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Preface to the Second Edition

In the 31 years since the first edition was published, there has been considerable
growth in the volume of research dealing with inequality and the Lorenz order.
This is especially true, quite naturally in the Econometrics literature. Robin Hood
retains a significant presence, and majorization still provides strong motivation
for consideration of Lorenz curves in discussions of inequality. There has been
significant growth in the number of summary measures of inequality that are now
considered, and much more attention is now paid to discussion of flexible parametric
families of Lorenz curves. In the present edition, such issues are addressed in some
depth in Chaps. 5, 6 and 10. In the current Chap. 7 will be found a more detailed
discussion of multivariate Lorenz ordering than was included in Chap. 5 of the first
edition. The important concept of a Lorenz zonoid is prominent in the discussion.
Alternative Lorenz surfaces are also considered. The first edition ended with a
chapter which included a potpourri of situations in which, sometimes surprisingly,
majorization and/or Lorenz ordering played an, often important, role in the analysis.
Over the years, the number of such examples has naturally increased. There were ten
examples of such applications in the final chapter of the first edition. There are now
24, spread over two chapters. These examples reinforce the belief that majorization
and Lorenz ordering continue to find new areas of application often only faintly
related to income inequality but where variability comparisons are of importance.
Going back to our hero, Robin Hood, pictured on page 7, wherever inequality (or
variability) is to be found, Robin Hood will appear.

We are grateful to many colleagues for helpful discussion of material in this
book, and we are grateful to the editorial staff of Springer for their patience and
encouragement while the book was developing.

Riverside, CA, USA Barry C. Arnold
Santander, Cantabria, Spain José María Sarabia
March 21, 2018
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Preface to the First Edition

My interest in majorization was first spurred by Ingram Olkin’s proclivity for
finding Schur convex functions lurking in the problem section of every issue of
the American Mathematical Monthly. Later my interest in income inequality led me
again to try and “really” understand Hardy, Littlewood and Polya’s contributions
to the majorization literature. I have found the income distribution context to be
quite convenient for discussion of inequality orderings. The present set of notes
is designed for a one quarter course introducing majorization and the Lorenz order.
The inequality principles of Dalton, especially the transfer or Robin Hood principle,
are given appropriate prominence.

Initial versions of this material were used in graduate statistics classes taught
at the Colegio de Postgraduados, Montecillos, Mexico, and the University of
California, Riverside. I am grateful to students in these classes for their constructive
critical commentaries. My wife Carole made noble efforts to harness my free-
form writing and punctuation. Occasionally I was unmoved by her requests for
clarification. Time will probably prove her right in these instances also. Peggy
Franklin did an outstanding job of typing the manuscript, and patiently endured
requests for innumerable modifications.

Riverside, CA, USA Barry C. Arnold
July 1986
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Chapter 1
Introduction

The theory of majorization is perhaps most remarkable for its simplicity. How can
such a simple concept be useful in so many diverse fields? The plethora of synonyms
or quasi-synonyms for variability (diversity, inequality, spread, etc.) suggest that we
are dealing with a basic conception which is multifaceted in manifestation and not
susceptible to a brief definition which will command universal acceptance. Yet there
is an aspect of inequality which comes close to the elusive universal acceptance.
The names associated with this identifiable component of inequality are several.
Effectively, several authors happened upon the same concept in different contexts.
Any list will probably do injustice to some group of early researchers.

1.1 Early Work About Majorization

In the early accessible English language literature on the subject the names of
Muirhead, Lorenz, Dalton and Hardy, Littlewood and Polya stand out. Majorization
or Lorenz ordering is the name we attach to the partial order implicitly or explicitly
described by these authors. The arena in which inequality measurement was
discussed was broad. Lorenz and Dalton did their work in the context of income
inequality. It is convenient to use income inequality as our standard example, but
the reader is enjoined to recall that any of many other fields of application might
serve as well. In fact, concurrent and possible earlier discovery of relevant concepts
may well have occurred in other fields.

Hardy et al.’s (1959) book remains a fertile source of mathematical results
relating to inequality. The passage of time and perhaps infelicitous choice of
notation make that book even less accessible to the student. An extensive survey of
majorization is now available in Marshall et al. (2011). It is much more accessible,
but it is overwhelming in scope. Theorems are proved in all extant versions. The
present book is designed to give a briefer introduction to the material. Hopefully

© Springer International Publishing AG, part of Springer Nature 2018
B. C. Arnold, J. M. Sarabia, Majorization and the Lorenz Order with Applications
in Applied Mathematics and Economics, Statistics for Social and Behavioral Sciences,
https://doi.org/10.1007/978-3-319-93773-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93773-1_1&domain=pdf
https://doi.org/10.1007/978-3-319-93773-1_1


2 1 Introduction

the reader will be stimulated to pursue some topics further in Marshall, Olkin
and Arnold’s book or in earlier sources. Citations to the literature will be given
to help establish the temporal sequence of the development of key ideas. It would,
however, be presumptuous to try to improve upon the detailed bibliography supplied
by Marshall, Olkin and Arnold.

The concepts related to majorization and the Lorenz order to be discussed in
this book are, in a sense, purely mathematical. Indeed, Hardy et al. (1959) treated
them just that way. Nevertheless, we, however, believe that fleshing the ideas out
by setting them in some real world context is helpful for motivation and suggestive
of useful extensions and generalizations. So, in our introductory sections we will
usually speak of inequality in the income context. In later chapters we will vacillate.
Sometimes results will be presented from a purely mathematical point of view.
Other times a (sometimes superficial) economic dressing is added. It is hoped that
this will encourage the reader to think of analogous applications in his/her field of
interest, and that it will not give the erroneous impression that only in economics is
inequality, diversity, variability or what have you, of interest.

Before Lorenz’s (1905) important paper, there had been several suggestions
regarding how inequality might best be measured. Lorenz felt that all of the
summary measures then under consideration constituted, in effect, too much
condensation of the data. Each provided a snapshot of some aspect of inequality.
But as with the blind men and the elephant, the beast itself remained imperfectly
mirrored by the unidimensional views. As a more full bodied view, he proposed a
curve which has come down to us as the Lorenz curve. Actually it provides almost
no condensation of the data. It determines the distribution up to scale. Pushing our
blind man and the elephant theme to (or beyond) its limits, it provides a hologram
of the beast with only the actual scale unknown. There are many functionals of
distributions which essentially divide the class of all distributions into equivalence
classes under change of scale. What is special about the Lorenz curve is that a
natural partial order for inequality is derivable from it. This partial order based on
nested Lorenz curves was suggested by Lorenz in his paper and has proved to be
the most widely accepted partial ordering relating to inequality. It is, of course, the
main subject of this book. Let us look back at its genesis in the publication of the
American Statistical Association of 1905.

Lorenz points out negative features of most of the simple summary measures
of inequality with a small accolade for Bowley’s measure of dispersion. Bowley’s
measure is touted as the best numerical measure as yet suggested, but it is clear
that Lorenz considers it the best of a rotten bunch. He is more concerned with more
informative graphical measures. A popular graphical technique was (and remains)
available. Vito Pareto proposed plotting log income against the logarithm of the
survival function of the distribution. There is good reason to believe the slope of
such a chart (called a Pareto chart) will only provide a good measure of inequality
when the actual distribution is of the Pareto form [i.e., P(X > x) = (x/σ )−α ,
x > σ ]. In fact, the chart will only be linear for such distributions. However, taking
logarithms has a way of masking some of the deviations from the Pareto distribution.
In addition, much income data does seem to fit the Pareto model reasonably well.
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Fig. 1.1 Pareto chart using
the Forbes data of the 400
richest people in the world
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Thus, it was generally possible to compare income distributions in terms of the
slopes of their approximately linear Pareto charts. Figure 1.1 shows a typical Pareto
chart, of the points (log x, log(1 − Fn(x))), this one using the Forbes data on the
400 richest people in the world.

Figure 1.2 shows the Italian, sociologist, economist, and political scientist
Vilfredo Pareto.1

Lorenz rightly sensed that “logarithmic curves are more or less treacherous.” He
proposed a graphical technique which did not involve such a transformation. To
each number between 0 and 100, thought of as a percentage, say t , he proposed
to associate the percentage of the total income which accrued to the poorest t
percent of the population. He used percentage of income as the abscissa of the
point on the curve. Subsequently, it has become customary to reflect Lorenz’s
curve about the 45◦ line, i.e., use percentage of income as the ordinate. In modern
notation, the Lorenz curve is denoted by L(u), whereas the curve originally plotted
by Lorenz would be denoted by L−1(u). Lorenz observed that such curves will
be typically bow shaped. He proposed the following “rule of interpretation.” “As
the bow is bent, so concentration” (i.e., inequality) “increases.” Presumably this
rule of interpretation is self evident, for Lorenz gives no hint of justification. Was
this insight or serendipity? Muirhead’s (1903) work was already published, but the

1https://commons.wikimedia.org/wiki/File:Vilfredo_Pareto.gif.
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Fig. 1.2 Vilfredo Pareto

economic interpretation provided by Dalton’s transfer principles was still 15 years
away. It seems doubtful that Lorenz had any precise mathematical formulation for
his rule of interpretation. It seemed logical to him, and it has survived well simply
because it really does capture important aspects of inequality. But Dalton’s work
was needed to clarify this.

Hugh Dalton, later to become chancellor of the exchequer in England for the
Labor government elected in 1946, was a practical economist. Perhaps because of
his practicality, he demanded precision in definitions. He did not achieve a precise
definition of inequality in his pioneering work of 1920, but he did point out some
key ideas regarding desirable properties of inequality measures. He tried to isolate
operations on income distributions which would “clearly” increase inequality and
then strove to identify measures of inequality which would be monotone under
such transformations. One might quibble that we are merely replacing one difficult
problem by another possibly more difficult one, i.e., how can we agree on what
transformations will clearly increase inequality? It would appear in retrospect
that only one of Dalton’s inequality principles commands wide, almost universal,
acceptance. It is known as the Pigou–Dalton transfer principle, but in this book
we will use the more evocative name of the Robin Hood axiom. When Robin and
his merry hoods performed an operation in the woods they took from the rich and
gave to the poor. The Robin Hood principle asserts that this decreases inequality
(subject only to the obvious constraint that you don’t take too much from the rich
and turn them into poor). Most would agree that a Robin Hood operation decreases
inequality. If we are to judge by names, since a Robin Hood heist is known as
a progressive transfer, it appears that most approve of such Robin Hood actions.
Presumably the sheriff of Nottingham was not a right thinker in this regard. It
turns out that the Robin Hood axiom is intimately related to the order proposed by
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Lorenz. A chance for one last Sherwood metaphor is provided by Lorenz’s comment
about inequality increasing as the bow is bent. Unfortunately Robin’s bow bending
efforts decrease rather than increase inequality, but we can forgive Lorenz his lack
of prescience here.

Dalton’s second principle was that multiplication of incomes by a constant
greater than one should decrease inequality. Most popular inequality measures do
not satisfy this criterion. In fact, arguments regarding reexpression of incomes in
new currency units suggest that a desirable property of inequality measures would
be scale invariance. We will accept this revised second principle. Dalton’s third
principle, which may be simply phrased as “giving everyone a dollar will decrease
inequality,” is, as we shall see, a consequence of Principle 1 and revised Principle
2 (scale invariance). His fourth principle is that the measure of inequality should be
“invariant under cloning.” Specifically, consider a population of n individuals and a
related population of kn individuals which consists of k identical copies (with regard
to income) of each of the n individuals in the original population. The population
of size kn can be called the cloned population. Principle four requires that the
measure of inequality yield the same value for the cloned population as it does for
the original population. Mathematically this requires that the measure of inequality
for the population should be a function of the sample distribution function of the
population. Most common measures of inequality satisfy this last principle.

Now, how are we to get from Dalton and Lorenz or, if you will, Robin Hood
and Lorenz’s bow to the titular topic of this book, namely, majorization? And where
does Muirhead fit in? It is not easy to guess dates. But one might speculate that
the ideas contained in Hardy et al.’s (1929) paper had been formulated several
years earlier, perhaps just when Dalton was enunciating his principles. Be that as
it may, their brief 8-page paper in the Messenger of Mathematics contains the fetus
of majorization theory fully formed and, indeed, more. How Topsy has grown; from
part of Hardy, Littlewood and Polya’s 8 pages to all of Marshall, Olkin and Arnold’s
795 pages. Perhaps the main reason for the slow recognition of the nexus of the
concepts of Lorenz ordering and majorization is to be found in the mathematician’s
proclivity to arrange numbers in decreasing order as opposed to the statistician’s
tendency to use increasing order! So that both may feel at home, we will phrase our
definition both ways.

1.2 The Definition of Majorization

What then is majorization? We could continue to speak of incomes in a finite
population, but it is a convenient time to temporarily drop the economic trappings
in favor of clear mathematical statements.

Majorization, in this book, is a partial order defined on the positive orthant
of n dimensional Euclidean space, to be denoted by R

+
n . For a vector x ∈

R
+
n we denote its (increasing) order statistic by (x1:n, x2:n, . . ., xn:n), i.e., the
xi’s written in increasing order. Its decreasing order statistic will be denoted by
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x(1:n), x(2:n), . . . , x(n:n). Thus x1:n is the smallest of the x’s, while x(1:n) is the
largest. Of course, xi:n = x(n−i+1:n). Along with most mathematicians, HLP (an
acronym for Hardy, Littlewood and Polya that we will henceforth adopt) used the
decreasing order statistics in their original definition.

Definition 1.2.1 Let x, y ∈ R
+
n . We will say that x majorizes y and write x ≥M y

if

k∑

i=1

x(i:n) ≥
k∑

i=1

y(i:n), k = 1, 2, . . . , n− 1 (1.1)

and
∑n
i=1 x(i:n) = ∑n

i=1 y(i:n) [equivalently if
∑k
i=1 xi:n ≤ ∑k

i=1 yi:n, k =
1, 2, . . . , n− 1 and

∑n
i=1 xi =∑n

i=1 yi].

Remark Majorization can instead be defined as a partial order on the elements
of n-dimensional Euclidean space. When reading other publications dealing with
majorization, it is important to verify whether the partial order is defined on R

+
n

or Rn.

Now, how can we write a book about that? First of all, let us see what it says in
the income context. Suppose we have two populations of n individuals each, with
equal total incomes assumed without loss of generality to be 1. If we plot the points
(k/n,

∑k
i=1 xi:n) and (k/n,

∑k
i=1 yi:n), we see that x ≥M y if and only if the Lorenz

curve of y is wholly nested within that of x. Thus, x ≥M y if and only if x is more
unequal than y in the ordering proposed by Lorenz (by bow bending). In R

+
n we may

thus speak of majorization and the Lorenz ordering essentially interchangeably.
Where does Robin Hood fit into this majorization business? When Robin Hood

does his work, he performs a progressive transfer. The new income distribution y is
related to the old distribution x by

y = Px

where P is a very simple doubly stochastic matrix. Using Muirhead’s (1903) paper
HLP (1959) showed that x ≥M y (x ≥L y, if we wish to speak of the Lorenz
order), if and only if y can be obtained from x by Robin Hood in a finite number
of operations. So if we want an inequality measure to honor Dalton’s first principle,
then it must be a function on R

+
n which preserves the majorization partial order.

Such functions are known as Schur convex functions.
Schur convex functions antedate the concept of majorization by a decade. Schur

(1923) spoke of an averaging of x to be any y which was of the form y = Px

where P is doubly stochastic. He identified the class of functions which preserved
the partial ordering defined by such averaging. HLP (1959) showed that Schur’s
averaging partial order was equivalent to majorization. Actually Muirhead (1903)
had considered what was to become known as majorization in a much earlier paper,
although he considered it as a partial order on vectors of non-negative integers.
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As HLP (1959) noted in their book, there is a good reason to expect that any
theorem which provided inequalities for vectors in R

+
n using summation may well

have a generalization for non-negative functions involving integration. The analog
of the order statistic for a vector in R

+
n is provided by the increasing rearrangement

of a non-negative function. They did not provide the necessary extension of Schur’s
averaging, but even that is possible using the concept of a balayage. One can, in fact,
parlay the exercise into even more abstract settings, but we will satisfy ourselves
here with the mere mention of such possibilities.

Other chapters in this book will address how transformations affect Lorenz
curves (in an economic context this can be viewed as discussion of the effects
of various taxation policies), the development of suitable inequality indices and
investigation of parametric families of Lorenz curves.

One important extension which does not take us into esoteric territory, but
nevertheless into a thicket of problems, involves multivariate majorization, to be
discussed in Chap. 7. The basic ambiguity is a consequence of the fact that there
really is no compelling ordering of vectors to play the role that the order statistics
played in the development of (univariate) majorization. In addition, inevitably,
stochastic versions of majorization had to evolve. Some discussion of these concepts
will be provided in Chap. 8. Chapter 9 explores, albeit superficially, the relationship
between majorization and several related partial orderings including stochastic
dominance. Inequality analysis in popular families of income distributions is the
subject of Chap. 10. The concluding chapters catalog a variety of applications of
majorization.

Fig. 1.3 Robin Hood statue
outside of Nottingham Castle,
Nottingham, UK
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As an entertainment, one might attempt to enumerate how many surrogates of
the majorization partial ordering are described in this book. Important ones are
introduced on pages 211 and 251. But, there are others sprinkled around.

Figure 1.3 shows a Robin Hood statue, located outside of Nottingham Castle in
Nottingham, UK.2

2https://commons.wikimedia.org/wiki/File:Robin_Hood_Memorial.jpg.

https://commons.wikimedia.org/wiki/File:Robin_Hood_Memorial.jpg


Chapter 2
Majorization in R

+
n

As mentioned in Chap. 1, the name majorization seems to have appeared first in HLP
(1959), the idea had appeared earlier (HLP, 1929) although unchristened. Muirhead
who dealt with Z

+
n (i.e., vectors of nonnegative integers) already had identified the

partial order defined in (1.1) (i.e. majorization). But he, when he needed to refer to
it, merely called it “ordering.” Perhaps it took the insight of HLP to recognize that
little of Muirhead ’s work need necessarily be restricted to integers, but the key ideas
including Dalton’s transfer principle were already present in Muirhead’s paper. If
there was anything lacking in Muirhead’s development, it was motivation for the
novel results he obtained. He did exhibit the arithmetic-geometric mean inequality
as an example of his general results, but proofs of that inequality are legion. If
that was the only use of his “inequalities of symmetric algebraic functions of n
letters,” then they might well remain buried in the Edinburgh proceedings. HLP
effectively rescued Muirhead’s work from such potential obscurity. In the present
book theorems will be stated in generality comparable to that achieved by HLP and
will be ascribed to those authors. Muirhead’s priority will not be repeatedly asserted.
HLP restricted attention to R

+
n , but the restriction to the positive orthant can and will

be often dispensed with. First let us establish the relationship between majorization
as defined by HLP (i.e., (1.1)) and averaging as defined by Schur. Recall that x is an
average of y in the Schur sense if x = Py for some doubly stochastic matrix P .

2.1 Basic Result

There are certain very simple linear transformations, x = Ay, for which it is obvious
that x ≤M y. The very simplest case is when A is a permutation matrix. But, there
are other quite straightforward cases. Going back to our Robin Hood scenario of
Chap. 1, we would like to show that the linear transform associated with a Robin

© Springer International Publishing AG, part of Springer Nature 2018
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Hood operation leads to a new vector x which is majorized by the old vector y. In
order to obtain results valid in Rn rather than just R+

n , it is convenient to admit the
possibility of negative incomes in our financial scenario. To begin with we consider a
special kind of Robin Hood operation in which money is taken from a relatively rich
individual i and given to the individual whose wealth is immediately below that of
individual i in the ranking of wealth. Call this an elementary Robin Hood operation.

Because of the fact that permutation preserves majorization, we may, without
loss of generality, assume that our vector x has coordinates arranged in increasing
order. Now, what we want to show is that every Robin Hood operation is equivalent
to a series of elementary Robin Hood operations and permutations and, then that
every multiplication by a doubly stochastic matrix is equivalent to a finite series
of Robin Hood operations (and thus to a longer series of elementary Robin Hood
operations and permutations). Then if the elementary Robin Hood operations induce
majorization, so does multiplication by a doubly stochastic matrix.

First let us ascertain that an elementary Robin Hood operation induces majoriza-
tion. The old and new incomes (possibly negative) are related by

x = Ay (2.1)

where, for some i and some λ ∈ [0, 1
2 ],

ai,i = 1 − λ, ai,i+1 = λ,
ai+1,i = λ, ai+1,i+1 = 1 − λ (2.2)

and

ajk = δjk otherwise,

where δjk denotes the usual Kronecker delta. Note that we require λ ∈ [0, 1
2 ] in

order to have Robin Hood’s operation not disturb the ordering of the vector. It is
evident from the basic Definition 1.2.1 that with A defined by (2.2), and y and
x related by (2.1) we have x ≤M y. Now a more general Robin Hood operation
involves taking the income of a relatively poor individual and a relatively rich
individual, perhaps individuals i and j in the increasing ranking, and redividing
their combined wealth among them, subject only to the constraint that individual i
not become more rich than individual j .

The effect of such an operation is to raise up the Lorenz curve (the plot of points
(k/n,

∑k
i=1 xi:n). The effect of an elementary Robin Hood operation is to raise the

Lorenz curve at one point. It is a simple matter to verify that one may move from a
given Lorenz curve to a higher one by successively raising the curve at individual
points subject to the constraint that at no time is the convexity of the Lorenz curve
destroyed. A simple example will exhibit the manner in which this may be achieved.

Consider a population of eight individuals whose ordered wealths are

2, 3, 5, 11, 13, 18, 23, 25. (A)
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Suppose that Robin Hood take 8 from the individual with wealth 23 and gives it to
the individual with wealth 5. The resulting set of ordered wealths is

2, 3, 11, 13, 13, 15, 18, 25. (B)

It is not difficult to reach (B) from (A) using only elementary Robin Hood
operations. For example, one could successively transform the set of ordered
wealths as follows.

2, 3, 5, 11, 13, 18, 23, 25
2, 3, 5, 11, 13, 20.5, 20.5, 25
2, 3, 5, 11, 15.5, 18, 20.5, 25
2, 3, 5, 13, 13.5, 18, 20.5, 25
2, 3, 9, 9, 13.5, 18, 20.5, 25
2, 3, 9, 9, 15.5, 16, 20.5, 25
2, 3, 9, 12, 12.5, 16, 20.5, 25
2, 3, 9, 12, 13, 15.5, 20.5, 25
2, 3, 9, 12, 13, 18, 18, 25
2, 3, 10, 11, 13, 18, 18, 25
2, 3, 10, 12, 12, 18, 18, 25
2, 3, 10, 12, 15, 15, 18, 25
2, 3, 11, 11, 15, 15, 18, 25
2, 3, 11, 13, 13, 15, 18, 25

Each line above was obtained from the preceding line by an elementary Robin
Hood operation. The reader might ponder on the problem of determining the
minimal number of elementary Robin Hood operations required to duplicate a given
general Robin Hood operation. The sequence described above is not claimed to be
parsimonious with regard to the number of steps used. Duplication of a general
Robin Hood operation may require a countable number of elementary Robin Hood
operations (see Exercise 1).

But now we may make a remarkable observation. A vector x majorizes y by
definition, if the Lorenz curve of y is obtained from that of x by raising it at one
or several points. It is evident that this too can be accomplished one point at a time
(subject to the restriction that convexity is not violated). Let E be the class of all n×n
doubly stochastic matrices corresponding to elementary Robin Hood operations, and
let P be the class of all n× n permutation matrices. It is then clear that if x ≥M y,
then y can be obtained from x by a string of elementary Robin Hood operations
and/or relabelings. Thus y = Qx where Q is a product of a countable number
of matrices chosen from the class of doubly stochastic matrices E ∪ P . Q is then
necessarily itself doubly stochastic. Thus we have proved that if x ≥M y, then
y = Px for some doubly stochastic matrix P . The converse statement was proved
in HLP essentially as follows.

Suppose that y = Px for some doubly stochastic matrix P where without loss
of generality x and y are in ascending order. Then for any m ≤ n, we may define
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kj =
m∑

i=1

pij ≤ 1, j = 1, 2, . . . , n,

and we have

m∑

i=1

yi =
n∑

j=1

kjxj

≥
m−1∑

j=1

kjxj + xm
⎛

⎝m−
m−1∑

j=1

kj

⎞

⎠

⎛

⎝since
n∑

j=1

kj = m
⎞

⎠

≥
m−1∑

j=1

kjxj + xm +
m−1∑

j=1

(1 − kj )xj

(since kj ≤ 1)

=
m∑

j=1

xj .

Thus x ≥M y. We may consequently state

Theorem 2.1.1 (HLP) x ≥M y if and only if y = Px for some doubly stochastic
matrix P .

The matrix P referred to in Theorem 2.1.1 is not necessarily unique. For a given
x, y the class of matrices P for which y = Px is convex, but it can be a singleton
set or in other cases may be nontrivial and have several extreme points.

An alternative characterization of majorization is then available if we utilize
Birkhoff’s (1946) observation that the class of n × n doubly stochastic matrices
coincides with the convex hull of the set of n × n permutation matrices. We thus
may state that x ≥M y if and only if y = ∑k

�=1 γ�P�x for some set of permutation
matrices P1, P2, . . . , Pk and some set of γ�’s satisfying γ� ≥ 0, � = 1, 2, . . . , k
and

∑k
�=1 γ� = 1. Farahat and Mirsky (1960) showed that k can be chosen to be

n2 − 2n + 2 and that, in general, no smaller number will suffice. An alternative
statement of this fact is that for a given vector x the class of vectors y majorized
by x is the convex hull of the set of points obtained by rearranging the coordinates
of x.
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2.2 Schur Convex Functions and Majorization

Functions which preserve the majorization partial order form a large class. They
were first studied by Schur (1923) and are, in his honor, called Schur convex
functions. We may join with Marshall and Olkin in lamenting the use of the
term convex rather than monotone, increasing, order preserving or, more modishly,
isotonic, but we will persist in using the name Schur convex. Many famous
inequalities are readily proved by focussing on a particular Schur convex function.
If one thumbs through the problem sections of the American Mathematical Monthly
one is struck by the frequency with which inequalities are proved as a consequence
of the Schur convexity of some judiciously chosen function. For example, Chap. 8 of
Marshall et al. (2011) catalogs a plethora of such results in a geometric setting (many
dealing with features of triangles). Not every analytic inequality is a consequence
of the Schur convexity of some function, but enough are to make familiarity with
majorization/Schur-convexity a necessary part of the required background of a
respectable mathematical analyst. After that build-up, we had better get quickly to
the matter of defining the required concepts.

Definition 2.2.1 Let A ⊂ R
+
n . A function g : A→ R is said to be Schur convex on

A if g(x) ≤ g(y) for every pair x, y ∈ A for which x ≤M y
The function g alluded to in Definition 2.2.1 is said to be strictly Schur convex

if it is Schur convex and if x ≤M y, and x not a permutation of y together imply
g(x) < g(y).

As an example, consider the function

g(x) =
n∑

i=1

x2
i (2.3)

defined on Rn. We claim that this function is Schur convex. In verifying this fact
we will use a couple of tricks of the trade. The task of determining Schur-convexity
is simplified immediately by the observation that a Schur convex function must be
a symmetric function of its arguments. More specifically, if g is Schur convex on
A and if x and �x are in A for some permutation matrix �, then g(x) = g(�x)

(since, clearly, x ≥M �x and �x ≥M x). Another simplification hinges upon the
fact that if x ≥M y, then y can be obtained from x by a finite number of Robin Hood
operations. Such operations only involve two coordinates at a time. So we only need
to check whether g(x) ≤ g(y) whenever x ≤M y and x and y differ only in two
coordinates which by symmetry may without loss of generality be taken to be the
first two.

Thus, in order to verify Schur convexity of the function (2.3), we need to verify
that if

(α1, α2, α3, . . . , αn)
	 ≤M (β1, β2, α3, . . . , αn)

	 (2.4)
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(where necessarily α1 + α2 = β1 + β2 and without loss of generality α1 ≤ α2 and
β1 ≤ β2) then α2

1 + α2
2 + · · · + α2

n ≤ β2
1 + β2

2 + α2
3 + · · · + α2

n, i.e.

α2
1 + α2

2 ≤ β2
1 + β2

2 .

Without loss of generality α1 + α2 = β1 + β2 = 1, and we may write α for α1
and β for β1. We then wish to verify that if

1

2
≥ α ≥ β

(as implied by (2.4)), then

α2 + (1 − α)2 ≤ β2 + (1 − β)2.

This is, however, obvious since the function z2 + (1 − z)2 has a non-positive
derivative on (−∞, 1

2 ].
Let us denote by On the subset of Rn in which the coordinates are in increasing

order. Thus

On = {x : x1 ≤ x2 ≤ · · · ≤ xn}. (2.5)

If we wish to check for Schur convexity of a function g defined on a symmetric
set A, we need only check for symmetry on A and Schur convexity on On ∩ A.
Since, in many applications the domains of putative Schur convex functions are
indeed symmetric, it is often sufficient to restrict attention to On or subsets thereof.

To characterize Schur convexity on subsets of On we return to the Robin Hood
scenario. Thinking of the coordinates of On as the ordered wealths of n individuals
in Sherwood Forest (allowing negative wealth so as not to restrict attention to
R

+
n ), we may recall that (in On) x ≤M y if and only if x can be obtained from
y by a countable number of elementary Robin Hood operations. Such operations
involve a transfer of funds from one individual to the next richest individual
without disturbing the ordering of individuals. To be Schur convex on On then, a
continuous function g need only be appropriately monotone with respect to such
elementary Robin Hood operations (cf. Lemma A.2 in Marshall et al. (2011, p.
81)). Monotonicity is particularly easy to verify in differentiable cases by inspection
of the sign of the appropriate partial derivative. Schur’s (1923) famous sufficient
condition for Schur convexity involves such partial derivatives. Although Schur’s
condition has proved remarkably useful, it cannot be used to deal with less regular
Schur convex functions. The existence of unfriendly Schur convex functions is
alluded to in Exercise 3.

Summarizing the results described above we have

Theorem 2.2.1 Suppose g : On → R is continuous. g is Schur convex if and only
if for every x ∈ On and every i = 1, 2, . . . , n− 1, the function

g(x + ε vi)
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is a non-increasing function of ε for all ε such that x + ε vi ∈ On. The vector vi
is a vector with a 1 in the ith coordinate and a −1 in the (i + 1)st coordinate, all
other coordinates being 0. [If the functions g(x + εvi) are strictly decreasing, then
we characterize strict Schur convexity.]

Theorem 2.2.2 Suppose g : On → R is continuous with continuous partial
derivatives (on the interior of On). g is Schur convex on On if and only if for every
x in the interior of On and every j = 1, 2, . . . , n− 1,

∂

∂xj
g(x) ≤ ∂

∂xj+1
g(x)

[i.e., if ∇g(x) ∈ On, ∀x ∈ int(On)].

Proof Follows by legitimately differentiating the g(x + ε vi)’s. �
Theorem 2.2.3 (Schur’s Condition) Suppose g : In → R is continuously
differentiable where I is an open interval. g is Schur convex if and only if g is
symmetric and for every i �= j

(xi − xj )
[
∂

∂xi
g(x)− ∂

∂xj
g(x)

]
≥ 0, ∀x ∈ In. (2.6)

Proof The result follows from Theorem 2.2.2 and the assumed symmetry of g(x).
In fact, using the assumed symmetry of g(x), one only need verify (2.6) for the
particular case (i, j) = (1, 2). �

If we return to our example g(x) =∑n
i=1 x

2
i defined on Rn, symmetry is evident

and we see that Schur’s condition (2.6) takes the form

(x1 − x2)(2x1 − 2x2) ≥ 0.

Actually this particular Schur convex function provides an example of an important
class of Schur convex functions, the separable convex class.

Definition 2.2.2 A function g : In → R (where I is an interva1) is said to be
separable convex if g is of the form

g(x) =
n∑

i=1

h(xi) (2.7)

where h is a convex function on I . Recall that h is convex on I if h(αx+(1−α)y) <
αh(x)+ (1 − α)h(y) for every x, y ∈ I and every α ∈ [0, 1].

Schur (1923) and HLP observed that any separable convex function is Schur
convex. If h is differentiable (as “most” convex functions are), then Schur’s
condition (2.6) is readily verified. More generally it can be verified by considering
the effect of an elementary Robin Hood operation which involves an averaging of
two coordinates (this is Exercise 4).
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An interesting example of a separable convex function is provided by the function

g(x) = −
n∑

i=1

log xi (2.8)

defined on R
+
n . The function − log x is readily shown to be convex. A consequence

of the Schur convexity of (2.8) is the celebrated arithmetic-geometric mean inequal-
ity. For any x ∈ R

+
n it is evident that

(x1, x2, . . . , xn)
	 ≥M (x̄, x̄, . . . , x̄)	 (2.9)

where x̄ = 1
n

∑n
i=1 xi is the arithmetic mean of the xi’s (Robin Hood can clearly

eventually make everyone’s wealth equal). If we evaluate the Schur convex function
defined in (2.8) at each of the points in R

+
n referred to in (2.9), we eventually

conclude that
(
n∏

i=1

xi

)1/n

≤ 1

n

n∑

i=1

xi (2.10)

i.e., the geometric mean cannot exceed the arithmetic mean. Myriad proofs of (2.10)
exist, a remarkable number of which can be presented in a majorization framework.
As remarked at the beginning of the chapter, Muirhead (1903) provided an early
example of such a proof.

Not every Schur convex function is separable convex. This is not a transparent
result. A famous example of a non-separable Schur convex function is the Gini
index. This is defined on R

+
n as follows:

g(x) =
[
n∑

i=1

(2i − n− 1)xi:n

]/(
n∑

i=1

xi

)
. (2.11)

Another such example is provided by

g(x) =
(
n∑

i=1

xi

)(
n∑

i=1

x2
i

)
. (2.12)

The elementary symmetric functions

n∑

i=1

xi,
∑

i �=j
xixj ,

∑

i �=j �=k
xixj xk, etc. (2.13)

are examples of Schur concave functions (g is Schur concave if −g is Schur convex).
Except for the first one, (

∑n
i=1 xi), they are clearly not separable concave.

The class of Schur convex functions is closed under a variety of operations. For
example, consider m Schur convex functions g1, . . . , gm each defined on some set
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A ⊂ Rn. It is easily established that the following functions are necessarily Schur
convex on A.

h1 =
m∑

i=1

cigi where ci ≥ 0,

h2 =
m∏

i=1

cigi where ci ≥ 0 and gi ≥ 0,

h3 = min
i

{cigi} where ci ≥ 0,

h4 = max
i

{cigi} where ci ≥ 0. (2.14)

It is also evident that the class of Schur convex functions is closed under
pointwise convergence. In all the above cases Schur convexity is verifiable directly
from Definition 2.2.1.

Another useful way to construct Schur convex functions (or way to recognize
Schur convexity) involves marginal transformations before applying a known Schur
convex function. Specifically suppose that g is a Schur convex function defined on
In (where I is an interval in R) and that h is a convex function defined on R. Define

φ(x) = g (h(x1), . . . , h(xn)) . (2.15)

A sufficient condition that φ be Schur convex is that g be nondecreasing in addition
to being Schur convex. We could use this observation to verify yet again the Schur
convexity of the function

∑n
i=1 x

2
i (since evidently h(x) = x2 is convex and∑n

i=1 xi is Schur convex and increasing).
In statistical applications several important Schur convex functions are con-

structed via integral transforms. We will satisfy ourselves with a representative
example (due to Marshall and Olkin (1974)).

Lemma 2.2.1 Let g be an integrable Schur convex function on Rn and suppose that
A ⊂ Rn satisfies:

If x ∈ A, and y ≤M x then y ∈ A. (2.16)

It follows that

φ(x) =
∫

A+x
g(y) dy,

is a Schur convex function of x on Rn.

Since measurable Schur concave functions are approximable by simple Schur
concave functions (linear combinations of indicator functions), the above Lemma
can be parlayed (as Marshall and Olkin did) into a proof of the following.
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Theorem 2.2.4 If g is Schur convex on Rn and f is Schur concave on Rn, then

φ(x) =
∫

Rn

f (x − y)g(y) dy, (2.17)

is Schur convex on Rn provided that the integral in (2.17) exists for all x ∈ Rn.

The key observation in proving Theorem 2.2.4 by way of Lemma 2.2.1 is
that (2.16) is equivalent to the statement that the indicator function of A is Schur
concave.

The following direct proof of Theorem 2.2.4 is attributed by Marshall and Olkin
to Proschan and Cheng. Without loss of generality, assume n = 2 (since we only
need to consider elementary Robin Hood operations). Additionally we need to only
consider small heists. So for ε small, consider (x1 + ε, x2 − ε) ≤M (x1, x2) where
x1 < x2. We have

φ(x1, x2)− φ(x1 + ε, x2 − ε)
=
∫

R2
f (x1 − y1, x2 − y2)g(y1, y2) dy1dy2

−
∫

R2
f (x1 + ε − y1, x2 − ε − y2)g(y1, y2) dy1dy2

=
∫

R2
f (u1, u2 + ε)g(x1 − u1, x2 − ε − u2) du1du2

−
∫

R2
f (u1 + ε, u2)g(x1 − u1, x2 − ε − u2) du1du2.

Since f is symmetric we can write
∫

u1≤u2

[f (u1, u2 + ε)− f (u1 + ε, u2)]g(x1 − u1, x2 − ε − u2) du1du2

=
∫

u1≤u2

[f (u2 + ε, u1)− f (u2, u1 + ε)]g(x1 − u1, x2 − ε − u2) du1du2

=
∫

u1≥u2

[f (u1 + ε, u2)− f (u1, u2 + ε)]g(x1 − u2, x2 − ε − u1) du1du2

(relabelling u1 and u2). Consequently,

φ(x1, x2)− φ(x1 + ε, x2 − ε)
=
∫

u1≥u2

[f (u1, u2 + ε)− f (u1 + ε, u2)]g(x1 − u1, x2 − ε − u2)

−g(x1 − u2, x2 − ε − u1) du1du2

However for u1 ≥ u2 we have

(u1, u2 + ε) ≤M (u1 + ε, u2)
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and

(x1 − u2, x2 − ε − u1) ≤M (x1 − u1, x2 − ε − u2).

Consequently, by the Schur concavity of f and the Schur convexity of g, the
integrand is non-negative and the Schur convexity of φ is verified.

Other useful examples of majorization involving integral transformations are
to be found in the work of Hollander et al. (1977) in the context of functions
“decreasing in transposition.”

The definition of majorization involves ordering the components of vectors in Rn.
If n is not large, this is not an arduous task. If n is large, then it becomes desirable to
determine sufficient conditions for majorization which do not involve ordering. Of
course a sufficient condition that x ≤M y is that g(x) ≤ g(y) for every Schur convex
function g. This is just the contrapositive of the definition of Schur convexity. This
does not involve ordering, but it does involve checking a vast number of functions.
The cardinality of the set of Schur convex functions may be larger than your first
guess in light of the question at the end of Exercise 3. Surely we do not have to
check whether g(x) ≤ g(y) for every Schur convex function g. The pathological
ones alluded to in Exercise 3 certainly don’t have to be checked (why?). In 1929
HLP verified that one need only check separable convex functions in order to verify
majorization. In fact it suffices to check only a particularly simple subclass of the
separable convex functions. In what follows we use the notation a+ = max{0, a}.
Theorem 2.2.5 (HLP, Karamata) x ≤M y if and only if

∑n
i=1 h(xi) ≤∑n

i=1 h(yi) for every (continuous) convex function h : R → R.

Theorem 2.2.6 (HLP) x ≤M y if and only if
∑n
i=1 xi = ∑n

i=1 yi and
∑n
i=1(xi −

c)+ ≤∑n
i=1(yi − c)+ for every c ∈ R.

It is evidently sufficient to prove Theorem 2.2.6, since h(x) = x and h(x) =
(x− c)+ are continuous convex functions. It is also then evident that Theorem 2.2.5
remains valid with or without the parenthetical word “continuous.”

Proof One implication is trivial since the functions
∑n
i=1 xi and

∑n
i=1(xi − c)+

are separable convex and hence Schur convex. The proof of the converse is also
straightforward. Merely set c successively equal to y(1:n), y(2:n), . . . , y(n:n). Thus, in
terms of decreasing order statistics,

(
k∑

i=1

x(i:n) − ky(k:n)
)

≤
k∑

i=1

(x(i:n) − y(k:n))+

≤
n∑

i=1

(xi − y(k:n))+

≤
n∑

i=1

(yi − y(k:n))+ by hypothesis
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=
k∑

i=1

(y(i:n) − y(k:n))+

=
n∑

i=1

y(i:n) − ky(k:n).

Adding ky(k:n) to each side, the desired result follows. �
Theorem 2.2.5 is the more commonly quoted of the two theorems. It is sometimes

called Karamata’s theorem. Karamata’s (1932) proof of this result antedated HLP’s
proof which appeared in their 1959 book. However HLP had stated the result sans
proof in their ear1ier brief note in the Messenger of Mathematics (in 1929). To them
(HLP) the fact that linear combinations of angles (functions of the form g(x) =
(x − a)+) were dense in the set of continuous convex functions was intuitively
clear. Perhaps they consequently felt it unnecessary to overburden their note with
elementary proofs.

Another important class of Schur convex functions are those introduced by
Muirhead (1903), subsequently dubbed symmetrical means by HLP (1959). For a
given vector (a1, . . . , an) with each ai > 0 we define the x’th symmetrical mean of
a for some set of n real numbers x1, . . . , xn to be

[x]a = 1

n!
∑

π

a
x1
π(1)a

x2
π(2) · · · axnπ(n) (2.18)

where the sum is over all permutations of the integers 1, 2, . . . , n.
Muirhead (1903) showed that majorization could be verified merely by checking

that all symmetrical means were appropriately ordered. He restricted attention to
integer valued xi’s, but his proof carries over to the case of more general values for
the xi’s, as noted by HLP (1959).

Theorem 2.2.7 (Muirhead, HLP) x ≤M y if and only if for every a > 0,

[x]a ≤ [y]a.

Proof A symmetrical mean is evidently symmetric and is easily verified to be
convex. From Exercise 4 we then conclude that it is Schur convex, i.e., [x]a ≤ [y]a
whenever x ≤M y.

Conversely, for a fixed k < n, define a(k)(u) by a1 = a2 = · · · = ak = u and
ak+1 = · · · = an = 1. The corresponding symmetric means [x]a(k)(u) and [y]a(k)(u)
are (generalized) polynomials in u with the indices of their highest powers being,
respectively,

∑k
i=1 x(i:n) and

∑k
i=1 y(i:n). In order to have [x]a(k)(u) ≤ [y]a(k)(u)

for u large, we must have
∑k
i=1 x(i:n) ≤ ∑k

i=1 y(i:n). Finally, if we set a(n)(u) =
(u, u, . . . , u), we can only have [x]a(n)(u) ≤ [y]a(n)(u) for u both large and small if
∑k
i=1 x(i:n) =∑k

i=1 y(i:n). �
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The proof of the converse given above is, modulo notation changes, exactly
that provided by HLP (1959). The symmetric means are of considerable historical
interest. They assume a prominent role in both Muirhead’s (1903) paper and in
HLP’s (1959) Chap. 2. Incidently, at the present juncture we may quickly illustrate
Muirhead’s development of the arithmetic-geometric mean inequality. Both the
arithmetic and the geometric mean of a > 0 are symmetric means corresponding,
respectively, to the choices (1, 0, . . . , 0) and ( 1

n
, 1
n
, . . . , 1

n
), respectively, for x.

Since evidently (1, 0, 0, . . . , 0) ≥M ( 1
n
, . . . , 1

n
), the arithmetic-geometric mean

inequality follows from Theorem 2.2.7.
Marshall et al. (2011, Chapter 4, Section B) describe other classes of Schur

convex functions which may be used to determine majorization. The symmetric
means and the separable convex functions remain the classical examples.

2.3 Exercises

1. Evidently x = (2, 2, 2) ≤M (1, 2, 3) = y. Verify that although x may be
obtained from y by a single Robin Hood operation, it requires a countable
number of elementary Robin Hood operations to obtain x from y.

2. Give an example to show that the doubly stochastic matrix P alluded to in
Theorem 2.1.1 is not necessarily unique.

3. Give an example of a discontinuous Schur convex function defined on R.
[Hint: If

∑n
i=1 xi = 1 and

∑n
i=1 yi = 2, then g(x) and g(y) do not have

to be related in any way]. [More pathologically, can you construct a non-
measurable Schur convex function on Rn?].

4. Suppose that g is symmetric on A and convex on A. Prove that g is Schur
convex in A.

[We really only need convexity on sets of the form {x : ∑n
i=1 xi = c}.]

5. Prove that separable convex functions on Rn are Schur convex without assum-
ing differentiability.

6. Verify that the functions defined in (2.11) and (2.13) are indeed Schur convex
but not separable convex.

7. Consider the function g(x) =∑n
i=1(xi−x̄)2. Is it Schur convex? Is it separable

convex?

8. Suppose g(x) = ∑n
i=1 aixi:n. Supply suitable conditions on the vector a to

guarantee that g will be Schur convex.
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9. If h is convex on I , then g(x) = ∑n
i=1 h(xi) is Schur convex on In. Prove the

converse, i.e., if g(x) = ∑n
i=1 h(xi) is Schur convex on In, then h is convex

on I .

10. (Easy but useful). If g is Schur convex on A and if we define, for t ∈ R,

χt (x) =
{

1, if g(x) ≥ t,
0, otherwise,

then χt (x) is Schur convex on A.

11. If g is a non-decreasing Schur convex function defined on In and h is a convex
function on R, verify that

φ(x) = g(h(x1), h(x2), . . . , h(xn))

is Schur convex on In.

12. Suppose h is convex on R and define

g(x) =
∑

π

e
∑n
i=1 h(cπ(i)xi )

where the sum is over all permutations of (1, . . . , n). Verify that g is Schur
convex (e.g., Muirhead’s symmetric means). [Marshall and Olkin (1979) point
out that the result is also true when the summation is extended only over the k
largest of the n! summands.]

13. Suppose that
∑n
i=1 xi = ∑n

i=1 yi and xi:n/yi:n is a non-increasing function
on i. Show that x ≤M y.

14. Suppose the P is a doubly stochastic matrix. Verify that the matrix I − P	P
is positive semi-definite. Use this observation to prove that g(x) = ∑n

i=1 x
2
i is

Schur convex.

15. Suppose that x ≤M y and that y ≤M z. Prove that x ≤M z.



Chapter 3
The Lorenz Order in the Space
of Distribution Functions

The graphical measure of inequality proposed by Lorenz (1905) in an income
inequality context is intimately related to the concept of majorization. The Lorenz
curve, however, can be meaningfully used to compare arbitrary distributions rather
than distributions concentrated on n points, as is the case with the majorization
partial order. The Lorenz order can, thus, be thought of as a useful generalization of
the majorization order. While extending our domain of definitions in one direction,
to general rather than discrete distributions, we find it convenient to add a restriction
which was not assumed in Chap. 2, a restriction that our distributions be supported
on the non-negative reals and have positive finite expectation. In an income or wealth
distribution context the restriction to non-negative incomes is often acceptable. The
restriction to distributions with finite means is potentially more troublesome. Any
real world (finite) population will have a (sample) distribution with finite mean.
However, a commonly used approximation to real world income distributions, the
Pareto distribution, only has a finite mean if the relevant shape parameter is suitably
restricted. See Arnold (2015b) for a detailed discussion of Pareto distributions in
the income modelling context. To avoid distorted Lorenz curves (as alluded to in
Exercise 1 and illustrated in Wold (1935)), we will hold fast to our restriction that
all distributions to be discussed will be supported on R

+ and will have positive finite
means. In terms of random variables our restriction is that they be non-negative with
positive finite expectations. We will speak interchangeably of our Lorenz (partial)
order as being defined on the class of distributions (supported on R

+ with positive
finite means) or as being defined on the class of positively integrable non-negative
random variables.

Figure 3.1 shows a photo of the American economist Max Otto Lorenz.
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Fig. 3.1 Max Otto Lorenz

3.1 The Lorenz Curve

First we need to recall Lorenz’s original definition of his inequality curve, and
then describe a version of it suitable for our purposes, i.e. one which can be used
to (partially) order non-negative integrable random variables. After rotating and
rescaling Lorenz’s diagram, we may describe one of his curves as follows. The
Lorenz curve corresponding to a particular population of individuals is a function,
say L(u), defined on the interval [0, 1] such that for each u ∈ [0, 1], L(u) represents
the proportion of the total income of the population which accrues to the poorest
100u percent of the population. Associated with such a finite population of n
individual incomes is a sample distribution function say Fn(x) where, by definition,

Fn(x) = {number of individuals with income ≤ x}/n. (3.1)

How is Lorenz’s curve related to this sample distribution function? After a little
thought we realize that something is lacking in Lorenz’s original definition. The
curve is not well defined for every u ∈ [0, 1], only for u = 0, 1

n
, 2
n
, . . . , n−1

n
, 1

where n is the size of the population. It is reasonable to complete the curve by
linear interpolation, and that is what we shall do. If we denote the ordered individual
incomes in the population by x1:n, x2:n, . . . , xn:n, then for i = 0, 1, 2, . . . , n

L

(
i

n

)
=
⎛

⎝
i∑

j=1

xj :n

/
n∑

j=1

xj :n

⎞

⎠ . (3.2)

The points
(
i
n
, L( i

n
)
)

are then linearly interpolated to complete the correspond-
ing Lorenz curve. Such a curve does approximate the bow shape alluded to by
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Lorenz. Obvious modifications are required in (3.2) if the xi’s are not all distinct.
The Lorenz curve is well defined at 0 and at a number of points equal to the number
of distinct values among the xi’s. It is then completed by linear interpolation.
Now any distribution function can be approximated arbitrarily closely by discrete
distributions. Thus (3.2) must essentially determine a functional on the space of all
distribution functions which will associate a “Lorenz curve” with each distribution
in a manner consistent with Lorenz’s definition of the curve for sample distribution
functions. The most convenient mathematical description of that functional is of
recent provenance. It was implicitly known and explicitly available in parametric
form before, but seems to have not been clearly enunciated until Gastwirth (1971)
supplied the following definition.

For any distribution function F we define the corresponding “inverse distribution
function” or Quantile function by

F−1(y) = sup{x : F(x) ≤ y}, 0 < y < 1. (3.3)

With this definition the mean, μF of the distribution (assumed supported on
[0,∞) is given by

μF =
∫ 1

0
F−1(y)dy, (3.4)

in the sense that the mean exists if and only if the Riemann integral in (3.4)
converges. With this definition of F−1, Gastwirth defines the Lorenz curve cor-
responding to the distribution F by

L(u) =
[∫ u

0
F−1(y)dy

]/[∫ 1

0
F−1(y)dy

]
, 0 ≤ u ≤ 1. (3.5)

It is a straightforward matter to verify that the definition (3.5) does indeed
coincide with Lorenz’s original definition, i.e., (3.2) with linear interpolation, in
the case of a sample distribution function corresponding to n numbers (individual
incomes), since

F−1
n (y) = xi:n, i − 1

n
≤ y < i

n
.

The form (3.5) is especially useful since it makes transparent several important
properties of Lorenz curves. A Lorenz curve is a continuous function on [0, 1] with
L(0) = 0 and L(1) = 1. It is non-decreasing and differentiable almost everywhere.
Convexity of the Lorenz curve is obvious since the function F−1 is non-decreasing.
Thus the general definition provided by (3.5) does give us “bow-shaped” curves, as
promised by Lorenz. A Lorenz curve will always lie below the 45◦ line joining (0, 0)
to (1, 1) (by convexity). It will coincide with the 45◦ line in the case of a degenerate
distribution. It is evident that the Lorenz curve determines the distribution up to a
scale transformation (L′(u) = cF−1(u) a.e. and F−1 determines F ).
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If the Lorenz curve is twice differentiable in some interval say (u1, u2),
then the corresponding distribution has a finite positive density in the interval
(μFL

′(u1+), μFL′(u2−)) where μF is defined in (3.4). The density in that interval
is given by

f (x) = [μFL′′(F (x))
]−1 (3.6)

For an example of a Lorenz curve, consider the classical Pareto distribution
defined by

F(x) = 1 − (x/σ)−α , x > σ (3.7)

where σ > 0 and α > 1 (to ensure the existence of the mean). One finds

F−1(u) = σ(1 − u)−1/α, 0 < u < 1

and consequently, from (3.5),

L(u) = 1 − (1 − u)(α−1)/α, 0 ≤ u ≤ 1. (3.8)

Figure 3.2 shows the original Lorenz curve proposed by M.O. Lorenz and
published in his 1905 paper (Lorenz 1905, with permission of the American
Statistical Association).

Fig. 3.2 Original Lorenz
curve proposed by M.O.
Lorenz in 1905
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3.2 The Lorenz Order

Lorenz proposed ordering income distributions by the degree with which the Lorenz
curve bow is bent; or more prosaically in terms of nested Lorenz curves. One
associates a high level of inequality with a severely bent bow. The case of complete
equality corresponds to the unbent bow or 45◦ line. We can associate an integrable
non-negative random variable with any distribution function supported on [0,∞)
with positive finite mean. We thus can and will discuss a Lorenz partial order on
the class of all non-negative integrable random variables rather than on the class of
distribution functions. For any non-negative random variable X with positive finite
expectation we will denote its corresponding distribution function by FX and its
corresponding Lorenz curve (i.e., the Lorenz curve corresponding to FX via (3.5))
by LX. With this notation, we define the Lorenz partial order by

Definition 3.2.1 X ≤L Y (i.e., X does not exhibit more inequality in the Lorenz
sense than does Y ), if LX(u) ≥ LY (u) for every u ∈ [0, 1].

For example, suppose that X and Y have classical Pareto distributions with
parameters (α1, σ1) and (α2, σ2) respectively (refer to Eq. (3.7)). Assume that
α1 < α2. By referring to the calculated Lorenz curve (3.8), it is evident that
LX(u) < LY (u), ∀ u ∈ (0, 1) and hence X ≥L Y . Thus, in the case of the
classical Pareto distribution an increase in the parameter α corresponds to a decrease
in inequality as measured by the Lorenz ordering.

Although the Lorenz inequality ordering has achieved a remarkable degree of
acceptance, especially in the economic arena, the development of related analytic
theory for popular parametric families of densities has been slow. For any finite
population there is no problem evaluating the Lorenz curve. For a continuous
distribution an analytic expression for the Lorenz curve will rarely be available. This
is true because one must first get an analytic expression for the inverse function, and
then hope one can integrate it. Fortunately, it is sometimes possible to determine that
Lorenz curves are nested without explicitly deriving the Lorenz curves in question
(see the example following Theorem 3.2.3 below, and also the material in Chap. 4).

Another possibility involves use of a parametric representation of the Lorenz
curve. Most of the early work on Lorenz curves was done in terms of such a
representation. Corresponding to a distribution function F (supported on [0,∞)
with positive finite mean) we define its first moment distribution function to be

F (1)(x) =
[∫ x

0
ydF(y)

]/[∫ ∞

0
ydF(y)

]
. (3.9)

A parametric representation of the Lorenz curve is then possible, as follows. The
Lorenz curve corresponding to the distribution F is the set of points (F (x), F (1)(x))
in the unit square where x ranges from 0 to ∞ completed, if necessary, by linear
interpolation. By using this representation a graphical comparison of the Lorenz
curves of two distributions F andG is clearly possible. Analytically the comparison
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involves the quantities F (1)(x) and G(1)(G−1(F (x))). A slight computational gain
is observable here in that we only have to invert one of the distribution functions.
Exercise 4 illustrates this technique. In this exercise it is verified that ifX ∼ �(1, 1)
and Y ∼ �(2, 1), then X ≥L Y . In this example the distribution function for X
is readily invertible while that for Y is not. The more general conclusion that if
X ∼ �(k1, 1) and X ∼ �(k2, 1) with k1 < k2, then X ≥L Y is included in Taillie
(1981).

A succinct expression for the Lorenz curve can be formed utilizing (3.9). One
may write

L(u) = F (1)(F−1(u)). (3.10)

To use this result, closed form expressions for both F−1 and F (1) are needed.
The list of parametric families of distributions for which closed form expressions

are available for the corresponding Lorenz curve is remarkably short. It includes
the family of classical Pareto distributions (Eq. (3.8) above), distributions uniform
on finite intervals, exponential distributions (Exercise 9), and arc-sin distributions.
An alternative approach is to propose parametric families of Lorenz curves (whose
corresponding distribution functions are usually not simple or even available in
closed form) to be used in fitting observed Lorenz curves. A simple example is

L(u) = 1 − (1 − uβ)α

where α ∈ (0, 1] and β ≥ 1. An alternative family is

L(u) = [1 − (1 − u)α]β

where 0 < α ≤ 1 ≤ β.
Extensive discussion of parametric families of Lorenz curves, including the two

families just described, will be found in Chap. 6.
The lognormal distribution has a remarkable representation for it Lorenz curve

namely,

LX(u) = �(�−1(u)− σ) (3.11)

(see Exercise 10) where � is the standard normal distribution function and σ is
the scale parameter for logX. The expression (3.11) can be used to generate other
parametric families of Lorenz curves by replacing � by some other distribution
function. It turns out that a sufficient condition for (3.11) to represent a family
of Lorenz curves is that the distribution function � be strongly unimodal (Arnold
et al. 1987). A judicious non-normal choice for � in (3.11) will yield the family of
classical Pareto Lorenz curves, (3.8) (see Exercise 11). No matter which strongly
unimodal � is used in (3.11), the resulting family is Lorenz ordered by σ .

A surprisingly good parametric family of Lorenz curves for fitting observed
income distributions are the general quadratic curves. In many situations the
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observed graph {(u, L(u)) : 0 ≤ u ≤ 1} is well approximated by a segment
of an ellipse. Such Lorenz curves are remarkable in that it is possible to derive
closed form (albeit not aesthetically pleasing) expressions for the corresponding
distribution and density functions (Arnold and Villaseñor 1984). See Chap. 6 for
more detailed discussion of such general quadratic curves.

Functionals of the Lorenz curve have been proposed as simple summary
measures of inequality. The most popular such measure is the Gini index. The Gini
index is conveniently defined as twice the area between the Lorenz curve and the 45◦
line (which is the Lorenz curve corresponding to an egalitarian distribution in which
all individuals have identical incomes). The Pietra index is the maximal vertical
deviation between the Lorenz curve and the egalitarian line. A third proposal is an
index defined to be simply the length of the Lorenz curve (proposed, for example,
by Amato (1968) and Kakwani (1980a)). Some alternative representations of these
inequality measures are investigated in the exercises at the end of this chapter.
Further discussion of inequality indices may be found in Chap. 5.

At this point it is convenient to relate the majorization partial order to the
Lorenz order described in this chapter. Majorization is a partial order on n-tuples
of real numbers. In the present context we restrict its domain to the non-negative
orthant, i.e., sets of n non-negative numbers. Any such set of n numbers can have a
(sample) distribution function associated with it (cf. Eq. (3.1)). If we use Gastwirth’s
definition of the Lorenz curve (3.5), we may see (using (3.2) that for two vectors
x, y ∈ R

+
n we have x ≤M y if and only

∑n
i=1 xi =∑n

i=1 yi and X ≤L Y where the
random variables X and Y are defined by

P(X = xi) = 1

n
, i = 1, 2, . . . , n

P (Y = yi) = 1

n
, i = 1, 2, . . . , n. (3.12)

Returning to Gastwirth’s general definition of the Lorenz curve (3.5), it is
immediately apparent that X ≤L Y if and only if X/E(X) ≤L Y/E(Y ) (we have
assumed non-negativity and integrability for our random variables and we explicitly
exclude random variables degenerate at 0 so we can divide by expectations). Thus,
the Lorenz order actually relates equivalence classes of random variables where two
random variables are considered equivalent if one is a scalar multiple of the other.
If we use (3.12) as a device to define a partial order on R

+
n , conveniently called the

Lorenz order and denoted by ≤L, we see that x ≤L y if and only if the normalized
vectors x̃, ỹ satisfy x̃ ≤L ỹ (where x̃i = xi/

∑n
i=1 xi , ỹi = yi/

∑n
i=1 yi). The

relationship between the two orders ≤L and ≤M on R
+
n is evidently intimate but

their distinct nature is exemplified by the observation that if
∑n
i=1 xi �= ∑n

i=1 yi
then x and y cannot be related by ≤M but might be related by ≤L.

In Chap. 2, we encountered some remarkable equivalent conditions for majoriza-
tion in Rn. Specifically consider Theorems 2.1.1, 2.2.5, and 2.2.6. To what extent
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can we extend these results to deal with the Lorenz partial order of non-negative
integrable random variables (which can legitimately be viewed as an extension of
majorization)? Theorems 2.2.5 and 2.2.6 extend readily. Thus

Theorem 3.2.1 Suppose X ≥ 0, Y ≥ 0 and E(X) = E(Y ). We have X ≤L Y if
and only if E(h(X)) ≤ E(h(Y )) for every continuous convex function h : R+ → R.

We have the obvious

Corollary 3.2.1 X ≤L Y iff E[g(X/E(X))] ≤ E[g(Y/E(Y ))] for every continu-
ous convex g.

or the sometimes more convenient

Corollary 3.2.2 X ≤L Y iff E[g(E(Y )X)] ≤ E[g(E(X)Y )] for every continuous
convex g.

Theorem 3.2.2 Suppose X ≥ 0, Y ≥ 0 and E(X) = E(Y ). we have X ≤L Y if
and only if E[(X − c)+] ≤ E[(Y − c)+] for every c ∈ R

+.

It is not easy to track down explicit proofs of these theorems in the literature. Of
course, ifX and Y have only n equally likely possible values, the theorems reduce to
the earlier proved Theorems 2.2.5 and 2.2.6. The general proof then follows easily
by a limiting argument. Actually HLP (1929) includes the more general result.
To make the correspondence one has to rewrite E(h(X)) as

∫ 1
0 h(F

−1
X (u))du and

E(h(Y )) as
∫ 1

0 h(F
−1
Y (u))du. The HLP result involves monotone rearrangements

of functions. But since F−1
X and F−1

Y are already monotone the HLP (1929)
theorem is indeed equivalent to Theorem 3.2.1 provided that, as assumed, E(X) =∫ 1

0 F
−1
X (u)du = ∫ 1

0 F
−1
Y (u)du = E(Y ). See also Marshall et al. (2011, p. 22).

Theorem 3.2.1 and its corollaries suggest that a reasonable summary measure
of inequality will be provided by an index of the form E(g(X/E(X))) for any
continuous convex g. The choice g(x) = x2 leads to an ordering equivalent to
that based on the coefficient of variation (see Exercise 20).

Now we turn to the possibility of extending Theorem 2.1.1 to the more general
context of the Lorenz order on integrable non-negative random variables. To this
end, let us first look at Theorem 2.1.1 from a slightly different perspective. Recall
that the theorem states that x ≥M y if and only if y = Px for some doubly stochastic
matrix P . We may rewrite this as a statement involving random variablesX and Y as
defined in (3.12). But then what is the role of the matrix P ? For discussion purposes
it is convenient to assume that the coordinates of x and of y are distinct (i.e., i �= i′
implies xi �= x′

i and yi �= y′
i). On some convenient probability space construct a

bivariate random variable (X,Z) where X has possible values x1, x2, . . . , xn and
Z has possible values 1, 2, . . . , n. Suppose that the joint distribution of (X,Z) is
described by:

P(Z = i) = 1

n
, i = 1, 2, . . . , n
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and

P(X = xj |Z = i) = pij , i, j = 1, 2, . . . , n

where the pij ’s are elements of a doubly stochastic matrix P . If denote E(X|Z = i)
by yi , it is really verified that

yi =
n∑

i=1

pij xj .

Now P(E(X|Z) = yi) = P(Z = i) = 1
n

so that E(X|Z) d= Y (where Y is as
defined in (3.12)). What we have shown is that in the context of random variables X
and Y each with n equally likely distinct possible values,X ≥L Y if and only if there

exist jointly distributed random variables X′, Z′ with X
d= X′ and Y

d= E(X′|Z′).
This theorem is true in much more general settings. Restating a theorem of Strassen
(1965) in terms of the Lorenz order we have:

Theorem 3.2.3 Let X and Y be non-negative integrable random variables with
E(X) = E(Y ). Y ≤L X if and only if there exist jointly distributed random

variables X′, Z′ such that X
d= X′ and Y

d= E(X′|Z′).

Proof We will prove only the easy part, referring the reader to Strassen’s paper for

the more difficult converse. Suppose that Y
d= E(X′|Z′), we claim that Y ≤L X′.

Obviously, E(Y ) = E(X′) so that by Theorem 3.2.1 it will suffice to verify that
E(h(Y )) ≤ E(h(X′)) for every continuous convex h. This however is true since

E(h(X′)) = E(E(h(X′)|Z′))

≥ E(h(E(X′|Z′))) (Jensen’s inequality)

= E(h(Y ))

�
The conditional expectation of X given Z is an averaging of X, and our Theo-

rem 3.2.3 merely quantifies the plausible statement that, in general, averaging will
decrease inequality (as measured by the Lorenz ordering). The reverse operation is
known as balayage or sweeping out. We could then phrase our theorem in the form:
balayages increase inequality.

Suppose X has an exponential (λ) distribution and Y has a distribution function
of the form

FY (y) = 1 −
(

1 + y

σ

)−α
, y > 0 (3.13)
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where α > 1 and σ > 0. Y can be said to have a Pareto (II) distribution (a
translated classical Pareto distribution). We claim that X ≤L Y . One approach
would involve direct computation and comparison of the corresponding Lorenz
curves. However, a simple observation allows us to draw the conclusion as a
consequence of Theorem 3.2.3.

Suppose that X and Z are independent random variable with X ∼ �(1, λ−1)

and Z ∼ �(α, 1). If we define Y = X/Z, then by direct computation we find
that Y has the Pareto II distribution given by (3.13). However, by construction
E(Y |X) = XE(1/Z) where X has an exponential (λ) distribution. Thus, X =
E(Y/E(Z−1)|X), and so by Theorem 3.2.3, X ≤L Y/E(Z−1), and by the scale
invariance of the Lorenz order, X ≤L Y .

Theorem 3.2.3 would be especially useful if one could derive some algorithm
which, for a given pair of random variables X, Y ordered by Y ≤L X, would
generate the distribution of the appropriate bivariate random variable (X′, Z′)
referred to in the theorem. Put more bluntly, how does one recognize a balayage?
We will return to this problem in Chap. 4 when we discuss inequality attenuating
transformations.

3.3 Exercises

1. Suppose we were to use Eq. (3.5) for a random variable which assumes
negative values. How will the resulting “Lorenz curve” differ from that usually
encountered? Illustrate with the case of a random variable distributed uniformly
over the interval (−1, 2).

2. Verify (3.4).

3. Let L(u) be a Lorenz curve which for some u∗ ∈ (0, 1) satisfies L(u∗) = u∗.
Prove that L(u) = u, ∀u ∈ [0, 1].

4. Suppose X ∼ �(1, 1) and Y ∼ �(2, 1). Prove that X ≥L Y . [Hint: Compare
F
(1)
Y (y) and F (1)X (F

−1
X (FY (y)))].

5. Provide a careful proof of Theorem 3.2.1 using the monotone convergence
theorem and Theorem 2.2.5.

6. For any j , the function gj (x) =∑j

i=1 xi:n/
∑n
i=1 xi:n is Schur concave. Verify

that x ≤M y iff gj (x) ≥ gj (y), j = 1, 2, . . . , n.

7. Verify that convex combinations of Lorenz curves are again Lorenz curves. Will
it be easy to identify the distribution function corresponding to the combined
curve?
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8. Let Z = μ + σX where μ ≥ 0 and σ > 0. Assume X ≥ 0 and 0 <

E(X)<∞.

(a) Let g(μ, σ, u) = LZ(u). Show that for fixed μ, g(μ, σ, u) is a non-
decreasing function of σ . Thus, if σ1 < σ2, we have μ+σ1X ≥L μ+σ2X.

(b) Assume σ = 1. Investigate the relationship between the Lorenz curves of
X and Z (Hint: F (−1)

Z (u) = μ+ E(X)L′
X(u)).

9. (Lorenz curve for exponential distribution.) Suppose X has density fX(x) =
λe−λx , x > 0. Determine the form of the corresponding Lorenz curve of X.

10. Suppose X has a lognormal distribution, i.e., logX ∼ N(0, σ 2). Verify that
the Lorenz curve of X has the form LX(u) = �(�−1(u) − σ) where � is the
standard normal distribution function.

11. Show that (3.8) can be thought of as being a special case of (3.11) for a suitable
strongly unimodal distribution function �.

12. The Lorenz curve corresponding to a particular random variable X is itself
a continuous distribution function with support [0, 1]. The mean of this
distribution function, i.e.,

∫ 1
0 udLX(u), can be used as a summary measure of

inequality of X. How is this measure related to the Gini index of X?

13. Uniform record values. Consider repeated sampling from a uniform distribution
on the interval [0, 1]. Let Y1, Y2, . . . be the sequence of upper record values.
Prove that Yi ≤L Yi+1, i = 1, 2, . . . (see Arnold and Villaseñor 1998 for
related material)

14. A Lorenz curve is symmetric if L(1 − L(u)) = 1 − u for every u ∈ (0, 1).
Suppose a random variable X has mean μ and density f (x). Show that its
Lorenz curve is symmetric if and only if

f (μ2/x)

f (x)
=
(
x

μ

)3

for every x for which f (x) > 0 (Taguchi 1968).

Certain well-known inequality indices are introduced in the next four
exercises. More detailed discussion of these indices may be found in Chap. 5.

15. (Gini Index). The Gini index is defined by

G(X) = 2
∫ 1

0
(u− L(u))du.

Let X1, X2 be i.i.d. copies of X and denote their minimum by X1:2. Verify that



34 3 The Lorenz Order in the Space of Distribution Functions

G(X) = E(|X1 −X2|)/2E(X)
and

G(X) = 1 − [E(X1:2)/E(X)].

16. (Pietra Index). The Pietra index is defined by

P(X) = max
u∈(0,1)

[u− LX(u)].

Assume FX is strictly increasing on its support and verify that the maximum is
achieved when u = FX(E(X)) and that the Pietra index can be expressed as

P(X) = E(|X − E(X)|)/2E(X).

17. Verify that the Pietra index is twice the area of the largest triangle which can be
inscribed between the Lorenz curve and the egalitarian line.

18. Since the length of the Lorenz curve must be in the interval (
√

2, 2), Kakwani
(1980a), see also Amato (1968), proposed the following index of inequality.

K(X) = �X − √
2

2 − √
2

where �X is the length of the Lorenz curve corresponding to FX. Verify that

�X = 1

E(X)
E
(√

[E(X)]2 +X2
)
.

19. LetX have a classical Pareto distribution (Eq. (3.7)). Determine the correspond-
ing Gini, Pietra, and Amato-Kakwani indices (defined in Exercises 15–18).

20. The coefficient of variation of X is defined by c.v.(X) = √
var(X)/E(X).

Verify that if X ≤L Y then c.v.(X) ≤ c.v.(Y ). Is the converse true?

21. Instead of considering the maximum vertical deviation between the Lorenz
curve and the egalitarian line (as Pietra did), one might consider the maximum
horizontal deviation. Discuss this summary measure of inequality. A third
possibility is to consider the maximal distance of the Lorenz curve from the
egalitarian line.

22. Using (3.5), determine the density of a random variableX whose mean is 2 and
whose Lorenz curve is given by

L(u) = u

9 − 8u
, 0 ≤ u ≤ 1.

(Aggarwal and Singh 1984).



Chapter 4
Transformations and Their Effects

We may most easily motivate the material in the present chapter by setting it
in the context of income distributions. Income distributions which exhibit a high
degree of inequality (as indicated by their Lorenz curves) are generally considered
to be undesirable. Consequently, there are frequent attempts to modify observed
income distributions by means of intervention in the economic process. Taxation and
welfare programs are obvious examples. Essentially then, we replace the original
set of incomes (or, more abstractly, a vector in R

+
n ) by some function of the set

of incomes. Interest centers on characterizing inequality preserving and inequality
attenuating transformations. We will consider both deterministic and stochastic
transformations.

4.1 Deterministic Transformations

Having motivated our task by considering vectors in R
+
n , we make the natural

extension suggested by the material in Chap. 3 and consider functions of non-
negative integrable random variables with positive expectations. Thus, we seek more
insight into two classes of functions mapping R

+ into R
+:

(1) Inequality preserving functions. g is inequality preserving if X ≤L Y implies
g(X) ≤L g(Y ).

(2) Inequality attenuating functions. g is inequality attenuating if for every non-
negative random variable X with 0 < E(X) <∞ we have g(X) ≤L X.

An obvious example of an inequality preserving transformation is the function
g(x) = cx for some c > 0. Are there others? The answer is yes. But there are
not very many interesting ones. One may verify that the only inequality preserving
transformations are those of the following three forms:
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g1c(x) = cx, x ≥ 0 for some c > 0, (4.1)

g2c(x) = c, x ≥ 0 for some c > 0, (4.2)

and

g3c(x) =
{

0, x = 0,
c, x > 0 for some c > 0.

(4.3)

The classes (4.2) and (4.3) preserve the Lorenz order by mapping the class of
non-negative random variables into very restricted classes. As such, they may be
considered to be of only academic interest. The proof that (4.1)–(4.3) constitutes a
complete enumeration of the inequality preserving transformations involves a rather
tiresome enumeration of cases (see Arnold and Villaseñor (1985) for details). A key
observation in the arguments is that if g(0) �= 0 then, to preserve inequality, g must
be non-decreasing on (0,∞). Consequently, any inequality preserving function
must be measurable. In fact, one can show they must be linear on (0,∞). Marshall
et al. (2011, p. 166) show that functions on R which preserve majorization if
measurable must be linear, but in their context, they cannot rule out nonmeasurable
solutions. By restricting attention to functions on R

+ and by asking for preservation
of the Lorenz order we are able to avoid such anomalies.

What about inequality attenuating transformations? Sufficient conditions for
inequality attenuation have repeatedly been discovered in the literature. In fact, the
commonly quoted conditions are essentially necessary and sufficient as we shall
now show. Earlier references to the conditions as necessary conditions are to be
found in Marshall et al. (1967), Fishburn (1976), Kakwani (1980a), and Nygard
and Sandstrom (1981). Marshall et al. (1967) are concerned with ∗-ordering (see
Chap. 9) which implies Lorenz ordering. The Lorenz order is defined on random
variables which are non-negative and whose expectations exist and are positive. As
was remarked earlier, the positivity requirement is needed to rule out the random
variable degenerate at 0. We denote this class of random variables by L. Our theorem
can then be stated as follows:

Theorem 4.1.1 Let g : R+ → R
+. The following are equivalent

(i) g(X) ≤L X, ∀X ∈ L
(ii) g(x) > 0, ∀ x > 0, g(x) is non-decreasing on [0,∞) and g(x)/x is non-

increasing on (0,∞).
Proof (ii) ⇒ (i). Assume g satisfies (ii). Now if X ∈ L we need to verify that
g(X) ∈ L. Since g(x) > 0 ∀ x > 0 and E(X) > 0, it follows that E(g(X)) > 0.
Next, since g(x) is non-decreasing on [0,∞), we have g(X) ≤ g(1) when X ≤ 1.
Since g(x)/x is non-increasing on (0,∞), we have g(x)/x ≤ g(1)/1 or g(X) ≤
Xg(1) when X ≥ 1. Thus g(X) ≤ (X + 1)g(1), and hence E(g(X)) < ∞. Thus
g(X) ∈ L. To compare the Lorenz curves ofX and Y = g(X), it suffices to consider

conveniently chosen random variables X′ and Y ′ with X
d= X′ and Y

d= Y ′. Let U
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be a random variable uniformly distributed on the interval (0, 1) and let FX be the
distribution function of the random variable X. Define X′ = F−1

X (U) and Y ′ =
g(F−1

X (U)) (where F−1
X is defined in Eq. (3.3)). Note that both F−1

X and g are non-
decreasing. It follows that

LY (u)− LX(u) = LY ′(u)− LX′(u)

=
∫ u

0
g(F−1

X (v))dv

/∫ 1

0
g(F−1

X (v))dv

−
∫ u

0
F−1
X (v)dv

/∫ 1

0
F−1
X (v)dv

=
∫ u

0

[
g(F−1

X (v))− F−1
X (v)

E(X′)
E(Y )

]
dv

E(Y ′)
.

Since g(x)/x is non-increasing on (0,∞), the last integrand is first positive then
negative as v ranges from 0 to 1. Thus, the integral assumes its smallest value when
u = 1. Since LY (1)− LX(1) = 0, it follows that LY (u) ≥ LX(u) ∀u ∈ [0, 1], i.e.
g(X) = Y ≤L X.
(ii) ⇒ (i) Suppose g is such that there exists x∗ > 0 with g(x∗) = 0. Then

consider a random variable X such that P(X = x∗) = 1. Obviously X ∈ L, but
P(g(X) = 0) = 1, so g(X) �∈ L, and thus g(X) �L X.

Suppose g(x) > 0 for x > 0 but g is not non-decreasing on [0,∞). Thus, there
exist x and y with 0 ≤ x < y and g(y) < g(x). Consider a random variable X such
that P(X = x) = p, P(X = y) = 1 − p. There are two cases to consider.

Case 1: x = 0, g(y) > 0. Here, see Exercise 3, g(X) �L X provided p < (g(0)−
g(y))/(2g(0)− g(y)).

Case 2: x > 0, g(y) > 0. Here, see Exercise 4, g(X) �L X provided p < (y
x

−
1)/( g(x)

g(y)
+ y
x

− 2).

Finally, suppose g is non-decreasing, g(x) > 0 for x > 0 and g(x)/x is not
non-increasing on (0,∞). Thus, there exist x and y such that 0 < x < y with
0 < g(x)/x < g(y)/y. Let X be a random variable defined by P(X = x) =
P(X = y) = 1/2. One finds Lg(X)(1/2) < LX(1/2), so that g(X) �L X. �

The above theorem has an attractive interpretation in terms of taxation policies.
If we think of X as representing the distribution of income before taxes and g(X)
as representing income after taxes, then in order for our taxation policy g to be
guaranteed to reduce inequality (for any pre-tax income distribution), g must satisfy
conditions (ii) of Theorem 4.1.1. It must satisfy g(x) > 0 ∀ x > 0, i.e., everyone
with some income before taxes should still have some money left after taxes. It must
be monotone, i.e., if Sally earned more than Joe before taxes, her after tax income
must also be more than Joe’s after tax income. Finally, we must have g(x)/x ↓. But
this just says that it must be a “progressive” tax which takes proportionally more
from the rich than it does from the poor. Most taxation policies do satisfy these
conditions and are, thus, inequality attenuating.
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Another way to change income distributions is to mandate salary increases which
depend on the current level of salary. Thus, if any individual with salary x is given
a 100γ (x)% increase in salary, his new salary will be g(x) = x(1 + γ (x)). We can
refer to Theorem 4.1.1 in order to determine conditions on γ under which such a
policy will reduce inequality. We assume γ (x) ≥ 0 (i.e., we are indeed speaking of
salary increases and not cuts). In order to have g(x)/x ↓, we must have γ (x) ↓ (i.e.
bigger percentage increases go to the poorer individuals). Finally, to have g(x) ↑,
we need x(1 + γ (x)) ↑. This means that γ cannot decrease too fast. For example,
if we assume differentiability of γ (note that up to this point we have studiously
avoided putting smoothness conditions on g or γ ), then to have g ↑ we need

γ ′(x) ≥ −1 + γ (x)
x

.

Although most taxation policies in vogue do qualify as being inequality attenuating,
such is not always the case for policies dealing with salary increases. A not uncom-
mon policy for salary increases which is not necessarily inequality attenuating is
of the following type. All employees receiving less than $10,000 will be given a
15% increase, all employees earning between $10,000 and $20,000 will be given a
12% increase, and all others will be given a 10% increase. Although this is a policy
involving generous increases, one can expect to hear from disgruntled employees
whose previous salary was $10,050.

Analogous arguments to those used in Theorem 4.1.1 allow one to characterize
inequality accentuating transformations. One finds

Theorem 4.1.2 Let g : R+ → R
+. The following are equivalent

(i) X ≤L g(X), ∀X ∈ L
(ii) g(x) > 0 ∀ x > 0, g(x) is non-decreasing on [0,∞) and g(x)/x is non-

decreasing on (0,∞).

4.2 Stochastic Transformations

What happens when we allow our transformation g to have random components?
Two basic insights can guide us here. First, the introduction of extraneous random-
ness or noise should increase inequality and, second, averaging should decrease
inequality. The second of these insights is illustrated by Theorem 3.2.3 which

includes the observation that if Y = E(X|Z) (or if Y
d= E(X|Z)), then Y ≤L X.

Thus, if Y can be identified as a conditional expectation ofX given some random
variable Z, then Y ≤L X. If Y is a conditional expectation of X, then X is said
to be a balayage, dilation or sweeping out of Y . The first insight, regarding the
introduction of noise, is illustrated in the misreported income example following
Eq. (4.5) below. But, as a caveat, see Exercise 9.



4.2 Stochastic Transformations 39

We may rephrase our question about possibly random transformations which
attenuate or accentuate inequality as follows. Let X be a non-negative random
variable, and suppose that

Y = ψ(X,Z) ≥ 0 (4.4)

where Z is random and ψ is deterministic. Under what conditions on ψ, Z and
on the joint distribution of Z and X can we conclude that necessarily Y ≤L X
(attenuation) or Y ≥L X (accentuation)? We can see immediately that inequality
accentuation rather than attenuation is most likely to result from transformations
of the form (4.4). This is because such transformations usually involve additional
randomness or noise. For example, if X is degenerate, then Y , in (4.4), is typically
not degenerate so Y ≥L X. A simple example in which inequality attenuation occurs
is the following. If Z ≡ X and ψ(x, z) = g((x + z)/2) where g satisfies conditions
(ii) of Theorem 4.1.1, then Y ≤L X, for any X ∈ L.

Let us consider a non-trivial example in which inequality accentuation obtains.
Several authors have considered the following model for misreporting of income
(on tax returns, for example)

Y = UX. (4.5)

Here Y represents reported income, X is true income, and U is the misreporting
factor. A common assumption is that U and X are independent (non-negative
random variables). It follows immediately that E(Y |X) = E(U)X, and so, by
Theorem 3.2.3, Y ≥L E(U)X, whence Y ≥L X. Thus, in this case, misreporting
increases inequality. In fact we do not even need to assume U and X are
independent. It suffices thatE(U |X) = c. In practice, it seems reasonable to assume
that, in (4.5), U ≤ 1 (i.e., people underreport their income on their tax returns). A
progressive tax (in the sense of Theorem 4.1.1), of course, is applied to reported
income (not actual income). Does it still attenuate inequality? Now, post tax income
is of the form

Y = (1 − U)X + g(UX). (4.6)

Here Y |U = u is a non-random function of X which satisfies conditions (ii) of
Theorem 4.1.1. Thus, Y |U = u ≤L X for every u ∈ [0, 1]. It is tempting to conclude
that this result still holds unconditionally, i.e., Y ≤L X. Such an argument is a snare,
however. We cannot, in general, expect to have Y ≤L X when X and Y are related
by (4.6). The case of a degenerate X again provides a fly in the ointment. For even
though X is degenerate, say X ≡ 1, Y is decidedly not degenerate, and so Y �L X.
Continuity arguments allow us to conclude that non-degenerate counterexamples
must also exist. Consequently, we cannot be sure that a progressive tax on reported
income will necessarily attenuate the inequality of actual income, which is sad but
true and, retrospectively, quite obvious.
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It is possible to identify random transformations which necessarily accentuate
inequality. For example, ifU andX are independent non-negative random variables,
and if g satisfies condition (ii) of Theorem 4.1.2, then Y = g(UX) ≥L X. This
is a direct consequence of Theorem 4.1.2, the fact that misreporting accentuates
inequality and the fact that the Lorenz order is transitive. We have in this situation
X ≤L UX ≤L g(UX). A slight generalization of this observation is provided by
the following theorem due to Arnold and Villaseñor (1985).

Theorem 4.2.1 Suppose g : R+
2 → R

+ is such that g(z, x)/x is non-decreasing in
x for every z, and g(z, x) is non-decreasing in x for every z. Assume that X and Z
are independent non-negative random variables with X ∈ L and g(Z,X) ∈ L. It
follows that X ≤L g(Z,X).
Proof Exercise 6. �

In Theorem 4.2.1 in order to have X ≤L g(Z,X), we really only require that
g(z, x)/x and g(z, x) be non-decreasing in x as x ranges over the set of possible
values of X, and we only require this to hold for any z that is a possible value of Z
(x is a possible value of X if for every ε > 0, P(x − ε < X < x + ε) > 0). Similar
“extensions” of Theorems 4.1.1 and 4.1.2 are possible. For example, in the setting
of Theorem 4.1.1, we have g(X) ≤L X provided conditions (ii) hold as x ranges
over the set of possible values of X.

In the misreported income scenario discussed above, instead of observing X, we
observed a transformed version of X. In many scientific fields, the random variable
X of interest is also not observed. What is observed is not a transformation of X
but, rather, a weighted version of X. The basic reference is Rao (1965). Mahfoud
and Patil (1982) provide a more recent survey of the area. Instead of observing
random variables with density f (x), because of the method of ascertainment (the
way the data are collected), we actually observe random variables with a density
proportional to g(x)f (x). The function g(x) is the weighting function. The special
case g(x) = x, called size biased sampling, occurs when bigger units are more
likely to be sampled than small ones. How do such weightings affect inequality as
measured by the Lorenz order?

Suppose that X ∈ L and that g is a suitably measurable nonnegative function.
The g-weighted version of X, denoted Xg is defined to be a random variable such
that

P(Xg ≤ x) =
∫ x

0
g(y)dFX(y)/E[g(X)] (4.7)

provided 0 < E[g(X)] < ∞. Note that if X ∈ L then in order to have Xg ∈ L we
require both 0 < E[g(X)] <∞ and 0 < E[Xg(X)] <∞.

Inequality preserving weightings will correspond to functions g for which X ≤L
Y ⇒ Xg ≤L Yg . Obviously a homogeneous function of the form g(x) ≡ c > 0 will
preserve inequality. Using the basic Lemmas described in Exercises 1 and 2, it is
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not difficult to verify that there is very little scope for variation from homogeneity.
In fact (Arnold 1986a) the only inequality preserving weightings are of the form

g(0) = 0, x = 0

g(x) = β, x > 0

where α ≥ β > 0 (the first step in the proof is Exercise 14).
In a similar fashion we can seek a “weighting” version of Theorem 4.1.1.

Again the basic lemmas of Exercises 1 and 2 are helpful. Very few weightings are
inequality attenuating. One may verify (Arnold 1986a) that Xg ≤L X for every
X ∈ L if and only if

g(x) =
{
α, x = 0,
β, x > 0

where β > 0 and 0 ≤ α ≤ β (the first step in the proof is Exercise 15).

4.3 Exercises

1. Suppose 0 < x1 < x2 and that random variables X and Y are defined by

P(X = x1) = p, P (X = x2) = 1 − p,
P (Y = x1) = p′, P (Y = x2) = 1 − p′.

Show that X and Y are not Lorenz ordered except in the trivial cases when
p = p′, pp′ = 0 or (1 − p)(1 − p′) = 0.

2. Suppose 0 < x and that random variables X and Y are defined by

P(X = 0) = p, P (X = x) = 1 − p,
P (Y = 0) = p′, P (Y = x) = 1 − p′.

Show that p ≤ p′ ⇒ X ≤L Y .

3. Assume g is such that there exists y > 0 with 0 < g(y) < g(0). Let X be a
random variable such that P(X = 0) = p, P(X = y) = 1 − p. Show that
g(X) �L X for small values of p (specifically, for p < [g(0)−g(y)]/[2g(0)−
g(y)]).
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4. Assume g is such that there exist x and y with 0 < x < y and 0 < g(y) < g(x).
LetX be a random variable such that P(X = x) = p, P(X = y) = 1−p. Show
that g(X) �L X for large values of p (specifically, for p > [ y

x
− 1]/[ g(y)

g(x)
+

y
x

− 2]).
5. (Inequality attenuation in the sense of majorization.) Show that g satisfies

conditions (ii) of Theorem 4.1.1 if and only if for any n and for any x ∈ R
+
n we

have
(
g(x1)∑
g(xi)

, . . . ,
g(xn)∑
g(xi)

)
≤M

(
x1∑
xi
, . . . ,

xn∑
xi

)
(∗)

[Note that it is possible to have a function satisfy (∗) for a fixed n without
conditions (ii) of Theorem 4.1.1 being satisfied. For example with n = 2,
consider g(0) = 2, g(x) = 1, x �= 0.]

6. Prove Theorem 4.2.1.

7. Let X ∈ L and define Y = μ1 + σ1X and Z = μ2 + σ2X where μ1, μ2 > 0
and σ1, σ2 > 0. Under what circumstances can we claim Y ≤L Z? This result,
whenX is a classical Pareto random variable, is discussed in Samuelson (1965).
The Lorenz curves of Y and Z were discussed in Chap. 3, Exercise 8. Here we
can use Theorems 4.1.1 and 4.1.2.

8. Suppose X ≤L Y , a > 0, b ≥ 0 and E(X) = E(Y ). Show that aX + b ≤L
aY + b. What happens if E(X) �= E(Y )?

9. Does the addition of noise increase inequality? Suppose X, U ∈ L are
independent random variables. Can we conclude that X + U ≥L X? Can we
conclude X + U ≤L X?

10. Suppose X is a random variable with finite α’th and β’th moments. Prove that
Xα ≤L Xβ if and only if α ≤ β.

11. Supply an example in which X ≤L Y yet X + 1 �L Y + 1.

12. (Deterministic underreporting). Suppose that U = 1
2 with probability one and

that g is an inequality attenuating transformation. Can we conclude that for any
X ∈ L we have

Y = (1 − U)X + g(XU) ≤L X?

13. (Strong Lorenz Order). We write X <L Y if X ≤L Y and Y �L X. State and
prove a strong Lorenz order version of Theorem 4.1.1, i.e. give necessary and
sufficient conditions on g to ensure that g(X) <L X for every non-degenerate
X ∈ L.
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14. Suppose that for some x1, x2 > 0 we have g(0) = α, g(x1) = β and g(x2) = γ
where γ > β. Show that such a weighting g does not preserve the Lorenz order.
(Hint: consider two random variables X ≤L Y where

P(X = 0) = P(X = x1) = 1

2

and

P(Y = 0) = 1

2
+ ε

P (Y = x2) = 1

2
− ε

in which ε = (γ − β)/4(γ + β)).
15. Suppose that for 0 < x1 < x2 we have g(x1) = γ1 �= γ2 = g(x2). Show

that such a weighting g does not attenuate inequality. (Hint: consider a random
variable X such that P(X = x1) = P(X = x2) = 1

2 ).



Chapter 5
Inequality Measures

5.1 Introduction

In this chapter we discuss inequality measures, emphasizing their relationships with
the Lorenz curve. Many of the early writers and some other more recent papers
about inequality do not clearly distinguish between sample and population statistics.
A “distribution” for them might refer to some genuine random variable or to the
sample distribution of a finite number of observations from some population.

We however will distinguish results relative to theoretical distributions from
results related to sample distributions. When we discuss population measures, we
will speak of a single non-negative random variable X with cumulative distribution
function FX(x) and survival function F̄X(x) = P(X > x). A random variable in L
refers to a non-negative random variable with positive and finite expectation.

When we are speaking about sample inequality measures, we will be dealing
with a set of n quantities X1, . . . , Xn, together with their corresponding sample
distribution function defined by

Fn(x) = 1

n

n∑

i=1

I (Xi ≤ x).

Moreover, when we discuss the distribution of sample measures of inequality,
we will assume that X1, . . . , Xn are independent and identically distributed, that
is, they constitute a random sample of size n from some distribution F . In these
situations, our main interest centers on inferring properties of F based on properties
of the sample.
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5.2 Common Measures of Inequality

5.2.1 Seven Basic Inequality Measures

Following Arnold (2015b), we present a list of seven of the most commonly used
measures for quantifying the inequality exhibited by a random variable X. The
first inequality measure in the list is often called the mean deviation though more
precisely it should be labelled the mean absolute deviation,

I1(X) = E(|X − μ|) =
∫ ∞

0
|x − μ|dFX(x), (5.1)

where μ = E(X). This measure is translation invariant,

I1(X + λ) = I1(X),

but, in contrast, I1(λX) = λI1(X). This measure is frequently not easy to compute
analytically.

Now, if we standardize (5.1), by dividing by the mean, we obtain the relative
mean deviation

I2(X) = I1(X)

μ
= E(|X − μ|)

μ
= 1

μ

∫ ∞

0
|x − μ|dF(x). (5.2)

Since, clearly, I2(λX) = I2(X) this measure is scale invariant, but not location
invariant. This measure, the relative mean deviation, is actually directly related to
the Lorenz curve, LX(u), since it can be shown to be proportional to the Pietra
index, which will be defined in Sect. 5.3.5.

The next two measures which are frequently used to quantify inequality are the
standard deviation,

I3(X) = σX =
√
E([X − μ]2) =

{∫ ∞

0
[x − μ]2dFX(x)

}1/2

(5.3)

and the coefficient of variation,

I4(X) = I3(X)

μ
=
√
E([X − μ]2)

μ
. (5.4)

The above four measures describe inequality or variability in terms of the average
difference between one observation and the population mean and are ubiquitous in
the physical sciences (physics, engineering, etc.). However, in economics and in
the social sciences in general, a list of measures proposed by the Italian school
are more popular and prevalent. These kinds of measures have their origin in
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the work of Corrado Gini and his co-workers (see David (1968) for a historical
discussion). These measures quantify the variability by considering the average
difference between two independent observations from the distribution.

If X is a random variable in L with mean μ, and if X1, X2 are two independent
and identically distributed copies of X, then Gini’s mean difference is defined as

I5(X) = E(|X1 −X2|) = E(X2:2)− E(X1:2), (5.5)

where we have used standard order statistics notation, so that X1:2 = min{X1, X2}
and X2:2 = max{X1, X2}.

The standardized version of (5.5) (obtained by dividing by twice the mean) is the
Gini index or ratio of concentration (usually denoted by the letter G),

I6(X) = G(X) = I5(X)

2μ
= E(|X1 −X2|)

2μ
.

The Gini index has several possible interpretations and alternative ways in which
it can be expressed, as we shall see as this chapter develops. Perhaps, the most
popular description of this measure is one related to the area between the population
Lorenz curve and the egalitarian line. However, other alternative expressions are
possible. We may, for example, write

G(X) = 1 − E(X1:2)
E(X1:1)

= E(X2:2)
E(X1:1)

− 1, (5.6)

which relates the Gini index to expectations of minimas or maximas of samples of
sizes one and two. Equation (5.6) can be found in Arnold and Laguna (1977) and
Dorfman (1979). Since

E(X1:2) ≤ E(X1:1) ≤ E(X2:2),

Eq. (5.6) provides a quick proof that the Gini index is always in the interval [0, 1].
The next basic inequality measure presented in this section is the variance of the

logarithm of X,

I7(X) = var(logX) = E([logX]2)− [E(logX)]2,

which is scale invariant (since log(λX) = log λ + logX so that I7(λX) = I7(X),
where λ > 0. For example, ifX ∼ LN(μ, σ 2) is a lognormal variable, then logX ∼
N(μ, σ 2) and consequently, for this distribution,

I7(X) = var(logX) = σ 2.

Values of the seven inequality measures, for the classical Pareto and lognormal
distributions, respectively, are displayed in Tables 5.1 and 5.2.
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Table 5.1 Seven basic inequality measures for the classical Pareto distribution

Inequality measure Expression

Absolute mean deviation
2σ(α − 1)α−2

αα−1 , α > 1

Relative mean deviation
2(α − 1)α−1

αα
, α > 1

Standard deviation

√
ασ

(α − 1)
√
α − 2

, α > 2

Coefficient of variation
1√

α(α − 2)
, α > 2

Gini mean difference
2ασ

(α − 1)(2α − 1)
, α > 1

Gini index
1

2α − 1
, α > 1

Variance of logarithms
1

α2 , α > 0

Table 5.2 Seven basic inequality measures for the lognormal distribution

Inequality measure Expression

Absolute mean deviation exp

(
μ+ σ 2

2

){
4�

(
σ 2

2

)
− 2

}

Relative mean deviation 4�

(
σ 2

2

)
− 2

Standard deviation exp

(
μ+ σ 2

2

)√
exp(σ 2)− 1

Coefficient of variation
√

exp(σ 2)− 1

Gini mean difference 2 exp

(
μ+ σ 2

2

){
2�

(
σ√

2

)
− 1

}

Gini index 2�

(
σ√

2

)
− 1

Variance of logarithms σ 2

A general class of inequality measures are those of the form,

Ig(X) = E
[
g

(
X

μ

)]
, (5.7)

where E(X) = μ and g(·) is a continuous convex function on (0,∞). This family
was initially proposed by Ord et al. (1978).
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Some properties of this family are:

• Scale invariance: Ig(λX) = Ig(X), if λ > 0
• Monotonicity with respect to the Lorenz order
• Additive decomposability, for some choices of g (see Sect. 5.4.2).

A subfamily of (5.7) corresponds to the choice,

gθ (x) = xθ − 1

θ(θ − 1)
,

with θ ∈ R. Such measures are known as generalized entropy indices and will be
discussed in some detail in Sect. 5.4.2.

5.2.2 Inequality Measures Based on the Concept of Entropy

In addition to the large family of measures encompassed by (5.7), we can make
use of the whole spectrum of available entropy measures as measures of inequality
(see Cowell (2011), for a discussion of these measures in economic analysis). These
measures are typically expressed in terms of the density function of the variable in
question.

The Shannon (1948) entropy measure of a random variable X with distribution
function FX is defined by

H(X) = H(fX) = −
∫

log fX(x)dFX(x) = −E[log fX(X)],

where fX(x) = dFX(x) is the probability density (mass) function for the absolutely
continuous (discrete) distribution FX. In particular, for a discrete random variable
X we have

H(X) = H(fX) = −
∞∑

j=1

pj log(pj ) = −E[log fX(X)], (5.8)

with pj = P(X = xj ), j = 1, 2, . . .
The entropy can be viewed as a measure of disparity of the density fX(x) from

the uniform density. It measures uncertainty in the sense of the utility of using
fX(x) in place of the ultimate uncertainty of the uniform distribution (Good 1968).
In the discrete case, the entropy is non-negative and is invariant under one-to-one
transformations. In the continuous case, the entropy takes values in (−∞,∞) but is
not invariant under one-to-one transformations.

We consider two examples.

Example 5.2.1 Let X be a shifted geometric distribution with probability mass
function pk = P(X = k) = p(1 − p)k−1, k = 1, 2, . . . , with 0 < p < 1.
The Shannon entropy for this distribution is

H(X) = −p log(p)+ (1 − p) log(1 − p)
p

,
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since

H(X) = −E(logp(X)) = −E(logp + (X − 1) log(1 − p))
= − logp − log(1 − p)(E(X)− 1)

= − logp − log(1 − p)(1/p − 1),

and we obtain the result, taking into account the fact that E(X) = 1
p

.

Example 5.2.2 Next, let us consider a continuous random variable that has a
uniform distribution in the interval [a, b] with pdf fX(x) = 1

b−a if a ≤ x ≤ b.
The Shannon entropy in this case is

H(X) = −E(log f (X)) = −
∫ b

a

1

b − a log
1

b − a dx = log(b − a).

We remark that among all absolutely continuous distributions with support [a, b],
the maximal value of the Shannon entropy is attained by the uniform distribution in
the interval [a, b].

A frequently cited extension of the Shannon entropy was provided by Rényi
(1961),

Hλ(X) = Hλ(fX) = 1

1 − λ log

⎛

⎝
∞∑

j=1

pλj

⎞

⎠ , (5.9)

with, in the discrete case, pj = P(X = xj ), j = 1, . . . , and in the continuous case,

Hλ(X) = Hλ(fX) = 1

1 − λ log

(∫ ∞

−∞
f λX(x)dx

)
, (5.10)

with λ > 0 and λ �= 1. The Rényi entropy Hλ(f ) is monotonically decreasing in
λ and the Shannon entropy is obtained by taking the limit as λ ↑ 1 in (5.10).The
following properties may be verified:

• The Shannon and the Rényi entropies are non-negative in the discrete case but
not in the continuous case.

• The two measures of entropy are different in terms of additivity properties.

Finally we mention an alternative entropy measure that was proposed by Ord
et al. (1981),

Hγ (X) = 1

γ

∫ ∞

0
fX(x)[1 − f γX (x)]dx, −1 < γ <∞. (5.11)

If γ → 0 in (5.11), we obtain the Shannon entropy.



5.3 Inequality Measures Derived from the Lorenz Curve 51

5.3 Inequality Measures Derived from the Lorenz Curve

5.3.1 The Gini Index

The Gini index is the most popular and important inequality measure. This index
has a long history, dating back to Gini (1914), if not earlier. The Gini index is
based on the area between the egalitarian line and the Lorenz curve. This quantity is
multiplied by 2, in order to have a range of values in the interval [0, 1]. The Italian
statistician, demographer and sociologist Corrado Gini is pictured in Fig. 5.1

Definition 5.3.1 The Gini index is defined as twice the area between the egalitarian
line and the Lorenz curve.

Thus, ifX is a random variable in L with Lorenz curve LX, a formula for its Gini
index, G(X) or simply G if the random variable is known from the context, is

G(X) = 2
∫ 1

0
[u− LX(u)]du = 1 − 2

∫ 1

0
LX(u)du. (5.12)

Figure 5.2 represents the egalitarian line y = u, the Lorenz curve y = L(u), and
the Gini index for a hypothetical distribution.

Example 5.3.1 Consider the family of power Lorenz curves,

L(u;α) = uα, 0 ≤ u ≤ 1,

with α ≥ 1. Using (5.12),

Fig. 5.1 Corrado Gini
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Fig. 5.2 Egalitarian line
y = u, Lorenz curve
y = L(u), and Gini index
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G = 1 − 2
∫ 1

0
uαdu = 1 − 2

α + 1
= α − 1

α + 1
.

Consequently, if α = 1 the Gini index is G = 0 and we have perfect equality while
if α → ∞, G→ 1, which corresponds to perfect inequality.

The next result is a simple formula in terms of the first derivative of the Lorenz
curve

Theorem 5.3.1 The Gini index can be expressed as

G(X) = 2
∫ 1

0
uL′

X(u)du− 1.

Proof The proof involves integrating by parts in (5.12). �
The following result is an expression for the Gini index in terms of moments of

order statistics, as mentioned earlier without proof in Eq. (5.6).

Theorem 5.3.2 The Gini index can be written as

G(X) = 1 − E(X1:2)
μ

= 1 − 1

μ

∫ ∞

0
[1 − FX(x)]2dx, (5.13)

where X1:2 is the smaller of a sample of size 2 with the same distribution as X.



5.3 Inequality Measures Derived from the Lorenz Curve 53

Proof Using (5.12),

G(X) = 1 − 2
∫ 1

0
LX(u)du

= 1 − 2

μ

∫ 1

0

∫ u

0
F−1
X (y)dydu

= 1 − 2

μ

∫ 1

0

[∫ 1

y

du

]
F−1
X (y)dy

= 1 − 1

μ
E(X1:2).

�
The following result provides an expression for the Gini index in terms of a

covariance.

Theorem 5.3.3 Let X be a random variable in L with cdf FX and mean μ. Then,
the Gini index can be computed as

G(X) = 2

μ
cov(X, FX(X)). (5.14)

Proof Using formula (5.12),

G(X) = 1 − 2
∫ 1

0
LX(u)du

= 2

μ

∫ ∞

0
xFX(x)fX(x)dx − 1

= 2

μ

(∫ ∞

0
xFX(x)fX(x)dx − μ

2

)
,

and since FX(X) ∼ U [0, 1] we obtain the result. �
The next results provide alternative ways to compute the Gini index from the cdf

and the pdf of the random variable.

Theorem 5.3.4 Let X be a random variable in L with cdf FX, pdf fX, and mean
μ. Then, the Gini index can be computed as

G(X) = −1 + 2

μ

∫ ∞

0
xfX(x)FX(x)dx, (5.15)

or

G(X) = 1

μ

∫ ∞

0
FX(x)[1 − FX(x)]dx.
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5.3.2 Generalizations of the Gini Index

There are several generalizations and extensions of the Gini index that have been
proposed in the literature.

Mehran (1976) suggested the general class of linear measures of the form

Iw(X) =
∫ 1

0
[u− LX(u)]dw(u),

where w(u) is some increasing function which allows value judgements about
inequality to be incorporated in the measure. Note that Iw(X) is always monotone
with respect to the Lorenz order. If we take w(u) = 2u, with 0 ≤ u ≤ 1, we obtain
the Gini index.

An alternative generalization of the Gini index was proposed by Donaldson and
Weymark (1980) and Kakwani (1980a) and was studied in detail by Yitzhaki (1983).
These authors proposed a generalized Gini index defined as

Gν(X) = 1 − ν(ν − 1)
∫ 1

0
(1 − u)ν−2LX(u)du, (5.16)

where ν > 1. If ν = 2, we obtain the usual Gini index. When ν increases, higher
weights are attached to small incomes. The limiting case when ν goes to infinity
depends on the lowest income, and as such it would be considered to be appropriate
if we accept the judgement introduced by Rawls, that social welfare depends only
on the poorest society member.

For positive integer values of ν, these measures can be expressed in terms of the
expectation of the minimum of a sample of size n,

mn = E(X1:n), n = 1, 2, . . . (5.17)

The elements in the sequence {mn}, n = 1, 2, . . . , can be called absolute Gini
indices. It can be proved that (Muliere and Scarsini 1989)

Gn(X) = 1 − mn

μX
= 1 − E(X1:n)

μX
, (5.18)

which can be viewed as a generalization of formula (5.13).
Arnold (1983, p. 109) has proposed the following generalization of the Gini

index,

G̃n(X) = 1 − E(X1:n+1)

E(X1:n)
, n = 1, 2, . . . (5.19)

If we set n = 1 in (5.19), we obtain the usual Gini index.
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Each of the three sequences (5.17), (5.18), and (5.19) characterizes the underly-
ing distribution. We have the following result.

Theorem 5.3.5 Any F ∈ L is characterized by its sequences of:

(i) Absolute Gini indices mn = E(X1:n), n = 1, 2, . . .
(ii) Relative Gini indices Gn(X), n = 1, 2, . . . up to a scale factor
(ii) Relative Gini indices G̃n(X), n = 1, 2, . . . up to a scale factor

Additional results about characterization of income distributions in terms of
generalized Gini indices can be found in Kleiber and Kotz (2002).

Example 5.3.2 Consider X ∼ P(I)(σ, α) a classical Pareto distribution. The
sequences of absolute Gini indices are

mn = αnσ

αn− 1
, n = 1, 2, . . .

if αn > 1, since the distribution of the minimum is again of the Pareto form, i.e.,
X1:n ∼ P(αn, σ ). The sequences of relative Gini indices are

Gn = n− 1

αn− 1
, n = 2, 3, . . .

if αn > 1 and

G̃n = 1

n(αn+ α − 1)
, n = 1, 2, . . .

if α(n+ 1) > 1.

Example 5.3.3 Let X ∼ U [0, 1] a uniform distribution on the interval [0, 1]. It is
well known that the kth order statistic of a sample of size n from such a uniform
distribution has a beta distribution, i.e., Xk:n ∼ B(k, n − k + 1). Moreover, the
U [0, 1] distribution is characterized by the sequence of expected minima:

mn = E(X1:n) = 1

n+ 1
, n = 1, 2, . . .

In addition, the sequences of relative Gini indices

Gn = 1 − 1/(n+ 1)

1/2
= n− 1

n+ 1
, n = 2, 3, . . .

and

G̃n = 1 − 1/(n+ 2)

1/(n+ 1)
= 1

n+ 2
, n = 1, 2, . . .

characterize the U [0, 1] distribution.
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5.3.3 Decomposition of the Gini and Yitzhaki Indices

The decomposition of the various inequality measures is a key issue in current
economic analysis. In this chapter we work with two kinds of decompositions of
the target random variable X:

(a) Decompositions by subpopulations,
(b) Decompositions by factors (or sources of income).

The decomposition of type (a) based on subgroups in populations is based on the
assumption that the pdf of the random variable X can be written in the form,

fX(x) = p1f1(x)+ · · · + pkfk(x),

where fi , i = 1, . . . , k are k pdfs corresponding to k subgroups with weights pi ≥
0, i = 1, . . . , k and

∑k
i=1 pi = 1. That is, the whole population is composed of k

groups with weights p1, . . . , pk .
On the other hand, the decomposition by factors of the type (b) is based on the

assumption that the random variable can be written as

X =
k∑

i=1

Xi,

or

X =
k∏

i=1

Xi,

whereX1, . . . , Xk are independent (or, in some cases, dependent) random variables.

Decomposition of the Gini Index by Subgroups of a Population

Here we consider decomposition of the Gini index by subgroups or subpopulations.
As an example, with an economic interpretation, of this decomposition we consider
modeling a regional income distribution involving several countries. This problem
has been studied by Chotikapanich et al. (2007).

Assume that we have k countries and we know the income distribution in each
country defined in terms of the pdf’s fj (x), j = 1, 2, . . . , k and we also know the
population proportions p1, . . . , pk , where pj > 0 and

∑k
j=1 pj = 1.

The pdf of the regional income distribution is then given by the finite mixture,

f (x) =
k∑

j=1

pjfj (x), x ≥ 0. (5.20)
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Similarly, the regional cdf is

F(x) =
k∑

j=1

pjFj (x), x ≥ 0, (5.21)

where Fj (x) is the cdf of the j th country. The mean income is then expressible as

μ =
k∑

j=1

pjμj ,

where μj = ∫∞
0 xfj (x)dx is the mean income of country j .

The regional first moment distribution (reflecting the regional cumulative income
shares) is given by

F (1)(x) = 1

μ

∫ x

0
zf (z)dz

= 1

μ

k∑

j=1

pj

∫ x

0
zfj (z)dx

=
k∑

j=1

pjμj

μ
F
(1)
j (x), (5.22)

The regional Lorenz curve is given by (in implicit form)

(F (x), F (1)(x)) =
⎛

⎝
k∑

j=1

pjFj (x),

k∑

j=1

pjμj

μ
F
(1)
j (x)

⎞

⎠ ,

which can be numerically graphed for a grid of values of x.
The following theorem provides the expression for the regional Gini index.

Theorem 5.3.6 The regional Gini index can be written as

G = −1 + 1

μ

⎧
⎨

⎩

k∑

i=1

p2
i mii +

∑

i �=j
pipjmij

⎫
⎬

⎭ , (5.23)

where

mii =
∫ ∞

0
xFi(x)fi(x)dx = μi

2
(Gi + 1), i = 1, 2, . . . , k, (5.24)
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and

mij =
∫ ∞

0
xFj (x)fi(x)dx = E[X(i)Fj (X(i))], i �= j,

whereX(i) has density fi , i = 1, 2, . . . , k, andGi , i = 1, 2, . . . , k is the Gini index
of the ith country.

Proof Using formula (5.15) for the Gini index and expressions (5.20) and (5.21) we
obtain

G = −1 + 2

μ

∫ ∞

0
xF(x)f (x)dx

= −1 + 2

μ

∫ ∞

0
x

⎛

⎝
k∑

j=1

pjFj (x)

⎞

⎠
(
k∑

i=1

pifi(x)

)
dx

= −1 + 2

μ

k∑

j=1

k∑

i=1

pjpi

∫ ∞

0
xFj (x)fj (x)dx,

which, after rearrangement is (5.23). �
In practice, formula (5.24) can be computed directly using the mean and the Gini

index of the ith country. However, mij with i �= j is in general difficult to compute.

However, it can be estimated in the following manner. We draw observations x(h)i ,
h = 1, 2, . . . , H from the pdf of the ith country, fi(x), and then compute the values
x
(h)
i Fj (x

(h)
i ), i = 1, 2, . . . , n for each draw and then compute the averages,

m̂ij = 1

H

H∑

h=1

x
(h)
i Fj (x

(h)
i ).

For large values of H (we can choose H = 10,000), the m̂ij ’s will be accurate
estimates of the mij ’s. See Chotikapanich et al. (2007) for details.

Remark (More General Mixtures) The above discussion dealt with what were
essentially k-component mixture distributions. Instead, we can consider a general
mixture of distributions from a parametric family of distributions, {F0(x;α) : α ∈
(−∞,∞)},with a quite arbitrary mixing distribution denoted byG. Thus our mixed
distribution is of the form

F(x) =
∫ ∞

−∞
F0(x;α)dG(α).

The corresponding first moment distribution will then be obtainable as follows:
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F (1)(x) = 1

μ

∫ x

0
zf (z)dz

= 1

μ

∫ x

0
z

∫ ∞

−∞
f0(z;α)dG(α)

=
∫ ∞

−∞
1

μ

∫ x

0
zf0(z;α)dzdG(α)

=
∫ ∞

−∞
μα

μ
F
(1)
0 (x;α)dG(α),

where, for each α, μα and f0(x;α)are the mean and the density, respectively, of
the distribution F0(x;α), and where μ and f correspond in parallel fashion to the
distribution F .

The corresponding Gini index of the mixed distribution F is then available, as an
expression parallel to (5.23) involving a triple integral, thus

G = −1 + 2

μ

∫ x

0

∫ ∞

−∞

∫ ∞

−∞
xF(x;α)f (x;β)dG(β)dG(α)dx.

Decomposition by Factors or Sources of Income

Let X be a random variable in L, with cdf FX and mean μ = E(X), which
represents income. We have proved in (5.14) that

G(X) = A

μ
= 2cov(X, FX(X))

μ
,

where A is one half of Gini’s mean difference.
The next theorem by Lerman and Yitzhaki (1985) provides a decomposition of

the Gini index ofX, whenX can be written as sum of income components or sources
of income. Thus we assume that the overall income X can be written as the sum of
k components X1, . . . , Xk , i.e.,

X =
k∑

j=1

Xj , (5.25)

where each Xj belongs to L with cdf Fj and mean μj = E(Xj ), j = 1, 2, . . . , k.
The Xj ’s may or may not be independent.

Theorem 5.3.7 Under the previous hypothesis, (5.25), the Gini index of X can be
decomposed as



60 5 Inequality Measures

G(X) =
k∑

j=1

{
cov(Xj , FX(X))

cov(Xj , FXj (Xj ))
· 2cov(Xj , FXj (Xj ))

μj
· μj
μ

}
(5.26)

=
k∑

j=1

Rj ·G(Xj ) · Sj , (5.27)

where Rj is the “Gini correlation” between income component j and total income,
G(Xj ) is the usual Gini index of component j , and Sj is component j ’s share of
total income.

Proof Since X can be written as (5.25), we can write

2cov(X, FX(X)) = 2cov

⎛

⎝
k∑

j=1

Xj , FX(X)

⎞

⎠ = 2
k∑

j=1

cov(Xj , FX(X)),

from which we obtain (5.26). �
The next result provided by Lerman and Yitzhaki (1984) is a new decomposition

for the index proposed by Yitzhaki (1983) defined in (5.16). We write this index as

Gν(X) = 1 − ν(ν − 1)
∫ 1

0
(1 − u)ν−2LX(u)du,

with ν > 1 and where LX(u) is the Lorenz curve of X and ν is the parameter that
reflects a relative preference for equality.

Theorem 5.3.8 If the overall income X can be written as the sum of k components
X1, . . . , Xk , the Yitzhaki (1983) index of X can be decomposed as

Gν(X) =
k∑

j=1

{
cov(Xj , (1 − FX(X))ν−1)

cov(Xj , (1 − FXj (Xj ))ν−1)

·−νcov(Xj , (1 − FXj (Xj )ν−1)

μj
· μj
μ

}

=
k∑

j=1

Rj ·Gj(ν) · Sj , (5.28)

where Rj is the “general correlation” between income component j and total
income, Gj(ν) is the usual Yitzhaki index of component j , and Sj is component
j ’s share of total income.
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Proof If we substitute (1/μ)
∫ u

0 F
−1
X (y)dy for LX(u) in the definition of Gν(X),

and then interchange the order of integration, we may verify the following alterna-
tive expression for the Yitzhaki index:

Gν(X) = − ν
μ
cov(X, [1 − FX(X)]ν−1). (5.29)

Then write cov(X, [1 − FX(X)]ν−1) = ∑k
j=1 cov(Xj , [1 − FX(X)]ν−1) in order

to verify (5.28). �

5.3.4 Inequality Indices Related to Lorenz Curve Moments

Note that the Lorenz curve can be considered to be a cumulative distribution
function on [0, 1]. We can exploit this fact and employ the moments of the Lorenz
curve to develop new measures of inequality.

Definition 5.3.2 Let X be a random variable in L with Lorenz curve LX(u). The
kth Lorenz curve moment for X is defined as

D̃k(X) =
∫ 1

0
ukdLX(u), k = 1, 2, . . .

The set of all such Lorenz curve moments uniquely determines the Lorenz curve.
In addition it can be verified that all members of the family {D̃k(X) : k = 1, 2, . . .}
satisfy the principles of transfer and scale invariance.

Note that the range of D̃k(X) varies with k. To avoid this drawback, Aaberge
(2000) has defined the modified family,

Dk(X) = k + 1

k
D̃k(X)− 1

k

= 1

k

{
(k + 1)D̃k(X)− 1

}
. (5.30)

With this definition,{Dk(X) : k = 1, 2, . . . } is a new family of inequality
measures, each having values which range over the interval [0, 1]. We have the
following result (Aaberge 2000).

Theorem 5.3.9 LetX be a random variable in L with Lorenz curveLX(u). Then,

(i) The Lorenz measures of inequality Dk(X), k = 1, 2, . . . exist.
(ii) The Lorenz curve LX is characterized by the Lorenz measures of inequality

Dk(X), k = 1, 2, . . .
(iii) The distribution of the random variable X is characterized by its mean μ and

its Lorenz measures Dk(X), k = 1, 2, . . .
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An alternative expression for Dk(X) is

Dk(X) = (k + 1)
∫ 1

0
uk−1(u− LX(u))du,

which proves that D1(X) = G(X), the Gini index.
Aaberge (2000) has also proved that Dk can be expressed in terms of the income

gaps {gk(x)}∞k=1 between a unit with income x and the expected maximum income
of a random sample of size k + 1 from incomes lower than x. If X1, . . . , Xk+1 are
iid with common distribution FX, we have

gk(x) = x − E(Xk+1:k+1|Xk+1:k+1 ≤ x),
and it can be proved that

Dk(X) = E(gk(X))

μ
,

verifying thatDk(X) is the ratio of the mean of the income gap gk(X) to the overall
mean.

Finally, it is interesting to investigate the relation between Gk(X) and Dk(X). It
can be shown that (with k an integer)

Gk(X) = 1 + (k + 1)
k∑

i=1

(−1)i
(
k

i

)
i

i + 1
(1 −Di(X)), k = 1, 2, . . . , (5.31)

since

Gk(X) = 1 − k(k + 1)
∫ 1

0
(1 − u)k−1LX(u)du

= 1 + k(k + 1)
k∑

i=1

(−1)i
(
k − 1

i − 1

)∫ 1

0
ui−1LX(u)du,

from which we obtain Eq. (5.31).
Aaberge (2001) has also considered the sequence

Ak(X) = 1 − (k + 1)
∫ 1

0
[LX(u)]kdu, k = 1, 2, . . . , (5.32)

which corresponds to the moment sequence of the inverse Lorenz curve viewed as
a distribution function on (0, 1). If we set k = 1 in (5.32), we obtain the Gini index.

Example 5.3.4 Let X be a classical Pareto distribution with Lorenz curve,

LX(u) = 1 − (1 − u)δ, 0 ≤ u ≤ 1, (5.33)
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where 0 < δ ≤ 1, and δ = 1 − 1
α

, where α > 1 is the shape parameter of the
classical Pareto distribution. The corresponding value for D̃k(X) is

D̃k(X) =
∫ 1

0
ukdLX(u)

=
∫ 1

0
ukδ(1 − u)δ−1du

= �(k + 1)�(δ + 1)

�(k + δ + 1)
,

consequently the Dk(X) indices are given by

Dk(X) = 1

k

{
�(k + 2)�(δ + 1)

�(k + δ + 1)
− 1

}
. (5.34)

If we set k = 1 in (5.34) we obtain

D1(X) = �(3)�(δ + 1)

�(δ + 2)
− 1 = 1 − δ

1 + δ ,

the Gini index corresponding to (5.33), as expected.
The Ak(X) indices (5.32) for this distribution are given by

Ak(X) = 1 − (k + 1)
k∑

j=0

(−1)j
(
k
j

)

δj + 1
, k = 1, 2, . . . .

Figure 5.3 presents the graphs of some indices Dk(X) defined in Eq. (5.34) as
functions of δ.

5.3.5 The Pietra Index

The index suggested by Pietra is based on a simple geometric characteristic of the
Lorenz curve. We begin with the basic definition and two alternative representations
(Pietra 1915)

Definition 5.3.3 Let X be a non-negative random variable in L. The Pietra index
is defined as the maximal vertical deviation between the Lorenz curve and the
egalitarian line, that is,

P(X) = max
0≤u≤1

{u− LX(u)} .
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Fig. 5.3 Graphs of the
indices Dk(X) (Eq. (5.34)) as
functions of δ for some
selected values of k
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We have available the basic representation of the Pietra index in terms of the first
moment and the mean absolute deviation.

Lemma 5.3.1 If X ∈ L, the Pietra index can be written as

P(X) = E(|X − μ|)
2μ

. (5.35)

Proof If we assume that FX is strictly increasing on its support, the function u −
LX(u) will be differentiable everywhere on (0, 1) and its maximum will be reached
when 1 − F−1

X (x)/μ is zero, that is, when x = FX(μ). The value of u − LX(u) at
this point is given by

P(X) = FX(μ)− 1

μ

∫ FX(μ)

0
[μ− F−1

X (y)]dy = 1

2μ

∫ ∞

0
|z− μ|dFX(z),

which is Eq. (5.35). If FX is not strictly increasing, a limiting argument may be used.
�

It is generally accepted that an inequality measure should be monotone with
respect to the Lorenz order. From this viewpoint, a wide range of possible inequality
indices are given by the representation E[g(X/μX)], where g(·) is a continuous
convex function such that the expectation exists. Note that from Eq. (5.35) the Pietra
index admits such a representation with g(x) = |x−1|

2 (see Arnold 1987, 2012).
The following results permit one to obtain the Pietra index in relatively simple

ways.

Lemma 5.3.2 If X ∈ L with E(X) = μ, the Pietra index can be written as

P(X) = FX(μ)− LX(FX(μ)). (5.36)
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Proof This follows directly since the maximum value of u − LX(u) occurs when
x = FX(μ). �

The following lemma can also be used for the computation of the Pietra indices.

Lemma 5.3.3 If X ∈ L with E(X) = μ, the Pietra index can be written as

P(X) = FX(μ)− F (1)X (μ), (5.37)

where F (1)X is the first moment distribution of X.

Proof The proof is direct taking into account Lemma 5.3.2 and the following
alternative expression for a Lorenz curve,

LX(u) = F (1)X (F−1
X (u)),

where 0 ≤ u ≤ 1. �
To illustrate the use of (5.36) consider

Example 5.3.5 For the classical Pareto distribution with cdf,

FX(x) = 1 −
( x
σ

)−α
, x ≥ σ

the mean is μ = ασ/(α − 1) if α > 1 and the Lorenz curve is LX(u) = 1 − (1 −
u)1−1/α for 0 ≤ u ≤ 1. We have FX(μ) = 1 − (α/(α − 1))−α and thus the Pietra
index is

P(X) = FX(μ)− LX(FX(μ)) = 1

α

(
1 − 1

α

)α−1

.

As a consequence of previous results in order to obtain the Pietra index for a non-
negative random variable with finite mathematical expectation using formula (5.36),
we basically need three ingredients:

• The cumulative distribution function FX(·).
• The value of the mathematical expectation μ.
• The first moment distribution. F (1)X (·) or, alternatively, an expression of the

Lorenz curve LX(·).
Finite mixtures of distributions are common in economics. Assume that the data

come from a mixture of distributions with cdf,

F(x;π , θ) = π1F1(x; θ1)+ π2F2(x; θ2)+ · · · + πkFk(x; θk), (5.38)

where πi ≥ 0, i = 1, 2, . . . , k,
∑k
i=1 πi = 1 and Fi , i = 1, 2, . . . , k are genuine

cdf’s. We denote by F (1)i (x; θi), i = 1, 2, . . . , k the first moment distributions of
the component distributions. We then have



66 5 Inequality Measures

F (1)(x;π , θ) = π1
μ1(θ1)

μ(π , θ)
F
(1)
1 (x; θ1)+ π2

μ2(θ2)

μ(π , θ)

F
(1)
2 (x; θ2)+ · · · + πk μk(θk)

μ(π , θ)
F
(1)
k (x; θk).

The following theorem provides a closed expression for the Pietra index of a finite
mixture of distributions.

Theorem 5.3.10 The Pietra index of the finite mixture (5.38) is given by

P(π , θ) =
k∑

i=1

πi

{
Fi(μ(π , θ); θi)− μi(θi)

μ(π , θ)
F
(1)
i (μ(π , θ); θi)

}
, (5.39)

where

μ(π , θ) =
k∑

i=1

πiμi(θi),

in which μi(θi) the mean of the component distribution Fi , i = 1, 2, . . . , k.

Proof The proof is direct using Lemma 5.3.3 and the result μ(π , θ) =∑k
i=1 πiμi(θi). �
Note that this result does not quite provide us with the kind of decomposition

that we would like to have. It does not provide an expression for the Pietra index of
the mixture as a mixture of component Pietra indices.

Remark More general mixtures can of course be considered, of the form
F(x;G, θ) = ∫∞

−∞ Fα(x; θα)dG(α).

5.3.6 The Palma Index and Income Share Ratios
Inequality Indices

The Palma inequality index is defined as the ratio of the richest 10% of the
population’s share of total income divided by the poorest 40 percent’s share. This
index was introduced recently by the Chilean economist Gabriel Palma (2011) and
can be written in terms of the Lorenz curve as

PL = 1 − L(1 − 0.1)

L(0.4)
, (5.40)

where L(·) represents the Lorenz curve of the income distribution.
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This definition can be extended to one defined in terms of other income share
ratios. For two values α, β with 0 < α, β < 0.5, the (1 − α, β) income share ratio
is defined by

R(1 − α, β) = 1 − L(1 − α)
L(β)

. (5.41)

A possible reasonable choice for (α, β) is (0.2, 0.2), which represents the ratio of
the total income accruing to the richest 20% of the population to the total income
accruing to the poorest 20%. The Palma index (5.40) corresponds to the choice
R(0.9, 0.4) in (5.41). See also Cobham and Sumner (2014).

5.3.7 The Amato Index

The Amato index describes another geometric feature of the Lorenz curve, namely
its length.

Definition 5.3.4 Let X be a random variable in L with E(X) = μ and with Lorenz
curve LX(u). The Amato inequality index, A(X) is defined as the length of the
Lorenz curve.

The Amato index can be written in three alternative ways,

• In terms of the Lorenz curve

A(X) =
∫ 1

0

√
1 + [L′

X(u)]2du (5.42)

• As the mathematical expectation of a convex function (see Arnold 2012)

A(X) = E
[√

1 + (X/μ)2
]

(5.43)

• As an infinite numerical series. If E(X2n) < ∞, ∀n, expanding formula (5.43)
we have

A(X) =
∞∑

n=0

(
1/2

n

)
E(X2n)

μ2n (5.44)

Formula (5.43) has been recently discussed by Arnold (2012), and it permits one
to obtain the Amato index from the pdf of the random variable X.

The following example was taken from Arnold and Sarabia (2017).

Example 5.3.6 Let Xδ be a classical Pareto distribution with Lorenz curve
LXδ (u) = 1 − (1 − u)δ for 0 ≤ u ≤ 1, where δ = 1 − 1/α, so δ ∈ (0, 1).
Using formula (5.42), the Amato index is
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Table 5.3 The Amato index
for the classical Pareto
distribution for some
representative values of δ

δ Amato index δ Amato index

0.01 1.95167 0.5 1.47894

0.05 1.84214 0.6 1.45267

0.1 1.75441 0.7 1.43440

0.2 1.64056 0.8 1.42258

0.3 1.56695 0.9 1.41615

0.4 1.51566 0.99 1.41423

A(Xδ) =
∫ 1

0

√
1 + δ2(1 − u)2(δ−1)du

= 2F1

[
−1

2
,

δ

2(1 − δ) ;
2 − δ

2(1 − δ) ;− 1

δ2

]
, (5.45)

where 2F1[a, b; c; z] is the Gauss hypergeometric function, which is defined as

2F1[a, b; c; z] = �(c)

�(b)�(c − b)
∫ 1

0
tb−1(1 − t)c−b−1(1 − tz)−adt, (5.46)

with c > b. Expression (5.45) is decreasing in δ, with limδ→0A(Xδ) = 2 and
limδ→1A(Xδ) = √

2. Table 5.3 includes some values of Amato’s index for the
Pareto distribution as a function of δ = 1 − 1/α.

Other explicit expressions for the Amato index for different parent distributions
can be found in Arnold and Sarabia (2017).

5.3.8 The Elteto and Frigyes Inequality Measures

Here we present three measures of inequality proposed by Elteto and Frigyes (1968),
obtained by relating the average income of individuals above and below average to
the overall average income.

Let X be a random variable in L and define

μ =
∫ ∞

0
xdF(x),

μ1 =
∫ μ

0 xdF(x)

F (μ)
,

μ2 =
∫∞
μ
xdF(x)

1 − F(μ) .



5.4 The Atkinson and the Generalized Entropy Indices 69

The quantity μ is the average income, μ1 is the average income of the poorer that
average individuals, and μ2 is the average income of the richer than average indi-
viduals. Based on these means, Elteto and Frigyes (1968) proposed the following
three inequality measures

(U, V,W) =
(
μ

μ1
,
μ2

μ1
,
μ2

μ

)
.

it is easily verified that the Elteto and Frigyes vector is scale invariant. In addition
it admits an interpretation in terms of the Lorenz curve. Note that V = UW , so that
we need only to interpret U and W . The component U represents the reciprocal of
the slope of the line joining (0, 0) to (F (μ), L(F (μ))) on the Lorenz curve. The
component W provides the slope of the line joining (F (μ), L(F (μ))) to (1, 1).
Since F(μ) is the point where u−L(u) is maximized, we are actually dealing with
the slopes of the sides of the maximal triangle which can be inscribed within the
Lorenz curve.

A simple relation between the Pietra index and the Elteto and Frigyes vector was
discovered by Kondor (1971). This author observed that the Pietra index P , which
is equal to twice the area of the maximal inscribed triangle, can be written as

P = 2(U − 1)(W − 1)

V − 1
.

Example 5.3.7 For the classical Pareto distribution P(I)(σ, α) the Elteto and
Frigyes inequality indices are (provided that α > 1),

U = βα − 1

βα − β ,

V = βα − 1

βα−1 − 1
,

W = β,

where β = α/(α − 1).

5.4 The Atkinson and the Generalized Entropy Indices

Now we present three inequality indices that are very popular in modern economic
analysis: the Atkinson, the generalized entropy, and the Theil indices.
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5.4.1 The Atkinson Indices

The Atkinson (1970) inequality indices are defined as

Aε(X) = 1 −
[
E

(
X

μ

)1−ε]1/(1−ε)

= 1 −
[∫ ∞

0

(
x

μ

)1−ε
dFX(x)

]1/(1−ε)
, (5.47)

where ε > 0 is a parameter that controls the inequality aversion. The limiting cases
when ε → 1 and ε → ∞ are

A1(X) = 1 − 1

μ
exp {E(logX)}

= 1 − 1

μ
exp

{∫ ∞

0
log(x)dFX(x)

}
,

and

A∞(X) = 1 − F−1
X (0)

μ
,

respectively. The Atkinson indices can be written in terms of the Lorenz curve as

Aε(X) = 1 −
{∫ 1

0
[L′
X(u)]1−εdu

}1/(1−ε)
.

An example of the Atkinson indices for the lognormal distribution will be
provided in the next section.

5.4.2 The Generalized Entropy Indices and the Theil Indices

In this section we introduce some inequality measures, which are very popular in
the analysis of income inequality.

The Gini index is undoubtedly the most popular inequality index. However, quite
subtle features of the income distribution can have noticeable effects on the Gini
index. In fact, this index is more sensitive to transfers around the middle of the
income distribution.

As an alternative, the generalized entropy indices provide a class of inequality
measures which can be more sensitive to transfers near the bottom or the top of the
distribution, depending on the value of the parameter which indexes these indices.
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Definition 5.4.1 Let X be a positive random variable with E(X) = μ < ∞ and
E(Xθ) < ∞, for some θ ∈ (−∞,∞), where appropriate. The generalized entropy
(GE) indices are defined by

GEθ (X) = 1

θ(θ − 1)

[
E

(
X

μ

)θ
− 1

]
, (5.48)

if θ �= 0, 1. The limiting cases θ = 0 and θ = 1 are

GE0(X) = T0(X) = −E
(

log
X

μ

)
, (5.49)

and

GE1(X) = T1(X) = E
(
X

μ
log
X

μ

)
, (5.50)

respectively. The index (5.49) is the Theil 0 index or mean logarithmic deviation
(MLD), and (5.50) is the Theil 1 coefficient.

The GE family (5.48) includes one half of the square of the coefficient of
variation for θ = 2:

GE2(X) = σ 2

2μ2 = cv2(X)

2
,

where cv(X) = σ
μ

is the coefficient of variation of X.
The GEθ (X) index, for large positive values of θ is sensitive to changes in the

upper tail of the distribution, typically for θ > 2. If θ < 0 the GEθ (X) index is
sensitive to changes in the lower tail of the distribution. According to Shorrocks
(1980), for practical use of GEθ (X) in empirical work, the range of values of the
parameter θ should be [−1, 2).

Example 5.4.1 Let us consider a lognormal distribution X ∼ LN(μ, σ 2). We have
E(Xr) = erμ+r2σ 2/2, so that the Atkinson indices (5.47) are

Aε(X) = 1 − exp(−εσ 2/2), (5.51)

and the GE indices are

GEθ (X) = exp{θ(θ − 1)σ 2/2} − 1

θ(θ − 1)
, θ �= 0, 1. (5.52)

The MLD and Theil indices are

T0(X) = T1(X) = σ 2

2
.
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Fig. 5.4 Inequality indices for the lognormal distribution: Atkinson indices (left) and Generalized
entropy indices (right) for some selected values of the parameters

Table 5.4 Inequality measures for the classical Pareto distribution

Inequality measure Expression

Lorenz curve 1 − (1 − u)1−1/α, α > 1

Gini index
1

2α − 1
, α > 1

Pietra index
(α − 1)α−1

αα
, α > 1

GE indices
1

θ2 − θ

{(
α − 1

α

)θ
α

α − θ − 1

}
, α > θ

Atkinson indices 1 − α − 1

α

(
α

α + ε − 1

)1/(1−ε)
, α + ε > 0

Theil T0, MLD index − 1

α
+ log

α

α − 1
, α > 1

Theil T1 index
1

α − 1
− log

α

α − 1
, α > 1

Figure 5.4 provides graphs of the Atkinson indices (Eq. (5.51)) and Generalized
entropy indices (Eq. (5.52)) for the lognormal distribution.

Tables 5.4 and 5.5 summarize some inequality measures for the classical Pareto
and lognormal distributions, respectively.

5.4.3 Decomposability of Certain Indices

First, we study the decomposition properties of the Theil index. Once again we
consider two kinds of decompositions: by factors and by population subgroups. We
begin with the decomposition by multiplicative factors (see Sarabia et al. 2017a)
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Table 5.5 Inequality
measures for the lognormal
distribution

Inequality measure Expression

Lorenz curve �(�−1(u)− σ)

Gini index 2�

(
σ√

2

)
− 1

Pietra index 2�

(
σ 2

2

)
− 1

GE indices
exp[θ(θ − 1)σ 2/2] − 1

θ(θ − 1)

Atkinson indices 1 − exp(εσ 2/2)

Theil T0, MLD index
σ 2

2

Theil T1 index
σ 2

2

Theorem 5.4.1 LetX1, X2, . . . , Xk be independent positive random variables with
finite expectations and consider the new random variable X = ∏k

i=1Xi . Then, for
the T0(X) and T1(X) indices we have

Ti(X) =
k∑

j=1

Ti(Xj ), i = 0, 1. (5.53)

Examples of this phenomenon include the following:

Example 5.4.2 The Pareto-lognormal distribution was defined by Colombi (1990)
as the product of two independent random variables Pareto and lognormal, that is
X = X1 ·X2, where X1 ∼ P(I)(σ, α) and X2 ∼ LN(μ, σ 2) are independent. The
pdf of the Pareto-lognormal is

f (x;α,μ, σ ) = α

x
φ

(
log x − μ

σ

)
R

(
ασ − log x − μ

σ

)
, x ≥ 0,

where R(z) = 1−�(z)
φ(z)

is Mills ratio in which φ(z) and �(z) denote the pdf and cdf
of the standard normal distribution, respectively. Using (5.53) for T0(X) we have

T0(X) = T0(X1)+ T0(X2) = − 1

α
+ log

α

α − 1
+ σ 2

2
.

A similar result holds for T1(X) using (5.53).

Example 5.4.3 Let X be a GB2 distribution with shape parameters (a, p, q) and
unit scale. It is well known that X can be written as X = X1

X2
, where X1 and X2

are independent generalized gamma distributions, with unit scale parameters and
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shape parameters (a, p) and (a, q), respectively (see chapter 6 Kleiber and Kotz
2003). The random variable X−1

2 is distributed as an inverted generalized gamma

distribution with Theil parameter T0(X
−1
2 ) = ψ(q)

a
− log �(q−1/a)

�(q)
, if q > 1/a.

Consequently,

T0(X) = T0(X1)+ T0(X
−1
2 )

= −ψ(p)
a

+ log
�(p + 1/a)

�(p)
+ ψ(q)

a
− log

�(q − 1/a)

�(q)
,

which is the T0(X) index of the GB2 distribution. In a similar way we obtain an
analogous result for the T1(X) index of the GB2 distribution.

The generalized entropy indices GEθ have the important property of being
additively decomposable by population groups.

According to Shorrocks (1980), an additively decomposable measure is one
which can be written as a weighted sum of the inequality values computed
for population subgroups plus the contribution arising from differences between
subgroups means. This property responds to a question frequently discussed in
the analysis of income inequality concerning the extent to which inequality in the
total population can be attributed to income differences between major population
subgroups.

We describe the problem in the following terms, using five assumptions. The
inequality index value for a population of n individuals with distribution x =
(x1, . . . , xn) will be denoted by I (x, n). We assume that I (x, n) satisfies the
following assumptions (Shorrocks 1980):

• Assumption 1: I (x, n) is continuous and symmetric in x.
• Assumption 2: I (x, n) ≥ 0, with equality holding if and only if xi = μ for all i.
• Assumption 3: (additive decomposability): Given a population of any size n ≥

2 and a partition into k non-empty subgroups, there exists a set of coefficients
wki (μ,n) such that

I (x1, . . . , xk, n) =
k∑

i=1

wki (μ,n)I (x
i; ni)+I (μ1un1 , . . . , μkunk ; n), (5.54)

for all x1, . . . , xk , with xi = (xi1, . . . , xini ), i = 1, 2, . . . , k, and where
μ = (μ1, . . . , μk) is the vector of subgroup means and wki (μ,n) is the weight
attached to subgroup i in a decomposition of k subgroups. The term

I (μ1un1, . . . , μkunk ; n),

is the between-group term, which we assumed to be independent of inequal-
ity within the individual subgroups. The term un represents the unit vector
(1, 1, . . . , 1) with n components. The coefficients wki (μ,n) may vary with the
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vector of subgroup means μ and subgroup populations n = (n1, . . . , nk), but are
independent of the level of inequality within groups.

• Assumption 4: I (x, n) has continuous second derivatives.
• Assumption 5: I (cx, n) = I (x, n) for all c > 0.

Remark In the identity (5.54), the term,

I (W) =
k∑

i=1

wki (μ,n)I (x
i; ni), (5.55)

represents the inequality within-groups and the term

I (B) = I (μ1un1 , . . . , μkunk ; n), (5.56)

the inequality between-groups.

The previous five assumptions characterize the class of generalized entropy
measures. We have the following theorem due to Shorrocks (1980).

Theorem 5.4.2 I (x, n) satisfies Assumptions 1 to 5 only if it has the form

I (x, n) = An

β(β − 1)

n∑

i=1

[(
xi

μ

)β
− 1

]
, β �= 0, 1, (5.57)

or

I (x, n) = An
n∑

i=1

log
μ

xi
, (5.58)

or

I (x, n) = An
n∑

i=1

xi

μ
log
xi

μ
, (5.59)

where An > 0.

In the following theorem we describe the decomposition (5.54) in the case of
random variables. The whole population is described in terms of a finite mixture of
densities.

Theorem 5.4.3 Suppose that the population is divided into k mutually exclusive
groups with probabilities pj , j = 1, 2, . . . , k, that is

fX(x) = p1fX1(x)+ · · · + pkfXk (x), (5.60)
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with pi ≥ 0, i = 1, . . . , k,
∑k
i=1 pi = 1 and E(Xi) = μi . Then, the overall GEθ

of the population can be expressed as

GEθ (X) =
k∑

j=1

pj

(
μj

μ

)θ
GEθ (Xj )+ 1

θ(θ − 1)

⎛

⎝
k∑

j=1

pj

(
μj

μ

)θ
−1

⎞

⎠ (5.61)

=
k∑

j=1

p1−θ
j sθjGEθ (Xj )+ 1

θ(θ − 1)

⎛

⎝
k∑

j=1

p1−θ
j sθj − 1

⎞

⎠ (5.62)

where the pj ’s are the population shares, GEθ (Xj ) the GEθ index of group j , sj
stands for the proportion of mean income of the group j in the overall mean, i.e.,

sj = pjμj

μ
= pjμj∑k

j=1 pjμj
, (5.63)

and μ =∑k
j=1 pjμj is the overall mean.

Proof See Exercise 15. �
Now, we consider special cases of Eqs. (5.61)–(5.62) for the Theil indices. For

the MLD index (Theil 0) we have

T0(X) =
k∑

j=1

pjT0(Xj )−
k∑

j=1

pj log

(
μj

μ

)

=
k∑

j=1

pjT0(Xj )−
k∑

j=1

pj log

(
sj

pj

)

and for the Theil 1 index,

T1(X) =
k∑

j=1

pj
μj

μ
T1(Xj )+

k∑

j=1

pj
μj

μ
log

(
μj

μ

)
,

=
k∑

j=1

sjT1(Xj )+
k∑

j=1

sj log

(
sj

pj

)
.

The Theil entropy measures are consistent with the concept of “income weighted
decomposability”, which defines the decomposition coefficients in terms of incomes
shares (Bourguignon 1979). See also Cowell (1980, 2011) and Sarabia et al.
(2017a).

Remark In the decomposition (5.61) we can write

GEθ (X) = Iθ (W)+ Iθ (B),
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where

Iθ (W) =
k∑

j=1

pj

(
μj

μ

)θ
GEθ (Xj ),

is the inequality within-groups term and

Iθ (B) = 1

θ(θ − 1)

⎛

⎝
k∑

j=1

pj

(
μj

μ

)θ
− 1

⎞

⎠

the inequality between groups. These terms correspond to the elements (5.58)
and (5.59), respectively. The weight coefficient wki in (5.54) is

wki = pi
(
μi

μ

)θ
.

5.5 Estimation with Partial Information

In many practical situations we do not have full information about income distri-
butions. In this section we consider the problem of specification or estimation of
inequality measures when we only have some form of partial information.

5.5.1 Bounds on the Gini Index

First, we consider the problem of estimating the Gini index when we have partial
information about the underlying cdf F . We have the following theorem due to
Gastwirth (1972).

Theorem 5.5.1 Let F be a distribution function with support [M,M], with 0 <
M < M , and mean μ, then the corresponding Gini index satisfies

0 ≤ G ≤ (μ−M)(M − μ)
μ(M −M) . (5.64)

On the other hand, if the distribution F has a support of the type [M,∞), it is
also possible to provide a bound for the Gini index.

Theorem 5.5.2 Let F be a distribution function with support [M,∞) for some
M > 0 and mean μ, then the corresponding Gini index satisfies
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0 ≤ G ≤ μ−M
μ

. (5.65)

Proof Bound (5.65) can be obtained from bound (5.64) taking limit when M goes
to infinity. To prove (5.65) directly we observe that

0 ≤ G = 1 − E(X1:2)
E(X1:1)

≤ 1 − M

μ
.

�
The following result can be useful when we have a bound for the pdf.

Theorem 5.5.3 Let F be an absolutely continuous distribution function with
support [0, 1] and mean μ, whose probability density function f is bounded a.e.
by C. The corresponding Gini index satisfies

G ≥ 1 − 2

3

√
2μC. (5.66)

The proof of this result utilizes the representation G = 1 − (μ1:2/μ1:1). For
details, see Arnold (2015b, p. 128).

5.5.2 Parameter Identification Using the Mean
and the Gini Index

Here we consider a common practical problem in economics related to the identifi-
cation of the income distribution with partial information. In economics analysis it
is quite common to have a few pieces of information available for the identification
of the complete income distribution. Typically we are willing to assume that the
distribution in question is a member of some specific parametric family. This
problem has been considered and studied by Chotikapanich et al. (1997) and Jordá
et al. (2014).

Consider a scenario where for any given country only the mean income μ and a
numerical value G of the Gini index are available.

More specifically, assume a random variable in X in L, where X ∼ f (x; θ),
where θ = (θ1, θ2)

	 depends on two parameters. We write

μ = μ(θ1, θ2),

G = G(θ1, θ2).

Then, if we solve these equations for θ1 and θ2 we get
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θ1 = h1(μ,G),

θ2 = h2(μ,G).

In this fashion, we are able to identify the density
We consider two relevant cases: the lognormal and the Pareto II distributions.

LetX ∼ LN(μX, σ 2
X) be a lognormal distribution with parameters μX and σX. The

mean and the Gini index are

μ = exp

(
μX + σ 2

X

2

)
,

G = 2�

(
σX√

2

)
− 1.

If we solve for μX and σX we get the equations

μX = logμ− σ 2
X

2
,

σX = √
2�−1

(
G+ 1

2

)
.

Now, let us consider a Pareto II distribution with cdf

F(x) = 1 − 1

(1 + x/σ)α , x ≥ 0.

If α > 1 the mean and the Gini index are

μ = σ

α − 1
,

G = α

2α − 1
,

and solving for α and σ we get the equations,

α = G

2G− 1
,

σ = μ(1 −G)
2G− 1

.
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5.6 Moment Distributions

The moment distributions plays an important role in many discussions about
inequality.

An important survey about this topic is Hart (1975). See also Butler and McDon-
ald (1987, 1989). Hart pointed out that many common measures of inequality have
a simple interpretation in terms of moments of moment distributions.

We define the rth moment distribution of a non-negative random variable X with
cumulative distribution function FX by

F
(r)
X (x) =

∫ x
0 t
rdFX(t)

E(Xr)
, (5.67)

if E(Xr) exists.
The first moment distribution has already been introduced in Chap. 3. Further

discussion of moment distributions (for bounded random variables) will be found in
Chap. 9.

For the moments of the moment distribution we use the notation,

μ
(r)
k = ∫∞

0 xkdF
(r)
X (x), (5.68)

(σ (r))2 = μ(r)2 − {μ(r)1 }2. (5.69)

If we set r = 0 in (5.68) and (5.69), we obtain the moments and the variance of the
original distribution, respectively. Using the definition (5.67), we have the following
simple formula,

μ
(r)
k = E(Xk+r )

E(Xr)
= μ

(0)
k+r
μ
(0)
r

. (5.70)

Thus the moments of the moment distributions are simple functions of the moments
of the parent distribution FX.

For a non-negative random variable X, since logE(Xγ ) is a convex function of
γ , if α < β then any δ > 0

μ
(0)
α+δ
μ
(0)
α

≤ μ
(0)
β+δ
μ
(0)
β

.

The quantities μ(1)1 and μ(1)1 /μ
(0)
1 have been proposed as candidate measures of

concentration. The quantity,

τH = 1 − μ
(0)
1

μ
(1)
1

= 1 − (EX)2

E(X2)
, (5.71)
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is a linear function of the reciprocal of the Herfindahl index. Note that 0 ≤ τH ≤ 1
and τH = 0 if the underlying distribution is degenerate, which corresponds to the
case of complete equality. Moreover, formula (5.71) can also be written in terms of
the coefficient of variation cv as

τH = cv2

1 + cv2 .

The Lorenz curve and various associated inequality measures can also be related to
moment distributions.

We saw in Chap. 3 that the Lorenz curve can be written as

LX(u) = F (1)X (F−1
X (u)), 0 ≤ u ≤ 1.

The Gini index is directly related to moment distributions since we can write it in
the form

G(X) = 1 − 2
∫ ∞

0
F
(1)
X (x)dFX(x).

Also, it will be recalled that the Pietra index can be expressed as P(X) = FX(μ)−
F
(1)
X (μ). Other simple inequality measures admit formulas in terms of the moment

distributions. For example, the first quintile can be written as

F
(1)
X (F

−1
X (0.2)).

Example 5.6.1 Let X ∼ P(I)(σ, α), i.e., a classical Pareto distribution. The rth
moment distribution is again of the Pareto form (provided that r < α). If we denote
by X(r) a random variable with the r’th moment distribution of X, we have

X(r) ∼ P(I)(σ, α − r), α > r. (5.72)

Using (5.70),

μ
(r)
k = E([X(r)]k) = E(Xk+r )

E(Xr)
= ασk+r

α − k − r · α − r
ασ r

= (α − r)σ k
α − k − r ,

if α > k + r , which can also be obtained directly using (5.72). Using (5.71), we
have a simple expression for the Herfindal index of a Pareto distribution, specifically
τH = (α − 1)−2 if α > 2.
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5.7 Relations Between Inequality Measures

In general, it is difficult to interpret the significance of any relationships which
exist between the different inequality measures. However, for completeness we will
mention some of these relations.

First, consider the Pietra index P and the Gini index G, which are related in the
sense that an inscribed triangle cannot have an area which exceeds that of the figure
within which it is inscribed.

Taguchi (1968) extended this result. Using geometric reasoning he proved,

P ≤ G ≤ P(2 − P).

This result was rediscovered by Moothathu (1983).
On the other hand, Glasser (1961) observed that the Gini index G and the

coefficient of variation I4 are related by

G ≤ I4√
3
.

An interesting relation exists between the Shannon entropy and the moments of the
distribution. First, it can be shown that given E|X|k ,

H(X) ≤ 1

k
log

2ke�(1/k)E(|X|k)
kk−1

, k > 0, (5.73)

(Wyner and Ziv 1969). The equality in (5.73) is attained by the maximum entropy
distribution

f (x) = c(η, k) exp(−η|x|k),

where the parameter η is identifiable as the Lagrange multiplier corresponding to
the constraint E(|X|k) <∞. If we set k = 2 in (5.73), we get

e2H(X)

2πe
≤ var(X). (5.74)

The ratio in Eq. (5.74) is the entropy power fraction proposed by Shannon (1948)
for comparison of continuous random variables. Equality in Eq. (5.74) is attained
if X is the normal distribution. Ebrahimi et al. (1999) have provided significant
insights about entropy and its relation to higher moments (and the variance) by
approximating the pdf using a Legendre series expansion.

Other interesting relations concern the effect of the shape of the income distribu-
tion (in terms of the skewness and kurtosis coefficients) on the Theil measures T0(X)

and T1(X) (see Maasoumi and Theil 1979). We consider the log-income variable
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Y = logX, and we define E(Y ) = μ, var(Y ) = σ 2 and we consider the skewness
and kurtosis coefficients of Y , i.e., γ1 = E(Y−μ)3/σ 3 and γ2 = E(Y−μ)4/σ 4−3.

Maasoumi and Theil (1979) have proved that

T0(X) = σ 2

2

[
1 + 1

2
γ1σ + 1

12
γ2σ

2 + o(σ 2)

]
,

and

T1(X) = σ 2

2

[
1 + 2

3
γ1σ + 1

4
γ2σ

2 + o(σ 2)

]
.

As a consequence, if the log-income distribution has positive skewness with a long
tail on the right, both measures T0(X) and T1(X) exceed the lognormal Theil index
σ 2

2 and the excess is twice as large for T1(X) as it is for T0(X). In a similar way
(see Maasoumi and Theil 1979), when the log-income distribution is leptokurtic

(γ2 > 0), both measures T0(X) and T1(X) exceed the lognormal value σ
2

2 .

5.8 Sample Versions of Analytic Measures of Inequality

In this section we study distributional properties of various sample measures of
inequality. We will adopt a convention of using a subscripted T to denote the sample
version of the corresponding population measure of inequality denoted by the
correspondingly subscripted τ . Exceptions are the sample Gini, Amato, Bonferroni,
Zenga, Atkinson, and Generalized Entropy indices, which will be denoted by G, A,
B, Z, Aθ , and Gβ .

5.8.1 Absolute and Relative Mean Deviation and the Sample
Pietra Index

We begin with the mean absolute deviation

T1(X) = 1

n

n∑

i=1

|Xi − X̄|,

which can also be written in terms of the sample df as,

T
(n)
1 (X) =

∫ ∞

0
|x − X̄|dF (n)(x)
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where X̄ is the sample mean. A third convenient representation is provided by
Gastwirth (1974)

T
(n)
1 (X) = 2

n

⎛

⎝NX̄ −
∑

Xi<X̄

Xi

⎞

⎠ ,

where N is the random number of observations which are less than X̄. If the
observations Xi’s are i.i.d. from a distribution F(x) with finite mean μ, T (n)1 (X)

will provide an asymptotic unbiased estimator of τ1(F ). In the normal case, the
exact distribution of T (n)1 has been obtained by Godwin (1945).

Provided that the parent distribution F has a continuous density in a neighbor-
hood of its mean μ and a finite variance σ 2, T (n)1 (X) is asymptotically normally
distributed as (Gastwirth 1974)

√
n
[
T
(n)
1 (X)− τ1(F )

]
d→ N(0, σ 2

1 )

where

σ 2
1 = 4

{
F 2(μ)

∫ ∞

μ

(x − μ)2dF(x)− F̄ 2(μ)

∫ μ

−∞
(x − μ)2dF(x)

}
− τ 2

1 (F ).

(5.75)

The asymptotic variance (5.75) is not in general easy to compute, but for some
parent distributions a closed form for it is available. If the Xi’s are exponential
variables, i.e., Xi ∼ �(1, σ ), it may be verified that (5.75) takes the simple form

σ 2
1 = 4σ 2(2e−1 − 4e−2).

In order to have a scale invariant inequality measure we consider the relative
mean deviation statistic,

T2(X) = T1(X)

X̄
.

The sample Pietra index is expressible as

P(X) = 1

2
T2(X),

that is, one-half the relative mean deviation. The advantage of the Pietra index is
that its range is in the interval [0, 1], but the value 1 is not achievable. In fact, we
have
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0 ≤ P(X) ≤ n− 1

n
.

The small sample behavior of the relative mean deviation is intractable. However,
large sample theory can be developed.

If the parent distribution has a finite variance σ 2 and a continuous density in a
neighborhood of its mean μ, we may conclude that T2(X) is asymptotically normal
with distribution (Gastwirth 1974),

√
n
[
T2(X)− τ2(F )

] d→ N(0, σ 2
2 )

where

σ 2
2 = σ 2

1

μ2
+ σ 2τ 2

2 (F )

μ2

[
F(μ)σ 2 −

∫ μ

−∞
(x − μ)2dF(x)

]
,

where σ 2
1 is given in (5.75).

5.8.2 The Sample Amato and Bonferroni Indices

The sample Amato index corresponds to the length of the sample Lorenz curve and
admits the representation,

An(X) = 1

n

n∑

i=1

√

1 +
(
Xi

X̄

)2

.

The extremal income configurations are (1, 1, . . . , 1) and (0, 0, . . . , 0, 1), and the
range of possible values of the Amato index is

√
2 ≤ An(X) ≤ 1 − 1

n

√
1 + 1

n2
.

The asymptotic normality of this index is readily confirmed. Thus (see Lombardo
1979),

√
n
[
An(X)− A(X)

] d→ N(0, σ 2
A)

where A(X) = E(√1 + (X/μ)2) and

σ 2
A = 1

2

(
σ 2
X

μ2
X

− σ 4
X

16μ4
X

)
.
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The sample version of the Bonferroni index can be written as

Bn(X) = 1 − 1

n− 1

n−1∑

i=1

mi

m
,

where mi = (1/i)
∑i
j=1Xj :n and m = (1/n)

∑n
j=1Xj :n. Again, the asymptotic

normality of this index can be confirmed using standard techniques.
The sample version of the Zenga II index is

ZIIn (X) = 1 − 1

n

n∑

i=1

(1/i)
∑i
k=1Xk:n

(1/(n− i))∑n
k=i+1Xk:n

. (5.76)

The asymptotic normality of the Zenga II index (5.76) has been verified by
Greselin and Pasquazzi (2009).

5.8.3 The Sample Standard Deviation and Coefficient
of Variation

The sample standard deviation is

T3(X) =
√√√√ 1

n− 1

n∑

i=1

(Xi − X̄)2.

This measure is location invariant and its sampling properties are well-known in the
normal case.

If the parent distribution has a finite fourth moment, we have

√
n
[
T3(X)− τ3(F )

] d→ N(0, σ 2
3 ),

where

τ3(F ) = √var(X) and σ 2
3 = E(X4)− (E(X2))2

E(X2)
.

If we consider the corresponding standardized measure we obtain the sample
coefficient of variation

T4(X) = T3(X)

X̄
.

We may verify

0 ≤ T4(X) ≤ √
n− 1
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Asymptotic normality of T4(X) occurs provided that the fourth moment exists.
We have

√
n
[
T4(X)− τ4(F )

] d→ N(0, σ 2
4 ),

where τ4(F ) = τ3(F )/μ and

σ 2
4 = μ2{E(X4)− μ2} − 4{[E(X2)]3 − μE(X2)E(X3)}

4μ4{E(X2)− μ2} ,

in which, as usual, μ = E(X).

5.8.4 Gini’s Mean Difference

Gini’s mean difference is defined as

T5(X) = 1

n(n− 1)

n∑

i=1

∑

j �=i
|Xi −Xj |, (5.77)

which is the average of all the pairwise differences between the Xi’s. A simple
variant of (5.77) is

T ′
5(X) = 1

n2

n∑

i=1

∑

j �=i
|Xi −Xj |. (5.78)

One of the advantages of (5.78) is that when it is used to define a sample Gini index,
the sample index will be two times the area of the concentration polygon defined by
the sample Lorenz curve.

An alternative representation of (5.77) in terms of the spacings is (David 1968),

T5(X) = 2

n(n− 1)

n∑

i=1

i(n− i){Xi+1:n −Xi:n}.

One relevant property of (5.77) is its unbiasedness, and in fact, it is a U statistics
in the sense of Hoeffding (1948), and it is the unique unbiased estimate of the
population Gini mean difference τ5(X) = E(X2:2) − E(X1:2). The variance of
T5 is (Nair 1936; Lomnicki 1952 ),

var(T5(X)) = 1

n(n− 1)
[4ξ2 + 4(n− 2)λ− 2(2n− 3)τ 2

5 ], (5.79)
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where

ξ2 = 1

2
E(X1 −X2)

2, (5.80)

λ = E(|X1 −X2||X1 −X3|), (5.81)

τ5 = E(|X1 −X2|). (5.82)

We have the following special cases (Nair 1936)

• Exponential distribution, if Xi ∼ �(1, σ ), i = 1, 2, . . . , n.

E(T5(X)) = σ,

var(T5(X) = (4n− 2)σ 2

3n2 − 2n

• Uniform distribution, if Xi ∼ U(0, σ ), i = 1, 2, . . . , n.

E(T5(X)) = σ

3
,

var(T5(X) = (n+ 3)σ 2

45(n2 − n) .

If we consider a classical Pareto case, that is, if Xi ∼ P(I)(σ, α), i =
1, 2, . . . , n, the quantities (5.80)–(5.82) are given by

ξ2 = σ 2α

(α − 1)2(α − 2)
,

τ5 = 2σα

(α − 1)(2α − 1)
,

λ = σ 2(8α3 − 11α2 + 2α)

(α − 1)2(α − 2)(2α − 1)(3α − 2)
,

which when substituted in (5.79) provide the variance of T5(X). In an alternative
approach, the quantity λ can instead be computed as (see Fraser 1957)

λ =
∫ ∞

0

[∫ ∞

0
(u− v)dF (v)

]
dF(u).

In the exponential case the exact distribution of T5(X) can be derived by
considering again the representation in terms of the spacings,

T5(X) = 2

n(n− 1)

n−1∑

i=1

i(n− i)Yi+1:n, (5.83)



5.8 Sample Versions of Analytic Measures of Inequality 89

where Yi:n = Xi:n − Xi−1:n represents the ith spacing. In the exponential case, the
spacings are again exponentially distributed Yi:n ∼ �(1, σ

n−i+1 ), i = 2, 3, . . . , n,
and are independent. Consequently (5.83) can be seen to be a linear combinations
of independent exponential variables. Then, using the result given in Feller (1971),
if the Xi’s are i.i.d. with a common exponential distribution with scale parameter σ ,
the probability density function of the Gini mean difference is

fT5(X)(x) = n

2σ(n− 2)!
n−1∑

i=1

⎡

⎣
∏

j �=i

(
1

j
− 1

i

)⎤

⎦ e−n(n−1)x/2iσ , (5.84)

with x ≥ 0.
Alternatively, the asymptotic distribution of the Gini mean difference can be

obtained taking into account that it is a U statistic and using the results on the
limiting distribution of such statistics stated by Hoeffding (1948). Provided second
moments exist, it follows that

√
n
[
T5(X)− τ5(F )

] d→ N(0, σ 2
5 ),

where

σ 2
5 = 4(λ− τ 2

5 (F )),

and λ is defined in (5.81).

5.8.5 The Sample Gini Index

The sample Gini index is a scale invariant version of Gini’s mean difference. The
two most commonly used versions of the sample Gini index are

Gn = T6(X) = 1

2n(n− 1)X̄

n∑

i=1

∑

j �=i
|Xi −Xj |, (5.85)

and

G′
n = 1

2n2X̄

n∑

i=1

n∑

j=1

|Xi −Xj |. (5.86)

The Gini index can also be written in terms of a ratio of linear functions of order
statistics as

Gn =
∑n
i=1(2i − n− 1)Xi:n∑n
i=1(n− 1)Xi:n

.
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Since the area between the sample Lorenz curve and the egalitarian line cannot
exceed (n− 1)/2n, and since the sample Gini index defined in (5.85) satisfies,

0 ≤ Gn ≤ 1,

Gn cannot be interpreted as twice the area between the egalitarian line and
the sample Lorenz curve. The extremal data configurations are (1, 1, . . . , 1) and
(0, 0, . . . , 1). In contrast, as mentioned following Eq. (5.78), G′

n can be so inter-
preted. Despite this observation, the form Gn remains the more commonly used of
the two candidate versions of the sample Gini index.

We do have a closed form expression for the density of Gn, for a fixed value
of n in the exponential case. If Yi:n = Xi:n − Xi−1:n are the spacings of the order
statistics of an exponential sample, then (n− i+1)Yi:n are i.i.d. exponential random
variables. If we define

T =
n∑

i=1

Xi =
n∑

i=1

(n− i + 1)Yi:n,

it follows that Gn can be written as a linear combination of the coordinates of a
symmetric Dirichlet (1, 1, . . . , 1) random vector. Specifically, we can write

Gn =
n∑

j=1

n− j
n− 1

Dj,

where (D1, . . . , Dn) has a Dirichlet distribution. If Xi ∼ �(1, σ ), i = 1, 2, . . . , n,
Dempster and Kleyle (1968) obtained the following expression for the distribution
function of Gn

P (Gn ≤ x) = xn−1
∏n
i=1 ci

−
n−1∑

j=1

[(x − cj )+]n−1

cj
∏n−1
k �=j (ck − cj )

, 0 ≤ x ≤ 1,

where cj = (n − j)/(n − 1) and (u)+ = u if u > 0 and is zero otherwise. An
alternative expression for this distribution is

P(Gn ≤ x) = 1 −
n−1∑

j=1

[(cj − x)+]n−1

cj
∏n−1
k �=j (cj − ck)

, 0 ≤ x ≤ 1.

If we consider a general income distribution F with a finite second moment, the
asymptotic normality of the sample Gini index (5.85) can be verified. The proof is
based on the asymptotic joint normality of Gini’s mean difference and the sample
mean. We have

√
n [Gn −G(F)] d→ N(0, σ 2

6 ),
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where

σ 2
6 = λ

μ2
− ρτ5

μ3
+ ξ2

2μ4
,

and λ, τ5 and ξ2 are defined in (5.80)–(5.82), μ = E(X) and

ρ =
∫ ∞

0

∫ ∞

0
x|x − y|dF(x)dF (y).

5.8.6 Sample Lorenz Curve

For the definition of the sample Lorenz curve we have two alternatives. The first
one is

Ln(u) =
∫ u

0 F
−1
n (y)dy

∫ 1
0 F

−1
n (y)dy

, (5.87)

with 0 ≤ u ≤ 1, where Fn is the sample distribution function.. This formulation
corresponds to a polygonal line joining the n+ 1 points (0, 0) and

(
j

m
,

∑
i≤j Xi:n∑n
i=1Xi:n

)
, j = 1, 2, . . . , n.

The second of the sample Lorenz curve definitions is the one considered by
Taguchi (1968), Gail and Gastwirth (1978), and Chandra and Singpurwalla (1978).
It is given by the expression,

L′
n(u) =

∑
i≤[nu]Xi:n
nX̄

, 0 ≤ u ≤ 1,

where [·] denotes the integer part. This second definition is discontinuous at the
points Xi:n and flat between these points. Goldie (1977) has pointed out that
asymptotically both definitions are equivalent because

sup
0≤u≤1

|Ln(u)− L′
n(u)| = Xn:n

nX̄
,

and the quotient Xn:n/nX̄ converges almost surely to 0, provided that the first
moment of the Xi’s exists. Since both definitions are asymptotically indistinguish-
able and since Ln defined in (5.87) is consistent with the usual definition of Lorenz
curve for a general distribution function F , Goldie recommended use of (5.87) as a
definition.
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If we assume finite second moments, then we can reasonably hope to have
asymptotic normality of suitable scaled deviations {Ln(u)−L(u)}, since such is the
case for deviations between sample and population distributions. Following Goldie’s
notation, we define the Lorenz process λn as

λn = √
n(Ln − L) (5.88)

Weak convergence of these processes to a limiting normal process is described in the
following result of Goldie (1977). See the Goldie paper for several alternative suf-
ficient conditions that might be invoked instead to guarantee the weak convergence
of the process.

Theorem 5.8.1 Let F be a continuous distribution function with a finite second
moment and connected support S with supS = ∞. Assume there exists a < 1,
t0 <∞, and A <∞ such that

F−1(1 − (vt)−1)

F−1(1 − t−1)
≤ Ava, v ≥ 1, t > t0.

Then, if we let λn denote the sample Lorenz process (5.88) based on a sample of size
n, we have λn converging weakly in the space of continuous functions on [0, 1] to a
normal process λ. The limiting normal process may be expressed in the form

λ(u) = 1

m

∫ 1

0
[L(u)− I (t ≤ u)]β(t)dF−1(t), 0 ≤ u ≤ 1,

where I (t ≤ u) = 1 if t ≤ u and 0 otherwise and β is a Brownian bridge, that is, a
normal process with E[β(u)] = 0, ∀u and cov(β(u), β(v)) = u(1 − v) if u ≤ v.

Gail and Gastwirth (1978) have proved the following result, for the variant
definition of the Lorenz process. Note that the theorem provides the asymptotic
distribution of L′

n(u) for one fixed value of u.

Theorem 5.8.2 Let F correspond to a positive random variable with finite second
moment. Assume that F has a unique uth quantile xu (i.e., F(xu) = u) and that
F is continuous at xu. It follows that [L′

n(u) − L(u)]/√varL′
n(u) converges in

distribution to a standard normal variable. Equivalently we may write

√
n[L′

n(u)− L(u)] d→ N(0, σ 2
λ(u))

where

σ 2
λ(u) = τ 2

1

μ2 + τ 2
2 η

2

μ4 − 2τ12η

μ3 , (5.89)

in which

μ =
∫ ∞

0
xdF(x),
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η =
∫ xu

0
xdF(x),

τ 2
1 = 2

∫ F−1(u)

0

[∫ F−1(y)

0
F(x)dx

]
[1 − F(y)]dy, (5.90)

τ 2
2 =

∫ ∞

0
(x −m)2dF(x),

τ12 = τ 2 +
∫ F−1(u)

0
F(x)dx

∫ ∞

F−1(u)

[1 − F(y)]dy

Equation (5.89) for the asymptotic variance can be difficult to evaluate. In the
exponential case with Xi ∼ �(1, σ ), i = 1, 2, . . . , n, it can be evaluated. Gail and
Gastwirth (1978) have obtained in the exponential case,

σ 2
λ(u) = 2(1 − u) log(1 − u)+ u(2 − u)− [u+ (1 − u) log(1 − u)]2.

5.8.7 Bias of the Sample Lorenz Curve and Gini Index

Inequality measures are often underestimated using sample data. It has been noted
that the sample Lorenz curve often exhibits less inequality than does the population
Lorenz curve. This fact suggests that the sample curve is a positively biased estimate
of the population curve. In this context, Arnold and Villaseñor (2015) have provided
several sufficient conditions for such positive bias.

If we have a sample X1, X2, . . . , Xn of size n from a distribution FX(x), recall
that the corresponding sample Lorenz curve is defined to be a linear interpolation
of the points (0, 0) and (j/n,

∑j

i=1Xi:n/
∑n
i=1Xi:n), j = 1, 2, . . . , n. As usual

denote the sample Lorenz curve by Ln(u).
The function

L∗(u) = E(Ln(u)), 0 ≤ u ≤ 1

is a valid Lorenz curve corresponding to a discrete random variable X̃ defined
by P(X̃ = E(Xj :n/

∑n
i=1Xi:n)) = 1/n. Note that the function L∗(u) is a

linear interpolation of the points (0, 0) and (j/n,E(
∑j

i=1Xi:n/
∑n
i=1Xi:n)), j =

1, 2, . . . , n. Consequently if we wish to show that X̃ ≤L X, it will be sufficient
to verify that L∗(j/n) ≥ LX(j/n), j = 1, 2, . . . , n. This is true since LX(u) is a
convex function and L∗(u) is piecewise linear.

In general, it is quite challenging to derive an analytic expression for

L∗
(
j

n

)
= E

(∑j

i=1Xi:n∑n
i=1Xi:n

)
.
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There is one case in which the computation is straightforward. It is the case in
which the common distribution of the Xi’s is an exponential distribution, i.e.,
Xi ∼ �(1, β). Without loss of generality we may assume that β = 1. In this case,
we do find that

L∗
(
j

n

)
> LX

(
j

n

)
,

confirming the positive bias of the sample Lorenz curve. In general, a sufficient
condition for positive bias of the sample Lorenz curve is provided in the following
theorem (Arnold and Villaseñor 2015).

Theorem 5.8.3 Suppose that X1, X2, . . . , Xn are i.i.d. random variables with a
common distribution FX with the property that

E

(∑j

i=1Xi:n∑n
i=1Xi:n

)
≥
∑j

i=1 μi:n∑n
i=1 μi:n

, j = 1, 2, . . . , n,

where μi:n = E(Xi:n). In such a case, the corresponding sample Lorenz curve is a
positively biased estimate of the population Lorenz curve, i.e.,L∗(u) = E(Ln(u)) ≥
LX(u) for all u ∈ [0, 1].

Note: It is reasonable to ask whether sample Lorenz curves are always positively
biased estimates of L(u). Arnold and Villaseñor (2015) provide a simple example to
show that indeed it is actually possible for the sample Lorenz curve to be negatively
biased. The example that they provide deals with a sample of size 2 with common
distribution given by

P(X = 1) = p and P(X = c) = 1 − p,

where p ∈ (0, 0.5) and c > 1. For many choices of c and p the resulting
sample Lorenz curve is negatively biased (one particular choice that will lead to
this phenomenon is c = 3 and p = 0.1).

Next, following Arnold and Villaseñor (2015), we study the bias of the sample
Gini index. In the case of the sample Gini index, we consider the two frequently
used versions

Gn =
∑n
i=1(2i − n− 1)Xi:n∑n
i=1(n− 1)Xi:n

and

G′
n =

∑n
i=1(2i − n− 1)Xi:n∑n

i=1 nXi:n
= n− 1

n
Gn.
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The second version G′
n corresponds to the Gini index of the sample Lorenz curve.

We would consequently expect that the sample Gini index, G′
n, will frequently be

negatively biased. Thus we would expect to have

E(G′
n) ≤ G = E(X2:2)− E(X1:2)

E(X2:2)+ E(X1:2)
,

i.e., that

E

(∑n
i=1(2i − n− 1)Xi:n∑n

i=1 nXi:n

)
≤ E(X2:2)− E(X1:2)
E(X2:2)+ E(X1:2)

.

For the exponential distribution, i.e., when the Xi’s have a common �(1, 1)
distribution, we have, using Basu’s lemma,

E(G′
n) =

∑n
i=1(2i − n− 1)E(Xi:n)

n2

and

G = E(X2:2)− E(X1:2)
E(X2:2)+ E(X1:2)

= 1

2
. (5.91)

Substituting the well-known expressions for the expectations of exponential order
statistics and simplifying, it may be verified that

E(G′
n) =

(
n− 1

n

)
1

2
, (5.92)

which indeed is less than 1
2 .

Note that in this exponential case we have

E(Gn) = n

n− 1
E(G′

n) = n

n− 1

(
n− 1

n

)
1

2
= 1

2
,

that is, in this special case,Gn is unbiased. Note that, sinceGn is not the Gini index
of the sample Lorenz curve, we did not have strong justification for expecting it to
be negatively biased in most cases.

On the other hand, we do have some reason to expect that G′
n will often be

negatively biased. Will it always be negatively biased? Just as was the case for
studying the bias of the sample Lorenz curve, consideration of samples of size 2
from a two-point distribution will be instructive.

Suppose that X1 and X2 are i.i.d. with P(Xi = 1) = p and P(Xi = c) = 1 − p
where c > 1. We have in this case the sample Gini index, G′

2, given by
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Table 5.6 Probabilities for
computing the sample Gini
indices in the discrete case in
which P(Xi = 1) = p and
P(Xi = c) = 1 − p (from
Arnold and Villaseñor 2015)

Variable

Probability X1:2 X2:2 G2 G′
2

p2 1 1 0 0

2p(1 − p) 1 c
c − 1

c + 1

c − 1

2(c + 1)
(1 − p)2 c c 0 0

G′
2 = 1

2

X2:2 −X1:2
X2:2 +X1:2

and the population Gini index given by

G = E (X2:2)− E (X1:2)
E (X2:2)+ E (X1:2)

.

For this sample we have the needed distributional information provided in Table 5.6.
In Table 5.6, for example, the probability thatG2 takes on the value (c−1)/(c+1)

is 2p(1 − p). From this table, it follows that

G− E(G2) = (c − 1)2p(1 − p)
2[p + c(1 − p)] − 2p(1 − p)c − 1

c + 1

= p(1 − p)(c − 1)2

[p + c(1 − p)] (c + 1)
(2p − 1) .

The sign of the difference G − E(G2) depends on the value of p. It is positive if
p > 0.5, negative if p < 0.5 and equal to 0 if p = 0.5. However if we consider the
bias of G′

2, we have

G− E(G′
2) = (c − 1)2p(1 − p)

2[p + c(1 − p)] − p(1 − p)c − 1

c + 1

= p(1 − p)(c − 1)

[p + c(1 − p)] (c + 1)
[1 + (c − 1)p] > 0

for every p ∈ (0, 1) and c > 1. Thus the expected negative bias of L′
2 is present, not

just for values of p for which the corresponding sample Lorenz curve is positively
biased, but even for values of p for which the curve is negatively biased.
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5.8.8 Asymptotic Distribution of Lorenz Ordinates
and Income Shares

In this section we consider distribution-free statistical inference for Lorenz curve
ordinates and income shares. These results can be found in Beach and Davidson
(1983). We will consider two kinds of results:

• The asymptotic distribution of a set of income quantiles
• The asymptotic distribution of a set of Lorenz curve ordinates

Let X be a positive random variable, which represents income for different
individuals or families, and denote the population cdf ofX by F(x). The proportion
of the total income received by those individuals with income less or equal to x is

L(F(x)) = 1

μ

∫ x

0
vdF (v), 0 < x <∞,

where all incomes are assumed to be positive, and the mean and variance of X,
E(X) = μ and var(X) = σ 2, exist and are finite. In this expression, L denotes, as
usual, the Lorenz curve corresponding to the distribution function F .

Then, the objective is to perform statistical inference using a set of ordinates of
the sample Lorenz curve, i.e., the set a set of K ordinates

Ln(u) = (Ln(u1), Ln(u2), . . . , Ln(uK)) ,

corresponding to the abscissae (u1, . . . , uK), with 0 < u1 < u2 < · · · < uK < 1.
An income quantile ξu corresponding to a distribution function F is defined

implicitly by F(ξu) = u, where F is assumed to be strictly increasing. Thus,
corresponding to a set of K values u1 < · · · < uK , we have a set of K income
quantiles ξu1 < · · · < ξuK and a set of K population Lorenz curve ordinates
L(u1) < · · · < L(uK), where

L(ui) = 1

μ

∫ ξui

0
vdF (v) = F(ξui )

μ

∫ ξui

0

vdF (v)

F (ξui )

= F(ξui )

μ
E(X|X ≤ ξui )

= ui
γi

μ
,

where

γi = E(X|X ≤ ξui ) (5.93)

is the conditional mean of incomes less than or equal to ξui .
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Now, let X1, . . . , Xn be a random sample of size n from F and we denote the
ordered sample by X(1) ≤ X(2) ≤ · · · ≤ X(n). Then, let the sample quantile ξ̂u be
defined as the r-th order statistics X(r), where r = [nu] denotes the greatest integer
less than or equal to nu. If F is strictly increasing, ξ̂u has the property of strong or
almost sure consistency as an estimate of ξu, and if F is differentiable then for any
finite set {u1, . . . , uK }, the ξ̂ui ’s are asymptotically multivariate normal, according
the following lemma (see, Wilks 1962 or Arnold et al. 1992)

Lemma 5.8.1 Suppose that for a set of proportions {u1, . . . , uK } with u1 < · · · <
uK , ξ̂ = (ξ̂u1, . . . , ξ̂uK )

	 is a vector of K sample quantiles from a random sample
of size n drawn from a continuous density f (x) such that the ξui ’s are uniquely
defined and fi ≡ f (ξui ) > 0 for all i = 1, . . . , K . Then, we have

√
n(ξ̂ − ξ) d→ N(K)(0,�),

that is, there is convergence in distribution to a K-variate normal distribution with
mean 0 and covariance matrix � with elements,

�ij = ui(1 − uj )
fifj

, i, j = 1, 2, . . . , K.

The sample estimate of the Lorenz curve ordinate L(ui) is computed as

Ln(ui) =
∑ri
j=1X(j)∑n
j=1X(j)

, with ri = [nui]

.= ui
γ̂i

μ̂
,

where μ̂ = (1/n)∑n
j=1X(j) is the sample mean and

γ̂i = 1

ri

ri∑

j=1

X(j).

The first main result is the following.

Theorem 5.8.4 Consider the (K + 1)-dimensional random vector

θ̂ = (u1γ̂1, . . . , uKγ̂K, uK+1γ̂K+1)
	

where the γ̂i’s, i = 1, . . . , K are the conditional means defined in (5.93), the
proportions ui are such that 0 < u1 < · · · < uK < 1 and where uK+1 ≡ 1
and γ̂K+1 ≡ μ̂ the unconditional sample mean. Then, assuming that the population
has a finite mean and a finite variance and that the cdf F is strictly increasing and
twice differentiable, θ̂ is asymptotically normal, i.e.,
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√
n(θ̂ − θ) d→ N(K+1)(0,�),

with zero mean and covariance matrix � = {wij },

wij = ui[λ2
i + (1 − uj )(ξui − γi)(ξuj − γj )+ (ξui − γi)(γj − γi)], (5.94)

for i ≤ j .

In Eq. (5.94) λ2
i is defined as var(X|X ≤ ξui ), given by the equation

ui(λ
2
i + γ 2

i ) =
∫ ξui

0
x2dF(x).

Note that setting ui = uj , the asymptotic variance of uiγ̂i is

ui[λ2
i + (1 − ui)(ξui − γi)2]

n
.

As well, setting uj = uK+1 = 1 the asymptotic covariance of uiγ̂i and μ̂ is

ui[λ2
i + (ξui − γi)(μ− γi)]

n
.

The variance of uK+1γ̂K+1 = μ̂ (in the bottom right-element of �) is
uK+1λ

2
K+1

n
=

σ 2

n
, as usual.
In order to make practical use of Theorem 5.8.4 and render our analysis

distribution free, we can substitute consistent estimates of the λ2
i ’s, namely (Beach

and Davidson 1983),

λ̂2
i ≡ 1

ri

ri∑

i=1

(X(k) − γ̂i )2,

and also insert consistent estimates of ξui , γi , i.e., X(ri), γ̂i respectively.
The second main result is the following.

Theorem 5.8.5 Under the conditions of Theorem 5.8.4, the vector of sample Lorenz
curve ordinates Ln(u) = (Ln(u1), . . . , Ln(uK))

	 is asymptotically normal, i.e.,

√
n(Ln(u)− L(u)) d→ N(K)(0, VL), (5.95)

with zero mean and covariance matrix VL = {vLij } specified by

vLij =
(

1

μ2

)
wij +

(
uiγi

μ2

)(
ujγj

μ2

)
σ 2 −

(
uiγi

μ3

)
wj,K+1 −

(
ujγj

μ3

)
wi,K+1,
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for i ≤ j = 1, . . . , K . In the case of i = j the diagonal elements of VL are

vLii = ui

μ2 [λ2
i + (1 − ui)(ξui − γi)2] +

(
uiγi

μ2

)2

σ 2

−2

(
u2
i γi

μ3

)
[λ2
i + (μ− γi)(ξui − γi)2].

As a consequence of the previous formulation, the asymptotic standard errors for
the sample estimates L̂i are given by

√
vLii

n
, for i = 1, . . . , K.

With the asymptotic joint distribution of (L(u1), L(u2), . . . , L(uK)) at hand, it
is a simple operation to obtain the asymptotic joint distribution of the corresponding
income shares, namely

S = (L(u1), L(u2)− L(u1), . . . , L(uK)− L(uK−1)). (5.96)

If we define

S̃ = (Ln(u1), Ln(u2)− Ln(u1), . . . , Ln(uK)− Ln(uK−1)),

then we have

√
n(S − S̃) d→ N(K)(0,�VL�

	), (5.97)

where

�K×K =

⎛

⎜⎜⎜⎜⎜⎝

1 0 0 · · · · · · 0
−1 1 0 · · · · · · 0
0 −1 1 · · · · · · 0
...
...
. . .
. . .

...
...

0 0 · · · · · · −1 1

⎞

⎟⎟⎟⎟⎟⎠
,

and VL is as defined following (5.95).
In order to make practical distribution free use of the asymptotic distributions

given in (5.95) and (5.97), it is appropriate to substitute available consistent
estimates of the parameters in VL (defined following (5.95)).
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5.8.9 The Elteto and Frigyes Indices

Now, we consider the sample versions of the Elteto and Frigyes indices studied in
Sect. 5.3.8. These sample indices are defined by

Un = N
∑N
i=1Xi

n
∑
Xi<X̄

Xi
,

Vn = N
∑
Xi>X̄

Xi

(n−N)∑Xi<X̄
Xi
,

Wn = n
∑
Xi>X̄

Xi

(N − n)∑n
i=1Xi

,

where n is the sample size and N is the random number of observations Xi less
than the mean X̄. The asymptotic distributions of these indices were obtained by
Gastwirth (1974). For the case of Un we have

√
n(Un − U) d→ N(0, σ 2

U),

where

σ 2
U = 1

F 2(μ)

{
v1

μ2
1

+ v2μ
2

μ4
1

− 2cμ

μ3
1

}
,

in which μ = E(X), ξ2 = var(X) and

μ1 = 1

F(μ)

∫ ∞

0
xdF(x),

υ1 = μ2F(μ)F̄ (μ)+ ξ2[F(μ)+ μf (μ)]2 − 2μ[μf (μ)+ F(μ)]F(μ)(μ− μ1),

υ2 = μ2f 2(μ)ξ2 +
∫ μ

0
x2dF(x)− F 2(μ)μ2

1 + 2μf (μ)
∫ μ

0
x(x − μ)dF(x),

c = μμ1F(μ)F̄ (μ)− μ2f (μ)F (μ)(μ− μ1)+ μf (μ)[μf (μ)+ F(μ)]ξ2

+[μf (μ)+ F(μ)]
∫ μ

0
x(x − μ)dF(x).

See Gastwirth (1974) for the analogous expressions for Vn and Wn. There does not
appear to be any finite sample size distributions theory for the Elteto and Frigyes
indices in the literature.
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5.8.10 Further Classical Sample Measures of Inequality

Here we include two inequality measures defined in terms of logarithms of the
data points. If Yi = logXi , Yntema (1933) considers the mean deviation of the
logarithms,

T7(X) = 1

n

n∑

i=1

|Yi − Ȳ |, (5.98)

as a suitable inequality measure.
The second similar measure corresponds to the standard deviation of the

logarithms of the data points,

T8(X) =
√√√√ 1

n− 1

n∑

i=1

(Yi − Ȳ )2, (5.99)

with Yi = logXi . The asymptotic distribution of (5.98) and (5.99) can be obtained
using standard techniques. The use of the logarithmic transformation (in preference
to some other monotone transformation) has a long tradition in economics. This
may or may not be because, if the parent distribution is lognormal (as it well might
be for income data), the logarithms have a particularly well-understood distribution.

Bowley’s interquartile ratio can be written as a function of order statistics as
suggested by Dalton (1920). It is defined by

T9(X) = X3n/4:n −Xn/4:n
X3n/4:n +Xn/4:n

. (5.100)

The main attractive of this measure is its robustness. The measure ignores outlying
observations. This aspect could be inappropriate in income studies, where emphasis
is often on the upper tail of the distribution.

For obtaining the asymptotic distribution of (5.100) we begin with the distri-
bution of (X3n/4:n,Xn/4:n). If we denote the population quartiles by ηi , with i =
1/4, 3/4 and assuming that the population density f is continuous in neighborhoods
of ηi , we have (see Arnold et al. 1992)

√
n(Xn/4:n,X3n/4:n)

d→ N(2)((η1/4, η3/3),�),

where the elements of the covariance matrix are

σ11 = 3

16f 2(η1/4)
,
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σ22 = 3

16f 2(η3/4)
,

σ12 = σ21 = 1

16f (η1/4)f (η2/4)
.

Now, if we define τ9 = η3/4−η1/4
η3/4+η1/4

, using the δ-method we have

√
n(T

(n)
9 − τ9) d→ N(0, σ 2

9 ),

where

σ 2
9 = 3ξ2

1/4 − 2ξ1/4ξ1/4 + 3ξ2
1/4,

in which

ξ1/4 = η3/4/[2f (η1/4)],
ξ3/4 = η1/4/[2f (η3/4)].

Dalton (1920) also considered use of the ratio of the logarithms of the arithmetic
and geometric means, as an inequality measure. Thus he investigated

T10(X) = log X̄

log X̄g
,

where X̄g = (
∏n
i=1Xi)

1/n and where we assume Xi > 1, i = 1, 2, . . . , n. This
index satisfies T10(X) ≥ 1, with equality if all Xi’s are equal. Then, it is natural to
consider the following index which takes on values in the interval (0, 1),

T̃10(X) = 1 − 1

T10(X)
. (5.101)

The asymptotic distribution of T10(X) is given by

√
n

[
T10(X)− log η

η̃

]
d→ N(0, σ 2

10),

where

η =
∫ ∞

1
xdF(x), η̃ =

∫ ∞

1
log xdF(x),
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and

σ 2
10 = ξ2

1

η2η̃2 − 2ξ12 log η

ηη̃3 + ξ2
2 (log η)2

η̃4 ,

in which

ξ2
1 = var(X), ξ2

2 = var(logX), and ξ12 = cov(X, logX).

Several classes of indices which might be considered take the following forms,

Tg(X) = c

n∑

i=1

g(Xi), (5.102)

T̃g(X) = 1

n

n∑

i=1

g

(
Xi

X̄

)
(5.103)

and

˜̃
Tg(X) =

1
n

∑n
i=1 g(Xi)

g(X̄)
, (5.104)

where g is a convex function. Indices in these classes are asymptotically normal
provided the needed moments exist. Classes (5.102) to (5.104) include some new
inequality measures and some measures that have been already discussed in this
book. Special cases include: (1) g(x) = x2; (2) g(x) = x log x; (3) g(x) = −U(x),
where U(x) is a concave utility function (proposed by Dalton (1920) and Atkinson
(1970)); (4) g(x) = √

1 + x2, which corresponds to the Amato index. Many other
choices merit consideration.

As an extension of the Gini index, Mehran (1976) proposed linear measures of
inequality of the form,

TW(X) =
∑n
i=1Xi:nW

(
i
n+1

)

nX̄
,

where W(·) is a smooth weight function. Asymptotic normality of these measures
is a consequence of results due to Stigler (1974).

The sample Gini index is asymptotically equivalent to the Mehran linear measure
with weight functionW(u) = 2u− 1.

Weymark (1979) has considered generalized Gini indices of the form,

Ga(X) =
∑n
i=1 ai:nXi:n
nX̄

. (5.105)



5.8 Sample Versions of Analytic Measures of Inequality 105

To ensure Schur convexity in (5.105) we need to have ai:n ↑ as i ↑ for each n. In
particular, Donaldson and Weymark (1980) considered the special case,

ai:n = iδ − (i − 1)δ

nδ
,

where the case δ = 2 is closely related to the Gini index.

5.8.11 The Sample Atkinson and Generalized Entropy Indices

In this section we discuss the sample versions of the Atkinson and generalized
entropy indices (which we considered in Sect. 5.4) and their corresponding asymp-
totic distributions.

Let X be a random variable in L with cdf F . The αth raw moment will be
denoted by

μα = E(Xα) =
∫ ∞

0
xαdF (x), (5.106)

provided that the integral exists. The usual estimator of (5.106) is the sample
moment, which we will denote as

mα = 1

n

n∑

i=1

Xαi .

We will denote the variance of
√
nmα by σ 2

α and the covariance between two sample
moments mα and mα′ by

cov(
√
nmα,

√
nmα′) = γα,α′ .

The values μ1 = μ and σ 2
1 = σ 2 are, as usual, the mean and variance of X,

respectively.
We write the population Atkinson’s (1970) index as (note that this is equivalent

to the earlier definition which was written in terms of ε = 1 − θ ),

Aθ = 1 −
[∫ ∞

0

(
x

μ

)θ
dF (x)

]1/θ

= 1 − μ
1/θ
θ

μ1
, (5.107)

where −∞ < θ < 1. The cases θ = 0 and θ = −∞ will be discussed below. The
sample version of this index is given by
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Aθ(X) = 1 − m
1/θ
θ

m1

= 1 −
[

1

n

n∑

i=1

(
Xi

X̄

)θ]1/θ

.

The asymptotic distribution of the sample Atkinson index, provided that the
needed moments exist is given by Thistle (1990),

√
n
[
Aθ(X)− Aθ

] d→ N(0, v2
A),

with n→ ∞, where

v2
A = K(θ)

{
σ 2
θ − 2θμθ

μ
γθ,1 +

(
θμθ

μ

)2

σ 2

}
,

and K(θ) = {(1 − Aθ)/θμθ }2.
In empirical economic inequality analysis it is common to estimate the Atkinson

index for several values of the parameter θ . In consequence, the estimates of
the different values of Aθ will be correlated, because the sample moments mθ
are correlated. Let θ = (θ1, . . . , θm)

	 be a selection of values of θ , and we
denote Aθ = (Aθ1 , . . . , Aθm)

	. The vector of the corresponding estimators will be
denoted byAθ(X). Provided adequate moments exist, the asymptotic distribution of
Aθ(X) is

√
n
[
Aθ(X)− Aθ

] d→ N(m)(0, �),

where

σij = Kij
{
γθi ,θj −Kjγθi ,1 −Kiγθj ,1 +KiKjσ 2

}
, i, j = 1, . . . , m,

with Kij = (1 − Aθi )(1 − Aθj )/θiθjμθiμθj and Ki = θiμθi /μ.
There are two special extremal cases: A0 = 1 − exp(E(logX)) and A−∞ =

1 − F−1
X (0)/μ. The asymptotic distribution of A0(X) can be obtained as was done

in the derivation of the distribution for finite negative values of θ . For the second
situation, the sample estimate is

A−∞(X) = 1 − X1:n
X̄
,

where X1:n is the minimum of the sample. Since the limiting distribution of the
sample minimum depends on which domain of minimal attraction that F belongs
to, one must consider three cases. See Arnold et al. (1992) for relevant details.
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The generalized entropy index is (see Cowell and Kuga 1981 and Shorrocks
1984)

Gβ = k
∫ ∞

0

[(
x

μ

)β
− 1

]
dF(x) = k

(
μβ

μβ
− 1

)
, (5.108)

where k = 1/β(β − 1) and β �= 0, 1. Compare with Eq. (5.107), with β = θ . The
sample versions of (5.108) are

Gβ(X) = 1

β(β − 1)

(
mβ

m
β
1

− 1

)

= 1

β(β − 1)

1

n

n∑

i=1

[(
Xi

X̄

)β
− 1

]
(5.109)

if β �= 0, 1. While, for β = 0 we have

G0(X) = −1

n

n∑

i=1

log
Xi

X̄
, (5.110)

and for β = 1,

G1(X) = 1

n

n∑

i=1

Xi

X̄
log
Xi

X̄
. (5.111)

The asymptotic distribution of (5.109) as n → ∞ and provided that the needed
moments exist is given by Thistle (1990)

√
n
[
Gβ(X)−Gβ

] d→ N(0, v2
G),

where

v2
G = k2

μ2(β+1)

{
μ2σ 2

β − 2βμμβγβ,1 + β2μ2
βσ

2
}
.

As in the case of the Atkinson indices, we can consider estimators ofGβ for sev-
eral different values of β, recognizing that again these estimators are correlated. We
denote Gβ = (Gβ1 , . . . ,Gβm)

	, and the vector of the corresponding estimators by
Gβ(X). The asymptotic distribution of Gβ(X), provided the appropriate moments
exist is
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√
n
[
Gβ(X)−Gβ

]
d→ N(m)(0,�),

where

wij = kikj

μβi+βj+2
{μ2γβi,βj − βjμβj μγβi,1

−βiμβiμγβj ,1 + βiμβi βjμβj σ 2}, i, j = 1, . . . , m

where ki = 1/βi(β1 − 1).
The asymptotic distributions for the two special cases (5.110) and (5.111) can be

derived using standard techniques (a multivariate central limit theorem and the delta
method).

5.8.12 The Kolm Inequality Indices

The Kolm (1976) inequality indices are based on a social welfare approach (see
Dalal and Fortini 1982; Atkinson 1970; Kolm 1976), which assumes a social
evaluation function for the vector of incomes from which an inequality index is
derived. These indices are defined by

TK(X) = 1

κ
log

(
1

n

n∑

i=1

eκ(X̄−Xi)
)
, (5.112)

where κ > 0 is a parameter that may be assigned any positive value. The index
TK(X) = 0 if κ = 0 and if κ → ∞, TK(X) tends to X̄ − X1:n, that is, the gap
between the average and the minimum income.

Each member of this Kolm family has the property that if we add the same
absolute amount to everyXi , the inequality remains unaltered. Multivariate versions
of this class of measures have been provided by Tsui (1995, 1999). The asymptotic
distribution of (5.112) can be obtained in routine fashion.

5.8.13 Additional Sample Inequality Indices

In this last sub-section we include some additional inequality indices listed in
Marshall et al. (2011) and Arnold (2015b), which have not yet received our
attention. In general, these measures have not been particularly popular, but there
may exist special situations in which they will prove to be “the right tool for the
job.”
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• Emlen’s (1973) index

T (X) =
n∑

i=1

Xi

X̄
exp(−Xi/nX̄)

• The minimal majority (Alker 1965)

T (X) = L−1
n (1/2),

where Ln is the sample Lorenz curve.
• Top 100α percent (Alker and Russet 1966),

T (X) = Ln(α).

• Quantile ratios:

T (α, β) = X[(1−α)n:n]
X[βn]:n

,

where 0 < α, β < 0.5.
• Sample income share ratios,

T (α, β) = 1 − Ln(1 − α)
Ln(β)

(5.113)

The sample Palma index is a special case of (5.113) when α = 0.1 and β = 0.4.

5.9 A New Class of Inequality Measures

In this section we define a new class of inequality measures defined on the set of
n-dimensional vectors of positive real numbers. Let x = (x1, x2, . . . , xn) ∈ R

n+.
We wish to define the degree of inequality exhibited by x. To this end define the
corresponding share vector

s = (s1, s2, . . . , sn),

where si = xi∑n
j=1 xj

.

Now let F0 denote a particular continuous increasing distribution function with
F0(0) = 0. For each such distribution function F0 we will define a measure of
inequality IF0(x) defined on R

n+.
LetX1, X2, . . . , Xn be i.i.d. positive random variables with common distribution

function F0. Define the corresponding share vector by
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S = (S1, S2, . . . , Sn),

where Si = Xi∑n
j=1 Xj

. Then we define

IF0(x) = P(S ≺ s).

Thus we have a new family of inequality indices, indexed by the class of all
distributions of positive random variables.

More generally we could let S be an arbitrary n-dimensional random variable
with positive coordinates that sum to 1 with probability 1, but we will focus on the
exchangeable case defined above.

In particular we consider the case in which the Xi’s are i.i.d. �(α, 1) random
variables. In this case we have

S ∼ Dirichlet(α, α, . . . , α).

We define the ordered shares by s1:n, s2:n, . . . , sn:n ordered from smallest, s1:n, to
largest, sn:n, and the cumulative ordered shares by

t1:n, t2:n, . . . , tn:n,

where ti:n =∑i
j=1 si:n, with parallel notation for the Si:n’s and the Ti:n’s. With this

notation we see that

IF0(x) = P(S ≺ s) = P(T1:n > t1:n, T2:n > t2:n, . . . , Tn−1:n > tn−1:n).

We have

fS1:n,S2:n,...,Sn−1:n(s1:n, s2:n, . . . , sn−1:n)

= n!�(nα)
(�(α))n

[
n−1∏

i=1

si:n

]α−1 [
1 −

n−1∑

i=1

si:n

]α−1

,

0 < s1:n < s2:n < · · · < sn−1:n < 1 −
n−1∑

i=1

si:n

an ordered Dirichlet distribution. Consequently

fT1:n,T2:n,...,Tn−1:n(t1:n, t2:n, . . . , tn−1:n)

= n!�(nα)
(�(α))n

[
ti:n

n−1∏

i=2

(ti:n − ti−1:n)
]α−1

[1 − tn−1:n]α−1 , (5.114)

where 0 < t1:n < t2:n − t1:n < t3:n − t2:n < . . . tn−1:n − tn−2:n < 1 − tn−1:n.
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If we set α = 1 in (5.114), we get a uniform distribution, thus

fT1:n,T2:n,...,Tn−1:n (t1:n, t2:n, . . . , tn−1:n) = n!(n− 1)!I ((t1:n, t2:n, . . . , tn−1:n) ∈ Bn−1),

where Bn−1 = {ti:n : 0 < t1:n < t2:n − t1:n < t3:n − t2:n < . . . tn−1:n − tn−2:n <
1 − tn−1:n}.

In the special, almost trivial, case when α = 1 and n = 3, we can do the required
calculation and we find that explicitly

IF0(x) = P(S ≺ s)
= P(T1:3 > t1:3, T2:3 > t2:3)

= 1 − 3(2s1:3s3:3 + s2
2:3)

= 1 − 3(s1:3s3:3 + s2:3s2:3 + s3:3s1:3)

a nice symmetrical result. Wouldn’t it be nice if there were a corresponding
symmetric result for Rn+. This class of inequality measures will be studied in future
research.

Note that we can extend the measure IF0(x) to deal with the class of positive
random variables with finite expectations as follows. For a random variable Y in this
class, consider N independent copies Y1, Y2, . . . , YN . Next define Ln(F0) to be the
sample Lorenz curve of X1, X2, . . . , Xn which are i.i.d with common distribution
F0 and define LN(Y ) to be the sample Lorenz curve of Y1, Y2, . . . , YN . The F0-
inequality measure of Y is then defined to be

IF0(Y ) = lim
N→∞P(Ln ≥ LN(Y )),

which can be evaluated approximately via simulation.

5.10 Exercises

1. We consider a set of independent random variables X1, X2, . . . , Xn belonging
to the class L, and let wi , i = 1, 2, . . . , n be non-negative real numbers.
Consider the aggregate random variable X =∏ni=1X

wi
i . Prove that

I7(X) =
n∑

i=1

w2
i I7(Xi),

where I7(X) represents the variance of the logarithm of X.

2. Let X be a random variable in L with E(X) = μ > 0. We define the log-
variance as
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v(X) = E(logX − logμ)2 = E
(

log
X

μ

)2

.

(a) If X ∼ LN(μ, σ 2), prove v(X) = σ 2 + σ 4

4
(b) If X has a classical Pareto distribution with parameters α > 1 and σ , prove

(α > 1)

v(X) = log
α − 1

α
+ 1

α
+ 1

α2 .

(c) How is v(X) related to the variance of the logarithm of X?

3. Let X have an exponential distribution with pdf,

f (x; a, τ ) = 1

τ
exp (−(x − a)/τ) , x ≥ a ≥ 0,

and f (x; a, τ ) = 0 if x < a.

(a) Prove that the Shannon entropy is H(X) = 1 + log τ .
(b) Obtain the Rényi entropy measure Hλ(X).

4. The parameterized family of hyperbolic Lorenz curves is defined as

L(u;α) = (α − 1)u

α − u , 0 ≤ u ≤ 1,

with α > 1 (Rohde 2009; Sarabia et al. 2010b) . Prove that

(a) The Gini index is

G = 1 + 2(α − 1)

[
1 + α log

(
α − 1

α

)]
.

(b) The Pietra index is

P = 2(α −√α(α − 1))− 1

(Sarabia et al. 2010b).

5. Let X have a Singh and Maddala (1976) distribution, also called Pareto IV
distribution by Arnold (2015b), with cdf

F(x) = 1 − 1

(1 + (x/σ )γ )α , x ≥ 0,

where α, γ, σ > 0.
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(a) Prove that the sequence of absolute Gini indices are of the form

mn = σ�(nα − 1/γ )�(1 + 1/γ )

�(nα)
, n = 1, 2, . . .

(b) Obtain the sequences of relative Gini indices Gn and G̃n, n = 1, 2, . . .

6. The Pareto III or Fisk distribution (Fisk 1961a) is defined in terms of its cdf by

F(x) = 1 − 1

1 + ( x
σ

)γ , x ≥ 0,

where σ > 0 and 0 < γ < 1.

(a) Check that the Gini index is given by γ .
(b) Prove that the mean of the Fisk distribution is μ = σπγ

sin(πγ ) .
(c) Express the parameter σ in terms of the mean and the Gini index.

7. Consider an exponential distribution with cdf F(x) = 1 − e−x/λ for x ≥ 0 and
F(x) = 0 if x < 0 and λ > 0. Check that the sequence of absolute Gini indices
are mn = 1

n
and obtain the sequences Gn and G̃n. Compute the absolute and

relative Gini indices in the case of the translated exponential distribution with
cdf F(x) = 1 − e−(x−a)/λ if x ≥ a > 0 and F(x) = 0 if x < a.

8. Let X be a random variable with cdf F(x) = xα if 0 ≤ x ≤ 1, with α > 0.
Compute the bound for the Gini index (5.66). Verify that equality in (5.66) is
achieved when α = 1.

9. If X ∼ �(α, 1) is a classical gamma distribution with shape parameter α > 0
and unit scale parameter, prove that the Amato index can be written as

A(X) =
∞∑

n=0

(
1/2

n

)
�(α + 2n)

α2n�(α)
.

10. For a non-negative random variable X with pdf f and μr = E(Xr) < ∞ for
r ∈ R, consider the pdf of the r th moment distribution, which will be denoted
by fr and defined as

fr(x) = xrf (x)

μr
.

Let

I (f, g) =
∫ ∞

−∞
f (x) log

(
f (x)

g(x)

)
dx

denote the Kullback–Leibler (K-L) divergence between f and g.
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(a) Prove that the K-L divergences between f and fr are given by

I (f, fr) = logE(Xr)− E(logXr) = log

(
A(Xr)

G(Xr)

)

and

I (fr , f ) = Er(logXr)− logE(Xr) = log

(
Gr(X

r)

A(Xr)

)
,

where Er(logXr) is the expected value of logXr under the weighted
distribution fr , A(Xr) = E(Xr), G(Xr) = exp(E(logXr)) and H(Xr) =
{E(X−r )}−1 are the arithmetic, geometric, and harmonic means of the
random variable Xr , respectively.

(b) If X ∼ LN(μ, σ 2) i.e., a lognormal distribution, verify that I (f, fr) =
I (fr , f ). Conversely, if I (f, fr) = I (fr , f ), ∀r ∈ I for some interval I
containing 0, thenX has a lognormal distribution (Tzavelas and Economou
2012).

11. Let X be a random variable in L and let T1(X) = E[(X/μ) log(X/μ)] be the
corresponding Theil 1 index. As in the previous exercise we denote by fr the
pdf of the r-th moment distribution.

(a) Prove that T1(X
r) = I (fr , f ) for all r ∈ R.

(b) Prove that X has a lognormal distribution if

T1(X
r) = log

(
A(Xr)

G(Xr)

)
,

for all r ∈ I , for some interval I containing 0, where A(Xr) = E(Xr) and
G(Xr) = exp(E(logXr)) are the arithmetic and geometric means of the
random variable Xr (Tzavelas and Economou 2012).

12. Obtain the asymptotic distribution of the variant Dalton index defined
in (5.101).

13. If X has a lognormal distribution with parameters μ and σ 2, obtain the
asymptotic distributions of the sample standard deviation and of the sample
coefficient of variation.

14. For the exponential distribution with mean 1, prove Eq. (5.92), that is, the
expectation of the sample Gini index G′

n is n−1
2n .

15. Prove Theorem 5.4.3. Hint: Use (5.60) and take into account that μ =∑k
j=1 pjμj , where E(X) = μ and E(Xj ) = μj .



Chapter 6
Families of Lorenz Curves

The Lorenz curve is an important instrument for analyzing the size distributions
of income, wealth, and inequality. The problem of finding an appropriate functional
form for a given data set or class of data sets is an important practical and theoretical
problem. In this chapter we study parametric models for Lorenz curves and some of
their applications.

We begin studying the basic properties that a function should satisfy in order
to be a genuine Lorenz curve. We follow this by identifying the Lorenz curves of
some common distributions. Then, we study different ways of generating new and
more flexible families of Lorenz curves from one or more baseline Lorenz curves.
After that we turn to a more careful study of specific families of Lorenz curves that
have been proposed in the literature. In the last section, we analyze some alternative
inequality curves. First, we consider the generalized and absolute Lorenz curves.
We continue with the Leimkuhler, Bonferroni, and Zenga curves and with two new
inequality curves constructed for studying the lower and middle income groups. We
also study some reliability curves and the economic concept of relative deprivation,
and its connections with the Lorenz curve.

6.1 Basic Results

In this section we study some basic issues regarding Lorenz curves. After con-
sidering a characterization theorem, we obtain the Lorenz curves of four common
distributions. Then, we study the Lorenz curves of translated and truncated random
variables.

© Springer International Publishing AG, part of Springer Nature 2018
B. C. Arnold, J. M. Sarabia, Majorization and the Lorenz Order with Applications
in Applied Mathematics and Economics, Statistics for Social and Behavioral Sciences,
https://doi.org/10.1007/978-3-319-93773-1_6

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93773-1_6&domain=pdf
https://doi.org/10.1007/978-3-319-93773-1_6


116 6 Families of Lorenz Curves

6.1.1 A Characterization of the Lorenz Curve

The following characterization Theorem of the Lorenz curve is attributed to Gaffney
and Anstin by Pakes (1981).

Theorem 6.1.1 Assume that L(u) is defined and continuous in the interval [0, 1]
with second derivative L′′(u). The function L(u) is a Lorenz curve iff

L(0) = 0, L(1) = 1, L′(0+) ≥ 0, L′′(u) ≥ 0, f or u ∈ (0, 1). (6.1)

The conditions given in (6.1) are readily checked for the curves catalogued in
this chapter. It is these conditions that must be checked when we are building new
curves from old ones.

Note that if LX(u) is a Lorenz curve corresponding to a random variable X with
cdf FX(x) and mean μX we have

F−1
X (x) = μXL′

X(x). (6.2)

A Lorenz curve determines the distribution of X up to a scale factor. To obtain the
pdf of X from its Lorenz curve we can use Eq. (3.6) in Chap. 3.

Example 6.1.1 Let us consider the Lorenz curve,

L(u;α) = 1

2
(u+ uα), 0 ≤ u ≤ 1,

where α ≥ 1. Using formula (6.2), the cdf corresponding to this Lorenz curve is

FX(x;α,μ) = 1

α1/(α−1)

(
2x

μ
− 1

)1/(α−1)

,
μ

2
≤ x ≤ μ(α + 1)

2
,

and FX(x;α,μ) = 0 if x ≤ μ
2 and FX(x;α,μ) = 1 if x ≥ μ(α+1)

2 . Note the cdf
depends on two parameters: α and a scale parameter μ, which represents the mean
of the distribution.

6.1.2 Lorenz Curves of Some Common Distributions

In this section we obtain the Lorenz curves of four common probability distribu-
tions: the uniform, exponential, classical Pareto and lognormal distributions. These
Lorenz curves will be useful for generating more sophisticated families of Lorenz
curves.

Let us consider the uniform distribution U [a, b] on the interval [a, b] with cdf
F(x) = x−a

b−a , with 0 < a ≤ x ≤ b. Then,
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L(u) = 1

μ

∫ u

0
F−1(t)dt

= 2

a + b
∫ u

0
[(b − a)t + a]dt

= 2

a + b
(
(b − a)u2

2
+ au

)
.

Next, we consider the exponential distribution with cdf F(x) = 1 − e−x/β if
x ≥ 0, where μX = β. It is straightforward to show that

L(u) = u+ (1 − u) log(1 − u), 0 ≤ u ≤ 1. (6.3)

Note that (6.3) does not depend on β because it is a scale parameter.
Now, we consider two relevant families of income distributions: the classical

Pareto and the lognormal distributions. The classical Pareto distribution was
introduced in Chap. 3, and it is defined in terms of the cdf by

F(x) = 1 −
( x
σ

)−α
, x ≥ σ > 0,

and F(x) = 0 if x < σ . The Lorenz curve was obtained in Chap. 3 and is given by,

L(u;α) = 1 − (1 − u)1−1/α, 0 ≤ u ≤ 1, (6.4)

where α > 1.
Finally, we consider the lognormal distribution X ∼ LN(μ, σ 2), whose Lorenz

curve is

L(u) = �(�−1(u)− σ), 0 ≤ u ≤ 1, (6.5)

Figure 6.1 shows the Lorenz curves of the classical Pareto and lognormal
distributions for some selected values of α and σ . Note that the lognormal curve
is self-symmetric, that is, L(1 − L(u)) = 1 − u.

Table 6.1 summarizes the Lorenz curves with the corresponding Gini indices for
these four common distributions.

6.1.3 Translated and Truncated Lorenz Curves

Many distributions can be obtained from a baseline distribution corresponding to a
random variable X by adding location and scale parameters to obtain Y = λ+ τX.
How are the Lorenz curves of Y and X related? First note that, by the scale
invariance property of Lorenz curves, X and τX (τ > 0) have identical Lorenz
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Fig. 6.1 Lorenz curves of the classical Pareto distribution (left) for α = 1.3, 2, and 3 (Eq. (6.4))
and Lorenz curve of the lognormal distribution (right) for σ = 0.5, 1, and 2 (Eq. (6.5))

Table 6.1 Lorenz curves and Gini indices of four common distributions

Distribution Lorenz curve Gini index

Uniform U [a, b] L(u) = 2au+ (b − a)u2

a + b G = b − a
3(a + b)

Exponential L(u) = u+ (1 − u) log(1 − u) G = 1

2

Classical Pareto L(u;α) = 1 − (1 − u)1−1/α G = 1

2α − 1
, α > 1

Lognormal L(u) = �(�−1(u)− σ) G = 2�

(
σ√

2

)
− 1

curves. A location change does however affect the Lorenz curve.The following
result permits one to obtain the Lorenz curve of Y = X + λ from the Lorenz curve
of X.

Theorem 6.1.2 Let X be a random variable in L, with E(X) = μX and Lorenz
curve LX(u). Let us consider the translated random variable Y = X + λ, with
λ ≥ 0. Then, the Lorenz curve of Y is given by

LY (u) = λu+ μXLX(u)
λ+ μX = wu+ (1 − w)LX(u), (6.6)

where w = λ
λ+μX , that is, LY (u) is a convex combination (a finite mixture) of the

egalitarian line u and LX(u) with weights w and 1 − w.

Example 6.1.2 Consider the three parameter lognormal distribution with pdf,

f (y;μ, σ, λ) = 1

(x − λ)x√2π
exp

{
−[log(x − λ)− μ]2

2σ 2

}
, x > λ ≥ 0,

(6.7)
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where μ ∈ R and σ > 0. Since Y = X+λ, whereX ∼ LN(μ, σ 2), using Eqs. (6.5)
and (6.6), the Lorenz curve of (6.7) is

LY (u) = λu+ eμ+σ 2/2�(�−1(u)− σ)
λ+ eμ+σ 2/2

, 0 ≤ u ≤ 1.

The following theorem relates the Lorenz curves of truncated random variables
(considering both lower and upper truncation) to the Lorenz curve of the untruncated
variable.

Theorem 6.1.3 Let X be a random variable in L with cdf FX(x) and Lorenz curve
LX(u).

(i) Define the lower truncated random variable (the random variable truncated
from below at c) by

X(c) = {X|(X ≥ c)},
with c ≥ 0. Then, the Lorenz Curve of X(c) is

LX(c) (u) = LX[(1 − FX(c))u+ FX(c)] − LX(FX(c))
1 − LX(FX(c)) , 0 ≤ u ≤ 1. (6.8)

(ii) Define the upper truncated random variable (the random variable truncated
from above at c) by

X(c) = {X|(X ≤ c)},
with c ≥ 0. Then, the Lorenz Curve of X(c) is

LX(c) (u) = LX(FX(c)u)

LX(FX(c))
, 0 ≤ u ≤ 1. (6.9)

According to Eqs. (6.8) and (6.9) if L0(p) is a baseline Lorenz curve, the
functional forms,

L1(u;w) = L0[(1 − w)u+ w] − L0(w)

1 − L0(w)
, 0 ≤ u ≤ 1,

L2(u;w) = L0(wu)

L0(w)
, 0 ≤ u ≤ 1,

with w ∈ (0, 1), are genuine Lorenz curves.

6.1.4 The Modality of the Income Density Function

In this section we study the relation between the Lorenz curve and the modality of
its underlying income density. We have the following result (Krause 2014).
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Theorem 6.1.4 If the Lorenz curve L(u) has a third derivative L′′′(u) and the
cumulative distribution F(x) has a finite positive and differentiable density f (x)
in the interval (xL, xU ), then if and only if L′′′(u) has n ≥ 1 sign changes from
L′′′(u) < 0 to L′′′(u) > 0 occurring at n points π̃i , with i = 1, 2, . . . , n, then f ′(x)
has the corresponding sign changes from f ′(x) > 0 to f ′(x) < 0 occurring at n
points denoted by x̃i with i = 1, 2, . . . , n. This means that f (x) is n-modal with
modes at x̃i with i = 1, 2, . . . , n.

The proof of this result is based on the Equation,

f ′(x) = −f (x)L
′′′(F (x))

μ[L′′(F (x))]2 .

For example, if L′′′(u) > 0 (L′′′(u) < 0) for all u ∈ (0, 1), then f ′(x) < 0
(f ′(x) > 0) for all x ∈ (xL, xU ), and f (x) is zeromodal and downward-sloping
(upward-sloping). For the Pareto Lorenz curve L(u) = 1−(1−u)δ , with 0 ≤ u ≤ 1
and 0 < δ ≤ 1 we have

L′′′(u) = (2 − δ)(1 − δ)δ(1 − u)δ−2 > 0, u ∈ (0, 1),

confirming that f (x) is zeromodal and downward-sloping. The modality of several
other parametric families of Lorenz curves has been studied by Krause (2014).

6.2 The Alchemy of Lorenz Curves

The following set of Theorems permit the generation of new and more flexible
families of Lorenz curves from one or more baseline Lorenz curves. These
results are readily proved using the Gaffney and Anstis conditions (6.1) given in
Theorem 6.1.1. See also Sarabia (2008a).

Theorem 6.2.1 The expression L(u) = uγ with γ ≥ 1 defines a Lorenz curve.
More generally, if L0(u) is a Lorenz curve, then

L(u) = [L0(u)]γ , (6.10)

with γ ≥ 1 is also a Lorenz curve.

The following result was provided by Sarabia et al. (1999).

Theorem 6.2.2 Let L0(u) be a Lorenz curve and consider the function,

Lα(u) = uαL0(u), α ≥ 0. (6.11)

Then, if α ≥ 1, Lα(u) is a valid Lorenz curve. In addition, if 0 ≤ α < 1 and the
third derivative of L0(u) is non-negative, then Lα(u) is a Lorenz curve as well.
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The condition that L′′′
0 (u) ≥ 0 in Theorem 6.2.2 can be relaxed as in the

following theorem (Wang et al. 2009).

Theorem 6.2.3 Assume that L0(u) is a Lorenz curve. Then,

L̃(u) = uαL0(u)
γ ,

is a Lorenz curve for any α ≥ 0 and γ ≥ 1. Furthermore, if L′′′
0 (u) ≥ 0 for all

u ∈ [0, 1], then L̃(u) is a Lorenz curve if α ≥ 0, γ ≥ 1
2 and α + γ ≥ 1.

The next theorem provides the reflected version of a given Lorenz curve L0.

Theorem 6.2.4 Let L0(u) be a genuine Lorenz curve. Then,

L(u) = 1 − L−1
0 (1 − u), 0 ≤ u ≤ 1,

is a genuine Lorenz curve.

Example 6.2.1 If L0(u) = 1 − (1 − u)δ , with 0 < δ ≤ 1 is the Pareto’s LC
(Eq. (6.4)), the corresponding reflected Lorenz curve is the power Lorenz curve
L(u) = u1/δ .

Theorem 6.2.5 If L1(u) and L2(u) are genuine Lorenz curves, the following
expressions are again Lorenz curves,

(i) L(u) = wL1(u)+ (1 − w)L2(u), with 0 ≤ w ≤ 1,
(ii) L(u) = L1(u)

α1L2(u)
α2 , with α1, α2 ≥ 1,

(iii) L(u) = L2(L1(u)),
(iv) L(u) = max{L1(u), L2(u)}.

The proof of this theorem is straightforward using the conditions provided
by Theorem 6.1.1. Part (iii) is included in Sarabia et al. (2017b). See also the
discussion of distorted Lorenz curves in Sect. 6.3.3 below.

These results can be extended to the case of more than two Lorenz curves as
follows.

Theorem 6.2.6 If L1(u), . . . , Lm(u) are valid Lorenz curves, the following expres-
sions are also Lorenz curves,

(i) L(u) =∑m
i=1wiLi(u), with wi ≥ 0, i = 1, . . . , m and

∑n
i=1wi = 1,

(ii) L(u) =∏ni=1 Li(u)
αi , with αi ≥ 1, i = 1, . . . , m

(iii) L(u) = Lm(Lm−1(· · · (L1(u)) · · · ))),
(iv) L(u) = max{L1(u), . . . , Lm(u)}.
Note 1 As noted in Arnold (2015b), it is possible for a linear combination of Lorenz
curves of the form

∑m
k=1 ckLk(u) with some ck’s negative to be a valid Lorenz

curve.

Note 2 If L1 and L2 are Lorenz curves, let us consider the functional form,
L(u;α, ν) = L1(u)

αL2(u)
ν, 0 ≤ u ≤ 1, (6.12)
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with α, ν ≥ 0. As an extension of part (ii) in Theorem 6.2.5, Wang et al. (2011) have
studied different sets of constraints about the parameters α, ν and conditions on the
curves L1 and L2 in order to have a genuine Lorenz curve.

As an extension of the finite mixtures given by part (iv) in Theorems 6.2.5
and 6.2.6 we have the following result (Sarabia et al. 2005).

Theorem 6.2.7 If L(u; δ) is an indexed collection of valid Lorenz curves where
δ ∈ �, and if π(δ; θ), θ ∈ Θ denotes a parametric family of densities on the set �,
it follows that

L(u; θ) =
∫

�

L(u; δ)π(δ; θ)dδ, θ ∈ Θ, (6.13)

is a parametric family of genuine Lorenz curves.

Example 6.2.2 Consider a power Lorenz curve L(u; δ) = uδ+1, where δ > 0.
Assume that the parameter δ is not constant and is modelled according to a Gamma
distribution (i.e., �(α, β)) with pdf,

π(δ;α, β) = δα−1e−δ/β

βα�(α)
, δ > 0,

with α, β > 0. The mixture Lorenz curve (which might be called a power-gamma
curve) is (using Eq. (6.13))

L(u;α, β) =
∫ ∞

0
uδ+1π(δ;α, β)dδ = u

(1 − β log u)α
, 0 ≤ u ≤ 1.

An extension of part (ii) in Theorem 6.2.6 has been proposed by Sarabia (2013).

Theorem 6.2.8 If L(u; δ) is an indexed collection of valid Lorenz curves where
δ ∈ �, and if π(δ; θ), θ ∈ Θ denotes a parametric family of densities on the set �,
then

L(u; θ) = exp

{∫

�

[logL(u; δ)]π(δ; θ)dδ
}
, θ ∈ Θ, (6.14)

is a parametric family of genuine Lorenz curves.

6.3 Parametric Families of Lorenz Curves

Using the results in Sects. 6.1 and 6.2 we can generate an extensive array of
parametric families of Lorenz curves. In this section we will present some specific
parametric families of Lorenz curves which have been proposed in the literature.
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6.3.1 Some Hierarchical Families

If we begin with the Lorenz curve of the classical Pareto distribution

L0(u; k) = 1 − (1 − u)k, 0 < k ≤ 1,

using Theorems 6.2.1 and 6.2.2 we can consider the following hierarchy of Lorenz
curves,

L1(u; k, α) = uα[1 − (1 − u)k], α ≥ 0, (6.15)

L2(u; k, γ ) = [1 − (1 − u)k]γ , γ ≥ 1, (6.16)

L3(u; k, α, γ ) = uα[1 − (1 − u)k]γ , α ≥ 0, γ ≥ 1, (6.17)

which will be called the Pareto hierarchy of Lorenz curves, since they originate
from the classical Pareto distribution. The family (6.15) coincides with the family
proposed by Ortega et al. (1991) while (6.16) can be recognized as the family
proposed by Kakwani (1980b) and Rasche et al. (1980). A detailed study of the
family (6.17) can be found in Sarabia et al. (1999).

This method has also been used to generate other hierarchies of Lorenz curves,
by considering different baseline curves. If we begin with the exponential Lorenz
curve, introduced by Chotikapanich (1993), defined by,

L0(u; c) = ecu − 1

ec − 1
, 0 ≤ u ≤ 1, (6.18)

where c ≥ 0, we obtain a new family of Lorenz curves called the exponential
family of Lorenz curves, by Sarabia et al. (2001). Sarabia and Pascual (2002) have
considered the following baseline curve,

L0(u; b, c) = ecu − bu− 1

ec − b − 1
, 0 ≤ u ≤ 1, (6.19)

as an extension of (6.18) and have studied the corresponding hierarchical family.
A related general family of Lorenz curves has been considered by Basmann et al.

(1990). They constructed a hierarchy of Lorenz curves by beginning with the initial
curve,

L0(u) = ue−b(u−1), 0 ≤ u ≤ 1, (6.20)

which was initially proposed by Kakwani and Podder (1973) (see also Rao and Tam
1987). The general family of Lorenz curves obtained in this manner is defined by

L(u;α, β, γ, δ) = uαu+βeγ (u−1)+δ(u2−1), 0 ≤ u ≤ 1. (6.21)

If we set β = 1 and α = δ = 0 in (6.21), we obtain the Lorenz curve (6.20).
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Sarabia (1997) proposed an alternative methodology for the construction of
Lorenz curves which involved specifying an appropriate parametric family of
quantile functions and using them to generate families of Lorenz curves. To illustrate
this, consider the generalized Tukey’s lambda distribution defined in terms of its
quantile function as follows:

F−1(u) = λ2[λ1 + uλ3 + (1 − u)λ4 ], 0 ≤ u ≤ 1.

First, conditions must be imposed on the parameters, the λi’s, in order to ensure
that F−1(u) is non-negative, integrable, and with support in some subset of [0,∞).
Sarabia (1997) has identified the corresponding nested family of Lorenz curves
which in the most general case is of the form

L(u) = π1u+ π2u
δ1 + π3[1 − (1 − u)δ2 ], 0 ≤ u ≤ 1, (6.22)

where π1 + π2 + π3 = 1. In the case in which πi ≥ 0 and δ1 > 1 and δ2 ∈ (0, 1]
we have a mixture of three Lorenz curves. However, other members of the family
(6.22) can also be genuine Lorenz curves, for different choices of the parameters πi
and δi (see Sarabia 1997).

6.3.2 General Quadratic Lorenz Curves

In this section we study a simple, but quite flexible, class of Lorenz curves
introduced by Villaseñor and Arnold (1984a,b, 1989), called general quadratic
Lorenz curves.

To begin, consider a general quadratic form as follows:

ax2 + bxy + cy2 + dx + ey + f = 0 (6.23)

If we impose a constraint that (6.23) pass through the points (0, 0) and (1, 1),
Eq. (6.23) becomes in,

ax2 + bxy + cy2 + dx + ey = 0, (6.24)

where e = −(a + b + c + d). If we substitute (u, L(u)) for (x, y) in (6.24), the
equation can be recognized as one defining implicitly a broad class of what we
can call quadratic Lorenz curves.There are three classes of such curves: parabolic,
hyperbolic, and elliptical.

Parabolic Lorenz Curves

If we set b = c = 0 in (6.24) then, after reparameterization we obtain,

L(u;w) = wu+ (1 − w)u2, 0 ≤ u ≤ 1 (6.25)
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where w ∈ [0, 1]. The Gini index corresponding to this Lorenz curve is given by

G(w) = 1 − w
3

.

Note that 0 ≤ G(w) ≤ 1
3 , which can be a shortcoming for practical use of this

family of curves.
But, in fact, the class of parabolic Lorenz curves is really restricted. Further

investigation will reveal that if w = 1 the Lorenz curve (6.25) corresponds to
a degenerate distribution, while if w ∈ [0, 1), the corresponding distribution is
uniform over a finite interval in [0,∞).

Hyperbolic Lorenz Curves

If we set b �= 0 and c = 0 in (6.24) we have a hyperbola, and the corresponding
Lorenz curve can be written of the form,

L(u; δ, η) = u(1 + (η − 1)u)

1 + (η − 1)u+ δ(1 − u) , 0 ≤ u ≤ 1, (6.26)

where δ, η > 0 and δ − η + 1 > 0. This functional form has been studied in detail
by Arnold (1986b). The corresponding Gini index is

G(δ, η) = δ

δ − η + 1
+ 2ηδ

(δ − η + 1)2

[
1 + δ + 1

δ − η + 1
log

(
η

δ + 1

)]
, (6.27)

provided δ − η + 1 �= 0. In the case δ − η + 1 = 0 we have

G(δ) = δ

3(1 + δ) .

The probability density function corresponding to (6.26) is

f (x; δ, η, μ) = K

[δx + (η − 1)(μ− x)]3/2
, μ(1 + δ)−1 ≤ x ≤ μ(1 + δη−1).

(6.28)

The pdf (6.28) is decreasing on its support if δ > η − 1 and in this situation we can
consider the reparameterization,

f (x;α, β, γ ) = K

[1 + x−α
β

]3/2
, α ≤ x ≤ γ,

where β > 0 and 0 < α < γ < ∞. On the other hand, if δ = η − 1 the resulting
pdf is uniform. Finally if δ < η − 1, the pdf is increasing on its support, and then
the model is not convenient to work with for income data.

A different reparameterization of (6.26) has been considered by Wang and Smyth
(2015) and Sarabia et al. (2015). Several subfamilies of (6.26) have also been
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proposed in the literature. Aggarwal (1984) and Aggarwal and Singh (1984) have
considered the subfamily corresponding to the choice η = 1 and δ = ( 1+θ

1−θ )
2 − 1.

The resulting family of Lorenz curves is of the form

L(u; θ) = (1 − θ)2u
(1 + θ)2 − 4θu

, 0 ≤ u ≤ 1, (6.29)

where θ ∈ (0, 1). A different reparameterization of (6.29) has also been considered
by Rohde (2009) and Sarabia et al. (2010b).

Elliptical Lorenz Curves

The general class (6.24) contains elliptical Lorenz curves when c �= 0 (taking c = 1
without loss of generality) and b2 − 4a < 0. The class of elliptical Lorenz curves is
given by Villaseñor and Arnold (1989)

L(u; a, b, d) = 1

2

[
−(bu+ e)−

√
αu2 + βu+ e2

]
, 0 ≤ u ≤ 1, (6.30)

where

α = b2 − 4a,

β = 2be − 4d,

e = −(a + b + d + 1),

and the parameters satisfy the four conditions:

α < 0, e < 0, d ≥ 0, a + d ≥ 1.

The pdfs associated to (6.30) are not complicated and can be written as (Villaseñor
and Arnold 1989),

f (x; ν, τ, η) = K

[1 + ( x−ν
τ
)2]3/2

, τη1 + ν ≤ x ≤ τη2 + ν, (6.31)

where 0 < η1 < η2 <∞, τ > 0, τη1 + ν ≥ 0 and K is the normalizing constant.

Circular Lorenz Curves

A special subclass of the elliptical Lorenz curves are the circular Lorenz curves
(Ogwang and Rao 1996), which are defined by

L(u; a) = 1 + a −
√
(1 + a)2 − 2au− u2, 0 ≤ u ≤ 1,
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Fig. 6.2 Circular Lorenz curves for a = 0, 0.5, 1, and 3

where a ≥ 0. The circular Lorenz curves are a special case of (6.30) with a = c = 1,
b = 0, d = 2a, and e = −2(1 + a) (see also Eq. (6.24)). This family corresponds
to arcs of circles, passing through (0, 0) and (1, 1). The center of the circle is the
point (−a, 1 + a). Members of this class of curves are self-symmetric. Note that
lima→∞ L(u; a) = u.

Since ∂L(u;a)
∂a

≥ 0, this family of curves is ordered with respect to a, thus,

a1 ≥ a2 ⇒ L(u; a1) ≥ L(u; a2).

Figure 6.2 shows circular Lorenz curves for some selected values of a
The Gini indices corresponding to circular Lorenz curves are given by

G(a) = −1 − 2a + (1 + 2a + 2a2) arcsin

(
1 + 2a

1 + 2a + 2a2

)
. (6.32)

The cumulative distribution functions corresponding to the circular Lorenz
curves are (a, μ > 0),

F(x; a, μ) = −a(μ2 + x2)+ x√(1 + 2a + 2a2)(μ2 + x2)

μ2 + x2 ,

aμ

1 + a ≤ x ≤ (1 + a)μ
a

,
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and F(x; a, μ) = 0 if x ≤ aμ
1+a and F(x; a, μ) = 1 if x ≥ (1+a)μ

a
. The pdf’s of the

circular Lorenz curves are

f (x; a, μ) = (1 + 2a + 2a2)1/2

μ[1 + (x/μ)2]3/2
,

aμ

1 + a ≤ x ≤ (1 + a)μ
a

,

and f (x; a, μ) = 0 otherwise, which are of the form (6.31). If we take a = 0 the
extreme value of a, we obtain the Lorenz curve

L(u) = 1 −
√

1 − u2, 0 ≤ u ≤ 1, (6.33)

with cdf

F(x;μ) = x√
μ2 + x2

, 0 ≤ x <∞

and F(x;μ) = 0 if x < 0 and pdf

f (x;μ) = 1

μ[1 + (x/μ)2]3/2
, 0 ≤ x <∞

and f (x;μ) = 0 otherwise. The Gini index of (6.33) is (π/2) − 1. Consequently,
the Gini index (6.32) is bounded,

0 ≤ G(a) ≤ π

2
− 1 = 0.57.

6.3.3 Other Parametric Families

In this section we discuss some other relevant models of Lorenz curves proposed in
the literature.

Lorenz Curves Generated from Strongly Unimodal Distributions

Arnold et al. (1987) have proposed the class of Lorenz curves of the form,

LF (u; σ) = F(F−1(u)− σ), 0 ≤ u ≤ 1, (6.34)

where F(·) is any strongly unimodal distribution with unbounded support and
σ ≥ 0. For example, if F = �, we obtain the Lorenz curve of the lognormal
distribution. The Lorenz curve of the classical Pareto distribution given by (6.4) can
be written of the form (6.34), with F(x) = 1 − exp(−ex), one of the extreme value
distributions. Other strongly unimodal choices for F do not seem to have received
careful attention as possible income distribution models.
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Maximum Entropy Lorenz Curves

Holm (1993) has proposed a class of Lorenz curves obtained from densities which
have maximal entropy subject to side conditions on the Gini index and on the
distance between the mean and the minimum income. The distributions that are
identified in this manner have quantile functions satisfying,

dF−1(p)

dp
= c

1 + λ1(1 − p)+ λ2p(1 − p), 0 ≤ p ≤ 1, (6.35)

where λ1 and λ2 are the corresponding Lagrange multipliers arising from the side
conditions. If λ1 �= 0 and λ2 = 0, the corresponding Lorenz curve is of the form

L(u; r) = u+G(r − u) log(1 − u/r)− (r − 1) log(u− 1/r)u

r(r − 1) log(1 − 1/r)+ r − 0.5
, 0 ≤ u ≤ 1,

(6.36)
where G is the Gini index and r ∈ (−∞, 0) ∪ (1,∞). The limit as r ↓ 1 is

L(u) = u+ 2G(1 − u) log(1 − u), 0 ≤ u ≤ 1,

which corresponds to a shifted exponential distribution (see Problem 2). In the case
λ1 = 0 and λ2 �= 0 we obtain a more complicated Lorenz curve, which includes as
a limiting case the Lorenz curve,

L(u) = u+G[u log u+ (1 − u) log(1 − u)], 0 ≤ u ≤ 1.

Finally, in the case in which λi �= 0, i = 1, 2 a more complicated two parameter
family of Lorenz curves is encountered. It includes, as a limiting case, the truncated
Pareto distribution.

Lorenz Curves Based on Generating Functions

Sarabia et al. (2010a) have proposed a methodology for constructing Lorenz curves,
using the generating functions of positive integer valued random variables. LetX be
a discrete random variable with probability generating function

PX(s) = E(sX) =
∞∑

j=1

P(X = j)sj .

and let L0(u) be an arbitrary baseline Lorenz curve. It follows that the expression

L(u) = PX(L0(u)), 0 ≤ u ≤ 1, (6.37)
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defines a genuine Lorenz curve. Note that (6.37) can be written as

L(u) = PX(L0(u)) =
∞∑

j=1

P(X = j){L0(u)}j ,

which is a countable mixture of Lorenz curves and, as a consequence, a valid Lorenz
curve.

We consider two relevant examples. If X has a geometric distribution with
probability mass function P(X = k) = π(1 − π)k−1, k = 1, 2, . . . , then using
(6.37) we have

L(u) = PX(L0(u)) = πL0(u)

1 − (1 − π)L0(u)
, 0 < u ≤ 1.

If instead we consider the random variable X = Y + 1 where Y has a Poisson
distribution with mean λ, then using (6.37) we obtain

L(u) = PX(L0(u)) = L0(u) exp{λ(L0(u)− 1)}, 0 < u ≤ 1. (6.38)

If L0(u) = u is used in (6.38), we obtain the Lorenz curve proposed by Gupta
(1984).

On the other hand, if we consider a random variable X which takes non-negative
(rather than strictly positive) values with generating function PX(s), we can consider
the classes of Lorenz curves,

L1(u) = {L0(u)}αPX(L0(u))

and

L2(u) = PX(L0(u))− p0

1 − p0
,

where L0(u) is any baseline Lorenz curve and p0 = P(X = 0) > 0.

Distorted Lorenz Curves

The class of distorted Lorenz curves has been proposed by Sordo et al. (2013)
using the concept of a distortion function. Several models of Lorenz curves can
be obtained by distorting a Lorenz curve L by a function h, giving rise to a
distorted Lorenz curve L̃ = h ◦ L. A distortion function is an increasing function
h : [0, 1] → [0, 1] such that h(0) = 0 and h(1) = 1. If, in addition, h′′(t) ≥ 0 for all
t ∈ (0, 1), then h(u) is itself a Lorenz curve and by Result (iii) of Theorem 6.2.5, L̃
defines a Lorenz curve which can be viewed as a distortion of L. Sordo et al. (2013)
have explored the role of these curves in the context of the axiomatic structure of
Aaberge (2001) used for ordering on the set of Lorenz curves.
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Note that the generating function of a positive integer valued random variable is a
distortion function, so that the class of distorted Lorenz curves includes curves of the
form (6.37), but the distorted Lorenz class is more extensive than that represented
by (6.37).

We have seen that, for a Lorenz curve L(u), if h is also a Lorenz curve then
h(L(u)) is itself a Lorenz curve. But h(L(u)) can be a Lorenz curve even when h is
not convex (i.e., not a Lorenz curve). For example, take L(u) = u2 and h(u) = u3/4

in which case h(L(u)) = u3/2, a valid Lorenz curve.
For a particular Lorenz curve L(u), the class of functions h for which h(L(u))

is a valid Lorenz curve will depend on the specific nature of L(u). For a trivial
example, if L(u) = u then in order for h(L(u)) to be a Lorenz curve, it is necessary
and sufficient that h be a Lorenz curve. As a consequence of this observation, a
necessary and sufficient condition for h(L(u)) to be a valid Lorenz curve for every
Lorenz curve L(u) is that h be itself a Lorenz curve.

In parallel fashion one may consider a variant distortion mechanism as follows.

For a given Lorenz curve L(u), we consider a composition of the form ˜̃
L(u) =

L(g(u)) and seek to determine for which choices of the function g will ˜̃
L(u)

be a valid Lorenz curve. A simple sufficient condition for this is, of course, that
g(u) itself should be a Lorenz curve, for then one can apply condition (iii) of
Theorem 6.2.5. But L(g(u)) can be a Lorenz curve even when g is not convex (i.e.,
not a Lorenz curve). For example, again take L(u) = u2 and g(u) = u3/4 in which
case L(g(u)) = u3/2, a valid Lorenz curve.

For a given choice of L(u), necessary and sufficient conditions for L(g(u))
to be a valid Lorenz curve will depend on the specific nature of L(u). By again
considering the case in which L(u) = u, we may however conclude that a necessary
and sufficient condition on g for L(g(u)) to be a valid Lorenz curve for every choice
of L(u) is that g be a Lorenz curve.

The Family of Arctan Lorenz Curves

This family of Lorenz curves makes use of the arctan function acting on a baseline
Lorenz curve. IfL0(u) is a Lorenz curve, Gómez-Déniz (2016) defines the following
family of Lorenz curves,

L(u;α) = 1 − arctan(α(1 − L0(u)))

arctan(α)
, 0 ≤ u ≤ 1, (6.39)

where α ∈ R and α �= 0. If α → 0 in (6.39), then L(u;α) → L0(u). Note that
L(u;α) = L(u;−α), so that we may quite reasonably restrict attention to the case
in which α > 0. If we substitute the egalitarian Lorenz curve L0(u) = u in (6.39)
we have the family,

L(u;α) = 1 − arctan(α(1 − u))
arctan(α)

, 0 ≤ u ≤ 1, (6.40)
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Fig. 6.3 Arctan Lorenz
curves (6.40) for some
selected values of α (top) and
the Gini index (6.41)
(bottom) as a function of α
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with Gini index,

G(α) = 1 − log(1 + α2)

α arctan(α)
. (6.41)

Figure 6.3 includes plots the Lorenz curves (6.40) together the corresponding Gini
indices (6.41) for various values of α. A detailed study of this family including
Lorenz ordering, inequality measures and applications can be found in Gómez-
Déniz (2016).

A more general family of Lorenz curves of the Gómez-Déniz type is obtained by
considering H to be an arbitrary increasing and concave function with H(0) = 0
and defining

L(u;α) = 1 − H(α(1 − u))
H(α)

, 0 ≤ u ≤ 1.
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6.4 Some Alternative Inequality Curves

Some modified Lorenz curves have proven to be useful in social science settings.
Two of them are described below in Sect. 6.4.1. Four alternative inequality curves,
intimately related to the Lorenz curve, have been proposed and are described in
Sect. 6.4.2. Two additional inequality curves for the lower and middle income
groups are presented in Sect. 6.4.3. The section will close with discussion of two
other inequality curves, one arising in reliability settings, the other in the context of
relative deprivation.

6.4.1 Generalized and Absolute Lorenz Curves

The generalized Lorenz curve (GLC) introduced by Shorrocks (1983) is one of the
most important variations of the Lorenz curve. The Lorenz curve is scale invariant
and is thus only an indicator of relative inequality. However, it does not provide a
complete basis for making social welfare comparisons. Shorrocks’ proposal is the
following.

Definition 6.4.1 The generalized Lorenz curve is defined by

GLX(u) = μXLX(u) =
∫ u

0
F−1
X (t)dt, 0 ≤ u ≤ 1. (6.42)

We have GLX(0) = 0 and GLX(1) = μX. A distribution with a dominating GLC
provides greater welfare according to all concave increasing social welfare functions
defined on individual incomes (see Kakwani 1980a; Davies et al. 1998). It is evident
that the GLC is not scale-free and, as a consequence, it completely determines any
distribution with finite mean. The order induced by (6.42) is a new partial ordering,
and sometimes it allows a larger percentage of curves to be ordered than does the
Lorenz order. Normative interpretations of the restrictions required on the class of
social welfare function in order to correspond to GLC dominance have been studied
by Shorrocks and Foster (1987) and Davies and Hoy (1994), among others.

An alternative variation of the Lorenz curve has been proposed by Moyes (1987)
as follows.

Definition 6.4.2 The absolute Lorenz curve is defined as

ALX(u) = μX[LX(u)− u] =
∫ u

0
[F−1
X (t)− μX]dt, 0 ≤ u ≤ 1.

This definition replaces scale invariance by location invariance.
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6.4.2 Leimkuhler, Bonferroni and Zenga Curves

The Leimkuhler curve is used in the field of informetrics instead of the Lorenz curve.
Sarabia (2008b) provides the following useful representation of this curve which
clarifies its relationship with the Lorenz curve. We have the following definition.

Definition 6.4.3 Let X be a random variable in L with cdf FX and mean μX. The
Leimkuhler curve KX(u) of X is defined by

KX(u) = 1

μX

∫ 1

1−u
F−1
X (t)dt, 0 ≤ u ≤ 1.

The Leimkuhler curve is a continuous non-decreasing concave function with
KX(0) = 0 and KX(1) = 1. A simple representation of the close relationship
between the Lorenz and the Leimkuhler curve is provided by the equation,

KX(u) = 1 − LX(1 − u), 0 ≤ u ≤ 1. (6.43)

The Leimkuhler partial order ≤K can be defined as

X ≤K Y ⇔ KX(u) ≤ KY (u), u ∈ [0, 1].

Then, from (6.43) it is clear that the Leimkuhler partial order is the same as
the Lorenz order. Sarabia and Sarabia (2008) have proposed different parametric
families for the Leimkuhler curve.

Next, we define the Bonferroni (1930) curve.

Definition 6.4.4 The Bonferroni curve is defined in terms of the Lorenz curve by

BX(u) = LX(u)

u
, 0 < u ≤ 1.

It is clear that L(u) ≤ B(u). The Bonferroni partial order ≤B is defined as

X ≤B Y ⇔ BX(u) ≥ BY (u), u ∈ (0, 1].

It is evident that the Bonferroni partial order is equivalent to the Lorenz and
Leimkuhler orders. An alternative expression for computing the Bonferroni curve
is

BX(u) =
∫ u

0

[F (1)X ]−1(t)

F−1
X (t)

dt, 0 < u ≤ 1,

where, as usual, F (1)(·) is the first moment distribution of FX.
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We will continue by discussing two curves proposed by Zenga in 1984 and 2007.
We will label these curves as Zenga-I and Zenga-II.

Definition 6.4.5 The Zenga-I curve (Zenga 1984) curve is defined by

ZIX(u) = 1 − F−1
X (u)

[F (1)X ]−1(u)
, 0 ≤ u ≤ 1.

The Zenga-II curve (Zenga 2007) is defined by

ZIIX (u) = 1 − (1 − u)LX(u)
u(1 − LX(u)) , 0 ≤ u ≤ 1. (6.44)

The Zenga-I curve is scale invariant since it involves the quotient of two related
quantile functions. The corresponding partial order is defined by

X ≤ZI Y ⇔ ZIX(u) ≥ ZIY (u), 0 < u < 1.

The Zenga-I order is not equivalent to the Lorenz order. On the other hand, the
Zenga-I curve does not determine the distribution function, that is, it is possible to
have two essentially different distributions (not related by a scale change) with the
same Zenga-I curve. A detailed discussion regarding characterizations of Zenga’s
curves has been provided by Arnold (2015a).

The Zenga-II curve is again scale invariant. From (6.44) it is straightforward to
verify that

ZIIX (u) = 1 − BX(u)
1 − LX(u) , 0 ≤ u ≤ 1. (6.45)

We may recover the Lorenz curve from the Zenga-II curve using the expression,

LX(u) = u(1 − ZIIX (u))
1 − uZIIX (u)

, 0 ≤ u ≤ 1,

and consequently

LX(u) ≤ LY (u)⇔ ZIIX (u) ≥ ZIIY (u), 0 ≤ u ≤ 1,

so that the Zenga-II order and the Lorenz order coincide.

Example 6.4.1 We consider the lognormal distribution X ∼ LN(μ, σ 2). The first
moment distribution in this case is again of the lognormal form, i.e., X1 ∼ LN(μ+
σ 2, σ 2). Then the corresponding Zenga-I curve is

ZIX(u) = 1 − F−1
X (u)

[F (1)X ]−1(u)
= 1 − exp(μ+ σ�−1(u))

exp(μ+ σ 2 + σ�−1(u))
= 1 − e−σ 2

,
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Fig. 6.4 The Lorenz,
Leimkuhler, Bonferroni,
Zenga I and Zenga II curves
for a lognormal distribution
with parameter σ = 0.5
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which (perhaps surprisingly) does not depend on u. Using Eq. (6.45) the Zenga-II
curve is

ZIIX (u) = 1 − BX(u)
1 − LX(u) = u−�(�−1(u)− σ)

u�(σ −�−1(u))
,

for 0 ≤ u < 1.

Figure 6.4 displays the Lorenz, Leimkuhler, Bonferroni, Zenga I and Zenga II
curves for a lognormal distribution with parameter σ = 0.5. This figure sheds light
on the different nature of these curves.

6.4.3 Inequality Curves for the Lower and Middle
Income Groups

Here we review two new inequality curves defined by Gastwirth (2016) in terms of
the Lorenz curve, for studying the status of the lower and middle income groups.

The first curve is defined by

J (u) = L(u)

1 − L(1 − u) , 0 ≤ u ≤ 1, (6.46)
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where L(·) is a genuine Lorenz curve. For each u, the curve J (u) is the ratio of the
total income of the poorest uth fraction of the population to the total income of the
highest uth fraction. This implies that as u increases, J (u) increases as its numerator
will increase, while the denominator will decrease.

The second curve Jm(u) considers the status of the middle class. It is defined as,

Jm(u) = L(0.5 + u
2 )− L(0.5 − u

2 )

1 − L(1 − u) , 0 ≤ u ≤ 1. (6.47)

This curve is the ratio of the total income received by the middle uth fraction of the
distribution to that of the upper uth fraction. From their definitions it is clear that
Jm(u) ≥ J (u) for all u.

According to Gastwirth (2016), because the same proportion of the population
is considered in both the numerator and denominator of (6.46) and (6.47), the
measures can also be interpreted as the ratio of the average income received by
the poorest 100u% or middle 100u% of the population to the average income of the
upper 100u%.

For the case of the classical Pareto distribution X ∼ P(I)(σ, α), the curves J
and Jm are given by (α > 1),

J (u) = 1 − (1 − u)1−1/α

u1−1/α
, 0 ≤ u ≤ 1, (6.48)

and

Jm(u) = (0.5 + u
2 )

1−1/α − (0.5 − u
2 )

1−1/α

u1−1/α
, 0 ≤ u ≤ 1, (6.49)

respectively.
If we consider a lognormal distribution X ∼ LN(μ, σ 2), these curves are

J (u) = �(�−1(u)− σ)
�(σ −�−1(1 − u)) , 0 ≤ u ≤ 1, (6.50)

and

Jm(u) = �(�−1(0.5 + u
2 )− σ)−�(�−1(0.5 − u

2 )− σ)
�(σ −�−1(1 − u)) , 0 ≤ u ≤ 1,

(6.51)
respectively, with σ > 0 where, as usual, �(·) is the cdf of the standard normal
distribution.

Figure 6.5 shows the curves (6.48) and (6.49) in the Pareto case for some
selected values of the parameter α. The curves (6.50) and (6.51) for the lognormal
distribution are shown in Fig. 6.6.
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Fig. 6.5 The J (top) and Jm (bottom) curves for the classical Pareto distribution, for some
selected values of α
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Fig. 6.6 The J (top) and Jm
(bottom) curves for the
lognormal distribution, for
some selected values of σ
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6.4.4 Reliability Curves

We next define a concept, arising in reliability contexts, which has some implica-
tions in wealth analysis.

Definition 6.4.6 The scaled total time on test transformation (STTTT) is defined as

T̃X(u) = 1

μ

∫ F−1
X (u)

0
[1 − FX(v)]dv, 0 ≤ u ≤ 1. (6.52)
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If FX is strictly increasing on its support, we have (see Chandra and Singpurwalla
1981),

LX(u) = T̃X(u)− 1

μ
F−1
X (u)(1 − u), 0 < u < 1.

The ST T T T function is directly related to the excess wealth transform WX(u)

proposed by Shaked and Shanthikumar (1998) and defined by

WX(u) =
∫ ∞

F−1
X (u)

[1 − FX(v)]dv, 0 < u < 1. (6.53)

The functions (6.52) and (6.53) are related by the formula,

WX(u) = μ[1 − T̃X(u)], 0 < u < 1. (6.54)

6.4.5 Relative Deprivation

In this section we introduce the concept of relative deprivation, which was proposed
by Yitzhaki (1979). It is a concept that is consistent with the theory of attitudes to
social inequality, the so-called theory of relative deprivation (Runciman 1966).

Following Yitzhaki (1983), we consider income as the object of relative depriva-
tion: income should be considered as an index of the individual’s ability to consume
commodities. The range of possible deprivation of a person is (0, ỹ), where ỹ is the
highest income in the society. For each person with income yi , we can consider two
intervals: first (yi, ỹ), the range of deprived income and (0, yi), the range of satisfied
income.

The total deprivation assigned to a person is the sum of the deprivation inherent
in all units of income he is deprived of. Runciman (1966) defines the degree of
deprivation inherent in not having y (the ith unit of income) as an increasing
function of the proportion of persons in the society who have y. According to
previous definition, the degree of relative deprivation of the range (y, y + dy) can
be quantified by 1 − F(y), which represents the relative frequency of persons with
incomes above y.

Definition 6.4.7 For a person with income “y" we define the following two
functions:

(i) The relative deprivation function:

D(y) =
∫ ỹ

y

[1 − F(z)]dz, (6.55)

(ii) The relative satisfaction function:
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S(y) =
∫ y

0
[1 − F(z)]dz. (6.56)

The following results were provided by Yitzhaki (1979). The first result relates
the relative satisfaction function with the Lorenz curve of income.

Theorem 6.4.1 The relative satisfaction function defined in (6.56) can be written as

S(y) = y[1 − F(y)] + μL(F(y)), (6.57)

where L(u) represents the Lorenz curve of the income distribution.

Proof Integrating (6.56) by parts we have

S(y) = y[1 − F(y)] +
∫ y

0
zf (z)dz,

and we obtain directly (6.57). �
The following Theorem relates the relative satisfaction in a society (that is, in all

the population) with the Gini index of the income.

Theorem 6.4.2 If we define the degree of relative satisfaction in the society,
denoted by S, as the average of the relative satisfaction function defined in (6.56),
we have that

S = μ(1 −G), (6.58)

where G denotes the Gini index of the income distribution.

Proof We have

S = E[S(Y )] =
∫ ỹ

0
S(z)f (z)dz,

and using (6.57), we obtain (6.58). �

6.5 Exercises

1. We consider the polynomial functional form

Lk(u;π) = π0 + π1u+ · · · + πkuk, 0 ≤ u ≤ 1,

with k = 1, 2, . . . and πi ∈ R.
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(a) For k = 1, 2 and 3, identify the constraints on the parameters, the πi’s, in
order to have genuine Lorenz curves.

(b) Compute the Gini indices Gk(π) = 2
∫ 1

0 [u− Lk(u;π)]du, for k = 1, 2, 3.

2. Prove Theorem 6.1.3. Hint: first identify the cdf’s of the random variables X(c)
and X(c).

3. Assume both L1 and L2 are Lorenz curves and consider the functional form,

L(u) = L1(u)
αL2(u))

ν, 0 ≤ u ≤ 1.

Prove that L(u) is a genuine Lorenz curve if α ≥ 0, ν ≥ 1 and L′′
1(u)/L

′
1(u) is

increasing in [0, 1] (Wang et al. 2011).

4. Consider the two parameter exponential distribution with cdf,

F(x) = 1 − e−(x−ν)/τ , x ≥ ν,
and F(x) = 0 if x < ν, with ν, τ > 0. Using Theorem 6.1.2 and Table 6.1, prove
that the corresponding Lorenz curve is

L(u) = u+
(

1 + ν

τ

)−1
(1 − u) log(1 − u), 0 ≤ u ≤ 1.

Verify also that the Gini index is given by G = τ
2(ν+τ) .

5. The beta-Lorenz curve is defined as

L(u; a, b) = 1

B(a, b)

∫ u

0
ta−1(1 − t)b−1dt, 0 ≤ u ≤ 1.

(a) Prove that L(u; a, b) is a genuine Lorenz curve if a ≥ 1 and 0 < b ≤ 1.
(b) Show that the Gini index is a−b

a+b .
(c) Obtain the cdf of the corresponding random variable in the case in which

a = 1 and b = 1.

6. Consider the (Chotikapanich 1993) Lorenz curve given by Eq. (6.18). Prove that
the cdf corresponding to this LC is

F(x; k, α) = 1

k
log

(
x

ckμ

)
, ckμ ≤ x ≤ ckμek,

where ck = k/(ek − 1) and F(x; k, α) = 0 if x ≤ ckμ and F(x; k, α) = 1 if
x ≥ ckμek .

7. Consider the two parameter functional form (Wang et al. 2009),

L(u;β, γ ) = 1 − (1 − u)βe−γ u, 0 ≤ u ≤ 1.
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Using Theorem 6.1.1 prove that L(u) is a genuine Lorenz curve if β > 0 and
0 ≤ β + γ ≤ √

β.

8. The hyperbolic Lorenz curve is of the form,

L(u; σ) = u

eσ + (1 − eσ )u, 0 ≤ u ≤ 1,

with σ ≥ 0.

(a) Prove that L(u; σ) belongs to the class of Lorenz curves (6.34), where
F(x) = 1

1+e−x is the logistic distribution.
(b) Prove that the cdf associated with the Lorenz curve L(u; σ) is given by

G(x;μ, σ) = eσ − √
μeσ /x

eσ − 1
, e−σμ ≤ x ≤ eσμ,

where μ > 0 is the mean of the distribution (Arnold et al. 1987).

9. Verify Eq. (6.54), which relates the STTTT (Eq. (6.52)) with the excess wealth
transform (6.53).



Chapter 7
Multivariate Majorization
and Multivariate Lorenz Ordering

7.1 Multivariate Majorization

The temptation to seek multivariate generalizations of majorization and the Lorenz
order is strong, and has not been resisted. In an income setting it is reasonable to
consider income from several sources or income in incommensurable units. In fact,
the idea that income can be measured undimensionally is perhaps the radical point
of view, and interest should center on multivariate measures of income. Let us first
consider various possible multivariate generalizations of majorization.

Let R+
n×m be the set of all n × m matrices with non-negative real elements. We

want to define m-dimensional majorization to be a partial order on R
+
n×m in such a

way as to reduce to ordinary majorization when m = 1. One possible definition is
to require column by column majorization. For any matrix X ∈ R

+
n×m we let X(j)

(j = 1, 2, . . . , m) denote the j ’th column. With this notation we have the following
definition.

Definition 7.1.1 Let X, Y ∈ R
+
n×m. We say that X is marginally majorized by Y if,

for every j = 1, 2, . . . , m, X(j) ≤M Y (j), and we write X ≤MM Y .

Now from the Hardy, Littlewood, and Polya theorem (Theorem 2.1.1) we know
that if X ≤MM Y then there exist doubly stochastic matrices P1, P2, . . . , Pm such
that X(j) = PjY

(j). Of course the Pj ’s may well not be all the same. If the same
choice of doubly stochastic matrix works for every j , we can define a stronger
and perhaps more interesting partial order. It is this partial order that is dubbed
majorization in Marshall et al. (2011). To capture the spirit of the definition, we will
call the relation uniform majorization. We thus have

Definition 7.1.2 Let X, Y ∈ R
+
n×m. We say that X is uniformly majorized by Y

if there exists a doubly stochastic matrix P such that X = PY , and we write
X ≤UM Y .
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How are marginal and uniform majorization related? Obviously, we have the
implication X ≤UM Y ⇒ X ≤MM Y , for one can set Pj = P for each j . It is not
difficult to verify that the converse fails, i.e., in general X ≤MM Y � X ≤UM Y
(Exercise 1).

Life in higher dimensions is invariably a little more complicated than a one-
dimensional existence. This is exemplified by the fact that Robin Hood loses some
of his prominence in higher dimensional versions of majorization.

A Robin Hood operation (refer to Chap. 2) involves a transfer of wealth from a
relatively richer individual to a relatively poorer individual in the population. It is
equivalent to multiplication by a doubly stochastic matrix of the form A = (aij )

where for some k1, k2 and some λ ∈ [0, 1]

ak1,k1 = 1 − λ, ak1,k2 = λ,
ak2,k1 = λ, ak2,k2 = 1 − λ, (7.1)

ai,j = δij , otherwise.

Matrices satisfying (7.1) will be called Robin Hood matrices. We may then
formulate

Definition 7.1.3 Let X, Y ∈ R
+
n×m. We say that X is majorized in the Robin Hood

sense by Y , if there exists a finite set of Robin Hood matrices (of the form (7.1))
A1, A2, . . . , Am such that X = A1A2 · · ·AmY , and we write X ≤RH Y .

Now from Chap. 2, we know that majorization can be characterized in terms
of Robin Hood operations and relabelings. In our Definition 7.1 we allowed λ to
be greater than 1/2, so that the class includes elementary permutation matrices.
However, notice that in Definition 7.1.3, when a permutation matrix appears among
the Aj ’s, it permutes all the columns of Y , i.e., the same permutation is applied
to all the columns. We have no guarantee that this will allow us to duplicate every
doubly stochastic matrix as a finite product of Robin Hood matrices. Thus, we claim
that uniform and Robin Hood majorization are different concepts, since provided
n ≥ 3, there exist doubly stochastic matrices which are not finite products of Robin
Hood matrices (in the sense of (7.1)). This may seem paradoxical, since in one
dimension we know that Robin Hood majorization and majorization do coincide.
The following example included in Marshall et al. (2011) shows that the concepts
must be distinguished in higher dimensions.

Example 7.1.1 Suppose

X =
⎛

⎝
1 3

1/2 4
1/2 5

⎞

⎠ and Y =
⎛

⎝
1 2
1 4
0 6

⎞

⎠

then X = PY where
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P = (1/2)
⎛

⎝
1 1 0
1 0 1
0 1 1

⎞

⎠ (7.2)

and for no other choice of P is X = PY . However, this particular doubly
stochastic matrix is not expressible as a finite product of Robin Hood matrices (see
Exercise 10). Thus X ≤UM Y , but X �RH Y .

There is another attractive possible generalization of majorization to higher
dimensions. Recall that we were able to characterize majorization in terms of
continuous convex functions on R

+. The definition of convexity is readily extended
to functions on R

+
m, and we may formulate.

Definition 7.1.4 Let X, Y ∈ R
+
n×m. We say that X is convexly majorized by Y if

for every h : R+
m → R

+ that is continuous and convex we have
∑n
i=1 h(X(i)) ≤∑n

i=1 h(Y(i)) (here X(i) is the i’th row of X), and we write X ≤CM Y .

It is a simple consequence of Jensen’s inequality that X ≤UM Y ⇒ X ≤CM Y
(Exercise 2). In dimensions higher than 1 (i.e., m ≥ 2) it is not obvious whether
the converse is true. A proof of the equivalence of uniform majorization and convex
majorization was provided by Karlin and Rinott (1988) using a result of Meyer
(1966) on dilation in abstract settings. Thus UM ≡ CM.

None of the three suggested versions of multivariate majorization thus far
introduced (marginal, uniform=convex and Robin Hood) seem to be compelling.
Uniform majorization viewed as convex majorization has the advantage of extend-
ing readily to cover the case of general non-negative m-dimensional random
variables which we will discuss below under the heading multivariate Lorenz
ordering. Before considering this generalization, we mention some other possible
versions of multivariate majorization. All involve efforts to define the concept in
terms of the better understood concept of univariate majorization. First, consider a
definition equivalent to one proposed in Marshall et al. (2011).

Definition 7.1.5 Let X, Y ∈ R
+
n×m. We say that X is positive combinations

majorized by Y , ifXa ≤M Ya for every vector a ∈ R
+
m with ai > 0, i = 1, 2, . . . , m

and we write X ≤PCM Y .

An economic interpretation of positive combinations majorization is possible.
Suppose the rows of X represent m-dimensional income vectors (one for each of
n individuals in the population). In particular xij represents income in currency j
accruing to individual i. Suppose now that all the incomes are converted into dollars
at rates a1, a2, . . . , am. The resulting vector of incomes in dollars is then Xa. It is
then evident that X ≤PCM Y if the X incomes are majorized by the Y incomes
under all possible exchange rates (i.e., if Xa ≤M Ya, for every a ≥ 0, a �≡ 0).

A partial order that is similar to, but distinct from, positive combinations
majorization is called linear combinations majorization. The only difference is that
negative values of the ai’s are now permitted.
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Definition 7.1.6 LetX, Y ∈ R
+
n×m. We say thatX is linear combinations majorized

by Y , if Xa ≤M Ya for every vector a ∈ Rm. and we write X ≤LCM Y .

Linear-combinations majorization is sometimes called directional majorization.
Positive-combinations majorization or positive directional majorization is

sometimes called price majorization (Mosler 2002). In an economic context, to be
discussed further below, it is a more appealing concept than is linear-combinations
majorization. However, as will be explained in the section on multivariate Lorenz
ordering, linear-combinations majorization admits an attractive interpretation
involving the natural extension of Lorenz curves to higher dimensions. The fact
that the two orderings are different is illustrated by the following simple example.

Example 7.1.2 (Joe and Verducci 1992) If

X =
(

1 4
3 2

)
, Y =

(
1 2
3 4

)
,

then X ≤PCM Y but X �≤LCM Y [shown by letting a = (1,−1)].

A different approach to the problem of reducing dimension is provided by

Definition 7.1.7 Let X, Y ∈ R
+
n×m and let g : R

+
m → R

+. We say that X is g-
majorized by Y , if (g(X(1)), . . . , g(X(n))) ≤M (g(Y(1)), . . . , g(Y(m))), and we write
X ≤gM Y .

Plausible choices for g in this definition include g(x) = ∑m
i=1 xi , g(x) =√∑m

i=1 x
2
i and g(x) = maxi{xi}. In an income setting where the xi’s represent

incomes of m different types, g(x) can be interpreted as the utility of the income
vector (x1, . . . , xm). If we can agree on a suitable choice for g, then we are
enabled to replace an m-dimensional income vector by a suitable one-dimensional
utility. g-majorization, together with positive combinations majorization and linear
combinations majorization, extends readily to the case of general non-negative m-
dimensional random variables to which we now turn.

7.2 Multivariate Lorenz Orderings

Let L(m) denote the class of m-dimensional random variables whose coordinate
random variables are members of L, i.e., are non-negative random variables with
positive finite expectations. We consider several generalizations of the Lorenz order
to this m-dimensional setting. In the following Xi (respectively Yi) denotes the i’th
coordinate random variable of X (respectively Y ), i = 1, 2, . . . , m.

The first extension requires little imagination.

Definition 7.2.1 Let X, Y ∈ L(m). We will say that X is marginally Lorenz
dominated by Y , if for each i = 1, 2, . . . , m, Xi ≤L Yi , and we write X ≤ML Y .
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The second extension involves expectations of convex functions:

Definition 7.2.2 Let X, Y ∈ L(m). We will say that X is convex-Lorenz dominated
by Y if for every continuous convex function h : R+

m → R
+ we have

E

(
h

(
X1

E(X1)
, . . . ,

Xm

E(Xm)

))
≤ E

(
h

(
Y1

E(Y1)
, . . . ,

Ym

E(Ym)

))
,

and we write X ≤CL Y .

A less restrictive concept of Lorenz domination is the following:

Definition 7.2.3 LetX, Y ∈ L(m) and let g : R+
m → R

+. We say thatX is g-Lorenz
dominated by Y if g(X) ≤L g(Y ), and we write X ≤gL Y .

In Definition 7.2.3, g can be interpreted as a utility function (as in the case of
g-majorization). In order to have E(g(X)) < ∞ for every X ∈ L(m), g should be
a bounded function. If g is not bounded one might be tempted to replace it by a
new bounded utility, such as g∗ = g/(1 + g). The partial orders ≤gL and ≤g∗L
will however not be equivalent (in the light of the results of Chap. 4 on inequality
preserving transformations).

In one dimension, convex Lorenz ordering was interpretable in terms of nested
Lorenz curves. The question then arises: in m dimensions, can convex Lorenz
ordering be interpreted in terms ofm-dimensional Lorenz curves? And, indeed, how
should we go about defining a suitablem-dimensional extension of the usual Lorenz
curve concept?

Extension of the Lorenz curve concept to higher dimensions was long frustrated
by the fact that the usual definitions of the Lorenz curve involved either order
statistics or the quantile function of the corresponding distribution, neither of which
has a simple multivariate analog.

There is, however, one readily available representation of the univariate Lorenz
curve that does not explicitly involve the quantile function, namely, that the Lorenz
curve is the set of points in R

+
2 parameterized by x with coordinates

{
FX(x),

1

E(X)

∫ x

0
ufX(u)du

}
.

Analogously, Taguchi (1972a,b) and Lunetta (1972) set out to define, for a bivariate
distribution FX,Y with density fX,Y , a Lorenz surface parameterized by (x, y) to be
the set of points in R

+
3 with coordinates

{
FX,Y (x, y),

1

E(X)

∫ x

0

∫ y

0
uf (u, v)dudv,

1

E(Y )

∫ x

0

∫ y

0
vf (u, v)dudv

}
.

(7.3)

However the definition used for the explicit description of this Lorenz Surface was
that it was a function L(2) : [0, 1]2 −→ [0, 1] defined by
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(s, t, L(2)(s, t)) =
{
FX,Y (x, y),

1
E(X)

∫ x
0

∫ y
0 uf (u, v)dudv,

1
E(Y )

∫ x
0

∫ y
0 vf (u, v)dudv

}
. (7.4)

See Taguchi (1972a,b) for detailed discussion of this surface. Note that it does
not treat the coordinate random variables X and Y in a symmetric fashion and an
appropriate extension to higher dimensions of (7.4) is problematic (even though an
extension of (7.3) is easily envisioned).

Arnold (1987) proposed an alternative parametric definition of a Lorenz surface
for bivariate distributions with marginal distributions FX and FY , again indexed by
(x, y). The points on this surface are

{
FX(x), FY (y),

1

E(XY)

∫ x

0

∫ y

0
uvf (u, v)dudv

}
. (7.5)

It is easy to visualize how to generalize the latter definition to the case of m
dimensional random variables (m > 2). One nice feature enjoyed by the surface
defined by (7.5) is that, in the case of independence, the bivariate Lorenz surface
reduces to the product of the marginal Lorenz curves (Exercise 7). One could, of
course, define a “Lorenz surface” ordering on L(m) by saying thatX is more unequal
in the Lorenz surface sense than Y ifL(m)X (u) ≤ L(m)Y (u) for all u, where the surfaces

L
(m)
X (u), L(m)Y (u) are defined by an m-dimensional version of (7.5). The relation

of this partial order to the other m-dimensional Lorenz orderings introduced in
Definitions 7.2.1–7.2.3 has not been explored. For further discussion of the Arnold
surfaces, see Sarabia and Jordá (2013). See also the material in Sects. 7.3 and 7.4
below.

A new definition of the Lorenz curve seems to be required if we are to be able
to identify a more natural extension to higher dimensions. An attractive candidate
is one involving what are called Lorenz zonoids. Early results on this concept were
provided by Koshevoy (1995). For more details, see Koshevoy and Mosler (1996,
1997) and Mosler (2002).

We begin by again considering the Lorenz curve associated with n ordered
numbers x1 ≤ x2 ≤ . . . ≤ xn. It is a linear interpolation of the points

⎛

⎝ i
n
,

i∑

j=1

xj

/⎛

⎝
n∑

j=1

xj

⎞

⎠

⎞

⎠ (7.6)

For each i, an income interpretation is available for the point (7.6). Its first
coordinate represents the fraction of the total population (i.e., i/n) accounted for by
the poorest i individuals in the population. The second coordinate corresponds to the
fraction of the total income of the population accruing to the poorest i individuals
in the population. Instead of considering such extreme subsets of the population
we can plot, for every subset of j of the individuals in the population, a point
whose coordinates are (1) the proportion of the population accounted for by the
j individuals (i.e., j/n), and (2) the proportion of the total income accounted for by
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the j individuals. No ordering of the xi’s is required to plot these points. The upper
envelope of these points can be identified as the “reverse” Lorenz curve in which
are plotted (and interpolated) the income share of the richest i individuals against
i/n, i = 1, 2, . . . , n (this could be viewed as a discrete Leimkuhler curve).

The region between the Lorenz curve and the reverse Lorenz curve is the convex
hull of these 2n points. If one Lorenz curve is uniformly below a second Lorenz
curve, their corresponding reverse Lorenz curves are ordered in the reverse order. It
then becomes evident that Lorenz ordering can be defined in terms of the nesting of
the convex hulls of the income shares of all subsets of the populations. This avoids
ordering and permits a straightforward extension to higher dimensions.

The set of points between the Lorenz curve and the reverse Lorenz curve
is called the Lorenz zonoid. Before attempting an extension of this concept to
higher dimensions, let us first consider an extension of the definition to associate
a Lorenz zonoid with every X ∈ L. To this end, in the finite population setting,
we envision computing income shares for subsets of the population that include
fractional individuals. Thus, for a given vector α ∈ [0, 1]n, consider the income
share comprising α1 times the income of individual 1, plus α2 times the income
of individual 2, etc. The size of this subset is �n1αi/n and its corresponding income
share is�ni=1αixi/�

n
i=1xi . It is then evident that the Lorenz zonoid corresponding to

the population can be envisioned as the set of all points ( 1
n
�αi,�

n
i=1αixi/�

n
i=1xi)

in which α ranges over [0, 1]n.
The extension to L is then straightforward.

Definition 7.2.4 Let � denote the class of all measurable mappings from R
+ to

[0, 1]. The Lorenz zonoid L(X) of the random variable X with distribution function
FX is defined to be the set of points

L(X) =
{(∫ ∞

0
ψ(x)dFX(x),

∫∞
0 xψ(x)dFX(x)

E(X)

)
: ψ ∈ �

}

=
{(
E(ψ(X)),

E(Xψ(X))

E(X)

)
: ψ ∈ �

}
. (7.7)

It can be verified that the set of points defined in (7.7) does indeed, in the finite
population setting, coincide with the set of points between the Lorenz curve and
the reverse Lorenz curve. Again, it is important to emphasize the fact that in
this definition, no ordering of the xi’s and no reference to a quantile function
are required. Thus the definition has potential for extension to higher dimensions
without requiring a suitable definition for higher-dimensional quantiles. Note also
that the definition of the Lorenz order on L is expressible as

X ≤L Y ⇐⇒ L(X) ⊆ L(Y ), (7.8)

where the Lorenz zonoid is defined in (7.7). Nesting of Lorenz zonoids describes
the ordering precisely.
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An extension to m dimensions can now be developed. Denote by L(m) the set of
all m-dimensional nonnegative (though this can be relaxed) random vectors X with
finite positive marginal expectations (i.e., such that E(X1), . . . , E(Xm) ∈ (0,∞)).
In addition, let �(m) denote the class of all measurable functions from R

+
m to [0, 1].

Definition 7.2.5 Let X ∈ L(m). The Lorenz zonoid L(X) of the random vector
X = (X1, . . . , Xm) with distribution FX is

L(X) =
{(∫

ψ(x)dFX(x),

∫
x1
ψ(x)

E(X1)
dFX(x),

∫
x2
ψ(x)

E(X2)
dFX(x), . . .

. . . ,

∫
xm

ψ(x)

E(Xm)
dFX(x)

)
: ψ ∈ �(m)

}

=
{(
E(ψ(X)),

E(X1ψ(X))

E(X1)
, . . . ,

E(Xmψ(X))

E(Xm)

)
: ψ ∈ �(m)

}
. (7.9)

The Lorenz zonoid is thus a convex “football”-shaped (American football) subset
of the (m + 1)-dimensional unit cube that includes the points (0, 0, . . . , 0) and
(1, . . . , 1).

The zonoid Lorenz order is defined in terms of nested Lorenz zonoids as in the
one-dimensional case. Thus for, X, Y ∈ L(m)

X ≤ZL Y ⇐⇒ L(X) ⊆ L(Y ), (7.10)

where L(X) is as defined in (7.9).
An example of such a zonoid, one corresponding to a particular bivariate Pareto

distribution, is shown in Fig. 7.1.
There is a link between the Lunetta–Taguchi Lorenz surface (7.3), and its natural

m-dimensional extension, and the Lorenz zonoid (7.9). To see this link, suppose
that X = (X1, X2, . . . , Xm) is an m-dimensional random vector with 0 < E(Xi) <
∞ for i = 1, 2, . . . , k and with distribution function FX(x). Then, for each x ∈
(0,∞)m, define the measurable function

ψx(u) = I (u ≤ x),

and let �(m)L−T denote the class of all such functions. A comparison of the relevant
definitions will confirm the fact that the definition of the m-dimensional extension
of the bivariate Lunetta–Taguchi surface (7.3) is the same as the definition of
the Lorenz zonoid (7.9) except that �(m) has been replaced by �(m)L−T . Thus the
Lunetta–Taguchi surface corresponds to a particular subset of the Lorenz zonoid.
In one dimension the Lunetta–Taguchi surface coincides with the lower bound of
the Lorenz zonoid, i.e., with the usual Lorenz curve. In m-dimensions, the Lunetta–
Taguchi surface has a similar role as a subset of the Lorenz zonoid.
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Fig. 7.1 The Lorenz zonoid for a bivariate Pareto (II) distribution with α = 9 and parameters
(μ1, μ2, σ1, σ2) = (0, 0, 1, 1)

It will be recalled that a definition of Lorenz order in one dimension was possible
in terms of expectations of convex functions. Thus in one dimension, X ≤L Y if
and only if E(g(X/EX)) ≤ E(g(Y/EY)) for every continuous convex function
g. The convex Lorenz order in L(m) is the natural k-dimensional version of this
ordering. In the section on multivariate majorization, attention was directed to linear
combinations and positive combinations versions of multivariate majorization,
both of which permitted use of one-dimensional majorization in ordering vectors.
Obvious parallel definitions can be formulated for Lorenz ordering. Thus

Definition 7.2.6 Let X, Y ∈ L(m). We say that X is positive combinations Lorenz
ordered with respect to Y , if X aT ≤L Y aT for every vector a ∈ R

+
m with ai > 0

i = 1, 2, . . . , m and we write X ≤PCL Y .

Definition 7.2.7 Let X, Y ∈ L(m). We say that X is linear combinations Lorenz
ordered with respect to Y , if X aT ≤GL Y aT for every vector a ∈ Rm, and we
write X ≤LCL Y .

In the definition of ≤LCL above it should be noted that use has been made of a
generalized one-dimensional Lorenz order. This is required since, for some choices
of the vector a the random variable

∑m
i=1 aiXi can take on negative values and the

usual Lorenz order will not be well-defined. Recall that the generalized Lorenz order
was defined in Chap. 6 as follows. For arbitrary one-dimensional random variables
X and Y , not necessarily non-negative, we write X ≤GL Y if

∫ u
0 F

−1
X (u) du ≥∫ u

0 F
−1
Y (u), ∀ u ∈ (0, 1).
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We have thus apparently identified five competing versions of multivariate
Lorenz orders, namely:

(i) X ≤CL Y if

E(g(X1/E(X1),X2/E(X2), . . . , Xm/E(Xm))

≤ E(g(Y1/E(Y1), Y2/E(Y2), . . . , Ym/E(Ym))

for all continuous convex functions g for which the indicated expectations are
finite.

(ii) X ≤LCL Y if
∑m
i=1 aiXi ≤GL ∑m

i=1 aiYi, ∀ a ∈ (−∞,∞)m.
(iii) X ≤PCL Y if

∑m
i=1 ciXi ≤L ∑m

i=1 ciYi, ∀ c ∈ [0,∞)m.
(iv) X ≤ML Y if Xi ≤L Yi, i = 1, 2, . . . , m.
(v) X ≤ZL Y if L(X) ⊂ L(Y )

The above definitions describe what appear to be a total of five partial orders
on L(m). However, there are actually only four, not five. It may be verified that the
partial orders ≤LCL and ≤ZL are identical. Thus the nested zonoid order on L(m) can
be reinterpreted as an ordering which corresponds to generalized Lorenz ordering
of all linear combinations of the coordinate random variables.

The first four partial orders in the list are distinct and they are actually listed in
the order of decreasing strength. Thus we have

X ≤CL Y ⇒ X ≤LCL Y ⇒ X ≤PCL Y ⇒ X ≤ML Y . (7.11)

Names can be associated with these four m-dimensional Lorenz orders. The
last order appearing in (7.11), ≤ML, the weakest of the group, is naturally
called marginal Lorenz ordering. It ignores any dependence relations between the
coordinate random variables. The first ordering in (7.11), ≤CL, can be called convex
ordering. The partial order, ≤LCL ≡ ≤ZL, will be called the zonoid ordering or the
linear combinations ordering. The partial order ≤PCL is sometimes called the price
Lorenz order, or the positive combinations order, or the exchange rate Lorenz order.
The genesis of the last of these names is as follows (analogous to the discussion
following the definition in Sect. 7.1 of a version of multivariate majorization).
Suppose that the coordinates of X and Y represent holdings (or earnings) in m
different currencies. Suppose that we exchange all of the holdings into one currency,
perhaps Euros, according to m exchange rates c1, c2, . . . , cm, then it is natural to
compare

∑m
i=1 ciX1 and

∑m
i=1 ciY1 with regard to inequality by the usual univariate

Lorenz order. The ordering ≤L3 requires that
∑m
i=1 ciX1 ≤L ∑m

i=1 ciY1 for every
vector of exchange rates c. In this context, it is natural to require that the ci’s be
positive. How would you interpret a negative exchange rate?

This last observation highlights a possible lacuna in the arguments in support
of the zonoid ordering. Since ≤ZL and ≤PCL are equivalent, the zonoid ordering
requires generalized Lorenz ordering of the univariate random variables

∑m
i=1 aiX1

and
∑m
i=1 aiY1 even when some of the ai’s are negative (corresponding, if you wish,
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to negative exchange rates!). See Koshevoy and Mosler (1996) for an insightful
introduction to the Lorenz zonoid order, including discussion of the role of the
univariate generalized Lorenz order in the zonoid order. A more extensive discussion
may be found in Mosler (2002).

A positive feature of the convex order, ≤CL, is that the averaging theorem
survives intact, i.e., Strassen’s Theorem 3.2.3 is still true in the m-dimensional
setting. Thus

Theorem 7.2.1 For X, Y ∈ L(m), Y ≤CL X if and only if there exist jointly

distributed random variables X′ and Z′ such that X
d=X′ and Y

d=E(X′|Z′).

In fact Strassen proved the result in a much more abstract setting than we
require (see Meyer (1966), for further related discussion). Whitt (1980) discussed
application of these ideas in a reliability context.

Despite the fact that the zonoid ordering will fail to have Strassen’s balayage
equivalence theorem (Theorem 7.2.1) and will involve comparisons of generalized
Lorenz curves with curious exchange rate interpretations, it appears that the zonoid
order (≤ZL ≡ ≤LCL) is the most defensible of the competing partial orders.
Nevertheless it cannot be ruled out that, in some applications, the other three partial
orders might be more appropriate.

Notes

(1) If one considers multivariate majorization instead of multivariate Lorenz order-
ing, it is not necessary to introduce the concept of a “generalized Lorenz curve”
into the discussion. Majorization is well-defined for vectors in (−∞,∞)m,
rather than just [0,∞)m for Lorenz ordering. Consequently there is no concern
about linear combinations taking on negative values. Refer to Chapter 15 of
Marshall et al. (2011) for more details.

(2) The convex order is stronger than the order ≤ZL. Examples of simple two-
dimensional cases in which X ≤ZL Y but X �≤CL Y are provided by Elton and
Hill (1992).

7.3 Explicit Expressions for the Arnold Lorenz Surface

One of the difficulties with the Koshevoy and Mosler (1996) definition of the Lorenz
zonoid is the lack of explicit analytic expressions for such zonoids.

In this sense, the definition proposed by Arnold is more appealing since it allows
one to obtain explicit expressions for the Lorenz surface. This aspect has been
explored by Sarabia and Jordá (2013, 2014a) and by Arnold and Sarabia (2018).
In this section we present some of these explicit expressions based on Sarabia and
Jordá (2014a,b), focussing on the bivariate case.

The different results are based on an explicit expression of the bivariate Lorenz
surface defined in (7.5), which admits the following simple representation.
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Theorem 7.3.1 Let (X1, X2) be a bivariate random variable belonging to L(2),
with joint cdf and pdf given by F12 and f12, respectively, and marginal distributions
with cdfs and pdfs given by Fi and fi , i = 1, 2, respectively. Then, the bivariate
Arnold Lorenz surface defined in (7.5) can be written in the explicit form,

L12(u1, u2) = 1

E(X1X2)

∫ u1

0

∫ u2

0
A(x1, x2)dx1dx2, 0 ≤ u1, u2 ≤ 1, (7.12)

where

A(x1, x2) = F−1
1 (x1)F

−1
2 (x2)f12(F

−1
1 (x1), F

−1
2 (x2))

f1(F
−1
1 (x1))f2(F

−1
2 (x2))

. (7.13)

Proof The proof is direct making the change of variable (u1, u2) = (F1(x1), F2(x2))

in (7.5). �
Now, we consider an example.

Example 7.3.1 Let (X1, X2) be a bivariate Farlie-Gumbel-Morgenstern (FGM)
distribution with uniform marginals and joint probability density function,

f12(x1, x2) = 1 + w(1 − 2x1)(1 − 2x2), 0 ≤ x1, x2 ≤ 1,

where w ∈ (−1, 1) is a dependence parameter. The marginal distributions are
uniform on the interval [0, 1] and the corresponding marginal Lorenz curves are
LXi (u) = u2, 0 ≤ u ≤ 1, i = 1, 2. The (1, 1)-mixed moment is

E(X1X2) = 1

36
(9 + w),

and the A(x1, x2) function defined in (7.13) is, for this model, of the form

A(x1, x2) = x1x2{1 + w(1 − 2x1)(1 − 2x2)}.

Using (7.12) the bivariate Lorenz surface is

L12(u1, u2;w) = u2
1u

2
2[9 + w(4u1 − 3)(4u2 − 3)]

9 + w , 0 ≤ u1, u2 ≤ 1. (7.14)

If we set w = 0 (the independence case) in (7.14), we obtain L12(u1, u2) = u2
1u

2
2,

which is the product of the marginal Lorenz curves.

Figure 7.2 shows the bivariate Lorenz surface (7.14) for two selected values of
the parameter w.
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Fig. 7.2 Bivariate Lorenz surface (7.14) of the Farlie-Gumbel-Morgenstern family with uniform
marginals, w = −0.9 and 0.9 and the egalitarian bivariate surface L12(u1, u2) = u1u2

7.3.1 The Bivariate Sarmanov–Lee Lorenz Surface

In this section, we introduce the Lorenz surface corresponding to the bivariate
Sarmanov–Lee distribution.

As an initial step we define the concentration curve introduced by Kakwani
(1977).

Definition 7.3.1 Let X ∈ L be a random variable and let g(x) be a continuous
function of x whose first derivative exists and is such that g(x) ≥ 0. If the mean
E[g(X)] exists, the concentration curve of g(X) in the Kakwani sense is defined as

L(x; g) = 1

E[g(X)]
∫ x

0
g(u)dF (u),

where F(x) is the cdf of the random variable X.

Now, we define the bivariate Sarmanov–Lee distribution. The random vector
(X1, X2) is said to have a bivariate Sarmanov–Lee distribution if its joint pdf is
given by

f (x1, x2) = f1(x1)f2(x2) {1 + wφ1(x1)φ2(x2)} , (7.15)

where f1(x1) and f2(x2) are the univariate marginal pdf’s, φi(t), i = 1, 2 are
bounded nonconstant functions such that

∫ ∞

−∞
φi(t)fi(t)dt = 0, i = 1, 2,
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andw is a real number which satisfies the condition 1+wφ1(x1)φ2(x2) ≥ 0 for all x1
and x2. We use the notation μi = E(Xi) = ∫∞

−∞ tfi(t)dt , i = 1, 2, σ 2
i = var(Xi) =∫∞

−∞(t − μi)2fi(t)dt , i = 1, 2 and νi = E[Xiφi(Xi)] = ∫∞
−∞ tφi(t)fi(t)dt , i =

1, 2. Properties of this family have been explored by Lee (1996).
Note that (7.15) and its associated copula have two components: a first com-

ponent corresponding to the marginal distributions and the second component
which defines the structure of dependence, determined by the parameter w and the
functions φi(u), i = 1, 2. These two components will be related to the structure
of the associated Lorenz surface, and the corresponding bivariate Gini index. In
relation with other families with given marginals, the Sarmanov–Lee copula has
several advantages: its joint pdf and cdf are quite simple; the covariance structure
in general is not limited and its different probabilistic features can be obtained
in explicit forms. On the other hand, the SL distribution includes several relevant
special cases, including the classical FGM distribution and the variations proposed
in Huang and Kotz (1999) and Bairamov and Kotz (2003).

The bivariate SL Lorenz surface is obtained using (7.15) in Eq. (7.12).

Theorem 7.3.2 Let (X1, X2) ∈ L(2) have a bivariate Sarmanov–Lee distribution
with joint pdf (7.15). Then, its bivariate Lorenz surface is given by

L12(u1, u2) = πL1(u1)L2(u2)+ (1 − π)L1(u1; g1)L2(u2; g2), (7.16)

where

π = μ1μ2

E(X1X2)
= μ1μ2

μ1μ2 + wν1ν2
,

and Li(ui), i = 1, 2 are the Lorenz curves of the marginal distributions of the Xi’s,
i = 1, 2, respectively, andLi(ui; gi), i = 1, 2 represent the concentration curves (in
the sense of Definition 7.3.1) of the random variables gi(Xi) = Xiφi(Xi), i = 1, 2,
respectively.

Proof Exercise 11. �
The interpretation of (7.16) is quite direct: the bivariate Lorenz surface can be

expressed as a convex linear combination of two components: a first component
corresponding to the product of the marginal Lorenz curves (the marginal compo-
nent) and a second component corresponding to the product of the concentration
Lorenz curves (the dependence structure component).

Next, we consider the Pareto Lorenz surface based on the FGM family with
Pareto marginals. Note that the FGM bivariate distribution is a special case of (7.15).

Example 7.3.2 Let (X1, X2) be a bivariate FGM with classical Pareto marginals
and joint pdf,

f12(x1, x2;α, σ ) = f1(x1)f2(x2){1 + w[1 − 2F1(x1)][1 − 2F2(x2)]}, (7.17)
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where

Fi(xi) = 1 −
(
x

σi

)−αi
, xi ≥ σi, i = 1, 2,

fi(xi) = αi

σi

(
x

σi

)−αi−1

, xi ≥ σi, i = 1, 2,

are the cdf and the pdf of the classical Pareto distributions, respectively, with αi > 1,
σi > 0, i = 1, 2, −1 ≤ w ≤ 1 and φi(xi) = 1 − 2Fi(xi), i = 1, 2 in (7.15).

Using (7.16) with gi(xi) = xi[1 − 2Fi(xi)], i = 1, 2 and after some
computations, the bivariate Lorenz surface associated to (7.17) is

L12(u1, u2) = πwL(u1;α1)L(u2;α2)+ (1 −πw)L1(u1; g1)L2(u2; g2), (7.18)

where the Lorenz and the concentration curves are given, respectively, by

L(ui;αi) = 1 − (1 − ui)1−1/αi , 0 ≤ u ≤ 1, i = 1, 2,

Li(ui; gi) = 1 − (1 − ui)1−1/αi [1 + 2(αi − 1)ui], 0 ≤ u ≤ 1, i = 1, 2,

and

πw = (2α1 − 1)(2α2 − 1)

(2α1 − 1)(2α2 − 1)+ w.

Figure 7.3 shows the Pareto Lorenz surface (7.18) for two selected values of the
parameters.

0.0 0.5
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1.0

0.5

0.0
1.0

0.5

0.0

Fig. 7.3 Bivariate Pareto Lorenz surface (7.14) for (α1, α2) equal to (2,3), (1.5,1.5) with w = 0.5
together with the egalitarian bivariate surface L12(u1, u2) = u1u2
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7.4 Summary Measures of m-Dimensional Inequality

A variety of summary measures of inequality have been suggested for m-
dimensional distributions. We mention but a few. For the convex order ≤CL,
any specific choice of a continuous convex function g could be used to measure
inequality by the quantity

E

(
g

(
X1

E(X1)
, . . . ,

Xm

E(Xm)

))
.

If we could agree on a suitable definition of the Lorenz surface form-dimensional
random variables, we could measure inequality by the (m+ l)-dimensional volume
between the Lorenz surface of a given distribution and the Lorenz surface of a
degenerate distribution (in direct analogy to one interpretation of the Gini index
in the case m = 1). Alternatively (mimicking Kakwani-Lunetta), we could use the
m-dimensional volume of the Lorenz surface as an inequality measure.

If the Lorenz ordering via nested Lorenz zonoids [as in (7.10)] is used, then
attractive analogs to univariate measures are available: (1) the (m+ 1)-dimensional
volume of the Lorenz zonoid, (2) the m-dimensional volume of the boundary of
the Lorenz zonoid, (3) the maximal distance between two points in the Lorenz
zonoid. When m = 1, relatively simple expressions for these indices are available.
In higher dimensions, this is not true. Koshevoy and Mosler (1997) do provide an
analytic expression for the volume of the Lorenz zonoid as follows, though it is
not easy to evaluate. For X ∈ L(m), define a normalized version of X, denoted by
X̃, in which X̃i = Xi/E(Xi), i = 1, 2, . . . , m. Consider m + 1 independent,

identically distributed m-dimensional random vectors X̃
(1)
, . . . , X̃

(m+1)
each with

the same distribution as X̃. LetQ be an (m+ 1)× (m+ 1) matrix whose ith row is

(1, X̃
(i)
), i = 1, 2, . . . , m+ 1. It follows that

volume(L(X)) = 1

(m+ 1)!E(| detQ|). (7.19)

A drawback associated with the use of the volume of the Lorenz zonoid as a
measure of inequality is that it can assume the value of 0 for certain nondegenerate
distributions. See Mosler (2002) for discussion of a variant definition avoiding this
pitfall.

When m = 1,

Q =
(

1 X̃1

1 X̃2

)
,

so that (7.19) reduces to a familiar expression for the Gini index of X in the one-
dimensional case, namely,

G(X) = 1

2
E

∣∣∣∣∣
X(1)

E(X(1))
− X(2)

E(X(2))

∣∣∣∣∣ , (7.20)
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where X(1) and X(2) are independent and identically distributed copies of X; i.e., it
is one half of the expected distance between independent normalized copies of X.

The expression (7.20) leads to the following extension to m dimensions. For
X ∈ Lm, define

G(X) = 1

2m
E(||X̃(1) − X̃(2)||), (7.21)

where X̃
(1)

and X̃
(2)

are independent, identically distributed normalized copies of X̃
(i.e., rescaled so that the marginal means are all equal to 1) and where || · || denotes
the m-dimensional Euclidean norm. A proof that if X ≤ZL Y , then G(X) ≤ G(Y)
[where G is defined by (7.21)] is given by Mosler (2002). Other norms or other
measures of distance (instead of Euclidean distance) can be used in (7.21), perhaps
with an advantage of computational simplicity.

7.4.1 Bivariate Gini Index for the Arnold Lorenz Surface

For a bivariate Lorenz surface L12(u1, u2) defined in (7.5) or (7.12) the bivariate
Gini index can be defined as

G12 = 4
∫ 1

0

∫ 1

0
[u1u2 − L12(u1, u2)]du1du2. (7.22)

This bivariate Gini index has a reasonable interpretation in terms of equality (equal
to (1-the inequality), i.e. 1 − G). In the case of independence it does since in that
case we have

1 −G12 = (1 −G1)(1 −G2), (7.23)

where Gi , i = 1, 2 are the marginal Gini indices.

Example 7.4.1 The bivariate Gini index of the FGM Lorenz surface with uniform
marginals defined in (7.14) is

G12(w) = 4
∫ 1

0

∫ 1

0
[u1u2 − L12(u1, u2;w)] du1du2 = 5 + w

9 + 4
. (7.24)

If we set w = 0 in (7.24), we get G12 = 5
9 , and (7.23) holds.

The following result provides a convenient expression for the two-attribute
bivariate Gini defined in (7.22), which permits a simple decomposition of the
equality into two factors. The first component represents the equality within
variables and the second factor represents the equality between variables (Sarabia
and Jordá 2013, 2014a).
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Theorem 7.4.1 Let (X1, X2) have a bivariate Sarmanov–Lee distribution with
bivariate Lorenz surface L12(u1, u2). The two-attribute bivariate Gini index defined
in (7.22) admits the following representation,

1 −G12 = π(1 −G1)(1 −G2)+ (1 − π)(1 −Gg1)(1 −Gg2),

where Gi , i = 1, 2 are the Gini indices of the marginal Lorenz curves, and Ggi ,
i = 1, 2 represent the concentration indices of the concentration curves L(ui, gi),
i = 1, 2 in the sense of Definition 7.3.1.

Proof The proof is direct using expression (7.16) and definition (7.22). �
The overall equality (OE) given by 1 − G12 thus can be decomposed into two

factors,

OE = EW + EB,

where

OE = 1 −G12,

EW = π(1 −G1)(1 −G2),

EB = (1 − π)(1 −Gg1)(1 −Gg2).

Here, EW represents the equality within variables and the second factor, EB
represents the equality between variables which involves the structure of the
dependence of the underlying bivariate income distribution through the functions
gi , i = 1, 2. Note that the decomposition is well defined since 0 ≤ OE ≤ 1 and
0 ≤ EW ≤ 1 and hence 0 ≤ EB ≤ 1.

7.5 Alternative Multivariate Inequality Indices

In this section we will provide multivariate versions of some of the inequality
measures previously discussed in Chap. 5.

7.5.1 Multivariate Shannon and Rényi Entropies

If X is a multivariate random variable with joint pdf fX1,...,Xm(x1, . . . , xm), the
Shannon entropy of X is defined by

H(X) =
∫
fX1,...,Xm(x1, . . . , xm) log fX1,...,Xm(x1, . . . , xm)dx1 · · · dxm,



7.5 Alternative Multivariate Inequality Indices 163

and the multivariate Rényi entropy by

Hλ(X) = 1

1 − λ log

(∫
f λX1,...,Xm

(x1, . . . , xm)dx1 · · · dxm
)
,

with λ > 0 and λ �= 1.

Example 7.5.1 Consider a multivariate Pareto type IV distribution (see Arnold
2015b) with joint survival function,

P(X1 > x1, . . . , Xm > xm) =
{

1 +
m∑

i=1

(
xi − λi
θi

)1/γi
}−α

,

with xi > λi , γi, θi > 0, i = 1, 2, . . . , m and α > 0. The multivariate Shannon
entropy is of the form (Darbellay and Vajda 2000a),

H(X) = −
m∑

i=1

log

(
α + i − 1

γiθi

)
+ (α +m){�(α +m)−�(α)}

−{�(1)−�(α)}
(
m−

m∑

i=1

γi

)
,

where, in this expression, �(t) = (d/dt) log�(t) denotes the digamma function.
The multivariate Rényi entropy is (Zografos and Nadarajah 2005),

Hλ(X) = �(λ(α +m)−∑m
i=1 βi)

∏m
i=1 �(βi)

�(λ(α +m))
m∏

i=1

(α + i − 1)λ(γiθi)
1−λ,

where βi = γi(1 − λ)+ λ > 0, i = 1, 2, . . . , m and λ(α + n)−∑k
i=1 βi > 0.

Example 7.5.2 If X ∼ N(m)(μ,�) is an m-dimensional normal distribution, we
have

H(X) = 1

2
log
(
(2πe)m|�|) .

In the multivariate case, the Shannon entropy possesses an additive decompo-
sition property. We focus on the bivariate case, but this decomposition is equally
valid in the case of two random vectors of dimension m > 2. Let (X, Y ) be a
bivariate random variable with joint density fX,Y (x, y), and associated marginal and
conditional densities fX(x), fY (y), fX|Y (x|y) and fY |X(y|x). If we define H̃ (·) as

H̃ (fX|Y ) = E[H(fX|Y )] = −
∫ {∫

fX|Y (x|y) log fX|Y (x|y)dx
}
fY (y)dy,

(7.25)

we have the following Theorem.



164 7 Multivariate Majorization and Multivariate Lorenz Ordering

Theorem 7.5.1 The entropy of fX,Y (x, y) can be written as

H(fX,Y ) = H̃ (fX|Y )+H(fY ) = H̃ (fY |X)+H(fX), (7.26)

where H̃ (fX|Y ) is defined in (7.25). If X and Y are independent, then

H(fX,Y ) = H(fX)+H(fY ).

Proof From (7.25) we have H̃ (fX|Y ) = − ∫ ∫ fX,Y (x, y) log(fX|Y (x|y))dxdy.
Now, writing

H(fX,Y ) = −
∫ ∫

fX,Y (x, y){log(fX|Y (x|y))− log(fY (y))}dxdy,

we obtain (7.26). �

7.5.2 Multivariate Generalized Entropy and Theil Indices

Let X = (X1, . . . , Xm) be an m-dimensional random vector with non-negative
components. We define the multivariate generalized entropy indices as (Sarabia et al.
2017a)

MGE(X; θ) = 1

θ(θ − 1)

{
E

[(
X1 · · ·Xm
μ12···m

)θ]
− 1

}
, θ ∈ R − {0, 1},

where

μ12···m = E(X1X2 · · ·Xm) <∞

If we take limits as θ converges to 0 and 1, we obtain

lim
θ→0

MGE(X; θ) = T (m)0 (X),

and

lim
θ→1

MGE(X; θ) = T (m)1 (X),

where

T
(m)
0 (X) = −E

[
log

(
X1 · · ·Xm
μ12...m

)]
, (7.27)
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and

T
(m)
1 (X) = −E

[
X1 · · ·Xm
μ12...m

log

(
X1 · · ·Xm
μ12...m

)]
, (7.28)

are the m-dimensional Theil(0) and Theil(1) indices, respectively.
For the bivariate case k = 2, expression (7.27) can be written as

T
(2)
0 (X) = T0(X1)+ T0(X2)+ log

μ12

μ1μ2
, (7.29)

and (7.28) can be written as

T
(2)
1 (X) = μ−1

12

[
E(X1X2 logX1)+ E(X1X2 logX2)− μ12 logμ12

]
, (7.30)

which can be computed in terms of the derivatives of u(r1, r2) = E(Xr11 X
r2
2 ).

Example 7.5.3 Let X = (X1, X2) be a bivariate lognormal distribution with joint
pdf,

fX1,X2(x1, x2) = 1

2πx1x2
√|�| exp

{
−1

2
(log x − μ)�−1(log x − μ)T

}
,

where x = (x1, x2), and μ = (μ1, μ2). We have

E(X
r1
1 X

r2
2 ) = exp

(
rμT + 1

2
r�rT

)
,

where r = (r1, r2). Using (7.29) and (7.30) we get

T
(2)
0 (X) = T (2)1 (X) = σ 2

1

2
+ σ 2

2

2
+ σ12,

where both bivariate indices are the same, as in the univariate case.

7.6 Exercises

1. By considering the two-dimensional case (m = 2), verify that
X ≤MM Y �⇒ X ≤UM Y .

2. Prove that X ≤UM Y ⇒ X ≤CM Y .

3. Prove that X ≤MO Y ⇒ X ≤MM Y and that X ≤CM Y ⇒ X ≤MM Y .
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4. Suppose X and Y ∈ L(m) have independent coordinate random variables such
that Xi ≤L Yi , i = 1, 2, . . . , n. Prove that X ≤CL Y .

5. Suppose X ∈ L(m) and U ≥ 0 are independent. Assume E(U) ∈ (0,∞) and
define Y = UX. Prove X ≤CL Y . This generalizes the misreported income
model of Chap. 4.

6. Discuss the relationships between the three orders ≤CL, ≤PCL and ≤gL defined
on L(m).

7. Suppose that X1 and X2 ∈ L with corresponding Lorenz curves L1(u)

and L2(u). Show that if X1 and X2 are independent, the Lorenz surface of
the random variable (X1, X2) defined by (7.5) is of the form L(u, v) =
L1(u)L2(v).

8. Suppose

fX1,X2(x1, x2) =
{
x1 + x2, 0 < x1 < 1, 0 < x2 < 1,

0, otherwise

and

fX1,X2(x1, x2) =
{

1, 0 < x1 < 1, 0 < x2 < 1,
0, otherwise

Evaluate and compare the corresponding Lorenz surfaces defined by (7.5).
What happens if we use the Taguchi definition (7.4)?

9. In accordance with custom, inequa1ity measures vary from 0 to 1 with
1 representing the sometimes unachievable case of greatest inequality. In
Eq. (7.21) verify that this k-dimensional Gini index does indeed have range
[0, 1].

10. Verify that the matrix P given in Eq. (7.2) is not expressible as a finite product
of Robin Hood matrices. [Verify that finite products of Robin Hood matrices,
in the 3 × 3 case, cannot have three zero elements.]

11. Prove Theorem 7.16.

12. For the Pareto Lorenz surface based on the FGM family defined in (7.18), prove
that the bivariate Gini index is given by

G12(α1, α2) = (3α1 − 1)(3α2 − 1)(2α1 + 2α2 − 3)+ [h(α1, α2)]w
(3α1 − 1)(3α2 − 1)[(1 − 2α1)(1 − 2α2)+ w] ,

where

h(α1, α2) = −3 − 4α2
1(α2 − 1)2 + (5 − 4α2)α2 + α1(5 + α2(8α2 − 7)).



Chapter 8
Stochastic Majorization

We return to the original setting in which Hardy, Littlewood, and Polya discussed
majorization, i.e., vectors in R

n. However, we now consider random variables which
take on values in R

n. If X and Y are such n-dimensional random variables, then for
given realizations of X and Y , say x and y, we may or may not have x ≤M y. If
we have such a relation for every realization of (X, Y ), then we have a very strong
version of stochastic majorization holding between X and Y . However, we may be
interested in weaker versions. Certainly, for most purposes P(X ≤M Y) = 1 would
be more than adequate. We will content ourselves with the requirement that there be
versions ofX and Y for whichX is almost surely majorized by Y . However, this will
not be transparent from the Definition (8.1.2 below). We will focus attention on one
particular form of stochastic majorization, the one proposed by Nevius et al. (1977).
We will mention in passing other possible definitions and refer the interested reader
to the rather complicated diagram on page 426 of Marshall et al. (2011), which
summarizes known facts about the interrelationships between the various brands of
stochastic majorization.

8.1 Definition and Main Results

To motivate our definition, recall that by the definition of Schur convexity (Defi-
nition 2.2.1) we know that x ≤M y if and only if g(x) ≤ g(y) for every Schur
convex function g. Now, if X and Y are random variables, then we need to decide
in what sense will g(X), a random variable, provided g is Borel measurable, be
required to be less than the random variable g(Y ). The comparison used by Nevius,
Proschan, and Sethuraman was based on stochastic ordering (which we will study
more thoroughly in Chap. 9). The relevant concepts are defined by
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Definition 8.1.1 Let X and Y be one-dimensional random variables. We will write
X ≤st Y (X is not stochastically larger than Y ), if

P(X ≤ x) ≥ P(Y ≤ x), ∀ x ∈ R.

Definition 8.1.2 Let X and Y be n-dimensional random variables. We will say that
X is stochastically majorized by Y and write X ≤st.M Y if g(X) ≤st g(Y ) for every
Borel measurable Schur convex function g : Rn → R.

It will be recalled from Chap. 2 that in the definition of non-stochastic majoriza-
tion one does not have to check every Schur convex g, in order to determine
whether majorization obtains. Certain subclasses suffice. For example, we could
consider g’s which are continuous, symmetric, and convex or, instead, g’s that
are separable convex or in the extreme, by the HLP theorem (Theorem 2.2.6), g’s
which are separable angle functions. Now in the definition of stochastic majorization
(Definition 8.1.2), if we replace “for all Borel measurable Schur convex functions
g" by for all g in some specified subclass of well-behaved Schur convex functions
such as those just mentioned, we find that different partial orders may be defined.
Some putative definitions for stochastic majorization derived in this manner may be
described as follows. First, define

G1 = {g : g is Borel measurable and Schur convex on R
n},

G2 = {g : g is continuous, symmetric and convex on R
n},

G3 =
{
g : g(x) =

n∑

i=1

h(xi) for some continuous convex function h on R

}
,

and

G4 =
{
g : g(x) =

n∑

i=1

(xi − c)+ for some c ∈ R or g(x) =
n∑

i=1

xi

}
.

Now, for i = 1, 2, 3, 4 we define the partial order ≤st.M(i) by X ≤st.M(i) Y iff
g(X) ≤st g(Y ), ∀ g ∈ Gi . Of course, ≤st.M(1) is just the same as stochastic
majorization as described in Definition 8.1.2.

Since G4 ⊂ G3 ⊂ G2 ⊂ G1, it is obvious that

≤st.M(1)⇒ ≤st.M(2)⇒ ≤st.M(3)⇒ ≤st.M(4) .

Marshall et al. (2011) provide an example to show that ≤st.M(2) �⇒≤st.M(1). It is not
known whether ≤st.M(2) and ≤st.M(3) are equivalent. The relation between ≤st.M(3)
and ≤st.M(4) is considered in Exercise 1.



8.1 Definition and Main Results 169

Faced with such a surfeit of possible definitions (Marshall et al. (2011) even
consider several more), we will stick with the original choice exemplified by
Definition 8.1.2. Two equivalent versions of that definition can be obtained from
the following

Theorem 8.1.1 The following conditions are equivalent:

(1) X ≤st.M Y
(2) E[g(X)] ≤ E[g(Y )] for every Schur convex g for which both expectations exist.
(3) P(X ∈ A) ≤ P(Y ∈ A) for every measurable Schur convex set A (i.e., for

every A such that x ∈ A and x ≤M y ⇒ y ∈ A).
Proof (1) ⇒ (2), since U ≤st V implies E(U) ≤ E(V ) when expectations exist.
(2) ⇒ (3), since the indicator function of a Schur convex set is Schur convex.
(3) ⇒ (1), since one may let A = {x : g(x) > c}. �

Stochastic majorization is preserved under mixing, normalization, a strong mode
of convergence and, to a certain extent, convolution. Specifically, we have

Theorem 8.1.2 Let {Xλ : λ ∈ Λ} and {Yλ : λ ∈ Λ} be two indexed collections
of random variables where Λ is a subset of R. Let G be the distribution function of
a random variable whose range is in Λ, and let XG and YG be the corresponding
G-mixtures of {Xλ} and {Yλ}, respectively, i.e.,

FXG(x) =
∫

Λ

P (Xλ ≤ x) dG(λ) (8.1)

and FYG is analogously defined. If Xλ ≤st.M Y λ for every λ ∈ Λ, then XG ≤st.M
YG.

Proof For any function g for which E[g(XG)] exists, it follows from (8.1) that

E[g(XG)] =
∫

Λ

E(g(Xλ)) dG(λ)

and that an analogous expression is available for E[g(YG)]. If g is Schur convex,
then since Xλ ≤st.M Y λ we know by condition (2) of Theorem 8.1.1 that
E[g(Xλ)] ≤ E[g(Y λ)], for every λ ∈ Λ. Integrating this with respect to the
distribution G using Eq. (8.1), we conclude that E[g(XG)] ≤ E[g(YG)]. Since
this is true for any Schur convex g for which the expectations exist, we conclude
that XG ≤st.M YG (again applying condition (2) of Theorem 8.1.1). �
Theorem 8.1.3 Suppose that X ≤st.M Y and X′ = f

(∑n
i=1Xi

)
X, Y ′ =

f
(∑n

i=1 Yi
)
Y where f is a Borel measurable function on R. It follows that

X′ ≤st.M Y ′

Proof Since X ≤st.M Y it follows that
∑n
i=1Xi

d= ∑n
i=1 Yi (Exercise 2). Now

since X ≤st.M Y ⇒ cX ≤st.M cY for any c, the theorem follows from our mixture
theorem, since we have
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FX′(x) =
∫ ∞

−∞
P(cX ≤ x) dG(c)

and

FY ′(x) =
∫ ∞

−∞
P(cY ≤ x) dG(c)

where G is the common distribution of f
(∑n

i=1Xi
)

and f
(∑n

i=1 Yi
)
. �

Theorem 8.1.4 Suppose {Xm} and {Ym} are two sequences of n-dimensional
random variables and thatXm → X and Ym → Y in the sense thatE(g(Xn)) →
E(g(X)) for every bounded measurable function g. If Xm ≤st.M Ym for each m,
then X ≤st.M Y .

Proof Let g be an arbitrary Schur convex Borel measurable function. Let z be a
point of continuity of both of the distributions of g(X) and g(Y ). Observe that
I (g(x) ≤ z) is a bounded Borel measurable function. We may thus argue as follows.

P(g(X) ≤ z) = E(I (g(X) ≤ z))
= lim
n→∞E(I (g(Xm) ≤ z))

= lim
n→∞P(g(Xm ≤ z)

≥ lim
n→∞P(g(Ym ≤ z) since Xm ≤st.M Ym

= lim
n→∞E(I (g(Ym) ≤ z))

= E(I (g(Y ) ≤ z))
= P(g(Y ) ≤ z).

Since such points z are dense in R, it follows that g(X) ≤st g(Y ) and since this
holds for every Borel measurable Schur convex g, we conclude X ≤st Y . �

The hypothesis in this theorem can be relaxed slightly. It suffices that Xm
d→ X

and Ym
d→ Y . See Marshall et al. (2011, p. 424).

Closure under convolution will elude us. It is possible to construct an example
of random vectors X(1), X(2), Y (1) and Y (2) (even in the case n = 2) such
that X(1), X(2) are independent, Y (1), Y (2) are independent, X(1) ≤st.M Y (1) and
X(2) ≤st.M Y (2) yet X(1) + X(2) �st.M Y (1) + Y (2). See Marshall et al. (2011,
p. 424). If, by chance, the random vectors always have coordinates which are in
increasing order, we can get our result. Recall from (2.5) the notation

On = {x : x1 ≤ x2 ≤ · · · ≤ xn}.



8.1 Definition and Main Results 171

Theorem 8.1.5 If X(1), X(2) are independent, Y (1), Y (2) are independent and all
four random vectors take on values restricted to the set On. If X(1) ≤st.M Y

(1) and
X(2) ≤st.M Y

(2), then X(1) +X(2) ≤st.M Y
(1) + Y (2).

Proof If u, v,w ∈ On, then u ≤M v ⇒ u + w ≤M v + w. Thus, if g is Schur
convex on On, then for every w ∈ On, gw(x) = g(x + w) is Schur convex on On.
Now, we can write for an arbitrary Schur convex g

E[g(X(1) +X(2))] =
∫

On

E[g(X(1) + w)] dFX(2) (w)

≤
∫

On

E[g(Y (1) + w)] dFX(2) (w)

= E[g(Y (1) +X(2))].

Here we have assumed, without loss of generality, that all four random vectors
X(1), X(2), Y (1), Y (2) are independent. By conditioning on Y (1) we may then prove
E[g(Y (1) + X(2))] ≤ E[g(Y (1) + Y (2))]. Since g was an arbitrary Schur convex
function, we conclude X(1) +X(2) ≤st.M Y

(1) + Y (2). �

We have alluded to the fact that if X ≤st.M Y then
∑n
i=1Xi

d= ∑n
i=1 Yi . What

happens if we have stochastic majorization in both directions, i.e., X ≤st.M Y and
Y ≤st.M X? We cannot conclude that X = Y or even that X and Y are identically
distributed. However, it is true that they must have identically distributed order
statistics. This is not surprising since an analogous result is encountered in the non-
stochastic case. If x ≤M y and y ≤M x it does not follow that x = y but it does
follow that xi:n = yi:n, i = 1, 2, . . . , n. In the stochastic case, we argue as follows.

For j = 1, 2, . . . , n and z ∈ R define

g
(j)
z (x) = I

⎛

⎝
j∑

i=1

xi:n ≤ z
⎞

⎠ . (8.2)

It is clear that these g(j)z (·)’s are Schur convex functions. Since products of
Schur convex functions are again Schur convex, we conclude that for any vector
z1, z2, . . . , zn satisfying zi+1 − zi > zi − zi−1, i = 1, 2, . . . , n − 1 where by
convention z0 = 0, we can conclude that

E

⎡

⎣
n∏

j=1

g
(j)
zj (X)

⎤

⎦ = E
⎡

⎣
n∏

j=1

g
(j)
zj (Y )

⎤

⎦ (8.3)

since both X ≤st.M Y and Y ≤st.M X. However,
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E

⎡

⎣
n∏

j=1

g
(j)
zj (X)

⎤

⎦ = P
⎛

⎝
j∑

i=1

Xi:n ≤ zj , j = 1, 2, . . . , n

⎞

⎠ ,

so that (8.3) is enough to guarantee that

(
X1:n,

2∑

i=1

Xi:n, . . . ,
n∑

i=1

Xi:n

)
d=
(
Y1:n,

2∑

i=1

Yi:n, . . . ,
n∑

i=1

Yi:n

)
,

from which it follows directly that

(X1:n,X2:n, . . . , Xn:n)
d= (Y1:n, Y2:n, . . . , Yn:n) .

Note that the vector

(X1:n,X1:n +X2:n, . . . , X1:n +X2:n + · · · +Xn:n)

alluded to above is just the un-normalized Lorenz curve of the vector (X1, . . . , Xn).

We can define ≤st.M in terms of functions of the un-normalized Lorenz curve. Thus,
if we let L be the class of all possible un-normalized Lorenz curves, i.e.,

L = {(z1, z2, . . . , zn) : zi+1 − zi > zi − zi−1 , i = 1, 2, . . . , n} (8.4)

(again z0 = 0 by convention), and for any random vector X we denote its un-
norma1ized Lorenz curve by L∗(X), we can verify:

Theorem 8.1.6 X ≤st.M Y if and only if h(L∗(X)) ≤st h(L∗(Y )) for every
h(z) : L → R which for fixed zn is a monotone decreasing function of each of
the arguments z1, z2, . . . , zn−1.

Proof Exercise 3. �
When we introduced stochastic majorization, it was remarked that our definition

of X ≤st.M Y was, in fact, equivalent to the existence of versions of X and Y for
which almost sure majorization obtains. This observation, attributed by Marshall
and Olkin to T. Snijders, is relatively easy to prove, if we are willing to consider
rather complicated probability spaces.

Theorem 8.1.7 X ≤st.M Y if and only if there exist two random variables X′, Y ′

defined on the same probability space for which X
d= X′, Y d= Y ′ and P(X′ ≤M

Y ′) = 1.

Proof Let

w = {(x, y) ; x ∈ R
n, y ∈ R

n, x ≤M y} ⊂ R
2n.
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Let μ and ν be, respectively, probability measures on R
n determined by the

distributions of X and Y . Since w is a closed subset of R2n, and since Strassen’s
(1965) condition (30) is satisfied, there exists a probability measure λ on R

2n with
margina1s μ and ν which is supported by w, i.e., with λ(w) = 1. Let (X′, Y ′) be
a 2n-dimensional random variable with distribution λ, then the conditions of the
theorem are clearly satisfied. �

In the remainder of this chapter we will give several examp1es of stochastic
majorization. The first is an example in which stochastic majorization occurs in
the almost sure sense.

Theorem 8.1.8 Let X1, X2, . . . , Xn be positive random variables and let g be a
positive star shaped function defined on [0,∞). DefineZi = g(Xi), i = 1, 2, . . . , n.
It follows that

P

⎛

⎝
(
n∑

i=1

Xi

)−1

X ≤M
(
n∑

i=1

Zi

)−1

Z

⎞

⎠ = 1. (8.5)

Proof For each point w in the probability space consider a discrete uniform
random variable X̂w with n possible values X1(w),X2(w), . . . , Xn(w). Apply
Theorem 4.1.2 (note: g star shaped implies g(x)/x is non-decreasing and g is non-
decreasing) and conclude that for each w

(
n∑

i=1

Xi(w)

)−1

X(w) ≤M
(
n∑

i=1

Zi(w)

)−1

Z(w),

but this implies (8.5). �
An important source of examples of stochastic majorization depends on the

following preservation theorem of Nevius, Proschan, and Sethuraman.

Theorem 8.1.9 Let {f (x, λ)}λ>0 be a family of densities on (0,∞). Suppose that
f (x, λ) is totally positive of order two, i.e., for x1 < x2 and λ1 < λ2

∣∣∣∣
f (x1, λ1) f (x1, λ2)

f (x2, λ1) f (x2, λ2)

∣∣∣∣ ≥ 0.

In addition, assume that f (x, λ) satisfies the following “semi-group” property in λ

f (x, λ1 + λ2) =
∫ ∞

0
f (x − y, λ1)f (y, λ2) dμ(y),

where μ denotes either Lebesgue measure on (0,∞) or counting measure on
{0, 1, 2, . . . }.



174 8 Stochastic Majorization

Let (Xλ1 , Xλ2 , . . . , Xλn) denote a vector with independent components such that
Xλi has density f (x, λi), i = 1, 2, . . . , n. If λ ≤M λ, then Xλ ≤st.M Xλ′ .

Proof Without loss of generality, we may assume n = 2. The result will then follow,
provided we can show that for any Schur convex g the function φ defined by

φ(λ1, λ2) =
∫ ∞

0

∫ ∞

0
g(x1, x2)f (x1, λ1)f (x2, λ2) dμ(x1) dμ(x2)

is again Schur convex. Suppose λ1 < λ2 and ε is small, then (λ1 + ε, λ2 − ε) ≤M
(λ1, λ2), and we may write

φ(λ1, λ2) − φ(λ1 + ε, λ2 − ε)
=
∫ ∞

0

∫ ∞

0
[f (x1, λ1)f (x2, λ2)

−f (x1, λ1 + ε)f (x2, λ2 − ε)]g(x1, x2) dμ(x1) dμ(x2)

=
∫ ∞

0
f (y, ε)

∫ ∞

0

∫ ∞

0
f (x1, λ1)f (x2 − y, λ2 − ε)

−f (x1 − y, λ1 + ε)f (x2, λ2 − ε)]g(x1, x2) dμ(x1) dμ(x2) dμ(y).

Now, change variables and recall g is symmetric. Thus,

φ(λ1, λ2) − φ(λ1 + ε, λ2 − ε)
=
∫ ∞

0
f (y, ε)

∫ ∫

z1≤z2

[f (z2, λ1)f (z1, λ2−ε)−f (z1, λ1)f (z2, λ2−ε)]

×[g(z1 + y, z2)− g(z1, z2 + y)] dμ(z1) dμ(z2) dμ(y).

The Schur convexity of g guarantees that g(z1 + y, z2) − g(z1, z2 + y) ≤ 0,
and the total positivity of order 2 of f guarantees that f (z2, λ1)f (z1, λ2 − ε) −
f (z1, λ1)f (z2, λ2 − ε) ≤ 0. The Schur convexity of φ is thus confirmed. �

The hypotheses of Theorem 8.1.9 are strong. Four examples are available:
binomial, Poisson, negative binomial, and gamma. More examples can be generated
by considering mixtures as follows.

Theorem 8.1.10 LetXλ be a collection of n-dimensional random variables indexed
by λ ∈ Rn such that λ ≤M λ ⇒ Xλ ≤st.M Xλ′ . Let Z and Z′ be two n-dimensional
random vectors with corresponding distribution functions FZ(z) and FZ′(z). Define
U and U ′ by

FU(u) =
∫

Rn

P (Xλ ≤ u) dFZ(λ)
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and

FU ′(u) =
∫

Rn

P (Xλ ≤ u) dFZ′(λ)

If Z ≤st.M Z′, then U ≤st.M U ′ [more briefly we could write Z ≤st.M Z′ ⇒
XZ ≤st.M XZ′ .]

Proof By Theorem 8.1.7 we can assume that Z ≤M Z′ a.s. Then, for any bounded
Schur convex g we have E(g(U)|Z) ≤ E(g(U ′)|Z′) which may be integrated to
yield E(g(U)) ≤ E(g(U ′)). It follows that U ≤st.M U

′. �
Example 8.1.1 Let Xλ ∼ multinomial(N, λ) where λi > 0,

∑n
i=1 λi = 1, i.e.,

P(Xλ = k) = N !
n∏

i=1

λ
ki
i

ki ! ,

0 ≤ ki ≤ N ,
∑n
i=1 ki = N . If λ ≤M λ′, then Xλ ≤s.t.M Xλ′ .

The simplest way to verify this assertion is to observe that if Zλ1 , . . . , Zλn
are independent random variables with Zi ∼ Poisson(λi), then λ ≤M λ′ implies
Zλ ≤st.M Zλ′ , by Theorem 8.1.9. But then if we define

Xλi = I
(
n∑

i=1

Zλi = N
)
Zλi ,

we have Xλ ≤st.M Xλ′ by Theorem 8.1.3. But the conditional distribution of such
an Xλ given

∑n
i=1 Zλi �≡ 0 is just multinomial (N, λ). The desired result follows,

since
∑n
i=1 Zλi

d=∑n
i=1 Zλ′

i
(cf. Exercise 2).

Other examples are described in Exercise 7.

8.2 Exercises

1. Determine whether ≤s.t.M(4)⇒ ≤s.t.M(3).

2. Suppose X ≤s.t.M Y . Prove that
∑n
i=1Xi

d=∑n
i=1 Yi .

3. Prove Theorem 8.1.6.

4. Prove that the random variables X′ and Y ′ alluded to in Theorem 8.1.7 cannot be
independent.

5. Suppose X ≤st.M Y . Prove that for any a with
∑n
i=1 ai = 1,
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P

⎛

⎝
(
n∑

i=1

Xi

)−1

X ≥M a
⎞

⎠ ≤ P
⎛

⎝
(
n∑

i=1

Yi

)−1

Y ≥M a
⎞

⎠ .

6. Suppose X1, . . . , Xn are independent random variables with Xi Poisson λi and
that X∗

1, X
∗
2, . . . , X

∗
n are i.i.d. Poisson (λ̄) random variables (λ̄ = 1

n

∑n
i=1 λi).

Define g(x) =
(

1
n

∑n
i=1 x

2
i

)
/
(

1
n

∑n
i=1 xi

)2
. Verify that P(g(X) > δ) ≤

P(g(X∗) > δ), δ > 0.

7. (a) Show that the family of n-dimensional Dirichlet random variables {Xλ}
satisfies λ ≤ λ′ ⇒ Xλ ≤st.M Xλ′

(b) Multivariate negative binomial. Consider a sequence of independent exper-
iments each with (n + 1) possible outcomes 0, 1, 2, . . . , n with associated
probabilities

(
λ0∑n
i=0 λi

,
λ1∑n
i=0 λi

, . . . ,
λn∑n
i=0 λi

)
.

Define Xλ = (X1, . . . , Xn) by Xi = the number of outcomes of type i
that precede the N ’th outcome of type 0 (where N is a fixed integer). Let
λ = (λ1, . . . , λn). Prove that λ ≤M λ′ ⇒ Xλ ≤st.M Xλ′



Chapter 9
Some Related Orderings

In Sect. 6.4, we encountered some alternative inequality curves and the correspond-
ing orderings that they can be used to define (they were Bonferroni, Leimkuhler,
and Zenga-I and II). In this chapter we consider certain other partial orders defined
on L (the class of non-negative random variables with positive finite expectations)
that are closely related to the Lorenz ordering and are sometimes useful to aid in the
determination of whether or not random variables are Lorenz ordered. The first, ∗-
ordering, is often easier to deal with than Lorenz ordering, and is a prime example of
an ordering that can sometimes be used to verify Lorenz ordering which it implies.
The other group of partial orderings to be discussed are those known as stochastic
dominance of degree k, k = 1, 2, . . . Degree 1 is just stochastic ordering. Degree 2
is intimately related to the Lorenz order, but distinct. Higher degree stochastic orders
are most frequently encountered in economic contexts. The treatment provided here
is brief.

9.1 Star-Ordering

Let X, Y ∈ L with corresponding distribution functions FX and FY . Star-shaped
ordering or, more briefly, star ordering is defined as follows.

Definition 9.1.1 We say that X is star-shaped with respect to Y , write X ≤∗ Y if
F−1
X (u)/F−1

Y (u) is a non-increasing function of u.

Since F−1
cX (u) = cF−1

X (u) for any positive c and any X ∈ L, it is obvious that
∗-ordering is scale invariant. A simple sufficient condition for F−1

Y (FX(x))/x to be
increasing is that F−1

Y (FX(x)) be convex on the support of FX (see Exercise 1). If
F−1
X (u)/F−1

Y (u) has a simple differentiable form, then we can check for ∗-ordering
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by verifying that its derivative is non-positive. We can use ∗-ordering to verify that
Lorenz ordering obtains as a consequence of the following theorem.

Theorem 9.1.1 Suppose X, Y ∈ L. If X ≤∗ Y , then X ≤L Y .

Proof Without loss of generality, since both partial orders are scale invariant, we
may assume that E(X) = E(Y ) = 1. In such a case

LX(u)− LY (u) =
∫ u

0
[F−1
X (v)− F−1

Y (v)]dv (9.1)

Since F−1
X (v)/F−1

Y (v) is non-increasing, the integrand is first positive and then
negative as v ranges from 0 to 1 [cf. the proof of Theorem 4.1.1]. Thus, the
integral assumes its smallest value when u = 1. It follows that LX(u) − LY (u) ≥
LX(1)− LY (1) = 1 − 1 = 0, and consequently X ≤L Y . �

If we return now to the proof of Theorem 4.1.1, it is clear that conditions (ii) of
that theorem actually are sufficient for g(X) ≤∗ X ∀X ∈ L, and the theorem could
be restated as follows

Theorem 9.1.2 Let g : R+ → R
+. The following are equivalent.

(i) g(X) ≤L X, ∀X ∈ L
(ii) g(X) ≤∗ X, ∀X ∈ L

(iii) g(x) > 0, ∀ x > 0, g(x) is non-decreasing on [0,∞) and g(x)/x is non-
increasing on (0,∞).

Theorem 4.1.2 can be analogously restated. If we return again to the proof of
Theorem 9.1.1, we can see that the important consequence of ∗-ordering was that
F−1
X (v) − F−1

Y (v) had only one sign change (+,−) on the interval [0, 1]. This
sign-change property is not scale invariant, but it does permit us to formulate the
following simple sufficient condition for Lorenz ordering.

Theorem 9.1.3 Suppose X, Y ∈ L and that [F−1
X (v)/E(X)] − [F−1

Y (v)/E(Y )]
has at most one sign change (from + to −) as v ranges from 0 to 1. It follows that
X ≤L Y .

Proof The result is obvious from the discussion following (9.1). �
If inverse functions cross at most once then the same holds for the original

functions. Consequently, we can restate the last sufficient condition in the form:
A sufficient condition that X ≤L Y is that FX(E(X)x) − FY (E(Y )x) has at most
one sign change (from − to +) as x ranges from 0 to ∞. If X ≤∗ Y one can show
that FX(λx) − FY (νx) has at most one sign change (from − to +) for any choices
of λ and ν. It is thus evident that if we use the sign-change property alluded to in
Theorem 9.1.3 to define a partial order on L, it will occupy an intermediate position
between ≤∗ and ≤L.

Definition 9.1.2 We will say that X is sign-change ordered with respect to Y and
write X ≤s.c. Y , if [F−1

X (v)/E(X)] − [F−1
Y (v)/E(Y )] has at most one sign change

(from + to −) as v ranges from 0 to 1.
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A simple sufficient condition for sign change ordering can be stated in terms of
density crossings (assuming densities exist). Thus,

Theorem 9.1.4 LetX, Y ∈ L have corresponding densities fX(x) and fY (y) (with
respect to a convenient dominating measure on R

+, in the most abstract setting).
If the function

E(X)fX(E(X)x)− E(Y )fY (E(Y )x) (9.2)

has two sign changes (from − to + to −) as x ranges from 0 to ∞, then X ≤s.c. Y .

Proof (9.2) is merely the density of X/E(X) minus the density of Y/E(Y ). The
difference between the distribution functions

FX(E(X)x)− FY (E(Y )x) = FX/E(X)(x)− FY/E(Y )(x)

has the sign sequence −,+ since it is a function which begins at 0 when x = 0, ends
at 0 (as x → ∞) and whose derivative by (9.2) has sign sequence −,+,−. �

Verification that X ≤L Y is frequently most easily done by using the density
crossing argument (Theorem 9.1.4) or by showing ∗-ordering obtains (if F−1

X (u)

and F−1
Y (u) are availab1e in convenient tractab1e forms).

Example 9.1.1 If X ≤∗ Y , then Xi:n ≤∗ Yi:n for every i ≤ n. This follows since

Xi:n
d= F−1

X (Ui:n) where Ui:n is the i’th order statistic from a samp1e of size n from

a uniform (0, 1) distribution. Similarly, Yi:n
d= F−1

Y (Ui:n). So if we let Gi:n be the
distribution function of Ui:n, we can write

F−1
Xi:n(u)

F−1
Yi:n(u)

= F−1
X [Gi:n(u)]
F−1
Y [Gi:n(u)]

.

But this ratio is non-increasing as u increases, since G−1
i:n is monotone increasing

and F−1
X (v)/F−1

Y (v) is a non-increasing function of v (since X ≤∗ Y ).

Example 9.1.2 Suppose X has a symmetric distribution on the interval [0, c]. The
sample median (for samples of odd size) decreases in inequality in the Lorenz sense
as sample size increases. Specifically, if m < m′

Xm′+1:2m′+1 ≤L Xm+1:2m+1.

If we considerm′ = m+ 1, and denote the density of Xm+1:2m+1 by fm(x), we find
that the ratio of densities fm+1(x)/fm(x) is given by

fm+1(x)

fm(x)
= FX(x)[1 − FX(x)]2(2m+ 3)

m+ 1
. (9.3)
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By symmetry E(Xm+1:2m+1) = E(Xm+2:2m+3) = c/2, so that we do not have
to correct for differences in means. Since expression (9.3) is greater than 1 for
intermediate values of x and less than 1 for large and small values, it follows that,
by Theorem 9.1.4,Xm+2:2m+3 ≤s.c. Xm+1:2m+1 and consequently they are similarly
Lorenz ordered.

9.2 Stochastic Dominance

The initial work on stochastic dominance was executed in the context of bounded
non-negative random variables. Subsequent researchers (especially Fishburn 1980)
have extended consideration to unbounded random variables but subtle changes are
required in the definitions and interpretations. In the present development we will
content ourselves with consideration of the bounded case. It may be and frequently
has been remarked on that the restriction to bounded random variables is not a
serious restriction when dealing with real world data.

For the remainder of this section all random variables are nonnegative and are
assumed to be bounded above by B > 0. We will denote the class of such random
variables by LB . Evidently if X ∈ LB , E(Xk) < ∞ ∀k. Associated with X ∈ LB
is a sequence of “distribution” functions defined by repeated integration. Thus for
x ∈ [0, B),

F̃
(1)
X (x) = P(X ≤ x) = FX(x) (9.4)

and for i = 2, 3, . . .

F̃
(i)
X (x) =

∫ x

0
F̃
(i−1)
X (y) dy (9.5)

The word “distribution” is placed in quotation marks because, although F̃ (i)X (x)
(i = 2, 3, . . . ) is continuous and non-decreasing, it has not been norma1ized to
be a true distribution function, i.e. in general we do not have F̃ (i)X (B) = 1. An
interpretation of the i’th distribution function is available as follows.

F̃
(i)
X (x) =

∫ x

0
F̃
(i−1)
X (yi−1) dyi−1

=
∫ x

0
dyi−1

∫ yi−1

0
F̃
(i−2)
X (yi−2) dyi−2

= . . .

=
∫ x

0
dyi−1

∫ yi−1

0
dyi−2 · · ·

∫ y2

0
dy2

∫ y1

0
dFX(y0)
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The range of integration is

{(y0, . . . , yi−1) : y0 ≤ y1 ≤ y2 · · · ≤ yi−1 ≤ x}.
Performing the integration in reverse order we have

F̃
(i)
X (x) =

∫ x

0
dFX(y0)

∫ x

y0

dy1

∫ x

y1

dy2 · · ·
∫ x

yi2

dyi−1

= 1

(i − 1)!
∫ x

0
(x − y0)

i−1 dFX(y0). (9.6)

It is thus possible to write F̃ (i)X (x) as a function of the moment distributions of
FX. Recall that the j ’th moment distribution of X is defined by

F
(j)
X (x) =

∫ x

0
tj dFX(t)/E(X

j ) (9.7)

(F (1)X was introduced in Chap. 3 in the discussion of Lorenz curves) and, for j ≥ 2,
the j ’th moment distribution was defined in Sect. 5.6. From (9.6) we have

F̃
(i)
X (x) = 1

(i − 1)!
i−1∑

j=0

xi−1−j (−1)jE(Xj )F (j)X (x). (9.8)

Observe that setting x = B in (9.8) yields

F̃
(i)
X (B) = 1

(i − 1)!E[(B −X)i−1]. (9.9)

Stochastic dominance is defined in terms of the sequence of “distribution” functions
(9.5).

Definition 9.2.1 Let X and Y ∈ LB . For n = 1, 2, . . . we say that X is n’th degree
stochastically dominated by Y and write X ≤s.d.(n) Y , if

F̃
(j)
X (B) ≥ F̃ (j)Y (B), j = 1, 2, . . . , n− 1. (9.10)

and

F̃
(n)
X (x) ≥ F̃ (n)Y (x), ∀x ∈ [0, B]. (9.11)

Fishburn’s (1976; 1980) variant definition of n’th degree stochastic dominance
involves only condition (9.11) (see Exercise 7). The present definition is in the spirit
of Whitmore and Findlay (1978). Stochastic dominance of degrees 2 and 3 has
been much used in decision making contexts. Observe that first degree stochastic
dominance is just the usual stochastic ordering denoted earlier by ≤st.
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In certain economic, financial and decision theoretica1 contexts interest centers
on expectations of the form E(u(X)) where u is a completely monotone function in
the following sense.

Definition 9.2.2 u : R
+ → R

+ is completely monotone, if it is infinitely
differentiable and if

(−1)n
dn

dxn
u(x) ≥ 0

for every x and every n.

A completely monotone function is thus, succinctly, one whose successive
derivatives a1ternate in sign according to the sequence +,−,+,. . . A remarkable
observation found, for example, in Feller (1971, p. 415), is that such functions
are necessarily Laplace transforms. Specifically, if u is complete1y monotone, then
there exist two distribution functions G1 and G2 on [0,∞) such that for some c1
and c2

u(x) = c1

∫ ∞

0
e−xy dG1(y)− c2

∫ ∞

0
e−xy dG2(y) (9.12)

Less restrictive conditions on u would involve requirements that the signs of the
successive derivatives of u alternate, but just up to a point. For n = 1, 2, . . . we may
define classes {Un}∞n=1 of functions as follows:

Un = {u | u : R+ → R
+, (−1)k+1Dku ≥ 0, k = 1, 2, . . . , n} (9.13)

whereDk is the k’th derivative operator. Thus, U1 consists of the differentiable non-
decreasing functions. U2 consists of twice differentiable non-decreasing concave
functions. U3 consists of members of U2 which have a non-negative third derivative,
etc. Evidently,

Un ⊂ Un−1, n = 2, 3, . . . . (9.14)

Our definitions of stochastic dominance of degrees 1, 2, . . . assume a particularly
simple form when related to expectations of functions in the classes U1,U2, . . .

Theorem 9.2.1 For X, Y ∈ LB , X ≤s.d.(n) Y if and only if E(u(X)) ≤ E(u(Y ))

for every u ∈ Un for which the expectations exist.

Proof Suppose X ≤s.d.(n) Y and u ∈ Un. Repeated integration by parts yields

E(u(Y ))− E(u(X)) =
∫ B

0
u(x) d[FY (x)− FX(x)]

= u(x)[F̃ (1)Y (x)− F̃ (1)X (x)]|B0
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− u′(x)[F̃ (2)Y (x)− F̃ (2)X (x)]|B0
+ . . .
+(−1)n−1u(n−1)(x)[F̃ (n)Y (x)− F̃ (n)X (x)]|B0

+(−1)n
∫ B

0
u(n)(x)[F̃ (n)Y (x)− F̃ (n)X (x)] dx

where u(i)(x) = Diu(x). However all these terms are non-negative by (9.10) and
(9.11).

To prove the converse, we write, as above

E(u(Y ))− E(u(X)) =
n−1∑

i=0

(−1)iu(i)(B)[F̃ (i+1)
Y (B)− F̃ (i+1)

X (B)]

+
∫ B

0
u(n)(x)[F̃ (n)Y (x)− F̃ (n)X (x)] dx.

If (9.10) fails to hold for some j , then we will have E(u(Y )−u(X)) < 0 for any
u ∈ Un for which u(j)(B) is much bigger than the other u(i)(B)’s and u(n)(x). If
(9.11) fails to hold at some point x0, we will have E(u(Y )−u(X)) < 0 for a u ∈ Un
for which u(n)(x0) is large compared with other values of u(n)(x) and for which the
u(i)(B)’s, i < n are small. It is tedious to construct such members of Un, but it can
be done. The cases n = 1, 2, and 3 have been frequently dealt with in the literature.

�
In the light of (9.9), condition (9.10) is seen to involve an inequality involving

complicated functions of the first n− 2 moments of X and Y . For large values of n
it is difficult to interpret the implications of such a condition. The Fishburn variant
definition (see Exercises 3 and 7) avoids this problem. The resulting partial order,
requiring (9.11) only, is interpretable in terms of a slightly smaller class of utility
functions say Ũn, a proper subset of Un (again see Exercise 7). The price we pay
is that although utility classes {Un} are readily motivated in terms involving risk
aversion, it is not clear why one should be happy to restrict attention to the more
structured classes Ũn.

An intimate relationship between second degree stochastic dominance and
Lorenz ordering is immediately evident.

Theorem 9.2.2 Let X, Y ∈ LB . X ≤L Y if and only if Y/E(Y ) ≤s.d.(2) X/E(X).
Proof Without loss of generality, assume E(X) = E(Y ) = 1. Suppose X ≤L Y
and consider u ∈ U2. Since u is concave, −u is convex and by Theorem 3.2.1,
E(u(Y )) ≤ E(u(X)). Since u was arbitrary in U2, we conclude that Y ≤s.d.(2) X.
Suppose Y ≤s.d.(2) X. Consider angle functions of the form

gc(x) =
{−x + c, x ≤ c,

0, x > c
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The functions −gc can be approximated arbitrarily closely by members of U2 and,
consequently, E[gc(X)] ≤ E[gc(Y )] for every c. But this is enough to ensure that
X ≤L Y . �

A caveat is in order regarding the application of Theorem 9.2.2. It says that
Lorenz ordering and stochastic dominance of degree 2 are intimately related. It
does not say that one is the reverse of the other. To see this, first observe that from
Theorem 9.2.1 we know that

X ≤s.d.(n) Y ⇒ X ≤s.d.(n+1) Y. (9.15)

Also note that if X ≤s.d.(n) Y and Y ≤s.d.(n) X, we must have X
d= Y . This

already tells us that stochastic dominance of degree 2 is distinctly different from
reverse Lorenz ordering, since Lorenz ordering is scale invariant, i.e. ifX ≤L Y and

Y ≤L X we can only conclude X
d= cY for some c.

Now we seek a pair of random variables, not identically distributed, for which
X ≤L Y and X ≤s.d.(1) Y . For such random variables we will have X ≤L Y yet
Y �s.d.(2) X. A simple example is provided by considering X ∼ uniform(1, 1.5)
and Y ∼ uniform(2, 4). Clearly X ≤L Y , X ≤s.d.(1) Y , X ≤s.d.(2) Y and Y �s.d.(2)
X. In this example we also have X ≤s.d.(2) Y , yet Y �L X. Thus division by
expectations in Theorem 9.2.2 is indispensable.

What can be said about preservation and attenuation of stochastic dominance?
The analog of Theorem 4.1.1 is not very interesting.

Theorem 9.2.3 Let g : [0, B] → [0, B]. The following are equivalent

(i) g(X) ≤s.d.(n) X, ∀X ∈ LB
(ii) g(x) ≤ x, ∀ x ∈ [0, B]

Neither is the characterization of functions which preserve stochastic dominance.

Theorem 9.2.4 Let g : [0, B] → [0, B]. A necessary and sufficient condition that
X ≤s.d.(n) Y imply g(X) ≤s.d.(n) g(Y ) is that g is non-decreasing on [0, B].

In both cases the necessity part of the proof involves considering degenerate X’s
and Y ’s. Among degenerate random variables the stochastic dominance relations of
differing degrees coincide, i.e., if P(X = a) = P(Y = b) = 1, then X ≤s.d.(n)
Y ⇐⇒ a ≤ b.

Theorems 9.2.3 and 9.2.4 reinforce the evidence that stochastic dominance of
degree 2 is a different breed of cat than Lorenz ordering.

9.3 Exercises

1. Let FX and FY be (for convenience) strictly increasing distribution functions
on (0,∞). We say that X is convex with respect to Y and write X ≤c Y ,
if F−1

Y (FX(x)) is a convex function on (0,∞). Prove that if X ≤c Y then
necessarily X ≤∗ Y .
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2. Construct examples to verify that convex ordering, sign change ordering, star
ordering, and Lorenz ordering are distinct partial orders.

3. Compare the present definition of stochastic dominance of order 3 with that used
in Fishburn (1976). (As in Exercise 7 below with α = 2, but restricted to LB ).

4. Prove the converse of Theorem 9.2.1 when n = 1, 2.

5. Prove that X ≤∗ Y if and only if for every c > 0, X and cY have distribution
functions which cross at most once.

6. Show by example that the converse to Theorem 9.1.4 does not hold.

7. (Fishburn’s stochastic dominance for unbounded random variables). Let X and
Y be non-negative random variables. We write X ≤s.d.(α) Y , if

F
(α)
X (x) ≥ F (α)Y (x), ∀x ≥ 0

where

F
(α)
X (x) = 1

�(α)

∫ x

0
(x − y)α−1)dFX(y), α ≥ 1.

(a) Verify that for α < α′

F
(α′)
X (x) = 1

�(α′ − α)
∫ x

0
(x − y)(α′−α−1)F

(α)
X (y) dy

and conclude that α dominance implies α′ dominance.

(b) Let Vα = {v : v is real valued continuous on [0,∞), positive on (0,∞) and
satisfies

∫∞
0 xα−1v(x) dx < ∞}. Define Ũα by: u ∈ Ũα , if there exists some

v ∈ Vα and some real c such that

u(x) = −
∫ ∞

x

v(y)(y − x)α−1 dy + c.

Show that X ≤s.d.(α) Y if and only if E(u(X)) ≤ E(u(Y )) for every u ∈ Ũα .

8. X and Y are said to be ordered in dispersion (X ≤disp Y ), if F−1
X (β)−F−1

X (α) ≤
F−1
Y (β)−F−1

Y (α)whenever 0 < α < β < 1. Show thatX ≤disp Y if and only if
for every real c the distribution functions of X+ c and Y cross at most once, and
if there is a sign change, FX+c − FY changes sign from − to + (Shaked 1982).
Compare this result with that of Exercise 5.

9. If X has a symmetric density on (0, 2) and fX(x) is decreasing on (1, 2), show
that var(X) < 1/3. (Compare X with a uniform(0, 2) random variable].



Chapter 10
Inequality Analysis in Families of Income
Distributions

10.1 Introduction

In this chapter we will study inequality measures for two flexible families of income
distributions: the McDonald family (McDonald 1984) and the family of generalized
Pareto distributions proposed by Arnold (1983, 2015b). We will include analytic
expressions for the Lorenz curve, Gini indices, and other inequality measures for
the different distributions of the two families.

As well, we will study stochastic comparisons within certain parametric subfam-
ilies of the MacDonald family.

10.2 The McDonald Family: Definitions and Basic Properties

We begin with the generalized functions for the size distribution of income
proposed by McDonald (1984). These will be said to belong to the “McDonald
family of income distributions” or simply the “McDonald family.” The McDonald
family is composed of three subfamilies of distributions: the generalized gamma
distributions, the generalized beta distributions of the first kind, and the generalized
beta distributions of the second kind, sometimes called Generalized Beta Prime
distributions. This family has several advantages for practical use. First, the family
includes many of the most popular distributions used in the analysis of income,
wealth and risk analysis, as special or limiting cases. A second advantage is that
many of the properties and features of McDonald distributions can be obtained in
simple analytic forms. Some references which discuss different properties of this
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family are: McDonald (1984), Wilfling (1996a,b), Wilfling and Krämer (1993),
Kleiber (1996), Kleiber (1999), Kleiber and Kotz (2003), Sarabia and Jordá (2014b),
Sarabia et al. (2002), Belzunce et al. (2013), Sarabia et al. (2017a,b) among others.

The three subfamilies that together comprise the McDonald family are, as
mentioned above: the generalized gamma (GG) distributions, the generalized beta
distributions of the first kind (GB1), and the generalized beta distributions of the
second kind (GB2). These three types of distributions, GG, GB1, and GB2 are
defined in terms of their probability density functions as follows (each of the three
models has positive parameters a, b, p, q > 0):

fGG(x; a, p, b) = axap−1 exp(−(x/b)a)
bap�(p)

, x ≥ 0, (10.1)

fGB1(x; a, p, q, b) = axap−1[1 − (x/b)a]q−1

bapB(p, q)
, 0 ≤ x ≤ b, (10.2)

and

fGB2(x; a, p, q, b) = axap−1

bapB(p, q)[1 + (x/b)a]p+q , x ≥ 0, (10.3)

respectively, and 0 otherwise. Here �(α) = ∫∞
0 tα−1 exp(−t)dt represents the

gamma function and B(p, q) = ∫ 1
0 t
p−1(1 − t)q−1dt denotes the beta function,

where α, p, q > 0.
For each of the three distributions, the parameter b is a scale parameter while a,

p, and q are shape parameters. We will indicate that a random variableX has (10.1),
(10.2), or (10.3) as its density by writing X ∼ GG(a, p, b), X ∼ GB1(a, p, q, b)
and X ∼ GB2(a, p, q, b), respectively. If b = 1, we omit mention of it and write
X ∼ GG(a, p), X ∼ GB1(a, p, q) and X ∼ GB2(a, p, q).

These McDonald models include a wide spectrum of candidate income distri-
butions including many that have been proposed in the existing literature, as listed
below.
The GG(a, p, b) distributions include as special cases the following distributions:

• Exponential distributions: Exp(λ) (with intensity or rate parameter λ) =
GG(1, 1, λ−1)

• Classical gamma distribution �(α, β) = GG(1, α, β)
• Chi-squared distribution χ2

n = GG(1, n/2, 2)
• Weibull distributionW(a) = GG(a, 1, 1)
• Half normal distribution GG(2, 1/2,

√
2)

The usual two-parameter lognormal distribution with density of the form,

f (x;μ, σ) = 1

σx
√

2π
exp

{
−1

2

(
log x − μ

σ

)2
}
, x > 0, (10.4)
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where μ ∈ R and σ > 0 (denoted by X ∼ LN(μ, σ 2)) is a limiting case of the GG
distribution (McDonald 1984).
The GB1(a, p, q, b) distribution includes as special cases the following distribu-
tions.

• Classical beta distribution: B(α, β) = GB1(1, α, β)
• Power distribution GB1(a, p, 1)
• Kumaraswamy distribution K(a, q) = GB1(a, 1, q)
• Arcsin distribution GB1(1, 1

2 ,
1
2 )

The GB2(a, p, q, b) distribution includes the following special cases.

• Beta distribution of the second kind B(2)(α, β) = GB2(1, α, β)
• Singh–Maddala distribution (Singh and Maddala 1976) SM(a, q) =

GB2(a, 1, q)
• Dagum distribution (Dagum 1977) distribution D(a, p) = GB2(a, p, 1)
• Lomax or Pareto II distribution L(q) = GB2(1, 1, q)
• Fisk or log-logistic distribution F(a) = GB2(a, 1, 1)

The GB2 distribution was referred to as a Feller–Pareto distribution by Arnold
(1983, 2015b), who included an additional location parameter.

On the other hand, the GG distribution can be obtained as a limit of the GB1
distribution, when q → ∞ and b = b̃(p + q)1/a , and as a limit of the GB2
distribution when q → ∞ and b = b̃q1/a .

Simple stochastic representations of the McDonald distributions are available in
terms of independent gamma variables. Thus, with independent random variables
V ∼ �(p, 1) andW ∼ �(q, 1) we have

bV a ∼ GG(a, p, b), (10.5)

b

(
V

V +W
)a

∼ GB1(a, p, q, b), (10.6)

b

(
V

W

)a
∼ GB2(a, p, q, b). (10.7)

These stochastic representations will prove useful for simulation of McDonald
family variables.

Next, we review some properties of the McDonald family, which will be useful
for the computation of various inequality measures.

First, to obtain the cdf of the GG distribution, we consider the incomplete gamma
function ratio defined by

G(x; ν) = 1

�(ν)

∫ x

0
tν−1 exp(−t)dt, x > 0, (10.8)
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with ν > 0. Note that (10.8) corresponds to the cdf of the classical gamma
distribution with shape parameter ν > 0 and scale parameter b = 1. Using (10.8),
the cdf of (10.1) is given by

FGG(x; a, p, b) = G((x/b)a;p), x ≥ 0. (10.9)

Next, we consider the incomplete beta function ratio defined by

B(x;p, q) = 1

B(p, q)

∫ x

0
tp−1(1 − t)q−1dt, 0 ≤ x ≤ 1 (10.10)

with p, q > 0. The function (10.10) corresponds to the cdf of the classical beta
distribution of the first kind B(p, q). The cdf of the GB1 distribution is

FGB1(x; a, p, q, b) = B((x/b)a;p, q), 0 ≤ x ≤ 1, (10.11)

where B(·; ·, ·) is defined in (10.10).
Despite the somewhat complicated aspect of (10.3), the corresponding cdf can

be easily defined in terms of the incomplete beta function ratio (10.10). Thus, the
cdf of the GB2 distribution is given by

FGB2(x; a, p, q, b) = B
(

(x/b)a

1 + (x/b)a ;p, q
)
, x ≥ 0. (10.12)

The cdf’s, the quantile functions, the k-th moment distribution, and the corre-
sponding moments for the McDonald family are summarized in Table 10.1. For the
lognormal distribution, X ∼ LN(μ, σ 2), the cdf is

F(x;μ, σ) = �
(

log x − μ
σ

)
, x ≥ 0,

and the quantile function is

F−1(u;μ, σ) = exp{μ+ σ�−1(u)}, 0 ≤ u ≤ 1. (10.13)

The k-th moment for the lognormal distribution is

E(Xk) = exp
(
kμ+ k2σ 2/2

)
,

and the k-th moment distribution is

X(k) ∼ LN(μ+ kσ 2, σ 2). (10.14)
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Table 10.1 Main features of the McDonald family: cdf, quantile function, k-th moment distribu-
tion and the k-th raw moment

Distribution GG(a, p, b) GB1(a, p, q, b) GB2(a, p, q, b)

CDF G((x/b)a;p) B ((x/b)a;p, q) B
(
(x/b)a

1+(x/b)a ;p, q
)

Quantile b
{
F−1
G (u;p)

}1/a
b
{
F−1
B (u;p, q)

}1/a
b

{
F−1
B (u;p, q)

1 − F−1
B (u;p, q)

}1/a

F (k) GG(a, p + k
a
) GB1(a, p + k

a
, q) GB2(a, p + k

a
, q − k

a
)

E(Xk)
bk�(p + k

a
)

�(p)

bkB(p + k
a
, q)

B(p, q)

bkB(p + k
a
, q − k

a
)

B(p, q)

Note: We denote byG(x; ν) the incomplete gamma function ratio defined in (10.8) and B(x;p, q)
the incomplete beta function ratio defined in (10.10). As well, F−1

G (u, p) with 0 ≤ u ≤ 1 denotes

the quantile function of the classical gamma distribution and F−1
B (u, p, q) with 0 ≤ u ≤ 1 the

quantile function of the classical beta distribution

10.2.1 Lorenz Curves and Gini Indices

In this section, we include the Lorenz curves and the Gini indices for the three
classes of distributions in the McDonald family. In his 1984 paper, McDonald
reported the Gini indices for the three families. However, he did not include expres-
sions for the corresponding Lorenz curves. To obtain expressions for these Lorenz
curves,we will make use of the generalized hypergeometric function pFq(a; b; x)
defined by

pFq(a1, . . . , ap; b1, . . . , bq; x) =
∞∑

k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

xk

k! , (10.15)

where (a)k represent the Pochhammer symbol defined by (a)k = a(a + 1) · · · (a +
k − 1).

If a random variable X has a GG(a, p) distribution, then its Lorenz curve is
given by

LGG(u; a, p) = G
(
G−1(u;p);p + 1

a

)
, 0 ≤ u ≤ 1, (10.16)

where G(x; ν) is defined in (10.8). The proof is direct, using the formula LX(u) =
FX(1) (F

−1
X (u)), and the results included in Table 10.1. Some special cases of the

Lorenz curve (10.16) are:

• Lorenz curve of the classical gamma distribution (a = 1):

LG(u;p) = G(G−1(u;p);p + 1), 0 ≤ u ≤ 1.
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Table 10.2 Special cases of the Gini index for the GG family

Distribution Gini index

Classical Gamma G(p) = GG(1, p) (= �(p, 1)) �(1 + 1
2 )√

π�(p + 1)

WeibullW(a) = GG(a, 1) 1 − 1

21/a

Standard exponential exp(1) = GG(1, 1)
1

2

• Lorenz curve of the Weibull distribution (p = 1):

LW(u; a) = G
(

− log(1 − u); 1

a
+ 1

)
, 0 ≤ u ≤ 1.

• Lorenz curve of the standard exponential distribution (a = p = 1):

LE(u) = u+ (1 − u) log(1 − u), 0 ≤ u ≤ 1.

The Gini index of the GG family is, as derived by (McDonald 1984),

GGG(a, p, q) = 1

22p+1/aB(p, p + 1/a)

(
1

p2G
(1) − 1

p + 1/a
G(2)

)
, (10.17)

where

G(1) = 2F1

(
1, 2p + 1

a
;p + 1; 1

2

)
,

G(1) = 2F1

(
1, 2p + 1

a
;p + 1

a
+ 1; 1

2

)
,

where 2F1(a, b; c; x) represents the Gauss hypergeometric function, which is a
special case of the generalized hypergeometric function defined in (10.15). Some
special cases of the Gini index for the GG family appear in Table 10.2.

We continue with the generalized beta distributions of the first kind. If a random
variable X has a GB1(a, p, q) distribution, then its Lorenz curve is given by

LGB1(u; a, p, q) = B
(
B−1(u;p, q);p + 1

a
, q

)
, 0 ≤ u ≤ 1, (10.18)

where the function B(x;p, q) is defined in (10.10). Special cases of the Lorenz
curve (10.18) of the GB1 family are:

• Lorenz curve of the power distribution (q = 1):

LP (u; a, p) = u1/θ+1, 0 ≤ u ≤ 1,

where θ = ap.
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Table 10.3 Special cases of the Gini index for the GB1 family

Distribution Gini index

Classical Beta B(p, q) = GB1(1, p, q)
2B(2p, 2q)

pB2(p, q)

Kumaraswamy K(a, q) = GB1(a, 1, q) 1 − 2
�(2q)�(q + 1/a + 1)

�(q)�(2q + 1/a + 1)

Power GB1(a, p, 1)
1

1 + 2θ
, θ = ap

Complementary power GB1(1, 1, q)
1

1 + 2q

Arcsine GB1(1, 1
2 ,

1
2 )

4

π2

• Lorenz curve of the complementary power distribution (a = p = 1):

LCP(u; q) = 1 − (q + 1)(1 − u)+ q(1 − u)1+1/q, 0 ≤ u ≤ 1

• Lorenz curve of the arcsine distribution (a = 1 and p = q = 1/2):

LA(u) = πu− sin(πu)

π
, 0 ≤ u ≤ 1.

If a random variable X has a GB1(a, p, q) distribution, then its Gini index is
given by (McDonald 1984),

GGB1=K(1)4F3

(
2p+1

a
, p, p+1

a
, 1 − q; 2p + q + 1

a
, p + 1, p + 1

a
+ 1; 1

)
,

in which

K(1) = B(2p + 1/a, q)

B(p, q)B(p + 1/a, q)p(ap + 1)

and 4F3(a; b; x) represents the generalized hypergeometric function defined in
(10.15), with p = 4 and q = 3. Special cases of the Gini index of the GB1 family
are given in Table 10.3.

We turn now to consider the generalized beta distributions of the second kind.
If a random variable X has a GB2(a, p, q) distribution, then its Lorenz curve is
given by

LGB2(u; a, p, q) = B
(
B−1(u;p, q);p + 1

a
, q − 1

a

)
, 0 ≤ u ≤ 1, (10.19)

where q > 1/a and B(x;p, q) is defined in (10.10). Some relevant special cases of
the Lorenz curve of the GB2 distribution (10.19) are the following,
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• Lorenz curve of the Singh–Maddala distribution (p = 1):

LSM(u; a, q) = B
(

1 − (1 − u)1/q; 1 + 1

a
, q − 1

a

)
, 0 ≤ u ≤ 1,

valid if q > 1/a.
• Lorenz curve of the Dagum distribution (q = 1):

LD(u; a, p) = B
(
u1/p;p + 1

a
, 1 − 1

a

)
, 0 ≤ u ≤ 1,

valid if a > 1.
• Lorenz curve of the beta distribution of the second kind (a = 1):

LB2(u;p, q) = B
(
B−1(u;p, q);p + 1, q − 1

)
, 0 ≤ u ≤ 1,

valid if q > 1.

The Gini index for the GB2 family is given by (McDonald 1984),

GGB2 = B(2q − 1/a, 2p + 1/a)

B(p, q)B(p + 1/a, q − 1/a)

(
1

p
H(1) − 1

p + 1/a
H(2)

)
,

where

H(1) = 3F2

(
1, p + q, 2p + 1

a
;p + 1, 2(p + q); 1

)
,

H (2) = 3F2

(
1, p + q, 2p + 1

a
;p + 1

a
+ 1, 2(p + q); 1

)
,

if q > 1/a, where 3F2(a1, a2, a3; b1, b2; x) is a special case of the generalized
hypergeometric function defined in (10.15). Some relevant special cases of the Gini
index for the GB2 family appear in Table 10.4.

We now consider the lognormal distribution. It has been remarked that the
lognormal distribution can be viewed as a limiting case of McDonald distributions.
However, direct computation of the lognormal Lorenz curve and Gini index is
preferable, as follows. Let X ∼ LN(μ, σ 2) be a lognormal random variable with
pdf given by (10.4), then its Lorenz curve is given by

LX(u; σ) = �(�−1(u)− σ), 0 ≤ u ≤ 1, (10.20)

where �(·) represents the cdf of the standard normal distribution. From (10.14) the
first moment distribution of X is again of the lognormal form, i.e., X(1) ∼ LN(μ+
σ 2, σ 2), and using the quantile function given in (10.13) we obtain (10.20). The
Gini index of the lognormal distribution is

G = 2�

(
σ√

2

)
− 1, (10.21)
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Table 10.4 Special cases of the Gini index for the GB2 family

Distribution Gini index

Beta of the second kind B(2)(p, q) = GB2(1, p, q)
2B(2p, 2q − 1)

pB2(p, q)
, q > 1

Singh–Maddala SM(a, q) = GB2(a, 1, q) 1 − �(q)�(2q − 1
a
)

�(q − 1
a
)�(2q)

, q > 1/a

Dagum D(a, p) = GB2(a, p, 1)
�(p)�(2p + 1

a
)

�(2p)�(p + 1
a
)

− 1, a > 1

Fisk or log-logistic F(a) = GB2(a, 1, 1)
1

a
, a > 1

Lomax or Pareto II Pa(q) = GB2(1, 1, q)
q

2q − 1
, q > 1

where, here and below, �(·) represents the cdf of the standard normal distribution.
The proof of this results is based on the following identity,

∫ ∞

−∞
φ(z)�(a + bz)dz = �

(
a√

1 + b2

)
,

where a, b ∈ R and �(z) represents the pdf of the standard normal distribution.

10.2.2 Other Inequality Measures

In this section we obtain expressions for some additional inequality measures for
members of the McDonald family. First of all, the inequality measures expressed
in terms of the raw moments can be obtained using the formulas contained in
Table 10.1. We continue with the Theil indices T0(X) and T1(X) defined in Chap. 5
which are given by

T0(X) = −E
(

log
X

μ

)
,

and

T1(X) = E
(
X

μ
log
X

μ

)
,

respectively, where X ∈ L and E(X) = μ. The corresponding formulas for
T0(X) and T1(X) for the three subclasses of the McDonald family of distributions
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Table 10.5 Theil index T0(X) for the members of the McDonald family

Distribution T0(X)

GG −ψ(p)
a

+ log
�(p + 1

a
)

�(p)

GB1 −ψ(p)− ψ(p + q)
a

+ log
�(p + q)�(p + 1

a
)

�(p)�(p + q + 1
a
)

GB2 −ψ(p)− ψ(q)
a

+ log
�(p + 1

a
)�(q − 1

a
)

�(p)�(q)
, q >

1

a

Note: We denote by ψ(z) = d log�(z)
dz

= �′(z)
�(z)

the digamma function

Table 10.6 Theil index T1(X) for the members of the McDonald family

Distribution T1(X)

GG
ψ(p + 1

a
)

a
− log

�(p + 1
a
)

�(p)

GB1
ψ(p + 1

a
)− ψ(p + q + 1

a
)

a
− log

�(p + q)�(p + 1
a
)

�(p)�(p + q + 1
a
)

GB2
ψ(p + 1

a
)− ψ(q − 1

a
)

a
− log

�(p + 1
a
)�(q − 1

a
)

�(p)�(q)
, q >

1

a

Note: We denote by ψ(z) = d log�(z)
dz

= �′(z)
�(z)

the digamma function

are included in Tables 10.5 and 10.6, respectively. For the lognormal distribution
X ∼ LN(μ, σ 2) we have

T0(X) = T1(X) = σ 2

2
.

The Theil indices for the GB2 distribution were obtained by Jenkins (2009).
The T1 index for the classical gamma distribution was obtained by McDonald
and Ransom (2008) and the formula for T1 for the classical beta distribution was
obtained by McDonald (1981) and Pham-Gia and Turkkan (1992). The rest of the
formulas were obtained by Sarabia et al. (2017a).

We continue with the Pietra index. We recall that if X is a non-negative random
variable in L, the Pietra index is defined as the maximal vertical deviation between
the Lorenz curve and the egalitarian line, that is,

P(X) = max
0≤p≤1

{p − LX(p)} .

If X ∈ L, an alternative simple expression is available for the Pietra index in terms
of the cdf of X and the first moment distribution X(1), i.e.,

P(X) = FX(μX)− F (1)X (μX). (10.22)
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Table 10.7 Special cases of the Pietra index for the GG family

Distribution Pietra Index

Half normal GG(2, 1/2) erfc

(
1√
π

)
− 1 + exp

(
− 1

π

)

Classical gamma GG(1, p)
ppe−p

�(p)

Exponential GG(1, 1)
1

e
= 0, 367879

Weibull GG(a, 1) 1 − exp(−μaW )−G
(
μaW ; 1 + 1

a

)

Note: Notation, erfc(x) is the complementary error function defined by erfc(x) = 2√
π

∫∞
x
e−t2dt

and μW = �
(

1 + 1
a

)
the mean of the Weibull distribution

The corresponding formulas have been obtained in a unified way by Sarabia and
Jordá (2014b) . First, if X ∼ GG(a, p), i.e., has a generalized gamma distribution,
where a, p > 0, then its Pietra index is given by

PGG(a, p) = G (μaGG;p)−G
(
μaGG;p + 1

a

)
, (10.23)

where

μGG = �(p + 1
a
)

�(p)
,

and G(x;p) is defined in (10.8). The proof is direct using Eq. (10.22) and the
elements contained in Table 10.1. Some special cases of the Pietra index for the
GG distribution are given in Table 10.7.

If X ∼ GB1(a, p, q) has a generalized beta distribution of the first kind, where
a, p, q > 0, then its Pietra index is given by

PGB1(a, p, q) = B (μaGB1;p, q
)− B

(
μaGB1;p + 1

a
, q

)
, (10.24)

where

μGB1 = B(p + q, 1
a
)

B(p, 1
a
)
,

and B(x;p, q) is defined in (10.10). Some special cases of the Pietra index for the
GB1 distribution are given in Table 10.8.
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Table 10.8 Special cases of the Pietra index for the GB1 family

Distribution Pietra index

Power GB1(a, p, 1)
(ap)ap

(1 + ap)1+ap

Classical beta GB1(1, p, q) B

(
p

p + q ;p, q
)

− B
(

p

p + q ;p + 1, q

)

Kumaraswamy GB1(a, 1, q) 1 − (1 − μaK)q − B
(
μaK ; 1 + 1

a
, q

)

Note: Here μK = B
(

1+q, 1
a

)

B
(

1, 1
a

) is the mean of the Kumaraswamy distribution

Table 10.9 Special cases of the Pietra index for the GB2 family

Distribution Pietra Index

Second kind beta GB2(1, p, q) B

(
p

p + q − 1
;p, q

)
− B

(
p

p + q − 1
;p + 1, q − 1

)

Singh–Maddala GB2(a, 1, q) 1 − 1

(1 + μaSM)
q

− B
(

μaSM

1 + μaSM
; 1 + 1

a
, q − 1

a

)

Dagum GB2(a, p, 1)
1

(1 + μ−a
D )

p
− B

(
μaD

1 + μaD
;p + 1

a
, 1 − 1

a

)

Note: We denote as μSM = �(1+ 1
a
)�(q− 1

a
)

�(q)
the mean of the Singh–Maddala distribution and μD =

�(p+ 1
a
)�(1− 1

a
)

�(p)�(q)
the mean of the Dagum distribution

Finally, if X ∼ GB2(a, p, q), i.e., has a generalized beta distribution of the
second kind, where a, p, q > 0, then the Pietra index is given by

PGB2(a, p, q) = B
(

μaGB2

1 + μaGB2
;p, q

)
− B

(
μaGB2

1 + μaGB2
;p + 1

a
, q − 1

a

)
,

(10.25)

where q > 1/a and

μGB2 = �(p + 1
a
)�(q − 1

a
)

�(p)�(q)
,

and B(x;p, q) is defined in (10.10). Some relevant special cases of the Pietra index
for the GB2 distribution are included in Table 10.9.

For the lognormal distribution, since its first moment distribution is again
lognormal, using Eq. (10.22) we obtain

PLN = FX(μ)− FX(1) (μ) = 2�
(σ

2

)
− 1. (10.26)
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10.3 The Generalized Pareto Distributions

In this section we will study the hierarchy of Pareto distributions proposed by
Arnold (2015b).

The different members of this family are all heavy-tailed distributions. In addi-
tion, they are easy to compute because they are defined in terms of simple survival
functions. Many of the main properties of this family including: distributional prop-
erties, order statistics, record values, residual life, asymptotic, characterizations,
related distributions, measures of inequality, multivariate versions, and statistical
inference have been studied in detail by Arnold (1983, 2015b).

The starting point of the hierarchy is the classical Pareto distribution (which we
have used in several parts of the book), called the Pareto (I) distribution. Its survival
function is of the form

F̄ (x) =
( x
σ

)−α
, x > σ, (10.27)

where F̄ = 1 − F , σ > 0 is the scale parameter and α > 0 is the Pareto index
of inequality. In practice, we assume that α > 1, so that distribution has a finite
mean. A random variable X with survival function (10.27) will be denoted by X ∼
P(I)(σ, α).

The second member of the hierarchy is the Pareto(II) distribution. This distribu-
tions is also defined in terms of the survival function by

F̄ (x) =
[

1 +
(
x − μ
σ

)]−α
, x > μ, (10.28)

where μ ∈ R is the location parameter, σ > 0 is positive, and α > 0 is the shape
parameter. In many applications μ is positive. We will denote this distribution by
X ∼ P(II)(μ, σ, α).

The next member of the hierarchy, which provides tail behavior similar to that
corresponding to the survival function (10.28) is the Pareto(III) family with survival
function,

F̄ (x) =
[

1 +
(
x − μ
σ

)1/γ
]−1

, x > μ, (10.29)

where μ ∈ R and σ, γ > 0. We will call γ the inequality parameter. If μ = 0 and
γ ≤ 1, the shape parameter γ turns out to be the Gini index of inequality. If X has
(10.29) as its survival function, we will denote this by X ∼ P(III)(μ, σ, γ ).

The last member of the hierarchy is the Pareto(IV) distribution defined by

F̄ (x) =
[

1 +
(
x − μ
σ

)1/γ
]−α

, x > μ, (10.30)



200 10 Inequality Analysis in Families of Income Distributions

Table 10.10 Quantile functions for the generalized Pareto distributions

Pareto Distribution Quantile function

Pareto (I)(σ, α) F−1
I (u) = σ(1 − u)−1/α

Pareto (II)(μ, σ, α) F−1
II (u) = μ+ σ

[
(1 − u)−1/α − 1

]

Pareto (III)(μ, σ, γ ) F−1
III (u) = μ+ σ

[
(1 − u)−1 − 1

]γ

Pareto (IV)(μ, σ, γ, α) F−1
IV (u) = μ+ σ

[
(1 − u)−1/α − 1

]γ

Table 10.11 Moments for the generalized Pareto distributions

Pareto Distribution Moments

Pareto (I)(σ, α) E(Xk) = ασk

α − k , α > k

Pareto (II)(0, σ, α) E(Xk) = σk�(α − k)�(1 + k)
�(α)

, α > k

Pareto (III)(0, σ, γ ) E(Xk) = σk�(1 − kγ )�(1 + kγ ), − 1

γ
< k <

1

γ

Pareto (IV)(0, σ, γ, α) E(Xk) = σk�(α − kγ )�(1 + kγ )
�(α)

, − 1

γ
< k <

α

k

with μ ∈ R and σ , γ , and α positive. If a random variable has the survival function
(10.30), we will denote X ∼ P(IV )(μ, σ, γ, α).

The Pareto (IV) family provides a convenient vehicle for computing distribu-
tional results for the three more specialized families. All three of the previous
distributions may be identified as special cases of the Pareto (IV) family as follows:

P(I)(σ, α) = P(IV )(σ, σ, 1, α),

P (II )(μ, σ, α) = P(IV )(μ, σ, 1, α),

P (III )(μ, σ, γ ) = P(IV )(μ, σ, γ, 1).

The quantile function and the raw moments of the generalized Pareto distri-
butions appear in Tables 10.10 and 10.11, respectively. Samples of the different
families of the generalized Pareto distributions can be obtained easily by simulation
using formulas in Table 10.10.

Some of the distributions in this hierarchical family of Pareto models can be
identified with other known families of distributions. For example, the Pareto III
distribution corresponds to the Fisk distribution (Fisk 1961a,b), also called the log-
logistic distribution. If fact, if X has a logistic distribution with cdf,

F(x) =
[
1 + e−(x−μ)/σ)

]−1
, x ∈ R
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we have

exp(X) ∼ P(III)(0, eμ, σ ).
On the other hand, if X ∼ P(II)(μ, σ, α), i.e., is a Pareto (II) variable, and if
Y1 ∼ �(1, 1) is an exponential distribution and Yα ∼ �(α, 1) a gamma distribution
with shape parameter α and independent of Y1, we have

X = μ+ σ Y1

Yα
. (10.31)

The stochastic representation (10.31) has been used by Sarabia et al. (2016)
to generate multivariate Pareto distribution and then to study some aggregated
distributions under dependence. See also Chap. 6 of Arnold (2015b) where several
multivariate Pareto models are defined in terms of independent gamma distributed
components. One of these is mentioned in Sect. 12.9 below. The representation
(10.31) can also be written in terms of mixture distributions.

The Pareto IV distribution was proposed by Arnold and Laguna (1976); Ord
(1975) and Cronin (1977, 1979). It is related to the Feller–Pareto (Feller 1971)
distribution. If B ∼ B(γ1, γ2), i.e., it has a beta distribution of the first kind, then a
Feller–Pareto variable is defined by

X = μ+ σ
(

1

B
− 1

)γ
, (10.32)

where μ ∈ R and σ, γ, γ1 and γ2 are positive. This distribution will be denoted as
X ∼ FP(μ, σ, γ, γ1, γ2). The probability density function corresponds to (10.32) is

f (x) = 1

γ σB(γ1, γ2)

[(x − μ)/σ ]γ2/γ1−1

{
1 + [(x − μ)/σ ]1/γ

}γ1+γ2
, x > μ.

In the case μ = 0, Kalbfleisch and Prentice (1980) called this density the
generalized F density. The Pareto (IV) distributions can be identified with the
Feller–Pareto distributions as

P(IV )(μ, σ, γ, α) = FP(μ, σ, γ, α, 1) (10.33)

and if μ = 0, the GB2 and Feller–Pareto distributions are related by

FP(0, σ, γ, γ1, γ2) = GB2(γ−1, γ1, γ2, σ ). (10.34)

The Pareto (IV) distribution has a representation as a mixture of Weibull distribu-
tions. If

P(X > x|Y = y) = e−y[(x−μ)/σ ]1/γ
, x > μ,

that is, a translated Weibull distribution and if Y ∼ �(α, 1), we have X ∼
P(IV )(μ, σ, γ, α).
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10.3.1 Lorenz Curves and Gini Indices

In this section we include the Lorenz curves and the Gini indices for the Pareto
(I)–Pareto (IV) distributions. The expressions for the Lorenz curves can be found in
Arnold (2015b) and are the following.

• Lorenz curve for the Pareto (I)(σ, α) distribution:

L(u) = 1 − (1 − u)(α−1)/α, 0 < u < 1,

with α > 1.
• Lorenz curve for the Pareto (II)(0, σ, α) distribution:

L(u) = 1 − B((1 − u)1/α;α − 1, 2), 0 < u < 1,

with α > 1.
• Lorenz curve for the Pareto (III)(0, σ, γ ) distribution:

L(u) = 1 − B(1 − u; 1 − γ, γ + 1), 0 < u < 1,

with γ < 1.
• Lorenz curve for the Pareto (IV)(μ, σ, γ, α) distribution:

L(u) = μu+ σαB(α − γ, γ + 1)[1 − B((1 − u)1/α;α − γ, γ + 1)]
μ+ σαB(α − γ, γ + 1)

,

with 0 < u < 1 and α > γ

10.3.2 Inequality Measures

In this section we obtain several inequality measures for the Pareto (I)–Pareto (IV)
distributions. Obviously, many inequality measures expressed in terms of the raw
moments and quantiles can be obtained using the moment formulas contained in
Tables 10.10 and 10.11. Table 10.12 contains the Gini indices for these distributions.

Table 10.12 Gini indices for the generalized Pareto distributions

Pareto Distribution Gini index

Pareto (I)(σ, α)
1

2α − 1
, α > 1

Pareto (II)(0, σ, α)
α

2α − 1
, α > 1

Pareto (III)(0, σ, γ ) γ, γ < 1

Pareto (IV)(μ, σ, γ, α) 1 − μ+ 2σαB(2α − γ, γ + 1)

μ+ σαB(α − γ, γ + 1)
, α > γ
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Table 10.13 Theil index T0(X) for the generalized Pareto distributions

Distribution T0(X)

Pareto (I)(σ, α) − 1

α
+ log

α

α − 1
, α > 1

Pareto (II)(0, σ, α) γ + ψ(α)− log(α − 1), α > 1

Pareto (III)(0, σ, a) log[�(1 − a)�(1 + a)], a < 1

Pareto (IV)(0, σ, a, α) a[γ + ψ(α)] + log

[
�(1 + a)�(α − a)

�(α)

]
, α > a

Note: We denote the Euler’s constant as γ = 0.5772 and ψ(z) = d log�(z)
dz

= �′(z)
�(z)

the digamma
function

Table 10.14 Theil index T1(X) for the generalized Pareto distributions

Distribution T1(X)

Pareto (I)(σ, α)
1

α − 1
− log

α

α − 1
, α > 1

Pareto (II)(0, σ, α) 1 − γ − ψ(α − 1)+ log(α − 1), α > 1

Pareto (III)(0, σ, a) a[ψ(1 + a)− ψ(1 − a)] − log[�(1 − a)�(1 + a)], a < 1

Pareto (IV)(0, σ, a, α) a[ψ(1 + a)− ψ(α − a)] − log

[
�(1 + a)�(α − a)

�(α)

]
,

α > a

Note: We denote the Euler’s constant as γ = 0.5772 and ψ(z) = d log�(z)
dz

= �′(z)
�(z)

the digamma
function

Tables 10.13 and 10.14 contain the Theil indices of the generalized Pareto
distributions. These expressions appear in Sarabia et al. (2017a,b) .

The Pietra indices for the Pareto(I)(σ, α) and the Pareto(II)(0, σ, α) distributions
are (see Arnold 2015b)

PI = (α − 1)α−1

αα
,

PII =
(

1 − 1

α

)α−1

,

respectively. The Pietra indices for the other two members can also be obtained
using the formulas in Chap. 5.
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10.4 Stochastic Orderings Within the McDonald Family

10.4.1 Introduction and the Orderings to be Used

In this section we study the comparison of income distributions in terms of
inequality and relative deprivation for distributions in the McDonald family. We
will consider the following three stochastic orderings: the Lorenz ordering, the
star-shaped ordering, and the order based on the expected proportional shortfall
(EPS) function. The first two orderings were introduced in Chaps. 3 and 8. The order
based on the expected proportional shortfall function is an intermediate ordering
between the Lorenz and the star-shaped orderings, with an interesting economic
interpretation.

The different orderings for the Pareto(IV) and the Feller–Pareto distributions
can be obtained directly using its relation with the GB2 distribution given by the
identities (10.33) and (10.34).

First, we introduce the EPS function, proposed by Belzunce et al. (2012).

Definition 10.4.1 Let X ∈ L. The expected proportional shortfall function of X is
defined as

EPSX(u) = E
[(
X − F−1

X (u)

F−1
X (u)

)

+

]
,

for all u ∈ (0, 1) with F−1
X (u) > 0, where (x)+ = x if x ≥ 0 and (x)+ = 0 if

x < 0.

This measure can be interpreted as a measure of the relative deprivation felt by
an individual with rank u in the distribution FX. Since the quantile function F−1

u of(
X−F−1

X (u)

F−1
X (u)

)

+
is,

F−1
u (t) = F−1

X (t)− F−1
X (u)

F−1
X (u)

, t ≥ u,

and 0 if t < u, the EPS function can be computed as

EPSX(u) =
∫ 1

0
F−1
u (t)dt =

∫ 1
u
(F−1
X (t)− F−1

X (u))dt

F−1
X (u)

. (10.35)

We consider a simple example.

Example 10.4.1 In the case in whichX has a standard exponential distribution with
cdf FX(x) = 1 − e−x , if x ≥ 0 and quantile function F−1

X (u) = − log(1 − u), if
u ∈ (0, 1), using Formula (10.35), the EPS function of X is

EPSX(u) =
∫ 1
u
(− log(1 − t)+ log(1 − u))dt

− log(1 − u) = 1 − u
− log(1 − u) .
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Using the EPS function, we introduce the expected proportional shortfall
ordering.

Definition 10.4.2 For X1, X2 ∈ L, we say thatX1 exhibits less relative deprivation
thanX2 in the expected proportional shortfall sense, to be denoted byX1 ≤ps X2 if,

EPSX1(u) ≤ EPSX2(u)

for all u ∈ (0, 1).
Recently, Belzunce et al. (2012) have shown that the expected proportional

shortfall ordering is intermediate between the Lorenz and the star-shaped orderings,
that is,

X1 ≤∗ X2 ⇒ X1 ≤ps X2 ⇒ X1 ≤L X2.

10.4.2 Comparisons for Two Distributions in the Same
Subfamily of McDonald Distributions

In this section we will study comparison between two distributions inside the
families GG, GB1, and GB2.

We begin with the GG family. The Lorenz ordering in the GG family was
initially studied by Taillie (1981). In a rigorous contribution, Wilfling (1996b)
provided the necessary and sufficient conditions for Lorenz ordering in the GG
family. Subsequently, Belzunce et al. (2013) proved that these conditions were also
necessary and sufficient for the star-shaped and the expected proportional shortfall
orderings. Thus we have:

Theorem 10.4.1 Let Xi ∼ GG(ai, pi), i = 1, 2 be two random variables with GG
distributions. Then,

X1 ≤∗ X2 ⇐⇒ X1 ≤ps X2 ⇐⇒ X1 ≤L X2 ⇐⇒ a1 ≥ a2 and a1p2 ≥ a2p2.

(10.36)

In the following corollary we consider the necessary and sufficient conditions for
the three orderings in two subfamilies (Gamma and Weibull distributions) of the GG
distribution.

Corollary 10.4.1 Assume that one of the following conditions holds:

1. Xi ∼ �(pi, 1), i = 1, 2 with p1 ≥ p2,
2. Xi ∼ W(ai), i = 1, 2 with a1 ≥ a2.

Then,

X1 ≤∗ X2, X1 ≤ps X2 and X1 ≤L X2.
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Now, we consider the GB1 family. The following theorem provides sufficient
conditions for the Lorenz ordering of two GB1 distributions with different parame-
ters (Wilfling 1996b).

Theorem 10.4.2 Let X ∼ GB1(a1, p1, q1) and Y ∼ GB1(a2, p2, q2) with
a1, a2, p1, p2, q2 > 0 and q1 > 1. We have X ≤L Y if:

(a) a1 = a2 =: a ≥ 1 and p1 = q1 and p2 = q2 = p1 − 1.
(b) a1 = a2 =: a and p1 > p2 and q1 = q2 =: q ≥ 1.
(c) a1 = a2 =: a and p1 > p2 and q2 > ξ > 0, with ξ satisfying E(X) = E(Z)

for Z1 ∼ GB1(a, p2, ξ).
(d) a1 ≥ a2 and p1 = p2 and q1 = q2.

Remark The constant ξ in part (c) of the previous theorem has to be determined
numerically. For fixed a and p = p2, it results from varying q until the
corresponding expectation coincides with the mean of a GB1(a, p1, q1) distribution
(see Wilfling 1996b).

Next, we consider distributions in the GB2 family. For this family, Wilfling
(1996a) has proved the following result for Lorenz ordering.

Theorem 10.4.3 LetXi ∼ GB2(ai, pi, qi), i = 1, 2 be two random variables with
GB2 distributions. Then,

(a) If X1 ≤L X2, then a1p1 ≥ a2p2 and a1q1 ≥ a2q2.
(b) If a1 ≥ a2, p1 > p2 and q1 > q2, then X1 ≤L X2.

Later, Kleiber (1999) proved that the Lorenz order holds assuming weaker
conditions on the parameters. Subsequently, Belzunce et al. (2013) showed that the
sufficient conditions considered by Kleiber (1999) are sufficient conditions for the
starshaped order and, as a consequence, for the expected proportional shortfall order
also. Thus

Theorem 10.4.4 LetXi ∼ GB2(ai, pi, qi), i = 1, 2 be two random variables with
GB2 distributions. If a1 ≥ a2, a1p1 ≥ a2p2, and a1q1 ≥ a2q2, then X1 ≤∗ X2.

In the following corollary we consider the sufficient conditions for the three
orderings in five relevant subfamilies of the GB2 class of distributions.

Corollary 10.4.2 Assume that one of the following conditions holds:

1. Xi ∼ B2(pi, qi) with qi > 1, i = 1, 2 and p1 ≥ p2, q1 ≥ q2,
2. Xi ∼ SM(ai, qi) with aiqi > 1, i = 1, 2 and a1 ≥ a2, a1q1 ≥ a2q2,
3. Xi ∼ D(ai, pi) with ai > 1, i = 1, 2 and a1 ≥ a2, a1p1 ≥ a2p2,
4. Xi ∼ L(qi) with qi > 1, i = 1, 2 and q1 ≥ q2,
5. Xi ∼ F(ai) with ai > 1, i = 1, 2 and a1 ≥ a2.

It follows that X1 ≤∗ X2 and so also that X1 ≤ps X2 and X1 ≤L X2..
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10.4.3 Comparisons for Two Distributions in Different
McDonald Subfamilies

In this section we provide some results on comparisons between two distribution
from different McDonald subfamilies. We will begin by considering the Lorenz
order and then deal with comparison in terms of the star-shaped order and as a
consequence, in terms of the expected proportional shortfall order.

Theorem 10.4.5 Let X1 ∼ GB1(a, p, q), X2 ∼ GG(a, p) and X3 ∼
GB2(a, p, q) with aq > 1. Then,

X1 ≤L X2 ≤L X3. (10.37)

Proof The proof of these results can be found in Theorems 4, 5 and 6 in Sarabia
et al. (2002). Here, we only include the proof for X2 ≤L X3. Let X2 ∼ GG(a, p)
and X̃2 ∼ GG(a, q) be independent GG random variables. We have

X3 = X2

X̃2
∼ GB2(a, p, q),

and then

E(X3|X2) = E
(
X2

X̃2
|X2

)
= kX2,

where k = E(X̃−1
2 ), which exists if aq > 1. Consequently, X2 = E(k−1X3|X2)

and then

X2 ≤L k−1X3 ⇒ X2 ≤L X3,

since the Lorenz ordering is invariant with respect to changes of scale. �
The following theorem is a stronger version of the previous theorem, this time

for the star-shaped order.

Theorem 10.4.6 Let X1 ∼ GB1(a, p, q), X2 ∼ GG(a, p) and X3 ∼
GB2(a, p, q). Then,

X1 ≤∗ X2 ≤∗ X3.

Proof For proofs of these results, see Theorems 4.1 and 4.3 in Belzunce et al.
(2013). �

The following corollary identifies some pairs of income distributions that are
star-shaped ordered as consequences of the above theorem.
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Corollary 10.4.3 Assume that one of the following conditions holds:

1. X1 ∼ GG(a1, p1) and X2 ∼ GG(a2, p2, q2) with a1 ≥ a2 and a1p1 ≥ a2p2,
2. X1 ∼ GG(a1, p1) and X2 ∼ D(a2, p2) with a2 > 1 and a1 ≥ a2 and a1p1 ≥
a2p2,

3. X1 ∼ G(p1) and X2 ∼ B2(p2, q2) with q2 > 1 and p1 ≥ p2,
4. X1 ∼ W(a1) and X2 ∼ SM(a2, q2) with a2q2 > 1 and a1 ≥ a2,
5. X1 ∼ W(a1) and X2 ∼ F(a2) with a2 > 1 and a1 ≥ a2,
6. X1 ∼ E(1), X2 ∼ L(q) with q > 1
7. X1 ∼ GB1(a1, p1, q1) and X2 ∼ GB2(a2, p2, q2) with a1 ≥ a2 and a1p1 ≥
a2p2,

then,

X1 ≤∗ X2.

10.5 Exercises

1. For the McDonald family, prove the following results:

(a) Let X ∼ GB2(a, p, q), then,

Y =
(

Xa

1 +Xa
)1/a

∼ GB1(a, p, q).

(b) Let X1 ∼ GG(a, p) and X2 ∼ GG(a, q) be independent random variables,
then,

Y = X1

X2
∼ GB2(a, p, q).

2. Let X ∼ GB2(a, p, q, b) be a random variable with a GB2 distribution. Prove
that:

(a) The Singh–Maddala distribution SM(a, q, b) = GB2(a, 1, q, b) has the
simple cdf,

F(x; a, q, b) = 1 −
[
1 +

(x
b

)a]−q
, x ≥ 0.

(b) The Dagum distribution D(a, p, b) = GB2(a, p, 1, b) has the following
simple cdf,

F(x; a, p, b) =
[

1 +
(x
b

)−a]−p
, x ≥ 0.
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(c) If X ∼ SM(a, q, b), then 1
X

∼ D(a, q, 1
b
).

3. Use R software, to write code for computing the Lorenz curves for the GG, GB1,
and GB2 distributions.

4. A random variable X is said to have an extended half normal distribution if its
pdf is given by

f (x; a) = exp(−xa/2)
21/a�(1 + 1

a
)
, x ≥ 0,

and f (x; a) = 0 if x < 0, where a > 0.

(a) Check that X has a distribution that belongs to the GG family, identifying
the corresponding parameters.

(b) Prove that the Pietra index of Xis given by

G

(
μa; 1

a

)
−G

(
μa; 2

a

)
,

where μ = �(2/a)
�(1/a) .

5. The Lamé class of Lorenz curves (Sarabia et al. 2017b) includes Lorenz curves
of the following two types,

L1(u) = [1 − (1 − u)a]1/a, 0 ≤ u ≤ 1,

where 0 < a ≤ 1 and

L2(u) = 1 − (1 − ua)1/a, 0 ≤ u ≤ 1,

where a ≥ 1.

(a) Identify the cdf’s corresponding to the Lorenz curves L1 and L2. Verify that
both cdfs are special cases of the GB2 family, identifying the corresponding
parameters.

(b) Prove that the Gini indices are

G1(a) = 1 − �(1/a)2

a�(2/a)
, 0 < a ≤ 1,

and

G2(a) = �(1/a)2

a�(2/a)
− 1, a ≥ 1,

respectively for L1 and L2.
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(c) Prove that the Pietra indices for L1 and L2 are given by

P1(a) = 1 − 1

21/a−1
, 0 < a ≤ 1,

and

P2(a) = 1

21/a−1 − 1, a ≥ 1,

respectively.

6. Let X1 ∼ GB1(a, p, q) and X2 ∼ GB2(a, p, q) be GB1 and GB2 random
variables with the same parameters. Use Theorem 4.1.1 to prove that X1 ≤L X2.

7. Consider a Weibull distribution with cdf F(x) = 1 − e−xn if x ≥ 0. Verify that
the corresponding expected proportional shortfall function is given by

−(1 − u)−
�
(

1 + 1
n
,− log(1 − u)

)

log(1 − u) ,

with u ∈ (0, 1), where �(x; ν) denotes the incomplete gamma function.

8. Consider a Truncated Pareto distribution with survival function,

F̄ (x) = (x/σ )−α − b−α

a−α − b−α , aσ < x < bσ,

where σ, α > 0 and 1 < a < b. Prove that the Lorenz curve is given by (Arnold
2015b),

L(u) = 1 − [1 − (1 − (a/b)α)u]1−1/α

1 − (a/b)α−1 , 0 < u < 1,

when α �= 1. If α = 1/2, prove that the previous curve can be written as

L(u) = u√
b/a + (√b/a − 1)u

, 0 < u < 1.



Chapter 11
Some Applications

A glance at the table of contents of Marshall, Olkin, and Arnold’s (2011) book
will indicate that approximately 40% of the book (i.e., 327 pages) is devoted to
applications. Clearly, we will make no attempt to duplicate such an exhaustive
list. We will content ourselves in this and the following chapter with a selection
of examples which, it is hoped, will hint at the breadth of the areas of possible
application. For more, of course, the reader will need to consult Marshall et al.
(2011, Chapters 7–10 and 12–13).

11.1 A Geometric Inequality of Cesaro

Let �1, �2, and �3 denote the lengths of the three sides of a triangle. Cesaro is credited
with the observation that, for any triangle, its side lengths satisfy

�1�2�3 ≤ 1

8
(�1 + �2)(�2 + �3)(�3 + �1). (11.1)

To prove this, we merely demonstrate that the left-hand side and right-hand side
are just a particular Schur convex function evaluated at two points in R

3 which are
related by majorization. To this end, consider

�̃ =
⎛

⎝
1/2 1/2 0
0 1/2 1/2

1/2 0 1/2

⎞

⎠ �. (11.2)

Since the matrix in (11.2) is doubly stochastic, we have �̃ ≤M �. Now consider
the function g(x) = −∏3

i=1 xi . It is easy to verify that g is Schur convex (apply
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Schur’s condition, Theorem 2.2.3). Inequality (11.1) then follows readily. But, in
retrospect, it had nothing to do with the fact that �1, �2, �3 were lengths of sides of
a triangle! If indeed the �i’s were lengths of sides of a triangle, we would know that
the largest of the three would have to be no larger than the sum of the other two, i.e.,

�3:3 ≤ �1:3 + �2:3, (11.3)

and, of course, �1:3 ≥ 0. It follows that if the �i’s are sides of a triangle, we have

(�1, �2, �3) ≤M
(

0,
p

2
,
p

2

)
(11.4)

where p = �1+�2+�3 is the perimeter of the triangle. Equation (11.4) does not hold
for any vector (�1, �2, �3), only for vectors � which satisfy (11.3). If we evaluate the
Schur convex function

h(x) = −(x1 + x2)(x2 + x3)(x3 + x1)

at each of the vectors in (11.4), we conclude that

(�1 + �2)(�2 + �3)(�3 + �1) ≥ p3/4 (11.5)

for any triangle (actually the inequality is strict if we consider only non-degenerate
triangles). In addition, for any vector (�1, �2, �3) whose coordinates are lengths of
the sides of a triangle we have

(p
3
,
p

3
,
p

3

)
≤M (�1, �2, �3) (11.6)

where again p = �1 + �2 + �3. Evaluating h(x) at each of the points in (11.6) yields

(�1 + �2)(�2 + �3)(�3 + �1) ≤ 8p3/27 (11.7)

with equality in the case of an equilateral triangle.

11.2 Matrices with Prescribed Characteristic Roots

The relationship between the diagonal elements of an n×nmatrix and the vector of
its n eigenvalues was early discovered to involve majorization. Schur showed that if
A is an n× n Hermitian matrix, then its diagonal vector is necessarily majorized by
the vector of its eigenvalues. A more recent theorem discovered independently by
Horn (1954) and Mirsky (1958) is the following.

Theorem 11.2.1 Let a and w be two vectors in R
n. If a ≤M w, then there exists a

real symmetric n × n matrix A with a as its diagonal vector and w as its vector of
eigenvalues.
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To capture the basic idea of the proof without too much algebraic complexity, we
will consider the two preliminary lemmas only in the case n = 3. First we have

Lemma 11.2.1 If a, b ∈ R
3 are such that a ≤M b, then there exist numbers c2 and

c3 such that b1:3 ≤ c2 ≤ b2:3 ≤ c3 ≤ b3:3 and (a2:3, a3:3) ≤M (c2, c3).

Proof Without loss of generality a1 +a2 +a3 = b1 +b2 +b3 = 1 and a1 ≤ a2 ≤ a3,
b1 ≤ b2 ≤ b3. Since a ≤M b we have a1 ≥ b1, a1 + a2 ≥ b1 + b2 and b3 ≥ a3.
Obviously b1 ≤ a2 and a3 ≤ b3. We consider three cases.

Case (i). If a2 ≤ b2 ≤ a3, we may take c2 = a2 and c3 = a3 and we are done.
Case (ii). Suppose a2 ≤ a3 < b2. We seek c2, c3 such that c2 + c3 = a2 + a3,
a2 ≥ c2 and b1 ≤ c2 ≤ b2 ≤ c3 ≤ b3. Thus we wish to choose c2 ∈ (b1, a2).
An acceptable choice is any c2 in the interval (b1, a1 + a2 − b3) (and c3 =
a2 + a3 − c2).

Case (iii). Suppose b2 < a2 ≤ a3. In this case an acceptable choice is c2 = b2 and
c3 = a2 + a3 − b2. �

Lemma 11.2.2 If the real numbers (w1, w2, w3) and (α2, α3) satisfy

w1 ≤ α2 ≤ w2 ≤ α3 ≤ w3, (11.8)

then there exists a real symmetric matrix of the form,

A =
⎛

⎝
α3 0 p3

0 α2 p2

p3 p2 p1

⎞

⎠ (11.9)

whose eigenvalues are w1, w2, and w3.

Proof If we successively substitute w1, w2 and w3 for λ in the determinantal
equality |A − λI | = 0, we obtain three linear equations in three unknowns p1,
p2

2 and p2
3. Subject to the constraint (11.8), it is not difficult to verify that a solution

of the form p1 ∈ R, p2
2 ≥ 0, p2

3 ≥ 0 does exist. Hence, we can find p1, p2, and p3
with the desired properties. �
n-dimensional versions of Lemmas 11.2.1 and 11.2.2 were obtained by Mirsky

(1958). Using them, an inductive proof of Theorem 11.2.1 is readily obtainable.

11.3 Variability of Sample Medians and Means

Let X1, X2, . . . , Xn be i.i.d. non-negative random variables with corresponding
order statistics X1:n,X2:n, . . . , Xn:n. If n = 2m+ 1 is odd, then the sample median
is Xm+1:2m+1. As m increases, it is plausible that the sample median will tend to
concentrate more and more closely near to the population median, i.e., F−1

X ( 1
2 ). For

convenience we will assume that the common distribution of the Xi’s is absolutely
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continuous with corresponding probability density function fX(x). Yang (1982)
showed that var(Xm+1:2m+1) is less than or equal to var(X). In the case of a
symmetric density, i.e., fX of the form

fX(x) =
{
fX(c − x), 0 < x < c,

0, x /∈ (0, c), (11.10)

we can make an even stronger statement. In fact, we know that if the common
density of the Xi’s is of the form (11.10), we have

Xm+2:2m+3 ≤L Xm+1:2m+1 (11.11)

for every m = 0, 1, 2, . . . (this was Example 9.1.2). Since E(Xm+1:2m+1) = c, ∀m,
we can conclude that

var(Xm+1:2m+1) ↓ as m ↑ (11.12)

(since u(x) = x2 is convex).
If we turn to consider sample means rather than medians, then, assuming second

moments exist, but not assuming symmetry, we have for each n,

var(X̄n+1) ≤ var(X̄n) (11.13)

(where X̄n = 1
n

∑n
i=1Xi). In fact X̄n and X̄n+1 are Lorenz ordered.

To see this, we argue as follows. By exchangeability of the Xi’s we have

E(Xi |X1 + · · · +Xn+1) = X1 + · · · +Xn+1

n+ 1
,

for i = 1, 2, . . . , n+ 1. Thus,

E
(
X̄n|X̄n+1

) = 1

n
E

(
n∑

i=1

Xi |X̄n+1

)

= 1

n

n∑

i=1

E (Xi |X1 + · · · +Xn+1)

= X̄n+1 (11.14)

Since E(X̄n+1) = E(X̄n), we can apply Theorem 3.2.3 and conclude from (11.14)
that X̄n+1 ≤L X̄n.

Thus, if we were considering use of X̄n or X̄n+1 as estimates of E(Xi) = μ and
had a loss function which was a convex function of the error of estimation, i.e., of
the form g(T − μ) where T is the estimate and g is convex, then no matter what
choice of convex g is deemed appropriate we would prefer X̄n+1 to X̄n.



11.4 Reliability 215

Under what circumstances is the sample median less unequal in the Lorenz order
sense than the sample mean? An answer to this question would be of interest in that
it would identify the forms of the common distribution of the Xi’s for which the
median would be generally preferred to the mean for estimation of the center of the
distribution. For example, in the case in which the common distribution of the Xi’s
is uniform (0, σ ), one may verify by a density crossing argument (Theorem 9.1.4)
that

X̄3 ≤L X2:3 (11.15)

Equation (11.15) does not always hold. For example, if the common distribution
of the Xi’s is discrete with

P(X = 0) = P(X = 2) = 1

7
, P (X = 1) = 5

7
, (11.16)

then X̄3 and X2:3 are not Lorenz comparable. Note that (11.16) defines a symmetric
distribution, so symmetry alone is not enough to guarantee (11.15).

Intuitively, (11.15) should hold for light tailed distributions.
See Arnold and Villaseñor (1986) for further discussion.

11.4 Reliability

Consider a complex system involving n independent components. Each component
either functions or does not. Denote by pi the reliabi1ity of component i, i.e., the
probability that the i’th component functions, i = 1, 2, . . . , n. The probability that
the system functions will be some function of p say h(p), called the reliability of
the system. For examp1e, a series system which functions only if all components
function will have as its reliability function h(p) = ∏n

i=1 pi . A k out of n system
functions if any k of its n components are functioning. For such a system we have

h(p) = P
⎛

⎝max
π

k∑

j=1

Xπ(j) = k
⎞

⎠ (11.17)

where the summation is over all permutations of length k of the integers 1, 2, . . . , n
and Xi is an indicator random variable of the event that component i is functioning
(i = 1, 2, . . . , n). The expression on the right of (11.17) clearly is a function of p
only, albeit a complicated function.

Suppose that we have limited resources and must use them to construct com-
ponents. For a given system, should we try to construct all components to have
equal reliabilities, or are there key components on which we should concentrate our
resources? If h(p) is a symmetric function of p (as in the series, parallel and k out
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of n systems), intuition suggests that equal values of the pi’s would be reasonable.
A majorization result may be sought. Roughly, we might expect that increased
inequality among the component re1iabi1ities, the pi’s, will decrease overall system
reliability. Or, maybe, it is the other way round; it depends on your intuition. Can
we prove such a result? It turns out that a majorization result can be proved. But the
appropriate parameterization does not involve pi’s, rather we should let

λi = − logpi, i = 1, 2, . . . , n. (11.18)

Pledger and Proschan (1971) show that, indeed, in any k out of n system (k =
1, 2, . . . , n), the system reliability is a Schur convex function of λ.

To see that this is true, we argue as follows. Consider two vectors
(λ1, λ2, . . . , λn) and (λ′

1, λ
′
2, . . . , λ

′
n) which differ only in their first two

coordinates, and without loss of generality assume λ1 < λ2, λ′
1 = λ1 + ε,

λ′
2 = λ2 − ε where ε is small. We must show h(λ) ≥ h(λ′). Let δk denote

the probability that at least k of components 3 through n are functioning, and
let δk−1, δk−2 denote the probability that exactly k − 1 (respectively k − 2) of
components 3 though n are functioning. Conditioning on the number of components
functioning among components 3 through n, we find

h(λ)− h(λ′) = δk(1 − 1)

+δk−1[(p1 + p2 − p1p2)− (p′
1 + p′

2 − p′
1p

′
2)]

+δk−2(p1p2 − p′
1p

′
2)

where λi = − logpi and λ′
i = − logp′

i . Since λ1 + λ2 = λ′
1 + λ′

2, we have
p1p2 = p′

1p
′
2. So we can write

h(λ)− h(λ′) = δk−1[p1 + p2 − p′
1 − p′

2]
= δk−1[e−λ1 + e−λ2 − e−(λ1+ε) − e−(λ2−ε)]

which is positive, since e−x is a decreasing convex function.
Note that in order to compare λ and λ′ in the sense of majorization, we must

have
∑n
i=1 λi = ∑n

i=1 λ
′
i or equivalently

∏n
i=1 pi = ∏n

i=1 p
′
i (where p′

i = e−λ′
i ).

Thus, the Pledger–Proschan result tells us about orderings of system reliabilities of
k out of n systems as functions of individual reliabilities subject to the constraint
that the reliability of a series system constructed with the components is some fixed
quantity.

11.5 Genetic Selection

Suppose that we are in the cattle breeding business, and we wish to develop a strain
of cattle with a high beef yield. A reasonable approach to this problem involves
culling in each generation and saving for further breeding purposes only the most
meaty cattle. It is frequently deemed appropriate to model such a situation with a
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random effects linear model. Thus, in a particular generation we will have, say, m
families of cattle of sizes k1, k2, . . . , km. The meat yield of the i’th member of the
j ’th family is represented by

Xij = μ+ Ai + Eij , i = 1, 2, . . . , m; j = 1, 2, . . . , ki (11.19)

where theAi’s are assumed to be i.i.d. normal (0, σ 2
A) random variables, and the Eij

are i.i.d. normal (0, σ 2) random variables. This is a classical intraclass correlation
model. The culling scheme involves retaining the m′ animals corresponding to the
m′ largest observed va1ues of the Xij ’s. See Rawlings (1976), Hill (1976, 1977),
and Tong (1982) for a more precise and detailed description of the phenomena in
question. Rawlings and Hill assumed ki = k, i = 1, 2, . . . , m. We are here focussing
on Tong’s results which are concerned with the effect of heterogeneity of the ki’s.
Tong restricts attention to the 1argest Xij which we here denote by Z. He first
observes that for every z, the quantity P(Z ≤ z) is a monotone increasing function
of σ 2

A/σ
2. This is intuitively plausible. If we think of the extreme case when σ 2

A is
very large, then we are really only effectively dealing with the maximum ofm rather
than

∑m
i=1 ki = n variables, and Z will tend to be smaller.

The other result obtained by Tong is that increasing the “variability” of the
vector of family sizes also tends to make Z stochastically smaller. In this setting
we measure “variability” in the sense of majorization. Specifica1ly, consider two
data sets of the form (11.19) denoted by {Xij } and {X′

ij }. Let the corresponding
vectors of family sizes be k = (k1, . . . , km) and k′ = (k′1, . . . , k′m), respectively.
Assume that the total number of observations is the same in both data sets, i.e.,∑m
i=1 ki = ∑m

i=1 k
′
i = n say. Denote the corresponding maxima by Z and Z′.

Tong’s result may then be stated in the form:

Lemma 11.5.1 If k ≤M k′, then for every z, P(Z ≤ z) ≤ P(Z′ ≤ z).
Proof Referring back to the model (11.19), we may compute for any z,

P(Xij ≤ z|Ai = a) = φZ(a) say

Also note that, given A1, A2, . . . , Am, the Xij ’s are conditionally independent. It
follows that

P(Z ≤ z) = P(Xij ≤ z ∀ i, j)
= E(P (Xij ≤ z ∀ i, j |A1, A2, . . . , Am))

= E

{
m∏

i=1

[φZ(Ai)]ki
}

= E

{
∑

π

m∏

i=1

[φZ(Aπ(i))]ki
}
/m! (11.20)
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where the summation is over all permutations of the integers 1, 2, . . . , m. Analo-
gously,

P(Z′ ≤ z) = E
{
∑

π

m∏

i=1

[φZ(Aπ(i))]k′i
}
/m! (11.21)

If k ≤M k′, then the expressions inside the expectations in (11.20) and (11.21) are
ordered by Muirhead’s theorem (Theorem 2.2.7). The result then follows. �

In the above Lemma it is evidently sufficient to have the joint distribution of
(A1, A2, . . . , Am) be exchangeable, the Ai’s do not have to be independent. It is
also evident that normality plays no role in the result.

An interesting open question is whether this majorization result can be extended
to cover the case of the largest k of the Xij ’s rather than just the largest one. Other
possible extensions are mentioned by Tong.

11.6 Large Interactions

Bechhofer et al. (1977) encountered a majorization relationship in the study of 2×c
two-way analysis of variance. They use the following constrained maximization
result provided by Kemperman (1973).

Lemma 11.6.1 Let x ∈ R
n satisfy � ≤ xi ≤ u, i = 1, 2, . . . , n. Then

x ≤M (�, �, �, . . . , �, τ, u, u, . . . , u) = y
where there are k �’s and n−k−1 u’s and k and τ ∈ [�, u] are uniquely determined
by the requirement that

∑n
i=1 xi =∑n

i=1 yi .

Proof Since � ≤ xi ≤ u, it follows that, for j ≤ k,
∑j

i=1 xi:n ≥ ∑j

i=1 yi:n and

for j > k, that
∑n
i=j+1 xi:n ≤ ∑n

i=j+1 yi:n. Thus, for all j ≤ n,
∑j

i=1 xi:n ≥
∑j

i=1 yi:n, i.e. x ≤M y. �
Now consider a two-way fixed effects analysis of variance situation with 2 rows

and J columns with K observations per cell. Thus, our data is of the form

Xijk = μ+ αi + βj + γij + Eij , i = 1, 2; j = 1, 2, . . . , J ; k = 1, 2, . . . , K

where the Eijk’s are i.i.d. N(0, σ 2) and σ 2 is assumed known. As usual, we assume
our parameters satisfy certain constraints:

0 =
2∑

i=1

αi =
J∑

j=1

βj =
2∑

i=1

γij =
J∑

j=1

γij . (11.22)
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Suppose that we are interested in identifying the cell whose interaction parameter
γij is largest. We wish to derive a selection procedure which will identify the largest
interaction cell with high probability when there is some discernible interaction and
when one cell interaction is discernibly larger than the others. Specifically, we want
a rule that will select the cell corresponding to the largest interaction parameter
which without loss of generality will be the (1, 1) cell with probability at least P ∗
when γ11 ≥ �∗ and γij < �∗ − δ∗, (i, j) �= (1, 1), where P ∗, �∗ and δ∗ are
specified in advance by the experimenter. This is a typical formulation of a ranking
and selection problem (see, e.g., Bechhofer et al. 1968).

A plausible decision rule is one which selects as the cell with largest interaction
that cell whose observed interaction, namely,

Zij = Xij. −Xi.. −X.j. +X... (11.23)

is largest. As usual, in (11.23) the dots indicate averaging over missing subscripts.
For a configuration of interaction parameters γ satisfying

γ11 ≥ �∗

and

γij ≤ �∗ − δ∗, (i, j) �= (1, 1), (11.24)

the probability of correct selection using the above described rule is simply

Pγ (Z1,1 > Zi,j ∀ (i, j) �= (1, 1)). (11.25)

We want to determine the sample size necessary to assure us that the probability
of correct selection given by (11.25) is at least equal to P ∗. It is evident that we can
easily achieve this goal if K is enormous. What is the smallest value of K which
will suffice? Let � denote the set of all interaction arrays γ which satisfy (11.24).
Is there a least favorable γ in � (i.e., one for which the probability of correct
selection (11.25) is smallest)? There is, and it can be identified by a majorization
argument. Observe that an array will belong to � provided that

γ11 ≥ �∗

and

|γij | ≤ γ11 − δ∗, j = 2, . . . , J. (11.26)

Also note that
∑J
j=2 γ1j = −γ11. Expression (11.26) describes a coordinatewise

bounded collection of vectors of dimension (J − 1) to which Kemperman’s result
(Lemma 11.6.1) can be applied. The vector γ̃ = (γ12, γ13, . . . , γ1J ) is majorized by
the vector

γ̃ ∗ = (�, �, . . . , �, τ, u, u, . . . , u)
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described in Lemma 11.6.1, with

� = −(γ11 − δ∗),
u = (γ11 − δ∗)

and k and τ determined such that
∑J
j=2 γ1j = k� + τ + (n − k − 1)u. The vector

γ̃ ∗ can be used in conjunction with the constraints (11.22) to determine an array γ̃ ∗
in � (with γ ∗

11 = γ11). A non-trivial application of Theorem 2.2.4 yields the result
that the probability of correct selection for a fixed value of γ11 is a Schur concave
function of γ̃ = (γ12, . . . , γ1J ). It follows then that

Pγ (Z11 > Zij ∀ (i, j) �= (1, 1))
≥ Pγ̃ ∗(Z11 > Zij ∀ (i, j) �= (1, 1)).

It remains only to verify that the probability of correct selection is a monotone
increasing function of γ11, and then we conclude that the least favorable configu-
ration is of the form γ̃ ∗ with γ ∗

11 = �∗. In principle, we can then determine by
numerical integration the minimal value of K necessary to achieve the desired level
P ∗ for the probability of correct selection for any γ in �.

11.7 Unbiased Tests

Suppose that we have a data set X whose distribution depends on a k-dimensional
parameter (θ1, θ2, . . . , θk). Not infrequently we are interested in testing the hypoth-
esis of homogeneity, i.e., H : θ1 = θ2 = · · · = θk . The test will often be of the
form: reject H if φ(X) ≥ c. Consequently, the power function will be

β(θ) = Pθ(φ(X) ≥ c).

It is often the case that φ is a Schur convex function of x, and consequently, that
β(θ) is a Schur convex function of θ . This information may permit us to conclude
that our test is unbiased. A specific case in which this program works perfectly is
that in whichX has a multinomial (N, θ) distribution and the hypothesis to be tested
is H : θ1 = θ2 = · · · = θk = 1/k. In this setting the likelihood ratio test is of
the form: reject H if

∑k
i=1X

2
i ≥ c. This is clearly a Schur convex function of X

and the test is verified to be unbiased (cf. Perlman and Rinott 1977). The program
is also feasible to verify unbiasedness of the likelihood ratio test of sphericity of
a multivariate normal population and certain invariant tests of equality of mean
vectors in multivariate analysis of variance.
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11.8 Summation Modulo m

Suppose X and Y are independent random variables each with possible values
0, 1, 2, . . . , m−1. Define Z = X⊕Y where the symbol ⊕ denotes addition modulo
m. Define vectors p, q and r by

pi = P(X = i),
qi = P(Y = i),
ri = P(Z = i),

where i = 0, 1, 2, . . . , m− 1.

Lemma 11.8.1 r ≤M p and r ≤M q.

Proof By conditioning we can verify that

r = Pq (11.27)

where P is the circulant matrix

⎛

⎜⎜⎜⎝

p0 pm−1 pm−2 . . . p2 p1

p1 p0 pm−1 . . . p3 p2
...

pm−1 pm−2 . . . . . . p1 p0

⎞

⎟⎟⎟⎠

Evidently, P is doubly stochastic and, thus, by the HLP Theorem 2.1.1, we conclude
r ≤M q. Analogously, r ≤M p. �

Lemma 11.8.1 can be generalized to cover random variables assuming values
in an arbitrary finite group (rather than just the group of non-negative integers
under summation modulo m). Marshall et al. (2011, pp. 509–510) give the general
expression. Brown and Solomon (1976) focused on the case in which the group
consisted of vectors of non-negative integers under coordinate wise summation
modulo m. The problem is of interest in the context of pseudo-random number
generators. If our pseudo random number generator generates integers 0, 1, 2, . . . , 9
with non-uniform probabilities, our Lemma tells us we may improve things
(i.e., obtain more uniformly distributed random digits) by summing successively
generated digits modulo 10. Or we might combine outputs from distinct random
number generators. If this is done by addition modulo 10, our Lemma guarantees
that the output will be at least as uniformly distributed and, most likely, more
uniformly distributed than was the output of either individual generator.

The improvement can be striking. For example, if

p = (0.07, 0.19, 0.02, 0.11, 0.06, 0.13, 0.01, 0.18, 0.09, 0.14),
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and

q = (0.13, 0.07, 0.02, 0.11, 0.17, 0.13, 0.07, 0.02, 0.11, 0.17),

then from (11.27) we find

r = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1).

Examples such as this are discussed in Arnold (1979) in a related context.

11.9 Forecasting

Every night on TV Channel 5, Bert announces the probability of rain for the next
day. Every night on Channel 11, Wilbur gives out his probability of rain. Is Bert
a better forecaster than Wilbur? How should we appropriately determine if one is
the better forecaster? De Groot and Fienberg have studied this phenomenon in a
series of papers. A representative reference addressed to the general reader is De
Groot and Fienberg (1983). The concept of majorization plays a central role. In
the present section the scenario will only be sketched along the lines suggested by
De Groot and Fienberg. A particular forecaster is asked each day to give us his
subjective probability say x that there will be a measurable amount of precipitation
at a certain location. At the end of each day we can observe whether or not it did
rain. Denote byX the random prediction of our forecaster (most easily visualized in
a long run frequency sense). Denote by Y an indicator random variable. Y assumes
the value 1 if it rains, 0 otherwise. The performance of our forecaster is summarized
by the density function ν(x) of the random variable X and for each possible value
x of X, the conditional probability of rain given that the forecaster’s prediction is x,
denoted by ρ(x).

Thus

P(X ∈ A) =
∫

A

ν(x) dx (11.28)

and

P(Y = 1|X = x) = ρ(x). (11.29)

The forecaster is said to be well-calibrated if ρ(x) ≡ x (such a forecaster is
sometimes said to be perfectly reliable). If he says there is a 50% chance of
rain, then indeed there is a 50% chance of rain. Any coherent forecaster who
updates his subjective probability based on experience using Bayes theorem will
be asymptotically well calibrated (see, e.g., Dawid 1982). It is usually deemed
appropriate to restrict attention to well-calibrated forecasters. Clearly, however,



11.9 Forecasting 223

there are differences between well-calibrated forecasters. If in a given town rain
occurs on about 15% of the days during the year, then a forecaster who every
day announces x = 0.15 will be well calibrated but somewhat boring and of
questionable utility. At the other extreme, a forecaster who always announces either
x = 0 or x = 1 and who is always right is also well-calibrated (and displays
amazing skill).

Comparisons between well-calibrated forecasters are made in terms of a partial
ordering known as refinement. Consider two well-calibrated forecasters A and B
whose forecasts XA and XB have corresponding density functions νA and νB (as
in (11.28)). Since both are well-calibrated we have (cf. Eq. (11.28))

ρA(x) = ρB(x) = x, ∀x ∈ [0, 1]

A stochastic transformation is a function h(y|x) defined on [0, 1]× [0, 1] satisfying

∫ 1

0
h(y|x) dy = 1, ∀x ∈ [0, 1]. (11.30)

ForecasterA is said to be at least as refined as forecasterB if there exists a stochastic
transformation h(y|x) for which

νB(y) =
∫ 1

0
h(y|x)νA(x) dx, ∀y ∈ [0, 1] (11.31)

and

yνB(y) =
∫ 1

0
h(y|x)xνA(x) dx, ∀y ∈ [0, 1]. (11.32)

We denote by μ, the long run frequency of rainy days. For any well-calibrated
forecaster we must have

∫ 1

0
xν(x) dx = μ.

Any density ν with mean μ can be identified with a well-calibrated forecaster. Thus
our refinement partial order may be thought of as being defined on the class of
all random variables with range (0,1) and mean μ. In this context we can allow
the prediction random variables X to be discrete with obvious modifications in our
earlier discussion which assumed absolutely continuous prediction variables (just
replace integral signs by summation signs).

Inspection of conditions (11.31) and (11.32), in either the discrete or absolutely
continuous case, yields the interpretation that forecaster A (with prediction variable
XA) is at least as refined as B (with prediction variableXB ) if and only if there exist
random variables X′

A and X′
B defined on some convenient probability space with
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X′
A

d= XA,

X′
B

d= XB (11.33)

and

E(X′
A|X′

B) = X′
B. (11.34)

Thus the refinement ordering, on random variables with support [0, 1] and mean
μ, is exactly identifiable with Lorenz ordering on that restricted class of random
variables (recall Theorem 3.2.3). Since our random variables have identical means it
can also be identified, if desired, with the second order stochastic dominance partial
order (as defined in Chap. 9).

If (11.33) and (11.34) hold, then we know that

E(u(XA)) ≥ E(u(XB)) (11.35)

for any convex function u. In the forecasting setting this has an interpretation in
terms of what are known as strictly proper scoring rules.

A scoring rule is a device for comparing forecasters (even it they are not well-
calibrated). Suppose that the forecaster’s prediction is x. If rain does occur, he
receives a score of g1(x), if it does not rain he receives a score of g2(x). The
expected score is, using (11.28) and (11.29), thus

S = E[ρ(X)g1(X)+ [1 − ρ(X)]g2(X)] (11.36)

It is reasonable to assume that g1 is an increasing function and g2 is a decreasing
function. A scoring rule is said to be strictly proper if for each value of y in the unit
interval the function

yg1(x)+ (1 − y)g2(x) (11.37)

is maximized only when x = y. Such a rule encourages the predictor to announce
his true subjective probability of rain. It is not difficult to verify that if g1 is
increasing, g2 is decreasing and the scoring rule is strictly proper then the function

xg1(x)+ (1 − x)g2(x) (11.38)

is strictly convex. Referring to (11.36), if we consider two well-calibrated fore-
casters A and B (for whom ρA(x) = ρB(x) = x) where A is at least as refined
as B, then using any proper scoring rule forecaster A will receive a higher score

than forecaster B (unless XA
d= XB in which case they clearly receive identical

scores). Subsequently De Groot and Fienberg (1986) extended these concepts
to allow for comparison of “multivariate” forecasters. Thus instead of predicting
(rain)-(no-rain) the forecaster might predict a finite set of temperature ranges. The
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prediction random variable X becomes s dimensional (assuming values in the
simplex xi ≥ 0,

∑s
i=1 xi = 1). The concepts of refinement, well calibration, and

scoring rules continue to be meaningful in this more complex setting.

11.10 Ecological Diversity

Consider a closed ecological community (an island in the Pacific, for example).
Following an exhaustive study, representatives of s different species of insects are
found on the island. For i = 1, 2, . . . , s let ni denote the abundance of species i,
the number of insects of that species on the island. For i = 1, 2, . . . , s define the
relative abundance πi by

πi = ni/
s∑

j=1

nj . (11.39)

The community can and will be identified with its relative abundance profile
(π1, . . . , πs). Evidently some communities are more diverse than others. What is
an acceptable ordering or partial ordering of relative abundance profiles which will
capture the spirit of the concept of diversity? Several diversity measures have been
proposed in the literature. Patil and Taillie (1982), taking on the ecological role
played in the economics context by Dalton, sought basic principles of diversity
which might lead to a widely accepted diversity order. They were led in this
fashion to what they call the intrinsic diversity ordering. Suppose that π(1) and
π(2) are species abundance profiles of two communities involving (without loss
of generality) the same s species in both communities. They propose that it is
appropriate to determine whether π(1) is more diverse than π(2) by considering the
corresponding intrinsic diversity profiles.

The diversity of an abundance profile π is deemed to be a function of the
ordered components of π , viz. π1:s , π2:s , . . . , πs:s . Thus a population with 25%
butterflies, 60% ants, and 15% beetles is deemed to be equally diverse as one
containing 60% butterflies, 15% ants, and 25% beetles. The intrinsic diversity
profile (IDP) is actually defined in terms of the decreasing order statistics of π ,
i.e. π(1:s) ≥ π(2:s) ≥ · · · ≥ π(s:s). It is a plot of the points {(∑i

j=1 π(j :s), i/s)}. The
curve is completed by linear interpolation. If all the species are equally represented
the IDP will be a 45◦ line. This is taken to be the case of maximum diversity. If
one species is extremely numerous [i.e., π(1:s) ≈ 1], the curve will be very high and
diversity is judged to be small.

Community π(1) will be judged to be intrinsically more diverse than community
π(2) if the IDP of π(1) is uniformly below the IDP of π(2) and we may write

π(1) ≥IMD π(2)
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It is interesting to view how this intrinsic diversity ordering ranks uniform distribu-
tions over different numbers of species. Suppose π1 has K1 non-zero components
all equal to 1/K1 while π2 has K2 non-zero components, all equal to 1/K2. If
K1 > K2, then π1 surely exhibits more diversity than π2. Inspection of the
corresponding IDP’s confirms that in this case π1 ≥IMD π2.

Referring to the definition of an intrinsic diversity profi1e and the definition of
majorization (in R

s) we see that they are intimately related. In fact

π(1) ≥IMD π(2) ⇔ π(1) ≤M π(2). (11.40)

In the light of (11.40), summary measures of diversity should be Schur concave
functions of π in order to respect the intrinsic diversity ordering. Typical examples
of such measures are:

• Shannon’s measure

D1(π) = −
s∑

i=1

πi logπi, (11.41)

and

• Simpson’s measure

D2(π) = 1 −
s∑

j=1

π2
i (11.42)

Many diversity measures are interpretable as coefficients of expected rarity.
Imagine that each species has a measure of rarity attached to it. The simplest case
occurs when there exists a rarity function R(π) defined on [0, 1] such that the rarity
of an individual belonging to a species with relative abundance π in the community
is equal to R(π). Imagine we randomly select an individual from the community.
The expected rarity of the individual so chosen is then given by

(ER)(π) =
s∑

i=1

πiR(πi) (11.43)

Such a measure will be Schur concave, and hence will respect the intrinsic diversity
order, if R is concave. Both the Shannon (11.41) and the Simpson (11.42) indices
are of the form (11.43) for suitable concave functions R(π).

Patil and Taillie (1982) suggest several alternative diversity profiles. They also
present interpretations of many diversity indices in terms of random encounters
(inter-species and intraspecies).
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11.11 Covering a Circle

Suppose that n arcs of lengths �1, �2, . . . , �n are placed independently and uni-
formly on the unit circle (a circle with unit circumference). With � = (�1, . . . , �n),

let P(�) denote the probability that the unit circle is completely covered by these
arcs. To make the problem interesting assume that the total length of the arcs,
L =∑n

i=1 �i , exceeds 1, otherwise coverage would be impossible, and that none of
the arcs has length greater than or equal to 1, otherwise coverage would be certain.
Stevens (1939) gave the following explicit expression for this coverage probability
when all arcs are of equal length, i.e., when each arc is of length � = L/n:

P(�, . . . , �) =
n∑

k=0

(−1)k(nk)[(1 − k�)+]n−1. (11.44)

If one arc is of length L assumed to be greater than 1, and all other arcs are
of length 0, then coverage would be certain. This suggests that increasing the
variability among the �i’s, subject to the requirement that the sum of the lengths isL,
might be expected to increase the coverage probability. Thinking along these lines,
Proschan conjectured that P(�) is a Schur convex function of �. Huffer and Shepp
(1987) show that (11.44) represents an extremal case by verifying the conjecture that
P(�) is a Schur-convex function. Thus, for a given total sum of arc lengths, increased
inequality among the lengths of the arcs yields a greater coverage probability. It
suffices to consider the effect on P(�) of making a small change in two unequal
�i’s (to make them more alike), holding the other �i’s fixed. The result turns out
however to be more troublesome to verify than might have been hoped. See Huffer
and Shepp (1987) for details.

11.12 Waiting for a Pattern

Imagine that a monkey seated in front of a keyboard types a sequence of letters,
spaces, and punctuation marks at random. We come into the room and are amazed
to see that he has just typed “To be or not to be, that is the question.” Will he do it
again, and if so, how long will we have to wait to see the second performance. A
long time, that’s for sure. We can formulate this problem mathematically as follows.

Suppose that X1, X2, . . . is a sequence of independent, identically distributed
random variables with possible values 1, 2, . . . , k and associated positive proba-
bilities p1, p2, . . . , pk . Let N denote the waiting time until a particular string of
consecutive values is observed, or until one of a collection of particular strings is
observed. If we are waiting for the string t1, t2, . . . , t� where each ti is number
chosen from the set 1, 2, . . . , k,, variability can affect the distribution ofN in several
ways.
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The distribution of the random variable N will be affected by variability among
the pi’s, the probabilities of the possible values of theXi’s. For example, an extreme
case in which p1 ≈ 1 will result in long waits for strings t which include entries
which are not all equal to 1. The waiting time also, in general, will be affected
by variability among the tj ’s appearing in the string for whose appearance we are
waiting. For example, we might expect to wait longer for the string 1, 1, 1, 1, 1 than
for the string 2, 2, 1, 1, 1. There are several possible aspects of this problem that
might be amenable to an analysis involving majorization.

In particular, Ross (1999) considers the waiting time until a string of k outcomes
occurs that includes all of the k possible outcomes (in any order), i.e.,

N = min{n ≥ k : Xn−k+1, Xn−k+1, . . . , Xn are all distinct}.

As a function of p, he shows that, for every n, Pp(N > n) is a Schur convex function
of p. From this, it follows that Ep(N) is also a Schur convex function of p, with
the shortest waiting time corresponding to the case in which the pj ’s are all equal
to 1/k.

The reader might wish to consider whether the waiting time to observe a string of
k outcomes t1, t2, . . . , tk (in no particular order) is affected by the intrinsic diversity
profile of the string (as defined in Sect. 11.10).

11.13 Paired Comparisons

Paired comparison experiments involving food preferences have a long history.
Blind tests of the preference for, say, Coca Cola when compared with other soft
drinks are familiar to all, as are recent tests comparing turkey hamburgers to
traditional beef hamburgers. Paired comparisons also occur in sporting events and
it is on this arena that we will focus attention, while recognizing that the analysis
will also be meaningful in taste testing and other product comparison settings. In
our discussion, we will rely heavily on Joe (1988) for both content and notation.

In a league consisting of k teams, during a season each team will typically play
each other team a total of m times. To simplify the presentation, we ignore home
field advantage and we assume that ties do not occur (typically the league will have
specific rules for breaking any ties that do occur).

To model the outcome of a typical season, consider a k × k matrix P = (pij )

in which, for i �= j , pij denotes the probability that team i beats team j in a
particular game. Since we assume that ties do not occur, we have pij + pji = 1.
The diagonal elements of P are left empty, so P has k(k− 1) non-negative (usually
positive) elements. For each i, define pi = ∑j �=i pij . This row total can be viewed
as providing a measure of the strength of team i. For a given vector of team strengths
p = (p1, . . . , pk) we define P(p) to be the class of all probability matrices P (with
only off-diagonal elements defined) and with row totals given by p.
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Joe (1988) defines a variability ordering on the members of the class P(p)
based on majorization. For P,Q ∈ P(p), the matrix P is majorized by the matrix
Q (P ≤M Q) if and only if P ∗ ≤M Q∗ in the usual sense of majorization, where
P ∗ (respectively Q∗) is the k(k − 1)-dimensional vector whose entries are all the
defined elements of P (respectivelyQ).

Joe (1988) describes the following application of this variability ordering on
P(p). We will say that team i is better than team j if pij > 0.5. It is reasonable to
assume that if team i is better than team j and if team j is better than team �, then
it should be the case that team i is better than team �.
P is said to be weakly transitive if pij ≥ 0.5 and pj� ≥ 0.5 imply pi� ≥

0.5 and is said to be strongly transitive if pij ≥ 0.5 and pj� ≥ 0.5 imply pi� ≥
max {pij , pj�}. The link with the variability ordering on P(p) is as follows. A
matrix P ∈ P(p) is said to be minimal if Q ≤L P implies Q∗ = P ∗ up to
rearrangement. Joe (1988) shows that any strongly transitive P is minimal.

See Joe (1988) for discussion in which ties are permitted and home field
advantage is considered.

11.14 Phase Type Distributions

Consider a continuous-time Markov chain with n + 1 states, in which states
1, 2, . . . , n are transient and state n + 1 is absorbing. The time, T , until absorption
in state (n + 1) is said to have a phase-type distribution (Neuts 1975). This
distribution is determined by an initial distribution over the transient states denoted
by α = (α1, α2, . . . , αn) (assume that the chain has probability 0 of being initially in
the absorbing state). The intensity matrixQ for transitions among the transient states
has elements satisfying qii < 0 and qij ≥ 0 for j �= i. In this setting, the time, T , to
absorption in state (n+ 1) is said to have a phase-type distribution with parameters
α and Q. A particularly simple case is one in which α = α∗ = (1, 0, . . . , 0) and
Q = Q∗, where q∗

ii = −δ for each i and q∗
ij = δ for j = i + 1, q∗

ij = 0
otherwise. In this case, the Markov chain begins in state 1 with probability 1, and
spends an exponential time with mean 1/δ in each state before moving to the next
state. The corresponding time to absorption, T ∗, is thus a sum of n independent
and identically distributed random variables having an exponential distribution with
intensity parameter δ; thus, T ∗ has a gamma distribution with scale parameter 1/δ
and shape (convolution) parameter n.

There are multiple possible representations of phase-type distributions. The same
distribution of time to absorption can be associated with more than one choice of
n, α, andQ.

A phase-type distribution is said to be of order n if n is the smallest integer
such that the distribution can be identified as an absorption time for a chain with
n transient states and one absorbing state. In some sense the variable T ∗ clearly
exhibits the least variability among phase-type distributions of order n. Aldous and
Shepp (1987) show that the T ∗ having a gamma distribution with parameters 1/δ
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and n has the smallest coefficient of variation among phase-type distributions of
order n. In fact, O’Cinneide (1991) shows that T ∗ exhibits the least variability in a
more fundamental sense. For any phase-type variable T of order n, T ∗ ≤L T .

11.15 Gaussian Correlation

Suppose that the random vector Z has a normal distribution with mean zero and
identity covariance matrix, and that A and B are symmetric convex sets in R n. It
was conjectured that in such a case,

P
(
Z ∈ A ∩ B) ≥ P (Z ∈ A)P (Z ∈ B) .

The conjecture was verified in the case n = 2 by Pitt (1977). Vitale (1999) verified
that, in n dimensions, the conjecture is true when A and B are what are called Schur
cylinders. A set C in R n is a Schur cylinder if x ∈ C implies x + k1 ∈ C for every
k ∈ R and the indicator function of C is Schur-concave.



Chapter 12
More Applications

Here we provide brief coverage of a further selection of examples in which
majorization and/or the Lorenz order makes an appearance.

12.1 Catchability

Assume that an island community contains an unknown number ν of butterfly
species. Butterflies are trapped sequentially until n individuals have been captured.
Let r denote the number of distinct species represented among the n butterflies
that have been trapped. On the basis of r and n, we wish to estimate ν. A
popular model for this scenario involves the assumption that butterflies from species
j, j = 1, 2, . . . , ν, enter the trap according to a Poisson (λj ) process and that
these Poisson processes are independent. If pj = λj/

∑ν
i=1 λi , then pj denotes

the probability that a particular trapped butterfly is of species j . The pj ’s reflect
the relative catchabilities of the various species. Under the assumption of equal
catchability (pj = 1/ν, j = 1, 2, . . . , ν), and under the (somewhat restrictive)
assumption that ν ≤ n, there exists a minimum variance unbiased estimate ν̃ of ν
based on r, n, namely,

ν̃ = S(n+ 1, r)/S(n, r), (12.1)

where S(n, x) denotes a Stirling number of the second kind [see, e.g., Abramowitz
and Stegun (1972, p. 835)]. How will this estimate fare in the presence of unequal
catchability? It can fare badly. For example, if one species is “trap-happy,” i.e.,
easy to trap, while all the other species are very difficult to trap, then we will often
observe r = 1 and we will usually seriously underestimate ν. Nayak and Christman
(1992) show that this phenomenon is widespread. They investigate the effect of
unequal catchability on the performance of the estimate (12.1). They observe that
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the random number, R, of species captured has a distribution function that is a
Schur-convex function of p and conclude that the estimate (12.1) is negatively
biased in the presence of any unequal catchability.

12.2 Server Assignment Policies in Queueing Networks

Consider a queueing setup with M stations. Assume that all stations are single-
server stations with service rate μi for station i, i = 1, 2, . . . ,M . Let λi denote the
total arrival rate from external and internal sources to station i. Let ρi = λi/μi and
assume that ρi < 1 for every i. ρi is referred to as the loading of station i. Yao
(1987) discusses optimal assignment of servers to stations in this context. Using
majorization and arrangement orderings, he shows that a better loading policy is
one which distributes the total work more uniformly to the stations, i.e., one that
makes the ρi’s more uniform, and that better server assignment policies are those
which, not surprisingly, assign faster servers to busier stations.

12.3 Disease Transmission

Eisenberg (1991) introduced a simple model of disease transmission that was further
investigated by Lefévre (1994). In a later contribution, Tong (1997) identified an
aspect of the model involving majorization. The Eisenberg model may be described
as follows. Consider a closed population of n + 1 individuals. One individual
(individual number n + 1) is susceptible to the disease but as yet is uninfected.
The other n individuals, numbered 1, 2, . . . , n, are carriers of the disease. Let pi
denote the probability of avoiding infection after a single contact with individual
i, i = 1, 2, . . . , n. It is assumed that individual n + 1 makes a total of J
contacts with the other individuals in the population governed by a preference vector
α = (α1, α2, . . . , αn), where αi > 0 and

∑n
i=1 αi = 1. Individual n + 1 also has

an associated lifestyle vector k = (k1, k2, . . . , kJ ) where the ki’s are non-negative
integers summing to J . For given vectors α and k, individual n+1 selects a “partner”
among the n carriers according to the preference distribution α. Thus individual 1
is selected with probability α1, individual 2 is selected with probability α2, etc.
Individual n + 1 then makes k1 contacts with this partner. He or she then selects a
second partner (which could be the same one as previously selected) independently
again according to the preference distribution α and has k2 contacts with this partner.
This continues until J =∑J

�=1 k� contacts have been made.
The probability of escaping infection under this model is denoted byH(k, α, p),

to indicate its dependence on the preference vector α = (α1, . . . , αn), on the
nontransmission probabilities p = (p1, . . . , pn), and on the lifestyle vector
k = (k1, . . . , kj ). Majorization could be of interest here in more than one way.
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Variability among the coordinates of any or all of p, k, and α can be expected to
influence H(k, α, p). Tong, however, only considers the effect of variability among
the ki’s for fixed choices of p and α.

Two extreme lifestyles are readily identified, they are associated with the
vectors, (J, 0, . . . , 0) and (1, 1, . . . , 1). In the first case, which could be called the
monogamous lifestyle, the individual n + 1 chooses one partner according to the
preference vector α, and stays with that partner for all J contacts. In the second
case, which we call the random lifestyle, each contact is made with an individual
chosen at random independently according to α. It is not difficult to verify that the
probability of escaping infection in these two cases is given by

∑n
i=1 αip

J
i and

(
∑n
i=1 αipi)

J , respectively. It follows from Jensen’s inequality that the probability
of escaping infection is larger with the monogamous lifestyle (J, 0, . . . , 0) than it is
with random lifestyle (1, 1, . . . , 1). This result holds for every α and every p. It will
be observed that these two particular lifestyle vectors are extreme cases with respect
to majorization. It is consequently quite plausible that the probability of escaping
infection, H(k, α, p), is a Schur-convex function of the lifestyle vector k, for each
α and each p. Tong (1997) confirms this conjecture. Discussion is also provided to
cover some cases in which a random number of contacts are made. Note that the
value assumed by H(k, α, p) when α takes an extreme value, either (1, 0, 0, . . . , 0)
or (1/n, 1/n, . . . , 1/n), may suggest other possible majorization results related to
this model.

12.4 Apportionment in Proportional Representation

Proportional representation seeks to assign to each political party a proportion of
seats that closely reflects the proportion of votes obtained by that party, in order
to approximate the ideal of one man-one vote. Thus if there are N seats available
and if a political party received 100q% of the votes, then ideally that party should
be assigned Nq seats. But fractional seats are not assigned (though they could be)
and some “rounding” rule must be used to arrive at integer valued assignments of
seats to the various parties in a manner that will closely approximate proportional
representation. Since individual seats in a legislative body are potentially highly
influential in subsequent decision making there has historically been considerable
discussion of alternative proposals regarding which method of rounding should be
used. Several well-known American politicians have proposed rounding methods
for use in this situation. For more a detailed general discussions of voting issues, see
Saari (1995). Alternatively, Balinski and Young (2001) provide a survey of rounding
methods that are used and/or proposed. There are five apportionment schemes that
have received considerable attention in the United States, which are named after
their well-known proposers: John Quincy Adams, James Dean (no, not the actor),
Josef A. Hill, Daniel Webster, and Thomas Jefferson. In the order given, they move
from a method (Adams) kinder to small parties to the method (Jefferson) which
most favors large parties.
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We can describe these apportionment methods in terms of a sequence of sign-
posts that govern rounding decisions. The sign-posts s(k) are numbers in the interval
[k, k + 1] such that s(k) is a strictly increasing function of k, and the associated
rounding rule is that a number in the interval [k, k + 1] is rounded down if the
number is less than s(k) and rounded up if greater than s(k). If the number exactly
equals s(k), we are allowed to round up or down. Power-mean sign-post sequences
have received much attention. They are of the form

sp(k) =
(
kp + (k + 1)p

2

)1/p

, −∞ ≤ p ≤ ∞. (12.2)

The five popular apportionment methods named above can all be interpreted as
being based on a power-mean sign-post sequence: (Adams) p = −∞, which
involves rounding up; (Dean) p = −1; (Hill) p = 0; (Webster) p = 1; (Jefferson)
p = ∞, which involves rounding down.

Marshall et al. (2002) show that for two sign-post sequences s(k) and s′(k),
a sufficient condition to ensure that the seating vector produced by the method
using s is always majorized by the seating vector produced by the method using
s′ is that the sequence of sign-post ratios s(k)/s′(k) is strictly increasing in k. It
follows that the result of a power-mean rounding of order p is always majorized
by the corresponding power-mean rounding of order p′ if and only if p ≤ p′.
Consequently, among the five popular apportionment procedures, a move from
Adams toward Jefferson is a move toward favoring large parties in the sense of
majorization. In a particular case, the move from an Adams apportionment to a
Jefferson apportionment can be achieved by a series of single seat reassignments
from a poorer party (with fewer votes) to a relatively richer party (with more votes),
i.e., a sequence of “reverse” Robin Hood operations.

12.5 Connected Components in a Random Graph

Ross (1981) considers a random graph with n nodes numbered 1, 2, . . . , n. Let
X1, X2, . . . , Xn be independent, identically distributed random variables with
distributions determined by the probability vector p = (p1, p2, . . . , pn), where

P (Xi = j) = pj , j = 1, 2, . . . , n. (12.3)

A random graph is constructed by drawing n random arcs that connect i to
Xi, i = 1, 2, . . . , n, so that one arc emanates from each node. But, of course,
several arcs can share the same termination node. Let M denote the number of
connected components of this random graph. A connected component is a set of
nodes such that any pair of nodes in the graph are connected by an arc, and there
are no arcs joining a node in the set to a node outside the set. The distribution of
M will be affected by the probability distribution vector p appearing in (12.3). For
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example, if p = (1, 0, . . . , 0), then all arcs will terminate at node 1 and there will
be a single connected subset of nodes, so that M = 1 with probability 1. In this
type of random graph, the expected number of connected components is equal to
the expected number of cycles (i.e., closed paths without repetitions) in the graph.
Consequently,

E(M) =
∑

S

(|S| − 1)!
∏

j∈S
pj , (12.4)

where the summation extends over all nonempty subsets of {1, 2, . . . , n} and |S|
denotes the cardinality of S. Ross proves that E(M) is a Schur-concave function
of p. Consequently, the expected number of connected components in the random
graph is maximized when pj = 1/n, j = 1, 2, . . . , n.

12.6 A Stochastic Relation Between the Sum and the
Maximum of Two Random Variables

Dalal and Fortini (1982), in the context of constructing confidence intervals for a
difference between the means of two normal distributions with unknown unequal
variances (the so-called Behrens–Fisher setting), derived the following inequality
relating the distribution of the sum of two nonnegative random variables to the
distribution of the maximum of the two variables. Schur convexity plays a key role
in the result.

Theorem 12.6.1 IfX1 and X2 are nonnegative random variables with a symmetric
joint density f (x1, x2), such that f (

√
x1,

√
x2) is a Schur-convex function of x, then

P (X1 +X2 ≤ c) ≥ P
(√

2 max(X1, X2) ≤ c
)

for every c > 0.

The theorem is proved by conditioning on X2
1 + X2

2, and using the fact that, on
any circle, the density f (x) increases as x moves away from the line x1 = x2.

An important example of a nonnegative random vector with a joint density f
such that f (

√
x1,

√
x2) is Schur-convex is one of the form (X1, X2) = (|Y1|, |Y2|),

where Y1 and Y2 are normally distributed with zero means, common variance σ 2,
and correlation ρ.

Dalal and Fortini (1982) also derived a related n-dimensional result, as follows.

Theorem 12.6.2 IfX1, X2, . . . , Xn are independent identically distributed positive
random variables with a common density function f that satisfies:

(1) log f (
√
x) is concave

and
(2) f (x)/x is nonincreasing,
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then

n∑

i=1

Xi ≤st
√
nmax {X1, X2, . . . , Xn}.

Finally, we mention a result of Dalal and Fortini (1982) that specifically involves
majorization.

Theorem 12.6.3 If X1, X2, . . . , Xn are independent identically distributed non-
negative random variables with a common density function f with the property that
log f (

√
x) is concave, and if a ≤M b, then

n∑

i=1

√
aiXi ≤st

n∑

i=1

√
biXi.

12.7 Segregation

The key reference for this section is Arnold and Gokhale (2014). Segregation
is an issue of social and political concern. Efforts to reduce segregation in
educational settings continue to be of interest. How should one measure the degree
of segregation in a given system at a given time?

We will focus on the degree of ethnic segregation in a given urban school district.
The data can be arrayed in a contingency table in which rows correspond to indi-
vidual schools in the district and columns correspond to ethnic groups. Segregation
is judged to be in evidence if certain schools contain a disproportionately low or
high number of students from particular ethnic groups. Lack of segregation would
be associated with the situation in which the ethnic mix is roughly the same in all
schools in the district. The concept of segregation is seen to be one which has to do
with the degree of dependence between the rows and columns of a contingency
table. There exist a variety of dependency orderings and dependency measures
for contingency tables. However, one dependency partial ordering in particular
(the Scarsini order) appears to be tailor made for use in segregation studies.
Almost all of the segregation measures that have been proposed in the literature
respect the Scarsini order. It is intimately related to what we call progressive
exchanges, wherein one student of an over-represented group at a particular school
is exchanged for a student at a second school who belongs to an ethnic group that is
overrepresented at the second school. Such exchanges are quite generally viewed as
ones which reduce segregation. Such exchanges leave the row and column totals in
the table unchanged. Consequently we initially consider dependence ordering within
tables with given marginals. Subsequently attention will be given to problem of
comparing dependence (i.e., degree of segregation) in tables with different marginal
totals and indeed with possibly different numbers of rows and columns. This will
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be essential for allowing us to compare, for example, segregation in a Los Angeles
school district with segregation in a New Orleans district. The two districts will have
different numbers of schools (so the number of rows will be different) and different
numbers of ethnic groups (so the number of columns will be different).

To begin with, assume that the number of schools and the capacity of the schools
is fixed and the number of students in each of the ethnic groups is fixed. What
can change is the way in which the students are distributed among the schools.
Segregation is evidenced by different ethnic distributions in different schools. Lack
of segregation corresponds to (roughly) the same ethnic distribution in all schools.
We are then dealing with an I × J contingency table N = (nij )

I,J
i=1,j=1 where the

rows correspond to the I schools in the district and the columns correspond to the
J ethnic groups present in the student population. With this notation, nij denotes
the number of students of the j -th ethnic group who are attending the i-th school.
Marginal totals, which are assumed to be fixed, are denoted by

ni+ =
J∑

j=1

nij , i = 1, 2, . . . , I,

and

n+j =
I∑

i=1

nij , j = 1, 2, . . . , J.

Thus, n2+, the sum of the entries in row 2 denotes the number of students in school
number 2, the capacity of that school. In parallel fashion n+4, the total of column 4
is the number of students in the district who are members of the 4th ethnic group.
The district capacity will be denoted by n++, defined by

n++ =
I∑

i=1

ni+ =
J∑

j=1

n+j .

We introduce four other I × J matrices that are determined by the elements of
N and which will be useful in our efforts to quantify and modify segregation in the
table.

Define I × J matrices P = P(N), Q = Q(N), R = R(N), and Ñ to have
corresponding elements as follows:

pi,j = nij

n++
, i = 1, 2, . . . , I, j = 1, 2, . . . , J, (12.5)

qi,j = ni+n+j
n++n++

, i = 1, 2, . . . , I, j = 1, 2, . . . , J, (12.6)
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ri,j = pij

qij
= nijn++
ni+n+j

, i = 1, 2, . . . , I, j = 1, 2, . . . , J, (12.7)

ñij = n++qij , i = 1, 2, . . . , I, j = 1, 2, . . . , J. (12.8)

The matrix P has an (i, j)-element which represents the proportion of the total
number of students in the district that are found in cell (i, j). The matrix Q has
an (i, j)-element which represents the proportion of the total number of students
in the district that would be found in cell (i, j) if the rows and columns were
independent (i.e., no segregation). The matrix R is a local dependence matrix. If
an element rij > 1, then ethnic group j is over-represented in school i. If rij < 1,
then there is under-representation. Segregation will be in evidence if there are many
elements of R with values that are noticeably different from 1. Successful measures
to mitigate segregation should result in anR matrix whose elements are closer to 1 in
value. Finally the matrix Ñ has elements such that ñij corresponds to the number of
students in school i of ethnic group j when there is no segregation. The elements of
Ñ will often not be integers, indicating that, without assigning fractions of students
to certain schools, complete independence in the table will not be achievable for
the given row and column totals. The optimal assignment in such cases will be
that array of integers with the correct marginal totals which is closest to Ñ using
some measure of distance between matrices (perhaps d(A,B) = max{|aij − bij | :
i = 1, 2, . . . , I, j = 1, 2, . . . , J }). However, in our discussion of segregation and
segregation orders it is convenient to sometimes consider moving fractional students
from one school to another. In this way, complete independence will always be
attainable.

An exchange consists of moving one student(or fraction of a student) from school
i1 to school i2 and in return moving a different student (or fraction thereof) from
school i2 to school i1, thus preserving marginal totals. Not all such exchanges will
reduce segregation. Many will make it worse. Those that reduce segregation are
what we call progressive exchanges and are characterized as follows:

Definition 12.7.1 (Progressive Exchange) An exchange which moves an individ-
ual (or fraction of an individual) of ethnic group j1 from school i1 to school i2 and in
return moves an individual(or fractional individual) of ethnic group j2 from school
i2 to school i1 will be called a progressive exchange if ri1j1 > ri2j1 and ri2j2 > ri1j2 .

A progressive exchange will, in general, be most effective in reducing segrega-
tion if

ri1j1 > 1 > ri2j1 and ri2j2 > 1 > ri1j2 (12.9)

Definition 12.7.2 (Strongly Progressive Fractional Exchange) An exchange
which moves a fraction δ of an individual of ethnic group j1 from school i1 to
school i2 and in return moves the same fraction δ of an individual of ethnic group j2
from school i2 to school i1 will be called a strongly progressive fractional exchange
if before the exchange ri1j1 > 1 > ri2j1 and ri2j2 > 1 > ri1j2 and after the exchange
ri1j1 ≥ 1 ≥ ri2j1 and ri2j2 ≥ 1 ≥ ri1j2 .
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The reason for introducing fractional exchanges is that, when the table is close
to having independent rows and columns but with Ñ having some entries which
are not non-negative integers, a progressive exchange involving movement of a
whole student may fail to reduce segregation because it will result in “overshooting”
independence.

In some tables which exhibit some degree of segregation it may not be possible
to implement a strongly progressive fractional exchange. For example, if R is as
follows:

R =

⎛

⎜⎜⎝

+ − 1

1 + −
− 1 +

⎞

⎟⎟⎠ ,

where a +-sign indicates an element greater than 1 and a −-sign indicates an
element less than 1. However in this case a “chained” series of strongly progressive
fractional exchange is possible to clearly reduce segregation. This chained exchange
will move a fraction δ of a student in ethnic group 1 from school 1 to school 3, then
move a fraction δ of a student of ethnic group 3 from school 3 to school 2 and
finally move a fraction δ of a student of ethnic group 2 from school 2 to school
1. Since, after this exchange, all the entries in R have been moved closer to 1 and
the marginals have been preserved, this has reduced segregation. Note that, one can
choose δ to be just large enough to ensure that the number of 1’s in R is increased
by at least one after the chained exchange.

In any matrix R that does not contain all entries equal to 1, it is possible to
identify a chained series of strongly progressive fractional exchange of order k for
some k ≤ min{I, J }. Such an exchange will be associated with an upper left hand
corner submatrix of a possibly row and/or column rearrangement of R of dimension
k×k with diagonal elements all greater than 1, with ri,i+1 < 1, i = 1, 2, . . . , k−1,
and with rk,1 < 1. Thus any R which exhibits segregation can have its segregation
reduced by some possibly chained strongly progressive fractional exchange. Note
that a chained exchange of order k involves individuals from k different ethnic
groups and in k different schools. However, it can be verified that a chained series
of strongly progressive fractional exchange can be instead implemented by a finite
series of fractional progressive changes each of which involves only two schools.

An attractive possible partial ordering on the class of segregation matrices N
with fixed marginals may then be defined as follows.

Definition 12.7.3 (Progressive Exchange Ordering) Let N denote the class of all
I ×J matrices with non-negative real elements with fixed marginal totals ni+, i =
1, 2, . . . , I and n+j , j = 1, 2, . . . , J. For N1, N2 ∈ N , N1 is said to exhibit
no more segregation in the progressive exchange ordering sense than N2, written
N1 ≤PE N2 if N1 can be obtained from N2 by a finite string of possibly fractional
progressive exchanges.

In order to extend this segregation order to deal with matrices of different
dimensions and with different marginals, another interpretation is desirable.
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Scarsini (1990) introduced a partial ordering on N to reflect dependence in the
tables. But, in the segregation setting, dependence and segregation are synonymous.
We can thus adopt the Scarsini partial order as a suitable segregation ordering. But
to argue that it is the “right” partial order requires us to relate it to the Progressive
Exchange ordering that was defined above. The Scarsini order, which we will call
the Scarsini Segregation order is defined as follows.

Definition 12.7.4 (Scarsini Segregation Ordering) For any N ∈ N define a
random variable XN by

P(XN = rij ) = qij , i = 1, 2, . . . , I, j = 1, 2, . . . , J, (12.10)

and denote the Lorenz curve of this random variable by SN(u) = LXN (u). For
N1, N2 ∈ N , N1 is said to exhibit no more segregation in the Scarsini Segregation
sense than N2, written N1 ≤S N2 if SN1(u) ≥ SN2(u), 0 ≤ u ≤ 1.

The curve SN(u) will be called the segregation curve of the matrix N . It can be
verified that if N ′ is obtained from N by a small fractional progressive exchange,
then XN ′ ≤S XN .

On the basis of this result, it can be argued that the segregation order ≤S is the
appropriate order to be used in comparing tables with regard to the segregation that
they exhibit.

Just as in the Wealth and Income literature where it is often felt to be desirable
to have a single number index of inequality, in Segregation discussions the use of
a single number index of segregation is often deemed to be desirable. Based on the
present discussion it appears to be appropriate to only use indices of segregation
that are monotone with respect to the segregation order ≤S . Thus an index S(N),
say, will be acceptable provided that whenever N1 ≤S N2 it is the case that
S(N1) ≤ S(N2). The majority of the segregation indices that have been proposed in
the literature do satisfy this requirement. We will review several of these next.

Two general classes of segregation measures can be usefully identified: (1) Those
which are of the form Sh(N) = E(h(XN)) for some particular convex function h,
and (2) Those which are based on geometric characteristics of the segregation curve
SN(u).

For a particular continuous convex function h, the corresponding segregation
measure is defined by

Sh(N) = E(h(XN)) =
I∑

i=1

J∑

j=1

h(rij )qij =
I∑

i=1

J∑

j=1

h(
nijn++
ni+n+j

)
ni+
n++

n+j
n++

.

(12.11)

The following simple continuous convex choices for h can be considered.

h1(y) = y2, h2(y) = (y − 1)2,

h3(y) = 1/(1 + y), h4(y) = y ln y,

with corresponding segregation indices S1, S2, S3, and S4.
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Using (12.11) one finds for h1,

S1(N) =
I∑

i=1

J∑

j=1

n2
ij

ni+n+j
, (12.12)

which is an attractively simple expression for measuring segregation. The index
corresponding to h2 is clearly closely related. It can be simplified to the form

S2(N) = 1

n++

I∑

i=1

J∑

j=1

(nij − ñij )2
ñij

, (12.13)

which is a constant multiple of the classical Pearson chi-squared statistic for testing
for independence in the table. Note that the relation between S1 and S2 is

S1(N) = S2(N)+ 1, (12.14)

since E(XN) = 1. Consequently the index S1 is bounded below by 1 since S2 is
clearly non-negative.

The index corresponding to h3 simplifies to the form

S3(N) =
I∑

i=1

J∑

j=1

ñ2
ij

(̃nij + nij )n++
. (12.15)

The index S3 is bounded below by 1/2 since, using Jensen’s inequality, E(1/(1 +
XN)) ≥ 1/E(1 +XN) = 1/2.

Using h4 we obtain

S4(N) =
I∑

i=1

J∑

j=1

nij

n++
[ln nij − ln ñij ]

=
I∑

i=1

J∑

j=1

pij [lnpij − ln qij ]. (12.16)

Note that, in (12.16), any summand of the form nij [ln nij−ln ñij ]/n++ with nij = 0
is to be interpreted as zero. This measure is recognizable as the Kullback–Leibler
divergence from P toQ, or distance between P andQ.

The segregation curve SN(u) is a Lorenz curve and, as such, is a convex curve
joining the points (0, 0) and (1, 1) in the unit square lying below the egalitarian
curve which is the straight line joining (0, 0) to (1, 1). The egalitarian curve
corresponds to a matrix N with independent rows and columns, i.e., with rij = 1
for every (i, j). Undoubtedly the most commonly used measure of inequality for
Lorenz curves is the Gini index which corresponds to twice the area between the
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Lorenz curve and the egalitarian line. A convenient formula for the Gini index of
the segregation curve SN(u), which we will call the Gini segregation index, is the
following.

SG(N) = E(|X(1)N −X(2)N |)
2E(XN)

, (12.17)

where X(1)N and X(2)N are independent copies of XN. Since, for any N , E(XN) = 1,
the Gini segregation index can be expressed in the form

SG(N) = 1

2n2++

I∑

i=1

J∑

j=1

I∑

k=1

J∑

�=1

|nij ñk� − nk�ñij |. (12.18)

An alternative geometric inequality measure is the Pietra index. A convenient
formula for the Pietra index of the segregation curve, which we will call the Pietra
segregation index is

SP (N) = E(|XN − E(XN)|)
2E(XN)

. (12.19)

Since, for any N , E(XN) = 1 the Pietra segregation index can be expressed in the
form

SP (N) = 1

2n++

I∑

i=1

J∑

j=1

|nij − ñij |. (12.20)

Thus the Pietra index is a scalar multiple of the L1-distance between N and N∗.
It is perhaps the simplest of all the indices that have been described and, on that
basis, might be recommended for general use. Note that the Pietra index also admits
a representation in the form

SP (N) = E(hP (XN)) (12.21)

where hP (y) = |y − 1|, a continuous convex function.
A third geometric inequality measure, suggested by Amato (1968), is the length

of the Lorenz curve. For our segregation curves, which are piecewise linear
functions, it is not difficult to obtain a formula for the length of the Segregation
curve, to be called the Amato segregation index and denoted by SA(N).

SA(N) =
I∑

i=1

J∑

j=1

√
q2
ij + p2

ij

= 1

n++

I∑

i=1

J∑

j=1

√
ñ2
ij + n2

ij (12.22)
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Note that the possible values for the Amato index range between
√

2, in the
independent case, and 2 the maximal length of Lorenz curve in the unit square.
If a segregation index ranging from 0 to 1 is desired, one simply needs to subtract√

2 from the Amato index and divide by 2 − √
2. We may rewrite SA(N)in the

following form

SA(N) =
I∑

i=1

J∑

j=1

⎡

⎣
√

1 +
(
pij

qij

)2
⎤

⎦ qij

= E(

√
1 +X2

N) = E(hA(XN)), (12.23)

where hA(y) = √
1 + y2, a continuous convex function. Consequently the Amato

index has a double interpretation. It is the length of the Lorenz curve, but also it
is a segregation measure based on a particular choice of the continuous convex
function hA.

On the basis of mathematical simplicity, the Pietra index is appealing. The Amato
index is an intriguing alternative. Familiarity with the classical Pearson measure of
divergence between N and N∗ and the Kullback–Leibler divergence measure might
be used to argue in favor of using S2 or S4.

Quite obviously it will be appropriate to compare different school districts with
regard to segregation and not just restrict attention to the fixed marginal case,
which effectively only applies to movement of students within a district. Thus we
might wish to compare two tables N(1) which is of dimension I1 × J1, and N(2)

which is of dimension I2 × J2. For i = 1, 2, table N(i) has an associated matrix
R(i) and an associated random variable XN(i) . It is then quite natural to extend
the segregation order to allow comparison of matrices of arbitrary dimensions by
defining N(1) ≤S N(2) if SN(1) (u) ≥ SN(2) (u) for every u ∈ [0, 1]. We no
longer have an available interpretation in terms of progressive exchanges, but the
comparison of tables of differing dimensions on the basis of summary measures
of segregation has a long pedigree and, absent counterexamples in which the
extended segregation order is demonstrably misleading, there seems to be no strong
argument against the extension. The available segregation indices will be used as
summary measures for comparing tables of different dimensions, just as they were
for comparing tables with the same dimensions and the same marginals.

Of course, the definitions of ethnic groups can vary from school district to school
district, and even from time to time within a school district. Thus for example, the
Asian category might or might not be broken down into sub-categories labeled
Chinese, Korean, etc. The opposite of this disaggregation would be aggregation
or combining previously distinguished categories. How will such combining of
categories affect the segregation curve and segregation measures ? Without loss of
generality we can consider a case in which columns 1 and 2 are combined. The
dimension of the table is then reduced from I × J to I × (J − 1) but most of
the marginal totals are unchanged. To compare the segregation in the original table
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N with the segregation in the new table NC (with columns 1 and 2 combined) we
need to compare E(g(XN)) with E(g(XNC )) for an arbitrary convex function g.
It is a straightforward algebraic exercise to verify that the convexity of g implies
that E(g(XNC )) ≤ E(g(XN)). Consequently, NC ≤S N , i.e., combining categories
reduces (or, better, does not increase) segregation. Conversely, disaggregation will
generally increase segregation. For example, if categories are defined in terms of
ethnic group and gender, there will be more segregation than if only ethnic groups
were used to define categories.

As a consequence of this aggregation effect, it is quite possible that district 1
may have less segregation than district 2 before an aggregation of categories, but
that, after aggregation, district 2 has less segregation. Of course, disaggregation can
also change the ordering between districts.

Note that the segregation order is only a partial order. When segregation curves
cross, it clearly becomes difficult to make decisions regarding which array is “more
desirable.” This complication causes lively discussion involving additional criteria
to be invoked to permit preferential judgments. Nevertheless, a central role for the
Lorenz curve based segregation order appears to be defensible.

12.8 Lorenz Order with Common Finite Support

In this section we focus on the problem of characterizing the Lorenz order restricted
to a class of random variables with common finite support. In addition, we identify
operations that reduce inequality in this class. These are called Robin Hood
exchanges and they play a parallel role in the finite support setting to that played
by Robin Hood (or progressive) transfers in the general Lorenz ordering case.

For a fixed positive integer n and a fixed set of n distinct numbers 0 < x1 <

x2 < · · · < xn−1 < xn, consider the class L (n)
x of all random variables with

support {x1, x2, . . . , xn}. A random variable X(p) in this class can be associated
with a probability vector p = (p1, p2, . . . , pn) where pi = P(X(p) = xi), i =
1, 2, . . . , n. We address the question of identifying how two probability vectors, p
and q, must be related in order that X(p) ≤L X(q). The first somewhat surprising
result in this direction is the following.

Theorem 12.8.1 For X(p),X(q) ∈ L (n)
x , if X(p) ≤L X(q) then E(X(p)) =

E(X(q)).

See Arnold and Gokhale (2017) for a proof of this assertion.
Now for two random variables with equal means, such as these, a convenient

characterization of the Lorenz order is available involving “angle functions.”
We have: X(p) ≤L X(q) (with equal means) iff

E[(X(p)− c)+] ≤ E[(X(q)− c)+] for every c ∈ (0,∞).
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Because X(p) and X(q) only take on the values x1, x2, . . . , xn we have

X(p) ≤L X(q) iff E[(X(p)− xi)+] ≤ E[(X(q)− xi)+] for i = 1, 2, . . . , n− 1,

i.e., if
∑n
j=i+1(xj − xi)pj ≤ ∑n

j=i+1(xj − xi)qj for i = 1, 2, . . . , n − 1, or
equivalently if

∑n
j=i+1(xj − xi)(pj − qj ) ≤ 0, for i = 1, 2, . . . , n − 1. This can

be written in the form A(x)(p − q) ≤ 0 for a suitable matrix A(x).
So our final conclusion is

X(p) ≤L X(q) iff E(X(p)) =
n∑

j=1

xipi =
n∑

j=1

xiqi = E(X(q))

and

A(x)(p − q) ≤ 0.

Of course, the case n = 2 is not very interesting because in that case if
E(X(p)) = E(X(q)) then necessarily X(p) ≡ X(q).

In a standard Lorenz scenario the activities of Robin Hood play a key role. These
are simple inequality attenuating operations that effectively define the Lorenz order.
In the common finite support setting, we need to identify analogs of these Robin
Hood operations.

Thus we seek to identify simple changes in the coordinates of a probability vector
p that will yield a new probability vector, say p∗ such that X(p∗) ≤L X(p). Note
that the new vector p∗ must be such that E(X(p∗)) = E(X(p)), i.e., the inequality
reducing operation must preserve the mean.

We introduce the concept of an exchange to be applied to a probability vector p.
A vector δ will be called an exchange if it satisfies

∑n
i=1 δi = 0 and p+ δ ≥ 0. The

result of the application of an exchange δ to probability vector p is a new probability
vector p∗ = p+δ. An exchange δ �= 0 is inequality attenuating ifX(p∗) ≤L X(p).

In order to be a mean-preserving exchange it is necessary that δ has at least 3 non-
zero coordinates. Exchanges of the simplest form, those with exactly 3 non-zero
coordinates, will be called Robin Hood Exchanges, provided that they are mean-
preserving and inequality attenuating. A Robin Hood exchange will have, for some
indices j < k < �, δk = ψ > 0, δj = −(1−α)ψ and δ� = −αψ where α is selected
to preserve the mean and ψ is not too large. Thus we must have pj ≥ (1 −α)ψ and
p� ≥ αψ so that the post-exchange vector is a probability vector.

Suppose that p �= q andX(p) ≤L X(q). Our goal is to identify a finite sequence
of Robin Hood exchanges applied successively to q that will yield the vector p.
First note that if X(p) ≤L X(q) with p �= q, then it must be the case that there
exist integers r and m such that (i) pi = qi, i = 1, 2, . . ., r − 1 and pr < qr , (ii)
pj = qj , j = m + 1,m + 2, . . ., n, and pm < qm, and (iii) there exists k such
that r < k < m and pk > qk. Define N(q, p) =∑n

i=1 I (qi �= pi), i.e., the number
of indices i where qi and pi differ. Note that N(q, p) might be zero, but it cannot
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be 1 nor can it be equal to 2 since E(X(q)) = E(X(p)). To prove our claim, it will
suffice to show that for any pair q, p with p �= q and X(p) ≤L X(q), there exists a
Robin Hood exchange which will reduce N(q, p).

However this can be seen to be the case. Because we have assumed that p �= q

and X(p) ≤L X(q), there may exist several indices t for which pt = qt . Note
that if the first few indices � are such that p� = q�, then the first index, say �∗, for
which equality does not occur must be such that p�∗ < q�∗ . Moreover, if the last few
indices are such that the corresponding coordinates of p and q are equal then the
last index, say �∗∗, for which equality does not occur must be such that p�∗∗ > q�∗∗ .
It is then possible to choose indices r < k < m such that pr < qr , pm < qm, and
pk > qk , and with no indices t with r < t < m and pt = qt . Consider then, a Robin
Hood exchange defined by

α = pkxk − prxr
pmxm − prxr

to preserve the mean, and then choose ψ = min{(pk − qk), (1 − α)−1(qr −
pr), α

−1(qm − pm)}. Application of this Robin Hood exchange to q will yield a
new probability vector q∗ with

X(p) ≤L X(q∗) ≤L X(q),
and N(q∗, p) < N(q, p). A finite number of such exchanges will bring us to p.

For further details and examples, see Arnold and Gokhale (2017).

12.9 The Scarsini Dependence Order

The partial order introduced by Scarsini (1990) for discrete bivariate distributions,
continues to make sense in the absolutely continuous case. Thus, for any bivariate
random variable (X, Y ) with density, say f12(x, y) with marginals f1(x) and f2(y),
we may define a dependence variable Z by

Z = f1(X)f2(Y )

f12(X, Y )

with corresponding Lorenz curve LZ(u), which will be called the dependence curve
corresponding to the density f12, or equivalently, to the random variable (X, Y ).
Note that it is always the case that E(Z) = 1. We will say that a joint density
f
(1)
12 exhibits at least as much dependence as the densityf (2)12 , with corresponding

dependence variables Z(1) and Z(2), if LZ(1) (u) ≤ LZ(2) (u) ∀u ∈ [0; 1].
Example 12.9.1 (Basic FGM Distributions) The joint densities in this case will be
of the form

f
(i)
12 (x, y) = 1 + θ(i)(1 − 2x)(1 − 2y), 0 < x, y < 1,
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with uniform marginals (here θ(i) ∈ [−1, 1], i = 1, 2). Thus

f
(i)
1 (x) = I (0 < x < 1), and f (i)2 (y) = I (0 < y < 1), i = 1, 2.

The corresponding dependence variables are

Z(i) = [1 + θ(i)(1 − 2X)(1 − 2Y )]−1.

It is natural to consider more general FGM distributions, obtained via marginal
transformations. However, the following theorem shows that there is no need to
consider them. In fact, the theorem shows that the dependence ordering is in fact a
copula ordering.

Theorem 12.9.1 Suppose that the random variable (X, Y ) has dependence vari-
able ZX,Y and that the random variable (U, V ) is obtained from (X, Y ) by
invertible marginal transformations, i.e., U = h1(X) and V = h2(Y ), then the two
corresponding dependence variables ZX,Y and ZU,V are identically distributed.

Proof For simplicity assume that the marginal transformations have differentiable
inverses. It is then possible to represent the joint and marginal densities of (U, V ) as

fU,V (u, v) =
∣∣∣∣
d

du
h−1

1 (u)

∣∣∣∣

∣∣∣∣
d

dv
h−1

2 (v)

∣∣∣∣ fX,Y (h
−1
1 (u), h

−1
2 (v))

and

fU(u) =
∣∣∣∣
d

du
h−1

1 (u)

∣∣∣∣ fX(h
−1
1 (u)) and fV (v) =

∣∣∣∣
d

dv
h−1

2 (v)

∣∣∣∣ fY (h
−1
2 (v)).

Consequently, after simplification, we have

ZU,V = fX(h
−1
1 (U)fY (h

−1
2 (V )

fX,Y (h
−1
1 (U), h

−1
2 (V )

= fX(X)fY (Y )

fX,Y (X, Y )
= ZX,Y .

In particular, one can select h1(x) = FX(x) and h2(y) = FY (y), to get

ZX,Y = ZFX(X),FY (Y )
which is the dependence variable of the copula of (X, Y ). �

However, notwithstanding this last observation, in order to identify properties of
the distribution of the dependence variable of (X, Y ), it may be best to consider it
as a function of (X, Y ) rather than as a function of the copula.

Note that, as a consequence of the theorem, the dependence variable is not
changed by marginal scale changes. Location changes will also not affect it.
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Example 12.9.2 (The Bivariate Normal Distributions) From the above discussion,
we may, without loss of generality, assume zero means and unit variances. The
bivariate normal density is then of the following form, where −1 < ρ < 1:

fX,Y (x, y) = (2π)−1(1 − ρ2)−1/2 exp

[
− 1

2(1 − ρ2)
(x2 − 2ρxy + y2)

]
.

Since the marginal densities are standard normal, the corresponding dependence
variable ZX,Y is of the form:

ZX,Y = (1 − ρ2)1/2 exp
{
[2(1 − ρ2)]−1[ρ2X2 + ρ2Y 2 − 2ρXY ]

}
.

Identification of the distribution of this random variable appears to be difficult.
However it is not difficult to simulate. If we wish to evaluate the corresponding Gini
index it will be perhaps simplest to make use of the following representation of the
Gini index.

GZX,Y = E(max[Z(1)X,Y , Z(2)X,Y ])
E(ZX,Y )

− 1,

which involves i.i.d. copies of ZX,Y and can be approximated easily via simulation.

Example 12.9.3 (The Mardia Bivariate Pareto Distribution) In this model X and
Y are defined as functions of independent gamma random variables, thus:

(X, Y ) =
(
U

W
,
V

W

)
,

where U,V , andW are independent random variables with

U ∼ �(1, 1), V ∼ �(1, 1) andW ∼ �(γ, 1).
The joint survival function for this distribution is of the form:

FX,Y (x, y) = (1 + x + y)−γ , x, y > 0,

where γ > 0. The corresponding dependence variable is

ZX,Y = γ 2(1 +X + Y )γ+2

γ (γ + 1)(1 +X)γ+1(1 + Y )γ+1 .

Alternatively this can be written in terms of the basic gamma variables, U , V ,
andW (which may be preferable for simulation). Thus

ZX,Y = γ 2Wγ (U + V +W)γ+2

γ (γ + 1)(U +W)γ+1(V +W)γ+1
.
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A more general model with second kind beta marginals might be considered, of
the form:

(X, Y ) =
(
U

W
,
V

W

)
,

where U,V , andW are independent random variables with

U ∼ �(α, 1), V ∼ �(β, 1) andW ∼ �(γ, 1).

However, this can be recognized as a simple marginal transformation of the
Olkin–Liu bivariate beta model, to be discussed next, and will have the same
dependence variable.

Example 12.9.4 (The Olkin–Liu Bivariate Beta Distribution) In this model X and
Y are also defined as functions of independent gamma random variables. Thus

(X, Y ) =
(

U

U +W ,
V

V +W
)
,

where U,V , andW are independent random variables with

U ∼ �(α, 1), V ∼ �(β, 1) andW ∼ �(γ, 1).

The corresponding joint density (Olkin and Liu 2003) is of the form

fX,Y (x, y) = �(α + β + γ )
�(α)�(β)�(γ )

xα−1yβ−1(1 − x)β+γ−1(1 − y)α+γ−1

(1 − xy)α+β+γ .

Taking into account the fact that X and Y have beta densities, the dependence
variable for this bivariate distribution is of the form:

ZX,Y = �(α + γ )�(β + γ )
�(α + β + γ )�(γ )

(1 −XY)α+β+γ

(1 −X)β(1 − Y )α ,

or in terms of the gamma distributed components,

ZX,Y = �(α + γ )�(β + γ )
�(α + β + γ )�(γ )

(
1 − U

U+W
V

V+W
)α+β+γ

(
1 − U

U+W
)β (

1 − V
V+W

)α .
′
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12.9.1 Extension to k Dimensions

Instead of a two-dimensional random variable (X, Y ) we may consider a k-
dimensional random variable (X1, X2, . . . , Xk) with corresponding joint and
marginal densities:

fX1,X2,...,Xk (x1, x2, . . . , xk)

and

fXi (xi), i = 1, 2, . . . , k.

We then can define the corresponding dependence variable as

ZX1,X2,...,Xk =
∏k
i=1 fXi (Xi)

fX1,X2,...,Xk (X1, X2, . . . , Xk)
.

As in two dimensions, we use the Lorenz order to compare dependence variables.
How should we interpret comparisons between variables of differing dimen-

sions?
For example, how are ZX1,X2,...,Xk and ZX1,X2,...,Xk−1 related? Note that we can

simplify the ratio of these two variables as follows.

ZX1,X2,...,Xk

ZX1,X2,...,Xk−1

= fXk (Xk)

fXk |X1,X2,...,Xk−1(Xk|X1, X2, . . . , Xk−1)

In fact, we can argue as follows that these two variables, ZX1,X2,...,Xk and
ZX1,X2,...,Xk−1 , are Lorenz ordered.

Consider

E(ZX1,X2,...,Xk |(X1, X2, . . ., Xk−1) = (x1, x2, . . ., xk−1))

=
∫ ∞

−∞

∏k
i=1 fXi (xi)

fX1,X2,...,Xk (x1, x2, . . ., xk)

fX1,X2,...,Xk (x1, x2, . . ., xk)

fX1,X2,...,Xk−1(x1, x2, . . ., xk−1)
dxk

=
∏k−1
i=1 fXi (xi)

fX1,X2,...,Xk−1(x1, x2, . . ., xk−1)

∫ ∞

−∞
fXk (xk)dxk

=
∏k−1
i=1 fXi (xi)

fX1,X2,...,Xk−1(x1, x2, . . ., xk−1)
× 1.
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Thus

E(ZX1,X2,...,Xk |X1, X2, . . ., Xk−1)

=
∏k−1
i=1 fXi (Xi)

fX1,X2,...,Xk−1(X1, X2, . . ., Xk−1)
= ZX1,X2,...,Xk−1 .

It follows that ZX1,X2,...,Xk is a balayage of ZX1,X2,...,Xk−1 and, consequently,

ZX1,X2,...,Xk−1 ≤L ZX1,X2,...,Xk .

By induction, we may conclude that if X = (X(1), X(2)) then

ZX(1) ≤L ZX.

Example 12.9.5 (The Normal Case Revisited, This Time in k Dimensions) Consider
a k-dimensional normal random variable (X1, X2, . . ., Xk) with, without loss of
generality, standard normal marginals, i.e.,X ∼ N(k)(0, R)where R is a correlation
matrix. The corresponding dependence variable is then:

ZX = (2π)−k/2 exp[−(1/2)X′
X]

(2π)−k/2|R|−1/2 exp[−(1/2)X′
R−1X]

= |R|1/2 exp[−(1/2)X′
(I − R−1)X].

It is then possible to identify the moment generating function of log[ZX] and,
from it, determine the distribution of ZX.
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