample x0 D v0=u0 and incorporate it into the set of
support points, StC1 D St [ fs0 D .v0; u0/g, so that mtC1 D mt C 1 and the region
PtC1 is improved by adding another tangent line. An outline of the adaptive RoU
algorithm is given in Table 5.2.

Let us remark that this procedure is applicable if the regionA is convex. In turn, it
is possible to prove that A is convex if, and only if, the target pdf po.x/ is T-concave,
where T.x/ D �1=px [20]. Moreover, in [15] it is proved that every log-concave
density is also a T-concave pdf with T.x/ D �1=px. Therefore, this adaptive RoU
technique can be applied to log-concave target pdfs as well.
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Table 5.2 Adaptive RoU scheme

1. Start with t D 0, j D 1 and initialize the set of support points S0 D fs1; : : :; sm0g
For every t � 0:

2. Construct the enveloping polygon Pt using the lines tangent to the boundary of the convex
region A at si, i D 1; : : :;mt

3. Construct the triangular regions Tk, k D 0; : : :;mt � 2, as described in Fig. 5.5

4. Calculate the area jTkj of every triangle, and compute the normalizedweights

wk , jTkj
Pmt�2

iD0 jTij , with k D 0; : : :;mt � 2

5. Draw an index k0 2 f0; : : :;mt � 2g from the probability distribution P.k/ D wk

6. Generate a point .v0; u0/ uniformly from the region Tk0 as explained in Sect. 6.6.1

7. If u0 � p
p.v0=u0/, then accept the sample x.j/ D x0 D v0

u0 , set j D j C 1, StC1 D St and
mtC1 D mt

8. Otherwise, if u0 >
p

p.v0=u0/, then reject the sample x0 D v0

u0 , set
StC1 D St [ fs0 D .v0; u0/g, and sort StC1 in ascending order. Finally, update
mtC1 D mt C 1

9. If j > N then stop, else go back to step 2

5.4 Generalized Ratio of Uniforms Method

A more general version of the standard RoU method proposed in [19] can be
established using the following theorem from [32].

Theorem 5.2 Let g.u/ W RC ! R
C be a strictly increasing differentiable function

such that g.0/ D 0 and let p.x/ � 0 be a function proportional to a target pdf po.x/.
Assume that .v; u/ 2 R

2 is a sample drawn from the uniform distribution on the set

Ag D
(

.v; u/ 2 R
2 W 0 � u � g�1

"

cA p

 
v

Pg.u/

!#)

; (5.17)

where cA > 0 is a positive constant and Pg D dg
du . Then x D v

Pg.u/ is a sample from
po.x/.

Proof Given the transformation .v; u/ 2 R
2 ! .x; z/

8
<

:

x D v

Pg.u/
z D u

; (5.18)

and a pair of rv’s .V;U/ uniformly distributed on Ag, we can write the joint pdf
q.x; y/ of the transformed rv’s .X;Z/ as

q.x; z/ D 1

jAgj jJ
�1j for all 0 � z � g�1ŒcAp.x/�; (5.19)
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where jAgj denotes the area of Ag, and J�1 is the Jacobian of the inverse
transformation, namely,

J�1 D det

� Pg.z/ xRg.z/
0 1

	
D Pg.z/: (5.20)

Since we assume Pg.z/ � 0 (i.e., g is increasing), then jJ�1j D jPg.z/j D Pg.z/ and
substituting (5.20) into (5.19) yields

q.x; z/ D

8
<̂

:̂

1

jAgj Pg.z/ for 0 � z � g�1ŒcAp.x/�;

0; otherwise:

(5.21)

Hence, integrating q.x; z/ w.r.t. z yields the marginal pdf of the rv X,

q.x/ D
Z C1

�1
q.x; z/dz

D
Z g�1ŒcAp.x/�

0

1

jAgj Pg.z/dz

D 1

jAgj
h
g.z/

ig�1ŒcAp.x/�

0

D cA

jAgjp.x/� 1

jAgjg.0/;

(5.22)

where the first equality follows from Eq. (5.21) and the remaining calculations are
straightforward. Since we have also assumed g.0/ D 0, it turns out that

q.x/ D cA

jAgjp.x/ D po.x/: �

Since po.x/ is normalized, the measure of Ag is

jAgj D cAcv D cA

Z

D
p.x/dx: (5.23)

Moreover, choosing g.u/ D 1
2
u2, we come back to the standard RoU method. Again,

the theorem above provides a way to generate samples from po.x/. Indeed, if we are
able to draw uniformly a point .v0; u0/ from Ag, then the sample x0 D v0=Pg.u0/ is
distributed according to po.x/ / p.x/. Also in this case, the efficiency of the method
depends on the ease with which we can generate points uniformly within the region
Ag. For this reason, the cases of practical interest are those in which the region
Ag is bounded. Moreover, observe that if g.u/ D u and cA D 1 we come back to
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the fundamental theorem of simulation described in Sect. 2.4.3, since Ag becomes
exactly the region A0.

Other interesting generalizations of the RoU method can be found in [18] and we
discuss them in Sect. 5.10. Related work and further developments involving ratios
of r.v.’s can be found in [1–3, 7, 12, 24, 27, 30, 31]. The possible combination with
MCMC algorithms is discussed in [14].

5.5 Properties of Generalized RoU Samplers

5.5.1 Boundary ofAg

In the boundary of the region Ag the coordinates of the point .v; u/ satisfy
u D g�1ŒcAp.x/� and, since v D xPg.u/ for the transformation (5.18), v D
xPgŒg�1.cAp.x//�. Therefore, the contour of Ag can be described parametrically by
the pair of equations

(
u D g�1ŒcAp.x/�;

v D xPgŒg�1.cAp.x//�;
(5.24)

where x plays the role of a parameter. Hence, if the two functions g�1ŒcAp.x/� and
xPgŒg�1.cAp.x//� are bounded, the region Ag is embedded in the rectangular region

Rg D
n
.v; u/ 2 R

2 W 0 � u � sup
x

g�1ŒcAp.x/�;

inf
x

xPgŒg�1.cAp.x//� � v � sup
x

xPgŒg�1.cAp.x//�
o
;

(5.25)

and it is straightforward to design a rejection sampler in the same vain as for the
standard RoU scheme.

5.5.2 How to Guarantee thatAg is Bounded

In this section, we discuss in detail the conditions to be imposed on g.u/ and p.x/
to ensure that the region Ag is bounded. In order to handle the general case, we
assume that p.x/ is defined in an unbounded domain D � R. As shown above in
Eqs. (5.24) and (5.25), the regionAg is bounded (rather trivially) if the two functions
g�1ŒcAp.x/� and xPgŒg�1.cAp.x//� are bounded.
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First Function: u.x/ D g�1ŒcAp.x/�

Since g is assumed to be a strictly increasing (Pg > 0) and continuous function, then
g�1 is also increasing. As a consequence, the function u D g�1ŒcAp.x/� is bounded
if, and only if, p.x/ is bounded, for all x 2 D. Recall that po.x/ / p.x/ so that clearly
p.x/ � 0 and, denoting M D maxx2R p.x/, we have

0 � u � g�1.cAM/:

Second Function: v.x/ D xPgŒg�1.cAp.x//�

First, observe that we can write

v D xPg.u/;

where u.x/ D g�1ŒcAp.x/� is the first function above. Since Pg > 0, for the second
factor, Pg.u/, to be bounded, u needs to be bounded. We have seen above that u D
g�1ŒcAp.x/� is bounded when p.x/ is bounded. Furthermore, to ensure that v.x/ is
bounded, we also need that the limits

lim
x!˙1 xPg.u/ D lim

x!˙1 xPgŒg�1.cAp.x//� (5.26)

be finite, which occurs whenever

lim
x!˙1 PgŒg�1.cAp.x//� D 0; (5.27)

Pg �g�1.cAp.x//
� � 


x
; (5.28)

for some constant 
 and sufficiently large x. We can also reformulate these
conditions in other forms, which will turn out more useful later in this chapter. First,
we rewrite them in terms of the variable u D g�1ŒcAp.x/� and then in terms of the
variable y D p.x/.

• Let us write u.x/ D g�1ŒcAp.x/� and recall that limx!˙1 p.x/ D 0, g�1.0/ D 0

(since we have assumed g.0/ D 0). Then we can readily obtain

lim
x!˙1 u.x/ D lim

x!˙1 g�1ŒcAp.x/� D 0;

and by a simple change of variable,

lim
x!˙1 PgŒg�1.cAp.x//� D lim

u!0
Pg.u/ D 0: (5.29)

We also require that Pg.u.x// � 


x for some constant 
 and sufficiently large x.
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• For the sake of simplicity, let assume cA D 1. If we let y D p.x/ then u.x/ D
g�1.p.x// can be rewritten as u.y/ D g�1.y/ and, hence, g.u.y// D y. Then, we
can rewrite PgŒg�1.p.x//� as

PgŒg�1.p.x//� D dg

du

ˇ
ˇ
ˇ
ˇ
uDg�1.y/

D 1

dg�1

dy

ˇ
ˇ
ˇ
y

; (5.30)

where we have used the derivative of the inverse function. Hence, since y D
p.x/ ! 0 for x ! ˙1, and g�1.0/ D 0 by assumption, we have

lim
x!˙1 PgŒg�1.p.x//� D lim

u!0
Pg.u/

D lim
y!0

1

dg�1

dy

ˇ
ˇ
ˇ
y

D lim
y!0

1

dg�1

dy

D lim
y!0

1

Pg�1.y/
D 0;

(5.31)

where we have used the limit of the composition of functions [23]. Moreover, we
require 1

Pg�1.y.x//
� 


x for some constant 
 > 0 and sufficiently large x. If y D p.x/
is invertible, this condition becomes

1

Pg�1.y/
� 


p�1.y/
;

for some constant 
 > 0 and sufficiently large p�1.y/. Finally, note that we can
rewrite the limit in Eq. (5.31) as

lim
y!0

dg�1

dy
D 1: (5.32)

Summary

The region Ag generated by GRoU is bounded if the following assumptions are
jointly satisfied:

(1) The target p.x/ is bounded (i.e., if p.x/ is monotonic, x D p�1.y/ has finite
support).

(2) The equality limu!0
dg
du D 0, or equivalently limy!0

dg�1

dy D 1, holds.

(3) It is also necessary that Pg.u.x// � 


x for some constant 
 > 0 and sufficiently

large x or, equivalently, 1
Pg�1.y/

� 


p�1.y/
, for some constant 
 > 0 and sufficiently

large p�1.y/.
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Moreover, we recall that the Theorem 5.2 makes additional assumptions on the
function g.u/:

(4) g.u/ must be increasing,
(5) g.u/ W RC ! R

C,
(6) g.0/ D 0.

In Sect. 5.9, we show how some conditions can be relaxed. Below we provide a
family of suitable functions g.u/.

5.5.3 Power Functions

A family of transformations g.u/ that turns out suitable for its use within the GRoU
framework is the set of power functions with the following form

g.u/ D urC1

.r C 1/
; u � 0; (5.33)

with r � 0 and cA D 1
rC1 [6]. Note that the first derivative Pg.u/ D ur is strictly

increasing for u � 0. The region Ag defined in Eq. (5.17) becomes

Ag D Ar D


.v; u/ W 0 � u �

h
p
� v

ur

�i 1
rC1

�
;

that we denote Ar, since with r D 1 we obtain the same set as with the standard
RoU method in Eq. (5.2) (with cA D 1

rC1 ) and the region A0 (delimited by the pdf
po.x/, see Fig. 2.2) defined in Eq. (2.39) with r D 0. In other words, the region Ar

is bounded if the functions Œ p.x/�1=.rC1/ and xŒ p.x/�r=.rC1/ are both bounded. This
occurs, in turn, when p.x/ is bounded and its tails decay as 1=x.rC1/=r or faster.
Hence, by choosing r > 1 we can handle pdfs with heavier tails than with the
standard RoU method.

It is interesting to analyze the probability of acceptance, pA.r/, for a point drawn
uniformly from the rectangle Rr, defined in Eq. (5.25) using g.u/ D urC1

.rC1/ and cA D
1

rC1 . This probability is given by the ratio between the two areas, i.e.,

pA.r/ D jArj
jRrj ; (5.34)

and

jArj D cAcv D 1

r C 1

Z

D
p.x/dx;
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as shown in Eq. (5.23). Moreover, if we define

a.r/ D sup
x
Œ p.x/�

1
rC1 ;

b�.r/ D inf
x

xŒ p.x/�
r

rC1 ;

bC.r/ D sup
x

xŒ p.x/�
r

rC1 ;

the area of the bounding rectangle can be rewritten as jRrj D a.r/ŒbC.r/ � b�.r/�.
Substituting this expression into Eq. (5.34), we obtain

pA.r/ D
R
D p.x/dx

.r C 1/a.r/ŒbC.r/ � b�.r/�
: (5.35)

In some cases, it is possible to analytically obtain the optimal value of r in order to
maximize the acceptance probability pA.r/ in Eq. (5.35). We now show an example
involving a standard Gaussian pdf.

Example 5.1 Consider a standard Gaussian density, i.e., po.x/ / p.x/ D
expf�x2=2g with x 2 R. In this case, we know that

Z

R

p.x/dx D .2�/1=2

and

a.r/ D supŒ p.x/�1=.rC1/ D 1: (5.36)

Moreover, we can find the first derivative of the function �.x/ , xŒ p.x/�r=.rC1/ D
x exp

˚ � r
2.rC1/x

2



w.r.t. x and then write

d�

dx
D
�
1 � r

r C 1
x2
�

exp



� r

2.r C 1/
x2
�
: (5.37)

The solutions of d�
dx D 0 are x1;2 D ˙

q
rC1

r , where �.x1/ D b�.r/ and �.x2/ D
bC.r/ in Eq. (5.35). Namely, we obtain

b�.r/ D inf
x

xŒ p.x/�r=.rC1/ D �
 r

r C 1

r

!

expf�1=2g; (5.38)
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and

bC.r/ D sup
x

xŒ p.x/�r=.rC1/ D
 r

r C 1

r

!

expf�1=2g: (5.39)

Substituting (5.36), (5.38) and (5.39) into (5.35) yields

pA.r/ D .2�/1=2

.r C 1/
�
. rC1

r /
1=2 expf�1=2g C . rC1

r /
1=2 expf�1=2g� ;

which reduces to

pA.r/ D .2�re/1=2

2.r C 1/3=2
; (5.40)

after some straightforward calculations. The maximization of pA.r/ in (5.40) w.r.t. r
yields min

r
pA.r/ D 0:795, which is attained for r� D 1

2
. Note that, for the standard

RoU method (r D 1), we have pA.1/ D 0:731.

5.6 Connections Between GRoU and Other Classical
Techniques

Consider a monotonic density po.x/ / p.x/. For the sake of simplicity, sometimes
we refer to p.x/ and p�1.y/ as densities although they are unnormalized. In this
section, we aim at proving the following result.

Proposition 5.1 The GRoU method can be interpreted as a combination of

• the transformed rejection method applied to a random variable Y distributed
according to the inverse density p�1.y/,

• with the extended inverse-of-density method, that we will introduce in Sect. 5.6.1.

We first introduce an extension of the inverse-of-density method of Sect. 2.4.4, and
then investigate the connection between GRoU and transformed rejection sampling.

5.6.1 Extended Inverse-of-Density Method

Consider, for simplicity, a monotonic function p.x/. The standard inverse-of-density
(IoD) method of Sect. 2.4.4 provides the relationship between a r.v. Y distributed as
a pdf proportional to p�1.y/ and the r.v. X with a pdf proportional to p.x/. In the
sequel we refer to p�1.y/ and p.x/ as densities although they are not normalized, in
general.
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In this section, we study the connection between a transformed random variable
U D h.Y/, (where h is a monotonic function and Y is distributed according to
p�1.y/), and the random variable X with density p.x/. In this case, we know that the
density of U is

q.u/ D p�1.h�1.u//
ˇ
ˇ
ˇ̌dh�1

du

ˇ
ˇ
ˇ̌: (5.41)

Denoting as Ah the area below q.u/, our goal is now to find the relationship between
the pair .U;V/ � U.Ah/, i.e., uniformly distributed on Ah, and the r.v. X with
density p.x/. Figure 5.6b illustrates an example of a possible pdf q.u/, the region Ah

and a random point .u0; v0/ drawn uniformly from Ah. Firstly, let us observe that:

1. The r.v. U in the random vector .U;V/ � U.Ah/ has pdf q.u/, because of the
fundamental theorem of simulation (see Sect. 2.4.3).

2. Because of the relationship U D h.Y/, if we are able to draw a sample u0 from
q.u/, then we can easily generate a sample y0 from p�1.y/ by simply taking

y0 D h�1.u0/: (5.42)

3. By the inverse-of-density method (Sect. 2.4.4), we also know that

x0 D z0p�1.y0/; (5.43)

where z0 � U.Œ0; 1�/ and y0 � p�1.y/, is distributed according to the target
density po.x/ / p.x/. This relationship is also illustrated in Fig. 5.6a.

p−1(y)

A0

y

x
(y , x )

(a)

v'
(u',v')

Ah

q(u)

u'

(b)

Fig. 5.6 (a) Given a point .x0; y0/ uniformly distributed on A0, y0 has pdf p�1.y/ while x0 is
distributed as p.x/, as stated by the fundamental theorem of simulation and the inverse-of-density
method. (b) Given a transformation U D h.Y/ with pdf q.u/, and a point .u0; v0/ uniformly
distributed on the region Ah below q.u/, then the sample x0 D v0 Ph.h�1.u0// has density p.x/
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Then, replacing Eq. (5.42) into Eq. (5.43), we obtain the expression

x0 D z0p�1.y0/ D z0p�1.h�1.u0//; (5.44)

where z0 � U.Œ0; 1�/, u0 � q.u/ and y0 D h�1.u0/ � p�1.y/. Equation (5.44)
above connects samples related to the r.v.’s U and X. However, we are looking for a
relationship involving also the random variable V .

To draw a point .u0; v0/ uniformly on Ah, we have seen in Sect. 2.4.4 that we can
first draw a sample u0 from q.u/ and then v0 uniformly from the interval Œ0; q.u0/�,
i.e., v0 � U.Œ0; q.u0/�/. Therefore, the sample v0 can also be expressed as

v0 D z0q.u0/; (5.45)

where z0 � U.Œ0; 1�/. Substituting the expression of q.u/ in Eq. (5.41) into
Eq. (5.45), we obtain

v0 D z0p�1.h�1.u0//
ˇ
ˇ
ˇ
ˇ
dh�1

du

ˇ
ˇ
ˇ
ˇ
uDu0

: (5.46)

Furthermore, recalling the previous expression of x0 D z0p�1.h�1.u0// in Eq. (5.44),
we can easily recognize this term in Eq. (5.46),

v0 D z0p�1.h�1.u0//
„ ƒ‚ …

x0

ˇ
ˇ
ˇ
ˇ
dh�1

du

ˇ
ˇ
ˇ
ˇ
uDu0

; (5.47)

hence

v0 D x0
ˇ
ˇ
ˇ̌dh�1

du

ˇ
ˇ
ˇ̌
uDu0

: (5.48)

Thus, we can also write

x0 D v0
ˇ
ˇ dh�1

du

ˇ
ˇ
uDu0

D v0jPh.h�1.u0//j; (5.49)

which is a sample from p.x/. In (5.49) we have used the notation Ph D dh
dx for the

first derivative of h.x/. Let us recall that the sample v0 is the second component of
a random vector .u0; v0/ � U.Ah/: since Ah represents the area below q.u/, v0 is
distributed according to the inverse pdf q�1.v/ corresponding to q.u/ (Sect. 2.4.4),
where

q�1.v/ D fv 2 R W v D q.u/; u 2 Q � Rg;

denotes the generalized inverse function of q.u/ (and Q is the support of q.u/).
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Equation (5.49) links a uniform random point .U;V/ 2 Ah, as illustrated in
Fig. 5.6b, with the r.v. X. This relationship is the basis of the extended IoD (E-IoD)
method. If we are able to draw points .u0; v0/ uniformly from Ah we can generate
a sample x0 from the density p.x/ using Eq. (5.49), as formalized by the following
proposition.

Proposition 5.2 Let Y be a r.v. with a monotonic pdf p�1.y/, and let U D h.Y/ be
another (transformed) r.v., where h.y/ is a monotonic transformation. Let us denote
with q.u/ the density of U and let Ah be the area below q.u/. If we are able to draw
a point .u0; v0/ uniformly from the region Ah, then

x0 D v0
ˇ
ˇ dh�1

du

ˇ
ˇ
uDu0

D v0
ˇ̌Ph�1.u0/

ˇ̌ ; (5.50)

is a sample from the pdf p.x/ (the inverse function of p�1.y/).

Two special cases that will turn out useful in the sequel are commented below.
The connection between the GRoU and E-IoD methods can also be made apparent
relying on Proposition 5.2, as shown below.

Two Special Cases

Proposition 5.2 enables a straightforward connection between the E-IoD method,
the fundamental theorem of simulation and the standard RoU technique. Choosing
h.y/ D y (hence Ph D 1), we have U D Y and as a consequence q.u/ D q.y/ D
p�1.y/ and the region Ah is exactly A0. In this case v0 � p.x/ (p.x/ is the inverse
pdf of q.u/). Indeed, Eq. (5.49) becomes

x0 D v0; (5.51)

that is exactly the fundamental theorem of simulation, sinceAh � A0. Alternatively,
if we choose h.y/ D p

2y, then y � 0, since h�1.u/ D 1
2
u2, we have

x0 D v0

u0 ; (5.52)

that corresponds to the standard RoU method.

GRoU and E-IoD Methods

Proposition 5.2 quite readily shows that the E-IoD method can be seen as a GRoU
algorithm as well. Indeed, if we set h.y/ D g�1.y/, then we obtain x0 D v0=Pg.u0/
that is exactly equivalent to a sample drawn using the GRoU technique, as specified
by Theorem 5.2.
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Indeed, one can interpret that the GRoU scheme as an extension of the classical
IoD method. Whilst the standard IoD sampler draws from p.x/ by generating points
.x0; y/ uniformly distributed in A0, where y is distributed according to p�1.y/, a
GRoU sampler draws from p.x/ by generating points .u; v/ uniformly distributed in
Ag, where U D g�1.Y/ is a transformed r.v. and Y � p�1.y/.

From the assumptions in the GRoU Theorem 5.2, the function h�1 D g should
be increasing. However, the argument leading to the E-IoD method in this section
actually shows that this condition is not strictly needed. Indeed, a GRoU algorithm
can also be devised using a strictly decreasing function g, as will be explicitly shown
in Sect. 5.9. In such case, the variate generated by the GRoU sampler has the form
x D � v

Pg.u/ , hence we can rewrite the variate, in general, as

x D v
ˇ
ˇPg.u/ˇˇ ;

which coincides exactly with Eq. (5.50).

5.6.2 GRoU Sampling and the Transformed Rejection Method

In this section, we show that the region Ag can be also obtained with a transforma-
tion of a random variable. Let us recall the region defined by the GRoU scheme in
Eq. (5.17),

Ag D


.v; u/ 2 R

2 W 0 � u � g�1
�

p

�
v

Pg.u/
�	�

; (5.53)

where we have set cA D 1 for simplicity, and recall also that p.x/ / po.x/ is
bounded, and g.u/ is an increasing function with g.0/ D 0. We divide the analysis
by considering first a decreasing p.x/ and then an increasing p.x/. In both cases, in
this section we consider the maximum of p.x/ is located at 0 (more general cases
are tackled in Sect. 5.7).

Decreasing vs. Increasing p.x/

Let us assume y D pdec.x/ / po.x/ is decreasing with an unbounded support D D
Œ0;C1/. From the definition of Ag, we have u � g�1

h
pdec

�
v

Pg.u/
�i

. Since g is

increasing (hence g�1 is also increasing), we can write

g.u/ � pdec

�
v

Pg.u/
�
:
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Moreover, if pdec.x/ is decreasing then p�1
dec.y/ is decreasing as well and we have

p�1
dec.g.u// � v

Pg.u/ : (5.54)

Since Pg.u/ � 0 (because g is increasing), from Eq. (5.54) we readily obtain

v � p�1
dec.g.u//Pg.u/:

Since pdec.x/ is defined in Œ0;C1/, and

Ag D
(

.v; u/ 2 R
2 W 0 � u � g�1

"

pdec

 
v

Pg.u/

!#)

;

then we need v
Pg.u/ to be positive. Since Pg > 0 by assumption, we also need that

v > 0, thus we can finally write

0 � v � p�1
dec.g.u//Pg.u/:

These trivial calculations have led us to express the set Ag as

Ag;pdec D ˚
.v; u/ 2 R

2 W 0 � v � p�1
dec .g.u// Pg.u/
 ; (5.55)

where p�1
dec.y/ is the inverse of the target density pdec.x/. It is important to remark

that the inequalities depend on the sign of the first derivative of g (positive, in this
case) and pdec (negative, in this case).

A similar argument holds when the target pdf p.x/ D pinc.x/ / po.x/ is
monotonically increasing with an unbounded support, x 2 D D .�1; 0�, i.e.,
x D p�1

inc.y/ � 0. In this case we can rewrite Ag as

Ag;pinc D ˚
.v; u/ 2 R

2 W p�1
inc .g.u// Pg.u/ � v � 0



; (5.56)

where p�1
inc .g.u// Pg.u/ � 0. Note that in this case the inverse pdf is �p�1

inc.y/ D
jp�1

inc.y/j � 0.

GRoU as a Transformation of a r.v.

Consider an increasing function h.y/, a random variable Y with a decreasing
pdf p�1.y/, y 2 .0; sup p.x/�, and the transformed variable U D h.Y/ with
(unnormalized) density q.u/ D p�1.h�1.u//Ph�1.u/. The region below q.u/ is

Ah D ˚
.v; u/ 2 R

2 W 0 � v � p�1.h�1.u//Ph�1.u/


; (5.57)
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and we can easily note that Eq. (5.55) is equivalent to Eq. (5.57) when

y D g.u/ D h�1.u/: (5.58)

On the other hand, Y has pdf jp�1.y/j, where p�1.y/ is increasing and negative, then
we obtain

Ah D ˚
.v; u/ 2 R

2 W p�1.h�1.u//Ph�1.u/ � v � 0


; (5.59)

exactly as in Eq. (5.56), if we set g.u/ D h�1.u/.
The cases of interest are those in which the region Ag and Ah are bounded.

Specifically, in Sect. 3.7.1 we have discussed the properties that a transformation
h.y/ has to fulfill in order to obtain a bounded regionAh, while in Sect. 5.5.2 we have
described the conditions that ensure a bounded set Ag. These conditions coincide if
we set g.u/ D h�1.u/ and the GRoU method only requires an additional assumption,
namely g.0/ D 0. Hence, we can state the following proposition.

Proposition 5.3 The region Ag, described by the GRoU method, can be obtained
as a transformation h D g�1 of a random variable Y distributed according to an
inverse pdf jp�1.y/j where p�1.y/ is monotonic (possibly with an asymptote at 0).

This proposition states that the set Ag, described by either Eq. (5.17) or Eq. (5.55)
can be obtained by applying the transformed rejection method for unbounded pdfs
to the inverse density jp�1.y/j (see Sect. 3.7.1). Figure 5.7b displays the region Ah

(that coincides with Ag if g D h�1) defined in Eq. (5.57). Figure 5.7c depicts the
same region Ah rotated by 90ı.

Clearly, Propositions 5.2 and 5.3 entail Proposition 5.1. So far, we have consid-
ered monotonic target pdfs po.x/ / p.x/ with mode at 0. Similar considerations can
be done for more general functions p.x/ as shown in Sect. 5.7.

p−1(y)

A0

(a)

q(u)

u'

v' (u',v')

x'=
v'

dh 1

du u'

v

u

[u = h(y)]

Ah

(b)

q(u)

u'

(v ',u')

v'

Ah

v

u

[u = h(y)]

(c)

Fig. 5.7 (a) Example of region A0 defined by the inverse density p�1.y/. (b) The density q.u/ Dˇ̌
ˇ dh�1

du

ˇ̌
ˇ p�1.h�1.u// obtained transforming the r.v. Y, i.e., U D h.Y/. Generating uniformly the

point .u0; v0/ in the region Ah we can obtain samples x0 from p.x/ using Eq. (5.50). (c) The region
Ah rotated 90ı in order to show it how appears when we apply the GRoU technique
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5.6.3 Role of the Constant cA

So far, in the previous analysis, for simplicity we have considered cA D 1, in
the definition Ag D ˚

.v; u/ 2 R
2 W 0 � u � g�1�cA p

�
v

Pg.u/
��


. However, all
the previous considerations remain valid for a generic positive value, cA > 0. For the
standard RoU method, we have already seen that the multiplication by the constant
cA generates scaled versions of the region A. This also occurs with the GRoU
scheme and the corresponding region Ag. Indeed, assume, for instance, the case
of a decreasing p.x/, Eq. (5.55) becomes

Ag;p D


.v; u/ 2 R

2 W 0 � v � p�1
dec

�
g.u/

cA

�
Pg.u/

�
: (5.60)

We can also multiply both inequalities by a positive constant 1=cA, obtaining

Ag D


.v; u/ 2 R

2 W 0 � v � 1

cA
p�1

dec

�
g.u/

cA

�
Pg.u/

�
;

D


.v; u/ 2 R

2 W 0 � 1

cA
v � p�1

dec

�
g.u/

cA

� Pg.u/
cA

�
;

(5.61)

and Ag represents the area below q.u/ D p�1
�

g.u/
cA

� Pg.u/
cA

, which is the (unnor-

malized) pdf of the r.v. U D g�1.cAY/ where Y is distributed according to the
(non-normalized) density p�1.y/. In this case, we have changed the measure jAgj
of the set Ag. However, this change does not affect the marginal distributions of V
and U, where .V;U/ � U.Ag/, as shown by the fundamental theorem of simulation
(Sect. 2.4.3).1 See also the related observation below.

5.7 How Does GRoU Work for Generic pdfs?

In Sect. 5.6, we have studied the connections among GRoU, E-IoD, and TRM
considering monotonic target pdfs, either decreasing or increasing, always with a
maximum at 0. These relationships clarify the underlying scheme behind the GRoU
procedure. In this section, we investigate and discuss the connections between
GRoU, E-IoD, and TDM for non-monotonic densities

(a) with only one mode, arbitrarily located (Sects. 5.7.2–5.7.3),
(b) and then with an arbitrary number of modes (Sect. 5.7.4).

For this purpose, firstly we need to clarify how the IoD can be extended for generic
pdfs (possibly non-monotonic), as explained in the sequel.

1In the fundamental theorem of simulation of Sect. 2.4.3, the target pdf p.x/ is assumed unnormal-
ized in general, so that multiplying p.x/ for a positive constant does not change the results of the
theorem.
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5.7.1 IoD for Arbitrary pdfs

Let us define the set of points

A0jy D fx 2 D W p.x/ > yg; (5.62)

for all y 2 R
C. Then we can define the generalized inverse pdf as

q�1
G .y/ / p�1

G .y/ D jA0jyj; (5.63)

where jA0jyj is the Lebesgue measure of A0jy. Then the IoD approach (and certain
extended versions of Khintchine’s theorem [4, 5, 9, 10, 26, 29]) can be summarized
in this way: we can generate samples from p.x/ if

• we first draw y0 from q�1
G .y/ / p�1

G .y/,
• and then draw x0 uniformly from A0jy0 .

The resulting sample x0 is distributed according to p.x/. This approach is implicitly
used in other Monte Carlo techniques as, for instance, the slice sampling algorithm
[22, 28]. It is interesting to observe that the pdf q�1

G .y/ has the following features:

(a) It is always monotonically non-increasing [8, 17].
(b) If the domain of po.x/ / p.x/ is unbounded, it has a vertical asymptote at 0 and

the minimum at y D supx p.x/. The support set of q�1
G .y/ is .0; supx p.x/�.

Figure 5.8 shows an example of a bimodal pdf and the corresponding generalized
inverse pdf p�1

G .y/. Observe that, with the pdf p.x/ in Fig. 5.8a, the set A0jy can be
formed by two disjoint segments, as S1 and S2 in Fig. 5.8a, or a single one, depending
on the value of y. Clearly, the length of the sets S1 and S2 depends on the four
monotonic pieces pi.x/, i D 1; : : :; 4, which form p.x/. The IoD method consists
of the following steps: (1) generate a sample y0 from p�1

G .y/, in Fig. 5.8b and then,

A0

p(x)

S1

y

x

y'
S2

= S1 S2

p1 (x)

p2 (x)

p3 (x)

p4 (x)

A0|y

(a)

pG
1(y) =

y

x

y'
S1 + S2

|A0|y|

(b)

Fig. 5.8 (a) A bimodal pdf p.x/. Monotonic parts of p.x/ are denoted as pi.x/, i D 1; : : :; 4. (b)
The corresponding generalized inverse pdf p�1

G .y/
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A0
pinc(x) pdec(x)

y

x

(a)

A0

pdec
1 (y)

y

x

y'

pG
1(y' ) = pdec

1 (y' ) pinc
1 (y' )

(b)

u

v

pdec
1 (g(u))

dg

du
pinc

1 (g(u))
dg

du

Ag

pG
1(g(u))

dg

du

Ag|u

(c)

pinc
1 (y)

Fig. 5.9 (a) A unimodal pdf p.x/ with the mode located at zero. (b) The region A0 rotated 90ı. (c)
The corresponding region Ag D ˚

.v; u/ 2 R
2 W p�1

inc .g.u// Pg.u/ � v � p�1
dec .g.u// Pg.u/
 obtained

by the GRoU method using g.u/ D u2=2

considering, for instance, the case in Fig. 5.8a, (2) draw x0 uniformly distributed on
S1 [ S2.

5.7.2 GRoU for pdfs with a Single Mode at x D 0

In Sect. 5.6 we have already studied the regionAg when p.x/ is a monotonic function
(increasing or decreasing) with a single mode at 0. If the target p.x/ is unimodal with
its maximum at 0, we can divide the domain as D D D1 [ D2. Then for x 2 D1 D
Œ0;C1/ we obtain that p.x/ D pdec.x/ is decreasing, while for x 2 D2 D .�1; 0�

it turns out that p.x/ D pinc.x/ is increasing. Hence, in this case, the region Ag can
also be expressed as

Ag D ˚
.v; u/ 2 R

2 W p�1
inc .g.u// Pg.u/ � v � p�1

dec .g.u// Pg.u/
 ; (5.64)

where we have put together Eq. (5.55) and Eq. (5.56).2 Then, it can be interpreted
that the GRoU method applies a transformation U D g�1.Y/ over two random
variables, Y1 with pdf p�1

dec.y/ and Y2 with pdf �p�1
inc.y/.

Figure 5.9a shows an example of a unimodal pdf (a standard Gaussian density)
with mode located at zero. Figure 5.9b illustrates the same region A0 rotated
90ı, i.e., switching the axes x and y. In this case, the generalized inverse density
associated to p.x/ is p�1

G .y/ D p�1
dec.y/ � p�1

inc.y/. Since, in this case, p.x/ in this
example is also symmetric, we have p�1

G .y/ D 2p�1
dec.y/. Finally, Fig. 5.9c depicts

the corresponding region Ag, achieved with the special choice g.u/ D u2=2.
Furthermore, let us observe that the Lebesgue measure of the subset Agju 
 Ag,
defined as

Agju , f.v; z/ 2 Ag W z D ug (5.65)

2Recall that the inequalities depend on the sign of the first derivative of p.x/ (i.e., whether p.x/ is
increasing or decreasing).
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for a fixed value of u, can be expressed as

jAgjuj D p�1
G .g.u//

dg

du
: (5.66)

On the right-hand side of the equation above we have the pdf of a transformed r.v.
U D g�1.Y/, where Y is distributed as p�1

G .y/.

5.7.3 GRoU for pdfs with a Single Mode at x ¤ 0

In this section, we consider the application of the GRoU method to a unimodal
density p.x/, with x 2 R

C and the maximum located at a ¤ 0. We can see an
example of this kind of density in Fig. 5.10a. In Fig. 5.10b we depict the region A0

below p.x/ with the axis x � y rotated by 90ı. In this case the region A0 can be
described as

A0 D f.x; y/ 2 R
2 W p�1

inc.y/ � x � p�1
dec.y/g: (5.67)

pinc(x)

pdec(x)

A0

x

y

A1A2

A3

a

pG
1(y' ) = pdec

1 (y' ) pinc
1 (y' )

(a)

y

x

pinc
1 (y)

pdec
1 (y)

A0
A1

A2

A3

a

pG
1(y' )

(b)

u

v

Ag

pdec
1 (g(u)) dgdu

pinc
1 (g(u)) dgdu

B1

B2
B3

pG
1(g(u))

dg

du

(c)

u

v
pdec

1 (g(u)) dgdu

pinc
1 (g(u)) dgdu Ag

B1B2

B3

pG
1(g(u))

dg

du

(d)

Fig. 5.10 (a) An example of unimodal density p.x/. (b) The region A0 represented switching the
axes x � y. (c) The region Ag obtained with the GRoU technique (using g.u/ D u2

2
). (d) The

same region Ag represented switching the axes u � v in the previous picture (this is the typical
representation of the GRoU regions)
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Let us consider Fig. 5.10b. We define three different r.v.’s: Y1 with pdf propor-
tional to p�1

inc.y/ (associated to the region A2), Y2 with pdf proportional to p�1
dec.y/

(associated to the region A1 [ A2 [ A3) and, finally, Y3 distributed according to the
generalized inverse density proportional to p�1

G .y/ / p�1
dec.y/� p�1

inc.y/ (associated to
the region A1 [ A2). Note that A0 consists only of A1 and A2, i.e., A0 D A1 [ A2.

Next, we consider the transformed random variables U1 D g�1.Y1/ and U2 D
g�1.Y2/, where g�1 is an increasing function, and plot jointly the two pdfs q1.u/ /
p�1

inc.g.u//
dg
du and q2.u/ / p�1

dec.g.u//
dg
du , obtaining the regions B1, B2, and B3 as

represented in Fig. 5.10c. The region attained with the GRoU method is exactly
Ag D B1 [ B2. Indeed we can write it explicitly as

Ag D


.v; u/ 2 R

2 W p�1
inc.g.u//

dg

du
� v � p�1

dec.g.u//
dg

du

�
: (5.68)

Note that we can interpret that the boundary of Ag is obtained through a transforma-
tion of the contour of the regionA0 [see Eqs. (5.67) and (5.68)]. Finally, recalling the
subset Agju D f.v; z/ 2 Ag W z D ug, we note that in this case we also have jAgjuj D
p�1

G .g.u// dg
du , that is a transformation of the r.v. Y3 � p�1

G .y/ / p�1
dec.y/� p�1

inc.y/.

Remark 5.2 It is important to notice that the shape of the region Ag changes if
the target pdf po.x/ / p.x/ is shifted (i.e., applying the GRoU to p.x � k/ with
k constant). This property can be used to increase the acceptance rate in an RS
scheme [32].

5.7.4 GRoU for Arbitrary pdfs

Consider finally a bounded target pdf po.x/ / p.x/ with several modes. Assume
that we find a partition of D consisting of N disjoint sets Dj, j D 1; : : : ;N, i.e.,
D D D1 [ D2 [ : : :DN , such that p.x/ is monotonically increasing or decreasing,
when restricted to a single subset. To be specific, we can define

pj.x/ D p.x/ for x 2 Dj;

such that pj.x/, j D 1; : : : ;N, are increasing or decreasing functions. Let us also
assume that p.x/ is defined in D D R. Since

R
D p.x/dx < C1, then the number N

of disjoint sets Dj is necessarily even: the pieces p2i�1.x/ are increasing functions
whereas p2i.x/ are decreasing functions, for i D 1; : : : ; N

2
. Then, the region Ag

generated by the GRoU method can be expressed as

Ag D Ag;1 [ Ag;2 [ : : : [ Ag; N
2
; (5.69)
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p3 (x)

p4 (x)
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1(y' ) = S1 + S2
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S1 S2
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u

v
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1(g(u)) dgdu

p2
1(g(u)) dgdu p3

1(g(u)) dgdu

p4
1(g(u)) dgdu

pG
1(g(u)) dgdu

Ag,1 Ag,2

(b)

Fig. 5.11 (a) A bimodal density po.x/ / p.x/ D expf�.x2 � 4/2=4g formed by four monotonic
pieces pi.x/, i D 1; : : :; 4. (b) The corresponding region Ag D Ag;1 [ Ag;2 obtained by the GRoU

method using g.u/ D u2

2

where

Ag;i D ˚
.v; u/ 2 R

2 W p�1
2i�1 .g.u// Pg.u/ � v � p�1

2i .g.u// Pg.u/
 ; (5.70)

for i D 1; : : :; N
2

. Figure 5.11a shows the bimodal pdf po.x/ / p.x/ D expf�.x2 �
4/2=4g. The corresponding regionAg, obtained by the GRoU technique with g.u/ D
1
2
u2, is illustrated in Fig. 5.11b. For this example, we have A0jy D S1 [ S2, so that

p�1
G .y/ D jS1j C jS2j. Then, recalling the definition of the subset Agju D f.v; z/ 2

Ag W z D ug, we have again that jAgjuj D p�1
G .g.u// dg

du ; as depicted in Fig. 5.11b.

5.7.5 Summary

In Sects. 5.6 and 5.7, we have analyzed the procedure underlying the GRoU
method for different types of target densities po.x/ / p.x/. Specifically, increasing
progressively the complexity of p.x/, we have considered: monotonic targets p.x/
with maximum at x D 0 in Sect. 5.6.2, unimodal p.x/ with mode at x D 0

in Sect. 5.7.2, unimodal p.x/ with mode at x ¤ 0 in Sect. 5.7.3, and arbitrary
bounded functions p.x/ in Sect. 5.7.4. Defining a partition of the domain, D D
D1 [ D2 [ : : :DN , such that

pj.x/ D p.x/; for x 2 Dj;

are increasing or decreasing functions, we can consider the inverse functions p�1
j .y/,

j D 1; : : : ;N. Then to the jth piece we can associate a r.v. Yj has density proportional
to p�1

j .y/. Therefore, given the considerations in the last two sections, we can state
that:

• The boundary of the regionAg consists of N pieces obtained as transformed r.v.’s,
Uj D g�1.Yj/, where Yj with density proportional to p�1

j .y/.



5.8 Rectangular Region Ag 189

• The measure of Ag is related to the generalized inverse function p�1
G .y/ D jA0jyj

where

A0jy D fx 2 D W p.x/ > yg:

Indeed, the measure of the subset Ag;u 
 Ag, defined as

Agju D f.v; z/ 2 Ag W z D ug;

can be expressed as jAgjuj D p�1
G .g.u// dg

du (assuming cA D 1), and thus we can
write

jAgj D
Z

RC
p�1

G .g.u//
dg

du
du

D
Z

RC
p�1

G .y/dy

D
Z

D
p.x/dx;

where the last equality holds because p�1
G .y/ and p.x/ enclose the same area by

definition. This is exactly the result given in Eq. (5.23) with cA D 1.

5.8 Rectangular Region Ag

One of the easiest cases in which the GRoU method can be used naturally to perform
exact sampling arises when the region Ag is rectangular. The analysis in the previous
section is very useful to clarify which g.u/ produces a rectangular region Ag (see,
e.g., Proposition 5.3). Indeed, we have seen that the GRoU method corresponds to a
transformation of a r.v. Y with pdf p�1.y/, where we assume p.x/ is decreasing for
simplicity, i.e., U D g�1.Y/. The inversion method (described in Sect. 2.4.1) asserts
that if the function g�1.y/ is the cdf of Y, then the transformation produces a r.v. U
uniformly distributed in Œ0; 1�. Therefore if we choose

g�1.y/ D FY.y/; (5.71)

where FY.y/ D R y
�1 p�1.y/dy is proportional to the cdf of r.v. Y, then Ag is a

rectangular region. Since p�1.y/ is in general unnormalized, note that FY.y/ ! cv
with y ! C1, where

cv D
Z

DY

p�1.y/dy D
Z

D
p.x/dx:
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Therefore, if g�1.y/ D FY.y/ then U D FY.Y/ is a uniform r.v. in Œ0; cv�. In this case,
Ag is a rectangle 0 � u � cv and 0 � v � 1 as we show below in Eq. (5.74). Indeed,
when g�1.y/ D FY.y/, the region Ag is defined (for simplicity, we set cA D 1) as

Ag D
(

.v; u/ 2 R
2 W 0 � u � FY

"

p

 
v

PF�1
Y .u/

!#)

: (5.72)

Since PF�1
Y .u/ D 1

PFY .F
�1
Y .u//

D 1

p�1.F�1
Y .u//

, we have

Ag D
n
.v; u/ 2 R

2 W 0 � u � FY

h
p
�
vp�1.F�1

Y .u//
�io

; (5.73)

and x D vp�1.F�1
Y .u// is distributed as po.x/ / p.x/ for the GRoU method.

Since 0 � FY.y/ � cv , the values of the variable u are contained in Œ0; cv�. The
variable v is contained in Œ0; 1� independently of the values of u, because inverting
the inequalities in Eq. (5.73) we obtain

0 � v � p�1.F�1
Y .u//

p�1.F�1
Y .u//

D 1;

so that Ag is completely described by the inequalities

Ag D ˚
.v; u/ 2 R

2 W 0 � v � 1; 0 � u � cv


: (5.74)

5.8.1 Yet Another Connection Between IoD and GRoU

In Sect. 5.6.1, we have introduced an extended version of the IoD technique that
displays a direct connection with the GRoU methodology. In this section, we
analyze the relationship between the GRoU scheme and the standard version of
the IoD method described in Chap. 2 (for simplicity, we again assume cA D 1). We
have just seen above that the choice

Y D g.U/ D F�1
Y .U/; where U � U .Œ0; cv�/ ;

yields the rectangular region Ag in Eq. (5.74) and the r.v.

X D Vp�1.Y/; (5.75)

with V � U.Œ0; 1�/, is distributed according to the target pdf po.x/ / p.x/. However,
Eq. (5.75) is exactly the same as Eq. (2.44) that corresponds to the standard IoD
technique.
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5.9 Relaxing Assumptions: GRoU with Decreasing g.u/

In this section, we show it is possible to relax some assumptions made in the
statement of Theorem 5.2, which is the basis of the GRoU scheme. For instance,
so far we have assumed that function g is increasing. In this section, we discuss how
to relax this assumption. Firstly, we highlight two observations:

• Consider the region Ag defined by the GRoU scheme with an increasing function
g, i.e.,

Ag D


.v; u/ 2 R

2 W 0 � u � g�1
�

cA p

�
v

Pg.u/
�	�

;

and let .v; u/ be uniformly distributed on it. The sample x D � v
Pg.u/ is distributed

according to the pdf po.�x/ / p.�x/.
• Consider now the set, with an increasing g, defined as

A0
g D



.v; u/ 2 R

2 W 0 � u � g�1
�

cA p

�
� v

Pg.u/
�	�

and let .v; u/ be uniformly distributed on it. The sample x D � v
Pg.u/ is distributed

according to po.x/ / p.x/. The set A0
g is symmetric to Ag w.r.t. the axis u.

These considerations can be easily inferred from the proof of the GRoU Theo-
rem 5.2.

In the same fashion, we can easily infer other two possible versions of the GRoU
method when g.u/ is monotonically decreasing. For the sake of simplicity, consider
also a decreasing target po.x/ / p.x/ with x � 0. Let g.u/ W R� ! R

C (i.e., u � 0)
be strictly decreasing, Pg D dg

du < 0. If .v; u/ is uniformly distributed in the set

Agdec D
(

.v; u/ 2 R
2 W g�1

"

cA p

 
v

Pg.u/

!#

� u � 0

)

; (5.76)

then x D v
Pg.u/ is a sample from po.x/ / p.x/. Moreover, if .v; u/ is uniformly

distributed in the set

A0
gdec

D
(

.v; u/ 2 R
2 W g�1

"

cA p

 

� v

Pg.u/

!

;

#

� u � 0

)

; (5.77)

then x D � v
Pg.u/ has pdf po.x/. It is important to observe that g�1.y/ W RC ! R

�, i.e.,

g�1.y/ � 0. To clarify this point, we can consider again, as an example, the function
g.u/ D u2

2
but now with u � 0 (since we need g to be decreasing). In this case,

the region Agdec has the same shape as the region Ag defined in the standard GRoU

Theorem 5.2 using g.u/ D u2

2
with u � 0, but they are symmetric w.r.t. the origin of
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Fig. 5.12 Summary of
different cases, for a
monotonically target
po.x/ / p.x/ with maximum
at 0. (a) The different regions
Ag, A0

g , Agdec , and A0
gdec

,
defined in Eqs. (5.76)
and (5.77), for a decreasing
target po.x/ / p.x/

u

v

AgAg

AgdecAgdec

ġ > 0ġ > 0

ġ < 0

ṗ < 0ṗ < 0

ṗ < 0

ġ < 0
ṗ < 0

x =
v

ġ(u)

x =
v

ġ(u)

x = − v

ġ(u)

x = − v

ġ(u)

the axes .v; u/ D .0; 0/. Furthermore, the regions A0
gdec

and Ag are symmetric w.r.t.
the axis v.

Figure 5.12 depicts an example of four possible regions Ag, A0
g, Agdec and A0

gdec

(for a monotonically decreasing target p.x/ with maximum at 0, i.e., D D R
C).

5.9.1 General Expression of a r.v. Transformation

Now, we are able to completely connect the GRoU method with a r.v. transforma-
tion. A0

gdec
in Eq. (5.77) can be rewritten as

A0
gdec

D ˚
.v; u/ 2 R

2 W 0 � v � �p�1.g.u//Pg.u/
 : (5.78)

Recall that above �Pg.u/ > 0. Now, we can take together Eq. (5.55) and Eq. (5.78)
above, to arrive at

Ag D ˚
.v; u/ 2 R

2 W 0 � v � p�1.g.u//jPg.u/j
 ; (5.79)

where Pg.u/ can be positive or negative. Equation (5.79) is clearly the expression of
a transformation of a r.v. Y with pdf proportional to p�1.y/. Thus, considering .v; u/
uniformly distributed on Ag defined in Eq. (5.79), we obtain that

x D v

jPg.u/j ; (5.80)

is distributed as po.x/ / p.x/.
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5.10 Another View of GRoU

In Chap. 2, we have seen that the easiest and most basic sampling technique consists
in finding a transformation that maps samples from one or more available random
sources into samples distributed according to the target pdf po.x/ / p.x/. We have
also shown different examples and procedures to obtain this transformation. We
have studied, for instance, transformations of the form

X D t.V;U/; where .V;U/ � U.A/;

i.e., where the random vector .V;U/ is uniformly distributed on A. In the previous
chapters, we have considered “fixed” the domain A and have tried to find a suitable
transformation t. An example is the Box-Muller transformation (see Chap. 2) that
converts a uniform random vector .V;U/ � Œ0; 1�� Œ0; 1� in a standard Gaussian r.v.

We can consider a different approach: assume the transformation t.v; u/ is
fixed, and try to find the corresponding domain A of the uniform random vector
.V;U/ ensuring that X D t.u; v/ is distributed as po.x/ / p.x/. The solution is
not straightforward. However, Jones’ generalization [3, 18] of the GRoU method
provides an answer. Indeed, the Jones’ Theorem given in [18] asserts that the
adequate region A is

A D
n
.v; u/ W 0 � u � 	

�
t.v; u/

�o
;

where

• the function 	.x/ is such that

po.x/ /
�
@r.x; z/

@x

	

zD	.x/
;

• the function r.x; z/ is such that

f .x; z/ D @r.x; z/

@z
;

• and f .x; z/ is the inverse function of t.v; u/ w.r.t. the variable v.

Therefore, given a fixed transformation, the GRoU method can be seen as a
technique to find a suitable domain for two uniform r.v.’s U and V , in such a way
that the r.v. of interest X can be sampled. Figure 5.13 below summarizes the steps
to obtain the function 	.x/ starting from x D t.v; u/. Further specific considerations
about the Jones’ generalization are provided in Appendix C.
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Fig. 5.13 Relationships
among functions in the Jones’
generalization

−→
−→

−→

δ(x, u) =
∂r(x, u)

∂x−→

p(x) =
∂r(x, u)

∂x u=η(x)
= δ(x, η(x))

x = t(v, u)

v = f(x, u)

r(x, u) =

∫
f(x, u)du

5.11 Summary

In this chapter, we have described in depth the features of the ratio-of-uniforms
sampling techniques. The RoU and generalized RoU methods were introduced [19,
32] as bivariate transformations of the bidimensional region A0 below the target pdf
po.x/ / p.x/. This bivariate transformations follow from the equations x D v

Pg.u/
and y D u. These relationships describe all the points within a new transformed
region Ag.

If we are able to draw points .v0; u0/ uniformly from Ag, we can also obtain
samples from po.x/ / p.x/, taking x0 D v0

Pg.u0/
. The cases of interest occur when

the region Ag is bounded and the GRoU method can be applied jointly with the
rejection sampling principle, as discussed in Sects. 5.2 and 5.4 in detail. The test, for
checking whether a point belongs to Ag or not, can be performed without knowing
the boundary of Ag but only checking certain inequalities, properly defined by the
GRoU methodology.

We have studied the conditions needed to guarantee that Ag is bounded, in
Sect. 5.5.2. In Sects. 5.6, 5.7, and 5.8.1, we have described the connections of
GRoU with other sampling methods. We have seen that GRoU techniques can be
interpreted as transformations of r.v.’s Yi with pdfs proportional to the monotonic
pieces p�1

i .y/, i D 1; ::;N, of the target density p.x/. These transformed densities
describe disjoint parts of the boundary of the region Ag obtained using the GRoU
scheme. We have also shown that, depending on the choice of the function g, the
GRoU method coincides with other different techniques. For instance, Table 5.3
summarizes the relationship among GRoU, the different versions of the IoD
method, and the fundamental theorem of simulation. The E-IoD technique has been
described in Sect. 5.6.1.
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Table 5.3 GRoU and IoD methods

Function g Related sampling method Region Ag

g.u/ D u Fund. theorem of simulation Ag 
 A0

g.u/ D F�1
Y .u/ IoD Rectangular Ag

Generic g.u/ E-IoD Generic

In the last part of the chapter, from Sect. 5.9 to Sect. 5.10, we have presented
several variants and extensions of the GRoU technique. The Jones’ generalization
(see also Appendix C) clarifies that GRoU algorithms can be seen sampling methods
that choose (and keep fixed) a transformation of two uniform r.v.’s, U1, U2, and then
construct a support domain for U1 and U2 in order to obtain samples from po.x/ (as
remarked in Sect. 5.10).
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Chapter 6
Independent Sampling for Multivariate
Densities

Abstract In this chapter, we present several techniques for multivariate indepen-
dent sampling. We recall some techniques introduced in the previous chapters and
show how they can be adapted to a multidimensional setup. Additionally, we provide
guidelines for their application in higher dimensional spaces. We also consider the
problem of drawing uniformly from a measurable set embedded in R

n. With this
goal, an exhaustive description of transformations of random vectors is given, which
extends the study of this approach in the previous chapters.

The problem of sampling a random vector can often be conveniently viewed as
generating a (finite) sequence of statistically dependent scalar samples. Thus, in this
chapter, we take a slight detour from the main course of the book and show different
methods that yield dependent samples, including the use of stochastic processes.
Furthermore, a collection of efficient samplers for specific multivariate distributions
is described.

6.1 Introduction

In the previous chapters, we described a large collection of Monte Carlo method-
ologies for sampling from continuous probability density functions. However, the
description was restricted to the univariate case. In this chapter, we look into
different approaches for sampling from multivariate distributions. We recall several
techniques presented in previous chapters, and show how they can be extended
to be used in a multivariate setup. For each of them, we provide derivations and
useful guidelines for their application in higher dimensional spaces. Furthermore,
several other algorithms for the generation of specific multivariate distributions are
presented.

The chapter is organized as follows. After briefly recalling the main notations to
be used throughout the chapter in Sect. 6.2, we devote Sect. 6.3 to the description of
different generic sampling procedures. In this section, we introduce miscellaneous
techniques for representing statistical dependence (as the use of copula functions,
for instance), and recall quickly other methods described in the previous chapters,
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as the rejection sampling (RS) and the ratio-of uniforms (RoU) algorithms. For both
of them, we discuss their application in higher dimensional spaces.

Section 6.4 is devoted to the study of a large family of distributions, namely
the elliptically contoured distributions [5, 15]. Specific methodologies can be
applied for drawing from this family, as the polar methods and the vertical density
representation (VDR). We revisit the VDR approach in Sect. 6.5. Both polar and
VDR methods can be expressed as continuous mixture representations of the target
density. In Sect. 6.6, we handle the generation of multivariate samples uniformly
distributed in n-dimensional measurable sets embedded in R

n, e.g., points uniformly
distributed within a simplex or a hypersphere in R

n. In the latter case, this problem
involves the simulation from elliptically contoured distributions.

Some specific problems tackled in Sect. 6.6 can also be approached considering
suitable transformations of random vectors in R

n, as the transformation in polar
coordinates [5, 15, 21]. In this case, the transformation involves n variables and
converts them into other suitable n variables. The generic transformation case
converting m r.v’s into n r.v.’s (m ¤ n) is discussed in Sect. 6.7. This section extends
the considerations presented in Sect. 2.3.1 of Chap. 2 for the generic m ¤ n scenario.
The case m < n corresponds to the so-called singular distributions [5, Chap. 11],
i.e., distributions that have all their probability mass on a subset of dimension m in
R

n.
Section 6.8 provides a collection of sampling algorithms for generating samples

from specific multivariate distributions, which deserve attention because of their
implications in numerous multivariate statistical problems. In Sect. 6.9, we discuss
the generation of random vectors with a specific dependence structure. Finally, some
concluding considerations are made in Sect. 6.10.

6.2 Notation

The joint cumulative distribution of the point ŒX1; : : : ;Xn�
> 2 R

n is denoted as

FX.x/ D FX.x1; : : : ; xn/ D Prob.X1 � x1; : : : ;Xn � xn/:

This cdf is related to the target density po by the following integral,

FX.x/ D
Z x1

�1
	 	 	
Z xn

�1
po.x1; : : : ; xn/dx1 	 	 	 dxn D

Z x

�1
po.x/dx;

so that we also have

po.x1; : : : ; xn/ D @nFX.x1; : : : ; xn/

@x1 	 	 	 @xn
:
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In the rest of this chapter, the ith marginal distribution will be denoted as

FXi.xi/ D FX.1; : : : ;1; xi;1; : : : ;1/ D lim
x�i!C1 FX.x/;

where x�i D Œx1; : : : ; xi�1; xiC1; : : : ; xn�
>. The corresponding marginal pdfs are

indicated as

fi.xi/ D
Z

R

	 	 	
Z

R

po.x/dx�i; fi.xi/ D dFXi.xi/

dxi
; (6.1)

for i D 1; : : : ; n. Finally, the conditional densities are defined as ratios of joint pdfs
of subsets of components, e.g.,

�j.xjjx1; : : : ; xj�1/ D
R
R

	 	 	 R
R

po.x/dxjC1 	 	 	 dxnR
R

	 	 	 R
R

po.x/dxj 	 	 	 dxn
: (6.2)

6.3 Generic Procedures

In this section, we describe general approaches for multivariate sampling purposes.
Most of them, as the rejection sampling principle and the ratio of uniforms tech-
nique, have been thoroughly discussed in the previous chapters for the scalar case.
Here, we recall them and point out some relevant aspects, useful in multidimensional
problems, for their application.

6.3.1 Chain Rule Decomposition

A joint pdf po.x/ / p.x/ with x D Œx1; : : : ; xn�
> 2 R

n can be always expressed as a
product of conditional densities, i.e.,

po.x1; : : : ; xn/ D f1.x1/�2.x2jx1/�2.x3jx1; x2/ : : : �n.xnjx1; : : : ; xn�1/;

where the marginal pdf f1.x1/ is defined in Eq. (6.1), and �j.xjjx1; : : : ; xj�1/, j D
2; : : : ; n, are defined in Eq. (6.2). The order of the variables can be arbitrarily chosen.
If we are able to draw an independent sample from f1.x1/ and each conditional pdf
�i.xijx1; : : : ; xi�1/, then we can use the following procedure to generate samples
from po.x/ [5, 9]:

1. Set i D 1.
2. Draw x0

i � �i.xijx0
1; : : : ; x

0
i�1/ (denoting, for simplicity, �1.x1/ D f1.x1/).

3. If i < n, then set i D i C 1 and repeat from step 2. Otherwise, return x0 D
Œx0
1; : : : ; x

0
n�

>.
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Example 6.1 Consider a bivariate random vector .X1;X2/ uniformly distributed on a
triangle of vertices .0; 0/, .a; 0/ and .a; b/. This region can be interpreted as the area
below a linear pdf �1.x1/ D b

a x1, with 0 � x1 � b. Then, from the Fundamental
Theorem of Simulation (Sect. 2.4.3), we have that �2.x2jx1/ is a uniform pdf on�
0; b

a x1
�
. It is easy to draw from f1.x1/ using the inversion method, since FX1.x1/ D

b
2a x21 and F�1

X1
.u/ D

q
2a
b u. As a consequence, we can easily sample from po.x1; x2/

in three steps: (1) draw u0 � U.Œ0; 1�/, (2) set x0
1 D

q
2a
b u0, and (3) then draw

x0
2 � U.

�
0; b

a x0
1

�
/.

Example 6.2 Consider a bivariate random vector .X1;X2/ uniformly distributed on
a circle, i.e., the set fx1; x2 2 R W x21 C x22 � 1g. A simple sampling method in this
case is the following:

1. Draw x0
1 � �1.x1/ /

q
1 � x21, with jx1j � 1.

2. Draw x0
2 � U

�h
�p1 � .x0

1/
2;
p
1� .x0

1/
2
i�

.

Additional examples of application of this method are given in Sect. 6.8.

6.3.2 Dependence Generation

In order to generate samples from a random vector, it is often necessary to guarantee
a certain dependence structure among the entries of the vector. In this section, we
describe some general methods to produce multivariate samples which display a
prescribed intra-vector dependence structure. Sequences of correlated samples can
also be generated using stochastic processes, as shown in Sect. 6.9.

Copula Functions

Consider a random vector X D ŒX1; : : : ;Xn�
> � po.x1; : : : ; xn/, with Xi � fi.x/,

where fi.xi/ is the marginal pdf of ith component. We assume the marginal pdfs fi.xi/

and the cdfs FXi.xi/ D R xi

�1 fi.z/dz are known. The copula method [21, 24] provides
a convenient technique for describing dependence among the components of X,
while maintaining the marginal pdfs fixed. A copula function, C W Œ0; 1�N ! Œ0; 1�,
is defined as a cdf of n dependent uniform r.v.’s U1; : : : ;UN � U.Œ0; 1�/, i.e.,

C.u1; : : : ; un/ D ProbfU1 � u1; : : : ;Un � ung: (6.3)

The joint cdf of X can be written as

FX.x1; : : : ; xn/ D C.FX1.x1/; : : : ;FXN .xn// (6.4)
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for a suitable choice of the function C [21]. If the marginal cdfs FXi , i D 1; : : : ; n,
are invertible, then we can generate a sample x0 � po.x1; : : : ; xn/ using the following
procedure, which extends naturally the classical inversion method:

1. Draw u0 D Œu0
1; : : : ; u

0
n�

> � C.u1; : : : ; un/.
2. Set x0 D ŒF�1

X1
.u0
1/; : : : ;F

�1
XN
.u0

n/�
>.

Note that, in general, it is not needed to have a closed form for the copula
C.u1; : : : ; un/ but only to be able to generate samples according to the distribution
C. Different examples of specific copula functions are provided in Sect. 6.8.8. The
copula approach follows by the simple observation below.

Proposition 6.1 ([5, 24]) Consider n different random variables Xi with marginal
pdfs fi.xi/ and cdfs FXi.xi/, i D 1; : : : ; n. Assume that the joint pdf can be expressed
as

po.x1; : : : ; xn/ D
"

nY

iD1
fi.xi/

#

g.FX1.x1/; : : : ;FXn.xn//; (6.5)

where g.u1; : : : ; un/ is another joint pdf with uniform marginal densities. Then:

• The densities fi.xi/ are the marginal pdfs of the joint density po.x1; : : : ; xn/.
• Moreover, defining the uniform r.v.’s Ui D FXi.Xi/ (see Sect. 2.4.1), the random

vector ŒU1; : : : ;Un�
> has joint pdf

g.u1; : : : ; un/ D po.F�1
X1
.u1/; : : : ;F�1

Xn
.un//

Qn
iD1 fi.F�1

Xi
.ui//

; 0 � ui � 1; (6.6)

and the corresponding cdf is

C.u1; : : : ; un/ D FX.F
�1
X1 .u1/; : : : ;F

�1
Xn
.un//; (6.7)

where FX is the cdf of the random vector ŒX1; : : : ;Xn�
>, with pdf po.

The previous proposition can be interpreted as a multivariate version of Theo-
rem 2.1. If we are able to build a joint pdf g.u1; : : : ; un/ with uniform marginal
densities such that a prescribed dependence requirement is satisfied, then we can
also construct another joint pdf with the desired marginals, preserving the depen-
dence structures. Furthermore, a generation algorithm is automatically induced as
shown above.

Samples with a Specific Covariance Matrix

Consider a given n�n covariance matrix†. The samples produced by the following
generic procedure have exactly covariance matrix † [5]:
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1. Obtain a matrix A such that † D AA> using, for instance, the Cholesky
decomposition procedure [10].

2. Draw n independent scalar samples z0
1; : : : ; z

0
n from a generic density q.z/ with

zero mean, EŒZ� D R
R

zq.z/dz D 0, and unit variance, E
�
.Z � EŒZ�/2

� D 1.
3. Set z0 D Œz0

1; : : : ; z
0
n�

>.
4. Return z0 D Ax0.

This is the standard method, e.g., to produce a multidimensional Gaussian vector
from the distribution N .0;†/ using just a (pseudo) random generator for the
standard one-dimensional Gaussian distribution N .0; 1/.

Maximal Positive and Negative Dependence

Maximal positive or negative dependence between two r.v.’s X1 and X2 with cdfs FX1
and FX2 , respectively, can be obtained using the following transformations [5, 27]

X1 D F�1
X1
.U/; X2 D F�1

X2
.U/; namely X1 D F�1

X1
.FX2.X2//;

and

X1 D F�1
X1 .U/; X2 D F�1

X2 .1 � U/; namely X1 D F�1
X1 .1 � FX2 .X2//;

where U � U.Œ0; 1�/. In the first case, the vector ŒX1;X2�> has the maximum positive
dependence between the two components with cumulative function FX.x1; x2/ D
min ŒFX1 .x1/;FX2.x2/�. In the second case, the vector ŒX1;X2�> has the maxi-
mum negative dependence between the two components with cumulative function
FX.x1; x2/ D max Œ0;FX1.x1/C FX2.x2/ � 1�. These statements are derived from the
identities

Prob
˚
F�1

X1 .U/ � x1;F
�1
X2 .U/ � x2


 D Prob fU � FX1.x1/;U � FX2 .x2/g ;
D Prob fU � min ŒFX1 .x1/;FX2.x2/�g ;

and

ProbfF�1
X1 .U/ � x1;F

�1
X2 .1� U/ � x2g D Prob

˚
U � FX1 .x1/;U � 1� FX2 .x2/



:

Recall that P.U � b/ D b and P.1 � a � U � b/ D maxŒ0; b C a � 1� with
a; b 2 Œ0; 1�. Consider, for instance, the case of maximal dependence. The cdf is
FX.x1; x2/ D min ŒFX1.x1/;FX2 .x2/� and the corresponding pdf is non-zero only in
the points of R2 belonging to the curve x1 D F�1

X1
.FX2 .x2// (this is an example of

singular distribution [5]; see Sect. 6.7.2). The marginal pdfs are clearly f1.x1/ D
dFX1 .x1/

dx1
and f2.x2/ D dFX2 .x2/

dx2
.
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6.3.3 Rejection Sampling

The rejection sampling (RS) principle [35] has been thoroughly described in
Chaps. 3 and 4. Let us now quickly review the RS approach in a multivariate setting.
Given the pdf po.x/ / p.x/, x 2 R

n, and a proposal density �.x/, if we know a
constant L such that L�.x/ is an envelope function for p.x/, i.e.,

L�.x/ � p.x/; 8x 2 R
n; (6.8)

for all x 2 R
n, then we can first draw a sample from the proposal , x0 � �.x/, and

then accept it with probability

pA.x0/ D p.x0/
L�.x0/

� 1:

Otherwise, the proposed sample x0 is discarded. The applicability and the per-
formance of the RS method depend on the knowledge of a suitable constant L
that satisfies the inequality (6.8). In the sequel, we provide different inequalities
that become useful to design accept–reject samplers for multidimensional target
distributions.

Bounded Target with Bounded Support

If the target pdf, po.x/ / p.x/, is bounded and defined on a bounded domain, i.e.,

p.x/ � M; x 2 D � R
n;

where M < 1 is a constant and D is bounded. In this case, we can choose L D M
and �.x/ D 1

jDj ID.x/ for applying a naive RS scheme. We simply need to be able
to draw uniformly on D. This is straightforward if D is a hyper-rectangle, i.e.,

D D Œa1; b1� � Œa2; b2� � : : : Œan; bn�;

with jaij; jbij < 1. In this scenario, if p.x/ is unimodal, the performance of the
RS sampler can be easily improved splitting the rectangular domain D in different
sub-rectangles (adaptively or not) and performing RS locally in a randomly selected
sub-rectangle. This simple idea and possible adaptive variants have been already
described in Sects. 4.3.2 and 4.5.2, for the univariate case. Other similar strategies
can be found in literature, see, for instance, the Ahrens method for multivariate pdfs
[13], [14, Chap. 11].
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Inequalities for Multidimensional RS

The previous ideas basically take advantage of the unimodality of p.x/. Now,
let us define the concept of ortho-unimodality (and, as consequence, of ortho-
monotonicity) [14, Chap. 11]. A pdf po.x/ / p.x/ is ortho-unimodal (at the origin)
if all the (univariate) full-conditional densities are unimodal with mode at 0. Hence,
we have p.0/ � p.x/. In the sequel, and unless otherwise stated, we are going to
consider an ortho-unimodal target pdf defined in the unit hyper-cube, i.e., D D
Œ0; 1�n. The definition of ortho-unimodality implies that for any x D Œx1; : : : ; xn�

>
and z D Œz1; : : : ; zn�

> we have

p.z/ � p.x/; for all z 2 Œ0; x� D Œ0; x1� � Œ0; x2� � : : : � Œ0; xn�;

namely for each 0 � zi � xi, i D 1; : : : ; n. Since the Lebesgue measure of Œ0; x�
(defined above) is

Qn
iD1 xi, if we denote cp D R

D p.x/dx, then

p.x/
nY

iD1
xi � cp; i.e., p.x/ � cpQn

iD1 xi
: (6.9)

This inequality can be simply found in the univariate case, x 2 R, where we
have p.x/ � cp

x and p.x/ is monotonically decreasing in Œ0;C1/. Given the
inequality (6.9) and since p.0/ � p.x/, we can combine them to obtain

p.x/ � f .x/ D min

�
p.0/;

cpQn
iD1 xi

	
; 8x 2 D; (6.10)

which is appealing for RS. Indeed, we can choose a proposal pdf as �.x/ / f .x/,
however there are different difficulties with this choice:

• In general, the constant cp D R
D p.x/dx is unknown and an upper bound c0 � cp

has to be found.
• The function f .x/ can be integrated only on a bounded domain (hence the

assumption D D Œ0; 1�n).
• It is not straightforward to draw samples from �.x/ / f .x/. This density is called

a platymorphous pdf [14, Chap. 11].

The last issue was solved in [6], where a generation method was proposed. The idea
is to consider first the transformation Y D � log.X/ where X � �.x/. Thus, the r.v.
Y has the pdf

q.y/ / min

"

cp; p.0/ exp

 

�
nX

iD1
yi

!#

; yi � 0;
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where y D Œy1; : : : ; yn�
>. For the sake of simplicity, we consider

q.y/ / min

"

1; a exp

 

�
nX

iD1
yi

!#

; a � 1; yi � 0;

so that a generation procedure can be outlined as follows:

1. Draw z0 from the univariate pdf �.z/ / zn�1 min Œ1; ae�z�. This is possible via
adaptive rejection sampling (see Chap. 4) since �.z/ is log-concave.

2. Generate the uniform spacings vector d D Œd1; : : : ; dn�
>. The uniform spacings

r.v.’s are obtained by taking the differences between uniform order statistics (see
Sect. 2.3).

3. Return y0 D Œy0d1; : : : ; y0dn�
>.

As shown in [6] the sample y0 is distributed according to q.y/, hence the trans-
formation x0 D exp.�y0/ yields the desired sample from �.x/ / f .x/. For an
ortho-unimodal target pdf po.x/ D po.x1; : : : ; xn/ / p.x/, other useful inequalities
can be found. For instance, defining the univariate functions

'i.x/ D p.0; : : : 0; x; 0; : : : ; 0/; i D 1; : : : ; n;

where x is in the ith position, it is possible to prove that [14, Chap. 11]

p.x/ �
nY

iD1
'i.xi/

1=n; (6.11)

p.x/ � min Œ'1.x1/; '2.x2/; : : : ; 'n.xn/� : (6.12)

These inequalities can be readily employed to design a rejection sampler as well.

6.3.4 RoU for Multivariate Densities

The ratio of uniforms (RoU) technique [22, 25, 36], thoroughly described in Chap. 5,
can be easily extended for multivariate sampling purposes, as shown by the theorem
below.

Theorem 6.1 Consider the target pdf po.x/ / p.x/ with x D .x1; : : :; xn/ 2 R
n and

assume that the point .v1; : : :; vn; u/ 2 R
nC1 is a sample drawn uniformly from the

set

Arn D
(

.v1; : : :; vn; u/ W 0 � u �
�

p

�
v1

ur
; : : :;

vn

ur

�	1=.rnC1/)
; (6.13)

where r � 0. Then x D .x1; : : :; xn/, where xi D vi=ur, is a sample from the
distribution with density po.x/ / p.x/.
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Proof Assume that the r.v.’s .V1; : : :;Vn;U/ are distributed uniformly on Arn, and
consider the direct and inverse transformations

8
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
:

x1 D v1

ur

:::

xi D vi

ur

:::

y D u

�!

8
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
:̂

v1 D x1y
r

:::

vi D xiy
r

:::

u D y

: (6.14)

Then, the joint pdf q.x; y/ of the r.v.’s .X1; : : :;Xn;Y/ is

q.x; y/ D 1

jArnj jJ
�1j for all 0 � y � Œ p.x1; : : :; xn/�

1=.rnC1/: (6.15)

where J is the Jacobian matrix of the transformation and jAj represents the
determinant of a matrix A. Moreover, we can calculate easily the Jacobian of the
inverse transformation, which yields

jJ�1j D det

2

6
6
6
66
4

yr 0 : : : 0 x1ryr�1
0 yr : : : 0 x2ryr�1
:::
:::
: : :

:::
:::

0 0 : : : yr xnryr�1
0 0 : : : 0 1

3

7
7
7
77
5

D ynr; (6.16)

hence

q.x; y/ D 1

jArnjyrn for all 0 � y � Œ p.x1; : : :; xn/�
1=.rnC1/: (6.17)

Finally, we integrate q.x; y/ to obtain the marginal density q.x/,

Z C1

�1
q.x; y/dy D

Z Œ p.x/�1=.rnC1/

0

yrn

jArnjdy;

D 1

jArnj

"
y.rnC1/

rn C 1

#Œ p.x/�1=.rnC1/

0

;

D p.x/
.rn C 1/jArnj D po.x/;

where the first equality follows from Eq. (6.17). �
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Hence, if we are able to draw points .v1; : : : ; vn; u/ uniformly from the set
Arn defined Eq. (6.13), then

�
v1
ur ; : : : ;

vn
ur

�
is distributed as po.x/. The generation of

samples uniformly on A can be performed by an RS procedure. Observe also that,
for r D 0, the RoU theorem coincides with the fundamental theorem of simulation
introduced in Sect. 2.4.3. The application of RoU in multidimensional spaces is
often combined with the use of MCMC algorithms [12].

6.4 Elliptically Contoured Distributions

Elliptically contoured (also known as elliptically symmetric) distributions are
distributions completely defined by their first and second moments, with pdfs
whose contour lines are hyper-ellipses [5, 15]. This class includes, for instance, the
Gaussian and sine-wave distributions [15] (other examples are given below). In one
dimension, this class consists of all symmetric distributions. In dimension n, given
x D Œx1; : : : ; xn�

>, � D Œ�1; : : : ; �n�
> and † an n � n positive definite matrix, an

elliptically symmetric distribution is defined as

po.x/ / p.x/ D g
�
.x ��/>†�1.x � �/� ; x 2 D (6.18)

where g.z/ W R ! R
C is a one-dimensional positive function. We use E.�;†I g/

to denote the cdf corresponding to the pdf in Eq. (6.18). The matrix † represents a
scale parameter of the r.v. X � E.�;†I g/. Below we list some properties which
become useful for the purpose of sampling [5, 15]:

• Given the linear transformation Y D BX C � with X � E.�;†I g/, then it is
possible to show that Y is distributed as E.B�C �;B†B>I g/.

• The univariate r.v. Z D .X � �/>†�1.X � �/ 2 R
C has pdf

q.z/ / z
n
2�1g.z/; z 2 R

C;

when X � E.�;†I g/. The r.v. R D p
Z plays an important role in different

sampling techniques and its density is

'.r/ / rn�1g.r2/; r 2 R
C: (6.19)

These results can be derived directly by computing the determinant of the
Jacobian matrix of the polar transformation [15] (see Sects. 6.6.2 and 6.7).

• All the marginal pdfs are themselves elliptically symmetric, with the same
generator function g.z/. More specifically, consider a partition of the vectors
X D ŒX1;X2�

> and � D Œ�1;�2�
> with dimension 1 � k (for X1 and �1) and

1 � .n � k/ (for X2 and �2), respectively. Moreover, consider the corresponding
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Table 6.1 Examples of
elliptically contoured pdfs

z D .x � �/>†�1.x � �/; x 2 R
n

Distribution Function g Domain

Pearson type II g.z/ D .1� z/m z � 1, m > �1
Pearson type VII g.z/ D .1C z/�m z 2 R, m > n

2

Gaussian g.z/ D exp .�z/ z 2 R

partition of the scale matrix

† D
�
†1;1 †1;2

†2;1 †2;2

	
;

with dimensions shown below

�
k � k n � .n � k/

.n � k/ � n .n � k/ � .n � k/

	
:

Then it can be proved that X1 � E.�1;†1;1I g/ and X2 � E.�2;†2;2I g/.
Moreover, the conditional distributions of X1 given X2 D x2 and of X2 given
X1 D x1 are also elliptically symmetric.

Table 6.1 provides some examples of elliptically contoured pdfs.

Radially (Spherically) Symmetric Distribution

When � D 0 and † D I then po.x/ becomes

po.x/ / g
�jxj2� ; jxj D

p
x>x 2 R

C:

This kind of densities are also known as radially symmetric distributions [5, 33].
They are also defined in this way: given X � E.0; II g/ and an orthogonal n � n
matrix P (i.e., such that PP> D I), then PX � E.0; II g/. Namely, this means that
spherically symmetric distributions are invariant under rotations. Below we describe
different strategies to draw samples from elliptically symmetric distribution.

6.4.1 Polar Methods

It is possible to draw samples from po.x/ using the following algorithm [5, 14]:

1. Draw a vector � 0 D Œ
 0
1; : : : ; 


0
n� uniformly from the surface of the unit n-

dimensional hypersphere (see below and Sect. 6.6 for further details).
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2. Draw r0 � '.r/ / rn�1g.r2/.
3. Since r0� 0 � E.0; II g/, compute an n � n matrix A such that † D AA> using,

for instance, the Cholesky decomposition procedure [10], and then set

x0 D r0A� 0 C �: (6.20)

An alternative technique is given by the Johnson-Ramberg method [5]:

1. Draw a vector b0 D Œb0
1; : : : ; b

0
n� uniformly within the unit n-dimensional

hypersphere (e.g., using a rejection sampler).
2. Draw z0 � q.z/ / zn dg

dz (z � 0).
3. Compute an n�n matrix A such that† D AA> using, for instance, the Cholesky

decomposition procedure [10], and then set

x0 D z0Ab0 C �: (6.21)

Clearly, the method above is feasible only if we are able to draw from q.z/ / zn dg
dz .

Other methods exists as well. For instance, see Sects. 6.5 and 6.8.

Points Uniformly Distributed on a Unit Hypersphere

Consider X D ŒX1; : : : ;Xn� � E.0; II g/ then the random variable

‚ D X
q

X21 C : : : ;X2n

D X
jXj ;

is distributed uniformly on the surface of the unit hypersphere in R
n (see also

Sect. 6.6). Since drawing uniformly from a hypersphere can be interpreted as
choosing uniformly an angle in the space Rn, this kind of pdfs defined on the surface
of a unit hypersphere are often called directional distributions [5, 14, 15].

Polar Methods as Continuous Mixtures

Consider for simplicity X � E.0; II g/. The polar methods could also be interpreted
as a continuous mixture (Sect. 2.3.5), i.e.,

po.x/ D
Z C1

0

�.xjr/f .r/dr; r 2 R; (6.22)

where either

• f .r/ D '.r/ / rn�1g.r2/ (univariate) and �.xjr/ is a uniform pdf defined on the
surface of the hypersphere of radius r, or
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• f .r/ D q.r/ / rn dg
dr (univariate) and �.xjr/ is a uniform pdf within the

hypersphere of radius r (for the Johnson-Ramberg method).

Note that, in both cases, the univariate pdf f .r/ is defined with an unbounded
support, i.e., r 2 Œ0;1/. Below, we describe other continuous mixtures where the
univariate pdf f is defined on a bounded support.

6.5 Vertical Density Representation

In Sect. 2.4.2, we described a methodology for multidimensional sampling, termed
vertical density representation (VDR) [31–33]. In the VDR approach, a multidimen-
sional sampling problem is converted into another sampling problem where it is
necessary to draw from a univariate density first and then uniformly from a suitably
specified set. More specifically, assuming a bounded continuous target po.x/, the
VDR can be seen as the continuous mixture

po.x/ D
Z M

0

h.xjz/q.z/dz; z 2 R; (6.23)

where:

• The univariate density q.z/ is the vertical pdf corresponding to po.x/, defined as

q.z/ / �z
dA.z/

dz
; 0 < z � M; (6.24)

where A.z/ is the Lebesgue measure of the set

O.z/ D fx 2 D W po.x/ � zg: (6.25)

• The conditional pdf h.xjz/ is uniform on the set

C.z/ D fx 2 D W po.x/ D zg: (6.26)

Note that C.z/ is the boundary of O.z/.
• Finally, M D max

x2D po.x/.

Once the vertical pdf is available, the VDR procedure involves two simple steps:

1. Draw a sample z0 from the univariate vertical density q.z/.
2. Draw a point x0 from the uniform distribution on the set C.z0/.

Note the difference between Eqs. (6.22) and (6.23): the support of density f in
Eq. (6.22) is unbounded, while the vertical density q has support in .0;M�. In the
univariate case, the set C.z/ consists of isolated points and the conditional pdf h.xjz/
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collapses to a probability measure constructed as a convex combination of Dirac
delta functions as shown in the first example below. See also Sect. 2.4.2, for further
discussions.

Example 6.3 Consider a univariate Gaussian density, i.e.,

po.x/ D 1p
2�

exp

�
�x2

2

�
; x 2 R:

In this case, we have A.z/ D 2

q
�2 log.

p
2�z/, hence the vertical density is

q.z/ D 2
q

�2 log.
p
2�z/

; 0 < z � 1p
2�
:

The conditional function h.xjz/ is formed by two delta functions, namely,

h.xjz/ D 1

2
ı.x � �.z//C 1

2
ı.x C �.z//;

with �.z/ D
q

�2 log.
p
2�z/.

Example 6.4 Consider a generic spherically symmetric density,

po.x/ / p.x/ D g
�
x>x

�
; x 2 R

2;

where g is a strictly decreasing and differentiable function. The set O.z/ D fx 2
R

n W p.x/ � zg can be rewritten as O.z/ D fx 2 R
n W x>x � g�1.z/g. Since

A.z/ D jO.z/j, we can write

A.z/ D 2�
n
2

n�. n
2
/

�
g�1.z/

� n
2 :

where �. n
2
/ is the Gamma function. As a consequence, the vertical density is

q.z/ D � �
n
2

�. n
2
/

�
g�1.z/

� n
2�1 dg�1.z/

dz
:

The contour of O.z/ is the set C.z/ D fx 2 R
n W x>x D g�1.z/g, i.e., a hypersphere

of radius
p

g�1.z/.

Example 6.5 Consider the class of multivariate exponential power distributions

po.x/ D cm exp
��.x>x/m=2

�
; x 2 R

m;m � 1: (6.27)
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It is possible to show [20, 33] that the vertical density corresponding to po.x/ is a
uniform distribution in .0; cm�, i.e.,

q.z/ D 1

cm
; 0 < z � cm:

Hence sampling from po.x/ can be accomplished by drawing first z0 � U..0; 1cm
�/

and then sampling uniformly from the set

C.z/ D
(

x 2 R
m W jjxjj2 D �

�
log

�
z0

cm

�	2=m
)

:

6.5.1 Inverse-of-Density Method

The inverse-of-density (IoD) method [5, 16, 18], described in Sect. 2.4.4, is related
to the VDR approach. Indeed, VDR is just one possibility to obtain a decomposition
as in Eq. (6.23), where h.xjz/ is uniform and q.z/ is a univariate pdf with bounded
domain. If we recall the definition of O.z/ in Eq. (6.25), and let jO.z/j denote its
Lebesgue measure, then we can describe the IoD in two simple steps:

1. Draw z0 according to p�1.z/ D jO.z/j,
2. Generate x0 uniformly from O.z/.

The obvious difference with the VDR technique is that, in step 2, sampling is carried
out from O.z/ and not just from its boundary C.z/. The name of the “inverse-of-
density” stems from the form of step 1.

6.6 Uniform Distributions in Dimension n

This section is focused on the problem of drawing samples uniformly distributed in
a measurable n-dimensional set in R

n. The case of m-dimensional sets embedded
in the space R

n, with m < n will be handled in the next section (i.e., here we
consider the case m D n). Considering a generic measurable set A, obviously a
simple rejection method can always be applied if we are able to obtain a hypercube
R such that R � A (see Fig. 6.1). Thus, we can draw uniformly from R and accept
the points that belong to A. However, in this section, we describe more specific
methodologies which do not involve any rejection steps.
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Fig. 6.1 A generic
bidimensional region A
embedded in a rectangular
region R

x1

x2

A

R

6.6.1 Points Uniformly Distributed in a Simplex

A convex polytope in R
n generated by the vertices v1; : : : ; vd is the set of points in

R
n that can be obtained as a convex combination of the vectors v1; : : : ; vd. Namely,

a vector x belongs to the convex polytope if it can be expressed as

x D
dX

iD1
aivi; ai � 0; and

dX

iD1
ai D 1:

The set of vertices v1; : : : ; vd is minimal when all vi’s are distinct, and none of the
vi’s can be written as a strictly convex combination (i.e., at least one ai is different
to 0 or 1) of the others [5, 21].

This combination above is strictly convex if there is at least one ai such that
0 < ai < 1 [5, 21].

A simplex Tn 
 R
n is a convex polytope defined with a minimal set of d D n C1

vertices. A simplex can be seen as a set Tn of points in the multidimensional space
R

n that extends the bidimensional notion of triangle. Consider n i.i.d. uniform r.v.’s
in Œ0; 1�, denoted U1; : : : ;Un. Ordering these uniform variates in ascending order,
we obtain the order statistics U.1/; : : : ;U.n/. The r.v.’s defined as

S1 D U.1/;

S2 D U.2/ � U.1/;

::: (6.28)

Sn D U.n/ � U.n�1/;

SnC1 D 1 � U.n/;

are called uniform spacings. Note that Si � 0 and
Pn

iD1 Si D 1. It is possible to
draw from the uniform distribution in the simplex Tn with the following two-step
procedure:
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Fig. 6.2 A generic triangle
defined by the vertices v1, v2,
and v3

x1

x2 v1 v2

v3

x '

1. Generate the uniform spacing r.v.’s Œs0
1; : : : ; s

0
nC1�>: to do this, draw u0

1, : : :, u0
n �

U.Œ0; 1�/, order them to obtain Œu0
.1/; : : : ; u

0
.n/�

>, and then set s0
1 D u0

.1/, s0
i D

u0
.i/ � u0

.i�1/, i D 2; : : : ; n and snC1 D 1 � u0
.n/ as described in Eq. (6.28).

2. Set x0 D Pn
iD1 s0

ivi:

Example 6.6 Consider a triangular set T2 in the plane R
2 defined by the vertices

v1, v2 and v3, as shown in Fig. 6.2. We can draw uniformly from a triangular region
[30, 34], [5, p. 570] with the following steps:

1. Sample u1; u2 � U.Œ0; 1�/.
2. If u1 > u2 then swap u1 with u2.
3. Set x0 D v1u1 C v2.1 � u2/C v3.u2 � u1/.

The samples x0 drawn with this convex combination are uniformly distributed within
the triangle T2 with vertices v1, v2, and v3. Observe that the algorithm can be
simplified setting directly

x0 D v1 minŒu1; u2�C v2.1 � maxŒu1; u2�/C
C v3.maxŒu1; u2� � minŒu1; u2�/

(6.29)

at step 2. Different well-known distributions have been defined in a simplex support.
Some examples are provided in Sect. 6.8.

6.6.2 Sampling Uniformly Within a Hypersphere

It is possible to draw from the uniform distribution in a (closed) hypersphere,

Br D fx 2 R
n W jxj D

q
x21 C : : : ;Cx2n � r2g; r > 0;

using the simple algorithm below [5, 15, 21]:

1. Draw i.i.d. samples z0
1; : : : ; z

0
n � N .0; 1/, i.e., from a standard Gaussian

distribution of mean 0 and variance 1.
2. Draw v0 � U.Œ0; r�/ and set �0 D v1=n.
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3. Set

x0 D Œx0
1; : : : ; x

0
n�

> D
�
�0 z0

1

jz0j ; : : : ; �
0 z0

n

jz0j
	>
;

where jz0j D
q

z02
1 C : : : ;Cz02

n .

Note that the sample �0 (the radius) is distributed according to the pdf

q.�/ / �n�1 with � 2 .0; r�; (6.30)

whereas a random uniform direction is chosen according to the vector
h

z0
1jz0j ; : : : ;

z0
njz0j
i>

. See also Sect. 6.4.1, on directional distributions. The example

below shows how to draw points uniformly within a circle using polar coordinates.
As we have seen in Chap. 2 (and we recall in Sect. 6.7), we have to compute the
determinant of the Jacobian matrix of the polar transformation, that is jJj D � for
n D 2. See Appendix D on generic polar transformations.

Example 6.7 In order to draw points uniformly distributed within a circle (x 2 R
2)

[23],

Br D fŒx1; x2�> W x21 C x22 � r2g;

we have to

1. Draw an angle 
 0 � U.Œ0; 2��/.
2. Draw �0 � q.�/ / �, with 0 < � � r.
3. Set x1 D �0 cos.
 0/ and x2 D �0 sin.
 0/.

Observe that the radius � is not uniformly distributed in .0; r�, but it is distributed
as an increasing linear pdf. Figure 6.3a depicts 1000 points uniformly distributed in

−1

−2

−3

−4
−4 −2 2 40 −4 −2 2 40

0

1

2

3

4

−1

−2

−3

−4

0

1

2

3

4

uniform non–uniform

(a) (b)

Fig. 6.3 Points inside a circle of radius r D 2. (a) The points are uniformly distributed in the
circle; 
 0 � U.Œ0; 2��/ and �0 � q.�/ / �, with 0 < � � r, in this case. (b) In this case, the
points are non-uniformly distributed since the radius is (erroneously) chosen uniformly in .0; r�
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a circle of radius r D 2. Choosing of � uniformly in .0; r� is a frequent mistake.
Figure 6.3b shows the outputs in this case.

6.6.3 Points Uniformly Distributed Within a Hyperellipsoid

Consider now the set

Er D fy 2 R
n W y>†y � r2g; r > 0;

corresponding to a hyper-ellipsoid centered at the origin, where † is a positive
definite n � n matrix that determines the “shape” of the set. It is possible to generate
a sample y from the uniform distribution in Er starting from a sample x from the
uniform distribution in Br of the same radius. In particular, let us consider the
Cholesky decomposition of †�1, namely †�1 D AA> (which is well-defined if
† is positive definite). If x is a uniform r.v. in Br, then y D Ax is also a uniform
random variable. Moreover,

y>†y D .Ax/>†.Ax/ D x>A>.AA>/�1Ax D x>x � r2;

hence y is, indeed, a uniform r.v. in the hyperellipsoid Er.

6.7 Transformations of a Random Variable

In Chap. 2, we have described different transformations which map one (or many)
realizations from an available random source into samples distributed according
to a target distribution. Specifically, we have considered two random vectors
Z D ŒZ1;Z2; : : :;Zm�

> 2 R
m and X D ŒX1;X2; : : :;Xn�

> 2 R
n with joint pdfs

q.z1; z2; : : :zm/ and po.x1; x2; : : :; xn/, respectively, and related by the transformation

� D Œ�1; : : ::; �n�
> W Rm ! R

n; (6.31)

i.e., X D �.Z/ (where � is an injective differentiable function). We have already
studied different cases depending on the values of m, n or the monotonicity of �.
For example:

1. The case m D n was discussed in Sect. 2.3.1 (and in Sect. 6.6, as well) for an
invertible �; the two joint pdfs, po and q, are linked by the relationship

po.x1; : : :; xn/ D q
�
��1
1 .x1; : : :; xn/; : : :; �

�1
n .x1; : : :; xn/

� ˇˇdet J�1ˇˇ ; (6.32)
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where jJ�1j represents the determinant of the n�n Jacobian matrix of the inverse
transformation ��1.

2. The case m > n has been partially studied in Sect. 2.3.2 considering the specific
value n D 1. Namely, we have considered a transformation X D �.Z1; : : : ;Zm/

invertible (at least) w.r.t. the variable z1, so that the relationship

po.x/ D
Z

R

: : :

Z

R

q
�
��1
1 .x; z2; : : :; zm/; z2; : : :; zm

�
ˇ̌
ˇ
ˇ
@��1

1

@x

ˇ̌
ˇ
ˇ dz2 	 	 	 dzm;

(6.33)

holds.

In this section, we first extend the equality (6.33) to the case where 1 � n < m.
Then, we look into the case n > m, and finally we consider the problem of producing
samples on differentiable manifolds, including some examples.

6.7.1 Many-to-Few Transformations (m > n)

Let us consider the system of equations

8
<̂

:̂

X1 D �1.Z1;Z2; : : :;Zm/;
:::

Xn D �n.Z1;Z2; : : :;Zm/;

with m > n; (6.34)

where ŒZ1;Z2; : : : ;Zm�
> has pdf q.z1; z2; : : :; zm/ and m � n D k. We extend this

system adding k new equations into (6.34) (obtaining an m � m system)

8
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
:

X1 D �1.Z1;Z2; : : :;Zm/;
:::

Xn D �n.Z1;Z2; : : :;Zm/:

XnC1 D ZnC1;
:::

XmDnCk D ZmDnCk;

(6.35)

where m � n auxiliary random variables

XnC1 D ZnC1; : : ::;Xm D Zm;

are chosen arbitrarily (i.e., the order of the Zi’s is arbitrary, but the inverse
transformation must exist).
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We assume that the extended square (m � m) system is invertible, i.e., det J ¤ 0.
Then, the inverse transformation exists, and it can be written as

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
:

Z1 D ��1
1 .X1; : : :;Xn;XnC1; : : : ;Xm/;

:::

Zn D ��1
n .X1; : : :Xn;XnC1; : : : ;Xm/;

ZnC1 D XnC1;
:::

Zm D Xm:

(6.36)

The Jacobian matrix of the inverse transformation is J�1. Thus, the joint pdf of
ŒX1; : : : ;Xm�

> can be obtained via (6.36) as

h.x1; : : : ; xm/ D q
�
��1
1 .x1; : : : ; xm/; : : : ; �

�1
n .x1; : : : ; xm/; xnC1; : : : ; xm

� ˇ̌
det J�1

ˇ̌
;

and integrating out xnC1; : : : ; xm, we obtain the relationship

po.x1; : : : ; xn/ D
Z

R

� � �
Z

R

h.x1; : : : ; xm/dxnC1 : : : dxm: (6.37)

Denoting x D Œx1; : : : ; xn�
>, ��1 D Œ��1

1 ; : : : ; ��1
n �> and y D ŒxnC1; : : : ; xm�

>, we
can rewrite Eq. (6.37) in the compact form

po.x/ D
Z

Rk
q.��1.x/; y/

ˇ
ˇdet J�1ˇˇ dy: (6.38)

where k D m � n.

6.7.2 Few-to-Many Transformations: Singular Distributions
(m < n)

Distributions that concentrate all their probability mass on a curve or a surface
embedded in a higher dimensional space are called singular distributions [5].
Specifically, consider the transformation X D �.Z/, where X 2 R

n, Z 2 R
m,

and � D Œ�1; : : ::; �n�
> W Rm ! R

n with n > m, namely,

8
<̂

:̂

X1 D �1.Z1;Z2; : : :;Zm/;
:::

Xn D �n.Z1;Z2; : : :;Zm/:

with m < n; (6.39)
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where � is an injective differentiable function with full-rank Jacobian matrix J,
so that J>J is invertible. Since m < n, the system of Eqs. (6.39) describes (in
parametric form) a hypersurface of dimension m embedded in R

n,

H D fx 2 R
n W x D �.z/ for some z 2 R

mg 
 R
n;

where the zi’s play the role of parameters. Thus, depending on the distribution of
choice for the random vector Z, the random vector X given by the transformation
X D �.Z/ is distributed according to certain pdf on this m-dimensional hypersur-
face. Namely, the vector X has a pdf of the form

po.x/ D h.x/IH.x/; (6.40)

where

IH.x/ D
(
1 if x 2 H;

0 if x … H:
(6.41)

The function h.x/ W Rn ! R is such that the (hyper) surface integral on H is

Z

H
h.x/dH D

Z

Rm
h.�.z//

q
j det J>Jjdz

D
Z

Rm
po.�.z//

q
j det J>Jjdz D 1:

(6.42)

We have denoted with dH the infinitesimal hypersurface element and J is the n � m
Jacobian matrix of the transformation �, namely

J.z/ D

2

6
6
6
6
4

@�1
@z1

@�1
@z2

: : :
@�1
@zm

@�2
@z1

@�2
@z2

: : :
@�2
@zm

:::
:::

:::
:::

@�n
@z1

@�n
@z2

: : :
@�n
@zm

3

7
7
7
7
5
: (6.43)

For the sake of simplicity, we skip the dependence on z hereafter and write J instead
of J.z/. If m D n then

pj det J>Jj D jJj and we obtain the classical change-of-
variables formula. From Eq. (6.42), we can write

Prob fX 2 Œ�.a/;�.b/�g D Prob fZ 2 Œa;b�g D
Z b

a
po.�.z//

q
j det J>Jjdz;
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Table 6.2 Special cases of
pj det J>Jj with a generic parametrization

m n
pj det J>Jj

1 8n 2 N
s

nP

iD1

�
@�i

@z

�2

2 8n 2 N
vu
ut
ˇ̌
ˇ̌
ˇ

�
nP

iD1

�
@�i

@z1

�2	� nP

iD1

�
@�i

@z2

�2	�
�

nP

iD1

@�i

@z1

@�i

@z2

	2 ˇ̌
ˇ̌
ˇ

where Œa;b� D Œa1; b1� � : : : � Œam; bm�. Namely, the density of Z is

q.z/ D po.�.z//
q

j det J>Jj: (6.44)

However, Eq. (6.44) is most useful when the goal is to produce samples from the
r.v. X D �.Z/ on H with a prescribed distribution, po.x/. In this class of problems,
what we need is to identify the pdf q.z/ that actually yields the desired form of
po.x/, and that is precisely given in Eq. (6.44). Table 6.2 shows the analytic form ofpj det J>Jj for two special cases m D 1 and m D 2, for all n 2 N.

Let us denote as z D ��1.x/ W H ! R
m the inverse function of the

transformation in Eq. (6.39). Thus, we also have

po.x/ D q.��1.x//
q

j det J>Jj�1
��1.x/

IH.x/;

D q.��1.x//
q

j det J>Jj��1.x/

IH.x/; (6.45)

where j det J>Jj�1 is evaluated at z D ��1.x/ (and we have used the property
det A�1 D .det A/�1, of a generic invertible square matrix A). Note that ��1 is
well-defined because � is injective. Thus, if we restrict its image to the manifold H,
� W Rm ! H, it becomes bijective.

Example 6.8 Consider the curve H in R
2 with the following parametric form



X1 D r cos.Z/;
X2 D r sin.Z/;

with Z 2 Œ0; 2�/; r > 0; (6.46)

that describes a circle with radius r. If Z is uniformly distributed in Œ0; 2�/, i.e.,

q.z/ D 1

2�
IŒ0;2�/.z/;
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and since

q
j det J>Jj D r;

q
j det J>Jj�1 D 1

r
;

then, from Eqs. (6.44) and (6.45), we have

po.x1; x2/ D 1

2�r
IH.x1; x2/;

where H is the circle described in the system above. Actually, ŒX1;X2�> is uniformly
distributed on H. Furthermore, note that

R 2�
0

pj det J>Jjdz D 2�r is the length of
the circumference.

6.7.3 Sampling a Uniform Distribution on a Differentiable
Manifold

Given the arbitrary parametrization Z 2 Œa;b� D Œa1; b1�� : : :� Œam; bm�, we assume
that

jHa;bj D
Z

Œa;b�

q
j det J>Jjdz < 1;

where jHa;bj denotes the Lebesgue measure of the manifold

Ha;b D fx 2 R
n W x D �.z/ for some z 2 Œa;b�g:

The uniform density on Ha;b can be written as

po.x/ D 1

jHa;bj IHa;b.x/; (6.47)

where, clearly, jHa;bj is a constant. Replacing Eq. (6.47) into Eq. (6.44), it is
straightforward to see that we can obtain a pdf po.x/ of this type if we choose

q.z/ /
q

j det J>Jj; (6.48)

as the density of the random parameter Z. Therefore, in order to draw points
uniformly on Ha;b we can take the steps below:

1. Draw z0 from q.z/ / pj det J>Jj.
2. Set x0 D �.z0/.
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Example 6.9 Consider a curveH inR2 (with finite length) described by the function
x2 D  .x1/, where  is invertible and x1 2 D1 � R (and x2 D  .x1/ 2 D2 �
R). The curve is expressed using the Cartesian parametrization. In order to draw
uniformly from the curve, we can:

1. Draw x0
1 � g1.x1/ /

r

1C
�

d .x1/
dx1

�2
,

2. Set x0
2 D  .x0

1/.
3. Return the point .x0

1; x
0
2/.

The point .x0
1; x

0
2/ belongs to the curve described by x2 D  .x1/ in R

2 and is
uniformly distributed on it, i.e.,

po.x1; x2/ D 1

jHj IH.x1; x2/;

where

jHj D
Z

H
dH D

Z

D1

s

1C
�

d 

dx1

�2
dx1;

D
Z

D2

s

1C
�

d �1
dx2

�2
dx2:

Indeed, in this case x1 plays the role of a parameter in the system

x1 D z;

x2 D  .z/; (6.49)

i.e., �1.z/ D z, �2.z/ D  .z/ and, as a consequence, q.x1/ D g.x1/. The marginal
pdf of X1 is

q.x1/ D g1.x1/ /
s

1C
�

d 

dx1

�2
;

by construction. Thus, using Eq. (6.45), we have

po.x1; x2/ D po.x1;  .x1//IH.x1; x2/;

D g1.x1/
1

r

1C
�

d 
dx1

�2
IH.x1; x2/;

/ IH.x1; x2/:
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The marginal pdf of X2 is clearly given by the expression of a transformation of a
r.v., i.e.,

g2.x2/ D g1. 
�1.x2//

ˇ
ˇ
ˇ
ˇ
d �1

dx2

ˇ
ˇ
ˇ
ˇ : (6.50)

Hence, replacing g1.x1/ in the formula above, we have

g2.x2/ /
vu
u
t1C

 
d 

dx1

ˇ
ˇ
ˇ
ˇ
��1.x2/

!2 ˇ
ˇ
ˇ
ˇ
d �1

dx2

ˇ
ˇ
ˇ
ˇ :

Finally, recalling that d 
dx1

ˇ
ˇ
ˇ
 �1.x2/

D
�

d �1

dx2

��1
, then we can write

g2.x2/ /

vu
u
u
ut

�
d �1

dx2

�2 C 1

�
d �1

dx2

�2

ˇ̌
ˇ
ˇ
d �1

dx2

ˇ̌
ˇ
ˇ D

s

1C
�

d �1
dx2

�2
:

The expression above suggests that clearly we can also draw points uniformly from
the curve x2 D  .x1/, considering x1 D  �1.x2/ and taking x2 as a parameter.

Example 6.10 Consider the ellipse described by the equation

x21 C 1

9
x22 D 1:

It can be parameterized as x1 D cos.z/, x2 D 3 sin.z/, with z 2 Œ0; 2��. Hence, to
draw uniformly from this ellipse we can:

1. Draw z0 from

q.z/ /
s�

dx1
dz

�2
C
�

dx2
dz

�2
D
q

sin2.z/C 9 cos2.z/:

2. Then set x0
1 D cos.z0/, x0

2 D 3 sin.z0/.

Figure 6.4a depicts 200 points generated by the previous algorithm.

Example 6.11 Consider now the following spiral in parametric form

x1 D z cos.2�z/; x2 D z sin.2�z/; z 2 Œ0; 2��:

In this case the pdf q.z/, after some simple manipulations, can be expressed as

q.z/ /
s�

dx1
dz

�2
C
�

dx2
dz

�2
D
p
4�2z2 C 1: (6.51)
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Fig. 6.4 (a) Points (200) uniformly distributed on an ellipse. (b) Points (2000) uniformly
distributed on an spiral

We can use the previous procedure to yield points uniformly on the spiral.
Figure 6.4b shows 2000 samples.

6.8 Sampling Techniques for Specific Distributions

This section provides a collection of sampling algorithms for specific multivariate
distributions which appear frequently in various applications [4, 9, 15].

6.8.1 Multivariate Gaussian Distribution

Consider a mean vector � D Œ�1; : : : ; �n� 2 R
n and an n � n covariance matrix †.

The multivariate Gaussian density has the form

po.x/ D .2�/�
n
2 jdet†j� 1

2 exp

�
�1
2
.x � �/>†�1.x � �/

�
:

The following procedure generates a sample x0 from a generic multivariate Gaussian
distribution, i.e., x0 � N .�;†/:

1. Compute a factor A such that † D AA>.
2. Draw vk � N .0; 1/, for k D 1; : : : ; n.
3. Set x0 D �C Av where v D Œv1; : : : ; vn�

>.

The computation of the matrix A can be carried out in different manners. The
Cholesky factorization and the eigendecomposition are the most typical procedures
[10]:
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• Cholesky decomposition: any positive definite matrix† can be factorized as† D
LL>, where L is a lower triangular matrix. Hence, we can set A D L.

• Spectral decomposition: any symmetric matrix † can be decomposed as † D
UƒU>, where U is a unitary matrix (i.e., UU> D I) whose columns are
eigenvectors, andƒ is a diagonal matrix containing the eigenvalues. In this case,
we set A D Uƒ

1
2 .

6.8.2 Multivariate Student’s t-Distribution

A multivariate Student’s t density with � degrees of freedom, location parameter�,
and scale matrix † is defined as

po.x/ /
 

1C .x � �/>†�1.x � �/
�

!� �Cn
2

:

A r.v. X distributed as a univariate Student’s t pdf, po.x/ with x 2 R, � D 0 and
� > 0, can be expressed as the ratio between a Gaussian r.v. Z and the square root
of a chi-square r.v. Y with � degrees of freedom, more specifically, X D p

� Zp
Y

.
Hence, a sampling technique for generating a multivariate Student’s t-Distribution
can follow the steps below:

1. Compute the matrix A such that† D AA>.
2. Draw v0

k � N .0; 1/, for k D 1; : : : ; n and define v0 D Œv0
1; : : : ; v

0
n�

>.
3. Draw z0 � q.x/ / x

�
2 �1e�x.

4. Set x0 D �C
p
�

z0 Av0.

6.8.3 Wishart Distribution

Consider a positive definite n � n matrix X D fxi;jg with i; j D 1; : : : ; n. The
Wishart distribution is defined on the space of positive definite matrices in R

n�n.
The corresponding pdf is

po.X/ / jdet Xj ��n�1
2 exp

�
�1
2

trace.†�1X/
�
; (6.52)

where � � n is the number of degrees of freedom and † is an n � n covariance
matrix. The Wishart distribution is often interpreted as a multivariate extension
of the Gamma distribution. It is frequently used in Bayesian statistics because it
is the conjugate prior for the precision matrix †�1 of an n-dimensional Gaussian
distribution N .0;†/.
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When � is an integer, the Wishart distribution represents the sums of squares (and
cross-products) of n draws from a multivariate Gaussian distribution. Specifically,
given L random vectors Yi � N .0;†/, i D 1; : : : ;L, of dimension n, the matrix

X0 D
LX

iD1
Y>

i Yi;

has a Wishart density with � D L degrees of freedom and n � n scale matrix †.
Then, trivially we can derive the following sampling method:

1. Draw L multivariate Gaussian samples yi D Œyi;1; : : : ; yi;n�
> � N .0;†/, i D

1; : : : ;L.
2. Set x0 D PL

iD1 y>
i yi.

The previous procedure is inefficient, especially for large � D L. An alternative
algorithm is based on the so-called Bartlett decomposition [5, 15]:

1. Compute an n � n lower triangular matrix A via the Cholesky decomposition,
such that † D AA>.

2. Draw independently the n.nC1/
2

samples, c0
ii � q.c/ / c��iC1e� c2

2 and c0
ij �

N .0; 1/, with i D 1; : : : ; n and j D 1; : : : ; i � 1. Then construct the lower
triangular matrix

C D

2

6
6
6
4

c0
11 0 	 	 	 0

c0
21 c0

22 	 	 	 0
:::

:::
:::

:::

c0
n1 c0

n2 	 	 	 c0
nn

3

7
7
7
5
; (6.53)

3. Return X0 D ACC>A>.

6.8.4 Inverse Wishart Distribution

Consider a positive definite n � n matrix V D fvi;jg with i; j D 1; : : : ; n. The inverse
Wishart distribution is defined as

po.V/ / jdet Vj� �CnC1
2 exp

�
�1
2

trace.ˆV�1/
�
; � � n; (6.54)

whereˆ is an n �n (precision) matrix. The inverse Wishart pdf is used as conjugate
prior over the covariance matrix † of a multivariate Gaussian likelihood function.
In the univariate case n D 1, the inverse Wishart distribution becomes the inverse-
Gamma distribution.
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A possible procedure to generate a sample matrix V0 with inverse Wishart
distribution is to draw a matrix W with Wishart density, with parameters � and
† D ˆ�1, and then set V0 D W�1.

6.8.5 Multivariate Gamma Samples

In many applications, there is a need of generating non-negative random vectors and
Gamma random variables are often considered. Let us define an incidence matrix
T of dimensions m � n, consisting of 0 and 1 entries. A simple way to generate
multidimensional Gamma variates is the following [4, 28]:

1. Draw vj � G.˛1; 1/, with j D 1; : : : ;m, i.e., with pdf q.v/ � x˛1�1e�x.
2. Draw zk � G.˛2; 1/, with k D 1; : : : ; n, i.e., with pdf h.z/ � x˛2�1e�x.
3. Let v0 D Œv1; : : : ; vm�

> and z0 D Œz1; : : : ; zn�
>, then return

g0 D v0 C Tz0:

Note that every element in the vector g0 is a sum of independent Gamma r.v.’s, and
the marginal pdf of each component is also a Gamma pdf. Clearly, different choices
of the matrix T yield different correlation structures among the components of g0
[28].

6.8.6 Dirichlet Distribution

Let a1; : : : ; anC1 be positive scalar values (called concentration parameters). The
corresponding Dirichlet distribution has pdf

po.x1; : : : ; xn/ / xa1�1
1 xa2�1

2 	 	 	 xan�1
n .1� x1 � x2 	 	 	 � xn/

anC1�1;

defined over the simplex described by the inequalities xi > 0, for all i D 1; : : : ; n,
and

Pn
iD1 xi < 1. In Bayesian statistics the Dirichlet distribution is often used as a

prior over probability mass functions fpignC1
iD1 (defined as pi D xi, 8i, and pnC1 D

1�x1�x2 	 	 	�xn) [5, 7, 8, 27]. It can be seen as a multivariate generalization of the
Beta distribution. A simple procedure to draw from a Dirichlet distribution involves
the generation of Gamma samples:

1. Draw z0
k � q.zk/ / zak�1

k e�zk , i.e., from a Gamma distribution with parameter ak

and unit scale parameter, G.ak; 1/, for k D 1; : : : ; n C 1.
2. Set s D PnC1

kD1 z0
k.

3. Return x0
i D z0

i
s for i D 1; : : : ; n.
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6.8.7 Cook-Johnson’s Family

The so-called Cook-Johnson uniform distribution [2, 15] has cdf

FX.x1; : : : ; xn/ D
 

nX

iD1
x

� 1
a

i C 1 � n

!�a

; a > 0; 0 � xi � 1; (6.55)

and density

po.x1; : : : ; xn/ /
nY

iD1
x

� 1
a �1

i

 
nX

iD1
x

� 1
a

i C 1 � n

!�a�n

; a > 0; 0 � xi � 1;

This distribution is invariant under permutations of the components xi’s and it has
marginal uniform pdfs so that it can be interpreted as a multivariate generalization
of the uniform distribution or as a copula function. A sampling procedure for this
distribution is given below:

1. Draw zi � exp.�z/, for i D 1; : : : ; n.
2. Draw v � G.a; 1/.
3. Set xi D �

1C zi
v

��a
, for i D 1; : : : ; n.

If we denote the Cook-Johnson cdf as

C.u1; : : : ; un/ D FX.x1; : : : ; xn/;

and use it as a copula function, different well-known multivariate distributions can
be built as C.FX1 .x1/; : : : ;FXn.xn// where FXi.xi/ is the marginal cdf of the ith
component xi of the new distribution. A straightforward sampling method in this
case consists of the steps below:

1. Draw zi � exp.�z/, for i D 1; : : : ; n.
2. Draw v � G.a; 1/.
3. Set ui D �

1C zi
v

��a
, for i D 1; : : : ; n.

4. Set xi D F�1
Xi
.ui/, for i D 1; : : : ; n.

Examples of distributions that can be written (and sampled) using the Cook-Johnson
copula include the following [2, 15]:

• The multivariate Burr pdf

po.x1; : : : ; xn/ /
"

nY

iD1
dicix

ci�1
i

# 

1C
nX

iD1
dix

cj

i

!�a�n

; a; ci; di > 0; xi > 0;
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where the ith marginal cdf and its inverse, are

FXi.xi/ D 1 � �
1C dix

ci
i

��a
; F�1

Xi
.ui/ D

�
d�1

i

��
1 � u

� 1
a

i

�
� 1

	� 1
ci

:

• The multivariate Pareto pdf

po.x1; : : : ; xn/ /
"

nY

iD1

i

#�1  
1C

nX

iD1

�1

i xi C 1 � n

!�a�n

; xi > 
i > 0;

where its marginal cdf, and its inverse, are

FXi.xi/ D 1 �
�

i

xi

�a

; F�1
Xi
.ui/ D 
i .1 � ui/

� 1
a :

• Gumbel’s multivariate logistic distribution, which can be described by the joint
cdf

FX.x1; : : : ; xn/ D
 

1C
nX

iD1
e�xi

!�a

; a > 0; xi > 0; i D 1; : : : ; n:

and the corresponding pdf

po.x1; : : : ; xn/ /
"

nY

iD1
e�xi

# 

1C
nX

iD1
e�xi

!�a�n

:

The ith marginal cdf and its inverse are

FXi.xi/ D Œ1C exp.�xi/�
�a ; F�1

Xi
.ui/ D � log.u

� 1
a

i � 1/; i D 1; : : : ; n:

6.8.8 Some Relevant Bivariate Distributions

The densities considered in this section have attracted some attention in the literature
[4, 9, 15, 24]. Note that several families of bivariate pdfs can be constructed by way
of the copula function approach (see Sect. 6.3.2).

Morgenstern’s Distribution

The density

po.x1; x2/ / 1C ˛.2x1 � 1/.2x2 � 1/; 0 � x1; x2 � 1; j˛j � 1;
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has been studied in [5, 15]. The marginal distributions are both uniform in Œ0; 1�
and the dependence properties are controlled by the parameter ˛ (hence, its cdf can
be used as a copula function). The linear correlation coefficient is �˛

3
. The method

based on the chain rule decomposition, described in Sect. 6.3.1, can be used in this
case. Namely, we can use the formula

po.x1; x2/ D q.x2jx1/f1.x1/;

and the method consists of drawing x0
1 from f1.x1/ and then x0

2 � q.x2jx0
1/. We

already know that the marginal density f1.x1/ is uniform in Œ0; 1�. Additionally,
q.x2jx1/ is a linear function (given x1) that can be sampled, e.g., by the inversion
method. For instance, since q.x2jx1/ is a trapezoid density, a possible sampling
algorithm is the following:

1. Draw x0
1 � U.Œ0; 1�/.

2. Draw u0 � U.Œ0; 1�/ and v0 � U.Œ0; 1�/.
3. Set

x0
2 D

8
<

:

min
h
u0;� v0

˛.2x0
1�1/

i
; if x0

1 <
1
2
;

max
h
u0; 1 � v0

˛.2x0
1�1/

i
; if x0

1 � 1
2
:

(6.56)

4. Return Œx0
1; x

0
2�

>.

Ali-Mikhail-Haq’s Distribution

Consider the following bivariate cumulative distribution [4, 15]

FX.x1; x2/ D x1x2
1 � ˛.1 � x1/.1 � x2/

; 0 � x1; x2 � 1;

with j˛j � 1. The marginal pdfs fi.xi/ are both uniform in Œ0; 1�, hence this cdf is a
copula function as well. The chain rule decomposition method can be applied again.
Indeed, one conditional cumulative function is

FX2jX1 .x2jx1/ D x2Œ1 � ˛.1 � x2/�

.1 � ˛.1 � x1/.1 � x2//
2
; (6.57)

and the equation FX2jX1 .x2jx1/ D k with k 2 Œ0; 1� has one solution in the interval
Œ0; 1�. This solution can be computed analytically, so that the inversion method can
be applied.
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Gumbel’s Bivariate Exponential Distribution

Consider the density [4, 15]

po.x1; x2/ D Œ.1C
x1/.1C
x2/�
� exp.�x1�x2�
x1x2/; x1; x2 > 0; (6.58)

with 0 � 
 � 1. Both marginal pdfs are exponential densities, i.e., fi.xi/ D
exp.�xi/, with i D 1; 2. The two components are independent if 
 D 0. It is also
possible to show that the maximum linear correlation between the two components
is obtained for 
 D 1, reaching the value �0:43 (i.e., weak negative dependence).
The conditional pdf of x2 given x1 is

q.x2jx1/ D po.x1; x2/

f1.x1/
D Œ.1C 
x1/.1C 
x2/� 
� exp.�x2 � 
x1x2/;

that can be rewritten (after some manipulations) as

q.x2jx1/ D w Œ� exp.��x2/�C .1 � w/
�
�2x2 exp.��x2/

�
; (6.59)

where � D 1 C 
x1 and w D ��

�

. Equation (6.59) represents a mixture, with
weight w, of an exponential pdf with parameter �, and a Gamma pdf (we denote
the corresponding distribution as G.2; �/). Hence, since po.x1; x2/ D q.x2jx1/f1.x1/,
we can draw from the pdf in Eq. (6.58) by sampling x0

1 � exp.�xi/ first, using the
inversion method, and then draw a sample x0

2 � q.x2jx0
1/. Samples from the Gamma

distribution G.2; �/ can be generated as a sum of two independent exponential r.v.’s
with parameter � [5].

Wrapped Cauchy Distribution

Consider the pdf [15]

po.r; 
/ / r exp

�
� r2

2

�
.1 � a2/

2�.1C a2 � 2a cos 
/
; with jaj � 1:

If r and 
 are interpreted as polar coordinates for a complex r.v., then the alternative
density

po.x1; x2/ / exp

�
�x21 C x22

2

�
.1 � a2/

2�.1C a2 � 2ax1
�
x21 C x22

��1=2
/
;

where cos 
 D x1p
x21Cx22

is fully equivalent, with x1, x2 being the Cartesian

coordinates for the complex r.v.
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This distribution results from the “wrapping” of the Cauchy distribution around
the unit circle. It is often used in directional statistics: a branch of statistics that
studies directions (unit vectors in R

n) and rotations in R
n, for instance. More

generally, directional statistics deals with observed data on compact Riemannian
manifolds. A possible generation procedure is given below:

1. Draw r0 � q.r/ / r exp
�
� r2

2

�
, which is a Rayleigh pdf. It is possible to draw

from a Rayleigh pdf by the inversion method: draw a sample v0 � U.Œ0; 1�/ and
then set r0 D p�2 log v0.

2. Draw u0 � U.Œ0; 1�/.
3. Set 
 0 D tan.�u0 � 1

2
/ mod .2�/.

4. Return the pair.r0; 
 0/.

Von Mises Distribution

Another distribution often used in directional statistics is the von Mises distribution
[9, 15]. The corresponding pdf can be written as

po.
/ / exp.k cos 
/; 0 � 
 < 2�;

where k > 0 is a constant value. A rejection sampling method can be applied using
a uniform proposal pdf (since exp.k/ � exp.k cos 
/):

1. Draw u1; u2 � U.Œ0; 1�/.
2. If u2 � exp.k cos 2�u1/

exp.k/ D exp .k.cos 2�u1 � 1// then set 
 0 D 2�u1. Otherwise,
reject u1 and repeat from step 1.

6.9 Generation of Stochastic Processes

In this section, we describe different sampling techniques for generating random
vectors that constitute a finite representation of a continuous-time random processes
[9, 14, 17, 21]. Each finite realization of a stochastic process contains a sequence
of dependent random variables with a specific structure. In general, we consider
random processes fXtg with t 2 R (continuous-time), with the exception of
Sect. 6.9.6 where the time variable is discrete. The r.v.’s Xt forming the stochastic
process can take continuous values (Xt 2 R) or only discrete values (Xt 2 N; see
Sects. 6.9.5 and 6.9.1).

6.9.1 Markov Jump Processes

A Markov jump process (MJP) is a Markov process with a continuous-time index
and a countable, i.e., discrete, state space. To be specific, a MJP is a continuous-
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time stochastic process, fXtg, with t 2 R, Xt 2 X � N, and the Markov property
[1, 17, 21]

p.xtC� jxs; s � t/ D p.xtC� jxt/; 8s; �; t 2 R:

There also exist several stochastic processes with a continuous state space, i.e., Xt 2
X � R, and where the Markov property is satisfied (e.g., the Wiener processes).
In this section, we focus on the case X � N. A time-homogenous MJP is usually
defined using the so-called Q-matrix,

Q D fqi;jg D

2

6
6
6
4

�q1 q1;2 q1;3 	 	 	
q2;1 �q2 q2;3 	 	 	
q3;1 q3;2 �q3 	 	 	
:::

:::
:::
: : :

3

7
7
7
5
;

where

qi;j D lim
�!0

p.xtC� D jjxt D i/

�
; i ¤ j; i; j 2 X ;

qi;i D �qi D � lim
�!0

1 � p.xtC� D ijxt D i/

�
; i 2 X :

(6.60)

These coefficients qi;j are finite and positive, i.e., 0 � qi;j < 1, and such that

qi D
X

j¤i

qi;j:

Hence, the sum of the coefficients in a row of Q is zero. The process is called
homogenous if the entries of Q, qi;j, are constant, i.e., independent from the time
index t. The matrix Q induces a transition matrix R D fRi;jg. Indeed, the probability
of jumping from the state i to j is

Ri;j D qi;j

qi
; with i ¤ j; (6.61)

by definition. Moreover, the time �.xt D i/ that Xt dwells at the ith state has an
exponential distribution Exp.qi/, i.e.,

�.xt D i/ � qie
�qi� ; � � 0: (6.62)

Denoting as Zn, with n 2 N, the values of the process Xt at the jump times sn (see
Fig. 6.5), the resulting process fZng is a Markov chain with transition matrix R.
Furthermore, in some cases there exists a stationary distribution,

lim
t!C1 p.xt D yjx0/ D �.y/; with

X

y2X
�.y/ D 1;
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Fig. 6.5 Two independent realizations of a Markov jump process with Xt 2 f1; 2; 3; 4; 5g

that is also solution of the equation �>Q D 0, where � D Œ�.0/; �.1/; �.2/; : : :�>.
Denote as s1; s2; : : : the jump times and, for the sake of simplicity, denote the
corresponding dwelling times as ı1; ı2; : : : A MJP can be generated in this way:

1. Start with n D 0, t D 0, and s0 D 0. Choose x0 and set y0 D x0.
2. Draw ınC1 � qyne�qyn � , � � 0.
3. Set xt D yn for sn � t � sn C ınC1.
4. Set snC1 D sn C ınC1.
5. Draw ynC1 with probability according to the ynth row of the transition matrix R.

Figure 6.5 illustrates two independent realizations of a MJP with

Q D

2

6
6
6
6
6
4

�.a1 C a2/ a1 a2 0 0

b1 �.b1 C a2/ 0 a2 0

b2 0 �.b2 C a1/ 0 a1
0 0 �b1 b1 0

0 b2 0 0 �b2

3

7
7
7
7
7
5
;

where a1 D a2 D b1 D b2 D 1 and Xt 2 f1; 2; 3; 4; 5g.

6.9.2 Gaussian Processes

Consider a stochastic process fXtgC1
tD�1 2 R such that every finite-dimensional

vector

ŒZ1; : : : ;Zn�
> D ŒXt1 ; : : : ;Xtn �

>;

where t1 < t2 < : : : < tn are real time indices, follows a multivariate Gaussian
distribution. In this case, the stochastic process fXtg is called a Gaussian process
(GP) [26]. Note that both t and Xt are continuous (real) variables. A GP is completely



6.9 Generation of Stochastic Processes 235

defined by its mean and covariance functions, i.e.,

�.t/ D EŒXt�; t 2 R;

and

K.t; s/ D Cov.Xt;Xs/ t; s 2 R:

The covariance function is often also called the kernel of the GP. It is possible to
generate easily a finite realization of a GP at the given time steps t1; : : : ; tn, by way
of the procedure below:

1. Given t1; : : : ; tn, compute the mean Q� D Œ Q�1; : : : ; Q�n�
> D Œ�t1 ; : : : ; �tn �

> and
the covariance matrix †. j; k/ D K.tj; tk/, with j; k 2 f1; : : : ; ng, where †. j; k/
denotes the entry in row j and column k of the matrix †.

2. Compute the Cholesky decomposition† D AA>.
3. Draw vi � N.0; 1/, for i D 1; : : : ; n, to obtain v D Œv1; : : : ; vn�

>.
4. Calculate z D Q�C Av, where z D Œz1; : : : ; zn�

> D Œxt1 ; : : : ; xtn �
> is a realization

of the GP.

Some common choices of �.t/ and K.t; s/ are presented in Table 6.3.
Figure 6.6 shows 20 different realizations ŒXt1 ; : : : ;Xtn �

> of a GP with

�.t/ D 0; K.t; s/ D exp

�
� .t � s/2

2

�
; (6.63)

and the time grid t1 D �5; t2 D �4:9; t3 D �4:8; : : : ; tn D 5.

Table 6.3 Special cases of Gaussian processes

Type Mean �.t/ Kernel K.t; s/

Gaussian kernel 0 exp
�
� .t�s/2

2�2p

�

Wiener process 0 minft; sg
Standard Brownian

0 minft; sg � st
bridge

Ornstein-Uhlenbeck
e�
 t�0 C �.1� e�
 t/ �2

2

e�
.tCs/

�
e2
 minft;sg � 1

�

process

Fig. 6.6 Twenty independent
realizations of a GP with a
Gaussian kernel (�p D 2) and
zero mean, evaluated between
t1 D �5 and tn D 5 with step
10�1
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Interpolation: Noise-Free Observations

Consider a set of fixed points .sj; yj/ 2 R
2, with j D 1; : : : ; J (where J is a constant

value). It is possible to draw GP functions passing through these points using simple
properties of multivariate Gaussian pdfs [26]. Considering n abscissas t1; : : : ; tn, we
are interested in drawing the vector ŒZ1; : : : ;Zn�

> D ŒXt1 ; : : : ;Xtn �
> conditional on

ŒXs1 D y1; : : : ;XsJ D yJ �
>, where fXtg is a GP. We denote

A.i; k/ D K.si; sk/; B.r;m/ D K.tr; tm/; C.r; k/ D K.tr; sk/;

where i; k 2 f1; : : : ; Jg and r;m 2 f1; : : : ; ng, hence the matrix A has dimension
J � J, B has dimension n � n, and C is an n � J matrix. Then, it is easy to show that
[26]

q.zjt; s; y/ � N .zI�;†/; (6.64)

where t D Œt1; : : : ; tn�>, s D Œs1; : : : ; sJ �
>, y D Œy1; : : : ; yJ �

>, and

� D CA�1y; † D B � CA�1C>: (6.65)

Note that � is an n � 1 vector and† has dimension n � n. Therefore, the generation
procedure consists of the following step:

1. Compute � D CA�1y and † D B � CA�1C>.
2. Draw Œz0

1; : : : ; z
0
n�

> � N .zI�;†/.
3. Set Œx0

t1
; : : : ; x0

tn
�> D Œz0

1; : : : ; z
0
n�

>.

Figure 6.7a illustrates 20 independent realizations of a GP with a Gaussian kernel
given .�10; 3/, .�2; 1/, .4;�7/ and .10; 5/, i.e., ŒX�10 D 3;X�2 D 1;X4 D
�7;X10 D 5�>.
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Fig. 6.7 (a) Independent realizations of a GP with a Gaussian kernel (�p D 2) given four observed
points .�10; 3/, .�2; 1/, .4;�7/ and .10; 5/, evaluated between t1 D �20 and tn D 20 with step
10�1. (b) Independent realizations of the GP considering the observed values ŒY�10 D 3; Y�2 D
1; Y4 D �7; Y10 D 5�> contaminated by Gaussian noise with � D 0:5
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Regression

In the case that each element of the vector of observations y D Œy1; : : : ; yJ �
> is

contaminated by independent Gaussian noise with zero mean and variance �2, we
have for instance

� D C.A C �2I/�1y D CeA
�1

y; (6.66)

where eA D A C �2I and I is the unit diagonal matrix of dimension n � n. The
sampling procedure described above for the interpolation case is still valid for the
regression scenario replacing A with eA. Some random samples from a GP posterior
pdf in the regression case are shown in Fig. 6.7b with � D 0:5.

6.9.3 Wiener Processes

A Wiener process (WP) is a stochastic process fWtg, t 2 R, with the following
specific properties [1, 17, 21]:

• The r.v. defined by the increments Rt;s D Wt � Ws with t > s, for any t; s 2 R, is
independent from the past path fW�g��s.

• The r.v. Rt;s has a Gaussian distribution, specifically

Rt;s D Wt � Ws � N .0; t � s/:

• The trajectory fWtg forms a continuous path [21, Chap. 5].

The Wiener process is often interpreted as the continuous counterpart of a discrete
random walk (see Fig. 6.8 for some examples). A WP is a special case of Gaussian
process with �.t/ D 0 and K.t; s/ D minŒt; s�. It also satisfies the Markov property
p.wtC� jws; s � t/ D p.wtC� jwt/, where

p.wtC� jwt/ D 1p
2��

exp

�
� .wtC� � wt/

2

2�

�
:

Fig. 6.8 Ten independent
realizations of a Wiener
process
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As a consequence, we have already shown different procedures for generating a
discrete subset of a WP, i.e., considering t1 < t2 : : : < tn and ŒWt1 ; : : : ;Wtn �.
However, another simple algorithm can be provided using the specific properties
of a WP. It is common to consider tk > t0 D 0, for k D 1; : : : ; n and W0 D 0. Then
the sampling algorithm is the following:

1. Set w0 D 0 at t0 D 0 (0 < t1 < t2 : : : < tn ).
2. Draw n independent Gaussian samples vi, i.e., vi � N.0; 1/ for i D 1; : : : ; n.
3. Set wtk D Pk

iD1
p

ti � ti�1vi, k D 1; : : : ; n.

The algorithm is exact; it returns a discrete subset of the true continuos random path.

6.9.4 Brownian Motion

A WP is also referred to as standard Brownian motion. More in general, it is also
common to consider the stochastic process fBtg that satisfies

Bt D �t C �Wt; t 2 R
C;

as a Brownian motion [21], where �, � are constants and Wt is a WP. If � D 0 we
recover the standard Brownian motion (i.e., a WP). Since we are able to generate a
WP then we can easily generate a Brownian motion:

1. Draw samples from a WP at 0 < t1 < t2 : : : < tn, i.e., wt1 ; : : : ;wtn .
2. Set btk D �tk C �wtk , for k D 1; : : : ; n.

Geometric Brownian Motion

A geometric Brownian motion [1, 17, 21] is defined by the stochastic differential
equation (SDE),

dXt D �Xtdt C �XtdWt; t 2 Œ0;T�;

where �, � are constants and Wt is a WP. In this case, the SDE can be solved
analytically, having the strong solution

Xt D X0 exp

��
� � �2

2

�
t C �Wt

�
; t 2 Œ0;T�:

Hence, the geometric Brownian motion can be easily simulated at 0 < t1 < t2 : : : <
tn, in this way:

1. Draw x0 from some prior pdf.
2. Draw n independent Gaussian samples vi, i.e., vi � N.0; 1/ for i D 1; : : : ; n.
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3. Set

xtk D x0 exp

 �
� � �2

2

�
tk C �

kX

iD1

p
ti � ti�1vi

!

; k D 1; : : : ; n:

Standard Brownian Bridge

The standard Brownian bridge, fXtg, [1, 17, 21] is a stochastic process defined in the
interval tă 2 Œ0; 1�. Specifically, the Brownian bridge is a WP with t 2 Œ0; 1� such
that X0 D X1 D 0. It possible to show that

Xt D .1 � t/W t
1�t
; t 2 Œ0; 1�;

and

Xt D Wt � tW1; t 2 Œ0; 1�;

where Wt is a Wiener process and Xt is a standard Brownian bridge. Figure 6.9
provides some examples of standard Brownian bridge path. Moreover, the standard
Brownian bridge can be seen as a GP with �.t/ D 0 and K.t; s/ D minft; sg � st.
Thus, given t0 D 0 < t1 < t2 : : : ; < tn D 1, it can be generated as a GP but we can
also use alternative sampling algorithms, as the procedure below:

1. Generate a WP at t0 D 0 < t1 < t2 : : : ; < tn D 1, i.e., wt0 ;wt1 : : : ;w1 D wtn .
2. Set xtk D wtk � tkw1, with k D 0; : : : ; n.

General Brownian Bridge

The Brownian bridge can be generalized considering a random process fXtg with
t 2 Œt0; tn� with the boundary conditions Xt0 D a and Xtn D b [21]. This process is

Fig. 6.9 Ten independent
realizations of a standard
Brownian bridge
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still a GP with mean function

�.t/ D a C .b � a/.t � t0/

.tn � t0/
;

and kernel

K.t; s/ D minft � t0; s � t0g � .s � t0/.t � t0/

.tn � t0/
:

This general version of the Brownian bridge is often used to interpolate a discrete
approximation of a WP. Namely, given Wt0 D a and Wtn D b, additional points of
the WP at t1; : : : ; tn�1 2 Œt0; tn� can be drawn using the Brownian bridge, following
the procedure below:

1. Set k D 0.
2. Draw vk � N .Œ0; 1�/.
3. Set

Wtk D Wtk�1 C tk � tk�1
tn � tk�1

.b � Wtk�1 /C
s
.tn � tk/.tk � tk�1/

tn � tk�1
vk:

4. If k < n � 1 then set k D k C 1 and repeat from step 2. Otherwise, stop.

6.9.5 Poisson Processes

Poisson processes [3, 19, 29] are often applied to model spatio-temporal distribu-
tions of random points. More specifically, it is a continuous-time process that counts
the number of events associated to a phenomenon and the time at which they occur.
Let us consider a collection of random vectors fx.i/g 2 D 
 R

n, with i D 1; 2; : : :

Moreover, we define a counting r.v. N.D/, that provides the number of random
points x.i/ within D. We assume that N.D/ satisfies the following properties:

• N.D/ � Poisson.�D/, for any subset D 
 R
n and �D > 0, i.e., with pdf

N.D/ � e��D�n
D

nŠ
; n D 0; 1; 2; : : :

Namely, in one realization we have N.D/ D n0 with n0 2 N.
• Given a collection of disjoint sets D1;D2; : : : ;Dm, the corresponding r.v.’s

N.D1/;N.D2/; : : : ;N.Dm/ are independent.

In the cases of interest, the mean �D can be expressed as

�D D
Z

D
�.x/dx; (6.67)
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where the function �.x/ is often called intensity or rate function. The two previous
properties induce an important feature of a Poisson process: given ND D m, the m
random vectors fx.i/gm

iD1 are distributed according to the density q.x/ D �.x/
�D

[3, 21],
i.e.,

x.i/ � q.x/ D 1

�D
�.x/; i D 1; 2; : : : ;m:

Hence, a Poisson process can be generated with the following two steps:

1. Generate a number of points, m0, according to a Poisson probability mass
function, i.e., m0 � e��D�m

D
mŠ , m D 0; 1; 2; : : :, where �D D R

D �.x/dx.

2. Then, draw x.i/ � 1
�D
�.x/, i D 1; 2; : : : ;m0. The collection fx.i/gm0

iD1 represents
the realization of the Poisson process.

Homogenous Poisson Processes

Assume that the subset D 
 R
n is finite. In this case, if we consider a constant rate

�.x/ D �, then

�D D
Z

D
�.x/dx D jDj�; (6.68)

and the density q.x/ D ID.x/ is a uniform pdf in D. In Fig. 6.10, we provide four
independent realizations with D D Œ0; 1� � Œ0; 1� (so that jDj D 1) and � D 50.
Since in this case �D D � D 50, the procedure used to generate the Poisson
process consists in: (a) drawing m0 � e���m

mŠ with m 2 N and then (b) drawing
x0 D Œx1; x2�> � U.D/.

One-Dimensional Poisson Processes

Following the notation used for a MJP, let us denote the points of the Poisson process
as s1; s2; : : : which, in this case, can indicate jumps or arrival times. We denote the
holding or inter-arrival times as ıi D si � si�1. Considering a homogeneous Poisson
process with constant � 2 R

C, these holding times are exponentially-distributed
[3, 21], i.e., ıi � �e��� [see Eq. (6.62)]. Therefore, the procedure to generate a
realization of a Poisson process in the interval Œ0;T� can be outlined as follows:

1. Set n D 0, s0 D 0.
2. Draw u0 � U.Œ0; 1�/ and set ınC1 D � 1

�
log.u0/.

3. Set snC1 D sn C ınC1.
4. If snC1 � T set n D n C 1 and go back to step 2. stop. Otherwise, if snC1 > T,

then return fs1; : : : ; sng as points of the Poisson process and stop.



242 6 Independent Sampling for Multivariate Densities

0 0.5 1

0

0.5

1
m=51

(a)

0 0.5 1

0

0.5

1
m=32

(b)

0 0.5 1

0

0.5

1
m=45

(c)

0 0.5 1

0

0.5

1
m=60

(d)

Fig. 6.10 Four independent realizations of a homogeneous Poisson process with � D 50 and
D D Œ0; 1� � Œ0; 1�. The number of points m0 is drawn according to pmf e���m

mŠ , with m 2 N, and
more specifically (a) m0 D 51 points; (b) m0 D 32 points; (c) m0 D 45 points; (d) m0 D 60 points

Furthermore, the counting r. v. Nt D N.Œ0; t�/, that represents the number of events si

within the interval Œ0; t�, forms a Poisson counting process: this is a MJP on X D N,
N0 D 0, qi;j D � for j D i C 1, i 2 N, and qi;j D 0 for j ¤ i C 1. If � is
time-dependent, i.e., �.t/, the Poisson process is non-homogeneous. In this case,
assuming a known upper bound

ƒ � �.t/; t 2 Œ0;T�;

the sampling procedure becomes:

1. Set n D 0, s0 D 0.
2. Draw u0 � U.Œ0; 1�/ and set ı D � 1

ƒ
log.u0/.

3. Set s0 D sn C ı.
4. If s0 > T then stop.
5. Otherwise if s0 � T:

(a) Draw v0 � U.Œ0; 1�/.
(b) If v0 � 1

ƒ
�.s0/, set snC1 D s0, n D n C 1 and repeat from step 2.

(c) Otherwise, if v0 > 1
ƒ
�.s0/, reject s0 and repeat from step 2.
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Fig. 6.11 (a) Example of rate function �.t/ and the upper bound ƒ � �.t/. A time instant s0 is
accepted if the point .s0; v0ƒ/with v0 � U.Œ0; 1�/ is below the graph of �.t/. (b) Three independent
realizations of a non-homogeneous Poisson process Nt with �.t/ D sin.t/2

The underlying idea of the algorithm above is to generate a bidimensional homoge-
nous Poisson process on Œ0;T�� Œ0;ƒ� and then accept only the points that lie below
the graph of �.t/ (see Fig. 6.11a). Indeed, if all the points were accepted, we could
obtain a homogenous Poisson process with rate ƒ. Instead, accepting the points
with probability 1

ƒ
�.t/ we get the corresponding non-homogenous process with rate

�.t/. Figure 6.11b illustrates three independent realizations of a non-homogeneous
Poisson process with �.t/ D sin.t/2.

6.9.6 Dirichlet Processes: “Rich Get Richer”

Dirichlet processes are stochastic processes whose realizations can be interpreted
as random discrete probability measures [7, 8, 11]. Hence, a Dirichlet process (DP)
can also be seen as a “distribution over distributions.” In the same way that the
Dirichlet distribution is the conjugate prior for categorial distributions, DPs are
used in non-parametric Bayesian inference as priors for (infinite) discrete models
[7, 11]. A DP is completely specified by a base density q0.x/ (which is the expected
value of the process, as clarified later) and a positive real number ˛ (usually named
concentration parameter) [7, 11]. Without loss of generality, we assume q0.x/ is a
continuous pdf.

The Chinese restaurant process [8] is a procedure that yields a finite approxima-
tion of a DP realization. It generates a sequence of r.v.’s fXkgk2N of the form

Xk D
(

Xi; i 2 f1; : : : ; k � 1g; with prob. 1
k�1C˛

X0 � q0.x/; with prob. ˛
k�1C˛ :

(6.69)

Drawing x1 � q0.x/, the equation above provides a recursive generation procedure
(for k � 2):
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1. Draw an index j0 2 f1; : : : ; kg according to the normalized weights

Nwi D 1

k � 1C ˛
; for i D 1; : : : ; k � 1; and Nwk D ˛

k � 1C ˛
:

2. If j0 D k, draw x0 � q0.x/ and set xk D x0.
3. Otherwise, i.e., j0 ¤ k, set xk D xj0 .
4. Set k D k C 1 and repeat from step 1.

Observe that, in general, at the kth iteration, several values xj are repeated. Let us
denote as m � k the number of unique values in the vector Œx1; : : : ; xk�

>. Further-
more, we indicate as Œx�

1 ; : : : ; x
�
m�

> the vector of unique values in Œx1; : : : ; xk�
>, and

with #x�
j the number of elements in Œx1; : : : ; xk�

> equal to x�
j , for j D 1; : : : ;m.

Then, the algorithm above can also be summarized as

xk D
(

x�
j ; with prob.

#x�
j

k�1C˛ ;
x0 � q0.x/; with prob. ˛

k�1C˛ :
(6.70)

Hence, DPs tend to repeat the previously generated samples in a “rich get richer”

fashion: the probability
#x�

j

k�1C˛ of repeating the value x�
j becomes greater as the

number #x�
j grows. Note also that the probability of adding a new value ˛

k�1C˛
decreases with k. Thus, a single (infinite) DP realization fxkg1

kD1 can also be
expressed as a random probability measure made up of a countably infinite number
of point masses, i.e.,

q.x/ D
1X

jD1
�jı.x � x�

j /; x�
j � q0.x/; (6.71)

where ı.x � x�
j / D 1 if x D x�

j , and ı.x � x�
j / D 0 otherwise. The weights can be

computed following the so-called stick-breaking procedure [7, 8, 11] as

�m D ˇ0
m

m�1Y

jD1
.1� ˇ0

j/; with ˇ0
j � ˛.1 � ˇ/˛�1: (6.72)

Namely, ˇ0
j are independent samples from a Beta distribution BETA.1; ˛/. Note that

ˇ0
j 2 .0; 1/ and

P1
jD1 �j D 1, by construction. The probability q.x/ in Eq. (6.71)

represents the stationary distribution of the stochastic process generated as (6.69).
Hence, another way to generate one representation of the random measure q.x/ is
the following procedure (starting with i D 1):

1. Draw x�
i � q0.x/,

2. Draw ˇ0
i � ˛.1 � ˇ/˛�1.

3. Set �i D ˇ0
i

Qi�1
jD1.1 � ˇ0

j/.
4. Set i D i C 1 and repeat from step 1.
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Fig. 6.12 Different finite DP realizations (103 samples) using a standard Gaussian base pdf
(q0.x/ D N .xI 0; 1/) and with a concentration parameter ˛ D 10 in figures (a) and (b), whereas
with ˛ D 100 in figures (c) and (d)

It can be shown that the expected value of a realization q.x/ in Eq. (6.71) coincides
with the base pdf q0.x/.

Observe also that the parameter ˛ defines how strong the concentration of q.x/
in Eq. (6.71) is: if ˛ D 0, the samples x�

j are all concentrated in the single value
x1 � q0.x/, whereas when we increase ˛, q.x/ tends to place significant mass on
more “atoms,” getting closer and closer to the base pdf q0.x/, i.e., q.x/ ! q0.x/ as
˛ ! C1. Figure 6.12 shows four independent finite DP realizations formed by
1000 samples with ˛ D 10 (Fig. 6.12a, b), and with ˛ D 100 (Fig. 6.12c, d). We
have considered q0.x/ D N .xI 0; 1/ as base density.

6.10 Summary

In this chapter, we have described different approaches for sampling from multivari-
ate distributions. First, we have recalled several techniques already introduced in
previous chapters, providing derivations and useful guidelines for their application
in higher dimensional spaces. For instance, in Sect. 6.3 we have recalled the
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rejection sampling and the ratio-of-uniforms techniques. In the same section,
various methods for representing statistical dependence have been introduced.

In Sect. 6.4, we have described sampling techniques for a large family of
distributions, namely, the class of elliptically contoured distributions. In Sect. 6.5,
we have extended the vertical density representation for the multidimensional
case. In Sect. 6.6, we have tackled the problem of generating samples uniformly
distributed in n-dimensional measurable sets embedded in R

n, e.g., points uniformly
distributed within a simplex or a hypersphere in R

n.
Generic transformations of random variables, converting m r.v’s into n r.v.’s

(m ¤ n) have been discussed in Sect. 6.7. Furthermore, a collection of sampling
algorithms for generating samples from specific multivariate distributions have been
provided in Sect. 6.8. Finally, we have described the generation of random vectors
with a specific dependence structure in Sect. 6.9. This includes sampling from some
of the most common classes of stochastic processes.
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Chapter 7
Asymptotically Independent Samplers

Abstract Markov Chain Monte Carlo (MCMC) methods are possibly the most
popular tools for random sampling nowadays. They generate “chains” (sequences)
of samples from a target distribution that can be selected with few constraints.
However, as highlighted by the term “chain,” the draws output by the MCMC
method are statistically dependent (and often highly correlated), which makes such
algorithms not directly comparable with the methods in the rest of this monograph.
In this chapter, we describe two families of non-standard MCMC techniques that
enjoy the property of producing samples that become asymptotically independent
as a parameter grows to infinity or the number of random draws in the algorithm
is increased. The methods of the first family are based on generating a pool
of candidate samples at each iteration of the chain, instead of only one as in
conventional procedures. The techniques in the second family rely on an adaptive,
non-parametric approximation of the target density, which is improved as new
samples are generated. We describe the general methodology for the two families,
and provide some specific algorithms as examples.

7.1 Introduction

Although in the previous chapters we have described numerous sampling techniques
for generating independent samples from different families of distributions, in many
applications there is a need of more general, off-the-shelf sampling techniques. The
class of Markov Chain Monte Carlo (MCMC) algorithms responds to this need:
they can be applied to sample from virtually any kind of target density, without any
previous theoretical study. The only requirement is to be able to evaluate, point-
wise, a function proportional to the target density. Hence the range of application is
vast.

The idea behind MCMC methods is to generate a Markov chain whose invariant
density is exactly the target pdf [4, 12, 13, 31]. Their main advantage is that
they can be easily applied to draw from virtually any kind of density. However,
since a Markov chain is constructed, the generated samples are correlated and the
variance of the resulting Monte Carlo estimators can be much higher than when
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using independent samples [4, 12, 23]. Furthermore, from a practical point of view,
this correlation also implies that the generated chain can remain trapped in a local
mode for an arbitrarily large numbers of iterations [4, 12, 31]. This slows down
the convergence of the chain towards the invariant target distribution. Generally,
MCMC methods require a sufficiently large number of iterations until the chain
attains its invariant distribution. This is usually referred to as a “burn-in” period
and the corresponding samples should be discarded [4, 12]. The problem is that,
in general, it is difficult to estimate the length of this “burn-in” period. One ideal
solution for reducing it is to minimize the correlation between samples.

This chapter is devoted to describe two classes of MCMC algorithms, formed by
techniques that can yield asymptotically independent samples at the expense of an
increase in their computational cost. In the first part of the chapter, we provide two
examples of MCMC methods based on proposing N different candidates at each
iteration. One sample among them is chosen according to some suitable weights,
and then it is tested in order to accept it as a new element of the chain or not. If N
grows the performance of this kind of techniques improves, becoming closer and
closer to the performance of an exact sampler. Clearly, the use of a larger number
of candidates requires more evaluations of the target pdf per iteration. Namely, the
increase of the number of tries N also implies an increase in the computational
cost. These techniques can be easily used for sampling from multivariate target
distributions (although, in this chapter, we use a scalar notation for the sake of
simplicity).

In the second part of the chapter, we describe another kind of MCMC technique
(for sampling from univariate target distributions), called Independent Doubly
Adaptive Rejection Metropolis Sampling (IA2RMS). In this case, we consider the
use of an adaptive non-parametric proposal pdf within a Metropolis-Hastings (MH)
algorithm [9, 27, 28]. The construction of the proposal is based on interpolation
procedures given a set of support points similar to the adaptive rejection samplers
described in Chap. 4. The number of support points increases with the iterations
in a suitable way, providing a better proposal pdf (closer to the target) but also
ensuring that the total number of points does not diverge. The proposal function
built via interpolation becomes closer to the target as more nodes are used and
hence the performance is improved (i.e., we have smaller variance in the Monte
Carlo estimators). However, at the same time, the computational effort required
for drawing samples from the proposal pdf grows. It is possible to show that the
algorithm produces an ergodic chain (despite the use of an adaptive proposal),
and the sequence of proposal pdfs converges to the target pdf, so that we obtain
asymptotically independent samples.

The chapter is structured as follows. We recall the basics of MH algorithms
together with some theoretical background in Sect. 7.2. Two MCMC schemes based
on multiple candidates are described in Sect. 7.3 and the IA2RMS is introduced in
Sect. 7.4. Finally, we conclude with a summary in Sect. 7.5.
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7.2 Metropolis-Hastings (MH) Methods

One of the most popular and widely applied MCMC algorithms, jointly with the
Gibbs sampler, is the Metropolis-Hastings (MH) method [4, 9, 12, 13, 27, 28, 31].
Essentially, MCMC algorithms (and so the MH method as well) generate a Markov
chain, x1; x2; : : : ; xt; : : :, whose stationary distribution is the target po, by using
samples drawn from a simpler proposal density � . In the following, we focus on
the MH method, hence the rest of the chapter is devoted to describe extensions of
this standard algorithm.

In order to apply the MH method, the only requirement is to be able to evaluate
point-wise a function proportional to the target, i.e., p.x/ / po.x/. In general, the
proposal density � can be dependent on the previous state of the chain and we
denote it as �.xjxt�1/. If xt�1 plays the role of a location parameter in �.xjxt�1/,
then this proposal pdf is often known as random walk proposal. A simpler choice
can also be employed, considering an independent proposal pdf �.x/, where the
adjective “independent” refers to the independence of the proposal pdf from the
previous state of the chain xt�1. Below, we describe the MH algorithm in detail.

7.2.1 The Algorithm

The MH algorithm is a simple, well-known, and widely used MCMC technique.
This chapter presents several extensions of the standard MH scheme. For this reason,
here we briefly recall the MH method and its main theoretical properties. Let us set
t D 1 and an arbitrary initial state for the chain, x0. Let us also consider a target
density, po.x/ / p.x/ with x 2 D � R,1 and a proposal density �.xjxt�1/, where
xt�1 denotes the state of the chain at the .t � 1/th iteration (t D 1; 2; : : :). The MH
algorithm consists of the following steps [4, 16, 31]:

1. Choose an initial state x0.
2. For t D 1; : : : ;T W

(a) Draw a sample z0 � �.xjxt�1/.
(b) Accept the new state, xt D z0, with probability

˛.xt�1; z0/ D min

�
1;

p.z0/�.xt�1jz0/
p.xt�1/�.z0jxt�1/

	
: (7.1)

Otherwise (i.e., with probability 1 � ˛t), set xt D xt�1.

3. Return the sequence of states fx1; x2; : : : ; xt; : : : ; xTg.

1For the sake of simplicity, in this chapter we consider only a scalar variable x, although both the
MH algorithm and most of the methodologies described here can be directly applied or extended
to higher dimensional spaces.
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It can be easily proved, under some mild regularity conditions, that the pdf of the
current state xt, when t grows, converges to the target density, po.x/ (recall that
p.x/ / po.x/). In the following, we show that the MH algorithm satisfies the so-
called detailed balance condition which is sufficient to guarantee that the output
chain is ergodic and has po as stationary distribution [4, 12, 31].

7.2.2 Invariant Distribution of the MH Algorithm

Let us denote as K.xtjxt�1/ the transition pdf (or kernel) that determines the move
from the state xt�1 to the state xt. A generic MCMC technique has po.x/ as an
invariant (or stationary) distribution [31] if its kernel satisfies

Z

D
K.xtjxt�1/po.xt�1/dxt�1 D po.xt/: (7.2)

A sufficient condition which implies the equation above is the detailed balance
condition [31],

po.xt�1/K.xtjxt�1/ D po.xt/K.xt�1jxt/: (7.3)

If the condition above is fulfilled, po is invariant w.r.t. K and the chain is also
reversible [4, 31]. In the following, we show that the MH technique yields a
reversible chain, with invariant pdf po.x/ / p.x/, by proving that it fulfills the
detailed balance condition. Note that we only have to consider the case xt ¤ xt�1,
since the case xt D xt�1 is trivial (the kernel is a delta in this case). For xt ¤ xt�1,
the kernel of the MH algorithm is

K.xtjxt�1/ D �.xtjxt�1/˛.xt�1; xt/; xt ¤ xt�1;

so that, recalling also that po.x/ / p.x/,

p.xt�1/K.xtjxt�1/ D p.xt�1/�.xtjxt�1/˛.xt�1; xt/;

D p.xt�1/�.xtjxt�1/min

�
1;

p.xt/�.xt�1jxt/

p.xt�1/�.xtjxt�1/

	
;

D min Œp.xt�1/�.xtjxt�1/; p.xt/�.xt�1jxt/� ;

(7.4)

where we have replaced the expression of ˛.xt�1; xt/ in Eq. (7.1). Finally, we can
observe that (7.4) is symmetric w.r.t. the variables xt�1 and xt (i.e., they can be inter-
changed without varying the expression), then we can write p.xt�1/K.xtjxt�1/ D
p.xt/K.xt�1jxt/, which is precisely the detailed balance condition.
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7.2.3 Acceptance Rate in MH-Type Methods

In every MH-type algorithm, a tentative sample is drawn from a proposal distri-
bution and then a test is carried out to determine whether the state of the chain
should “jump” to the new proposed value or not. This test depends on the acceptance
probability ˛. If the jumps are not accepted (with probability 1 � ˛), the chain
remains in the same state as before, exactly as in the standard MH method. In all
cases, the acceptance probability ˛ is designed in order to fulfill the detailed balance
condition.2

For general MH-type techniques, we can define the acceptance rate as

aR D
Z

D2

˛.x; z/�.zjx/po.x/dzdx (7.5)

� 1

T

TX

tD1
˛.xt�1; zt/; (7.6)

where the latter expression is a Monte Carlo approximation of the integral in
Eq. (7.5), xt�1 represents the state of an MH chain at the .t � 1/th iteration, and zt is
the proposed sample at the tth iteration,3 i.e., zt � �.zjxt�1/. Clearly, 0 � aR � 1.

Given a target po.x/ and choosing the class of the proposal functions to be used
as �� .xjxt�1/, where � represents a scale parameter, there exists an optimal scale
parameter � such that we obtain an optimal value a�

R. This optimal acceptance
rate a�

R minimizes the correlation among the samples within the chain. Unlike
in rejection samplers (see Chaps. 3–4), this optimal rate a�

R is unknown (it varies
depending on the specific problem) and in general differs from 1. Below, we list
different scenarios where we can obtain aR � 1:

1. When the proposal coincides with the target density, i.e., �.x/ / po.x/. This is
clearly an ideal case, where the MH method is converted into an exact sampler,
providing the best possible Monte Carlo performance, i.e., i.i.d. samples from the
target po.x/.

2. When the scale parameter � of the proposal pdf ��.xjxt�1/ is very small w.r.t.
the variance of the target. In this case the MH sampler tends to accept any
proposed candidate in order to explore as quickly as possible the state space. The
performance is often poor with high correlation among the generated samples.

3. A third scenario is found for certain advanced MCMC techniques (adaptive or
not) where, if certain parameters grow to infinity, then aR ! 1. In this case, the

2Note that this is no longer a sufficient condition to ensure the ergodicity for adaptive MCMC
techniques (where the proposal pdf is adapted online). However, all the techniques described in the
sequel satisfy the detailed balance condition, at each iteration t.
3Since the chain has po as invariant pdf, we have xt�1 � po.x/ after a “burn in” period. Namely,
after a certain number of iterations, we have .xt�1; zt/ � �.ztjxt�1/po.xt�1/.
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performance can be extremely good, providing virtually independent samples,
but with an increased computational cost. The key point in these methods is how
they handle the trade-off between performance and computational cost.

Other similar scenarios can also exist. In this chapter, we focus on the third case.
We will describe different techniques which can yield asymptotically independent
samples as the proposals approach the target pdf (at the expense of an increase in
computational cost).

7.3 Independent Generalized MH Methods with Multiple
Candidates

In this section, we describe two generalizations of the standard MH scheme, with
the common feature that they generate several candidates at each iteration [15].
In both techniques, the next state of the Markov chain is selected, according to
certain weights, from a set of candidates drawn from the proposal pdf. The main
advantage of this approach is that these methods can explore a larger portion of the
sample space, at the expense of a higher computational cost per iteration (as more
evaluations of the target are needed at each iteration).

7.3.1 Independent Multiple Try Metropolis Algorithms

In this section, we consider a multiple try Metropolis (MTM) scheme [3, 14, 17,
19, 20], which uses an independent proposal density, i.e., �.xtjxt�1/ D �.xt/,
independently from the previous state. Unlike an MH technique, in an MTM scheme
N different candidates are proposed, independently drawn from the proposal �.xt/.
According to the importance sampling weights4 [13, 20, 31], one proposed sample
is selected as the tentative next element of the chain. Then, the new state is accepted
with a suitable probability ˛, specifically chosen to produce an ergodic chain with
invariant pdf po.x/ / p.x/. Indeed, the kernel of the MTM method satisfies the
detailed balance condition (hence, the chain is also reversible). The algorithm
consists of the following steps:

1. Choose an initial state x0.
2. For t D 1; : : : ;T W

(a) Draw N candidates, x.1/; : : : ; x.N/, from �.x/.

4The analytic form of the weights is more general [20]. Indeed, different weights can be used
without jeopardizing the ergodicity of the chain. However, here we consider only importance
weights, for simplicity.
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(b) Select an index j� 2 f1; : : : ;Ng with probability proportional to the

(unnormalized) weights w.x.i// D p.x.i//
�.x.i//

, with i D 1; : : : ;N, and where
p.x/ / po.x/.

(c) Set v.i/ D x.i/ for all i D 1; : : : ; j� � 1; j� C 1; : : : ;N and v. j�/ D xt�1.
Namely, the vector v D Œv.1/; : : : ; v.N/�> differs with the vector x D
Œx.1/; : : : ; x.N/�> only in the j�th component.

(d) Set xt D x. j�/ with probability

˛N.xt�1; x. j�// D min

2

66
6
4
1;

NP

iD1
w.x.i//

NP

iD1
w.v.i//

3

77
7
5
; (7.7)

otherwise set xt D xt�1 (with probability 1 � ˛).

The underlying idea of the MTM approach is to improve the proposal procedure in
order to provide a better exploration of the state space. For instance, suitable larger
jumps are facilitated.

Clearly, the performance varies with the number N of candidates. In particular,
the correlation among the samples vanishes when greater values of N are used [14,
20]. On the one hand, as N grows, the computational cost also increases since we
have to evaluate the target pdf N times per iteration. On the other hand, as N grows,
we also have ˛N ! 1, i.e.,

lim
N!C1˛N.xt�1; x. j�// D 1; 8xt�1; x. j�/ 2 D: (7.8)

Indeed, note that ˛N in Eq. (7.7) can be rewritten as

˛N.xt�1; x. j�// D min

2

6
6
6
4
1;

NP

iD1
w.x.i//

NP

iD1
w.x.i// � w.x. j�//C w.xt�1/

3

7
7
7
5
: (7.9)

Since w.x/ � 0, for all x 2 D, and the numerator and denominator inside ˛N

differ only for one element (the remaining N � 1 elements coincide), we have
˛N ! 1 for N ! C1. This means that as N grows, the probability of accepting
a new state becomes greater. Indeed, the candidate x. j�/ is drawn from the set
fx.1/; : : : ; x.N/g, using an improved approximation of the target distribution that we

obtain by applying the importance weights w.x. j// D p.x. j//

�.x. j//
, j D 1; : : : ;N (an

exhaustive discussion of this issue can be found in the appendices of [26]). Hence,
as N grows, the selected try x. j�/ becomes a better candidate in the sense that it
becomes statistically “more similar” to a sample drawn directly from the target po

[26, Appendix C1]. As a consequence, ˛N approaches 1. For N D 1 the MTM



256 7 Asymptotically Independent Samplers

scheme becomes a standard MH algorithm with an independent proposal pdf � and
the standard acceptance function ˛ in Eq. (7.1).

7.3.2 Ensemble MCMC Method

The Ensemble MCMC (EnMCMC) algorithm is a method related to the MTM
scheme that has been independently proposed in [30]. A related technique can also
be found in [2], as discussed in [22]. The main idea behind EnMCMC is similar
to MTM, since different possible candidates are considered at each iteration. The
algorithms differ in the way one candidate is chosen and then tested. In the MTM
scheme, these two steps are clearly separated in Step 2b and Step 2d of the algorithm
in Sect. 7.3.1, respectively. In the EnMCMC method, these two steps are collapsed
into a single one. In this section, we consider a special case of EnMCMC using an
independent proposal pdf �.x/ (i.e., independent of the previous state of the chain).
The EnMCMC algorithm consists of the following steps:

1. Choose an initial state x0.
2. For t D 1; : : : ;T W

(a) Draw N candidates, x.1/; : : : ; x.N/, from �.x/.
(b) Set x.NC1/ D xt�1.
(c) Set xt D x. j�/ where j� 2 f1; : : : ;N C 1g is drawn according to the

normalized weights

˛N.xt�1; x. j// D w.x. j//

NC1P
iD1

w.x.i//

D w.x. j//

NP

iD1
w.x.i//C w.xt�1/

; j D 1; : : : ;N C 1;

and w.x.i// D p.x.i//
�.x.i//

are the importance weights associated to the sample x.i/.

Therefore, the tth state of the chain is drawn from the set

fx.1/; : : : ; x.N/; x.NC1/ D xt�1g;

according to the associate importance weights, where N elements are independently
drawn from � at each iteration and the last one is set equal to the previous state xt�1.

Let us observe that the EnMCMC algorithm extends the standard MH technique
with the Barker’s acceptance function [12, 13, 31]. Indeed, with N D 1, denoting
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x.1/ D x0 � �.x/, the acceptance function becomes

˛N.xt�1; x0/ D
p.x0/

�.x0/

p.x0/

�.x0/
C p.xt�1/

�.xt�1/

; (7.10)

D p.x0/�.xt�1/
p.x0/�.xt�1/C p.xt�1/�.x0/

(7.11)

that is exactly the classical Barker’s acceptance function [13, 31] for an independent
proposal pdf. It is possible to show that the detailed balance condition is also
satisfied by the EnMCMC algorithm described above (see also the appendix in [22]).
Note also that the probability of the chain remaining in the same state xt�1,

˛N.xt�1; xt�1/ D w.xt�1/
NP

iD1
w.x.i//C w.xt�1/

; (7.12)

goes to zero, i.e., ˛N.xt�1; xt�1/ ! 0, as N ! 1. Hence, when N ! 1, the
probability of accepting a new state approaches 1 and the correlation among the
generated states vanishes, since the approximation of the probability distribution
with density po is improved and the selected candidate becomes statistically closer
to a sample directly drawn from po (in the same fashion as in MTM). In fact, as
N ! 1 the approximation of the target distribution (via the importance weights)
converges, hence the EnMCMC algorithm becomes an independent sampler itself,
i.e., not only the correlation but also the statistical dependence of the chain is
(asymptotically) removed.

7.4 Independent Doubly Adaptive Rejection Metropolis
Sampling

In this section, we describe the Independent Doubly Adaptive Rejection Metropo-
lis Sampling (IA2RMS) algorithm [21, 23], which relies on a non-parametric
construction of the proposal pdf in the same fashion as the Adaptive Rejection Sam-
pling (ARS) and the Adaptive Rejection Metropolis Sampling (ARMS) methods,
described exhaustively in Chap. 4. The shape of the non-parametric proposal used
in IA2RMS is tailored to the specific target function and its construction relies on
a set of support points. The proposal can be shown to converge to the target as the
number of support points increases.

Before introducing the IA2RMS algorithm, we first revisit, briefly, the ARS
and ARMS methods. Let us also recall that we denote with N�t.x/ and �t.x/
the non-normalized and normalized adaptive proposal pdfs at the tth iteration,
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respectively, and with p.x/ and po.x/ the non-normalized and normalized target
densities, respectively.

7.4.1 Adaptive Rejection Sampling (ARS)

The ARS technique [5, 6], thoroughly described in Chap. 4, is a universal sampling
technique which produces independent and identically distributed samples from the
target. Hence, it is not an MCMC method, but the way in which the proposal pdf
is constructed is tightly related to the IA2RMS approach. Let us consider a set of
support points at the tth iteration, denoted as

St D fs1; s2; : : : ; smt g 
 D;

such that s1 < : : : < smt , and let us define V.x/ D � log p.x/ and wi.x/ as the
tangent line to V.x/ at si for i D 1; : : : ;mt. Then we can build the piecewise linear
(PWL) function,

Wt.x/ D maxfw1.x/; : : : ;wmt .x/g; x 2 D: (7.13)

and, in turn, select the proposal pdf, �t.x/ / N�t.x/ D exp.�Wt.x//, which consists
of exponential pieces in such a way that Wt.x/ � V.x/ (and thus N�t.x/ � p.x/) when
V.x/ is convex (i.e., p.x/ is log-concave).

Table 7.1 summarizes the ARS algorithm. Note that a new sample is added to the
support set whenever it is rejected in the test of Step 4 in the algorithm. The ARS
method has the important property that the sequence of proposals always converges
to the target pdf. If we denote the L1 distance between N�t.x/ and p.x/ as

D. N�t; p/ D
Z

D
j N�t.x/� p.x/jdx; (7.14)

Table 7.1 Adaptive rejection sampling (ARS) algorithm

Initialization:

1. Set t D 0 and n D 0. Choose an initial set S0 D fs1; : : : ; sm0g.

Iterations (while n < N):

2. Build a proposal, N�t.x/, given a set of support points St D fs1; : : : ; smt g, according to
Eq. (7.13).

3. Draw x0 � �t.x/ / N�t.x/ and u0 � U.Œ0; 1�/.
4. If u0 >

p.x0/

N�t.x0/
, then reject x0, update StC1 D St [ fx0g, mtC1 D mt C 1 and set

t D t C 1. Go back to step 2.

5. Otherwise, if u0 � p.x0/

N�t.x0/
, then accept x0, setting xn D x0.

6. Set StC1 D St, mtC1 D mt, t D t C 1, n D n C 1 and return to step 2.
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then the ARS method ensures that D. N�t; p/ D k N�t.x/ � p.x/k1 ! 0 when t ! 1.
This property leads to two important consequences:

1. The acceptance rate,

Oat D
Z

p.x/

N�t.x/
�t.x/dx D cv

ct
; (7.15)

tends to one as t ! 1 (we have denoted cv D R
D p.x/dx and ct D R

D N�t.x/dx).
Typically, Oat ! 1 very quickly and the ARS scheme becomes virtually a direct
i.i.d. sampler after a few iterations.

2. The computational cost remains bounded, as the probability of adding a new
support point, Pt D 1 � Oat D 1

ct
D. N�t; p/, tends to zero as t ! 1.

7.4.2 Adaptive Rejection Metropolis Sampling

Unfortunately, the ARS algorithm can only be applied to log-concave target pdfs
(i.e., when V.x/ D � log p.x/ is convex). Although several generalizations of
ARS have been proposed (cf. [8, 11, 18]), they are still only able to handle
specific classes of pdfs. An alternative option is provided by the adaptive rejection
Metropolis sampling (ARMS) technique, which combines the ARS method and
the MH algorithm [13, 31] (see Sect. 4.6.1). ARMS is summarized in Table 7.2.
It performs first a rejection test, and the rejected samples are used to improve the

Table 7.2 Adaptive rejection Metropolis sampling (ARMS) algorithm

Initialization:

1. Set n D 0 (this is the chain iteration) and t D 0 (this is the algorithm iteration).
Choose an initial state x0 and support set S0 D fs1; : : : ; sm0g.

Iterations (while n < N):

2. Build a proposal, N�t.x/, given a set of support points St D fs1; : : : ; smt g, according to
Eq. (7.16).

3. Draw x0 � �t.x/ / N�t.x/ and u0 � U.Œ0; 1�/.
4. If u0 >

p.x0/

N�t.x0/
, then reject x0, update StC1 D St [ fx0g, mtC1 D mt C 1 and set

t D t C 1. Go back to step 2.
5. Otherwise, draw u00 � U.Œ0; 1�/. If u00 � ˛, with

˛ D min

�
1;

p.x0/minŒp.xn/; N�t.xn/�

p.xn/minŒp.x0/; N�t.x0/�

	
;

then accept x0, setting xnC1 D x0. Otherwise, if u00 > ˛, then reject x0, setting xnC1 D
xn.

6. Set StC1 D St, mtC1 D mt, t D t C 1, n D n C 1 and return to step 2.
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proposal pdf, exactly as in ARS. However, unlike ARS, the samples accepted in the
rejection test go through an MH test. The MH step removes the main limitation of
ARS: requiring that N�t.x/ � p.x/ 8x 2 D. This allows ARMS to generate samples
from a wide variety of target pdfs, becoming virtually a universal sampler.

The choice of the proposal construction approach is critical for the good perfor-
mance of ARMS [7]. Consider again the set of support points St D fs1; s2; : : : ; smt g
and let us define the intervals I0 D .�1; s1�, Ij D .sj; sjC1� for j D 1; : : : ;mt � 1,
and Imt D .smt ;C1/. Moreover, let us denote as Lj;jC1.x/ the line passing through
the points .sj;V.sj// and .sjC1;V.sjC1// for j D 1; : : : ;mt �1. Then, a PWL function
Wt.x/ D � log Œ N�t.x/� is constructed in ARMS, of the form

Wt.x/ D

8
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
:

L1;2.x/; x 2 I0;
min

˚
L1;2.x/;L2;3.x/



; x 2 I1;

'j.x/; x 2 Ij;

min
˚
Lmt�2;mt�1;Lmt�1;mt .x/



; x 2 Imt�1;

Lmt�1;mt .x/; x 2 Imt ;

(7.16)

where

'j.x/ D min
˚
Lj;jC1.x/;max

˚
Lj�1;j.x/;LjC1;jC2.x/


 

;

and j D 2; : : : ;mt � 1. Hence, the proposal pdf, �t.x/ / N�t.x/ D exp.�Wt.x// is,
again, formed by exponential pieces.

It is important to remark that the number of pieces that form the proposal with
this construction is larger than mt in general, since the proposal can be formed by
two segments rather than one in some intervals. The computation of intersection
points among these two segments is also needed. More sophisticated approaches to
build Wt.x/ (e.g., using quadratic segments when possible [29]) have been proposed.
However, none of them solves the structural problem of ARMS that is briefly
described next.

7.4.3 Structural Limitations of ARMS

Unlike ARS, the ARMS algorithm cannot guarantee the convergence of the
sequence of proposals to the target, i.e., it cannot be claimed that D. N�t; p/ ! 0 as
t ! 1 in general. In ARMS, the proposal pdf is updated only when a sample x0 is
discarded in the rejection test, something that can only happen when N�t.x0/ > p.x0/.
On the other hand, when a sample is initially accepted in the rejection test, as it
always happens when N�t.x0/ � p.x0/, the proposal is never updated. Thus, the
satisfactory performance of ARMS depends on two issues:

(a) WtC1.x/ should be constructed in such a way that Wt.x/ � V.x/ (i.e., N�t.x/ �
p.x/) inside most of the domain of D, so that support points can be added almost
everywhere.
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(b) The addition of a support point inside an interval must entail a change of the
proposal pdf inside other neighboring intervals when building WtC1.x/. This
allows the proposal to improve inside regions where N�t.x/ < p.x/.

These two conditions lead to unnecessarily complex proposal construction schemes.
Furthermore, even if the proposal-building approach fulfills these two requirements
[as it happens for the procedure proposed in [7] and described by Eq. (7.16)], the
convergence of N�t.x/ to p.x/ almost everywhere cannot be guaranteed, due to the
fact that support points can never be added inside regions where N�t.x/ < p.x/.
Indeed, inside some region C 
 D, where N�t.x/ < p.x/, we might obtain a sequence
of proposals such that N�tC� .x/ D N�t.x/ for an arbitrarily large value of � , or even
8� 2 N, i.e., the proposal pdf might never change inside C 
 D. For further details,
see [23].

7.4.4 IA2RMS Algorithm

Our aim in this section is to devise a sequence of self-tuning proposals such that
N�t.x/ ! p.x/, when t ! 1, as fast as possible. Namely, we want to obtain an
algorithm having a performance as close as possible to the ARS technique (i.e.,
ensuring that D. N�t; p/ ! 0 as t ! 1 with a bounded computational cost),
and the same range of applicability as the ARMS method (i.e., being a universal
sampler, able to draw samples virtually from any target pdf). This can be achieved
by means of a simple strategy that attains these two goals. This scheme ensures
the convergence of the chain to the target distribution and keeps, at the same time,
the computational cost bounded. Furthermore, it enables us to completely decouple
the adaptation mechanism from the proposal construction, thus allowing simpler
alternatives for the latter, as shown in Sect. 7.4.6.

The algorithm is called independent doubly adaptive rejection Metropolis sam-
pling (IA2RMS) [21, 23] (for some generalization see also [25]), with the A2

emphasizing that we incorporate an additional adaptive step to improve the proposal
pdf, compared to ARMS. The IA2RMS algorithm is summarized in Table 7.3.
Initially, IA2RMS proceeds like ARMS, drawing a sample from the current proposal
(step 3), performing a rejection test and incorporating rejected samples to the
support set (step 4). Then, initially accepted samples go through an MH step to
determine whether they are finally accepted or not (step 5.1), as in ARMS. The
key improvement w.r.t. ARMS is the introduction of a new test (step 5.2), which
allows to add samples (in a controlled way) inside regions of the domain where
N�t.x/ < p.x/. Therefore, the IA2RMS algorithm guarantees a complete adaptation
of the proposal (i.e., D. N�t; p/ ! 0 as t ! 1) exactly as in ARS. As a consequence,
the correlation among samples is drastically reduced, quickly vanishing to zero, and
IA2RMS becomes an exact and direct sampler after some iterations (like ARS and
unlike ARMS).
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Table 7.3 IA2RMS algorithm

Initialization:

1. Set n D 0 (chain iteration) and t D 0 (algorithm iteration). Choose an initial state x0
and support set S0 D fs1; : : : ; sm0g.

Iterations (while n < N):

2. Build a proposal, N�t.x/, given the set St D fs1; : : : ; smt g, using a convenient procedure
(e.g. the ones described in [7, 29] or the simpler ones proposed in Sect. 7.4.6).

3. Draw x0 � �t.x/ / N�t.x/ and u0 � U.Œ0; 1�/.
4. If u0 >

p.x0/

N�t.x0/
, then reject x0, update StC1 D St [ fx0g, mtC1 D mt C 1, set t D t C 1,

and go back to step 2.

5. Otherwise, if u0 � p.x0/

N�t.x0/
, then:

5.1 Draw u00 � U.Œ0; 1�/. If u00 � ˛, with

˛ D min

�
1;

p.x0/minŒp.xn/; N�t.xn/�

p.xn/minŒp.x0/; N�t.x0/�

	
;

then accept x0, setting xnC1 D x0 and y D xn. Otherwise, if u00 > ˛, then reject
x0, setting xnC1 D xn and y D x0.

5.2 Draw u000 � U.Œ0; 1�/. If

u000 >
N�t.y/

p.y/
;

then set StC1 D St [ fyg and mtC1 D mt C 1. Otherwise, set StC1 D St and
mtC1 D mt.

5.3 Update t D t C 1, n D n C 1 and return to step 2.

Finally, let us remark that IA2RMS requires selecting a single set of parameters:
the initial set of support points, S0. After this choice, the algorithm proceeds
automatically without any further intervention required by the user. Regarding the
robustness of IA2RMS w.r.t. S0, the only requisite is choosing m0 � 2 initial
support points where the value of the target is different from zero, i.e., p.si/ > 0

for i D 1; : : : ;m0. Furthermore, if the effective support of the target (i.e., the
support containing most of its probability mass) is approximately known, then a
good initialization consists of selecting the two points delimiting this support and at
least another point inside this support. If the user desires to increase the robustness of
IA2RMS, a grid of initial points can be used. This choice speeds up the convergence
of the algorithm, but any random selection within the effective support of the target
ensures the convergence of IA2RMS.
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7.4.5 Convergence of the Chain and Computational Cost

The new control test is performed using an auxiliary variable, y, which is always
different from the new state, xnC1. This construction leads to a proposal, N�t.x/,
which is independent of the current state of the chain, xn. Hence, the convergence
of the Markov chain to the target density is ensured by Theorem 2 in [10] (see
also Theorem 8.2.2 in [12]).5 The conditions required to apply this theorem are
fulfilled as long as N�t.x/ ! p.x/ almost everywhere. This implies also that
�t.x/ ! po.x/ almost everywhere as t ! 1. The convergence of N�t.x/ to p.x/
almost everywhere also implies that the probability of adding new support points
goes to zero as t ! 1, thus keeping the computational cost bounded. Note that
there is no contradiction between the two previous statements. As more support
points are added, N�t.x/ becomes closer to the target, and this implies a decrease in
the probability of adding new support points. However, for t < 1 there is always a
non-null (albeit small for large values of t) probability of adding new support points
to improve the proposal and to make it closer to the target.

The coding and implementation complexity of IA2RMS is virtually identical to
ARMS, since all the quantities involved in the ratio of step 5.2 have been previously
calculated in steps 4 and 5.1. Thus, no additional evaluation of the proposal and
target pdfs is required. Given a specific construction procedure for N�t.x/, the total
number of support points increases w.r.t. ARMS, but it always remains within
the same order of magnitude, as can be shown numerically in [23]. Indeed, it
is important to emphasize that the number of support points does not diverge: it
remains bounded thanks to the two control tests, exactly as in ARS and ARMS,
since p.x/

N�t.x/
! 1 almost everywhere when t ! 1.

These properties entail that IA2RMS is drawing samples from the target distri-
bution within a finite number of iterations with a probability arbitrarily close to 1.

7.4.6 Examples of Proposal Constructions for IA2RMS

Since IA2RMS improves the adaptive structure of ARMS, simpler procedures can
be used to build the function Wt.x/, reducing the overall computational cost and the
coding effort [21, 23, 24]. A first possibility is to define Wt.x/ inside the ith interval
simply as the straight line Li;iC1.x/ going through .si;V.si// and .siC1;V.siC1// for
1 � i � mt � 1 (where V.x/ D � logŒp.x/�), and extending the straight lines
corresponding to I1 and Imt�1 towards ˙1 for the first and last intervals. Formally,

Wt.x/ D Li;iC1.x/; x 2 Ii D .si; siC1�; (7.17)

5Note that, even though the IA2RMS algorithm falls inside the broad category of independent
adaptive algorithms, its structure is inspired by [7], not by [10]. Indeed, no RS test is performed in
[10] and the construction of the proposals is completely different.
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for 1 � i � mt � 1, Wt.x/ D L1;2.x/ in I0 D .�1; s1� and Wt.x/ D Lmt�1;mt .x/ in
Imt D .smt ;1/. This is illustrated in Fig. 7.1a. Note that, although this procedure
looks similar to the one used in ARMS, as described by Eq. (7.16), it is actually
much simpler, since it does not require the calculation of intersection points.
Furthermore, an even simpler procedure to construct Wt.x/ can be devised from
Eq. (7.17): using a piecewise constant approximation with two straight lines inside
the first and last intervals. Formally,

Wt.x/ D min fV.si/;V.siC1/g ; x 2 Ii D .si; siC1�; (7.18)

for 1 � i � mt � 1, Wt.x/ D L1;2.x/ in I0 D .�1; s1� and Wt.x/ D Lmt�1;mt .x/
in Imt D .smt ;1/. This construction leads to the simplest possible proposal: a
collection of uniform pdfs with two exponential tails. Figure 7.1b shows an example
of the construction of the proposal using this approach.

Alternatively, we could build the proposal N�t.x/ directly, instead of constructing
Wt.x/ and setting N�t.x/ D exp.�Wt.x//. Following this approach, we could
apply the procedure described in [1] for adaptive trapezoidal Metropolis sampling
(ATRAMS), even though the structure of this algorithm is completely different
from IA2RMS. In this case, the proposal is constructed using straight lineseLi;iC1.x/
passing through .si; p.si// and .siC1; p.siC1//, i.e., directly in the domain of the target
pdf, p.x/. Formally,

N�t.x/ DeLi;iC1.x/; x 2 Ii D .si; siC1�; (7.19)

for 1 � i � mt � 1, and the tails are two exponential pieces. Figure 7.1c shows an
example of a proposal using this approach. Finally, note that Eq. (7.18) would be
identical in the pdf domain, since exp.max fV.si/;V.siC1/g/ D maxfp.si/; p.siC1/g.
Furthermore, applying Eq. (7.19) directly in the domain of the pdf could yield
invalid proposals with N�t.x/ < 0 inside some regions. Indeed, although many

x

(a)

x

(b)

x

(c)

Fig. 7.1 Examples of proposal constructions (V.x/ or p.x/ in dashed lines, Wt.x/ or �t.x/ in solid
lines), using five support points and different procedures: (a) the procedure described by Eq. (7.17)
in the log-domain; (b) the procedure described by Eq. (7.18) in the log-domain; (c) the procedure
described by Eq. (7.19) directly in the pdf’s domain
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other alternatives can be considered to build the proposal, they have to satisfy the
following basic properties:

(1) Valid proposals are always obtained, i.e., N�t.x/ D exp.�Wt.x// > 0 8x 2 D �
R and t 2 N

C.
(2) The sequence of proposals f N�tg1

tD0 tends to p.x/ (i.e., D. N�t; p/ ! 0) when new
support points are added.

(3) Samples from �t.x/ / N�t.x/ can be efficiently drawn.

The first condition is easily fulfilled in the log-domain, but restricts the use of some
constructions in the pdf domain. The second condition is for the performance of the
algorithm. The last condition is essential for practical purposes to obtain an efficient
algorithm. When the proposal is a piecewise function, as in the four constructions
proposed in this section, it demands the ability to compute the area below each piece
and to draw samples efficiently from each piece.

7.5 Summary

In this chapter, we have described different MCMC techniques that can yield asymp-
totically independent samples at the expense of an increase of the computational
cost. First, in Sect. 7.2, we have recalled some basic concepts related to MCMC
techniques. In the same section, we have also presented the standard Metropolis-
Hastings method. In Sect. 7.3, we have introduced two extensions of the MH
algorithm which generate a set of N candidates at each iteration. As the cardinality
N of this set grows, the correlation among the generated samples vanishes. Both
techniques can be easily used for sampling from multivariate target distributions.

In Sect. 7.4, we have described a different approach (for the purpose of sam-
pling from univariate distributions), introducing the Independent Doubly Adaptive
Rejection Metropolis Sampling (IA2RMS) algorithm. This method is based on a
non-parametric construction of the proposal pdf in the same fashion as the Adap-
tive Rejection Sampling (ARS) and the Adaptive Rejection Metropolis Sampling
(ARMS) methods, described exhaustively in Chap. 4. The shape of the proposal pdf
is adapted using interpolation procedures. As the proposal pdf becomes closer and
closer to the target, the correlation among the generated samples decreases.
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Chapter 8
Summary and Outlook

In this monograph, we have described the theory and practice of pseudo-random
variate generation. This is the core of Monte Carlo simulations and, hence, of
practical importance for a large number of applications in various fields, including
computational statistics, cryptography, computer modeling, games, etc. The focus
has been placed on independent and exact sampling methods, as opposed to
techniques that produce weighted (e.g., importance sampling) and/or correlated
populations (e.g., MCMC).

A number of relevant references can be found in the literature related to these
topics [1–4]. However, in this monograph, we have tried to present a comprehensive
and unified view of the field of independent random sampling. We have included
the most relevant classes of methods and emphasized their generality, as opposed
to the common trend of investigating algorithms “tailored” to specific problems.
Moreover, we have explored in depth the connections, relationships, and relative
merits of the different families of techniques, including systematic comparisons with
non-independent samplers, such as MCMC methods and importance samplers. Let
us also note that the majority of the contents presented in this monograph correspond
to research that has been published during the last decade, especially concerning the
various families of adaptive samplers.

Although our main interest when compiling this work was in the theory and
methods for independent random sampling, we have made an effort to select
application examples that enjoy a clear practical interest. In this respect, we expect
that the materials included in this book may be of interest to engineers working in
signal processing and statisticians interested in computational methods, but they
should also be useful to scientists working in the fields of biology, quantitative
finance or physics, where complex models that demand Monte Carlo computations
are needed. Matlab code for many of the algorithms and examples presented in this
monograph is available online in a companion website.

In the sequel we summarize the main results presented in each chapter and then
proceed to expose some promising lines of future research.
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In Chap. 2, we have described the so-called direct methods: a collection of
classical and modern techniques used for random sampling based on suitable
transformations and/or specific connections among random variables. All of them
assume the availability of a random source with known distribution, and all of
them are aimed at producing independent and identically distributed (i.i.d.) samples.
Many of them are intrinsically connected, and we have made a special effort to
highlight the relationships among different techniques or different categories of
methods. Indeed, we have noted that some techniques can be classified within
more than one category of algorithms and can be derived in different ways (e.g.,
the Box-Muller method). These different points of view have been explored and
the connections among categories of algorithms have been identified.

In Chaps. 3 and 4, we have presented and discussed the standard rejection
sampling (RS) and the adaptive rejection sampling (ARS) algorithms. The basic
RS approach, which is described in Chap. 3, was suggested by John von Neumann
as early as in 1946, although it was not published until 1951, and it is a classical
technique for universal sampling. In an accept/reject method, each sample is either
accepted or rejected by an adequate test of the ratio of the proposal and the target
pdfs, and it can be proved that accepted samples are actually distributed according to
the target density. The fundamental figure of merit of a rejection sampler is the mean
acceptance rate, i.e., the expected number of accepted samples over the total number
of proposed candidates. To attain good acceptance rates, adaptive rejection sampling
(ARS) schemes, which are the focus of Chap. 4, have been proposed in the literature.
These techniques aim at sequentially building proposal functions that become closer
and closer to the target pdf as the algorithm is iterated (i.e., as more samples are
drawn and more accept/reject tests are carried out). In these two chapters we have
presented several variants of standard RS and ARS schemes, together with various
recent developments, and included some original material. Again, the connections
and relationships among different methods have been highlighted.

In Chap. 5 we have focused on the ratio of uniforms (RoU) method, which is a
classical technique that combines both of the approaches of the previous chapters:
suitable transformations of the random variables of interest and rejection sampling.
Assume that p.x/ is the target density from which it is needed to generate samples.
The RoU technique aims at calculating a bounded region A such that points
drawn independently and uniformly inside A yield i.i.d. samples from p.x/ in a
very straightforward manner. Since uniform samples within A cannot be obtained
usually by direct methods, in practice the RoU approach is often combined with
the RS method. First, we have presented the standard RoU technique and some
extensions. Then we have focused on adaptive implementations of the RoU method,
including some original contributions. The connections of the RoU approach, both
with transformation methods and with the accept/reject class of techniques, are
highlighted and several application examples have also been provided.

In Chap. 6, we have reviewed some generic or tailored sampling methods to
draw samples from multidimensional distributions (i.e., to generate random vector-
samples). Most of them are only partially general, as they involve a number of
constraints on the target distributions. Others are more general, e.g., the multivariate
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extension of the RoU and ARS techniques discussed in Chaps. 5 and 4, but their
computational complexity can be prohibitive. Both theoretical constraints and
computational limitations have been explored, and illustrated by way of a few
examples.

In Chap. 7, we have introduced another family of samplers, widely used in the
literature: Markov chain Monte Carlo (MCMC) algorithms. MCMC methods [5, 6]
are Monte Carlo techniques that produce a Markov chain of correlated samples
whose stationary distribution is known. From the perspective of this work (the
generation of i.i.d. samples), they present two drawbacks: the correlation of the
generated samples and the fact that the samples only come exactly from the desired
distribution when the chain attains its stationary distribution, a status which is not
straightforward to determine. In Chap. 7, we have explored two special classes
of MCMC approaches that produce “asymptotically” independent samples. This
means that the MCMC sampler tends to become an exact sampler as the number of
iterations grows or as a parameter of the algorithm is increased, thus ensuring that
the correlation among samples quickly vanishes to zero and the samples generated
eventually become i.i.d.

Several extensions of the methods presented herein can be expected in the near
future. We expect to see significant developments in two particular directions,
namely

• the design of general methods for multidimensional random variables, possibly
tied to efficient computational methods for Monte Carlo simulation, and

• hybrid techniques, e.g., combinations of independent random samplers with
MCMC schemes (as explored in Chap. 7) but also with importance sampling (IS)
methods.

Indeed, we view the two areas of work above as complementary. On one hand,
it is hard to foresee efficient random sampling methods for large random vectors
unless some sort of hybrid algorithms (possibly “almost exact” or asymptotically
exact) are developed. On the other hand, many researchers in the computational
statistics community are seeking ways to improve the efficiency of MCMC and IS
methodologies in high dimensional estimation problems. The adaptive independent
samplers described here may possibly play a role as key building blocks to enhance
the performance of sophisticated MCMC and IS schemes in such high dimensional
settings.

Some relatively straightforward applications of adaptive independent samplers
should come about in the short term as these techniques become more popular and,
especially, more easily accessible—meaning that easy-to-use, off-the-shelf software
becomes available to practitioners working in various problems in engineering
(tracking, queueing, code design, etc.), computer science (machine learning and
artificial intelligence), or biology (synthetic biology, in silico experimentation, etc.)
where efficient sampling methods are often used.
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Appendix A
Acronyms and Abbreviations

a.k.a. Also known as
ARMS Adaptive Rejection Metropolis Sampling
ARoU Adaptive Ratio of Uniforms
ARS Adaptive Rejection Sampling
BR Band Rejection
CARS Cheap Adaptive Rejection Sampling
CCARS Concave Convex Adaptive Rejection Sampling
cdf Cumulative distribution function
DP Dirichlet Process
e.g. Exempli gratia (for instance).
E-IoD Extended Inverse-of-Density
EnMCMC Ensemble MCMC
GARS Generalized Adaptive Rejection Sampling
GBR Generalized Band Rejection
GP Gaussian Process
GRoU Generalized Ratio of Uniforms
IA2RMS Independent Doubly Adaptive Rejection Metropolis Sampling
i.e. Id est (that is)
i.i.d. Identically and identical distributed
IoD Inverse-of-Density
LCG Linear Congruential Generator
MCMC Markov Chain Monte Carlo
MH Metropolis-Hastings
MJP Markov Jump Process
MTM Multiple Try Metropolis
PARS Parsimonious Adaptive Rejection Sampling
pdf Probability density function
PMMLCG Prime Modulus Multiplicative Linear Congruential Generator
PRN Pseudo Random Number
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272 A Acronyms and Abbreviations

PRNG Pseudo Random Number Generator
RC Rejection Control
RoU Ratio of Uniforms
RS Rejection Sampling
r.v. Random variable
SDE Stochastic Differential Equation
TDR Transformed Density Rejections
TRM Transformed Rejection Method
VDR Vertical Density Representation
WP Wiener Process
w.r.t. With respect to



Appendix B
Notation

B.1 Vectors, Points, and Intervals

Scalar magnitudes are denoted using regular face letters, e.g., x, X, while vectors
are displayed as boldface letters, e.g., x, X. The scalar coordinates of a vector in n-
dimensional space are denoted with square brackets, e.g., x D Œx1; : : : ; xn�. Often, it
is more convenient to interpret x as a point in the space. When needed, we emphasize
this representation with the alternative notation x D .x1; : : : ; xn/.

We use a similar notation for the intervals in the real line. Specifically, for two
boundary values a � b, we denote Œa; b� D fx 2 R W a � x � bg for a closed
interval, while

.a; b� D fx 2 R W a < x � bg; Œa; b/ D fx 2 R W a � x < bg;

are half-open intervals and finally .a; b/ D fx 2 R W a < x < bg is an open interval.

B.2 Random Variables, Distributions and Densities

We indicate random variables (r.v.) with uppercase letters, e.g., X, X, while we use
lowercase letters to denote the corresponding realizations, e.g., x, x. Often, when we
draw a collection of samples of a r.v., we use the superscript notation x.i/, x.i/ where
i indicates the sample number.

We use lowercase letters, e.g., q.	/, to denote the probability density function
(pdf) of a random variable or vector, e.g., q.y/ is the pdf of Y. The conditional pdf
of X given Y D y is written p.xjy/. The cumulative distribution function (cdf) of a
r.v. X is written as FX.	/. The probability of an event, e.g., X � x, is indicated as
ProbfX � xg. In particular, FX.a/ D ProbfX � ag.
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The target pdf from which we wish to draw samples is denoted as po.x/ while
p.x/ is a function proportional to po.x/, i.e., p.x/ / po.x/.

The uniform distribution in an interval Œa; b� is written U.Œa; b�/. The Gaussian
distribution with mean � and variance �2 is denoted N .�; �2/. The symbol �
means either that a r.v. X or a sample x0 has the indicated distribution, e.g., X �
U.Œa; b�/ and x0 � N .�; �2/, or that a sample x0 has a particular pdf, e.g., x0 � po.x/.
Finally, N .xI�; �2/ represents a Gaussian pdf with mean � and variance �2.

B.3 Sets

Sets are denoted with calligraphic uppercase letters, e.g., R. The support of the r.v.
of interest X is denoted as D � R [i.e., D is the domain of the target pdf po.x/]. In
some cases, without loss of generality, we may consider D D R for convenience.
When needed, we denote with C the support of auxiliary variables.

Finally, we write the indicator function on the set S as IS.x/. It takes value 1 if
x 2 S and 0 otherwise, i.e.,

IS.x/ D
(
1 if x 2 S

0 if x … S
: (B.1)

B.4 Summary of Main Notation

• po.x/ W (normalized) target density.
• p.x/ W target function proportionally to po.x/ .
• �.x/: proposal density.
• x or X: scalar magnitudes are denoted using regular face letters.
• x or X: vectors are displayed as boldface letters.
• x D Œx1; : : : ; xn�: the scalar coordinates of a vector in n-dimensional space are

denoted with square brackets.
• x D .x1; : : : ; xn/: point in the space R

n.
• X: scalar random variable.
• x.i/: ith sample.
• q.	/: (lowercase letter) probability density function (pdf) of a random variable or

vector.
• p.xjy/: the conditional pdf of X given Y D y.
• FX.x/: cumulative density function of X.
• Probf	g: the probability of an event.
• U.Œa; b�/: uniform distribution between a and b.
• N .�; �2/: Gaussian distribution of mean � and variance �2.
• N .xI�; �2/: Gaussian density of mean � and variance �2.



Appendix C
Jones’ RoU Generalization

The analysis of the proof of GRoU in Sect. 5.2 suggests further generalizations of
the GRoU technique [1, 2]. Let us consider the generic transformation of variables
.v; u/ ! .x; z/,

(
x D t.v; u/

z D u
; (C.1)

where t.v; u/ is a transformation of u and v which is invertible with respect to the
variable v, i.e., such that we can write

v D f .x; u/: (C.2)

Therefore, the entire inverse transformation can be expressed as

(
v D f .x; z/

u D z
: (C.3)

Moreover, let us denote with r.x; z/ a function with the following three properties:

1. The first derivative of r.x; z/ w.r.t. z is equal to f .x; z/, i.e.,

f .x; z/ D @r.x; z/

@z
! r.x; z/ D

Z
f .x; z/dz; (C.4)

2. The first derivative of r.x; z/ w.r.t. x is zero when z D 0, i.e.,

�
@r.x; z/

@x

	

zD0
D 0: (C.5)

© Springer International Publishing AG, part of Springer Nature 2018
L. Martino et al., Independent Random Sampling Methods, Statistics
and Computing, https://doi.org/10.1007/978-3-319-72634-2

275

https://doi.org/10.1007/978-3-319-72634-2


276 C Jones’ RoU Generalization

3. We also need @r.x;z/
@x to be invertible in z.

With the definitions and assumptions above, we can enunciate the following
theorem.

Theorem C.1 Let u and v be uniformly distributed over

A D
n
.v; u/ W 0 � u � 	

�
t.v; u/

�o
: (C.6)

If 	.x/ is given such that

po.x/ /
�
@r.x; z/

@x

	

zD	.x/
; (C.7)

then x D t.v; u/ has density po.x/.

Proof The vector .v; u/ is distributed uniformly on A. Hence, the joint pdf q.x; z/
of the vector .x; z/ is

q.x; z/ D 1

jAj jJ
�1j for 0 � z � 	.x/; (C.8)

where x D t.v; u/ [see Eq. (C.1)] and jAj indicates the measure of A. With J�1, we
denote the Jacobian of the inverse transformation

J�1 D det

�
fx.x; z/ fz.x; z/
0 1

	
D fx.x; z/; (C.9)

where fx.x; z/ D @f .x;z/
@x . Therefore,

q.x; z/ D

8
<̂

:̂

1

jAj fx.x; z/ for 0 � z � 	.x/

0 otherwise:

(C.10)

Marginalizing the joint density q.x; z/ w.r.t. z, we obtain

Z C1

�1
q.x; z/dz D

Z 	.x/

0

1

jAj fx.x; z/dz D 1

jAj
Z 	.x/

0

@f .x; z/

@x
dz;

D 1

jAj
@

@x

Z 	.x/

0

f .x; z/dz D 1

jAj
�
@r.x; z/

@x

	zD	.x/

zD0

D 1

jAj
�
@r.x; z/

@x

	

zD	.x/„ ƒ‚ …
po.x/

� 1

jAj
�
@r.x; z/

@x

	

zD0„ ƒ‚ …
0

D po.x/:
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where we have interchanged the symbols of integral and derivative and we have
used the Eqs. (C.5)–(C.7). �

C.1 Possible Choices of t.v;u/

A possible family of functions t.v; u/, studied in [2], is

x D t.v; u/ D a�1
�
v � b.u/

Pg.u/
�
; (C.11)

where g.u/ and a.x/ are each differentiable and invertible functions, with g.0/ D 0.
Moreover, b.u/ is another generic function of u. In this case, we have the function

	.x/ D g�1
�

�cA
po.x/

Pa.x/
�

where c is a positive constant and Pa D da
dx . Hence, the region A is defined as

A D


.v; u/ W 0 � u � g�1

�
�cA

hpo

Pa
i�

a�1
�
v � b.u/

Pg.u/
��	�

(C.12)

where the functions po.x/ and Pa.x/ are both evaluated in x D a�1
�
v�b.u/

Pg.u/
�

.

The form of t.v; u/ in Eq. (C.11) is composed by a monotonic transformation a�1
combined with a generalized “location” function b.u/ and a “scale” term Pg.u/. Now,
for the sake of simplicity, we set cA D 1 and analyze some specific cases below.

1. a.x/ and g.u/ identity functions, and b.u/ zero: In this case

A D A0 D f.v; u/ W 0 � u � po.v/g

with x D u, i.e., we find the definition of the area below the target pdf po.x/. We
come back to the fundamental theorem of simulation in Sect. 2.4.3.

2. a.x/ and g.u/ identity functions: If b.u/ D k, where k is a constant, this case
corresponds only to a shift of the target pdf po.x/, with

A D f.v; u/ W 0 � u � po.v � k/g

and x D v � k. The density po.x/ could be “relocated” by an arbitrary function
b.u/,

A D f.v; u/ W 0 � u � po.v � b.u//g
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with x D v � b.u/. In [1], the authors study the special case where b.u/ D �u
and x D v C u. In [3, 4], the authors observe that this relocation can ease the
achievement of higher acceptance rates in an RS scheme using the RoU method.

3. a.x/ identity and b.u/ zero: This is the case in Sect. 5.4, i.e.,

A D Ag D


.v; u/ W 0 � u � g�1

�
p

�
v

Pg.u/
�	�

and x D v=Pg.u/.
4. a.x/ identity function: Starting from the generalization in Sect. 5.4 we add the

“relocation” function b.u/, i.e.,

A D


.v; u/ W 0 � u � g�1

�
p

�
v � b.u/

Pg.u/
�	�

;

and we have to take x D .v � b.u//=Pg.u/.
5. g.u/ identity function, b.u/ zero: In this case, the region is defined as

A D
n
.v; u/ W 0 � u �

hpo

Pa
i �

a�1 .u/
�o
;

D


.v; u/ W 0 � u � po.a�1.v//

Pa.a�1.v//

�
;

and x D a�1.v/ is then distributed as po.x/. The set A can be rewritten as

A D


.v; u/ W 0 � u � po.a

�1.v//
da�1

dv

�
;

where we can notice that it is that case of a monotonic transformation a.x/
of the variable X � po.x/. Indeed, the r.v. V D a.X/ has density q.v/ D
da�1

dv po.a�1.v//. Therefore, in this case the RoU method is equivalent to the r.v.
transformation V D a.X/: we first generate a sample v0 � q.v/ and then take
x0 D a�1.v0/.
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Appendix D
Polar Transformation

Given a hyper-sphereB� of radius � in R
n, a point x D Œx1; : : : ; xn�

> on the boundary
of this hyper-sphere, we can be represented using � and n � 1 angles 
1; : : : ; 
n�1,
namely

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂<

ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
:̂

x1 D � sin 
1 sin 
2 : : : sin 
n�2 sin 
n�1;
x2 D � sin 
1 sin 
2 : : : sin 
n�2 cos 
n�1;
x3 D � sin 
1 sin 
2 : : : sin 
n�3 cos 
n�2;

:::

xn�2 D � sin 
1 sin 
2 cos 
3;
xn�1 D � sin 
1 cos 
2;
xn D � cos 
1:

(D.1)

As we have seen in Chap. 2 (and we recall in Sect. 6.7), in this case we have to com-
pute the determinant of the Jacobian matrix of the corresponding transformation,
i.e.,

jJj D �n�1 .sin 
1/
n�2 .sin 
2/

n�3 	 	 	 sin 
n�2:

Thus, the choice of a “direction” uniformly in R
n is equivalent to generating random

angles 
1; : : : ; 
n�1 according to

h.
1; : : : ; 
n�1/ D
nY

iD1
hi.
i/ / .sin 
1/

n�2 .sin 
2/
n�3 	 	 	 sin 
n�2; (D.2)

with 0 < 
i < � , i D 1; : : : ; n � 2 and 0 < 
n�1 < 2� . Then, we can observe that

‚n�1 � U.Œ0; 2��/; 0 < 
n�1 < 2�;
‚i � hi.
i/ / .sin 
i/

n�1�i ; 0 < 
i < �; i D 1; : : : ; n � 2:
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280 D Polar Transformation

Therefore, the previous sampling method for drawing uniform points inside the
hyper-sphere Br (i.e., with radius r) could be rewritten as following:

1. Draw �0 � q.�/ / �n�1 with � 2 .0; r�.
2. Draw 
 0

i � hi.
i/ / .sin 
i/
n�1�i, with 0 < 
i < � for i D 1; : : : ; n � 2, and


 0
n�1 � U.Œ0; 2��/:

3. Set x0
i , i D 1; : : : ; n, as in Eq. (D.1).
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