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Preface

There are already many books on longitudinal data analysis. This book is unique
among them in that it specializes in autoregressive linear mixed effects models that
we proposed. This is a new analytical approach for dynamic data repeatedly
measured from multiple subjects over time. Random effects account for differences
across subjects. Autoregression in the response itself is often used in time series
analysis. In longitudinal data analysis, a static mixed effects model is changed into a
dynamic one by the introduction of the autoregression term. It provides one of the
simplest models that take into account the past covariate history without approxi-
mation and discrepancy between marginal and subject specific interpretation.
Response levels in this model gradually move toward an asymptote or equilibrium
which depends on fixed effects and random effects, and this is an intuitive summary
measure. Linear mixed effects models have good properties but are not always
satisfactory to express those nonlinear time trends. Little is known about what
autoregressive linear mixed effects models represents when used in longitudinal
data analysis.

Chapter 1 introduces longitudinal data, linear mixed effects models, and mar-
ginal models before the main theme. Prior knowledge of regression analysis and
matrix calculation is desirable. Chapter 2 introduces autoregressive linear mixed
effects models, the main theme of this book. Chapter 3 presents two case studies of
actual data analysis about the topics of response-dependent dropouts and
response-dependent dose modifications. Chapter 4 describes the bivariate exten-
sion, along with an example of actual data analysis. Chapter 5 explains the rela-
tionships with nonlinear mixed effects models, growth curves, and differential
equations. Chapter 6 describes state space representation as an advanced topic for
interested readers.

Our experiences with data analysis are mainly through experimental studies,
such as randomized clinical trials and clinical studies with dose modifications. Here,
we focus on the mechanistic aspects of autoregressive linear mixed effects models.
Dynamic panel data analysis in economics is closely related to autoregressive linear
mixed effects models; however, it is used in observational studies and is not cov-
ered in this book.
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Chapter 1
Longitudinal Data and Linear Mixed
Effects Models

Abstract Longitudinal data are measurements or observations taken from multiple
subjects repeatedly over time. The main theme of this book is to describe autore-
gressive linear mixed effects models for longitudinal data analysis. This model is an
extension of linear mixed effects models and autoregressive models. This chapter
introduces longitudinal data and linear mixed effects models before the main theme
in the following chapters. Linear mixed effects models are popularly used for the
analysis of longitudinal data of a continuous response variable. They are an exten-
sion of linear models by including random effects and variance covariance structures
for random errors. Marginal models, which do not include random effects, are also
introduced in the same framework. This chapter explains examples of popular lin-
ear mixed effects models and marginal models: means at each time point with a
random intercept, means at each time point with an unstructured variance covari-
ance, and linear time trend models with a random intercept and a random slope.
The corresponding examples of group comparisons are also provided. This chapter
also discusses the details of mean structures and variance covariance structures and
provides estimation methods based onmaximum likelihood and restricted maximum
likelihood.

Keywords Linear mixed effects model · Longitudinal · Maximum likelihood
Random effect · Unbalanced data

1.1 Longitudinal Data

Longitudinal data are measurements or observations taken from multiple subjects
repeatedly over time. If multiple response variables are measured, the data are called
multivariate longitudinal data. There are several interests to perform longitudinal data
analysis, including changes in the response variable over time, differences in changes
by factor or covariate, and relationships between changes in multiple response vari-
ables. Because measurements from the same subjects are not independent, analytical
methods that take account of the correlation or variance covariance between repeated

© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2018
I. Funatogawa and T. Funatogawa, Longitudinal Data Analysis, JSS Research Series
in Statistics, https://doi.org/10.1007/978-981-10-0077-5_1
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2 1 Longitudinal Data and Linear Mixed Effects Models

measures have been developed. For a continuous response variable, linear mixed
effects models are often applied, and this model treats differences across subjects
as random effects. In the 1980s, seminal papers about linear mixed effects mod-
els were published, such as that by Laird and Ware (1982). Since the 1990s, books
about longitudinal data analysis have been published and statistical software has been
developed. This book discusses the analysis of continuous response variables.

Analytical methods differ depending on the study designs. This can be illustrated
by three study designs with 100 blood pressure measurements. If the data were
measured once from 100 subjects, analytical methods such as t test or regression
analysis are used. If the data were measured 100 times from one subject, analytical
methods for time series data are used. If the data were repeatedly measured five times
from 20 subjects, analytical methods for longitudinal data are used.

Figure 1.1a shows an example of longitudinal data which are hypothetical data
from a randomized controlled trial (RCT). The solid and dotted lines indicate the
changes in a response variable for each subject in two groups. In an RCT, groups
such as a new treatment and placebo are randomly assigned to each subject. Then the
distributions of the response variable at the randomization, baseline, are expected
to be the same between the two groups. We compare the response variable after
the randomization. The randomization guarantees comparability between groups, or
internal validity. Especially, it is important that the distributions of unknown con-
founders will be the same between groups. This is a strong point of RCTs compared
with observational studies. In observational studies, adjustment of confounding is
important and we cannot adjust unknown confounders. This book covers RCTs and
experimental studies rather than observational studies.

Figure 1.1b shows an example of time series data. Time series data usually have
a large number of time points. Typical longitudinal data have a large or moderate
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1.1 Longitudinal Data 3

number of subjects but a limited number of time points. There are also various cases
of longitudinal data such as data with a large number of subjects and a large number
of time points or data with a limited number of subjects and a large number of time
points.

Since the 1990s, many books on longitudinal data analysis have been published.
These include Diggle et al. (1994, 1st edn.), Diggle et al. (2002, 2nd edn.), Dwyer
et al. (1992), Fitzmaurice et al. (2004, 1st edn.; 2011, 2nd edn.), Fitzmaurice et al.
(2009), Gregoire et al. (1997), Hand andCrowder (1996), Jones (1993), Laird (2004),
Littell et al. (1996, 1st edn.), Littell et al. (2006, 2nd edn.), Tango (2017), Verbeke and
Molenberghs (1997, 2000), Vonesh (2012), Wu and Zhang (2006), and Zimmerman
andNúñez-Antón (2010). The feature of this book is to discussmainly autoregressive
linear mixed effects models which are rarely introduced in other books.

Section 1.2 introduces linear mixed effects models and marginal models.
Section 1.3 provides specific examples of these models. Section 1.4 shows mean
structures and variance covariance structures generally used. Section 1.5 discusses
the inference based on maximum likelihood.

1.2 Linear Mixed Effects Models

Linear mixed effects models are used for the analysis of longitudinal data of contin-
uous response variables. Let Yi � (

Yi1,Yi2, · · · ,Yini
)T

be the vector of the response
corresponding to the ith (i � 1, · · · ,N ) subject measured from 1 to ni occasions. Yij
is the jth measurement. AT denotes the transpose of A. Linear mixed effects models
are expressed by

Yi � Xiβ + Zibi + εi, (1.2.1)

where β is a p× 1 vector of unknown fixed effects parameters, Xi is a known ni × p
design matrix for fixed effects, bi is a q × 1 vector of unknown random effects
parameters, Zi is a known ni × q design matrix for random effects, and εi is a ni × 1
vector of random errors, εi � (

εi1, εi2, · · · , εini
)T
. It is assumed that bi and εi are

both independent across subjects and independently follow a multivariate normal
distribution with the mean zero vector, 0, and variance covariance matrices G and
Ri, respectively. The distributions are expressed by

bi ∼ MVN(0,G), (1.2.2)

εi ∼ MVN(0,Ri), (1.2.3)

whereG is a q×q square matrix andRi is an ni×ni square matrix. In these matrices,
the diagonal elements are variance and the non-diagonal elements are covariance.
These matrices include unknown parameters and are assumed to be some structures.
Responses from different subjects are assumed to be independent.
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Following the above assumptions, the marginal distribution ofYi is a multivariate
normal distribution. The mean vector is the marginal expectation E(Yi) � Xiβ, and
the variance covariance matrix Vi � Var(Yi) is

Vi � Var(Zibi + εi) � ZiGZT
i + Ri. (1.2.4)

The distribution is expressed by

Yi ∼ MVN(Xiβ,Vi), (1.2.5)

where Vi is an ni × ni square matrix. The E(Yi) and the expectation for a typical
subject with bi � 0, E(Yi|bi � 0), are the same.

Correlations and unequal variances across responses are now allowed. Inclusion
of random effects and structures of a variance covariance matrix are extensions of
linear models. In linear models, the variance covariance matrix is usually assumed
to be an independent structure with equal variances.

The term “mixed effects” means including both fixed effects and random effects.
However, the models that assume some particular structures on Ri without random
effects, Vi � Ri instead of Vi � ZiGZT

i + Ri, are also discussed in the framework
of linear mixed effects models. The models are

Yi � Xiβ + εi, (1.2.6)

where εi ∼ MVN(0,Ri), E(Yi) � Xiβ, and Var(Yi) � Ri. They are called marginal
models. In marginal models, we model the marginal expectation of the response,
E(Yi), marginal variance, and correlation. We can define a multivariate normal dis-
tribution by the mean structure as the first moment and variance covariance structure
as the second moment. Linear mixed effects models can be transformed to marginal
models as (1.2.5). For discrete responses, such as binary and count data, however,
higher moments are required to define likelihood, and the generalized estimating
equation (GEE) is often used for marginal models. Furthermore, the interpretation
of fixed effects parameters β differs between mixed effects models and marginal
models.

1.3 Examples of Linear Mixed Effects Models

This section provides several specific linear mixed effects models andmarginal mod-
els, which are simple and widely used. These include means at each time point with
a random intercept, means at each time point with an unstructured (UN) variance
covariance, and linear time trendmodels with a random intercept and a random slope.
Examples of these models for group comparisons are also provided.
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1.3.1 Means at Each Time Point with Random Intercept

In clinical trials and experimental studies, observation time points are often designed
to be the same across subjects. Time intervals between observations are not necessary
to be equal. If the observation time points are the same, we use the following model
with means at each time point with a random intercept,

⎧
⎪⎪⎨

⎪⎪⎩

Yij � μj + bi + εij

bi ∼ N
(
0, σ 2

G

)

εij ∼ N
(
0, σ 2

ε

)
. (1.3.1)

Here, μj is the mean at the jth (j � 1, · · · , J ) time point. bi is a random intercept for
the ith subject. It is assumed that bi and a random error, εij, independently follow a
normal distribution with the mean zero and the variances σ 2

G and σ 2
ε , respectively.

In the case of four time points, the model for the response, Yi, and the variance
covariance matrix of the response vector, Vi � Var(Yi), are

Yi �

⎛

⎜⎜⎜
⎝

Yi1
Yi2
Yi3
Yi4

⎞

⎟⎟⎟
⎠

�

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠

⎛

⎜⎜⎜
⎝

μ1

μ2

μ3

μ4

⎞

⎟⎟⎟
⎠

+

⎛

⎜⎜
⎝

1
1
1
1

⎞

⎟⎟
⎠bi +

⎛

⎜⎜
⎝

εi1

εi2

εi3

εi4

⎞

⎟⎟
⎠,

Vi � ZiGZT
i + Ri

� ZiGZT
i + σ 2

ε Ini

�

⎛

⎜⎜
⎝

1
1
1
1

⎞

⎟⎟
⎠σ 2

G

(
1 1 1 1

)
+ σ 2

ε

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠

�

⎛

⎜⎜⎜⎜⎜
⎝

σ 2
G σ 2

G σ 2
G σ 2

G

σ 2
G σ 2

G σ 2
G σ 2

G

σ 2
G σ 2

G σ 2
G σ 2

G

σ 2
G σ 2

G σ 2
G σ 2

G

⎞

⎟⎟⎟⎟⎟
⎠

+ σ 2
ε

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠

�

⎛

⎜
⎜⎜⎜⎜
⎝

σ 2
G + σ 2

ε σ 2
G σ 2

G σ 2
G

σ 2
G σ 2

G + σ 2
ε σ 2

G σ 2
G

σ 2
G σ 2

G σ 2
G + σ 2

ε σ 2
G

σ 2
G σ 2

G σ 2
G σ 2

G + σ 2
ε

⎞

⎟
⎟⎟⎟⎟
⎠

.
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(a) (b)

Fig. 1.2 aData for selected subjects from schizophrenia trial data. bMeans at each time point with
a random intercept. Estimated means (thick line with closed circles) and predicted values for each
subject (thin lines)

Here, Ia denotes an a×a identity matrix. The variance covariance structure, ZiGZT
i ,

induced by a random intercept, is a square matrix with all the same elements, σ 2
G.

The variance covariance matrix of the random error vector, σ 2
ε Ini , is added on to

this matrix for Vi � Var(Yi). The diagonal elements of Vi are σ 2
G + σ 2

ε and the
non-diagonal elements are σ 2

G. σ 2
G is called between-subject variance, inter-subject

variance, or inter-individual variance. σ 2
ε is called within-subject variance, intra-

subject variance, or intra-individual variance.
Figure 1.2a shows longitudinal data for selected subjects from schizophrenia trial

data in Diggle et al. (2002). We analyze the data in Chap. 3. Figure 1.2b shows an
example using the model (1.3.1). The thick line with closed circles indicates the
estimated means at each time point, μ̂j. The thin lines show the predicted values,
μ̂j + b̂i, for each subject. The individual lines are parallel because a random intercept
means the assumption of mutual parallelism across subjects over time.

The above model, Yij � μj + bi + εij, is also expressed in another design matrix
with J −1 dummy variables, x1j, · · · , xJ−1j. Let xkj � 1 if k � j−1 and 0 otherwise.
The model is

Yij � β0 + β1x1j + · · · + βJ−1xJ−1j + bi + εij. (1.3.2)

In the case of four time points, the model is
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⎛

⎜⎜⎜
⎝

Yi1
Yi2
Yi3
Yi4

⎞

⎟⎟⎟
⎠

�

⎛

⎜⎜
⎝

1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

⎞

⎟⎟
⎠

⎛

⎜⎜⎜
⎝

β0

β1

β2

β3

⎞

⎟⎟⎟
⎠

+

⎛

⎜⎜
⎝

1
1
1
1

⎞

⎟⎟
⎠bi +

⎛

⎜⎜
⎝

εi1

εi2

εi3

εi4

⎞

⎟⎟
⎠.

Data with the same observation time points without missing values are called
balanced data. Data with different observation time points or data with missing
values are called unbalanced data. Even if there are missing values, we can analyze
all data without removing subjects with missing data. We discuss missing data in
Sect. 3.2.

1.3.2 Group Comparison Based on Means at Each Time
Point with Random Intercept

Here, we consider group comparisons based on the means at each time point with
a random intercept. When there are two groups (A and B), let xgi be an indicator
variable for the group, with xgi � 0 in group A and xgi � 1 in group B. The linear
mixed effects model with the main effects of time and the group with a random
intercept is

⎧
⎪⎪⎨

⎪⎪⎩

Yij � β0 + β1x1j + · · · + βJ−1xJ−1j + βgxgi + bi + εij

bi ∼ N
(
0, σ 2

G

)

εij ∼ N
(
0, σ 2

ε

)
. (1.3.3)

In the case of four time points, this model is

⎛

⎜⎜⎜
⎝

Yi1
Yi2
Yi3
Yi4

⎞

⎟⎟⎟
⎠

�

⎛

⎜⎜⎜⎜
⎝

1 x11 x21 x31 xgi

1 x12 x22 x32 xgi

1 x13 x23 x33 xgi

1 x14 x24 x34 xgi

⎞

⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜
⎝

β0

β1

β2

β3

βg

⎞

⎟⎟⎟⎟⎟⎟
⎠

+

⎛

⎜⎜
⎝

1
1
1
1

⎞

⎟⎟
⎠bi +

⎛

⎜⎜
⎝

εi1

εi2

εi3

εi4

⎞

⎟⎟
⎠.

The design matrices of the fixed effects for groups A and B are

Xi �

⎛

⎜⎜
⎝

1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0

⎞

⎟⎟
⎠ andXi �

⎛

⎜⎜
⎝

1 0 0 0 1
1 1 0 0 1
1 0 1 0 1
1 0 0 1 1

⎞

⎟⎟
⎠.
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In this case, βg shows the differences between the two groups. The model assumes
that the differences are the same over time. The model may be inadequate in RCTs
in Sect. 1.1 and Fig. 1.1a, because the distributions of baseline at j � 1 are expected
to be the same between the groups but the distributions at j > 1 will differ.

When the interaction between time and the group is added because the differences
between groups are not constant over time, the model becomes

Yij � β0 + β1x1j + · · · + βJ−1xJ−1j +
(
βg0 + βg1x1j + · · · + βgJ−1xJ−1j

)
xgi + bi + εij.

(1.3.4)

In the case of four time points, Xi for groups A and B and β in the model are

Xi �

⎛

⎜⎜
⎝

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0

⎞

⎟⎟
⎠ andXi �

⎛

⎜⎜
⎝

1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0 1 1 0 0 1

⎞

⎟⎟
⎠,

β � (
β0, β1, β2, β3, βg0, βg1, βg2, βg3

)T
.

In this model, time courses are not assumed to be parallel between the groups.
The expected values at the last time point for groups A and B are

E
(
Yi4|xgi � 0

) � β0 + β3,

E
(
Yi4|xgi � 1

) � β0 + β3 + βg0 + βg3.

The expected difference at the last time point between groups A and B is

E
(
Yi4|xgi � 1

) − E
(
Yi4|xgi � 0

) � βg0 + βg3.

To estimate the difference, we use the following contrast vector, L,

L � (
0 0 0 0 1 0 0 1

)
. (1.3.5)

Then, βg0 + βg3 is

Lβ � (
0 0 0 0 1 0 0 1

)(
β0, β1, β2, β3, βg0, βg1, βg2, βg3

)T

� βg0 + βg3. (1.3.6)

In Sect. 1.5.5, we discuss the estimation and test using contrasts.
Because the distributions of baseline at j � 1 are expected to be the same, we can

omit βg0 from (1.3.4) in RCTs. The model is

Yij � β0 + β1x1j + · · · + βJ−1xJ−1j +
(
βg1x1j + · · · + βgJ−1xJ−1j

)
xgi + bi + εij.

(1.3.7)

In the case of four time points, Xi for groups A and B and β are
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Xi �

⎛

⎜⎜
⎝

1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0

⎞

⎟⎟
⎠andXi �

⎛

⎜⎜
⎝

1 0 0 0 0 0 0
1 1 0 0 1 0 0
1 0 1 0 0 1 0
1 0 0 1 0 0 1

⎞

⎟⎟
⎠,

β � (
β0, β1, β2, β3, βg1, βg2, βg3

)T
.

The difference at the last time point between groups A and B is βg3.

1.3.3 Means at Each Time Point with Unstructured Variance
Covariance

When there are missing data, the correct specification of the model, including not
only the mean structure but also the variance covariance structure, is important, as
described in more detail in Sect. 3.2. In the previous sections, we introduced means
at each time point with a random intercept. However, the variance covariance struc-
ture expressed by the random intercept assumes a constant variance and a constant
covariance. These assumptions are too restrictive. Means at each time point with an
unstructured (UN) variance covariance are often used recently, because this model
has no constraints on the parameters of the mean structure and variance and covari-
ance components. The model is

{
Yij � μj + εij

εi ∼ MVN(0,RUN i)
. (1.3.8)

Here,μj is the mean at the jth (j � 1, · · · , J ) time point, andRUN i is the UN forRi. It
is assumed that a random error vector, εi, follows a multivariate normal distribution
with the mean zero and the UN, RUN i.

In the case of four time points, the model for the response, Yi, and the variance
covariance matrix of the response vector, Vi � Var(Yi), are

Yi �

⎛

⎜⎜⎜
⎝

Yi1
Yi2
Yi3
Yi4

⎞

⎟⎟⎟
⎠

�

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠

⎛

⎜⎜⎜
⎝

μ1

μ2

μ3

μ4

⎞

⎟⎟⎟
⎠

+

⎛

⎜⎜
⎝

εi1

εi2

εi3

εi4

⎞

⎟⎟
⎠,

Vi � Ri �

⎛

⎜⎜
⎜⎜⎜
⎝

σ 2
1 σ12 σ13 σ14

σ12 σ 2
2 σ23 σ24

σ13 σ23 σ 2
3 σ34

σ14 σ24 σ34 σ 2
4

⎞

⎟⎟
⎟⎟⎟
⎠

.
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The UN is not parsimonious, and the number of parameters increases largely when
the number of time points is large.

For the two group comparison, the models corresponding to (1.3.4) and (1.3.7)
are

{
Yij � β0 + β1x1j + · · · + βJ−1xJ−1j +

(
βg0 + βg1x1j + · · · + βgJ−1xJ−1j

)
xgi + εij

εi ∼ MVN(0,RUN i)
,

(1.3.9)
{
Yij � β0 + β1x1j + · · · + βJ−1xJ−1j +

(
βg1x1j + · · · + βgJ−1xJ−1j

)
xgi + εij

εi ∼ MVN(0,RUN i)
.

(1.3.10)

We can assume different UN for each group, but the number of parameters is doubled.

1.3.4 Linear Time Trend Models with Random Intercept
and Random Slope

Linear time trend models are also often assumed for the mean structure and ran-
dom effects. For this assumption, changes per unit time are constant. Let Yij be the
responses corresponding to the jth measurement of the ith (i � 1, · · · ,N ) subject.
tij is time as a continuous variable. The model is

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Yij � (β0 + b0i) + (β1 + b1i)tij + εij

(
b0i
b1i

)

∼ MVN

⎛

⎜
⎝

(
0
0

)
,

⎛

⎝
σ 2
G0 σG01

σG01 σ 2
G1

⎞

⎠

⎞

⎟
⎠

εij ∼ N
(
0, σ 2

ε

)

. (1.3.11)

Here, b0i and b1i are random effects for the intercept and slope for the ith subject,
and are called a random intercept and a random slope, respectively. The random
effects, bi � (b0i, b1i)

T , are assumed to follow a bivariate normal distribution with
the mean vector 0, variances σ 2

G0 and σ 2
G1, and covariance σG01. The random intercept

and slope may be assumed to be independent, that is, σG01 � 0. The variance of a
random error, εij, is σ 2

ε , and random errors are assumed to be mutually independent
and normally distributed.

In the case of four time points, the model and the variance covariance matrix of
the response vector are
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Yi �

⎛

⎜
⎜⎜
⎝

Yi1
Yi2
Yi3
Yi4

⎞

⎟
⎟⎟
⎠

�

⎛

⎜
⎜⎜
⎝

1 ti1
1 ti2
1 ti3
1 ti4

⎞

⎟
⎟⎟
⎠

(
β0

β1

)

+

⎛

⎜
⎜⎜
⎝

1 ti1
1 ti2
1 ti3
1 ti4

⎞

⎟
⎟⎟
⎠

(
bi0
bi1

)

+

⎛

⎜⎜
⎝

εi1

εi2

εi3

εi4

⎞

⎟⎟
⎠,

Vi � ZiGZT
i + Ri

�

⎛

⎜⎜⎜
⎝

1 ti1
1 ti2
1 ti3
1 ti4

⎞

⎟⎟⎟
⎠

⎛

⎝
σ 2
G0 σG01

σG01 σ 2
G1

⎞

⎠
(

1 1 1 1
ti1 ti2 ti3 ti4

)
+ σ 2

ε

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠.

The diagonal element at the jth time in Vi, that represents the variance, is

σ 2
G0 + 2σG01tij + σ 2

G1t
2
ij + σ 2

ε .

The non-diagonal element at the j, kth time in Vi, that represents the covariance, is

σ 2
G0 + σG01

(
tij + tik

)
+ σ 2

G1tijtik .

Based on these equations, when covariate values of random effects are different
across time points, tij �� tik for j �� k, the variance is also different across time
points, Var

(
Yij
) �� Var(Yik), unless σ 2

G1 � 0 and σG01 � 0. The covariance also
depends on the time.

When the time tij is the same across subjects, tij � tj, the variance covariance
structure is the same across subjects and it is included in the UN. When the time tij
differ across subjects, the variance covariance structure differs across subjects and it
is not included in the UN.

Figure 1.3a shows a linear time trendmodel with a random intercept.We assume a
fixed slope (σ 2

G1 � 0, bi1 � 0). Intercepts are different across subjects but the slopes
are the same. Figure 1.3b shows a linear time trend model with a random intercept
and a random slope. The variance in response increases with time. In some cases,
the variance decreases with time within the observation period.

This model shows a linear time trend and is called a growth curve model. Models
with a quadratic equation of time or higher order equations are also called growth
curve models. These curves show nonlinear changes according to time but are linear
in parameters. In contrast, nonlinear curves such as Gompertz curves and logistic
curves show nonlinear changes according to time and are nonlinear in parameters.
We discuss nonlinear growth curves further in Chap. 5. Furthermore, growth curves
for child development, such as height, weight, and body mass index (BMI), are
estimated by other methods.
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(a) (b)

Fig. 1.3 a Linear time trend model with a random intercept. b Linear time trend model with a
random intercept and a random slope. Estimatedmeans (thick line with closed circles) and predicted
values for each subject (thin lines)

1.3.5 Group Comparison Based on Linear Time Trend
Models with Random Intercept and Random Slope

This section shows group comparisons based on the linear time trend model (1.3.11).
Consider models in which the covariates include time as a continuous variable, the
group as a qualitative variable, and an interaction of time and the group. When there
are two groups, groups A and B, let xgi be an indicator variable for the group, with
xgi � 0 in group A and xgi � 1 in group B. The linear mixed effects model with the
interaction is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yij � (
β0 + βg0xgi + b0i

)
+
(
β1 + βg1xgi + b1i

)
tij + εij

(
b0i
b1i

)

∼ MVN

⎛

⎜
⎝

(
0
0

)
,

⎛

⎝
σ 2
G0 σG01

σG01 σ 2
G1

⎞

⎠

⎞

⎟
⎠

εij ∼ N
(
0, σ 2

ε

)

. (1.3.12)

For group A, the intercept is β0 and the slope is β1. For group B, the intercept is
β0 + βg0, the slope is β1 + βg1. The coefficient of xgitij, βg1, is the interaction term
between time and the group, and shows the difference in the slopes between the
groups. In the case of four time points, the model is
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⎛

⎜⎜
⎜
⎝

Yi1
Yi2
Yi3
Yi4

⎞

⎟⎟
⎟
⎠

�

⎛

⎜⎜
⎜⎜
⎝

1 xgi ti1 xgiti1

1 xgi ti2 xgiti2

1 xgi ti3 xgiti3

1 xgi ti4 xgiti4

⎞

⎟⎟
⎟⎟
⎠

⎛

⎜⎜
⎜⎜
⎝

β0

βg0

β1

βg1

⎞

⎟⎟
⎟⎟
⎠

+

⎛

⎜⎜
⎜
⎝

1 ti1
1 ti2
1 ti3
1 ti4

⎞

⎟⎟
⎟
⎠

(
bi0
bi1

)

+

⎛

⎜
⎜
⎝

εi1

εi2

εi3

εi4

⎞

⎟
⎟
⎠.

The design matrices for the fixed effects of groups A and B are

Xi �

⎛

⎜⎜⎜
⎝

1 0 ti1 0

1 0 ti2 0

1 0 ti3 0

1 0 ti4 0

⎞

⎟⎟⎟
⎠
andXi �

⎛

⎜⎜⎜
⎝

1 1 ti1 ti1
1 1 ti2 ti2
1 1 ti3 ti3
1 1 ti4 ti4

⎞

⎟⎟⎟
⎠

.

Here, the variance covariance parameters, σ 2
G0, σ

2
G1, σG01, and σ 2

ε are assumed to be
the same between groups. These can also be assumed to be different between groups.

The slope is often considered a summary measure and is used for group compar-
isons. Methods to estimate and test the difference in slopes, βg1, have been inten-
sively studied focusing onmissing data and dropouts since the late 1980s. In contrast,
the asymptote or equilibrium is used in autoregressive linear mixed effects models,
and these are potentially useful interpretable summary measures. Funatogawa et al.
(2008) studied the estimation of asymptotes focusing on missing data.

1.4 Mean Structures and Variance Covariance Structures

Section 1.3 provides several specific linearmixed effectsmodels that arewidely used.
This section discusses details of mean structures and variance covariance structures
including variable transformation.

1.4.1 Mean Structures

Letμij be the mean at the jth time of the ith subject. The mean structure of the model
with means at each time point as shown in Sect. 1.3.1 is μij � μj, and the number of
parameters increases with the number of time points. In the linear time trend model
shown in Sect. 1.3.4, μij � β0 + β1tij, the number of parameters is two: the intercept
and slope. A quadratic time trend is

μij � β0 + β1tij + β2t
2
ij.
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A quadratic equation has a maximum or minimum value, β0 − β2
1/(2β2), at the

time, tij � −β1/2β2. After this point, the response changes from an increase to
a decrease, or from a decrease to an increase, so that changes are not monotonic.
However, sometimes this is not a reasonable assumption, and the fit is not good for
later data points. Not only linear or quadratic equations of time but also higher order
polynomials of time are used. The lth order polynomial is

μij �
l∑

k�0

βk t
k
ij � β0 + β1tij + β2t

2
ij + · · · + βl t

l
ij.

A piecewise linear function has linear trends and slope changes at some breakpoints.
In regression analysis, after transformation of a response variable or an explana-

tory variable, linear models may provide a good fit. Log transformation, y � log y,
is often used if the response variable follows a log normal distribution; a logarithm
of the response follows a normal distribution. In the area of pharmacokinetics, drug
concentrations follow right heavy-tailed distributions, and log transformation is often
used. When the variance depends on the mean, log transformation is used in order
to stabilize the variance.

The Box–Cox transformation is

y(λ) � yλ − 1

λ
, (λ �� 0),

y(λ) � log y, (λ � 0).

Here, the following formula holds:

lim
λ→0

yλ − 1

λ
� log y.

In some cases, frameworks other than linear mixed effects models are more suit-
able. Autoregressive linear mixed effects models are discussed in the following
chapters. Nonlinear mixed effects models are discussed in Chap. 5. Nonparamet-
ric regression analysis and smoothing methods are also used.

1.4.2 Variance Covariance Structures

This section discusses variance covariance structures in detail. Table 1.1 shows sev-
eral variance covariance structures in the case of four time points. The variance
covariancematrix of the response vectorYi isVi � ZiGZT

i +Ri whereZiGZT
i andRi

are induced by random effects and random errors, respectively. Variance covariance
structures induced by a random intercept are shown in Sect. 1.3.1. The unstructured
(UN) is shown in Sect. 1.3.3. Variance covariance structures induced by a random
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intercept and a random slope are shown in Sect. 1.3.4. The variance covariance struc-
ture induced by a random intercept and a randomslopewith

(
t1 t2 t3 t4

) � (
0 1 2 3

)

is given in Table 1.1o. Structures popularly used are independent equal variances,
UN, compound symmetry (CS), and first-order autoregressive (AR(1)).

The structure with independent equal variances is used together with random
effects. Since data measured from the same subject are usually correlated, the inde-
pendent structure is not used alone but used together with random effects that account
for correlations within a subject. When used with random effects, it is called condi-
tional independence given random effects. The independent structure with unequal
variances is also used.

The UN structure has no constraints on variance or covariance parameters.
Although this assumption is not strict, the UN is not parsimonious and inefficient.
The number of the parameters is large as the number of time points is large. When
the number of time points is ni, the number of parameters is ni(ni + 1)/2. When the
time points increase from ni to ni + 1, the number of parameters increases by ni + 1.

The CS is also called exchangeable. This structure has two parameters, variance
σ2 and covariance σ1, which are the same across time points. With other parameters,
variance and correlation ρ are the same across time points, respectively. The corre-
lation ρ � σ1/σ

2 is called the intra-class correlation coefficient. The CS includes the
structure induced by a random intercept and independent random errors as shown in
Sect. 1.3.1. The diagonal elements are the sum of the between-subject variance and
the within-subject variance, and non-diagonal elements are the between-subject vari-
ance. Although this structure constrains the covariance and correlation to be positive,
these of the CS can be negative. It is a narrower structure compared with CS. The
heterogeneous CS (CSH) structure has a CS correlation structure and heterogeneous
variances across time points.

TheAR(1) structure has a typical serial correlationwhere the correlation decreases
as the time interval increases. The heterogeneous AR(1) (ARH(1)) structure has
an AR(1) correlation and heterogeneous variances across time points. The AR(1)
structure for Ri, RAR i, is used in three ways: random errors alone as Vi � RAR i,
with random effects asVi � ZiGZT

i +RAR i, or with random effects and independent
errors as Vi � ZiGZT

i + RAR i + σ 2Ini . There are several approaches to use random
effects, serial correlations, and independent errors simultaneously (Diggle 1988;
Heitjan 1991; Jones 1993; Funatogawa et al. 2007; Funatogawa et al. 2008). Jones
(1993) used serial correlations for continuous time.

The Toeplitz structure has homogeneous variances across time points and homo-
geneous covariances for equal time distance. The heterogeneous Toeplitz structure
has a Toeplitz correlation structure and heterogeneous variances across time points.
The j, kth element is σjσkρ|j−k|. The two-band Toeplitz structure constrains covari-
ances to be 0 if the time differs over two points. The similar structure is used in
autoregressive linear mixed effects models as shown in Sect. 2.4.1 and Table 2.3a to
take measurement errors into account.

Kenward (1987) used the first-order ante-dependence (ANTE(1)). The j, kth ele-
ment is
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Table 1.1 Variance covariance structures for four time points

(a) Independent equal variances

σ 2

⎛

⎜
⎜⎜
⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞

⎟
⎟⎟
⎠

(b) Independent unequal variances⎛

⎜
⎜
⎜⎜
⎜⎜
⎝

σ 2
1 0 0 0

0 σ 2
2 0 0

0 0 σ 2
3 0

0 0 0 σ 2
4

⎞

⎟
⎟
⎟⎟
⎟⎟
⎠

(c) Unstructured: UN⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

σ 2
1 σ12 σ13 σ14

σ12 σ 2
2 σ23 σ24

σ13 σ23 σ 2
3 σ34

σ14 σ24 σ34 σ 2
4

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

(d) Random intercept⎛

⎜⎜
⎜⎜
⎜⎜
⎝

σ 2
G σ 2

G σ 2
G σ 2

G

σ 2
G σ 2

G σ 2
G σ 2

G

σ 2
G σ 2

G σ 2
G σ 2

G

σ 2
G σ 2

G σ 2
G σ 2

G

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

(e) Random intercept and independent
equal variances, inter- and intra-variances⎛

⎜⎜
⎜
⎜⎜
⎜
⎝

σ 2
G + σ 2

ε σ 2
G σ 2

G σ 2
G

σ 2
G σ 2

G + σ 2
ε σ 2

G σ 2
G

σ 2
G σ 2

G σ 2
G + σ 2

ε σ 2
G

σ 2
G σ 2

G σ 2
G σ 2

G + σ 2
ε

⎞

⎟⎟
⎟
⎟⎟
⎟
⎠

(f) Compound symmetry: CS,
variance and covariance⎛

⎜
⎜⎜
⎜
⎜
⎝

σ 2 σ1 σ1 σ1

σ1 σ 2 σ1 σ1

σ1 σ1 σ 2 σ1

σ1 σ1 σ1 σ 2

⎞

⎟
⎟⎟
⎟
⎟
⎠

(g) CS, variance and correlation

σ 2

⎛

⎜
⎜⎜
⎜
⎝

1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1

⎞

⎟
⎟⎟
⎟
⎠

(h) Heterogeneous CS: CSH⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

σ 2
1 σ1σ2ρ σ1σ3ρ σ1σ4ρ

σ1σ2ρ σ 2
2 σ2σ3ρ σ2σ4ρ

σ1σ3ρ σ2σ3ρ σ 2
3 σ3σ4ρ

σ1σ4ρ σ2σ4ρ σ3σ4ρ σ 2
4

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

(i) First-order autoregressive: AR(1)

σ 2

⎛

⎜
⎜
⎜⎜
⎜
⎝

1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1

⎞

⎟
⎟
⎟⎟
⎟
⎠

(j) Heterogeneous AR(1): ARH(1)⎛

⎜
⎜⎜
⎜
⎜⎜
⎝

σ 2
1 σ1σ2ρ σ1σ3ρ

2 σ1σ4ρ
3

σ1σ2ρ σ 2
2 σ2σ3ρ σ2σ4ρ

2

σ1σ3ρ
2 σ2σ3ρ σ 2

3 σ3σ4ρ

σ1σ4ρ
3 σ2σ4ρ

2 σ3σ4ρ σ 2
4

⎞

⎟
⎟⎟
⎟
⎟⎟
⎠

(k) Toeplitz⎛

⎜
⎜⎜
⎜⎜
⎝

σ 2 σ1 σ2 σ3

σ1 σ 2 σ1 σ2

σ2 σ1 σ 2 σ1

σ3 σ2 σ1 σ 2

⎞

⎟
⎟⎟
⎟⎟
⎠

(l) Heterogeneous Toeplitz⎛

⎜⎜
⎜⎜
⎜⎜
⎝

σ 2
1 σ1σ2ρ1 σ1σ3ρ2 σ1σ4ρ3

σ1σ2ρ1 σ 2
2 σ2σ3ρ1 σ2σ4ρ2

σ1σ3ρ2 σ2σ3ρ1 σ 2
3 σ3σ4ρ1

σ1σ4ρ3 σ2σ4ρ2 σ3σ4ρ1 σ 2
4

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

(continued)
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Table 1.1 (continued)

(m) Two-band Toeplitz⎛

⎜⎜
⎜⎜
⎜
⎝

σ 2 σ1 0 0

σ1 σ 2 σ1 0

0 σ1 σ 2 σ1

0 0 σ1 σ 2

⎞

⎟⎟
⎟⎟
⎟
⎠

(n) First-order ante-dependence: ANTE(1)a⎛

⎜⎜
⎜
⎜⎜
⎜
⎝

σ 2
1 σ1σ2ρ1 σ1σ3ρ1ρ2 σ1σ4ρ1ρ2ρ3

σ 2
2 σ2σ3ρ2 σ2σ4ρ2ρ3

σ 2
3 σ3σ4ρ3

σ 2
4

⎞

⎟⎟
⎟
⎟⎟
⎟
⎠

(o) Random intercept and random slope with
(
t1 t2 t3 t4

)
�
(
0 1 2 3

)
a

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

σ 2
G0 σ 2

G0 + σG01 σ 2
G0 + 2σG01 σ 2

G0 + 3σG01

σ 2
G0 + 2σG01 + σ 2

G1 σ 2
G0 + 3σG01 + 2σ 2

G1 σ 2
G0 + 4σG01 + 3σ 2

G1

σ 2
G0 + 4σG01 + 4σ 2

G1 σ 2
G0 + 5σG01 + 6σ 2

G1

σ 2
G0 + 6σG01 + 9σ 2

G1

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

aLower triangular elements are omitted

σjσk

k−1∏

l�j

ρl .

When the number of time points is ni, the number of parameters is 2ni − 1. The
ANTE(1) is non-stationary, where the variances are not constant across time points
and the correlations depend on time points. In contrast, the AR(1), CS, and Toeplitz
are stationary,where the variances are constant across time points and the correlations
depend on only time distance.

Variance covariance structures using a stochastic process are applied. In the Orn-
stein–Uhlenbeck process (OU process), the variance and covariance between Y (s)
and Y (t) are

Cov(Y (s),Y (t)) � σ 2(2α)−1e−α|t−s|.

This continuous time process corresponds to AR(1) for discrete time with ρ �
e−α . The following process that integrates the OU process is called the integrated
Ornstein–Uhlenbeck process (IOU process),

W (t) �
t∫

0

Y (u)du.

The variance of W (t) and the covariance between W (s) and W (t) are

Var(W (t)) � σ 2α−3(αt + e−αt − 1
)
,
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Cov(W (s),W (t)) � σ 2
(
2α3

)−1{
2αmin(s, t) + e−αt + e−αs − 1 − e−α|t−s|}.

Taylor et al. (1994) and Taylor and Law (1998) used the IOU process and Sy et al.
(1997) used the bivariate extension.

Variance covariance matrices are sometimes assumed to be different across levels
of a factor such as a group. If there are two groups, the number of parameters increases
by two times. Results of statistical tests or estimation may largely depend on this
assumption. The unequal variances in the analysis of covariance are discussed in
Funatogawa et al. (2011) and Funatogawa and Funatogawa (2011).

1.5 Inference

1.5.1 Maximum Likelihood Method

For the estimation of linear mixed effects models, maximum likelihood (ML) meth-
ods are often used. For simplicity, this section first explains likelihood for indepen-
dent data. Let Y follow a normal distribution with the mean μ and variance σ 2. The
probability density function of Y is

f (Y ) � 1√
2πσ 2

exp

{

−1

2

(
Y − μ

σ

)2
}

. (1.5.1)

The probability density function is a function of a random variable Y given the
parameters

(
μ, σ 2

)
. It shows what value of Y tends to occur. Now, let Y1, · · · ,YN be

N random variables that follow independently an identical normal distribution with
the mean μ and variance σ 2. Then, the probability density function of Y1, · · · ,YN is

f (Y1, · · · ,YN ) �
N∏

i�1

1√
2πσ 2

exp

{

−1

2

(
Yi − μ

σ

)2
}

. (1.5.2)

Because of the independent variables, this is a simple multiplication of the above
probability density function. The likelihood function is algebraically the same as the
probability density function, but a function of parameters

(
μ, σ 2

)
given the data,

Y1, · · · ,YN . The ML method maximizes the log-likelihood (ll) for the estimation of
unknown parameters. The log-likelihood is

llML � −N

2
log(2π) − N

2
log σ 2 − 1

2

N∑

i�1

(
Yi − μ

σ

)2

. (1.5.3)

Minus two times log-likelihood (−2ll) is used for the calculation,
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−2llML � N log(2π) + N log σ 2 +
N∑

i�1

(
Yi − μ

σ

)2

. (1.5.4)

The ML estimator (MLE) of μ is the arithmetic mean, Ȳ � ∑N
i�1 Yi/N . The MLE

of σ 2 is
∑N

i�1

(
Yi − Ȳ

)2
/N , and is biased because it does not take account of the

decrease of one degree of freedom by the estimation of the mean parameter. It is
known that the unbiased estimator of σ 2 is

∑N
i�1

(
Yi − Ȳ

)2
/(N − 1). When N is

infinite, both converge to the same value. In this simple example, the MLE of σ 2 is
biased but consistent.

Next, the likelihood for longitudinal data is provided. In longitudinal data analysis,
data from different subjects are often assumed to be independent, but data from the
same subject are not assumed to be independent. In linear mixed effects models, the
marginal distribution of Yi is a multivariate normal distribution with the mean Xiβ

and variance covariance matrix Vi � ZiGZT
i + Ri. Then, the probability density

function of Y1, · · · ,YN is

f (Y1, · · · ,YN ) �
N∏

i�1

(2π)−
1
2 |Vi|− 1

2 exp

{
−1

2
(Yi − Xiβ)

TV−1
i (Yi − Xiβ)

}
,

(1.5.5)

where |Vi| is the determinant of Vi. The marginal log-likelihood function, llML, and
−2llML are

llML � −
∑N

i�1 ni
2

log(2π) − 1

2

N∑

i�1

log|Vi| − 1

2

N∑

i�1

(Yi − Xiβ)
TV−1

i (Yi − Xiβ),

(1.5.6)

−2llML �
N∑

i�1

{
nilog(2π) + log|Vi| + (Yi − Xiβ)

TV−1
i (Yi − Xiβ)

}
. (1.5.7)

The ML estimates are obtained from maximizing llML or minimizing −2llML with
respect to unknown parameters. When variance covariance parameters are known,
the MLEs of the fixed effects parameters β obtained from minimizing −2llML are

β̂ �
(

N∑

i�1

XT
i V

−1
i Xi

)− N∑

i�1

XT
i V

−1
i Yi, (1.5.8)

where the superscript “–” means a generalized inverse. The variance covariance
parameters are usually unknown. To obtain the ML estimates of the variance covari-
ance parameters, β is concentrated out of the likelihood by substituting the equation
of β̂ (1.5.8) in −2llML (1.5.7). Then, we minimize the following concentrated −2ll:
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−2llMLCONC �
N∑

i�1

{
nilog(2π) + log|Vi| + rTi V

−1
i ri

}
, (1.5.9)

where ri � Yi − Xiβ̂. We can reduce the number of unknown parameters by p. p
is the number of fixed effects parameters. Variance covariance parameters are not
usually solved explicitly and iterationmethods such as theNewton–Raphsonmethod,
the expectation-maximization (EM) algorithm, or the Fisher’s scoring algorithm are
used. The MLEs of the fixed effects parameters β are

β̂ �
(

N∑

i�1

XT
i V̂

−1
i Xi

)− N∑

i�1

XT
i V̂

−1
i Yi, (1.5.10)

where Vi in Eq. (1.5.8) is replaced with the ML estimates V̂i.
If Vi can be written as σ 2Vci, σ 2 can be concentrated out of the likelihood. σ 2

has a closed form given β and Vci, and it is substituted in −2llML. V−1
i in (1.5.8)

is replaced by V−1
ci , and β̂ is substituted in −2llML. The unknown parameters in

−2llMLCONC is V−1
ci . This reduces further the number of optimization parameters by

one. The MLEs of the fixed effects parameters are

β̂ �
(

N∑

i�1

XT
i V̂

−1
ci Xi

)− N∑

i�1

XT
i V̂

−1
ci Yi. (1.5.11)

An example in the state space form is given in Sect. 6.5.2.
The ML estimates of variance covariance components are biased because these

do not take account of the decrease of degree of freedoms by the estimation of fixed
effects parameters. Therefore, the restricted maximum likelihood (REML) method
is used. The log-likelihood function for REML is

llREML � −
∑N

i�1 ni − p

2
log(2π) − 1

2

N∑

i�1

log|Vi| − 1

2
log

∣∣∣∣
∣

N∑

i�1

XT
i V

−1
i Xi

∣∣∣∣
∣

− 1

2

N∑

i�1

(Yi − Xiβ̂)
TV−1

i (Yi − Xiβ̂). (1.5.12)

The REMLmethod estimates the variance covariance parameters based on the resid-
ual contrast. The residual contrast is a linear combination of Yi that does not depend
on β. It is also called the residual maximum likelihood (REML) method. The resid-
ual contrast is shown in Sect. 1.6 using vector representations. The REML method
cannot be used to compare goodness of fit for two models with different fixed effects
because log-likelihoods of the two models use different residual contrasts.
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1.5.2 Variances of Estimates of Fixed Effects

When variance covariance parameters are known, the variance covariance matrix of
the ML estimates of fixed effects vector is

Var(β̂) �
(

N∑

i�1

XT
i V

−1
i Xi

)−( N∑

i�1

XT
i V

−1
i Var(Yi)V−1

i Xi

)(
N∑

i�1

XT
i V

−1
i Xi

)−
.

(1.5.13)

If Vi � Var(Yi),

Var(β̂) �
(

N∑

i�1

XT
i V

−1
i Xi

)−
. (1.5.14)

The variance and covariance are replaced by the ML estimates V̂i,

Var(β̂) �
(

N∑

i�1

XT
i V̂

−1
i Xi

)−
. (1.5.15)

Since this variance covariance matrix is based on likelihood, the mean structure, the
variance covariance structure, and the distribution assumption in the linear mixed
effects model need to be correct. The standard errors of β̂ based on this equation are
underestimated because this equation does not take account of the uncertainty in the
estimation of the variance and covariance.

Even if Vi � Var(Yi) is wrongly specified, the following sandwich estimator
provides a consistent estimator of Var(β̂):

Var(β̂) �
(

N∑

i�1

XT
i V̂

−1
i Xi

)−{ N∑

i�1

XT
i V̂

−1
i

(
Yi − Xiβ̂

)(
Yi − Xiβ̂

)T
V̂−1

i Xi

}

(
N∑

i�1

XT
i V̂

−1
i Xi

)−
. (1.5.16)

It is also called robust variance.

1.5.3 Prediction

The joint distribution of Yi and bi is the following multivariate normal distribution:

(
Yi

bi

)

∼ MVN

⎛

⎜
⎝

(
Xiβ

0

)

,

⎛

⎝
ZiGZT

i + Ri ZiG

GZT
i G

⎞

⎠

⎞

⎟
⎠. (1.5.17)
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From this distribution, the conditional expectation of bi given Yi is

E(bi|Yi) � GZT
i V

−1
i (Yi − Xiβ). (1.5.18)

Replacing Vi,G, and β by the ML estimates, V̂i, Ĝ, and β̂, the predictors of random
effects are

b̂i � ĜZ
T

i V̂
−1
i (Yi − Xiβ̂). (1.5.19)

When variance covariance parameters are known, β̂ in Eq. (1.5.8) is the best lin-
ear unbiased estimator (BLUE) and E(bi|Yi) is the best linear unbiased predictor
(BLUP). Since bi is a random vector, it is called a predictor but not an estimator. The
term “best” means the minimum error variance among linear unbiased estimators or
predictors. Since variance covariance parameters are unknown, these are replaced by
ML or REML estimates. β̂ in Eq. (1.5.10) is called empirical BLUE (EBLUE) and b̂i
is called empirical BLUP (EBLUP). These are based on empirical Bayes methods.

The response profile Ŷi in the ith subject is predicted by

Ŷi � Xiβ̂ + Zib̂i

� (R̂iV̂−1
i )Xiβ̂ + (Ini − R̂iV̂−1

i )Yi. (1.5.20)

This is a weighted mean of the population mean Xiβ̂ and observed response Yi. It
is called shrinkage because the predicted values shrink to the population mean. The
extent of the shrinkage depends on the relative size ofRi andVi � ZiGZT

i +Ri. The
larger intra-subject variance compared with the inter-subject variance results in the
larger weight on Xiβ̂. The larger inter-subject variance results in the larger weight
on Yi. The larger number of observations ni in the ith subject results in the smaller
shrinkage.

Similarly, the predicted values of the random effects b̂i in the ith subject are
a weighted mean of the REML estimates of the fixed effects parameter β̂ and the
ordinary least square estimates of the corresponding parameters β̂OLSi based on only
the data of the ith subject. WhenXi � Zi andRi � σ 2Ini , the estimator of βi � β+bi
is

β̂i � β̂ + b
∧

i

� Wiβ̂OLSi + (Iq − Wi)β̂, (1.5.21)

where

Wi � G
{
G + σ 2

(
ZT
i Zi

)−1
}−1

. (1.5.22)

The larger inter-subject variance compared with the intra-subject variance results in
the closer estimates of β̂i to β̂OLSi. The smaller inter-subject variance results in the
closer estimates of b̂i to 0.
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1.5.4 Goodness of Fit for Models

There are several indicators for the goodness of fit. Akaike’s information criterion
(AIC) andSchwartz’sBayesian information criterion (BIC) aremeasures of goodness
of fit that put a penalty on an increase in the number of parameters. Let llMLmax

and llREMLmax be the maximum value of the log-likelihood for ML and REML,
K � ∑N

i�1 ni be the number of data, p be the number of parameters for fixed effects,
and q be the number of parameters for random effects. For ML and REML, AIC and
BIC are

AICML � −2llMLmax + 2(p + q), (1.5.23)

AICREML � −2llREMLmax + 2q, (1.5.24)

BICML � −2llMLmax + (p + q) logK, (1.5.25)

BICREML � −2llREMLmax + qlog(K − p). (1.5.26)

TheREMLmethod cannot be used to compare twomodelswith different fixed effects
as described in Sect. 1.5.1.

1.5.5 Estimation and Test Using Contrast

Let L be a 1 × q contrast vector and consider the estimation of Lβ. Lβ is assumed
to be estimable such that Lβ � kE(Y) � kXβ for some vector of constants, k,
where Y � (

YT
1 , · · · ,YT

N

)T
and X � (

XT
1 , · · · ,XT

N

)T
. The estimator is Lβ̂, and the

two-sided 95% confidence interval is

Lβ̂ ± tν(0.975)

√√√√L

(
N∑

i�1

XT
i V̂

−1
i Xi

)−
LT , (1.5.27)

where tν(0.975) is the upper 97.5th percentile of the t distribution with ν degrees of
freedom (df). Using the contrast vector L, a t test with the null hypothesis of Lβ � 0
can be performed. The following test statistic approximately follows a t distribution
with ν degrees of freedom,

Lβ̂
√

L
(∑N

i�1 X
T
i V̂

−1
i Xi

)−
LT

. (1.5.28)

The degree of freedom, ν, usually needs to be estimated by an approximation.
There are several approximation methods such as the Satterthwaite approximation
(Satterthwaite 1946). The Kenward–Roger method (Kenward and Roger 1997) uses
an adjusted estimator of the variance covariance matrix to reduce small sample bias.
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When there are multiple contrasts using a k × p (p ≥ k) full rank matrix L, an F
test with the null hypothesis of Lβ � 0 can be performed. The following test statistic
approximately follows an F distribution:

β̂
T
LT

{
L
(∑N

i�1 X
T
i V̂

−1
i Xi

)−
LT

}−
Lβ̂

rank(L)
. (1.5.29)

The numerator degree of freedom is the rank of L, rank(L). The denominator degree
of freedom usually needs to be estimated using an approximation. When k � 1, the
test statistic of the F test is the square of the test statistic of the t test.

1.6 Vector Representation

In the previous sections, linear mixed effects models are shown using the vec-
tor Yi for each subject. This section shows the representation using the vec-
tor Y � (

YT
1 , · · · ,YT

N

)T
. Let X � (

XT
1 , · · · ,XT

N

)T
, b � (

bT1 , · · · ,bTN
)T
, and

ε � (
εT1 , · · · , εTN

)T
,Z � diag(Zi). The linearmixed effectsmodels shown inSect. 1.2

are expressed by

Y � Xβ + Zb + ε, (1.6.1)
⎛
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. . .
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⎟
⎟⎟⎟
⎠

. (1.6.2)

The variance covariance matrices, V � Var(Y), GA � Var(b), and R � Var(ε), are

V � diag(Vi) �

⎛

⎜⎜
⎜
⎜⎜
⎝

V1 0 · · · 0

0 V2 0

...
. . .

0 0 VN

⎞

⎟⎟
⎟
⎟⎟
⎠

, (1.6.3)

GA � diag(Gi) �

⎛
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⎜⎜
⎜
⎝
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0 G2 0
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. . .
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⎟
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�
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0 0 G

⎞

⎟⎟
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⎟
⎠

, (1.6.4)
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R � diag(Ri) �

⎛

⎜⎜
⎜⎜
⎜
⎝

R1 0 · · · 0

0 R2 0

...
. . .

0 0 RN

⎞

⎟⎟
⎟⎟
⎟
⎠

, (1.6.5)

where Gi � G and V � ZGAZT + R.
−2llML, −2llREML, β̂, Var(β̂), and b̂ shown in Sect. 1.5 are expressed by

−2llML �
(

N∑

i�1

ni

)

log(2π) + log|V| + (Y − Xβ)TV−1(Y − Xβ), (1.6.6)

−2llREML �
(

N∑

i�1

ni − p

)

log(2π) + log|V| + log
∣∣XTV−1X

∣∣

+
(
Y − Xβ̂

)T
V−1

(
Y − Xβ̂

)
, (1.6.7)

β̂ � (
XTV−1X

)−
XTV−1Y, (1.6.8)

Var(β̂) � (
XTV−1X

)−
, (1.6.9)

b̂ � ĜAZT V̂−1
(
Y − Xβ̂

)
. (1.6.10)

β̂ and b̂i as shown in Sect. 1.5 can be also derived from the following mixed model
equation:

⎛

⎝XT R̂−1X XT R̂−1Z

ZT R̂−1X ZT R̂−1Z + Ĝ−1
A

⎞

⎠

⎛

⎝ β̂

b̂

⎞

⎠ �
(
XT R̂−1Y

ZT R̂−1Y

)

. (1.6.11)

Now, we explain residual maximum likelihood (REML) in Sect. 1.5.1. Let K be

a
∑N

i�1 ni ×
(∑N

i�1 ni − p
)
full rank matrix that satisfies KTX � 0. KTY is called

residual contrast. It follows a multivariate normal distribution with the mean vector 0
and variance covariancematrixKTVK, and does not depend on β. The log-likelihood
of KTY is llREML.
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Chapter 2
Autoregressive Linear Mixed Effects
Models

Abstract In the previous chapter, longitudinal data analysis using linear mixed
effects models was discussed. This chapter discusses autoregressive linear mixed
effects models in which the current response is regressed on the previous response,
fixed effects, and random effects. These are an extension of linear mixed effects
models and autoregressive models. Autoregressive models regressed on the response
variable itself have two remarkable properties: approaching asymptotes and state-
dependence. Asymptotes can be modeled by fixed effects and random effects. The
current response depends on current covariates and past covariate history. Three
vector representations of autoregressive linear mixed effects models are provided:
an autoregressive form, response changes with asymptotes, and a marginal form
which is unconditional on previous responses. The marginal interpretation is the
same with subject specific interpretation as well as linear mixed effects models. Vari-
ance covariance structures corresponding to AR(1) errors, measurement errors, and
random effects in the baseline and asymptote are presented. Likelihood of marginal
and autoregressive forms for maximum likelihood estimation are also provided. The
marginal form can be used even if there are intermittent missing values. We discuss
the difference between autoregressive models of the response itself which focused
in this book and models with autoregressive error terms.

Keywords Asymptote · Autoregressive
Autoregressive linear mixed effects model · Longitudinal · State-dependence

2.1 Autoregressive Models of Response Itself

2.1.1 Introduction

There are three major approaches for modeling longitudinal data: mixed effects
models, marginal models, and transition models (Diggle et al. 2002; Fitzmaurice
et al. 2011). Linear mixed effects models and marginal models with linear mean
structures are discussed in the framework of linear mixed effects models through

© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2018
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Chap. 1.We discuss nonlinearmixed effectsmodels in Chap. 5.Mixed effectsmodels
include both fixed effects and random effects, and random effects take account for
variability across subjects. Marginal models directly model the marginal distribution
of the response without random effects. The model with the unstructured variance
covariance in Sect. 1.3.3 is an example of marginal models. In the case of a linear
model, interpretation of the fixed effects parameter is the same between two models.
Although linear mixed effects models have good properties, they are not always
satisfactory to express nonlinear time trends. On the other hand, nonlinear mixed
effects models with nonlinear random effects parameters are complicated and there
is discrepancy between marginal and subject specific interpretation. Autoregressive
linear mixed effects models in this book simply express nonlinear time trends which
gradually move toward an asymptote without an approximation and the discrepancy
in interpretation. Themarginal distribution is explicitly given, and it is useful because
more interest is often taken in the marginal profile than the profile conditional on the
previous response. The autoregression in the response itself changes a static mixed
effects model into a dynamic one. It provides one of the simplest models that take
into account the past covariate history.

There are two types of transition (autoregressive) models for continuous response
variables: autoregressivemodels of the response itself andmodelswith autoregressive
error terms. Let Yi,t , Xi,t , and εi,t be the response, a design vector, and an error term
for the subject i at time t. In autoregressive models of the response itself, the current
response, Yi,t , is regressed on the previous response, Yi,t−1,

Yi,t � ρYi,t−1 + Xi,tβ + εi,t . (2.1.1)

In linear models with the first-order autoregressive error, AR(1) error, an error term,
εe i,t , is regressed on the previous error term, εe i,t−1,{

Yi,t � Xi,tβe + εe i,t

εe i,t � ρεe i,t−1 + ηi,t
. (2.1.2)

As discussed in Sect. 1.4.2, AR(1) errors are used in linear mixed effects models
and marginal models, and classified into these models too. For example, the model
(2.1.2) belongs to marginal models. The interpretation of the fixed effects parameter
βe is the same with linear mixed effects models and marginal models. However,
transition models of the response itself provide different interpretations of the fixed
effects parameter. In this book, the autoregressive models of the response itself are
discussed in detail. The differences from models with AR(1) errors are discussed in
Sect. 2.6. If the response is a discrete variable, such as a binary or count variable, the
interpretation of the fixed effects parameter differs across the threemajor approaches.

Here, we describe the difference of notation from Chap. 1. In Chap. 1, Yi �(
Yi1,Yi2, · · · ,Yini

)T
is the ni × 1 vector of the response corresponding to the ith

(i � 1, · · · , N ) subject measured from 1 to ni occasions, and Yi j is the jth measure-
ment. In autoregressive linear mixed effects models, the baseline is an important
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concept, and we model the baseline measurement separately from the measurement
at later time points. For these models in the following chapters, we define Yi,0 is a
baseline measurement, and Yi,t (t � 1, 2, · · · , Ti ) is the tth measurement after the

baseline measurement. Yi � (
Yi,0,Yi,1,Yi,2, · · · ,Yi,Ti

)T
is the (Ti + 1) × 1 vector of

the response.
The regression models that regress the current response on the previous response

and covariates have been called by various names: autoregressive models (Rosner
et al. 1985; Rosner and Muñoz 1988), conditional models (Rosner and Muñoz
1992), conditional autoregressive models (Schmid 1996), state-dependence models
(Lindsey 1993), transition models (Diggle et al. 2002), dynamic models (Anderson
and Hsiao 1982; Schmid 2001), Markov models, autoregressive response models,
lagged-response models (Rabe-Hesketh and Skrondal 2012), and so on. We shall
call them autoregressive models in this book.

Although processes other than AR(1) are not used much in longitudinal data
analysis, other processes are used in time series analysis.We introduce related process
briefly. An autoregressive moving average process of order (p, q) (ARMA(p, q)) is

Yt � ρ1Yt−1 + · · · + ρpYt−p + ξt + θ1ξt−1 + · · · + θqξt−q ,

where Yt ,Yt−1, · · · ,Yt−p are observed values, ξt , ξt−1, · · · , ξt−q are a random vari-
able with the mean zero and constant variance, ρ1, · · · , ρp are autoregressive param-
eters, and θ1, · · · , θq are also unknown parameters. The AR(1) is ARMA(1,0). An
autoregressive process of order p (AR(p)) is ARMA(p, 0) and

Yt � ρ1Yt−1 + · · · + ρpYt−p + ξt .

A moving average process of order q (MA(q)) is ARMA(0, q) and

Yt � ξt + θ1ξt−1 + · · · + θqξt−q .

In this book, we use only the AR(1) process.
Section 2.1 discusses autoregressive models for one subject. Section 2.2 intro-

duces random effects to account for variability across subjects in longitudinal data.
Section 2.3 introduces autoregressive linear mixed effects models with vector repre-
sentations which make clear many aspects of the models including the relationship
with linear mixed effects models. Section 2.4 provides details of variance covariance
structures. Section 2.5 provides estimation methods. Section 2.6 discusses models
with autoregressive error terms.

2.1.2 Response Changes in Autoregressive Models

This section shows how the response level changes in an autoregressive model and
the interpretation of parameters. For simplicity, we consider a case where there is
only one subject and neither random effect nor random error. First, we show an
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autoregressive model with an intercept. The response at time t (t � 1, 2, · · · , T ), Yt ,
is a linear function of the previous response, Yt−1, as

Yt � ρYt−1 + βint, (2.1.3)

where ρ is a regression coefficient of the previous response and βint is an intercept.
These are unknown parameters.

Assuming ρ �� 1, this model can be transformed as

Yt − Yt−1 � (1 − ρ)

(
βint

1 − ρ
− Yt−1

)
. (2.1.4)

If Yt−1 equals (1 − ρ)−1βint, the change is zero, and (1 − ρ)−1βint ≡ YAsy can be
interpreted as an asymptote if 0 < ρ < 1. YAsy is a parameter. The response changes
with asymptotes are {

Yt − Yt−1 � (1 − ρ)
(
YAsy − Yt−1

)
YAsy � (1 − ρ)−1βint

, (2.1.5)

where YAsy − Yt−1 is the size remaining to the asymptote. The expected change
from Yt−1 to Yt is proportional to the remaining size with a proportional constant
(1 − ρ). This interpretation is biologically important, and the model corresponds
to monomolecular (Mitscherlich) growth curves in continuous time. The curves are
nonlinear in the parameter ρ, and the relationship with nonlinear models is discussed
in Sect. 5.1. An asymptote is also called equilibrium or level at a steady state. Yt is
an internally dividing point that divides a segment line Yt−1YAsy into 1 − ρ : ρ, as

Yt � ρYt−1 + (1 − ρ)YAsy. (2.1.6)

Figure 2.1 shows a numerical example. The model is Yt � 0.6Yt−1 + 2 with
Y0 � 1. The asymptote is (1 − ρ)−1βint � 5. Y1 � 2.6, Y2 � 3.56, Y3 � 4.136,
and Y4 � 4.4816. As shown in the figure, autoregressive models represent a profile
with an initial sharp change, gradually decreasing rates of change, and approaching
to asymptote. For describing such phenomena, linear time trend models are not
sufficient. Although quadratic or higher order polynomial models sometimes show
adequate fit, their parameters are hard to interpret.

The model can also be transformed into the marginal form without the previous
response. Given Y0, Yt is

Yt � ρ t Y0 +
t∑

l�1

ρ t−lβint, (2.1.7)

where
∑t

l�1 ρ t−l � (
1 − ρ t

)
/(1 − ρ). If Y0 is modeled separately from Yt (t > 0)

as Y0 � βbase, the marginal form is
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Fig. 2.1 Autoregressive model, Yt � ρYt−1 + βint with Y0 � βbase. YAsy ≡ (1 − ρ)−1βint is the
asymptote. The change Yt −Yt−1 is proportional to the size remaining to the asymptote YAsy−Yt−1
with a proportional constant (1 − ρ). Yt is an internally dividing point that divides Yt−1YAsy into
1 − ρ : ρ and βbaseYAsy into 1 − ρt : ρt

Fig. 2.2 Autoregressive model, Yt � ρYt−1 + βint. a Effects of the autoregressive coefficient ρ.
b Effects of the autoregressive coefficient ρ (0 < ρ < 1). ρ affects both the asymptote,
(1 − ρ)−1βint, and the proportion of the change, (1 − ρ)

Yt � ρ tβbase +
(
1 − ρ t

)
βint/(1 − ρ)

� ρ tβbase +
(
1 − ρ t

)
YAsy. (2.1.8)



32 2 Autoregressive Linear Mixed Effects Models

This equation also shows that the asymptote, YAsy, can be expressed by (1−ρ)−1βint,
because Yt → (1− ρ)−1βint when t → ∞ if 0 < ρ < 1. Yt is an internally dividing
point that divides a segment line βbase YAsy into 1 − ρ t : ρ t .

2.1.3 Interpretation of Parameters

Figure 2.2a shows how changes in the response over time depend on the autoregres-
sive coefficient, ρ, in the model, Yt � ρYt−1 + βint. When 0 < ρ < 1, as previously
described, the response level changes to the asymptote, YAsy ≡ (1− ρ)−1βint. When
ρ � 1, Yt − Yt−1 � βint and the change per unit of time is βint. This shows a
linear time trend with an intercept of βbase and a slope of βint. When ρ > 1, the
response does not converge to an asymptote but instead shows a diverging trend.
When −1 < ρ < 0, the response becomes an asymptote with amplitude. In this
book, we consider only the case of 0 < ρ < 1. When there is no intercept term, βint,
the equation is Yt � ρYt−1 and the response changes to 0 if 0 < ρ < 1.

Figure 2.2b shows how changes in the response over time depend on the autore-
gressive coefficient, ρ, in the model, Yt � ρYt−1 + βint, under the constraint
0 < ρ < 1. The asymptote is (1 − ρ)−1βint, and changes in the response are pro-
portional to the size remaining, with a proportional constant (1 − ρ). Therefore, the
smaller the value of ρ, the larger the absolute difference between the baseline value
and the asymptote, and the faster the approach to the asymptote. Thus, ρ affects
the value of the asymptote and also the speed, or proportion, of the change to the
asymptote.

Fig. 2.3 Autoregressive model, Yt � ρYt−1 + βint with Y0 � βbase. a Effects of the baseline.
b Effects of the intercept. The asymptote, (1 − ρ)−1βint, depends on the intercept



2.1 Autoregressive Models of Response Itself 33

In this book, the parameter ρ is a constant value and does not randomly change
across subjects. In more general situations, ρ can be a random variable. It should be
noted that the asymptotes change simultaneously as ρ changes, and that there is a
constraint of 0 < ρ < 1 in order to interpret the model as a representation of profiles
approaching the asymptotes.

Figure 2.3a, b shows how changes in the response depend on the baseline and
intercept, respectively, in the model, Yt � ρYt−1 +βint with Y0 � βbase. The baseline
parameter defines the response at time 0, but the effect is diminishing. Because the
number of time points is limited in longitudinal data, the baseline is important. The
intercept defines the asymptote (1 − ρ)−1βint. The proportion of the change to the
asymptote is constant, (1 − ρ), but the change itself is larger when the remaining
size is larger. The remaining size is

YAsy − Yt−1 � ρ t−1
{
(1 − ρ)−1βint − βbase

}
� ρ t−1{YAsy − βbase

}
. (2.1.9)

Figure 2.4a shows how changes in the response depend on the time-independent
covariates in themodel,Yt � ρYt−1+βint+βcovx . Asymptotes, (1−ρ)−1(βint + βcovx),
linearly depend on the covariate, x, with the coefficient, (1−ρ)−1βcov. The proportion
of the change to the asymptote is the same, (1 − ρ), but the change is larger if the
remaining size is larger. Figure 2.4b shows how response changes when time as
a continuous variable is the time-dependent covariate. In this case, the asymptote
changes linearly with time.

Fig. 2.4 aAutoregressivemodel,Yt � ρYt−1+βint+βcovx . Effects of a time-independent covariate.
The asymptote, (1 − ρ)−1(βint + βcovx), linearly depends on the covariate, x , with the coefficient
(1 − ρ)−1βx . b Autoregressive model, Yt � ρYt−1 + βint + βcovt . The time-dependent covariate is
time, t , as a continuous variable
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Fig. 2.5 Autoregressive model, Yt � ρYt−1 + βint + βcovxt . Effects of a time-dependent covariate.
a Two time courses: the covariate changes at one time point and no covariate changes. b Response
changes to the new asymptote when the covariate value changes

Figure 2.5a, b shows how changes in the response depend on a time-dependent
covariate. For example, the response level will change depending on changes in
drug doses. Figure 2.5a shows two time courses in the response level: one is under
the covariate change at only one time point, while the other is under no covariate
changes. The response level depends not only on current covariate values but also
on past covariate values through the previous response in the model. This is called
state-dependence. Figure 2.5b shows response changes to the new asymptote when
the covariate value changes. If the covariate is changed temporally, this effect on the
response lasts for the time being and finally goes away. If the covariate is changed
and kept at some level, the responses gradually change to a new asymptote.

2.2 Examples of Autoregressive Linear Mixed Effects
Models

In Sect. 2.1, we considered the case of only one subject. In this section, we con-
sider longitudinal data in which there are multiple subjects, and take account of the
difference across subjects by random effects. We show several simple examples of
autoregressive linearmixed effectsmodels.Hereafter,βs are fixed effects parameters,
bs are random effects parameters, and εs are random errors. We discuss structures
of random errors in Sect. 2.4.1.



2.2 Examples of Autoregressive Linear Mixed Effects Models 35

2.2.1 Example Without Covariates

An example of autoregressive linear mixed effects models without covariates is{
Yi,0 � βbase + bbase i + εi,0

Yi,t � ρYi,t−1 + (βint + bint i ) + εi,t , (t > 0)
, (2.2.1)

where bbase i and bint i are random effects showing the differences across subjects,
and are assumed to be normally distributed. These equations can be represented by
the equation of baseline and that of response changes with the asymptotes,⎧⎪⎨

⎪⎩
Yi,0 � βbase + bbase i + εi,0

Yi,t − Yi,t−1 � (1 − ρ)
(
YAsy i − Yi,t−1

)
+ εi,t , (t > 0).

YAsy i � (1 − ρ)−1(βint + bint i )

(2.2.2)

These equations can also be represented by the marginal form,⎧⎪⎨
⎪⎩
Yi,0 � βbase + bbase i + εm i,0

Yi,t � ρ t (βbase + bbase i ) +
t∑

l�1
ρ t−l (βint + bint i ) + εm i,t , (t > 0)

, (2.2.3)

where εm i,t is

εm i,t �
t∑

l�0

ρ t−lεi,l . (2.2.4)

In particular, εm i,0 � εi,0. Here, m in subscript means the marginal. The following
expression holds:

εm i,t � ρεm i,t−1 + εi,t . (2.2.5)

Figure 2.6 shows examples where error terms are omitted. By including ran-
dom effects, we can represent the changes from a baseline response level to another
response level for each subject. These kinds of changes are seen in studies in which
the effects of intervention are examined. The variability across subjects at the base-
line and asymptote are Var(bbase i ) and Var

(
(1 − ρ)−1bint i

)
, respectively. The mean

structures are the same between Fig. 2.6a and b. The variability across subjects is
larger at the baseline compared to later time points in Fig. 2.6a, but it is less at the
baseline in Fig. 2.6b. The correlation between the baseline and asymptote is large in
some cases and small in others. When the effects of an intervention are examined,
variability across subjects changes because of the differences in the response to the
intervention across subjects.
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Fig. 2.6 Autoregressive linear mixed effects model—error terms are omitted, Yi,0 � βbase +
bbase i , Yi,t � ρYi,t−1 + βint + bint i . bbase i is a random baseline and bint i is a random intercept.
a Larger variance in a random baseline. b Larger variance in a random asymptote, (1 − ρ)−1bint i

2.2.2 Example with Time-Independent Covariates

We provide an example of autoregressive linear mixed effects models with time-
independent covariates. We model the baseline and the later time points separately.
The value of the time-independent covariate in each subject remains the same over
time. In the example, the response changes are compared between groups A and B.
The covariates are dummy variables indicating each group. Let xbase i � 1 for t � 0
and the subject i in group B and 0 otherwise. Let xint i � 1 for t > 0 and the subject
i in group B and 0 otherwise. The model is{

Yi,0 � βbase + βbase gxbase i + bbase i + εi,0

Yi,t � ρYi,t−1 + βint + βint gxint i + bint i + εi,t , (t > 0)
. (2.2.6)

The asymptote of the subject i, YAsy i , is

YAsy i � (1 − ρ)−1
(
βint + βint gxint i + bint i

)
. (2.2.7)

The expected values of the asymptotes of groups A and B are

(1 − ρ)−1βint,

(1 − ρ)−1
(
βint + βint g

)
.
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Fig. 2.7 Autoregressive linear mixed effects model under randomization—error terms are omitted,
Yi,0 � βbase + bbase i , Yi,t � ρYi,t−1 + βint + βint gxg + bint i . a, b The response changes in each
subject in two groups with xg � 0 in a and xg � 1 in b. Baseline distributions are similar between
groups but distributions at later times are not. The variances in a random baseline bbase i are similar
but the variances in a random asymptote (1 − ρ)−1bint i are not

The expected difference between the asymptotes of groups A and B is

(1 − ρ)−1βint g.

An example of the comparison across three treatment groups including a placebo
group in a randomized controlled trial (RCT) is shown in Sect. 3.1. In some cases,
variance covariance matrices are assumed to differ across treatment groups. For
example, Fig. 2.7 shows an illustration of an RCT where error terms are omitted. In
RCTs, the distribution of the responses at baseline is expected to be similar between
the two groups, but the distribution of the responses at later time points may largely
differ. In this case, we can assume βbase g � 0, the equal variances of bbase i , and the
different variances of bint i between the two groups.

2.2.3 Example with a Time-Dependent Covariate

As shown in Fig. 2.5, the asymptotes change according to changes in a time-
dependent covariate. An example of a time-dependent covariate is drug dosing in
a clinical study. Let xi,t be a drug dose for the subject i at time t. The following
equations are an example of autoregressive linear mixed effects models with a time-
dependent covariate:
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{
Yi,0 � βbase + bbase i + εi,0

Yi,t � ρYi,t−1 + (βint + bint i ) + (βcov + bcov i )xi,t + εi,t , (t > 0)
, (2.2.8)

where bcov i , a coefficient of the covariate xi,t , is an additional random variable. The
asymptote of the subject i at time t, YAsy i,t , is

YAsy i,t � (1 − ρ)−1{βint + bint i + (βcov + bcov i )xi,t
}
. (2.2.9)

The asymptote depends on the covariate xi,t . The term (1− ρ)−1bcov i represents the
difference in sensitivity to dose modifications across subjects. In some subjects, the
response level will change largely according to changes in dosing; in other subjects,
the response level will not change according to changes in dosing. In Sects. 3.3 and
4.3, examples of clinical studies in which the treatment dose is a time-dependent
covariate are shown.

2.3 Autoregressive Linear Mixed Effects Models

In this section, we introduce autoregressive linear mixed effects models (Funatogawa
et al. 2007, 2008a; Funatogawa et al. 2008b; Funatogawa and Funatogawa 2012a,
b). Similar to the example in Sect. 2.2.1, the model is represented in three ways:
an autoregressive form, response changes with asymptotes, and a marginal (uncon-
ditional) form. These representations are summarized in Table 2.1, along with the
nonlinear mixed effects models and differential equations in Chap. 5 and the state
space form in Chap. 6.

2.3.1 Autoregressive Form

Let Yi � (
Yi,0,Yi,1,Yi,2, · · · ,Yi,Ti

)T
be the (Ti + 1) × 1 vector of the response cor-

responding to the ith (i � 1, · · · , N ) subject measured from 0 to Ti. Yi,0 is a baseline
measurement, and Yi,t (t � 1, 2, · · · , Ti ) is the tth measurement after the baseline
measurement.AT denotes the transpose of a matrix A. For the vector representation,
we introduce a (Ti + 1) × (Ti + 1) matrix Fi whose elements just below the diagonal
are 1 and the other elements are 0. Then, FiYi is the vector of the previous response
as

FiYi � (
0,Yi,0,Yi,1, · · · ,Yi,Ti−1

)T
. (2.3.1)

For Ti � 3, Fi and FiYi are
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Table 2.1 Representations of autoregressive linear mixed effects models

Representation

(a) Autoregressive form Yi � ρFiYi + Xiβ + Zibi + εi

Vi � Var(Zibi + εi ) � ZiGZT
i + Ri

(b) Response changes with
asymptotesa

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Yi − FiYi � Ji
(
YBase Asy i − FiYi

)
+ εi

YBase Asy i � Xiβ
∗ + Zib*i

b*i ∼ MVN
(
0,MzGMT

z

)
εi ∼ MVN(0,Ri )

where β∗ � Mxβ and b*i � Mzbi

(c) Marginal
(unconditional) form

Yi � (Ii − ρFi )
−1(Xiβ + Zibi + εi )

�i � Var(Yi )

� Var
{
(Ii − ρFi )

−1(Zibi + εi )
}

� (Ii − ρFi )
−1
(
ZiGZT

i + Ri

){
(Ii − ρFi )

−1}T
� (Ii − ρFi )

−1Vi
{
(Ii − ρFi )

−1}T
(d) Nonlinear mixed effects
models (without covariate)b

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Yi j � f
(
ti j , β,bi

)
+ εi j

f
(
ti j , β,bi

) � (β1 + b1i )e−β3 ti j + (β2 + b2i )
(
1 − e−β3 ti j

)
bi � (b1i , b2i )T ,bi ∼ MVN(0,G)

εi � (
εi1, · · · , εini

)T
, εi ∼ MVN(0,Ri )

,

(e) Differential equation
(with a time-dependent
covariate)b

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dμi (t)/dt � κ{β2 + b2i + (βc + bci )xi (t) − μi (t)}
μi (0) � β1 + b1i

Yi j � μi
(
ti j
)
+ εi j

bi � (b1i , b2i , bci )T ,bi ∼ MVN(0,G)

εi � (
εi1, · · · , εini

)T
, εi ∼ MVN(0,Ri )

(f) State spacec ⎛
⎜⎝ μi,t

bi

⎞
⎟⎠ �

⎛
⎝ ρ Zi,t

0q×1 Iq×q

⎞
⎠
⎛
⎜⎝ μi,t−1

bi

⎞
⎟⎠ +

⎛
⎝Xi,tβ

0q×1

⎞
⎠ +

⎛
⎝ ε(AR)i,t

0q×1

⎞
⎠

Yi,t �
(
1 01×q

)⎛⎝μi,t

bi

⎞
⎠ + ε(ME)i,t

si(−1|−1) � 0(1+q)×1

Qi,0 ≡ Var

⎛
⎝ ε(AR)i,0

0q×1

⎞
⎠ � 0(q+1)×(q+1),Qi,t �

⎛
⎝ σ 2

AR 01×q

0q×1 0q×q

⎞
⎠

ri,t ≡ Var
(
ε(ME)i,t

) � σ 2
ME,Pi(−1|−1) �

⎛
⎝ 01×1 01×q

0q×1 G

⎞
⎠

,

aSee Sect. 2.3.2 for the definition of Ji ,Mx , andMz . bSee Chap. 5 for more details of the nonlinear mixed effects
models and differential equations. cSee Chap. 6 for more details of the state space representation
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Fi �

⎛
⎜⎜⎝
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠, (2.3.2)

FiYi �

⎛
⎜⎜⎝
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠
⎛
⎜⎜⎜⎜⎝
Yi,0
Yi,1
Yi,2
Yi,3

⎞
⎟⎟⎟⎟⎠ �

⎛
⎜⎜⎜⎝

0
Yi,0
Yi,1
Yi,2

⎞
⎟⎟⎟⎠.

Autoregressive linear mixed effects models are expressed as

Yi � ρFiYi + Xiβ + Zibi + εi , (2.3.3)

where ρ is an unknown regression coefficient of the previous response, β is a p × 1
vector of unknown fixed effects parameters,Xi is a known (Ti + 1)× p design matrix
of fixed effects, bi is a q × 1 vector of unknown random effects parameters, Zi is a
known (Ti + 1) × q design matrix of random effects, and εi is a (Ti + 1) × 1 vector
of random errors. It is assumed that bi and εi are both independent across subjects
and independently normally distributed with the mean zero vector and the variance
covariance matrices G and Ri , respectively,

bi ∼ MVN(0,G), (2.3.4)

εi ∼ MVN(0,Ri ). (2.3.5)

LetVi be the variance covariance matrix of the response vectorYi conditional on
the previous response FiYi . As with the linear mixed effects models shown in Sect.
1.2, the variance covariance matrix is written as

Vi � Var(Zibi + εi )

� ZiGZT
i + Ri . (2.3.6)

The explicit difference from linear mixed effects models (1.2.1) is the inclusion
of the term ρFiYi . However, there are also differences in the interpretation of model
parameters, changes in the response level, and variance covariance structures. We
will see these points in the following sections.

Table 2.2a gives the vector representation of the model (2.2.8) of autoregressive
linear mixed effects models with a time-dependent covariate for Ti � 3. In this
example, Xi � Zi . These are block diagonal matrices: the blocks correspond to the
baseline parts (t � 0) and the other parts (t > 0).
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Table 2.2 Three representations of an example of autoregressive linear mixed effects models for
Ti �3
Representation

(a) Autoregressive form Yi � ρFiYi + Xiβ + Zibi + εi (2.3.3). Model (2.2.8)⎛
⎜⎜⎜⎜⎜⎝

Yi,0

Yi,1

Yi,2

Yi,3

⎞
⎟⎟⎟⎟⎟⎠ � ρ

⎛
⎜⎜⎜⎜⎝

0

Yi,0

Yi,1

Yi,2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

1 0 0

0 1 xi,1

0 1 xi,2

0 1 xi,3

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎜⎝

βbase

βint

βcov

⎞
⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

1 0 0

0 1 xi,1

0 1 xi,2

0 1 xi,3

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎜⎝
bbase i

bint i

bcov i

⎞
⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

εi,0

εi,1

εi,2

εi,3

⎞
⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎝

0

ρYi,0

ρYi,1

ρYi,2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝

βbase + bbase i

βint + bint i + (βcov + bcov i )xi,1

βint + bint i + (βcov + bcov i )xi,2

βint + bint i + (βcov + bcov i )xi,3

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

εi,0

εi,1

εi,2

εi,3

⎞
⎟⎟⎟⎟⎠

where Fi �

⎛
⎜⎜⎜⎝
0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

⎞
⎟⎟⎟⎠ and FiYi �

⎛
⎜⎜⎜⎜⎝

0

Yi,0

Yi,1

Yi,2

⎞
⎟⎟⎟⎟⎠

(b) Response changes with asymptotes Yi − FiYi � Ji
(
YBase Asy i − FiYi

)
+ εi with

YBase Asy i � XiMxβ + ZiMzbi � Xiβ
∗ + Zib∗

i (2.3.13) where *(asterisk) shows the parameters for the
asymptote. Model (2.2.8) with the representation (2.3.7)⎛
⎜⎜⎜⎜⎜⎝

Yi,0

Yi,1 − Yi,0

Yi,2 − Yi,1

Yi,3 − Yi,2

⎞
⎟⎟⎟⎟⎟⎠ �

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 − ρ 0 0

0 0 1 − ρ 0

0 0 0 1 − ρ

⎞
⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

1 0 0

0 1 xi,1

0 1 xi,2

0 1 xi,3

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎜⎝

1 0 0

0 (1 − ρ)−1 0

0 0 (1 − ρ)−1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

βbase

βint

βcov

⎞
⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

1 0 0

0 1 xi,1

0 1 xi,2

0 1 xi,3

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎜⎝

1 0 0

0 (1 − ρ)−1 0

0 0 (1 − ρ)−1

⎞
⎟⎟⎠
⎛
⎜⎜⎝
bbase i

bint i

bcov i

⎞
⎟⎟⎠−

⎛
⎜⎜⎜⎜⎝

0

Yi,0

Yi,1

Yi,2

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+

⎛
⎜⎜⎜⎜⎝

εi,0

εi,1

εi,2

εi,3

⎞
⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 − ρ 0 0

0 0 1 − ρ 0

0 0 0 1 − ρ

⎞
⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

1 0 0

0 1 xi,1

0 1 xi,2

0 1 xi,3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

βbase + bbase i

β∗
int + b∗

int i

β∗
cov + b∗

cov i

⎞
⎟⎟⎟⎠−

⎛
⎜⎜⎜⎜⎝

0

Yi,0

Yi,1

Yi,2

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+

⎛
⎜⎜⎜⎜⎝

εi,0

εi,1

εi,2

εi,3

⎞
⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎝

βbase + bbase i

(1 − ρ)
{
β∗
int + b∗

int i +
(
β∗
cov + b∗

cov i

)
xi,1 − Yi,0

}
(1 − ρ)

{
β∗
int + b∗

int i +
(
β∗
cov + b∗

cov i

)
xi,2 − Yi,1

}
(1 − ρ)

{
β∗
int + b∗

int i +
(
β∗
cov + b∗

cov i

)
xi,3 − Yi,2

}

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

εi,0

εi,1

εi,2

εi,3

⎞
⎟⎟⎟⎟⎠

where Ji �

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 − ρ 0 0

0 0 1 − ρ 0

0 0 0 1 − ρ

⎞
⎟⎟⎟⎟⎠ and Mx � Mz �

⎛
⎜⎜⎝

1 0 0

0 (1 − ρ)−1 0

0 0 (1 − ρ)−1

⎞
⎟⎟⎠

(continued)
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Table 2.2 (continued)
Representation

(c) Marginal (unconditional) form Yi � (Ii − ρFi )
−1(Xiβ + Zibi + εi ) (2.3.14).

Model (2.2.8) with the marginal form (2.3.19)⎛
⎜⎜⎜⎜⎜⎝

Yi,0

Yi,1

Yi,2

Yi,3

⎞
⎟⎟⎟⎟⎟⎠ �

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

ρ 1 0 0

ρ2 ρ 1 0

ρ3 ρ2 ρ 1

⎞
⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

1 0 0

0 1 xi,1

0 1 xi,2

0 1 xi,3

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎜⎝

βbase

βint

βcov

⎞
⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

1 0 0

0 1 xi,1

0 1 xi,2

0 1 xi,3

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎜⎝
bbase i

bint i

bcov i

⎞
⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

εi,0

εi,1

εi,2

εi,3

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

where (Ii − ρFi )
−1 �

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

ρ 1 0 0

ρ2 ρ 1 0

ρ3 ρ2 ρ 1

⎞
⎟⎟⎟⎟⎟⎠

2.3.2 Representation of Response Changes with Asymptotes

The model (2.2.8) can be represented by response changes with asymptotes as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Yi,0 � βbase + bbase i + εi,0

Yi,t − Yi,t−1 � (1 − ρ)
(
YAsy i,t − Yi,t−1

)
+ εi,t , (t > 0)

YAsy i,t � (1 − ρ)−1
{
βint + bint i + (βcov + bcov i )xi,t

}
� β∗

int + b∗
int i − (

β∗
cov + b∗

cov i

)
xi,t

, (2.3.7)

where * (asterisk) shows the parameters for the asymptote. The asymptote linearly
depends on the covariate.

Changes at each time point can be shown in the following vector representation:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Yi,0 � Xi,0β + Zi,0bi + εi,0

Yi,t − Yi,t−1 � (1 − ρ)
(
YAsy i,t − Yi,t−1

)
+ εi,t , (t > 0)

YAsy i,t � (1 − ρ)−1
(
Xi,tβ + Zi,tbi

)
� Xi,tβ

∗ + Zi,tb∗
i

, (2.3.8)

where Xi,t and Zi,t are the corresponding 1 × p and 1 × q row vectors of Xi and
Zi . We consider only the case that Xi and Zi are both block diagonal matrices and
the blocks correspond to the baseline parts (t � 0) and the other parts (t > 0). The
parameters βs and bs are transformed into the new parameters β∗s and b∗s for the
asymptote by multiplying (1− ρ)−1. For the vector representations of the parameter
transformations β∗ � Mxβ and b∗

i � Mzbi , we introduce a p × p diagonal matrix
Mx and a q × q diagonal matrixMz . The diagonal elements ofMx andMz are 1 for
the baseline parameters, and (1 − ρ)−1 for the parameters of the later time points.
For example, there are three fixed effects parameters, βbase, βint, βcov, in the model
(2.3.7), and Mx is
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Mx �
⎛
⎜⎝
1 0 0

0 (1 − ρ)−1 0

0 0 (1 − ρ)−1

⎞
⎟⎠. (2.3.9)

Changes at all the time points can be shown in the following vector representation:

Yi − FiYi � Ji (XiMxβ + ZiMzbi − FiYi ) + εi . (2.3.10)

Yi − FiYi is a (Ti + 1) × 1 vector in which the first element is a baseline response,
Yi,0, and the other elements are response changes, Yi,t − Yi,t−1. For the vector repre-
sentation, we introduce a (Ti + 1)× (Ti + 1) diagonal matrix Ji . The (1, 1)th element
of Ji is 1, which corresponds to the baseline (t � 0), and the other elements are the
proportional constant (1 − ρ) which corresponds to the later time points (t > 0).
Thus, for Ti � 3, Ji is

Ji �

⎛
⎜⎜⎜⎝
1 0 0 0
0 1 − ρ 0 0

0 0 1 − ρ 0

0 0 0 1 − ρ

⎞
⎟⎟⎟⎠. (2.3.11)

Let YBase Asy i be the (Ti + 1) × 1 vector, and the first element corresponds to the
baseline, and the other elements correspond to the asymptotes,

YBase Asy i ≡ XiMxβ + ZiMzbi
� Xiβ

∗ + Zib∗
i . (2.3.12)

Then, the representation of response changeswith asymptotes of autoregressive linear
mixed effects models (2.3.3) is⎧⎨

⎩Yi − FiYi � Ji
(
YBase Asy i − FiYi

)
+ εi

YBase Asy i � Xiβ
∗ + Zib∗

i

. (2.3.13)

The expected value of YBase Asy i is

E
(
YBase Asy i

) � E(XiMxβ + ZiMzbi )

� XiMxβ

� Xiβ
∗.

The expected change fromYi,t−1 toYi,t given randomeffects is proportional to the size
remaining to the asymptote,YBase Asy i −FiYi except for the first element. Table 2.2b
gives the vector representation of (2.3.7) for Ti � 3.



44 2 Autoregressive Linear Mixed Effects Models

2.3.3 Marginal Form

The marginal form (unconditional form) of autoregressive linear mixed effects mod-
els (2.3.3) is

Yi � (Ii − ρFi )
−1(Xiβ + Zibi + εi ), (2.3.14)

where Ii is a (Ti + 1) × (Ti + 1) identity matrix. In this section, the subscript i of Ii
indicates the subject i instead of the size of the identity matrix. The above equation
is derived from multiplying both sides of the following equation by (Ii − ρFi )

−1,

Yi − ρFiYi � Xiβ + Zibi + εi . (2.3.15)

For Ti � 3, (Ii − ρFi )
−1 is

(Ii − ρFi )
−1 �

⎛
⎜⎜⎜⎝

1 0 0 0
−ρ 1 0 0

0 −ρ 1 0

0 0 −ρ 1

⎞
⎟⎟⎟⎠

−1

�

⎛
⎜⎜⎜⎜⎝

1 0 0 0
ρ 1 0 0

ρ2 ρ 1 0

ρ3 ρ2 ρ 1

⎞
⎟⎟⎟⎟⎠. (2.3.16)

The expectation given random effects bi is E(Yi |bi ) � (Ii − ρFi )
−1(Xiβ + Zibi ),

and the marginal expectation is E(Yi ) � (Ii − ρFi )
−1Xiβ. The expectation for a

typical subject and the marginal expectation are the same, E(Yi |bi � 0) � E(Yi ).
Subject specific interpretation and marginal interpretation are the same. Let �i be
the marginal variance covariance matrix of the response vector Yi . �i is

�i � Var(Yi )

� Var
{
(Ii − ρFi )

−1(Zibi + εi )
}

� (Ii − ρFi )
−1
(
ZiGZT

i + Ri
){

(Ii − ρFi )
−1
}T

� (Ii − ρFi )
−1Vi

{
(Ii − ρFi )

−1
}T

. (2.3.17)

Given the marginal variance covariance matrix �i , the variance covariance matrix
of the autoregressive form Vi can be expressed as

Vi � (Ii − ρFi )�i (Ii − ρFi )
T . (2.3.18)

The marginal form of the model (2.2.8) is
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Yi,0 � βbase + bbase i + εm i,0

Yi,t � ρ t (βbase + bbase i )

+
t∑

l�1
ρ t−l

{
βint + bint i + (βcov + bcov i )xi,l

}
+ εm i,t , (t > 0)

, (2.3.19)

where εm i,t � ∑t
l�0 ρ t−lεi,l . Table 2.2c provides the vector representation of (2.3.19)

for Ti � 3.

2.4 Variance Covariance Structures

This section shows the variance covariance structures in detail. The variance
covariance matrix of the response vector in autoregressive linear mixed effects
models is Vi � ZiGZT

i + Ri as (2.3.6). The marginal form is �i �
(Ii − ρFi )

−1
(
ZiGZT

i + Ri
){

(Ii − ρFi )
−1
}T

as (2.3.17). This matrix has two parts,

(Ii − ρFi )
−1
(
ZiGZT

i

){
(Ii − ρFi )

−1
}T

and (Ii − ρFi )
−1Ri

{
(Ii − ρFi )

−1
}T

. Given
�i , Vi � (Ii − ρFi )�i (Ii − ρFi )

T as (2.3.18). Section 2.4.1 shows structures of
random errors, in particular, the AR(1) error and measurement error, and the vari-
ance covariance matricesRi which are induced by the AR(1) error and measurement
error. Section 2.4.2 shows the structure of ZiGZT

i which is induced by random
effects. Section 2.4.3 shows the variance covariance matrices Vi and �i which are
induced by both random effects and random errors. Section 2.4.4 shows the variance
covariance matrix for asymptotes.

2.4.1 AR(1) Error and Measurement Error

In linear mixed effects models with random effects, an independent error is often
assumed for random errors. However, an independent error in an autoregressive form
is an AR(1) error in the marginal form. In actual data analysis, a measurement error
that is independent across time is often seen. An independent error in amarginal form
is a reasonable assumption, particularly when the measurement method is imprecise.
We consider the error structures induced by an AR(1) error and a measurement error
simultaneously. We consider two different assumptions for an AR(1) error term in
Yi,0.

First, εi,0 does not include anAR(1) error. The error structure in the autoregressive
form such as (2.2.1) is{

εi,0 � ε(ME)i,0

εi,t � ε(AR)i,t + ε(ME)i,t − ρε(ME)i,t−1, (t > 0)
, (2.4.1)
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where ε(AR)i,t and ε(ME)i,t independently follow a normal distribution with the mean
0 and the variances σ 2

AR and σ 2
ME, respectively. Here, AR means autoregressive, and

ME means a measurement error. In the marginal form such as (2.2.3), this error
structure is

⎧⎪⎨
⎪⎩

εm i,0 � ε(ME)i,0

εm i,t �
t∑

j�1
ρ t− jε(AR)i, j + ε(ME)i,t , (t > 0)

. (2.4.2)

From these equations, we can confirm that ε(ME)i,t is an independent error in the
marginal form. The variance of εm i,t is not constant and this AR(1) error is not
stationary.

Second, we consider a stationary AR(1) error. In the autoregressive form, the error
structure is {

εi,0 � ε(AR,ST)i,0 + ε(ME)i,0

εi,t � ε(AR,ST)i,t + ε(ME)i,t − ρε(ME)i,t−1, (t > 0)
, (2.4.3)

where ε(AR,ST)i,0, ε(AR,ST)i,t (t > 0), and ε(ME)i,t independently follow a normal

distribution with the mean 0 and the variances
(
1 − ρ2

)−1
σ 2
AR,ST, σ

2
AR,ST, and σ 2

ME,
respectively. Here, ST in subscript means stationary. In the marginal form, this error
structure is

εm i,t �
t∑

j�0

ρ t− jε(AR,ST)i, j + ε(ME)i,t . (2.4.4)

The variance of εm i,t is Var
(
εm i,t

) � (
1 − ρ2

)−1
σ 2
AR,ST + σ 2

ME and it is constant.
The model (2.2.1) (t > 0) with the error structure (2.4.1) is

Yi,t � ρYi,t−1 + (βint + bint i ) + ε(AR)i,t + ε(ME)i,t − ρε(ME)i,t−1, (t > 0).

The following transformation makes clear that ε(ME)i,t is a measurement error,

(
Yi,t − ε(ME)i,t

) � ρ
(
Yi,t−1 − ε(ME)i,t−1

)
+ (βint + bint i ) + ε(AR)i,t . (2.4.5)

Yi,t − ε(ME)i,t is a latent variable which would be available if there were no measure-
ment errors. The state space representation in Sect. 6.3.1 uses this representation.

Now we show the variance covariance matrix of these error structures. Let RME i

be a variance covariance matrix of a measurement error, ε(ME)i,t , in the autoregressive
form and�ME i be a corresponding variance covariance matrix in the marginal form.
Because the error term is independent and has a constant variance in the marginal
form, �ME i � σ 2

MEIi . Then the autoregressive form, RME i , is
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Table 2.3 Variance covariance structures for autoregressive linear mixed effects models in the
autoregressive form and marginal form for Ti �3
Autoregressive form
Vi � ZiGZT

i + Ri

Vi � (
Ii − ρFi

)
�i
(
Ii − ρFi

)T
Marginal (unconditional) form

�i � (
Ii − ρFi

)−1Vi

{(
Ii − ρFi

)−1
}T

(a) Measurement error

RME i � σ2
ME

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −ρ 0 0

−ρ 1 + ρ2 −ρ 0

0 −ρ 1 + ρ2 −ρ

0 0 −ρ 1 + ρ2

⎞
⎟⎟⎟⎟⎟⎟⎠

(b) Measurement error

�ME i � σ2
ME

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

(c) Non-stationary AR(1)

RAR i � σ2
AR

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

(d) Non-stationary AR(1)

�AR i � σ2
AR

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 1 ρ ρ2

0 ρ 1 + ρ2 ρ + ρ3

0 ρ2 ρ + ρ3 1 + ρ2 + ρ4

⎞
⎟⎟⎟⎟⎟⎟⎠

When j is infinite, the ( j, j)th element is(
1 − ρ2

)−1
σ2
AR

(e) Stationary AR(1)

RAR,ST i � σ2
AR,ST

⎛
⎜⎜⎜⎜⎜⎜⎝

1/
(
1 − ρ2

)
0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(f) Stationary AR(1)

�AR,ST i � σ2AR,ST(
1−ρ2

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(g) Random baseline
ZiGZT

i

�

⎛
⎜⎜⎜⎜⎝

1

0

0

0

⎞
⎟⎟⎟⎟⎠σ2

G0

(
1 0 0 0

)
�

⎛
⎜⎜⎜⎜⎜⎝

σ2
G0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

(h) Random baseline(
Ii − ρFi

)−1ZiGZT
i

{(
Ii − ρFi

)−1
}T

� σ2
G0

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ ρ2 ρ3

ρ ρ2 ρ3 ρ4

ρ2 ρ3 ρ4 ρ5

ρ3 ρ4 ρ5 ρ6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

When j and k are infinite, the ( j, k) th element is 0

(i) Random baseline and random intercept

ZiGZT
i �

⎛
⎜⎜⎜⎜⎝

1 0

0 1

0 1

0 1

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎝ σ2

G0 σG01

σG01 σ2
G1

⎞
⎟⎠
(
1 0 0 0

0 1 1 1

)

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2
G0 σG01 σG01 σG01

σG01 σ2
G1 σ2

G1 σ2
G1

σG01 σ2
G1 σ2

G1 σ2
G1

σG01 σ2
G1 σ2

G1 σ2
G1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(j) Random baseline and random intercept(
Ii − ρFi

)−1ZiGZT
i

{(
Ii − ρFi

)−1
}T

The ( j + 1, k + 1) th element is

ρ j+kσ2
G0 +

(
ρ j + ρk − 2ρ j+k

)
(1 − ρ)−1σG01 +(

1 − ρ j
)(

1 − ρk
)
(1 − ρ)−2σ2

G1

When j and k are infinite, it is
(
1 − ρ2

)−1
σ2
G1
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RME i � (Ii − ρFi )�ME i (Ii − ρFi )
T . (2.4.6)

Table 2.3a and b shows these matrices for Ti � 3. RME i is a structure similar to
two-band Toeplitz in Table 1.1m except for the (1, 1)th element.

Let RAR i and RAR,ST i be variance covariance matrices of AR(1) errors of ε(AR)i,t
and ε(AR,ST)i,t in the autoregressive form, and �AR i and �AR,ST i be corresponding
variance covariance matrices in the marginal form. Table 2.3c–f shows these matri-
ces. If the model has a random baseline effect bbase i , we cannot decide whether
the AR(1) error is stationary based on the model fit, as mentioned in Sect. 2.4.2.
The parameter σ 2

AR depends on the unit time. The jth diagonal element of �AR i

is σ 2
AR

(
1 + ρ2 + · · · + ρ2( j−1)

)
. When j is infinite, it is

(
1 − ρ2

)−1
σ 2
AR and does not

depend on the unit time.

2.4.2 Variance Covariance Matrix Induced by Random
Effects

Next, we consider the contribution of random effects to the variance covariance
matrices of the response vector. As shown in the model (2.2.1), let the baseline level,
bbase i (t � 0), and the intercept, bint i (t > 0), be random effects. bi � (bbase i , bint i )

T

is assumed to follow a bivariate normal distribution with the mean zero vector and
the variance covariance matrix G with the variances σ 2

G0 and σ 2
G1, and covariance

σG01. It is expressed as

(
bbase i
bint i

)
∼ MVN

⎛
⎝( 0

0

)
,

⎛
⎝ σ 2

G0 σG01

σG01 σ 2
G1

⎞
⎠
⎞
⎠. (2.4.7)

For Ti � 3, the autoregressive form of the variance covariance matrix of the response
vector induced by the random effects is

Var(Zibi ) � ZiGZT
i

�

⎛
⎜⎜⎝
1 0
0 1
0 1
0 1

⎞
⎟⎟⎠
⎛
⎝ σ 2

G0 σG01

σG01 σ 2
G1

⎞
⎠( 1 0 0 0

0 1 1 1

)
�

⎛
⎜⎜⎜⎜⎜⎝

σ 2
G0 σG01 σG01 σG01

σG01 σ 2
G1 σ 2

G1 σ 2
G1

σG01 σ 2
G1 σ 2

G1 σ 2
G1

σG01 σ 2
G1 σ 2

G1 σ 2
G1

⎞
⎟⎟⎟⎟⎟⎠.

This is a block diagonal matrix. The transformation to the marginal form is

Var
(
(Ii − ρFi )

−1Zibi
) � (Ii − ρFi )

−1ZiGZT
i

{
(Ii − ρFi )

−1
}T
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�

⎛
⎜⎜⎜⎜⎝

1 0 0 0
ρ 1 0 0

ρ2 ρ 1 0

ρ3 ρ2 ρ 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

σ 2
G0 σG01 σG01 σG01

σG01 σ 2
G1 σ 2

G1 σ 2
G1

σG01 σ 2
G1 σ 2

G1 σ 2
G1

σG01 σ 2
G1 σ 2

G1 σ 2
G1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 ρ ρ2 ρ3

0 1 ρ ρ2

0 0 1 ρ

0 0 0 1

⎞
⎟⎟⎟⎟⎠.

The ( j + 1, k + 1)th element of this matrix is

ρ j+kσ 2
G0 +

(
ρ j + ρk − 2ρ j+k

1 − ρ

)
σG01 +

(
1 − ρ j

)(
1 − ρk

)
σ 2
G1

(1 − ρ)2
. (2.4.8)

When both j and k are infinite, the (j, k)th element is
(
1 − ρ2

)−1
σ 2
G1; this value

represents the inter-individual variance of the random asymptotes. Table 2.3i and j
shows these matrices.

Next, we consider a casewith three random effects. As shown in themodel (2.2.8),
let the baseline level, bbase i (t � 0), the intercept, bint i (t > 0), and a covariate effect,
bcov i , be randomeffects.bi � (bbase i , bint i , bcov i )

T is assumed to follow the trivariate
normal distribution,

⎛
⎜⎝
bbase i
bint i
bcov i

⎞
⎟⎠ ∼ MVN

⎛
⎜⎜⎝
⎛
⎝ 0
0
0

⎞
⎠,

⎛
⎜⎜⎝

σ 2
Gb σGbi σGbc

σGbi σ 2
Gi σGic

σGbc σGic σ 2
Gc

⎞
⎟⎟⎠
⎞
⎟⎟⎠. (2.4.9)

For Ti � 3, the variance covariance matrix of the response vector induced by the
random effects is

Var(Zibi ) � ZiGZT
i �

⎛
⎜⎜⎜⎝
1 0 0
0 1 xi,1
0 1 xi,2
0 1 xi,3

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

σ 2
Gb σGbi σGbc

σGbi σ 2
Gi σGic

σGbc σGic σ 2
Gc

⎞
⎟⎟⎠
⎛
⎜⎝ 1 0 0 0
0 1 1 1
0 xi,1 xi,2 xi,3

⎞
⎟⎠.

Table 2.3g shows the autoregressive form of the variance covariance structure
induced by a random baseline, bbase i , for Ti � 3. σ 2

G0 is the (1, 1)th element of
Vi , and the difference in the assumptions between RAR i and RAR,ST i is also on the
(1, 1)th element in Table 2.3c and e. Therefore, if the model has a random baseline
effect, we cannot decide whether the AR(1) error is stationary or not based on the
model fit. Table 2.3h shows the corresponding marginal form.
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2.4.3 Variance Covariance Matrix Induced by Random
Effects and Random Errors

We will now consider the variance covariance matrix of the response vector when
the random effects, bbase i and bint i , an AR(1) error, ε(AR)i,t , and a measurement
error, ε(ME)i,t , are assumed simultaneously. First, we assume a non-stationary AR(1)
error with ε(AR)i,0 � 0. For Ti � 3, Table 2.4a shows the autoregressive form Vi �
ZiGZT

i + Ri . Table 2.4b shows the corresponding marginal form �i , where A is a
4 × 4 matrix, and the ( j + 1, k + 1) th element is (2.4.8). When j and k are infinite,
the random effects and the measurement errors produce a compound symmetry (CS)
structure with the diagonal elements being

(
1 − ρ2

)−1
σ 2
G1+σ 2

ME and the nondiagonal

elements being
(
1 − ρ2

)−1
σ 2
G1. Next, we assume a stationary AR(1) error ε(AR,ST)i,t

instead of ε(AR)i,t . Table 2.4c shows the autoregressive formof the variance covariance
structure of the response vector Vi . Table 2.4d shows the corresponding marginal
form �i .

Table 2.4 Examples of variance covariance matrices of the response vector induced by random
effects and random errors in the autoregressive form and marginal form for Ti �3
Representation, assumption on AR(1) error

(a) Autoregressive form Vi , non-stationary AR(1)

ZiGZT
i + RAR i + RME i �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σ 2
G0 σG01 σG01 σG01

σG01 σ 2
G1 σ 2

G1 σ 2
G1

σG01 σ 2
G1 σ 2

G1 σ 2
G1

σG01 σ 2
G1 σ 2

G1 σ 2
G1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ σ 2
AR

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠ + σ 2

ME

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −ρ 0 0

−ρ 1 + ρ2 −ρ 0

0 −ρ 1 + ρ2 −ρ

0 0 −ρ 1 + ρ2

⎞
⎟⎟⎟⎟⎟⎟⎠

(b)aMarginal (unconditional) form �i , non-stationary AR(1)

(Ii − ρFi )
−1(ZiGZT

i

){
(Ii − ρFi )

−1}T + �AR i + �ME i

� A + σ 2
AR

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 1 ρ ρ2

0 ρ 1 + ρ2 ρ + ρ3

0 ρ2 ρ + ρ3 1 + ρ2 + ρ4

⎞
⎟⎟⎟⎟⎟⎟⎠

+ σ 2
ME

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

(c) Autoregressive form Vi , stationary AR(1)

ZiGZT
i + RAR,ST i + RME i �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σ 2
G0 σG01 σG01 σG01

σG01 σ 2
G1 σ 2

G1 σ 2
G1

σG01 σ 2
G1 σ 2

G1 σ 2
G1

σG01 σ 2
G1 σ 2

G1 σ 2
G1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ σ 2
AR,ST

⎛
⎜⎜⎜⎜⎜⎝

1
1−ρ2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ + σ 2

ME

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −ρ 0 0

−ρ 1 + ρ2 −ρ 0

0 −ρ 1 + ρ2 −ρ

0 0 −ρ 1 + ρ2

⎞
⎟⎟⎟⎟⎟⎟⎠

(d)aMarginal (unconditional) form �i , stationary AR(1)

(Ii − ρFi )
−1(ZiGZT

i

){
(Ii − ρFi )

−1}T + �AR,ST i + �ME i � A +
σ 2
AR,ST(

1 − ρ2
)

⎛
⎜⎜⎜⎜⎜⎜⎝

1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1

⎞
⎟⎟⎟⎟⎟⎟⎠

+ σ 2
ME

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

aThe ( j + 1, k + 1) th element of A is ρ j+kσ 2
G0 + (ρ j + ρk − 2ρ j+k )(1 − ρ)−1σG01 + (1 − ρ j )

(
1 − ρk

)
(1 − ρ)−2σ 2

G1
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2.4.4 Variance Covariance Matrix for Asymptotes

In Sect. 2.3.2, fixed effects and random effects parameters, β and bi , were multiplied
by matrices, Mx and Mz , and transformed to the parameters for the asymptotes, β∗

and b∗
i . In this section, we consider the variance covariance matrix of b∗

i .
First,we consider the case of two randomeffects,bi � (bbase i , bint i )

T , as shown in
themodel (2.2.1). LetMz be a diagonalmatrixwith diagonal elements

(
1, (1 − ρ)−1

)
.

Then, bi is transformed to b∗
i � Mzbi ,

b∗
i �

(
bbase i
b∗
int i

)
�
(
1 0

0 (1 − ρ)−1

)(
bbase i
bint i

)
�
(

bbase i

(1 − ρ)−1bint i

)
. (2.4.10)

Here, * (asterisk) shows the parameters for the asymptote. bi and b∗
i follow multi-

variate normal distributions,

bi ∼ MVN(0,G), (2.4.11)

b∗
i ∼ MVN

(
0,MzGMT

z

)
. (2.4.12)

The variance covariance matrix of b∗
i is

Var
(
b∗
i

) � Var(Mzbi ) � MzGMT
z �

(
1 0

0 (1 − ρ)−1

)⎛⎝ σ 2
G0 σG01

σG01 σ 2
G1

⎞
⎠( 1 0

0 (1 − ρ)−1

)

�
⎛
⎝ σ 2

G0 (1 − ρ)−1σG01

(1 − ρ)−1σG01 (1 − ρ)−2σ 2
G1

⎞
⎠. (2.4.13)

(1− ρ)−1σG01 is the covariance of the random baseline and random asymptote. The
correlation is

Corr
(
bbase i , b

∗
int i

) � σG01

(1 − ρ)σG0σG1
. (2.4.14)

Next, we consider the case of three random effects bi � (bbase i , bint i , bcov i )
T as

shown in the model (2.2.8). Let Mz be a diagonal matrix with diagonal elements(
1, (1 − ρ)−1, (1 − ρ)−1

)
. bi is transformed to b∗

i � Mzbi ,

b∗
i �

⎛
⎜⎝
bbase i
b∗
int i

b∗
cov i

⎞
⎟⎠ �

⎛
⎜⎝
1 0 0

0 (1 − ρ)−1 0

0 0 (1 − ρ)−1

⎞
⎟⎠
⎛
⎜⎝
bbase i
bint i
bcov i

⎞
⎟⎠ �

⎛
⎜⎝

bbase i

(1 − ρ)−1bint i

(1 − ρ)−1bcov i

⎞
⎟⎠

(2.4.15)
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The variance covariance matrix of b∗
i , MzGMT

z is

MzGMT
z �

⎛
⎜⎝
1 0 0

0 (1 − ρ)−1 0

0 0 (1 − ρ)−1

⎞
⎟⎠
⎛
⎜⎜⎝

σ 2
Gb σGbi σGbc

σGbi σ 2
Gi σGic

σGbc σGic σ 2
Gc

⎞
⎟⎟⎠
⎛
⎜⎝
1 0 0

0 (1 − ρ)−1 0

0 0 (1 − ρ)−1

⎞
⎟⎠

�

⎛
⎜⎜⎝

σ 2
Gb (1 − ρ)−1σGbi (1 − ρ)−1σGbc

(1 − ρ)−1σGbi (1 − ρ)−2σ 2
Gi (1 − ρ)−2σGic

(1 − ρ)−1σGbc (1 − ρ)−2σGic (1 − ρ)−2σ 2
Gc

⎞
⎟⎟⎠. (2.4.16)

2.5 Estimation in Autoregressive Linear Mixed Effects
Models

Similar to the linear mixed effects models in Chap. 1, maximum likelihood (ML)
methods are used for estimation in autoregressive linear mixed effects models. There
are several ways to calculate likelihood. Sections 2.5.1 and 2.5.2 show likelihood of
marginal and autoregressive forms, respectively. Likelihood of the marginal form
can be also calculated using the Kalman filter in Chap. 6. Section 2.5.3 explains the
method to obtain indirectly the ML estimates from the autoregressive form using
estimation methods of linear mixed effects models.

2.5.1 Likelihood of Marginal Form

The marginal form of autoregressive linear mixed effects models is

Yi � (Ii − ρFi )
−1(Xiβ + Zibi + εi ). (2.5.1)

The response vector follows a multivariate normal distribution with the mean,

E(Yi ) � (Ii − ρFi )
−1Xiβ, (2.5.2)

and the variance covariance matrix,

�i � (Ii − ρFi )
−1Vi

{
(Ii − ρFi )

−1
}T

. (2.5.3)

Then, the marginal (unconditional) form of –2 log-likelihood (−2ll) is
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−2llML �
N∑
i�1

[
ni log(2π ) + log|�i | +

{
Yi − (Ii − ρFi )

−1Xiβ
}T

�−1
i

{
Yi − (Ii − ρFi )

−1Xiβ
}]

.

(2.5.4)

When the variance covariance parameters and the autoregressive parameter, ρ, are
known, the ML estimators (MLEs) of the fixed effects are given by

β̂ �
[

N∑
i�1

{
(Ii − ρFi )

−1Xi
}T

�−1
i (Ii − ρFi )

−1Xi

]−1 N∑
i�1

{
(Ii − ρFi )

−1Xi
}T

�−1
i Yi .

(2.5.5)

Toobtain theMLestimates of the variance covariance parameters andρ, we substitute
β̂ for β in −2llML (2.5.4). This concentrated −2llML CONC is expressed as

−2llML CONC �
N∑
i�1

ni log(2π ) +
N∑
i�1

log|�i | +
N∑
i�1

YT
i �−1

i Yi

−
{

N∑
i�1

YT
i �−1

i (Ii − ρFi )
−1Xi

}
β̂. (2.5.6)

We can calculate −2llML CONC based on (2.5.6), and we can also use the modi-
fied Kalman filter presented in Chap. 6. We minimize −2llML CONC by optimization
methods. If some elements of Yi are intermittently missing but the corresponding
elements ofXi are known, we can use this equation deleting the missing part and the
corresponding parts of (Ii − ρFi )

−1Xi and �i .
The standard errors of the ML estimates are derived from the Hessian of the log-

likelihood. To obtain the standard errors, the fixed effects parameters are included
in the log-likelihood. It is necessary to parameterize the intended parameters, such
as the asymptote, directly. The Hessian at the ML estimates can be obtained by
numerical methods. The random effects are predicted by

b̂i � G
∧{(

Ii − ρ̂Fi
)−1

Zi

}T
�
∧−1

i

{
Yi − (

Ii − ρ̂Fi
)−1

Xi β̂
}
. (2.5.7)

2.5.2 Likelihood of Autoregressive Form

The autoregressive form of autoregressive linear mixed effects models given the
previous response is

Yi � ρFiYi + Xiβ + Zibi + εi . (2.5.8)

The response vector follows amultivariate normal distributionwith themean ρFiYi+
Xiβ and the variance covariance matrix Vi . Then, the autoregressive form of −2ll is
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−2llML A �
N∑
i�1

{
ni log(2π ) + log|Vi | + (Yi − ρFiYi − Xiβ)TV−1

i (Yi − ρFiYi − Xiβ)
}
.

(2.5.9)

where log|Vi | is equal to log|�i |. When there are no intermittently missing response
values, −2llML (2.5.4) and −2llML A give the same value, and we can obtain the
MLEs using either equation. However, when elements are intermittently missing,
we cannot calculate the autoregressive form (2.5.9). When the variance covariance
parameters and the autoregressive parameter, ρ, are known, the MLEs of the fixed
effects are given by

β̂ �
(

N∑
i�1

XT
i V

−1
i Xi

)−1 N∑
i�1

XT
i V

−1
i (Ii − ρFi )Yi . (2.5.10)

To obtain the ML estimates of the variance covariance parameters and ρ, we sub-
stitute β̂ for β in −2llML A (2.5.9), and minimize the concentrated −2llML A CONC by
optimization methods.

2.5.3 Indirect Methods Using Linear Mixed Effects Models

The autoregressive form (2.5.8) can be expressed by

Yi � X#
i β

# + Zibi + εi , (2.5.11)

where β# � (
βT , ρ

)T
and X#

i � (Xi ,FiYi ). The −2ll of the autoregressive form
(2.5.9) is expressed by

−2llML L �
N∑
i�1

{
ni log(2π ) + log|Vi | +

(
Yi − X#

i β
#)TV−1

i

(
Yi − X#

i β
#)}.
(2.5.12)

These are the same forms with linear mixed effects models (1.2.1) and (1.5.7) in
Chap. 1, but β# and Vi include the unknown parameter ρ. However, in some covari-
ance structures such as the variance covariance structure in Table 2.4a and c, a known
Vi does not specify the variance covariance parameters andρ simultaneously. In these
cases, we can use an indirect method based on (2.5.12). WhenVi is known, the fixed
effects β and ρ are estimated by

β̂
# �

(
N∑
i�1

X#T
i V−1

i X#
i

)−1 N∑
i�1

X#T
i V−1

i Yi . (2.5.13)



2.5 Estimation in Autoregressive Linear Mixed Effects Models 55

To obtain the estimates of the variance covariance parameters, we substitute β̂
#
for

β# in −2llML L (2.5.12) and minimize it using optimization methods.
In the variance covariance structure in Table 2.4a, the random baseline and the

random intercept are correlated and there are a measurement error and an autoregres-
sive error. Although there are six parameters, ρ, σ 2

G0, σ 2
G1, σG01, σ 2

ME, and σ 2
AR, there

are five distinct elements in Vi : σ 2
G0 + σ 2

ME for (1, 1)th, σ 2
G0 + σ 2

AR +
(
1 + ρ2

)
σ 2
ME

for (j, j)th ( j > 1), σG01 − ρσ 2
ME for ( j, j + 1) and ( j, j − 1)th, σG01 for (1, j) and

(j, 1)th ( j > 2), and σ 2
G1 otherwise. In this case, we can use the following modified

estimation method. First, we reparameterize Vi as

Vi �

⎛
⎜⎜⎜⎜⎜⎜⎝

σ 2#
G0 σG01 σG01 σG01

σG01 σ 2
G1 σ 2

G1 σ 2
G1

σG01 σ 2
G1 σ 2

G1 σ 2
G1

σG01 σ 2
G1 σ 2

G1 σ 2
G1

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

Rdiag Rsub 0 0

Rsub Rdiag Rsub 0

0 Rsub Rdiag Rsub

0 0 Rsub Rdiag

⎞
⎟⎟⎟⎟⎟⎠, (2.5.14)

where σG01 and σ 2
G1 are common between the structures in Table 2.4a and (2.5.14)

and Rdiag � σ 2
AR +

(
1 + ρ2

)
σ 2
ME, Rsub � −ρσ 2

ME, and σ 2#
G0 � −Rdiag + σ 2

G0 + σ 2
ME �

σ 2
G0 − σ 2

AR − ρ2σ 2
ME. Then, σ

2
ME, σ 2

AR, and σ 2
G0 are

σ 2
ME � −Rsub/ρ, (2.5.15)

σ 2
AR � Rdiag − (

1 + ρ2
)
σ 2
ME, (2.5.16)

σ 2
G0 � σ 2#

G0 + σ 2
AR + ρ2σ 2

ME. (2.5.17)

If σ 2
AR,ST is assumed instead of σ 2

AR as the structure in Table 2.4c, the (1, 1)th

element in Vi is σ 2
G0 +

(
1 − ρ2

)−1
σ 2
AR,ST + σ 2

ME. σ
2
AR,ST is given by (2.5.16) and σ 2

G0
is

σ 2
G0 � σ 2#

G0 − ρ2
(
1 − ρ2

)−1
σ 2
AR,ST + ρ2σ 2

ME. (2.5.18)

This method uses an estimation method for linear mixed effects models. It is use-
ful in practice, because standard software for longitudinal data analysis can be used
for the estimation if it supports these variance covariance structures. The ML esti-
mation of the SASMIXED procedure, for example, is used. It uses a ridge-stabilized
Newton–Raphson algorithm for optimization. However, this method cannot be used
when the previous response or the covariates are missing. Furthermore, this method
does not provide the standard errors of the parameters directly. This method may be
useful to find initial values of parameters before optimization for Sects. 2.5.1 and
2.5.2.

Here, we provide the SAS code of the MIXED procedure to obtain the ML esti-
mates of the following model:



56 2 Autoregressive Linear Mixed Effects Models

{
Yi,0 � βg,base + bbase i + ε(AR,ST)i,0 + ε(ME)i,0

Yi,t � ρYi,t−1 + βg,int + bint i + ε(AR,ST)i,t + ε(ME)i,t − ρε(ME)i,t−1, (t > 0)
,

(2.5.19)

where g � 0 for group A and g � 1 for group B. βg,base and βg,int with the subscript
g represent the parameters of the baseline and intercept, β0,base, β1,base, β0,int, and
β1,int for the two groups. Although we use a different notation and parameters from
(2.2.6), the assumed mean structure is the same. The dataset for the first subject with
g � 1 andY1 � (93, 93, 49, 40, 46, 62)T is also provided below. Note that this code
indirectly provides the ML estimates and does not provide standard errors. This cord
can be used for more than two groups, because the class statement produces indicator
variables for the specified qualitative variable. This code is used for either variance
covariance structure in Table 2.4a and c.

id group time y yt1 t1 t2
1 1 0 93 0 1 0
1 1 1 93 93 0 1
1 1 2 49 93 0 1
1 1 3 40 49 0 1
1 1 4 46 40 0 1
1 1 5 62 46 0 1

proc mixed method=ml;
class group id time;
model y=group*t2 group*t1 yt1 /s noint;
random t1 t2 / type=un sub=id;
repeated time / type=toep(2) sub=id;

run;

2.6 Models with Autoregressive Error Terms

In this section, we consider the difference between autoregressive models of the
response itself (2.1.1) and linear models with an AR(1) error (2.1.2). In the autore-
gressive models of the response itself, the baseline response, Yi,0, is not necessarily
modeled explicitly. However, the changes in the response over time depend on the
assumption of the baseline response as shown in Fig. 2.3a. With a general model for
the baseline, Xi,0βbase + εi,0, the marginal form of the model (2.1.1) is

⎧⎪⎨
⎪⎩

Yi,0 � Xi,0βbase + εi,0

Yi,t � ρ tXi,0βbase +
t∑

l�1
ρ t−lXi,lβ +

t∑
l�0

ρ t−lεi,l, (t > 0)
. (2.6.1)
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The marginal form of the model with an AR(1) error (2.1.2) is⎧⎪⎪⎨
⎪⎪⎩

Yi,t � Xi,tβe + εe i,t

εe i,t �
t∑

l�0

ρ t−lηi,l
, (2.6.2)

where εe i,0 � ηi,0. For a stationary process, we assume ηi,t ∼ N
(
0, σ 2

η

)
(t > 0) and

εe i,0 ∼ N
(
0, σ 2

εe

)
with σ 2

εe
� (

1 − ρ2
)−1

σ 2
η , then εe i,t ∼ N

(
0, σ 2

εe

)
. In this model, the

baseline response is explicitly modeled. If we assume εi,0 ∼ N
(
0,
(
1 − ρ2

)−1
σ 2

ε

)
,

both error structures are the same stationary AR(1) with the relationships εi,t � ηi,t
and σ 2

ε � σ 2
η .

When there are time-dependent covariates, the mean structures of the two mod-
els usually differ. The current response depends on both the current covariates and
the past covariate history in the model (2.6.1), but it depends only on the current
covariates in the model (2.6.2).

When there are no time-dependent covariates with Xi, j � Xi,k , the mean level
of the i th subject is constant in (2.6.2). On the other hand, the model (2.6.1) shows
the changes to the asymptote, Xi,t (1 − ρ)−1β, from the baseline, Xi,0βbase, and it is
not a linear model. Under the constraint that the baseline equals the asymptote as
βbase � (1 − ρ)−1β, (2.6.1) is

Yi,t � Xi,t (1 − ρ)−1β +
t∑

l�0

ρ t−lεi,l . (2.6.3)

In this case, the mean level is constant, and the two models are the same with the
relationship (1 − ρ)−1β � βe. However, without the constraint, the twomodels show
different response profiles over time. We assume a separate model for the baseline
response, apart from the later responses, throughout this book.

The autoregressive form of the model (2.1.2) is⎧⎪⎨
⎪⎩
Yi,0 � Xi,0βe + εe i,0

Yi,t � Xi,tβe + ρ
(
Yi,t−1 − Xi,t−1βe

)
+ ηi,t

� ρYi,t−1 +
(
Xi,t − ρXi,t−1

)
βe + ηi,t , (t > 0)

. (2.6.4)

When there are no time-dependent covariates with Xi, j � Xi,k , (2.6.4) is{
Yi,0 � Xi,0βe + εe i,0

Yi,t � ρYi,t−1 + Xi,t (1 − ρ)βe + ηi,t , (t > 0)
. (2.6.5)
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Chapter 3
Case Studies of Autoregressive Linear
Mixed Effects Models: Missing Data
and Time-Dependent Covariates

Abstract In the previous chapter, we introduced autoregressive linear mixed effects
models for analysis of longitudinal data. In this chapter, we provide examples of
actual data analysis using these models. We also discuss two topics from the medi-
cal field: response-dependent dropouts and response-dependent dose modifications.
When the missing mechanism depends on the observed, but not on the unobserved,
responses, it is termed missing at random (MAR). The missing process does not
need to be simultaneously modeled for the likelihood because the likelihood can
be factorized into two parts: one for the measurement process and the other for the
missing process. Maximum likelihood estimators are consistent under MAR if the
joint distribution of the response vector is correctly specified. For the problem of dose
modification, similar concepts are applied. When the dose modification depends on
the observed, but not on the unobserved, responses, the dose process does not need
to be simultaneously modeled for the likelihood. Here, we analyze schizophrenia
data and multiple sclerosis data using autoregressive linear mixed effects models as
examples of response-dependent dropouts and response-dependent dose modifica-
tions, respectively.

Keywords Autoregressive linear mixed effects model · Dose modification
Longitudinal · Missing · Time-dependent covariate

3.1 Example with Time-Independent Covariate: PANSS
Data

In this and next sections, we analyze data obtained from a schizophrenia trial (Marder
and Meibach 1994). This is a randomized controlled trial composed of placebo,
haloperidol, and risperidone groups. Although the risperidone group has four dose
levels, we combine the four dose levels into one as Diggle et al. (2002) did. The
primary response variable was the total score obtained on the positive and negative
symptom rating scale (PANSS). A higher score indicates a worse condition, and the

© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2018
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(a) (b) (c)

(d) (e) (f)

Fig. 3.1 ObservedPANSS longitudinal data for each subject.a–cCompleters,d–f subjects dropped
out. a, d Placebo, b, e haloperidol, c, f risperidone

drugs are expected to decrease the score. Treatment groups are a time-independent
covariate. The data are illustrated by Diggle et al. (2002).

The numbers of subjects who were measured just before and after the adminis-
trations were 85 for the placebo group, 85 for the haloperidol group, and 336 for
the risperidone group. Figure 3.1 shows the profiles of each subject in each group.
The data are divided into completers and subjects dropped out. In dropouts, all data
after some time points for each subject are missing. Although the PANSS score was
measured at weeks −1, 0, 1, 2, 4, 6, and 8 after initial administration, we do not use
the scores at week −1 in our analysis. The dropout proportions were 65.9% for the
placebo group, 51.8% for the haloperidol group, and 42.0% for the risperidone group.
The proportions differ among the three groups with the placebo group having the
highest dropout proportion. The most common reason for dropouts was inadequate
response (Diggle et al. 2002).

The schizophrenia trial data were analyzed as an example of data including
dropouts (Diggle et al. 2002; Funatogawa et al. 2008b; Henderson et al. 2000; Xu
and Zeger 2001). Quadratic polynomial time trend models were sometimes assumed
for the PANSS scores (Diggle et al. 2002; Xu and Zeger 2001). Diggle et al. (2002)
indicated that nonlinear models that express a profile approaching an asymptote may
be preferable on biological grounds.
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Funatogawa et al. (2008b) adopt the following autoregressive linear mixed effects
model to the schizophrenia trial data,{

Yi,0 � βg,base + bbase i + ε(AR,ST)i,0 + ε(ME)i,0

Yi,t � ρYi,t−1 + βg,int + bint i + ε(AR,ST)i,t + ε(ME)i,t − ρε(ME)i,t−1, (t > 0)
,

(3.1.1)

where g is a subscript representing the three treatment groups (1, placebo; 2, haloperi-
dol; 3, risperidone). The random baseline, bbase i , and the random follow-up intercept,
bint i , are assumed to be normally distributed with the mean zero, variances, σ 2

G0 and
σ 2
G1, and covariance, σG01. ε(AR,ST)i,0, ε(AR,ST)i,t , and ε(ME)i,t are independently nor-

mally distributed with the mean zero and variances
(
1 − ρ2

)−1
σ 2
AR,ST, σ 2

AR,ST, and
σ 2
ME. Here, AR, STmeans stationary AR(1) andMEmeans a measurement error. The

responses are expected to approach asymptotes
(
βg,int + bint i

)
/(1 − ρ). bint i/(1 − ρ)

is the random effect in the asymptotes. The model is the three-group version of the
model (2.2.6) with the error structure (2.4.3).

We analyze the data with t=0, 1, 2, 3, 4, and 5. We use the likelihood of the
autoregressive form in Sect. 2.5.2 and the SAS code ofMIXEDprocedure for indirect
methods in Sect. 2.5.3.

The estimates of the fixed parameters are β1,base � 92.4, β2,base � 93.6, β3,base �
92.4, β1,int � 50.4, β2,int � 46.7, β3,int � 42.7, and ρ � 0.451. The asymptotes,
βg,int/(1 − ρ), are 91.8, 85.1, and 77.8, respectively. The estimates for the covariance
are σ 2

G0 � 199.0, σ 2
G1 � 133.5, σG01 � 107.7, σ 2

AR,ST � 127.0, and σ 2
ME � 0.4066.

The variance of the asymptote is σ 2
G1/(1 − ρ)2 � 442.9. If σ 2

ME is ignored in Ri

because σ 2
ME is much smaller than σ 2

AR, the change in −2 log-likelihood is less than
0.1. Therefore, Ri would be expressed only by an AR(1) error.

We assume a stationary AR(1) error because it is popular in longitudinal data
analysis. However, it may be more natural to assume that the element of the AR(1)
error at baseline is zero. In this case, the marginal variance covariance matrix of
the response and estimates of the fixed effects are not changed. The variance of the
random baseline effect changes from 199.0 to 358.5 and the correlation between
the random baseline and the random asymptote changes from 0.66 to 0.48. The
assumption affects the Bayes predictions.

3.2 Missing Data

3.2.1 Missing Mechanism

In the schizophrenia trial data, many subjects dropped out. In the medical research
with human subject, problems of missing or dropouts in longitudinal data occur
frequently. The problem of missing responses in longitudinal data analyses has been
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studied extensively in the past several decades. In the problem, it is discussedwhether
the missing process needs to be simultaneously modeled with the measurement
process.

Let r be a vector of indicator variables for the missing process, such that ri,t � 1
if Yi,t is observed, and ri,t � 0 otherwise. Given r, the complete response vector Y
can be partitioned into Y � (Yobs,Ymiss), where Yobs is the observed responses and
Ymiss is the unobserved responses. We express Y and r as

f (Y, r|x, θ, ξ) � f (Y|x, θ) f (r|Y, x, ξ), (3.2.1)

where θ and ξ denote parameters for the measurement process and the missing
process, respectively, and x denotes covariates.

Based on the missing process, f (r|Y, x, ξ) � f (r|Yobs,Ymiss, x, ξ), we can hier-
archically classify missing mechanisms into the following three levels: missing com-
pletely at random (MCAR), missing at random (MAR), and missing not at random
(MNAR) (Little and Rubin 1987; Laird 1988).

When the missing mechanism does not depend on the measurement process as

f (r|Yobs,Ymiss, x, ξ) � f (r|x, ξ), (3.2.2)

it is termedMCAR. Usual standard analytical approaches provide consistent estima-
tors under MCAR.

When the missing mechanism depends on the observed responses, but not on the
unobserved responses,

f (r|Yobs,Ymiss, x, ξ) � f (r|Yobs, x, ξ), (3.2.3)

it is termed MAR. The missing process does not need to be simultaneously modeled
for the likelihood because the likelihood can be factorized into two parts for the mea-
surement process and the missingness process. The maximum likelihood estimators
(MLEs) are consistent under MAR if the joint distribution of the response vector is
correctly specified. However, non-likelihood-based methods, which do not specify
the joint distribution of the response vector such as a generalized estimating equation
(GEE) method, provide biased estimators under MAR.

When the missing mechanism depends on unobserved responses, that is MNAR,
MLEs that ignore missing mechanisms are biased. The missing process needs to
be simultaneously modeled with the measurement process, and several approaches
have been proposed. Selection models are based on the factorization (3.2.1) of the
missing process given themeasurementsY and themeasurement process. In contrast,
the patternmixture models are based on the factorization of themeasurement process
given the missing pattern and the missing process. In the shared parameter models,
random effects are shared in both the measurement process and missing process.

https://doi.org/10.1007/978-981-10-0077-5_3


3.2 Missing Data 63

3.2.2 Model Comparison: PANSS Data

In the schizophrenia trial data presented in Sect. 3.1, the scores of some patients
increased just before dropouts as shown in Fig. 3.1. This feature resembles the results
of the simulation study under MAR dropouts (Funatogawa et al. 2008b). Some sub-
jects seem to dropout directly based on their observed values. The assumption of
MAR may be reasonable. In this section, we compare several models with different
mean and variance covariance structures to assess the influence of missing data.

For balanced data with no missing data, estimates of the discrete means at each
time point in each group are the same, irrespective of the variance covariance struc-
ture, and the differences in the variance covariance structures affect the standard
errors. If there are missing data, the estimates of means differ depending on the
variance covariance structure.

We compare the autoregressive linear mixed effects model (3.1.1) and the model
without themeasurement error with several marginal models and linearmixed effects
models introduced in Chap. 1, and summarize them in Table 3.1. Table 3.1 shows
the number of parameters for the mean structure and variance covariance structure,
along with Akaike’s information criterion (AIC) for each model. We examine two
assumptions for each model, one in which the variance covariance matrices Vi are
the same across all three groups and one in which they differ across the three groups.
In the autoregressive linear mixed effects model (3.1.1), the number of parameters
for the mean structure and variance covariance structure are 7 and 6, respectively.
Because the autoregressive parameter ρ is used in both mean and variance covari-
ance structures, the total number of parameters is 12. Under the different variance
covariance matrices, ρ differs across the three groups and the number of parameters
in the mean structure increases by 2.

We examine the marginal models with the discrete means at each time point in
each group, {

Yi j � μg j + εi j

εi ∼ MVN(0,Ri )
, (3.2.4)

where εi � (
εi1, εi2, · · · , εini

)T
. This model is the three-group version of the model

(1.3.9) with some error structures. We examine several variance covariance struc-
tures: unstructured (UN), independent equal variance, independent unequal variance,
AR(1), heterogenous AR(1) (ARH(1)), compound symmetry (CS), heterogenous
CS (CSH), Toeplitz, heterogenous Toeplitz, first-order ante-dependence (ANTE(1)),
and ANTE(1) and a random intercept. The details of these structures are given in
Sect. 1.4.2 and Table 1.1. The discrete means with the CS correspond to means at
each time point with a random intercept, as discussed in Sects. 1.3.1 and 1.3.2. The
discrete means with the UN is discussed in Sect. 1.3.3. The discrete means with
the UN may be used as a reference because there are no constrains on the mean
and variance covariance parameters. However, the UN is not parsimonious using
6(6+1)/2�21 parameters under the same variance covariance matrices across the
groups and 21×3� 63 parameters under the different variance covariance matrices.
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We examine linear mixed effects models of linear time trends with only a ran-
dom intercept and with a random intercept and slope. The latter model is the three-
group version of the model (1.3.12). We also examine linear mixed effects models
of quadratic time trends with a random intercept, time, and time2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi j � (
βg0 + b0i

)
+

(
βg1 + b1i

)
ti j +

(
βg2 + b2i

)
t2i j + εi j

⎛
⎜⎝
b0i
b1i
b2i

⎞
⎟⎠ ∼ MVN

⎛
⎜⎜⎜⎝

⎛
⎝0
0
0

⎞
⎠,

⎛
⎜⎜⎝

σ 2
G0 σG01 σG02

σG01 σ 2
G1 σG12

σG02 σG12 σ 2
G2

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎠

εi j ∼ N
(
0, σ 2

ε

)
. (3.2.5)

The models with the same variance covariance matrices across groups were better
than the models with the different variance covariance matrices in all models based
on the AICs, so we discuss the results of the former. The autoregressive linear mixed
effects model with a random baseline and asymptote and AR(1) error showed the
best fit with AIC�19,892.3. Next to the two autoregressive linear mixed effects
models, the discrete means with the UN showed good fit with AIC�19,895.5. The
discrete means with the ANTE(1) and a random intercept (AIC�19,896.0) was
slightly worse than the discrete means with the UN but showed a comparable fit.
The discrete means with the AR(1), CS, or Toeplitz or the heterogeneous variance
versions of these structures did not show good fit. Linear mixed effects models of
linear or quadratic time trends did not show good fits.

Table 3.2 shows the estimates of marginal variances, covariances, and correlations
for the autoregressive linear mixed effects model with a random baseline and asymp-
tote and AR(1) error and the discrete means with the UN (Funatogawa et al. 2008b).
The estimate of the marginal variance covariance matrix of the autoregressive linear
mixed effects model is given by �i� (Ii − ρFi )

−1
(
ZiGZT

i + Ri
){

(Ii − ρFi )
−1

}T
(2.3.17). The estimates of the UN with 21 parameters were similar to those of the
autoregressive linearmixed effectsmodel with 5 parameters. The variances increased
with time but attenuated at the end. Let corr j,k be the j, kth correlation. Consid-
ering the correlations, corr j, j−l ( j � l + 1, l + 2, · · · , 6), with the fixed time inter-
vals l, viewing diagonally, these were not constant. The correlation was larger for
the later time j, and the correlation with the first time point, corr1+l,1, was par-
ticularly lower than the other correlations corr j, j−l . Considering the correlations,
corr j, j−l (l � 1, 2, · · · , j − 1), with the fixed time j, viewing vertically, the correla-
tion was smaller for the longer time interval l.

Figure 3.2 shows estimated marginal variance covariance matrices for (a) the
autoregressive linear mixed effects model with a random baseline and asymptote
and AR(1) error, (b) UN, (c) CS, (d) heterogeneous Toeplitz, (e) ANTE(1) and a
random intercept, and (f) linear mixed effects model of quadratic time trends with
a random intercept, time, and time2. The darker color indicates the higher variance
or covariance value. All covariances were positive. The matrices (a), (b), (e), and (f)
can express non-stationary structures. These showed similar matrices and expressed
the data well. However, the numbers of parameters of the UN and the ANTE(1)
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Table 3.2 Estimates of marginal variance, covariance, and correlation for PANSS data

Autoregressive linear mixed effects model with
random baseline and asymptote and σ 2

AR,ST
a

Discrete means with unstructured (UN)a

360 270 230 210 200 200

.69 430 380 350 340 340

.53 .80 510 450 420 400

.47 .72 .83 560 480 450

.44 .68 .76 .85 580 500

.43 .66 .73 .78 .85 590

360 250 240 230 220 190

.64 430 380 360 340 320

.56 .82 500 450 430 390

.51 .73 .84 570 510 480

.46 .65 .76 .86 620 560

.41 .61 .70 .81 .89 620

Funatogawa et al. (2008b)
aCovariances are above the diagonal, variances are on the diagonal, and correlations are below the
diagonal

Fig. 3.2 Variance covariance matrices of PANSS. The darker color shows the higher value.
a Autoregressive linear mixed effects model with a random baseline and asymptote and AR(1)
error, b discrete means with unstructured, c discrete means with compound symmetry, d discrete
meanswith heterogeneous Toeplitz, e discretemeans with ANTE(1) and a random intercept, f linear
mixed effects model of quadratic time trends with a random intercept, time, and time2

and a random intercept increase with the number of time points and these are not
parsimonious. The CS and heterogeneous Toeplitz showed different values from
these matrices. These stationary correlation structures in which the correlations with
fixed time intervals are the same were unable to express the data well. The CS whose
variances were the same across time points was too simple.

Figure 3.3 shows how the assumed models affect the estimates of means at
each time point in each group. The models examined are (a) the autoregressive
linear mixed effects model with a random baseline and asymptote and AR(1) error,
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Fig. 3.3 Estimated means of PANSS at each time point in each group: placebo (open circle),
haloperidol (closed circle), and risperidone (asterisk). a Autoregressive linear mixed effects model
with a random baseline and asymptote and AR(1) error, b discrete means with unstructured, c
discrete means with independent structures (simple means), d discrete means with compound sym-
metry, e discrete means with ANTE(1) and a random intercept, f linear mixed effects model of
quadratic time trends with a random intercept, time, and time2

(b) discrete means with the UN, (c) discrete means with independent structures,
(d) discrete means with the CS, (e) discrete means with the ANTE(1) and a random
intercept, and (f) linear mixed effects model of quadratic time trends with a random
intercept, time, and time2. The open circles, the closed circles, and the asterisk show
the placebo group, the haloperidol group, and the risperidone group, respectively.

TheMLEs are consistent underMAR if the joint distribution of the response vector
is correctly specified. The discrete means with independent structures, irrespective of
equal or unequal variance assumptions, provide the observed mean response profiles
which are the simple means of only observed values at each time point in each group.
The responses from a subject have usually positive correlations in longitudinal data
analysis, and the independent assumption is obviously incorrect. Because the subjects
with higher scores dropped out in this example, the estimates were biased downward.
On the other hand, the discrete means with the UN has the least assumption and
the bias is expected to be small under MAR. Compared with the discrete means
with the UN, the discrete means with independent structures were lower in each
group as expected. Although not as much as independent structures, the discrete
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means with the CS also showed lower means compared with the means with the
UN. The autoregressive linear mixed effects models and the discrete means with the
ANTE(1) and a random intercept provided higher values than the discrete means
with independent structures or the CS.

3.3 Example with Time-Dependent Covariate: AFCR Data

As an example of a time-dependent covariate, we show data from a placebo-
controlled, randomized, double-masked, variable dosage, clinical trial of azathio-
prine with and without methylprednisolone in multiple sclerosis (Ellison et al. 1989).
Heitjan (1991) applied a nonlinear growth curve to the data, and Lindsey (1993)
applied a linear mixed effects model of a quadratic time trend. Misumi and Konishi
(2016) applied a mixed effects historical varying-coefficient model. Funatogawa
et al. (2007) and Funatogawa and Funatogawa (2012a) applied an autoregressive
linear mixed effects model. The data are given in Lindsey (1993).

We introduce the analysis of dose-response curves for each patient and the popu-
lation in the group that received azathioprine without methylprednisolone (Funato-
gawa and Funatogawa 2012a). The response variable is absolute Fc receptor (AFCR),
which is a measure of the immune system with a smaller value denoting better con-
ditions. The dose at the start, 2.2 mg/kg daily, is defined as one unit. Doses were
modified throughout the trial. Treatment continued for up to 4 years. AFCR was
measured prior to initiation of therapy, at initiation, at weeks 4, 8, and 12, and every
12 weeks thereafter. We followed Heitjan (1991) in using a square root transforma-
tion on the AFCR responses. The number of patients was 15, and the total number

Fig. 3.4 Observed AFCR0.5 and dose in each patient. Funatogawa and Funatogawa (2012a)
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of the measurements was 244. Figure 3.4 shows the AFCR0.5 and dose profiles for
each patient. The timings of dose modification and measurement were irregular and
differ among patients, as shown in the figure.

We applied the autoregressive linear mixed effects model (2.2.8) in Sect. 2.2.3
with the error structure (2.4.1) to the multiple sclerosis data,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Yi,0 � βbase + bbase i + εi,0

Yi,t � ρYi,t−1 + βint + bint i + (βcov + bcov i )xi,t + εi,t , (t > 0)
εi,0 � ε(ME)i,0

εi,t � ε(AR)i,t + ε(ME)i,t − ρε(ME)i,t−1, (t > 0)

, (3.3.1)

where Yi,t and xi,t are the AFCR0.5 level and the dose of the ith subject at time
t, respectively. bcov i , a coefficient of the covariate xi,t , is a random variable. The
asymptote of the subject i at time t, YAsy i,t , is

YAsy i,t � (1 − ρ)−1
{
βint + bint i + (βcov + bcov i )xi,t

}
. (3.3.2)

The asymptote depends on the covariate xi,t . The term (1 − ρ)−1bcov i represents
the difference in sensitivity to dose modifications across subjects. Both the fixed and
random effects have the baseline, follow-up intercept, and follow-up dose effect. The
random effects bi � (bbase i , bint i , bcov i )T are assumed to be normally distributed
with themean zero andunstructured variance covariancematrixG. ε(AR)i,t and ε(ME)i,t

are independently normally distributed with the mean zero and variances σ 2
AR and

σ 2
ME.
We used the state space representation and Kalman filter in Chap. 6 to obtain the

likelihood. SAS IML procedure is used for the calculation and optimization.

Table 3.3 Parameter estimates, covariance, standard deviation, and correlation for the multiple
sclerosis data

Funatogawa and Funatogawa (2012a)
aCovariance are above the diagonal, standard deviations are on the diagonal, and correlations are
below the diagonal
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Fig. 3.5 Fitted and observed AFCR0.5. a Solid and dashed lines are fitted and observed AFCR0.5,
respectively, in each patient. b–d Three representative patients. Upper and lower solid lines indi-
cate fitted AFCR0.5 and dose profiles, respectively. A dashed line indicates observed AFCR0.5.
Funatogawa and Funatogawa (2012a)

Table 3.3 shows the parameter estimates. Figure 3.5a shows the fitted and observed
values of AFCR0.5 in all patients, and Fig. 3.5b–d shows fitted and observed values
with actual doses in three representative patients. The fitted values were calculated
from the predicted values of the random effects and actual doses for each patient. The
model well represents the gradual decreasing response levels and inter-individual
differences at baseline and later time points. The estimate of the autoregressive
coefficient for a time unit of 12 weeks is ρ̂84 � 0.627. Patients usually showed an
increasing response level after stopping drug administration. Two patients, including
the patient in Fig. 3.5d, however, showed a decreasing response level after stopping
drug administration. Figure 3.6 shows the dose-response curves of the asymptotes in
each patient and the population mean with the estimates of baseline. The estimates of
population means are 17.0 for the baseline, and 9.6, 7.4, and 5.2 for the asymptotes at
doses of 0, 1, and 2 units, respectively. This figure represents well the dose-response
curves of the population mean and its inter-individual difference. The asymptotes
decrease according to the dose in all patients except two patients mentioned above.

Based on the Akaike information criteria (AIC), each of ε(AR)i,t , ε(ME)i,t , and
random effects improves the fit, and there exists an inter-individual variability of
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Fig. 3.6 Estimated dose-response curves ofAFCR0.5 asymptoteswith estimated baseline. Thin and
thick lines indicate the estimates for each patient and the populationmean, respectively. Funatogawa
and Funatogawa (2012a)

the dose effect and a significant dose effect as a population average. When random
effects are replaced with a random intercept, the fit is worse. If the previous response
is excluded from the covariates, that is ρ � 0, and ε(AR)i,t is replacedwith a stationary
AR(1) error, the fit is obviouslyworse. This is a linearmixed effectsmodel. It assumes
that the current response depends on the current dose but not on the previous doses,
and the response changes to a new level without delay. In contrary, the response
changes to a new level gradually in the model (3.3.1).

We briefly introduce the analysis of three group comparison (Funatogawa et al.
2007). The three groups are azathioprine with methylprednisolone, azathioprine
without methylprednisolone, and placebo. The autoregressive linear mixed effects
model (3.3.1) with βg,base, βg,int, and βg,cov instead of βbase, βint, and βcov is applied.
For comparison, the following linear mixed effects model with a quadratic time trend
is also applied,

Yi j � βg0 + βg1ti j + βg2t
2
i j + βg3xi j + βg4xi j ti j + b0i + εe(AR)i j + ε(ME)i j .

Figure 3.7 shows the expected profiles of AFCR for each group based on each model
when the doses are 1.5 throughout the trial. The parameters in the quadratic time
trend are hard to interpret.

https://doi.org/10.1007/978-981-10-0077-5_3
https://doi.org/10.1007/978-981-10-0077-5_3
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Fig. 3.7 Expected profiles ofAFCR for each groupwhen the doses are 1.5 throughout the trial. AM,
azathioprine with methylprednisolone; AP, azathioprine without methylprednisolone; PP, placebo.
a Autoregressive linear mixed effects model. b Linear mixed effects model with a quadratic time
trend. Funatogawa et al. (2007)

3.4 Response-Dependent Modification of Time-Dependent
Covariate

The previous section provides an example of autoregressive linear mixed effects
models with a time-dependent covariate. Section 4.3 provides an example of analysis
based on bivariate autoregressive linear mixed effects models with a time-dependent
covariate (Funatogawa et al. 2008a), which is an example of response-dependent
dose modification. Active vitamin D3 is administered repeatedly for the treatment of
secondary hyperparathyroidism, and it decreases parathyroid hormone (PTH) levels.
The dose is adjusted in each patient according to the PTH and Ca levels and other
medical conditions. The PTH and Ca levels have target ranges defined by a clinical
guideline (KDOQI 2007). Even under these situations, we can estimate the dose-
response relationship.

For dose modification, Funatogawa and Funatogawa (2012b) applied similar con-
cepts withmissing datamechanism in Sect. 3.2. Here, Yi,0 is a baselinemeasurement,
and Yi,t is the tth (t � 1, · · · , Ti )measurement after the baseline measurement in the
ith (i � 1, · · · , N ) subject. Xi,t is the dose between t – 1 and t. Yi,t is measured
after the administration of Xi,t . For simplicity, we consider no other time-dependent
covariates. Zi is the vector of time-independent covariates.

The joint density function of Y(h)
i,Ti

� (Yi,0,Yi,1, · · · ,Yi,Ti )T and X(d)
i,Ti

�
(Xi,1, Xi,2, · · · , Xi,Ti )

T is expressed as f
(
Y(h)

i,Ti
,X(d)

i,Ti
|Zi , θ,�

)
, where θ and �

denote parameters for the measurement process and the dose process, respec-
tively. The superscripts (h) and (d) indicate the history of the responses and doses.
We are interested in the inferences regarding θ, particularly the parameters that
show how the response changes with the dose. Taking into account the sequence
between Yi,t and Xi,t , we factorize the likelihood corresponding to the ith subject,
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Li (θ,�) � f
(
Y(h)

i,Ti
,X(d)

i,Ti
|Zi , θ,�

)
, into two parts: the likelihood for the measure-

ment process,

Li (θ) � f
(
Yi,0|Zi , θ

) Ti∏
t�1

f
(
Yi,t |Y(h)

i,t−1,X
(d)
i,t ,Zi , θ

)
, (3.4.1)

and the likelihood for the dose process,

Li (�) � f
(
Xi,1|Yi,0,Zi ,�

) Ti∏
t�2

f
(
Xi,t |Y(h)

i,t−1,X
(d)
i,t−1,Zi ,�

)
. (3.4.2)

The likelihood is Li (θ,�) � Li (θ) × Li (�).
If the parameters θ and � are separable in the above factorization, maximum

likelihood methods based on Li (θ) alone are valid for the inferences regarding θ

without modeling the dose process. For example, θ and � are separable if the next
dose is selected based on observed responses and the new response is generated
by the administered doses. This is similar to MAR. If the next dose depends on
unobserved parts of the measurement process, such as unknown parameters, given
the observed responses or the new response is generated by unobserved parts of the
dose process, θ and � are not separable. In this case, the two processes have several
common parameters, and the dose process needs to be simultaneously modeled with
the measurement process. This is similar to MNAR.

Diggle et al. (2002) showed similar factorization of likelihood for transition mod-
els of binary responses. However, Eq. (3.4.1) can be applied to more general models,
such as mixed effects models (Laird and Ware 1982; Funatogawa et al. 2007). Max-
imum likelihood methods for standard models can provide estimates of the dose-
response without modeling the dose process if the dose modifications are based on
observed responses and the assumed model of the measurement process is correct
(Funatogawa and Funatogawa, 2012b). As amerit ofmixed effectsmodels, these pro-
vide estimates of each patient’s dose-response curve. The dose modification based
on observed responses may be prespecified in a study protocol.

In the area of causal modeling in epidemiology, as another approach, marginal
structural models with an inverse probability of treatment weighted (IPTW) esti-
mators were used for flexible dose studies (Lipkovich et al. 2008). These require to
model the treatment process and to assume the probability of receiving each treatment
is bounded away from zero. If the treatment modification is determined according
to the same criterion, this assumption does not hold. Based on simulation studies
for flexible dose titration, the autoregressive linear mixed effects models may be
an appropriate modeling option in identifying the dose-response compared with the
marginal models (Xu et al. 2012).



74 3 Case Studies of Autoregressive Linear Mixed Effects Models …

Another example of response-dependent dose modification is erythropoietin for
the treatment of renal anemia in hemodialysis patients. The drug is repeatedly admin-
istered and raises the hemoglobin (Hb) levels. A clinical guideline defines a target
range of Hb levels (National Kidney Foundation 2003). The doses are adjusted
according to Hb levels. As an example of a time-dependent covariate beside the
dose, the relationship between blood donation and Hb levels are analyzed by apply-
ing autoregressive linear mixed effects models (Nasserinejad et al. 2016).
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Chapter 4
Multivariate Autoregressive Linear
Mixed Effects Models

Abstract Previous chapters discussed linear mixed effects models and autoregres-
sive linear mixed effects models for analysis of longitudinal data. This chapter dis-
cusses multivariate extensions of these models. In longitudinal clinical studies, mul-
tivariate responses are often collected at each measurement time point from each
subject. When two response variables, such as an efficacy measurement and a safety
measurement are obviously correlated, there are advantages in analyzing the bivari-
ate responses jointly. Parathyroid hormone (PTH) and serum calcium (Ca) measure-
ments in the treatment of secondary hyperparathyroidism in chronic hemodialysis
patients provide an example in which joint bivariate responses are of interest. We
introduce multivariate longitudinal data and explain bivariate autoregressive linear
mixed effects models in which the current responses are regressed on the previous
responses of both variables, fixed effects, and random effects. The dependent bivari-
ate responses approach equilibria, and the equilibria are modeled using fixed and
random effects. These type of profiles are observed in long-term clinical studies. We
also explain bivariate linear mixed effects models.

Keywords Autoregressive linear mixed effects model · Equilibrium
Linear mixed effects model · Longitudinal · Multivariate

4.1 Multivariate Longitudinal Data and Vector
Autoregressive Models

4.1.1 Multivariate Longitudinal Data

In the case of multivariate longitudinal data, one objective of the analysis is to gain an
understanding of the relationship among the response variables. There are applica-
tions of bivariate longitudinal data in medicine: glomerular filtration rates (GFR) and
inverse serum creatinine in chronic renal disease (Schuluchter 1990); forced expira-
tory volume in 1 second (FEV1) and functional residual capacity (FRC) in chronic
obstructive pulmonary disease (COPD) (Zucker et al. 1995); blinks and heart rates

© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2018
I. Funatogawa and T. Funatogawa, Longitudinal Data Analysis, JSS Research Series
in Statistics, https://doi.org/10.1007/978-981-10-0077-5_4
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to auditory stimulation in school-age boy (Liu et al. 2000); body mass index (BMI,
weight/height2) and log-transformed fasting insulin levels in non-insulin-dependent
diabetes mellitus (NIDDM) (Jones 1993); CD4 and beta-2-microglobulin in AIDS
(Sy et al. 1997); PTH and Ca in chronic hemodialysis patients (Funatogawa et al.
2008); and adrenocorticotropic hormone and cortisol in chronic fatigue syndrome
and fibromyalgia (Liu et al. 2014). For other examples, see Shah et al. (1997), Zeger
and Liang (1991), and Galecki (1994).

One analytical approach is to relate two variables through the correlation of ran-
dom errors (Zeger and Liang 1991; Jones 1993; Sy et al. 1997). Another approach is
to relate two variables through the correlation of random effects. Schuluchter (1990),
Zucker et al. (1995), and Shah et al. (1997) were interested in the correlation of ran-
dom effects in linear mixed effects models, for example, the correlation between two
random slopes, that is, two linear time trends. In bivariate autoregressive linearmixed
effects models (Funatogawa et al. 2008), the relationships between two responses are
summarized by the autoregressive coefficients, the correlation of the random effects
for baseline and equilibria, and the correlation of the random errors.

Repeated-series longitudinal data are another class of data,whereinmultiple series
of the same variable are measured in each subject. One example is intraocular pres-
sures of the right and left eyes in ocular hypertension and glaucoma (Heitjan and
Sharma 1997). The same variable is measured longitudinally under multiple condi-
tions (left and right eyes).

Section 4.1.2 discusses vector autoregressive models for one subject. Section 4.2
discusses multivariate autoregressive linear mixed effects models. Section 4.3 shows
an analytical example of PTH and Ca data. Section 4.4 discusses multivariate linear
mixed effects models. Section 4.5 is an appendix and explains the direct product and
parameter transformation.

4.1.2 Vector Autoregressive Models

This section showshow response levels change inmultivariate autoregressivemodels.
For simplicity, we consider a case in which there is only one subject and no random
effect. Vector autoregressive (VAR) models are popular in time series analysis. A
simple first-order bivariate VAR model is

(
Y1,t
Y2,t

)
�

⎛
⎝ ρ11 ρ12

ρ21 ρ22

⎞
⎠(

Y1,t−1

Y2,t−1

)
+

(
β1 int

β2 int

)
+

(
ε1,t

ε2,t

)
, (t > 0). (4.1.1)

Y1,t and Y2,t are the observed responses of the first and second variables at time
t. β1 int and β2 int are the intercepts. ε1,t and ε2,t are random errors, and are usually
assumed to be independent across time points. In later sections, a dependent error
structure will be considered to take account of measurement errors. The baseline
is not necessarily modeled explicitly in time series data analysis where the number
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of time points is large and stationarity is assumed. However, the baseline model is
important in longitudinal data where the number of time points is limited. In the
following model, the baseline is modeled separately,⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
Y1,0
Y2,0

)
�

(
β1 base

β2 base

)
+

(
ε1,0

ε2,0

)

(
Y1,t
Y2,t

)
�

⎛
⎝ ρ11 ρ12

ρ21 ρ22

⎞
⎠(

Y1,t−1

Y2,t−1

)
+

(
β1 int

β2 int

)
+

(
ε1,t

ε2,t

)
, (t > 0)

. (4.1.2)

In univariate models in Chap. 2, |ρ| < 1 is the requirement for the response to
approach the asymptote. The corresponding requirement in the bivariate model is
that the absolute values of the roots of the determinantal equation |ρ − λI2| � 0 are
less than one, where Ia means the a × a identity matrix,

ρ �
(

ρ11 ρ12

ρ21 ρ22

)
,

|ρ − λI2| �
∣∣∣∣∣ρ11 − λ ρ12

ρ21 ρ22 − λ

∣∣∣∣∣
� (ρ11 − λ)(ρ22 − λ) − ρ12ρ21

� λ2 − (ρ11 + ρ22)λ + ρ11ρ22 − ρ12ρ21. (4.1.3)

In this case, the elements of ρl tend to 0 as l becomes large (Harvey 1993). Further-
more, when 0 < λ < 1, the changes in the responses are monotonic. In the following
sections, we assume 0 < λ < 1.

Given the existence of (I2 − ρ)−1, it is expressed as

(I2 − ρ)−1 �
⎧⎨
⎩

⎛
⎝ 1 0

0 1

⎞
⎠ −

⎛
⎝ ρ11 ρ12

ρ21 ρ22

⎞
⎠

⎫⎬
⎭

−1

�
(
1 − ρ11 −ρ12

−ρ21 1 − ρ22

)−1

� 1

(1 − ρ11)(1 − ρ22) − ρ12ρ21

(
1 − ρ22 ρ12

ρ21 1 − ρ11

)
. (4.1.4)

For the existence of (I2 − ρ)−1, (1 − ρ11)(1 − ρ22) − ρ12ρ21 must not be zero.
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4.2 Multivariate Autoregressive Linear Mixed Effects
Models

In clinical studies, dependent bivariate continuous responsesmay approach equilibria
over time. Autoregressive linear mixed effects models for bivariate longitudinal data
in which current responses are regressed on the previous responses of both variables,
fixed effects, and random effects. The equilibria are modeled using fixed and random
effects. This model is a bivariate extension of the autoregressive linear mixed effects
models for univariate longitudinal data given in Chap. 2.

Section 4.2.1 shows a simple example of bivariate autoregressive linear mixed
effects models. Then, we introduce bivariate autoregressive linear mixed effects
models. Three representations are provided: an autoregressive form and a marginal
(unconditional) form in Sect. 4.2.2, and response changes with equilibria in
Sect. 4.2.3. Vector representations are provided for each time point in each sub-
ject or for all time points in each subject. Section 4.2.4 provides variance covariance
structures. Section 4.2.5 provides estimation methods.

4.2.1 Example of Bivariate Autoregressive Linear Mixed
Effects Models

An example of a bivariate autoregressive linear mixed effects model without covari-
ates is shown below. Let Yri,t be the observed response of the rth (r � 1, 2) variable
for the ith (i � 1, · · · , N ) subject at time t (t � 0, 1, · · · , Ti). As with the univariate
model (2.2.1) shown in Chap. 2, the models for the baseline and later time points are⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
Y1i,0
Y2i,0

)
�

(
β1 base

β2 base

)
+

(
b1 base i

b2 base i

)
+

(
ε1i,0

ε2i,0

)

(
Y1i,t
Y2i,t

)
�

⎛
⎝ ρ11 ρ12

ρ21 ρ22

⎞
⎠

(
Y1i,t−1

Y2i,t−1

)
+

(
β1 int

β2 int

)
+

(
b1 int i

b2 int i

)
+

(
ε1i,t

ε2i,t

)
, (t > 0)

,

(4.2.1)

where ρrr ′
(
r � 1, 2, r ′ � 1, 2

)
is an unknown regression coefficient of Yri,t on

Yr ′i,t−1. Not using matrices, these equations can also be expressed as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Y1i,0 � β1 base + b1 base i + ε1i,0

Y2i,0 � β2 base + b2 base i + ε2i,0

Y1i,t � ρ11Y1i,t−1 + ρ12Y2i,t−1 + β1 int + b1 int i + ε1i,t , (t > 0)

Y2i,t � ρ21Y1i,t−1 + ρ22Y2i,t−1 + β2 int + b2 int i + ε2i,t , (t > 0)

. (4.2.2)
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The vector representation using Yi,t � (
Y1i,t ,Y2i,t

)T
is{

Yi,0 � βbase + bbase i + εi,0

Yi,t � ρYi,t−1 + βint + bint i + εi,t , (t > 0)
, (4.2.3)

where the vectors are defined according to the above equations. Aswith the univariate
models, these equations are shown with the representation of response changes with
equilibria, Yequi i,t � (

Y1 equi i,t ,Y2 equi i,t
)T
. The equations are⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Yi,0 � βbase + bbase i + εi,0

Yi,t − Yi,t−1 � (I2 − ρ)
(
Yequi i,t − Yi,t−1

)
+ εi,t , (t > 0)

Yequi i,t � (I2 − ρ)−1(βint + bint i
)

� β∗
int + b∗

int

, (4.2.4)

where * (asterisk) shows the parameters for equilibria. The parameters βint and bint i
are transformed into new parameters β∗

int and b∗
int for the equilibria by multiplying

by (I2 − ρ)−1. The elements of the Eq. (4.2.4) are
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Y1i,0

Y2i,0

)
�

(
β1 base

β2 base

)
+

(
b1 base i

b2 base i

)
+

(
ε1i,0

ε2i,0

)

(
Y1i,t − Y1i,t−1

Y2i,t − Y2i,t−1

)
�

(
1 − ρ11 −ρ12

−ρ21 1 − ρ22

)⎛
⎝ Y1 equi i,t − Y1i,t−1

Y2 equi i,t − Y2i,t−1

⎞
⎠ +

(
ε1i,t

ε2i,t

)
, (t > 0)

⎛
⎝ Y1 equi i,t

Y2 equi i,t

⎞
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(
1 − ρ11 −ρ12

−ρ21 1 − ρ22

)−1{(
β1 int

β2 int

)
+

(
b1 int i

b2 int i

)}

�
⎛
⎝ β∗

1 int + b∗
1 int i

β∗
2 int + b∗

2 int i

⎞
⎠

.

(4.2.5)

The changes are also shown as⎧⎨
⎩
Y1i,t − Y1i,t−1 � (1 − ρ11)

(
Y1 equi i,t − Y1i,t−1

) − ρ12
(
Y2 equi i,t − Y2i,t−1

)
+ ε1i,t

Y2i,t − Y2i,t−1 � −ρ21
(
Y1 equi i,t − Y1i,t−1

)
+ (1 − ρ22)

(
Y2 equi i,t − Y2i,t−1

)
+ ε2i,t

. (4.2.6)
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4.2.2 Autoregressive Form and Marginal Form

First, we show the representation for each time point in each subject. Let Yri,t be the
observed response of the rth (r � 1, 2) variable in the ith (i � 1, · · · , N ) subject at
time t (t � 0, · · · , Ti). The bivariate autoregressive linear mixed effects models for
bivariate longitudinal data are expressed by

Yi,t � ρYi,t−1 + Xi,tβ + Zi,tbi + εi,t , (4.2.7)

where Yi,t � (
Y1i,t ,Y2i,t

)T
, β � (

βT
1 , βT

2

)T
, bi � (

bT
1,i ,b

T
2,i

)T
, εi,t � (

ε1i,t , ε2i,t
)T
,

ρ �
(

ρ11 ρ12

ρ21 ρ22

)
,Xi,t �

⎛
⎝XT

1i,t 0

0 XT
2i,t

⎞
⎠

T

,Zi,t �
⎛
⎝ZT

1i,t 0

0 ZT
2i,t

⎞
⎠

T

.

Here, AT is the transpose of a matrix A. ρrr ′
(
r � 1, 2, r ′ � 1, 2

)
is an unknown

regression coefficient of Yri,t on Yr ′i,t−1, βr is a pr × 1 vector of unknown fixed
effects parameters, Xri,t is a known 1 × pr design matrix for fixed effects, br,i is a
qr × 1 vector of unknown random effects parameters, Zri,t is a known 1× qr design
matrix for random effects, and εri,t is a random error. When t is 0, Yi,t−1 is set to 0.
It is assumed that bi and εi � (

εTi,0, · · · , εTi,Ti
)T

are both independent across subjects
and independently normally distributed with the mean zero and variance covariance
matrices G and Ri , respectively. Although we focus on bivariate responses here, it
is straightforward to generalize the formulae for an arbitrary number of outcomes.

In the model (4.2.1), the parameter vector and design matrices of fixed effects are

βT
r �

(
βr base βr int

)
, β �

(
β1 base β1 int β2 base β2 int

)T
,

Xri,0 � (
1 0

)
,Xi,0 �

(
1 0 0 0
0 0 1 0

)
,

Xri,t � (
0 1

)
,Xi,t �

(
0 1 0 0
0 0 0 1

)
, (t > 0).

bi and Zi,t are defined in the same way.
Next, we show the representation for the response at all the time points in the ith

subject,Yi � (
YT

i,0,Y
T
i,1, · · · ,YT

i,Ti

)T
. Let Fi be the (Ti + 1)× (Ti + 1) square matrix

in which the elements just below the diagonal are 1 and the other elements are 0 as
shown in (2.3.2). Then, the vector of previous response values is

(Fi ⊗ I2)Yi � (
0, 0,YT

i,0,Y
T
i,1, · · · ,YT

i,Ti−1

)T
,

where ⊗ means the direct product. For details of the direct product, see Appendix
in Sect. 4.5.1. Table 4.1a shows (Fi ⊗ I2)Yi for Ti � 2. The product of the
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Table 4.1 Vector representations in autoregressive linear mixed effects models for Ti � 2

(a) Vector of previous responses

(Fi ⊗ I2)Yi �

⎧⎪⎨
⎪⎩

⎛
⎜⎝ 0 0 0

1 0 0

0 1 0

⎞
⎟⎠ ⊗

⎛
⎜⎝ 1 0

0 1

⎞
⎟⎠

⎫⎪⎬
⎪⎭Yi �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y1i,0

Y2i,0

Y1i,1

Y2i,1

Y1i,2

Y2i,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

Y1i,0

Y2i,0

Y1i,1

Y2i,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(b) Product of matrix of autoregressive coefficients and previous response vector

(
ITi+1 ⊗ ρ

)
(Fi ⊗ I2)Yi �

⎧⎪⎨
⎪⎩

⎛
⎜⎝ 1 0 0

0 1 0

0 0 1

⎞
⎟⎠ ⊗

⎛
⎜⎝ ρ11 ρ12

ρ21 ρ22

⎞
⎟⎠

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

⎛
⎜⎝ 0 0 0

1 0 0

0 1 0

⎞
⎟⎠ ⊗

⎛
⎜⎝ 1 0

0 1

⎞
⎟⎠

⎫⎪⎬
⎪⎭Yi

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ11 ρ12 0 0 0 0

ρ21 ρ22 0 0 0 0

0 0 ρ11 ρ12 0 0

0 0 ρ21 ρ22 0 0

0 0 0 0 ρ11 ρ12

0 0 0 0 ρ21 ρ22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

Y1i,0

Y2i,0

Y1i,1

Y2i,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

ρ11Y1i,0 + ρ12Y2i,0

ρ21Y1i,0 + ρ22Y2i,0

ρ11Y1i,1 + ρ12Y2i,1

ρ21Y1i,1 + ρ22Y2i,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(Fi ⊗ ρ)Yi �

⎧⎪⎨
⎪⎩

⎛
⎜⎝ 0 0 0

1 0 0

0 1 0

⎞
⎟⎠ ⊗

⎛
⎜⎝ ρ11 ρ12

ρ21 ρ22

⎞
⎟⎠

⎫⎪⎬
⎪⎭Yi

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 0 0 0 0

ρ11 ρ12 0 0 0 0

ρ21 ρ22 0 0 0 0

0 0 ρ11 ρ12 0 0

0 0 ρ21 ρ22 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y1i,0

Y2i,0

Y1i,1

Y2i,1

Y1i,2

Y2i,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

ρ11Y1i,0 + ρ12Y2i,0

ρ21Y1i,0 + ρ22Y2i,0

ρ11Y1i,1 + ρ12Y2i,1

ρ21Y1i,1 + ρ22Y2i,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

matrix of the autoregressive coefficients and the previous response vector is(
ITi+1 ⊗ ρ

)
(Fi ⊗ I2)Yi , and it equals (Fi ⊗ ρ)Yi because(

ITi+1 ⊗ ρ
)
(Fi ⊗ I2) � Fi ⊗ ρ. (4.2.8)

The derivation of this equation is provided in (4.5.3). Table 4.1b shows(
ITi+1 ⊗ ρ

)
(Fi ⊗ I2)Yi and (Fi ⊗ ρ)Yi for Ti � 2.



84 4 Multivariate Autoregressive Linear Mixed Effects Models

The bivariate autoregressive linear mixed effects models are expressed by

Yi � (
ITi+1 ⊗ ρ

)
(Fi ⊗ I2)Yi + Xiβ + Zibi + εi

� (Fi ⊗ ρ)Yi + Xiβ + Zibi + εi , (4.2.9)

where Xi � (
XT

i,0, · · · ,XT
i,Ti

)T
, Zi � (

ZT
i,0, · · · ,ZT

i,Ti

)T
, and εi � (

εTi,0, · · · , εTi,Ti
)T
.

The variance covariance matrix of Yi is Vi � Var(Zibi + εi ) � ZiGZT
i + Ri . The

model (4.2.1) for Ti � 2 is⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y1i,0
Y2i,0
Y1i,1
Y2i,1
Y1i,2
Y2i,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

ρ11Y1i,0 + ρ12Y2i,0
ρ21Y1i,0 + ρ22Y2i,0
ρ11Y1i,1 + ρ12Y2i,1
ρ21Y1i,1 + ρ22Y2i,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

β1 base

β1 int

β2 base

β2 int

⎞
⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
b1 base i

b1 int i

b2 base i

b2 int i

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1i,0

ε2i,0

ε1i,1

ε2i,1

ε1i,2

ε2i,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.2.10)

The marginal form of Eq. (4.2.9) is

Yi � (
I2Ti+2 − Fi ⊗ ρ

)−1
(Xiβ + Zibi + εi ). (4.2.11)

This equation is derived from multiplying both sides of the following equation by(
I2Ti+2 − Fi ⊗ ρ

)−1
,

Yi − (Fi ⊗ ρ)Yi � Xiβ + Zibi + εi .

The marginal variance covariance matrix of Yi is

�i � (
I2Ti+2 − Fi ⊗ ρ

)−1(
ZiGZT

i + Ri
){(

I2Ti+2 − Fi ⊗ ρ
)−1

}T
. (4.2.12)
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The marginal form at each time point is

⎧⎪⎨
⎪⎩
Yi,0 � Xi,0β + Zi,0bi + εi,0

Yi,t �
t∑

l�0
ρt−l

(
Xi,tβ + Zi,tbi + εi,t

)
, (t > 0)

. (4.2.13)

4.2.3 Representation of Response Changes with Equilibria

Here, we consider the case that βT
r �

(
βT
r base βT

r equi

)
and bT

r i �
(
bT
r base i b

T
r equi i

)
.

βr base and br base i correspond to the baseline parts (t � 0), and βr equi and br equi i cor-
respond to the other parts (t > 0), and these do not overlap. Bivariate autoregressive
linear mixed effects models are shown using the representation of response changes
with the equilibria at each time point,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Yi,0 � Xi,0β + Zi,0bi + εi,0

Yi,t − Yi,t−1 � (I2 − ρ)
(
Yequi i,t − Yi,t−1

)
+ εi,t , (t > 0)

Yequi i,t � (I2 − ρ)−1
(
Xi,tβ + Zi,tbi

)
� Xi,tβ

∗ + Zi,tb∗
i

. (4.2.14)

The expected changes from Yi,t−1 to Yi,t is (I2 − ρ)
(
Yequi i,t − Yi,t−1

)
. As with the

univariate models, Yequi i,t can be interpreted as the vector of the equilibria, and is
not observable. Yequi i,t − Yi,t−1 is the size remaining to the equilibria, and ρ shows
how the responses approach equilibria. In particular, ρ12 and ρ21 show the influences
of the other response variable.

The baselines depend linearly on fixed and random effects with the coefficients
βr base and br base i . The equilibria depend linearly on the fixed and random effects,
with the coefficients β∗

r equi and b∗
r equi i , where β∗ � Mxβ and b∗

i � Mzbi , as in the
univariate case in Sect. 2.3.2.Mx andMz are described below. If the covariate values
are the same after time t, the responses would approach the equilibria gradually. If
the covariate values change, the responses would move toward new equilibria. The
expectations of the baselines and equilibria are Xi,0β(� Xi,0β

∗) and Xi,tβ
∗. The het-

erogeneity among subjects on the baselines and the equilibria is represented by the
vector of random effects parameters b∗

i � Mzbi , which are normally distributed with
the mean zero and variance covariance matrix G∗ � MzGMT

z , b
∗
i ∼ MVN(0,G∗).

The representation (4.2.14) makes the interpretation easier than the original autore-
gressive form (4.2.7) or marginal form (4.2.9). Biologically, β∗, b∗

i , andG
∗ could be

interpreted more easily than β, bi , and G.
The matricesMx andMz are designed to change βr equi and br equi i to new param-

eters β∗
r equi and b∗

r equi i , but not to change βr base or br base i .Mx can be defined as

Mx � I2 ⊗ Dx1 + (I2 − ρ)−1 ⊗ Dx2. (4.2.15)
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Dx1 is a p1 × p1 diagonal matrix whose first p1 baseth elements are 1, and whose
other elements are 0, where p1 is the number of fixed effects, and p1 base is the
number of fixed effects corresponding to the baseline. Dx2 is a p1 × p1 diagonal
matrix whose first p1 baseth elements are 0, and whose other elements are 1. Mz is
defined similarly. Table 4.2a and b shows an example of Mx and β∗ � Mxβ in
the case of three parameters of fixed effects for each response variable with β∗T

r �(
βr base β∗

r int β∗
r cov

)
. The first element corresponds to the baseline, and the other

two correspond to later times. Let the elements of (I2 − ρ)−1 be

(I2 − ρ)−1 ≡
(

ρa ρb

ρc ρd

)
.

Let bi � (b1 base i , b1 int i , b1 cov i , b2 base i , b2 int i , b2 cov i )
T . Then, Mz � Mx .

Table 4.2c shows the random effects of baseline and equilibrium b∗
i � Mzbi .

Table 4.2d shows an expression of G∗ � MzGMT
z which is a 6× 6 variance covari-

ance matrix of b∗
i .

Although the representation of response changes at all the time points in each
subject (2.3.13) was given for univariate cases, only the representation at each time
point is given for multivariate cases in this section.

4.2.4 Variance Covariance Structures

The autoregressive form of the variance covariance matrix is Vi � ZiGZT
i + Ri ,

where ZiGZT
i and Ri represent the between-subject variability induced by random

effects and within-subject variability induced by random errors, respectively. We
provide a particular variance covariance structure of Ri induced by two types of
errors, an AR(1) error and a measurement error; this is a bivariate extension of the
variance covariance structures for univariate models in Sect. 2.4.1. We consider the
following model:⎧⎨

⎩
(
Yi,0 − ε(ME)i,0

) � Xi,0β + Zi,0bi + ε(AR)i,0(
Yi,t − ε(ME)i,t

) � ρ
(
Yi,t−1 − ε(ME)i,t−1

)
+ Xi,tβ + Zi,tbi + ε(AR)i,t , (t > 0)

,

(4.2.16)

where ε(AR)i,0, ε(AR)i,t (t > 0), and ε(ME)i,t are 2 × 1 random error vectors and are
assumed to follow normal distributions with the mean zero and 2 × 2 variance
covariance matrices rAR0, rAR, and rME, respectively. εi,t in Eq. (4.2.9) corresponds
to {

εi,0 � ε(AR)i,0 + ε(ME)i,0

εi,t � ε(AR)i,t + ε(ME)i,t − ρε(ME)i,t−1, (t > 0)
. (4.2.17)
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Table 4.2 Examples of vector representations for equilibrium

(a) Matrix for parameter transformation

Mx � I2 ⊗
⎛
⎜⎝ 1 0 0

0 0 0

0 0 0

⎞
⎟⎠ + (I2 − ρ)−1 ⊗

⎛
⎜⎝ 0 0 0

0 1 0

0 0 1

⎞
⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 ρa 0 0 ρb 0

0 0 ρa 0 0 ρb

0 0 0 0 0 0

0 ρc 0 0 ρd 0

0 0 ρc 0 0 ρd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 ρa 0 0 ρb 0

0 0 ρa 0 0 ρb

0 0 0 1 0 0

0 ρc 0 0 ρd 0

0 0 ρc 0 0 ρd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where (I2 − ρ)−1 ≡
(

ρa ρb

ρc ρd

)

(b) Fixed effects of baseline and equilibrium

β∗ � Mxβ �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1 base

β∗
1 int

β∗
1 cov

β2 base

β∗
2 int

β∗
2 cov

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 ρa 0 0 ρb 0

0 0 ρa 0 0 ρb

0 0 0 1 0 0

0 ρc 0 0 ρd 0

0 0 ρc 0 0 ρd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1 base

β1 int

β1 cov

β2 base

β2 int

β2 cov

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1 base

ρaβ1 int + ρbβ2 int

ρaβ1 cov + ρbβ2 cov

β2 base

ρcβ1 int + ρdβ2 int

ρcβ1 cov + ρdβ2 cov

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(c) Random effects of baseline and equilibrium Mz � Mx

b∗
i � Mzbi �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 base i

b∗
1 int i

b∗
1 cov i

b2 base i

b∗
2 int i

b∗
2 cov i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 base i

ρab1 int i + ρbb2 int i

ρab1 cov i + ρbb2 cov i

b2 base i

ρcb1 int i + ρdb2 int i

ρcb1 cov i + ρdb2 cov i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(d) Expression of variance covariance matrix of b∗
i , G

∗ � MzGMT
z

G∗ � Var

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 base i

b∗
1 int i

b∗
1 cov i

b2 base i

b∗
2 int i

b∗
2 cov i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ 2
1,b σ1b 1int σ1b 1c σ1b 2b σ1b 2int σ1b 2c

σ1b 1int σ 2
1,int σ1int 1c σ1int 2b σ1int 2int σ1int 2c

σ1b 1c σ1int 1c σ 2
1,c σ1c 2b σ1c 2int σ1c 2c

σ1b 2b σ1int 2b σ1c 2b σ 2
2,b σ2b 2int σ2b 2c

σ1b 2int σ1int 2int σ1c 2int σ2b 2int σ 2
2,int σ2int 2c

σ1b 2c σ1int 2c σ1c 2c σ2b 2c σ2int 2c σ 2
2,c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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In the autoregressive form (conditional form), ε(AR)i,t is the independent error across
time points. In the marginal form (unconditional form), it is a serially correlated
error, that is the bivariate AR(1) error with the autoregressive coefficient ρ. In the
marginal form, ε(ME)i,t is a temporal error that is independent across time points. The
autoregressive coefficients in ρ show how the responses exclusive of ε(ME)i,t change.

If the model includes the random baseline effects for both variables, its 2 × 2
variance covariancematrix is at the same position with rAR0 inVi , as in the univariate
case in Table 2.3c, e, and g. Thus, a constraint on rAR0 is needed. If the process of
AR(1) starts long before t � 0, and is stationary, rAR0 is constrained to be as follows
(Harvey 1993),

rAR0 � ρrAR0ρ′ + rAR. (4.2.18)

However, in clinical studies, treatments start at t � 0 and the process may not be
stationary, especially for some time after treatment initiation. Thus, the example in
Sect. 4.3 uses a non-stationary process with rAR0 � 0

(
ε(AR)i,0 � 0

)
.

4.2.5 Estimation

−2 log-likelihood (−2ll) of bivariate autoregressive linear mixed effects models is
givenby themarginal form, based onEq. (4.2.11) from the followingmultivariate nor-
mal distribution, assuming that the responses fromdifferent subjects are independent,

MVN
( (

I2Ti+2 − Fi ⊗ ρ
)−1

Xiβ, �i

)
. (4.2.19)

It is also given by the autoregressive form, based on Eq. (4.2.9) from the following
multivariate normal distribution,

MVN
(

(Fi ⊗ ρ)Yi + Xiβ, Vi � ZiGZT
i + Ri

)
. (4.2.20)

When there are no intermittent missing responses, bothmethods provide−2ll.When
there are intermittent missing responses, but corresponding elements of the covari-
ates are known, −2ll is still given by the marginal form. However, −2ll using the
autoregressive form cannot be calculated, because previous responses, as covariates,
are missing.

When both ρ and Vi are known, the maximum likelihood estimators (MLEs) of
the fixed effects β

∧

are given directly. To obtain the maximum likelihood estimates
of the variance covariance parameters and ρ, we substitute β

∧

in −2ll and minimize
the concentrated −2llMLCONC using optimization methods. In Sect. 4.3, we use a
Newton–Raphson ridge method with finite difference approximations for first- and
second-order derivatives in the nonlinear optimization subroutines of the SAS/IML
software. The standard errors of the parameter estimates are derived from theHessian



4.2 Multivariate Autoregressive Linear Mixed Effects Models 89

of the log-likelihood. We restrict the parameter space of the eigenvalues of the ρ to
0 < λ < 1.

The above likelihoods are expressed by matrices whose sizes depend on the num-
ber of observations for a subject. When the number of time points increases, the
matrices become large in multivariate longitudinal data. The state space represen-
tation and Kalman filter, which can calculate the marginal likelihood without using
large matrices, are discussed in Chap. 6 (Funatogawa and Funatogawa 2008).

As with the univariate case in Sect. 2.5.3, an indirect method also exists. When
there are no intermittentmissingdata,we can consider the autoregressive linearmixed
effects models as linear mixed effects models by treating the previous responses as
fixed effects,

Yi � X#
i β

# + Zibi + εi , (4.2.21)

where β# � (
βT , ρ11, ρ12, ρ21, ρ22

)T
, X#

i � (Xi Xiρ ),

Xiρ �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0

Y1i,0 Y2i,0 0 0

0 0 Y1i,0 Y2i,0
Y1i,1 Y2i,1 0 0

0 0 Y1i,1 Y2i,1

...
...

...
...

...
...

...
...

Y1i,Ti−1 Y2i,Ti−1 0 0

0 0 Y1i,Ti−1 Y2i,Ti−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now X#
i is a (2Ti + 2) × (p + 4) matrix and β# is a (p + 4) × 1vector. Thus, when

there are no intermittentmissing data, we can use the estimationmethods of the linear
mixed effects models. The value of −2ll is calculated by the autoregressive form. If
it is assumed that rAR is a diagonal matrix and rME � 0, then standard software for
linear mixed effects models can be used for the estimation. However, this structure
is restrictive, and measurement errors are often observed in practice. If rME � 0 is
assumed, an EM algorithm has been proposed (Shah et al. 1997). It is practical to
minimize the concentrated −2ll using optimization methods, as mentioned above.
This indirect method may be used to obtain the initial values for the direct method.
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4.3 Example with Time-Dependent Covariate: PTH and Ca
Data

This section shows an example of bivariate autoregressive linearmixed effectsmodels
with a time-dependent covariate using PTH and Ca data (Funatogawa et al. 2008).
A univariate autoregressive linear mixed effects model was also adapted to the PTH
data in Funatogawa et al. (2007). Changes in PTH and Ca are negatively correlated,
and active vitamin D3 causes the PTH level to decrease and the Ca level to rise. The
injection of an active vitamin D3 derivative is one therapeutic option for secondary
hyperparathyroidism in hemodialysis patients. It is effective in reducing the PTH
level. PTH and Ca have their respective target ranges, and it is clinically problematic
if their levels are either too high or too low. In a clinical study (Kurokawa et al. 2000),
an active vitamin D3 derivative was administered three times a week for 28 weeks
without control groups. PTH was measured biweekly and Ca was measured weekly.
There were weekly dose modifications within individuals, taking into account both
PTH and Ca levels and other medical conditions. The candidate doses were 0, 2.5,
5, 7.5, 10, 12.5, and 15 μg. A clear improvement was defined as a 50% reduction
in PTH or a PTH level of less than 200 pg/mL without an associated Ca level over
11.5 mg/dL.

The profile of PTH, Ca, and dose in a typical patient is plotted in Fig. 4.1. In
the patient, 10 μg of the drug was administered first, then PTH decreased and Ca
increased.When the Ca level increased over 11.5 mg/dL, administration was stopped
for safety reasons. After the decrease in the Ca level was confirmed, administration
was restarted at a lower dose. Because there was large inter-individual variability in
both the severity of the disease and sensitivity to dosemodifications, it was difficult to
infer the appropriate doses for each individual before treatment initiation. Therefore,

Fig. 4.1 Observed PTH
level (closed circle), Ca level
(open circle), and dose
profiles for a typical patient.
Funatogawa et al. (2008)
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dose modifications within each individual are often needed, taking into account both
PTH and Ca levels.

The objective of the analysis in this chapter is to describe the relationship between
the treatment dose and the PTH andCa levels for each patient. The number of patients
was 149. The numbers of measurements was 2168 for PTH and 3910 for Ca. We use
a Box–Cox transformation, (Y 0.25 −1)/0.25, for PTH to stabilize the variance and
improve the model fitting.

The dose appears to followa stochastic process,whichmaybe interdependentwith
the processes for PTH and Ca. However, here, PTH and Ca are modeled conditional
on the dose at a given time. If the dose is decided based on the observed levels of PTH
and Ca, but not unobserved parts, and the model is specified correctly, the estimates
are unbiased as discussed in Sect. 3.4 (Funatogawa and Funatogawa 2012).

Let Y1i,t and Y2i,t be PTH and Ca levels, respectively. Let xi,t be a treatment dose
which is a time-dependent covariate. Both fixed effects and random effects include
this covariate. For error terms, both first-order autoregressive errors, ε(AR)i,t , and
measurement errors, ε(ME)i,t , are assumed. ε(AR)i,t (t > 0) and ε(ME)i,t are assumed
to follow bivariate normal distributions with the mean zero vector and 2 × 2 vari-
ance covariance matrices rAR and rME, respectively. ε(AR)i,0 � 0 is assumed. The
autoregressive form of the bivariate autoregressive linear mixed effects model is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Y1i,0
Y2i,0

)
�

(
β1 base

β2 base

)
+

(
b1 base i

b2 base i

)
+

(
ε1i,0

ε2i,0

)

(
Y1i,t
Y2i,t

)
�

⎛
⎝ ρ11 ρ12

ρ21 ρ22

⎞
⎠(

Y1i,t−1

Y2i,t−1

)
+

(
β1 int + b1 int i

β2 int + b2 int i

)

+

(
β1 cov + b1 cov i

β2 cov + b2 cov i

)
xi,t +

(
ε1i,t

ε2i,t

)
, (t > 0)

. (4.3.1)

The model is also shown using the response changes with equilibria,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Y1i,0

Y2i,0

)
�

(
β1 base

β2 base

)
+

(
b1 base i

b2 base i

)
+

(
ε1i,0

ε2i,0

)

(
Y1i,t − Y1i,t−1

Y2i,t − Y2i,t−1

)
�

(
1 − ρ11 −ρ12

−ρ21 1 − ρ22

)⎛
⎝ Y1 equi i,t − Y1i,t−1

Y2 equi i,t − Y2i,t−1

⎞
⎠ +

(
ε1i,t

ε2i,t

)
, (t > 0)

⎛
⎝ Y1 equi i,t

Y2 equi i,t

⎞
⎠ �

⎛
⎝ β∗

1 int + b∗
1 int i

β∗
2 int + b∗

2 int i

⎞
⎠ +

⎛
⎝ β∗

1 cov + b∗
1 cov i

β∗
2 cov + b∗

2 cov i

⎞
⎠xi,t

(4.3.2)

The derivations of β∗ � Mxβ, b∗
i � Mzbi , and G∗ � MzGMT

z are described in
Sect. 4.2.3.

Table 4.3a shows the estimates of fixed effects and autoregressive coefficients
of PTH and Ca data. Figure 4.2 shows the expected mean profiles of PTH and Ca
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Table 4.3 Estimates of a bivariate autoregressive linear mixed effects model for PTH and Ca data

(a) Fixed effects and autoregressive coefficients⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y1i,0 � 16.7 + b1 base i + ε1i,0

Y2i,0 � 9.9 + b2 base i + ε2i,0

Y1i,t − Y1i,t−1 � (1 − 0.82)
(
Y1 equi i,t − Y1i,t−1

) − 0.13
(
Y2 equi i,t − Y2i,t−1

)
+ ε1i,t , (t > 0)

Y2i,t − Y2i,t−1 � −0.005
(
Y1 equi i,t − Y1i,t−1

)
+ (1 − 0.81)

(
Y2 equi i,t − Y2i,t−1

)
+ ε2i,t , (t > 0)

Y1 equi i,t � (
18.1 + b∗

1 int i

)
+

(−0.58 + b∗
1 cov i

)
xi,t

Y2 equi i,t � (
9.7 + b∗

2 int i

)
+

(
0.17 + b∗

2 cov i

)
xi,t⎛

⎜⎝ ρ11 ρ12

ρ21 ρ22

⎞
⎟⎠ �

⎛
⎜⎝ 0.82 0.13

0.005 0.81

⎞
⎟⎠

(b) Covariance-SD-correlation for AR(1) error r̂AR and measurement error r̂ME
a

r̂AR:
0.71 −0.10

(−0.77) 0.19
, r̂ME:

0.80 −0.02

(−0.08) 0.32

(c) Covariance-SD-correlation for variance covariance matrix of random effects Ĝ∗a
b1 base i 3.46 10.80 0.40 −0.63 −0.15 −0.17

b∗
1 int i (0.87) 3.60 0.13 −0.25 −0.21 −0.13

b∗
1 cov i (0.34) (0.10) 0.34 0.03 0.07 −0.02

b2 base i (−0.26) (−0.10) (0.11) 0.71 0.35 0.01

b∗
2 int i (−0.06) (−0.09) (0.31) (0.75) 0.67 −0.01

b∗
2 cov i (−0.52) (−0.40) (−0.73) (0.15) (−0.13) 0.09

Funatogawa et al. (2008)
aCovariances are above the diagonal, standard deviations are on the diagonal, and correlations are
below the diagonal

when each dose is administered continuously. At baseline, the mean PTH is 16.7
(717 pg/mL) and the mean Ca is 9.9 mg/dL. For example, when a dose of 10 μg
is administered continuously, the expected equilibria are 12.3 (276 pg/mL) for PTH
and 11.4 mg/dL for Ca. The changes from time 0 to time 1 are{

Y1i,1 − Y1i,0 � (1 − 0.82)(12.3 − 16.7) − 0.13(11.4 − 9.9) � −0.99

Y2i,1 − Y2i,0 � −0.005(12.3 − 16.7) + (1 − 0.81)(11.4 − 9.9) � 0.31
. (4.3.3)

The estimates of ρ12 and ρ21 show the influences of the other response variable. In
this case, the low Ca level relative to the equilibrium decreases the PTH level, and
the high PTH level relative to the equilibrium increases the Ca level. Nevertheless,
neither estimate was significant (P �0.21 and P � 0.41 by the Wald test).

Table 4.3b shows the covariance-SD-correlations for r̂AR and r̂ME. Covariances
are above the diagonal, standard deviations are on the diagonal, and correlations are
below the diagonal. The correlation in r̂AR is −0.77 (P < 0.001 by the Wald test).
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Fig. 4.2 Expected mean profiles of PTH and Ca when each dose is continuously administered. The
doses are 0, 2.5, 5, 7.5, 10, 12.5, and 15 μg. Funatogawa et al. (2008)

This means that the high Ca level relative to the expected level is related to the low
simultaneous PTH level relative to the expected level. The current high Ca level
is also related to the high Ca levels and the low PTH levels at the neighborhood
times because the errors are correlated serially. The correlation in r̂(ME) is small (P
� 0.13 by the Wald test), which means that the temporal errors of Ca and PTH are
not correlated. Table 4.3c shows the covariance-SD-correlation for G

∧∗
.

We show the mean changes in the equilibria of PTH and Ca caused by 2.5μg
dose rise and the 10th and 90th percentiles. For Ca, the mean change is 0.42 (mg/dL)
and the percentiles are 0.03 to 0.80. For PTH, the mean change from 700 pg/mL is
−180 pg/mL and the percentiles are −310 to −10. Because a Box–Cox transfor-
mation was used for PTH, the mean change depends on the response level. These
percentiles represent the heterogeneity of sensitivity to dose modification among
patients. The random dose effects of PTH and Ca were negatively correlated with a
correlation coefficient of −0.73 (P < 0.001 by the Wald test). Thus, Ca will increase
markedly in patients with a large decrease in PTH, and Ca will increase by a small
amount in patients with a small decrease in PTH. Figure 4.3 shows the expected dose
responses of PTH and Ca equilibria for the population average and some randomly
selected patients.

Table 4.4 shows the −2 log-likelihood (−2ll), the total number of parameters,
and Akaike’s information criterion (AIC) of the assumedmodel, the models in which
rAR, rME, orG is ignored, and the model in which ρ12, ρ21, and all of the correlations
betweenPTHandCa are set to zero. In either case, the fit is obviouslyworse compared
with the full model. The last model corresponds to the univariate models for PTH
and Ca. Thus, the bivariate analysis has an improvement over the univariate analysis.
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Fig. 4.3 Expected dose
responses of PTH and Ca
equilibria for the population
average (closed circle) and
randomly selected patients
(open circle). Funatogawa
et al. (2008)

Table 4.4 −2 log-likelihood and AIC for PTH and Ca data

Model Number of
parameters

−2
log-likelihood

AIC

Full model 37 12,143.4 12,217.4

rAR ignored 34 12,597.9 12,665.9

rME ignored 34 12,384.9 12,452.9

G ignored 16 15,403.3 15,435.3

Univariate models for PTH and Caa 24 12,595.2 12,643.2

Funatogawa et al. (2008)
aρ12, ρ21, and all of correlations between PTH and Ca are set to zero

4.4 Multivariate Linear Mixed Effects Models

Themain themeof this book is autoregressive linearmixed effectsmodels, butwe also
briefly describe themultivariate linear mixed effects models. Yri j is the rth (r � 1, 2)
response variable in the ith (i � 1, · · · , N ) subject at the jth ( j � 1, · · · , nri ) time
point. tri j is time as a continuous variable. Similar to univariate models, the models
can be represented as ⎧⎪⎨

⎪⎩
Yi � Xiβ + Zibi + εi

bi ∼ MVN(0,G)

εi ∼ MVN(0,Ri )

, (4.4.1)

where Var(Yi ) is Vi � ZiGZT
i + Ri . When the model has no random effects, the

marginal model is
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Table 4.5 Example of bivariate linear mixed effects models and marginal models

(a) Example of bivariate linear mixed effects models: linear time trend model with random
intercept and random slope. Yi � Xiβ + Zibi + εi , bi ∼ MVN(0,G), εi ∼ MVN(0,Ri )⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y1i1

...

Y1in1i

Y2i1

...

Y2in2i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 t1i1 0

...
...

...
...

1 0 t1in1i 0

0 1 0 t2i1

...
...

...
...

0 1 0 t2in2i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

β1 int

β2 int

β1 slope

β2 slope

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

b1 int i

b2 int i

b1 slope i

b2 slope i

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1i1

...

ε1in1i

ε2i1

...

ε2in2i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

G �

⎛
⎜⎜⎜⎜⎜⎜⎝

σ 2
1int σ1int 2int σ1int 1s σ1int 2s

σ1int 2int σ 2
2int σ2int 1s σ2int 2s

σ1int 1s σ2int 1s σ 2
1s σ1s 2s

σ1int 2s σ2int 2s σ1s 2s σ 2
2s

⎞
⎟⎟⎟⎟⎟⎟⎠

,Ri �
⎛
⎝ σ 2

1 In1i 0

0 σ 2
2 In2i

⎞
⎠

(b) Example of variance covariance matrix of bivariate marginal model for three time points:
direct product of unstructured (UN) and AR(1). Yi � Xiβ + εi , εi ∼ MVN(0,Ri )

Ri �
⎛
⎝ σ 2

1 σ12

σ12 σ 2
2

⎞
⎠ ⊗

⎛
⎜⎜⎝

1 ρ ρ2

ρ 1 ρ

ρ2 ρ 1

⎞
⎟⎟⎠ �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ 2
1 σ 2

1 ρ σ 2
1 ρ2 σ12 σ12ρ σ12ρ

2

σ 2
1 ρ σ 2

1 σ 2
1 ρ σ12ρ σ12 σ12ρ

σ 2
1 ρ2 σ 2

1 ρ σ 2
1 σ12ρ

2 σ12ρ σ12

σ12 σ12ρ σ12ρ
2 σ 2

2 σ 2
2 ρ σ 2

2 ρ2

σ12ρ σ12 σ12ρ σ 2
2 ρ σ 2

2 σ 2
2 ρ

σ12ρ
2 σ12ρ σ12 σ 2

2 ρ2 σ 2
2 ρ σ 2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

{
Yi � Xiβ + εi

εi ∼ MVN(0,Ri )
, (4.4.2)

where Var(Yi ) is Ri .
Table 4.5a shows an example of bivariate linear mixed effects models, assuming

a linear time trend for each response variable. The random effects are random inter-
cepts and random slopes for the two variables. They follow a multivariate normal
distribution, with the mean vector 0 and 4 × 4 variance covariance matrix G. The
structure of G is assumed to be unstructured (UN). G is given in Table 4.5a. σ1s 2s

is the covariance for the two random slopes b1 slope i and b2 slope i , and its correlation
is σ1s 2s/(σ1sσ2s). The large absolute value of the correlation means that a subject
with large changes in one variable shows large changes in the other variable. If we
assume independent errors, the structure of Ri is diagonal. Ri is given in Table 4.5a.
Correlated error structures can be also assumed.
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In another approach with error terms, some structures are assumed on Ri . Jones
(1993) assumedabivariate continuous timeAR(1) error structurewith a random inter-
cept for each variable. Sy et al. (1997) assumed a bivariate integrated Ornstein–Uh-
lenbeck (IOU) process with measurement errors. Zeger and Liang (1991) were inter-
ested in the feedback of one response on another. With continuous responses, they
used a bivariate AR(1) process for the error, but not for the response variable. Besides
these, there is an approach using a direct (Kronecker) product. An example of the
direct product of unstructured (UN) and AR(1) for the three time points is given in
Table 4.5b.

4.5 Appendix

4.5.1 Direct Product

The direct product of two matrices, an a1 × a2 matrix Aa1×a2 and a b1 × b2 matrix
Bb1×b2 , is defined as

Aa1×a2 ⊗ Bb1×b2 �

⎛
⎜⎜⎝

a11B · · · a1a2B

...
...

aa11B · · · aa1a2B

⎞
⎟⎟⎠, (4.5.1)

where akl is the k, lth element of Aa1×a2 . This is also called the Kronecker product.
The size of this matrix is a1b1 × a2b2. Direct products have many useful properties.
One property used in this chapter is

(A ⊗ B)(C ⊗ D) � AC ⊗ BD, (4.5.2)

provided conformability requirements for regular matrix multiplication are satisfied.
We can obtain the following equation based on (4.5.2),(

ITi+1 ⊗ ρ
)
(Fi ⊗ I2) � ITi+1Fi ⊗ ρI2

� Fi ⊗ ρ. (4.5.3)

For details of the matrix algebra, see Searle (1982).

4.5.2 Parameter Transformation

This section gives a supplementary explanation of the parameter transformation in
Sect. 4.2.3. When X1i,t � X2i,t , Xi,t � I2 ⊗ X1i,t . We can obtain
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(I2 − ρ)−1Xi,tβ � Xi,t
{
(I2 − ρ)−1 ⊗ Ip

}
β, (4.5.4)

from the following equation:

(I2 − ρ)−1Xi,t � (I2 − ρ)−1
(
I2 ⊗ X1i,t

)
� (I2 − ρ)−1 ⊗ X1i,t

� I2(I2 − ρ)−1 ⊗ X1i,tIp

� (
I2 ⊗ X1i,t

){
(I2 − ρ)−1 ⊗ Ip

}
� Xi,t

{
(I2 − ρ)−1 ⊗ Ip

}
. (4.5.5)

To obtain this equation, we use the property (4.5.2). In the above derivation, only
the parts of

{
(I2 − ρ)−1 ⊗ Ip

}
β corresponding to XT

1i,t,equi and XT
2i,t,equi are used as

coefficients for the equilibria, because all elements in XT
i,t for t > 0 are zero except

XT
1i,t,equi and XT

2i,t,equi.
WhenX1i,t �� X2i,t orZ1i,t �� Z2i,t , the equilibriumYequi i,t can be also defined as a

linear function of covariates. WhenX1i,t �� X2i,t ,Xi,t is represented as
(
I2 ⊗ x∗

i,t

)
Jx .

x∗
i,t is a 1× p∗ (p∗ ≥ p1 and p∗ ≥ p2) matrix, which contains all covariates of fixed
effects. Jx is a 2p∗ × (p1 + p2) matrix, and the elements of which are 0 or 1. For
random effects, z∗

i,t , Jz , and q
∗ are defined similarly. We can obtain

(I2 − ρ)−1Xi,tβ � (
I2 ⊗ x∗

i,t

){
(I2 − ρ)−1 ⊗ Ip∗

}
Jxβ, (4.5.6)

(I2 − ρ)−1Zi,tbi � (
I2 ⊗ z∗

i,t

){
(I2 − ρ)−1 ⊗ Iq∗

}
Jzbi . (4.5.7)

Thus, the equilibrium depends linearly on both the fixed and random effects
with the covariate matrices,

(
I2 ⊗ x∗

i,t

)
and

(
I2 ⊗ z∗

i,t

)
, and the parameter vectors,{

(I2 − ρ)−1 ⊗ Ip∗
}
Jxβ and

{
(I2 − ρ)−1 ⊗ Iq∗

}
Jzbi .
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Chapter 5
Nonlinear Mixed Effects Models, Growth
Curves, and Autoregressive Linear
Mixed Effects Models

Abstract In the previous chapters, we discussed autoregressive linear mixed effects
models. In this section, we discuss the relationships between the autoregressive linear
mixed effects models and nonlinear mixed effects models, growth curves, and differ-
ential equations. The autoregressivemodel shows aprofile approaching an asymptote,
where the change is proportional to the distance remaining to the asymptote. Autore-
gressive models in discrete time correspond to monomolecular curves in continu-
ous time. Autoregressive linear mixed effects models correspond to monomolecular
curves with random effects in the baseline and asymptote, and special error terms.
The autoregressive coefficient is a nonlinear parameter, but all random effects param-
eters in the model are linear. Therefore, autoregressive linear mixed effects models
are nonlinear mixed effects models without nonlinear random effects and have a
closed form of likelihood. When there are time-dependent covariates, autoregressive
linear mixed effects models are represented by a differential equation and random
effects. The monomolecular curve is one of the popular growth curves. We introduce
other growth curves, such as the logistic curves and von Bertalanffy curves, and gen-
eralizations of growth curves. Re-parameterization is often performed in nonlinear
models, and various representations of re-parameterization in monomolecular and
other curves are provided herein.

Keywords Autoregressive linear mixed effects model · Growth curve
Longitudinal · Monomolecular curve · Nonlinear mixed effects model

5.1 Autoregressive Models and Monomolecular Curves

This section discusses autoregressive models and monomolecular curves in a single
subject. These have neither random effects nor error terms. In Sect. 5.2, we consider
monomolecular curves with random effects and autoregressive linear mixed effects
models for longitudinal data. Section 5.3 discusses nonlinear mixed effects models.
Section 5.4 introduces various nonlinear curves. Section 5.5 discusses generalization
of nonlinear curves.
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In autoregressive models, the change is proportional to the distance remaining to
the asymptote when the autoregressive coefficient is 0 < ρ < 1. For example, for
the following autoregressive model

Yt � βint + ρYt−1, (5.1.1)

the change is

Yt − Yt−1 � (1 − ρ)

(
βint

1 − ρ
− Yt−1

)
, (5.1.2)

where error terms are omitted for simplicity, Yt is the response at time
t (t � 1, · · · , T ), βint is the intercept, βint/(1 − ρ) ≡ βasy is the asymptote, and
βint/(1 − ρ) − Yt−1 is the distance remaining to the asymptote. Time is discrete in
autoregressive models. As described in Sect. 2.1.2, with the baseline response βbase,
the marginal form of the above autoregressive model is Y0 � βbase and

Yt � ρ tβbase +
t∑

l�1

ρ t−lβint

� βbaseρ
t + βasy

(
1 − ρ t

)
, (t > 0). (5.1.3)

Next, we consider monomolecular curves in which the change is proportional
to the distance remaining to the asymptote based on continuous time. Let α be the
asymptote as y(x → ∞) � α. y is the response level and x is continuous time. With
κ > 0 as a proportional constant, changes in the response level based on continuous
time are expressed by an ordinary differential equation,

dy

dx
� κ(α − y), (5.1.4)

where α − y is the distance remaining to the asymptote. Let α0 be the baseline
response as y(0) � α0. The general solution to this differential equation is

y(x) � α − (α − α0)e
−κx . (5.1.5)

This is also expressed as follows:

y(x) � α0e
−κx + α

(
1 − e−κx

)
. (5.1.6)

This form is used in Sect. 5.2. The model has three parameters, and the correspon-
dence with (5.1.3) is α0 � βbase, α � βasy, and e−κ � ρ. The difference between
(5.1.3) and (5.1.6) is that x is continuous in time, whereas t is discrete.
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(a) (b)

Fig. 5.1 Monomolecular curves a y(x) � α − (α − α0)e−κx with various α0. The curves are also
expressed by α

{
1 − e−κ(x−γ )

}
. b Standard curve y(x) � S(x) � 1 − e−x (solid line), S(κx) with

various κ (dotted lines), and S(x − γ ) with various γ (broken lines)

Figure 5.1a shows the monomolecular curves with various α0. When the curve
exhibits growth (increase), the parameters are α > α0 > 0. This function can also
show a decrease. κ is a scale parameter on x . When x � log 2/κ ≈ 0.69314/κ , the
response level is the midpoint between α and α0 as

y

(
log 2

κ

)
� α + α0

2
. (5.1.7)

With re-parameterization, the general solution can be written in many ways. For
example,

y(x) � α
{
1 − e−κ(x−γ )

}
, (5.1.8)

where y(γ ) � 0 and

γ � κ−1log

(
α − α0

α

)
. (5.1.9)

Table 5.1 shows the relationships of parameters α, α0, and κ with other parameters.
Table 5.2 shows ordinary differential equations and several general solutions for the
monomolecular curve and other nonlinear curves discussed in Sect. 5.4.

Let S(x) � (
1 − e−x

)
be a standard curve. The curve (5.1.5) is then obtained by

shifting the standard curve vertically by α0 and including the scale parameter κ and
asymptote α as

y(x) � α0 + (α − α0)S(κx)

� α − (α − α0){1 − S(κx)}. (5.1.10)
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Table 5.1 Parameters of monomolecular curves

Parametera Relationship with α, α0, κ

α Asymptote, y(∞)

α0 Baseline response, y(0)

κ Scale parameter on x

γ y(γ ) � 0 γ � κ−1log{(α − α0)/α}
δ Distance from baseline response to asymptote δ � α − α0

β0 Asymptote β0 � α

β1 Distance from asymptote to baseline response β0 + β1 � α0
β1 � −(α − α0) � −δ

ρ ρ � e−κ , κ � −log(ρ)

aMonomolecular curves are expressed by α − (α − α0)e−κx , α
{
1 − e−κ(x−γ )

}
, α − δe−κx , and

β0 + β1ρ
x with 0 < ρ < 1

On the other hand, the curve (5.1.8) is obtained by shifting the standard curve hori-
zontally by γ and including the scale parameter κ and asymptote α as

y(x) � αS(κ(x − γ )). (5.1.11)

Figure 5.1b shows S(x), S(κx) with various κ , and S(κ − γ ) with various γ .
Another re-parameterization is

y(x) � α − δe−κx , (5.1.12)

where δ � α − α0 is the distance between the baseline response and the asymptote.
If we use ρ instead of e−κ , the curve is

y(x) � β0 + β1ρ
x , 0 < ρ < 1, (5.1.13)

where β0 � α, β1 � −δ, and β0 + β1 � α − δ � α0. When x ≥ 0, the
response changes from α0 to α, from α − δ to α, or from β0 + β1 to β0. Other
re-parameterizations are

y(x) � α
(
1 − Be−κx

)
, (5.1.14)

y(x) � α − e−(b+κx). (5.1.15)

This monomolecular curve is also known as Mitscherlich curve, asymptotic
regression (Ratkowsky 1983; Pinheiro and Bates 2000), asymptotic exponential
growth curve (Vonesh 2012), negative exponential curve (Singer and Willett 2003),
and so on. The form (5.1.13) or y(x) � β0 − β1ρ

x is known as an asymptotic
regressionmodel (Ratkowsky 1983; Pinheiro and Bates 2000). The differential equa-
tion (5.1.4) is known as Newton’s law of cooling, describing a body cooling over
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Table 5.2 Ordinary differential equations and solutions for nonlinear curves

Nonlinear curves
Ordinary differential equations

Solutions

(a) Monomolecular/Mitscherlich
dy

dx
� κ(α − y), κ > 0

a. y(x) � α − (α − α0)e−κx

b. y(x) � α0e−κx + α
(
1 − e−κx

)
c. y(x) � α

{
1 − e−κ(x−γ )

}
d. y(x) � α − δe−κx

e. y(x) � β0 + β1ρ
x , 0 < ρ < 1

f. y(x) � α
{
1 − Be−κx

}
g. y(x) � α − e−(b+κx)

(α0 � 0) y(x) � α
(
1 − e−κx

)
(b) Exponential

dy

dx
� κy

a. y(x) � eκ(x−γ )

b. y(x) � α0eκx

(c) Gompertz
dy

dx
� κy(logα − log y), κ > 0, α > 0

a. y(x) � α exp
{−e−κ(x−γ )

}
b. y(x) � α(α0/α)exp(−κx)

(d) Four-parameter logistic
dy

dx
� κ

α2 − α1
(y − α1)(α2 − y)

a. y(x) � α1 + (α2 − α1)
{
1 + e−κ(x−γ )

}−1

b. y(x) � α2 − (α2 − α1)
{
1 + eκ(x−γ )

}−1

(e) Three-parameter logistic, 0 < y,
(α1 � 0 in (d))
dy

dx
� κ

α
y(α − y) � κy

(
1 − y

α

)
a. y(x) � α

{
1 + e−κ(x−γ )

}−1

b. y(x) � α
{
1 + e(γ−x)/φ

}−1

c. y(x) � α
(
1 + ψe−κx

)−1

d. y(x) � α
{
1 + e−(β0+β1x)

}−1

e. y(x) � αeβ0+β1x
(
1 + eβ0+β1x

)−1

(f) Two-parameter logistic, 0 < y < 1,
(α � 1 in (e), α1 � 0 and α2 � 1 in (d))
dy

dx
� κy(1 − y)

a. y(x) � {
1 + e−κ(x−γ )

}−1

b. y(x) � {
1 + e(γ−x)/φ

}−1

c. y(x) � (
1 + ψe−κx

)−1

d. y(x) � {
1 + e−(β0+β1x)

}−1

e. y(x) � eβ0+β1x
(
1 + eβ0+β1x

)−1

time and stating that the rate of change in the temperature of an object is proportional
to the difference between its own temperature and the ambient temperature, i.e., the
temperature of its surroundings. When used to model crop yield in the response to
the rate of fertilizer application, it has been known as Mitscherlich’s law.

When we add the constraint α0 � 0, the response level is

y(x) � α
(
1 − e−κx

)
, (5.1.16)

which is a two-parameter model for biochemical oxygen demand (BOD).



104 5 Nonlinear Mixed Effects Models, Growth Curves …

5.2 Autoregressive Linear Mixed Effects Models
and Monomolecular Curves with Random Effects

Next, we consider a nonlinear mixed effects model for longitudinal data. Yi j is the j th
( j � 1, · · · , ni ) response for the i th (i � 1, · · · , N ) subject. The explanatory variable
is time ti j , which is a continuous variable. Here, a nonlinear function, f

(
ti j , β,bi

)
,

produces amonomolecular curvewith three parameters. β is fixed effects parameters,
bi is random effects parameters, and εi j is an error term. The model is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi j � f
(
ti j , β,bi

)
+ εi j

f
(
ti j , β,bi

) � (β1 + b1i )e−β3ti j + (β2 + b2i )
(
1 − e−β3ti j

)
β � (β1, β2, β3)

T

bi � (b1i , b2i )
T ,bi ∼ MVN(0,G)

εi � (
εi1, · · · , εini

)T
, εi ∼ MVN(0,Ri )

, (5.2.1)

where β1 is a baseline value, which is the expected response at time 0, β2 is an asymp-
tote, which is the expected response at time∞, and β3 is a scale parameter of time. b1i
and b2i are random effects and represent the inter-individual variation.MVN(0,A) is
a multivariate normal distribution with the mean zero vector and variance covariance
matrix A. b1i and b2i are linear, and only the fixed effect parameter β3 is nonlinear.
Thus, the model is partially linear. The autoregressive linear mixed effects models
shown in Chap. 2 correspond to this model if there are no other explanatory variables.
The autoregressive coefficient ρ � e−β3 is a fixed effect. Furthermore, as discussed in
Sect. 2.4.1, the autoregressive linear mixed effects models assume an autoregressive
error plus an independent error, to take a measurement error into account,

εi,t � ε(AR)i,t + ε(ME)i,t − ρε(ME)i,t−1. (5.2.2)

When there is a time-dependent covariate, xi j , in the asymptote in (5.2.1), the
nonlinear function is

f
(
ti j , xi j , β,bi

) � (β1 + b1i )e
−β3ti j +

{
(β2 + b2i ) + (βc + bci )xi j

}(
1 − e−β3ti j

)
.

(5.2.3)

In this model, Yi j is expressed by the current covariate xi j , but not past covariates.
In contrast, the marginal form of the autoregressive linear mixed effects model with
a time-dependent covariate xi,t shown in Sect. 2.3.3 was

Yi,t � ρ t (βbase + bbase i ) +
t∑

l�1

ρ t−l
{
βint + bint i + (βcov + bcov i )xi,l

}
+ εm i,t , (5.2.4)
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for t > 0. In this model, Yi,t is expressed by the current covariate and past covariates.
Therefore, the two models are different. If the covariate is not time-dependent, the
autoregressive model is

Yi,t � ρ t (βbase + bbase i ) +
(
1 − ρ t

){βint + bint i + (βcov + bcov i )xi } + εm i,t . (5.2.5)

The two models differ only whether time is continuous or discrete.
When the covariate is time-dependent, the autoregressive linear mixed effects

model corresponds to the following model with a differential equation, where time
is continuous,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dμi (t)

dt
� κ{β2 + b2i + (βc + bci )xi (t) − μi (t)}

μi (0) � β1 + b1i

Yi j � μi
(
ti j

)
+ εi j

bi � (b1i , b2i , bci )
T ,bi ∼ MVN(0,G)

εi � (
εi1, · · · , εini

)T
, εi ∼ MVN(0,Ri )

. (5.2.6)

In the following model, the random effect is only a random intercept, bi .

f
(
ti j , β, bi

) � β1e
−β3ti j + β2

(
1 − e−β3ti j

)
+ bi . (5.2.7)

In this model, one fixed effect parameter, β3, is nonlinear, but the random effect is
linear. This model assumes that changes among subjects are vertically parallel, as
described in Sect. 1.3.1.

5.3 Nonlinear Mixed Effects Models

5.3.1 Nonlinear Mixed Effects Models

Both fixed effects parameters β and random effects parameters bi are linear in the
following linear mixed effects models shown in Chap. 1,

Yi � Xiβ + Zibi + εi . (5.3.1)

Nonlinear mixed effects models have at least one nonlinear fixed or random effects
parameter. In the case of autoregressive linear mixed effects models (Funatogawa
et al. 2007, 2008a; Funatogawa et al. 2008b), all parameters are linear in the following
autoregressive form in Sect. 2.3.1,
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Yi � ρFiYi + Xiβ + Zibi + εi , (5.3.2)

where Fi is a square matrix whose elements just below the diagonal are 1 and the
other elements are 0. However, the autoregressive parameter ρ is nonlinear in the
following marginal form in Sect. 2.3.3,

Yi � (Ii − ρFi )
−1(Xiβ + Zibi + εi ), (5.3.3)

where Ii is an identity matrix. Therefore, this is a nonlinear mixed effects model
without nonlinear random effects parameters. ρ is a nonlinear fixed effect parameter.

In linear mixed effects models, the expectation of the response Yi given random
effects bi for subject i is E(Y|bi ) � Xiβ + Zibi . In nonlinear mixed effects models,
the expectation of the response Yi is the nonlinear function f (Xi ,Zi , β,bi ), and
cannot be expressed by Xiβ + Zibi , which are easier to calculate. In autoregressive
linear mixed effects models, the expectation is E(Y|bi ) � (Ii − ρFi )

−1(Xiβ + Zibi )
and relatively easy to calculate.

In the mixed effects approach, the expected response of a typical subject with
random effects 0 is E(Y|b � 0). The marginal expectation, E(Y), is Eb{E(Y|b)},
which is obtained by the integration of expectation given random effects b, E(Y|b),
with respect to b, as follows:

E(Y) � Eb{E(Y|b)} �
∫

E(Y|b)dFb(b), (5.3.4)

where Fb(b) is the distribution function of the random effects. In linear mixed effects
models and autoregressive linear mixed effects models, the expectation for a typical
subject and the marginal expectation are the same,

E(Y|b � 0) � Eb{E(Y|b)} � Xβ, (5.3.5)

E(Y|b � 0) � Eb{E(Y|b)} � (I − ρF)−1Xβ. (5.3.6)

In nonlinearmixed effectsmodelswith nonlinear randomeffects, however, the expec-
tation for a typical subject and the marginal expectation are not the same,

f (X,Z, β,b � 0) 	� Eb{ f (X,Z, β,b)}. (5.3.7)

Subject specific interpretation andmarginal interpretation are not the same. A similar
discrepancy occurs in generalized linear models, in which a nonlinear link function
is used for the analysis of the discrete response variable.

In nonlinear mixed effects models, additive, exponential, or proportional errors
are often used. The error term εi j is assumed to follow a normal distribution with the
mean zero. The additive error is

Yi j � f
(
ti j , β,bi

)
+ εi j . (5.3.8)
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Response levels which are always positive, such as blood drug concentration, often
show a right skewed distribution, and the following exponential error is used:

log Yi j � log f
(
ti j , β,bi

)
+ εi j , (5.3.9)

Yi j � f
(
ti j , β,bi

)
exp

(
εi j

)
, (5.3.10)

where log Yi j is expressed with an additive normal error εi j . The model assumes a
log-normal distribution for Yi j . When the variance of the error increases with the
mean, the following proportional error is also used:

Yi j � f
(
ti j , β,bi

)(
1 + εi j

)
. (5.3.11)

This error has a constant coefficient of variation (CV), which is the standard deviation
divided by the mean. The distributions of the exponential and proportional errors are
log-normal and normal, respectively. Both have constant CVs, but their shapes differ.

Random effects also sometimes exhibit right skewed distributions. In such a case,
the distribution of random effects is assumed to follow a log-normal distribution,

ηi � exp(β + bi ), (5.3.12)

bi ∼ MVN(0,G). (5.3.13)

5.3.2 Estimation

In themaximum likelihood estimation of parameters in nonlinear mixed effects mod-
els, it is common to use the marginal likelihood function, obtained by integrating the
simultaneous probability density function of the response variable and the random
effects with respect to the random effects. However, this function cannot usually
be expressed explicitly. Additionally, when there are multiple random effects, this
method becomes a multiple integration. Therefore, several approximation methods
have been proposed for nonlinear random effects. In contrast, linear mixed effects
models and autoregressive linear mixed effects models have closed forms of likeli-
hood (1.5.6) and (2.5.4).

One common approach is a linear first-order approximation using Taylor expan-
sion. The first-order method (FO method) uses a Taylor expansion around the aver-
age of the random effects (Beal and Sheiner 1982, 1988). The first-order conditional
estimation method (FOCE method) uses a Taylor expansion around the Bayesian
estimates of the random effects (Lindstrom and Bates 1990). These methods require
only a small calculation load. However, when inter-individual variation is large, the
bias of estimates based on the FO method is large, and when the number of mea-
surements is insufficient, the FOCE method does not work well. Compared with the
FO method, the FOCE method has a smaller bias but lower convergence rate in the
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optimization of the likelihood function, and requires more calculation. The FOCE
method based on Laplace approximation has also been proposed (Wolfinger and Lin
1997).

Software for analyzing nonlinearmixed effectsmodels is characterized by approx-
imation methods, modeling time-dependent covariates, and the programming of dif-
ferential equations. Nonlinear mixed effects models are often used in specialized
fields, such as population pharmacokinetics. Software widely used in population
pharmacokinetics is NONMEM (Nonlinear Mixed Effects Model), and the main
approximation methods are the FO and FOCE methods. A recent version has incor-
porated the Markov chain Monte Carlo (MCMC) method.

When drugs are repeatedly administered to the same subject, the dose is a time-
dependent covariate. Blood drug concentration depends on the current dose as well
as the past dosing history. Models of blood drug concentration are more complicated
than those in which responses are simply regressed on the covariates at that time. In
NONMEM, programming is easy in the case of repeated administration. If there are
three or more compartments or pharmacokinetics are nonlinear, then solution for the
differential equations often cannot be found. In such cases, NONMEM can perform
the analysis using differential equations.

The main approximation methods in the NLMIXED procedure of SAS statis-
tical software are the numerical integration by Gauss–Hermite Quadrature, the FO
method, and the FOCEmethod based onLaplace approximation. Programming in the
form of differential equations is not possible, and programming for repeated admin-
istration is complicated. Alternative software for nonlinear mixed effects models
includes the nlme package in the SPLUS software.

For more details of nonlinear models for longitudinal data analysis, see Davidian
(2009), Pinheiro and Bates (2000), and Vonesh (2012).

5.4 Nonlinear Curves

The monomolecular curve is one of the popular growth curves. In this section, we
introduce other nonlinear curves. The change per unit time, dy/dx , is sometimes
called a change rate, as is (dy/y)/dx . In this section, we call dy/dx a change and
(dy/y)/dx a change rate. We use the following notation: y(x) is a response at time
x , α is an asymptote as y(∞) � α, α0 is a response level at time 0 as y(0) � α0, κ is
a constant of proportionality in a differential equation, and β0 and β1 are regression
coefficients. Nonlinear curves are used when x is not time but another variable, such
as drug dose. For more details about nonlinear curves, see Lindsey (2001), Pinheiro
and Bates (2000), Ratkowsky (1983), Seber andWild (1989), and Singer andWillett
(2003).
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(a) (b)

Fig. 5.2 a Exponential functions y(x) � α0eκx with various κ . b Gompertz curve y(x) �
α exp

{−e−κ(x−γ )
}
(solid line) with change dy/dx � κy(logα − log y) (dotted line)

5.4.1 Exponential Functions

In an exponential function, the change is proportional to the current response level.
With a proportional constant κ , the change is

dy

dx
� κy. (5.4.1)

The change rate or growth rate is constant: (dy/y)/dx � κ . The response is expressed
in several ways:

y(x) � eκ(x−γ ), (5.4.2)

y(x) � α0e
κx , (5.4.3)

where y(0) � e−κγ � α0 is the initial response. Figure 5.2a shows the curves for
various values of κ . When κ > 0, y increases, y(1/κ) � α0e, and y(∞) � ∞. The
increase is initially small but becomes larger with time. When κ < 0, y decreases,
y(−1/κ) � α0/e, and y(∞) � 0. The decrease is initially large but becomes smaller
with time. The log transformation of y makes it a linear model,

log y(x) � κx − κγ, (5.4.4)

log y(x) � κx + logα0. (5.4.5)

5.4.2 Gompertz Curves

In a Gompertz curve, the change is proportional to the current value of y and the
distance remaining to the asymptote α in a log scale, logα − log y. If we let κ be a
proportional constant, the change is



110 5 Nonlinear Mixed Effects Models, Growth Curves …

dy

dx
� κy(logα − log y), (5.4.6)

where κ > 0 and α > 0. The response is expressed in several ways:

y(x) � α exp
{−e−κ(x−γ )

}
, (5.4.7)

y(x) � α
(α0

α

)exp(−κx)
, (5.4.8)

where y(−∞) � 0, y(∞) � α, and y(0) � α exp(−eκγ ) � α0. Figure 5.2b shows
the curve and dy/dx with time. γ is a point of inflection, where the change is at a
maximum, and y(γ ) � α/e. This curve is asymmetrical about the point of inflection.
After the log transformation of y, the Gompertz curve becomes a monomolecular
curve. After any power transformation of y, the Gompertz curve is transformed to
another Gompertz curve. This curve is used to show population growth and animal
growth. Fukaya et al. (2014) applied an autoregressive model with random effects to
log-transformed responses, and this model shows Gompertz curves. This is a similar
approach with the autoregressive linear mixed effects models.

5.4.3 Logistic Curves

In a three-parameter logistic curve, the change is proportional to the current value of
y and the distance remaining to the asymptote, α − y. Assuming κ > 0, let κα−1 be
a proportional constant. The change is then

dy

dx
� κ

α
y(α − y). (5.4.9)

Aconstantκ∗ � κα−1 is also used in dy/dx � κ∗y(α − y).Various general solutions
are possible with re-parameterization. For example, the response is expressed as

y(x) � α

1 + e−κ(x−γ )
, (5.4.10)

y(x) � α

1 + e(γ−x)/φ
, (5.4.11)

y(x) � α

1 + e−(β0+β1x)
, (5.4.12)

where eκγ � eγ /φ � e−β0 , y(−∞) � 0, y(∞) � α, and y(0) � α/(1 + eκγ ). See
Table 5.2e for other general solutions. γ is the time required for the response to
become half of the asymptote, that is y(γ ) � α/2. γ is a point of inflection, where
the change is at a maximum, and this curve is symmetric about this point. φ is a scale
parameter as follows:
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y(x � γ − φ) � α

1 + e
≈ 0.268α ≈ α

4
, (5.4.13)

where φ is the time required for the response to change from the 1/4 asymptote to
the 1/2 asymptote. When α is known, using the parameters β0 and β1 and the logit
transformation, log{y/(α − y)}, this becomes a linear model as follows:

y

α − y
� α

1 + e−(β0+β1x)
/

{
α
(
1 + e−(β0+β1x) − 1

)
1 + e−(β0+β1x)

}
� 1

e−(β0+β1x)
,

log

(
y

α − y

)
� β0 + β1x . (5.4.14)

In the two-parameter logistic curve with the constraint α � 1, the change is
dy/dx � κy(1 − y). The range of the response is 0 < y < 1. The general solutions
are shown in Table 5.2f. Using the parameters β0 and β1 and the logit transformation,
it becomes a linear model as log{y/(1 − y)} � β0 + β1x .

In a four-parameter logistic curve, there are two asymptotes, α1 and α2, for the
lower and upper bounds, respectively. Figure 5.3a shows this curve. This curve
is obtained by shifting the three-parameter logistic curve by α1 vertically. Let
S(x) � (

1 + e−x
)−1

be a standard curve. The three-parameter logistic curve is
y(x) � αS(κ(x − γ )). The four-parameter logistic curve is then

y(x) � α1 + (α2 − α1)S(κ(x − γ )) � α1 +
α2 − α1

1 + e−κ(x−γ )
, (5.4.15)

y(x) � α2 − (α2 − α1){1 − S(κ(x − γ ))} � α2 − α2 − α1

1 + eκ(x−γ )
. (5.4.16)

(a) (b)

Fig. 5.3 Logistic curves a Four-parameter logistic curve α1 + (α2 − α1)/
{
1 + e−κ(x−γ )

}
.

−κ(x − γ ) is also expressed by (γ − x)/φ. b Standard curve y(x) � S(x) � (
1 + e−x

)−1 (solid
line) and S(x − γ ) with various γ (dotted lines)
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The change is shown in Table 5.2d and Fig. 5.3b shows S(x) and S(κ − γ ) with
various γ .

The probit curve under the constraint 0 < y < 1 is the cumulative distribution
function of a normal distribution. The probit curve has a shape similar to that of the
logistic curve.

5.4.4 Emax Models and Logistic Curves

The Emax model, with X as an explanatory variable and the constraint y(X � 0) � 0,
is

y(X) � αXκ

τ κ + Xκ
. (5.4.17)

Figure 5.4a shows Emax curves for various values of κ . In this model, y(∞) � α.
When y � α/2, X is τ . When the parameters are changed as log X � x and
log τ � γ , the Emax model is transformed as

y � αXκ

τ κ + Xκ
� α

1 + (τ/X)κ
� α

1 + e−κ(log X−log τ)
� α

1 + e−κ(x−γ )
. (5.4.18)

This is the three-parameter logistic curve (5.4.10), with x as an explanatory variable.
When a common logarithm is used instead of the natural logarithm, loge(10) � 2.303
is incorporated as

(a) (b)

Fig. 5.4 a Emax curves y(X) � αXκ/(τ κ + Xκ )with various κ .Michaelis–Menten equationwhen
κ � 1. bCurves in awith the horizontal axis as a common logarithm. The curves are also expressed

by y(X) � α/
{
1 + e−2.303κ(log10 X−log10 τ)

}
and this is three-parameter logistic curves y(x) �

α/
{
1 + e−κ(x−γ )

}
with x � log X and γ � log τ
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y � α

1 + e−κ(log X−log τ)
� α

1 + e−2.303κ(log10 X−log10 τ)
. (5.4.19)

The shape of the curve does not change. Figure 5.4b shows the curves in Fig. 5.4a
with the horizontal axis as a common logarithm.

When κ � 1, the curve is

y(X) � αX

τ + X
. (5.4.20)

This is known as the Michaelis–Menten equation, which is used in enzyme kinetics.
τ is known as the Michaelis parameter and y(τ ) � α/2. When both the response
variable and explanatory variable are transformed to their reciprocals, it becomes a
linear model,

1

y
� 1

α
+

τ

α

1

X
. (5.4.21)

However, when a measurement error is the main source of errors and y follows a
normal distribution, the reciprocal transformation, y−1, is not adequate.

When one more parameter is added to the Michaelis–Menten equation to shift the
curve vertically, the equation is

y(X) � α0 +
(α − α0)X

τ + X
� α0 +

α − α0

τ/X + 1
� α − α − α0

τ/X + 1
� α0τ + αX

τ + X
,

(5.4.22)

where y(X � 0) � α0. If (α, α0, τ ) are written as (Emax, E0, EC50), the equation is

y(X) � E0 +
Emax − E0

1 + EC50/X
. (5.4.23)

When the parameter y(X � 0) � α0 is added to the Emax modelwith the constraint
y(X � 0) � 0 (5.4.17) to shift the curve vertically, the equation is

y(X) � α0τ
κ + αXκ

τ κ + Xκ
� α − α − α0

1 +
(
τ−1X

)κ . (5.4.24)

This curve is known as the Morgan-Mercer-Flodin (MMF) curve.

5.4.5 Other Nonlinear Curves

The power function is y(x) � λxκ . With the proportional constant κ , the change is
dy/dx � κy/x , which is proportional to the current response level y and inversely
proportional to the current time x . The elasticity, that is the ratio of the increase rate
of x to that of y, is constant as (dy/y)/(dx/x) � κ . This function does not increase
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Fig. 5.5 a Power functions y(x) � λxκ with various κ . b Functions y(x) � λ + κ log x with
various κ

as fast as the exponential curve. Figure 5.5a shows these curves for several values
of κ . In this function, y(0) � 0, y(1) � λ, and when κ > 0, y(∞) � ∞. If
both y and x are logarithmically transformed, it becomes a linear model as log y �
log λ + κ log x .

For the function y(x) � λ + κ log x , the change is dy/dx � κ/x and the elastic-
ity is (dy/y)/(dx/x) � κ/y. At larger values of y, the elasticity becomes smaller.
This function is linear in parameters and log x . y(1) equals λ. Figure 5.5b shows
the curves for several values of κ . The function y(x) � x/(ax − b) becomes a
linear function with inverse transformation of y and x , as y−1 � a − bx−1. The
Michaelis–Menten equation (5.4.20) corresponds to this function. A rectangular
hyperbola with asymptotic lines x � b and y � α is y � α + {κ(x − b)}−1. The
function y(x) � α − (κx)−1 shows the changes to the asymptote α. The inverse
quadratic function, y(x) � α − (

κ1x + κ2x2
)−1

may also be used.

5.5 Generalization of Growth Curves

Table 5.3 shows ordinary differential equations and several general solutions for the
generalization of growth curves. The von Bertalanffy curve (von Bertalanffy 1957) is

dy

dx
� ηyδ − ξ y. (5.5.1)

The response is

y(x) �
{

η

ξ
−

(
η

ξ
− α1−δ

0

)
e−(1−δ)ξ x

}1/(1−δ)

, (5.5.2)

where y(0) � α0. This curve is used for animal, especially fish, growth. In the narrow
sense, the von Bertalanffy curve has δ � 2/3 (Seber and Wild 1989).
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Table 5.3 Ordinary differential equations and solutions for generalized nonlinear curves

Nonlinear curves Ordinary differential equations
Solutions

(a) von Bertalanffy
dy

dx
� ηyδ − ξ y

y(x) �
{

η

ξ
−

(
η

ξ
− α1−δ

0

)
e−(1−δ)ξ x

}1/(1−δ)

(narrow sense, δ � 2/3)
dy

dx
� ηy2/3 − ξ y

y(x) � α
(
1 + ψe−κx

)3

(b) Richards/generalized logistic
δ � 0: monomolecular
δ � 2/3: von Bertalanffy

(narrow sense)
δ � 2: logistic
δ → 1: Gompertz

dy

dx
� κ

1 − δ
y

{(
α

y

)1−δ

− 1

}
, δ 	� 1

a. y(x) � α
{
1 + (δ − 1)e−κ(x−γ )

}1/(1−δ)

b. y(x) �
[
α1−δ − {

α1−δ − y(x0)1−δ
}
e
−κ(x−x0)

]1/(1−δ)

c. y(x)1−δ � α1−δ −
(
α1−δ − α1−δ

0

)
e−κx

d. y(x) � α
[
1 +

{
(α0/α)1−δ − 1

}
e−κx

]1/(1−δ)

e. y(x) � α
(
1 + ψe−κx

)−ϕ

(c) Modified generalized logistic
λ � −1: monomolecular
λ � 0 : Gompertz
λ � 1 : logistic
λ → ∞, g(α, λ) → const. :

exponential

dy

dx
� ky{g(α, λ) − g(y, λ)}

g(y, λ) � yλ − 1

λ
, λ 	� 0

g(y, λ) � log(y), λ � 0

y(x) � α
[
1 +

{
(α/α0)

λ − 1
}
e−kαλx

]−1/λ
, λ 	� 0

y(x) � α(α0/α)exp(−kx), λ � 0

The Richards curve (Richards 1959) is

dy

dx
� κ

1 − δ
y

{(
α

y

)1−δ

− 1

}
, (δ 	� 1). (5.5.3)

The response is

y(x) � α
{
1 + (δ − 1)e−κ(x−γ )

}1/(1−δ)
, (δ 	� 1). (5.5.4)

Depending on δ, this curve includes the monomolecular curve (δ � 0), the von
Bertalanffy curve in the narrow sense (δ � 2/3), the logistic curve (δ � 2), and
the Gompertz curve (δ → 1). γ is a point of inflection where the change is at a
maximum, and the response level at this point is y(γ ) � αδ1/(1−δ). When δ ≤ 0, the
curve does not have an inflection point. The response levels at the points of inflection
are 8α/27 ∼� 0.296α (δ � 2/3), α/2 � 0.5α (δ � 2), and α/e ∼� 0.368α (δ → 1).

The Richards curve re-parameterizes the parameters (ξ, η) in the von Bertalanffy
curve to (α, κ), as α1−δ � η/ξ and κ � (1 − δ)ξ � (1 − δ)ηα−(1−δ). There are no
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constraints on the range of δ in the Richards curve, and δ > 1 is permitted, such that
it includes the logistic curve (δ � 2). The Richards curve becomes a monomolecular
curve when y is transformed as follows:

{
y1−δ, (δ 	� 1)

log(y), (δ → 1)
. (5.5.5)

The curve may be written in various ways. The Richards curve with x � x0 and
y(x0) is

y(x) � [
α1−δ − {

α1−δ − y(x0)
1−δ

}
e−κ(x−x0)

]1/(1−δ)
. (5.5.6)

With x � 0 and y(0) � α0, the curve is

y(x)1−δ � α1−δ − (
α1−δ − α1−δ

0

)
e−κx . (5.5.7)

Another form is shown in Table 5.3. When the parameters (δ, α0) of the Richards
curve are transformed to (ϕ, ψ) as ϕ � −1/(1 − δ) and ψ � (α0/α)1−δ − 1, the
curve is

y(x) � α

(1 + ψe−κx )ϕ
. (5.5.8)

raising the denominator of the three-parameter logistic curve to the ϕth power. When
δ � 2/3, the von Bertalanffy curve in the narrow sense is

y(x) � α
(
1 + ψe−κx

)3
. (5.5.9)

The modified version of the generalized logistic curve (Heitjan 1991) is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dy

dx
� ky{g(α, λ) − g(y, λ)}

g(y, λ) � yλ − 1

λ
, (λ 	� 0)

g(y, λ) � log(y), (λ � 0)

. (5.5.10)

In this case, the parameters (δ, κ) in the Richards curve are transformed to (λ, k) as
λ � −(1 − δ) and k � κα−λ. With y(0) � α0, the solution is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y(x) � α

[
1 +

{(
α

α0

)λ

− 1

}
e−kαλx

]−1/λ

, (λ 	� 0)

y(x) � α
(α0

α

)exp(−kx)
, (λ � 0)

. (5.5.11)
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The curve is definedbyλ and includes themonomolecular curve (λ � −1),Gompertz
curve (λ � 0), logistic curve (λ � 1), and exponential curve (λ → ∞ and g(α, λ) →
constant).

The equation y(x) � α/
[
1 + exp{ϕ0 + ϕ1g(x)}

]
, where g(x) is a function of x , is

also called a generalized logistic curve. For g(x), β1x + β2x2 + β3x3 or
(
xλ − 1

)
/λ

is used. The five-parameter logistic curve is also called a generalized logistic curve.
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Chapter 6
State Space Representations
of Autoregressive Linear Mixed
Effects Models

Abstract The previous chapters discussed longitudinal data analysis using linear
mixed effects models and autoregressive linear mixed effects models. This chapter
discusses state space representations of these models. This chapter also introduces
the state space representations of time series data and the extension to multivari-
ate longitudinal data. We use the state space representations and the Kalman filter
as an alternative method to calculate the likelihoods for longitudinal data. In the
autoregressive linear mixed effects models, the current response is regressed on the
previous response, fixed effects, and random effects. Intermittent missing, that is the
missing values in the previous response as a covariate, is an inherent problem with
autoregressive models. One approach to this problem is based on the marginal form
of likelihoods because they are not conditional on the previous response. State space
representations with the modified Kalman filter also provide the marginal form of
likelihoods without using large matrices. Calculation of likelihood usually requires
matrices whose size depends on the number of observations of a subject, but this
method does not. In the modified method, the regression coefficients of the fixed
effects are concentrated out of the likelihood.

Keywords Autoregressive linear mixed effects model · Kalman filter
Linear mixed effects model · Longitudinal · State space

6.1 Time Series Data

State space representations are often used for the analysis of time series data
(Anderson and Hsiao 1982; Harvey 1993). This section discusses the state space
representations of time series data before introducing the state space representations
of longitudinal data in Sect. 6.2. We introduce the state space representations used
in longitudinal data analysis with univariate and multivariate autoregressive linear
mixed effects models in Sects. 6.3 and 6.4, respectively. We introduce the state
space representations of linear mixed effects models in Sect. 6.5.
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6.1.1 State Space Representations of Time Series Data

Time series data are composed of multiple time points t � 1, · · · , T . A state space
representation consists of two equations; a state equation,

s(t) � �(t :t−1)s(t−1) + f (s)
t + υt , (6.1.1)

and an observation equation,

Yt � Hts(t) + f (o)
t + ξt . (6.1.2)

In the state equation, s(t) is the state vector at time t , �(t :t−1) is the state transition
matrix from t − 1 to t , f (s)

t is a non-random input vector, and υt is a random input
vector with a variance covariance matrix Qt ≡ Var(υt ). υt and Qt are also written
as Sυ′

t (� υt ), Q′
t ≡ Var

(
υ′
t

)
, and Var

(
Sυ′

t

) � SQ′
tS(� Qt ). In the observation

equation, Yt is the response vector at time t . In the case of univariate time series
data, Yt is a scalar. Ht indicates which elements or linear combinations of the state
vector are observed, f (o)

t is a non-random input vector, and ξt is a random input vector
with a variance covariance matrix rt ≡ Var

(
ξt
)
. f (s)

t and f (o)
t are often omitted from

the representations, but we follow Jones (1993) by including these. A state equation
can also be called a transition equation or a system equation, and an observation
equation can also be called a measurement equation.

The Kalman filter defined in the following section is a recursive algorithm that
produces linear estimators of the state vector. The one-step prediction or forecast,
which is the estimate of the state at time t given the observations up to time t − 1,
is denoted by s(t |t−1). The filter, which is the estimate of the state at time t given the
observations up to time t , is denoted by s(t |t). Smoothing, which is not covered in
the following sections, is the estimate of a past state at time t (t < T ) from all of the
observations up to time T . Let the variance covariance matrices of s(t |t−1) and s(t |t)
be P(t |t−1) ≡ Var

(
s(t |t−1)

)
and P(t |t) ≡ Var

(
s(t |t)

)
, respectively.

The state space representation of a model is defined by the state equation with the
variance covariancematrixQt , the observation equationwith the variance covariance
matrix rt , and an initial state s(0|0) with the variance covariance matrix P(0|0), which
are specified inTable 6.1a. The state space representation of amodel is not necessarily
unique.
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We consider the state space representation of a stationary AR(1) error and a
measurement error (ME). The model is

⎧
⎨

⎩
Yt � b + εe(AR)t + ε(ME)t

εe(AR)t � ρεe(AR)t−1 + η(AR)t
, (6.1.3)

with η(AR)t ∼ N
(
0, σ 2

AR

)
, εe(AR)0 ∼ N

(
0, σ 2

AR

(
1 − ρ2

)−1
)
, and ε(ME)t ∼ N

(
0, σ 2

ME

)
,

where

Var
(
εe(AR)t

) � ρ2Var
(
εe(AR)t−1

)
+ Var

(
η(AR)t

)

� ρ2σ 2
AR

(
1 − ρ2

)−1
+ σ 2

AR

� σ 2
AR

(
1 − ρ2

)−1
.

The subscript e in εe(AR)t means an AR(1) error instead of the autoregressive model
in the response. Table 6.1b shows a state space representation of this model.

6.1.2 Steps for Kalman Filter for Time Series Data

The Kalman filter calculates the following Steps 1 through 5 for each observation,
starting at the first observation and repeating until the last observation. The steps,
which are summarized in Table 6.2, are defined below.

Table 6.1 State space representations of time series data: (a) general and (b) with a stationary
AR(1) error and a measurement error (ME)

Equations and initial state Variance

(a) General

State equation s(t) � �(t :t−1)s(t−1) + f (s)t + υt Qt ≡ Var(υt )

Observation equation Yt � Ht s(t) + f (o)t + ξt rt ≡ Var
(
ξt
)

Initial state s(0|0) P(0|0) ≡ Var
(
s(0|0)

)

(b) AR(1) and ME

State equation εe(AR)t � ρεe(AR)t−1 + η(AR)t Var
(
η(AR)t

) � σ 2
AR

Observation equation Yt � εe(AR)t + b + ε(ME)t Var
(
ε(ME)t

) � σ 2
ME

Initial state s(0|0) � 0 P(0|0) � σ 2
AR

(
1 − ρ2

)−1
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Step 1 [Prediction equations] Calculate the one-step prediction of the next state
and its variance covariance matrix,

s(t |t−1) � �(t :t−1)s(t−1|t−1) + f (s)
t , (6.1.4)

P(t |t−1) � �(t ;t−1)P(t−1|t−1)�
T
(t ;t−1) +Qt . (6.1.5)

Step 2 Predict the next observation vector,

Y(t |t−1) � Hts(t |t−1) + f (o)
t , (6.1.6)

where Y(t |t−1) is the predicted value of Yt given the observations up to time t − 1.

Step 3 Calculate the innovation vector et , which is the difference between the obser-
vation vectorYt and the predicted observation vectorY(t |t−1), and the variance covari-
ance matrix of this innovation, Vt ≡ Var(et ),

et � Yt − Y(t |t−1), (6.1.7)

Vt � HtP(t |t−1)HT
t + rt , (6.1.8)

where et is the prediction error.

Step 4 Accumulate the following quantities, which are used to calculate −2 log-
likelihood (−2ll),

Mt � Mt−1 + eTt V
−1
t et , (6.1.9)

DETt � DETt−1 + log|Vt |. (6.1.10)

The initial values are M0 � 0 and DET0 � 0. These quantities accumulate over all
of the observations.

Table 6.2 Steps for the Kalman filter

Steps Calculation

(1) Prediction equations s(t |t−1) � �(t :t−1)s(t−1|t−1) + f (s)t

P(t |t−1) � �(t ;t−1)P(t−1|t−1)�
T
(t ;t−1) +Qt

(2) Prediction of Yt Y(t |t−1) � Ht s(t |t−1) + f (o)t

(3) Innovation et � Yt − Y(t |t−1)
Vt � HtP(t |t−1)HT

t + rt

(4) Accumulation Mt � Mt−1 + eTt V
−1
t et

DETt � DETt−1 + log|Vt |
(5) Updating equations s(t |t) � s(t |t−1) + P(t |t−1)HT

t V
−1
t et

P(t |t) � P(t |t−1) − P(t |t−1)HT
t V

−1
t HtP(t |t−1)
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Step 5 [Updating equations]Update the estimate of the state vector and its variance
covariance matrix,

s(t |t) � s(t |t−1) + P(t |t−1)HT
t V

−1
t et , (6.1.11)

P(t |t) � P(t |t−1) − P(t |t−1)HT
t V

−1
t HtP(t |t−1), (6.1.12)

where P(t |t−1)HT
t V

−1
t ≡ Kt is the Kalman gain. When f (o)

t is omitted from the
observation equation, the estimate s(t |t) is the weighted sum of the observed Yt and
predicted s(t |t−1),

s(t |t) � KtYt + (I − KtHt )s(t |t−1), (6.1.13)

where I is the identity matrix. This is the end of the steps.

6.2 Longitudinal Data

6.2.1 State Space Representations of Longitudinal Data

Longitudinal data are composed of values for multiple subjects i � 1, · · · , N over
multiple time points t � 0, 1, 2, · · · , Ti or t � 1, 2, · · · , Ti. The state space repre-
sentation of longitudinal data is mostly the same as the state space representation
of time series data in Sect. 6.1.1 except for the subscript i . Longitudinal data are
represented by a state space defined by two equations: a state equation,

si(t) � �i(t :t−1)si(t−1) + f (s)
i,t + υi,t , (6.2.1)

and an observation equation,

Yi,t � Hi,tsi(t) + f (o)
i,t + ξi,t . (6.2.2)

In the state equation, si(t) is a state vector of the i th subject at time t , �i(t :t−1) is a
state transition matrix from t − 1 to t , f (s)

i,t is a non-random input vector, and υi,t

is a random input vector with a variance covariance matrix Qi,t ≡ Var
(
υi,t

)
. In the

observation equation,Yi,t is the response vector,Hi,t indicates which elements of the
state vector are observed, f (o)

i,t is a non-random input vector, and ξi,t is a random input
vector with a variance covariance matrix ri,t ≡ Var

(
ξi,t

)
. The Kalman filter defined

in the following section is a recursive algorithm that produces linear estimators of the
state vector. The notations si(t |t−1) and si(t |t) denote the estimate of the state at time t
given the observations up to times t − 1 and t , respectively. The variance covariance
matrices of si(t |t−1) and si(t |t) are Pi(t |t−1) ≡ Var

(
si(t |t−1)

)
and Pi(t |t) ≡ Var

(
si(t |t)

)
,

respectively.
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Table 6.3 State space representations of longitudinal data

Equations and initial state Variance

State equation si(t) � �i(t :t−1)si(t−1) + f (s)i,t + υi,t Qi,t ≡ Var
(
υi,t

)

Observation
equation

Yi,t � Hi,t si(t) + f (o)i,t + ξi,t ri,t ≡ Var
(
ξi,t

)

Initial state si(0|0) or
si(−1|−1)

Pi(0|0) ≡ Var
(
si(0|0)

)
or

Pi(−1|−1) ≡ Var
(
si(−1|−1)

)

The state space representation of a model is defined by the state equation with the
variance covariance matrix Qi,t , the observation equation with the variance covari-
ance matrix ri,t , and the initial state with the variance covariance matrix, which are
specified as shown in Table 6.3. When observations start from Yi,1, the initial state is
si(0|0). The observation in autoregressive linear mixed effects models start from Yi,0.
In this case, the initial state is si(−1|−1).

6.2.2 Calculations of Likelihoods

For analysis of longitudinal data using linear mixed effects models or autoregressive
linear mixed effects models, the maximum likelihood (ML) estimates are obtained
by applying an optimization method to minimize −2ll. We can obtain closed forms
for the ML estimators (MLEs) of the fixed effects parameters if the variance covari-
ance parameters and the autoregressive parameter are given. The fixed effects are
then concentrated out of −2ll. The marginal and autoregressive forms of −2ll for
autoregressive linear mixed effects models are defined in Sects. 2.5.1 and 2.5.2,
respectively, where the marginal form is unconditional on the previous response.
The marginal form of the model addresses the problem of intermittent missing val-
ues because it can be used even if there are missing values in the previous response
as a covariate. −2ll for linear mixed effects models is defined in Sect. 1.5.1. It is
usually necessary to use matrices whose sizes depend on the number of observations
of a subject in likelihood calculations.

The state space representations and theKalmanfilter provide uswith an alternative
method for calculating −2ll of linear mixed effects models (Jones and Ackerson
1990; Jones and Boadi-Boateng 1991; Jones 1993). The Kalman theory assumes that
the values of parameters are known (Kalman 1960). The Kalman filter is modified to
concentrate the fixed effects out of −2ll (Jones 1986). In this modified method, the
filter is applied not only to the observation vector Yi but also to each column of the
fixed effects design matrix Xi (Jones 1986, 1993; Jones and Ackerson 1990; Jones
and Boadi-Boateng 1991).

The state space representations and the modified Kalman filter are also used
(Funatogawa and Funatogawa 2008, 2012) in an autoregressive linear mixed effects
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model (Funatogawa et al. 2007, 2008a; Funatogawa et al. 2008b). The concentrated
−2ll is calculated by applying the filter to Yi and (Ii − ρFi )

−1Xi .
The Kalman filter is one way of Cholesky decompositions (Jones 1986, 1993).

The inverse of the variance covariance matrixV−1
i or �−1

i has a unique factorization
V−1

i � LTL, where L is a lower triangular matrix. This factorization is called
the reverse Cholesky decomposition. Pre-multiplying the model by the matrix L
represents the steps of the Kalman filter (Jones 1986). We do not need a closed-form
expression for L because it will be generated recursively.

This method is suitable for datasets with large numbers of observations of a
subject. In the case of large timepoints ormultivariate longitudinal data, these become
large. Funatogawa and Funatogawa (2012) used the state space representation and
the modified Kalman filter to analyze unequally spaced longitudinal data. The data
are treated as being equally spaced with large time points and intermittent missing
values by selecting a sufficiently small time unit. In Sect. 3.3, this method is applied.

6.3 Autoregressive Linear Mixed Effects Models

6.3.1 State Space Representations of Autoregressive Linear
Mixed Effects Models

We consider a state space representation of the autoregressive linear mixed effects
model defined in Sect. 2.3 with an AR(1) error and a measurement error (2.4.1). The
model is

⎧
⎨

⎩
Yi,0 � Xi,0β + Zi,0bi + ε(ME)i,0

Yi,t � ρYi,t−1 + Xi,tβ + Zi,tbi + ε(AR)i,t + ε(ME)i,t − ρε(ME)i,t−1, (t > 0)
,

(6.3.1)

with bi ∼ MVN(0,G), ε(AR)i,t ∼ N
(
0, σ 2

AR

)
, and ε(ME)i,t ∼ N

(
0, σ 2

ME

)
, where

t � 0, 1, · · · , Ti, ρ is an unknown regression coefficient for the previous response, β
is a p × 1 vector of unknown fixed effects parameters, Xi,t is a known 1× p design
matrix for fixed effects, bi is a q × 1 vector of unknown random effects parameters,
Zi,t is a known 1 × q design matrix for random effects, and ε(AR)i,t and ε(ME)i,t are
random errors. ε(AR)i,t is an autoregressive error and ε(ME)i,t is a measurement error.
It is assumed that bi and εi are both independent across subjects and independently
normally distributed with the mean zero vector and variance covariance matrices G
and Ri , respectively. For this model, the state equation, the observation equation,
and the initial state are
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
μi,t

bi

)

�
(

ρ Zi,t

0q×1 Iq×q

)(
μi,t−1

bi

)

+

(
Xi,tβ

0q×1

)

+

(
ε(AR)i,t

0q×1

)

Yi,t �
(
1 01×q

)(μi,t

bi

)

+ ε(ME)i,t

si(−1|−1) � 0(1+q)×1

, (6.3.2)

with variance covariance matrices,

Qi,0 ≡ Var

(
ε(AR)i,0

0q×1

)

� 0(q+1)×(q+1),Qi,t �
(

σ 2
AR 01×q

0q×1 0q×q

)

for t > 0,

ri,t ≡ Var
(
ε(ME)i,t

) � σ 2
ME,Pi(−1|−1) �

(
01×1 01×q

0q×1 G

)

. (6.3.3)

Here, Ia×a denotes an a × a identity matrix, and 0b×c denotes a b × c matrix whose
elements are equal to zero. μi,t � Yi,t − ε(ME)i,t is a latent variable for the true value
that we would observe if there were no measurement errors. In contrast, ε(AR)i,t is
a random input included in the true process of μi,t and influences the later process.
We set an initial state and variance covariance matrix for each subject. The initial
estimate of the random effects bi is 0q×1 because bi is assumed to be normally
distributed with the mean zero.

The correspondences between these and the definitions in Sect. 6.2.1 andTable 6.3
are

si(t) �
(

μi,t

bi

)

,�i(t :t−1) �
(

ρ Zi,t

0q×1 Iq×q

)

, f (s)
i,t �

(
Xi,tβ

0q×1

)

,υi,t �
(

ε(AR)i,t

0q×1

)

,

Hi,t �
(
1 01×q

)
, f (o)

i,t � 0, ξi,t � ε(ME)i,t ,

si(−1|−1) � 0(1+q)×1,Pi(−1|−1) �
(
01×1 01×q

0q×1 G

)

.

Next, we consider a specific example of a state space representation of the autore-
gressive linear mixed effects model with a time-dependent covariate (2.2.8) with an
AR(1) error and a measurement error. The model is
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Yi,0 � βbase + bbase i + ε(ME)i,0

Yi,t � ρYi,t−1 + (βint + bint i ) +
(
βcovxc i,t + bcov i zc i,t

)
+ εi,t , (t > 0),

εi,t � ε(AR)i,t + ε(ME)i,t − ρε(ME)i,t−1, (t > 0)

(6.3.4)
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with ε(AR)i,t ∼ N
(
0, σ 2

AR

)
, ε(ME)i,t ∼ N

(
0, σ 2

ME

)
, and

⎛

⎜
⎝

bbase i
bint i
bcov i

⎞

⎟
⎠ ∼ MVN

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎝
0
0
0

⎞

⎠

⎛

⎜⎜
⎝

σ 2
base σbase int σbase cov

σbase int σ 2
int σint cov

σbase cov σint cov σ 2
cov

⎞

⎟⎟
⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

The equations are rewritten using dummy variables,

Yi,t � ρYi,t−1 + βbasexb i,t + βintxi i,t + βcovxc i,t + bbasezb i,t + bint i zi i,t
+ bcov i zc i,t + εi,t , (t > 0), (6.3.5)

where
(
xb i,t xi i,t xc i,t

)
are

(
1 0 0

)
for t � 0 and

(
0 1 xc i,t

)
for t > 0, and

(
zb i,t zi i,t zc i,t

)
�

(
xb i,t xi i,t xc i,t

)
. If we have four time points, the response

vector is
⎛

⎜⎜
⎜⎜
⎝

Yi,0
Yi,1
Yi,2
Yi,3

⎞

⎟⎟
⎟⎟
⎠

� ρ

⎛

⎜⎜
⎜
⎝

0
Yi,0
Yi,1
Yi,2

⎞

⎟⎟
⎟
⎠

+

⎛

⎜⎜
⎜
⎝

xb i,0 xi i,0 xc i,0
xb i,1 xi i,1 xc i,1
xb i,2 xi i,2 xc i,2
xb i,3 xi i,3 xc i,3

⎞

⎟⎟
⎟
⎠

⎛

⎜
⎝

βbase

βint

βcov

⎞

⎟
⎠

+

⎛

⎜⎜
⎜
⎝

zb i,0 zi i,0 zc i,0
zb i,1 zi i,1 zc i,1
zb i,2 zi i,2 zc i,2
zb i,3 zi i,3 zc i,3

⎞

⎟⎟
⎟
⎠

⎛

⎜
⎝

bbase i
bint i
bcov i

⎞

⎟
⎠ +

⎛

⎜⎜
⎜
⎝

ε(ME)i,0

ε(AR)i,1 + ε(ME)i,1 − ρε(ME)i,0

ε(AR)i,2 + ε(ME)i,2 − ρε(ME)i,1

ε(AR)i,3 + ε(ME)i,3 − ρε(ME)i,2

⎞

⎟⎟
⎟
⎠

.

(6.3.6)

The state equation, the observation equation, and the initial state of this model are
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜
⎝

μi,t

bbase i
bint i
bcov i

⎞

⎟⎟⎟
⎠

�

⎛

⎜⎜⎜
⎝

ρ zb i,t zi i,t zc i,t
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎝

μi,t−1

bbase i
bint i
bcov i

⎞

⎟⎟⎟
⎠

+

⎛

⎜⎜⎜
⎝

xb i,tβbase + xi i,tβint + xc i,tβcov

0
0
0

⎞

⎟⎟⎟
⎠

+

⎛

⎜⎜⎜
⎝

ε(AR)i,t

0
0
0

⎞

⎟⎟⎟
⎠

Yi,t � (
1 0 0 0

)(
μi,t bbase i bint i bcov i

)T
+ ε(ME)i,t

si(−1|−1) � 04×1

, (6.3.7)
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with variance covariance matrices,

Qi,0 ≡ Var

((
ε(AR)i,0 0 0 0

)T
)

� 04×4,Qi,t �

⎛

⎜⎜⎜
⎝

σ 2
AR 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎟
⎠
for t > 0,

ri,t ≡ Var
(
ε(ME)i,t

) � σ 2
ME,Pi(−1|−1) �

⎛

⎜
⎜⎜⎜
⎝

0 0 0 0

0 σ 2
base σbase int σbase cov

0 σbase int σ 2
int σint cov

0 σbase cov σint cov σ 2
cov

⎞

⎟
⎟⎟⎟
⎠

. (6.3.8)

6.3.2 Steps for Modified Kalman Filter for Autoregressive
Linear Mixed Effects Models

The modified Kalman filter is calculated by the following Steps 1 through 6 for each
observation. We begin the calculation by applying the steps to the first observation
of the first subject, then to each subsequent observation of the first subject, up to the
last observation. The steps are then repeated for each observation of each subject
until the last observation of the last subject. The fixed effects are concentrated out of
−2ll by applying the filter to Yi and (Ii − ρFi )

−1Xi . For this procedure, we use a
state matrix Si(t), with dimensions (1 + q) × (p + 1) instead of the state vector si(t)
with dimensions (1 + q) × 1. The values of (Ii − ρFi )

−1Xi at time t are calculated
recursively. The initial state matrix is Si(−1|−1) � 0(1+q)×(p+1) for each subject, and
a variance covariance matrix, Pi(−1|−1), is defined in (6.3.3). The following steps are
then applied to every observation.

Step 1 [Prediction Equations] Calculate a one-step prediction of the state matrix,

Si(t |t−1) � �(t ;t−1)Si(t−1|t−1). (6.3.9)

Because the fixed effects are concentrated out, we omit the vector f (s)
i,t in the modified

method. The variance covariance matrix of this prediction is

Pi(t |t−1) � �(t ;t−1)Pi(t−1|t−1)�
T
(t ;t−1) +Qi,t . (6.3.10)

Step 2 The covariate row vector of the fixed effects is

X∗
i,t � ρX∗

i,t−1 + Xi,t . (6.3.11)
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The initial values for each subject are

X∗
i,−1 � 01×p. (6.3.12)

This step produces

X∗
i,t �

t∑

j�0

(
ρ t− j

)
Xi, j . (6.3.13)

This step is particular to themodified version of the Kalman filter with autoregressive
linear mixed effects models.

Step 3 Predict the next observation,

[
X∗

i,(t |t−1) Yi,(t |t−1)

]
� Hi,tSi(t |t−1), (6.3.14)

where the notation
[
A B

]
denotes the matrix A augmented by matrix B. Yi,(t |t−1)

is the predicted value of Yi,t given the observations up to time t − 1, and X∗
i,(t |t−1) is

used to calculate −2ll.

Step 4 Calculate the innovation row vector ei,t , which is the difference between the
row vector of X∗

i,t augmented by Yi,t and the row vector of X∗
i,(t |t−1) augmented by

Yi,(t |t−1),

ei,t �
[
X∗

i,t Yi,t

]
−

[
X∗

i,(t |t−1) Yi,(t |t−1)

]
. (6.3.15)

The variance of this innovation is

Vi,t � Hi,tPi(t |t−1)HT
i,t + ri,t . (6.3.16)

where ri,t � σ 2
ME is a scalar.

Step 5 Accumulate the following quantities:

Mi,t � Mi,t−1 + eTi,tV
−1
i,t ei,t , (6.3.17)

DETi,t � DETi,t−1 + log
∣∣Vi,t

∣∣. (6.3.18)

The initial values ofMi,−1 and DETi,−1 are 0(p+1)×(p+1) and 0 for i � 1 andMi−1,Ti−1

and DETi−1,Ti−1 for i > 1. The quantities are accumulated over every observation of
every subject. The final values are required to calculate −2ll.

Step 6 [Updating Equations] Update the estimate of the state vector,

Si(t |t) � Si(t |t−1) + Pi(t |t−1)HT
i,tV

−1
i,t ei,t . (6.3.19)
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The updated variance covariance matrix of the state is

Pi(t |t) � Pi(t |t−1) − Pi(t |t−1)HT
i,tV

−1
i,t Hi,tPi(t |t−1). (6.3.20)

This is the end of the steps.
If Yi,t is a missing observation, we skip Steps 3, 4, and 5 and set Si(t |t) � Si(t |t−1)

and Pi(t |t) � Pi(t |t−1) in Step 6. Now return to Step 1 and proceed to the next obser-
vation, repeating until the final observation.

At the end of the data, where (i, t) � (N , TN ), the matrix MN ,TN is

⎡

⎢⎢
⎢⎢
⎣

N∑

i�1

{
(Ii − ρFi )

−1Xi
}T

�−1
i (Ii − ρFi )

−1Xi

N∑

i�1

{
(Ii − ρFi )

−1Xi
}T

�−1
i Yi

N∑

i�1
YT

i �−1
i (Ii − ρFi )

−1Xi

N∑

i�1
YT

i �−1
i Yi

⎤

⎥⎥
⎥⎥
⎦

,

(6.3.21)

and

DETN ,TN �
N∑

i�1

log|�i |. (6.3.22)

MN ,TN and DETN ,TN are used to calculate −2ll with the following equation:

−2ll �
N∑

i�1

ni log(2π) +
N∑

i�1

log|�i | +
N∑

i�1

YT
i �−1

i Yi

−
{

N∑

i�1

YT
i �−1

i (Ii − ρFi )
−1Xi

}

β̂, (6.3.23)

with

β̂ �
[

N∑

i�1

{
(Ii − ρFi )

−1Xi
}T

�−1
i (Ii − ρFi )

−1Xi

]−1 N∑

i�1

{
(Ii − ρFi )

−1Xi
}T

�−1
i Yi .

(6.3.24)

An optimization method is applied to minimize −2ll and obtain the ML estimates
of the variance covariance parameters and ρ. The MLEs of the fixed effects, β̂, are
the above equation where �i and ρ are replaced by their ML estimates.
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6.3.3 Steps for Calculating Standard Errors and Predicted
Values of Random Effects

The standard errors of the ML estimates are derived from the Hessian of the log-
likelihood. The fixed effects parameters are included in the log-likelihood calculation
to obtain the standard errors. The Hessian can be obtained numerically. The Kalman
filter was used to define the log-likelihood. Here, the state matrix Si(t) is replaced by
an original state vector si(t), and the steps from Sect. 6.3.2 are modified slightly as
follows.

Step 1 [Prediction Equations] The fixed effects are included in the one-step pre-
diction,

si(t |t−1) � �(t ;t−1)si(t−1|t−1) + f (s)
i,t . (6.3.25)

Step 2 Skipped
Step 3 The prediction of the next observation is a scalar,

Yi,(t |t−1) � Hi,tsi(t |t−1). (6.3.26)

Step 4 The innovation is a scalar,

ei,t � Yi,t − Yi,(t |t−1). (6.3.27)

Step 5 Mi,t is now a scalar,

Mi,t � Mi,t−1 + e2i,t V
−1
i,t . (6.3.28)

The initial values of Mi,−1 are 0 for i � 1 and Mi−1,Ti−1 for i > 1.

Step 6 [Updating Equations] Update the estimate of the state vector.

After the final observation, MN ,TN is

MN ,TN �
N∑

i�1

{
Yi − (Ii − ρFi )

−1Xiβ
}T

�−1
i

{
Yi − (Ii − ρFi )

−1Xiβ
}
. (6.3.29)

−2ll is obtained by substituting MN ,TN and DETN ,TN � ∑N
i�1 log|�i | into

−2ll �
N∑

i�1

ni log(2π) +
N∑

i�1

log|�i |

+
N∑

i�1

{
Yi − (Ii − ρFi )

−1Xiβ
}T

�−1
i

{
Yi − (Ii − ρFi )

−1Xiβ
}
. (6.3.30)
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If the state vector includes random effects, bi , the updating equation si(t |t) in
Step 6 of the last observation for each subject is the predicted values of the random
effects b̂i .

6.3.4 Another Representation

The state space representation presented in Sect. 6.3.1 provides the marginal like-
lihood defined in Sect. 2.5.1 and uses the reverse Cholesky decomposition of �−1

i .
The autoregressive linear mixed effects model with a stationary AR(1) error, no
measurement error, and given Yi,0 is represented as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎝
Yi,t
bi

⎞

⎠ �
(

ρ Zi,t

0q×1 Iq×q

)⎛

⎝
Yi,t−1

bi

⎞

⎠ +

(
Xi,tβ

0q×1

)

+

(
ε(AR)i,t

0q×1

)

Yi,t �
(
1 01×q

)
(
Yi,t

bi

)

si(−1|−1) � 0(1+q)×1

,

with variance covariance matrices,

Qi,t � Var

(
ε(AR)i,t

0q×1

)

�
(

σ 2
AR 01×q

0q×1 0q×q

)

,Pi(0|0) �
⎛

⎝σ 2
AR

(
1 − ρ2

)−1
01×q

0q×1 G

⎞

⎠.

In this form, Yi,t itself is included in the state vector. This representation provides
the conditional likelihood given the previous response defined in Sect. 2.5.2 and uses
the reverse Cholesky decomposition of V−1

i .

6.4 Multivariate Autoregressive Linear Mixed Effects
Models

This section presents a state space representation of the bivariate autoregressive linear
mixed effects model defined in Chap. 4. We consider the following model:

⎧
⎨

⎩

Yi,0 � Xi,0β + Zi,0bi + ε(ME)i,0

Yi,t � ρYi,t−1 + Xi,tβ + Zi,tbi + ε(AR)i,t + ε(ME)i,t − ρε(ME)i,t−1, (t > 0)
.

(6.4.1)
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with bi ∼ MVN(0,G), ε(AR)i,t ∼ MVN(0, rAR), and ε(ME)i,t ∼ MVN(0, rME). The
state equation, the observation equation, and the initial state of this model are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎝
μi,t

bi

⎞

⎠ �
(

ρ Zi,t

0q×2 Iq×q

)⎛

⎝
μi,t−1

bi

⎞

⎠ +

(
Xi,tβ

0q×1

)

+

(
ε(AR)i,t

0q×1

)

Yi,t �
(
I2×2 02×q

)(μi,t

bi

)

+ ε(ME)i,t

si(−1|−1) � 0(2+q)×1

, (6.4.2)

with variance covariance matrices,

Qi,0 ≡ Var

((
ε(AR)i,0

0q×1

))

� 0(q+2)×(q+2),Qi,t �
(

rAR 02×q

0q×2 0q×q

)

for t > 0,

ri,t ≡ Var
(
ε(ME)i,t

) � rME,Pi(−1|−1) �
⎛

⎝
02×2 02×q

0q×2 G

⎞

⎠. (6.4.3)

The relationship between μi,t in the state equation and the response vector is μi,t �
Yi,t − ε(ME)i,t ,

(
μ1i,t

μ2i,t

)

�
(
Y1i,t − ε(ME)1i,t

Y2i,t − ε(ME)2i,t

)

. (6.4.4)

μi,t is a latent variable for the values that we would observe if there were no mea-
surement errors.

The correspondences between these and the definitions in Sect. 6.2.1 andTable 6.3
are

si(t) �
(

μi,t

bi

)

,�i(t :t−1) �
(

ρ Zi,t

0q×2 Iq×q

)

, f (s)
i,t �

(
Xi,tβ

0q×1

)

,υi,t �
(

ε(AR)i,t

0q×1

)

,

Hi,t �
(
I2×2 02×q

)
, f (o)

i,t � 0, ξi,t � ε(ME)i,t .

Random effect bi is assumed to follow a q variate normal distribution with the mean
vector 0. The initial estimate of random effect bi is 0q×1.

The following equations are a specific example of the state space representation,
corresponding to the model (4.3.1). The state equation and the observation equation
are
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⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

μ1i,t

μ2i,t

b1 base i
b1 int i
b1 cov i
b2 base i
b2 int i
b2 cov i

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

�

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

ρ11 ρ12 zb i,t zi i,t zc i,t 0 0 0

ρ21 ρ22 0 0 0 zb i,t zi i,t zc i,t
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

μ1i,t−1

μ2i,t−1

b1 base i
b1 int i
b1 cov i
b2 base i
b2 int i
b2 cov i

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

+

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

xb i,tβ1 base + xi i,tβ1 int + xc i,tβ1 cov

xb i,tβ2 base + xi i,tβ2 int + xc i,tβ2 cov

0
0
0
0
0
0

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

+

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

ε(AR)1i,t

ε(AR)2i,t

0
0
0
0
0
0

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

, (6.4.5)

(
Y1i,t
Y2i,t

)

�
(
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

)

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

μ1i,t

μ2i,t

b1 base i
b1 int i
b1 cov i
b2 base i
b2 int i
b2 cov i

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

+

(
ε(ME)1i,t

ε(ME)2i,t

)

. (6.4.6)

Here, zb i,t and xb i,t are 1 for t � 0 and 0 for t �� 0. zi i,t and xi i,t are 0 for t � 0 and
1 for t �� 0.

6.5 Linear Mixed Effects Models

6.5.1 State Space Representations of Linear Mixed Effects
Models

The main theme of this book is autoregressive linear mixed effects models, but we
also briefly present the state space representations of linear mixed effects models
described in Chap. 1. First, we consider the following linear mixed effects model
with a stationary AR(1) error:
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⎧
⎨

⎩
Yi,t � Xi,tβ + Zi,tbi + εe(AR)i,t

εe(AR)i,t � ρεe(AR)i,t−1 + η(AR)i,t
. (6.5.1)

with bi ∼ MVN(0,G), η(AR)i,t ∼ N
(
0, σ 2

AR

)
, and εe(AR)i,0 ∼ N

(
0, σ 2

AR

(
1 − ρ2

)−1
)
.

A stationary AR(1) error is discussed in Sects. 2.4.1 and 2.6. The state equation, the
observation equation, and the initial state of this model are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎝
εe(AR)i,t

bi

⎞

⎠ �
(

ρ 01×q

0q×1 Iq×q

)⎛

⎝
εe(AR)i,t−1

bi

⎞

⎠ +

(
η(AR)i,t

0q×1

)

Yi,t �
(
1 Zi,t

)( εe(AR)i,t

bi

)

+ Xi,tβ

si(0|0) � 0(1+q)×1

, (6.5.2)

with variance covariance matrices,

Qi,t � Var

(
η(AR)i,t

0q×1

)

�
(

σ 2
AR 01×q

0q×1 0q×q

)

,Pi(0|0) �
⎛

⎝σ 2
AR

(
1 − ρ2

)−1
01×q

0q×1 G

⎞

⎠.

(6.5.3)

There is no random input to the observation equation.
Next, we consider the following linear mixed effects model with a measurement

error:

Yi,t � Xi,tβ + Zi,tbi + ε(ME)i,t . (6.5.4)

with bi ∼ MVN(0,G) and ε(ME)i,t ∼ N
(
0, σ 2

ME

)
. The state equation, the observation

equation, and the initial state of this model are

⎧
⎪⎪⎨

⎪⎪⎩

bi � bi
Yi,t � Zi,tbi + Xi,tβ + ε(ME)i,t

si(0|0) � 0q×1

, (6.5.5)

with variance covariance matrices,

ri,t ≡ Var
(
ε(ME)i,t

) � σ 2
ME, Pi(0|0) � G. (6.5.6)
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There is no random input to the state equation. Another state space representation of
this model can be constructed. The state equation, the observation equation, and the
initial state of this representation are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎝
ε(ME)i,t

bi

⎞

⎠ �
(

0 01×q

0q×1 Iq×q

)⎛

⎝
ε(ME)i,t−1

bi

⎞

⎠ +

(
ε(ME)i,t

0q×1

)

Yi,t �
(
1 Zi,t

)( ε(ME)i,t

bi

)

+ Xi,tβ

si(0|0) � 0(1+q)×1

, (6.5.7)

with variance covariance matrices,

Qi,t ≡ Var

(
ε(ME)i,t

0q×1

)

�
(

σ 2
ME 01×q

0q×1 0q×q

)

, Pi(0|0) �
(

0 01×q

0q×1 G

)

. (6.5.8)

There is no random input to the observation equation.

6.5.2 Steps for Modified Kalman Filter

The steps for the modified Kalman filter for linear mixed effects models are almost
the same as those used for autoregressive linear mixed models, defined in Sect. 6.3.2.
The key differences are that we do not need to calculate X∗

i,t (6.3.11) and we can
omit Step 2. We replaceX∗

i,(t |t−1) andX
∗
i,t in Steps 3 and 4 byXi,(t |t−1) andXi,t . After

the steps have been applied to every observation, the matrix MN ,TN is

⎡

⎢⎢⎢
⎢
⎣

N∑

i�1
XT

i V
−1
i Xi

N∑

i�1
XT

i V
−1
i Yi

N∑

i�1
YT

i V
−1
i Xi

N∑

i�1
YT

i V
−1
i Yi

⎤

⎥⎥⎥
⎥
⎦

, (6.5.9)

and

DETN ,TN �
N∑

i�1

log|Vi |. (6.5.10)
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We use MN ,TN and DETN ,TN to calculate −2ll,

−2ll �
N∑

i�1

ni log(2π) +
N∑

i�1

log|Vi | +
N∑

i�1

YT
i V

−1
i Yi −

(
N∑

i�1

YT
i V

−1
i Xi

)

β̂,

(6.5.11)

with

β̂ �
(

N∑

i�1

XT
i V

−1
i Xi

)−1 N∑

i�1

XT
i V

−1
i Yi . (6.5.12)

When Vi is written σ 2Vci , σ 2 is estimated as

σ̂ 2 � 1
∑

i ni

N∑

i�1

(Yi − Xiβ)
TV−1

ci (Yi − Xiβ). (6.5.13)

σ̂ 2 is substituted into −2ll in Sect. 1.5.1 to obtain

−2ll �
N∑

i�1

ni log(2π) +
N∑

i�1

ni log σ̂ 2 +
N∑

i�1

log|Vci | +
N∑

i�1

ni . (6.5.14)

The modified Kalman filter was used to calculate −2ll in Jones (1993). Vi and
Pi(0|0) were replaced by Vci and Pci(0|0) where Pi(0|0) � σ 2Pci(0|0). The Cholesky
factorization of the upper part ofMN ,TN ,

[
N∑

i�1
XT

i V
−1
ci Xi

N∑

i�1
XT

i V
−1
ci Yi

]

, (6.5.15)

replaces the matrix by
[
T b

]
, where T is an upper triangular matrix such that

N∑

i�1

XT
i V

−1
ci Xi � TTT, (6.5.16)

and b is

b � (
TT

)−1
N∑

i�1

XT
i V

−1
ci Yi . (6.5.17)
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Then, bTb and σ̂ 2 are

bTb �
(

N∑

i�1

XT
i V

−1
ci Yi

)T( N∑

i�1

XT
i V

−1
ci Xi

)−1 N∑

i�1

XT
i V

−1
ci Yi , (6.5.18)

σ̂ 2 � 1
∑N

i�1 ni

(
N∑

i�1

YT
i V

−1
ci Yi − bTb

)

. (6.5.19)

Hence, we obtain −2ll (6.5.14) from σ̂ 2 and
∑N

i�1 log|Vci |.
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