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Preface

This book intends to meet the need that exists for an elementary level textbook in structural design.
It is a complete book. The book has a code-connected focus. Since publication of the first edition in
2010, all codes and standards have undergone revisions. The International Building Codes and the
International Residential Codes were updated in 2012. The American Society of Civil Engineers
(ASCE) has revised the Minimum Design Loads for Buildings and Other Structures to ASCE 7-10.
The American Wood Council has published National Design Specifications (NDS) 2012 for wood
design. The American Institute of Steel Construction (AISC) has updated the Steel Construction
Manual and the Seismic Design Manual to 2010 Standards and Specifications. The American
Concrete Institute (ACI) has come up with new ACI 380-2011 Building Code Requirements for
Structural Concrete.

All these changes have necessitated an accelerated revision of the book. While undertaking this
task, the text material has been thoroughly reviewed and expanded, including inclusion of a new
chapter on concrete design.

The book retains its original feature; it is suitable for a combined design coursework in wood,
steel, and concrete. It is a self-contained book that includes all essential material—the section
properties, design values, reference tables, and other design aids required to accomplish complete
structural designs according to the codes. Unlike other books, the requirements of the separate
documents pertaining to the codes and standards of the issuing agencies are not a prerequisite with
this book.

The book is appropriate for an academic program in architecture, construction management,
general engineering, and civil engineering, where the curriculum provides for a joint coursework in
wood, steel, and concrete design.

The book has four sections, expanded into 17 chapters. Section I, comprising Chapters 1
through 5, enables students to determine the various types and magnitude of loads that will be
acting on any structural element and the combination(s) of those loads that will control the design.
ASCE 7-10 has made major revisions to the provisions for wind loads. In Section I, the philosophy
of the load and resistance factor design and the unified approach to design are explained.

Wood design in Section II from Chapters 6 through 8 covers sawn lumber, glued laminated
timber, and structural composite or veneer lumber, which are finding increased application in wood
structures. The NDS 2012 has modified the format conversion factors and has also introduced some
new modification factors. First, the strength capacities in accordance with the NDS 2012 for tensile,
compression, and bending members are discussed and the basic designs of these members are per-
formed. Subsequently, the designs of columns, beams, and combined force members are presented,
incorporating the column stability and beam stability and other factors. The connection is an impor-
tant subject because it is often neglected and proves to be a weak link of a structure. The dowel-type
connections (nails, screws, and bolts) have been presented in detail, together with the complete set
of tables of the reference design values.

Section IIT from Chapters 9 through 13 deals with steel structures. This covers the designs of
tensile, compression, bending members and the braced and unbraced frames according to the AISC
specifications and the designs of open-web steel joists and joist girders according to the standards of
the Steel Joists Institute. AISC 2010 has made some revisions to the sectional properties of certain
structural elements. It has also made changes in the procedure to design the slip-critical connection.
Similar to wood design, a separate chapter considers shear connection, tension connection, and
moment-resisting bolted and welded connections and various types of frame connections.

xiii
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Section IV from Chapters 14 through 17 covers the reinforced concrete design. A new chapter on
T beams and doubly reinforced beams has been added. In concrete, there is no tensile member and
shear is handled differently as discussed in Chapter 16.

My wife Saroj Gupta helped in typing and editing of the manuscript. In the first edition, senior
students from my structural design class also made valuable contributions; Ignacio Alvarez had
prepared revised illustrations, and Andrew Dahlman, Ryan Goodwin, and George Schork had
reviewed the end-of-chapter problems. In this edition, senior students, Michael Santerre and
Raphael DeLassus, reviewed the solutions to the problems relating to Section III and Section IV,
respectively. Joseph Clements, David Fausel, and other staff members at CRC Press provided
valuable support that led to the completion of the revised edition. During proofs review and edit
phase, very prompt responses and necessary help came from Dhayanidhi Karunanidhi and Paul
Abraham Isaac of diacriTech. I offer my sincere thanks to all and to my colleagues at Roger
Williams University who extended a helping hand from time to time.

Ram S. Gupta
Roger Williams University
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’I Design Criteria

CLASSIFICATION OF BUILDINGS

Buildings and other structures are classified based on the risk associated with unacceptable per-
formance of the structure, according to Table 1.1. The risk categories range from I to IV, where
category I represents buildings and other structures that pose no danger to human life in the event
of failure and category IV represents all essential facilities. Each structure is assigned the highest
applicable risk category. Assignment of more than one risk category to the same structure based on
use and loading conditions is permitted.

BUILDING CODES

To safeguard public safety and welfare, towns and cities across the United States follow certain
codes for design and construction of buildings and other structures. Until recently, towns and cities
modeled their codes based on the following three regional codes, which are normally revised at
3-year intervals:

1. The Building Officials and Code Administrators National Building Code
2. The Uniform Building Code
3. The Standard Building Code

The International Codes Council was created in 1994 for the purpose of unifying these codes
into a single set of standards. The council included representatives from the three regional code
organizations. The end result was the preparation of the International Building Code (IBC), which
was first published in 2000, with a second revision in 2003 and a third revision in 2006. The latest is
the fifth edition of 2012. Now, practically all local and state authorities follow the IBC. For the spec-
ifications of loads to which structures should be designed, the IBC makes a direct reference to the
American Society of Civil Engineers’ publication Minimum Design Loads for Buildings and Other
Structures, which is commonly referred to as the American Society of Civil Engineers (ASCE) 7-10.

STANDARD UNIT LOADS

The primary loads on a structure are dead loads due to the weight of structural components and
live loads due to structural occupancy and usage. The other common loads are snow loads, wind
loads, and seismic loads. Some specific loads to which a structure could additionally be subjected
to comprise soil loads, hydrostatic forces, flood loads, rain loads, and ice loads (atmospheric icing).
ASCE 7-10 specifies the standard unit loads that should be adopted for each category of loading.
These have been described in Chapters 2 through 5 for the main categories of loads.

TRIBUTARY AREA

Since the standard unit load in the ASCE 7-10 is for a unit area, it needs to be multiplied by the
effective area of the structural element on which it acts to ascertain the total load. In certain
cases, the ASCE 7-10 specifies the concentrated load; then, its location needs to be considered for
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TABLE 1.1

Risk Category of Buildings and Other Structures

Nature of Occupancy Category
Agriculture, temporary structures, storage 1

All buildings and structures except those classified as I, III, and IV 11
Buildings and other structures that can cause a substantial economic impact and/or mass disruption of 1

day-to-day civil lives, including the following:

More than 300 people congregation

Day care with more than 150

School with more than 250 and college with more than 500

Resident health care with 50 or more

Jail

Power generation, water treatment, wastewater treatment, telecommunication centers
Essential facilities, including the following: v

Hospitals

Fire, police, ambulance

Emergency shelters

Facilities needed in emergency

Source: Courtesy of American Society of Civil Engineers, Reston, Virginia.
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FIGURE 1.1 Parallel framing system.

maximum effect. In the parallel framing system shown in Figure 1.1, the beam CD receives the load
from the floor that extends halfway to the next beam (B/2) on each side, as shown by the hatched
area. Thus, the tributary area of the beam is B X L and the load is W = w X B X L, where w is the
unit standard load. The exterior beam AB receives the load from one side only extending halfway
to the next beam. Hence, the tributary area is ¥2B X L.

Suppose we consider a strip of 1 ft. width, as shown in Figure 1.1. The area of the strip is 1 X B.
The load of the strip is w X B, which represents the uniform load per running foot (or meter) of
the beam.

The girder is point loaded at the locations of beams by beam reactions. However, if the beams
are closely spaced, the girder could be considered to bear a uniform load from the tributary area of
2B X L.

In Figure 1.2, beam AB supports a rectangular load from an area A, B, 2, 1; the area is BL/2 and
the load is wBL/2. It also supports a triangular load from an area A, B, 3; this area is (¥2)BL/2 and
the load is wBL/4. This has a distribution as shown in Figure 1.3.

Beam AC supports the triangular load from area A, C, 3, which is wBL/4. However, the load-
ing on the beam is not straightforward because the length of the beam is not L but L, = (\/ I’ +B? )
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FIGURE 1.3 Load distribution on beam AB of Figure 1.2.
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FIGURE 1.4 Load distribution on beam AC of Figure 1.2.

(Figure 1.4). The triangular loading is as shown in Figure 1.4 to represent the total load (the area
under the load diagram) of wBL/4.

The framing of a floor system can be arranged in more than one manner. The tributary area
and the loading pattern on the framing elements will be different for different framing systems, as
shown in Figures 1.5 and 1.6.

Example 1.1

In Figure 1.2, the span L is 30 ft. and the spacing B is 10 ft. The distributed standard unit load on
the floor is 60 Ib/ft.> Determine the tributary area, and show the loading on beams AB and AC.

SOLUTION
Beam AB:

1. Rectangular tributary area per foot of beam length = 1 x 5=5 ft.%/ft.
2. Uniform load per foot = (standard unit load x tributary area)= (60 Ib/ft.2) (5 ft.2/ft.)=300 Ib/ft.
3. Triangular tributary area (total) = 2(5)(30) = 75 ft.?
4. Total load of triangular area = 60 x 75 = 4500 Ib.
5. For load at the end of w per foot, area of triangular load diagram = "awL.
6. Equating items (4) and (5), 2wl = 4500 or w = 300 Ib/ft.
7. Loading is shown in Figure 1.7.
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FIGURE 1.5 (a) A framing arrangement. (b) Distribution of loads on elements of frame in Figure 1.5a.
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Figure 1.6a.
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] 300 Ib/ft.

300 Ib/ft.

o 30 ft. 2

FIGURE 1.7 Distribution of loads on beam AB of Example 1.1.

284.62 Ib/ft.
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\ 31.62 ft. Sy

FIGURE 1.8 Distribution of loads on beam AC of Example 1.1.

Beam AC:

1. Tributary area = 75 ft.?

2. Total load = 60 x 75=4500 Ib.

3. Length of beam AC, L =(v/307+107)=31.62ft.

4. Area of triangular load diagram = 2wl = 2w(31.62).

5. Equating (2) and (4), 2w(31.62) = 4500 or w = 284.62 Ib/ft.

6. The loading is shown in Figure 1.8.

WORKING STRESS DESIGN, STRENGTH DESIGN,
AND UNIFIED DESIGN OF STRUCTURES

There are two approaches to design: (1) the traditional approach and (2) a comparatively newer
approach. The distinction between them can be understood from the stress—strain diagram. The
stress—strain diagram with labels for a ductile material is shown in Figure 1.9. The diagram for a
brittle material is similar except that there is only one hump indicating both the yield and the ulti-
mate strength point and the graph at the beginning is not really (but close to) a straight line.

Allowable stress is ultimate strength divided by a factor of safety. It falls on the straight-line por-
tion within the elastic range. In the allowable stress design (ASD) or working stress design method,
the design is carried out so that when the computed design load, known as the service load, is
applied on a structure, the actual stress created does not exceed the allowable stress limit. Since the
allowable stress is well within the ultimate strength, the structure is safe. This method is also known
as the elastic design approach.

In the other method, known variously as strength design, limit design, or load resistance fac-
tor design (LRFD), the design is carried out at the ultimate strength level. Since we do not want
the structure to fail, the design load value is magnified by a certain factor known as the load fac-
tor. Since the structure at the ultimate level is designed for loads higher than actual loads, it does
not fail. In strength design, the strength of the material is taken to be the ultimate strength, and a
resistance factor (<1) is applied to the ultimate strength to account for uncertainties associated with
determining the ultimate strength.

The LRFD method is more efficient than the ASD method. In the ASD method, a single factor
of safety is applied to arrive at the design stress level. In LRFD, different load factors are applied
depending on the reliability to which the different loads can be computed. Moreover, resistance fac-
tors are applied to account for the uncertainties associated with the strength values.
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FIGURE 1.9 Stress—strain relation of a ductile material.

The American Concrete Institute was the first regulatory agency to adopt the (ultimate) strength
design approach in early 1970 because concrete does not behave as an elastic material and does
not display the linear stress—strain relationship at any stage. The American Institute of Steel
Construction (AISC) adopted the LRFD specifications in the beginning of 1990. On the other hand,
the American Forest and Paper Association included the LRFD provisions only recently, in the
2005 edition of the National Design Specification for Wood Construction.

The AISC Manual 2005 proposed a unified approach wherein it had combined the ASD and the
LRFD methods together in a single documentation. The principle of unification is as follows.

The nominal strength of a material is a basic quantity that corresponds to its ultimate strength.
In terms of force, the nominal (force) strength is equal to yield or ultimate strength (stress) times the
sectional area of a member. In terms of moment, the nominal (moment) strength is equal to ultimate
strength times the section modulus of the member. Thus,

P,=FA (LD
M,=F,8S (1.2)

where
A is area of cross section
S is section modulus

In the ASD approach, the nominal strength of a material is divided by a factor of safety to convert
it to the allowable strength. Thus,

o

Allowable (force) strength = —= (1.3)

< ©

Allowable (moment) strength = Q” 1.4

where Q is factor of safety.
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For a safe design, the load or moment applied on the member should not exceed the allowable
strength. Thus, the basis of the ASD design is as follows:

P
P <=t 1.5
=79 (1.5)
and
M
M <—= 1.6
=79 (1.6)
where

P, is service design load combination
M, is moment due to service design load application

Using Equation 1.5 or 1.6, the required cross-sectional area or the section modulus of the member
can be determined.

The common ASD procedure works at the stress level. The service (applied) load, P, is divided
by the sectional area, A, or the service moment, M, is divided by the section modulus, S, to obtain
the applied or created stress due to the loading, ¢,. Thus, the cross-sectional area and the section
modulus are not used on the strength side but on the load side in the usual procedure. It is the ulti-
mate or yield strength (stress) that is divided by the factor of safety to obtain the permissible stress,
c,. To safeguard the design, it is ensured that the applied stress, 6, does not exceed the permissible
stress, G,

For the purpose of unification of the ASD and LRFD approaches, the aforementioned proce-
dure considers strength in terms of the force or the moment. In the LRFD approach, the nominal
strengths are the same as given by Equations 1.1 and 1.2. The design strengths are given by

a’

Design (force) strength = ¢P, 1.7
Design (moment) strength = ¢M, (1.8)
where ¢ is resistance factor.
The basis of design is
P, <0P, (19
M, <oM, (1.10)

where
P, is factored design loads
M, is maximum moment due to factored design loads

From the aforementioned relations, the required area or the section modulus can be determined,
which are the parts of P, and M, in Equations 1.1 and 1.2.
A link between the ASD and the LRFD approaches can be made as follows: from Equation 1.5
for ASD, at the upper limit
P, =QP (1.11)

n a

Considering only the dead load and the live load, P, = D + L. Thus,

P, =Q(D+L) (1.12)
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TABLE 1.2
Q As a Function of ¢ for Various L/D Ratios
L/D Ratio (Select) Q From Equation 1.16
1 1.4/¢
2 1.47/¢
3 1.5/¢
4 1.52/¢
From the Equation 1.9 for LFRD, at the upper limit
P = L (1.13)
o

Considering only the factored dead load and live load, P, = 1.2D + 1.6L. Thus,

p _ (12D +1.6L)

n o (1.14)
Equating Equations 1.12 and 1.14,
M:Q(DJrL) (1.15)
or
_1d.2D+1.6L) (1.16)

o(D+L)

The factor of safety, Q, has been computed as a function of the resistance factor, ¢, for various
selected live-to-dead load ratios in Table 1.2.

The 2005 AISC specifications used the relation Q = 1.5/¢ throughout the manual to connect the
ASD and LRFD approaches. Wood and concrete structures are relatively heavier, that is, the L/D
ratio is less than 3 and the factor of safety, Q, tends to be lower than 1.5/, but a value of 1.5 could
reasonably be used for these structures as well because the variation of the factor is not significant.
This book uses the LRFD basis of design for all structures.

ELASTIC AND PLASTIC DESIGNS

The underlying concept in the preceding section is that a limiting state is reached when the stress
level at any point in a member approaches the yield strength value of the material and the corre-
sponding load is the design capacity of the member.

Let us revisit the stress—strain diagram for a ductile material like steel. The initial portion of the
stress—strain curve of Figure 1.9 has been drawn again in Figure 1.10 to a greatly enlarged horizon-
tal scale. The yield point F| is a very important property of structural steel. After an initial yield,
a steel element elongates in the plastic range without any appreciable change in stress level. This
elongation is a measure of ductility and serves a useful purpose in steel design. The strain and stress
diagrams for a rectangular beam due to increasing loading are shown in Figures 1.11 and 1.12.

Beyond the yield strain at point b, as a load increases the strain continues to rise in the plastic
range and the stress at yield level extends from the outer fibers into the section. At point d, the entire
section has achieved the yield stress level and no more stress capacity is available to develop. This
is known as the fully plastic state and the moment capacity at this state as the full plastic moment.
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FIGURE 1.10 Initial portion of stress—strain relation of a ductile material.
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FIGURE 1.11  Strain variation in a rectangular section.

Point a Point b Point ¢ Point d
c=Ee

FIGURE 1.12  Stress variation in a rectangular section.

The full moment is the ultimate capacity of a section. Beyond this, a structure will collapse. When
full moment capacity is reached, we say that a plastic hinge has formed. In a statically determinate
structure, the formation of one plastic hinge will lead to a collapse mechanism. Two or more plastic
hinges are required in a statically indeterminate structure for a collapse mechanism. In general, for

a complete collapse mechanism,
n=r+1
where

n is number of plastic hinges
r is degree of indeterminacy

€= Yield strain
of steel

o, = Yield strength
of steel

11

(1.17)
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ELAasTic MOMENT CAPACITY

As stated earlier, structures are commonly designed for elastic moment capacity, that is, the failure
load is based on the stress reaching a yield level at any point. Consider that on the rectangular beam
of width b and depth d of Figure 1.10 at position b when the strain has reached the yield level, a full
elastic moment, M, acts. This is shown in Figure 1.13.

Total compression force is as follows:

1  bd
C=—(5yAC=EO'y7 (@
Total tensile force is as follows:
1 1 bd
T=—06,A=—0,— b
270 2772 ®

These act at the centroids of the stress diagram in Figure 1.13.

M =force X moment arm

M. = (ﬁﬂ) y (%) ©
El2 2 3
2
M, = Gy% (118)

It should be noted that bd? /6 = S, the section modulus, and the aforementioned relation is given by
M =c,S. In terms of moment of inertia, this relation is M = cyl/c. In the case of a nonsymmetrical
section, the neutral axis is not in the center and there are two different values of ¢ and, accordingly,
two different section moduli. The smaller M, is used for the moment capacity.

PLAsTiIc MOMENT CAPACITY

Consider a full plastic moment, M,, acting on the rectangular beam section at the stress level d of
Figure 1.10. This is shown in Figure 1.14.

Mg :ch
)

A
a

M p )
'> ________________ an
r -

FIGURE 1.14  Full plastic moment acting on a rectangular section.
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Total compression force is as follows:

bd
C= GyAc = Gy 7
Total tensile force is as follows:

bd
TZG),Ar ZG),7

M = force X moment arm

bd d
=0,—X—
Y202
or
bd?
MI’:G}’T
This is given by
M,=0,Z

13

@

(b)

©

(1.19)

(1.20)

where Z is called the plastic section modulus. For a rectangle, the plastic section modulus is
1.5 times the (elastic) section modulus and the plastic moment capacity (M,) is 1.5 times the elastic
moment capacity (M;). The ratio between the full plastic and the full elastic moment of a section
is called the shape factor. In other words, for the same design moment value the section is smaller

according to the plastic design.

The plastic analysis is based on the collapse load mechanism and requires knowledge of how a
structure behaves when stress exceeds the elastic limit. The plastic principles are used in the design

of steel structures.

Example 1.2

For the steel beam section shown in Figure 1.15, determine the (a) elastic moment capacity,
(b) plastic moment capacity, and (c) shape factor. The yield strength is 210 MPa.

/|450mm —

150 mm

210 mPa

A

(0.15) =0.1 m

A

w |

—A

(a)

.15) = 0.075

l\Jl»—A
—
(=}

(b)

FIGURE 1.15 (a) Elastic moment capacity of beam section. (b) Plastic moment capacity of beam section.
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SOLUTION

a. Elastic moment capacity
1. Refer to Figure 1.15a
2. C=T=%(210><106)(0.05><0.075):393.75><103N
3. My=(393.75%10% x 0.1=39.38 X 10° N'm

b. Plastic moment capacity
1. Refer to Figure 1.15b
2. C=T=(210 x 10%)(0.05 x 0.075) = 787.5 x 10> N
3. M, =(787.5x10% x 0.075 = 59.06 x 10° N-m

c. Shape factor

SF_%_ 59.06 x 103 iy
M, 39.38x10%

Example 1.3

The design moment for a rectangular beam is 40 kN-m. The vyield strength of the material is
200 MPa. Design a section having a width—depth ratio of 0.5 according to the (a) elastic theory

and (b) plastic theory.
SOLUTION

a. Elastic theory
1. M;=05
or

3
M A0XT0° _ 651070 me

G, 200x10°

2. %bd2 =0.2x1073

%(O.Sd)(dz) —02%10°

or
d=0.134m
and
b=0.076 m
b. Plastic theory
1. M,=c,7
or
M 3 .
—p=m=0.2x10’3m~‘
6, 200x10°
2. Sbd?=02x107m

%(O.Sd)(dz) =0.2x102m?

or
d=0.117m
and

b =0.058 m

COMBINATIONS OF LOADS

Various types of loads that act on a structure are described in the “Standard Unit Loads” section.
For designing a structure, its elements, or its foundation, loads are considered to act in the following
combinations with load factors as indicated in order to produce the most unfavorable effect on the
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structure or its elements. Dead load, roof live load, floor live load, and snow load are gravity loads
that act vertically downward. Wind load and seismic load have vertical as well as lateral compo-
nents. The vertically acting roof live load, live load, wind load (simplified approach), and snow load
are considered to be acting on the horizontal projection of any inclined surface. However, dead load
and the vertical component of earthquake load act over the entire inclined length of the member.

For LRFD, ASCE 7-10 recommends the following seven combinations with respect to common
types of loads. In ASCE 7-10, the factor for wind load has been changed to 1 (strength level) from
an earlier factor of 1.6. The wind speed maps have been changed accordingly:

1. 14D (1.21)
2.12D+1.6L+0.5(L, or S) 1.22)
3. 1.2D+1.6(L, or S)+ fL or 0.5W (1.23)
4. 1.2D+1.0W + fL+0.5(L, or ) (1.24)
5.12D+E +E,+ fL+0.2S (1.25)
6. 0.9D+1.0W (1.26)
7. 09D-E +E, 1.27)
where

D is dead load

L is live load

L, is roof live load

S is snow load

W is wind load

E, is horizontal earthquake load

E, is vertical earthquake load

f= 0.5 for all occupancies when the unit live load does not exceed 100 psf except for garage
and public assembly and f = 1 when unit live load is 100 psf or more and for any load on
garage and public places

OTHER LOADS

1. When a fluid load, F; is present, it should be included with the live load (the same factor) in
combinations 1 through 5 and 7 mentioned in the “Combination of Loads” section.

2. When a lateral load, H, due to earth pressure, bulk material, or groundwater pressure is
present, then include it with a factor of 1.6 if it adds to the load effect; if it acts against the
other loads, use a factor of 0.9 when it is permanent and a factor of O when it is temporary.

3. When a structure is located in a flood zone, in V-zones, or coastal A-zones, the wind load
in the above load combinations is replaced by 1.0W + 2.0F,, where F, is a flood load; in
noncoastal A-zones, 1.0W in above combinations is replaced by 0.5W + 1.0F,.

Example 1.4

A simply supported roof beam receives loads from the following sources taking into account the
respective tributary areas. Determine the loading diagram for the beam according to the ASCE
7-10 combinations.

1. Dead load (1.2 k/ft. acting on a roof slope of 10°)
2. Roof live load (0.24 k/ft.)
3. Snow load (1 k/ft.)
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4. Wind load at roof level (15 k)
5. Earthquake load at roof level (25 k)
6. Vertical earthquake load (0.2 k/ft.)

SOLUTION

1. The dead load and the vertical earthquake load which is related to the dead load, act on the
entire member length. The other vertical forces act on the horizontal projection.

. Adjusted dead load on horizontal projection = 1.2/cos 10° = 1.22 k/ft.

. Adjusted vertical earthquake load on horizontal projection = 0.2/cos 10° = 0.20 k/ft.

. Equation 1.21: W, = 1.4D = 1.4(1.22) = 1.71 k/ft.

. Equation 1.22: W, = 1.2D + 1.6L + 0.5 (L, or S). This combination is shown in Table 1.3.

g Wi

TABLE 1.3
Dead, Live, and Snow Loads for Item 5 Combination
Combined
Source D (k/ft.) L (k/ft.) L, or S (k/ft) Value Diagram
Load 1.22 - 1 1.964 k/ft.
Load factor 1.2 1.6 0.5
Factored vertical 1.464 - 0.5 1.964 k/ft. ;lj ¢ ¢ ¢ i ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢§u;
load L

Factored - - -
horizontal load

TABLE 1.4

Dead, Live, Snow, and Wind Loads for Item 6 Combination

Combined

Source D (k/ft.) L (k/ft.) S (k/ft) W (k) Value Diagram
Load 1.22 — 1 15 3.06 k/ft.
Load factor 1.2 0.5 1.6 0.5 L
Factored vertical 1.464 1.6 3.06 k/ft. VVV Y I VVVVYV 47'i(

load i L 77;;77
Factored 7.5 7.5k

horizontal load
TABLE 1.5
Dead, Live, Snow, and Wind Loads for Item 7 Combination

Combined

Source D (k/ft.) L (k/ft.) S (k/ft) W (k) Value Diagram
Load 1.22 - 1 15 1.964 k/ft.
Load factor 1.2 0.5 0.5 1 15 k
Factored vertical 1.464 - 0.5 1.964 k/ft. ;|>l l l l l l l l l l lfl)

1 L

oad
Factored 15 15k

horizontal load
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6. Equation 1.23: W, = 1.2D + 1.0(, or S) + (0.5L or 0.5W). This combination is shown in
Table 1.4.
7. Equation 1.24: W, = 1.2D + 1.0W + 0.5L + 0.5(L, or S). This combination is shown in
Table 1.5.
8. Equation 1.25: W, =1.2D + E, + E, + 0.5L + 0.2S. This combination is shown in Table 1.6.
9. Equation 1.26: W, = 0.9D + 1.0W. This combination is shown in Table 1.7.
10. Equation 1.27: W, = 0.9D + E, — E,. This combination is shown in Table 1.8.

Item 5 can be eliminated as it is less than next three items. ltems 6, 7, and 8 should be evaluated
for the maximum effect and items 4, 9, and 10 for the least effect.

TABLE 1.6
Dead, Live, Snow, and Earthquake Loads for Item 8 Combination
Combined
Source D (k/ft.) L (k/ft.) S (k/ft.) E, (k/ft) E, (k) Value Diagram
Load 1.22 - 1 0.2 25 1.864 k/ft.

Load 12 0.5 0.2 1 1 H¢¢i¢¢¢¢¢“ﬂ‘
factor 74;77 L 77@77

Factored 1.464 - 0.2 0.2 1.864
vertical
load

Factored 25 25
horizontal
load

TABLE 1.7
Dead and Wind Loads for Item 9 Combination

Source D (k/ft.) W (k) Combined Value Diagram
Load 1.22 15 1.1 k/ft.

Load factor 0.9 1 15k
Factored vertical load 1.1 1.1 k/ft. ;|;¢ ¢ ¢ i ¢ Li i ¢ ¢ ¢ tlr_
Factored horizontal 15 15k

load

TABLE 1.8
Dead and Earthquake Load for Item 10 Combination

Source D (k/ft.) E, (k/ft.) E, (k) Combined Value Diagram
Load 1.22 (-)0.2 25 0.9 k/ft.
Load factor 0.9 ! ! EEEEEEEEEXINT
Factored 1.1 (-)0.2 0.9 k/ft. L g ) —
vertical
load
Factored 25 25k
horizontal
load
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CONTINUOUS LOAD PATH FOR STRUCTURAL INTEGRITY

ASCE 7-10 makes a new provision* that all structures should be to be provided with a continuous
load path and a complete lateral force-resisting system of adequate strength for the integrity of the
structure. A concept of notional load has been adopted for this purpose. The notional load, N, has
been stipulated as follows:

1. All parts of the structure between separation joints shall be interconnected. The connec-
tion should be capable of transmitting the lateral force induced by the parts being con-
nected. Any smaller portion of a structure should be tied to the remainder of the structure
through elements that have the strength to resist at least 5% of the weight of the portion
being connected.

2. Each structure should be analyzed for lateral forces applied independently in two orthogo-
nal directions. In each direction, the lateral forces at all levels should be applied simultane-
ously. The minimum design lateral force should be

F. = 0.01W, (1.28)

where
F is design lateral force applied at story x
W, is dead load of the portion assigned to level x

3. A positive connection to resist the horizontal force acting parallel to the member should
be provided for each beam, girder, or truss either directly to its supporting elements or to
slabs acting as diaphragms. Where this is through a diaphragm, the member’s supporting
element should be connected to the diaphragm also.

The connection should have the strength to resist 5% (unfactored) dead load plus live
load reaction imposed by the supported member on the supporting member.

4. A wall that vertically bears the load or provides lateral shear resistance from a portion of
a structure should be anchored to the roof, to all floors, and to members that are supported
by the wall or provide support to the wall. The anchorage should make a direct connection
capable of resisting a horizontal force, perpendicular to the plane of the wall, equal to
0.2 times the weight of the wall tributary to the connection but not less than 5 psf.

While considering load combinations, the notional load, N, specified in items 1 through
4 in this list should be combined with dead and live loads as follows:

1. 1.2D+1.0N+ fL+0.2S (1.29)
2. 09D +1.0N (1.30)

This is similar to the cases when earthquake loads are considered as in load combination
Equations 1.25 and 1.27.

PROBLEMS
Note: In Problems 1.1 through 1.6, the loads given are factored loads.

1.1 A floor framing plan is shown in Figure P1.1. The standard unit load on the floor is 60 1b/ft.?
Determine the design uniform load per foot on the joists and the interior beam.

1.2 In Figure 1.5, length L = 50ft. and width B = 30 ft. For a floor loading of 100 Ib/ft.2, deter-
mine the design loads on beams GH, EF, and AD.

* It was a part of the seismic design criteria of category A.
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2 in. X 6 in. joists at 24 in. on center (OC)

1 I
)’( 1

DS 20 ft. N 20 ft. 2

FIGURE P1.1  Floor framing plan.

Open

30 ft.

— 1 Joists

A 5k B o5p B
A A A

FIGURE P1.2  An open well framing plan.

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

In Figure 1.6, length L = 50ft. and width B = 30 ft. and the loading is 100 Ib/ft.2 Determine
the design loads on beams GH, EF, and AD.

An open well is framed so that beams CE and DE sit on beam AB, as shown in Figure P1.2.
Determine the design load for beam CE and girder AB. The combined unit of dead and live
loads is 80 Ib/ft.2

A roof is framed as shown in Figure P1.3. The load on the roof is 3 kN/m?2. Determine the
design load distribution on the ridge beam.

Determine the size of the square wood column C, from Problem 1.1 shown in Figure P1.1.
Use a resistance factor of 0.8, and assume no slenderness effect. The yield strength of wood
in compression is 4000 psi.

The service dead and live loads acting on a round tensile member of steel are 10 and 20 k,
respectively. The resistance factor is 0.9. Determine the diameter of the member. The yield
strength of steel is 36 ksi.

A steel beam spanning 30 ft. is subjected to a service dead load of 400 Ib/ft. and a service
live load of 1000 Ib/ft. What is the size of a rectangular beam if the depth is twice the
width? The resistance factor is 0.9. The yield strength of steel is 50 ksi.

Design the interior beam from Problem 1.1 in Figure P1.1. The resistance factor is 0.9. The
depth is three times the width. The yield strength of wood is 4000 psi.

For a steel beam section shown in Figure P1.4, determine the (1) elastic moment capacity,
(2) plastic moment capacity, and (3) shape factor. The yield strength is 50 ksi.

For the steel beam section shown in Figure P1.5, determine the (1) elastic moment capacity,
(2) plastic moment capacity, and (3) shape factor. The yield strength is 210 MPa.

[Hint: For elastic moment capacity, use the relation M, = ¢ I/c. For plastic capacity, find
the compression (or tensile) forces separately for web and flange of the section and apply
these at the centroid of the web and flange, respectively.]

19
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FIGURE P1.3 Roof frame.
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Iy
FIGURE P1.4 Rectangular beam section.
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AF
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x
25 mm |[¢—P 75 mm
x
25 mm
AL

FIGURE P1.5 An I-beam section.
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| Ridge beam

Rafters

1.12 For a circular wood section as shown in Figure P1.6, determine the (1) elastic moment
capacity, (2) plastic moment capacity, and (3) shape factor. The yield strength is 2000 psi.
1.13 For the asymmetric section shown in Figure P1.7, determine plastic moment capacity.
The plastic neutral axis (where C = T) is at 20 mm above the base. The yield strength is

275 MPa.

1.14 The design moment capacity of a rectangular beam section is 2000 ft..Ib. The material’s
strength is 10,000 psi. Design a section having a width—depth ratio of 0.6 according to the
(1) elastic theory and (2) plastic theory.
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FIGURE P1.6 A circular wood section.

20 mm T
100 mm
20 mm

\{ﬁ 200 mm H —T_

FIGURE P1.7 An asymmetric section.

1.15
1.16

1.17

1.18

1.19

1.20

1.21
1.22

For Problem 1.14, design a circular section.

The following vertical loads are applied on a structural member. Determine the critical
vertical load in pounds per square foot for all the ASCE 7-10 combinations.

1. Dead load (on a 15° inclined member): 10 psf

2. Roof live load: 20 psf

3. Wind load (vertical component): 15 psf

4. Snow load: 30 psf

5. Earthquake load (vertical only): 2 psf

A floor beam supports the following loads. Determine the load diagrams for the various
load combinations.

1. Dead load: 1.15 k/ft.

2. Live load: 1.85 k/ft.

3. Wind load (horizontal): 15 k

4. Earthquake load (horizontal): 20 k

5. Earthquake load (vertical): 0.3 k/ft.

A simply supported floor beam is subject to the loads shown in Figure P1.8. Determine the
loading diagrams for various load combinations.

A beam supports the loads, shown in Figure P1.9. Determine the load diagrams for various
load combinations.

In Problem 1.18, if load case 5 controls the design, determine the maximum axial force,
shear force, and bending moment for which the beam should be designed.

How does the structural integrity of a building is ensured?

A three-story building has a total weight of 1000 k. The heights of the first, second, and
third floors are 10, 9, and 8 ft., respectively. Determine the magnitudes of the minimum
notional lateral forces that have to be considered for the structural integrity of the building
assuming that the weight of the building is distributed according to the height of the floors.
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Transferred from roof

D; 8 kN
S; 20kN
Wind load 18 k l L,15L LD LZLIZIE// fftt
12 .
SEEEEEEEEEEEEEEE R EY;
e
Seismic load 25 k 10ft. A 75?7
DS 30 ft. =N
FIGURE P1.8 Loads on a beam for Problem 1.18.
D; 12kN
S, 30 kN D; 1.8 k/ft.
L; 3.15 k/ft.
| v ¥ v v YV VY YV VY VYVYVYVYVYVY, Seismic 37.5 kN
5m N Sy Wind 27 kN
A3 10 m N

FIGURE P1.9 Loads on a beam for Problem 1.19.

1.23 Two end walls in shorter dimension (width) support the floor slabs of the building in
Problem 1.22. Determine the notional forces on the anchorages at each floor level. The
wall load is 40 psf.

[Hint: The weight of the wall assigned to each floor is according to the effective height of
the wall for each floor.]

1.24 A girder of 40 ft. span is supported at two ends. It has a dead load of 1 k/ft. and a live load
of 2 k/ft. A positive connection is provided at each end between the girder and the sup-
ports. Determine the notional force for which the connection should be designed.



2 Primary Loads
Dead Loads and Live Loads

DEAD LOADS

Dead loads are due to the weight of all materials that constitute a structural member. This also
includes the weight of fixed equipment that are built into the structure, such as piping, ducts, air
conditioning, and heating equipment. The specific or unit weights of materials are available from
different sources. Dead loads are, however, expressed in terms of uniform loads on a unit area (e.g.,
pounds per square foot). The weights are converted to dead loads taking into account the tributary
area of a member. For example, a beam section weighting 4.5 Ib/ft. when spaced 16 in. (1.33 ft.) on
center will have a uniform dead load of 4.5/1.33 = 3.38 psf. If the same beam section is spaced 18 in.
(L.5 ft.) on center, the uniform dead load will be 4.5/1.5 = 3.5 psf. The spacing of a beam section
may not be known to begin with, as this might be an objective of the design.

Moreover, the estimation of dead load of a member requires knowledge as to what items and
materials constitute that member. For example, a wood roof comprises roof covering, sheathing,
framing, insulation, and ceiling.

It is expeditious to assume a reasonable dead load for a structural member, only to be revised
when found grossly out of order.

The dead load of a building of light frame construction is about 10 1b/ft.? for a flooring or roofing
system without plastered ceilings and 20 Ib/ft.> with plastered ceilings. For a concrete flooring sys-
tem, each 1 in. thick slab has a uniform load of about 12 psf; this is 36 psf for a 3 in. slab. To this, at
least 10 psf should be added for the supporting system. Dead loads are gravity forces that act verti-
cally downward. On a sloped roof, the dead load acts over the entire inclined length of the member.

Example 2.1

The framing of a roof consists of the following: asphalt shingles (2 psf), 0.75 in. plywood (2.5 psf),
2 x 8 framing at 12 in. on center (2.5 psf), fiberglass 0.5 in. insulation (1 psf), and plastered ceiling
(10 psf). Determine the roof dead load. Make provisions for reroofing (3 psf).

SOLUTION

Dead Load (psf)

Shingles 2
Plywood 2.5
Framing 2.5
Insulation 1
Ceiling 10
Reroofing 3
Roof dead load 21

23
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LIVE LOADS

Live loads also act vertically down like dead loads but are distinct from the latter as they are not
an integral part of the structural element. Roof live loads, L,, are associated with maintenance of a
roof by workers, equipment, and material. They are treated separately from the other types of live
loads, L, that are imposed by the use and occupancy of the structure. ASCE 7-10 specifies the mini-
mum uniformly distributed load or the concentrated load that should be used as a live load for an
intended purpose. Both the roof live load and the floor live load are subjected to a reduction when
they act on a large tributary area since it is less likely that the entire large area will be loaded to the
same magnitude of high unit load. This reduction is not allowed when an added measure of safety
is desired for important structures.

FLOOR LIVE LOADS

The floor live load is estimated by the equation
L=kL, 2.1

where
L, is basic design live load (see the section “Basic Design Live Load, L,”).
k is area reduction factor (see the section “Effective Area Reduction Factor”).

Basic DEesiGN Live Loap, L,

ASCE 7-10 provides a comprehensive table for basic design loads arranged by occupancy and use of
a structure. This has been consolidated under important categories in Table 2.1.

To generalize, the basic design live loads are as follows:

Above-the-ceiling storage areas: 20 psf; one- or two-family sleeping areas: 30 psf; normal use
rooms: 40 psf; special use rooms (office, operating, reading, and fixed sheet arena): 50—60 psf; pub-
lic assembly places: 100 psf; lobbies, corridors, platforms, and stadium®*: 100 psf for first floor and
80 psf for other floors; light industrial uses: 125 psf; and heavy industrial uses: 250 psf.

ErrecTivE AREA RepucTioN FACTOR

Members that have more than 400 ft.? of influence area are subject to a reduction in basic design
live loads. The influence area is defined as the tributary area, A;, multiplied by an element factor,
K, ,, as listed in Table 2.2.

The following cases are excluded from the live load reduction:

1. Heavy live loads that exceed 100 psf
2. Passenger car garages

3. Public assembly areas

Except the aforementioned three items, for all other cases the reduction factor is given by

k= (0.25+L] 2.2)
T

LL

* In addition to vertical loads, horizontal swaying forces are applied to each row of sheets as follows: 24 1b per linear foot
of seat in the direction parallel to each row of sheets and 10 Ib per linear foot of sheet in the direction perpendicular to
each row of sheets. Both the horizontal forces need not be applied simultaneously.
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TABLE 2.1
Summarized Basic Design Live Loads
Category Uniform Load (psf)
Residential

Storage area 20

Sleeping area (dwelling) 30

Living area, stairs (dwelling) 40

Hotel room 40
Garage 40
Office 50
Computer room/facility 100
School classroom 40
Hospital

Patient room 40

Operation room/lab 60
Library

Reading room 60

Stacking room 150
Industrial manufacturing/warehouse

Light 125

Heavy 250
Corridor/lobby

First floor 100

Above first floor 80
Public places® 100

2 Balcony, ballroom, fire escape, gymnasium, public stairs/exits,
restaurant, stadium, store, terrace, theater, yard, and so on.

TABLE 2.2
Live Load Element Factor, K,

Structure Element K,
Interior columns

Exterior columns without cantilever slabs
Edge columns with cantilever slabs
Corner columns with cantilever slabs
Edge beams without cantilever slabs
Interior beams

—_ NN W R A

All other members not identified including the
following:
Edge beams with cantilever slabs
Cantilever beams
One-way slabs
Two-way slabs

Note: Members without provisions for continuous shear transfer
normal to their span.
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FIGURE 2.1 Floor framing plan.

As long as the following limits are observed, Equation 2.2 can be applied to any area. However,
with the limits imposed the factor k becomes effective when K, ;A; is greater than 400, as stated
earlier:

1. The k factor should not be more than 1.

2. The k factor should not be less than 0.5 for members supporting one floor and 0.4 for
members supporting more than one floor.

Example 2.2

The first floor framing plan of a single family dwelling is shown in Figure 2.1. Determine the mag-
nitude of live load on the interior column C.

SOLUTION
1. From Table 2.1, L, = 40 psf
2. Tributary area A; = 20 x 17.5 = 350 ft.2
3. From Table 2.2, K, = 4
4. K,A; = 4 x 350 = 1400
5. From Equation 2.2

K= [0.25+ D ]
KLLAT

= (0.25+

15
=0.65
\/1400)

6. From Equation 2.1, L = kL, = 0.65 (40) = 26 psf

OTHER PROVISIONS FOR FLOOR LIVE LOADS

Besides uniformly distributed live loads, ASCE 7-10 also indicates the concentrated live loads in
certain cases that are assumed to be distributed over an area of 2.5 ft. X 2.5 ft. The maximum effect
of either the uniformly distributed load or the concentrated load has to be considered. In most cases,
the uniformly distributed loads have higher magnitudes.

In buildings where partitions are likely to be erected, a uniform partition live load is provided in
addition to the basic design loads. The minimum partition load is 15 psf. Partition live loads are not
subjected to reduction for large effective areas.
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Live loads include an allowance for an ordinary impact. However, where unusual vibrations and
impact forces are involved live loads should be increased. The moving loads shall be increased
by an impact factor as follows: (1) elevator, 100%; (2) light shaft or motor-driven machine, 20%;
(3) reciprocating machinery, 50%; and (4) hangers for floor or balcony, 33%. After including these
effects,

Total LL/unit area = unit LL. (1+IF)+PL {min 15 psf} 2.3)

where
LL is live load
IF is impact factor, in decimal point
PL is partition load

MuttipLe FLOORs REDUCTIONS

In one- and two-family dwellings, for members supporting more than one floor load the following
live load reduction is permitted as an alternative to Equations 2.1 and 2.2:

L=0.7 Ly + Loy + Loy +...) 2.4)

where L, L,, ... are the unreduced floor live loads applied on each of the multiple story levels
regardless of tributary area. The reduced floor live load, L, should not be less than the largest unre-
duced floor live load on any one story level acting alone.

Example 2.3

An interior column supports the following unit live loads from three floors on a surface area of
20 ft. x 30 ft. each: first floor = 35 psf, second floor = 30 psf, and third floor = 25 psf. Determine
the design unit live load on the column.

SOLUTION

. Total load = 35 + 30 + 25 = 90 psf

. Tributary area A; = 20 x 30 = 600 ft.2
. From Table 2.2, K,, = 4

. KA =4 x 600 = 2400 ft.2

. From Equation 2.2

Gl W N —

15
k=]0.25+ —= | =0.556
( \/2400)

6. From Equation 2.1
L = kL, = 0.556 (90) = 50 psf

7. From the alternative equation (Equation 2.4)
L=0.7 x (35 4 30 + 25) = 63 psf « controls

Live load should not be less than maximum on any floor of 35 psf.
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ROOF LIVE LOADS, L,

Roof live loads happen for a short time during the roofing or reroofing process. In load combina-
tions, either the roof live load, L,, or the snow load, S, is included, since both of these are not likely
to occur simultaneously.

The standard roof live load for ordinary flat, sloped, or curved roofs is 20 psf. This can be
reduced to a minimum value of 12 psf based on the tributary area being larger than 200 ft.> and/or
the roof slope being more than 18.4°. When less than 20 psf of roof live loads are applied to a con-
tinuous beam structure, the reduced roof live load is applied to adjacent spans or alternate spans,
whichever produces the greatest unfavorable effect.

The roof live load is estimated by

L. =RRL, (2.5)
where
L, is reduced roof live load on a horizontally projected surface
L, is basic design load for ordinary roof, which is 20 psf

R, is tributary area reduction factor (see the section “Tributary Area Reduction Factor, R,”)
R, is slope reduction factor (see the section “Slope Reduction Factor”)

TrRIBUTARY AREA REDUCTION FACTOR, R,

This is given by
R, =1.2-0.0014; (2.6)

where A; is the horizontal projection of roof tributary area in square feet.
This is subject to the following limitations:

1. R, should not exceed 1.
2. R, should not be less than 0.6.

Srtope RebpucTtioN FacToRr

This is given by
R,=12-0.6tan0 2.7)

where 0 is the roof slope angle.
This is subject to the following limitations:

1. R, should not exceed 1.
2. R, should not be less than 0.6.
Example 2.4

The horizontal projection of a roof framing plan of a building is similar to Figure 2.1. The roof pitch
is 7 on 12. Determine the roof live load acting on column C.
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SOLUTION
1. Ly = 20 psf
2. Ay =20 x 17.5 = 350 ft.?
3. From Equation 2.6, R; = 1.2 = 0.001 (350) = 0.85
4. Pitch of 7 on 12, tan 6 = 7/12 or 6 = 30.256°
5. From Equation 2.7, R, = 1.2 — 0.6 tan 30.256° = 0.85
6. From Equation 2.5, L, = (0.85) (0.85) (20) = 14.45 psf > 12 psf OK

The aforementioned computations are for an ordinary roof. Special purpose roofs such as roof
gardens have loads up to 100 psf. These are permitted to be reduced according to floor live load
reduction, as discussed in the “Floor Live Loads” section.

PROBLEMS

21

2.2

2.3

24

2.5

2.6
2.7

2.8

29

A floor framing consists of the following: hardwood floor (4 psf), 1 in. plywood (3 psf),
2 in. X 12 in. framing at 4 in. on center (2.6 psf), ceiling supports (0.5 psf), and gypsum
wallboard ceiling (5 psf). Determine the floor dead load.

In Problem 2.1, the floor covering is replaced by a 1 in. concrete slab and the framing by
2 in. X 12 in. at 3 in. on center. Determine the floor dead load.

[Hint: Weight in pounds of concrete/unit area = 1 ft. X 1 ft. X 1/12 ft. x 150.]

For the floor framing plan of Example 2.2, determine the design live load on the interior
beam BC.

An interior steel column of an office building supports a unit load, as indicated in Table 2.1,
from the floor above. The column to column distance among all columns in the floor plan
is 40 ft. Determine the design live load on the column.

The framing plan of a gymnasium is shown in Figure P2.1. Determine the live load on
column A.

Determine the live load on the slab resting on column A from Problem 2.5.

The column in Problem 2.4 supports the same live loads from two floors above. Determine
the design live load on the column.

A corner column with a cantilever slab supports the following live loads over an area of
25 ft. X 30 ft. Determine the design live load. First floor = 30 psf, second floor = 25 psf,
and third floor = 20 psf.

The column in Problem 2.8 additionally supports an elevator and hangers of a balcony.
Determine the design load.

N 50 ft. 50 ft.

5L

-
—

)
S
=

>
[oe)
:

)
S
=3

m
:

N
=
=3

an
/l;.

FIGURE P2.1 Framing plan for Problem 2.5.
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¥~ at pitch 6.3 to 10
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AS 20 ft. —%——20 ft.——f——20 ft.—}

FIGURE P2.2 Roofing plan for Problem 2.11.

Ridge beam

Wall

30 ft.

FIGURE P2.3 Side elevation of building for Problem 2.13.

2.10 The building in Problem 2.5 includes partitioning of the floor, and it is equipped with a
reciprocating machine that induces vibrations on the floor. Determine the design live load
on beam AB.

2.11 Determine the roof live load acting on the end column D of the roofing plan shown in
Figure P2.2.

2.12 Determine the roof live load on the purlins of Figure P2.2 if they are 4 ft. apart.

2.13 A roof framing section is shown in Figure P2.3. The length of the building is 40 ft.
The ridge beam has supports at two ends and at midlength. Determine the roof live load on
the ridge beam.

2.14 Determine the load on the walls due to the roof live load from Problem 2.13.

2.15 An interior column supports loads from a roof garden. The tributary area to the column is
250 ft.2 Determine the roof live load. Assume a basic roof garden load of 100 psf.



3 Snow Loads

INTRODUCTION

Snow is a controlling roof load in about half of all the states in the United States. It is a cause of
frequent and costly structural problems. Snow loads are assumed to act on the horizontal projection
of the roof surface.

Snow loads have the following components:

. Balanced snow load

. Rain-on-snow surcharge

. Partial loading of the balanced snow load

. Unbalanced snow load due to a drift on one roof

. Unbalanced load due to a drift from an upper roof to a lower roof
. Sliding snow load

NN WN —

For low-slope roofs, ASCE 7-10 prescribes a minimum load that acts by itself and not combined
with other snow loads.
The following snow loading combinations are considered:

1. Balanced snow load plus rain-on-snow when applicable, or the minimum snow load
2. Partial loading (of balanced snow load without rain-on-snow)

3. Unbalanced snow load (without rain-on-snow)

4. Balanced snow load (without rain-on-snow) plus drift snow load

5. Balanced snow load (without rain-on-snow) plus sliding snow load

MINIMUM SNOW LOAD FOR LOW-SLOPE ROOFS

The slope of a roof is defined as a low slope if mono, hip, and gable roofs have a slope of less than
15° and a curved roof has a vertical angle from eave to crown of less than 10°.
The minimum snow load for low-slope roofs should be obtained from the following equations:

1. When the ground snow load, Do is 20 Ib/ft.2 or less
Pw =1p, 3.1
2. When the ground snow load is more than 20 1b/ft.?

P =201 (3.2)

where
P, is 50-year ground snow load from Figure 3.1
I is importance factor (see the “Importance Factor” section)

As stated, the minimum snow load, p,,, is considered a separate uniform load case. It is not combined
with other loads—balanced, rain-on-snow, unbalanced, partial, drift, or sliding loads.

31



32

(200)
20
cs
cs (700)
- 20
(400)
15
(1500) (4000),
20 3300) 20
(1200) 20 13400)
(21000) 0 llS
(100)
5 {1000} (1:(510)
20 (2800 -5 4600)
cs cs
(800) 20 20,
15
(4100)
0 6000) 5
15,
(5000)
10,
(4370) (4300)
20
300
( 5 ) (4:90) 'G200) cs
5 20
(3200)
o (4600) (6500)
(500) 2 15
5
(300) (800)
ZERO 5 o0 |
(5400) (4600;
(1800) 20 15
10 (32;30)
1300, =
( 5 ) (5000) cs
(600) 1500) o
ZERO ZERQ, 000) (6000)
5 (1600) 35
(640(']) (6000)
35 (5000) b
o 15 (aggui
ERQ s (4500)
! (gooo)
(3000) 15
5 4500)
(1500) {10 cs
ZERO (
5
2000)
ER( (6300)
(2800) 15 (6800)
5 (3600) (5400) 15
1800) 5 (5400) 10 (6400)
ERO (2000) 10 (4500) 10
Ao ZERO (@500 5 (6000)
5 (3000) 5
. (3000) RO cs
™ R cs
h (2000}
(1000) ZERO
ZERO
16000)
(5000) '
10
- 0 (4000)
o 5
z (3500)
ZERO
(4000)
ZERO

In CS areas, site-specific case studies are required to
establish ground snow loads. Extreme local variations
in ground snow loads in these areas preclude mapping
at this scale.

Numbers in parentheses represent the upper elevation limits
in feet for the ground snow load values presented below.
Site-specific case studies are required to establish ground
snow loads at elevations not covered.

To convert Ib/sq ft. to KN/m?, multiply by 0.0479.
To convert feet to meters, multiply by 0.3048.

| t |
100 200 300 miles

L1y
0

FIGURE 3.1

(@)

Principles of Structural Design

600) 60
- !
(3000 35
25
40
(3600)
20, cs
(4800) (3700) 35 T
25 30 50
(4500)
20
10
25
35)
(5500)
cs
(66 (6000)
15 2545 30
(4500
25 B
cs L.
5000) =
0 20 R S
00)
0 -
15
(6500; 20
S 15
5000)
10
20
(4800)
5
20
(4400) !
(6000) 10
10 3200)
5000) 5
(3600)
10
(5000) 5
(3500)
R
(4500)
ZERO

Ground snow loads, Pes for the United States. The entire country is divided in two parts. (a) and

(b) distinguishes two parts. (Courtesy of American Society of Civil Engineers, Reston, VA.)



Snow Loads

70
50 ./;0100
50
60 70
1 T
40
! 35
30
25
T 1.0
1 T T
- b o |
LA o
120 L
: |
- 1 Ic’ :
T Y,
o I - S
i g
i+f ol
: l'lS =
F Vol
D
e

-

s
ST h
T 3 - L
s
E !
- “ZERCY £

CS

15

(b)

33
{(700)
100 (600)
80
(900)
(700) 49 s50 500)
(800) (1000) i
60 "';? Go0) 500)
CS Esicshoy) 60
- (1000) (500)
40 ~_50(900)
OV 50
1000) 3%
p IR
2% % 2
s C(Sgoo) (1700) 5
35 30,
(1700); 3 -
g CSINGY B9 3
25[(1200 >
L ( 2% ) 20
20, el
=2
A,
NN
2500) A
20 %
(2500) 20
9567
5 -
10,
5
0
ZERO,
-

FIGURE 3.1 (Continued) Ground snow loads, Py for the United States. (Courtesy of American Society of

Civil Engineers, Reston, VA.)



34 Principles of Structural Design

BALANCED SNOW LOAD

This is the basic snow load to which a structure is subjected. The procedure to determine the
balanced snow load is as follows:

1. Determine the ground snow load, p,, from the snow load map in ASCE 7-10, reproduced
in Figure 3.1.

2. Convert the ground snow load to flat roof snow load (roof slope <5°), P with consideration

given to the (1) roof exposure, (2) roof thermal condition, and (3) occupancy category of the
structure:

p; =0.7C,C,Ip, 3.3)

3. Apply a roof slope factor to the flat roof snow load to determine the sloped (balanced) roof
snow load.

4. Combining the preceding steps, the sloped roof snow load is calculated from
p,=0.7C,C,C,Ip, 3.4

where
P, is 50-year ground snow load from Figure 3.1
I is importance factor (see the “Importance Factor” section)
C, is thermal factor (see the “Thermal Factor, C,” section)
C, is exposure factor (see the “Exposure Factor, C,” section)
C, is roof slope factor (see the “Roof Slope Factor, C,” section)

It should be noted that when the slope is larger than 70°, the slope factor C, = 0, and the balanced
snow load is zero.

IMPORTANCE FACTOR

Depending on the risk category identified in the “Classification of Buildings” section of Chapter 1,
the importance factor is determined from Table 3.1

THermAL FacTOR, G

The factors are given in Table 3.2. The intent is to account for the heat loss through the roof and its
effect on snow accumulation. For modern, well-insulated, energy-efficient construction with eave
and ridge vents, the common C, value is 1.1.

TABLE 3.1

Importance Factor for Snow Load

Risk Category Importance Factor
I. Structures of low hazard to human life 0.8

II. Standard structures 1.0

III. High occupancy structures 1.1

IV. Essential structures 1.2

Source: Courtesy of American Society of Civil Engineers, Reston, VA.
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TABLE 3.2

Thermal Factor, C,

Thermal Condition C,

All structures except as indicated below 1.0

Structures kept just above freezing and other structures with 1.1
cold, ventilated well insulated roofs (R-value > 25 ft.2 hr’F/Btu)

Unheated and open air structures 1.2

Structures intentionally kept below freezing 1.3

Continuously heated greenhouses 0.85

TABLE 3.3

Exposure Factor for Snow Load

Terrain Fully Exposed Partially Exposed Sheltered
B. Urban, suburban, wooded, closely spaced dwellings 0.9 1.0 1.2

C. Open areas of scattered obstructions, flat open country 0.9 1.0 1.1

and grasslands
D. Flat unobstructed areas and water surfaces, smooth mud 0.8 0.9 1.0
and salt flats
Above the tree line in mountainous region 0.7 0.8 -
Alaska: treeless 0.7 0.8 -

Exposure Factor, C,

The factors, as given in Table 3.3, are a function of the surface roughness (terrain type) and the
location of the structure within the terrain (sheltered to fully exposed).

It should be noted that exposure A representing centers of large cities where over half the build-
ings are greater than 70 ft. is not recognized separately in ASCE 7-10. This type of terrain is
included in exposure B.

The sheltered areas correspond to the roofs that are surrounded on all sides by the obstructions
that are within a distance of 10A,, where 4, is the height of the obstruction above the roof level. Fully
exposed roofs have no obstruction within 104, on all sides including no large rooftop equipment or
tall parapet walls. The partially exposed roofs represent structures that are not sheltered or fully
exposed. The partial exposure is a most common exposure condition.

RooF Stope FACTOR, C,;

This factor decreases as the roof slope increases. Also, the factor is smaller for slippery roofs and
warm roof surfaces.

ASCE 7-10 provides the graphs of C, versus roof slope for three separate thermal factors, C,, that
is, C, of <1.0 (warm roofs), C, of 1.1 (cold well-insulated and ventilated roofs), and C, of 1.2 (cold
roofs). On the graph for each value of the thermal factor, two curves are shown. The dashed line
is for an unobstructed slippery surface and the solid line is for other surfaces. The dashed line of
unobstructed slippery surfaces has smaller C, values.

An unobstructed surface has been defined as a roof on which no object exists that will prevent
snow from sliding and there is a sufficient space available below the eaves where the sliding snow
can accumulate. The slippery surface includes metal, slate, glass, and membranes. For the warm
roof case (C, < 1), to qualify as an unobstructed slippery surface, there is a further requirement
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TABLE 3.4
Roof Slope Factor, C

S
Thermal Factor Unobstructed Slippery Surface Other Surfaces

R > 30 ft? hr’F/Btu for unventilated
and R > 20 ft2 hrF/Btu for ventilated

Warm roofs (C,<1)  0=0°-5°C,=1 0=0°-30°C,=1
e>:5°—7o<>cx:1—9_5 9:30°—70°cx:1—9_30
65° 40°
0>70°C,=0 0>70°C,=0
Coldroofs (C,=1.1) 0=0°-10°C,=1 0=0°-375°C,=1
e=1oo—70°cs=1—e_10 e=37.5°—70°c,=1—e_37‘5
60° 32.5°
0>70°C,=0 0>70°C,=0
Coldroofs (C,=1.2) 0=0°-15°C,=1 0=0°-45C,=1
_‘10 _40
9:15°—70°c&:1—e > e:45°-7o<>q=1—e >
55° 25°
0>70°C,=0 0>70°C,=0

Note: 0 is the slope of the roof.

with respect to the R (thermal resistance) value. The values of C, can be expressed mathematically,
as given in Table 3.4. It will be seen that for nonslippery surfaces like asphalt shingles, which is
a common case, the C, factor is relevant only for roofs having a slope larger than 30°; for slopes
larger than 70°, C, = 0.

RAIN-ON-SNOW SURCHARGE

An extra load of 5 1b/ft.2 has to be added due to rain-on-snow for locations where the following two
conditions apply: (1) the ground snow load, p,, is <20 Ib/ft.? and (2) the roof slope is less than W/50,
W being the horizontal eave-to-ridge roof distance. This extra load is applied only to the balanced
snow load case and should not be used in combination with minimum, unbalanced, partial, drift,
and sliding load cases.

Example 3.1

Determine the balanced load for an unheated building of ordinary construction shown in Figure 3.2
in a suburban area with tree obstruction within a distance of 10h,. The ground snow load is 20 psf.

SOLUTION
A. Parameters
1. pg =20 psf

2. Unheated roof, C, = 1.20

3. Ordinary building, / = 1.0

4. Suburban area (terrain B), sheltered, exposure factor, C, = 1.2
5

Roof angle, tan® = 31/—5 =0.0313;6=1.8°
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FIGURE 3.2

6.
7.
8.
9

B. Sno
1.

Example

37

S 125 ft. S 125 ft. o
3/8

Low-slope roof.

0 < 15° it is a low slope, the minimum load equation applies
Wi,

50 50

0 < 2.5° and p, = 20 psf, rain-on-snow surcharge = 5 Ib/ft.2
From Table 3.4, C;=1.0

w loads

Minimum snow load, from Equation 3.1

P,y = (1(20) = 20 Ib/ft.2

From Equation 3.4

ps =0.7C,C.Cilpg
=0.7(1)(1.2)(1.2)(1)(20) = 20.161b/ft.2

Add rain-on-snow surcharge

pp =20.16+5=25.16 Ib/ft.2 < controls

3.2

Determine the balanced snow load for an essential facility in Seattle, Washington, having a roof
eave to ridge width of 100 ft. and a height of 25 ft. It is a warm roof structure.

SOLUTION

A. Parameters

N TN =

8.

Seattle, Washington, p, = 20 psf

Warm roof, C, = 1.00

Essential facility, / = 1.2

Category B, urban area, partially exposed (default), exposure factor, C, = 1.00

Roof slope, tan8 = 25 =0.25;6=14°.
100

0 < 15° the minimum snow equation is applicable
0 is not less than W/50, there is no rain-on-snow surcharge
For a warm roof, other structures, from Table 3.4 C, =1

B. Snow loads

1.
2.

P = (1.2)(20) = 24 Ib/ft.2 « controls
ps =0.7C,C.Clp,
=0.7(1)(1)(1.2) =16.8 Ibs/ft.2

PARTIAL LOADING OF THE BALANCED SNOW LOAD

The partial 1

oads are different from the unbalanced loads. In unbalanced loads, snow is removed

from one portion and is deposited in another portion. In the case of partial loading, snow is removed
from one portion through scour or melting but is not added to another portion. The intent is that in
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a continuous span structure, a reduction in snow loading on one span might induce heavier stresses
in some other portion than those that occur with the entire structure being loaded. The provision
requires that a selected span or spans should be loaded with one-half of the balanced snow load
and the remaining spans with the full balanced snow load. This should be evaluated for various
alternatives to assess the greatest effect on the structural member.

Partial load is not applied to the members that span perpendicular to the ridgeline in gable roofs
having slopes 2.38° or more.

UNBALANCED ACROSS THE RIDGE SNOW LOAD

The balanced and unbalanced loads are analyzed separately.

The unbalanced loading condition results from when a blowing wind depletes snow from the
upwind direction to pile it up in the downward direction.

The unbalanced snow loading for hip and gable roofs is discussed here. For curved, saw tooth,
and dome roofs, a reference is made to Sections 7.6.2 through 7.6.4 of ASCE 7-10.

For unbalanced load to occur on any roof, it should be neither a very low-slope roof nor a steep
roof. Thus, the following two conditions should be satisfied for across the ridge unbalanced snow
loading:

1. The roof slope should be equal to or larger than 2.38°.
2. The roof slope should be less than 30.2°.

When the preceding two conditions are satisfied, the unbalanced load distribution is expressed
in two different ways:

1. For narrow roofs (W < 20 ft.) of simple structural systems like the prismatic wood rafters or
light gauge roof rafters spanning from eave to ridge, the windward side is taken as free of
snow, and on the leeward side the total snow load is represented by a uniform load from eave
to ridge as follows (note this is the total load and is not an addition to the balanced load):

P =1Ip, (3.5)

2. For wide roofs (W > 20 ft.) of any structures as well as the narrow roofs of other than the
simple structures stated in the preceding discussion, the load is triangular in shape but is
represented by a more user-friendly rectangular surcharge over the balanced load.

On the windward side, a uniform load of 0.3p, is applied, where p, is the balanced snow load
mentioned in the “Balanced Snow Load” section. On the leeward side, a rectangular load is placed
adjacent to the ridge, on top of the balanced load, p,, as follows:

Uniform load, p, = thZ (3.6)
Horizontal extent fromridge, L = @ (3.7)

where
1.
— is roof slope
s
y is unit weight of snow in Ib/ft.3, given by

y=0.13p, +14 <30 Ib/ft.2 3.8)



Snow Loads 39

h, is height of drift in feet on the leeward roof, given by
hy =043(W)"(p, +10)"* —1.5 (3.9)

W is horizontal distance from eave to ridge for the windward portion of the roof in feet
If W< 20 ft., use W =20 ft.

Example 3.3

Determine the unbalanced drift snow load for Example 3.1.

SOLUTION

1. Roof slope, 6 = 1.8°.
2. Since roof slope <2.38°, there is no unbalanced snow load.

Example 3.4

Determine the unbalanced drift snow load for Example 3.2.

SOLUTION

A. On leeward side
1. Roof slope, 6 = 14°, it is not a low-slope roof for unbalanced load.
2. W>20ft, itis a wide roof.
3. py =20 psfand p, = 16.8 Ib/ft.2 (from Example 3.2).
4

1 25
slope=—=—ors=4
s 100
5. hd=0.43(W)V3(pg+10)”—1.5

=0.43(100)"*(20+10)"* -1.5=3.16
6. Unit weight of snow
y=0.13p, +14 <30

=0.13(20)+ 14 =16.6 Ib/ft.3

h
7 pe= —jg
(3.16)(16.6)
= = 26.23 Ib/ft.2
J4
8hy\/s _ 8(3.16)4

=16.85 ft.

8. Horizontal extent, L= 3
B. On windward side

9. p,=0.3p,=0.3(16.8) = 5.04 psf.
10. This is sketched in Figure 3.3.

% 26.23 psf

5.04 psf Z 16.85 ft. % 16.8 psf
S 100 ft. N 100 ft. g

FIGURE 3.3 Unbalanced snow load on a roof.
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SNOW DRIFT FROM A HIGHER TO A LOWER ROOF

The snow drifts are formed in the wind shadow of a higher structure onto a lower structure. The
lower roof can be a part of the same structure or it could be an adjacent separated structure.

This drift is a surcharge that is superimposed on the balanced snow roof load of the lower roof.
The drift accumulation, when the higher roof is on the windward side, is shown in Figure 3.4. This
is known as the leeward snow drift.

When the higher roof is on the leeward side, the drift accumulation, known as the windward
snow drift, is more complex. It starts as a quadrilateral shape because of the wind vortex and ends
up in a triangular shape, as shown in Figure 3.5.

LEewARD SNow DRIFT ON LOWER ROOF OF ATTACHED STRUCTURE

In Figure 3.4, if h./h, is less than 0.2, the drift load is not applied, where 4, is the balanced snow
depth determined by dividing the balanced snow load, p,, by a unit load of snow, y, computed by
Equation 3.7. The term A, represents the difference of elevation between high and low roofs sub-
tracted by £, as shown in Figure 3.4.

The drift is represented by a triangle, as shown in Figure 3.6.

h, =0.43(L,)"(p, +10)"* —1.5 (3.10)

where L, is horizontal length of the roof upwind of the drift, as shown in Figure 3.4.
The corresponding maximum snow load is

Pa =Ty (3.1D
hC
L, v
Wind I I
d
@ 3_/ hb
f——w ——»|
FIGURE 3.4 Leeward snow drift.
hg
-
Wind /1 | A
=>
L; \'I\

FIGURE 3.5 Windward snow drift.
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FIGURE 3.6 Configuration of snow drift.

The width of the snow load (base of the triangle) has the following value for two different cases:

1. For h, < h,
w=4h, (3.12)

2. For h,> h,

w=—- (3.13)

but w should not be greater than 84,..

In Equation 3.13, w is computed by the value of 4, from Equation 3.9, which is higher than A, for
the case of Equation 3.13. However, since the drift height cannot exceed the upper roof level, the
height of the drift itself is subsequently changed as follows:

h;=h

c

(3.14)

If width, w, is more than the lower roof length, L,, then the drift shall be truncated at the end of
the roof and not reduced to zero there.

WINDWARD SNOW DRIFT ON LOWER ROOF OF ATTACHED STRUCTURE

In Figure 3.5, if h./h, is less than 0.2, the drift load is not applied. The drift is given by a triangle
similar to the one shown in Figure 3.6. However, the value of %, is replaced by the following:

hy = 0.75[0.43(L,)"3 (p, +10)/* —1.5] (3.15)

where L, is lower roof length as shown in Figure 3.5.

Equations 3.12 and 3.13 apply to windward width also.

The larger of the values of the leeward and windward heights, 4, from Leeward Snow Drift and
Windward Snow Drift sections is used in the design.
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LEewARD SNow DRIFT ON LOWER ROOF OF SEPARATED STRUCTURE

If the vertical separation distance between the edge of the higher roof including any parapet and the
edge of the adjacent lower roof excluding any parapet is 4, and the horizontal separation between
the edges of the two adjacent buildings is s, then the leeward drift to the lower roof is applicable if
the following two conditions are satisfied:

1. The horizontal distance, s, is less than 20 ft.
2. The horizontal distance, s, is less than six times the vertical distance, & (s < 6h).

In such a case, the height of the snow drift is the smaller of the following:

1. h, as calculated by Equation 3.10 based on the length of the higher structure
2. (6h—ys)

6
The horizontal extent, w, is the smaller of the following:

1. 6h,
2. (6h-s)

WINDWARD SNOwW DRIFT ON LOWER ROOF OF SEPARATED STRUCTURE

The same equations as for the windward drift on an attached structure, that is, Equation 3.15 for &,
and Equation 3.12 or 3.13 for w are used. However, the portion of the drift between the edges of the
two adjacent roofs is truncated.

Example 3.5

A two-story residential building has an attached garage, as shown in Figure 3.7. The residential
part is heated and has a well-insulated, ventilated roof, whereas the garage is unheated. Both roofs
of 4 on 12 slope have metal surfaces consisting of the purlins spanning eave to ridge.
The site is a forested area in a small clearing among huge trees. The ground snow load is 40 psf.
Determine the snow load on the lower roof.

N N|
L 60 ft. {

K 30 ft.——}

40 ft. Residence Garage 24 ft.

1

A
6.67 ft. Roof
4 ft. Roof
16 ft. f
8 ft.
L

FIGURE 3.7 Higher—lower roof drift.
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SOLUTION

1.

2.

The upper roof is subjected to the balanced snow load and the unbalanced across the ridge
load due to wind in the transverse direction.

The lower roof is subjected to the balanced snow load, the unbalanced across the ridge
load due to transverse directional wind, and the drift load from upper to lower roof due to
longitudinal direction wind. Only the lower roof is analyzed here.

. For the lower roof, the balanced load

Unheated roof, C, = 1.2

Residential facility, / = 1.0

Terrain B, sheltered, C, = 1.2

4 on 12 slope, = 18.43°

For slippery unobstructed surface at C, = 1.2, from Table 3.4

® 0o

C 21015, (1843215 o
55 55

f. p,=0.7C,C.Clp,
=0.7(0.94)(1.2)(1.2)(1)(40) = 37.90 Ib/ft.2

. For the lower roof, across the ridge unbalanced load

W =12 < 20 ft., roof rafter system, the simple case applies
Windward side no snow load
c. Leeward side

o

Py = Ip, = 140) = 40 psf

. For lower roof, upper—lower roof drift snow load

a. From Equation 3.8

¥=0.13p, +14=0.13(40) + 14 =19.2 |b/ft.?

b. h,=Pe=372
y 192
c. h.=(22.67-12)-197 =8.7 ft.

=1.97 ft.

h—c = 87 =4.4 > 0.2 drift load to be considered
h, 1.97

d. Leeward drift
From Equation 3.10

hy = 0.43(L,)" (p, +10)/* —1.5
=0.43(60)"3(40+10)V* —1.5=2.97

Since h. > hy, h, = 2.97 ft.
e. py=vhy=(19.2)(2.97) = 57.03 Ib/ft.
f.  From Equation 3.12

w=4h; =4(2.97)=11.88 ft.
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37.9 psf (Balanced snow load)

V. V. V.V XN A y y V.V VY Y
2 12 ft é 12 ft Y
1 . A . 1

40 psf (Across the ridge unbalanced snow load)

'y VVVVYVYY
K 12 ft. A+ 12 ft. é
Windward Leeward
57.03 psf < Upper to lower roof drift surcharge

AR Yy V. V N

37.9 psf (Balanced snow load)

y V V V.V V V N y VV.VYVvyyYy

V_N
f—11.88 ft.—

FIGURE 3.8 Loading on a lower roof.

g. Windward drift

hy = O.75[O.43(LL)’/3(pg +10)¥* —1.5]
=0.75[0.43(30)"3(40 + 10)V* —1.5]
=1.54ft. <2.97ft., leeward controls

6. Figure 3.8 presents the three loading cases for the lower roof.

SLIDING SNOW LOAD ON LOWER ROOF

A sliding snow load from an upper to a lower roof is superimposed on the balanced snow load. It
is not used in combination with partial, unbalanced, drift, or rain-on-snow loads. The sliding load
(plus the balanced load) and the lower roof drift load (plus the balanced load) are considered as two
separate cases and the higher one is used. One basic difference between a slide and a drift is that in
the former case, snow slides off the upper roof along the slope by the action of gravity and the lower
roof should be in front of the sloping surface to capture this load. In the latter case, wind carries
the snow downstream and thus the drift can take place lengthwise perpendicular to the roof slope,
as in Example 3.5.

The sliding snow load is applied to the lower roof when the upper slippery roof has a slope of
more than 6 = 2.4° (1/4 on 12) or when the nonslippery upper roof has a slope greater than 9.5°
(2 on 12).

With reference to Figure 3.9, the total sliding load per unit distance (length) of eave is taken as
0.4 W, which is uniformly distributed over a maximum lower roof width of 15 ft. If the width of
the lower roof is less than 15 ft., the sliding load is reduced proportionately. The effect is that it is
equivalent to distribution over a 15 ft. width.

Thus,

0.4p,W
15

Ps. = (3.16)
where

pyis flat upper roof snow load (psf) from Equation 3.1

W is horizontal distance from ridge to eave of the upper roof
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FIGURE 3.9

—15 ft. max-

Sliding snow load.

4 ft.

40 ft. 18 ft.

FIGURE 3.10 Sliding snow load on a flat roof.

Example

3.6

Determine the sliding snow load on an unheated flat roof garage attached to a residence, as
shown in Figure 3.10. It is in a suburban area with scattered trees. p, = 20 psf. Assume that the
upper roof flat snow load is 18 psf.

SOLUTION

A. Balanced load on garage

1.

kRN

B. 6 <

Unheated roof, C,= 1.2

Normal usage, / = 1

Terrain B, partial exposure, C, =1

Flat roof, C, =1

Minimum snow load

Since p, = 20 and 0 = 0, the minimum load applies but it is not combined with any
other types (balanced, unbalanced, drift, and sliding) of loads.

P = Ipg
=(1)(20)=20

Balanced snow load

ps =0.7C,C.C/lp,
=0.7(MM(1.2)(1)(20) = 16.8 Ib/ft.2

Rain-on-snow surcharge = 5 psf

Since p, = 20 and 0 < W/50, rain-on-snow surcharge applies, but it is not included in
the unbalanced, drift, and sliding load cases.

2.38°; there is no unbalanced across the ridge load.

C. Drift load not considered in this problem.
D. Sliding snow load
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_— 5 psf (Rain-on-snow surcharge)
VVVVVVVVVY

16.8 psf (Balanced snow load)
VVVVVVYVVYVYY

¥ 18 ft. X

(a)
F— 156t —+ 9.6 psf (Sliding snow load)
YV N y

4
Yy V.V N

VVYVVVYyYVYYVYN
¥ 18 ft. 4

(b)

l l16.8 psf (Balanced snow load)
v
%

FIGURE 3.11 Loading on lower roof. (a) Balanced snow load and (b) balanced plus sliding snow load.

1. Upper roof slope 6 = 14° > 9.5°, sliding applies
2. p;=18 Ib/ft.2 (given)

_ 0.4 p/W _ (0.4)(18)(20) — 9.6 psf

3.
Pse =75 15

Figure 3.11 presents the loading cases for the garage.

SLIDING SNOW LOAD ON SEPARATED STRUCTURES

The lower separated roof is subjected to a truncated sliding load if the following two conditions are
satisfied:

1. The separation distance between the structures, s, is less than 15 ft.
2. The vertical distance between the structures, 4, is greater than the horizontal distance, s

(h>s)

The sliding load per unit area, py,, is the same as given by Equation 3.16 but the horizontal extent
on the lower roof is (15 — s). Thus, the load per unit length is

B 0.4 pW(A5-5)

T (3.17)

L

PROBLEMS

3.1 Determine the balanced snow load on the residential structure shown in Figure P3.1 in a sub-
urban area. The roof is well insulated and ventilated. There are a few trees behind the building
to create obstruction. The ground snow load is 20 1b/ft.?

K 130 ft. ¥ 130 ft. v

1/2
12

FIGURE P3.1 Suburban residence for Problem 3.1.
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3.2 Solve Problem 3.1 except that the eave-to-ridge distance is 30 ft.

3.3 Consider a heated warm roof structure in an urban area surrounded by obstructions from all
sides. The eave-to-ridge distance is 25 ft. and the roof height is 7 ft. The ground snow load is
30 psf. Determine the balanced snow load.

3.4 The roof of a high occupancy structure is insulated and well ventilated in a fully open coun-
tryside. The eave-to-ridge distance is 20 ft. and the roof height is 4 ft. The ground snow load
is 25 psf. Determine the balanced snow load.

3.5 Determine the unbalanced load for Problem 3.1.

3.6 Determine the unbalanced load for Problem 3.2.

3.7 Determine the unbalanced snow load for Problem 3.3.

3.8 Determine the unbalanced snow load for Problem 3.4.

3.9 Determine snow load on the lower roof of a building where the ground snow load is 30 Ib/ft.2
The elevation difference between the roofs is 5 ft. The higher roof is 70 ft. wide and 100 ft.
long. It is a heated and unventilated office building. The lower roof is 60 ft. wide and 100 ft.
long. It is an unheated storage area. Both roofs have 5 on 12 slope of metallic surfaces without
any obstructions. The building is located in an open country with no obstructions. The build-
ing is laid out lengthwise, as shown in Figure P3.2.

3.10 Solve Problem 3.9 except that the roofs’ elevation difference is 3 ft.

3.11 Solve Problem 3.9 when the building is laid out side by side, as shown in Figure P3.3. The lowest
roof is flat.

3.12 Solve Problem 3.9. The two roofs are separated by a horizontal distance of 15 ft.

3.13 Solve Problem 3.11. The two roofs are separated by a horizontal distance of 10 ft.

3.14 Solve Problem 3.11 for the sliding snow load.

N K 100 ft. £ 100 ft. o
N ;T
= 5[
§ o ;_a o
wn wn
O T B ittt - 60 ft.
;T ;T

FIGURE P3.2 Different level roofs lengthwise for Problem 3.9.

2 100 ft. Y
A 00 ft 4
I
K
70 ft.{============—--m -
o
HE
Mk
wn
<

FIGURE P3.3 Different level roofs side by side for Problem 3.11.
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¥ 50 ft. A+ 50 ft. N

20 ft.

FIGURE P3.4 Sliding snow on urban building for Problem 3.15.

K 40 ft. &

N—12 ft—)

FIGURE P3.5 Sliding snow on suburban building for Problem 3.16.

3.15 Determine the snow load due to sliding effect for a heated storage area attached to an office
building with a well-ventilated/insulated roof in an urban area in Rhode Island having scat-
tered obstructions, as shown in Figure P3.4.

3.16 Determine the sliding load for an unheated garage attached to a cooled roof of a residence
shown in Figure P3.5 in a partially exposed suburban area. The ground snow load is 15 Ib/ft.?

3.17 Solve Problem 3.15. The two roofs are separated by a horizontal distance of 2 ft.

3.18 Solve Problem 3.16. The two roofs are separated by a horizontal distance of 3 ft.



4 Wind Loads

INTRODUCTION

ASCE 7-10 has made major revisions to wind load provisions; from one single chapter (Chapter 6)
in ASCE 7-05, six chapters (Chapters 26 through 31) have been incorporated in ASCE 7-10. The
provisions and the data have been revised to reflect the strength (load resistance factor design) level
of design.

Two separate categories have been identified for wind load provisions:

1. Main wind force—resisting system (MWFRS): MWFRS represents the entire structure
comprising an assemblage of the structural elements constituting the structure that can
sustain wind from more than one surface.

2. Components and cladding (C and C): These are the individual elements that face wind
directly and pass on the loads to the MWFRS.

The broad distinction is apparent. The entire lateral force—resisting system as a unit that transfers
loads to the foundation belongs to the first category. In the second category, the cladding comprises
wall and roof coverings like sheathing and finish material, curtain walls, exterior windows, and
doors. The components include fasteners, purlins, girts, and roof decking.

However, there are certain elements like trusses and studs that are part of the MWFRS but could
also be treated as individual components.

The C and C loads are higher than MWFRS loads since they are developed to represent the peak
gusts over small areas that result from localized funneling and turbulence of wind.

An interpretation has been made that while using MWFRS, the combined interactions of the
axial and bending stresses due to the vertical loading together with the lateral loading should be
used. But in the application of C and C, either the axial or the bending stress should be considered
individually. They are not combined together since the interaction of loads from multiple surfaces
is not intended to be used in C and C.

DEFINITION OF TERMS

1. Low-rise building: An enclosed or partially enclosed building that has a mean roof height
of less than or equal to 60 ft. and the mean roof height does not exceed the least horizontal
dimension.

2. Open, partially enclosed, and enclosed building: An open building has at least 80%
open area in each wall, that is, A /A, > 0.8, where A, is total area of openings in a wall and
A, is the total gross area of that wall.

A partially enclosed building complies with both of the two conditions: (1) the total
area of openings in a wall that receives the external positive pressure exceeds the sum of
the areas of openings in the balance of the building including roof by more than 10% and
(2) the total area of openings in a wall that receives the positive external pressure exceeds
4 ft.2 or 1% of the area of that wall, whichever is smaller, and the percentage of openings
in the balance of the building envelope does not exceed 20%.

An enclosed building is one that is not open and that is not partially enclosed.

3. Regular-shaped building: A building not having any unusual irregularity in spatial form.
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4. Diaphragm building: Roof, floor, or other membrane or bracing system in a building that
transfers lateral forces to the vertical MWFRS.

5. Hurricane-prone regions: Areas vulnerable to hurricanes comprising (1) the U.S. Atlantic
Ocean and Gulf of Mexico coasts where the basic wind speed is more than 115 miles/h and
(2) Hawaii, Puerto Rico, Guam, Virgin Island, and American Samoa, covered as special
wind regions in basic wind speed maps.

6. Special wind regions: Regions mentioned as item (2) under hurricane-prone regions.
These should be examined for higher local winds.

7. Mean roof height*: The average of the height to the highest point on roof and the eave
height, measured from ground surface. For a roof angle of 10° or less, it is taken to be the
eave height.

PROCEDURES FOR MWFRS
The following procedures have been stipulated for MWFRS in ASCE 7-10:

1. Wind tunnel procedure: This applies to all types of buildings and structures of all heights
as specified in Chapter 31.

2. Analytical directional procedure: This applies to regular-shaped buildings of all heights as
specified in Part 1 of Chapter 27.

3. Simplified directional procedure: This applies to regular-shaped enclosed simple dia-
phragm buildings of 160 ft. or less height as specified in Part 2 of Chapter 27.

4. Analytical envelope procedure: This applies to regular-shaped low-rise buildings of 60 ft.
or less height as specified in Part 1 of Chapter 28.

5. Simplified envelope procedure: This applies to enclosed simple diaphragm low-rise build-
ings of 60 ft. or less height as specified in Part 2 of Chapter 28. Since this procedure can be
applied to one- and two-story buildings in most locations, it has been adopted in this book.

SIMPLIFIED PROCEDURE FOR MWFRS FOR LOW-RISE BUILDINGS

The following are the steps of the procedure:

1. Determine the basic wind speed, V, corresponding to the risk category of the building from
one of the Figures 4.1 through 4.3.

2. Determine the upwind exposure category depending on the surface roughness that prevails

in the upwind direction of the structure, as indicated in Table 4.1.

. Determine the height and exposure adjustment coefficient A from Table 4.2.

4. The topographic factor, K, has to be applied to a structure that is located on an isolated
hill of at least 60 ft. height for exposure B and of at least 15 ft. height for exposures C
and D, and it should be unobstructed by any similar hill for at least a distance of 100 times
the height of the hill or 2 miles, whichever is less, and the hill should also protrude above
the height of upwind terrain features within 2 miles radius by a factor of 2 or more. The
factor is assessed by the three multipliers that are presented in Figure 26.8-1 of ASCE 7-10.
For usual cases, K_, = 1.

5. Determine p,;, from Table 4.3, reproduced from ASCE 7-10. For roof slopes more than
25° and less than or equal to 45°; check for both load cases 1 and 2 in the table.

[98]

* For seismic loads, the height is measured from the base of the structure.
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110(49) 140(63) ~170(76)
120(54)130 58
(58) Special wind region
Location Vmph (m/s)  140(63) 150(67)
Guam 180 (80) 5,5 160(72)
Virgin Islands 150 (67)
American Samoa 150 (67) Puerto Rico
115 (51)

Hawaii —
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FIGURE 4.1 Basic wind speed for risk category I buildings. (a) and (b) simply divides the country in two
halves. Notes: 1. Values are nominal design 3-second gust wind speeds in miles per hour (m/s) at 33 ft. (10 m)
above ground for exposure C category. 2. Linear interpolation between contours is permitted. 3. Islands and
coastal areas outside the last contour shall use the last wind speed contour of the coastal area. 4. Mountainous
terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind condi-
tions. 5. Wind speeds correspond to approximately a 15% probability of exceedance in 50 years (Annual
Exceedance Probability = 0.00333, MRI = 300 years). (Courtesy of American Society of Civil Engineers.)
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110(49) B “Wg

150(67)

FIGURE 4.1 (Continued) Basic wind speed for risk category I buildings. (a) and (b) simply divides the
country in two halves. Notes: 1. Values are nominal design 3-second gust wind speeds in miles per hour (m/s)
at 33 ft. (10 m) above ground for exposure C category. 2. Linear interpolation between contours is permitted.
3. Islands and coastal areas outside the last contour shall use the last wind speed contour of the coastal
area. 4. Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for
unusual wind conditions. 5. Wind speeds correspond to approximately a 15% probability of exceedance in
50 years (Annual Exceedance Probability = 0.00333, MRI = 300 years). (Courtesy of American Society of
Civil Engineers.)
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FIGURE 4.2 Basic wind speed for risk category II buildings. (a) and (b) simply divides the country in two
halves. Notes: 1. Values are nominal design 3-second gust wind speeds in miles per hour (m/s) at 33 ft. (10 m)
above ground for exposure C category. 2. Linear interpolation between contours is permitted. 3. Islands and
coastal areas outside the last contour shall use the last wind speed contour of the coastal area. 4. Mountainous
terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.
5. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (Annual Exceedance
Probability = 0.00143, MRI = 700 years). (Courtesy of American Society of Civil Engineers.)
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110(49)

150(67)

160(72)

(b)

FIGURE 4.2 (Continued) Basic wind speed for risk category II buildings. (a) and (b) simply divides the
country in two halves. Notes: 1. Values are nominal design 3-second gust wind speeds in miles per hour (m/s)
at 33 ft. (10 m) above ground for exposure C category. 2. Linear interpolation between contours is permitted.
3. Islands and coastal areas outside the last contour shall use the last wind speed contour of the coastal
area. 4. Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for
unusual wind conditions. 5. Wind speeds correspond to approximately a 7% probability of exceedance in
50 years (Annual Exceedance Probability = 0.00143, MRI = 700 years). (Courtesy of American Society of
Civil Engineers.)
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FIGURE 4.3 Basic wind speed for risk category III and IV buildings. (a) and (b) simply divides the coun-
try in two halves. Notes: 1. Values are nominal design 3-second gust wind speeds in miles per hour (m/s)
at 33 ft. (10 m) above ground for exposure C category. 2. Linear interpolation between contours is permitted.
3. Islands and coastal areas outside the last contour shall use the last wind speed contour of the coastal area.
4. Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual
wind conditions. 5. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years
(Annual Exceedance Probability = 0.000588, MRI = 1700 years). (Courtesy of American Society of Civil
Engineers.)
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FIGURE 4.3 (Continued) Basic wind speed for risk category III and IV buildings. (a) and (b) simply
divides the country in two halves. Notes: 1. Values are nominal design 3-second gust wind speeds in miles
per hour (m/s) at 33 ft. (10 m) above ground for exposure C category. 2. Linear interpolation between contours
is permitted. 3. Islands and coastal areas outside the last contour shall use the last wind speed contour of the
coastal area. 4. Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined
for unusual wind conditions. 5. Wind speeds correspond to approximately a 3% probability of exceedance in
50 years (Annual Exceedance Probability = 0.000588, MRI = 1700 years). (Courtesy of American Society of
Civil Engineers.)
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TABLE 4.1
Exposure Category for Wind Load
Surface Roughness Exposure Category
Urban and suburban areas, wooded areas, closely spaced dwellings B
Scattered obstructions—flat open country, grasslands C
Flat unobstructed areas, smooth mud and salt flats, water surfaces D
TABLE 4.2
Adjustment Factor for Height and Exposure
Exposure
Mean Roof Height (ft.) B C D
15 1.00 1.21 1.47
20 1.00 1.29 1.55
25 1.00 1.35 1.61
30 1.00 1.40 1.66
35 1.05 1.45 1.70
40 1.09 1.49 1.74
45 1.12 1.53 1.78
50 1.16 1.56 1.81
55 1.19 1.59 1.84
60 1.22 1.62 1.87

6. The combined windward and leeward net wind pressure, p,, is determined by the following
simplified equation:

Py = }\"KZIPXSO (41)

where
A is adjustment factor for structure height and exposure (Tables 4.1 and 4.2)
K, is topographic factor; for usual cases 1
D30 1 simplified standard design wind pressure (Table 4.3)

The pressure p, is the pressure that acts horizontally on the vertical and vertically on the horizon-
tal projection of the structure surface. It represents the net pressure that algebraically sums up the
external and internal pressures acting on a building surface. Furthermore in the case of MWFRS,
for the horizontal pressures that act on the building envelope, the p, combines the windward and
leeward pressures.

The plus and minus signs signify the pressures acting toward and away, respectively, from the
projected surface.

HorizoNTAL PressURE ZONES FOR MWERS

The horizontal pressures acting on the vertical plane are separated into the following four pressure
zones, as shown in Figure 4.4:

End zone of wall

End zone of (vertical projection) roof
Interior zone of wall

Interior zone of (vertical projection) roof

Sow>
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center
Case A: Transverse

Case B: Longitudinal

FIGURE 4.4 Horizontal pressure zones.

The dimension of the end zones A and B are taken equal to 2a, where the value of a is smaller
than the following two values:

1. 0.1 times the least horizontal dimension
2. 0.4 times the roof height, 1

The height, £, is the mean height of roof from the ground. For roof angle <10° it is the height to
the eave.

If the pressure in zone B or D is negative, treat it as zero in computing the total horizontal
force.

For Case B in Figure 4.4, wind acting in the longitudinal direction (wind acting on width),
use 0 = 0 and zones B and D do not exist.

VERTICAL PRESSURE ZONES FOR MWEFRS

The vertical pressures on the roof are likewise separated into the following four zones, as shown in
Figure 4.5.

End zone of (horizontal projection) windward roof
End zone of (horizontal projection) leeward roof
Interior zone of (horizontal projection) windward roof
Interior zone of (horizontal projection) leeward roof

Where the end zones E and G fall on a roof overhang, the pressure values under the columns Eqy
and Gy, in Table 4.3 are used for the windward side. For the leeward side, the basic values are used.

The dimension of the end zones E and F is taken to be the horizontal distance from edge to ridge
and equal to 2a in windward direction, as shown in Figure 4.5 for both Case A, transverse direc-
tion, and Case B, longitudinal direction. For the longitudinal wind direction, roof angle = 0 is used.

MiINIMUM PRressURE FOR MWFRS

The minimum wind load computed for MWEFRS is based on pressures of 16 psf for zones A and B
and pressures of 8 psf for zones B and D, while assuming the pressures for zones E, F, G, and H are
equal to zero.
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Both transverse and longitudinal

FIGURE 4.5 Vertical pressure zones.

Example 4.1

Principles of Structural Design

A two-story essential facility shown in Figure 4.6 is an enclosed wood-frame building located in
Seattle, Washington. Determine the design wind pressures for MWFRS in both principal directions
of the building and the forces acting on the transverse section of the building. The wall studs and

roof rafters are 16 in. on center. K,, = 1.0.

SOLUTION

I. Design parameters
1. Roof slope, 6 = 14°

2. By = 22+6'2ﬁ =25.13 ft.

3. End zone dimension, a, smaller than
o = 0.4 (25.13) = 10 ft.
b. 0.1 width = 0.1(50) = 5 ft. « controls

a. 04h

4. Length of end zone = 2a = 10 ft.

12
6251t | 3

7|L

11 ft.

7\4

11 ft.

I

N|

* 50 ft.

FIGURE 4.6 Two-story framed building.

—

XQQ fr.
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5. Basic wind speed, V =115 mph
6. Exposure category = B

7. A from Table 4.3 up to 30 ft. = 1.0
8. K, =1.00 (given)

9. ps = MKy po = (N(Npgo = Paso

IIl. Case A: For transverse wind direction
A.1 Horizontal wind pressure on wall and roof projection

Pressure (psf) (Table 4.3)

Zone Roof Angle = 10°  Roof Angle = 15° Interpolated for 14°  p, = pg, (psf)
A. End zone wall 23.7 26.3 25.78 2578
B. End zone roof -9.8 -8.7 -8.92 -8.92
C. Interior wall 15.7 17.5 17.14 17.14
D. Interior roof =57 =5.0 =5.14 =5.14

Note: These pressures are shown in the section view in Figure 4.7a.

A.2 Horizontal force at the roof level

Tributary
Location Zone Height (ft.) Width (ft.) Area (ft.2) Pressure (psf) Load (Ib)
End A 112 2a =10 110 25.78 2,836
B 6.25 10 62.5 -8.92 -0 0
Interior C 11 L-2a=90 990 17.14 16,969
D 6.25 90 562.5 -5.14 -0 0
Total 19,805

Note: Taking pressures in zones B and D to be zero.
@ It is also a practice to take 1/2 of the floor height for each level. In such a case, the wind force on the 1/2 of
the first floor height from the ground is not applied.

A.3 Horizontal force at the second floor level

Tributary
Location Zone Height (ft.) Width (ft.) Area (ft.2) Pressure (psf) Load (Ib)
End A 11 10 110 25.78 2,836
Interior C 11 90 990 17.14 16,969
Total 19,805

Total horizontal force is 39,610. The application of the forces is shown in Figure 4.7b.

B.1 Vertical wind pressure on the roof

Pressure (psf) (Table 4.3)

Zone Roof Angle = 10°  Roof Angle = 15° Interpolated to 14°  p, = pg, (psf)
E: End, windward =252 =252 =252 =252

F: End, leeward -154 -16.5 -16.28 -16.28

G: Interior, windward -17.5 -17.5 -17.5 -17.5

H: Interior, leeward -11.6 -12.6 -12.4 -12.4

Note: The pressures are shown in the sectional view in Figure 4.8a.
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Wind direction
—-8.92 psf —5.14 psf
> > 19805 Ibs_
; > Tributary
: : 19805 Ibs
> > Tributary
25.78 psf 17.14 psf
End zone Interior zone

(a) (b)

FIGURE 4.7 (a) Horizontal pressure distribution and (b) horizontal force:transverse wind.

—-17.5 psf
£ X552 _124psf

Interior 45675 lbs -31970 lbs
Wind direction
—25.2 pst |::>

A X & & 2-1625psf
£

End ‘ ‘

(@) (b)

FIGURE 4.8 (a) Vertical pressure distribution on roof and (b) vertical force on roof:transverse wind.

B.2 Vertical force on the roof

Tributary
Zone Length (ft.) Width (ft.)  Area (ft.2)  Pressure (psf)  Load (Ib)
Windward E: End 25 2a =10 250 -25.2 -6,300
G: Interior 25 L—-2a=90 2250 -17.5 -39,375
Total —45,675
Leeward F: End 25 10 250 -16.28 —4,070
H: Interior 25 90 2250 —-12.4 —27,900
Total -31,970

Note: The application of vertical forces is shown in Figure 4.8b.

C. Minimum force on MWERS by transverse wind
The minimum pressure is 16 psf acting on the vertical projection of wall and 8 psf on
vertical projection of roof. Thus,
Minimum wind force = [16(22) + 8(6.25)] x 100 = 40,200 Ib

D. Applicable wind force
The following two cases should be considered for maximum effect:
1. The combined A.2, A.3, and B.2
2. Minimum force C

[1l. Case B: For longitudinal wind direction

A.1 Horizontal wind pressures on wall
Zones B and D do not exist. Using 6 = 0, pressure on zone A = 21.0 psf and pressure
on zone C = 13.9 psf from Table 4.3.
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Horizontal force at the roof level
From Figure 4.9,

Tributary areaforendzone A = %(1 1+13.5)(10) = 122.5ft.2

1 1
Tributary areaforinterior zone C = 5( 5(1 7.25+11)(25)
=230.63+353.12 = 583.75ft.2

13.5+17.25)(15)+

Zone Tributary Area (ft.2) Pressure (psf) Load? (Ib)
A 122.5 21.0 2,573
C 583.75 13.9 8,114
Total 10,687

@ The centroids of area are different but the force is assumed to be acting at roof level.

Horizontal force at the second floor level

Tributary area for end zone A=11x10=110 ft.2

Tributary area for interior zone C =11x 40 = 440 ft.2

Zone Tributary Area (ft.2)  Pressure (psf) Load (Ib)
A 110 21.0 2310
C 440 13.9 6116
Total 8426

Note: The application of forces is shown in the sectional view in Figure 4.9.

B.1 Vertical wind pressure on the roof (longitudinal case)

FIGURE 4.9

Use0=0
Zone Poo (psF)  py =P
End E -25.2 -252
End F —14.3 —14.3
Interior G -17.5 -17.5
Interior H —11.1 —11.1

7 T
— 6.25
; *
A\ X
Q@;\ 17.25 13.5 ft 11 ft.
1
:
1 N
1
5% :
) 11 fr.
£ !
1
1
2a=1 ft.
k 25 ft. = 25 ft. N

Horizontal wind force on wall and roof projection:longitudinal wind.
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T 9875 T 64350
Eave height

|
10t ! 90 ft.

FIGURE 4.10 Force on roof:longitudinal wind.

B.2 Vertical force on the roof

Tributary

Zone Length (ft.) Width (ft.) Area (ft.2) Pressure (psf) Load (Ib)
End E 2a =10 B2 =25 250 -25.2 —6,300

F 2a =10 25 250 —-14.3 -3,575

Total -9,875
Interior G L —2a =90 25 2250 -17.5 —39,375

H 90 25 2250 —-11.1 —-24.975

Total —64,350

Note: The application of forces is shown in Figure 4.10.

PROCEDURES FOR COMPONENTS AND CLADDING

ASCE 7-10 stipulates that when the tributary area is greater than 700 ft.2, the C and C elements
can be designed using the provisions of MWFRS. Chapter 30 of ASCE 7-10 specifies procedures
for C and C; these are parallel to the procedures of MWFRS. Two analytical procedures—one for
high-rise buildings and one for low-rise buildings—use equations similar to the analytical proce-
dures of MWFRS. Two simplified procedures—one for regular-shaped enclosed buildings up to
160 ft. in height and one for regular-shaped enclosed low-rise buildings—determine wind pressures
directly from tables. ASCE 7-10 also covers the C and C for open buildings and appurtenances.

SIMPLIFIED PROCEDURE FOR COMPONENTS AND
CLADDING FOR LOW-RISE BUILDINGS

The C and C cover the individual structural elements that directly support a tributary area against the
wind force. The conditions and the steps of the procedure are essentially similar to the MWFRS. The
pressure, however, acts normal to each surface, that is, horizontal on the wall and perpendicular to
the roof. The following similar equation is used to determine the wind pressure. The adjustment fac-
tor, A, and the topographic factor, K_,, are determined from the similar considerations as for MWFRS:

Prnet = A'Kztpnet30 (42)

where
A is adjustment factor for structure height and exposure (Tables 4.1 and 4.2)
K, is topographic factor
Drerso 18 simplified standard design wind pressure (Table 4.4)

However, the pressures p,, 5, are different from p;,. Besides the basic wind speed, the pressures
are a function of the roof angle, the effective wind area supported by the element, and the zone of
the structure surface. p,,, represents the net pressures, which are the algebraic summation of the
internal and external pressures acting normal to the surface of the C and C.
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The effective area is the tributary area of an element but need not be lesser than the span length
multiplied by the width equal to one-third of the span length, that is, A = /3.

Table 4.4, reproduced from ASCE 7-10, lists p,,3, values for effective wind areas of 10, 20, 50,
and 100 ft.? for roof and additionally 500 ft.> for wall. A roof element having an effective area in
excess of 100 ft.2 should use pressures corresponding to an area of 100 ft.2 Similarly, a wall element
supporting an area in excess of 500 ft.> should use pressures corresponding to 500 ft.? A linear inter-
polation is permitted for intermediate areas. Table 4.5 lists p,,, values for roof overhang.

The following zones shown in Figure 4.11 have been identified for the C and C.

The dimension a is smaller than the following two values:

1. 0.4 times the mean height to roof, A
2. 0.1 times the smaller horizontal dimension

But, the value of a should not be less than the following:

mean

1. 0.04 times the smaller horizontal dimension

2. 3 ft.
TABLE 4.5
Roof Overhang Net Design Wind Pressure, p,.;, (psf)
Effective Basic Wind Speed V (mph)
Wind
Zone Area(sf) 110 115 130 140 150 160 180 200

Roof 0°-7° 2 10 —314  —343 438 508 583  —663 -840 —103.7
2 20 -30.8 —337 430  —499 573  —652  —825 —101.8
2 50 -30.1  -32.9 420 487 559  —63.6 —805 —99.4
2 100 295 323 —412 478 549  —624 -790 976
3 10 -51.6 =565 =721  —837 960 —1093 —1383 —170.7
3 20 —40.5  —443  -56.6 657 754  —858 —108.6 —134.0
3 50 259  -283 -36.1 419 481 547  —693 855
3 100 -148 —-161 =206  -239 274 =312  -395 4838

Roof >7°-27° 2 10 —40.6  —444  -567  —657 755  —859 —108.7 —1342
2 20 —40.6  —444 567  —657 755  —859 —108.7 —1342
2 50 —40.6  —444  -567  —657 755  —859 —108.7 —1342
2 100 —40.6  —444 =567  —657 -755  —859 —108.7 —134.2
3 10 —68.3  —746 —953 —110.6 —1269 —1444 —1828 2256
3 20 —61.6 —67.3 —860  —99.8 —1145 —1303 —1649 —203.6
3 50 -528 =577 =737  -855 981 —111.7 —1413 —1745
3 100 —46.1  -504 —644 747 858  -97.6 —1235 —1524

Roof >27°-45° 2 10 369 —403 -51.5  -598 686  -78.1  —988 —122.0
2 20 -35.8 -39.1 -50.0 —-58.0 —66.5 =757 -95.8 —1183
2 50 —343 375 479 =556 638  -726  —91.9 —113.4
2 100 -332  -363 —464 538 617 702  —-889 —109.8
3 10 369 —403 -51.5  -598 686  —78.1  —988 —1220
3 20 -358 =391 =500 -580 -665  -757  -958 -—1183
3 50 343 375 479 556 638 726 -919 -1134
3 100 -332  -363 —464 538 617 702 889 —109.8
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End zones Interior zones Corner zones
Wall 5 Wall
Roof 2 Roof 1 Roof 3

FIGURE 4.11 Zones for components and cladding: (a) elevation and (b) plan.

There are two values of the net pressure that act on each element: a positive pressure acting
inward (toward the surface) and a negative pressure acting outward (away from the surface). The two
pressures must be considered separately for each element.

MINIMUM PRrEsSURES FOR COMPONENTS AND CLADDING

The positive pressure, p,,,, should not be less than +16 psf and the negative pressure should not be
less than —16 psf.

Example 4.2

Determine design wind pressures and forces for the studs and rafters of Example 4.1.

SOLUTION
A. Parameters
1. 6=14°

2. a =5 ft. (from Example 4.1), which is more than (1) 0.04 (50) = 2 ft. and (2) 3 ft.
3. Pret = Preso (from Example 4.1)

B. Wind pressures on studs (wall) at each floor level
1. Effective area

A=L><W=11><%=14.7ft.2

A== U 40362
33

2. Net wall pressures for V = 115 mph

Pretso at Interpolated
Zone Effective Area 40.3 ft.2 (psf) P = Preso (PST)
End: 5 21.75 —27.80 2175  -27.80
Interior: 4 21.75 —23.75 21.75  =23.75
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C. Wind forces on studs
C.1 On end studs that have higher pressures
1. Positive W = p,, (tributary area*)

=2175(14.7) = 319.73 Ib (inward)

2. Negative W = p,, (tributary area)
=-27.80(14.7) =-408.66 b (outward)

These are shown in Figure 4.12.
D. Wind pressures on rafters (roof)

=25.76 ft.

40

1. Length of rafter =
cos

2. A= (25.76)(%) =34.35ft.2

2 2
50 AL =%= (25.76)

4. Net roof pressures at 6 between 7° and 27°

= 221ft.2, use 100ft.2

Zone Pret3o at 100 ft.l (PSf) Pret = Pnet3o (PSf)
Corner 3 9.7 —44.0 9.7* —44.0
End 2 9.7 -27.8 9.7% -27.8
Interior 1 9.7 —-19.8 9.7% -19.8

2 Use a minimum of 16 psf.

E. Wind forces on rafters
E.1 On end rafters
1. Positive W = p,, (tributary area) =16 (34.35)=549.6 Ib (inward)
2. Negative W = p, (tributary area) = -27.8(34.35) = -954.9 Ib (outward)
3. These are shown in Figure 4.13.

319.73 Ibs 408.66 lbs
11 ft. 11 ft.

FIGURE 4.12 Wind force on end studs.

549.6 lbs —-954.9 Ibs

FIGURE 4.13 Wind force on end rafters.

* Use the tributary area not the effective area.
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PROBLEMS

4.1 A circular-shaped office building is located in downtown Boston, Massachusetts. It has a
height of 160 ft. to which the lateral load is transferred to the MWFRS through the floor and
roof system. The front facing wall that receives the positive external pressure has an area
of 1600 ft.> of which 400 ft.? is an open area. The other three side walls have a wall area
of 1600 ft.? and openings of 100 ft.2 each. Whether it is an open, partial open, or enclosed
building? Which is the most appropriate MWFRS procedure to determine the wind loads?

4.2 A square 100-ft.-high office building transfers loads through floors and roof systems to the
walls and foundations. All wall sizes are 1000 ft.2 and there are openings of 200 ft.? each.
Whether it is a partial open or enclosed building? What is the most appropriate procedure
to determine the wind loads?

4.3 Consider a 100 ft. x 50 ft. five-story building where the first three stories are 9 ft. each and
the other two stories are 8 ft. each. It is located in a remote open countryside in Maine, New
England. The roof slope is 8°. Determine the exposure category and the height adjustment
factor.

4.4 Consider a four-story coastal building in Newport, Rhode Island, where the height of each
floor is 12.5 ft. The width of the building is 50 ft. and the roof slope is 14°. Determine the
exposure category and the adjustment factor for height.

4.5 Determine the horizontal wind pressures and forces on the wall and the vertical pressures
and forces acting on the roof due to wind acting in the transverse direction on an MWFRS
as shown in Figure P4.1. It is a standard occupancy single-story building located in an
urban area in Rhode Island where the basic wind speed is 140 mph. K, = 1.

4.6 In Problem 4.5, determine the horizontal pressures and forces and the vertical pressures
and forces in the longitudinal direction.

4.7 Anenclosed two-story heavily occupied building located in an open, flat terrain in Portland,
Oregon, is shown in Figure P4.2. Determine the wind pressures on the walls and roofs of
the MWEFRS in the transverse direction. Also determine the design wind forces in the
transverse direction. K, = 1.

K 100 ft. &

|
l H——50 ft.—F

FIGURE P4.1 A single-story building in an urban area for Problem 4.5.

9 ft.

40 ft. +

10 ft.
|
v V

a 80 ft. /||’ A 40 ft. Z

T “ti T

FIGURE P4.2 A two-story building in open terrain for Problem 4.7.
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K 200 ft. + _J

S

90 ft.

—
S
=

-

—
o
=

A

R |

N K 90 ft. A

Steel frames with steel desk
at 25 ft. in the center

FIGURE P4.3 A three-story industrial building for Problem 4.9.

4.8 In Problem 4.7, determine the wind pressures and forces on the walls and roof in the longi-
tudinal direction.

4.9 A three-story industrial steel building, shown in Figure P4.3, located in unobstructed ter-
rain in Honolulu, Hawaii, has a plan dimension of 200 ft. x 90 ft. The structure consists of
nine moment-resisting steel frames spanning 90 ft. at 25 ft. in the center. It is roofed with
steel deck, which is pitched at 1.25° on each side from the center. The building is 36 ft. high
with each floor having a height of 12 ft. Determine the MWFRS horizontal and vertical
pressures and the forces due to wind in the transverse direction of the building. K, = 1.

4.10 In Problem 4.9, determine the MWFRS horizontal and vertical pressures and the forces in
the longitudinal direction.

4.11 The building in Problem 4.5 has the wall studs and roof trusses spaced at 12 in. in the
center. Determine the elemental wind pressures and forces on the studs and roof trusses.

4.12 The building in Problem 4.7 has the wall studs and roof trusses spaced at 16 in. in the
center. Determine the elemental wind pressures and forces on the studs and roof trusses.

4.13 Determine the wind pressures and forces on the wall panel and roof decking from
Problem 4.9. Decking is supported on joists that are 5 ft. in the center, spanning across the
steel frames shown in Figure P4.3.






5 Earthquake Loads

SEISMIC FORCES

The earth’s outer crust is composed of very big, hard plates as large or larger than a continent.
These plates float on the molten rock beneath. When these plates encounter each other, appreciable
horizontal and vertical ground motion of the surface occurs known as the earthquake. For example,
in the western portion of the United States, an earthquake is caused by the two plates comprising
the North American continent and the Pacific basin. The ground motion induces a very large inertia
force known as the seismic force in a structure that often results in the destruction of the structure.
The seismic force acts vertically like dead and live loads and laterally like wind load. But unlike the
other forces that are proportional to the exposed area of the structure, the seismic force is propor-
tional to the mass of the structure and is distributed in proportion to the structural mass at various
levels.

In all other types of loads including the wind load, the structural response is static wherein the
structure is subjected to a pressure applied by the load. However, in a seismic load, there is no such
direct applied pressure.

If ground movement could take place slowly, the structure would ride it over smoothly, moving
along with it. But the quick movement of ground in an earthquake accelerates the mass of the struc-
ture. The product of the mass and acceleration is the internal force created within the structure.
Thus, the seismic force is a dynamic entity.

SEISMIC DESIGN PROCEDURES

Seismic analyses have been dealt with in detail in ASCE 7-10 in 13 chapters from Chapters 11
through 23. There are three approaches to evaluating seismic forces as follows:

1. Modal response spectrum analysis
2. Seismic response history procedure
3. Equivalent lateral force analysis

While the first two procedures are permitted to be applied to any type of structure, the third
approach is applicable to structures that have no or limited structural irregularities.

In modal response spectrum analysis, an analysis is conducted to determine the natural modes of
vibrations of the structure. For each mode, the force-related parameters are determined. The values
of these design parameters for various modes are then combined by one of the three methods to
determine the modal base shear.

The seismic response history procedure uses either a linear mathematical model of the structure
or a model that accounts for the nonlinear hysteretic behavior of the structural elements. The model
is analyzed to determine its response to the ground motion acceleration history compatible with the
design response spectrum of the site.

In equivalent lateral force analysis, the seismic forces are represented by a set of supposedly
equivalent static loads on a structure. It should be understood that no such simplified forces are
fully equivalent to the complicated seismic forces but it is considered that a reasonable design of a
structure can be produced by this approach. This approach has been covered in the book.

75
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DEFINITIONS

1. STRUCTURAL HEIGHT

Structural height, &, is the vertical distance from the base to the highest level of the seismic
force—resisting system of the structure. For sloped roofs, it is from the base to the average height of
the roof.*

2. STORIES ABOVE BASE AND GRADE PLANE

Some seismic provisions in ASCE 7-10 refer to the number of stories (floors) above the grade plane
whereas some other provisions are based on the number of stories above the base or including the
basement.

A grade plane is a horizontal reference datum that represents the average of the finished ground
level adjoining the structure at all exterior walls. If the finished ground surface is 6 ft. above the
base of the building on one side and is 4 ft. above the base on the other side, the grade plane is 5 ft.
above the base line.

Where the ground level slopes away from the exterior walls, the plane is established by the lowest
points between the structure and the property line or where the property line is more than 6 ft. from
the structure, between the structure and points 6 ft. from the structure.

A story above the grade plane is a story in which the floor surface or roof surface at the top of
the story and is more than 6 ft. above the grade plane or is more than 12 ft. above the lowest finished
ground level at any point on the perimeter of the structure, as shown in Figure 5.1.

Thus, a building with four stories above the grade plane and a basement below the grade plane is
a five-story building above the base.

Story above
grade plane  Story
c A
4 5
v
Y
3 4
v
.
2 3

Grade
plane

Lowest finished
/ ground level
Highest finished 4
ground level

Presumptive
seismic base

FIGURE 5.1 Story above grade plane and story above base.

* For wind loads, mean roof height, /4, is measured from the ground surface.
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3. FUNDAMENTAL PERIOD OF STRUCTURE

The basic dynamic property of a structure is its fundamental period of vibration. When a mass of
body (in this case a structure) is given a horizontal displacement (in this case due to earthquake), the
mass oscillates back and forth. This is termed the free vibration. The fundamental period is defined
as the time (in seconds) it takes to go through one cycle of free vibration. The magnitude depends
on the mass of the structure and its stiffness. It can be determined by theory. ASCE 7-10 provides
the following formula to approximate the fundamental time 7}

T,=Ch; G.1)

where
T, is approximate fundamental period in seconds
h,, is height of the highest level of the structure above the base in ft.
C, is building period coefficient as given in Table 5.1
x is exponential coefficient as given in Table 5.1

Example 5.1

Determine the approximate fundamental period for a five-story office building above the base, of
moment-resisting steel, each floor having a height of 12 ft.

SOLUTION

1. Height of building from ground = 5 x 12 = 60 ft.
2. T, =0.028(60)°% = 0.74 seconds

GROUND MOTION RESPONSE ACCELERATIONS

There are two terms applied to consider the most severe earthquake effects:

1. Maximum Considered Earthquake Geometric Mean (MCE,,)
Peak Ground Acceleration
The earthquake effects by this standard are determined for geometric mean peak
ground acceleration without adjustment for targeted risk. MCE, adjusted for site class
effects, is used for soil-related issues—liquefaction, lateral spreading, and settlement.
2. Risk-Targeted Maximum Considered Earthquake (MCE,)
Ground Motion Response Acceleration
Earthquake effects by this standard are determined for the orientation that results in
the largest maximum response to horizontal ground motions with adjustment for tar-
geted risk. MCE,, adjusted for site class effects, is used to evaluate seismic-induced
forces.

TABLE 5.1

Value of Parameters C, and x

Structure Type G, b
Moment-resisting frame of steel 0.028 0.8

Moment-resisting frame of concrete ~ 0.016 0.9
Braced steel frame 0.03 0.75
All other structures 0.02 0.75
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Mappep MCEj, SPECTRAL RESPONSE ACCELERATION PARAMETERS

At the onset, the risk-adjusted maximum considered earthquake (MCEp)* ground motion param-
eters for a place are read from the spectral maps of the United States. There are two types of mapped
accelerations: (1) short-period (0.2 seconds) spectral acceleration, S, which is used to study the
acceleration-controlled portion of the spectra and (2) 1-second spectral acceleration, S;, which is
used to study the velocity-controlled portion of the spectra. These acceleration parameters represent
5% damped ground motions at 2% probability of exceedance in 50 years. The maps for the conter-
minous United States, reproduced from Chapter 22 of ASCE 7-10, are given in Figures 5.2 and 5.3.
These maps and the maps for Alaska, Hawaii, Puerto Rico, and Virgin Islands are also available at
the USGS site at http://feathquake.usgs.gov/designmaps. The values given in Figures 5.2 and 5.3 are
percentages of the gravitational constant, g, that is, 200 means 2.0 g.

ADJUSTMENTS TO SPECTRAL RESPONSE ACCELERATION PARAMETERS FOR SITE CLASS EFFECTS

The mapped values of Figures 5.2 and 5.3 are for site soil category B. The site soil classification is
given in Table 5.2.

For a soil of classification other than soil type B, the spectral response accelerations are adjusted
as follows:

SMS =FuSs (52)

Sy =FE,S, (5.3)

where
Sus and S, are adjusted short-period and 1 spectral accelerations for soil categories of Table 5.2
F,and F are site coefficients for short and 1 s spectra.

The values of factors F, and F, reproduced from ASCE 7-10 are given in Tables 5.3 and 5.4.

The factors are 0.8 for soil class A, 1 for soil class B, and higher than 1 for soils C onward, up
to 3.5 for soil type E. Site class D should be used when the soil properties are not known in a suf-
ficient detail.

DESIGN SPECTRAL ACCELERATION PARAMETERS

These are the primary variables to prepare the design spectrum. The design spectral accelerations
are two-thirds of the adjusted acceleration as follows:

2

SDS = _SMS G4
3
2

Sp1 = §SM1 (5.5)

where S, and S, are short-period and 1 s design spectral accelerations.

DESIGN RESPONSE SPECTRUM

This is a graph that shows the design value of the spectral acceleration for a structure based on the
fundamental period. A generic graph is shown in Figure 5.4 from which a site-specific graph is cre-
ated based on the mapped values of accelerations and the site soil type.

* For practical purposes, it represents the maximum earthquake that can reasonably occur at the site.
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FIGURE 22-1 MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR
THE CONTERMINOUS UNITED STATES. OF 0.2 SEC SPECTRAL RESPONSE
ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B

REFERENCES

Building Seismic Safety Council 2004, NEHRP Recommended
Provisions for Seismic Regulations for New Buildings and
other Structures, Part | - Provisions, FEMA 450,

Building Seismic Safety Council 2004, NEHRP Recommended
Selected countours have been deleted for clarity. Provisions for Seismic Regulations for New Buildings and

Regional maps should be used when additional detail is other Structures, Part 2 - Commentary, FEMA 450.

required. Frankel, A., Petersen, M., Mueller, C., Haller, K., Wheeler, R.,
Leyendecker, Frankel, and Rukstales (2001, 2004) have Leyendecker, E., Wesson, R., Harmsen, S, Cramer, C.,

prepared a CD-ROM that contains software o allow Perkins, D., and Rukstales, K., 2002, Documentation for the

determination of Site Class B map values by 2002 Update of the National Seismic Hazard Maps, UsS.

latitude-longitude. The software on the CD contains site: Geological Survey Open-File Report 02-420.

coefficients that allow the user to adjust map values for

DISCUSSION

“The acceleration values contoured on this map are for
the random horizontal component of acceleration. For
design purposes, the reference site condition for the map
is to be taken as Site Class B.

Frankel, A, Petersen, M., Mueller, C., Haller, K., Wheeler, R., Index of detailed regional map(s) at larger scale(s)

different Site Classes. Additional maps at different

scales are also included on the CD. The CD was prepared
using the same data as that used to prepare the Maximum
Considered Earthquake Ground Motion maps.

“The National Seismic Hazard Mapping Project Web Site,

Leyendecker, E., Wesson, R, Harmsen, S., Cramer, C.,
Perkins, D., and Rukstales, K., 2004, Seismic-Hazard Maps
for the Conterminous United States. Sheet 4 - Horizontal

Spectral Response Acceleratiion for 0.2 Second Period with
2% Probability of Exceedance in 50 Years, US. Geological

hitp: eqhazmaps.usgs.gov/, contains electronic

versions of this map and others. Documentation, gridded
values, and Arc/INFO coverages used to make the maps
are also available.

‘The Califomia portion of the map was produced jointly
with the Califoria Geological Survey.

Map prepared by UsS. Geological Survey.

Survey Geologic Investigation Series, scale 1:7,000.000.
(in progress)

Leyendecker, E., Frankel, A., and Rukstales, K., 2001, Seismic
Design Parameters, U.S. Geological Survey Open-File
Report 01 -437.

Leyendecker, E., Frankel, A., and Rukstales, K., 2004, Seismic

sign Parameters, U.S. Geological Survey Open-File H
Report (in progress).

National Seismic Hazard Mapping Project Web Site,

hitp:eqhazmaps.usgs.gov, U. S. Geological Survey.

Um

- Region1 is shown enlarged in figure 22-3
- Region 2 is shown enlarged in figure 22-5
- Region 3 is shown enlarged in figure 227
- Region 4is shown enlarged in figure 22-9

(a)

FIGURE 5.2 S, risk-adjusted maximum considered earthquake (MCE,) ground motion parameter for
the conterminous United States for 0.2-second spectral response acceleration (5% of critical damping), site
class B. (a) and (b) are dividing of the country into two halves; (c) is enlarged portion of (a) and (b),
respectively.
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FIGURE 5.2 (Continued) S, risk-adjusted maximum considered earthquake (MCE,) ground motion
parameter for the conterminous United States for 0.2-second spectral response acceleration (5% of critical
damping), site class B.
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FIGURE 22-2 MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR
THE CONTERMINOUS UNITED STATES. OF 1.0 SEC SPECTRAL RESPONSE
ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B

N
AL
+ }
33 1
- N
A
1 Ll
+
5.0 5

DISCUSSION

“The acceleration values contoured on this map are for
the random horizontal component of acceleration. For
design purposes, the reference site condition for the map
is to be taken as Site Class B.

Selected countours have been deleted for clarity.
Regional maps should be used when additional detail is
required.

Leyendecker, Frankel, and Rukstales (2001, 2004) have
prepared a CD-ROM that contains software o allow
detemitionof it Clss B map vales by

D contains it

o e v adjust map values for
different Site Classes. Additional maps at different

scales are also included on the CD. The CD was prepared
using the same data as that used to prepare the Maximum
Considered Earthquake Ground Motion maps.

hitp:/eqhazmaps.usgs.gov/, contains electronic
vesons of tis mapand othrs. Documenaton, gidded
values, and Arc/INFO coverages used to make the maps
brreiviveien

‘The Califomia portion of the map was produced jointly
with the Califoria Geological Survey.

Map prepared by UsS. Geological Survey.

‘The National Seismic Hazard Mapping Project Web Site,

REFERENCES

BuidingSeimi Saety Council 2004 NEHRP Recommended
Brovision:for Seismic Reultions for New Buildings and
olherStructurs, Part | - Brovisions, FEMA 450

Building Seismic Safety Council 2004, NEHRP Recommended
Provisions for Seismic Regulations for New Bmldmg\ and
other Structures, Part 2 - Commentary, FE!

Frankel, A., Petersen, M., Mueller, C., Haller K, Wheeler R,
Leyendecker, E., Wesson, R., Harmsen, S., Cramer, C.,
Perins. . and Rulsals K 2002 Documenation for the
2002 Updste ofthe National Seismic Fiazard Ma, U
Geological Survey Open-File Report 02-420.

Frankel, A., Petersen, M., Mueller, C., Haller, K., Wheeler, R.,
l».yendeuker E, Wesson, R., Harm\en, S., Cramer, C.,
Perkins, D., and Rukstales, K., 2004, Seismic-Hazard Maps
for the Conterminous United States, Sheet 6 - Horizontal
Spectral Response Acceleratiion for 1.0 Second Period with
2% Probability of Exceedance in 50 Years, US. Geological
Survey Geologic Investigation Series, scale 1:7,000.000
(in progress).

Leyendecker, E., Frankel, A., and Rukstales, K., 2001, Seismic
Design Parameters, U.S. Geological Survey Open-File
RepunOl 437,

Leyendecker, E., Frankel, A., and Rukstales, K., 2004, Seismic
Design Parameters, UsS. Geological Survey Open-File
Report (in progress).

National Seismic Hazard Mapping Project Web Site,
hitp: feqhazmaps.usgs.gov, U. S. Geological Survey.

Index of detailed regional map(s) at larger scale(s)

Um

- Region1 is shown enlarged in figure 22-4
- Region 2 is shown enlarged in figure 22-6
- Region 3 is shown enlarged in figure 22-8
- Region 4is shown enlarged in figure 22-9

()

FIGURE 5.3 S|, risk-adjusted maximum considered earthquake (MCEy) ground motion parameter for the
conterminous United States for 1-second spectral response acceleration (5% of critical damping), site class
B. (a) and (b) are dividing of the country into two halves; (c) is enlarged portion of (a) and (b), respectively.
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FIGURE 5.3 (Continued) S, risk-adjusted maximum considered earthquake (MCE;) ground motion
parameter for the conterminous United States for 1-second spectral response acceleration (5% of critical
damping), site class B.
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TABLE 5.2

Soil Classification for Spectral Acceleration
Class Type

A Hard rock

B Rock

C Soft rock or very dense soil

D Stiff soil

E Soft soil

F Requires site-specific evaluation

TABLE 5.3
Site Coefficient, F,

MCE; at Short Period

Site Class S¢<0.25 Sg=0.5 S¢=0.75 S=1.0 S¢>1.25
A 0.8 0.8 0.8 0.8 0.8

B 1.0 1.0 1.0 1.0 1.0

C 1.2 1.2 1.1 1.0 1.0

D 1.6 1.4 1.2 1.1 1.0

E 2.5 1.7 1.2 0.9 0.9

F See Section 11.4.7 of ASCE 7-10

Note: Use straight-line interpolation for intermediate values of S.

TABLE 5.4
Site Coefficient, F,

MCE; at 1-Second Period

Site Class §, <01 $,=0.2 s, =03 S, =04 $,>0.5
A 0.8 0.8 0.8 0.8 0.8

B 1.0 1.0 1.0 1.0 1.0

C 1.7 1.6 1.5 14 1.3

D 2.4 2.0 1.8 1.6 1.5

E 3.5 32 2.8 24 24

F See Section 11.4.7 of ASCE 7-10

Note: Use straight-line interpolation for intermediate values of S,.

The controlling time steps at which the shape of the design response spectrum graph changes
are as follows:

1. Initial period

T, = 0.2h (5.6)
DS
2. Short-period transition for small structure
S
T = fad 228 5.7
SDS

3. Long-period transition for large structures

T, is shown in Figure 5.5, which is reproduced from ASCE 7-10.
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Spectral response acceleration, S, (g)

T, T, 1.0 T,
Period, T (seconds)

FIGURE 5.4 Design response spectrum. (Courtesy of American Society of Civil Engineers, Reston, VA.)
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FIGURE 5.5 Long-period transition period, 7,. (a) and (b) divide the country in two halves. (Courtesy of
American Society of Civil Engineers, Reston, VA.)
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FIGURE 5.5 (Continued) Long-period transition period, 7. (Courtesy of American Society of Civil

Engineers, Reston, VA.)

The characteristics of the design response spectrum are as follows:

1. For the fundamental period, 7, having a value between 0 and 7}, the design spectral accel-
eration, S, varies as a straight line from a value of 0.45,, and S, as shown in Figure 5.4.
2. For the fundamental period, 7, having a value between T, and T, the design spectral accel-

eration, S, is constant at .S,);.

3. For the fundamental period, 7,, having a value between 7, and 7,, the design spectral

acceleration, S, is given by

(5.8)
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where T is time period between 7, and 7.
4. For the fundamental period, 7, having a value larger than 7, the design spectral accelera-
tion is given by

— SDITL

Sa
T2

(5.9)

The complete design response spectrum* graph is shown in Figure 5.4.

Example 5.2

At a location in California, the mapped values of the MCE, accelerations S, and S, are 1.5 g and
0.75 g, respectively. The site soil class is D. Prepare the design spectral response curve for this
location.

SOLUTION

1.

LT

Adjustment factors for soil class D are as follows:
F,=1.0
F=15

- Sus =5,

=(1.0)(1.58)=15g
S =F5
=(1.5)0.75g)=1.13 g

2 2
: SD5:§5M525(1'5g):1g

Sy =§5M1 =§(1.13 g)=0.75g

. 0.2(0.75
025, _ 0 8 _ 0.15 seconds

’ Sps 1g

7
T, = 0758 _ 0.75 seconds
g
T, = 8 seconds (from Figure 5.5)

. The design spectral acceleration at time 0 is 0.4 (1 g) or 0.4 g. It linearly rises to 1 g at

time 0.15 seconds. It remains constant at 1 g up to time 0.75 seconds. From time 0.75 to
8 seconds, it drops at a rate 0.75 g/T. At 0.75 seconds, it is 0.75 g/0.75 = 1 g and progresses
to a value of 0.75 g/8 = 0.094 g at time 8 seconds. Thereafter, the rate of drop is S,,T,/T? or
6 g/T?. This is shown in Figure 5.6.

IMPORTANCE FACTOR, /

The importance factor, 7, for a seismic coefficient, which is based on the risk category of the struc-
ture, is indicated in Table 5.5. The risk category is discussed in the “Classification of Buildings”
section in Chapter 1.

SEISMIC DESIGN CATEGORIES

A structure is assigned a seismic design category (SDC) from A through F based on the risk cat-
egory of the structure and the design spectral response acceleration parameters, S, and Sj,, of the

* Where an MCE, response spectrum is required, multiply the design response spectrum, S, by 1.5.

s Dy



Earthquake Loads

e o o =
B o o o
\ \ \ ,

Spectral response acceleration, S, (g)

=}
\e}
|

89

> 1

02 04 06 08 1.0

Period, T (seconds)

FIGURE 5.6 Design spectral acceleration, Example 5.2.

TABLE 5.5

Importance Factor for Seismic Coefficient

Risk Category

Importance Factor

Tand I 1.0
1T 1.25
v 1.5
TABLE 5.6
SDC Based on S
Risk Category

I or Il (low risk and
Sps Range standard occupancy)
0to<0.167 ¢ A
0.167gto <033 g
033gt0<05¢g
>05¢g
When S, >0.75 g

m o 0w

11 (high occupancy) 1V (essential occupancy)
A A

moQw
'llvilviNe]

site. The seismic design categories are given in Tables 5.6 and 5.7. A structure is assigned to the
severest category determined from the two tables except for the following cases:

1. When S, is 0.75 g or more, a structure is assigned category E for I, II, and I1I risk categories
and assigned category F for risk category I'V.

2. When S, is less than 0.75 g and certain conditions of the small structure are met, as speci-
fied in 11.6 of ASCE 7-10, only Table 5.6 is applied.
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TABLE 5.7
SDC Based on S,

I or Il (Low Risk and
Range S, Standard Occupancy) 11l (High Occupancy) IV (Essential Occupancy)
0to <0.067 g A A A
0.067 gto < 0.133 g
0.133g10<020¢g
>0.2 g
When S, >0.75 g

el vilwlNe|

B
C
D
E

mo QW

EXEMPTIONS FROM SEISMIC DESIGNS

ASCE 7-10 exempts the following structures from the seismic design requirements:

1. The structures belonging to SDC A; these need to comply only to the requirements of the
“Continuous Load Path for Structural Integrity” section of Chapter 1.

2. The detached one- and two-family dwellings in SDC A, SDC B, and SDC C or where S, < 0.4.

3. The conventional wood frame one- and two-family dwellings up to two stories in any
seismic design category.

4. The agriculture storage structures used only for incidental human occupancy.

EQUIVALENT LATERAL FORCE PROCEDURE TO DETERMINE SEISMIC FORCE

The design base shear, V, due to seismic force is expressed as

V=CW (5.10)

where
Wis effective dead weight of structure, discussed in the “Effective Weight of Structure, W section
C, is seismic response coefficient, discussed in the “Seismic Response Coefficient, C,” section

ErrecTive WEIGHT OF STRUCTURE, W

Generally, this is taken as the dead load of the structure. However, where a structure carries a large
live load, a portion is included in W. For a storage warehouse, 25% of floor live load is included with
the dead load in W. Where the location of partitions (nonbearing walls) are subject to relocation, a
floor live load of 10 psf is added in W. When the flat roof snow load exceeds 30 psf, 20% of the snow
load is included in W.

SeismiC ResPONSE COEFFICIENT, C

The value of C, for different time periods of the design spectrum is shown in Figure 5.7. Besides
depending on the fundamental period and design spectral accelerations, C, is a function of the
importance factor and the response modification factor. The importance factor, 7, is given in
Table 5.5. The response modification factor, R, is discussed in the “Response Modification Factor
or Coefficient, R” section.

Maximum S, Value in Determining C,
For the regular structures five stories or less above the base and when the period 7 is <0.5,, C; is
calculated using a value of S, = 1.5 while computing S,; or S,,, in equation for C,.
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Coefflcient C,

Minimum C;= 0.044 Spg I or
0.01 whichever larger
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Where S; > 0.6g, Min. C;=

0585,

Ts=Sp1/Sps
Period, T (seconds)

FIGURE 5.7 Seismic response coefficient for base shear.

RespONSE MODIFICATION FACTOR OR COEFFICIENT, R

The response modification factor accounts for the following:

91

1. Ductility, which is the capacity to withstand stresses in the inelastic range
2. Overstrength, which is the difference between the design load and the failure load

3. Damping, which is the resistanc

e to vibration by the structure

4. Redundancy, which is an indicator that a component’s failure does not lead to failure of the

entire system

A large value of the response modification factor reduces the seismic response coefficient
and hence the design shear. The factor ranges from 1 to 8. Ductile structures have a higher value
and brittle ones have a lower value. Braced steel frames with moment-resisting connections
have the highest value and concrete and masonry shear walls have the smallest value. For
wood-frame construction, the common R-factor is 6.5 for wood and light metal shear walls and
5 for special reinforced concrete shear walls. An exhaustive list is provided in Table 12.2-1 of

ASCE 7-10.

Example 5.3

The five-story moment-resisting steel

building of Example 5.1 is located in California, where S, and

S, are 1.5 gand 0.75 g, respectively. The soil class is D. Determine (1) the SDC and (2) the seismic

response coefficient, C..

SOLUTION

1. From Example 5.1
T, = 0.74 seconds

2. From Example 5.2
Sps=1gand S,,=0.75g
T,=0.15seconds and 7, = 0.75

seconds
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3. To compute the SDC

a. Risk category Il

b. From Table 5.6, for S, > 0.75 g and category II, SDC is E
4. To compute the seismic coefficient

a. Importance factor from Table 5.5, / = 1

b. Response modification factor, R = 8

c. T, (of 0.74 seconds) < T, (of 0.75 seconds)

d. From Figure 5.7, for T, < T, C, = S,¢/(R/I)

_ g _
CS—(BJ—O.QSg
1

DISTRIBUTION OF SEISMIC FORCES

The seismic forces are distributed throughout the structure in reverse order. The shear force at the
base of the structure is computed from the base shear, Equation 5.10. Then story forces are assigned
at the roof and floor levels by distributing the base shear force over the height of the structure.

The primary lateral force—resisting system consists of horizontal and vertical elements. In con-
ventional buildings, the horizontal elements consist of roof and floors acting as horizontal dia-
phragms. The vertical elements consist of studs and end shear walls.

The seismic force distribution for vertical elements (e.g., walls), designated by F,, is different
from the force distribution for horizontal elements designed by F),, that are applied to design the
horizontal components. It should be understood that both F, and F),, are horizontal forces that are
differently distributed at each story level. The forces acting on horizontal elements at different lev-
els are not additive, whereas all of the story forces on vertical elements are considered to be acting
concurrently and are additive from top to bottom.

DistrIBUTION OF SEIsMIC FORCES ON VERTICAL WALL ELEMENTS

The distribution of horizontal seismic forces acting on the vertical element (wall) is shown in
Figure 5.8. The lateral seismic force induced at any level is determined from the following equations:

F=CV G.11)
and
W.hy
C,= W (5.12)
F, transferred

to walls
/ (vertical member)
FFAAARAF AR

2N I~

FIGURE 5.8 Distribution of horizontal seismic force to vertical elements.
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Substituting Equation 5.12 in Equation 5.11, we obtain

k
F = (Vh$W,

Al EALE 3 5.13
=S (5.13)

where
i is index for floor level, i = 1, first level and so on
F_ is horizontal seismic force on vertical elements at floor level x
C,, is vertical distribution factor
V is shear at the base of the structure from Equation 5.10
W, or W, is effective seismic weight of the structure at index level i or floor level x
h; or h, is height from base to index level i or floor x
k is an exponent related to the fundamental period of structure, 7,, as follows: (1) for 7, < 0.5s,
k=1land (2)for7,> 0.5s, k=2

The total shear force, V,, in any story is the sum of F, from the top story up the x story. The shear

force of an x story level, V,, is distributed among the various vertical elements in that story on the
basis of the relative stiffness of the elements.

DistriBUTION OF SEIsMIC FOrRCEs ON HORIZONTAL ELEMENTS (DIAPHRAGMS)

The horizontal seismic forces transferred to the horizontal components (diaphragms) are shown in
Figure 5.9. The floor and roof diaphragms are designed to resist the following minimum seismic
force at each level:

> FW,
F, === = (5.14)

2'— i
i=x

where

F,, is diaphragm design force

F,is lateral force applied to level i, which is the summation of F, from level x (being evaluated)
to the top level

W, is effective weight of diaphragm at level x. The weight of walls parallel to the direction of
F,. need not be included in W,

W, is effective weight at level i, which is the summation of weight from level x (being evaluated)
to the top

I

I

: 4 | Fu tfansferred
| to diaphragm
I

)')'Z')'{’)')')')'/"
pr /// i
JAAAASAAARA
o L

FIGURE 5.9 Distribution of horizontal seismic force to horizontal elements.
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The force determined by Equation 5.14 is subject to the following two conditions:
The force should not be more than

F,, (max) =048 ,,IW,, (5.15)
The force should not be less than

F,(min) = 0.28 5, IW,, (5.16)

DESIGN EARTHQUAKE LOAD

An earthquake causes horizontal accelerations as well as vertical accelerations. Accordingly, the
earthquake load has two components. In load combinations, it appears in the following two forms:

E=F, iona T Evenica  (in Equation 1.25) 5.17)
and
E=FE iona — Evenica  (in Equation 1.27) (5.18)
when
Eorizonia = POk (6.19)
and
E\erica = 0.28 psW (5.20)
where
Q is horizontal seismic forces F, or F, as determined in the “Distribution of Seismic Forces”

section
W is dead load W, as determined in the “Distribution of Seismic Forces” section
p is redundancy factor

The redundancy factor p is 1.00 for seismic design categories A, B, and C. It is 1.3 for SDC D,
SDCE, and SDCF, except for special conditions. The redundancy factor is always 1.0 for F,, forces.

E\ izonta 18 combined with horizontal forces and E. ., With vertical forces.

The seismic forces are at the load resistance factor design (strength) level and have a load factor
of 1. To be combined for the allowable stress design, these should be multiplied by a factor of 0.7.

Example 5.4

A two-story wood-frame essential facility as shown in Figure 5.10 is located in Seattle, Washington.
The structure is a bearing wall system with reinforced shear walls. The loads on the structures are
as follows. Determine the earthquake loads acting on the vertical elements of the structure.

Roof dead load (DL) = 20 psf (in horizontal plane)
Floor dead load (DL) = 15 psf

Partition live load (PL) = 15 psf

Exterior wall dead load (DL) = 60 psf
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50 ft, — / 100 ft.

FIGURE 5.10 A two-story wood-frame structure.

SOLUTION

A. Design parameters
1. Risk category = Essential, IV
2. Importance factor from Table 5.5 for IV category = 1.5
3. Mapped MCE, response accelerations
S;=1gand S, =04g
4. Site soil class (default) = D
5. Seismic force—resisting system
Bearing wall with reinforced shear walls
6. Response modification coefficient = 5
B. Seismic response parameters
1. Fundamental period (from Equation 5.1) T, = C;h*. From Table 5.1, C, = 0.02, x = 0.75.

T, =0.02(25.125)"”" = 0.224 seconds
2. From Table 5.3, F, = 1.1

Sus=FS, =1.1N0=11g
3. From Table 5.4, F,=1.6

Sy =FS =1.6(0.49)=0.64g

2 2
4, Sps= ESMS = 5(1 1g)=0.73g
2 2

Spi = §5M1 = 5(0.64 g)=0.43g

5. Based on risk category and S5, SDC = D.
Based on risk category and S, SDC = D.
6. T,=5,/5,=0.43 g/0.73 g = 0.59 seconds
Since T, < T, C, = Spy/(R/I) = 0.73 g/(5/1.5) = 0.22 g*
C. Effective seismic weight at each level
1. Watroof level
i. Area(roof DL) = (50 x 100)(20)/1000 = 100 k
ii. 2 Longitudinal walls = 2(wall area)(wall DL)

_ 2(1OO><11)(6O):132k
1000

iii. 2 End walls = 2(wall area)(DL)
_ 2(50 x 11)(60) —66 k
1000
Total = 298 k

95

* This is for the mass of the structure. For weight, the value is 0.22.
T It is also a practice to assign at the roof level one-half the second floor wall height.
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TABLE 5.8
Seismic Force Distribution on Vertical Members

Level, x W,k h,ft. Wh,k* Vh or136.6h, kft> F, ke V, (Shear at Story), kd

€] (@) 3 “ ® 6) (@)
Roof 298 22 6,556 3005.2 88.60 88.60
Second 323 11 3,553 1502.6 48.00 136.60
i 621 10,109

2 Column 2 X column 3.

b 136.6 X column 3.

¢ Column 2 X column 5/summation of column 4.
4" Cumulate column 6.

TABLE 5.9
Earthquake Loads on Vertical Elements
Level, x w,, k F,, k Eqorizontat = PFr k Eyertica = 0.25p5W,, k

Roof 298 88.6 115.2 435
Second 323 48.0 62.4 472

2. W atsecond floor*
i. Area(floor DL + partition load®) = (50 x 100)(15 + 10)/1000 = 125 k
ii. 2 Longitudinal walls = 132 k
iii. 2 End walls = 66 k
Total =323 k
Total effective building weight W = 621 k
D. Base shear
V=C,W=0.22(621)=136.6k
E. Lateral seismic force distribution on the vertical shear walls
1. From Equation 5.13, since T, < 0.5 s, k=1

(Vh W,

T Ywh

2. The computations are arranged in Table 5.8.
F. Earthquake loads for the vertical members
1. The redundancy factor p for SDC D is 1.3.
2. The horizontal and vertical components of the earthquake loads for vertical members
(walls) are given in Table 5.9.
3. The earthquake forces are shown in Figure 5.11.

* Itis also a practice to assign at the second floor level, the wall load from one-half of the second floor wall and one-half of
the first floor wall. This leaves the weight of one-half of the first floor wall not included in the effective weight.

7 ASCE 7-10 prescribes 15 psf for partition live load but it recommends that for seismic load computation the partition load
should be taken as 10 psf.
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Ehorizontal =115.2k _ 4

Ehorizontal =624k 1

LEvertical =43.5k

»
»

LEvertical =472k

FIGURE 5.11

Earthquake loads on vertical elements, Example 5.4.
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TABLE 5.10
Seismic Force Distribution on Horizontal Members

F, from
Level, x W,k W,k Table58 k =F Kk IW,ke
M () (3) (4) (5) (6)
Roof 298 232 88.60 88.60 298
Second 323 257 48.00 136.60 621

W, —parallel exterior walls weight = 298 — 66 = 232 k.

b Summation of column 4.

¢ Summation of column 2.

4" Column 3 X column 5/column 6.

¢ 0.48,5W, = 0.4(0.73)(1.5)(232) = 101.62 k.

f Since 56.5 k is less than 112.57 k and more than 56.3 k, it is OK.

Max.e Min.
Fo k' 0.4S5IW,, k 0.2S5IW,,, k
(7) (8) )
69.00 101.62 50.8
56.5° 112.57 56.3

Example 5.5

For Example 5.4, determine the earthquake loads acting on the horizontal members (diaphragms).

SOLUTION

A. Lateral seismic force distribution on the horizontal members

1. From Equation 5.14

(X5 )W

2. The computations are arranged in Table 5.10.
B. Earthquake loads for vertical members
1. The redundancy factor p for F,, is always 1.0.

2. The horizontal and vertical components of the earthquake loads for horizontal members

(diaphragms) are given in Table 5.11.

3. The earthquake forces on the horizontal members are shown in Figure 5.12.
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TABLE 5.11
Earthquake Loads on Horizontal Elements

Level, X W, k F,. k Ehorizonlal =F,, k Everlical = 0‘ZSDSW k

pxr

pxr pxr pxr
Roof 232 69.0 69.0 33.81
Second 257 56.5 56.5 37.52

4
¥33.81k
Ehorizontal =69k

437.52k

/ y
Ehorizontal =56.5k

FIGURE 5.12 Loads on horizontal elements, Example 5.4.

SOIL-STRUCTURE INTERACTION

The above combination of forces did not consider the interaction between the structure foundation
and the soil, which tends to reduce the base shear force and its distribution thereof. This has been

discussed in Chapter 19 of ASCE 7-10.
If this option is exercised, the effective shear is determined as

V=vV-V

The shear reduction, AV, which should not exceed 0.3V, is computed as follows:

0.4
V={CS -C, [%] } W <03V

where
V is base shear from Equation 5.10
C, is seismic response coefficient, Figure 5.7

(5.21)

(5.22)

C. is seismic response coefficient from Figure 5.7 using the effective period T for a flexibly

supported structure.

f is the fraction of critical damping for the structural foundation system. The building codes

assume a minimum value of 0.05 and a maximum value of 0.2.

W is adjusted seismic weight of structure, which is taken as 0.7 times the weight of the struc-

ture except for a single level, when it is taken as the weight of structure.

T is effective period computed by a relation in ASCE 7-10 as a function of various stiffness

parameters related to the foundation. It is higher than the fundamental period 7.

Example 5.6

For Example 5.4, determine the base shear force accounting for the soil-structure interaction. The

effective period is computed to be 0.3 seconds and the fraction of critical damping is 0.1.
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SOLUTION

1. From Example 5.4
Sps=0.73
T, = 0.59 seconds
/=15
R=5
C.=022
W =621k
V' =136.6 k

2. SinceT of 0.3sis < T, C, = Sos _ 073 _ 59

_ ¥ s
3. W=0.7(621) = 434.7 k
4. C,(0.05/0.1)%4 = 0.22 (0.5)°4 = 0.167
5. From Equation 5.22, AV = (0.22 — 0.167)434.7 = 23.5 k « controls
or AV=0.33 V=0.3(136.6) = 41 k
6. From Equation 5.21, V = 136.6 — 23.5 = 113.1 k

PROBLEMS

51

5.2

5.3

54

5.5

5.6

5.7

Determine the approximate fundamental period for a five-story concrete office building
with each floor having a height of 12 ft.

Determine the approximate fundamental period for a three-story wood-framed structure
having a total height of 25 ft.

At alocation in California, the mapped values of MCE accelerations S, and S, are 1.4 g and
0.7 g, respectively. The site soil class is C. The long-period transition period is 8 seconds.
Prepare the design response acceleration curve for this location.

In Salt Lake City, Utah, the mapped values of S, and S are 1.8 g and 0.75 g, respectively.
The site soil class is B. The long-period transition period is 6 seconds. Prepare the design
response acceleration curve.

For the five-story concrete office building from Problem 5.1 located in California with each
floor having a height of 12 ft. where S, and S, are 1.4 g and 0.7 g, respectively, and the site soil
class is C, determine (1) the SDC and (2) the seismic response coefficient. Assume R = 2.0.

For the three-story wood-framed commercial building from Problem 5.2 located in
California of total height 25 ft., where S, and S, are 1.8 g and 0.75 g, respectively, and the soil
group is B, determine (1) the SDC and (2) the seismic response coefficient. Assume R = 6.5.
A two-story office building, as shown in Figure P5.1, is located in Oregon where S, = 1.05 g
and S| = 0.35 g. The building has a plywood floor system and plywood sheathed shear walls
(R = 6.5). The soil in the foundation is very dense. The loads on the building are as follows:

Roof dead load (on the horizontal plane) = 20 psf
Floor dead load = 15 psf

Partition load = 15 psf

Exterior wall dead load = 50 psf

7'4

.

7 1
o

7|4 40’
10’

Jﬂfmrﬁr * 80 Y

FIGURE P5.1 An office building in Oregon for Problem 5.7.

99
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Determine the lateral and vertical earthquake loads that will act on the vertical elements
of the building.

5.8 For the building from Problem 5.7, determine the eathquake loads that will act on the hori-
zontal elements of the building.

5.9 Problem 5.5 has three stories—the first two stories are 8 ft. each and the top story is 9 ft.
with a flat roof. It has a plan dimension of 120 X 60 ft. The roof and floor dead loads are
20 psf and the wall dead load is 60 psf. Determine the earthquake loads acting on the verti-
cal members of the building.

5.10 For the building from Problem 5.9, determine the earthquake loads acting on the horizontal
elements of the building.

5.11 A three-story industrial steel building (Figure P5.2) located where S, and S, are 0.61 g and
0.18 g, respectively, has a plan dimension of 200 x 90 ft. The structure consists of nine
gable moment-resisting steel frames spanning 90 ft. at 25 ft. in the center; R = 4.5. The
building is enclosed by insulated wall panels and is roofed with steel decking. The building
is 36 ft. high and each floor height is 12 ft. The building is supported on spread roofing on
medium dense sand (soil class D).

The steel roof deck is supported by joists at 5 ft. in the center, between the main gable
frames. The flooring consists of the concrete slab over steel decking, supported by floor
beams at 10 ft. in the center. The floor beams rest on girders that are attached to the gable
frames at each end.

The following loads have been determined in the building:

Roof dead load (horizontal plane) = 15 psf
Third floor storage live load = 120 psf
Slab and deck load on each floor = 40 psf

Roof

steel joists@5’ OC Steel frames
@25'0C

/ % Steel decking
NI 200’ J wl/joists@5’ OC

> / / N
|\ ili,
90’ ili/
/‘ / 1
, *
7 /\:I K 90’ BN
Floor beam Insulated /
@10'0C Girders wall panels Flooring system
/\ % as shown

T FF

111

T
I

Concrete flooring

FIGURE P5.2 An industrial steel building for Problem 5.11.
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5.14

5.15

Weight of each framing = 10 k
Weight of non-shear-resisting wall panels = 10 psf
Include 25% of the storage live load for seismic force. Since the wall panels are non-shear-
resisting, these are not to be subtracted for F,,.

Determine the lateral and vertical earthquake loads acting on the vertical elements of
the building.
For the building from Problem 5.11, determine the lateral and vertical earthquake loads
acting on the horizontal elements of the building.
For Problem 5.7, determine the base shear force accounting for the soil—structure interaction.
The effective period is computed to be 0.4 seconds. The damping factor is 0.1.
For Problem 5.9, determine the base shear force accounting for the soil—structure interaction.
The effective period is computed to be 0.5 seconds. The damping factor is 0.1.
For Problem 5.11, determine the base shear force accounting for the soil-structure
interaction. The effective period is computed to be 0.8 seconds. The damping factor is 0.05.
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6 Wood Specifications

ENGINEERING PROPERTIES OF SAWN LUMBER

The National Design Specification for Wood Construction of the American Forest and Paper
Association (2012 edition) provides the basic standards and specifications for sawn lumber and
engineered wood (e.g., glued laminated timber [GLULAM]) in the United States. The second part
of the National Design Specification (NDS), referred to as the NDS supplement, contains numeri-
cal values for the strength of different varieties of wood grouped according to the species of trees.
Pieces of wood sawn from the same species or even the same source show a great variation in engi-
neering properties. Accordingly, the lumber is graded to establish strength values. Pieces of lumber
having similar mechanical properties are placed in the same class known as the grade of wood.
Most lumber is visually graded. However, a small percentage is mechanically graded. In each grade,
the relative size of wood section and the suitability of that size for a structural application are used
as additional guides to establish the strength.

A lumber is referred to by its nominal size. However, the lumber used in construction is mostly
dressed lumber. In other words, the lumber is surfaced to a net size, which is taken to be 0.5 in. less
than the nominal size for sizes up to 6 in., 0.75 in. less for nominal sizes over 6 in. and below 16 in.,
and 1 in. less for sizes 16 in. and above. In the case of large sections, sometimes the lumber is rough
sawed. The rough-sawed dimensions are approximately 1/8 in. larger than the dressed size.

Sawed lumber is classified according to size into (1) dimension lumber and (2) timber. Dimension
lumber has smaller sizes. It has a nominal thickness of 2—4 in. and a width* of 2—16 in. Thus, the
sizes of dimension lumber range from 2 in. X 2 in. to 4 in. X 16 in. Timber has a minimum nominal
thickness of 5 in.

Dimension lumber and timber are further subdivided based on the suitability of the specific
size for use as a structural member. The size and use categorization of commercial lumber is given
in Table 6.1. The sectional properties of standard dressed sawn lumber are given in Appendix B,
Table B.1.

REFERENCE DESIGN VALUES FOR SAWN LUMBER

The numerical values of permissible levels of stresses for design with respect to bending, tension,
compression, shear, modulus of elasticity, and modulus of stability of a specific lumber are known
as reference design values. These values are arranged according to the species. Under each species,
size and use categories, as listed in Table 6.1, are arranged. For each size and use category, the ref-
erence design values are listed for different grades of lumber. Thus, design value may be different
for the same grade name but in a different size category. For example, the select structural grade
appears in SLP, SJ & P, beam and stringer (B & S), and post and timber (P & T) categories and the
design values for a given species are different for the select structural grade in all of these categories.
The following reference design values are provided in tables:

Appendix B, Table B.2: Reference design values for dimension lumber other than Southern
Pine

*In the terminology of lumber grading, the smaller cross-sectional dimension is thickness and the larger dimension is
width. In the designation of engineering design, the dimension parallel to the neutral axis of a section as placed is width
and the dimension perpendicular to the neutral axis is depth. Thus, a member loaded about the strong axis (placed with
the smaller dimension parallel to the neutral axis) has the width that is referred to as thickness in lumber terminology.

105



106 Principles of Structural Design

TABLE 6.1
Categories of Lumber and Timber

Nominal Dimension

Name Symbol  Thickness (Smaller Dimension) Width

A. Dimension Lumber

1. Light framing LF 24 in. 24 in.
2. Structural light framing SLF 24 in. 24 in.
3. Structural joist and plank SJ&P 2—4 in. 5 in. or more
4. Stud 24 in. 2 in. or more
5. Decking 24 in. 4 in. or more
B. Timber
1. Beam and stringer B&S 5 in. or more At least 2 in. more than thickness
2. Post and timber P&T 5 in. or more Not more than 2 in. more than thickness

Appendix B, Table B.3: Reference design values for Southern Pine dimension lumber
Appendix B, Table B.4: Reference design values for timber

Although reference design values are given according to the size and use combination, the values
depend on the size of the member rather than its use. Thus, a section 6 X 8 listed under the P & T
category with its reference design values indicated therein can be used for B & S, but its design
values as indicated for P & T will apply.

ADJUSTMENTS TO THE REFERENCE DESIGN VALUES FOR SAWN LUMBER

The reference design values in the NDS tables are the basic values that are multiplied by many
factors to obtain adjusted design values. To distinguish an adjusted value from a reference value, a
prime notation is added to the symbol of the reference value to indicate that necessary adjustments
have been made. Thus,

F!, = F, x (products of adjustment factors) 6.1)

The () is replaced by a property like tensile, compression, and bending.

For wood structures, allowable stress design (ASD) is a traditional basis of design. The load
resistance factor design (LRFD) provisions were introduced in 2005. The reference design values
given in NDS are based on ASD (i.e., these are permissible stresses). The reference design values
for LRFD have to be converted from the ASD values.

To determine the nominal design stresses for LRFD, the reference design values of the NDS tables,
as reproduced in the appendixes, are required to be multiplied by a format conversion factor, K.
The format conversion factor serves a purpose that is reverse of the factor of safety, to obtain the
nominal strength values for LRFD application. In addition, the format conversion factor includes
the effect of load duration. It adjusts the reference design values of normal (10 years) duration to the
nominal strength values for a short duration (10 minutes), which have better reliability.

In addition to the format conversion factor, a resistance factor, ¢, is applied to obtain the LRFD
adjusted values. A subscript n is added to recognize that it is a nominal (strength) value for the
LRFD design. Thus, the adjusted nominal design stress is expressed as follows:

F) = OF)K; ©2)
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The adjustment factors are discussed as follows:

1. The wet-service factor is applied when the wood in a structure is not in a dry condition,
that is, its moisture content exceeds 19% (16% in the case of laminated lumber). Most
structures use dry lumber for which C,, = 1.

2. The temperature factor is used if a prolonged exposure to higher than normal temperature
is experienced by a structure. The normal condition covers the ordinary winter to summer
temperature variations and the occasional heating up to 150°F. For normal conditions, C, = 1.

3. Some species of wood do not accept a pressure treatment easily and require incisions to
make the treatment effective. For dimension lumber only, a factor of 0.8 is applied to bend-
ing, tension, shear, and compression parallel to grains and a factor of 0.95 is applied to
modulus of elasticity and modulus of elasticity for stability.

4. In addition, there are some special factors like column stability factor, Cp, and beam stabil-
ity factor, C,, that are discussed in the context of column and beam designs in Chapter 7.

The other adjustment factors that are frequently applied are discussed in the following sections.

Time ErrecT FACTOR,” A

Wood has the unique property that it can support a higher load when it is applied for a short duration.
The nominal reference design values are representative of a short-duration loading. For a loading of
long duration, the reference design values have to be reduced by a time effect factor. Different types
of loads represent different load durations. Accordingly, the time effect factor depends on combina-
tions of loads. For various load combinations, the time effect factor is given in Table 6.2. It should
be remembered that the factor is applied to the nominal reference (stress) value and not to the load.

Size Factor, C;

The size of a wood section has an effect on its strength. The factor for size is handled differently for
dimension lumber and for timber.

TABLE 6.2

Time Effect Factor

Load Combination A

1.4D 0.6

1.2D + 1.6L + 0.5(L, or S) 0.7 when L is from storage

0.8 when L is from occupancy
1.25 when L is from impact
1.2D + 1.6(L,or S) + (fLor 0.5W) 0.8

1.2D + LOW + fL + 0.5(L, or S) 1.0
1.2D + 1.0E + fL + 0.2§ 1.0
0.9D + 1.OW 1.0
0.9D + 1.0E 1.0

Note: f=0.5for L <100 psf; otherwise f= 1.

* The time effect factor is relevant only to load resistance factor design. For allowable stress design, this factor, known as
the load duration factor, Cp, has different values.
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Size Factor, C;, for Dimension Lumber

For visually graded dimension lumber, the size factors for species other than Southern Pine are
presented together with reference design values in Appendix B, Table B.2. For visually graded
Southern Pine dimension lumber, the factors are generally built into the design values except for the
bending values for 4 in. thick (breadth) dimension lumber. The factors for Southern Pine dimension
lumber are given together with reference design values in Appendix B, Table B.3. No size factor
adjustment is required for mechanically graded lumber.

Size Factor, C,, for Timber
For timber sections exceeding a depth of 12 in., a reduction factor is applied only to bending as

follows:
12\
Cr= (;j 6.3)

where d is dressed depth of the section.

RepeTiTive MEMBER FACTOR, C,

The repetitive member factor is applied only to dimension lumber and that also only to the bend-
ing strength value. A repetitive member factor C, = 1.15 is applied when all of the following three
conditions are met:

1. The members are used as joists, truss chords, rafters, studs, planks, decking, or similar
members that are joined by floor, roof, or other load-distributing elements.

2. The members are in contact or are spaced not more than 24 in. on center (OC).

3. The members are not less than three in number.

The reference design values for decking are already multiplied by C,. Hence, this factor is not shown
in Table 6.3 under decking.

FLAT Use FacTtor, G,

The reference design values are for bending about the major axis, that is, the load is applied on to the
narrow face. The flat use factor refers to members that are loaded about the weak axis, that is, the
load is applied on the wider face. The reference value is increased by a factor Cj, in such cases.
This factor is applied only to bending to dimension lumber and to bending and E and E,,;, to
timber.
The values of Cj, are listed along with the reference design values in Appendix B, Tables B.2
through B.4.

BuckLING STiFFNESs FAcTOR, C;

This is a special factor that is applied when all of the following conditions are satisfied: (1) it is a
compression chord of a truss, (2) made of a 2 X 4 or smaller sawn lumber, (3) is subjected to com-
bined flexure and axial compression, under dry condition, and (5) has % in. or thicker plywood
sheathing nailed to the narrow face of the chord of the truss.

For such a case, the E,;, value in the column stability, C, calculations, is allowed to be increased
by the factor C;, which is more than 1. Conservatively, this can be taken as 1.

BeARING AREA FacTOR, C,,

This is a special factor applied only to the compression reference design value perpendicular to
grain, F,; This is described in Chapter 7 for support bearing cases.
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FORMAT CONVERSION FACTOR, K,

The format conversion factors for different types of stresses are reproduced in Table 6.3 from
Table N1 of the NDS.

REesiSTANCE FACTOR, ¢

The resistance factor, also referred to as the strength reduction factor, is used to account for all
uncertainties whether related to the materials manufacturing, structural construction, or design
computations that may cause actual values to be less than theoretical values. The resistance factor,
given in Table 6.4, is a function of the mode of failure. The applicable factors for different loadings
and types of lumber are summarized in Table 6.5.

LOAD RESISTANCE FACTOR DESIGN WITH WOOD

As discussed in the “Working Stress, Strength Design, and Unified Design of Structures” sec-
tion in Chapter 1, LRFD designs are performed at the strength level in terms of force and moment.
Accordingly, the adjusted nominal design stress values from the “Reference Design Values for Sawn
Lumber” section are changed to strength values by multiplying them by the cross-sectional area or
the section modulus. Thus, the basis of design in LRFD is as follows:

Bending: M, = 0M,, = Fy,S = ¢ F,AC},C,C;C,C,C,(C,)K S (6.4)
Tension: T, = ¢T, = ¢F,AC,,C,C-C.K A (6.5)
TABLE 6.3
Conversion Factor for Stresses
Application Property Ke
Member Bending F, 2.54
Tension F, 2.7
Shear F,, radial tension F,, 2.88
Compression F, 24
Compression perpendicular to grain F, 1.67
Ein 1.76
E 1.0
All connections  All design values 3.32
TABLE 6.4
Resistance Factor, ¢
Application Property ¢
Member F, 0.85
Ft 0.80
F,F, 0.75
F,F, 0.9
E 1.76

‘min

All connections  All design values  0.65
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Compression: P, = ¢P, = ¢F AC,,C,CC;(Cp)K A (6.6)
P, = 0P, = 0F, ,AC,,C,C,C,K - A ©67)
Shear:V, = oV, = ¢F,AC,,C,C:K (EA *]
3 (6.8)
Stability: E, ., = ¢E,;,,Cy,C,C.Cr K . 6.9)
Modulus of elasticity: E,,,, = EC,,C,C; (6.10)

The left-hand side (LHS) in the aforementioned equations represent the factored design loads com-

bination and the factored design moments combination.

The design of an element is an iterative procedure since the reference design values and the modifi-
cation factors in many cases are a function of the size of the element that is to be determined. Initially,
the nominal design value could be assumed to be one-and-a-half times the basic reference design value
for the smallest listed size of the specified species from the Tables B.2 through B.4 in Appendix B.

Example 6.1

Determine the adjusted nominal reference design values and the nominal strength capacities of the
Douglas Fir-Larch #1 2 in. x 8 in. roof rafters at 18 in. on center (OC) that support dead and roof
live loads. Consider dry-service conditions, normal temperature range, and no-incision application.

SOLUTION

1. The reference design values of a Douglas Fir-Larch #1 2 in. x 8 in. section are obtained from
Appendix B, Table B.2.

2. The adjustment factors and the adjusted nominal reference design values are computed in
the following table:

Adjustment Factors

Property Reference Design Value (psi) ¢ AforD+ L, C; C, K Fy, (psi)
Bending 1000 0.85 0.8 1.2 1.15  2.54 2383.54
Tension 675 0.80 0.8 1.2 2.7 1399.68
Shear 180 0.75 0.8 2.88 311.04
Compression 1500 0.9 0.8 1.05 2.40 2721.6
Compression L 625 0.9 0.8 1.67 751.5

E 1.7 x 108 1.7 x 10°
E 0.62 x 106 0.85 176 0.93 % 106

3. Strength capacities
Fora 2 in. x 8 in. section, S = 13.14 in.? and A = 10.88 in.2
M, = F},,S = (2383.54)(13.14) = 31319.66 in. b
T,=F,A =(1399.68)(10.88) = 15228.52 |b
V,=F,2A/3) = (311.04)(2 x 10.88/3) = 2257.21 Ib
P,=F,A=(2721.6)(10.88) = 29611 Ib

max = i or V = Tmax (EA)
2A 3
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Example 6.2

Determine the adjusted nominal reference design values and the nominal strength capacities of a
Douglas Fir-Larch #1 6 in. X 16 in. floor beam supporting a combination of loads comprising dead,
live, and snow loads. Consider dry-service conditions, normal temperature range, and no-incision
application.

SOLUTION

1. The reference design values of Douglas Fir-Larch #1 6 in. X 16 in. beams and stringers are
from Appendix B, Table B.4.

2. The adjustment factors and the adjusted nominal reference design values are given in the
following table:

Adjustment Factors

Property Reference Design Value (psi) ¢ AforD, L, S (ot K Fy,, (psi)
Bending 1350 0.85 0.8 0976 2.54 227576
Tension 675 0.80 0.8 270  1166.4
Shear 170 0.75 0.8 2.88 2938
Compression 925 0.9 0.8 2.4 1598.4

E 1.6 x 10° 1.6 x 10°
E,; 0.58 x 10° 0.85 1.76  0.87 x 10°

‘min

a

1/9 1/9
Cp = (9) = (Ej =0.976.
d 15

3. Strength capacities
For the 6 in. X 16 in. section, S = 206.3 in.> and A = 82.5 in.2
M, =F .S =(2275.76)(206.3) = 469,489 in..Ib
T,=F,A=(1166.4)82.5) = 96,228 Ib
V,=F,2A/3) =(293.8)(2 x 82.5/3) = 16,167 |b
P, = F.,A=(1598.4)(82.5) = 131,868 Ib

Example 6.3

Determine the unit load (per square foot load) that can be imposed on a floor system consisting of
2 in. X 6 in. Southern Pine select structural joists spaced at 24 in. OC spanning 12 ft. Assume that
the dead load is one-half of the live load. Ignore the beam stability factor.

SOLUTION
1. For Southern Pine 2 in. X 6 in. select structural dressed lumber, the reference design value is
F, = 2550psi.
2. Size factor is included in the tabular value.
3. Time effect factor for dead and live loads = 0.8
4. Repetitive factor = 1.15
5. Format conversion factor = 2.54
6. Resistance factor = 0.85
7. Nominal reference design value

Fon = 0FAC,CCC GG K,
=0.85(2250)(0.8)(N(M(N(1.15)((1)(2.54) = 5065 psi
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8. For2in.x6in., S=756in.?
9. M, = F},,S = (5065)(7.56) = 38291.4 in.-Ib or 3191 ft.:Ib
2
10. M, = Yol
or

L _8M, _8(3191)

. = 2 =177.3 Ib/ft.
2 (12)
11. Tributary area per foot of joists = 24 % 1= 2ft.2/ft.
12

12. w, = (Design load per square foot) (Tributary area per square foot)
177.3=(12D+16L)(2)

or

177.3=[12D+ 16(2D)](2)
or

D =20.15b/ft.2

and

L = 40.31b/ft.2

Example 6.4

For a Southern Pine #1 floor system, determine the size of joists at 18 in. OC spanning 12 ft. and
the column receiving loads from an area of 100 ft.? acted upon by a dead load of 30 psf and a live
load of 40 psf. Assume that the beam and column stability factors are not a concern.

SOLUTION

A. Joist design
1. Factored unit combined load = 1.2(30) + 1.6(40) = 100 psf
Tributary area/ft. = (18/12) x 1 = 1.5 ft.2/ft.
Design load/ft. w, = 100(1.5) = 150 Ib/ft.
2 2
M, = % _ US02F 5 200 ... Ibor 32,400in. - Ib
For a trial section, select the reference design value of a 2-4 in. wide section and

assume the nominal reference design value to be one-and-a-half times the table value.
From Appendix B, Table B.3, for Southern Pine #1, F, = 1850 psi
Nominal reference design value = 1.5(1850) = 2775 psi
6. Trial size
= M, = 32,400 =11.68in.3
F, 2,775
Use2in.x8in.S=13.141in.3
From Appendix B, Table B.3, F, = 1500 psi
8. Adjustment factors
A=0.8
C, =1.15
K;= 2.54
o= 0.85
9. Adjusted nominal reference design value
F., =0.85(1500)(0.8)(1.15)(2.54) = 2979.4 psi

DA

~

10. M, =F.,S
or
Sy = My _ 32800 _ 45 57 <1314 i3

el =BT 2 979.4
The selected size 2 in. x 8 in. is OK.
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B. Column design

1.
2.

Factored unit load (step A.1) = 100 psf
Design load = (unit load)(tributary area)

=(100)(100) = 10,000 Ib

For a trial section, select the reference design value of a 2-4 in. wide section and
assume the nominal reference design value to be one-and-a-half times of the table

value.

From Appendix B, Table B.3, for Southern Pine #1, F. = 1850 psi
Nominal reference design value = 1.5(1850) = 2775 psi

Trial size

P, 10000

== =3.6in.?
F, 2775
Use 2 in. x4 in. A=5.25in.2
F, =1850 psi
A=0.8
Ky =2.40
6=0.90

Adjusted nominal reference design value
F/ =0.9(1,850)(0.8)(2.4) = 3,196.8 psi
P, 10,000

el =T 3196.8
The selected size 2 in. x 4 in. is OK.

A = 3.13<5.25in.2

STRUCTURAL GLUED LAMINATED TIMBER

GLULAM members are composed of individual pieces of dimension lumber that are bonded together
by an adhesive to create required sizes. For western species, the common widths* (breadth) are 34,5
%, 674, 8%, 10%, and 12/ in. (there are other interim sections as well). The laminations are typically
in 1% in. incremental depth. For Southern Pine, the common widths are 3, 5, 6%, 8%, and 10/ in. and
the depth of each lamination is 17 in. Usually, the lamination of GLULAM is horizontal (the wide
faces are horizontally oriented). A typical cross section is shown in Figure 6.1.

FIGURE 6.1

Width 3%, 5%,...10% Western species

b Width 3, 5,...10% Southern Pine

End Side

— Edge of lamination

y
?

Lamination
thickness 1% in. Western species
1% in. Southern Pine

Wide face of
lamination

A structural glued laminated (GLULAM) section.

* Not in terms of lumber grading terminology.
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The sectional properties of western species structural GLULAM are given in Appendix B,
Table B.5 and those of Southern Pine structural GLULAM in Appendix B, Table B.6.

Because of their composition, large GLULAM members can be manufactured from smaller trees
from a variety of species such as Douglas Fir, Hem Fir, and Southern Pine. GLULAM has much
greater strength and stiffness than sawn lumber.

REFERENCE DESIGN VALUES FOR GLUED LAMINATED TIMBER

The reference design values for GLULAM are given in Appendix B, Table B.7 for members stressed
primarily in bending (beams) and in Appendix B, Table B.8 for members stressed primarily in axial
tension or compression.

Appendix B, Table B.7 related to bending members is a summary table based on the stress
class. The first part of the stress class symbol refers to the bending stress value for the grade in
hundreds of pounds per square inch followed by the letter F. For example, 24F indicates a bending
stress of 2400 psi for normal duration loaded in the normal manner, that is, loads are applied
perpendicular to the wide face of lamination. The second part of the symbol is the modulus of
elasticity in millions of pounds per square inch. Thus, 24F-1.8E indicates a class with the bending
stress in 2400 psi and the modulus of elasticity in 1.8 X 10 psi. For each class, the NDS provide
the expanded tables that are orgainzed according to the combination symbol and the types of
species making up the GLULAM. The first part of the combination symbol is the bending stress
level, that is, 24F referring to 2400 psi bending stress. The second part of the symbol refers to the
lamination stock: V standing for visually graded and E for mechanically graded or E-rated. Thus,
the combination symbol 24F-V5 refers to the grade of 2400 psi bending stress of visually graded
Iumber stock. Under this, species are indicated by abbreviations, that is, DF for Douglas Fir, SP for
Southern Pine, and HF for Hem Fir.

The values listed in Appendix B, Table B.7 are more complex than those for sawn lumber. The
first six columns are the values for bending about the strong (x—x) axis when the loads are per-
pendicular to the wide face of lamination. These are followed up values for bending about the
y—y axis. The axially loaded values are also listed in case the member is picked up for the axial load
conditions.

For F,,, two values have been listed in columns 1 and 2 of Appendix B, Table B.7 (for
bending) as F, * and F,,~. In a rectangular section, the compression and tension stresses are
equal in extreme fibers. However, it has been noticed that the outer tension laminations are in a
critical state and, therefore, high-grade laminations are placed at the bottom of the beam, which
is recognized as the tensile zone of the beam. The other side is marked as the fop of the beam in
the lamination plant. Placed in this manner, the portion marked top is subjected to compression
and the bottom to tension. This is considered as the condition in which the designated tension
zone is stressed in tension and the F,,* value of the first column is used for bending stress. This
is a common condition.

However, if the beam is installed upside down or in the case of a continuous beam for which the
negative bending moment condition develops, that is, the top fibers are subject to tension, the refer-
ence values in the second column known as the designated compression zone stressed in tension,
F,.", should be used.

Appendix B, Table B.8 lists the reference design values for principally axially load-carrying
members. Here, members are identified by numbers, such as 1, 2, and 3, followed by species such
as DF, HF, and SP, and by grade. The values are not complex like those in Appendix B, Table B.7
(the bending case).

It is expected that members with the bending combination in Appendix B, Table B.7 will be
used as beams, as they make efficient beams. However, it does not mean that they cannot be used
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for axial loading. Similarly, an axial combination member can be used for a beam. The values with
respect to all types of loading modes are covered in both tables (Appendix B, Tables B.7 and B.8).

ADJUSTMENT FACTORS FOR GLUED LAMINATED TIMBER

The reference design values of Appendix B, Tables B.7 and B.8 are applied by the same format
conversion factors and time effect factors as discussed in the “Adjustments to the Reference Design
Values for Sawn Lumber” section.

Additionally, the other adjustment factors listed in Table 6.6 are applied to structural GLULAM.

For GLULAM, when moisture content is more than 16% (as against 19% for sawn lumber), the
wet-service factor is specified in a table in the NDS. The values are different for sawn lumber and
GLULAM. The temperature factor is the same for GLULAM as for sawn lumber.

The beam stability factor, C;, column stability factor, Cp, and bearing area factor, C,, are the same
as for the sawn lumber. However, some other factors that are typical to GLULAM are described in
the following sections.

FLAT Use FACTOR FOR GLUED LAMINATED TiMBER, Cj,

The flat use factor is applied to the reference design value only (1) for the case of bending that is
loaded parallel to laminations and (2) if the dimension parallel to the wide face of lamination (depth
in flat position) is less than 12 in. The factor is

1/9
Co= (%) ©.11)

where d is depth of the section.
Equation 6.11 is similar to the size factor (Equation 6.3) of sawn timber lumber.

VoLuME FACTOR FOR GLUED LAMINATED TimBer, C,

The volume factor is applied to bending only for horizontally laminated timber for loading applied
perpendicular to laminations (bending about the x—x axis); it is applied to F, * and F,,. The beam
stability factor, C;, and the volume factor, C,, are not used together; only the smaller of the two is
applied to adjust F;,. The concept of the volume factor for GLULAM is similar to the size factor for
sawn lumber because test data have indicated that the size effect extends to volume in the case of
GLULAM. The volume factor is

5.125 1/x 12 1/x 21 1/x

where
b is width (in inches)
d is depth (in inches)
L is length of member between points of zero moments (in feet)
x =20 for Southern Pine and 10 for other species

CuURVATURE FACTOR FOR GLUED LAMINATED TimBER, C.

The curvature factor is applied to bending stress only to account for the stresses that are introduced
in laminations when they are bent into curved shapes during manufacturing. The curvature factor is

2
C.=1- 2000(%) 6.13)
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where

t is thickness of the lamination, 1% in. or 1% in.

R is radius of curvature of the inside face of the lamination

The ratio #/R may not exceed 1/100 for Southern Pine and 1/125 for other species. The curvature
factor is not applied to the straight portion of a member regardless of curvature in the other portion.

STRESS INTERACTION FACTOR, C,

This is applied only (1) to the tapered section of a member and (2) to the reference bending stress.
For members tapered in compression, either C, or the volume factor C, is applied, whichever is
smaller. For members tapered on tension face, either C, or the beam stability factor C, is applied,
whichever is smaller.

The factor depends on the angle of taper, bending stress, shear stress, and compression stress
perpendicular to grains for compression face taper and radial tensile stress for tensile face taper. It
is less than 1. A reference is made to Section 5.3.9 of NDS 2012.

SHEAR RebucTioN Factor, C,,

The reference shear design values F),, and F,, are multiplied by a factor C,, = 0.72 when any of the
following conditions apply:

1. Nonprismatic members

2. Members subject to impact or repetitive cyclic loading
3. Design of members at notches

4. Design of members at connections

Example 6.5

Determine the adjusted nominal reference design stresses and the strength capacities of a 6%
in. X 18 in. GLULAM from Douglas Fir-Larch of stress class 24F-1.7E, used primarily for bend-
ing. The span is 30 ft. The loading consists of the dead load and live load combination along
the major axis.

SOLUTION

1. The adjusted reference design values are computed in the following table:

Property Reference Design Value (psi) Adjustment Factors F;, (psi)

¢ 2 & K

Bending 2400 085 0.8 090@ 254 3730.75
Tension 775 0.8 0.8 2.7 1339.2
Shear 210 0.75 0.8 2.88  362.88
Compression 1000 0.9 0.8 2.4 1728.0

E 1.7 x 10° 1.7 x 10°
E, 0.88 x 10° 0.85 .76 1.32x10°

‘min

1:10 1:10 1:10
()" () () o
6.75 18 30
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2. Strength capacities:
For the 6% in. x 18 in. section, S, =364.5in.3, A =121.5 in.?
Bending: pM, = Fy,S = (3730.75)(364.5) = 1.36 x 10¢ in.b
Tension: $T, = F/A = (1339.2)(121.5) = 162.71 x 10° |b
Shear: pV, = F/,(2/3A) = (362.88)(2/3 x 121.5) = 29.39 x 10° Ib
Compression: P, = F/, A = (1728)(121.5) = 210 x 10° Ib

Example 6.6

The beam in Example 6.5 is installed upside down. Determine the design strengths.

SOLUTION

1. The bending reference design value for a compression zone stressed in tension = 1450 psi
from Appendix B, Table B.7
2. Adjustment factors from Example 6.5

®= 0.85
A =0.80

C, =0.90
Ky = 2.54

3. Adjusted nominal design value

F, = 0.85(1450)(0.8)(0.9)(2.54) = 2254 psi

4. Strength capacity
Fr,S= (2254)(364.5) = 0.882 x 10%in.lb

5. The other values are the same as in Example 6.5.

Example 6.7

The beam used in Example 6.5 is flat with loading along the minor axis. Determine the design
strengths.

SOLUTION

1. The adjusted reference design values are computed in the following table:

Property Reference Design Value (psi) Adjustment Factors F;, (psi)

b A Cu K

Bending 1050 0.85 0.8 1.066*0 254 1933.26
Tension 775 0.8 0.8 2.7 1339.2
Shear 185 0.75 0.8 2.88  319.68
Compression 1000 0.9 0.8 2.4 1728.0

E 1.3 x 10° 1.3 x 10°
E, 0.67 x 10° 0.85 1.76  1.00 x 10°

‘min

a

1/9
Cﬁ,=(£) =1.066
#1675
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2. Strength capacities
For the 6% in. x 18 in. section, S,=136.7in3, A=1215in.2
Bending: ¢M, = F;,S = (1933.26)(136.7*) = 0.26 x 10¢ in.-Ib
Tension: $T, = F, A =(1339.2)(121.5) = 162713 |b
Shear: ¢V, = F/,(2/3A) = (319.68)(2/3 x 121.5) = 25.89 x 10° b
Compression: P, = F;, A = (1728)(121.5) = 209 x 10° |b
Example 6.8

What are the unit dead and live loads (per square foot) resisted by the beam in Example 6.5 that
is spaced 10 ft. OC? Assume that the unit dead load is one-half of the live load.

SOLUTION

1. From Example 6.5,

M, = oM, =1.36%10°-Ibor 113,333.3 ft.-Ib

2
2. M, =113,33333 = WgL
or
w, = 13333338 507 411,
(30)

. Tributary area per foot of the beam = 10 x 1 = 10 ft./ft.

w, = (Design load/ft.?)(Tributary area, ft.2/ft.)
1007.41=(1.2D+1.6L)(10)

or
1007.41=[1.2D +1.6(2D)](10)

or
D =22 9Ib/At.2

and
L = 45.8Ib/ft.?

STRUCTURAL COMPOSITE LUMBER

Structural composite lumber (SCL) is an engineered product manufactured from smaller logs. The
manufacturing process involves sorting and aligning strands or veneer, applying adhesive, and
bonding under heat and pressure. Stranding is making 3—12 in. slices of a log similar to grating a
block of cheese. Veneering is rotary peeling by a knife placed parallel to the outer edge of a spin-
ning log. The log is peeled from outside toward the center similar to removing paper towels from a
roll. The slices cut into sheets are called veneer.

The following are four common types of SCL products:

1. Laminated strand lumber

2. Oriented strand lumber

3. Laminated veneer lumber (LVL)
4. Parallel strand lumber

S, value.
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The first two of these are strand products and the last two are veneer products. Proprietary names,
such as Microlam and Parallam, are used to identify the aforementioned products.

The lamination of SCL is vertical (wide faces of laminations are oriented vertically) compared
to the horizontal lamination of GLULAM (wide faces are oriented horizontally). The strength and
stiffness of SCL is generally higher than that of GLULAM.

The typical reference design values for SCL are listed in Appendix B, Table B.9. SCL is equally
strong flatwise and edgewise in bending. Several brands of SCL are available. The reference
values and technical specifications for a specific brand might be obtained from the manufacturer’s
literature.

The same time effect factors and format conversion factors are applied to the reference design
values of SCL as for sawn lumber and GLULAM, as discussed in the “Adjustments to the Reference
Design Values Sawn Lumber” section.

In addition, the adjustment factors listed in Table 6.7 are applied to SCL. The wet-service factors,
C,;, and the temperature factors, C,, are the same for GLULAM and SCL. To the members used
in repetitive assembly, as defined in the “Repetitive Member Factor, C,” section of sawn lumber, a
repetitive factor, C,, of 1.04 is applied.

The value of the size (volume) factor, C,, is obtained from the SCL manufacturer’s litera-
ture. When C, < 1, only the lesser of the volume factor, C,, and the beam stability factor, C,,
is applied. However, when C, > 1 both the volume factor and the beam stability factor are used
together.”

SUMMARY OF ADJUSTMENT FACTORS

A. Common to sawn lumber, GLULAM, and SCL
1. Time effect, A < 1
Temperature, C, < 1
3. Wetservice, C), < 1
Format conversion, K, > 1
5. Resistance factor, ¢ < 1
6. Beam stability factor, C, (applied to F, only) <1
7. Column stability factor, C, (applied only to F, parallel to grain) < 1
8. Bearing area factor, C, (applied only to F, perpendicular to grain) > 1
B. Sawn lumber
1. Incision factor, C; < 1
3. Repetitive factor, C, = 1.15
. Flat use factor, C;, (applied only to F,) for dimension >1, for timber <1
GLULAM
1. Volume factor, C, < 1
. Curvature factor, C, < 1
3. Flat use factor, Cy, (applied only to F,) for GLULAM >1
SCL
1. Volume factor, C,<lorC,> 1
2. Repetitive factor, C, = 1.04
E. Special factors
1. Buckling stiffness factor, C; (applied only to sawn lumber and to E,,;,) > 1
2. Stress interaction factor, C, (applied only to GLULAM and tapered section) < 1
3. Shear reduction factor, C,, (applied only to GLULAM and to F, in some cases) = 0.72

2
4
2. Size factor, Cr < 1
4
C.
2

D

* When the volume factor C, > 1, it is used in the calculation of beam stability factor, as discussed in Chapter 7.
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PROBLEMS

Note: In Problems 6.1 through 6.5, determine the adjusted reference design values and the strength
capacities for the following members. In all cases, consider dry-service conditions, normal tem-
perature range, and no-incision application. In practice, all loading combinations must be checked.
However, in these problems only a single load condition should be considered for each member, as
indicated in the problem.

6.1 Floor joists are 2 in. X 6 in. at 18 in. on center (OC) of Douglas Fir-Larch #2. They support
dead and live loads.

6.2 Roof rafters are 2 in. X 8§ in. at 24 in. OC of Southern Pine #2. The loads are dead load and
roof live load.

6.3 Five floor beams are of 4 in. X 8 in. dimension lumber Hem Fir #1, spaced 5 ft. apart. The
loads are dead and live loads.

6.4 Studs are 2 in. X 8 in. at 20 in. OC of Hem Fir #2. The loads are dead load, live load, and
wind load.

6.5 The interior column is 5 in. X 5 in. of Douglas Fir-Larch #2 to support the dead and live
loads.

6.6 Determine the unit dead and live loads (per square foot area) that can be resisted by a floor
system consisting of 2 in. X 4 in. joists at 18 in. OC of Douglas Fir-Larch #1. The span is
12 ft. The dead and live loads are equal.

6.7 Determine the unit dead load on the roof. The roof beams are 4 in. X 10 in. of Hem Fir #1.
The beams are located at 5 ft. OC, and the span is 20 ft. apart. They support the dead load
and a snow load of 20 psf.

6.8 A 6in. X 6 in. column of Douglas Fir-Larch #1 supports the dead load and live load on an
area of 100 ft.2 Determine the per-square-foot load if the unit dead load is one-half of the
unit live load.

6.9 A floor system is acted upon by a dead load of 20 psf and a live load of 40 psf. Determine
the size of the floor joists of Douglas Fir-Larch Structural lumber. They are located 18 in.
OC and span 12 ft. Assume that beam stability factor is not a concern.

6.10 In Problem 6.9, determine the size of the floor joists when used in the flat position.

6.11 Determine the size of a column of Southern Pine #2 of dimension lumber that receives
loads from an area of 20 ft. x 25 ft. The unit service loads are 20 psf dead load and 30 psf
live load. Assume that the column stability factor is not a concern.

6.12 For Problem 6.11, design a column of Southern Pine #2 timber.

6.13 A GLULAM beam section is 674 in. x 37.5 in. from the Douglas Fir 24F-1.7E class. The
loads combination comprises the dead load, snow load, and wind load. The bending is
about the x axis. Determine the adjusted nominal reference design stresses and the strength
capacities for bending, tension, shear, compression, modulus of elasticity, and modulus of
stability (E,,;,).- The span is 30 ft.

6.14 Determine the wind load for Problem 6.13 if the unit dead load is 50 psf and the unit snow
and wind loads are equal. The beams are 10 ft. apart.

6.15 The beam in Problem 6.13 is installed upside down. Determine the strength capacities.

6.16 The beam in Problem 6.13 is used flat with bending about the minor axis. Determine the
design capacities.

6.17 A 5% in. x 28.5 in. 26F-1.9E Southern Pine GLULAM is used to span 35 ft. The beam has
a radius of curvature of 10 ft. The load combination is the dead load and the snow load.
Determine the adjusted nominal reference design stresses and the strength capacities for
loading perpendicular to the laminations for the beam installed according to specifications.

6.18 The beam in Problem 6.17 is installed upside down. Determine the percentage reduction in
strength capacities.
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6.19 The beam in Problem 6.17 is loaded along the laminations, about the minor axis. Determine
the percentage change in strength capacities.

6.20 A 1%in. x 7% in. size LVL of 1.9E class is used for roof rafters spanning 20 ft., located 24
in. OC. Determine the strength design capacities for the dead and snow load combinations.
The size factor is given by (12/d)"/75.

6.21 Two 17 in. x 16 in. (two sections side by side) of Parallam of 2.0E class are used for a
floor beam spanning 32 ft., spaced 8 ft. OC. The loading consists of dead and live loads.
Determine the strength capacities for bending, tension, composition, and shear. The size
factor is given by (12/d)73.

6.22 Determine the unit loads (per square foot) on the beam in Problem 6.21 if the live load is
one-and-a-half times the dead load.



7 Flexure and Axially Loaded
Wood Structures

INTRODUCTION

The conceptual design of wood members was presented in Chapter 6. The underlying assumption
of design in that chapter was that an axial member was subjected to axial tensile stress or axial
compression stress only and a flexure member to normal bending stress only. However, the com-
pression force acting on a member tends to buckle a member out of the plane of loading, as shown in
Figure 7.1. This buckling occurs in the columns and in the compression flange of the beams unless
the compression flange is adequately braced. The beam and column stability factors C, and C,,
respectively, mentioned in the “Reference Design Values for Sawn Lumber” section of Chapter 6,
are applied to account for the effect of this lateral buckling.

This chapter presents the detailed designs of flexure members, axially loaded tensile and com-
pression members, and the members subjected to the combined flexure and axial force made of
sawn lumber, glued laminated timber (GLULAM), and laminated veneer lumber (LVL).

DESIGN OF BEAMS

In most cases, for the design of a flexure member or beam, the bending capacity of the material is
a critical factor. Accordingly, the basic criterion for the design of a wood beam is developed from a
bending consideration.

In a member subjected to flexure, compression develops on one side of the section; under com-
pression, lateral stability is an important factor. It could induce a buckling effect that will under-
mine the moment capacity of the member. An adjustment factor is applied in wood design when the
buckling effect could prevail, as discussed subsequently.

A beam is initially designed for the bending capacity. It is checked for the shear capacity. It is
also checked from the serviceability consideration of the limiting state of deflection. If the size is
not found adequate for the shear capacity or the deflection limits, the design is revised.

The bearing strength of a wood member is considered at the beam supports or where loads from
other members frame onto the beam. The bearing length (width) is designed on this basis.

BENDING CRITERIA OF DESIGN

For the bending capacity of a member, as discussed before
M, =F,S (7.1)

M, represents the design moment due to the factored combination of loads. The design moment
for a uniformly distributed load, w,, is given by M, =w,[?/8 and for a concentrated load, P,
centered at mid-span, M, = P, L /4. For other cases, M, is ascertained from the analysis of structure.
For standard loading cases, M, is listed in Appendix A, Table A.3.

The span length, L, is taken as the distance from the center of one support to the center of the
other support. However, when the provided (furnished) width of a support is more than what is

125
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FIGURE 7.1 Buckling due to compression.

Principles of Structural Design

required from the bearing consideration, it is permitted to take the span length to be the clear dis-
tance between the supports plus one-half of the required bearing width at each end.

F,, is the adjusted load resistance factor design (LRFD) reference value for bending. To start
with, the reference bending design value, F,, for the appropriate species and grade is obtained.
These values are listed in Appendices B.2 through B.4 for sawn lumber and Appendices B.7 through
B.9 for GLULAM and LVL. Then the value is adjusted by multiplying the reference value by a
string of factors. The applicable adjustment factors were given in Table 6.5 for sawn lumber, in
Table 6.6 for GLULAM, and in Table 6.7 for structural composite lumber (SCL).

For sawn lumber, the adjusted reference bending design value is restated as

Fl:n = q)Fb}\‘CMCtCFCrCfuCiCLKF

(7.2)

For GLULAM, the adjusted reference bending design value is restated as

F}, =¢F,ACy,C,C.C,C,(C, or C,)K

(7.3)

For SCL, the adjusted reference bending design value is

F}, =0F,\C,,C,C,(C, or/and C, ) K,

where
F, is tabular reference bending design value
¢ is resistance factor for bending = 0.85
A is time factor (Table 6.2)
C,, is wet-service factor
C, is temperature factor
C is size factor
C, is repetitive member factor
C;, is flat use factor
C, is incision factor
C, is beam stability factor
C. is curvature factor
C, is volume factor
C, is stress interaction factor
K is format conversion factor = 2.54

(74)

Using the assessed value of F,,, from Equations 7.2 through 7.4, based on the adjustment factors
known initially, the required section modulus, S, is determined from Equation 7.1 and a trial section
is selected having the section modulus § higher than the computed value. In the beginning, some
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section-dependent factors such as C, C,, and C, will not be known while the others such as A, K.,
and ¢ will be known. The design is performed considering all possible load combinations along
with the relevant time factor. If loads are of one type only, that is, all vertical or all horizontal, the
highest value of the combined load divided by the relevant time factor determines which combina-
tion is critical for design.

Based on the trial section, all adjustment factors including C, are then computed and the magni-
tude of F}, is reassessed. A revised S is obtained from Equation 7.1 and the trial section is modified,
if necessary.

BEAM STABILITY FACTOR, C,

As stated earlier, the compression stress, besides causing an axial deformation, can cause a lateral
deformation if the compression zone of the beam is not braced against the lateral movement. In the
presence of the stable one-half tensile portion, the buckling in the plane of loading is prevented.
However, the movement could take place sideways (laterally), as shown in Figure 7.2.

The bending design described in Chapter 6 had assumed that no buckling was present and adjust-
ments were made for other factors only. The condition of no buckling is satisfied when the bracing
requirements, as listed in Table 7.1, are met. In general, when the depth-to-breadth ratio is 2 or
less, no lateral bracings are required. When the depth-to-breadth ratio is more than 2 but does not
exceed 4, the ends of the beam should be held in position by one of these methods: full-depth solid
blocking, bridging, hangers, nailing, or bolting to other framing members. The stricter requirements
are stipulated to hold the compression edge in line for a depth-to-breadth ratio of higher than 4.

When the requirements of Table 7.1 are not met, the following beam stability factor has to be
applied to account for the buckling effect:

2
CL:(1+oc)_\/(l+oc) _( o ) s
1.9 1.9 0.95

FbEn
o= F/*
bn

where

(7.6)

where F,* is reference bending design value adjusted for all factors except C,, Cy» and C;.
For SCL, when C, >1, C, is also included in calculating F, *. F,., is the Euler-based LRFD
critical buckling stress for bending.
1.2E; o
FbEn _ ymin(n) (77)
Rj

FIGURE 7.2 Buckling of a bending member: (a) original position of the beam, (b) deflected position without
lateral instability, and (c) compression edge buckled laterally.

* Use y axis.
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TABLE 7.1

Bracing Requirements for Lateral Stability

Depth/Breadth Ratio?

<2
>2 but <4

>4 but <5

>5 but <6

>6 but <7

Combined bending and
compression

2 Nominal dimensions.

Bracing Requirements

Sawn Lumber

No lateral bracing required.

The ends are to be held in position, as by full-depth solid blocking, bridging, hangers, nailing,
or bolting to other framing members, or by other acceptable means.

The compression edge is to be held in line for its entire length to prevent lateral displacement,
as by sheathing or subflooring, and the ends at points of bearing are to be held in position to
prevent rotation and/or lateral displacement.

Bridging, full-depth solid blocking, or diagonal cross bracing is to be installed at intervals not
exceeding 8 ft., the compression edge is to be held in line for its entire length to prevent lateral
displacement, as by sheathing or subflooring, and the ends at points of bearing are to be held
in position to prevent rotation and/or lateral displacement.

Both edges of a member are to be held in line for their entire length, and the ends at points of
bearing are to be held in position to prevent rotation and/or lateral displacement.

The depth/breadth ratio may be as much as 5 if one edge is held firmly in line. If under all load
conditions, the unbraced edge is in tension, the depth/breadth ratio may be as much as 6.

Glued Laminated Timber
No lateral bracing required.
The compression edge is supported throughout its length to prevent lateral displacement, and
the ends at point of bearing are laterally supported to prevent rotation.

where

E" . is adjusted nominal stability modulus of elasticity

R is slenderness ratio for bending

(7.8)

L
Ry = / < 50
b2

where L, is effective unbraced length, as discussed in the “Effective Unbraced Length” section.
When R exceeds 50 in Equation 7.7, the beam dimensions should be revised to limit the slender-

ness ratio to 50.

ErrecTiVE UNBRACED LENGTH

The effective unbraced length is a function of several factors such as the type of span (simple,

cantilever, continuous), the type of loading (uniform, variable, concentrated loads), the unbraced

length, L,, which is the distance between the points of lateral supports, and the size of the beam.
For a simple one span or cantilever beam, the following values can be conservatively used for

the effective length:

L
For j <7, L,=2.06L, (7.9)
L
For 7< 7“ <143, L ,=1.63L,+3d (7.10)
L
For j‘ >143, L ,=1.84L, (7.11)
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Example 7.1

A 5% in. x 24 in. GLULAM beam is used for a roof system having a span of 32 ft., which is braced
only at the ends. GLULAM consists of the Douglas Fir 24F-1.8E. Determine the beam stability fac-
tor. Use the dead and live conditions only.

SOLUTION

1. Reference design values
Fy, = 2400 psi
E=1.8x10° psi
Eyminy = 0.83 X 106 psi
2. Adjusted design values
F = 0RMK;
=(0.85)(2400)(0.8)(2.54) = 4147 psi or 4.15 ksi
E,min(n) = q)Ey(m[n)KF
=(0.85)(0.83 x 10°)(1.76) = 1.24 x 10° psi or 1.24 x 103 ksi
3. Effective unbraced length
L, 32x12
d 24
From Equation 7.11
L, =1.84L,=1.84(32)=58.88ft. or 701.28 in.
4. From Equation 7.8

L.d
b2
_ [(701.28)(24)
(5.5)°
= 23.59<50 OK
5 2B 00
* 'bEn — R%
12 (124 x 10°)
= 2=27
(23.59)
= F”f“ =27 _06s
Fo, 415
7. From Equation 7.5

2
L (1.65) _(0.65)20'6
19 V{19 0.95

SHEAR CRITERIA

A transverse loading applied to a beam results in vertical shear stresses in any transverse (vertical)
section of a beam. Because of the complimentary property of shear, an associated longitudinal
shear stress acts along the longitudinal plane (horizontal face) of a beam element. In any mechanics
of materials text, it can be seen that the longitudinal shear stress distribution across the cross section
is given by

=16>14.3

Rg =

_ve 712
fo== (7.12)
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where
[, 1s shear stress at any plane across the cross section
V is shear force along the beam at the location of the cross section
0 is moment of the area above the plane where stress is desired to the top or bottom edge of
the section. Moment is taken at neutral axis
I is moment of inertia along the neutral axis
b is width of the section

Equation 7.12 also applies for the transverse shear stress at any plane of the cross section as well
because the transverse and the longitudinal shear stresses are complimentary, numerically equal,
and opposite in sign.

For a rectangular cross section, which is usually the case with wood beams, the shear stress distri-
bution by the above relation is parabolic with the following maximum value at the center:

3V,
=F, =——= 7.13
fvmax vn 2 A ( )
In terms of V,, the basic equation for shear design of the beam is
2
V.==F, A (7.14)

where
V, is maximum shear force due to factored load on beam
F,, is adjusted reference shear design value
A is area of the beam

The National Design Specification (NDS) permits that the maximum shear force, V,, might be
taken to be the shear force at a distance equal to the depth of the beam from the support. However,
V, is usually taken to be the maximum shear force from the diagram, which is at the support for a
simple span.

For sawn lumber, the adjusted reference shear design value is

F,, =0F,AC,,C,CKp (7.15)
For GLULAM, the adjusted reference shear design value is

F!, =¢F\C,C.C,.Ky (7.16)

For SCL, the adjusted reference shear design value is
F,, =¢FAC,,C Ky (7.17)

where
F, is tabular reference shear design value
¢ is resistance factor for shear = 0.75
A is time factor (see the “Time Effect Factor, X section in Chapter 6)
C,, is wet-service factor
C, is temperature factor
C, is incision factor
C,, is shear reduction factor
K. is format conversion factor = 2.88
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DEFLECTION CRITERIA

It should be noted that deflection is a service requirement. It is accordingly computed using the
service loads (not the factored loads).

The deflection in a beam comprises flexural deflection and shear deflection; the latter is normally
a very small quantity. The reference design values for modulus of elasticity, E, as given in NDS 2012
with adjustments as shown in Equation 7.19, include a shear deflection component, which means
that only the flexural deflection is to be considered in beam design.

However, where the shear deflection could be appreciable as on a short heavily loaded beam, it should
be accounted for separately in addition to the flexural deflection. The shear deflection is computed by
integrating the shear strain term V,,0/GIb by expressing the shear force in terms of x. The form of
the shear deflection is & = kWL/GA’, where k is a constant that depends on the loading condition, G
is modulus of rigidity, and A’ is the modified beam area. When the shear deflection is considered
separately, a shear free value of modulus of elasticity should be used. For sawn lumber and GLULAM
it is approximately 1.03 and 1.05 times, respectively, of the listed NDS reference design value.

The flexural deflection is a function of the type of loading, type of beam span, moment of inertia
of the section, and modulus of elasticity. For a uniformly loaded simple span member, the maximum
deflection at mid-span is

SwIt

o= 7.18
384E’I (718)

where
w is uniform combined service load per unit length
L is span of beam
E’ is adjusted modulus of elasticity

E’'=EC,,CC, (7.19)

E is reference modulus of elasticity
I is moment of inertia along neutral axis

However, depending on the loading condition, the theoretical derivation of the expression for
deflection might be quite involved. For some commonly encountered load conditions, when the
expression of the bending moment is substituted in the deflection expression, a generalized form of
deflection can be expressed as follows:

_ MI?
CEI

(7.20)

where
w 1s service loads combination
M is moment due to the service loads

The values of constant C are indicated in Table 7.2 for different load cases.

In a simplified form, the designed factored moment, M, can be converted to the service moment
dividing by a factor of 1.5 (i.e., M = M,/1.5). The service live load moment, M, is approximately 2/3
of the total moment M (i.e., M, =2M,/4.5). The factor C from Table 7.2 can be used in Equation 7.20
to compute the expected deflection.

The actual (expected) maximum deflection should be less than or equal to the allowable deflec-
tions, A. Often a check is made for live load alone as well as for the total load. Thus,

Max.§, <allow. , (7.21)

Max.d;; <allow. (7.22)
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TABLE 7.2
Deflection Loading Constants

Diagram of Load Condition  Constant C for Equation 7.20

w
[ EEEEEEERRARERRN
5 7 5 9.6
¢P
P P
@ L/3 T L£3 i3 # 9.39
| L
» L4 L/4LL/4 L/4 # 10.13
P w
2 20 2 2 2 A 4
L
P
4 }
El I 3

TABLE 7.3
Recommended Deflection Criteria
Classification Live or Applied Load Only Dead Load Plus Applied Load
Roof beams
No ceiling Span/180 Span/120
Without plaster ceiling Span/240 Span/180
With plaster ceiling Span/360 Span/240
Floor beams?® Span/360 Span/240
Highway bridge stringers Span/300
Railway bridge stringers Span/300-Span/400

Source: American Institute of Timber Association, Timber Construction Manual, 5th edn., John
Wiley, New York, 2005.
2 Additional limitations are used where increased floor stiffness or reduction of vibrations is desired.

The allowable deflections are given in Table 7.3
When the above criteria are not satisfied, a new beam size is determined using the allowable
deflection as a guide and computing the desired moment of inertia on that basis.

CREEP DEFLECTION

In addition to the elastic deflection discussed above, beams deflect more with time. This is known
as the creep or the time-dependent deflection. When this is foreseen as a problem, the member
size designed on the basis of elastic or short-term deflection is increased to provide for extra
stiffness.
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The total long-term deflection is computed as
8, =K,0,7 +d (7.23)

where
9, is total deflection
K, is a creep factor, = 1.5 for lumber, GLULAM, SCL
0§, 1s elastic deflection due to dead load and a portion (if any) of live load representing the
long-term design load
Oy is elastic deflection due to remaining design load representing short-term design load

Example 7.2

Design roof rafters spanning 16 ft. and spaced 16 in. on center (OC). The plywood roof sheathing
prevents local buckling. The dead load is 12 psf and the roof live load is 20 psf. Use Douglas
Fir-Larch #1 wood.

SOLUTION
A. Loads

1. Tributary area/ft. = % x1=1.333 ft./ft.

2. Loads per feet
wp =12x%1333 =16 Ib/ft.
w, =20x 1333 = 26.66 Ib/ft.

3. Loads combination
w, =12w, +1.6w,
=1.2(16)+1.6(26.66) = 61.86|b/ft.
4. Maximum BM

2 2
M, = ng UL '82)(1 OF _1974.52ft b or 23.75 in.—k

5. Maximum shear
v, = w,L _ (61.86)(16)
2
B. Reference design values (Douglas Fir-Larch #1, 2 in. and wider)
1. F,=1000 psi
2. F,=180 psi
3. £=1.7x10° psi
4. E,;,=0.62 x 10° psi
C. Preliminary design
1. Initially adjusted bending design value

Fy, (estimated) = OF,AC,K,
=(0.85)(1000)(0.8)(1.15)(2.54) = 1986

=494.9Ib

23.7 1
2. Seqd = M. _ (2375 1000) 4,
Fy, (estimated) 1986
3. Try2 in.x8in.5=13.14in2?
A=10.88in.2

I=47.63in.*



134 Principles of Structural Design

D. Revised design
1. Adjusted reference design values

Reference Design Values (psi) i} A C; C K F;,, (psi)

FLe 1000 085 08 1.2 115 254 2384
F, 180 075 08 — — 2.88 311
E' 1.7 x 10° — — - — — 1.7 x 10°
E, 0.62 x 10° 08 — — — 1.76  0.93 x 10°

min(n)

2 Without the C, factor.

2. Beam stability factor C, = 1.0
E. Check for bending strength
Bending capacity =F},S
= (2384)14.14) =3133>23.75in.—k OK
1000

F. Check for shear strength

Shear capacity = F,, (%) =31 1(§x10.88) =2255Ib > 494.5lb OK

G. Check for deflection
1. Deflection is checked for service load, w = 16 + 26.66 = 42.66 Ib/ft.
5wkt 5 (42.66)1 6)*(12)
7384 F'1 384 (1.7x10°)(47.63)
3. Allowable deflection (w/o plastered ceiling)
L 16x12

T180 180

=0.78in.

=1.07in. > 0.78in. OK

Example 7.3

A structural GLULAM is used as a beam to support a roof system. The tributary width of the beam
is 16 ft. The beam span is 32 ft. The floor dead load is 15 psf and the live load is 40 psf. Use
Douglas Fir GLULAM 24F-1.8E. The beam is braced only at the supports.

SOLUTION

A. Loads
1. Tributary area/ft. = 16 x 1 = 16 ft.%/ft.
2. Loads per feet

Wy, =15x16 = 240 Ib/ft.

w, =40x16 = 640 Ib/ft.
3. Designload, w, =1.2w, +1.6w,

=1.2(240) +1.6(640) = 1312 Ib/ft. or 1.31k/ft.
4. Design bending moment
w2 (131)(32)

M, 3 =T=167.68ft.—k0r2012.16in.—k
5. Design shear
oWl 13182

v
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B. Reference design values
F, = 2400 psi
F, =265 psi
E=1.8x10°psi
E,miny = 0.83 X 10° psi
C. Preliminary design
1. Initially adjusted bending reference design value
F, (estimated) = 0F LK,
= (0.85)(2400)(0.8)(2.54)= 4145 psi or 4.15 ksi
2012.16 .
2. Spqa = =484.86in”
4.15
Try 5)5in.x24in. S =528in.3
A=132in.2
1=6336in.*
D. Revised adjusted design values
Type Reference Design Values (psi) o A K: F;, (psi)
F,* 2400 0.85 0.8 2.54 4145
F), 265 0.75 0.8 2.88 457.9
E' 1.8 x 10° — — — 1.8 x 10°
E 0.83 x 10° 0.85 — 1.76 1.24 x 106

min(n)

Note: Fy,* is reference bending design value adjusted for all factors except C,, C,, and C;.

E. Volume factor, C,
C _(5'125)1/10[EleO(EJ]HO
Y b d L

1710 110 1/10
(2] o
5.5 24 32
F. Beam stability factor, C,
From Example 7.1, C, = 0.60
Since C, < C,, use the C, factor
G. Bending capacity
1. Fp, = (4145)(0.6) = 2487 psi or 2.49 ksi
2. Moment capacity = F},S
=2.49(528)
=1315in.—k < 2012.16(M,) NG

A revised section should be selected and steps E, F, and G should be repeated.

H. Check for shear strength*

Shear capacity = F, (?) = 457.9[% x1 32) =40295Ibor40.3k>20.29k OK

. Check for deflection
1. Deflection checked for service load w = 240 + 640 = 880 Ib/ft.

5 wlt 5 (880)(32)4(12)° .
b=— =2 0 S g)in,
384 El 384 (1.8x10°)(6336)

* Based on the original section.
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3. Permissible deflection (w/o plastered ceiling)

L _32X12_ 5 13in>1.82in. OK
180 180
BEARING AT SUPPORTS

The bearing perpendicular to the grains occurs at the supports or wherever a load-bearing member
rests onto the beam, as shown in Figure 7.3. The relation for bearing design is

P,=F. A (7.24)

The adjusted compressive design value perpendicular to grain is obtained by multiplying the
reference design value by the adjustment factors. Including these factors, Equation 7.19 becomes
For sawn lumber,

P,=o¢F. \C},,C,C.C,K A (7.25)
For GLULAM and SCL,
P, =0F. AC,,C,C,K A (7.26)

where
P, is reaction at the bearing surface due to factored load on the beam
F_. is reference compressive design value perpendicular to grain
F’c., is adjusted compressive design value perpendicular to grain
¢ is resistance factor for compression = 0.9
A is time effect factor (see the “Time Effect Factor, A’ section in Chapter 6)
C,, is wet-service factor
C, is temperature factor
C, is incision factor
C, is bearing area factor as discussed below
K. is format conversion factor for bearing = 1.875/¢
A is area of bearing surface

Bearing

% area

55—

FIGURE 7.3 Bearing perpendicular to grain.
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BEARING AREA FacTOR, G,

The bearing area factor is applied only to a specific case when the bearing length /, is less than 6 in.
and also the distance from the end of the beam to the start of the contact area is larger than 3 in.,
as shown in Figure 7.4. The factor is not applied to the bearing surface at the end of a beam, which
may be of any length, or where the bearing length is 6 in. or more at any other location than the end.
This factor accounts for the additional wood fibers that could resist the bearing load. It increases the
bearing length by 3/8 in. Thus,

1, +3/8
C =

b lb

(7.27)
where /,, the bearing length, is the contact length parallel to the grain.

Example 7.4

For Example 7.3, determine the bearing surface area at the beam supports.

SOLUTION

1. Reaction at the supports
Cw,l 13132)

2

2. Reference design value for compression perpendicular to grains, fe., =650 psi

3. Initially adjusted perpendicular compression reference design value

ip = OF ACyCC K,
=0.9(650)(0.8)(1)(1)(1.67) = 782 psi or 0.782 ksi

R =20.96k

R, _20.
b Ay = e 22090 5650
F., 0782
5. Initial bearing length
/b = é = —268 =4.87 in.
b 55

6. Bearing area factor

I, +3/8 _ 4.87+0375
Iy 4.87

7. Adjusted perpendicular compression design value

C, =108

£, =0.782 (1.08) = 0.84

Less than < >
6 in. \_/ More than 3 in. ,
>

?—H End of beam
3).
(lb +§)ll’l.

FIGURE 7.4 Bearing area factor.
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R
8. A= — :M = 24.95 in.?
F. 084
9. Bearing length, /, = 2495 _ 4.54 in.

DESIGN OF AXIAL TENSION MEMBERS

Axially loaded wood members generally comprise studs, ties, diaphragms, shear walls, and trusses
where loads directly frame into joints to pass through the member’s longitudinal axis or with a very
low eccentricity. These loads exert either tension or compression without any appreciable bending
in members. For example, a truss has some members in compression and some in tension. The
treatment of a tensile member is relatively straightforward because only the direct axial stress is
exerted on the section. However, the design is typically governed by the net section at the connec-
tion because in a stretched condition, an opening separates out from the fastener.
The tensile capacity of a member is given by

T,=F, A, (7.28)

Axial tension members in wood generally involve relatively small force for which a dimensional
lumber section is used, which requires inclusion of a size factor.

Including the adjustment factors, the tensile capacity is represented as follows:

For sawn lumber,

T, = 0FAC, C,CrCK A, (7.29)

For GLULAM and SCL,
7-:4 = ¢F;7\‘CMC1KFAn (730)

where
T, is factored tensile load on member
F, is reference tension design value parallel to grain
F,, is adjusted tension design value parallel to grain
¢ is resistance factor for tension = 0.8
A is time effect factor (see the “Time Effect Factor, X’ section in Chapter 6)
C,, is wet-service factor
C, is temperature factor
C, is incision factor
C is size factor for sawn dimension lumber only
K. is format conversion factor for tension = 2.70
A, is net cross-sectional area as follows:

A=A, ~ZA, (7.31)

where
A, is gross cross-sectional area

ZAh is sum of projected area of holes

In determining the net area of a nail or a screw connection, the projected area of the nail or screw
is neglected. For a bolted connection, the projected area consists of rectangles given by

XA, =nbh (7.32)
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where

n is number of bolts in a row

b is width (thickness) of the section

h is diameter of the hole, usually d +1/16 in.
d is diameter of the bolt

Example 7.5

Determine the size of the bottom (tension) chord of the truss shown in Figure 7.5. The service
loads acting on the horizontal projection of the roof are dead load = 20 psf and snow load =
30 psf. The trusses are 5 ft. on center. The connection is made by one bolt of 3/4 in. diameter in
each row. Lumber is Douglas Fir-Larch #1.

SOLUTION
A. Design loads

1.

2.
3.
4.

Factored unit loads = 1.2D + 1.65 = 1.2(20) + 1.6(30) = 72 psf
Tributary area, ft.2/ft. =5 x 1 =5 ft.%/ft.

Load/ft., w, = 72(5) = 360 Ib/ft.

Load at joints

Exterior = 360(%) =1350 Ib or 1.35k

Interior =360(7.5)=27001b or 2.7 k

B. Analysis of truss

1.
2.

2.7
Reactions at A and E: A, =135+ 3(7) =5.4k

For members at joint A, taking moment at H,
(54-135)7.5-F (5)=0

F.s =6.075k

Foo = Fiy =6.075k

C. Reference design value and the adjustment factors

1. F,=675psi
2. =028
3. $=08
4. Assume a size factor C, = 1.5, which will be checked later
5. K, =2.70
6. F;,=1(0.8)(675)(0.8)(1.5)(2.7) = 1750 psi or 1.75 ksi
D. Design
1 Ay =2 =29 3474
: F,, 175
o Wa =360 Ib/ft.
VYV VY YYYYYYYYYYYYVYIIYYYYY
G
AF
H F 2)Fft.
5 ft.
A E ;L
47> B C D N
* 4at7.5 ft. 2N
FIGURE 7.5 Roof truss of Example 7.5.
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2. For one bolt in a row and an assumed 2-in.-wide section,
hzi+i=0.813in.
4 16

D nbh=(1(1.510.813)=1.22in.?
3. A=A+ A =347 +122 = 469 in2

Selecta 2 in.x 4 in. section, A=5.25in.?
4. Verify the size factor and revise the adjusted value if required

For 2 in.x 4 in., C; = 1.5 the same as assumed

DESIGN OF COLUMNS

The axial compression capacity of a member in terms of the nominal strength is
P, =F,A (7.33)

In Equation 7.28, F, is the adjusted LRFD reference design value for compression. To start with,
the reference design compression value, F,, for the appropriate species and grade is ascertained.
These values are listed in Appendices B.2 through B.4 for sawn lumber and Appendices B.7 through
B.9 for GLULAM and SCL. Then the adjusted value is obtained multiplying the reference value
by a string of factors. The applicable adjustment factors for sawn lumber, GLULAM, and SCL are
given in Tables 6.5 through 6.7 of Chapter 6, respectively.

For sawn lumber, the adjusted reference compression design value is

F!, =6F\C,C,CrC:CpoK (7.34)
For GLULAM and SCL, the adjusted reference compression design value is

F! = F.\C,,C,C,K, (7.35)

where
F_ is tabular reference compression design value parallel to grain
¢ is resistance factor for compression = 0.90
A is time factor (see the “Time Effect Factor, A’ section in Chapter 6)
C,, is wet-service factor
C, is temperature factor
C is size factor for dimension lumber only
C, is incision factor
C, is column stability factor, discussed below
K, is format conversion factor = 2.40

Depending on the relative size of a column, it might act as a short column when only the direct
axial stress will be borne by the section or it might behave as a long column with a possibility of
buckling and a corresponding reduction of the strength. This latter effect is considered by a column
stability factor, Cp. As this factor can be ascertained only when the column size is known, the
column design is a trial procedure.

The initial size of a column is decided using an estimated value of F,, by adjusting the reference
design value, F,, for whatever factors are initially known in Equation 7.34 or 7.35.

On the basis of the trial section, F}, is adjusted again from Equation 7.34 or 7.35 using all relevant
modification factors and the revised section is determined from Equation 7.33.
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COLUMN STABILITY FACTOR, C,

As stated, the column stability factor accounts for buckling. The slenderness ratio expressed as KL/r
is a limiting criteria of buckling. For wood, the slenderness ratio is adopted in a simplified form as
KL/d, where d is the least dimension of the column section. The factor, K, known as the effective
length factor, depends on the end support conditions of the column. The column end conditions are
identified in Figure 7.6 and the values of the effective length factors for these conditions are also

indicated therein.
When a column is supported differently along the two axes, the slenderness ratio K is determined

with respect to each axis and the highest ratio is used in design.

The slenderness ratio should not be greater than 50.
The expression for a column stability factor is similar to that of the beam stability factor, as

follows:
2
1+ 1+
C,= By 1By _(B (7.36)
2c 2c c
where
F.
B=—dn (7.37)
F,
Translation fixed Translation free
Buckling mode No sway Sway
Braced frame case Unbraced frame case
One One One
" Both fixed Both Both fixed fixed
End conditions
ends one ends ends one one
fixed hinged | hinged fixed hinged free
v |y vy
LA I 33
A 7 7.
Theoretical value 0.5 0.7 1.0 1.0 2.0 2.0
Recommended value 0.65 0.80 1.0 1.2 2.0 2.10
V Rotation fixed, translation fixed
. % Rotation free, translation fixed
End condition code
72 Rotation fixed, translation free
Q Rotation free, translation free

FIGURE 7.6 Buckling length coefficients, K.
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where
F’ is reference design value for compression parallel to grain adjusted by all factors except Cp
F_;, is Euler critical buckling stress

c

= 0.822E,,, ) (7.38)
(KL/d)?
Use the E’,,,,, value corresponding to the d dimension in the equation. Determine F,, for both

axes and use the smaller value.

% <50 (739

where E;,, ., is adjusted modulus of elasticity for buckling.
For sawn lumber,

Er’m'n(n) =0E,,;,,Cy,C.C.CrKy (7.40)
For GLULAM and SCL,
E;m'n(n) = q)EminCMCtKF (7.41)
where
¢ is buckling—crushing interaction factor (0.8 for sawn lumber; 0.85 for round timber poles;
0.9 for GLULAM or SCL)

¢ (=0.89) is resistance factor for stability modulus of elasticity
C; is buckling stiffness factor applicable to limited cases as explained in Chapter 6
K. (=1.76) is format conversion factor for stability modulus of elasticity

The column behavior is dictated by the interaction of the crushing and buckling modes of fail-
ure. When C, is 1, the strength of a column is F} (the adjusted reference compressive design value
without Cp), and the mode of failure is by crushing. As the C, reduces, that is, the slenderness ratio
is effective, the column fails by the buckling mode.

Example 7.6

Design a 12-ft.-long simply supported column. The axial loads are dead load = 1500 Ib, live
load = 1700 Ib, and snow load = 2200 Ib. Use Southern Pine #1.

SOLUTION

A. Loads
The controlling combination is the highest ratio of the factored loads to the time effect
factor.
1 1.4D _ 1.4(1500) ~35001b

A
2. 1.2D+1.6L+0.55 _ 1.2(1500) +1.6(1700) + 0.5(2200) —70251b
A 0.8

3. 1.2D +1 .fS +0.5L _ 1.2(1500) +1 .6(5;00)+ 0.5(1700) —7713|b < Controls

So, P, =12D+1.65+0.5L=61701b
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B. Reference design values:
For 2- to 4-in.-wide section
F.= 1850 psi
E=1.7x10° psi
E, pin = 0.62 X 108 psi
C. Preliminary design
F/, = 6F.A K, =(0.9)(1850)(0.8)(2.40) = 3196.8 psi
_ 6170
77 3196.8
Try 2in.x 4 in. section, A=5.25in.?

=193in.?

D. Adjusted design values

143

Type Reference Design Values (psi) ) A Cr
Compression 1850 0.9 0.8 1
E 1.7 x 10° — — —
E,. 0.62 x 10° 0.85 — —

K¢
2.40

1.76

Fin(psi)
3196.8(F)
1.7 x 10°
0.937 x 10°

E. Column stability factor
1. Both ends hinged, K= 1.0

). KL_112x12)

d 1.5
3. Revise the sectionto 4 in. x 4 in.,, A = 12.25 in.?

4 KL_102x12)

=96>50 NG

=41.14<50 OK

d 3.5
.822(0. 100
5. Fpy= 282208 XA0D _ 5y 65 i
(41.14)?
6 pofm 45168 _ 0.,
E 3196.8
2
- o2
2c 2c c

114 (1‘14)2_(0.14)
G 1.6 0.8
=0.713-4/(0.508) - (0.175) = 0.136

F. Compression capacity

1. B =FCA

=(3196.8)(0.136)(12.25)=5325lb < 61701b NG
Use section 4 in.x6in.,, A=19.25in.?

2. KL/d=41.14

3. F, =451.68 psi for the smaller dimension

4. p=0.14

5. C,=0.136

6. Capacity = (3196.8)(0.136)(19.25) = 8369 > 6170 b OK

DESIGN FOR COMBINED BENDING AND COMPRESSION

The members stressed simultaneously in bending and compression are known as beam-columns.
The effect of combined stresses is considered through an interaction equation. When bending
occurs simultaneously with axial compression, a second order effect known as the P-A moment
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takes place. This can be explained as follows. First consider only the transverse loading that causes
a deflection, A. Now, when an axial load P is applied, it causes an additional bending moment equal
to P-A. In a simplified approach, this additional bending stress is not computed directly. Instead, it
is accounted for indirectly by amplifying the bending stress component in the interaction equation.
This approach is similar to the design of steel structures.

The amplification is defined as follows:

1
Amplification factor = (

1— B ] (7.42)
F‘cEx(n)A

where F,, is the Euler-based stress with respect to the x axis slenderness as follows:

0.822E7 vty (7.43)

(KL/d)?

E‘Ex(n) =

where
E;,ixn 18 given by Equation 7.40 or 7.41

E. .. 1s stability modulus of elasticity along the x axis

xmin

(KL/ d )X is slenderness ratio along the x axis

As P-A increases, the amplification factor or the secondary bending stresses increases.

From Equation 7.42, the amplification factor increases with a larger value of P,. The increase
of A is built into the reduction of the term Fg,,.

In terms of the load and bending moment, the interaction formula is expressed as follows:

2
P 1 M
“ + =<1 (7.44)
;A [1 P, \\F.S
E‘Ex(n)A
where
F}, is reference design value for compression parallel to grain adjusted for all factors (see
Equations 7.34 and 7.35)

F gy (see Equation 7.43)

F, is reference bending design value adjusted for all factors (see Equations 7.2 through 7.4)
P, is factored axial load

M, is factored bending moment

A is area of cross section

S is section modulus along the major axis

It should be noted that while determining the column adjustment factor Cp, F., in Equation 7.38 is
based on the maximum slenderness ratio (generally with respect to the y axis is used), whereas the
F .z, (in Equation 7.43) is based on the x axis slenderness ratio.

Equation 7.44 should be evaluated for all the load combinations.

The design proceeds with a trial section that in the first iteration is checked by the interaction for-
mula with the initial adjusted design values (without the column and beam stability factors) and with-
out the amplification factor. This value should be only a fraction of 1, preferably not exceeding 0.5.

Then the final check is made with the fully adjusted design values including the column and
beam stability factors together with the amplification factor.



Flexure and Axially Loaded Wood Structures

Example 7.7
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A 16-ft.-long column in a building is subjected to a total vertical dead load of 4 k, and a roof live
load of 5 k. Additionally a wind force of 200 Ib/ft. acts laterally on the column. Design the column

of 2DF GLULAM.

SOLUTION

A. Load combinations
a. Vertical loads
1. 14D =14(4)=56k
2. 12D+ 1.6L + 0.5L,=1.2(4) + 1.6(0) + 0.5(5) = 7.3 k
3. 12D+ 1.6L,+ 0.5L = 1.2(4) + 1.6(5) + 0.5(0) = 12.8 k
b. Vertical and lateral loads

4. 1.2D + 1.6L, + 0.5W broken down into (4a) and (4b) as follows:

4a. 1.2D + 1.6L, = 1.2(4) + 1.6(5) = 12.8 k (vertical)
4b. 0.5W = 0.5(200) = 100 Ib/ft. (lateral)

5. 1.2D + 1.0W + 0.5L + 0.5L, broken down into (5a) and (5b) as follows:

5a. 1.2D + 0.5L, + 0.5L = 1.2(4) + 0.5(5) = 7.3 k (vertical)
5b. 1.0W = 1(200) = 200 Ib/ft. (lateral)

Either 4 (4a + 4b) or 5 (5a + 5b) could be critical. Both will be evaluated.

B. Initially adjusted reference design values

Property Reference Design Values (psi) ¢ A K
Bending 1,700 0.85 0.8 2.54
Compression 1,950 0.90 0.8 2.40
E 1.6 x 10° — —
E,pin 830,000 0.85 - 1.76
E. 830,000 0.85 — 1.76

y min

(psi)
2,936
3,369.6
1.6 x 10°
12,420,000
12,420,000

(ksi)
2.94
3.37
1.6 x 10°
1.242 x 103
1.242 x 103

Design Load case 4:
C. Design loads

P, =12.8k
2 2
M, = % = % =3200 ft.-Ib 38.4 in.-k

D. Preliminary design
1. Trya5)in. X 7% in. section, S, = 48.05 in.> A = 38.44 in.?

2. Equation 7.37 with the initial design values but without the amplification factor

2
|: 12.8 :| +[ 38.4 ]: 0.27 a small fraction of T OK
3.37(38.44) 2.94(48.05)

E. Column stability factor, C,
1. Hinged ends, K =1

2. kud), =00XTD 37 46050 oK
5.125
3
3 p, 2082202423100 o)
(37.46)
4. p=t J0728 6516

F, 337
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5. ¢=0.9 for GLULAM
2
c, :[1+O.216}_ (1+0.216) _(0.216) 021
(2)(0.9) 2(0.9) 0.9
7. F,,=3.37(0.21) = 0.71 ksi
F. Volume factor, C,

125\/10 12110 £ 9710 125\/10 7 12 \V10 5 1\10
¢ -[(32 5] (2] (—) -3 (—j (2] =107, wero
b d L 5.125 7.5 16

G. Beam stability factor

10 L1602 o643
d 75
[, =1.84L,=1.84(16x12)=353.28in.

Ld [(353.28)(7.5)
2. = /e = 2222220 10,04
Ro b2 (5.125)2 0.0

12(1.242x 103
3. Ry = (—2) =14.82
(10.04)
F
4 =t 1482 o,
Flx  2.94

2
5. C =(1+5.o4)_ (1+5.04) _(5.04) 099
1.9 1.9 0.95
6. F, =(2.94)0.99) = 2.91 ksi
H. Amplification factor

1. Based on the x axis, (KL/d), = 1(1677212) =25.6

F 2 0822E,
2. DB T (K1yd) x?
~0.822(1.242x10°)

. =156
(25.6)

1

(1 - (FL/FcEx(n)A))
1 1

= = =1.27
1-(12.8/(1.56)(38.44)) 0.787

. Interaction equation, Equation 7.36

2
[ 12.8 } +[ 1.27(38.4) }=0.22+0.35=0.57<1 OK
(0.71)(38.44) (2.91)(48.05)

3. Amplification factor =

I1. Design load case 5:
J. Design loads

P, =73k

w2 200(16)?

M, = = 6400 ft.-Ib or 76.8 in.-k
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K. Column stability factor, C, = 0.21 and F, = 0.71 ksi from step E
L. Beam stability factor, C, = 0.99 and £, = 2.91 ksi from step G
M. Amplification factor

1
(1= (P, [FopyA)
1 1

= = =1.14
[1-(7.3/(1.56)(38.44))] 0.878

L. Interaction equation, Equation 7.36

7.3 ]2 {1.14(76.8)
L

|: ]=0.07+O.626=O.7<1 OK
(0.71)(38.44 2.91)(48.05)

PROBLEMS

7.1

7.2
7.3

7.4

7.5

Design the roof rafters with the following information: check for shear and deflection.
. Span: 10 ft.

. Spacing: 16 in. on center (OC)

. Species: Southern Pine #1

. Dead load = 15 psf

. Roof live load = 20 psf

. Roof sheathing provides the full lateral support

Design the beam in Problem 7.1 except that the beam is supported only at the ends.
Design the roof rafters in Figure P7.1 with the following information:

1. Spacing 24 in. on center

2. Species: Douglas Fir-Larch #1

3. Dead load: 15 psf

4. Snow load: 40 psf

5. Wind load (vertical): 18 psf

6. Unbraced length: support at ends only

Design the floor beam in Figure P7.2 for the following conditions:

1. Span, L =12 ft.

2. P, =500 1b (service)

3. P, =1000 Ib (service)

4. Unbraced length: one-half of the span

5. Species: Hem Fir #1

Design the beam in Problem 7.4 for the unbraced length equal to the span.

[ R R S

3 12 ft. Ny

12
~ 4

FIGURE P7.1 Roof rafters for Problem 7.3.
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Pp=15001b
P, = 1000 Ib
| l ]
A 7
K 12 ft. ¥

FIGURE P7.2 Floor beam for Problem 7.4.

P, =4001b

W, = 100 Ib/ft.

X«

A L;=10ft.

Ly=4ft. —
FIGURE P7.3 Floor beam for Problem 7.6.

J— 20 ft. —F—20 ft. —F—20 ft. —F—20 ft. —F
S

-
20 ft.

5 O = s

t Girder

20 ft.

5 O = e
20 ft.

X AL

/ 8 ft.f
Joists at 24
in. OC Beam

FIGURE P7.4 Floor framing plan for Problem 7.7.

7.6  Design the floor beam in Figure P7.3 with the following information:
1. w, =100 Ib/ft. (service)
2. P, =400 Ib (service)
3. Species: Douglas Fir-Larch Select Structural
4. Unbraced length: at the supports
5. The beam section should not be more than 10 in. deep.
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7.7 The floor framing plan of a building is shown in Figure P7.4.
Dead loads are as follows:
Floor = 12 psf
Joists = 7 psf
Beams = 9 psf
Girders = 10 psf
Live load = 40 psf
Design the beams of Southern Pine select structural timber. The beam is supported only
at the ends. The beam should not have more than 12 in. depth.

7.8 Design girders for Problem 7.7 of 24F-1.8E Southern Pine GLULAM of 6% in. width hav-
ing a lateral bracing at the supports only.

7.9 A Douglas Fir structural GLULAM of 24F-1.8E is used to support a floor system. The
tributary width of the beam is 12 ft. and the span is 40 ft. The dead and live loads are
15 psf and 40 psf, respectively. Design a beam of 10%; width, braced only at the supports.

7.10 To the beam shown in Figure P7.5 the loads are applied by purlins spaced at 10 ft. on
center. The beam has lateral supports at the ends and at the locations where the purlins
frame onto the beam. Design the beam of 24F-1.8E Douglas Fir GLULAM. Use 8%-wide
section.

7.11 Design Problem 7.10. The beam is used flat with bending along the minor axis. Use
10¥%-wide section.

7.12 Design the bearing plate for the supports from Problem 7.4.

7.13 Design the bearing plate for the supports from Problem 7.9.

7.14 Determine the length of the bearing plate placed under the interior loads of the beam from
Problem 7.10.

7.15 Roof trusses, spanning 24 ft. at 4 ft. on center, support a dead load of 16 psf and a snow
load of 50 psf only. The lumber is Hem Fir #1. The truss members are connected by a single
row of 3/4-in. bolts. Design the bottom chord. By truss analysis, the tensile force due to
the service loads in the bottom chord members is 5.8 k. Assume the dry wood and normal
temperature conditions.

[Hint: Divide the force in the chord between dead and snow loads in the above ratio of unit
loads for factored load determination.]

7.16 A Warren-type truss supports only dead load. The lumber is Douglas Fir-Larch #2. The
end connection consists of two rows of 1/2-in. bolts. Determine the size of the tensile mem-
ber. By truss analysis, the maximum force due to service load in the bottom chord is 5.56 k
tension. Assume dry wood and normal temperature conditions.

7.17 Design a simply supported 10-ft.-long column using Douglas Fir-Larch #1. The loads com-
prise 10 k of dead load and 10 k of roof live load.

7.18 Design a 12-ft.-long simply supported column of Southern Pine #2. The axial loads are
dead load = 1000 Ib, live load = 2000 Ib, and snow load = 2200 1b.

7.19 Design the column from Problem 7.18. A full support is provided by the sheeting about the
smaller dimension.

1.0k DL 1.0k DL 1.0kDL 1.0kDL
2.0k SL 4.0k SL 4.0k SL 2.0k SL
] | | ,
”

F— 10 ft.—F 10 ft. # 10 ft. —

FIGURE P7.5 Load on beam by purlins for Problem 7.10.
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7.20 What is the largest axial load that can be applied to a 4 in. X 6 in. #1 Hem Fir Column? The
column is 15 ft. long, fixed at the both ends.

7.21 A 6 in. X 8 in. column carries dead and snow loads of equal magnitude. The lumber is
Douglas Fir-Larch #1. If the unbraced length of the column, which is fixed at one end and
hinged at the other end, is 9 ft., what is the load capacity of the column?

7.22 Determine the axial compression capacity of a 20-ft.-long GLULAM 6% in. X
11 in. column, hinged at both ends, of SPN1DI4 Southern Pine of more than four
lamination.

7.23 Determine the capacity column from Problem 7.22. It is braced at the center in the weaker
direction.

7.24 A GLULAM column of 24F-1.8E Douglas Fir carries a dead load of 20 k and a roof live
load of 40 k. The column has a simply supported length of 20 ft. Design an 8%, in.-wide
column.

7.25 The column in Problem 7.24 is braced along the weaker axis at 8 ft. from the top. Design
a 6% in.-wide column.

7.26 A2 in. X 6 in. exterior stud wall is 12 ft. tall. The studs are 16 in. on center. The studs carry
the following vertical loads per foot horizontal distance of the wall:

Dead = 400 Ib/ft.

Live = 1000 Ib/ft.

Snow = 1500 Ib/ft.

The sheathing provides the lateral support in the weaker direction. The lumber is Douglas
Fir-Larch #1. Check the studs. Assume a simple end support condition and that the loads
on studs act axially.

7.27 The first floor (10 ft. high) bearing wall of a building consists of 2 in. X 6 in. studs at
16 in. on center. The following roof loads are applied: roof dead load = 10 psf, roof live
load = 20 psf, wall dead load = 5 psf, floor dead load = 7 psf, live load = 40 psf, lateral
wind load = 25 psf. The tributary width of the roof framing to the bearing wall is 8 ft. The
sheathing provides a lateral support to studs in the weaker direction. Check whether the
wall studs made of Douglas Fir-Larch #2 are adequate.

7.28 A beam column is subjected to an axial dead load of 1 k, a snow load of 0.8 k, and a lat-
eral wind load of 160 Ib/ft. The column height is 10 ft. Design a beam-column of section

4 x  of Southern Pine #1.
7.29 A tall 20-ft.-long building column supports a dead load of 4 k and a live load of 5 k along
with a lateral wind load of 240 Ib/ft. Design a beam-column of 5§ in. X ____ section made

of 2DFL2 GLULAM, more than four lamination.

7.30 A vertical 4 in. X 12 in. Southern Pine dense #1, 12-ft.-long member is embedded at the
base to provide the fixidity. The other end is free to sway without rotation along the weaker
axis and is hinged along the strong axis. The bracing about the weak axis is provided at
every 4 ft. by wall girts and only at the ends about the strong axis. The dead load of 1000 Ib
and the roof live load of 4000 Ib act axially. A uniform wind load of 240 Ib/ft. acts along
the strong axis. The sheathing provides a continuous lateral support to the compression
side. Check the member for adequacy.

[Hint: Consider that the member is fixed at one end and has a spring support at the other
end. For such a case, take the design end bending moment to be 70% of the maximum
bending moment on the column acting like a cantilever.]

7.31 Solve Problem 7.30 when no lateral support to the compression side is provided. If a
4 in. X 12 in. section in not adequate, select a new section of a maximum 12 in. depth.

7.32 Choose a 5-in.-wide Southern Pine SPN1D14 GLULAM column supporting two beams,
as shown in Figure P7.6. The beam reactions cause bending about the major axis only. The
bottom is fixed and the top is hinged.
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Ry Rp

Y A4

2 in. :ﬁ

Beam A Beam B

Beam A reaction R,

D; = 2000 Ib
S; = 8000 Ib

Beam B reaction Ry

14 ft. Dy =2001b
S, = 2000 Ib

FIGURE P7.6 Column supporting two beams for Problem 7.32.






8 Wood Connections

TYPES OF CONNECTIONS AND FASTENERS

Broadly there are two types of wood connections: (1) the mechanical connections that attach
members with some kind of fasteners and (2) the adhesive connections that bind members chem-
ically together under controlled environmental conditions such as that seen in glued laminated
timber (GLULAM). The mechanical connections, with the exception of moment splices, are not
expected to transfer any moment from one element to another. The mechanical connections are
classified according to the direction of load on the connector. Shear connections or lateral load con-
nections have the load or the load component applied perpendicular to the length of the fastener. The
withdrawal connections have the tensile load applied along (parallel to) the length of the fastener.
When the load along the fastener length is in compression, a washer or a plate of sufficient size is
provided so that the compressive strength of the wood perpendicular to the grain is not exceeded.
The mechanical type of connectors can be grouped as follows:

1. Dowel-type connectors

2. Split ring and shear plate connectors
3. Timber rivets

4. Pre-engineered metal connectors

Dowel-type connectors comprising nails, staples and spikes, bolts, lag bolts, and lag screws are
the common type of fasteners that are discussed in this chapter. The post-frame ring shank nails
that were the part of earlier specifications but were not included in the National Design Specification
(NDS) 2005 have been reintroduced in 2012 specifications. The split ring and shear plate connectors
fit into precut grooves and are used in shear-type connections to provide additional bearing area
for added load capacity. Timber rivets or GLULAM rivets are nail-like fasteners of hardened steel
(minimum strength of 145 ksi) with a countersunk head and rectangular-shaped cross section; they
have no similarity to steel rivets. These are primarily used in GLULAM members for large loads.

Pre-engineered metal connectors comprise joist hangers, straps, ties, and anchors. These are
used as accessories along with dowel-type fasteners. They make connections simpler and easier to
design and in certain cases, such as earthquakes and high winds, are an essential requirement. The
design strength values for specific connectors are available from the manufacturers.

DOWEL-TYPE FASTENERS (NAILS, SCREWS, BOLTS, PINS)
The basic design equation for dowel-type fasteners is
R,orRy <NZ, 8.1)

where
R, is factored lateral design force on a shear-type connector
R, is factored axial design force on a withdrawal-type connector
N is number of fasteners

153



154 Principles of Structural Design

Z, is adjusted reference design value of a fastener given as
Z! = reference design value (Z) x adjustment factors 8.2)

The reference design value, Z, refers to the basic load capacity of a fastener. The shear-type
connections rely on the bearing strength of wood against the metal fastener or the bending yield
strength of the fastener (not the shear rupture of the fastener as in steel design). The withdrawal-type
connections rely on the frictional or interfacial resistance to the transfer of loads. Until the 1980s,
the capacities of fasteners were obtained from the empirical formulas based on field and laboratory
tests. However, in the subsequent approach, the yield mechanism is considered from the principles
of engineering mechanics. The yield-related approach is limited to the shear-type or laterally loaded
connections. The withdrawal-type connections are still designed from the empirical formulas.

YIELD LIMIT THEORY FOR LATERALLY LOADED FASTENERS

The yield limit theory considers the various modes (limits) by which a connection can yield under a
lateral load. The capacity is computed for each mode of yielding. Then the reference value is taken
as the smallest of these capacities.

In yield limit theory, the primary factors that contribute to the reference design value comprise
the following:

1. Fastener diameter, D

2. Bearing length, /

3. Dowel-bearing strength of wood, F,,, controlled by the (1) specific gravity of wood;
(2) angle of application of load to the wood grain, 0; and (3) relative size of the fastener

4. Bearing strength of metal side plates, F,,

5. Bending yield strength, F,

A subscript m or s is added to the above factors to indicate whether they apply to the main
member or the side member. For example, /,, and [, refer to bearing lengths of the main member and
side member, respectively. For bolted connections, the bearing length / and member thickness are
identical, as shown in Figure 8.1.

For nail, screw, or lag bolt connections, the bearing length of the main member, /,, is less than
the main member thickness, as shown in Figure 8.2.

Single-shear bolted connections Double-shear bolted connections
D D

e e

t,= ls § | | ty= ls
t,=1 *

| | v v
t,=1
? s s

FIGURE 8.1 Bearing length of bolted connection.

i, ty> 1,
\—I_/i ts=lSI

FIGURE 8.2 Bearing length of nail or screw connection.
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Depending on the mode of yielding, one of the strength terms corresponding to items 3, 4, or 5
above or their combinations are the controlling factor(s) for the capacity of the fastener. For exam-
ple, in the bearing-dominated yield of the wood fibers in contact with the fastener, the term F,,
for wood will be a controlling factor; for a metal side member used in a connection, the bearing
strength of metal plate F,, will control.

For a fastener yielding in bending with the localized crushing of the wood fibers, both F,, and
F,, will be the relevant factors. The various yield modes are described in the “Yield Mechanisms
and Yield Limit Equations” section.

1. The dowel-bearing strength of wood, also known as the embedded strength, F,,, (item 3
above), is the crushing strength of the wood member. Its value depends on the specific
gravity of wood. For large-diameter fasteners (>1/4 in.), the bearing strength also depends
on the angle of load to grains of wood. The NDS provides the values of specific gravity, G,
for various species and their combinations and also includes the formulas and tables for the
dowel-bearing strength, F,,, for the two cases of loading—the load acting parallel to the
grains and the load applied perpendicular to the grains.

2. The bearing strength of steel members (item 4 above) is based on the ultimate tensile
strength of steel. For hot-rolled steel members (usually of thickness >1/4 in.), F,, = 1.5 F,,
and for cold-formed steel members (usually <1/4 in.), F,, = 1.375 F,,.

3. The fastener bending yield strength, F, (item 5 above), has been listed by the NDS for
various types and diameters of fasteners. These values can be used in the absence of the
manufacturer’s data.

YIELD MECHANISMS AND YIELD LIMIT EQUATIONS

Dowel-type fasteners have the following four possible modes of yielding:

Mode I: Bearing yield of wood fibers when stress distribution is uniform over the entire thickness
of the member.

In this case, due to the high lateral loading, the dowel-bearing stress of a wood member uniformly
exceeds the strength of wood. This mode is classified as I, if the bearing strength is exceeded in the
main member and as I if the side member is overstressed, as shown in Figure 8.3.

Mode II: Bearing yield of wood by crushing due to maximum stress near the outer fibers.

The bearing strength of wood is exceeded in this case also. However, the bearing stress is not
uniform. In this mode, the fastener remains straight but undergoes a twist that causes flexure-like
nonuniform distribution of stress with the maximum stress at the outer fibers. The wood fibers are
accordingly crushed at the outside face of both members, as shown in Figure 8.4.

Single-shear connections Double-shear connections

Mode I,

FIGURE 8.3 Mode I yielding. (Courtesy of American Forest & Paper Association, Washington, DC.)
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Single-shear connection Double-shear connection

Mode IT (Not applicable)

FIGURE 8.4 Mode Il yielding. (Courtesy of American Forest & Paper Association, Washington, DC.)

Single-shear connection Double-shear connection

» Mode III (not applicable)

Mode IIIg

»

FIGURE 8.5 Mode III yielding. (Courtesy of American Forest & Paper Association, Washington, DC.)

Single-shear connection Double-shear connection

Mode IV
»p

FIGURE 8.6 Mode IV yielding. (Courtesy of American Forest & Paper Association, Washington, DC.)

Mode II yield occurs simultaneously in the main and side members. It is not applicable to a
double-shear connection because of symmetry by the two side plates.

Mode III: Fastener bends at one point within a member and wood fibers in contact with the fas-
tener yield in bearing.

This is classified as III,, when fastener bending occurs and the wood bearing strength is exceeded
in the main member. Likewise, III; indicates the bending and crushing of wood fibers in the side
member, as shown in Figure 8.5.

Mode III,, is not applicable to a double-shear connection because of symmetry by the two side
plates.

Mode I'V: Fastener bends at two points in each shear plane and wood fibers yield in bearing near
the shear plane(s).

Mode IV occurs simultaneously in the main and side members in a single shear, as shown in
Figure 8.6. However, in a double shear, this can occur in each plane, hence yielding can occur sepa-
rately in the main member and the side member.

To summarize, in a single-shear connection, there are six modes of failures comprising I, I, II,
IIL,,, IIL, and IV. Correspondingly, there are six yield limit equations derived for the single-shear
connections. For a double-shear connection, there are four modes of failures comprising I, I, IV,

m> 's?

and IV,. There are four corresponding yield limit equations for the double-shear connections.
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REFERENCE DESIGN VALUES FOR LATERAL LOADS (SHEAR CONNECTIONS)

For a given joint configuration, depending upon the single or the double-shear connection, six or
four yield limit equations are evaluated and the smallest value obtained from these equations is used
as a reference design value, Z.

Instead of using the yield limit equations, the NDS provides the tables for the reference design
values that evaluate all relevant equations and adopts the smallest values for various fastener
properties and specific gravity of species. The selected reference design values for the lateral
loading are included in Appendix B, Tables B.10, B.12, B.14, B.16, and B.17 for different types of
fasteners.

As stated above under the dowel-bearing strength of wood for fasteners of 1/4 in. or larger, the
angle of loading with respect to the wood grains also affects the reference design values. The NDS
tables include two cases: one for the loads parallel to the grains and one for the loads perpendicular
to the grains. The loads that act at other angles involve the application of Hankinson formula, which
has not been considered in this book.

A reference design value, Z, obtained by the yield limit equations or from the NDS tables, is
then subjected to the adjustment factors to get the adjusted reference design value, Z;, to be used
in Equation 8.1. The adjustment factors are discussed in the “Adjustments of the Reference Design
Values” section.

REFERENCE DESIGN VALUES FOR WITHDRAWAL LOADS

Dowel-type fasteners are much less stronger in withdrawal capacity. The reference design values
for different types of fasteners in Ib/in. of penetration is given by the empirical formulas, which are
functions of the specific gravity of species and the diameter of the fasteners. The NDS provides
the tables based on these formulas. The selected reference design values for withdrawal loading
are included in the Appendix B, Tables B.11, B.13, B.15, B.18 for different types of fasteners.

ADJUSTMENTS OF THE REFERENCE DESIGN VALUES

Table 8.1 specifies the adjustment factors that apply to the lateral loads and withdrawal loads for
dowel-type fasteners.

The last three factors, K, ¢_, and A, are relevant to load resistance factor design (LRFD) only.
For connections, their values are

K,.=332

$.=0.65

A = as given in the “Time Effect Factor, X section in Chapter 6

The other factors are discussed below.

TABLE 8.1
Adjustment Factors for Dowel-Type Fasteners
LRFD Only Factors
Format  Resistance Time  Wet Group End
Loads Conversion  Factor  Effect Service Temperature Action Geometry Grain Diaphragm Toenail
Lateral loads K, ¢, A Cy C, C, Cy C, C,* C,!
Withdrawal K, &. A Cy C — — C. — c,

2 This factor applies to nails and spikes only.
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WET Service FAcTor, C,,

For connections, the listed reference design values are for seasoned wood having a moisture con-
tent of 19% or less. For wet woods or those exposed to wet conditions, the multiplying factors of
less than 1 are specified in the NDS Table 10.3.3 of the National Design Specification for Wood
Construction cited in the Bibliography.

TemPerATURE FACTOR, C;

For connections that will experience sustained exposure to higher than 100°F temperature, a fac-
tor of less than 1 shall be applied, as specified in the NDS Table 10.3.4 of the National Design
Specification for Wood Construction cited in the Bibliography.

Group AcTioN FacTor, C,

A row of fasteners consists of a number of fasteners in a line parallel to the direction of loading. The
load carried by fasteners in a row is not equally divided among the fasteners; the end fasteners in a
row carry a larger portion of the load as compared to the interior fasteners. The unequal sharing of
loads is accounted for by the group action factor, C,.

For dowel-type fasteners of diameter less than 1/4 in. (i.e., nails and wood screws), C, = 1. For
1/4 in. or larger diameter fasteners, C, is given by a formula, which is quite involved. The NDS provides
tabulated values for simplified connections. The number of fasteners in a single row is the primary
consideration. For bolts and lag screws, conservatively, C, has the values indicated in Table 8.2 (nails
and screws have C, = 1).

GEeOMETRY FAcTOR, C,

When the diameter of a fastener is less than 1/4 in. (nails and screws), C,, = 1. For larger diameter
fasteners, the geometry factor accounts for the end distance, edge distance, and spacing of fasteners,
as defined in Figure 8.7.

1. The edge distance requirements, according to the NDS, are given in Table 8.3, where I/D
is the lesser of the following:

I,, _ bearinglengthof boltin main member

D boltdiameter
b I, _ combined bearing lengthof boltinall side members
"D boltdiameter

2. The spacing requirements between rows, according to the NDS, are given in Table 8.4,
where I/D is defined above.

3. The end distance requirements, according to the NDS, are given in Table 8.5.
4. The spacing requirements for fasteners along a row, according to the NDS, are given in
Table 8.6.
TABLE 8.2
Conservative Value of the Group Action Factor
Number of Fasteners in One Row G,
2 0.97
3 0.89

4 0.80
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FIGURE 8.7 Connection geometry. (Courtesy of American Forest & Paper Association, Washington, DC.)

TABLE 8.3
Minimum Edge Distance
Direction of Loading Minimum Edge Distance
1. Parallel to grains
When I/D <6 1.5D
When I/D > 6 1.5D or 1/2 spacing between rows, whichever is greater
2. Perpendicular to grains
Loaded edge 4D
Unloaded edge 1.5D

The provisions for C, are based on the assumption that the edge distance and the spacing between
rows are met in accordance with Tables 8.3 and 8.4, respectively. In addition, the perpendicular to

grain distance between the outermost fastener rows should not exceed 5 in. for sawn lumber and
GLULAM with C,, = 1.
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TABLE 8.4
Minimum Spacing between Rows
Direction of Loading Minimum Spacing
1. Parallel to grains 1.5D
2. Perpendicular to grains
When I/D <2 2.5D
When /D > 2 but <6 (51+ 10D)/8
When I/D > 6 5D

TABLE 8.5
Minimum End Distance
Direction of Loading End Distance for C, = 1 Minimum End Distance for C, = 0.5
1. Parallel to grains
Compression 4D 2D
Tension—softwood 7D 3.5D
Tension—hardwood 5D 2.5D
2. Perpendicular to grains 4D 2D
TABLE 8.6
Minimum Spacing in a Row
Direction of Loading Spacing for C, =1 Minimum Spacing
1. Parallel to grains 4D 3D
2. Perpendicular to grains On side plates (attached member) spacing 3D
should be 4D

The requirements for the end distance and the spacing along a row for C, = | are given in the
second column of Tables 8.5 and 8.6. The tables also indicate the (absolute) minimum requirements
that must be provided for. When the actual end distance and the actual spacing along a row are less
than those indicated for C, = 1, the value of C, should be computed by the following ratio:

B actual end distance or actual spacing along a row
~ end distance for C =1 from Table 8.5 or spacing C =1 from Table 8.6

For fasteners located at an angle, the geometry factor, C,, also depends on the shear area.
For C, to be 1, the minimum shear area of an angled member as shown in Figure 8.8 should be
equal to the shear area of a parallel member connection having the minimum end distance as
required for C, = 1 from Table 8.5 as shown in Figure 8.9. If the angled shear area is less, the
geometry factor C, is determined by the ratio of the actual shear area to that required for C, = 1
from Figure 8.9.

The geometry factor is the smallest value determined from the consideration of the end distance,
spacing along the row, and the angled shear area.
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FIGURE 8.8 Shear area for fastener loaded at angle.
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FIGURE 8.9 Shear area of parallel member connection.
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FIGURE 8.10 End grain factor.

END GRAIN FacTOR, C,,

In a shear connection, load is perpendicular to the length (axis) of the fastener, and in a withdrawal
connection, load is parallel to the length of the fastener. But in both cases, the length (axis) of the
fastener is perpendicular to the wood fibers (fastener is installed in the side grains). However, when
a fastener penetrates an end grain so that the fastener axis is parallel to the wood fibers, as shown in
Figure 8.10, it is a weaker connection.

For a withdrawal-type loading, C,, = 0.75. For a lateral (shear)-type loading, C,, = 0.67.

DiapPHRAGM FacTOR, C;

This applies to nails and spikes only. When nails or spikes are used in diaphragm construction,
C,=11.

ToenalL FacTor, C,,,

This applies to nails and spikes only. In many situations, it is not possible to directly nail a side mem-
ber to a holding member. Toenails are used in the side member at an angle of about 30° and start
at about 1/3 of the nail length from the intersection of the two members, as shown in Figure 8.11.

For lateral loads, C,, = 0.83. For withdrawal loads, C,, = 0.67. For withdrawal loads, the wet-
service factor is not applied together with C,,.
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FIGURE 8.11 Toenail factor.

Example 8.1

Principles of Structural Design

The reference lateral design value for the parallel-to-grain loaded lag screw connection shown
in Figure 8.12 is 1110 Ib. Determine the adjusted reference design value. The diameter of screws
is 7/8 in. The connection is subjected to dead and live tensile loads in dry softwood at normal

temperatures.

SOLUTION

b, =0.65
.A=0.8
K =3.32
. Group action factor, C,
For three fasteners in a row, C,=0.89 (from Table 8.2)
6. Geometry factor, C,
a. End distance =4 in.

G B W N —

b. End distance for C, =1, 7D = 7(%) =6.125in.

C.  End factor = 40 =0.65 « controls
6.12

d. Spacing along a row =3 in.
e. Spacing for C, =1, 4D = 3.5 in.

w
(@)

=0.857

f. Spacing factor = B
89)(0.65)(3.32) = 1108.6 Ib

7. Z; =1110(0.65)(0.8)(

ow

1%in. aj
o] [e]

3in.

1%in.

Y—4in.—k—3in.—}
FIGURE 8.12 Parallel-to-grain loaded connection.

. Adjusted reference design value, Z; = Z x ($,AC,C,Kp); since Cy, and C, = 1

Direction of
loading
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The reference lateral design value for the perpendicular-to-grain loaded bolted connection shown in
Figure 8.13 is 740 Ib. Determine the adjusted reference design value. The bolt diameter is 7/8 in. Use
soft dry wood and normal temperature conditions. The connection is subjected to dead and live loads.

SOLUTION

. Adjusted reference design value, Z; = Z x ($,MC,C,K}); since C,and C, = 1
., =0.65
.A=0.8
K, =3.32
. Group action factor, C,
For two fasteners in a row, C, = 0.97 (from Table 8.2)
. Geometry factor, C,
a. End distance =2 in.

b. End distance for C, =1, 4D = 4(%) =3.5in.

U1 B W N —

[e)]

c. End factor= % =0.57 « controls

d. Spacing along a row = 3 in.
e. SpacingforC,=1,4D = 4(%) =3.5in.

w
(e}

=0.857

f. Spacing factor = -
:97)(0.57)(3.32) =706.3 Ib

7. Z;, =740(0.65)(0.80)(

O w

Example 8.3

The connection of Example 8.1 when loaded in withdrawal mode has a reference design value of

500 Ib. Determine the adjusted reference withdrawal design value.

SOLUTION

. Adjusted reference design value, Z; = Z x (¢p,AK));
. $,=0.65

.A=0.8

K, =3.32

Z/ =500(0.65)(0.80)(3.32) = 863 Ib

G W =

z in. bolts
8

2in. | (£ 3~k
J2in

3in. | |

3% in.

Direction of loading

FIGURE 8.13 Perpendicular-to-grain loaded connection.
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NAIL AND SCREW CONNECTIONS

Once the adjusted reference design value is determined, Equation 8.1 can be used with the factored
load to design a connection for any dowel-type fasteners. Nails and wood screws generally fall
into small-size fasteners having a diameter of less than 1/4 in. For small-size fasteners, the angle
of load with respect to grains of wood is not important. Moreover, the group action factor, C,, and
the geometry factor, C,, are not applicable. The end grain factor, C,,, the diaphragm factor, C;, and
the toenail factor, C,,, apply to specific cases. Thus, for a common type of dry wood under normal
temperature conditions, no adjustment factors are required except for the special LRFD factors of
¢, A, and K.
The basic properties of nails and wood screws are described below.

ComMmoON, Box, AND SINKER NAILS

Nails are specified by the pennyweight, abbreviated as d. A nail of a specific pennyweight has a
fixed length, L, shank diameter, D, and head size, H. There are three kinds of nails: common, box,
and sinker. Common and box nails have a flat head and sinker nails have a countersunk head, as
shown in Figure 8.14.

For the same pennyweight, box and sinker nails have a smaller diameter and, hence, a lower
capacity as compared to common nails.

The reference lateral design values for the simple nail connector are given in Appendix B, Table B.10.
The values for the other cases are included in the NDS specifications. The reference withdrawal design
values for nails of different sizes for various wood species are given in Appendix B, Table B.11.

Post-FRAME RING SHANK NAILS

These are threaded nails. There are two types of threads. In annular nails, the threads are perpendic-
ular to the nail axis. The threads of helical nails are aligned at an angle between 30° and 70° to the
nail axis. The annular nails are called the post-frame ring shank nails, as shown in Figure 8.15. The
threaded nails have higher withdrawal strength because of wood fibers lodged between the threads.

The typical dimensions of post-frame ring shank nails are given in Table 8.7. The reference design
values for post-frame ring shank nails using a single-shear connection are given in Appendix B,
Table B.12. The reference withdrawal design values per inch penetration are given in Appendix B,
Table B.13.

le L >
€L
H|[1TTT] I
T
D
Common or box
M L » D=Diameter
L l L=Length
H=Head diameter

H | [
T i

D

Sinker

FIGURE 8.14 Typical specifications of nails.
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FIGURE 8.15 Typical specifications of post-frame ring shank nails.

TABLE 8.7

Typical Dimensions of Post-Frame Ring Shank Nails

D (in.) L (in.) H (in.) Root Diameter, D, (in.)
0.135 3,35 5116 0.128

0.148 3,3.5,4,4.5 5/16 0.140

0.177 3,35,4,45,5,6,8 3/8 0.169

0.20 35,4,45,5,6,8 15/32 0.193

0.207 4,45,5,6,8 15/32 0.199

'—‘\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*\\\\\\\\\\\\
T

L

Cut thread

D =Diameter
'_\\\‘\\‘\\\\\‘\\‘\\\\\\\\‘\\‘\‘\ D r ID Dr= Root diameter
T L =Screw length
T'=Thread length

L
Rolled thread

FIGURE 8.16 Typical specifications of wood screws.

WooD ScRews

Wood screws are identified by a number. A screw of a specific number has a fixed diameter (outside
to outside of threads) and a fixed root diameter, as shown in Figure 8.16. Screws of each specific
number are available in different lengths. There are two types of screws: cut thread screws and
rolled thread screws. The thread length, 7, of a cut thread screw is approximately 2/3 of the screw
length, L. In a rolled thread screw, the thread length, 7, is at least four times the screw diameter, D,
or 2/3 of the screw length, L, whichever is greater. The screws that are too short to accommodate
the minimum thread length have threads extended as close to the underside of the head as practical.

The screws are inserted in their lead hole by turning with a screwdriver; they are not driven by
a hammer. The minimum penetration of the wood screw into the main member for single shear or
into the side member for double shear should be six times the diameter of the screw. Wood screws
are not permitted to be used in a withdrawal-type connection in end grain.

The reference lateral design values for simple wood screw connections are given in Appendix B,
Table B.14. The values for other cases are included in the NDS specifications. The reference with-
drawal design values for wood screws are given in Appendix B, Table B.15.
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Example 8.4

A 2 in. x 6 in. diagonal member of No. 1 Southern Pine is connected to a 4 in. X 6 in. column, as
shown in Figure 8.17. It is acted upon by a service wind load component of 2 k. Design the nailed
connection. Neglect the dead load.

SOLUTION

1. Factored design load, R, = 1(2) = 2 k or 2000 Ib

2. Use 30d nails, 3 in a row

3. Reference design value for a side thickness of 1.5 in.
From Appendix B, Table B.10, Z = 203 Ib

4. For nails, the adjusted reference design value
7, = Zx(0,AK;)

where
¢, = 0.65
A =1.00
K, =3.32

Z;,=203(0.65)(1)(3.32)=4381b
5. From Equation 8.1

N = R, __2000 _ 4.57 nails
7, 438
6. For number of nails per row, n =3

Number of rows = % =152 (use 2)

Provide 2 rows of 3 nails each of 30d size

BOLT AND LAG SCREW CONNECTIONS

Bolts and lag screws are used for larger loads. The angle of load to grains is an important consider-
ation in large diameter (>1/4 in.) connections comprising bolts and lag screws. However, this book
makes use of the reference design tables, in lieu of the yield limit equations, which include only
the two cases of parallel-to-grain and perpendicular-to-grain conditions. The group action factor,
C,, and the geometry factor, C,, apply to bolts and lag screws. Although the end grain factor, C,,,
is applicable, it is typical to a nail connection. The other two factors, the diaphragm factor, C;, and
the toenail factor, C,,, also apply to nails.

An important consideration in bolt and lag screw connection design is to accommodate the num-
ber of bolts and rows within the size of the connecting member satisfying the requirements of the
end, edge, and in-between bolt spacing.

The larger diameter fasteners often involve the use of prefabricated steel accessories or hard-
ware. The NDS provides details of the typical connections involving various kinds of hardware.

Live load
/

6 \ Nail

connection

FIGURE 8.17 Diagonal member nail connection.
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Bolts

In steel structures, the trend is to use high-strength bolts. However, this is not the case in wood
structures where low-strength A307 bolts are commonly used. Bolt sizes used in wood construction
range from 1/2 in. through 1 in. diameter, in increments of 1/8 in. The NDS restricts the use of bolts
to a largest size of 1 in. The bolts are installed in the predrilled holes. The NDS specifies that the
hole size should be a minimum of 1/32 in. to a maximum of 1/16 in. larger than the bolt diameter
for uniform development of the bearing stress.

Most bolts are used in the lateral-type connections. They are distinguished by the single-shear
(two members) and double-shear (three members) connections. For more than double shear, the
single-shear capacity at each shear plane is determined and the value of the weakest shear plane is
multiplied by the number of shear planes.

The connections are further recognized by the types of main and side members, such as wood-
to-wood, wood-to-metal, wood-to-concrete, and wood-to-masonry connections. The last two are
simply termed as anchored connections.

Washers of adequate size are provided between the wood member and the bolt head, and between
the wood member and the nut. The size of the washer is not of significance in shear. For bolts in
tension and compression, the size should be adequate so that the bearing stress is within the com-
pression strength perpendicular to the wood grain.

The reference lateral design values for a simple bolted connection are given in Appendix B,
Table B.16

LAG Screws

Lag screws are relatively larger than wood screws. They have wood screw threads and a square or
hexagonal bolt head. The dimensions for lag screws include the nominal length, L; diameter, D; root
diameter, D,; unthreaded shank length, S; minimum thread length, 7; length of tapered tip, E; num-
ber of threads per in., NV; height of head, H; and width of head across flats, F, as shown in Figure 8.18.

Lag screws are used when an excessive length of bolt will be required to access the other side or
when the other side of a through-bolted connection is not accessible. Lag screws are used in shear
as well as in withdrawal applications.

Lag screws are installed with a wrench as opposed to wood screws, which are installed by screw-
drivers. Lag screws involved pre-bored holes with two different diameter bits. The larger diameter
hole has the same diameter and length as the unthreaded shank of the lag screw and the lead hole
for the threaded portion is similar to that for wood screw, the size of which depends on the specific
gravity of the wood. The minimum penetration (excluding the length of the tapered tip) into the
main member for single shear and into the side member for double shear should be four times the
lag screw diameter, D.

The reference lateral design values for simple lag screw connection are given in Appendix B,
Table B.17. The other cases are included in the NDS specifications. The reference withdrawal design
values for lag screws are given in Appendix B, Table B.18.

S=Unthreaded shank length
T'=Minimum thread length
\\ \ \ \ \ \Xmm}’ IDr D = Length of tapered tip
I_ J v : N=Number of threads/inch
F f—s |

FIGURE 8.18 Typical specifications of log screws.
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Example 8.5

The diagonal member of Example 8.4 is subjected to a wind load component of 4 k. Design the
bolted connection. Use 5/8-in. bolts.

SOLUTION

1. Factored design load, R, = 1(4) = 4 k or 4000 Ib
2. Use 5/8-in. bolts, two in a row
3. Reference design value
a. For a side thickness of 1.5 in.
b. Main member thickness of 3.5 in.
c. From Appendix B, Table B.16, Z =940 Ib
4. Adjusted reference design value, Z; = Zx(9,AC,C K;)

5. ¢, = 0.65
A=1.0
K, =3.22

6. Group action factor, C,
For two fasteners in a row, ¢, =097 (from Table 8.2)
7. Geometry factor, C,
a. End distance to accommodate within 6 in. column size = 2.5 in.
b. Spacing within 6 in. column = 2 in.
c. End distance for C, =1, 7D = 4.375 in.
d

End factor = 2> =0.57 < controls
4.375
e. Spacing C, =1,4D =2.5n.
2
f. Spacing factor=—=0.8
P 8 2.5

=]

. Z;=940(0.65)(1)(0.97)(0.57)(3.22) = 1087.8 |b
9. From Equation 8.1

_ R, 4000 _
Z, 10878
10. Number of bolts per row, n = 2

Number of rows = % =1.85(use 2)

Provide 2 rows of two 5/8-in. bolts

PROBLEMS

8.1 The reference lateral design value of a parallel-to-grain loaded lag screw connection
shown in Figure P8.1 is 740 1b. The screw diameter is 5/8 in. The loads comprise dead
and live loads. Determine the adjusted reference design value for soft dry wood at normal
temperature.

8.2 The reference lateral design value of a perpendicular-to-grain loaded lag screw connection
shown in Figure P8.2 is 500 Ib. The screw diameter is 5/8 in. The loads comprise dead
and live loads. Determine the adjusted reference design value for soft dry wood at normal
temperature.

8.3 The connection in Problem 8.1 has a reference withdrawal design value of 400 Ib. Determine
the adjusted reference design value.

8.4 Problem 8.2 is a nailed connection by 0.225-in.-diameter nails. The holding member has
fibers parallel to the nail axis. The reference design value is 230 Ib. Determine the adjusted
reference design value.
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FIGURE P8.1 Parallel-to-grain screw connection for Problem 8.1.
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FIGURE P8.2 Perpendicular-to-grain screw connection for Problem 8.2.

8.5 A spliced parallel-to-grain-loaded connection uses two rows of 7/8-in. lag screws with
three fasteners in each row, as shown in Figure P8.3. The load carried is 1.2D + 1.6L. The
reference design value is 1500 Ib. The connection is in hard dry wood at normal tempera-
ture. Determine the adjusted reference design value.

8.6 The connection in Problem 8.5 is subjected to a perpendicular-to-grain load from the
top only. The reference design value is 1000 Ib. Determine the adjusted reference design
value.

8.7 The connection in Problem 8.5 is subjected to withdrawal loading. The reference design
value is 500 Ib. Determine the adjusted reference design value.

8.8 The connection shown in Figure P8.4 uses 3/4-in.-diameter bolts in a single shear. There
are two bolts in each row. The reference design value is 2000 Ib. It is subjected to lateral
wind load only (no live load). Determine the adjusted reference design value for soft dry
wood at normal temperature.

8.9 For the connection shown in Figure P8.5, the reference design value is 1000 1b. Determine
the adjusted reference design value for dry wood under normal temperature conditions.

8.10 Toenails of 50d pennyweight (0.244 in. diameter, 52 in. length) are used to connect a
beam to the top plate of a stud wall, as shown in Figure P8.6. It is subjected to dead
and live loads. The lateral reference design value is 250 1b. Determine the adjusted refer-
ence design value for soft wood under normal temperature and dry conditions. Show the
connection.
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FIGURE P8.3 Spliced parallel-to-grain connection.
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FIGURE P8.4 A single shear connection.
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FIGURE P8.5 Perpendicular-to-grain bolted connection for Problem 8.9.

4 in. X 10 in.
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\ / Wall plate

Stud

FIGURE P8.6 Toenail connection to a top plate.
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8.11 Design a nail connection to transfer tensile service dead and live loads of 400 and 600 b,
respectively, acting along the axis of a 2 in. X 6 in. diagonal member connected to a 4 in. X
4 in. vertical member. Use No. 1 Southern Pine soft dry wood. Assume two rows of 30d
common nails.

8.12 A 2in. X 8 in. diagonal member is connected by 20d common nails to a 4 in. X 6 in. verti-
cal member. It is acted upon by a combined factored dead and snow load of 1.5 k. Design
the connection. Use Douglas Fir-Larch dry wood (G = 0.5).

8.13 Determine the tensile capacity of a spliced connection acted upon by the dead and snow
loads. The joint connects two 2 in. X 6 in. No. 1 Southern Pine members together by 10d
common nails via one side plate of 1 in. thickness, as shown in Figure P8.7.

8.14 Two 2 in. X 8 in. members of Douglas Fir-Larch (G = 0.5) are to be spliced connected via
a single 1%2-in.-thick plate on top with two rows of #9 size screws. The service loads com-
prise 200 1b of dead load and 500 Ib of live load that act normal to the fibers. Design the
connection.

8.15 Southern Pine #1, 10-ft.-long 2 in. X 4 in. wall studs, spaced at 16 in. on center (OC) are
toenailed on to Southern Pine #1 top and bottom plates with two 10d nails at each end. The
horizontal service wind load of 30 psf acts on the studs. Is the connection adequate?

8.16 The service dead load and live load in Problem 8.11 are doubled. Design a lag screw con-
nection using. 1/2-in.-lag screws. Assume the edge distance, end distance, and bolt spacing
along the diagonal of 2 in. each.

[Hint: Only two bolts per row can be arranged along the diagonal within a 4 X 4 column
size.]

8.17 A 2 in. X 6 in. is connected to a 4 in. X 6 in. member, as shown in Figure P8.8. Design
a 1/2 in. lag screw connection to transfer the dead and snow (service) loads of 0.4 k and
1.2 k, respectively. The wood is soft Hem Fir-Larch No. 1 in dry conditions at normal
temperature.

[Hint: For a beam size of 6 in., only three bolts can be arranged per row of the vertical
member.]

“F | B

a ] ] ] ] ] Pp

+
) ) [ o o o —> Py (Snow)
a o <) ) o ]

FIGURE P8.7 A spliced nail connection.

. . 2 in. X 6 in.
4 in. X 6 in. 6in. I

4 in. X 6 in.

e~ 2in.x6in.
Pg (Snow)

FIGURE P8.8 A beam-column shear connection.
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2-2in. X 6 in.

6in. X 10 in. /Southern Pine #1

Item Fir #1

FIGURE P8.9 A beam—column double-shear connection.

8.18 Determine the number and placement of 5/8-in. bolts to transfer the service dead and snow
loads of 0.2 k and 2.85 k, respectively, through a joint, as shown in Figure P8.9. The single
shear reference design value is 830 Ib, which should be doubled for two shear planes.

8.19 The controlling load on the structural member in Problem 8.17 is an unfactored wind load
of 3.2 k that acts horizontally. Design the 1/2-in. bolted connection.

[Hint: Load acts normal to the grain and three rows can be arranged within the column
size for the horizontally acting load.]

8.20 The main members of 3 in. X 10 in. are spliced connected by one 2 in. X 10 in. side member
of Southern Pine #1 soft dry wood. The connection consists of six 1-in. bolts in two rows in
each splice. Determine the joint capacity for dead and live loads. The end distance and bolt
spacing are 3.5 in. each. If the dead load is one-half of the live load, what is the magnitude
of each load?
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PROPERTIES OF STEEL

Steel structures commonly consist of frames, cables and trusses, and plated structures. The bracing
in the form of diagonal members provides the lateral stiffness. For steel elements, generally, the stan-
dard shapes, which are specified according to the American Society of Testing Materials (ASTM)
standards, are used. The properties of these elements are listed in the beginning of the manual of the
American Institute of Steel Construction (AISC) under Dimensions and Properties section. A common
element is an I-shaped section having horizontal flanges that are connected at the top and bottom of
a vertical web. This type of section is classified into W, M, S, and HP shapes, the difference in these
shapes essentially being in the width and thickness of flanges. A typical designation “W14 X 68”
means a wide flange section having a nominal depth of 14 in. and a weight of 68 1b/ft. of length. The
other standard shapes are channels (C and MC), angles (L), and tees (WT, MT, and ST).

Tubular shapes are common for compression members. The rectangular and square sections are
designated by the letters HSS along with the outer dimensions and the wall thickness. The round
tubing is designated as HSS round (for Grade 42) and pipes (for Grade 35) along with the outer
diameter and the wall thickness. The geometric properties of the frequently used wide flange sec-
tions are given in Appendix C, Table C.1a and b, with those for channel sections in Appendix C,
Table C.2aandb, angle sections in Appendix C, Table C.3athrough c, rectangular tubing in Appendix C,
Table C.4a and b, square tubing in Appendix C, Table C.5, round tubing in Appendix C, Table C.6,
and pipes in Appendix C, Table C.7.

The structural shapes are available in many grades of steel classified according to the ASTM
specifications. The commonly used grades of steel for various structural shapes are listed in
Table 9.1.

The yield strength is a very important property of steel because so many design procedures are
based on this value. For all grades of steel, the modulus of elasticity is practically the same at a level
of 29 x 103 ksi, which means the stress—strain relation of all grades of steel is similar.

A distinguished property that makes steel a very desirable structural material is its ductility—a
property that indicates that a structure will withstand an extensive amount of deformation under
very high level of stresses without failure.

PROVISIONS TO DESIGN STEEL STRUCTURES

The AISC Specification for Structural Steel Buildings (AISC 360) is intended to cover common design
criteria. This document forms a part of the AISC Steel Construction Manual. However, it is not feasible
to cover within such a document all special and unique problems that are encountered within the full
range of the structural design. Accordingly, AISC 360 covers the common structures of low seismicity
and a separate AISC document, Seismic Provisions for Structural Steel Buildings (AISC 341), addresses
the high-seismic applications. The latter document is incorporated within the Seismic Design Manual.

The seismic provisions are not required for following structures, which are designed according
to AISC 360:

1. Structures in seismic design category A

2. Structures in seismic design categories B and C where the response modification factor
(coefficient), R, is not greater than 3

175
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TABLE 9.1
Common Steel Grades

Yield Strength,  Ultimate Strength, Applicable Shapes
ASTM Classification F, (ksi) F,, (ksi)
A36 36 58 W, M, S,HP, L, C, MC, WT
AS572 Grade 50 50 65 Same
A992 Grade 50 50 65 Same
A500 Grade B 46 58 HSS—rectangular and square
A500 Grade B 42 58 HSS—round
AS53 Grade B 35 60 Pipe—round

UNIFIED DESIGN SPECIFICATIONS

A major unification of the codes and specifications for structural steel buildings has been
accomplished by the AISC. Formerly, the AISC provided four design publications, one separately
for the allowable stress design (ASD) method, the load resistance factor design (LRFD) method,
the single-angle members, and the hollow tubular structural sections. However, the 13th edition
of the Steel Construction Manual of AISC 2005 combined all these provisions in a single volume.
Additionally, the 2005 AISC specifications established common sets of requirements for both the
ASD and LRFD methods for analyses and designs of structural elements.

The 14th edition of the Steel Construction Manual of AISC 2010 updated the tables of element
shapes to conform to ASTM A6-09. This comprised of adding and deleting some shapes and slightly
changing some areas in some cases.

The factors unifying the two methods are as follows:

1. The nominal strength is the limiting state for failing of a steel member under different
modes like compression, tension, or bending. It is the capacity of the member. The same
nominal strength applies to both the ASD and LRFD methods of design.

2. For ASD, the available strength is the allowable strength, which is the nominal strength
divided by a factor of safety. The available strength for LRFD is the design strength, which
is the nominal strength multiplied by a resistance (uncertainty) factor.

3. The required strength for a member is given by the total of the service loads that act on the
structure for the ASD method. The required strength for the LRFD method is given by the
total of the factored (magnified) loads.

4. The required strength for loads should be within the available strength of the material.

Since the allowable strength of ASD and the design strength of LRFD are both connected with
the nominal strength as indicated in item 2, there can be a direct relationship between the factor
of safety of ASD and the resistance factor of LRFD. This was discussed in the “Working Stress
Design, Strength Design, and Unified Design of Structures” section in Chapter 1.

LimiT STATES OF DESIGN

All designs are based on checking that the limit states are not exceeded. For each member type
(tensile, column, beam), the AISC specifications identify the limit states that should be checked.
The limit states consider all possible modes of failures like yielding, rupture, and buckling, and also
consider the serviceability limit states like deflection and slenderness.
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The limit states design process consists of the following:

1. Determine all applicable limit states (modes of failures) for the type of member to be
designed.

2. Determine the expression for the nominal strength (and the available strength) with respect
to each limit state.

3. Determine the required strength from the consideration of the loads applied on to the
member.

4. Configure the member size by equating items 2 and 3 of this section.

In ASD, safety is established through a safety factor, which is independent of the types of loading.
In LRFD, safety is established through a resistance factor and a load factor that varies with load
types and load combinations.

DESIGN OF TENSION MEMBERS

In the AISC Manual (2010), Chapter D of Part 16 applies to members that are subject to axial ten-
sion and Section J4 of Chapter J applies to connections and connecting elements like gusset plates
that are in tension.

The limiting states for the tensile members and the connecting elements are controlled by the
following modes:

1. Tensile strength
2. Shear strength of connection
3. Block shear strength of connection along the shear/tension failure path

The shear strength of connection (item 2) will be discussed in Chapter 13 on steel connections.

TENSILE STRENGTH OF ELEMENTS

The serviceability limit state of the slenderness ratio L/r* being less than 300 for members in
tension is not mandatory in the new specifications although Section DI recommends this value of
300 except for rods and hangers.

The design tensile strength of a member shall be the lower of the values obtained for the limit
states of (1) the tensile yielding at the gross area and (2) the tensile rupture at the net area.

Thus, the strength is the lower of the following two values:
Based on the limit state of yielding in the gross section

P,=0.9F,A, ©.hH
Based on the limit state of rupture in the net section

F,=0.75FA, 9.2)
where

P, is factored design tensile load
F, is yield strength of steel

* L is the length of the member and r is the radius of gyration given by vI/A .
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F, is ultimate strength of steel
A, is gross area of member
A, is effective net area

In connecting members, if a portion of a member is not fully connected like a leg of an angle section,
the unconnected part is not subjected to the full stress. This is referred to as a shear leg. A factor is
used to account for the shear lag. Thus,
A, =AU 9.3)
where
A, is net area
U is shear lag factor

NET AREA, A,

The net area is the product of the thickness and the net width of a member. To compute net width,
the sum of widths of the holes for bolts is subtracted from the gross width. The hole width is taken
as 1/8 in. greater than the bolt diameter.

For a chain of holes in a zigzag line shown as a-b in Figure 9.1, a quantity s*/4g is added to the net
width for each zigzag of the gage space, g, in the chain. Thus,

s2
A =bt— ) ht+ — |t
=bt=3 Z(4gj 94)
where

s is longitudinal (in the direction of loading) spacing between two consecutive holes (pitch)
g is transverse (perpendicular to force) spacing between the same two holes (gage)

b is width of member

t is thickness of member

h is size of hole

For angles, the gage for holes in the opposite legs, as shown in Figure 9.2,isg=g, + g, — .

¥ /

(
T/"

b

l A
W
T

FIGURE 9.1 Zigzag pattern of holes.

&

&

FIGURE 9.2 Gage for holes in angle section.
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Example 9.1

An angle L 5 X 5 x 1/2* has a staggered bolt pattern, as shown in Figure 9.3. The holes are for
bolts of 7/8 in. diameter. Determine the net area.

SOLUTION

1. A, =479in2 t=0.5 in.

.h=d+(1/8) =(7/8) + (1/8) = 1 in.
.8=g1+g—-t=3+2-05=45in.

. Section through line a-b-d-e: deducting for two holes

A, =A, - X ht
=4.79-2(1(0.5=3.79in.2

N ow N

5. Section through line a-b-c-d-e: deducting for three holes and adding s?/4g for b-c and c-d

52 52
A=Ay =3ht+| —| t+|—| t
4g bc 4g cd

22 22
=4.79—3(1)(0.5)+{ ]0.5+[ JO.S
4(4.5) 4(1.5)

=3.71in.2 « Controls

ErrecTivE NET AREA, A,

1. Plates with bolted connections
As the flat plates are fully in contact and the entire area participates in transmitting the
load, the shear lag factor, U = 1.
But for bolted slice plates, the net effective area should not be more than 85% of the gross

area. Thus,
A=A, <0854, 9.5)
2 2in. | 2in.  2in.
~ ~ N D
> :
|
2in. |
x b Q ©
[
I
I\
¥ 2in.—4— 3 in.—f g AN
N I
\
. I \
2in : \
N 1 A | QC @
1 in. b
— ~p s
N 1 X d Q/ @
1—in |
— 2 2, |
NS ~ t
L.5%x5 L ¢
X X7 Unfolded section

FIGURE 9.3 Bolt pattern for Example 9.1.

* Properties of this section not included in the appendix.
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2. Plates with welded connections

For the transverse weld in Figure 94, U=1,A,=A,=A,.
For the longitudinal weld in Figure 9.5,

When L > 2w, U = 1.

When L < 2w and > 1.5w, U = 0.87.

When L < 1.5w, U =0.75.

. Rolled sections with bolted connections

For all sections other than plates and HSS (hollow round or rectangular tube), U can be given by

v=-1-= 9.6)

where
X is eccentricity, that is, the distance from the connection plane to the centroid of the
resisting member
L is length of connection as shown in Figure 9.6
In lieu of Equation 9.6, the following values can be used:
For Angle Shapes
For single or double angles with four or more bolts in the direction of loading, U = 0.8.
For single or double angles with three bolts in the direction of loading, U = 0.60.
For single or double angles with less than three bolts in the direction of loading, use
Equation 9.6.
For W, M, S, HP, and T Shapes
Flange connected with three or more bolts
b,>213d U=09
b<2/3d U=0.385
Web connected with four or more bolts, U = 0.70.
For other cases not listed above, use Equation 9.6.

4. Rolled sections with welded connections

FIGURE 9.4 Transverse weld.

For a transverse weld, U = 1 (A, is the area of the directly connected element).
For a longitudinal and transverse weld combination, use Equation 9.6.

Lo

\_/\N

b
N

Foe
o~

FIGURE 9.5 Longitudinal weld.
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] —>

(a) Bolted

:
|

(b) Welded

FIGURE 9.6 Eccentricity of the resisting member.

Example 9.2

Determine the effective net area for the single-angle member in Example 9.1.

SOLUTION

1. Since the number of bolts in the direction of loading is 3, U = 0.6.
2. From Example 9.1, A, = 3.69 in.?
3. A, =AU = (3.69)(0.6) = 2.21 in.2

Example 9.3

What is the design strength of the element of Example 9.1 for A36 steel?

SOLUTION

1. A =475 in.2
2. A.=2.21in.2 (from Example 9.2)
3. From Equation 9.1

F,=0.9F, A, =0.9(36)(4.75) =153.9k
4. From Equation 9.2
P, =0.75F,A, = 0.75(58)(2.21) = 96.14k <« Controls
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BLOCK SHEAR STRENGTH

In certain connections, a block of material at the end of the member may tear out. In the single-angle
member shown in Figure 9.7, the block shear failure may occur along plane abc. The shaded block
will fail by shear along plane ab and tension in section bc.

Figure 9.8 shows a tensile plate connected to a gusset plate. In this case, the block shear failure
could occur in both the gusset plate and the main tensile member. The tensile failure occurs along
section bc and the shear failure along planes ab and cd.

A welded member shown in Figure 9.9 experiences block shear failure along welded planes abed.
It has a tensile area along bc and a shear area along ab and cd.

Both the tensile area and shear area contribute to the strength. The resistance to shear block will
be the sum of the strengths of the two surfaces.

The resistance (strength) to shear block is given by a single two-part equation:

Ru = (I)Rn = ¢(O6F;4Anv + UbsF;AAnt) < ¢(O6FyAgv + UbsF;AAnl) (97)

where
¢ is resistance factor, 0.75
A,, 1s net area subjected to shear
A,, 1s net area subjected to tension
A,, is gross area along the shear surface
U, is 1.0 when the tensile stress is uniform (most cases)
U, is 0.5 when the tensile is nonuniform

FIGURE 9.7 Block shear in a single angle member.

o
]
\
9

FIGURE 9.9 Block shear in a welded member.
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Example 9.4

183

An L 6 x 4 x 1/2* tensile member of A36 steel is connected by three 7/8 in. bolts, as shown in

Figure 9.10. Determine the strength of the member.

SOLUTION

I. Tensile strength of member

A. Yielding in gross area
1. A,=475in2
2. h=(7/8) +(1/8) =1 in.
3. From Equation 9.1

P, =0.9(36)(4.75) = 153.9k

B. Rupture in net area

1. A,=A, —one hole area
=4.75-(1)(1)(1/2) = 4.25in.2

2. U = 0.6 for three bolts in a line

A.=UA,=0.6 (4.25)=2.55in.?
4. From Equation 9.2

P, =0.75(58)(2.55) =110.9k « Controls

bl

. Block shear strength
A. Gross shear area along ab

Ag :10(lj =5in?
2
B. Net shear area along ab
An = Ag — 2 holearea
=5- 2.5(1)(%) =3.75in.?
C. Net tensile area along bc
A, =2.5t=1/2hole

= 2.5(lj - l(1)(1) =1.0in2
2) 2 \2

D. U,=1.0
E. From Equation 9.7

0(0.6F,A,, +U,.F,A,)=0.750.6(58)(3.75) + (1)(58)(1.0)] = 141.4 k
§(0.6F, Ay, +UpF,A,) = 0.75[0.6(36)(5) + (1(58)(1.0)] = 124.5 k

The strength is 110.9 k controlled by rupture of the net section.

Z%in. a/,%/////;b

7 %3 %3 V
A 2 2 &

2in.  4in. 4 in.

FIGURE 9.10 The three-bolt connection of Example 9.4.

* Section properties not included in the appendix.
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DESIGN PROCEDURE FOR TENSION MEMBERS

The type of connection used for a structure affects the choice of the tensile member. The bolt-type
connections are convenient for members consisting of angles, channels, and W and S shapes. The
welded connection suits plates, channels, and structural tees.

The procedure to design a tensile member consists of the following:

1. Determine the critical combination(s) of factored loads.

2. For each critical load combination, determine the gross area required by Equation 9.1 and
select a section.

3. Make provision for holes or welds based on the connection requirements, and determine
the effective net area.

4. Compute the loading capacity of the effective net area of the selected section by
Equation 9.2. This capacity should be more than the design load(s) of step 1. If it is not,
revise the selection.

5. Check the block shear strength with Equation 9.5. If it is not adequate, either revise the
connection or revise the member size.

6. The limitation of the maximum slenderness ratio of 300 is not mandatory in AISC 2010.
However, it is still a preferred practice except for rods and hangers.

Although rigid frames are common in steel structures, roof trusses having nonrigid connections are
used for industrial or mill buildings. The members in the bottom chord of a truss are commonly in
tension. Some of the web members are in tension and the others are in compression. With changing
of the wind direction, the forces in the web members alternate between tension and compression.
Accordingly, the web members have to be designed to function both as tensile as well as compression
elements.

Example 9.5

A roof system consists of a Warren-type roof truss, as shown in Figure 9.11. The trusses are spaced
25 ft. apart. The following loads are passed on to the truss through the purlins. Design the bottom
chord members consisting of the two angles section separated by a 3/8 in. gusset plate. Assume
one line of two 3/4 in. diameter bolts spaced 3 in. at each joint. Use A572 steel.

Dead load (deck, roofing, insulation) = 10 psf

Snow =29 psf
Roof LL = 20 psf
Wind (vertical) =16 psf

/ Purlins \

4ft.

¥ 6@6ft.=36 2 N

FIGURE 9.11 A Warren roof truss.
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SOLUTION

A. Computation of loads

1.
2.

>

Adding 20% to dead load for the truss weight, D = 12 psf.

Consider the following load combinations:

a. 12D+ 1.6(L, orS) + 0.5W = 1.2(12) + 1.6(29) + 0.5(16) = 68.8 psf « Controls

b. 12D+ W+ 0.5, or S) = 1.2(12) 4+ 16 + 0.5(29) = 44.9 psf

Tributary area of an entire truss = 36 x 25 = 900 ft.2

Total factored load on the truss = 68.8 x 900 = 61,920 Ib or 61.92 k.

This load is distributed through purlins in six parts, on to five interior joints and one-half
on each end joint since the exterior joint tributary is one-half that of the interior joints.
Thus, the joint loads are

Interior joints = % =10.32k

Exterior joints = % =5.16k

B. Analysis of truss

1.

The loaded truss is shown in Figure 9.12.

2. Reaction @ [, and L, = 61.62/2 = 30.96 k.
3. The bottom chord members L,L, and L,L, are subjected to the maximum force. A free-
body diagram of the left of section a-a is shown in Figure 9.13.
4. M@U,=0
-30.96(12) +5.16(12) +10.32(6) + F,, (4)= 0
R =61.92k <P,
5.16k 10.32k 10.32k a 10.32k 10.32k 10.32k 516k
UO y ul v Uz v ; u3 v u4 v L[5 v uﬁ y
T
|
4ft.
|
L, :
Ll LZ é L3 L4 L5 L6
Tso.% k 6@ 6ft. 30.96k T
FIGURE 9.12 Truss analysis for Example 9.5.
5.16k 10.32k 10.32k
UOV ul‘ U2 ‘>
4ft. N
L P - - =
ot eft. L, eft. L, L,
30.96k

FIGURE 9.13  Free-body diagram of truss.
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C. Design of member
1. From Equation 9.1

P, 61.92

== =1.38in.?
0.9F,  0.9(50)

Try 2 L3 x 2 X 1/4 A, =24 in? centroid x = 0487 (from Appendix C,
Table C.3a through c).
2. h=(3/4)+ (1/8) = (7/8) in.

A, = A; —one hole area

=2.40 - (1)[1)(1) =2.18in2
8 )\ 4

3. From Equation 9.6 U :1—w =0.84

A.=0.84(2.18)=1.83 in.2
4. From Equation 9.2

P, =0.75F, A,
=0.75(65)(1.83)= 89.27 k > 61.92k OK

D. Check for block shear strength (similar to Example 9.4)

PROBLEMS

9.1 A 1/2in. X 10 in. plate is attached to another plate by means of six 3/4 in. diameter bolts, as
shown in Figure P9.1. Determine the net area of the plate.

9.2 A 3/4in. X 10 in. plate is connected to a gusset plate by 7/8 in. diameter bolts, as shown in
Figure P9.2. Determine the net area of the plate.

9.3 AnL 5 x5 X 1/2 has staggered holes for 3/4 in. diameter bolts, as shown in Figure P9.3.
Determine the net area for the angle (A, = 4.79 in.2, centroid x = 1.42 in.).

9.4 AnL 8 x4 X 1/2 has staggered holes for 7/8 in. diameter bolts, as shown in Figure P9.4.
Determine the net area (A, = 5.80 in.2, centroid x = 0.854 in.).

N N N N \
N N N N N
BN
2in.
© O —|
3in.
— © © N
3in.
© © A
2in.
A

FIGURE P9.1 Plate to plate connection.
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T
2in. :
AL : G) @
NE : 0)
1 l in. N : O] 0]
2 I
N @
I
N : (O} 0]
2in.| !
I
2in. 2in. 2in. —~—
FIGURE P9.2 Plate to gusset plate connection.
3in. 2in. 2in. 2in.
M \'r\ \Il\ \Il\ \Il\
[ 1 [ 1
3in. 3in.
O O

FIGURE P9.3 Staggered angle connection.

2in. , 2in. @ 3in e a7
ﬁEHL N N N N N

3in.

3in.

2in.

A

-

FIGURE P9.4 Staggered long leg angle connection.

9.5

9.6
9.7
9.8
9.9
9.10
9.11
9.12

A channel section C 9 X 20 has the bolt pattern shown in Figure P9.5. Determine the net area
for 3/4 in. bolts.

Determine the effective net area for Problem 9.2.

Determine the effective net area for Problem 9.3.

Determine the effective net area for Problem 9.4.

Determine the effective net area for the connection shown in Figure P9.6 foran L 5 X 5 X 1/2.
For Problem 9.9 with welding in the transverse direction only, determine the effective net area.
Determine the tensile strength of the plate in Problem 9.1 for A36 steel.

A tensile member in Problem 9.4 is subjected to a dead load of 30 k and a live load of 60 k.
Is the member adequate? Use A572 steel.
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I%in. 2i 2 1=in
in. in.
FY—F——F—\ i
~ I N —
1=in 1=in
x © O  H
3in 3in
x © O  H
3in 3in
l—msT o o l—msT =
A 1 A L TT >
1 1.
—in

FIGURE P9.5 Staggered channel connection.

FIGURE P9.6 Welded connection.

11in.

|l }— 5 spaces @ 3in.
I

o o o (0] Q\ ?) : §—>
I

iin, bolts
4

FIGURE P9.7 Connection for Problem 9.14.

9.13 Is the member in Problem 9.9 adequate to support the following loads all acting in tension?
Use A992 steel.

Dead load =25k
Live load = 50 k

Snow load =40 k
Wind load = 35 k

9.14 An angle of A36 steel is connected to a gusset plate with six 3/4 in. bolts, as shown in
Figure P9.7. The member is subjected to a dead load of 25 k and a live load of 40 k. Design a
3% in. size (3%2 X ?) member.
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9.15 An angle of A36 steel is connected by 7/8 in. bolts, as shown in Figure P9.8. It is exposed to
a dead load of 20 k, a live load of 45 k, and a wind load of 36 k. Design a 4 in. size 4 X ?7)
member. Use A992 steel.

9.16 Compute the strength including the block shear capacity of a member comprising L 3Y2 X 3%2 X
1/2 as shown in Figure P9.9. The bolts are 3/4 in. The steel is A36.

9.17 A tensile member comprises a W 12 X 30 section of A36 steel, as shown in Figure P9.10 with
each side of flanges having three holes for 7/8 in. bolts. Determine the strength of the member
including the block shear strength.

T
T
I
I
. I
2in. I EE——
I
I
I
I

23 spaces @ 3in.—ka

11in. 11in.
2

FIGURE P9.8 Two-row connection for Problem 9.15.

3in.  3in. ll‘
2

FIGURE P9.9 Tensile member for Problem 9.16.

1.
laln.
Yt
B
2in.
K 0] O

4in.

4in.

FIGURE P9.10 Wide flange tensile member for Problem 9.17.
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4in.

Plate l>< 8
2

(SN I N

al
/

Plate l>< 10
2

FIGURE P9.11 Welded member for Problem 9.18.

9.18 Determine the strength of the welded member shown in Figure P9.11, including the block
shear capacity. The steel is A572.
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STRENGTH OF COMPRESSION MEMBERS OR COLUMNS

The basic strength requirement or compression in the load resistance factor design format is

P, <0F,
where
P, is factored axial load
¢ = 0.9, resistance factor for compression
P, is nominal compressive strength of the column

(10.1)

For a compression member that fails by yielding, P, = F,A,, similar to a tensile member. However,

yirg?

the steel columns are leaner; that is, the length dimension is much larger than the cross-sectional
dimension. Accordingly, the compression capacity is more often controlled by the rigidity of the
column against buckling instead of yielding. There are two common modes of failure in this respect.

1. Local instability: If the parts (elements) comprising a column are relatively very thin, a
localized buckling or wrinkling of one or more of these elements may occur prior to the
instability of the entire column. Based on the ratio of width to thickness of the element, a
section is classified as a slender or a nonslender for the purpose of local instability.

2. Overall instability: Instead of an individual element getting winkled, the entire column
may bend or buckle lengthwise under the action of the axial compression force. This can
occur in three different ways.

a.

Flexural buckling: A deflection occurs by bending about the weak axis, as shown in
Figure 10.1. The slenderness ratio is a measure of the flexural buckling of a member.
When the buckling occurs at a stress level within the proportionality limit of steel, it is
called elastic buckling. When the stress at buckling is beyond the proportionality limit,
itis inelastic buckling. The columns of any shape can fail in this mode by either elastic
or inelastic buckling.

Torsional buckling: This type of failure is caused by the twisting of the member lon-
gitudinally, as shown in Figure 10.2. The doubly symmetric hot-rolled shapes like
W, H, or round are normally not susceptible to this mode of buckling. The torsional
buckling of doubly symmetric sections can occur only when the torsional unbraced
length exceeds the lateral flexural unbraced length. The thinly built-up sections might
be exposed to torsional buckling.

Flexural—-torsional buckling: This failure occurs by the combination of flexural and
torsional buckling when a member twists while bending, as shown in Figure 10.3. Only
the sections with a single axis of symmetry or the nonsymmetric sections such as a
channel, tee, and angle are subjected to this mode of buckling.

The nominal compressive strength, P,,
the limit states of flexural buckling, torsional buckling, and flexural-torsional buckling.
The flexural buckling limit state is applicable to all sections.

in Equation 10.1 is the lowest value obtained according to

In addition, the doubly symmetric sections having torsional unbraced length larger than the weak-
axis flexural unbraced length, the doubly symmetric sections built from thin plates, singly symmet-
ric sections, and nonsymmetric sections are subjected to torsional buckling or flexural-torsional
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FIGURE 10.1 Flexural buckling.
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FIGURE 10.2 Torsional buckling.

FIGURE 10.3 Flexural-torsional buckling.
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buckling that requires substantive evaluations. It is desirable to prevent it when feasible. This can be
done by bracing the member to prevent twisting.

The limit states are considered separately for the nonslender and the slender sections according
to the local instability criteria.

LOCAL BUCKLING CRITERIA

In the context of local buckling, the elements of a structural section are classified into following two
categories:

1. Unstiffened element: This has an unsupported edge (end) parallel to (along) the direction
of the load, like an angle section.
2. Stiffened element: This is supported along both of its edges, like the web of a wide flange section.

The two types of elements are illustrated in Figure 10.4.

When the ratio of width to thickness of an element of a section is greater than the specified limit
A, as shown in Table 10.1, it is classified as a slender shape. The cross section of a slender element
is not fully effective in resisting a compressive force. Such elements should be avoided or else their

—— — ——
U UT U T
, S
U U d S|t hod tw h
t
f 4 . |
U _t U U U U u
; /l A l —
— b—= ¥ bf A A bf A b
i

U = Unstiffened

I
i l

S = Stiffened
b — :
FIGURE 10.4 Stiffened and unstiffened elements.
TABLE 10.1
Slenderness Limit for Compression Member
Width :

Element Thickness Ratio A Magnitude for 36 ksi Magnitude for 50 ksi
W, S, M, H b2, 0.56,/EJF, 15.89 13.49

nit,, 1.49,[EJF, 42.29 35.88
c bty 0.56,/E/F, 15.89 13.49

nit,, 1.49,[EJF, 42.29 35.88
T b2t 0.56,/E/F, 15.89 13.49

d, 0.75,/EfF, 2129 18.16
Single L or double bt 0.45,/E/F, 12.77 10.84

L with separation

Box, tubing blt L4 JEJF, Box (46 ksi steel) 35.15 Tubing (42 ksi steel) 36.79

Circular Dit 0.11(E/F,)  Pipe (35 ksi steel) 91.14
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strength should be reduced, as discussed in the “Slender Compression Members™ section. Separate
provisions for strength reduction are made in the AISC manual for stiffened and unstiffened
sections. The terms are explained in Figure 10.4.

FLEXURAL BUCKLING CRITERIA

The term (KL/r), known as the slenderness ratio, is important in column design. Not only does
the compression capacity of a column depend on the slenderness ratio, but the ratio also sets
a limit between the elastic and nonelastic buckling of the column. When the slenderness ratio
exceeds a value of 4.7L/E/Fy, the column acts as an elastic column and the limiting (failure)
stress level is within the elastic range.

According to the classic Euler formula, the critical load is inversely proportional to (KL/r)?, where
K is the effective length factor (coefficient), discussed in the “Effective Length Factor for Slenderness
Ratio” section, L is the length of the column, and r is the radius of gyration given by \/I/_A .

Although it is not a mandatory requirement in the AISC Manual 2010, the AISC recommends
that the slenderness ratio for a column should not exceed a value of 200.

EFFECTIVE LENGTH FACTOR FOR SLENDERNESS RATIO

The original flexural buckling or Euler formulation considered the column pinned at both ends.
The term K was introduced to account for the other end conditions because the end condition will
make a column buckle differently. For example, if a column is fixed at both ends, it will buckle at
the points of inflection about L/4 distance away from the ends, with an effective length of one-half
of the column length. Thus, the effective length of a column is the distance at which the column is
assumed to buckle in the shape of an elastic curve. The length between the supports, L, is multiplied
by a factor to calculate the effective length.

When columns are part of a frame, they are constrained at the ends by their connection to beams
and to other columns. The effective length factor for such columns is evaluated by the use of the
alignment charts or nomographs given in Figures 10.5 and 10.6; the former is for the braced frames
where the sidesway is prevented, and the latter is for the moment frames where the sidesway is
permitted.

In the nomographs, the subscripts A and B refer to two ends of a column for which K is desired.
The term G is the ratio of the column stiffness to the girder stiffness expressed as

ML,
G= (10.2)

) ZIS'/LS'

where
I.is moment of inertia of the column section
L. is length of the column
I, is moment of inertia of the girder beam meeting the column
L, is length of the girder
Y is summation of all members meeting at joint A for G, and at joint B for G

The values of /. and , are taken about the axis of bending of the frame. For a column base con-
nected to the footing by a hinge, G is taken as 10 and when the column is connected rigidly (fixed)
to the base, G is taken as 1.

After determining G, and Gy for a column, K is obtained by connecting a straight line between
points G, and G on the nomograph. Since the values of / (moment of inertia) of the columns and
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Gy K Gy
00 \ f o
50.0 3 T 10 £ 50.0
10.0 3 1 = 10.0

5.0 4 - 5.0

4.0 1o - 4.0

3.0 : - 3.0

2.0 - 4 - 2.0

-+ 0.8

1.0 H - 1.0

0.9 - 1 - 0.9

0.8 - 0.8

0.7 - 0.7

0.6 - 1o - 0.6

0.5 - 0.5

0.4 1 - 0.4

0.3 - 0.3

i 406 I

0.2 ~ 0.2

0.1 T ~ 0.1

0.0 - L 05 = 0.0

FIGURE 10.5 Alignment chart, sidesway prevented. (Courtesy of American Institute of Steel Construction,
Chicago, IL.)

Gy K o Gp
00 — :_/_:_20.0 - oo
100.0 = 10.0 ~100.0
50.0 o T = 50.0
30.0 -+ 50 - 30.0
20.0 -+ 4.0 ~20.0
10.0 -+ 3.0 - 10.0
8.0 - T 8.0
7.0 T —7.0
6.0 + ~ 6.0
5.0 ] + C 5.0
4.0 L 920 4.0
3.0 1 3.0
2.0 T —2.0

-+ 1.5
1.0 4 —1.0
0.0 — - 1.0 = 0.0

FIGURE10.6 Alignment chart, sidesway not prevented. (Courtesy of American Institute of Steel Construction,
Chicago, IL.)
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beams at the joint are required to determine G, the factor K cannot be determined unless the size of
the columns and the beams are known. On the other hand, the factor K is required to determine the
column size. Thus, these nomographs need some preliminary assessments of the value of K and the
dimensions of the columns and girders.

One of the conditions for the use of the nomographs or the alignment charts is that all columns
should buckle elastically, that is, KL >4.71 /E/F,. If a column buckles inelastically, a stiffness
reduction factor, T, has to be applied. The factor 7, is the ratio of the tangent modulus of elasticity
to the modulus of elasticity of steel. The value has been tabulated in the AISC manual as a function
of P /A, Without ,, the value of K is on the conservative side.

However, in lieu of applying the monographs in a simplified method, the factors (coefficients)
listed in Figure 7.6 are used to ascertain the effective length. Figure 7.6 is used for isolated columns
also. When Figure 7.6 is used for the unbraced frame columns, the lowest story (base) columns
could be approximated by the condition with K = 2 for the hinged base and K = 1.2 for the fixed
base, and the upper story columns are approximated by the condition with K = 1.2. For braced
frames, the condition with K = 0.65 is a good approximation.

Example 10.1

A rigid unbraced moment frame is shown in Figure 10.7. Determine the effective length factors
with respect to weak axis for members AB and BC.

SOLUTION

1. The section properties and G ratios are arranged in the table below:

Column Girder
Joint Section I (in.%) L (ft.) /L Section I (in%) L (ft.) I/L G
A Fixed 1
B W10 x 33 171 15 11.40° W14 x 22 199 20 9.95
W10 x 26 144 12 12.00 W14 x 26 245 20 12.25
> 23.40 2220 23.4/22.20 = 1.05
C W10 x 26 144 12 12.00 W12 x 14 88.6 20 4.43
Wi12 x 14 88.6 20 4.43
> 12.00 8.86  12.00/8.86 =1.35

@ Mixed units (/ in in.* and L in ft.) can be used since the ratio is being used.

W12 x 14 C W12 x 14
\O
[a\}
é 12 ft
—
W14 x22 = B W14 %26 L
.
@ 15 ft.
X
o
—
=
A .
77T 20 ft. 7T 20 ft. 7T 7

FIGURE 10.7 An unbraced frame.
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2. Column AB
From Figure 10.6, the alignment chart for an unbraced frame (sidesway permitted) connect-

ing a line from G, =1to G; = 1.05, K= 1.3.
3. Column BC
From the alignment chart with G, = 1.05 (point B) and G = 1.35 (point C), K = 1.38.

LIMIT STATES FOR COMPRESSION DESIGN

The limit states of design of a compression member depends on the category to which the compres-
sion member belongs, as described in the “Strength of Compression Members or Columns” section.
The limit states applicable to different categories of columns are summarized in Table 10.2.

AISC 360-10 has organized the provisions for compression members as follows:

1. Flexural buckling of nonslender members

2. Torsional buckling and flexural-torsional buckling of nonslender members
3. Single-angle members

4. Built-up members by combining two shapes

5. Slender members

The discussion below follows the same order.

NONSLENDER MEMBERS
FLExURAL BUCKLING OF NONSLENDER MEMBERS IN ELASTIC AND INELASTIC REGIONS

Based on the limit state for flexural buckling, the nominal compressive strength P, is given by

P,=F,A (10.3)

n crtig

TABLE 10.2
Applicable Limit States for Compressive Strength

Local Buckling (Local Instability)

Type of Column Nonslender Column, A < A, Slender Column, A > 2,

Overall Instability

1. Doubly symmetric members

2. Doubly symmetric thin plate
builtup members or large
unbraced torsional length
members

3. Singly symmetric or
nonsymmetric members

Flexural buckling in elastic or inelastic

region

Lowest of the following two limits:
1. Flexural buckling in elastic or
inelastic region
2. Torsional buckling

Lowest of the following three limits:
1. Flexural buckling in elastic or
inelastic region
2. Flexural-torsional buckling

Flexural buckling in elastic or
inelastic region incorporating the
reduction factors for slender element

Lowest of the following two limits,
incorporating the reduction factors
for slender element:

1. Flexural buckling in elastic or
inelastic region
2. Torsional buckling

Lowest of the following three limits,
incorporating the reduction factors
for slender element:

1. Flexural buckling in elastic or
inelastic region
2. Flexural—torsional buckling
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where
F . is flexural buckling state (stress)
A, is gross cross-sectional area

Including the nominal strength in Equation 10.1, the strength requirement of a column can be
expressed as

P, = 0F, A, (10.4)

Ci

The flexural buckling stress, F,, is determined as follows.

INELASTIC BUCKLING

When KL/r £4.71, /E/Fy, we have inelastic buckling, for which
F, = (0.658"")F, (10.5)

where F, is elastic critical buckling or Euler stress calculated according to Equation 10.6:

2
F=_TE (10.6)
“ (KLIr)?

ELAsTIC BUCKLING

When KL/r >4.71 E/IF,, we have elastic buckling, for which
F,=0.877F, (10.7)

The value of 4.71 E/Fy, at the threshold of inelastic and elastic buckling, is given in Table 10.3
for various types of steel.

The available critical stress ¢F,, in Equation 10.4 for both the inelastic and elastic regions is
given in Table 10.4 in terms of KL/r, adapted from the AISC Manual 2010.

TorsiONAL AND FLEXURAL-TORSIONAL BUCKLING OF NONSLENDER MEMBERS

According to the commentary in Section E of AISC 360-10, in the design with hot-rolled column
sections, the torsional buckling of symmetric shapes and the flexural-torsional buckling of nonsym-
metric shapes are the failure modes that are not usually considered in design. They usually do not
govern or the critical load differs very little from the flexural buckling mode.

Hence, this section usually applies to double-angle, tee-shaped, and other built-up members.

TABLE 10.3

Numerical Limits of
Inelastic—Elastic Buckling
Type of Steel 4.71,JE/F,

A36 133.7
A992 113.43
A572 113.43
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TABLE 10.4
Available Critical Stress ¢F,, for Compression Members (F, =50 ksi and ¢ = 0.90)
KL/r OF,, ksi KL/r OF,, ksi KL/r OF,, ksi KL/r OF,, ksi KL/r OF,, ksi
1 45.0 41 39.8 81 27.9 121 15.4 161 8.72
2 45.0 42 39.5 82 275 122 15.2 162 8.61
3 45.0 43 39.3 83 272 123 14.9 163 8.50
4 449 44 39.1 84 26.9 124 14.7 164 8.40
5 449 45 38.8 85 26.5 125 145 165 8.30
6 449 46 385 86 26.2 126 14.2 166 8.20
7 44.8 47 383 87 25.9 127 14.0 167 8.10
8 44.8 438 38.0 88 25.5 128 13.8 168 8.00
9 447 49 37.7 89 25.2 129 13.6 169 7.89
10 447 50 375 90 249 130 13.4 170 7.82
11 44.6 51 37.2 91 24.6 131 132 171 7.73
12 445 52 36.9 92 242 132 13.0 172 7.64
13 444 53 36.7 93 239 133 12.8 173 7.55
14 444 54 36.4 94 23.6 134 12.6 174 7.46
15 44.3 55 36.1 95 233 135 12.4 175 7.38
16 442 56 35.8 96 229 136 122 176 7.29
17 44.1 57 35.5 97 22.6 137 12.0 177 7.21
18 439 58 35.2 98 223 138 11.9 178 7.13
19 43.8 59 34.9 99 22.0 139 11.7 179 7.05
20 437 60 34.6 100 21.7 140 115 180 6.97
21 43.6 61 343 101 213 141 11.4 181 6.90
22 434 62 34.0 102 21.0 142 1.2 182 6.82
23 433 63 33.7 103 20.7 143 11.0 183 6.75
24 43.1 64 33.4 104 20.4 144 10.9 184 6.67
25 43,0 65 33.0 105 20.1 145 10.7 185 6.60
26 42.8 66 32.7 106 19.8 146 10.6 186 6.53
27 427 67 324 107 19.5 147 10.5 187 6.46
28 425 68 32.1 108 19.2 148 10.3 188 6.39
29 423 69 31.8 109 18.9 149 10.2 189 6.32
30 42.1 70 31.4 110 18.6 150 10.0 190 6.26
31 419 71 31.1 111 183 151 9.91 191 6.19
32 41.8 72 30.8 112 18.0 152 9.78 192 6.13
33 41.6 73 30.5 113 17.7 153 9.65 193 6.06
34 414 74 30.2 114 174 154 9.53 194 6.00
35 412 75 29.8 115 17.1 155 9.40 195 5.94
36 40.9 76 295 116 16.8 156 9.28 196 5.88
37 407 77 29.2 117 16.5 157 9.17 197 5.82
38 405 78 28.8 118 16.2 158 9.05 198 5.76
39 403 79 28.5 119 16.0 159 8.94 199 5.70
40 40.0 80 28.2 120 15.7 160 8.82 200 5.65

Source: Courtesy of American Institute of Steel Construction, Chicago, Illinois.
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The nominal strength is governed by Equation 10.3. Also, the F., value is determined according to
Equation 10.5 or 10.7 except for two-angle and tee-shaped members. For two-angle and tee-shaped
section, F, is determined directly by a different type of equation. For simplicity, Equation 10.5 or
10.7 can be used with y axis strength.

However, to determine the Euler stress F,, instead of Equation 10.6, a different set of formulas is
used that includes the warping and torsional constants for the section.

SINGLE-ANGLE MEMBERS

For single angles with b/t < 20, only the flexural limit state is to be considered. This applies to
all currently produced hot-rolled angles. Thus, the flexural-torsional limit state applies only to
fabricated angles with b/t > 20, for which the provisions of the “Torsional and Flexural-Torsional
Buckling of Nonslender Members” section apply.

AISC provides a simplified approach in which load is applied through one connected leg. The
slenderness ratio is computed by a specified equation. Then, Equations 10.4 through 10.7 are used
to determine the capacity.

BUILT-UP MEMBERS

The members are made by interconnecting elements by bolts or welding. The empirical relations
for the effective slenderness ratio for the composite section is used to consider the built-up member
acting as a single unit. Depending on the shape of the section, it is designed according to the flexural
buckling or flexural-torsional buckling.

SLENDER COMPRESSION MEMBERS

The approach to design slender members having A > A, is similar to the nonslender members in all
categories except that a slenderness reduction factor, Q, is included in the expression 4.7/E/F, to
classify the inelastic and elastic regions and Q is also included in the equations for F... The slender-
ness reduction factor Q has two components: Q. for the slender unstiffened elements and Q,, for the
slender stiffened elements. These are given by a set of formulas for different shapes of columns.
A reference is made to the Section E7 of Chapter 16 of the AISC manual 2010.

All W shapes have nonslender flanges for A992 steel. All W shapes listed for the columns in the
AISC manual have nonslender webs (except for W14 x 43). However, many W shapes meant to be
used as beams have slender webs in the compression.

This chapter considers only the doubly symmetric nonslender members covered in the “Nonslender
Members” section. By proper selection of a section, this condition, that is, A < A, could be satisfied.

USE OF THE COMPRESSION TABLES

Section 4 of the AISC Manual 2010 contains tables concerning “available strength in axial compression,
in kips” for various shapes and sizes. These tables directly give the capacity as a function of effective
length (KL) with respect to least radius of gyration for various sections. The design of columns is a
direct procedure from these tables. An abridged table for F, = 50 ksi is given in Appendix C, Table C.8.

When the values of K and/or L are different in the two directions, both K L, and K L, are
computed. If K L, is bigger, it is adjusted as K L /(r./r,). The higher of the adjusted K, L /(r./r,) and
KL, value is entered in the table to pick a section that matches the factored design load P,

When designing for a case when K, L is bigger, the adjustment of K.L /(r./r,) is not straightfor-
ward because the values of 7, and r, are not known. The initial selection could be made based on the
K L, value and then the adjusted value of KL /(r./r) is determined based on the initially selected
section.
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Example 10.2

A 25-ft.- long column has one end rigidly fixed to the foundation. The other end is braced (fixed)
in the weak axis and free to translate in the strong axis. It is subjected to a dead load of 120 k and
a live load of 220 k. Design the column using A992 steel.

SOLUTION

A. Analytical solution

1.

2.

3.

Assume a dead load of 100 [bs/ft.
Weight of column = 25(0.1) = 2.5 k
Factored design load
P,=1.2(120 + 2.5) + 1.6(220) = 499 k
For yield limit state
_ R 499

¥ 0F,  0.9(50)
The size will be much larger than step 3 to allow for the buckling mode of failure
Select a section W14 x61A=17.9 in.2
r,=5.98 in.
r, =245 in.
b =7.75

D304

tW

056 | = =0.56, 22290 _ 13 49
3 50

149 £ =149 22090 _ 35 55
F, 50

Since b;/2t; < 0.56,/E/F, and hft,, <1.49,/E/F,, it is a nonslender section
K, =1.2 from Figure 7.6

=11.11in.

K, =0.65

Kb _1.225x12) _ 0
I, 5.98

K,L
Y X - 06525x12) =79.59« Controls
r 2.45

y
Since 79.59 < 200 OK
From Table 10.3, 4.71,[E/F, =113.43
Since 79.59 < 113.43, inelastic buckling
_ n
© T (KUrR

2
- —”(;2995/3?20) — 4514 ksi

9. F.,=1(0.658%41450 = 31.45 ksi
10. ¢P,=(0.9)(31.45)(17.9) = 507 k OK
B. Use of Appendix C, Table C.8

1.

KL, =1.2(25=30ft.
K,L, =0.65(25)=16.25 ft.

Select preliminary section
Based on KL, = 16.25 ft,, section W14 X 61, capacity = 507 k (interpolated), from
Appendix C, Table C.8
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3. Forsection W14 x 61, r, =598 in., r, = 2.45 in.

Adjusted% = 1225 _ 12.29
rJr,  5.98/2.45

Use the larger value of K L, of 16.25 ft.
4. Section from Appendix C, Table C.8 W14 x 61 with capacity = 507 k

Example 10.3

An unbraced hinged at base column as shown in Figure 10.8 is fabricated from Grade 50 steel.
Determine the limit state that will control the design of the column.

SOLUTION
1. The doubly symmetric built-up section will be subjected to flexural-torsional buckling.
0, b_10 _ 4
t 025

145214299 355
F, 50

Since 40 > 33.72, it is a slender column; the reduction factors have to be applied.
3. U=l —
1
12
=154.58in.*
A=(10)(10)—-(9.5)(9.5)
=9.75in.2

r= \/Z = /154'58 =3.98in.
A 9.75

K=2.0
KL 2.0(20x12)
r 3.98

inside

! (9.5)(9.5)°

3L
(10)(10) 12

=120.6

4. From Table 10.2,4.71\/FE =113.43
y

KL > 4.71\/FE/ elastic flexural buckling
Y

r

5. The lowest of the following two limit states will control:
a. Elastic flexural buckling with the slender reduction factors
b. Torsional buckling with the slender reduction factors

10in.

10in. 20ft.

<+— 0.25in.

FIGURE 10.8 Built-up column.
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PROBLEMS

10.1 A W8 X 31 column of A36 steel is 20 ft. long. Along the y axis, it is hinged at both ends.
Along the x axis, it is hinged at one end and free to translate at the other end. In which
direction is it likely to buckle? (r, = 3.47 in., r, = 2.02 in.)

10.2 AnHSS 5 X 25 x 1/4 braced column is supported, as shown in Figure P10.1. Determine
the controlling (higher) slenderness ratio.

10.3 A single-story single-bay frame has the relative / values shown in Figure P10.2. Determine
the effective length of the columns along the x axis. Sway is permitted in x direction.

10.4 The frame of Figure P10.3 is braced and bends about the x axis. All beams are W18 X 35,
and all columns are W10 X 54. Determine the effective length factors for AB and BC.

10.5 An unbraced frame of Figure P10.4 bends along the x axis. Determine the effective length
factors for AB and BC.

10.6 Determine the effective length factors for AB and BC of the frame of Figure P10.4 for
bending along the y axis. Whether the factors determined in Problem 10.5 or the factors
determined in Problem 10.6 will control the design?

LLLL LLLL
10 ft.
20 ft. $KE Hinged
10 ft.
7777 T77T
Strong axis Weak axis

FIGURE P10.1 An HSS column.

@)

15 ft.
AS 40 ft. N
FIGURE P10.2 Frame for Problem 10.3.
C
12 ft.
B 1
15 ft.
A
7707 707 7 7~
AS 20 ft. N 20 ft. N

FIGURE P10.3 Frame for Problem 10.4.
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N W14 x30 N
14 ft.
N W14 x 34 T W14x 30
L
/ B
15 ft.
b / X
(=] wn
4% W16 36 C  Wi16x36 3
N <
3 X =
M % Y
18 ft =
N AP »
DS 25 ft. N 20 ft. o
FIGURE P10.4 Frame for Problem 10.5.
&
W12x72
#rr
FIGURE P10.5 Column for Problem 10.7.
A=24.6in.2
d=12.28 in.
r,=5.141in.
r,=2.94 in.
16 ft. | HP12x84
897
2%
h
a: 14.2
7777

FIGURE P10.6 Column for Problem 10.8.

10.7 Determine the strength of the column of A992 steel in Figure P10.5, when (a) the length is
15 ft. and (b) the length is 30 ft.

10.8 Compute the strength of the member of A36 steel shown in Figure P10.6.

10.9 Compute the strength of the member (translation permitted) shown in Figure P10.7 of

A500 Grade B steel.

10.10 A W18 x 130 section is used as a column with one end pinned and the other end fixed
against rotation but is free to translate. The length is 12 ft. Determine the strength of the

A992 steel column.

10.11 Determine the maximum dead and live loads that can be supported by the compression
member shown in Figure P10.8. The live load is twice the dead load.
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7,

A=24.6in.2
) r,=3.6in.
HSS 10><6><§ r,=2.39in.
15 ft. by
A500 Grade B 7= 9.90
h_
= 18.5
7777
FIGURE P10.7 Column for Problem 10.9.
&
W12x79
12 4t. A992 steel
Ve
FIGURE P10.8 Column for Problem 10.11.

\a A=524in?
r,=2.851n
r,=1.66 in

1 b _
20 ft. HSS 8X4XZ 7—14.2
A500 Grade B steel é —313

7777

FIGURE P10.9 Column for Problem 10.12.

lD:lOOk

L=250k
LLLL

W12 x72

251 4992 steel

7
FIGURE P10.10 Column for Problem 10.13.

10.12 Determine the maximum dead and live loads supported by the braced column of Figure
P10.9. The live load is one-and-a-half times the dead load.

10.13 Determine whether the braced member of A992 steel in Figure P10.10 is adequate to sup-
port the loads as indicated.

10.14 Check whether the A36 steel member of Figure P10.11 unbraced at the top is adequate for
the indicated loads.

10.15 An HSS 6 X 4 x 5/16 braced section (46 ksi steel) shown in Figure P10.12 is applied by a
dead load of 40 k and a live load of 50 k. Check the column adequacy.
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D=100k
l L=250k
zZzn wZzn _ .
T Hp 10x57 A=167in.
6 ft. r,=4.18 in.
ry=2.45 in.
by
15 ft. P 5, =903
9 ft. hf
l —=139
tW
7777 777
x axis y axis
FIGURE P10.11 Column for Problem 10.14.
D=40k
l l L=50k
“ & .
7 ft.
5
5 PE T HSS6x4x >
8 ft.
7 7

FIGURE P10.12 Column for Problem 10.15.

12 ft.

FIGURE P10.13 Column for Problem 10.16.

10.16
10.17 Design a standard pipe section of A53
Figure P10.14.

10.18

|

D=50k
L=100k

Select an HSS section for the braced column shown in Figure P10.13.

Grade B steel for the braced column shown in

Select a W14 shape of A992 steel for the braced column of 25 ft. length shown in

Figure P10.15. Both ends are fixed. There are bracings at 10 ft. from top and bottom in the

weaker direction.
10.19

Design a W14 section column AB of the frame shown in Figure P10.16. It is unbraced along

the x axis and braced in the weak direction. The loads on the column are dead load = 200 k
and live load = 600 k. First determine the effective length factor using Figure 7.6. After
selecting the preliminary section for column AB, use the alignment chart with the same
size for column BC as of column AB to revise the selection. Use W16 X 100 for the beam

sections meeting at B.
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l D=50k
L=100k
1141
12 ft.
s
FIGURE P10.14 Column for Problem 10.17.
l D=350k
L=1000k
241 7
10 ft.
e+
25 ft. 5 ft.
PE >|r
10 ft.
7777 7777 ’L
x axis y axis
FIGURE P10.15 Column for Problem 10.18.
D100k 200k 100k
L 300k 600k 300k
12 ft.
: +
12 ft.
B +
12 ft.
» |
77T 77T 77T
¥ 20 ft. ¥ 20 ft. 2N

FIGURE P10.16 Frame for Problem 10.19.

10.20 Design the column AB in Problem 10.19 for the frame braced in both directions.

207

10.21 A WTI2 x 34 column of 18 ft. length is pinned at both ends. Show what limiting states
will determine the strength of the column. Use A992 steel. [A = 10 in.2, ry = 1.87 in.,

b21,=7.66, dlt, = 28.7]

10.22 The A572 braced steel column in Figure P10.17 is fixed at one end and hinged at the other

end. Indicate the limit states that will control the strength of the column.

10.23 A double-angle braced section with a separation 3/8 in. is subjected to the loads shown in
Figure P10.18. Determine the limit states that will govern the design of the column. Use
Grade 50 steel. [A = 3.86 in.?, r,= 178 in., b/t = 16]
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12 ft. | C12x30

7777
FIGURE P10.17 Column for Problem 10.22.
l D=50k
L=100k
2441
A=3.86in2
16f| 2Laxaxt 7y=178in.
4 p
—=16
t
77T
FIGURE P10.18 Column for Problem 10.23.
7
1 1.1
413 7 X3 5 X Z
15 ft.
=
FIGURE P10.19 Cruciform column for Problem 10.24.
l D=200k
L=500k
G i
1X20 plate
———
12 ft.
1x 18 plate
25 ft. 3>¢
1 13 ft.
1X20 plate l
7777 7777
Strong axis Weak axis

FIGURE P10.20 Built-up column for Problem 10.25.

10.24 A cruciform column is fabricated from Grade 50 steel, as shown in Figure P10.19.
Determine the limit states that will control the design. [Use the properties of a single
angle to determine the values of the composite section.]

10.25 For the braced column section and the loading shown in Figure P10.20, determine the
limit states for which the column should be designed. Use A992 steel.
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BASIS OF DESIGN

Beams are the structural members that support transverse loads on them and are subjected to flexure
and shear. An I shape is a common cross section for a steel beam where the material in the flanges at
the top and bottom is most effective in resisting bending moment and the web provides for most of
the shear resistance. As discussed in the “Design of Beams” section of Chapter 7— context of wood
beams—the design process involves selection of a beam section on the basis of the maximum bend-
ing moment to be resisted. The selection is, then, checked for shear capacity. In addition, the service-
ability requirement imposes the deflection criteria for which the selected section should be checked.
The basis of design for bending or flexure is as follows:

M, < oM, 111

where
M, is factored design (imposed) moment
¢ is resistance factor for bending = 0.9
M, is nominal moment strength of steel

NOMINAL STRENGTH OF STEEL IN FLEXURE

Steel is a ductile material. As discussed in the “Elastic and Plastic Designs” section in Chapter 1,
steel can acquire the plastic moment capacity M,, wherein the stress distribution above and below
the neutral axis will be represented by the rectangular blocks corresponding to the yield strength of
steel, that is, M,=FZ7 7 being the plastic moment of inertia of the section.

However, there are certain other factors that undermine the plastic moment capacity. One such fac-
tor relates to the unsupported (unbraced) length of the beam, and another relates to the slender dimen-
sions of the beam section. The design capacity is determined considering both of these. The effect
of the unsupported length on strength is discussed first in the “Lateral Unsupported Length” section.
The beam’s slender dimensions affect the strength similar to the local instability of compression
members. This is described in the “Noncompact and Slender Beam Sections for Flexure” section.

LATERAL UNSUPPORTED LENGTH

As a beam bends, it develops compression stress in one part and tensile stress in the other part of its
cross section. The compression region acts analogous to a column. If the entire member is slender, it
will buckle outward similar to a column. However, in this case the compression portion is restrained
by the tensile portion. As a result, a twist will occur in the section. This form of instability, as shown
in Figure 11.1, is called lateral torsional buckling.

Lateral torsional buckling can be prevented in two ways:

1. Lateral bracings can be applied to the compression flange at close intervals, which prevents
the lateral translation (buckling) of the beam, as shown in Figure 11.2. This support can be
provided by a floor member securely attached to the beam.

2. Cross bracings or a diaphragm can be provided between adjacent beams, as shown in
Figure 11.3, which directly prevents the twisting of the sections.

209
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B ——— e ——— - I{‘

FIGURE 11.1 Buckling and twisting effect in a beam.

FIGURE 11.2 Lateral bracing of compression flange.

1l 7722

FIGURE 11.3 Cross bracing or diaphragm.

| Inelastic
M, - lateral torsional
s ! bucklin
s | g
E I | Elastic
9] | .
E 074F, | | lateral torsional
S .
E Adequate : Partial : buckling
g lateral | adequate :
E support I' lateral support |
ZO : : Inadequate
| | lateral support
| |

L, L,
Unbraced length, L,

FIGURE 11.4 Nominal moment strength as a function of unbraced length.

Depending on the lateral support condition on the compression side, the strength of the limit
state of a beam is due to either the plastic yielding of the section or the lateral torsional buckling of
the section. The latter condition has two further divisions: inelastic lateral torsional buckling and
elastic lateral torsional buckling. These three zones of the limit states are shown in Figure 11.4 and
described here.

In Figure 11.4, the first threshold value for the unsupported or the unbraced length is L,, given
by the following relation:

L,=1.76r, (11.2)

=T

where
L, is first threshold limit for the unsupported length (in inches)
r, is radius of gyration about the y axis, listed in the Appendix C, Tables C.1 through C.7

The second threshold value is L,, which is conservatively given by the following relation:

E
L =mnr, |— (11.3)
0.7F,
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where
L, is second threshold of the unsupported length (in inches)
r,, is special radius of gyration for L, listed in Appendix C, Tables C.1 through C.7

FULLY PLASTIC ZONE WITH ADEQUATE LATERAL SUPPORT

When the lateral support is continuous or closely spaced so that the unbraced (unsupported) length
of a beam, L,, is less than or equal to L, from Equation 11.2, the beam can be loaded to reach the
plastic moment capacity throughout the section.

The limit state in this case is the yield strength given as follows:

M, =0F,Z,, with 6=0.9 (11.4)

The lateral torsional buckling does not apply in this zone.

INELASTIC LATERAL TORSIONAL BUCKLING ZONE

When the lateral unsupported (unbraced) length, L, is more than L, but less than or equal to L,, the
section will not have sufficient capacity to develop the plastic moment capacity, i.e., the full yield
stress, F, in the entire section. Before all fibers are stressed to F', buckling will occur. This will lead
to inelastic lateral torsional buckling. A

At L, = L,, the moment capacity is the plastic capacity M,. As the length L, increases beyond
the L, value, the moment capacity becomes less. At the L, value of the unbraced length, the section
buckles elastically, attaining the yield stress only at the top or the bottom fiber. Accounting for the
residual stress in the section during manufacturing, the effective yield stress is F', — F,, where F, is
residual stress. The residual stress is taken as 30% of the yield stress. Thus, at L,; = L, the moment
capacity is (F, - F)S, or 0.7F S.

When the unbraced length L, is between the L, and L, values, the moment capacity is linearly
interpolated between the magnitudes of M, and 0.7F S as follows:

b
L —-L

r p

L,—-L
M”=¢I:MP_(MP_O'7FVS)( p]:|cb (115)
where M, = F\Z,

MODIFICATION FACTOR C,

The factor C, is introduced in Equation 11.5 to account for a situation when the moment within the
unbraced length is not uniform (constant). A higher moment between the supports increases the resis-
tance to torsional buckling, thus resulting in an increased value of C,. This factor has the following
values:

G
1. No transverse loading between brace points 1
2. Uniformly loaded simple supported beam 1.14
3. Centrally loaded simple supported beam 1.32
4. Cantilever beam 1
5. Equal end moments of opposite signs 1
6. Equal end moments of the same sign (reverse curvature) 2.27
7. One end moment is 0 1.67

A value of 1 is conservatively taken.
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ELASTIC LATERAL TORSIONAL BUCKLING ZONE

When the unbraced length L, exceeds the threshold value of L,, the beam buckles before the effective
yield stress, 0.7F,, is reached anywhere in the cross section. This is elastic buckling. The moment
capacity is made up of the torsional resistance and the warping resistance of the section:

M, <0.7¢F,S (11.6)
At L, = L,, the capacity M, is exactly 0.7¢pF,S.

NONCOMPACT AND SLENDER BEAM SECTIONS FOR FLEXURE

The aforementioned discussion on beam strength did not account for the shape of a beam, that is, it
assumes that the beam section is robust enough to not create any localized problem. However, if the
flange and the web of a section are relatively thin, they might get buckled, as shown in Figure 11.5,
even before lateral torsional buckling due to unsupported length of the span happens. This mode of
failure is called flange local buckling or web local buckling.

Sections are divided into three classes based on the width to thickness ratios of the flange and the
web. The threshold values of classification are given in Table 11.1.

When A <), the shape is compact.

When A > A but A <, the shape is noncompact.

When A > A, the shape is slender.

Both the flange and the web are evaluated by the aforementioned criteria. Based on the afore-
mentioned limits, the flange of a section might fall into one category, whereas the web of the same
section might fall into the other category.

The values of A, and X, for various types of steel are listed in Table 11.2.

In addition to the unsupported length, the bending moment capacity of a beam also depends on
the compactness or width—thickness ratio, as shown in Figure 11.6.

This localized buckling effect could be the flange local buckling or the web local buckling
depending on which one falls into the noncompact or slender category. All W, S, M, HP, C, and MC
shapes listed in the AISC Manual 2010 have compact webs at F,, < 65 ksi. Thus, only the flange
criteria need to be applied. Fortunately, most of the shapes also satisfy the flange compactness
requirements.

FIGURE 11.5 Local buckling of section.

TABLE 11.1
Shape Classification Limits
Element A p A

P r
. E
Flange b, /2t 0.38 1.0 /F

Web hit, 3.76

w

2 For channel shape, this is b/tf.
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TABLE 11.2
Magpnitude of the Classification Limits
A572
A36 A992
Element Limits F, = 36 ksi F, =50 ksi
E
Flange 0.38 [— 10.79 9.15
E
10 [+ 28.38 24.08
F,
E
Web 3.76 ra 106.72 90.55
E
570 |— 161.78 137.27
F,
Full plastic Local buckling of
moment |
Mp i noncompact
= | section
= |
El ' |
& ' Local buckling of
= | ) .
S | | slender section
E | [
E ! !
g Compact : Noncompact : Slender
Z section | section | section
|
I .
bs bs

r

Width-thickness factor, A

FIGURE 11.6 Nominal moment strength as a function of compactness.

Without accounting for the lateral unsupported length effect, that is, assuming a fully laterally
supported beam, the strength limits described in the following sections are applicable based on the
compactness (width-thickness) criteria.

COMPACT FULL PLASTIC LIMIT

As long as A < ), the beam moment capacity is equal to M, and the limit state of the moment is
given by the yield strength expressed by Equation 11.4.

NONCOMPACT FLANGE LOCAL BUCKLING*

For sections having a value of A between the A, and A, limits shown in Table 11.1, the moment capacity
is interpolated between M, and 0.7F ;S as a gradient of the A values on the same line like Equation 11.5,
expressed as follows:

r P

M,=0|M,—(M,—0.7F,S) A2, 11.7)
p p y 7\‘ 7\'

* All webs are compact for F, = 36 ksi and 50 ksi.
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SLENDER FLANGE LOCAL BUCKLING

For sections with A > A,, the moment-resisting capacity is inversely proportional to the square of
slenderness ratio, as follows:

_ 0.90Ek_S
u = ;\‘2

_ % Where k> 035 and < 06.
hit

M (11.8)

where k, =

w

SUMMARY OF BEAM RELATIONS

Considering both the lateral support and the compactness criteria, the flexural strength (the moment
capacity) is taken to be the lowest value obtained according to the limit states of the lateral tor-
sional buckling and the compression flange local buckling. The applicable limits and corresponding
equations are shown in Table 11.3. Most of the beam sections fall in the full plastic zone where
Equation 11.4 can be applied. In this chapter, it is assumed that the condition of adequate lateral

TABLE 11.3

Applicable Limiting States of Beam Design

Flange Local Buckling?

Unbraced Noncompact (inelastic)
Zone Length, L, Compact A <A, A>h,and <2, Slender (Elastic) A > A,
Fully plastic Adequate Limit state: Limit state: Limit state:
lateral Yield strength: Inelastic flange local Elastic flange local
support Equation 11.4° buckling: buckling:
L,<L, lateral torsional buckling ~ Equation 11.7 Equation 11.8
does not apply lateral torsional buckling lateral torsional buckling
does not apply does not apply
Lateral torsional  Partial Limit state: Limit states: Limit states:
buckling inadequate Inelastic lateral torsional ~ Lower of the following two:  Lower of the following two:
support buckling: . .
L,> L, and Equation 11.5 1. Inellastlc laterali 1. Inel.astlc lateral'
L<L torsional buckling: torsional buckling:
T Equation 11.5 Equation 11.5
2. Noncompact flange 2. Slender flange local
local buckling: buckling:
Equation 11.7 Equation 11.8
Lateral torsional ~ Inadequate Limit state: Limit states: Limit states:
buckling support, Elastic lateral torsional Lower of the Lower of the
L,>L, buckling: following two: following two:

Equation 11.6

1. Elastic lateral
torsional buckling:
Equation 11.6

2. Noncompact flange
local buckling:
Equation 11.7

1. Elastic lateral
torsional buckling:
Equation 11.6

2. Slender flange local
buckling:

Equation 11.8

2 Web local buckling is not included since all I-shaped and C-shaped sections have compact webs. In the case of a web local

buckling member, formulas are similar to the flange local buckling. Equations 11.7 and 11.8 but are modified for (1) the

web plastification factor (R

pe

) and (2) the bending strength reduction factor (R

e)-

b Most beams fall into the adequate laterally supported compact category. This chapter considers only this state of design.
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TABLE 11.4
List of Noncompact Flange Sections

W21 x 48
W14 x 99
W14 x 90
W12 x 65
W10 x 12
W38 x 31
W8 x 10
W6 x 15
W6 X9

W6 x 8.5
M4 x 6

support will be satisfied, if necessary, by providing bracings at intervals less than the distance L,
and also that the condition of flange and web compactness is fulfilled.

AISC Manual 2010 also covers cases of noncompact and slender web buckling. The equations
are similar to Equations 11.4, 11.7, and 11.8 from the flange buckling cases with the application of
a web plastification factor, R, ., for a noncompact web and a bending strength reduction factor, R ,,,
for a slender web.

However, as stated in the “Noncompact and Slender Beam Sections for Flexure” section, all W,
S, M, HP, C, and MC shapes have compact webs for F, of 36, 50, and 65 ksi. Al W, S, M, C, and
MC shapes have compact flanges for F, of 36 and 50 ksi, except for the sections listed in Table 11.4.
Thus, a beam will be compact if the sections listed in Table 11.4 are avoided.

DESIGN AIDS

AISC Manual 2010 provides the design tables. A beam can be selected by entering the table either
with the required section modulus or with the design bending moment.

These tables are applicable to adequately support compact beams for which yield limit state is
applicable. For simply supported beams with uniform load over the entire span, tables are provided
that show the allowable uniform loads corresponding to various spans. These tables are also for
adequately supported beams but extend to noncompact members as well.

Also included in the manual are more comprehensive charts that plot the total moment capacity
against the unbraced length starting at spans less than L, and continuing to spans greater than L,,
covering compact as well as noncompact members. These charts are applicable to the condition
C, = 1. The charts can be directly used to select a beam section.

A typical chart is given in Appendix C, Table C.9. Enter the chart with given unbraced length
on the bottom scale, and proceed upward to meet the horizontal line corresponding to the design
moment on the left-hand scale. Any beam listed above and to the right of the intersection point will
meet the design requirement. The section listed at the first solid line after the intersection represents
the most economical section.

Example 11.1

A floor system is supported by steel beams, as shown in Figure 11.7. The live load is 100 psf.
Design the beam. Determine the maximum unbraced length of beam to satisfy the requirement
of adequate lateral support.

F, =50 ksi
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6 in. concrete slab
/ Beam

Principles of Structural Design

Girder

/I

- —

25 ft.

N

"N 10 ft.——10 ft. ——10 ft. —.

FIGURE 11.7 A floor system supported by beams.

SOLUTION
A. Analytical

1.

N

o AW

10.

Tributary area of beam per foot = 10 x 1 = 10 ft.2/ft.
Weight of slab per foot = 1x 10 x % x 150 =750 Ib/ft.

Estimated weight of beam per foot = 30 Ib/ft.
Dead load per foot = 780 Ib/ft.

Live load per foot = 100 x 10 = 1000 Ib/ft.
Design load per foot:

w, =1.2(780)+1.6(1000) = 2536 |b/ft. or 2.54 k/ft.

Design moment:

w2 2.54(25)

M, = =198.44 ft.-k
8

From Equation 11.4,

7, =18212) _ 55 g9in.s

(0.9)(50)

Select W14 x 34

Z,=54.61in.2

r,=5.83in.

r,=1.53in.

ﬂ: 7.41

2t;

h =43.1

w

b,
Since j =7.41<9.15 from Table 11.2, it is a compact flange.
f

h
Since P 43.1<90.55 from Table 11.2, it is a compact web.

w

Equation 11.4 applies; selection is OK.
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11. Unbraced length from Equation 11.2:

L,=1.76r,

=1.76(1.53) /29'000
50

=64.85in. or 5.4ft.

B

B. Use of chart:
1. From Appendix C, Table C.9, for an unbraced length of 45.4 ft. and a design moment
of 198 ft. -k, the suitable sections are W16 x 31 and W14 x 34.

Example 11.2

The compression flange of the beam in Example 11.1 is braced at a 10 ft. interval. Design the beam
when the full plastic limit state applies (adequate lateral support exists).

SOLUTION
1. At upper limit, L, =L,

or 10x12=1.76 1, | 220%0
50

orr,=2.83 in. minimum
2. Select W14 x 109

Z,=192in?
r,= 3.73in.
ﬂ=8.49
£:21.7

tW

3. M, = ¢FZ,=(0.9)50)(192) = 8640 in.-k or 720 ft.-k>198.44 OK

4. Since ;—tf =8.49<9.15 compact
f

Since tﬁ =21.7 <90.55 compact

w

Example 11.3

The compression flange of the beam in Example 11.1 is braced at a 10 ft. interval. Design the beam
when the inelastic lateral torsional limit state applies.
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SOLUTION
A. Analytical
1. At upper limit, L, =L,
or 10x12=mr, 29,000
"V (0.7)50

or r, = 1.33 in. minimum

2. Minimum Z, required for the plastic limit state:

M, 198.44x12

“ToF  (0.9)(50)

=52.2in23

3. Select W14 x 43
Z,=69.6in.}
S5, =62.6in3
r,=1.89 in.
I = 2.18 in. > minimum r® of 1.33
b

=t =754

h 374

tW

4 Lp:1.76(1.89)1/29é%00:80.11in. or 6.68ft.
L, =m(2.18) /295/%00=197.04in. or 16.42ft.

5. M,=F,Z, =50(69.6) = 3480 in.-k
0.7F,S, = 0.7(500)(62.6) = 2190 in.-k

(Ly—L,)

6. = — _ . P
M, ¢[Mp M, O7Fy5)(L,—Lb)}Cb
- 0.9{3480 ~ (3480 - 21 9O)M} 0

(16.42— 6.68)

= 2736.3 in.-k or 228 ft.-k >198.44 ft.-k  OK

7. Since 2b—tf =7.54<9.15 compact
f

Since h =37.4<90.55 compact

w

B. Use of the chart
From Appendix C, Table C.9, for an unbraced length of 10 ft. and a design moment of
198 ft.-k, W14 x 43 is a suitable section.

SHEAR STRENGTH OF STEEL

The section of beam selected for the moment capacity is checked for its shear strength capacity.
The design relationship for shear strength is

V.=¢,V, 11.9)
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where
V, is factored shear force applied
¢, is resistance factor for shear
V, is nominal shear strength

Similar to noncompact and slender sections for flexure, for shear capacity a section is also compact,
noncompact, or slender depending on the A/z,, ratio. The limits are defined as follows:

13 =246 |[EIF,
I, =3.06 \JEIF,

1. When, h/t, < lp, the web is compact for shear.
2. When, hl/t, > [, but < [, the web is noncompact for shear.
3. When, h/t, > [, the web is slender for shear.

Depending on the aforementioned three values, the following three limits apply to shear capacity:

1. For case 1 with a compact web, the limit state is plastic web yielding.
2. For case 2 with a noncompact web, the limit state is inelastic web buckling.
3. For case 3 with a slender web, the limit state is elastic web buckling.

The variation of shear strength in the three limiting states is very similar to that of the flexure

strength shown in Figure 11.6.
With the exception of a few M shapes, all W, S, M, and HP shapes of F’ = 50 steel have the

compact web to which the plastic web yielding limit applies.
Under the plastic web yielding limit, the following two criteria apply:

1. For all I-shaped members with i/t <2.24 |JE/F,,
V, =0.60F A, (11.10)

where
¢=1
A, =dt,

2. For all other doubly symmetric and singly symmetric shapes, except round HSS, ¢ reduces
to 0.9 and

V, =0.600.9)F,A, (11.11)

However, as the ratio of depth to thickness of web, A/t,,, exceeds 2.46 \/E/F, , inelastic web buck-
ling occurs, whereby Equation 11.11 is further multiplied by a reduction factor C,.
At an h/t, exceeding 3.06,/E/F,, the elastic web buckling condition sets in and the factor C, is

further reduced.
However, as stated, most of the sections of F, < 50 ksi steel have compact shapes that satisfy

Equation 11.10.

* This limit is 1.10YK,E/F,, where K, = 5 for webs without transverse stiffness and A/f,, < 260, which is an upper limit for
girders.
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Example 11.4

Check the beam of Example 11.1 for shear strength.

SOLUTION
1oy, =t
2
_ 2.54(25)

=31.75k

2. For W14 x 34, hit, = 43.1
A, = dt, = 14(0.285) = 3.99

2.24 JEIF, =53.95

3. Since hft,, < 2.24 |JE/F, ; the plastic web yielding limit
V,=0.6¢F,A, = 0.6(1)(50)3.99) = 119.7 k > 31.75 k OK

vy w

BEAM DEFLECTION LIMITATIONS

Deflection is a service requirement. A limit on deflection is imposed so that the serviceability of a floor
or a roof is not impaired due to the cracking of plastic, or concrete slab, or the distortion of partitions
or any other kind of undesirable occurrence. There are no standard limits because such values depend
on the function of a structure. For cracking of plaster, usually a live load deflection limit of span/360
and a total load limit of span/240 are observed. It is imperative to note that, being a serviceability
consideration, the deflections are always computed with service (unfactored) loads and moments.

For a common case of a uniformly distributed load on a simple beam, the deflection is given by
the following formula:

5 WL

T 384 EI (1.12)

However, depending on the loading condition the theoretical derivation of the expression for deflec-
tion might be quite involved. For various load conditions on simply supported beam, cantilever and
fixed beams, the deflections are given in Appendix A, Table A.3.3. For commonly encountered load
conditions in simply supported and cantilever beams, when the expression of the bending moment is
substituted in the deflection expression, a generalized form of deflection can be expressed as follows:

M
CEI

(11.13)

where
w is combination of the service loads
M is moment due to the service loads

The values of constant C are indicated in Table 11.5 for different load cases.
In a simplified form, the designed factored moment, M, can be converted to the service moment

ur

by dividing by a factor of 1.5 (i.e., M = M,/1.5). The service live load moment, M, , is approximately

* In foot-pound-second units, the numerator is multiplied by (12)3 to convert & in inch unit when w is kips per foot, L is
in feet, E is in kips per square inch, and / is in inch*. Similarly, Equation 11.12 is also multiplied by (12)° when M is in
foot kips.
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TABLE 11.5
Deflection Loading Constants

Diagram of Load Condition

w
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£ L o
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L
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Constant C for Equation 11.13

9.6

12

9.39

10.13
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two-thirds of the total moment M (i.e., M, = 2M /4.5). The factor C from Table 11.5 can be used in
Equation 11.13 to compute the expected deflection, which should be checked against the permissible

deflection, A, to satisfy the deflection limitation.

Example 11.5

Check the beam in Example 11.1 for deflection limitation. The maximum permissible live load

deflection is L/360. Use (1) the conventional method and (2) the simplified procedure.

SOLUTION

a. Conventional method
1. Service live load = 1000 Ib/ft. or 1 k/ft.
2. ForW14 x 34,/ =340 in.*
3. From Equation 11.12

5 (1.0)(25)(12 .
=2 222 - 0.89in.
384 (29,000)(340)
_Lx12
360
_25x12a
360
=0.83in.

Since 0.89 in. > 0.83 in., NG (border case).

b. Simplified procedure

_2M,  2(198.44)

M,
4.5 4.5

=88.20ft.-k
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2. From Equation 11.13

M2 x (12

© CH
(88.20)(25)2(12)

" (9.6)(290,000)(340)

=0.99 in.

3

3. A <8 NG (border case)

PROBLEMS

11.1 Design a beam of A36 steel for the loads in Figure P11.1. Determine the maximum unbraced
length of beam to satisfy the requirement of adequate lateral support.

11.2 Design a simply supported 20 ft. span beam of A992 steel having the following concen-
trated loads at the midspan. Determine the maximum unbraced length of beam to satisfy the
requirement of adequate lateral support.

Service dead load = 10 k
Service live load = 25 k

11.3 Design a beam of A992 steel for the loading shown in Figure P11.2. The compression flange
bracing is provided at each concentrated load. The selected section should be such that the
full lateral support condition is satisfied. Determine the maximum unbraced length of beam
to satisfy the requirement of adequate lateral support.

11.4 Design a cantilever beam of A992 steel for the loading shown in Figure P11.3. The compres-
sion flange bracing is provided at each concentrated load. The selected section should be such
that the full lateral support condition is satisfied. Determine the maximum unbraced length
of beam to satisfy the requirement of adequate lateral support.

11.5 A floor system supporting a 6 in. concrete slab is shown in Figure P11.4. The live load is
100 psf. Design a beam of section W14x ... of A36 steel. Recommend the compression flange
bracing so that the beam has the full lateral support.

11.6 Design a W18X ... section of A992 steel girder for Problem 11.5. Recommend the compres-
sion flange bracing so that the beam has the full lateral support.

D =1 k/ft. (excluding weight)
L =2Kk/ft.

5 %

30 ft. S

FIGURE P11.1 Beam for Problem 11.1.

p=25k P =25k

* * D=2 k/ft. (excluding weight)
[ 1
”» e
10 ft.— 10 ft.———10 ft. Ny
FIGURE P11.2 Beam for Problem 11.3.
P =25k P =25k

* D=2 k/ft.* (excluding weight)
7

2 N\

 10ft— N 10ft.—

FIGURE P11.3 Beam for Problem 11.4.
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Beam Girder

30 ft.

|
N 3atlsf=45ft— |

FIGURE P11.4 Floor system for Problem 11.5.

11.7

11.8

11.9

11.10

11.11

11.12

11.13

11.14

11.15
11.16
11.17
11.18
11.19

The beam in Problem 11.6 is braced at a 15 ft. interval. Design a W14xX ... section of A992
steel for the full plastic limit state (for the adequate lateral support case).

The beam in Problem 11.6 is braced at a 15 ft. interval. Design a W14x ... section of A992
steel for the inelastic lateral torsional buckling limit state.

From the sections listed, sort out which of the sections of A992 steel are compact, noncom-
pact, and slender:

(1) W21 x 93, (2) WI8 x 97, (3) W14 x 99, 4) W12 X 65, (5) W10 x 68, (6) W8 x 31,
(7) W6 x 15.

A grade 50 W21 x 62 section is used for a simple span of 20 ft. The only dead load is the
weight of the beam. The beam is fully laterally braced. What is the largest service concen-
trated load that can be placed at the center of the beam? What is the maximum unbraced
length?

A W18 X 97 beam of A992 steel is selected to span 20 ft. If the compression flange is sup-
ported at the end and at the midpoint. Which formula do you recommend to solve for the
moment capacity? Determine the maximum unbraced length of beam to satisfy the require-
ment of adequate lateral support.

A WI8 X 97 beam of A992 steel is selected to span 20 ft. It is supported at the ends only.
Which formula do you recommend to solve for the moment capacity?

A W21 x 48 section is used to span 20 ft. and is supported at the ends only. Which formula
do you recommend to solve for the moment capacity?

A W21 X 48 section is used to span 20 ft. and is supported at the ends and the center. Which
formula do you recommend to solve for the moment capacity?

Check the selected beam section in Problem 11.1 for shear strength capacity.

Check the selected beam section in Problem 11.2 for shear strength capacity.

Check the selected beam section in Problem 11.3 for shear strength capacity.

What is the shear strength of the beam of a W16 X 26 A992 beam?

What is the shear strength of the beam of a W12 X 14 A992 beam?

11.20 Compute the total load and the live load deflections for the beam in Problem 11.1 by (1) the

11.21

11.22

conventional method and (2) the simplified procedure. The permissible deflection for total
load is L/240 and for live load is L/360.

Compute the total load and the live load deflections for the beam in Problem 11.2 by (1) the
conventional method and (2) the simplified procedure. The permissible deflection for total
load is L/240 and for live load is L/360.

Compute the total load and the live load deflections for the beam in Problem 11.3 by (1) the
conventional method and (2) the simplified procedure. The permissible deflection for total
load is L/240 and for live load is L/360. Redesign the beam if necessary.
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11.23 Check the total load and the live load deflections for the beam in Problem 11.5 by (1) the
conventional method and (2) the simplified procedure. The permissible deflection for total
load is L/240 and for live load is L/360. Redesign the beam if necessary.

11.24 Check the total load and the live load deflections for the beam in Problem 11.6 by (1) the con-
ventional method and (2) the simplified procedure. The permissible deflection for total load
is L/240 and for live load is L/360. Redesign the beam if necessary.



’IZ Combined Forces on
Steel Members

DESIGN APPROACH TO COMBINED FORCES

The design of tensile, compression, and bending members was separately treated in Chapters 9, 10,
and 11, respectively. In actual structures, the axial and the bending forces generally act together,
specifically the compression due to gravity loads and the bending due to lateral loads. An interaction
formula is the simplest way for such cases wherein the sum of the ratios of factored design load to
limiting axial strength and factored design moment to limiting moment strength should not exceed 1.

Test results show that assigning an equal weight to the axial force ratio and the moment ratio in
the interaction equation provides sections that are too large. Accordingly, the American Institute
of Steel Construction (AISC) suggested the following modifications to the interaction equations in
which the moment ratio is reduced when the axial force is high and the axial force ratio is reduced
when the bending moment is high:

P
1. For—=2>0.2
4
P M M,
u + § ux + y <1 (121)
¢Pn 9 ¢anx q)thy
2. For F <0.2
b,
M,
1A | Me | Mo |y (12.2)
2 q)l)n q)thx (I)thy
where
¢ is resistance factor for axial force (0.9 or 0.75 for tensile member and 0.9 for compression
member)

¢, is resistance factor for bending (0.9)

P, is factored design load, determined by structural analysis (required force)

P, is nominal axial capacity, determined according to Chapters 9 and 10

M, and M, are factored design moments about x and y axes as determined by structural
analysis including second-order effects (required moments)

M, and M, are nominal bending capacities along x and y axes if only bending moments were
present, which are determined by different methods mentioned in Chapter 11

COMBINATION OF TENSILE AND FLEXURE FORCES

Some members of a structural system are subject to axial tension as well as bending. An example is
the bottom chord of a trussed bridge. The hanger type of structures acted upon by transverse loads
is another example.

225
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The analysis in which a member size is known and the adequacy of the member to handle a certain
magnitude of force is to be checked is a direct procedure with Equation 12.1 or 12.2. However, the
design of a member that involves the selection of a suitable size for a known magnitude of load
is a trial-and-error procedure by the interaction equation, Equations 12.1 or 12.2. AISC Manual
2010 presents a simplified procedure to make an initial selection of a member size. This procedure,
however, necessitates the application of factors that are available from specific tables in the manual.
Since the manual is not a precondition for this chapter, that procedure is not used here.

Example 12.1

Design a member to support the load shown in Figure 12.1. It has one line of four holes for a 7/8 in.
bolt in the web for the connection. The beam has adequate lateral support. Use grade 50 steel.

SOLUTION

A. Analysis of structure
1. Assume a beam weight of 50 Ib/ft.
2. W, =1.2(2.05) = 2.46 k/ft.

W2 (2.46)(12)?

30M, == =44.28 ft-k or 531.4in-k
4. P,=1.6(100) = 160 k
B. Design
1. Try a W10 X 26 section.*
2. A,=761in2
3. I,=144in4
4. 7,=313in3
5. t,=0.26in.
6. b/2t;=6.56
7. hit,=34.0
C. Axial (tensile) strength
1. U = 0.7 from the “Shear Lag” section of Chapter 9 for W shapes; h =7/8 + 1/8 =1,
A, = 1(0.26) = 0.26 in.2
2. A=A, —A, =761 -026=735in?
3. A.=0.7(735) = 5.15 in.2
4. Tensile strength

dF,A, = 0.9(50)(7.62) = 342.9 k
dF,A. =0.75(65)(5.15) = 251.06 k « Controls
D. Moment strength

1. 0.38\/FE =9.15> 6.56; it is a compact flange
y

3.76 R£ =90.55 > 34.0; it is a compact web

14
2. Adequate lateral support (given)

3. Moment strength
$pF,Z = 0.9(50)(31.3)) = 1408.5 in.-k

Wp = 2k/ft.
20k 3 33 4P 4 4 b ¥4 b ¥} P=100k
< pa f on >
o 12 ft. 2N

FIGURE 12.1 A tensile and flexure forces member.

* As a guess, the minimum area for axial load alone should be A, = P,/ F, = 160/0.9(50) = 3.55 in.? The selected section
is twice this size because a moment, M,, is also acting.

u»
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E. Interaction equation

P 160
i 4 = =0.64 > 0.2, use Equation 12.1
1. Since 0P 251.06 q
R 8 My
+_ —_—
ok, 9\ oM,
(0.64) + §( >314 ) =0.97<10K
911408.5

COMBINATION OF COMPRESSION AND FLEXURE
FORCES: THE BEAM-COLUMN MEMBERS

Instead of axial tension, when an axial compression acts together with a bending moment, which
is a more frequent case, a secondary effect sets in. The member bends due to the moment. This
causes the axial compression force to act off center, resulting in an additional moment equal to axial
force times lateral displacement. This additional moment causes further deflection, which in turn
produces more moment, and so on until an equilibrium is reached. This additional moment, known
as the P-A effect, or the second-order moment, is not as much of a problem with axial tension,
which tends to reduce the deflection.
There are two kinds of second-order moments, as discussed in the following sections.

MEMBERS WITHOUT SIDESWAY

Consider an isolated beam-column member AB of a frame with no sway in Figure 12.2. Due to load
w, on the member itself, a moment M, results assuming that the top joint B does not deflect with
respect to the bottom joint A (i.e., there is no sway). This causes the member to bend, as shown in
Figure 12.3. The total moment consists of the primary (first-order) moment, M, and the second-
order moment, P,5. Thus,

M :Mul +R48 (123)

nosway

where M, is the first-order moment in a member assuming no lateral movement (no translation).

MEMBERS WITH SIDESWAY

Now consider that the frame is subject to a sidesway where the ends of the column can move with
respect to each other, as shown in Figure 12.4. M, is the primary (first-order) moment caused by the
lateral translation only of the frame. Since the end B is moved by A with respect to A, the second-
order moment is P, A.

u u
97 v
B C
_’
W, [
—
>
—>
_’
>
—>|
_’
a Do

FIGURE 12.2 Second-order effect on a frame.
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FIGURE 12.3 Second-order moment within a member.

|

BIA Ty,

u2

A
I,

FIGURE 12.4 Second-order moment due to sidesway.

Therefore, the total moment is

M.rway = MuZ + Pu (124)
where M, is the first-order moment caused by the lateral translation.
It should be understood that the moment M,,,,., (Equation 12.3) is the property of the member

and the moment M, (Equation 12.4) is a characteristic of a frame. When a frame is braced against

sway

sidesway, M,,,, does not exist. For an unbraced frame, the total moment is the sum of M, and

sway nosway

M, Thus,
M, =M, +Pd)+ (M, +PA) (12.5)

The second-order moments are evaluated directly or through the factors that magnify the primary
moments. In the second case,

M,=BM,+BM, (12.6)
(nosway) (sway)

where B, and B, are magnification factors when first-order moment analysis is used.
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For braced frames, only the factor B, is applied. For unbraced frames, both factors B, and B, are
applied.

MaAGNIFICATION FACTOR B,

This factor is determined assuming the braced (no sway) condition. It can be demonstrated that for
a sine curve the magnified moment directly depends on the ratio of the applied axial load to the
elastic (Euler) load of the column. The factor is expressed as follows:

C
=—" ___>1 127
1-(P/P,) (12

1
where
C,, is moment modification factor discussed below
P, is applied factored axial compression load
P,, is Euler buckling strength, which is given as follows:

— ﬂ (12.8)
‘' (KLIr)? '

The slenderness ratio (KL/r) is along the axis on which the bending occurs. Equation 12.7 sug-
gests that B, should be greater than or equal to 1; it is a magnification factor.

MoMENT MoDIFIcATION FAcTOR, C,

M

The modification factor C,, is an expression that accounts for the nonuniform distribution of the
bending moment within a member. Without this factor, B, may be overmagnified. When a column
is bent in a single curvature with equal end moments, deflection occurs, as shown in Figure 12.5a. In
this case, C,, = 1. When the end moments bend a member in a reverse curvature, as shown in Figure
12.5b, the maximum deflection that occurs at some distance away from the center is smaller than the
first case; using C,, = 1 will overdo the magnification. The purpose of the modifier C,, is to reduce
the magnified moment when the variation of the moment within a member requires that B, should
be reduced. The modification factor depends on the rotational restraint placed at the member’s ends.
There are two types of loadings for C,:

YR YR
/| M / M,
/ /

/ I

/ [‘/—6
/ |

/ \

/ \

| -9 \

1 K]

| \

| \

\ \

\ |
\ |
\ |
\ /

\ /

M2 M2

A x_/

(a) Single curvature (b) Reverse curvature

FIGURE 12.5 Deflection of a column under different end moment conditions.
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1. When there is no transverse loading between the two ends of a member, the modification
factor is given by

C,=06- O.4(%j <1 (12.9)

2

where
M, is the smaller end moment
M, is the larger of the end moments
The ratio (M,/M,) is negative when the end moments have opposite directions, causing
the member to bend in a single curvature. (This is opposite to the sign convention for
concrete columns in the “Short Columns with Combined Loads” section in Chapter 16.)
The ratio is taken to be positive when the end moments have the same direction, causing
the member to bend in a reverse curvature.

2. When there is a transverse loading between the two ends of a member,
a. C,, = 0.85 for a member with the restrained (fixed) ends
b. C, = 1.0 for a member with unrestrained ends

Example 12.2

The service loads* on a W12 x 72 braced frame member of A572 steel are shown in Figure 12.6.
The bending is about the strong axis. Determine the magnification factor B;. Assume the pinned-
end condition.

Pp =100k
P; =200k

Mp=15 ft-k
M; =40 ft.-k

«—vaA
Mp =20 ft.-k
M, =50 ft.-k

FIGURE 12.6 Braced frame for Example 12.2.

SOLUTION

A. Design loads
1. Weight = 72(14) = 1008 Ib or T k
2. P,=1.2(101) + 1.6(200) = 441 k
3. (My)p=1.2(15) + 1.6(40) = 82 ft.-k
4. My, = 1.2(20) + 1.6(50) = 104 ft.-k

* Axial load on a frame represents the loads from all the floors above up to the frame level in question.
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B. Modification factor
% = _—82 =-0.788
M, 104
2. C,=0.6-0.4(-0.788) = 0.915
C. Euler buckling strength
1. For a braced frame, K =1
2. ForW12x72, A=21.1in.2
r,=5.31 in., bending in the x direction

KL (1(14x12)
r. 531

=31.64

n2EA
(KL/r)?
_ 72(29,000)(21.2)
(31.64)?
C
B=——m
> PTTITp R

__ 09 99«

[ 440
6,055

UseB, =1

el

=6,055k

K VALUES FOR BRACED FRAMES

Figure 7.6 and the monographs in Figures 10.5 and 10.6 are used to determine the effective length
factor, K. According to the AISC 360-10 commentary in Appendix 7, braced frames are commonly
idealized as vertical cantilevered pin-connected truss systems. The effective length factor of com-
ponents of a braced frame is normally taken as 1.

BRACED FRAME DESIGN

For braced frames only the magnification factor B, is applied. As stated earlier, the use of an interac-
tion equation, Equation 12.1 or 12.2, is direct in analysis when the member size is known. However,
it is a trial-and-error procedure for designing a member.

Instead of making a blind guess, design aids are available to make a feasible selection prior to the
application of the interaction equation. The procedure presented in the AISC Manual 2010 for initial
selection needs an intensive input of data from special tables included in the manual. In a previous
version of the AISC manual, a different approach was suggested, which was less data intensive. This
approach is described here.

The interaction equations can be expressed in terms of an equivalent axial load. With respect to
Equation 12.1, this modification is demonstrated as follows:

8 M, M,
+— + — =1
q)Pn 9 q)bMVLX q)any

Multiplying both sides by ¢ P,

8OP, (M, M,
P+— 1 —w{-i- = = P
“*9%, [Mnx Mny] OF, (12.10)
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TABLE 12.1

Values of Factor m

F, 36ksi 50ksi

KL (ft.) 10 12 14 16 18 20 22andover 10 12 14 16 18 20 22 and over

First Approximation

All shapes 24 23 22 22 21 20 1.9 24 23 22 20 19 18 1.7
Subsequent Approximations

W,S4 36 26 19 16 — — — 27 19 16 16 — — —

W,S5 39 32 24 19 15 14 — 33 24 18 16 14 14 —

W,S6 32 27 23 20 19 16 1.5 30 25 22 19 18 15 1.5

w38 30 29 28 26 23 20 2.0 30 28 25 22 19 16 1.6

W 10 26 25 25 24 23 21 2.0 25 25 24 23 21 19 1.7

W12 21 21 20 20 20 20 2.0 20 20 20 19 19 18 1.7

W 14 .8 1.7 1.7 1.7 17 1.7 1.7 1.8 1.7 17 1.7 17 1.7 1.7

Note: Values of m are for C,,=0.85. When C,, is any value other than 0.85, multiply the tabular value of m by C,,/0.85.

Treating ¢pP, as P, this can be expressed as
Py =P, +mM, +mUM,, (12.11)

€

where
P, is factored axial load
M, is magnified factored moment about the x axis
M,, is magnified factored moment about the y axis

The values of the coefficient m, reproduced from the AISC manual, are given in Table 12.1.

The manual uses an iterative application of Equation 12.11 to determine the equivalent axial
compressive load, P, for which a member could be picked up as an axially loaded column only.
However, this also requires the use of an additional table to select the value of U.

This chapter suggests an application of Equation 12.11 just to make an educated guess for a
preliminary section. The initially selected section will then be checked by the interaction equations.

The procedure is as follows:

1. For the known value of effective length, KL, pickup the value of m from Table 12.1 for a
selected column shape category. For example, for a column of W 12 shape to be used, for
the computed KL of 16, the magnitude of m is 2 from Table 12.1.

2. Assume U = 3 in all cases.

3. From Equation 12.11, solve for P,.
4. Pick up a section having cross-sectional area larger than the following:
Ly
8 q)];v}

5. Confirm the selection using the appropriate interaction equation, Equation 12.1 or
Equation 12.2.

Example 12.3

For a braced frame, the axial load and the end moments obtained from structural analysis are
shown in Figure 12.7. Design a W14 member of A992 steel. Use K = 1 for the braced frame.
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Pp=80k

P; =200k

A My, =192 f’t/lq A
Mp, =15 ft.-k wy = X
M, =45 ft.-k

14 ft. 14 ft.

B gt B

M, =20 ft.k My, =192 ft.-k
M, =50 ft. -k
Gravity load Wind load

FIGURE 12.7 Column member of a braced frame.

SOLUTION

A. Critical load combinations

a.

b.

1.2D + 1.6L

1. Assume a member weight of 100 Ib/ft.; total weight = 100(14) = 1400 Ib or 1.4 k
2. P,=1.2(81.4) + 1.6(200) = 417.7 k

3. (M), at A=1.2(15) + 1.6(45) = 90 ft.-k

(M,), at B = 1.220) + 1.6(50) = 104 ft.-k

12D+ L+ W

1. P,=1.2(81.4) + 200 = 2977 k

2. (M), at A =1.2(15) + 45 = 63 ft.-k

3. (M,,), at B = 1.2(20) + 50 = 74 ft.-k

4. (M), =192 ft-k

>

B. Trial selection

1.

For load combination (a)
From Table 12.1 for KL =14 ft, m=1.7

Py =417.7+1.7(104) = 594.5 k

e

For load combination (b), let U =3
Py =297.7+1.7(74)+1.7(3)(192) = 1402.7 k « controls
Py 14027

& oF,  (0.9)(50)
Select W14 x 109 A = 32.0 in.2
Z, =192 in.?

Z,=92.7in3
ry=16.221in.

r,=3.73 in.

b/2t; = 8.49

htt,, =217

=31.17in.?2

Checking of the trial selection for load combination (b)
C. Along the strong axis

1.

2.

Moment strength

dM,, = dF,Z, = 0.9(50)(192) = 8640 in.-k or 720 ft.-k
Modification factor for magnification factor B;: reverse curvature
(M) 4 _o3

=2 =085
(M,,),at B 74

C,, =0.6—0.4(0.85)=0.26
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3. Magnification factor, B,

K=1
KL_(0(14x12) o
I, 6.22
2 2
(). = A _ (29,0006 _ ) oo,
(KL/r,)? (27.0)?
C
4, (B1)X = m
1=(F,/F4)
0.26

=— =2  _027<Tusel
1-(297.7/12551)

5. (Mu )x = B1(Mu1)x
=174)=74ftk
D. Along the minor axis
1. Moment strength
OM,, = §F,Z, = 0.9(50)(92.7) = 4171.5 in-k or 347.63 ft-k
2. Madification factor for magnification factor B;: reverse curvature
(M), atA 192
(M,,), atB 192
C, =0.6—0.4(1)=0.2
3. Magnification factor, B,

K=1
KL_(114x12) _,
P 373
A T2 2
Py, =—2 T (29000032) _ 4 14 4
(KLJr, 7 (45.0)?
C
B) =——m
4 B, =)
0.2

=———— = 021<7Tusel
1-(297.7/4518.4)

5. (M), =(8), (M),
=1(192) =192ft.k
E. Compression strength
KL (N(14x12)
o 6.22
KL _(D(14x12)

n o 373

3. Since 4. 71\/7 4.71 /29000 =113.43 > 45; inelastic buckling

n%(29,000)
‘ (KL/ry) ©(45.0

5. F.,=(0.658%1412)50 = 43.11

6. P, =0.9F,A,

=0.9(43.11)(32) =1241.6k
F. Interaction equation

P 297.7

u__

OP, 1241.6

1. =27.0

=45.0 < controls

4. =141.2

=0.24>0.2
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Pu 8 Mux M”Y
+— +
q)Pn 9 ¢anx ¢any

o2s+ (24, 192 )

9\720 347.63
=0.82<1 OK

MAGNIFICATION FACTOR FOR SWAY, B,

The term B, is used to magnify column moments under the sidesway condition. For sidesway to
occur in a column on a floor, it is necessary that all of the columns on that floor should sway simul-
taneously. Hence, the total load acting on all columns on a floor appears in the expression for B,.
The AISC Manual 2010 presents the following two relations for B,:

1
B=——— (12.12)
A
H\ L
or
1
B, = ITP” (12.13)
xP,
where

AH is lateral deflection of the floor (story) in question

L is story height

2 H is sum of horizontal forces on the floor in question

X P, is total design axial force on all the columns on the floor in question

X P,, is summation of the elastic (Euler) capacity of all columns on the floor in question, given by

2
p,=x " EA (12.14)
(KL/r)
The term P,, is similar to the term P,;, except that the factor K is used in the plane of bending for
an unbraced condition in determining P,, whereas K in P, is in the plane of bending for the braced
condition.

A designer can use either Equation 12.12 or Equation 12.13; the choice is a matter of conve-
nience. In Equation 12.12, initial size of the members is not necessary since A and r are not required
as a part of P,,, unlike in Equation 12.13. Further, a limit on AH/L, known as the drift index, can be
set by the designer to control the sway. This is limited to 0.004 with factored loads.

K VALUES FOR UNBRACED FRAMES

According to the AISC 360-10 commentary in Appendix 7 of that document, the lateral moment
resisting frames generally have an effective length factor, K, greater than 1. However, when the side-
sway amplification factor, B,, is less than or equal to 1, the effective length factor K = 1 can be used.

As stated in Chapter 10, for the unbraced frame the lower-story columns can be designed using
K =2 for pin-supported bases and 1.2 for fixed bases. For upper-story columns, K = 1.2.

Example 12.4

An unbraced frame of A992 steel at the base floor level is shown in Figure 12.8. The loads are
factored. Determine the magnification factor for sway for the column bending in the y axis.
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Pp =240k 360 k 360 k 240 k

| ' ' |

W12 x 96 | 15 ft. W12 x 120 W12 x 120 W12 X 96

¥ 30 ft. o 30 ft. Y 30 ft. 2N

FIGURE 12.8 Unbraced frame for Example 12.4.

SOLUTION

A. Exterior columns
1. Factored weight of column = 1.2(0.096 x 15) = 1.7 k

2. P,=240+17=241.7k
3. K=2
4. For W12 x 96, A =28.2 in.

r,=3.09in.
5. KE_215xX12) 49650

L 3.09

2 2
p, = TEA_T29,0000282) o
(KLIr, P (116.5)

B. Interior columns

1. Factored weight of column = 1.2(0.12 x 15) = 2.2 k
2. P,=360+22=3622k
3.

K=2
4. For W12 x 120, A = 35.2 in.?
r,=3.131in.
5. KE_215X12) 445
ERE
2 2
6. p, - TEA _TQR90000652) o
(KL/r, P (1152

C. For the entire story
1. ZP,=2(241.7) + 2(362.2) = 1208 k
2. ZP,=2(594.1) + 2(761) = 2710 k
3. From Equation 12.13

1
B=—
’ 1_(2&]

>P,

Example 12.5

In Example 12.4, the total factored horizontal force on the floor is 200 k and the allowable drift
index is 0.002. Determine the magnification factor for sway.
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SOLUTION
From Equation 12.12
_
(1)
TH\ L

B, =

S
- (@)(O.ooz)
200

UNBRACED FRAME DESIGN

The interaction Equations 12.1 and 12.2 are used for unbraced frame design as well. M, and M, in

=1.01

the equations are computed by Equation 12.6 magnified for both B, and B,.

The trial size can be determined from Equation 12.11 following the procedure stated in the “Braced
Frame Design” section. When an unbraced frame is subjected to symmetrical vertical (gravity) loads
along with a lateral load, as shown in Figure 12.9, the moment M, in member AB is computed for the
gravity loads. This moment is amplified by the factor B, to account for the P-d effect. The moment
M,, is computed due to the horizontal load H. It is then magnified by the factor B, for the P-A effect.
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When an unbraced frame supports an asymmetric loading, as shown in Figure 12.10, the eccen-

tric loading causes it to deflect sideways. First, the frame is considered to be braced by a fictitious

support called an artificial joint restraint (AJR). The moment M, and the deflection & are com-

puted, which is amplified by the factor B,.

P P P A
i’v l A — — {l 5
B T \ | |
/ \ | |
| \ | ”
I |
_ 1xd | / |
= ¥ | | |
| | | I
| | | I
\ | | I
\ / | |
\ ! I
A A e mA e
FIGURE 12.9 Symmetrical vertical loads and a lateral load on an unbraced frame.
P P AR A pr
AJR
| ! e
B [B===—==7" NS B I
/ I I
I \ I I
I | ] ]
I | ] ]
- O
I I I I
¥ | I I
[ I ] ]
| I 1 1
| I ! !
\ ] ] ]
\ | ] ]
\ | i i
/7> A 7 A 7

MA

FIGURE 12.10 Asymmetric loading on an unbraced frame: AJR, artificial joint restraint.
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To compute M,,, a force equal to AJR but opposite in direction is then applied. This moment is
magnified by the factor B, for the P-A effect.

When both asymmetric gravity loads and lateral loads are present, the aforementioned two cases
are combined, that is, AJR force is added to the lateral loads to compute M, for the P—A effect.

Alternatively, two structural analyses are performed. The first analysis is performed as a braced
frame; the resulting moment is M,,. The second analysis is done as an unbraced frame. The results
of the first analysis are subtracted from those of the second analysis to obtain M,,.

Example 12.6

An unbraced frame of A992 steel is subjected to the dead load, live load, and wind load. The
structural analysis provides the axial forces and the moments on the column along the x axis, as
shown in Figure 12.11. Design for a maximum drift of 0.5 in.

SOLUTION
A. Critical load combinations

a. 1.2D+1.6L
1. Assume a member weight of 100 Ib/ft., total weight = 100(15) = 1500 Ib or 1.5 k
2. P,=1.2(81.5) + 1.6(210) = 433.8 k
3. (M), at A = 1.2(15) + 1.6(45) = 90 ft.-k
4. (M,), at B = 1.2(20) + 1.6(50) = 104 ft.-k
5. (M,,) = 0 since the wind load is not in this combination

b. 12D+L+ W
1. P,=1.2(81.5) + 210 = 307.8 k
2. (M), at A =1.2(15) + 45 = 63 ft.-k
3. (M,), at B = 1.2(20) + 50 = 74 ft.-k
4. (M), at A = 160 ft.-k
5. (M), at B = 160 ft.-k

B. Trial selection
1. For load combination (a)
Fixed base, K=1.2, KL=1.2(15)=18 ft.
From Table 12.1 for W12 section, m = 1.9
Py =433.8+1.9(104)=631.4 k
2. For load combination (b)

Py =307.8+1.9(74)+1.9(160) = 752.4 k « controls
s 4 Pw_ 7514 _

£ 0F,  (0.9)(50)
4. Select W12 x 72 (W12 x 65 has the noncompact flange)

A=211in2
Z. =108 in.?
r,=>5311in.
80k
A A 210k . 50
156k | A a5k |2 160tk |2

B l B B

7 20ft.-k 77 50ft.-k 77, 160 ft.-k

Dead load Live load Wind load

FIGURE 12.11 Loads on an unbraced frame.
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r,=3.04 in.
b,/2t; = 8.99
h/t,, =22.6

Checking of the trial selection for critical load combination (b)
C. Moment strength

E
1. 038 |—=9.15> bf,compact
F, 2t;

2. 3.76\//__£ =90.55> ti,compact

y w

3. M, = bF,Z, = 0.9(50)(108) = 4860 in.k or 405 ft.-k
D. Modification factor for magnification factor B;: reverse curvature
(Mm )X at A 63
(M) atB 74
2. C,,=0.6-0.4(0.85) = 0.26

E. Magnification factor, B,
1. K =1 for braced condition
ﬁ_ M5x12)

2. =———=339
r, 5.31
2 2(29,000)(21.1
3. (Pa)y = A _m29000021D _ 5y,
(KL/r,)? (33.9)?
C
4 (31)X = n"D
‘I_ u
(Par)y
2%20.28<1;U591
5250
F. Magnification factor for sway, B,
1. K= 1.2 for unbraced condition
o KL_U25XTD_ 4564
I 5.31
2 2
3. (P, = T EA _r (29,000)(21.71) ~3,645.7
(KL/r,)? (40.68)?
4. XP,=2(307.8) = 615.6 k, since there are two columns in the frame
5. (P, =2(3645.7) = 7291.4 k
6. H_ 05 60078
L 15x12
7. From Equation 12.12

1
1_&(ﬂ)

sHU L
= L =1.035

1- (61 5'6](0‘00278)
50

8. From Equation 12.13
1
1- zh,

P,

= S =1.09 « controls

1_( 615.6 )
7291.4

B, =

B, =

239
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G. Design moment
(Mu )X =B, (Mm )X + B, (Muz)x

=174)+1.09(160) = 248.4 ft.&k

H. Compression strength

KL _(1.2)(15%12)

1. =40.7
r, 5.31
2. K _d.205x12) 71.05 « controls
3.04
2
3. 4 71\/7 4.71 / 9000 _ =113.43>71.05, inelastic buckling
4 2(29,000) —56.64

¢ (KL/rV) - (71 05
5. F, = (0.658%056:6950 = 34.55 ksi
0P, = 0.9F, A,

= 0.9(34.55)(21.1) = 656.2 k

I. Interaction equation

1. i = 307.8 =0.47 > 0.2, apply Equation 12.1
0P,  656.2

2. P +8 Mu ) _ o7t 8(248.4)
q)Pn q)[)MnX 9 405

=1.0 OK (border case)
Select a W12 x 72 section.

OPEN-WEB STEEL JOISTS

A common type of floor system for small- to medium-sized steel frame buildings consists of open-web
steel joists with or without joist girders. Joist girders, when used, are designed to support open-web steel
joists. Floor and roof slabs are supported by open-web joists. A typical plan is shown in Figure 12.12.

Open-web joists are parallel chord trusses where web members are made from steel bars or small
angles. A section is shown in Figure 12.13. Open-web joists are pre-engineered systems that can be
quickly erected. The open spaces in the web can accommodate ducts and piping.

Three rows of L11/4 X 7/64 horizontal
bridging equally spaced

Joist girder \
T 1=

R e B B Bt Tl R B 30 ft

120K 5at 5 ft.10C

T- - 2
~_

Open-web joists

10 spaces at 5 ft. = 50 ft.———p|

FIGURE 12.12  An open-web joist floor system.
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Span
2in. . i
Design length= —-0.33 ft.
_’1 < ign length = span .
P
Varies
- <
W3 V2~
W2D :g Angles
W4 W5 A web
w2
[ D
Clear span = span-—2 bearing length
Bearing length
Span
2in. _i Design length =span—-0.33 ft. s
—>" < >—>
< Y ble P N
! ! —>»| [¢— Varies
: -
P 2
é— \ = Bars web
3
a
[ D L
P Clear span = span—2 bearing length R
_/\/_ <« >

FIGURE 12.13 Open-web steel joist.

The AISC specifications do not cover open-web joists. A separate organization, the Steel Joist
Institute (SJ1), is responsible for the specifications related to open-web steel joists and joist girders.
The SII's publication titled Standard Specifications deals with all aspects of open-web joists,
including their design, manufacture, application, erection, stability, and handling.

Three categories of joists are presented in the standard specifications:

1. Open-web joists, K-series

For span range 8§—60 ft., depth 8-30 in., chords F,= 50 ksi, and web F,= 36 or 50 ksi
2. Long span steel joists, LH-series

For span range 21-96 ft., depth 18-48 in., chords F, = 36 or 50 ksi, and web F, = 36 or 50 ksi
3. Deep long span joists, DLH-series

For span range 61144 ft., depth 52-72 in., chords F, = 36 or 50 ksi, and web F, = 36 or 50 ksi

Open-web joists use a standardized designation, for example, “18 K 6” means that the depth of
the joist is 18 in. and it is a K-series joist that has a relative strength of 6. The higher the strength
number, the stronger the joist. Different manufactures of 18 K 6 joists can provide different member
cross sections, but they all must have a depth of 18 in. and a load capacity as tabulated by the SJI.
The joists are designed as simply supported uniformly loaded trusses supporting a floor or a roof
deck. They are constructed so that the top chord of a joist is braced against lateral buckling.
The SJT specifications stipulate the following basis of design:

1. The bottom chord is designed as an axially loaded tensile member. The design standards
and limiting states of Chapter 9 for tensile members are applied.

2. The top chord is designed for axial compression forces only when the panel length, /, does
not exceed 24 in., which is taken as the spacing between lines of bridging. The design is
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done according to the standards of Chapter 10 on columns. When the panel length exceeds

24 in., the top chord is designed as a continuous member subject to the combined axial

compression and bending, as discussed in this chapter.

3. The web is designed for the vertical shear force determined from a full uniform loading,
but it should not be less than one-fourth of the end reaction. The combined axial compres-
sion and bending is investigated for the compression web members.

4. Bridging comprising a cross-connection between adjoining joists is required for the top
and bottom chords. This consists of one or both of the following types:

a. Horizontal bridging by a continuous horizontal steel member: the ratio of the
length of bracing between the adjoining joists to the least radius of gyration, I/r,
should not exceed 300.

b. Diagonal bridging by cross bracing between the joists with the //r ratio determined on
the basis of the length of the bracing and its radius of gyration not exceeding 200.

The number of rows of top chord and bottom chord bridging should not be less than that prescribed
in the bridging tables of SJI standards. The spacing should be such that the radius of gyration of
the top chord about its vertical axis should not be less than /145, where [ is the spacing in inches
between the lines of bridging.

For design convenience, the SJI in its standard specifications has included the standard load
tables that can be directly used to determine joist size. Tables for K-series joists are included in
Appendix C, Table C.10 a and b. The loads in the tables represent the uniformly distributed loads.
The joists are designed for a simple span uniform loading, which produces a parabolic moment
diagram for the chord members and a linearly sloped (triangular shaped) shear diagram for the web
members, as shown in Figure 12.14a.

To address the problem of supporting the uniform loads together with the concentrated loads,
special K-series joists, known as KCS joists, are designed. KCS joists are designed for flat moments
and rectangular shear envelopes, as shown in Figure 12.14b.

As an example, in Appendix C, Table C.10 a and b, under the column “I18 K 6,” across a row
corresponding to the joist span, the first figure is the total pounds per foot of load that an 18 K
6 joist can support and the second light-faced figure is the unfactored live load from the consider-
ation of L/360 deflection. For a live load deflection of L/240, multiply the load figure by the ratio
360/240, that is, 1.5.

Example 12.7 demonstrates the use of the joist table.

l Span | | Span I

[ 1 T 1

| [

| [

| ¢ |

[ ! /| !

| i | 1 |
[

i |/ !

[

I

[

(a) (b)

FIGURE 12.14 Shear and moment envelopes: (a) standard joist shear and bending moment diagrams and
(b) KCS joist shear and bending moment diagrams.
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Example 12.7

Select an open-web steel joist for a span of 30 ft. to support a dead load of 35 psf and a live load
of 40 psf. The joist spacing is 4 ft. The maximum live load deflection is L/240.

SOLUTION

A. Design loads
Tributary area per foot = 4 ft.%/ft.
Dead load per foot = 35 x 4 = 140 Ib/ft.
Weight of joist per foot = 10 Ib/ft.
Total dead load = 150 [b/ft.
Factored dead load = 1.2(150) = 180 Ib/ft.
Live load per foot = 40 x 4 = 160 Ib/ft.
Factored live load = 1.6(160) = 256 Ib/ft.
8. Total factored load = 436 Ib/ft.
B. Standard load table at Appendix C, Table C.10 a and b (from the table for joists starting at
size 18 K 3)
1. Check the row corresponding to span 30. The section suitable for a total factored load
of 436 Ib/ft. is 18 K x 6, which has a capacity of 451 Ib/ft.
2. Live load capacity for L/240 deflection
= 20175 = 2625 b/ > 256 Ib/t. OK
3. Thejoists of a different depth might be designed by selecting a joist of another size from
the standard load table of SJI (from the table starting at size 8 K 1). In fact, SJI includes
an economy table for the lightest joist selection.

N ORI =

JOIST GIRDERS

The loads on a joist girder are applied through open-web joists that the girder supports. This load is
equal in magnitude and evenly spaced along the top chord of the girder applied through the panel
points.

The bottom chord is designed as an axially loaded tension member. The radius of gyration of the
bottom chord about its vertical axis should not be less than //240, where [ is the distance between
the lines of bracing.

The top chord is designed as an axially loaded compression member. The radius of gyration of
the top chord about the vertical axis should not be less than span/575.

The web is designed for vertical shear for full loading but should not be less than one-fourth of
the end reaction. The tensile web members are designed to resist at least 25% of the axial force in
compression.

The SJI, in its standard specifications, has included the girder tables that are used to design
girders. Selected tables have been included in Appendix C, Table C.11. The following are the design
parameters of a joist girder:

1. Span of the girder.

2. Number of spacings or size (distance) of spacings of the open-web joists on the girder:
when the spacing size is known, the number equals the span/size of spacing; for the known
number of spacings, size equals the span/number.

3. The point load on the panel points in kips: total factored unit load in pounds per square
foot is multiplied by the spacing size and the length of the joist (joist span or bay length)
converted to kips.

4. Depth of girder.
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For any of the first three known parameters, the fourth one can be determined from the girder
tables. In addition, the table gives the weight of the girder in pounds per foot to confirm that it has
been adequately included in the design loads.

Usually, the first three parameters are known and the depth of the girder is determined. A rule
of thumb is about an inch of depth for each feet of span for an economic section. Each joist girder
uses a standardized designation; for example, “36G 8N 15F” means that the depth of the girder
is 36 in., it provides for eight equal joist spaces, and it supports a factored load of 15 k at each
panel location (a symbol K at the end, in place of F, is used for the service load capacity at each

location).

Example 12.8

Principles of Structural Design

Specify the size of the joist girder for the floor system shown in Figure 12.15.

SOLUTION
A. Design loads

1. Including 1 psf for the weight of the girder, total factored load

=12(15+1)+1.6(30) = 67.2 psf
2. Panel area = 6 x 20 = 120 ft.2

3. Factored concentrated load/panel point

=67.2%x120=28064 b or 8.1k.use 9k

B. Joist details
1. Space size = 6 ft.

2. Number spaces = % =5

C. Girder depth selection

1. Refer to Appendix C, Table C.11. For 30 ft. span, 5 N, and 9 k load, the range of depth

is 24-36 in.
Select 28G 5N 9F.

2. From Appendix C, Table C.11, weight per foot of girder = 17 [b/ft.

Unit weight = ;—g = 0.85psf < assumed 1psf OK

3. The information shown in Figure 12.16 will be specified to the manufacturer.

Open-web joists

/

Joists girders

6 ft.

30 ft.

)
/ 4

<

|

N |
K 20ft. N

FIGURE 12.15 Floor system for Example 12.8.

20 ft.

N

20 ft.

N

D;=15psf
L;=30psf
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Standard designation
28G 5N 9F |
Depth in inches Number of Kip load on each panel point
joist spaces (1 kip=10001bs)

FIGURE 12.16 Selection of joist girder.

PROBLEMS

Note: In all problems assume the full lateral support conditions.

12.1 A W12 x35 section of A992 steel with a single line (along the tensile force) of four 3/4 in.
bolts in the web is subjected to a tensile live load of 65 k and a bending moment only due
to the dead load including the weight of the member along the weak axis of 20 ft.-k. Is this
member satisfactory?

12.2 A W10x33 member is to support a factored tensile force of 100 k and a factored moment
along the x axis of 100 ft.-k including the weight of member. It is a fully welded member
of grade 50 steel. Is the member adequate for the loads?

12.3 A 12 ft. long hanger supports a tensile dead load of 50 k and a live load of 100 k at an
eccentricity of 4 in. with respect to the x axis. Design a W10 section of A992 steel. There
is one line of three bolts of 3/4 in. diameter on one side of the top flange and one line of
three bolts of the same size on the other side of the top flange. The bottom flange has a
bolt pattern similar to the top flange.

12.4 Design a W8 or W10 member to support the loads shown in Figure P12.1. It has a single
line of four holes for 7/8 in. bolts in the web. The member consists of A992 steel.

12.5 The member in Problem 12.4, in addition to the loading along the x axis, has a factored
bending moment of 40 ft.-k along the y axis. Design the member.

[Hint: Since a sizeable bending along the y axis is involved, initially select a section at
least four times of that required for axial load alone.]

12.6 A horizontal beam section W10 X 26 of A992 steel is subjected to the service live loads
shown in Figure P12.2. The member is bent about the x axis. Determine the magnitude of
the magnification factor B,.

12.7 A braced frame member W12 X 58 of A992 steel is subjected to the loads shown in
Figure P12.3. The member is bent about the x axis. Determine the magnitude of the mag-
nification factor B,. Assume pin-end conditions.

12.8 In Problem 12.7, the moments at the ends A and B are both clockwise. The ends are
restrained (fixed). Determine the magnification factor B,.

12.9 InProblem 12.7, in addition to the loads shown a uniformly distributed wind load of 1 k/ft.
acts laterally between A and B. Determine the magnification factor B,.
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wp=0.5k/ft.
w, =1Kk/ft. (Service loads)

YV VYV VYVVVYVYVVVYVVVY Pp=50k
‘ AN ok > p,=70k
K 15 ft. ¥

FIGURE P12.1 Tensile and flexure member for Problem 12.4.

30k
—> l <+—30k
w 5
Y 10ft. _e

FIGURE P12.2 Compression flexure member for Problem 12.6.

Pp=50k
P; =150k

l

«— >
] B\A

Mp=20ft.-k

M;=70ft.-k

14 ft.

A Mp=10ft-k
T/ M;=40ft-k VAN

¥ 10ft. &

FIGURE P12.3 Braced frame member for Problem 12.7.

12.10 In Problem 12.7, in addition to the shown x-axis moments, the moments in the y axis at
A and B are as follows. Determine the magnification factor B,.

AtB(Mp), =101ft-k, (M), =20ft.-k,both clockwise
At A(Mp), =8ft-k, (M), =15ft.k,both counterclockwise

12.11 The member of a A572 steel section, as shown in Figure P12.4, is used as a beam column
in a braced frame. It is bent about the strong axis. Is the member adequate?

12.12 A horizontal component of a braced frame is shown in Figure P12.5. It is bent about the
strong axis. Is the member adequate? Use A992 steel.

12.13 The member of a A572 steel section, as shown in Figure P12.6, is used as a beam column
in a braced frame. It has restrained ends. Is the member adequate?
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Pp=100k
P, =200k

AN
Mp=20ft. -k
M, =40 ft.-k

W12x72 12 ft.

Mp=30ft.-k
M, =50ft.-k

A,

FIGURE P12.4 Beam-column member for Problem 12.11.

wp=1k/ft.
wy=2k/ft. Pp=10k

EEEEEEEEEERERERERE o
» ol

Service loads

K 20 ft. &
W10 x 54

FIGURE P12.5 Horizontal component of a braced frame for Problem 12.12.

g

Dead loads (service)
Pp=50k
Mp,=50ft.-k
M, =20ft. -k

W14 x 68 |15 ft.

Live loads (service)
P, =100k

M, =100ft.-k
M,,=30ft.-k

FIGURE P12.6 Restrained braced frame member for Problem 12.13.

12.14 A W12 x 74 section of A572 steel is part of a braced frame. It is subjected to service, dead,
live, and seismic loads, as shown in Figure P12.7. The bending is along the strong axis. It
has pinned ends. Is the section satisfactory?

12.15 For a braced frame, the service axial load and the moments obtained by structural analy-
sis are shown in Figure P12.8. Design a W14 section of A992 steel. One end is fixed, and
the other is hinged.

12.16 In Problem 12.15, the gravity dead and live loads and moments act along the x axis and
the wind load moments act along the y axis (instead of the x axis). Design the member.



248 Principles of Structural Design

Pp=80k
v P;=200k
A A Y\
Mp=20ft.-k 150 ft.-k
M, =40ft.-k
12 ft.
W14 X 74
AN B
Mp=30ft-kX_ 100 ft.-kx
M;=50ft.-k

(a) (b)
FIGURE P12.7 (a) Gravity and (b) seismic loads on a braced frame.

Pp=200k
‘/@PL= 400k
M,=320ft.-k VA%?

A
Mp,=501t.-k
My, =100ft.-k
13ft.
B B
7777 Mp,=251t-k \\777; M,=320ft.-k
My, =50ft.k

(a) (b)
FIGURE P12.8 (a) Gravity and (b) wind loads on a braced frame.

12.17 For a 12 ft. high beam column in an unbraced A36 steel frame, a section W10 X 88 is
selected for P, = 500 k. There are five columns of the same size bearing the same load and
having the same buckling strength. Assume that the members are fixed at the support in
the x direction and hinged at the support in the y direction and are free to sway (rotation
is fixed) at the other end in both directions. Determine the magnification factors in both
directions.

12.18 In Problem 12.17, the drift along the x axis is 0.3 in. as a result of a factored lateral load of
300 k. Determine the magnification factor B,.

12.19 An unbraced frame of A992 steel is shown in Figure P12.9. Determine the magnification
factors along both axes for exterior columns.

12.20 The allowable story drift in Problem 12.19 is 0.5 in. in the x direction. Determine the
magnification factor B, along x axis for exterior columns.

12.21 A 10 ft. long W12 X 96 column of A992 steel in an unbraced frame is subjected to the
following factored loads. Is the section satisfactory?

1. P,=240k M,), = 50 ft.-k (M,,), = 30 ft-k (M,,), = 100 ft.-k (M,;,), = 70 ft.-k

2. Itis bent in reverse curvature with equal and opposite end moments.

3. There are five similar columns in a story.

4. The column is fixed at the base and is free to translate without rotation at the other end.
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Pp=100k (Service = Pp=200k Pp=200k Pp=100k
P,=200k |oads)  P,=300k P, =300k P, =200k

| |

V,=200k—>p
(Service load)

W12x152 | 14 ft. W12 x210 W12 %210 W12x152

N | | N
N 20ft. . 20ft. . 20ft. N

FIGURE P12.9 Unbraced frame for Problem 12.19.

170 k 400 k 176 k
! ! !
] /_\ ]
90 ft.-k
40 ft.-k 105 ft.-k 320 ft.-k
77 7777 77

(a) (b) (c)
FIGURE P12.10 (a) Dead, (b) live, and (c) wind loads on the unbraced frame for Problem 12.23.

12.22 Select a W12 column member of A992 steel of an unbraced frame for the following condi-
tions; all loads are factored:

1. K= 1.2 for the sway case and K = 1 for the unsway case

. L=12ft.

. P,=350k

. M,), =175 ft-k

- (M), =40 ft-k

. (M), =150 ft-k

. (M), =80 ft.-k

Allowable drift = 0.3 in.

It has intermediate transverse loading between the ends.

10. Total factored horizontal force = 100 k
11. There are four similar columns in a story.

12.23 An unbraced frame of A992 steel is subjected to dead, live, and wind loads in the
x axis; the wind load causes the sway. Structural analysis provided the loads as shown
in Figure P12.10. Design a W14 section for a maximum drift of 0.5 in. Each column is
subjected to the same axial force and moment.

12.24 A one-story unbraced frame of A992 steel is subjected to dead, roof live, and wind
loads. The bending is in the x axis. Structural analysis provided the loads as shown in
Figure P12.11. The moments at the base are 0. Design a W12 section for a maximum drift
of 0.5 in. The lateral wind load causes the sway.

12.25 Select a K-series open-web steel joist spanning 25 ft. to support a dead load of 30 psf
and a live load of 50 psf. The joist spacing is 3.5 ft. The maximum live load deflection is
L/360.

- - NV R I Y
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P,=15k P, =251
Jv p ) Jv Lr )
M, =501ft.-k M, =70ft-k
15 ft.
> >
A 40 ft. =
Dead load Roof live loads
AP,=-12k
<+— 16k
M,,=-48ft-k M, =32ft-k
>
Wind (uplift on roof) Wind loads (pressure on roof)
(does not contribute to drift) (lateral)

FIGURE P12.11 Dead, roof live, and wind loads on the unbraced frame for Problem 12.24.

Open-web
joists

8 ft. D, =20psf
32ft. F L, =40psf
8 ft. (service)

o
A 40 ft. & 40 ft. o

Girder

FIGURE P12.12 Open-web joist and joist girder floor system for Problem 12.29.

12.26 Select an open-web steel joist for the following flooring system:
1. Joist spacing: 3 ft.

Span length: 20 ft.

Floor slab: 3 in. concrete

Other dead load: 30 psf

Live load: 60 psf
6. Maximum live load deflection: L/240

12.27 On an 18 K 10 joist spanning 30 ft., how much total unit load and unfactored live load in
pounds per square foot can be imposed? The joist spacing is 4 ft. The maximum live load
deflection is L/300.

12.28 The service dead load in pounds per square foot on an 18 K 6 joist is one-half of the live
load. What are the magnitudes of these loads on the joist loaded to the capacity at a span
of 20 ft., spaced 4 ft. on center?

12.29 Indicate the joist girder designation for the flooring system shown in Figure P12.12.

12.30 For a 30 ft. x 50 ft. bay, joists spaced 3.75 ft. on center, indicate the designation of the joist
girders to be used for a dead load of 20 psf and a live load of 30 psf.

RARE I



13 Steel Connections

TYPES OF CONNECTIONS AND JOINTS

Most structures’ failure occurs at a connection. Accordingly, the American Institute of Steel
Construction (AISC) has placed a lot of emphasis on connections and has brought out separate
detailed design specifications related to connections in the 2005 Steel Design Manual. Steel con-
nections are made by bolting and welding; riveting is obsolete now. Bolting of steel structures
is rapid and requires less skilled labor. On the other hand, welding is simple and many complex
connections with bolts become very simple when welds are used. But the requirements of skilled
workers and inspections make welding difficult and costly, which can be partially overcome by shop
welding instead of field welding. When a combination is used, welding can be done in the shop and
bolting in the field.
Based on the mode of load transfer, the connections are categorized as follows:

1. Simple or axially loaded connection when the resultant of the applied forces passes through
the center of gravity of the connection

2. Eccentrically loaded connection when the line of action of the resultant of the forces does
not pass through the center of gravity of the connection

The following types of joints are formed by the two connecting members:

1. Lap joint: As shown in Figure 13.1, the line of action of the force in one member and the
line of action of the force in the other connecting member have a gap between them. This
causes a bending within the connection, as shown by the dashed lines. For this reason, the
lap joint is used for minor connections only.

2. Butt joint: This provides a more symmetrical loading, as shown in Figure 13.2, that elimi-
nates the bending condition.

The connectors (bolts or welds) are subjected to the following types of forces (and stresses):

1. Shear: The forces acting on the splices shown in Figure 13.3 can shear the shank of the
bolt. Similarly, the weld in Figure 13.4 resists the shear.

2. Tension: The hanger-type connection shown in Figures 13.5 and 13.6 imposes tension in
bolts and welds.

3. Shear and tension combination: The column-to-beam connections shown in Figures 13.7
and 13.8 cause both shear and tension in bolts and welds. The welds are weak in shear and
are usually assumed to fail in shear regardless of the direction of the loading.

BOLTED CONNECTIONS

The ordinary or common bolts, also known as unfinished bolts, are classified as A307 bolts. The
characteristics of A307 steel are very similar to A36 steel. Their strength is considerably less than
those of high-strength bolts. Their use is recommended for structures subjected to static loads and
for the secondary members like purlins, girts, and bracings. With the advent of high-strength bolts,
the use of the ordinary bolts has been neglected, although for ordinary construction, the common
bolts are quite satisfactory.

251
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FIGURE 13.1 Lap joint.
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FIGURE 13.2 Butt joint.
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FIGURE 13.3 Bolts in shear.

FIGURE 13.4 Welds in shear.

FIGURE 13.5 Bolts in tension.

FIGURE 13.6 Welds in tension.
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™" /P Bolt in shear and tension
M

- ——-u

FIGURE 13.7 Bolts in shear and tension.

P

M
? M Weld in shear and tension
ra= ]

b~

FIGURE 13.8 Welds in shear and tension.

| .
Pt |

L1

,7/— Torque applied

RERERE KN

p X Clamping force Clamping force

FIGURE 13.9 Frictional resistance in a slip-critical connection.

High-strength bolts have strength that is twice or more of the ordinary bolts. There are two
groups of high-strength bolts: Group A is equivalent to A325-type bolts and Group B is equivalent
to A490-type bolts. High-strength bolts are used in two types of connections: the bearing-type con-
nections and the slip-critical or friction-type connections.

In the bearing-type connection, in which the common bolts can also be used, no frictional resis-
tance in the faying (contact) surfaces is assumed and a slip between the connecting members occurs
as the load is applied. This brings the bolt in contact with the connecting member and the bolt bears
the load. Thus, the load transfer takes place through the bolt.

In a slip-critical connection, the bolts are torqued to a high tensile stress in the shank. This devel-
ops a clamping force on the connected parts. The shear resistance to the applied load is provided by
the clamping force, as shown in Figure 13.9.
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Thus, in a slip-critical connection, the bolts themselves are not stressed since the entire force is
resisted by the friction developed on the contact surfaces. For this purpose, the high-strength bolts
are tightened to a very high degree. The minimum pretension applied to bolts is 0.7 times the tensile
strength of steel. These are given in Table 13.1.

The methods available to tighten the bolts comprise (1) the turn of the nut method, (2) the cali-
brated wrench method, (3) the direct tension indicator method, and (4) the twist-off type tension
control method in which bolts are used whose tips are sheared off at a predetermined tension level.

The slip-critical connection is a costly process subject to inspections. It is used for structures
subjected to dynamic loading such as bridges where stress reversals and fatigued loading take place.

For most situations, the bearing-type connection should be used where the bolts can be tightened
to the snug-tight condition, which means the tightness that could be obtained by the full effort of a
person using a spud wrench or the pneumatic wrench.

SPECIFICATIONS FOR SPACING OF BOLTS AND EDGE DISTANCE

1. Definitions: The following definitions are given with respect to Figure 13.10.

Gage, g: This is the center-to-center distance between two successive lines of bolts, per-
pendicular to the axis of a member (perpendicular to the load).

Pitch, p: This is the center-to-center distance between two successive bolts along the axis
of a member (in line with the force).

Edge distance, L,: This is the distance from the center of the outermost bolt to the edge of
a member.

2. Minimum spacing: The minimum center-to-center distance for standard, oversized, and
slotted holes should not be less than 27 d, but a distance of 3d is preferred; d being the bolt
diameter.

3. Maximum spacing: The maximum spacing of bolts of the painted members or the
unpainted members not subject to corrosion should not exceed 24 times the thickness of
thinner member or 12 in. whichever is less. The maximum spacing for members subject to
corrosion should not exceed 14 times thickness or 7 in. whichever is less.

TABLE 13.1
Minimum Pretension on Bolts, k

Bolt Diameter (in.)  Area (in.2)  Group A, e.g., A325 Bolts  Group B, e.g., A490 Bolts

12 0.0196 12 15
5/8 0307 19 24
3/4 0.442 28 35
718 0.601 39 49
| 0.785 51 64
1% 1.227 71 102
% 1.766 103 148

I

HOREONNO;

i g

000

p oL

FIGURE 13.10 Definition sketch.
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4. Minimum edge distance: The minimum edge distance in any direction are tabulated by the
AISC. It is generally 1% times the bolt diameter for the sheared edges and 1/ times the
bolt diameter for the rolled or gas cut edges.

5. Maximum edge distance: The maximum edge distance should not exceed 12 times the
thickness of the thinner member or 6 in. whichever is less.

BEARING-TYPE CONNECTIONS
The design basis of a connection is as follows:

P, <OR, (13.1)

where
P, is applied factored load on a connection
¢ is resistance factor = 0.75 for a connection
R, is nominal strength of a connection

In terms of the nominal unit strength (stress), Equation 13.1 can be expressed as
P, < OF,A (13.2)

For bearing-type connections, F, refers to the nominal unit strength (stress) for the various limit
states or modes of failure and A refers to the relevant area of failure.
The failure of a bolted joint in a bearing-type connection can occur by the following modes:

1. Shearing of the bolt across the plane between the members: In single shear in the lap joint
and in double shear in the butt joint, as shown in Figure 13.11.
For a single shear

a=Zg
4

and for a double shear

a=lap
2

2. Bearing failure on the contact area between the bolt and the plate, as shown in Figure 13.12.

A=d-t
Pe+t= WA_ ]
[ — $—» P
| -
g‘—l— _,|'_4||_ ]
» i P
— = = ]
2 T T
FIGURE 13.11 Shear failure.
Pe—5% E |

o Eh
{

FIGURE 13.12 Bearing failure.
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3. Tearing out of the plate from the bolt, as shown in Figure 13.13.
A = tearing area = 2L ¢

4. Tensile failure of plate as shown in Figure 13.14. This condition has been discussed in
Chapter 9 for tension members. It is not a part of the connection.

For the shearing type of the limiting state, F, in Equation 13.2 is the nominal unit shear strength
of bolts, F,,, which is taken as 50% of the ultimate strength of bolts. The cross-sectional area, A,,
is taken as the area of the unthreaded part or the body area of bolt. If the threads are in the plane of
shear or are not excluded from shear plane, a factor of 0.8 is applied to reduce the area. This factor
is incorporated in the strength, F, .

Thus, for the shear limit state, the design strength is given by

P, <0.75F, An, (13.3)

where
F,, is as given in Table 13.2
A, = (/4)d? for single shear and A = (/2)d? for double shear
n,, is number of bolts in the connection

In Table 13.2, threads not excluded from shear plane are referred to as the N-type connection,
like 32-N, and threads excluded from shear plane as the X-type connection, like 325-X.

The other two modes of failure, that is, the bearing and the tearing out of a member, are based
not on the strength of bolts but upon the parts being connected. The areas for bearing and tearing

ey
R,/2

n

: _¥]
P (R ) __]
: L

R,/2

FIGURE 13.13 Tearing out of plate.

FIGURE 13.14 Tensile failure of plate.

TABLE 13.2

Nominal Unit Shear Strength, F,,

Bolt Type F,, (ksi)
A307 27
Group A (e.g., A325-N) threads not excluded from shear plane 54
Group A (e.g., A325-X) threads excluded from shear plane 68

Group B (e.g., A490-N) threads not excluded from shear plane 68
Group B (e.g., A490-X) threads excluded from shear plane 84
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are described in the preceding discussion. The nominal unit strengths in the bearing and the (shear)
tear out depend on the deformation around the holes that can be tolerated and on the types of holes.
The bearing strength is very high because the tests have shown that the bolts and the connected
member actually do not fail in bearing but the strength of the connected parts is impaired. The
AISC expressions combine the bearing and (shear) tear state limits together as follows:

1. For standard, oversized, short-slotted holes and long-slotted holes with slots parallel to the
force where deformation of hole should be <0.25 in. (i.e., deformation is a consideration)

P, =1.20LtF,n, <2.4¢dtF,n, (13.4)
where F), is ultimate strength of the connected member.
2. For standard, oversized, short-slotted holes and long-slotted holes parallel to the force
where deformations can be >0.25 in. (i.e., deformation is not a consideration)

P, = 1.50L.tF,n, <30dtF,n, (13.5)

3. For long-slotted holes, slots being perpendicular to the force

P, =1.00L tF,n, <2.00dtF,n, (13.6)
where
¢ is 0.75
L, is illustrated in Figure 13.15.
For edge bolt #1
h
L=L,—— 137
c e 2 ( )
For interior bolt #2
L. =s—h (13.8)

where i = hole diameter = (d + 1/8) in.*

In the case of double shear, if the combined thickness of two outside elements is more than the
thickness of the middle element, the middle element is considered for design using twice the bolt
area for shear strength and the thickness of the middle element for bearing strength. However, if
the combined thickness of outer elements is less than the middle element, then the outer element is
considered in design with one-half of the total load, which each outside element shares.

Lojhj L]

#1 C}I Q#z P
%

L, s

FIGURE 13.15 Definition of L,.

* The AISC stipulates d + 1/16 but 1/8 has been used conservatively.
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Example 13.1

A channel section C9 x 15 of A36 steel is connected to a 3/8-in. steel gusset plate, with
7/8-in. diameter, Group A: A325 bolts. A service dead load of 20 k and live load of 50 k is applied
to the connection. Design the connection. The slip of the connection is permissible. The threads
are excluded from the shear plane. Deformation of the hole is a consideration.

SOLUTION

A. The factored load
P, =1.220)+1.6(50) =104 k
B. Shear limit state
1. A, = (/4)(7/8)> = 0.601 in.?

2. For Group A: A325-X, F,, = 68 ksi
3. From Equation 13.3

No. of bolts = _h
0.75F, A,

104

=—————=3.39 or 4bolts
0.75(68)(0.601)

C. Bearing limit state
1. Minimum edge distance

Le:1§(z):1.53in.,use2in.
418
2. Minimum spacing
7 . .
s=3 3 =2.63in.,use 3in.
1 .
3. h=d+—-=T1in.
8
4. For holes near edge

= -

e €

h

2

=2—l=1.5in'
2

t = 5/16 in. for the web of the channel section
For a standard size hole of deformation <0.25 in. (deformation is a consideration)

Strength/bolt = 1.20LtF,

=1.2(0.75)(1 .5)(%)(58) =24.5k « Controls

Upper limit = 2.4¢dtf,

= 2.4(0.75)(Z)(i)(58) =28.55k
8/\16
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5.

For interior holes

L.=s—h=3-1=2in.
Strength/bolt =1 .2(0.75)(2)(%)(58) =32.63k

Upper limit = 2.4(0.75)(%)(%)(58) = 28.55k « Controls

Suppose there are n lines of holes with two bolts in each, then
P, =104 = n(24.5)+ n(28.55)

n=1.96
Total no. of bolts = 2(1.96) = 3.92 or 4 bolts

Select four bolts either by shear or bearing.

The section has to be checked for the tensile strength and the block shear by the
procedure given in Chapter 9 under the “Tensile Strength of Elements” and “Block
Shear Strength” sections, respectively.

SLIP-CRITICAL CONNECTIONS

In a slip-critical connection, the bolts are not subjected to any stress. The resistance to slip is equal
to the product of the tensile force between the connected parts and the static coefficient of friction.

This is given by

where

P, =0D,uh,T,Nn, (139)

¢ is a resistance factor with different values as follows:

1.

Standard holes and short-slotted holes perpendicular to the direction of load, ¢ = 1

2. Short-slotted holes parallel to the direction of load, ¢ = 0.85
3. Long-slotted holes, ¢ = 0.70

D, is the ratio of installed pretension to minimum pretension; use D, = 1.13, other values
permitted.

u is the slip (friction) coefficient as given in Table 13.3.

hf is the factor for fillers, as follows:

1.

No filler or where the bolts have been added to distribute loads in fillers, hf =1

2. One filler between connected parts, hf =1
3. Two or more fillers, hf =0.85
T, is minimum bolt pretension given in Table 13.1
N, is number of slip (shear) planes
n,, is number of bolts in the connection

TABLE 13.3

Slip (Friction) Coefficient

Class Surface p
Class A Unpainted clean mill scale or Class A coating on blast cleaned steel or 0.30

hot dipped galvanized and roughened surface
Class B Unpainted blast cleaned surface or Class B coating on blast cleaned steel 0.5

259
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Although there is no bearing on bolts in a slip-critical connection, the AISC requires that it should
also be checked as a bearing-type connection by Equation 13.3 and a relevant equation out of
Equations 13.4 through 13.6.

Example 13.2

A double-angle tensile member consisting of 2 L 3 x 2% X 1/4 is connected by a gusset plate
3/4 in. thick. It is designed for a service load of 15 k and live load of 30 k. No slip is permitted.
Use 5/8-in. Group A: A325 bolts and A572 steel. Holes are standard size and bolts are excluded
from the shear plane. There are no fillers and the surface is blast cleaned coat A. Deformation of
the hole is a consideration.

SOLUTION
A. Factored design load

P, =1.2(15)+1.6(30) = 66 k

B. For the slip-critical limit state
1. D,=113
2. Standard holes, ¢ =1
3. Nofillers, h;=1
4. Class A surface, p = 0.3
5. From Table 13.1, T, = 19 ksi for 5/8-in. bolts
6. For double shear (double angle), N, = 2
From Equation 13.9

_ Pu
¢Duuthsz
66

= =5.12
1(1.13)(0.3)(N(19)(2)

ny

C. Check for the shear limit state as a bearing-type connection
1. A, =2(/4)(5/87 = 0.613 in.?
2. For Group A: A325-X, F,, = 66 ksi
3. From Equation 13.3

No. of bolts = _ A
0.75F, A,

66

=—=2.18
0.75(66)(0.613)

D. Check for the bearing limit state as a bearing-type connection
1. Minimum edge distance

L. = 1§(Ej =1.09in., use 1.5in.
418

2. Minimum spacing

s= 3(%) =1.88in., use 2in.
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3. hed+r=in
8 4

4. For holes near edge

t =2(1/4) = 0.5 in. « thinner than the gusset plate
For a standard size hole of deformation <0.25 in. (deformation is a consideration)

Strength/bolt = 1.20L tF,
=1.2(0.75)(1.125)(0.5)(65) = 32.9 k « Controls

Upper limit = 2.4¢dtF,

= 2.4(0.75)(%)(0.5)(65) =36.56k

5. For interior holes

chs—h:2—(§):1.251n.
4

6. Strength/bolt =1.2(0.75)(1.25)(0.5)(65) = 36.56 k

Upper limit = 2.4(0.75)(%)(0.5)(65) =36.56 k « Controls

7. Suppose there are n lines of holes with two bolts in each, then

P, =66=n(32.9)+ n(36.56)
n=1

Total no. of bolts = 2
E. The slip-critical limit controls the design
Number of bolts selected = 6 for symmetry
F. Check for the tensile strength of bolt, as per Chapter 9—"Tensile Strength of Elements” section
G. Check for the block shear, as per Chapter 9—"Block Shear Strength” section

TENSILE LOAD ON BOLTS

This section applies to tensile loads on bolts, in both the bearing type of connections and the
slip-critical connections. The connections subjected to pure tensile loads (without shear) are lim-
ited. These connections exist in hanger-type connections for bridges, flange connections for pip-
ing systems, and wind-bracing systems in tall buildings. A hanger-type connection is shown in
Figure 13.16.

A tension by the external loads acts to relieve the clamping force between the connected parts
that causes a reduction in the slip resistance. This has been considered in the “Combined Shear and
Tensile Forces on Bolts” section. However, as far as the tensile strength of the bolt is concerned, it is
computed without giving any consideration to the initial tightening force or pretension.
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=
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FIGURE 13.16 T-type hanger connection.

TABLE 13.4

Nominal Unit Tensile Strength, F,
Bolt Type F,, (ksi)
A307 45
A325 90
A490 113

The tensile limit state of rupture follows the standard form of Equation 13.2:
T, <0.75F,A,-n, (13.10)

where
T, is factored design tensile load
F,, is nominal unit tensile strength as given in Table 13.4

Example 13.3

Design the hanger connection shown in Figure 13.17 for the service dead and live loads of 30 k
and 50 k, respectively. Use Group A: A325 bolts.

SOLUTION
1. Factored design load

P, =1.2(30)+1.6(50)=116k

2. Use 7/8-in. bolt
2
A= E(Z) =0.601 in.2
4\8

3. From Equation 3.10

___hk
0.75F, A,
116

~ 0.75(90)(0.601)

ny

= 2.86,use 4 bolts, 2 on each side
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FIGURE 13.17 A tensile connection for Example 13.3.

COMBINED SHEAR AND TENSILE FORCES ON BOLTS

COMBINED SHEAR AND TENSION ON BEARING-TYPE CONNECTIONS

Many connections are subjected to a combination of shear and tension. A common case is a diago-
nal bracing attached to a column.

When both tension and shear are imposed, the interaction of these two forces in terms of the
combined stress must be considered to determine the capacity of the bolt. A simplified approach to
deal with this interaction is to reduce the unit tensile strength of a bolt to F,, (from the original F,,,).
Thus, the limiting state equation is

T, <0.75F.A,n, (13.11)

where the adjusted (reduced) nominal unit tensile strength is given as follows:*

F,
F,=13F, —(ﬁ]ﬁ <F, (13.12)

where f, is actual shear stress given by the design shear force divided by the area of the number bolts
in the connection.

To summarize, for combined shear and tension in a bearing-type connection, the procedure
comprises the following steps:

1. Use the unmodified shear limiting state equation (Equation 13.3).
2. Use the tension limiting state equation (Equation 13.11) as a check.
3. Use the relevant bearing limiting state equation from Equations 13.4 through 13.6 as a check.

Example 13.4

AWT12 x 27.5 bracket of A36 steel is connected to a W14 x 61 column, as shown in Figure 13.18,
to transmit the service dead and live loads of 15 and 45 k. Design the bearing-type connection
between the column and the bracket using 7/8-in. Group A: 325-X bolts. Deformation is a
consideration.

* When the actual shear stress f, < 0.3¢F,, or the actual tensile stress f, < 0.3¢pF,,, the adjustment of F,, is not required.
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3\
4 Pp=15k

P;=45k

U~~~

FIGURE 13.18 Column-bracket connection for Example 13.4.

SOLUTION

A. Design data
1. Thickness of bracket = 0.505 in.
2. Thickness of column = 0.645 in.
3. P,=1.2(15)+ 1.6 (45) =90k
4. Design shear, V, =P, (3/5) = 54 k
5. Design tension, T, =P, (4/5) =72 k
B. For the shear limiting state
1. A, = (W4)(7/8)> = 0.601 in.2
2. For Group A, A325-X, F,, = 68 ksi
3. From Equation 13.3
%4

T 0.75F,A,
B 54
0.75(68)(0.601)

ny

=1.762 bolts

Use four bolts, two on each side (minimum two bolts on each side)
C. For the tensile limiting state
1. F, =90 ksi
2. Actual shear stress

%

u

=Yoo 9y 46ksi
Ay, (0.601)(4)

3. Adjusted unit tensile strength from Equation 13.12

Fr.=1.3F, —(0 7F§[F ]fv <F,

=1.3(90) (22.46)=77.36 ksi OK

0.75(68)

4. From Equation 13.11

_ T,
0.75F,A,
72

= 0.75(77.36)(0.601)

Ny

=2.06<4 bolts OK
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D. Check for the bearing limit state
1. Minimum edge distance

L, = 1E(ZJ =1.53in.,use 2in.
418

2. Minimum spacing

s= 3(%) =2.63in., use 3in.

1
h=d+—==1in.
3. 8

4. For holes near edge

Le :Le_(ﬁj
2
=2—(1)=1.5in.
2

t = 0.505 in. « thickness of WT flange
For a standard size hole of deformation <0.25 in. (deformation is a consideration)

Strength = 1.20L.tf,n,
= 1.2(0.75)(1.5)(0.505)(58)(4) =158 k « controls > 54 k OK
Upper limit = 2.4¢dtf,n,

2.4(0.75)(%)(0.505)(58)(4) =184.5k

COMBINED SHEAR AND TENSION ON SLiP-CRriTiIcAL CONNECTIONS

As discussed in the “Tensile Load on Bolts” section, the externally applied tension tends to reduce
the clamping force and the slip-resisting capacity. A reduction factor k, is applied to the previously
described slip-critical strength. Thus, for the combined shear and tension, the slip-critical limit
state is

V, = 0D,k T,N,nk, (13.13)
where
_1-T
‘" D,Tyn, (13.14)

V, is factored shear load on the connection

T, is factored tension load on the connection

T, is minimum bolt pretension given in Table 13.1
N, is number of slip (shear) planes

n,, is number of bolts in the connection

his a factor for fillers defined in Equation 13.9

u is slip (friction) coefficient as given is Table 13.3
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Combining Equations 13.13 and 13.14, the relation for the number of bolts is

1 1%
n,=——-,|——+T, (13.15)
DT, \ ¢uh;

To summarize, for the combined shear and tension in a slip-critical connection, the procedure
is as follows:

1. Use the shear limiting state equation (Equation 13.3).*

2. Use the (original) tensile limit state equation (Equation 13.10).

3. Use the relevant bearing limiting state equation from Equations 13.4 through 13.6 as a check.
4. Use the (modified) slip-critical limit state equation (Equation 13.13).

Example 13.5

Design Example 13.4 as a slip-critical connection. The holes are standard size. There is no filler.
The surface is unpainted clean mill scale.

SOLUTION
A. Design loads from Example 13.4
1. V,=54k
2. T,=72k

B. For the shear limiting state
n, = 1.762 from Example 13.4 (use four bolts, min. two on each side)
C. For the tensile limiting state

— TU
0.75F, A,
72

= 0.75(90)(0.601)

Ny

=1.77 <4 bolts OK

D. For the bearing limit state

Strength =158 k(from Example 13.4) >54K OK

E. For the slip-critical limit state

1. Standard holes, ¢ =1
No filler, hy=1
Class A surface, p = 0.3
From Table 13.1, T, = 39 ksi
For single shear, N, = 1
From Equation 13.15

1 [ v, ]
n, = + Tu
D,T, \ ouh;

- ;[L ; 72}
1.13(39) | (1(0.3)(1)
= 5.72 bolts (select 6 bolts, 3 on each side of web)

Sk W

* The slip-critical connections also are required to be checked for bearing capacity and shear strength.
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WELDED CONNECTIONS

Welding is a process in which the heat of an electric arc melts the welding electrode and the adjacent
material of the part being connected simultaneously. The electrode is deposited as a filler metal
into the steel, which is referred to as the base metal. There are two types of welding processes. The
shielded metal arc welding (SMAW), usually done manually, is the process used for field welding.
The submerged arc welding (SAW) is an automatic or semiautomatic process used in shop welding.
The strength of a weld depends on the weld metal used, which is the strength of the electrode used.
An electrode is specified by the letter E followed by the tensile strength in ksi and the last two digits
specifying the type of coating. Since strength is a main concern, the last two digits are specified by
XX, a typical designation being E 70 XX. The electrode should be selected to have a larger tensile
strength than the base metal (steel). For steel of 58 ksi strength, the electrode E 70 XX is used, and
for 65 ksi steel, the electrode E 80 XX is used. Electrodes of high strength E 120 XX are available.

The two common types of welds are fillet welds and grove or the butt welds, as shown in
Figure 13.19. Groove welds are stronger and more expensive than fillet welds. Most of the welded
connections are made by fillet welds because of a larger allowed tolerance.

The codes and standards for welds are prepared by the American Welding Society. These have
been adopted in the AISC Manual 2010.

GROOVE WELDS

ErrecTive AReA oF GROOVE WELD

The effective area of a complete-joint-penetration (CJP) groove weld is the length times the thick-
ness of the thinner part joined.

The effective area of a partial-joint-penetration (PJP) groove weld is the length times the depth
(effective throat) of the groove.* The minimum effective throat for PTP weld has been listed in the AISC
Manual 2010. Tt is 1/8 in. for 1/4 in. material thickness to 5/8 in. for over 6 in. thick material joined.

FILLET WELDS

ErrecTIVE AREA OF FiLLET WELD

The cross section of a fillet weld is assumed to be a 45° right angle triangle, as shown in Figure 13.20.
Any additional buildup of weld is neglected. The size of the fillet weld is denoted by the sides of the
triangle, w, and the throat dimension, given by the hypotenuse, ¢, which is equal to 0.707w. When
the SAW process is used, the greater heat input produces a deeper penetration.

The effective throat size is taken as follows:

T, =1=0.707w (13.16)

MiINIMUM SizE OF FiLLET WELD

The minimum size should not be less than the dimension shown in Table 13.5.

S /Y

Complete penetration Partial penetration

(a) (b)

FIGURE 13.19 Types of welds: (a) fillet and (b) groove of butt welds.

* For gas metal arc and flux cored arc, the groove depth is subtracted by 1/8 in.
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Throat
f=0.707w

S

FIGURE 13.20 Fillet weld dimensions.

TABLE 13.5

Minimum Size of Weld (in.)

Base Material Thickness of Thinner Part (in.) w (in.)
<1/4 1/8
>1/4to <1/2 3/16
>3/4 to <3/4 1/4
>3/4 5/16

Maximum Size of FiLLer WELD

1. Along the edges of material less than 1/4 in. thick, the weld size should not be greater than
the thickness of the material.

2. Along the edges of material 1/4 in. or more, the weld size should not be greater than the
thickness of the material less 1/4 in.

LENGTH OF FiLLer WELD

1. The effective length of end-loaded fillet weld, L., is equal to the actual length for the length
up to 100 times the weld size. When the length exceeds 100 times the weld size, the actual
length is multiplied by a reduction factor p = 1.2 —0.002 (I/w), where [ is actual length and w
is weld size. When the length exceeds 300 times the weld size, the effective length is 180 w.

2. The minimum length should not be less than four times the weld size.

3. If only the longitudinal welds are used, the length of each side should not be less than the
perpendicular distance between the welds.

STRENGTH OF WELD

CoMPLETE JOINT PENETRATION GROOVE WELDS

Since the weld metal is always stronger than the base metal (steel), the strength of a CJP groove weld
is taken as the strength of the base metal. The design of the connection is not done in the normal sense.

For the combined shear and tension acting on a CJP groove weld, there is no explicit approach.
The generalized approach is to reduce the tensile strength by a factor of (f,/F,)? subject to a maxi-
mum reduction of 36% of the tensile strength.

PARTIAL JOINT PENETRATION WELDS AND FiLLET WELDS

A weld is weakest in shear and is always assumed to fail in the shear mode. Although a length of
weld can be loaded in shear, compression, or tension, the failure of a weld is assumed to occur in the
shear rupture through the throat of the weld. Thus,

P, =0F,A, (13.17)
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where
¢ is resistance factor = 0.75
F, is strength of weld = 0.6F 5y«
Frxx is strength of electrode
A, is effective area of weld = 7,L

However, there is a requirement that the weld shear strength cannot be larger than the base metal
shear strength. For the base metal, the shear yield and shear rupture strengths are taken to be 0.6 times
the tensile yield of steel and 0.6 times the ultimate strength of steel, respectively. The yield strength
is applied to the gross area and the rupture strength to the net area of shear surface, but in the case of
a weld, both areas are the same. The resistance factor is 1 for shear yield and 0.75 for shear rupture.

Thus, the PJP groove and the fillet welds should be designed to meet the strengths of the weld
and the base metal, whichever is smaller, as follows:

1. Weld shear rupture limit state
By the substitution of the terms in Equation 13.17

P, = 045FuT.L, (13.18)

where
Fxx is strength of electrode, ksi
L, is effective length of weld
T, is effective throat dimension from Equation 13.16
2. Base metal shear limit state
a. Shear yield strength

P, =0.60FT,L (13.19)
where 1 is thickness of thinner connected member
b. Shear rupture strength
b, =045FT,L (13.20)

In addition, the block shear strength should also be considered by Equation 9.7.

Example 13.6

A tensile member consisting of one L 32 X 3'2 x 1/2 section carries a service dead load of 30 k
and live load of 50 k, as shown in Figure 13.21. A single 3/4-in. plate is directly welded to the
column flange using the CJP groove. Fillet welds attach the angles to the plate. Design the welded
connection. The longitudinal length of the weld cannot exceed 5 in. Use the return (transverse)
weld, if necessary. Use E70 electrodes. The steel is A36.

SOLUTION

A. Angle plate (bracket) connection
1. Factored load

P, =1.2(30)+1.6(50)=116k

2. Maximum weld size. For thinner member, thickness of angle, t = 1/2 in.

(1) 7.
w=t—| — [=—In
16) 16
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~
P
30°
~
FIGURE 13.21 Column-bracket welded connection for Example 13.6.
3. Throat dimension, SMAW process
7 .
1,=0.707| — [=0.309in.
16
4. For weld shear limit state, from Equation 13.18
___ kK
" 0.45RxT,
16 11.92 in. ~ 12 in. <~ controls
0.45(70)(0.309)
5. For steel shear yield limit state, from Equation 13.19
__h
=
0.6F,t
= Lﬁ” =10.74 in.
0.6(36)| —
o5
6. For steel rupture limit state, from Equation 13.20
L =D
0.45F t
1
= *1 =8.9in.
0.45(58)(*]
2
7. Provide a 5-in.-long weld on each side* (maximum in this problem) with 1 in. return on
each side.

8. The longitudinal length of welds (5 in.) should be at least equal to the transverse distance
between the longitudinal weld (31/2); OK
9. Length of 12 in. greater than 4w of 1.75 in. OK

* Theoretically, the lengths on two sides are unequally distributed so that the centroid of the weld passes through the center
of gravity of the angle member.
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B. Column-bracket connection
1. The connection is subjected to tension and shear as follows:

T,=P, cos30°=116 cos 30°=100.5k
V, =P, sin30°=116sin30° =58k

2. For the CJP groove, the design strengths are the same as for the base metal.

3. This is the case of the combined shear and tension in groove weld. Using a maximum
reduction of 36%,* tensile strength = 0.76F,.

4. For the base material tensile limit state

T, = 0(0.76F)tL, where t is gusset plate thickness

100.5 = 0.9(0.76)(36)(%)L

or

L=5.44in. « Controls

Use 6 in. weld length
5. For the base metal shear yield limit state

V, = 0.6kt

58 = 0.6(36)(§)L
4

or
L=3.6in.

6. For the base metal shear rupture limit state

V, = 0.45F,tL

58 = 0.45(58)(3)L
4

or

L=3.0in.

FRAME CONNECTIONS

There are three types of beam-to-column frame connections:

1. FR (fully restrained) or rigid frame or moment frame connection

It transfers the full joint moment and shear force.

It retains the original angle between the members or rotation is not permitted.
2. Simple or pinned frame or shear frame connection

It transfers shears force only.

It permits rotation between the members.
3. PR (partially restrained) frame connection

It transfers some moment and the entire shear force.

It permits a specified amount of rotation.

* See the “Complete Joint Penetration Groove Welds” section.
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! Semirigid

Moment

Rotation

FIGURE 13.22 Moment-rotation characteristics.

The relationship between the applied moment and the rotation (variation of angle) of members

for rigid, semirigid, and simple framing is shown in Figure 13.22.
A fully rigid joint will have a small change in angle with the application of moment. A simple

joint will be able to support some moment (although theoretically the moment capacity should be
zero). A semirigid joint is where the actual moment and rotation are accounted for.

SHEAR OR SIMPLE CONNECTION FOR FRAMES

There are a variety of beam-to-column or beam-to-girder connections that are purposely made flex-
ible for rotation at the ends of the beam. These are designed for the end reaction (shear force). These
are used for structures where the lateral forces due to wind or earthquake are resisted by the other
systems like truss framing or shear walls. Following are the main categories of simple connections.

SINGLE-PLATE SHEAR CONNECTION OR SHEAR TAB

This is a simple and economical approach that is becoming very popular. The holes are prepunched
in a plate and in the web of the beam to be supported. The plate is welded (usually shop welded)
to the supporting column or beam. The prepunched beam is bolted to the plate at the site. This is

shown in Figure 13.23.

FRAMED-BEAM CONNECTION
The web of the beam to be supported is connected to the supporting column through a pair of

angles, as shown in Figure 13.24.

SeaTED-BEAM CONNECTION
The beam to be supported sits on an angle attached to the supporting column flange, as shown in

Figure 13.25.

END-PLATE CONNECTION

A plate is welded against the end of the beam to be supported. This plate is then bolted to the sup-
porting column or beam at the site. This is shown in Figure 13.26. These connections are becoming

popular but not as much as the single-plate connection.
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N

FIGURE 13.23  Single-plate or shear tab connection.

N
Bolted or welded
_._¥ )
Hr o VA
-t °
Pair of angles
N
o
)

FIGURE 13.24 Framed-beam connection.

v A\ Bolted or welded

N

FIGURE 13.25 Seated-beam connection.
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FIGURE 13.26 End-plate connection.

The design of the simple connections proceeds along the lines of the bearing-type connec-
tions described in the “Bearing-Type Connections” section. The limiting states considered are as
follows: (1) shear on bolts; (2) bearing yield strength; (3) shear rupture strength between the bolt
and the connected part, as discussed in the “Bearing-Type Connections” section; and (4) block
shear strength of the connected part.

The AISC Manual 2010 includes a series of tables to design the different types of bolted and
welded connections. The design of only a single-plate shear connection for frames is presented here.

SINGLE-PLATE SHEAR CONNECTION FOR FRAMES

The following are the conventional configurations for a single-plate shear connection:

. A single row of bolts comprising 2—12 bolts.

. The distance between the bolt line and weld line should not exceed 3.5 in.

. Provision of the standard or short-slotted holes.

. The horizontal distance to edge L, > 2d, (bolt diameter).

. The plate and beam must satisfy ¢ < (d,/2) + (1/16).

. For welded connections, the weld shear rupture and the base metal shear limits should be
satisfied.

7. For bolted connections, the bolt shear, the plate shear, and the bearing limit states should

be satisfied.
8. The block shear of the plate should be satisfactory.

AN N BN =

Example 13.7

Design a single-plate shear connection for a W14 x 82 beam joining a W12 x 96 column by a
3/8-in. plate, as shown in Figure 13.27. The factored reaction at the support of the beam is 50 k.
Use 3/4-in.-diameter Group A: A325-X bolts, A36 steel, and E70 electrodes.

SOLUTION
A. Design load

P,=R, =50k
B. For W14 x 82

d=14.3in, t=0.855in., t,=0.5Tin.,, b; =14.7in.
F,=36ksi, F,=58ksi
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FIGURE 13.27 Single-plate connection for Example 13.7.

C. For W12 x 96

d=127in, t,=0.9in, t,=055in, b, =12.2
F,=36ksi, F,=58ksi

D. Column plate-welded connection
1. For 3/8-in. plate

Weld max size =t — (i) = (Ej - (i] = (i)
16 8 16 16
2. T,=0.707 (5/16) = 0.22 in.
3. The weld shear limit state, from Equation 13.18

__h
0.45FixT,
50

~ 0.45(70)(0.22)

E

=7.21in.~8 in. < controls

N
W12 X 96
| W14 x 82
o
o
'\ °
%—in. plate
Ne

in.

in.

4. The steel shear yield limit state, from Equation 13.19

P
L=—=
0.6F,¢
=L3=6.17<8in.
0.6(36)(*)
8
5. The steel rupture limit state, from Equation 13.2
1= tu
0.45F,t
50

=—=5.1.in<8in.

B 3
O.45(58)(§)

0

275
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6. Up to 100 times of the weld size (in this case 100 (5/16) = 31.25 in.), effective length is
equal to actual length, hence L =L, = 8 in.

7. Lof8in.>4wof 1.25in. OK

E. Beam plate-bolted connection

E.1 The single shear limit state
1. A, = (m/4)(3/4)* = 0.441 in.2
2. For A325-X, F,, = 68 ksi
3. From Equation 13.3

No. of bolts = _h
0.75F, A,

50

=———— =222 or 3bolts
0.75(68)(0.441)

E.2 The bearing limit state
1. Minimum edge distance

L. = 1idb = 12(2) =1.31in., use 1.5 in.
4 4\ 4

2. Minimum spacing

s=3d, = 3(%) =2.25in.,use 2.5 in.

3. h=d++="in.
5 8

4. For holes near edge

eoefy
2

:1.5—(l)=1.063in.
16

t = 3/8 in. thinner member
For a standard size hole of deformation <0.25 in.

Strength/bolt =1.20L tf,

=1.2(0.75)(1 .063)(%)(58) =20.8Tk « Controls

Upper limit = 2.40dtf,

= 2.4(0.75)(3)(3)(58) =29.36k
4 )\ 8
5. For other holes

LC=5—h=2.5—(§)=1.625in.

6. Strength/bolt =1.2(0.75)(1 .625)(%)(58) =31.81k
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Upper limit = 2.4(0.75)(%)(%)(58) =29.36 k « Controls

7. Total strength for three bolts—two near edges

P, =2(20.81)+29.36=71k > 50k OK

8. The section has to be checked for block shear by the procedure given in Chapter 9.

MOMENT-RESISTING CONNECTION FOR FRAMES

Fully restrained (rigid) and partially restrained (semirigid) are two types of moment-resisting con-
nections. It is customary to design a semirigid connection for some specific moment capacity, which
is less than the full moment capacity.

Figure 13.28 shows a moment-resisting connection that has to resist a moment, M, and a shear
force (reaction), V.

The two components of the connection are designed separately. The moment is transmitted to the
column flange as a couple by the two tees attached at the top and bottom flanges of the beam. This
results in tension, 7, on the top flange and compression, C, on the bottom flange.

From the couple expression, the two forces are given by

C=T=— 13.21
p (13.21)

where d is taken as the depth of the beam.

The moment is taken care of by designing the tee connection for the tension 7. It should be noted
that the magnitude of the force 7 can be decreased by increasing the distance between the tees (by
a deeper beam).

The shear load is transmitted to the column by the beam—web connection. This is designed as
a simple connection of the type discussed in the “Shear or Simple Connection for Frames™ section
through single plate, two angles (framed), or seat angle.

The connecting tee element is subjected to prying action as shown in Figure 13.29. This prying
action could be eliminated by connecting the beam section directly to the column through a CJP
groove weld, as shown in Figure 13.30.

Stiffeners Tee section

(if required)? ~. ______:| /

_____

—-j' I¢VI f
=l o
M
i XO
e
Web angle

FIGURE 13.28 Moment-resisting connection.
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N
2 1n
= > T
7 |
< i
N
N

FIGURE 13.29 Prying action in connection.

CJP groove weld

e

FIGURE 13.30 Welded moment-resisting connection.

The welded length should not exceed beam flange width, bf, of both the beam and the column,
otherwise a thicker plate has to be welded at the top and bottom of the beam.

Example 13.8

Design the connection of Example 13.7 as a moment-resisting connection subjected to a factored
moment of 200 ft.-k and a factored end shear force (reaction) of 50 k. The beam flanges are groove

welded to the column.

SOLUTION

A. Design for the shear force has been done in Example 13.7.

B. Flanges welded to the column

M
1. C=T=—
d

_ 200(12)

=167.83
14.3

k

2. The base material limit state

T, = OFytL, where t=

t;
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or

T

u

B OFyt

-8 o6in<b,
(0.9)(36)(0.855)

L

Provide a 6-in.-long CJP weld.

PROBLEMS

13.1 Determine the strength of the bearing-type connection shown in Figure P13.1. Use A36
steel, Group A: A325, 7/8-in. bolts. The threads are not excluded from shear plane.
Deformation of the hole is a consideration.

13.2 Determine the strength of the bearing-type connection shown in Figure P13.2. Use A36
steel, Group A: A325, 7/8-in. bolts. The threads are excluded from shear plane. Deformation
of holes is not a consideration.

z-in. bolts
8
| K 2in.
1O O O r
: 4 in.
—7 10 O O P
: 4 in.
O O O |+,
: 2 in.
\ N N N N
N N N N N
2in. 3in. 3in. 2in.
1 1 [
Ls
L §
o T T 1
FIGURE P13.1 Connection for Problem 13.1.
Z—in. bolts
8
| ¥ 2in.
1O O O r
: 4 in.
7 0 O O J
: 4 in.
FO O O |7,
: 2 in.
NI NI NI NI N|
N ~ ~ [N »N
2in. 3in. 3in. 2in.
1.
— 1n. 1/ .
¥2 1 1 [ V4 in.

D | ¥
v ——> P
i |

[SIECINIL

LT [T [T
FIGURE P13.2 Connection for Problem 13.2.
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13.3 Design the bearing-type connection for the bolt joint shown in Figure P13.3. The steel is
AS572 and the bolts are Group A: A325, 3/4-in. diameter. The threads are excluded from
shear plane. Deformation of holes is a consideration.

13.4 A chord of a truss shown in Figure P13.4 consists of 2 C9 x 20 of A36 steel connected by
a 1-in. gusset plate. Check the bearing-type connection by Group B: A490 bolts assuming
threads are excluded from shear plane. Deformation of holes is not a consideration.

13.5 Design the bearing-type connection shown in Figure P13.5 (threads excluded from shear
plane) made with 7/8-in. Group B: A490 bolts. Use A572 steel. Deformation of holes is a
consideration.

13.6 Solve Problem 13.1 for the slip-critical connection of unpainted clean mill scale surface.
The holes are standard size and there are no fillers.

13.7 Solve Problem 13.2 for the slip-critical connection of unpainted blast cleaned surface. The
holes are standard size. Two fillers are used between connected members.

13.8 Design a slip-critical connection for the plates shown in Figure P13.6 to resist service dead
load of 30 k and live load of 50 k. Use 1-in. Group A: A325 bolts and A572 steel. Assume
painted class A surface. The holes are standard size. There are no fillers. The threads are
excluded from shear plane and hole deformation is a consideration.

1.
o plate 3_in. diameter bolts

4m;ﬁ
l | « —§—> P, =100k

5 v | P; =150k

1T 1 3\ (service loads)
Z—m. plate

FIGURE P13.3 Connection for Problem 13.3.

5. .
E-m.dla
o o d’/ -
i —
o o O} -
Pp=40k
P; =100k

(service loads)

FIGURE P13.4 Truss chord connection for Problem 13.4.

7 .
—-in. bol
8 in. bolts E-in. thickness

W14 x 48
— 2 » P, =100k

P; =130k

(service loads)

st
[—]
b

FIGURE P13.5 Connection for Problem 13.5.
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9-in. X%—in. plate

Pe——

——> P

’_J_‘ 5. lat
[—-m.pae
LLI
L1

FIGURE P13.6 Connection for Problem 13.8.

P=176

WT8 x 50

|_4><31/2><%

W14 X 82 — 1

FIGURE P13.7 Connection for Problem 13.10.

13.9

13.10

13.11

13.12
13.13

A single angle 3%2 X 3 X 1/4 tensile member is connected by a 3/8-in.-thick gusset plate.
Design a no-slip (slip-critical) connection for the service dead and live loads of 8 and
24 k, respectively. Use 7/8-in. Group A: A325 bolts and A36 steel. Assume an unpainted
blast cleaned surface. The holes are standard size. There is one filler. The threads are not
excluded from shear plane and the hole deformation is not a consideration.

A tensile member shown in Figure P13.7 consisting of two L 4 X 32 X 1/2 carries a wind
load of 176 k acting at 30°. A bracket consisting of a tee section connects this tensile
member to a column flange. The connection is slip-critical. Design the bolts for the tensile
member only. Use 7/8-in. Group B: A490-X bolts and A572 steel. Assume an unpainted
blast cleaned surface. The holes are short-slotted parallel to the direction of loading.
There are no fillers and hole deformation is not a consideration.

Determine the strength of the bolts in the hanger connection shown in Figure P13.8
(neglect the prying action).

Are the bolts in the hanger connection adequate in Figure P13.9?

A WTI2 x 31 is attached to a 3/4-in. plate as a hanger connection, to support service dead
and live loads of 25 and 55 k, respectively. Design the connection for 7/8-in. Group A:
A325 bolts and A572 steel (neglect the prying action).
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z -in. bolts A490

8
Group B gioe1 A572
FIGURE P13.8 Hanger-type connection for Problem 13.11.
%—in. A325
Group A
| Steel A572
: H H S

2|_4X31/2X%

Pp=10k
P, =15k
(service loads)

FIGURE P13.9 Hanger-type connection for Problem 13.12.

| — W12 x58

WT 12 X 34

8- 3.in. Group B, A490—X bolts
4 A572 steel

FIGURE P13.10 Combined shear-tension connection for Problem 13.15.

In Problems 13.14 through 13.16, the threads are excluded from shear planes and defor-
mation is a consideration.

13.14 Design the column-to-bracket connection from Problem 13.10. Slip is permitted.

13.15 In the bearing-type connection shown in Figure P13.10, determine the load capacity, P,,.

13.16 A tensile member is subjected to service dead and live loads of 30 and 50 k, respectively,
through 7/8-in. plate, as shown in Figure P13.11. Design the bearing-type connection. The
steel is A572 and the bolts are 3/4-in., Group B: A490-X.

In Problems 13.17 through 13.19, the connecting surface is unpainted clean mill scale. The holes

are standard size and there are no fillers.

13.17 Design the connection from Problem 13.14 as the slip-critical connection.

13.18 Solve Problem 13.15 as the slip-critical connection.
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4 bolts

45°

Design %-in. bolt connection

A
FIGURE P13.11 Combined shear-tension connection for Problem 13.16.

/15 X % plate

10 in.

S SE‘ Plate 8 X% S

FIGURE P13.12 Welded connection for Problem 13.20.

7 _in. weld
16

13.19 Design the connection in Problem 13.16 as the slip-critical connection. Bolts are preten-
sioned to 40 k.

13.20 Determine the design strength of the connection shown in Figure P13.12. The steel is
AS572 and the electrodes are E 70.

13.21 In Problem 13.20, the applied loads are a dead load of 50 k and a live load of 150 k. For
the welding shown in Figure P13.12, determine the thickness of the plates.

13.22 A 1/4-in.-thick flat plate is connected to a gusset plate of 5/16-in. thickness by a 3/16-in.
weld as shown in Figure P13.13. The maximum longitudinal length is 4 in. Use the return
(transverse) weld, if necessary. The connection has to resist a dead load of 10 k and live
load of 20 k. What is the length of the weld? Use E 70 electrodes. The steel is A36.

13.23 Two 1/2 x 10-in. A36 plates are to be connected by a lap joint for a factored load of 80 k. Use
E 80 electrodes. The steel is A36. Determine the weld size for the entire width (transverse)
welding of the plate.

13.24 The plates in Problem 13.23 are welded as a partial-joint-penetration butt connection.
The minimum effective throat width according to AISC specifications is 3/16 in. Design
the connection.
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—\

¢

le—>

Maximum 4 in.

FIGURE P13.13 Welded connection for Problem 13.22.

L4><3><l
2

< '

—1— WT section

FIGURE P13.14 Welded connection for Problem 13.25.

13.25 Design the longitudinal fillet welds to connect a L. 4 X 3 X 1/2 angle tensile member
shown in Figure P13.14 to resist a service dead load of 50 k and live load of 80 k. Use E
70 electrodes. The steel is A572.

13.26 A tensile member consists of 2 L 4 X 3 X 1/2 carries a service dead load of 50 k and live
load of 100 k, as shown in Figure P13.15. The angles are welded to a 3/4-in. gusset plate,
which is welded to a column flange. Design the connection of the angles to the gusset
plate and the gusset plate to the column. The gusset plate is connected to the column by a
CJP groove and the angles are connected by a fillet weld. Use E 70 electrodes. The steel
is A572.

13.27 Design a single-plate shear connection for a W14 X 53 beam joining a W14 X 99 column
by a 1/4-in. plate. The factored reaction is 60 k. Use A36 steel. Use 5/8-in. Group A: A325
bolts and E70 welds.

13.28 Design a single-plate shear connection for a W16 X 67 beam joining a W18 X 71 column
by a 1/2-in. plate to support a factored beam reaction of 70 k. Use 3/4-in. Group B: A490
bolts and E80 welds. The beam and columns have A992 steel and the plate is A36 steel.
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%—in‘ gusset plate

Design welded connection

Y%

FIGURE P13.15 Welded connection for Problem 13.26.

13.29 Design the connection for Problem 13.26 as a moment connection to resist a factored
moment of 200 ft.-k in addition to the factored reaction of 60 k.

13.30 Design the connection for Problem 13.27 as a moment-resisting connection to resist a
factored moment of 300 ft.-k and a factored shear force of 70 k.
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Concrete Members

PROPERTIES OF REINFORCED CONCRETE

Concrete is a mixture of cement, sand, gravel, crushed rock, and water. Water reacts with cement
in a chemical reaction known as hydration that sets the cement with other ingredients into a solid
mass, high in compression strength. The strength of concrete depends on the proportion of the
ingredients. The most important factor for concrete strength is the water—cement ratio. More water
results in a weaker concrete. However, an adequate amount is needed for concrete to be workable
and easy to mix. An adequate ratio is about 0.25 by weight. The process of selecting the relative
amounts of ingredients for concrete to achieve a required strength at the hardened state and to be
workable in the plastic (mixed) state is known as concrete mix design. The specification of con-
crete in terms of the proportions of cement, fine (sand) aggregate, and coarse (gravel and rocks)
aggregate is called the nominal mix. For example, a 1:2:4 nominal mix has one part cement, two
parts sand, and four parts gravel and rocks by volume. Nominal mixes having the same proportions
could vary in strength. For this reason, another expression for specification known as the standard
mix uses the minimum compression strength of concrete as a basis. The procedure for designing
a concrete mix is a trial-and-error method. The first step is to fix the water—cement ratio for the
desired concrete strength using an empirical relationship between the compressive strength and
the water—cement ratio. Then, based on the characteristics of the aggregates and the proportion-
ing desired, the quantities of the other materials comprising cement, fine aggregate, and coarse
aggregate are determined.

There are some other substances that are not regularly used in the proportioning of the mix.
These substances, known as mixtures, are usually chemicals that are added to change certain char-
acteristics of concrete such as accelerating or slowing the setting time, improving the workability of
concrete, and decreasing the water—cement ratio.

Concrete is quite strong in compression, but it is very weak in tension. In a structural system,
the steel bars are placed in the tension zone to compensate for this weakness. Such concrete is
known as reinforced concrete. At times, steel bars are also used in the compression zone to gain
extra strength with a leaner concrete size as in reinforced concrete columns and doubly reinforced
beams.

COMPRESSION STRENGTH OF CONCRETE

The strength of concrete varies with time. The specified compression strength denoted as f is the
value that concrete attains 28 days after the placement. Beyond that stage, the increase in strength
is very small. The strength f’ ranges from 2500 to 9000 psi with a common value between 3000
and 5000 psi.

The stress—strain diagram of concrete is not linear to any appreciable extent; thus, concrete does
not behave elastically over a major range. Moreover, concrete of different strengths have stress—
strain curves that have different slopes. Therefore, in concrete, the modulus of elasticity cannot be
ascertained directly from a stress—strain diagram.
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The American Concrete Institute (ACI), which is a primary agency in the United States that
prepares the national standards for structural concrete, provides the empirical relations for the mod-
ulus of elasticity based on the compression strength, f7.

Although the stress—strain curves have different slopes for concrete of different strengths, the
following two characteristics are common to all concretes:

1. The maximum compression strength, £/, in all concrete is attained at a strain level of
approximately 0.002 in./in.

2. The point of rupture of all curves lies in the strain range of 0.003—0.004 in./in. Thus, it is
assumed that concrete fails at a strain level of 0.003 in./in.

DESIGN STRENGTH OF CONCRETE

To understand the development and distribution of stress in concrete, let us consider a simple rect-
angular beam section with steel bars at the bottom (in the tensile zone), which is loaded by an
increasing transverse load.

The tensile strength of concrete being small, the concrete will soon crack at the bottom at a
low transverse load. The stress at this level is known as the modulus of rupture, and the bending
moment is referred to as the cracking moment. Beyond this level, the tensile stress will be handled
by the steel bars and the compression stress by the concrete section above the neutral axis. Concrete
being a brittle (not a ductile) material, the distribution of stress within the compression zone could
be considered linear only up to a moderate load level when the stress attained by concrete is less
than 1/2 f/, as shown in Figure 14.1. In this case, the stress and strain bear a direct proportional
relationship.

As the transverse load increases further, the strain distribution will remain linear (Figure 14.2b)
but the stress distribution will acquire a curvilinear shape similar to the shape of the stress—strain
curve. As the steel bars reach the yield level, the distribution of strain and stress at this load will be
as shown in Figure 14.2b and c.

< f;=SCEL‘

0000 > fi=¢E,

(@ (b) (©

FIGURE 14.1 Stress—strain distribution at moderate loads: (a) section, (b) strain, and (c) stress.

€ —\ i 0.85f

o0 0 00 e —}jg/ —}fy

fy/E
(2) (b) (© (d)

FIGURE 14.2 Stress—strain distribution at ultimate load: (a) section, (b) strain, (c) stress, and (d) equivalent
stress.
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For simplification, Whitney (1942) proposed a fictitious but equivalent rectangular stress
distribution of intensity 0.85 7, as shown in Figure 14.2d. This has since been adopted by the ACIL.
The property of this rectangular block of depth a is such that the centroid of this rectangular block
is the same as the centroid of actual curved shape and that the area under the two diagrams in
Figure 14.2¢ and d are the same. Thus, for design purposes, the ultimate compression of concrete is
taken to be 0.85 £, uniformly distributed over the depth, a.

STRENGTH OF REINFORCING STEEL

The steel bars used for reinforcing are round, deformed bars with some form of patterned ribbed
projections onto their surfaces. The bar sizes are designated from #3 through #18. For #3 to #8
sizes, the designation represents the bar diameter in one-eighths of an inch, that is, the #5 bar has a
diameter of 5/8 in. The #9, #10, and #11 sizes have diameters that provide areas equal to the areas
of the 1 in. X 1 in. square bar, 14 in. X 14 in. square bar, and 1} in. X 1}4 in. square bar, respec-
tively. Sizes #14 and #18 are available only by special order. They have diameters equal to the areas
of al) in. X1} in. square bar and 2 in. X 2 in. square bar, respectively. The diameter, area, and unit
weight per foot for various sizes of bars are given in Appendix D, Table D.1.

The most useful properties of reinforcing steel are the yield stress, f, and the modulus of elasticity, E.
A large percentage of reinforcing steel bars is not made from new steel but is rolled from melted,
reclaimed steel. These are available in different grades. Grade 40, Grade 50, and Grade 60 are
common, where Grade 40 means the steel having a yield stress of 40 ksi and so on. The modulus
of elasticity of reinforcing steel of different grades varies over a very small range. It is adopted as
29,000 ksi for all grades of steel.

Concrete structures are composed of the beams, columns, or column—beam types of structures
where they are subjected to flexure, compression, or the combination of flexure and compression.
The theory and design of simple beams and columns have been presented in the book.

LOAD RESISTANCE FACTOR DESIGN BASIS OF CONCRETE

Until mid-1950, concrete structures were designed by the elastic or working stress design (WSD)
method. The structures were proportioned so that the stresses in concrete and steel did not exceed
a fraction of the ultimate strength, known as the allowable or permissible stresses. It was assumed
that the stress within the compression portion of concrete was linearly distributed. However, beyond
a moderate load when the stress level is only about one-half the compressive strength of concrete,
the stress distribution in a concrete section is not linear.

In 1956, the ACI introduced a more rational method wherein the members were designed for
a nonlinear distribution of stress and the full strength level was to be explored. This method was
called the ultimate strength design (USD) method. Since then, the name has been changed to the
strength design method.

The same approach is known as the load resistance factor design (LRFD) method in steel and
wood structures. Thus, concrete structures were the first ones to adopt the LFRD method of design
in the United States.

ACI Publication No. 318, revised numerous times, contains the codes and standards for concrete
buildings. ACI 318-56 of 1956 for the first time included the codes and standards for USD in an
appendix to the code. ACI 318-63 provided equal status to WSD and USD methods, bringing both
of them within the main body of the code. ACI 318-02 code made USD, with the name changed to
the strength design method, the mandatory method of design. ACI 318-11 provides the latest design
provisions.

In the strength design method, the service loads are amplified using the load factors. The
member’s strength at failure, known as the theoretical or the nominal capacity, is somewhat reduced
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by a strength reduction factor to represent the usable strength of the member. The amplified loads
must not exceed the usable strength of member, namely,

Amplified loads on member < Usable strength of member (14.1)

Depending upon the type of structure, the loads are the compression forces, shear forces, or
bending moments.

REINFORCED CONCRETE BEAMS

A concrete beam is a composite structure where a group of steel bars are embedded into the tension
zone of the section to support the tensile component of the flexural stress. The areas of the group of
bars are given in Appendix D, Table D.2. The minimum widths of beam that can accommodate a
specified number of bars in a single layer are indicated in Appendix D, Table D.3. These tables are
very helpful in designs.

Equation 14.1 in the case of beams takes the following form similar to wood and steel structures:

M,<oM, (14.2)

where
M, is maximum moment due to the application of the factored loads
M, is nominal or theoretical capacity of the member
¢ is strength reduction (resistance) factor for flexure

According to the flexure theory, M, = F,S, where F, is the ultimate bending stress and S is the sec-
tion modulus of the section. The application of this formula is straightforward for a homogeneous
section for which the section modulus or the moment of inertia could be directly found. However,
for a composite concrete—steel section and a nonlinear stress distribution, the flexure formula pres-
ents a problem. A different approach termed the internal couple method is followed for concrete
beams.

In the internal couple method, two forces act on the beam cross section represented by a com-
pressive force, C, acting on one side of the neutral axis (above the neutral axis in a simply supported
beam) and a tensile force, 7, acting on the other side. Since the forces acting on any cross section of
the beam must be in equilibrium, C must be equal and opposite of 7, thus representing a couple. The
magnitude of this internal couple is the force (C or T) times the distance Z between the two forces
called the moment arm. This internal couple must be equal and opposite to the bending moment
acting at the section due to the external loads. This is a very general and convenient method for
determining the nominal moment, M,, in concrete structures.

DERIVATION OF THE BEAM RELATIONS

The stress distribution across a beam cross section at the ultimate load is shown in Figure 14.3 rep-
resenting the concrete stress by a rectangular block as stated in the “Design Strength of Concrete”
section.

The ratio of stress block and depth to the neutral axis is defined by a factor 3, as follows:

a
B =2 (14.3)

Sufficient test data are available to evaluate ,. According to the ACI
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FIGURE 14.3 Internal forces and couple acting on a section.

IYYYY.

1. For f/ <4000 psi B, = 0.85 (14.42)

2. For f/>4000 psi but <8000 psi

'—4
B, = 0'85_(w)(0_05) (14.4b)
1000
3. For f’>8000 psi B, = 0.65 (14.4¢)
With reference to Figure 14.3, since force = (stress)(area),
C =(0.85f7)(ab) (@
T=fA, (b)
Since C =T,
(0.85f7)(ab) = f,A, ©)
or
A
gz by @
0.85f/b
or
d
a= P/, (14.5)
0.85f/
where
= steel ratio = A (14.6)
P bd '
Since moment = (force)(moment arm),
a a
M, =T|d——|=fA|d——
n ( 2 ) fy s ( 2 ) (e)

Substituting a from Equation 14.5 and A, from Equation 14.6 into (e), we obtain

—ofpa?| 1P
M, =pf,bd [1 1-7fc’) ®



294 Principles of Structural Design

Substituting (f) into Equation 14.2 at equality, we obtain

M, P 147
¢bd2_pf>'[1 1.7f;) (47

Equation 14.7 is a very useful relation for analysis and design of a beam.
If we arbitrarily define the expression on the right side of Equation 14.7 as K, called the coefficient
of resistance, then Equation 14.7 becomes

M, =0bd’K (14.8)

where
K= _ P 14.9
K—pfy(l 1-7fc'] (14.9)

The coefficient K depends on (1) p, (2) f,, and (3) f/. The values of K for different combinations of
p:fy» and f’ are listed in Appendix D, Tables D.4 through D.10.
In place of Equation 14.7, these tables can be directly used in beam analyses and designs.

STRAIN DIAGRAM AND MODES OF FAILURE

The strain diagrams in Figures 14.1 and 14.2 show a straight line variation of the concrete compres-
sion strain &, to the steel tensile strain, eg; the line passes through the neutral axis. Concrete can
have a maximum strain of 0.003 and the strain at which steel yields is e, = f,/E. When the strain dia-
gram is such that the maximum concrete strain of 0.003 and the steel yield strain of e, are attained at
the same time, it is said to be a balanced section, as shown by the solid line labeled I in Figure 14.4.

In this case, the amount of steel and the amount of concrete balance each other out and both of
these will reach the failing level (will attain the maximum strains) simultaneously. If a beam has
more steel than the balanced condition, then the concrete will reach a strain level of 0.003 before
the steel attains the yield strain of €,. This is shown by condition II in Figure 14.4. The neutral axis
moves down in this case.

The failure will be initiated by crushing of concrete, which will be sudden since concrete is
brittle. This mode of failure in compression is undesirable because a structure will fail suddenly
without any warning.

F0.003A
m—,
i
i NA at under-reinforced condition
K l /
a Balanced

I k 4 I‘\nelltral axis (NA)
o7
Ry

NA at over-reinforced condition

J/ T

=22
&=TF

FIGURE 14.4  Strain stages in a beam.



Flexural Reinforced Concrete Members 295

If a beam has lesser steel than the balanced condition, then steel will attain its yield strain
before the concrete can reach the maximum strain level of 0.003. This is shown by condition III in
Figure 14.4. The neutral axis moves up in this case. The failure will be initiated by the yielding of
the steel, which will be gradual because of the ductility of steel. This is a tensile mode of failure,
which is more desirable because at least there is an adequate warning of an impending failure.
The ACI recommends the tensile mode of failure or the under-reinforcement design for a concrete
structure.

BALANCED AND RECOMMENDED STEEL PERCENTAGES

To ensure the under-reinforcement conditions, the percent of steel should be less than the balanced
steel percentage, p,, which is the percentage of steel required for the balanced condition.
From Figure 14.4, for the balanced condition,

0.003  f,/E
¢ d—c

@

By substituting ¢ = a/B, from Equation 14.3 and a = pf,d/0.85f/ from Equation 14.5 and E = 29 X
10 psi in Equation (a), the following expression for the balanced steel is obtained:

. (0.85[31 fJ[ 870,000 J (14.10)
£, 87,000+ 7,

The values for the balanced steel ratio, p,, calculated for different values of £’ and f, are tabulated in
Appendix D, Table D.11. Although a tensile mode of failure ensues when the percent of steel is less
than the balanced steel, the ACI code defines a section as tension controlled only when the tensile
strain in steel €, is equal to or greater than 0.005 as the concrete reaches its strain limit of 0.003. The
strain range between €, = (f,/E) and 0.005 is regarded as the transition zone.

The values of the percentage of steel for which g, is equal to 0.005 are also listed in Appendix D,
Table D.11 for different grades of steel and concrete. It is recommended to design beams with a
percentage of steel that is not larger than these listed values for €, of 0.005.

If a larger percentage of steel is used than for €, =0.005, to be in the transition region, the
strength reduction factor ¢ should be adjusted, as discussed in the “Strength Reduction Factor for
Concrete” section.

MINIMUM PERCENTAGE OF STEEL

Just as the maximum amount of steel is prescribed to ensure the tensile mode of failure, a minimum
limit is also set to ensure that the steel is not too small so as to cause failure by rupture (cracking)
of the concrete in the tension zone. The ACI recommends the higher of the following two values for
the minimum steel in flexure members:

(Amin = 3—\/Zbd (14.11)
1y
or
(A = 20 g (14.12)
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where
b is width of beam
d is effective depth of beam

The values of p,,;,, which is (A)),;,/bd, are also listed in Appendix D, Table D.11, where a higher of
the values from Equations 14.10 and 14.11 have been tabulated.

The minimum amount of steel for slabs is controlled by shrinkage and temperature require-
ments, as discussed in the “Specifications for Slabs” section.

STRENGTH REDUCTION FACTOR FOR CONCRETE

In Equations 14.2 and 14.7, a strength reduction factor ¢ is applied to account for all kinds of uncer-
tainties involved in strength of materials, design and analysis, and workmanship. The values of the
factor recommended by the ACI are listed in Table 14.1.

For the transition region between the compression-controlled and the tension-controlled stages
when €, is between €, (assumed to be 0.002) and 0.005 as discussed above, the value of ¢ is interpo-
lated between 0.65 and 0.9 by the following relation:

250 )*
(14.13)

0=0.65+(¢g, — 0.002)(?
The values’ of €, for different percentages of steel are also indicated in Appendix D, Tables D.4
through D.10. When it is not listed in these tables, it means that €, is larger than 0.005.

SPECIFICATIONS FOR BEAMS

The ACI specifications for beams are as follows:

1. Width-to-depth ratio: There is no code requirement for b/d ratio. From experience, the
desirable b/d ratio lies between 1/2 and 2/3.

2. Selection of steel: After a required reinforcement area is computed, Appendix D, Table D.2
is used to select the number of bars that provide the necessary area.

3. The minimum beam widths required to accommodate multiples of various size bars are
given in Appendix D, Table D.3. This is an useful design aid as demonstrated in the example.

4. The reinforcement is located at a certain distance from the surface of the concrete called
the cover. The cover requirements in the ACI code are extensive. For beams, girders, and
columns that are not exposed to weather or are not in contact with the ground, the mini-
mum clear distance from the bottom of the steel to the concrete surface is 1¥2 in. There is a

TABLE 14.1
Strength Reduction Factors
Structural System

1. Tension-controlled beams and slabs 0.9

2. Compression-controlled columns

Spiral 0.70
Tied 0.65
3. Shear and torsion 0.75
4. Bearing on concrete 0.65

* For spiral reinforcement this is ¢ = 0.70 + (¢, — 0.002)(250/3).
¥ g,is calculated by the formula g, = (0.00255 f/B, /pf,) — 0.003.
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N / Hook

—
Effective N ﬁé/ Hanger
depth

S P Stirrup (see chapter 15)

| — Main reinforcement

Clear AT? ®| / lﬁ s

cover [ Clear cover

\

Bar spacing

FIGURE 14.5 Sketch of beam specifications.

TABLE 14.2
First Estimate of Beam Weight

Design Moment, M, (ft.-k) Estimated Weight (Ib/ft.)

<200 300
>200 but <300 350
>300 but <400 400
>400 but <500 450
>500 500

minimum cover requirement of 1} in. from the outermost longitudinal bars to the edge
toward the width of the beam, as shown in Figure 14.5.

5. Bar spacing: The clear spacing between the bars in a single layer should not be less than

any of the following:

e lin

e The bar diameter

e 1)4X maximum aggregate size

6. Bars placement: If the bars are placed in more than one layer, those in the upper layers
are required to be placed directly over the bars in the lower layers and the clear distance
between the layers must not be less than 1 in.

7. Concrete weight: Concrete is a heavy material. The weight of the beam is significant. An
estimated weight should be included. If it is found to be appreciably less than the weight of
the section designed, then the design should be revised. For a good estimation of concrete
weight, Table 14.2 could be used as a guide.

ANALYSIS OF BEAMS

Analysis relates to determining the factored or service moment or the load capacity of a beam of
known dimensions and known reinforcement.
The analysis procedure follows:

1. Calculate the steel ratio from Equation 14.6:
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2. Calculate (A,),,;, from Equations 14.11 and 14.12 or use Appendix D, Table D.11. Compare
this to the A, of the beam to ensure that it is more than the minimum.

3. For known p, read €, from Appendix D, Tables D.4 through D.10 or by the formula in the
footnote of Equation 14.13. If no value is given, then g, = 0.005. If &, < 0.005, determine ¢
from Equation 14.13.

4. For known p, compute K from Equation 14.9 or read the value from Appendix D, Tables
D.4 through D.10.

5. Calculate M, from Equation 14.7:

M, = 0bd’K

6. Break down into the loads if required.

Example 14.1

The loads on a beam section are shown in Figure 14.6. Determine whether the beam is adequate
to support the loads. f/=4,000 psi and f, = 60,000 psi.

SOLUTION

A. Design loads and moments
1. Weight of beam/ft. = (12/12) x (20/12) x 1 x 150 = 250 Ib/ft. or 0.25 k/ft.
2. Factored dead load, w, = 1.2 (1.25) = 1.5 k/ft.
3. Factored live load, P, = 1.6 (15) = 24 k
4. Design moment due to dead load = w,[%/8 = 1.5(20)%/8 = 75 ft.-k
5. Design moment due to live load = P L/4 = 24(20)/4 = 120 ft.-k
6. Total design moment, M, = 195 ft.-k
7. A;=3.16 in.2 (from Appendix D, Table D.2 for 4 bars of size #8)
8. p =A/bd=3.16/12 x 17 = 0.0155
9. (A)min = 0.0033 (from Appendix D, Table D.11) < 0.0155 OK
g, 20.005 (value not listed in Appendix D, Table D.9), ¢ =0.9
11. K =0.8029 ksi (for p = 0.0155 from Appendix D, Table D.9)
12, M, = ¢bd?K =(0.9)(12)(17)2(0.8029) = 2506in.-k or 209 ft.-k >195ft.-k OK

L;=15k

D;=1Kk/ft.
(excluding weight)

IR ENRERNEEN
S il

¥ 20 ft. X

—12 in.—

T

20 in, 17 ™

J( 4—#8
o000 o4

FIGURE 14.6 Beam for Example 14.1.
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DESIGN OF BEAMS

In wood beam design in Chapter 7 and steel beam design in Chapter 11, beams were designed for
bending moment capacity and checked for shear and deflection.

In concrete beams, shear is handled independently, as discussed in Chapter 16. For deflection,
the ACI stipulates that when certain depth requirements are met, deflection will not interfere with
the use or cause damage to the structure. These limiting values are given in Table 14.3 for normal
weight (120-150 1b/ft.?) concrete and Grade 60 steel. For other grade concrete and steel, the adjust-
ments are made as indicated in the footnotes to Table 14.3.

When the minimum depth requirement is met, deflection needs not be computed. For members
of lesser thickness than those listed in Table 14.3, the deflections should be computed to check for
safe limits. This book assumes that the minimum depth requirement is satisfied.

Beam design falls into the two categories discussed below.

DESIGN FOR REINFORCEMENT ONLY

When a beam section has been fixed from architectural or any other consideration, only the amount
of steel has to be selected. The procedure is as follows:

1. Determine the design moment, M, including the beam weight for various critical load
combinations. B
2. Using d = h -3 and ¢ = 0.9, calculate the required K from Equation 14.8 expressed as

i = M
0bd>

3. From Appendix D, Tables D.4 through D.10, find the value of p corresponding to K of step 2.
From the same tables, confirm that €, = 0.005. If €, < 0.005, reduce ¢ by Equation 14.13,
recompute K, and find the corresponding p-

4. Compute the required steel area A, from Equation 14.6:

A, =pbd

5. Check for the minimum steel A, from Appendix D, Table D.11.

6. Select the bar size and the number of bars from Appendix D, Table D.2. From Appendix D,
Table D.3, check whether the selected steel (size and number) can fit into width of the
beam, preferably in a single layer. They can be arranged in two layers. Check to confirm
that the actual depth is at least equal to & — 3.

7. Sketch the design.

TABLE 14.3
Minimum Thickness of Beams and Slabs for Normal Weight Concrete and Grade 60 Steel

Minimum Thickness, h (in.)

Member Simply Supported Cantilever One End Continuous  Both Ends Continuous
Beam L/16 L/18.5 L21 L8
Slab (one-way) L/20 L24 L/28 L/10

Notes: L is the span in inches.

For lightweight concrete of unit weight 90-1201b/ft.3, the table values should be multiplied by (1.65 — 0.005W,) but not less
than 1.09, where W, is the unit weight in 1b/ft.3

For other than Grade 60 steel, the table value should be multiplied by (0.4 + f,/100), where f, is in ksi.
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Example 14.2

Design a rectangular reinforced beam to carry a service dead load of 1.6 k/ft. and a live load of 1.5
k/ft. on a span of 20 ft. The architectural consideration requires the width to be 10 in. and depth
to be 24 in. Use /= 3,000 psiand f, = 60,000 psi.

SOLUTION
1. Weight of beam/ft. = (10/12)(24/12) x 1 x 150 = 250 Ib/ft. or 0.25 k/ft.
2. w,=1.2 (1.6 +0.25) + 1.6 (1.5) = 4.62 k/ft.
3. M, =w,l?/8 = 4.62(20)%/8 = 231 ft.-k or 2772 in.-k
4. d=24-3=21in.
5. K= 2772/(0.9)(1 0)(21)* = 0.698 ksi
6. p=0.0139 &, = 0.0048 (from Appendix D, Table D.6)
7. From Equation 14.13, ¢ = 0.65 +(0.0048 - 0.002)(250/3) = 0.88
8. Revised K = 2772/(0.88)(10)(21)* = 0.714 ksi
9. Revised p=0.0143 (from Appendix D, Table D.6)*

10. A, =pbd =(0.0143)(10)(21) = 3in.?
1. Aymin = 0.0033 (from Appendix D, Table D.11) < 0.0143 OK
12. Selection of steel

Minimum Width in One Layer from

Bar Size No. of Bars A, from Appendix D, Table D.2 Appendix D, Table D.3
#6 7 3.08 I5NG
#7 5 3.0 12.5 NG
#9 3 3.0 9.5 0K

Select three bars of #9

13. The beam section is shown in Figure 14.7.

DESIGN OF BEAM SECTION AND REINFORCEMENT

The design comprises determining the beam dimensions and selecting the amount of steel. The
procedure is as follows:

1. Determine the design moment, M,, including the beam weight for various critical load
combinations.

2. Select the steel ratio p corresponding to €, = 0.005 from Appendix D, Table D.11.

3. From Appendix D, Tables D.4 through D.10, find K for the steel ratio of step 2.

10 in.—
Stirrups o\
(not designed)
21 in.
3-#9
Al s
| 3in.

FIGURE 14.7 Beam section for Example 14.2.

* For K = 0.714 ksi, €, = 0.0046. ¢ will need a minor adjustment again.
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4. For b/d ratio of 1/2 and 2/3, find two values of d from the following expression:

1/33%
d= {L_} (14.14)
o(bld)K

5. Select the effective depth to be between the two values of step 4
6. If the depth from Table 14.3 is larger, use that value.
7. Determine the corresponding width b from

M,

h=—t
0d?K

(14.15)

8. Estimate & and compute the weight of the beam. If this is excessive as compared to the
assumed value of step 1, repeat steps 1 through 7

9. From now on, follow steps 4 through 7 of the design procedure in the “Design for
Reinforcement Only” section for the selection of steel.

Example 14.3

Design a rectangular reinforced beam for the service loads shown in Figure 14.8. Use
f/=3,000 psi and f, = 60,000 psi.

SOLUTION

. Factored dead load, w, = 1.2(1.5) = 1.8 k/ft.

. Factored live load, P, = 1.6(20) = 32 k

. Design moment due to dead load = w,[?/8 = 1.8(30)?/8 = 202.5 ft.-k
. Design moment due to live load = P,L/3 = 32(30)/3 = 320 ft.-k

. Total moment, M, = 522.5 ft.-k

. Weight of beam from Table 14.2, 0.5 k/ft.

. Factored dead load including weight 1.2(1.5 + 0.5) = 2.4 k/ft.

. Moment due to dead load = 2.4(30)%/8 = 270 ft.-k

. Total design moment = 590 ft.-k or 7080 in.-k

O Oy O Ul W —

10. p=0.0136 (from Appendix D, Table D.11 for €, = 0.005)
11. K =0.684 ksi (from Appendix D, Table D.6)
12.
Select b/d ratio  Calculate d from Equation 14.14
172 28.3¢
2/3 25.8

@ [7080/0.9(1/2)(0.684)]'

13. Depth for deflection (from Table 14.3)

o L _30x12
16 16

=22.5in.

ord=h-3=225-3=19.5in.
Use d=27in.

* This relation is the same as M, bd> K or M, = q)(b/d)d3l?.
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L;=20k L;=20k
D, =15k/ft.
(excluding weight)
v v
y e b iy bbbl el iy
» ol
¥ 10ft— 4 10 ft. ¥ 10 ft. "
7y
2
W™ o70 ft.-k
\ 4
Y
—£ =320 ft.-k
v
16 in.
74
Stirrups ™ o
designed
(not designe )\\A
27 in
5—#10\
bars \3_‘ r
3in
v

FIGURE 14.8 Loads, bending moments, and beam section for Example 14.3.

14. From Equation 14.15

7080
(0.9)(27)%(0.684)

15. h=d+3=30in.

=15.75in.

,use 16in.

Weight of beam/ft. = (16/12)(30/12) x 1 x 150 = 500 Ib/ft. or 0.50 k/ft. OK

16. A, = pbd =(0.0136)(16)(27) = 5.

17. Selection of steel

88in.?

Bar Size No. of Bars
#9 6
#10 5

Select five bars of #10

A, from Minimum Width in One
Appendix D, Layer from Appendix D,
Table D.2 Table D.3
6.00 16.5 NG
6.35 15.5
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ONE-WAY SLAB

Slabs are the concrete floor systems supported by reinforced concrete beams, steel beams, concrete
columns, steel columns, concrete walls, or masonry walls. If they are supported on two opposite
sides only, they are referred to as one-way slabs because the bending is in one direction only, per-
pendicular to the supported edge. When slabs are supported on all four edges, they are called two-
way slabs because the bending is in both directions. A rectangular floor plan has slab supported
on all four sides. However, if the long side is two or more times of the short side, the slab could be
considered a one-way slab spanning the short direction.

A one-way slab is analyzed and designed as 12 in. wide beam segments placed side by side hav-
ing a total depth equal to the slab thickness, as shown in Figure 14.9.

The amount of steel computed is considered to exist in 12 in. width on average. Appendix D,
Table D.12 is used for this purpose; it indicates for the different bar sizes the center-to-center spacing
of the bars for a specified area of steel. The relationship is as follows:

Required steel area
Areaof 1bar

Bar spacing center to center = x12 (14.16)

SPECIFICATIONS FOR SLABS

The ACI specifications for one-way slab follow:

1. Thickness: Table 14.3 indicates the minimum thickness for one-way slabs where
deflections are not to be calculated. The slab thickness is rounded off to the nearest
1/4 in. on the higher side for slabs up to 6 in. and to the nearest 1/2 in. for slabs thicker
than 6 in.

2. Cover: (1) For slabs that are not exposed to the weather or are not in contact with the
ground, the minimum cover is 3/4 in. for #11 and smaller bars and (2) for slabs exposed to
the weather or in contact with the ground, the minimum cover is 3 in.

3. Spacing of bars: The main reinforcement should not be spaced on center to center more
than (1) three times the slab thickness or (2) 18 in., whichever is smaller.

4. Shrinkage steel: Some steel is placed in the direction perpendicular to the main steel to
resist shrinkage and temperature stresses. The minimum area of such steel is
a. For Grade 40 or 50 steel, shrinkage A, = 0.002bh.

b. For Grade 60 steel, shrinkage A, = 0.0018bh, where b = 12 in.

Shrinkage steel

Main steel

FIGURE 14.9 Simply supported one-way slab.
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The shrinkage and temperature steel should not be spaced farther apart than (1) five
times the slab thickness or (2) 18 in., whichever is smaller.
5. Minimum main reinforcement: The minimum amount of main steel should not be less than
the shrinkage and temperature steel.

ANALYSIS OF ONE-WAY SLAB
The analysis procedure is as follows:

1. For the given bar size and spacing, read A, from Appendix D, Table D.12.
2. Find the steel ratio:

p= :—; whereb =12in., d = h— 0.75in.—1/2 (bar diameter)*

3. Check for the minimum shrinkage steel and also that the main reinforcement A, is more
than A

s(min):

Aymimy = 0.0020h

4. For p of step 2, read K and g, (if given in the same appendices) from Appendix D, Tables
D.4 through D.10.

5. Correct ¢ from Equation 14.13 if €, < 0.005.

6. Find out M, as follows and convert to loads if necessary:

M, = 0bd*K
Example 14.4

The slab of an interior floor system has a cross section as shown in Figure 14.10. Determine
the service live load that the slab can support in addition to its own weight on a span of 10 ft.
f2=3,000 psi, f, = 40,000 psi.

SOLUTION
1. A, =0.75 in.? (from Appendix D, Table D.12)
2. d=(6-1/2)(0.75) = 5.625 in. and p= A/bd = 0.75/(12) (5.625) = 0.011
3. Agmin = 0.002bh = (0.002)(12)(6.75) = 0.162 < 0.75 in.? OK
4. K =0.402 (from Appendix D, Table D.4), &, > 0.005 for p = 0.011
5. M, = ¢bd? K =(0.9)(12)(5.625)2(0.402) = 137.37 in.-k or 11.45 ft.-k
6. M, = w,L2/8 or w, = 8M,/L? = 8(11.45)/10> = 0.916 k/ft.
7. Weight of a slab/ft. = (12/12)(6.75/12)(1)(150/1000) = 0.084 k/ft.
8. w, =1.2(wp) + 1.6(w) or 0.916 = 1.2(0.084) + 1.6 w, or w, = 0.51 k/ft.

Since the slab width is 12 in., live load is 0.51 k/ft.2

| i
6 in.
o o % o o o o |§j

[
3/4in.

#6 bars at 7 in. OC

FIGURE 14.10 Cross section of slab of a floor system (perpendicular to span) for Example 14.4.

* For slabs laid on the ground, d = h — 3 — 1/2 (bar diameter).
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DESIGN OF ONE-WAY SLAB

1. Determine the minimum /4 from Table 14.3. Compute the slab weight/ft. for b = 12 in.

2. Compute the design moment M,. The unit load per square foot automatically becomes
load/ft. since the slab width = 12 in.

3. Calculate an effective depth, d, from

d = h — cover —1/2 x assumed bar diameter
4. Compute K assuming ¢ = 0.90,
M,
obd>

K=

5. From Appendix D, Tables D.4 through D.10, find the steel ratio p and note the value of €,
(if €, is not listed then €, > 0.005)

6. If &, <0.005, correct ¢ from Equation 14.13 and repeat steps 4 and 5

7. Compute the required A :

A,=pbd

8. From the table in Appendix D, Table D.12, select the main steel satisfying the condition
that the bar spacing is <3h or 18 in.
9. Select shrinkage and temperature of steel:

Shrinkage A, = 0.002bk(Grade 40 or 50 steel)
or

0.0018bAh(Grade 60 steel)

10. From Appendix D, Table D.12, select size and spacing of shrinkage steel with a maximum
spacing of 5h or 18 in., whichever is smaller.

11. Check that the main steel area of step 7 is not less than the shrinkage steel area of step 9.

12. Sketch the design.

Example 14.5

Design an exterior one-way slab exposed to the weather to span 12 ft. and to carry a service dead
load of 100 pounds per square foot (psf) and live load of 300 psf in addition to the slab weight.
Use f/=3,000 psiand f, = 40,000 psi.

SOLUTION

1. Minimum thickness for deflection from Table 14.3

h=t 1250
20 20

For exterior slab use h = 10 in.
. Weight of slab = (12/12)(10/12)(1)(150/1000) = 0.125 k/ft.
. w,=1.2(0.1 + 0.125) + 1.6(0.3) = 0.75 k/ft.
.M, = w,[2/8 = 13.5 ft.-k or 162 in.-k
. Assuming #8 size bar (diameter = 1 in.)

g W

d = h—cover —1/2(bar diameter)
=10-3-1/2 (1)=6.5 in,
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| T

7.5 1in.
Q o o o o
iy 4 }\ l
/ 3 in. clear

Main steel #8 bars @ 8 in. OC

Shrinkage steel #3 bars @ 5% in. OC

FIGURE 14.11 Design section for Example 14.5.

6. K= (M,))/(0bd?) = (162)/(0.9)(12)(6.5)* = 0.355
. p=0.014, &, > 0.005 (from Appendix D, Table D.4)
8. A, = pbd = (0.014)(12)(6.5) = 1.09 in.2/ft.
Provide #8 size bars @ 8 in. on center (from Appendix D, Table D.12), A, = 1.18 in.2
9. Check for maximum spacing
a. 3h=3(10)=30in.
b. 18in.> 8 in. OK
10. Shrinkage and temperature steel

A, =0.002bh
=0.002(12)(7.5)=0.18 in.2 /ft.

Provide #3 size bars @ 52 in. on center (from Table D.12) A, = 0.24 in.?
11. Check for maximum spacing of shrinkage steel

a. 5h=5(10)=50in.

b. 18in.> 5% in. OK
12. Main steel > shrinkage steel OK
13. A designed section is shown in Figure 14.11

~N

PROBLEMS

14.1 A beam cross section is shown in Figure P14.1. Determine the service dead load and
live load/ft. for a span of 20 ft. The service dead load is one-half of the live load.
1" =4,000 psi, f, = 60,000 psi.

14.2 Calculate the design moment for a rectangular reinforced concrete beam having a width
of 16 in. and an effective depth of 24 in. The tensile reinforcement is five bars of size #8.
£,/ =4,000 psi, £, = 40,000 psi.

14.3 A reinforced concrete beam has a cross section shown in Figure P14.2 for a simple span
of 25 ft. It supports a dead load of 2 k/ft. (excluding beam weight) and live load of 3 k/ft.
Is the beam adequate? f." = 4,000 psi, S, = 60,000 psi.

14.4 Determine the dead load (excluding the beam weight) for the beam section shown
in Figure P14.3 of a span of 30 ft. The service dead load and live load are equal.
£, =35,000 psi, f, = 60,000 psi.

14.5 The loads on a beam and its cross section are shown in Figure P14.4. Is this beam
adequate? £.” = 4,000 psi, S, =50,000 psi.

14.6 Design a reinforced concrete beam to resist a factored design moment of 150 ft.-k.
It is required that the beam width be 12 in. and the overall depth be 24 in.
£/ =3,000 psi, £, =60,000 psi.

14.7 Design a reinforced concrete beam of a span of 30 ft. The service dead load is 0.85 k/ft.
(excluding weight) and live load is 1 k/ft. The beam has to be 12 in. wide and 26 in. deep.
£.”=4,000 psi, f, =60,000 psi.
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—14in—y

20 in.

4 of #9
|
J¢ 0 0 04G |

FIGURE P14.1 Beam section for Problem 14.1.

}—16 in.—y

36 in.

5 of #9

FIGURE P14.2 Beam section for Problem 14.3.

5

6 of #8 J‘ 24in,
o
o o o

FIGURE P14.3 Beam section for Problem 14.4.

L, =10k
D; =0.5 k/ft. (excluding weight)
L; =0.75 k/ft. (service loads)

CTTT T Ty
AN o]

X 10 ft. ¥ 10 ft. ¥
J—12 in.—
17 in.

J‘ 4 of #8
o000 ok

FIGURE P14.4 Loads and section for Problem 14.5.
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14.8 Design a reinforced beam for a simple span of 30 ft. There is no dead load except the
weight of the beam and the service live load is 1.5 k/ft. The beam can be 12 in. wide and
28 in. overall depth. £." =5,000 psi, f, = 60,000 psi.

14.9 A beam carries the service loads shown in Figure P14.5. From architectural consideration,
the beam width is 12 in. and the overall depth is 20 in. Design the beam reinforcement.
£, =4,000 psi, f, = 60,000 psi.

14.10 In Problem 14.9, the point dead load has a magnitude of 6.5 k (instead of 4 k). Design the
reinforcement for abeam of the same size for Problem 14.9. fc’ = 4,000 psi, f » = 60,000 psi.

14.11 Design a rectangular reinforced beam for a simple span of 30 ft. The uniform ser-
vice loads are dead load of 1.5 k/ft. (excluding beam weight) and live load of 2 k/ft.
f./=4,000 psi, £, = 60,000 psi.

14.12 Design a simply supported rectangular reinforced beam for the service loads shown
in Figure P14.6. Provide the reinforcement in a single layer. Sketch the design.
£,/ =4,000 psi, f, = 60,000 psi.

14.13 Design a simply supported rectangular reinforced beam for the service loads shown
in Figure P14.7. Provide the reinforcement in a single layer. Sketch the design.
£./=3,000 psi, f, = 40,000 psi.

14.14 Design the cantilever rectangular reinforced beam shown in Figure P14.8.
Provide a maximum of #8 size bars, in two rows if necessary. Sketch the design.
£."=3,000 psi, f, = 50,000 psi.

[Hint: Reinforcement will be at the top. Design as usual.]

=4k
L, =12k
D; =0.5 k/ft. (excluding weight)
L; =0.75 k/ft. (service loads)

CUT T e

¥ 10 ft. - 10 ft. ¥

FIGURE P14.5 Loads on beam for Problem 14.9.
L, =25k

D; =25 k/ft.
(excluding weight)

COT T T it

¥ 12 ft. # 12 ft. 24

FIGURE P14.6 Loads on beam for Problem 14.12.

D; =10k
L;=8k
D; =0.4 k/ft. (excluding weight)
L;=0.5 k/ft.
v
y b b iy iy iy i bl
o}
¥ 9 ft. * 11 ft. X

FIGURE P14.7 Loads on beam for Problem 14.13.
D;=2.5 k/ft. (excluding weight)
l l l l l l l l l l l l l lLL—251</ft (service load)

¥ 12 ft. A

FIGURE P14.8 Cantilevered beam for Problem 14.14.
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14.15 Design the beam for the floor shown in Figure P14.9. The service dead load (excluding
beam weight) is 100 psf and live load is 300 psf. £."= 3,000 psi, S, =40,000 psi.

14.16 A 9in. thick one-way interior slab supports a service live load of 500 psf on a simple span of
15 ft. The main reinforcement consists of #7 size bars at 7 in. on center. Check whether the
slab can support the load in addition to its own weight. Use £." = 3,000 psi, S, =60,000 psi.

14.17 A one-way interior slab shown in Figure P14.10 spans 12 ft. Determine the service load
that the slab can carry in addition to its own weight. fc' = 3,000 psi, ﬂ =40,000 psi.

14.18 A one-way slab, exposed to the weather, has a thickness of 9 in. The main reinforcement
consists of #8 size bars at 7 in. on center. The slab carries a dead load of 500 psf in addi-
tion to its own weight on a span of 10 ft. What is the service live load that the slab can
carry? f."=4,000 psi, f, = 60,000 psi.

14.19 A 8 1/2 in. thick one-way slab interior spans 10 ft. It was designed with the reinforcement
of #6 size bars at 6.5 in. on center, to be placed with a cover of 0.75 in. However, the same
steel was misplaced at a clear distance of 2 in. from the bottom. How much is the reduc-
tion in the capacity of the slab reduced to carry the superimposed service live load in
addition to its own weight? £, =4,000 psi, f, = 60,000 psi.

14.20 Design a simply supported one-way interior slab to span 15 ft. and to support the service
dead and live loads of 150 and 250 psf in addition to its own weight. Sketch the design.
1./ =4,000 psi, f, =50,000 psi.

14.21 Design the concrete floor slab shown in Figure P14.11. Sketch the design. f.'=
3,000 psi, f, = 40,000 psi.

15 ft.
® i L
p 10 ft. * 10 ft. * 10 ft. &
Beam
FIGURE P14.9 Floor system for Problem 14.15.
8 in.
o o o o o o o
| al
Main steel #7 bar @ 6 in. on center
FIGURE P14.10 Cross section of slab for Problem 14.17.
L; =400 psf
121t X1 _12in.
JHE /Nl A

FIGURE P14.11 One-way slab for Problem 14.21.
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14.22 Design the slab of the floor system in Problem 14.15. ﬁ.' = 3,000 psi, f, =40,000 psi.
[Hint: The slab weight is included in the service dead load.]

14.23 For Problem 14.15, design the thinnest slab so that the strain in steel is not less than 0.005.
£./=3,000 psi, f, = 40,000 psi.

14.24 Design a balcony slab exposed to the weather. The cantilevered span is 8 ft. and the
service live load is 100 psf. Use the reinforcement of #5 size bars. Sketch the design.
1./ =4,000 psi, f, = 60,000 psi.
[Hint: Reinforcement is placed on top. For the thickness of slab, in addition to the provi-
sion of main steel and shrinkage steel, at least 3 in. of depth (cover) should exist over and
below the steel.]



’I 5 Doubly and T Reinforced
Concrete Beams

DOUBLY REINFORCED CONCRETE BEAMS

Sometimes the aesthetics or architectural considerations necessitate a small beam section that is not
adequate to resist the moment imposed on the beam. In such cases, the additional moment capacity
could be achieved by adding more steel on both the compression and tensile sides of the beam. Such
sections are known as doubly reinforced beams. The compression steel also makes beams more
ductile and more effective in reducing deflections.

The moment capacity of doubly reinforced beams is assumed to comprise two parts as shown
in Figure 15.1. One part is due to the compression concrete and tensile steel, shown in Figure 15.1b
as described in Chapter 14. The other part is due to the compression steel and the additional tensile
steel shown in Figure 15.1c.

Thus,
As = Asl + AsZ
Mu = Mul + Mu2
a
Mul = q)Aslfy d——
2
and

MuZ = q)ASZf;z(d - d,)

The combined capacity is given by
M, =¢Aslfy(d—%)+¢Aﬂfy(d—d') 15.1)

where

0 is resistance factor

d is effective depth

A, is area of steel on the tensile side of the beam; A, = A+ A,,

A! is area of steel on the compression side of the beam

The compression steel area A; depends on the compression stress level f;, which can be the yield
stress f, or less. The value of f; is decided by the strain in concrete at compression steel level, which
in turn depends upon the location of the neutral axis.

From the strain diagram, when concrete attains the optimal strain level at the top as shown in
Figure 15.2,

o 0003 (c-d)
: C

(15.2)
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FIGURE 15.1 Moment capacity of doubly reinforced beam.

T (__ 0.003
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€

FIGURE 15.2 Strain diagram of concrete.

3.
4.

e = 0.003 (d —¢)

t

(15.3)
c

. When ¢ > f, /E, the compression steel has yielded, f;= f,, and from the forces shown in

Figure 15.1c,
A, = A (15.4)

. When €] < f, /E, the compression steel has not yielded, f,=¢€,E, and again from the forces

shown in Figure 15.1c,

4, =L (15.5)

When €, 20.005, ¢ = 0.9.
When €, <0.005, compute ¢ from Equation 14.13.

To ascertain the value of neutral axis, ¢, the tensile strength of the beam is equated with the
compression strength. Thus, from Figure 15.1

Tensile force = Compression force
Ayf, +Anf, =0.85f ab+ Alf!
(A +A, )f) =0.85f/ab+ Al€E

Substituting a = f,¢ from Equation 14.3, ¢/, from Equation 15.2 and E = 29000 ksi
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A f, =0.85f/B,chb+ A;

(c=d) (0.003)(29,000) (15.6)
C

where B, is given in Equation 14.4, and the others terms are explained in Figure 15.1

ANALYSIS OF DOUBLY REINFORCED BEAMS

A summary of the steps for analysis of a doubly reinforced beam is presented below:

1. From Equation 15.6, determine c; and from Equation 14.3, compute a.

2. From Equation 15.2 compute €. If €/ < f, / E, that is the compression steel has not yielded,
use Equation 15.5 to determine A ,, otherwise use Equation 15.4 to determine A ,.

3. From Equation 15.3, compute €, and from that determine ¢ as stated in step 3 and 4 of
previous section.

4. Compute the moment capacity from Equation 15.1.

Example 15.1
Determine the momentcapacity ofthebeam shown in Figure 15.3. Use £/ = 3,000 psi, f,= 60,000 psi.

SOLUTION

1. From Equation 15.6

Af, = 0.85f/Bich+ A’ (€ ‘Cd )

(0.003)(29,000)
(c-2.5)

6.24(60) = 0.85(3)(0.85)c(14) + 2 (0.003)(29,000)

174(c - 2.5)
C
374.4¢ = 30.345¢% +174c — 435

30.345¢? - 200.4c - 435=0
c?-6.60c —14.335=0

374.4 =30.345c +

_ +6.60 £/(6.60)” +4(14.335)
- 2
a=PB,.c=0.85(8.32)=7.07in.

=8.32in. (positive value)

C

2% in.
14in. )%
° o —
249
26 in.
4#11
e o 0o o
94
Whin.

FIGURE 15.3 Beam section of Example 15.1.
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2. From Equation 15.2
,0.003 (c—d)
c
_0.003(832-25) _ o
8.32
f,
L= 60 =0.0021
£ 29,000
Since € =f, /E, the compression steel has yielded.
f{ =1,= 60 ksi
A, = Al =2in2
A, =624-2=424in2
3. From Equation 15.3
0.003 (d —c)
g =——"
c
_0.003 (235-8.32) o
8.32
Since €, > 0.005, ¢ = 0.9.
4. Moment capacity, from Equation 15.1
M, = 0Af, (d - %) +0Af, (d - d)
7.07
=0.9(4.24)(60)| 23.5- = | +0.9(2)(60)(23.5- 2.5)
=6839.19in-k or 569.9 ft.-k
Example 15.2

Principles of Structural Design

Determine the moment capacity of the beam shown in Figure 15.4. Use f/ = 4,000 psj, f, = 60,000 psi.

3in.

14 in.

) —
2#8
4#11

e o o —

V\

in./

FIGURE 15.4 Beam section of Example 15.2.

)

24

in.
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SOLUTION
1. From Equation 15.6

Af, = 0.85fB.ch + Ag@

(0.003)(29,000)

6.24(60) = o.85(4)(o.s5)c(14)+1.58@(o.003)(29,ooo)

374.4 = 4046 + 137,463
C

374.4c = 40.46¢° +137.46c — 412.38
40.46¢? —236.94c-412.38=0
c?-5.856c-10.19=0

+5.856 +/(5.856)” +4(10.19)
Cc=
2
a=p,c=0.85(7.26)=6.17in.
2. From Equation 15.2
(c-d)

g/ =0.003 *——/
C

~0.003(7.26 - 3)
- 7.26
f, 60
E

=7.261in. (positive value)

=0.0018

= =0.0021

Since €] <f, /E, the compression steel has not yielded.

f/=€/E =0.0018(29,000) = 52.20 ksi

From Equation 15.5

A’ 158(52.20)
A52 =—7 =
f, 60
A, =624 -1375= 4.865in.2

3. From Equation 15.3

=1375in.?

~0.003 (d-¢)
=
~0.003 (24 -7.26)
- 7.26

Since g, >0.005, ¢ = 0.9.
4. Moment capacity, from Equation 15.1

&

=0.0069

M, = 0Af, (d - %) +0ALf, (d - d’)

= 0.9(4.865)(60)(24 - %) +0.9(1.375)(60)(24 - 3)

=7053.9in.-k or 587.8 ft.-k
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DESIGN OF DOUBLY REINFORCED BEAMS

A summary of the steps to design a doubly reinforced beam is presented below:

1. Determine the factored moment M, due to applied loads.
2. Ascertain p corresponding to €, =0.005 from Appendix D, Table D.11 and K from
Appendix D, Tables D.4 through D.10 and also determine A, = pbd.
. Compute M, = d0bd?K, assuming ¢ = 0.9.
. Compute M, = M;l— J]}/[ul.
_ s1Jy _
. Compute (1) a= 0.85/'b and (2) c=alP,.
. Compute €, from Equation 15.2.
When €[ 2 f, /E, the compression steel has yielded, f; = f,.
When € < f, /E, the compression steel has not yielded, f; = €/E.

N W bW

7. Compute
A/ — MuZ
T ofd-d)
8. Compute
A= A
S

If the amount of compression steel A, and tensile steel A; are selected exactly as computed, €, will
be 0.005, that is, the tension-controlled condition prevails. However, selecting different amounts of
steel may change this condition resulting in a reduced value of ¢ of less than 0.9. Technically, after
the amounts of steel are selected, it converts to a problem of analysis as described in the previous
section to confirm that the resisting moment capacity is adequate for the applied bending moment.

Example 15.3

A simply supported beam of span 30 ft. is subjected to a dead load of 2.4 k/ft. and a live load
of 3.55 k/ft. From architectural consideration, the beam dimensions are fixed as shown in Figure
15.5. Design the beam. Use £ = 4,000 psi and f, = 60,000 psi.

_
°
28in.
[ ] iy
o
15in. )

3in.

FIGURE 15.5 Size of beam for Example 15.3.
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SOLUTION
1. Weight of beamvft. = % x % X 1% 150 = 484 Ib/ft. or 0.484 Wi

w, =12(2.4+0.484)+1.6(3.55) = 9.141k/t

M, = wi? _ 9.41(30)°
8
2. From Appendix D, Table D.11, p = 0.0181.

From Appendix D, Table D.9, K = 0.911ksi.
A, =pbd=(0.0181)(15)(28)=7.6 in.2

3. M, = 0bd?K = (0.9)(15)(28)* (0.911) = 9642 in.-k or 803.5 ft.-k

4. My, =M, =M, =1028.4 - 803.5 = 224.9 ft.-k or 2698.8 in.-k

Lo A 760(60)
0.85(’b  0.85(4)(15)
a 894

c=—=——=10.52in.
B, 0.85

6. ¢/=0.003 M
c

=1028.4 ft.-k

=8.941in.

_0.003(10.52 - 3)
10.52

=0.0021

f
80 _ 0.0021
E 29,000

(@)

Since €= f, /E, the compression steel has yielded.
f/=f,=60ksi

S owo_ Mo 26988
CTU T of(d-d’) 0.9(60)(28-3)
_ Al 2.0(60)

f, 60

A, =7.6+2.0=9.6in.2; Use 8 bars of #10, A, = 10.2in.2 (two layers)

=20 in.2; Use 2 bars of #9,A] = 2in.2

8. A, =2in2

MONOLITHIC SLAB AND BEAM (T BEAMS)

The concrete floor systems generally consist of slabs and beams that are monolithically cast together.
In such cases the slab acts as a part of the beam, resulting in a T-shaped beam section as shown in
Figure 15.6. The slab portion is called a flange and the portion below the slab is called a web. The
slab spans from beam to beam. But, the American Concrete Institute (ACI) code defines a limited
width that can be considered as a part of the beam. According to ACI this effective flange width
should be the smallest of the following three values:*

1. b, = one-fourth of the span (15.7a)
2.by=0b,+ 16 h; (15.7b)
3. b, = center to center spacing of beams (15.7¢)

A T beam has five relevant dimensions: (1) flange width, b, (2) flange thickness, A (3) width of
web or stem, b,,; (4) effective depth of beam, d; and (5) tensile steel area, A..

* For an L-shaped beam, the overhang portion of the flange should be the smallest of (1) one-twelfth of the span length;
(2) six times the slab thickness, & and (3) one-half of the clear distance between beams.
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h
S .« Effective flange width

Slab
' N v by
A
Yy .
T d Flange
l ¥ — Web or stem

® A
L_ b':“ Web width
Beam spacing 44

FIGURE 15.6 T beam comprising slab and supporting beam of a floor system.

In analysis type of problems, all five of these parameters are known and the objective is to deter-
mine the design capacity of the beam. In the design of T beams, the flange is designed separately as
a slab spanning between the beams (webs) according to the procedure described for one-way slabs
in Chapter 14. The effective width of the flange is ascertained according to Equation 15.7. The size
of the web is fixed to satisfy the shear capacity or other architectural requirements. Thus the values
of b, hy b,, and d are preselected and a design consists of computing of the area of tensile steel.

Under a positive bending moment, the concrete on the flange side resists compression and the
steel in the web resists tension. Depending on the thickness of the flange, the compression stress
block might fully confine within the flange or it might fully cover the flange thickness and further
extend into the web. Mostly the former condition exists.

In the first case a T beam acts like a rectangular beam of width b, because all the concrete area
below the compression stress block is considered to be cracked, and thus any shape of concrete
below this compression stress block does not matter.

The minimum steel requirements as specified by Equations 14.11 and 14.12 apply to T
beams also.

ANALYSIS OF T BEAMS

1. Determine the effective flange width, bf from Equation 15.7.

2. Check for minimum steel using Equations 14.11 and 14.12 using web width b, for beam
width.

3. Determine the area of the compression block, A :

_ A
©T085f

(15.8)

4. In most cases, A, < bfh s that is, the compression stress block lies within the flange. In such
cases the depth of the stress block is given by

a=-—— (15.9)

and the centroid of the compression block from the top is given by

a

y=4
2 (15.10)
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5. When A, >b;h;, the compression stress block extends into the web to an extent A,
exceeding the flange area b,/i,. The centroid is determined for the area of the flange and
the area extending into web as demonstrated in Example 15.4.

6. Determine (1) ¢ = a/P,, where f, is given in Equation 14.4; (2) &, = 0.0003(d — ¢)/c

and Q) Z=d-Y.
7. If €, < 0.005, adjust ¢ by Equation 14.13.
8. Calculate the moment capacity:

q)Mn = ¢Asfvz

Example 15.4

Determine the moment capacity of the T beam spanning 20 ft., as shown in Figure 15.7. Use

f{=3,000 psi and f, = 60,000 psi.

SOLUTION
1. Effective flange width, bs

a. span _20x12
4 4
b. b, + 16h;=11 4+ 16(3) = 59 in.
c. Beam spacing =3 x 12 = 36 in. « Controls
2. Minimum steel

a 3Wb,d _343,000(11)(24) _ 0.793 in2

60in

3 60,000
2 11(24
b, 200b,d _ 00(11)( ): 0.88in.2 < 6.35in.2
f 60,000

4

3. Area of compression block

_Af, (635)(60,000)

= = =149.41in.2
© 0.85f, (0.85)(3,000)

bh; = (36)(3) = 108 in.2

OK

Since 149.41 > 108, the stress block extends into web by a distance a; below the flange.

A —bh,  149.41-108

4. a,= b T =3.76in.2
a=3+3.76=6.76in.
| | [ £
| | - f —

24 in.

N 5-#10 A =6.35in2
[ J

e 11lin——

Y 3 ft. aN

FIGURE 15.7 T beam dimensions for Example 15.4.
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by=36in.
"N Mh=3in
ll a ~—— A,=14941in”
N
5#10
°
11in.

FIGURE 15.8 Compression stress block for Example 15.4.

5. In Figure 15.8, the centroid of the compression block from the top:

[36x3x15]+[11x3.76 X (3+3.76/2) ]
149.41

=2.435in.

Y=

=876 7 95in,
0.85
~0.003(24 —7.95)

€ =0.0061>0.005, hence ¢ = 0.9
7.95

Z=d-y=24-2435=21565in.

7. Moment capacity

0M, = 0Af,Z = 0.9(6.35)(60)(21.565) = 7394.64 in-k or 616.2 ft.-k

DESIGN OF T BEAMS

As stated earlier, design consists of determining only the tensile steel area of a T beam. This process
is the reverse of the analysis. The steps are as follows:

1. Compute the factored design moment including the dead load.

2. Determine the effective flange width, bf, from Equation 15.7.

3. Adopt the effective depth d = h — 3 when the overall depth £ is given. Assume the moment
arm Z to be the larger of the following:
(1) 0.9d or (2) (d - h/2).

4. Calculate the steel area:

M
A,= —, for initial value of ¢ =0.9
of, Z

5. Calculate the area of the compression block, A_:

A= Af,
0.85¢"

(15.8)

6. Determine the depth of the stress block, a.
In most cases, A, < b,h,, that is, the compression stress block lies within the flange. In such
cases the depth of the stress block is given by
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A (15.9)
a=— )
bf
and the centroid of the compression block from the top is given by
y=4
) (15.10)

When A, > bh,, the compression stress block extends into web to the extent A, exceeding
the flange area b The centroid is determined for the areas in the flange and web as shown

in Example 15.4.

0.003(d -
7. Determine (1) ¢ = a/Bl, where f, is given in Equation 14.4; and (2) €, = #

o]

c
. If €, <0.05, adjust ¢ by Equation 14.13 and recalculate the steel area from step 4.
9. Compute the revised moment arm:

Z=d-a

If the computed Z is appreciably different than the assumed Z of step 3, repeat steps 4
through 6, until the value of Z stabilizes.

10. Make a selection of steel for the final value of A, computed.

11. Check for minimum steel by Equations 14.11 and 14.12 or Appendix D, Table D.11.

Example 15.5

Design a T beam for the floor system spanning 20 ft., as shown in Figure 15.9. The moments due
to dead load (including beam weight) and live load are 200 ft.-k and 400 ft.-k, respectively. Use
f:=3,000 psi and f, = 60,000 psi.

SOLUTION

1. Factored design moment = 1.2(200) = 1.6(400) = 960 ft.-k or 11,520 in.-k.
2. Effective flange width, b,
span _ 20x12
4 4

b. B,+16h;=15+16(3)=63in.

c. Beam spacing=6x12=72in.
3. Moment arm

Z=0.9d =0.9(24) = 21.6in.

h
Z=d—?f= 24—%: 22.5in. « Controls

=60 in. « Controls

he=3in.

| I/ [
L i/ {

H

15 in.
ko 6 ft. N

FIGURE 15.9 T beam section for Example 15.5.
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4. Steel area
A= U2 g g2
of,Z (0.9)(60)(22.5)
5. Area of compression block
A, 4
r__ (9:48)(60,000) =223.06in.?

<~ 0.85f’  (0.85)(3,000)
byhy = (60)(3) =180 in.?

Since 223.06 > 180, the stress block extends into the web by a distance a, below the flange

_Ac—bh _22306-80 ..,
b 15

w

a=3+287=>587in.

6. g

7. In Figure 15.10, the centroid of the compression block from the top

[60x3x15]+[15%2.87x (3+2.8712)]
223.06

=2.066in.

)7:

8. c= 287 =6.9Tin.
0.85

~0.003(24-6.91)
- 6.91

Z=d-y=24-2066=2193in.

=0.0074 > 0.005, hence ¢ =0.9

t

9. Revised steel area

M, 11,520

A= oz~ (09)(60)(2193) in?

Select 10 bars of #9, A, = 10 in.2 in two layers.
The steel area could be refined further by a small margin by repeating steps 5 through 9.

10. Minimum steel

3Jf’b,d 3,/3,000(15)(24) =0.99in.2
o o

| 60,000

200b,d _ 200(15)(24)

f, 60,000

=1201in2<9.73 in? OK

60 in.
T T I/ 3 in.ﬁr.
6.91 in. 5.87in.

N
24in.NAL________ ________ A

15in.

FIGURE 15.10 Compression stress block for Example 15.5.
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PROBLEMS

15.1

15.2

15.3

154

15.5

15.6

Determine the design strength of the beam shown in Figure P15.1. Use f/= 4,000 psi and
£, =60,000 psi .

Determine the design strength of the beam shown in Figure P15.2. Use f= 3,000 psi and
f,=60,000 psi .

Determine the design strength of the beam shown in Figure P15.3. Use f/= 4,000 psi and
f,=60,000 psi .

Determine the design strength of the beam shown in Figure P15.4. Use f= 15,000 psi and
f,=60,000 psi .

A beam of the dimensions shown in Figure P15.5 is subjected to a dead load of
690 1b/ft. and a live load of 1500 Ib/ft. It has a simple span of 35 ft. Design the beam. Use
f/=4,000 psi and f, =60,000 psi.

Design a beam to resist the moment due to service dead load of 150 ft.-k (including weight)
and the moment due to service live load of 160 ft.-k. The beam width is limited to 11 in.
and the effective depth is limited to 20 in. The compression steel is 3 in. from the top. Use
f/=3,000 psi and f, = 60,000 psi.

e o o
3#6 T

5#11 l

oo oo

16.5 in. ‘) X
2% in.

FIGURE P15.1 Beam section for Problem 15.1.

2% in.
L] L] —4)
2#10
25 in.
l 4#11
° ° _
° ® |4in
11in.
FIGURE P15.2 Beam section for Problem 15.2.
2% in.

e o o o
4 #7

20 in.

4#11
e o o o

15in.

FIGURE P15.3 Beam section for Problem 15.3.

323



324 Principles of Structural Design

2% in.
° L] _J
2#8
21in.
3#11
[ ] [ ] e |~
11 in. 3in
FIGURE P15.4 Beam section for Problem 15.4.
4 in.
° TJ
16 in.
° l
15in.  4in
FIGURE P15.5 Beam dimensions for Problem 15.5.
3in
|
25in.
° J’
14 in. 4 in.

FIGURE P15.6 Beam dimensions for Problem 15.7.

15.7 Design a beam to resist the total factored moment (including weight) of 1,000 ft.-k. The
dimensions are as shown in Figure P15.6. Use f=4,000 psi and f, = 50,000 psi.

15.8 Determine the design moment capacity of the T beam shown in Figure P15.7, spanning
25 ft. Use f/=4,000 psi and f, = 60,000 psi.

15.9 Determine the design capacity of the beam in Problem 15.8. The slab thickness is 3 in. and
the center to center spacing of beams is 3 ft. Use f=3,000 psi and f, = 60,000 psi.

15.10 Design a T beam for the floor system shown in Figure P15.8. The live load is 200 psf
and the dead load is 60 psf excluding the weight of the beam. The slab thickness is 4 in.,
the effective depth is 25 in., and the width of the web is 15 in. Use f/=3,000 psi and
f, = 60,000 psi.

15.11 Design the T beam shown in Figure P15.9 that spans 25 ft. The moment due to service
dead load is 200 ft.-k (including beam weight) and due to service live load is 400 ft.-k. Use
f/=4.,000 psi and f, = 60,000 psi.
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he=4in.
¢/‘ fl/
Ié;
25 in
6#9
e o o -
e o o
12 in.
X 5 ft. 2

FIGURE P15.7 T beam section for Problem 15.8.

60 ft.

T beam
&~ @ 5 ft. center

40 ft.

FIGURE P15.8 Floor system for Problem 15.10.

3in.
24 in.
. °
12 in.
¥ 4 ft. 2N

N

FIGURE P15.9 T beam section for Problem 15.11.






’I 6 Shear and Torsion in
Reinforced Concrete

STRESS DISTRIBUTION IN BEAM

The transverse loads on a beam segment cause a bending moment and a shear force that vary across
the beam cross section and along the beam length. At point (1) in a beam shown in Figure 16.1,
these contribute to the bending (flexure) stress and the shear stress, respectively, expressed as
follows:

My

f, = - (16.1a)
and
Vo
== (16.1b)
5 I
where

M is bending moment at a horizontal distance x from the support

y is vertical distance of point (1) from the neutral axis

I is moment of inertia of the section

V is shear force at x

0 is moment taken at the neutral axis of the cross-sectional area of the beam above point (1)
b is width of section at (1)

The distribution of these stresses is shown in Figure 16.2. At any point (2) on the neutral axis, the
bending stress is zero and the shear stress is maximum (for a rectangular section). On a small ele-
ment at point (2), the vertical shear stresses act on the two faces balancing each other, as shown in
Figure 16.2. According to the laws of mechanics, the complementary shear stresses of equal mag-
nitude and opposite sign act on the horizontal faces as shown, so as not to cause any rotation to the
element.

If we consider a free-body diagram along the diagonal a—b, as shown in Figure 16.3, and resolve
the forces (shear stress times area) parallel and perpendicular to the plane a—b, the parallel force
will cancel and the total perpendicular force acting in tension will be 1.414f,A. Dividing by the
area 1.41A along a—b, the tensile stress acting on plane a—b will be f,. Similarly, if we consider a
free-body diagram along the diagonal c—d, as shown in Figure 16.4, the total compression stress
on the plane c—d will be f,. Thus, the planes a—b and c—d are subjected to tensile stress and com-
pression stress, respectively, which has a magnitude equal to the shear stress on the horizontal and
vertical faces. These stresses on the planes a—b and c—d are the principal stresses (since they are
not accompanied by any shear stress). The concrete is strong in compression but weak in tension.
Thus, the stress on plane a—b, known as the diagonal tension, is of great significance. It is not the
direct shear strength of concrete but the shear-induced diagonal tension that is considered in the
analysis and design of concrete beams.

327
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5 —
FIGURE 16.1 Flexure and shear stresses on transverse loaded beam.
K
c b
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N 7/
AN e
AN 7
AN Ve
AN Ve
AN 7/
N/
/N
7 AN
7 AN
7/ AN
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// \\
a d 1o
o

FIGURE 16.2 Shear stresses at neutral axis.

0.707f, A w
AN

Force component

f, A A

0.707f, . A

Plane in tension

45°

FIGURE 16.3 Free body diagram along plane a—b of element of Figure 16.2.

f-AA

Plane in compression

0.707f,- A D
w® Q' 7
A 7
A 7
A 7
\\ 7
7
\\ // , d
//
N > f,.- A
N
N
A
N\
N
N
A
A4
0.707f, A

FIGURE 16.4 Free body diagram along plane c—d of element of Figure 16.2.
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DIAGONAL CRACKING OF CONCRETE

There is a tendency for concrete to crack along the plane subjected to tension when the level of stress
exceeds a certain value. The cracks will form near the mid-depth where the shear stress (includ-
ing the diagonal tension) is maximum and will move in a diagonal path to the tensile surface, as
shown in Figure 16.5. These are known as the web-shear cracks. These are nearer to the support
where shear is high. In a region where the moment is higher than the cracking moment capacity, the
vertical flexure cracks will appear first and the diagonal shear cracks will develop as an extension
to the flexure cracks. Such cracks are known as the flexure-shear cracks. These are more frequent
in beams. The longitudinal (tensile) reinforcement does not prevent shear cracks but it restrains the
cracks from widening up.

After a crack develops, the shear resistance along the cracked plane is provided by the following
factors:

1. Shear resistance provided by the uncracked section above the crack, V. This is about
20%—-40% of the total shear resistance of the cracked section.

2. Friction developed due to interlocking of the aggregates on opposite sides of the crack, V.
This is about 30%-50% of the total.

3. Frictional resistance between concrete and longitudinal (main) reinforcement called the
dowel action, V. This is about 15%—25% of the total.

In a deep beam, some tie—arch action is achieved by the longitudinal bars acting as a tie and the
uncracked concrete above and to the sides of the crack acting as an arch.

Once the applied shear force exceeds the shear resistance offered by the above three factors in
a cracked section, the beam will fail suddenly unless a reinforcement known as the web or shear
reinforcement is provided to prevent the further opening up of the crack. It should be understood
that the web reinforcement does not prevent the diagonal cracks that will happen at almost the same
loads with or without a web reinforcement. It is only after a crack develops that the tension that was
previously held by the concrete is transferred to the web reinforcement.

STRENGTH OF WEB (SHEAR) REINFORCED BEAM

As stated above, the web reinforcement handles the tension that cannot be sustained by a diagonally
cracked section. The actual behavior of web reinforcement is not clearly understood in spite of
many theories presented. The truss analogy is the classic theory, which is very simple and widely
used. The theory assumes that a reinforced concrete beam with web reinforcement behaves like a
truss. A concrete beam with vertical web reinforcement in a diagonally cracked section is shown
in Figure 16.6. The truss members shown by dotted lines are superimposed in Figure 16.6. The
analogy between the beam and the truss members is as shown in Table 16.1.

FIGURE 16.5 Shear resistance of cracked concrete.
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Compression members
Tensile members of truss = concrete
of truss =web reinforcement between cracks

<

Horizontal compression
members of truss
(top chord) = flexure
compression concrete

Horizontal compression
members of truss
(bottom chord) =

longitudinal
reinforcement
Diagonal crack Concrete Stirrups
between cracks
FIGURE 16.6 Truss analogy of beam.
TABLE 16.1
Beam-Truss Analogy
Truss Beam

Horizontal tensile member (bottom chord) Longitudinal reinforcement
Horizontal compression member (top chord) Flexure compression concrete
Vertical tensile members ‘Web reinforcement
Diagonal compression members ‘Web concrete between the cracks in the compression zone

According to the above concept, the web reinforcement represents the tensile member. According
to the truss analogy theory, the entire applied shear force that induces the diagonal tension is
resisted only by the web reinforcement. But observations have shown that the tensile stress in the
web reinforcement is much smaller than the tension produced by the entire shear force. Accordingly,
the truss analogy theory was modified to consider that the applied shear force is resisted by two

components: the web reinforcement and the cracked concrete section

V, =V +V,
Including a capacity reduction factor, ¢,
V, <0V,
For the limiting condition
V.=V + 0V

where
V, is nominal shear strength
V, is factored design shear force
V. is shear contribution of concrete
V. is shear contribution of web reinforcement
¢ is capacity reduction factor for shear = 0.75 (Table 14.1)

Equation 16.4 serves as a design basis for web (shear) reinforcement.

. Thus,

(16.2)

(16.3)

(16.4)



Shear and Torsion in Reinforced Concrete 331

SHEAR CONTRIBUTION OF CONCRETE

Concrete (with flexure reinforcement but without web reinforcement) does not contribute in resist-
ing the diagonal tension once the diagonal crack is formed. Therefore, the shear stress in concrete at
the time of diagonal cracking can be assumed to be the ultimate strength of concrete in shear. Many
empirical relations have been suggested for the shear strength. The American Concrete Institute
(ACI) has suggested the following relation:

V, = 20/f/bd (16.5)

The expression A was introduced in the ACI 2008 code, to account for lightweight concrete; for nor-
mal weight concrete A = 1. An alternative, much more complicated expression has been proposed
by the ACI, which is a function of the longitudinal reinforcement, bending moment, and shear force
at various points of beam.

SHEAR CONTRIBUTION OF WEB REINFORCEMENT

The web reinforcement takes a form of stirrups that run along the face of a beam. The stirrups
enclose the longitudinal reinforcement. The common types of stirrups, as shown in Figure 16.7, are
[J shaped or (Ul shaped and are arranged vertically or diagonally. When a significant amount of tor-
sion is present, the closed stirrups are used, as shown in Figure 16.7c.

The strength of a stirrup of area 4, is f,A,. If n number of stirrups cross a diagonal crack, then
the shear strength by stirrups across a diagonal will be

V, = f,An (16.6)

In a 45° diagonal crack, the horizontal length of crack equals the effective depth d, as shown in
Figure 16.8. For stirrups spaced s on center, n = d/s. Substituting this in Equation 16.6, we have

v, =f4,42 (16.7)

s

(@) (b) (©
FIGURE 16.7 Types of stirrups: (a) open stirrup, (b) double stirrup, (c) closed stirrup.

457
d
1
FIGURE 16.8 Vertical stirrup in a diagonal crack.

=
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where
A, is area of stirrups
s is spacing of stirrups

For a ] shaped stirrup, A, is twice the area of the bar and for a [l stirrup, A, is four times the bar
area.

When the stirrups are inclined at 45°, the shear force component along the diagonal will match
the stirrups (web reinforcement) strength, or

v, =1414£,4,2 (16.8)
Equations 16.7 and 16.8 can be expressed as a single relation:
d
V,=of,A, < (16.9)

where a = 1 for the vertical stirrups, and 1.414 for the inclined stirrups.

SPECIFICATIONS FOR WEB (SHEAR) REINFORCEMENT

The requirements of ACI 318-11 for web reinforcement are summarized below:

1. According to Equation 16.4, when V, < ¢pV,, no web reinforcement is necessary. However,
the ACI code requires that a minimum web reinforcement should be provided when V,
exceeds 1/2¢V., except for slabs, shallow beams (<10 in.), and footing.

2. Minimum steel: When web reinforcement is provided, its amount should fall between the
specified lower and upper limits. The reinforcing should not be so low as to make the web
reinforcement steel yield as soon as a diagonal crack develops. The minimum web rein-
forcement area should be the higher of the following two values:

(4 = SIS (16.10)
s,
or
50bs
(A in =—— (16.11)
5

3. Maximum steel: The maximum limit of web reinforcement is set because the concrete will
eventually disintegrate no matter how much steel is added. The upper limit is

(A = 87ibs (16.12)
5

4. Stirrup size: The most common stirrup size is #3 bar. Where the value of shear force is
large, #4 bar might be used. The use of larger than #4 size is unusual. For a beam width
of <24 in., a single loop stirrup [1is satisfactory. Up to a width of 48 in. a double loop ] is
satisfactory.
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5. Stirrup spacing
a. Minimum spacing: The vertical stirrups are generally not closer than 4 in. on center.
b. Maximum spacing when V, < 4\/70'1751.
The maximum spacing is the smaller of the following:
d

L S :E

i, 5, =24 in,

41 (based on Equation 16.10)

1. S, = ased on uation
075\/_ b a

. A\/fy .
V. Sy = (based on Equation 16.11)
50h

¢. Maximum spacing when V, > 4\/78’ bd
The maximum spacing is the smaller of the following:
. d
1' Smax ==
4

ii. s, = 12in.

A, f,
Spax = based on Equation 16.10
T \/— ( q )

A f, .
= 50b (based on Equation 16.11)

V. S =

6. Stirrups pattern: The size of stirrups is held constant while the spacing of stirrups is var-
ied. Generally the shear force decreases from the support toward the middle of the span
indicating that the stirrups spacing can continually increase from the end toward the cen-
ter. From a practical point of view, the stirrups are placed in groups; each group has the
same spacing. Only two to three such groups of the incremental spacing are used within a
pattern. The increment of spacing shall be in a multiple of whole inches perhaps in a mul-
tiple of 3 in. or 4 in.

7. Critical section: For a normal kind of loading where a beam is loaded at the top and there is
no concentrated load applied within a distance d (effective depth) from the support, the section
located at a distance d from the face of the support is called the critical section. The shear
force at the critical section is taken as the design shear value V,, and the shear force from the
face of the support to the critical section is assumed to be the same as at the critical section.
When the support reaction is in tension at the end region of a beam or the loads are applied at
the bottom (to the tension flange), or it is a bracket (cantilevered) section, no design shear force

reduction is permitted and the critical section is taken at the face of the support itself.

Some designers place their first stirrup at a distance d from the face of the support while others
place the first stirrup at one-half of the spacing calculated at the end.

ANALYSIS FOR SHEAR CAPACITY

The process involves the following steps to check for the shear strength of an existing member and
to verify the other code requirements:

1. Compute the concrete shear capacity by Equation 16.5.
2. Compute the web reinforcement shear capacity by Equation 16.9.
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3. Determine the total shear capacity by Equation 16.4. This should be more than the applied
factored shear force on the beam.

4. Check for the spacing of the stirrups from the “Specifications for Web (Shear) Reinforcement”
section, step 5.

Example 16.1

Determine the factored shear force permitted on a reinforced concrete beam shown in Figure 16.9.
Check for the web reinforcement spacing. Use £/ = 4,000 psi, f, = 60,000 psi.

SOLUTION

A. Concrete shear capacity from Equation 16.5

V, = 20f’bd
=2(1)4/4000(16)(27) = 54644 Ib or 54.64 k

B. Web shear capacity from Equation 16.9

A, =2(0.11)=0.22in2

V.= ocfyAvg
s

1(60,000)(0.22)@;): 29,700 Ib or 29.7 k

C. Design shear force from Equation 16.4

Ve =0V 6V,
=0.75(54.64)+0.75(29.7) = 63.26 k

D. Maximum spacing

1. 4Jf’ bd /1000 = 44/4000(16)(27)/1000 =109.3 k
2. Since V, of 29.7 k < 109.3 k

F—16in—A
.
#3@ o9
12 in. OC
\\A
27 in.
4-#8 \\\A
Q0000 2

FIGURE 16.9 Section for Example 16.1.
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Maximum spacing is smaller of

a. %: 2—27 =13.5in. < Controls > 12in. (as given in Example) OK

b. 24 in.
Af,

vy
C. Spax =
0.75\/f’b
(0.22)(60,000)

T (0.75)44.000016)

Af,
d. S, =
50b

_ (0.22)(60,000) _, .
50(16)

DESIGN FOR SHEAR CAPACITY

A summary of the steps to design for web reinforcement is presented below:

1. Based on the factored loads and clear span, draw a shear force, V,, diagram.

2. Calculate the critical V,, at a distance d from the support and show this on the V, diagram
as the critical section. When the support reaction is in tension, the shear force at the end is
the critical V.

3. Calculate ¢V, = (0.75)2\/fbd and draw a horizontal line at ¢V, level on the V, diagram.
The portion of the V, diagram above this line represents ¢V, the portion of the shear force
that has to be provided by the web reinforcement or stirrups.

4. Calculate 1/2¢V, and show it by a point on the V, diagram. The stirrups are needed from
the support to this point. Below the 1/2¢V. point on the diagram toward the center, no stir-
rups are needed.

5. Make the tabular computations indicated in steps 5, 6, and 7 for the theoretical stirrups
spacing.

Starting at the critical section, divide the span into a number of segments. Determine
V, at the beginning of each segment from the slope of the V, diagram. At each segment,
calculate V| from the following rearranged Equation 16.4:

_ =0V
0

V,

s

6. Calculate the stirrup spacing for a selected stirrup size at each segment from the following
rearranged Equation 16.9:

s=0of A, % (o being 1 for vertical stirrup)

s

7. Compute the maximum stirrup spacing from the equations in the “Specifications for Web
(Shear) Reinforcement” section, step 5.
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8. Draw a spacing versus distance diagram from step 6. On this diagram, draw a horizontal
line at the maximum spacing of step 7 and a vertical line from step 4 for the cut off limit
stirrup.

9. From the diagram, select a few groups of different spacing and sketch the design.

Example 16.2

The service loads on a reinforced beam are shown in Figure 16.10 along with the designed beam
section. Design the web reinforcement. Use £ = 4,000 psi and f, = 60,000 psi.

SOLUTION

A: V, diagram
1. Weight of beam = (15/12) x (21/12) x 1 x (150/1000) = 0.33 k/ft.

2. w,=123+0.33) =4 k/ft.
3. P,=16(15) =24k
4. M@B=0
R, (24) — 4(24)(12) — 24(18) — 24(6) =0
R,=72k
5. Shear force diagram is shown in Figure 16.11
6. V, diagram for one-half span is shown in Figure 16.12
B. Concrete and steel strengths
1. Critical V, at a distance, d =72 — (18/12)(4) = 66 k
2. ¢V.= 0.75(2)\/f?bd =0.75(2)/4000(15)(18)/1000 = 25.61k
3. 1/2¢V.=12.8k
4. Distance from the beam center line to (1/2)(¢V,./slope) =12.8/4 = 3.2 ft.
L;=15k L;=15k D=3 K/ft. *—15 in—x
(excluding weight)
A 4 A 4 /
ALY Y Y Y Y YV YV Y YYYYYYY YV Y, 18 in.
P ol 4-#8 J<
6 ft. 12 ft. 6 ft.

FIGURE 16.10 Load on beam and section for Example 16.2.

72k

48 k

24 k

24k
48 k

72k
F—6 ft. ~ 12 ft. - 6 ft.—

FIGURE 16.11 Shear force diagram for Example 16.2.
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72k Critical section
T Slope 4 k/ft.
48k
I
| bV $V, =256k
I
I 1
I
e e e L L ~¢V, =128k
: 2¢' c K
I
: oV, Slope 4 k/ft.
I
| |
L Il
A ld=15ft] B Cr——32ft—H
/II/ 6 ft. 4'/ 6 ft. T /!/
No stirrups
needed
FIGURE 16.12 V, diagram for Example 16.2.
C. Stirrups design: Use #3 stirrups
Distance from Support, x, ft.  V,, k V, = V. oV, Lk s=fA, i, in.
o s
1 2 3¢ 44
D=15 66° 53.87 4.41
2 64 51.20 4.64
4 56 40.53 5.86
6~ 48 29.87 7.96
6* 24> 0 oo

@V, =V,@end — (slope)(distance) = 72 — 4 (Col. 1).
> V,=V,@B in Figure 16.12 — (slope)(distance — 6) = 24 — 4 (Col. 1 — 6).

¢ (Col. 2 = 25.61)/0.75.
4 (60,000/1000)(0.22)(18)/Col. 3.

Distance versus spacing from the above table are plotted in Figure 16.13.
D. Maximum spacing

1. 4\/Ebd/1 000 = 4+/4000(15)(18)/1000 = 68.3 k

2.
3.

V.

s

iticas OF 53.87 k < 68.3 k

Maximum spacing is the smaller of

ﬂ = 18 =9in. « Controls
2 2

b. 24 in.
Af,
Spax = ———1——
" 0.75fb
(0.22)(60,000)

= " =1
(0.75)4/4,000(15)

337



338 Principles of Structural Design

No stirrups
needed

Spacing, in.

Distance from end, ft.

FIGURE 16.13 Distance-spacing graph for Example 16.2.

d. S =
- Spax = 50bh
_ (0.22)(60,000) _, .
50(15)

The s, line is shown in Figure 16.13.

E. Selected spacings

Distance Covered, ft.  Spacing, in.  No. of Stirrups

0-5 4 15
5-6 6 2
6-8.8 9 4

TORSION IN CONCRETE

Torsion occurs when a member is subjected to a twist about its longitudinal axis due to a load act-
ing off center of the longitudinal axis. Such a situation can be seen in a spandrel girder shown in
Figure 16.14.

The moment developed at the end of the beam will produce a torsion in the spandrel girder. A
similar situation develops when a beam supports a member that overhangs across the beam. An
earthquake can cause substantial torsion to the members. The magnitude of torsion can be given by

T=Fr (16.13)

where
F is force or reaction
r is perpendicular distance of the force from the longitudinal axis
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Spandrel
girder Girder
<
Action point of
load on beam \*0 Beams
q

Slab
—
Beam
Spandrel Girder
girder

FIGURE 16.14 Beam subjected to torsion.

A load factor is applied to the torsion to convert 7 to 7, similar to the moment. A torsion produces
torsional shear on all faces of a member. The torsional shear leads to diagonal tensile stress very
similar to that caused by the flexure shear. The concrete will crack along the spiral lines that will
run at 45° from the faces of a member when this diagonal tension exceeds the strength of concrete.
After the cracks develop, any additional torsion will make the concrete fail suddenly unless tor-
sional reinforcement is provided. Similar to shear reinforcement, providing torsional reinforcement
will not change the magnitude of the torsion at which the cracks will form. However, once the
cracks are formed the torsional tension will be taken over by the torsional reinforcement to provide
additional strength against the torsional tension.

PROVISION FOR TORSIONAL REINFORCEMENT

ACI 318-11 provides that as long as the factored applied torsion, 7,, is less than one-fourth of the
cracking torque 7, torsional reinforcement is not required. Equating 7, to one-fourth of cracking
torque 7, the threshold limit is expressed as

A

2
<r
Fy

[T, Liie = O fZ (16.14)

where
T, is factored design torsion
A,, is area enclosed by the outside parameter of the concrete section = width X height
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P, is outside parameter of concrete =2 (b + h)
¢ = 0.75 for torsion

When T, exceeds the above threshold limit, torsional reinforcement has to be designed. The process
consists of performing the following computations:

1. Verifying from Equation 16.14 that the cross-sectional dimensions of the member are suf-
ficiently large to support the torsion acting on the beam.

2. If required, designing the closed loop stirrups to support the torsional tension (7, = ¢7,) as
well as the shear-induced tension (V, = ¢pV,).

3. Computing the additional longitudinal reinforcement to resist the horizontal compo-
nent of the torsional tension. There must be a longitudinal bar in each corner of the
stirrups.

When an appreciable torsion is present that exceeds the threshold value, it might be more
expedient and economical to select a larger section than would normally be chosen, to satisfy
Equation 16.14, so that torsional reinforcement does not have to be provided. The book uses this
approach.

Example 16.3

The concentrated service loads, as shown in Figure 16.15, are located at the end of a balcony
cantilever section, 6 in. to one side of the centerline. Is the section adequate without any torsional
reinforcement? If not, redesign the section so that no torsional reinforcement has to be provided.
Use f£ = 4,000 psi and f, = 60,000 psi.

SOLUTION

The beam is subjected to moment, shear force, and torsion. It is being analyzed for torsion only.

A. Checking the existing section
1. Design load contributing to torsion

P,=1.2(10)+1.6(15)=36k

2. Design torsion

Tu=36(3]=18ft. k
12

D;=10k
L;=15k .
}——18 in——
M 410
‘ T
10 ft. X #3 @ 121in. OC
21 in.
J‘ ‘o
3in.

FIGURE 16.15 Cantilever beam and section for Example 16.3.
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3. Area enclosed by the outside parameter
A, =bh=18x24=432 in?

4. Outside parameter
P, =2b+h)=2(18+24)=84 in.

5. Torsional capacity of concrete
7 A

=offf =2
P

2
=(0.75)4000 (4;?
=105,385.2 in.—Ib or 8.78 ft-k <18k NG

B. Redesign the section
1. Assume a width of 24 in.
2. Area enclosed by the outside parameter A, = (24h)
3. Parameter enclosed Py, =224 + h)
AZ
4. Torsional capacity = 0\/f =2

p

=(0.75)v4000 24
2(24+h)

2
in.—Ib or 1.138 h

. k
ft -
(2 / 7) (2 / 7)

=13,661
5. For no torsional reinforcement
N

or

A

2
p
Feo

2

18=1.138
(24+h)

or
h=29 in.

A section 24 x 29 will be adequate.

PROBLEMS

16.1-16.3 Determine the concrete shear capacity, web reinforcement shear capacity,
and design shear force permitted on the beam sections shown in Figures P16.1
through P16.3. Check for the spacing of web reinforcement. Use f/ = 3,000 psi and
£, =40,000 psi.

16.4 A reinforced beam of span 20 ft. shown in Figure P16.4 is subjected to a dead load of
1 k/ft. (excluding beam weight) and live load of 2 k/ft. Is the beam satisfactory to resist
the maximum shear force? Use f = 3,000 psi and f, = 60,000 psi.

16.5 The service dead load (excluding the beam) is one-half of the service live load on the
beam of span 25 ft. shown in Figure P16.5. What is the magnitude of these loads from
shear consideration? Use f = 4,000 psi and f, = 60,000 psi.
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J-12in—}
#3 @ 10in. OC
o @ 101n.
20in.
4-#8
FIGURE P16.1 Beam section for Problem 16.1.
HF—18in.—}
74
P\ | #@12in.0C
32in.
5-#7
74
FIGURE P16.2 Beam section for Problem 16.2.
JF—15in.—f
4-#5 | ‘
(1’10 web m ° 10in.
reinforcement)
FIGURE P16.3 Beam section for Problem 16.3.
J-12in—}
o #3 @ 12in. OC
447 18in.
- L
FIGURE P16.4 Beam section for Problem 16.4.
K—15in.—f
74
o (// #3 @ 8in. OC
27in.

4-#8

FIGURE P16.5 Beam section for Problem 16.5.

16.6 A simply supported beam is 15 in. wide and has an effective depth of 24 in. It supports a
total factored load of 10 k/ft. (including the beam weight) on a clear span of 22 ft. Design
the web reinforcement. Use f; = 4,000 psi and fy = 60,000 psi.

16.7 Design the web reinforcement for the service loads shown in Figure P16.6. Use f, = 4,000
psi and f} = 60,000 psi.
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D; =4k/ft. (including weight)

L, =6k/ft.
“/ 15in
I I O I O O A A A A e e
T 15 ft. T &
1ft. 1ft. 24 in.
4-#9
- <9
FIGURE P16.6 Loads on beam and section for Problem 16.7.
D; =5 k/ft. (excluding weight)
L, =10k/ft.
4 JF——20in——f
NN NN
o 5 o\ Jeo
¥ 30 ft. A&
32in.
5-#11
# | b* o000
FIGURE P16.7 Loads on beam and section for Problem 16.8.
D, =2Kk/ft.
L =4 K/t
12in.
I iiiiygeyyr) L
VAN o) Q
K 20 ft. A
24in.
4-#9
v

FIGURE P16.8 Loads on beam and section for Problem 16.9.

16.8 For the beam and service loads shown in Figure P16.7, design the web reinforcement
using #4 stirrups. Use f, = 5,000 psi and f, = 60,000 psi.

16.9 For the service loads on a beam (excluding beam weight) shown in Figure P16.8, design
the web reinforcement. Use f = 4,000 psi and f, = 50,000 psi.

16.10 Design the web reinforcement for the service loads on the beam shown in Figure P16.9.
Use f! = 3,000 psi and f, = 40,000 psi.

16.11 A simply supported beam carries the service loads (excluding the beam weight) shown in
Figure P16.10. Design the web reinforcement. Use £ = 4,000 psi and f, = 60,000 psi.

16.12 A simply supported beam carries the service loads (excluding the beam weight) shown in
Figure P16.11. Design the web reinforcement. Use #4 size stirrups. Use f, = 4,000 psi and
£, = 60,000 psi.
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L;=10k
D; =1k/ft. (excluding weight)
L;=1k/ft.
T p——20in.—
JII PP I3l P 3 I d i) —
/7> A o e
K 15 ft. A+ 15 ft. A
30in.

5-#11

FIGURE P16.9 Loads on beam and section for Problem 16.10.

L, =50k 50k  Dp=1Kk/ft.
(excluding weight)

gy et
AN & o) o
F—6 ft.—AF—6 ft.—AF—6 ft.—F

30in.

4-#9

FIGURE P16.10 Loads on beam and section for Problem 16.11.

D; =10k D; =10k
L,=10k L=10k p g
L;=1.8k/ft.
J 151
v Yy 5in.
SRR RN TN T R ——
P ~ Use #4
F—5 ft.—F 20 ft. A—5 ft.—f L size
25in.
5-#8
~
2

FIGURE P16.11 Loads on beam and section for Problem 16.12.

16.13 A cantilever beam carries the service loads, including the beam weight, shown in
Figure P16.12. Design the web reinforcement. Use f, = 4,000 psi and f, = 60,000 psi.
[Hint: V..., is at the support.] “

16.14 A beam carries the factored loads (including beam weight) shown in Figure P16.13.
Design the #3 size web reinforcement. Use f = 3,000 psi and f, = 40,000 psi.

16.15 A beam supported on the walls carries the uniform distributed loads and the concen-
trated loads from the upper floor shown in Figure P16.14. The loads are service loads
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D, =2k/ft.
L;=4k/ft.
/ .
A 0 B e P
12 ft. X

o

FIGURE P16.12 Loads on cantilever beam and section for Problem 16.13.

15k 15k 15k 15k
2.52(/&.
gy e
2 # o A
¥ 5@ 6 ft.=30 ft. &
# 3 size ——|
28in.
4-#11
bod |k

FIGURE P16.13 Loads on beam and section for Problem 16.14.

D; =50k

L, =60k D, =2Kk/ft.
L;=3k/ft.

v 4 ‘
I R e %

LQFZO in. ¥ 6 ft. "\/20 in. i i
¥ 20 ft. X # 3 size ——| 30in.
5-#11
b ood |k

FIGURE P16.14 Loads and section of beam.

including the weight of the beam. Design the #3 size web reinforcement. Use f = 4,000 psi
and f} = 50,000 psi.

16.16 Determine the torsional capacity of the beam section in Figure P16.15 without torsional
reinforcement. Use f = 4,000 psi and f, = 60,000 psi.

16.17 Determine the torsional capacity of the cantilever beam section shown in Figure P16.16
without torsional reinforcement. Use f; = 3,000 psi and f, = 40,000 psi.
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21in.

\o‘ooo i

3in.
74

4-#9

FIGURE P16.15 Beam section under torsion for Problem 16.16.

J—15in—}

00 00

3in.

4-#8
20in.

FIGURE P16.16 Cantilever section under torsion for Problem 16.17.

J—14in—f

18in.
4-#9

Qo 000 .
3in.

FIGURE P16.17 Beam section under torsion for Problem 16.18.

D; =15k
L; =20k

8 ft.

FIGURE P16.18 Torsional loads on cantilever for Problem 16.19.

16.18 A spandrel beam shown in Figure P16.17 is subjected to a factored torsion of 8 ft.-k.
Is this beam adequate if no torsional reinforcement is used? If not, redesign the section.
The width cannot exceed 16 in. Use f, = 4,000 psi and f) = 50,000 psi.

16.19 Determine the total depth of a 24 in. wide beam if no torsional reinforcement is used. The
service loads, as shown in Figure P16.18, act 5 in. to one side of the centerline. Use f, =
4,000 psi and f} = 60,000 psi.

16.20 A spandrel beam is exposed to a service dead load of 8 k and live load of 14 k acting 8 in.
off center of the beam. The beam section is 20 in. wide and 25 in. deep. Is the section
adequate without torsional reinforcement? If not, redesign the section using the same
width. Use f/ = 5,000 psi and f, = 60,000 psi.



’I 7 Compression and Combined
Forces Reinforced
Concrete Members

TYPES OF COLUMNS

Concrete columns are divided into four categories.

PEDESTALS

The column height is less than three times the least lateral dimension. A pedestal is designed with
plain concrete (without reinforcement) for a maximum compression strength of 0.85 ¢ fA,, where
¢ is 0.65 and A, is the cross-sectional area of the column.

CoLuMNSs WITH AXIAL LoADs

The compressive load acts coinciding with the longitudinal axis of the column or at a small eccen-
tricity so that there is no induced moment or there is a moment of little significance. This is a basic
case although not quite common in practice.

SHORT CoLuMNSs WITH COMBINED LOADS

The columns are subjected to an axial force and a bending moment. However, the buckling effect is
not present and the failure is initiated by crushing of the material.

LARGE OR SLENDER COLUMNS WITH COMBINED LOADS

In this case the buckling effect is present. Due to an axial load, P, the column axis buckles by an
amount A. Thus, the column is subjected to the secondary moment or the P-A moment.

As concrete and steel both can share compression loads, steel bars directly add to the strength of
a concrete column. The compression strain is equally distributed between concrete and steel that
are bonded together. It causes a lengthwise shortening and a lateral expansion of the column due to
Poisson’s effect. The column capacity can be enhanced by providing a lateral restraint. The column
is known as a tied or a spiral column depending on whether the lateral restraint is in the form of the
closely spaced ties or the helical spirals wrapped around the longitudinal bars, as shown in Figure
17.1a and b.

Tied columns are ordinarily square or rectangular and spiral columns are round but they could
be otherwise too. The spiral columns are more effective in terms of the column strength because of
their hoop stress capacity. But they are more expensive. As such tied columns are more common and
spiral columns are used only for heavy loads.

The composite columns are reinforced by steel shapes that are contained within the concrete
sections or by concrete being filled in within the steel section or tubing as shown in Figure 17.1c and d.
The latter are commonly called the lally columns.

347
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FIGURE 17.1 Types of columns: (a) tied column, (b) spiral column, and (c) and (d) composite columns.

AXIALLY LoADED COLUMNS

This category includes columns with a small eccentricity. The small eccentricity is defined when
the compression load acts at a distance, e, from the longitudinal axis controlled by the following
conditions:

Forspiral columns: e <0.05h (17.1)

Fortiedcolumns: e<0.1h (17.2)

where £ is column dimension along distance, e.

In the case of columns, unlike beams, it does not matter whether the concrete or steel reaches
ultimate strength first because both of them deform/strain together, which distributes the matching
stresses between them.

Also, high strength is more effective in columns because the entire concrete area contributes to
the strength, unlike the contribution from concrete in the compression zone only in beams, which
is about 30%—40% of the total area.

The basis of design is the same as for wood or steel columns, that is,

P, <4P, (17.3)

where
P, is factored axial load on the column
P, is nominal axial strength
¢ = strength reduction factor
= (.70 for spiral column
= 0.65 for tied column

The nominal strength is the sum of the strength of concrete and the strength of steel. The concrete
strength is the ultimate (uniform) stress 0.85f, times the concrete area (A, — A,) and the steel
strength is the yield stress, f,, times the steel area, A, However, to account for the small eccentricity,
a factor (0.85 for spiral and 0.8 for tied) is applied.

Thus,

P, =0.85[0.85f/(A, — A,) + f,A, ]forspiral columns (17.4)

P, =0.80[0.85f(A, — A,) + f,A, ]for tied columns (17.5)

Including a strength reduction factor of 0.7 for spiral and 0.65 for tied columns in the previous equa-
tions, Equation 17.3 for column design is as follows:
For spiral columns with e < 0.05h

P, = 0.60[0.85f/(A, — A,) + f,A,] (17.6)
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For tied columns with e < 0.1 &

P, =0.52[0.85£(A, — A+ f,A,] (17.7)

STRENGTH OF SPIRALS

It could be noticed that a higher factor is used for spiral columns than tied columns. The reason is
that in a tied column, as soon as the shell of a column spalls off, the longitudinal bars will buckle
immediately with the lateral support gone. But a spiral column will continue to stand and resist
more load with the spiral and longitudinal bars forming a cage to confine the concrete.

Because the utility of a column is lost once its shell spalls off, the American Concrete Institute
(ACI) assigns only slightly more strength to the spiral as compared to strength of the shell that gets
spalled off.

With reference to Figure 17.2,

Strengthof shell = 0.85f/(A, — A,) (@)
Hooptensioninspiral =2f A, =2f,p A, (b)

where p is spiral steel ratio = A, /A..
Equating the two expressions (a) and (b) and solving for p,,

05 As _
ps—0.425f(A 1] ©

y C

— D, —>|

S
Core
9 |

o |- Shell area

area
W Aho
frAg, <

q s=pitch

FIGURE 17.2  Spiral column section and profile.
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Making the spiral a little stronger,

ps = 0-45£(i - IJ (17.8)
f.LA

y c

Once the spiral steel is determined, the following expression derived from the definition of p, is used
to set the spacing or pitch of the spiral.
By definition, from Figure 17.2,

volume of spiral in one loop

ps = — @
volume of concrete in pitch, s
(D, —d,)A,
— ( c . h) sp (e)
(nD?/4)s
If the diameter difference, that is, d,, is neglected,
4A
= —sp f
Ps Ds (®)
or
4A,,
s = (17.9)
DL'p.Y

Appendix D, Table D.13, based on Equations 17.8 and 17.9, can be used to select the size and
pitch of spirals for a given diameter of a column.

SPECIFICATIONS FOR COLUMNS

1. Main steel ratio: The steel ratio, Pes should not be less than 0.01 (1%) and not more than
0.08. Usually a ratio of 0.03 is adopted.

2. Minimum number of bars: A minimum of four bars are used within the rectangular or
circular ties and six within the spirals.

3. Cover: A minimum cover over the ties or spiral shall be 1} in.

4. Spacing: The clear distance between the longitudinal bars should neither be less than 1.5
times the bar diameter nor 1} in. To meet these requirements, Appendix D, Table D.14 can
be used to determine the maximum number of bars that can be accommodated in one row
within a given size of a column.

5. Tie requirements:

a. The minimum size of the tie bars is #3 when the size of longitudinal bars is #10 or smaller
or when the column diameter is 18 in. or less. The minimum size is #4 for longitudinal
bars larger than #10 or a column larger than 18 in. Usually, #5 is the maximum size.

b. The center-to-center spacing of ties should be the smaller of the following:

i. 16 times the diameter of longitudinal bars
ii. 48 times the diameter of ties
iii. Least column dimension

c. The ties shall be so arranged that every corner and alternate longitudinal bar will have
the lateral support provided by the corner of a tie having an included angle of not more
than 135°. Figure 17.3 shows the tie arrangements for several columns.
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FIGURE 17.3 Tie arrangements for several columns (a) through (i).

d. Longitudinal bar shall not have more than 6 in. clear distance on either side of a tie. If
it is more than 6 in., a tie is provided as shown in Figure 17.3c and e.
6. Spiral requirements:
a. The minimum spiral size is 3/8 in. (#3). Usually the maximum size is 5/8 in. #5).
b. The clear space between spirals should not be less than 1 in. or more than 3 in.

ANALYSIS OF AXIALLY LOADED COLUMNS

The analysis of columns of small eccentricity involves determining the maximum design load
capacity and verifying the amount and details of the reinforcement according to the code. The pro-
cedure is summarized below:

1. Check that the column meets the eccentricity requirement (<0.054 for spiral and <0.14 for
tied column).

2. Check that the steel ratio, p,, is within 0.01-0.08.

3. Check that there are at least four bars for a tied column and six bars for a spiral column
and that the clear spacing between bars is determined according to the “Specifications for
Columns” section.

4. Calculate the design column capacity using Equation 17.6 or 17.7.

5. For ties, check the size, spacing, and arrangement using the information in the
“Specifications for Columns” section. For spirals, check the size and spacing using the
information in the “Specifications for Columns” section.
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Example 17.1

Determine the design axial load on a 16 in. square axially loaded column reinforced with eight
#8 size bars. Ties are #3 at 12 in. on center. Use £/ = 4,000 psi and f, = 60,000 psi.

SOLUTION

1. A, = 6.32 in.2 (from Appendix D, Table D.2)
2. A,=16X16 =256 in.?
3. Py = As :6'—32 =0.0247
A, 256
This is >0.01 and <0.08 OK
4. h = 2(cover) + 2(tie diameter) + 3(bar diameter) + 2(spacing)
or 16 = 2(1.5) 4+ 2(0.375) + 3(1) + 2(s)
ors =4.625in.
Smin = 1.5(1) = 1.5 in., spacing s is more than s,,;,, OK
Smax = 6 1N, spacing s is less than s, OK
5. From Equation 17.7
p - 0.52[0.85(4,000)(256 — 6.32) + (60,000)(6.32)]

u

1,000
=638.6 k
6. Check the ties
a. #3size OK

b. The spacing should be the smaller of the following:
i. 16 x 1 =16 in. « Controls, more than given 12 in. OK
ii. 48x0.375=181in.
iii. 16in.
c. Clear distance from the tie = 4.625 in. (step 4) < 6 in. OK

Example 17.2

A service dead load of 150 k and live load of 220 k is axially applied on a 15 in. diameter circular
spiral column reinforced with six #9 bars. The lateral reinforcement consists of 3/8 in. spiral at 2 in.
on center. Is the column adequate? Use £/ = 4,000 psi and f, = 60,000 psi.

SOLUTION
1. A, = 6 in.2 (from Appendix D, Table D.2)
2. A, :%(1 5?2 =176.63in.2
A, 6
=L =0.034
3. P A 176.63

g
This is >0.01 and <0.08: OK
4. (D, - d,)=h-2(cover) - 2(spiral diameter)
=15-2(15)-2(0.375)=11.25 in.
5. Perimeter, p = n(D, — d,) = n(11.25) = 35.33 in.
p = 6(bar diameter) + 6(spacing)
or 35.33 = 6(1.128) + 6(s)
ors=4.76in.
Smin = 1.5(1) = 1.5 in., spacing s is more than s,,,, OK
Smax = 6 N, spacing s is less than s, ., OK
6. bp — 0.60[0.85(4,000)(176.63 — 6) + (60,000)(6)]
" 1,000

=564 k
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7. P,=12(150)+1.6(220) =532 k < 564 k OK

8. Check for spiral
a. 3/8in. diameter OK
D .=15-3=12in.

b. A =%(12)2 =113.04 in2

A, =0.1Tin?
From Equation 17.8

(4) (1 76.63

p; =0.45—
(60)\ 113.04

1) =0.017
From Equation 17.9

s= M =2.16 in.> 2 in. (given) OK
(12)(0.017)

c. Clear distance =2 — 3/8 =1.625 in. > 1 in. OK

DESIGN OF AXIALLY LOADED COLUMNS

Design involves fixing of the column dimensions, selecting reinforcement, and deciding the size
and spacing of ties and spirals. For a direct application, Equations 17.6 and 17.7 are rearranged as
follows by substituting A, = p,A,.
For spiral columns:
B, =0.60A,[0.85f/(1-p,)+ f,p,] (17.10)
For tied columns:

P, =0.52A,[0.85£(1—p)+ £,p,] (17.11)

The design procedure involves the following:

—_

. Determine the factored design load for various load combinations.

2. Assume p, = 0.03. A lower or higher value could be taken depending upon a bigger or
smaller size of column being acceptable.

3. Determine the gross area, Ag, from Equation 17.10 or 17.11. Select the column dimensions
to a full-inch increment.

4. For the actual gross area, calculate the adjusted steel area from Equation 17.6 or 17.7.
Make the selection of steel using Appendix D, Table D.2 and check from Appendix D,
Table D.14 that the number of bars can fit in a single row of the column.

5. (For spirals) select the spiral size and pitch from Appendix D, Table D.13. (For ties) select
the size of tie, decide the spacing, and arrange ties as per item 5 of “Specifications for
Columns” section.

6. Sketch the design.

Example 17.3

Design a tied column for an axial service dead load of 200 k and service live load of 280 k. Use
f = 4,000 psi and f, = 60,000 psi.
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FIGURE 17.4 Tied column section of Example 17.3.

SOLUTION

1. P, =1.2(200) +1.6(280) = 688 k
2. For p, = 0.03, from Equation 17.11,

P

A, = :

0.5200.85f/(1-p,) +1,p,]
~ 688
~0.52(0.85(4)(1- 0.03) + 60(0.03)]
=259.5 in2

For a square column, h=+/259.5 =16.1in., use 16 in. X 16 in., Ag =256 in.2
3. From Equation 17.7,
688 = 0.52 [0.85(4)(256 — A,) + 60(A,)]
688 = 0.52(870.4 + 56.6A,)
Ay =8in?2
Select 8 bars of #9 size, A,, (provided) = 8 in.?
From Appendix D, Table D.14, for a core size of 16 — 3 = 13 in., 8 bars of #9 size can be
arranged in a row.
4. Design of ties:
a. Select #3 size
b. Spacing should be the smaller of the following:
i. 16(1.128) =18 in.
ii. 48(0.375) =18 in.
iii. 16 in. « Controls
c. Clear distance
16 = 2(cover) + 2(tie diameter) + 3(bar diameter) + 2(spacing)
16 = 2(1.5) + 2 (0.375) + 3(1.128) + 2s
ors=443in. < 6in. OK
5. The sketch is shown in Figure 17.4.

Example 17.4

For Example 17.3, design a circular spiral column.

SOLUTION

1. P, =1.2(200)+1.6(280) = 688 k
2. For p, = 0.03, from Equation 17.10,

P

u

B 0.60[ 0.85f(1-p, )+ f,p, |

= 088 =225 in.2
0.60[0.85(1—0.03) + 60(0.03)]

8
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I
FIGURE 17.5 Spiral column of Example 17.4.

2
For a circular column, ﬂ =225,h=16.93 in.,, use 17 in.,, A, = 227 in.2

3. From Equation 17.6,

688 =0.60[ 0.85(4)(227 — A, )+ 60(A,)]
688 =0.60(771.8+56.6 A,,)
or A, =6.62 in.2

Select 7 bars of #9 size, A, (provided) = 7 in.?
From Appendix D, Table D.14, for a core size of 17 — 3 = 14 in., 9 bars of #9 can be
arranged in a single row. OK
4. Design of spiral:
a. From Appendix D, Table D.13, for 17 in. diameter column,
spiral size = 3/8 in.
pitch =2 in.
b. Clear distance
2-0.375=1.625in. > 1 in. OK
5. The sketch is shown in Figure 17.5.

SHORT COLUMNS WITH COMBINED LOADS

Most of the reinforced concrete columns belong to this category. The condition of an axial load-
ing or a small eccentricity is rare. The rigidity of the connection between beam and column makes
the column rotate with the beam resulting in a moment at the end. Even an interior column of
equally spanned beams will receive unequal loads due to variations in the applied loads, producing
a moment on the column.

Consider that a load, P, acts at an eccentricity, e, as shown in Figure 17.6a. Apply a pair of loads
P,, one acting up and one acting down through the column axis, as shown in Figure 17.6b. The
applied loads cancel each other and, as such, have no technical significance. When we combine the
load P, acting down at an eccentricity e with the load P, acting upward through the axis, a couple,
M, = P e, is produced. In addition, the downward load P, acts through the axis. Thus, a system
of force acting at an eccentricity is equivalent to a force and a moment acting through the axis, as
shown in Figure 17.6¢. Inverse to this, a force and a moment when acting together are equivalent to
a force acting with an eccentricity.

As discussed with wood and steel structures, buckling is a common phenomenon associated with
columns. However, concrete columns are stocky and a great number of columns are not affected
by buckling. These are classified as the short columns. It is the slenderness ratio that determines
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FIGURE 17.6 Equivalent force system on a column: (a) eccentric load on a column, (b) equivalent loaded
column with axial and eccentric loads, and (c) equivalent column with axial load and moment.

whether a column could be considered a short or a slender (long) column. The ACI sets the follow-
ing limits when it is a short column and the slenderness effects could be ignored:

a. For members not braced against sidesway:

LY (17.12)
,,

b. For members braced against sidesway:

Eg34_12[%) (17.13a)
r M,
or
El <40 (17.13b)
-
where

M, and M, are small and large end moments. The ratio M,/M, is positive if a column bends in
a single curvature, that is, the end moments have opposite signs. It is negative for a double
curvature when the end moments have the same sign. (This is opposite of the sign conven-
tion for steel in the “Magnification Factor, B,” section in Chapter 12.)

[ is length of column

K is effective length factor given in Figure 7.6 and the alignment charts in Figures 10.5 and 10.6

r = radius of gyration = \/I/_A

= 0.3A for rectangular column
= 0.25h for circular column

If a clear bracing system in not visible, the ACI provides certain rules to decide whether a frame is
braced or unbraced. However, conservatively it can be assumed to be unbraced.

The effective length factor has been discussed in detail in the “Column Stability Factor” section
in Chapter 7, and the “Effective Length Factor for Slenderness Ratio” section in Chapter 10. For
columns braced against sidesway, the effective length factor is 1 or less; conservatively it can be set
as 1. For members subjected to sidesway, the effective length factor is greater than 1. It is 1.2 for a
column fixed at one end and the other end has the rotation fixed but is free to translate (sway).
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EFFECTS OF MOMENT ON SHORT COLUMNS

To consider the effect of an increasing moment (eccentricity) together with an axial force on a col-
umn, the following successive cases have been presented accompanied with respective stress/strain
diagrams.

ONLY AxiAL LoAD AcCTING

The entire section will be subjected to a uniform compression stress, o, = P, /A,, and a uniform
strain of € = 6/E,, as shown in Figure 17.7. The column will fail by the crushing of concrete. By
another measure the column will fail when the compressive concrete strain reaches 0.003. In the
following other cases, the strain measure will be considered because the strain diagrams are linear.
The stress variations in concrete are nonlinear.

LARGE AXIAL LOAD AND SMALL MOMENT (SMALL ECCENTRICITY)

Due to axial load there is a uniform strain, —e,, and due to moment, there is a bending strain of
compression on one side and tension on the other side. The sum of these strains is shown in the last
diagram of Figure 17.8b. As the maximum strain due to the axial load and moment together cannot
exceed 0.003, the strain due to the load will be smaller than 0.003 because a part of the contribution
is made by the moment. Hence, the axial load P, will be smaller than the previous case.

=

/» -o, e, Max
A\ 4 A4 A4 v A4 A4 v 0.003
(b) (c)

FIGURE 17.7 Axial load only on column: (a) load or column, (b) stress, (c) strain.
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FIGURE 17.8 Axial load with small moment on column: (a) load on column, (b) axial strain, (c) bending
strain, (d) combined strain.
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LARGE AXIAL LOAD AND MOMENT LARGER THAN CASE 2 SECTION

This is a case when the strain is zero at one face. To attain the maximum crushing strain of 0.003 on
the compression side, the strain contribution from both the axial load and moment will be 0.0015.

LARGE AXIAL LOAD AND MOMENT LARGER THAN CASE 3 SECTION

When the moment (eccentricity) increases somewhat from the previous case, the tension will
develop on one side of the column as the bending strain will exceed the axial strain. The entire ten-
sile strain contribution will come from steel.* The concrete on the compression side will contribute
to compression strain. The strain diagram will be as shown in Figure 17.10d. The neutral axis (the
point of zero strain) will be at a distance ¢ from the compression face. As the strain in steel is less
than yielding, the failure will occur by crushing of concrete on the compression side.

BALANCED AXIAL LOAD AND MOMENT

As the moment (eccentricity) continues to increase, the tensile strain steadily rises. A condition will
be reached when the steel on the tension side will attain the yield strain, €, = fy/E (for Grade 60
steel, this strain is 0.002), simultaneously as the compression strain in concrete reaches the crushing
strain of 0.003. The failure of concrete will occur at the same time as steel yields. This is known as
the balanced condition. The strain diagrams in this case are shown in Figure 17.11. The value of ¢
in Figure 17.11d is less as compared to the previous case, that is, the neutral axis moves up toward
the compression side.
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FIGURE 17.9 Axial load and moment (Case 3) on column: (a) load on column, (b) axial strain, (c) bending
strain, (d) combined strain.
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FIGURE 17.10 Axial load and moment (Case 4) on column: (a) load on column, (b) axial strain, (c) bending
strain, (d) combined strain.

* The concrete being weak in tension, its contribution is neglected.
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FIGURE 17.11 Balanced axial load and moment (Case 5) on column: (a) load on column, (b) axial strain,
(c) bending strain, (d) combined strain.
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FIGURE 17.12 Small axial load and large moment (Case 6) on column: (a) load on column, (b) axial strain
(c) bending strain, (d) combined strain.

SMALL AXIAL LoAD AND LARGE MOMENT

As the moment (eccentricity) is further increased, steel will reach to the yield strain, e, = f/E,
before concrete attains the crushing strain of 0.003. In other words, when compared to the concrete
strain of 0.003, the steel strain has already exceeded its yield limit, €, as shown in Figure 17.12d.
The failure will occur by yielding of steel. This is called the tension-controlled condition.

No AprpreciABLE AXIAL LOAD AND LARGE MOMENT

This is the case when the column acts as a beam. The eccentricity is assumed to be at infinity. The
steel has long before yielded prior to concrete reaching a level of 0.003. In other words, when com-
pared to a concrete strain of 0.003, the steel strain is 0.005 or more. This is shown in Figure 17.13b.

As discussed in the “Axially Loaded Columns” section, when a member acts as a column, the
strength (capacity) reduction factor, ¢, is 0.7 for spiral columns and 0.65 for tied columns. This is
the situation for Cases 1 through 5. For beams, as in Case 7, the factor is 0.9. For Case 6, between
the column and the beam condition, the magnitude of ¢ is adjusted by Equation 14.13, based on the
value of strain in steel, €,.

If the magnitudes of the axial loads and the moments for all seven cases are plotted, it will appear
like the shape shown in Figure 17.14. This is known as the interaction diagram.

CHARACTERISTICS OF THE INTERACTION DIAGRAM

The interaction diagram presents the capacity of a column for various proportions of the loads and
moments. Any combination of loading that falls inside the diagram is satisfactory whereas any
combination falling outside represents a failure condition.
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FIGURE 17.13 Moment only column (Case 7): (a) load on column, (b) combined strain.
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FIGURE 17.14 Column interaction diagram.

From Cases 1 through 5 where compression control exists, as the axial load decreases the moment
capacity increases. Below this stage, the position is different. First of all, for the same moment, the
axial capacity is higher in the compression control zone than in the tensile control zone. Further
in the tensile control zone, as the axial load increases the moment capacity also increases. This is
due to the fact that any axial compression load tends to reduce the tensile strain (and stress), which
results in raising of the moment-resisting capacity.

Any radial line drawn from origin O to any point on the diagram represents a constant eccen-
tricity, that is, a constant ratio of the moment to the axial load. A line from point O to a point on
the diagram for the “Balanced Axial Load and Moment” (Case 5) condition represents the €,,,,ccq
eccentricity.

Within the same column, as the amount of steel varies, although the shape of the diagram (curve)
remains similar to Figure 17.4, the location of the curve shifts to represent the appropriate magni-
tudes of the axial force and the moment; that is, the shapes of the curves are parallel.

The interaction diagram serves as a very useful tool in the analysis and design of columns for
the combined loads.
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APPLICATION OF THE INTERACTION DIAGRAM

The ACI has prepared the interaction diagrams in dimensionless units for rectangular and circular
columns with different arrangements of bars for various grades of steel and various strengths of con-
crete. The abscissa has been represented as R, = M, /¢0f, A h and the ordinate as K, = B, /0f, A,.
Several of these diagrams for concrete strength of 4,000 psi and steel strength of 60,000 psi are
included in Appendix D, Tables D.15 through D.22.

On these diagrams, the radial strain line of value = 1 represents the balanced condition. Any point
on or above this line represents compression control and ¢ = 0.7 (spiral) or 0.65 (tied). Similarly
the line of €, = 0.005 represents that the steel has yielded or beam behavior. Any point on or below
this line will have ¢ = 0.9. In between these two lines is the transition zone for which ¢ has to be
corrected by Equation 14.13.

The line labeled K,,,, indicates the maximum axial load with the limiting small eccentricity of
0.054 for spiral and 0.1# for tied columns.
The other terms in these diagrams are

A

st

A

8
2. h = column dimension in line with eccentricity (perpendicular to the plane of bending)

center-to-center distance of outer row of steel
3.7= Y (17.14)

4. Slope of radial line from origin = h/e

1. p, =

ANALYSIS OF SHORT COLUMNS FOR COMBINED LOADING

This involves determining the axial load strength and the moment capacity of a known column. The
steps comprise the following:

1. From Equation 17.12 or 17.13, confirm that it is a short column (there is no slenderness effect).
. Calculate the steel ratio, p, = A /A,, and check for the value to be between 0.01 and 0.08.
. Calculate y from Equation 17.14

. Select the right interaction diagram to be used based on vy, type of cross section, f., and f,.

. Calculate the slope of the radial line = h/e '

. Locate a point for coordinates K, = 1 and R, = 1/slope, or R, = e/h (or for any value of K,

R, = K,e/h). Draw a radial line connecting the coordinate point to the origin. Extend the
line to intersect with p, of step 2. If necessary, interpolate the interaction curve.

. At the intersection point, read K, and R,,.

8. If the intersection point is on or above the strain line = 1, ¢ = 0.7 or 0.65. If it is on or below
g, = 0.005, ¢ = 09. If it is in between, correct ¢ by Equation 14.13. This correction is rarely
applied.

9. Compute P, = K, f/A, and M, = R,{ f/A h.

(o)W, I PRSI S

~

Example 17.5

A 10 ft. long braced column with a cross section is shown in Figure 17.15. Find the axial design
load and the moment capacity for an eccentricity of 6 in. The end moments are equal and have
the same sign. Use f/ = 4,000 psi and f, = 60,000 psi.

SOLUTION

M
1. For same sign (double curvature), /\71 =-1.

2. K=1 (braced), /=10 x 12 = 120 in.f r=0.3h=0.3(16) = 4.8 in.
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FIGURE 17.15 Eccentrically loaded column for Example 17.5.

3. K_120)_ 25
r 4.8
4. Limiting value from Equation 17.13

=34-12(-1)=46>40

Limit value of 40 used
Since step (3) < step (4), short column

5. A, =16x16=256in?

A, =6.32 in2
6.32
=—"2-0.025
Pe 256

6. Center to center of steel = 16 — 2(cover) — 2(tie diameter) — 1(bar diameter)
=16 — 2(1.5) — 2(0.375) — 1(1) = 11.25 in.

_ 11.25 ~0.70
16
7. Use the interaction diagram in Appendix D, Table D.17

8. slope _h_16 2.67
e 6

= ! =L20.375
slope  2.67

Draw a radial line connecting the aforementioned coordinates to origin
10. At p, = 0.025, K, = 0.48 and R, = 0.18
11. The point is above the line where strain = 1, hence ¢ = 0.65
12. P, = K,bf/ A, = 0.48(0.65)(4)(256) = 319.5 k

M, = R,bf Ah = 0.18(0.65)4)(256)(16) = 1917 in.-k or 159.74 ft.-k.

9. K, =1R,

DESIGN OF SHORT COLUMNS FOR COMBINED LOADING

This involves determining the size, selecting steel, and fixing ties or spirals for a column. The steps
are as follows:

[

. Determine the design-factored axial load and moment.

2. Based on p, = 1% and axial load only, estimate the column size by Equation 17.10 or 17.11,
rounding on the lower side.

3. For a selected size (diameter) of bars, estimate y for the column size of step 2.

4. Select the right interaction diagram based on f, /f,» the type of cross section, and y of

step 3.

5. Calculate K, = B,/0f/A, and R, = M, /¢f’A h, assuming ¢ = 0.7 (spiral) or 0.65 (ties).
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6. Entering the appropriate diagram at Appendix D, Tables D.15 through D.22, read p, at the
intersection point of K, and R,. This should be less than 0.05. If not, change the dimension
and repeat steps 3—6.

7. Check that the interaction point of step 6 is above the line where strain = 1. If not adjust ¢
and repeat steps 5 and 6.

8. Calculate the required steel area, A, = p,A, and select reinforcement from Appendix D,
Table D.2 and check that it fits in one row from Appendix D, Table D.14.

9. Design ties or spirals from steps 5 and 6 of the “Specification for Columns” section.

10. Confirm from Equation 17.12 or 17.13 that the column is short (no slenderness effect).

Example 17.6

Design a 10 ft. long circular spiral column for a braced system to support service dead and live
loads of 300 k and 460 k, respectively, and service dead and live moments of 100 ft.-k each. The
moment at one end is zero. Use £/ = 4,000 psi and f, = 60,000 psi.

SOLUTION

1. P, =12(300) +1.6(460) = 1096 k
M, =12(100)+1.6(100) = 280 ft.-k or 3360 in.-k
2. Assume p, = 0.01, from Equation 17.10:

F,
A =
¥ 0.60[0.85(/(1—p,) +1,p,]
~ 1096
0.60[0.85(4)(1—0.01)+ 60(0.01)]
=460.58 in.2
2
i =460.58
4
orh=2422in.

Use h =24 in,, A, =452 in2
3. Assume #9 size of bar and 3/8 in. spiral center-to-center distance
Center to center distance = 24 — 2(cover) — 2(spiral diameter) — 1(bar diameter)
=24 — 2(1.5) — 2(3/8) — 1.128 = 19.12 in.
19.12
=——=0.8
! 24
Use the interaction diagram in Appendix D, Table D.21
P 1096

4K, =—4 = =0.866
Of’A,  (0.7)(4)(452)
M 3360

u

R = AR 0 @452024)

5. At the intersection point of K, and R,, p, = 0.025

6. The point is above the strain line = 1, hence ¢ = 0.7 OK

7. A, =(0.025)(452) =113 in2
From Appendix D, Table D.2, select 12 bars of #9, A, = 12 in.?
From Appendix D, Table D.14 for a core diameter of 24 — 3 = 21 in., 15 bars of #9 can be
arranged in a row
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8. Selection of spirals
From Appendix D, Table D.13, size = 3/8 in., pitch = 2} in.
Clear distance = 2.25 — 3/8 = 1.875 > 1 in. OK
9.K=1,/=10x 12 =120 in., r = 0.25(24) = 6 in.

ﬁ_1(120)
r 6

M,
34 —12(%) =34
M,

Because (Kl/r) < 34, short column.

=20

LONG OR SLENDER COLUMNS

When the slenderness ratio of a column exceeds the limits given by Equation 17.12 or 17.13, it is
classified as a long or slender column. In a physical sense, when a column bends laterally by an
amount, A, the axial load, P, introduces an additional moment equal to P A. When this P A moment
cannot be ignored, the column is a long or slender column.

There are two approaches to deal with this additional or secondary moment. The nonlinear
second-order analysis is based on a theoretical analysis of the structure under application of an
axial load, a moment, and the deflection. As an alternative approach, the ACI provides a first-
order method that magnifies the moment acting on the column to account for the P—A effect. The
magnification expressions for the braced (nonsway) and unbraced (sway) frames are similar to the
steel magnification factors discussed in the “Magnification Factor, B,” section” in Chapter 12 and
the “Magnification Factor for Sway, B,” section in Chapter 12. After the moments are magnified,
the procedure for short columns from the “Analysis of Short Columns for Combined Loading” and
“Design of Short Columns for Combined Loading” sections can be applied for analysis and design
of the column using the interaction diagrams.

The computation of the magnification factors is appreciably complicated for concrete because of
the involvement of the modulus of elasticity of concrete and the moment of inertia with creep and
cracks in concrete.

A large percent of columns do not belong to the slender category. It is advisable to avoid the
slender columns whenever possible by increasing the column dimensions, if necessary. As a rule
of thumb, a column dimension of one-tenth of the column length in braced frames will meet the
short column requirement. For a 10 ft. length, a column of 1 ft. or 12 in. or more will be a short
braced column. For unbraced frames, a column dimension one-fifth of the length will satisfy the
short column requirement. A 10 ft. long unbraced column of 2 ft. or 24 in. dimension will avoid the
slenderness effect.

PROBLEMS

171 Determine the design axial load capacity and check whether the reinforcements meet
the specifications for the column shown in Figure P17.1. Use £ = 4,000 psi and f, =
60,000 psi.

17.2 Determine the design axial load capacity and check whether the reinforcements meet
the specifications for the column shown in Figure P17.2. Use £ = 4,000 psi and f, =
60,000 psi.
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FIGURE P17.1 Column section for Problem 17.1.
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FIGURE P17.2 Column section for Problem 17.2.

FIGURE P17.3 Column section for Problem 17.3.

17.3  Determine the design axial load capacity of the column in Figure P17.3 and check whether
the reinforcement is adequate. Use £ = 5,000 psi and f, = 60,000 psi.

17.4 Determine whether the maximum service dead load and live load carried by the col-
umn shown in Figure P17.4 are equal. Check for spiral steel. Use f’ = 3,000 psi and
Jf, = 40,000 psi.

17.5 Compute the maximum service live load that may be axially placed on the column
shown in Figure P17.5. The service dead load is 150 k. Check for ties specifications. Use
£ =3,000 psi and fy = 40,000 psi.

17.6 A service dead load of 100 k and service live load of 450 k are axially applied on a 20 in.
diameter circular column reinforced with six #8 bars. The cover is 11/2 in. and the spi-
ral size is 1/2 in. at a 2 in. pitch. Is the column adequate? Use £ = 4,000 psi and f, =
60,000 psi.

17.7 Design a tied column to carry a factored axial design load of 900 k. Use £ = 5,000 psi
and f, = 60,000 psi.

17.8  For Problem 177, design a circular spiral column.
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FIGURE P17.4 Column section for Problem 17.4.
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FIGURE P17.5 Column section for Problem 17.5.
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FIGURE P17.6 Column section for Problem 17.13.

17.9  Design a tied column to support a service dead axial load of 300 k and live load of 480 k.
Use £/ = 4,000 psi and f, = 60,000 psi.

17.10 Redesign a circular spiral column for Problem 17.9.

17.11 Design a rectangular tied column to support an axial service dead load of 400 k and live
load of 590 k. The larger dimension of the column is approximately twice the shorter
dimension. Use f = 5,000 psi and f} = 60,000 psi.

17.12 Design the smallest circular spiral column to carry an axial service dead load of 200 k
and live load of 300 k. Use f = 3,000 psi and ﬁ = 60,000 psi. [Hint: For the smallest
dimension, use 8% steel and it is desirable to use #11 steel to reduce the number of bars
to be accommodated in a single row.]

17.13 For the 8 ft. long braced column shown in Figure P17.6, determine the axial load strength
and the moment capacity at an eccentricity of 5 in in the larger dimension. Use f. =
4,000 psi and fy = 60,000 psi.

17.14 An unbraced column shown in Figure P17.7 has a length of 8 ft. and a cross section as
shown. The factored moment-to-load ratio on the column is 0.5 ft. Determine the strength
of the column. K = 1.2. Use £, = 4,000 psi and f, = 60,000 psi.

17.15 On a 10 ft. long column of an unbraced frame system, the load acts at an eccentricity of
5 in. The column section is shown in Figure P17.8. What are the axial load capacity and
moment strength of the column? Use £ = 4,000 psi and f‘ = 60,000 psi.
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FIGURE P17.7 Column section for Problem 17.14.
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FIGURE P17.8 Column section for Problem 17.15.

17.16 Design a 8 ft. long circular spiral column of a braced system to support a factored axial
load of 1200 k and a factored moment of 300 ft.-k. The end moments are equal and have
the same signs. Use £ = 4,000 psi and f, = 60,000 psi.

17.17 Design a tied column for Problem 17.16. Arrange the reinforcement on all faces.

17.18 For an unbraced frame, design a circular column of 10 ft. length that supports service
dead and live loads of 400 k and 600 k, respectively, and service dead and live moments
of 120 ft.-k and 150 ft.-k, respectively. The end moments are equal and have opposite
signs. K = 1.2. Use £/ = 4,000 psi and f, = 60,000 psi.

17.19 Design a tied column for Problem 17.18 having reinforcement on all faces.

17.20 A braced frame has a 10 ft. long column. Design a tied column with reinforcing bars on
two end faces only to support the following service loads and moments. If necessary,
adjust the column dimensions to qualify it as a short column. The column has equal end
moments and a single curvature. Use £ = 4,000 psi and f, = 60,000 psi.

P,=150k, P, =200k
M, =50 ft-k, M, =70 ft.-k.
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Appendix A: General

TABLE A.1
Useful Conversion Factors
Multiply By To Obtain
Pounds (m) 0.4356 Kilogram
Kilogram 2.205 Pounds (m)
Mass in slug 322 Weight in pound
Mass in kilogram 9.81 Weight in Newton (N)
Pound (f) 4.448 Newton
Newton 0.225 Pounds
U.S. or short ton 2000 Pounds
Metric ton 1000 Kilogram
U.S. ton 0.907 Metric ton
Foot 0.3048 Meter
Meter 3.281 Feet
Mile 5280 Feet
Mile 1609 Meter
1.609 Kilometer
Square feet 0.0929 Square meter
Square mile 2.59 Square kilometer
Square kilometer 100 Hectare (ha)
Liter 1000 Cubic centimeter
Pounds per ft.2 47.88 N/m? or pascal
Standard atmosphere 101.325 Kilopascal (kPa)
Horsepower 550 Foot-pound/second
745.7 Newton-meter/second or Watt
°F 5/9(°F — 32) °C
°C 9/5(°C + 32) °F
Log to base e (i.e., log,, 0.434 Log to base 10 (i.e., log,,)

where e = 2.718)

TABLE A.2
Geometric Properties of Common Shapes
Y Rectangle:
j 4 A=bh,
I
Bl ~======= [pe======y --X |k 1,
! Ix—ﬁbh f
: v
Y re= \/Z =0.288K
< > TNa T
b

(Continued)
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TABLE A.2 (Continued)

Geometric Properties of Common Shapes

A
v

Triangle:

= 31—6bh3.

Circle:

_1 2
A—4TIZD =7R*,

[ =nD! _ Rt
*7 64 4

_ _nD*_ nR*
J=lA 1= = 5

Semicircle:

1 p2= L
JLD—2

A=8

nR%,

j=2Ar,
V=3

1,=0.00682D*=0.11R",

aD* _ aRr*

YT 128 T 8
r,=0.264R.
Parabola:

A=-=ab,

|

1]
olw  wle
&

U
Il
SN
Q

Spandrel of parabola:

1
=Lap,
A Ba

x|
Il
NIV
s

=21
Il
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N

Appendix A



373

(pomunuo))

1 e
M S

1A%
(v = c1€)vd

€
[

HAEN6
oled—<)ad

=xJe

148y
cld

uonddpIg
wnwixeyy

Appendix A

I3v¢

gIm

14T
(r—1)vd

oy e

19
(0= c1)od

1491
od

pug je ado|s

bd

¥
id
Juawow
wnwixepy

JUSWOIA

JUSWOA

JUSWOTA

JUSWOTA

weiderq Judwopw

> e

‘A

v
Ty
f i/FFK
] s |y
L[] ]
1
____ ______;_oww %S
v
AU s |y
f T
=)

weiderq 32104 1eays

Suipeoq

SUOI)J3[J9( pue ‘SJUBWOW ‘s1eays
€vI18vl




< 7 >« P »
X
Im REE% NN
@ w P Teayg
W W JUSWOA 4
< puo 2215 ® _ A
dl |e—p
149 g 4 =
(4-1€) 9d o0d qad~- < 1 »
§§H\ JUSWON H eoUs a _A|V
W A A
s e | 1 !
eld od Id— < 1 »|
C ¢ a
JUIWOIA F T \V\A‘ 7 \A
4. Ny g
gy A s | [T
i L[] P
14021 14C61 K18 T
l Mm mN §m NN\S ﬂ < N »
JUSWOTA F
4 Wy 'S
1615°0 o 24 IeaYS F
=X e w STITITIT|_'A ™
L v f JEN
I718¢ 1709¢ €16 ﬂ “—
yIMG'T (I8 M 1%LLS0 1%LLS0 > < 1 >
uond3PQ pug je ado|s Juswow weiderqg Judwopw weideiq Jeays Suipeoq
winwixep winwixeyy

SUOI)J3[J9( pue ‘SJUBWOW ‘s1eays
(penunuo)d) €v I19VL

374




375

Appendix A

I4¥8¢
pIM

14761
¢ld

s
PN

s
PN

o
0 M
XESE
8_
0 Id
I4vc 9
eI I
IO 2
¢Im AN

T ™ Ty

xXvul
N e
1

A
v

Xpvud

XE&&*
s?j?h;
W_ |

A Teays F

.

Al =)
i LT
f

]
Tedys

W_
H Teays

v

‘PO 8103 ‘M PSuQ[ J1un 1ad peoy ‘i 210N




376

Appendix A

TABLE A.4

Typical Properties of Engineering Materials

Strength (psi) (Yield Values
Except Where Noted)

Material Tension Compression
Wood (dry)

Douglas fir 6,000 3,5002

Redwood 6,500 4,5002

Southern Pine 8,500 5,0002
Steel 50,000 50,000
Concrete

Structural, lightweight 150 3,500
Brick masonry 300 4,500
Aluminum, structural 30,000 30,000
Iron, cast 20,000 85,0000
Glass, plate 10,000P 36,000P

Polyester, glass-reinforced 10,000°

2 For the parallel-to-grain direction.
® Denotes ultimate strength for brittle materials.

25,0000

Shear

500
450
600
30,000

130°

3000
18,000
25,0000

25,0000

Modulus of
Elasticity (F)
(ksi)

1,500
1,300
1,500
29,000

2,100
4,500
10,000
25,000
10,000
1,000

Coefficient of
Thermal Expansion
(F") (109

5.5
3.4
12.8

4.5
35
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TABLE B.2
Size Factor and Flat Use Factor (All Species except Southern Pine)
Flat Use Factor, C;,

Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension
lumber is used flatwise (load applied to wide face), the bending design value, F,, shall also be multiplied by the following
flat use factors:

Thickness (Breadth)

Width (Depth) 2in.and 3 in. 4in.

2 in. and 3 in. 1.0 —
4 in. 1.1 1.0
5in. 1.1 1.05
6 in. 1.15 1.05
8 in. 1.15 1.05
10 in. and wider 1.2 1.1

Size Factor, C,

Tabulated bending, tension, and compression parallel to grain design values for dimension lumber 2 in.—4 in. thick shall be
multiplied by the following size factors:

Fy

Thickness (Breadth)

Grades Width (Depth) 2in.and 3in.  4in. F, F.
Select structural, 21in., 3 in., and 4 in. 1.5 1.5 1.5 1.15
No. 1 and Btr, 5in. 1.4 1.4 1.4 1.1
No. 1,No.2,No.3  6in. 1.3 1.3 1.3 1.1

8in. 1.2 1.3 1.2 1.05
10 in. 1.1 1.2 1.1 1.0
12 in. 1.0 1.1 1.0 1.0
14 in. and wider 0.9 1.0 0.9 0.9

Stud 2 in., 3 in., and 4 in. 1.1 1.1 1.1 1.05
5in. and 6 in. 1.0 1.0 1.0 1.0
8 in. and wider Use No. 3 Grade tabulated design values and

size factors
Construction, 2in., 3 in., and 4 in. 1.0 1.0 1.0 1.0
standard
Utility 4 in. 1.0 1.0 1.0 1.0

2 in. and 3 in. 0.4 — 0.4 0.6
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TABLE B.3

Size Factor and Flat Use Factor for Southern Pine

Flat Use Factor, C;,

Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension
lumber is used flatwise (load applied to wide face), the bending design value, F,, shall also be multiplied by the following

flat use factors:

Thickness (breadth)

Width (depth) 2in.and 3in. 4in.

2 in. and 3 in. 1.0 —
4 in. 1.1 1.0
5in. 1.1 1.05
6 in. 1.15 1.05
8 in. 1.15 1.05
10 in. and wider 1.2 1.1

Size Factor, C;

Appropriate size adjustment factors have already been included in the tabular design values of Southern Pine and mixed

Southern Pine dimension lumber, except the following cases:

Grade

All grades (except Dense
Structural 86, Dense
Structural 72, Dense
Structural 65)

Dense Structural 86, Dense
Structural 72, Dense
Structural 65

Size F, F, F,
(1) For 4-in. breadth x 8 in. 1.1
or more depth
(2) For all dimension lumber 0.9 0.9 0.9

>12-in. depth, the table values of
12-in. depth multiplied as shown
across

For dimension lumber >12-in.
depth, F, table value of 12 in.
multiplied as shown across

(12/d)"®

F, Fei B, iy

1.00
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TABLE B.4
Size Factor and Flat Use Factor for Timbers
Size Factor, C;,

When visually graded timbers are subjected to loads applied to the narrow face, tabulated design values shall be multiplied
by the following size factors:

Depth F, F, F.
d>12in. (12/d) 1.0 1.0
d <12in. 1.0 1.0 1.0

Flat Use Factor, C;,

When members designated as Beams and Stringers in Table B.4 are subjected to loads applied to the wide face, tabulated
design values shall be multiplied by the following flat use factors:

Grade F, Eand E,;,  Other Properties
Select structural 0.86 1.00 1.00
No. 1 0.74 0.90 1.00

No. 2 1.00 1.00 1.00
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TABLE B.5

Section Properties of Western Species Structural Glued Laminated Timber (GLULAM)

Depth d (in.)

7-1/2

10-1/2
12
13-172
15
16-1/2
18
19-172
21
22-1/2
24

7-1/2
10-172

13-1/2
15
16-1/2
18
19-1/2
21
22-172
24
25-1/2
27
28-1/2
30
31-172
33
34-172
36

7-1/2

10-1/2
12
13-1/2
15

Area A (in.?)

18.75
23.44
28.13
32.81
37.50
42.19
46.88
51.56
56.25
60.94
65.63
70.31
75.00

30.75
38.44
46.13
53.81
61.50
69.19
76.88
84.56
92.25
99.94
107.6
115.3
123.0
130.7
138.4
146.1
153.8
161.4
169.1
176.8
184.5

50.63
60.75
70.88
81.00
91.13
101.3

x-x Axis
1, (in.%) S, (in.%) r, (in.)
3% in. width
56.25 18.75 1.732
109.9 29.30 2.165
189.8 42.19 2.598
301.5 57.42 3.031
450.0 75.00 3.464
640.7 94.92 3.897
878.9 117.2 4.330
1,170 141.8 4.763
1,519 168.8 5.196
1,931 198.0 5.629
2,412 229.7 6.062
2,966 263.7 6.495
3,600 300.0 6.928
5-1/8 in. width

92.25 30.75 1.732
180.2 48.05 2.165
311.3 69.19 2.598
494 .4 94.17 3.031
738.0 123.0 3.464
1,051 155.7 3.897
1,441 192.2 4.330
1,919 232.5 4763
2,491 276.8 5.196
3,167 324.8 5.629
3,955 376.7 6.062
4,865 4324 6.495
5,904 492.0 6.928
7,082 555.4 7.361
8,406 622.7 7.794
9,887 693.8 8.227
11,530 768.8 8.660
13,350 847.5 9.093
15,350 930.2 9.526
17,540 1,017 9.959

19,930 1,107 10.39

6-3/4 in. width

237.3 63.28 2.165
410.1 91.13 2.598
651.2 124.0 3.031
972.0 162.0 3.464
1,384 205.0 3.897
1,898 253.1 4.330

y-y Axis
I, (in9) S, (in.?)
(r, = 0.902 in.)
15.26 9.766
19.07 12.21
22.89 14.65
26.70 17.09
30.52 19.53
34.33 21.97
38.15 24.41
41.96 26.86
45.78 29.30
49.59 31.74
53.41 34.18
57.22 36.62
61.04 39.06
(r,=1.479 in.)
67.31 26.27
84.13 32.83
101.0 39.40
117.8 45.96
134.6 52.53
151.4 59.10
168.3 65.66
185.1 72.23
201.9 78.80
218.7 85.36
235.6 91.93
252.4 98.50
269.2 105.1
286.0 111.6
302.9 118.2
319.7 124.8
336.5 131.3
353.4 137.9
370.2 144.5
387.0 151.0
403.8 157.6
(r,=1.949in.)
192.2 56.95
230.7 68.34
269.1 79.73
307.5 91.13
346.0 102.5
384.4 113.9

(Continued)



400

Appendix B

TABLE B.5 (Continued)

Section Properties of Western Species Structural Glued Laminated Timber (GLULAM)

Depth d (in.)

16-1/2
18
19-172
21
22-1/2
24
25-1/2
27
28-1/2
30
31-172
33
34-172
36
37-172
39
40-1/2
42
43-1/2
45
46-1/2
48
49-1/2
51
52-1/2
54
55-1/2
57
58-1/2
60

10-172
12
13-1/2
15
16-1/2
18
19-172
21
22-1/2
24
25-1/2
27
28-1/2

Area A (in.2)

111.4
121.5
131.6
141.8
151.9
162.0
172.1
182.3
192.4
202.5
212.6
222.8
2329
243.0
253.1
263.3
273.4
283.5
293.6
303.8
313.9
324.0
334.1
3443
354.4
364.5
374.6
384.8
394.9
405.0

78.75

91.88
105.0
118.1
131.3
144.4
157.5
170.6
183.8
196.9
210.0
223.1
236.3
249.4

x—-x Axis
I, (in.%) S, (in.%) r, (in.)
6-3/4 in. width
2,527 306.3 4.763
3,281 364.5 5.196
4,171 427.8 5.629
5,209 496.1 6.062
6,407 569.5 6.495
7,776 648.0 6.928
9,327 731.5 7.361
11,070 820.1 7.794
13,020 913.8 8.227
15,190 1,013 8.660
17,580 1,116 9.093
20,210 1,225 9.526
23,100 1,339 9.959
26,240 1,458 10.39
29,660 1,582 10.83
33,370 1,711 11.26
37,370 1,845 11.69
41,670 1,985 12.12
46,300 2,129 12.56
51,260 2,278 12.99
56,560 2,433 13.42
62,210 2,592 13.86
68,220 2,757 14.29
74,620 2,926 14.72
81,400 3,101 15.16
88,570 3,281 15.59
96,160 3,465 16.02
104,200 3,655 16.45
112,600 3,850 16.89
121,500 4,050 17.32
8-3/4 in. width
531.6 118.1 2.598
844.1 160.8 3.031
1,260 210.0 3.464
1,794 265.8 3.897
2,461 328.1 4.330
3,276 397.0 4.763
4,253 472.5 5.196
5,407 554.5 5.629
6,753 643.1 6.062
8,306 738.3 6.495
10,080 840.0 6.928
12,090 948.3 7.361
14,350 1,063 7.794
16,880 1,185 8.227

y-y Axis
1, (in.%) S, (in.3)
(r,=1.949 in.)
4229 125.3
461.3 136.7
499.8 148.1
538.2 159.5
576.7 170.9
615.1 182.3
653.5 193.6
692.0 205.0
730.4 216.4
768.9 227.8
807.3 239.2
845.8 250.6
884.2 262.0
922.6 273.4
961.1 284.8
999.5 296.2
1,038 307.5
1,076 318.9
1,115 330.3
1,153 341.7
1,192 353.1
1,230 364.5
1,269 375.9
1,307 387.3
1,346 398.7
1,384 410.1
1,422 421.5
1,461 432.8
1,499 444.2
1,538 455.6
(r, = 2.526 in.)
502.4 114.8
586.2 134.0
669.9 153.1
753.7 172.3
837.4 191.4
921.1 210.5
1,005 229.7
1,089 248.8
1,172 268.0
1,256 287.1
1,340 306.3
1,424 3254
1,507 344.5
1,591 363.7
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TABLE B.5 (Continued)

Section Properties of Western Species Structural Glued Laminated Timber (GLULAM)

Depth d (in.)

30
31-172
33
34-1/2
36
37-1/2
39
40-1/2
42
43-1/2
45
46-1/2
48
49-1/2
51
52-1/2
54
55-1/2
57
58-1/2
60

12
13-1/2
15
16-1/2
18
19-1/2
21
22-1/2
24
25-1/2
27
28-1/2
30
31-1/2
33
34-1/2
36
37-172
39
40-1/2
42
43-1/2
45

Area A (in.?)

262.5
275.6
288.8
301.9
315.0
328.1
341.3
354.4
367.5
380.6
393.8
406.9
420.0
433.1
446.3
459.4
472.5
485.6
498.8
511.9
525.0

129.0
145.1
161.3
177.4
193.5
209.6
225.8
241.9
258.0
274.1
290.3
306.4
3225
338.6
354.8
370.9
387.0
403.1
419.3
435.4
451.5
467.6
483.8

x-x Axis
1, (in.% S, (in.3) r, (in.)
8-3/4 in. width
19,690 1,313 8.660
22,790 1,447 9.093
26,200 1,588 9.526
29,940 1,736 9.959
34,020 1,890 10.39
38,450 2,051 10.83
43,250 2,218 11.26
48,440 2,392 11.69
54,020 2,573 12.12
60,020 2,760 12.56
66,450 2,953 12.99
73,310 3,153 13.42
80,640 3,360 13.86
88,440 3,573 14.29
96,720 3,793 14.72
105,500 4,020 15.16
114,800 4,253 15.59
124,700 4,492 16.02
135,000 4,738 16.45
146,000 4,991 16.89
157,500 5,250 17.32
10-3/4 in. width
1,548 258.0 3.464
2,204 326.5 3.897
3,023 403.1 4.330
4,024 487.8 4.763
5,225 580.5 5.196
6,642 681.3 5.629
8,296 790.1 6.062
10,200 907.0 6.495
12,380 1,032 6.928
14,850 1,165 7.361
17,630 1,306 7.794
20,740 1,455 8.227
24,190 1,613 8.660
28,000 1,778 9.093
32,190 1,951 9.526
36,790 2,133 9.959
41,800 2,322 10.39
47,240 2,520 10.83
53,140 2,725 11.26
59,510 2,939 11.69
66,370 3,161 12.12
73,740 3,390 12.56
81,630 3,628 12.99

y-y Axis
I, (in.4) S, (in.?)
(r, = 2.526 in.)
1,675 382.8
1,759 402.0
1,842 421.1
1,926 440.2
2,010 459.4
2,094 478.5
2,177 497.7
2,261 516.8
2,345 5359
2,428 555.1
2,512 574.2
2,596 593.4
2,680 612.5
2,763 631.6
2,847 650.8
2,931 669.9
3,015 689.1
3,098 708.2
3,182 727.3
3,266 746.5
3,350 765.6
(r,=3.103 in.)
1,242 231.1
1,398 260.0
1,553 288.9
1,708 317.8
1,863 346.7
2,019 375.6
2,174 404.5
2,329 433.4
2,485 462.3
2,640 491.1
2,795 520.0
2,950 548.9
3,106 577.8
3,261 606.7
3,416 635.6
3,572 664.5
3,727 693.4
3,882 722.3
4,037 751.2
4,193 780.0
4,348 808.9
4,503 837.8
4,659 866.7

(Continued)



402 Appendix B

TABLE B.5 (Continued)
Section Properties of Western Species Structural Glued Laminated Timber (GLULAM)

x-x Axis y-y Axis
Depth d (in.)  Area A (in.?) I, (in.%) S, (in%) r, (in.) 1, (in.%) S, (in.3)
10-3/4 in. width (r,=3.103 in.)

46-1/2 499.9 90,070 3,874 13.42 4814 895.6
48 516.0 99,070 4,128 13.86 4,969 924.5
49-1/2 532.1 108,700 4,390 14.29 5,124 953.4
51 548.3 118,800 4,660 14.72 5,280 982.3
52-1/2 564.4 129,600 4,938 15.16 5,435 1,011
54 580.5 141,100 5,225 15.59 5,590 1,040
55-1/2 596.6 153,100 5,519 16.02 5,746 1,069
57 612.8 165,900 5,821 16.45 5,901 1,098
58-1/2 628.9 179,300 6,132 16.89 6,056 1,127
60 645.0 193,500 6,450 17.32 6,211 1,156

Source: Courtesy of the American Forest & Paper Association, Washington, DC.

TABLE B.6
Section Properties of Southern Pine Structural Glued Laminated
Timber (GLULAM)

x—x Axis y-y Axis

Depth Area
d (in.) A (in.2) 1, (in.%) S, (in.3) r, (in.) 1, (in.%) S, (in.%)

3 in. width (r, = 0.866 in.)
5-172 16.50 41.59 15.13 1.588 12.38 8.250
6-7/8 20.63 81.24 23.63 1.985 15.47 10.31
8-1/4 24.75 140.4 34.03 2.382 18.56 12.38
9-5/8 28.88 2229 46.32 2.778 21.66 14.44
11 33.00 332.8 60.50 3.175 24.75 16.50
12-3/8 37.13 473.8 76.57 3.572 27.84 18.56
13-3/4 41.25 649.9 94.53 3.969 30.94 20.63
15-1/8 45.38 865.0 114.4 4.366 34.03 22.69
16-1/2 49.50 1,123 136.1 4.763 37.13 24.75
17-7/8 53.63 1,428 159.8 5.160 40.22 26.81
19-1/4 57.75 1,783 185.3 5.557 43.31 28.88
20-5/8 61.88 2,193 212.7 5.954 46.41 30.94
22 66.00 2,662 242.0 6.351 49.50 33.00
23-3/8 70.13 3,193 273.2 6.748 52.59 35.06

5 in. width (r,=1.443 in.)
6-7/8 34.38 135.4 39.39 1.985 71.61 28.65
8-1/4 41.25 234.0 56.72 2.382 85.94 34.38
9-5/8 48.13 371.5 77.20 2.778 100.3 40.10
11 55.00 554.6 100.8 3.175 114.6 45.83
12-3/8 61.88 789.6 127.6 3.572 128.9 51.56
13-3/4 68.75 1,083 157.6 3.969 143.2 57.29
15-1/8 75.63 1,442 190.6 4.366 157.6 63.02

16-1/2 82.50 1,872 226.9 4.763 171.9 68.75
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TABLE B.6 (Continued)
Section Properties of Southern Pine Structural Glued Laminated
Timber (GLULAM)

x—x Axis y-y Axis

Depth Area
d (in.) A (in.2) 1, (in.%) S, (in.3) r, (in.) 1, (in.%) S, (in.%)

5 in. width (r,=1.443 in.)
17-7/8 89.38 2,380 266.3 5.160 186.2 74.48
19-1/4 96.25 2,972 308.8 5.557 200.5 80.21
20-5/8 103.1 3,656 354.5 5.954 214.8 85.94
22 110.0 4,437 403.3 6.351 229.2 91.67
23-3/8 116.9 5,322 455.3 6.748 243.5 97.40
24-3/4 123.8 6,317 510.5 7.145 257.8 103.1
26-1/8 130.6 7,429 568.8 7.542 272.1 108.9
27-1/2 137.5 8,665 630.2 7.939 286.5 114.6
28-7/8 144.4 10,030 694.8 8.335 300.8 120.3
30-1/4 151.3 11,530 762.6 8.732 315.1 126.0
31-5/8 158.1 13,180 833.5 9.129 329.4 131.8
33 165.0 14,970 907.5 9.526 343.8 137.5
34-3/8 171.9 16,920 984.7 9.923 358.1 143.2
35-3/4 178.8 19,040 1,065 10.32 372.4 149.0

6-3/4 in. width (r,=1.949 in.)
6-7/8 46.41 182.8 53.17 1.985 176.2 52.21
8-1/4 55.69 3159 76.57 2.382 211.4 62.65
9-5/8 64.97 501.6 104.2 2.778 246.7 73.09
11 74.25 748.7 136.1 3.175 281.9 83.53
12-3/8 83.53 1,066 172.3 3.572 317.2 93.97
13-3/4 92.81 1,462 212.7 3.969 3524 104.4
15-1/8 102.1 1,946 257.4 4.366 387.6 114.9
16-1/2 111.4 2,527 306.3 4.763 422.9 125.3
17-7/8 120.7 3,213 359.5 5.160 458.1 135.7
19-1/4 129.9 4,012 416.9 5.557 493.4 146.2
20-5/8 139.2 4,935 478.6 5.954 528.6 156.6
22 148.5 5,990 544.5 6.351 563.8 167.1
23-3/8 157.8 7,184 614.7 6.748 599.1 177.5
24-3/4 167.1 8,528 689.1 7.145 634.3 187.9
26-1/8 176.3 10,030 767.8 7.542 669.6 198.4
27-1/2 185.6 11,700 850.8 7.939 704.8 208.8
28-7/8 194.9 13,540 938.0 8.335 740.0 219.3
30-1/4 204.2 15,570 1,029 8.732 775.3 229.7
31-5/8 213.5 17,790 1,125 9.129 810.5 240.2
33 222.8 20,210 1,225 9.526 845.8 250.6
34-3/8 232.0 22,850 1,329 9.923 881.0 261.0
35-3/4 241.3 25,700 1,438 10.32 916.2 271.5
37-1/8 250.6 28,780 1,551 10.72 951.5 281.9
38-1/2 259.9 32,100 1,668 11.11 986.7 2924
39-7/8 269.2 35,660 1,789 11.51 1,022 302.8
41-1/4 278.4 39,480 1,914 11.91 1,057 313.2
42-5/8 287.7 43,560 2,044 12.30 1,092 323.7
44 297.0 47,920 2,178 12.70 1,128 334.1
45-3/8 306.3 52,550 2,316 13.10 1,163 344.6
46-3/4 315.6 57,470 2,459 13.50 1,198 355.0
48-1/8 324.8 62,700 2,606 13.89 1,233 365.4

(Continued)
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TABLE B.6 (Continued)
Section Properties of Southern Pine Structural Glued Laminated
Timber (GLULAM)

x—x Axis y-y Axis

Depth Area

d (in.) A (in.2) I, (in.%) S, (n3)  r (in) I, (in) S, (in.%)

6-3/4 in. width (r,=1.949 in)
49-1/2 334.1 68,220 2,757 14.29 1,269 375.9
50-7/8 343.4 74,070 2,912 14.69 1,304 386.3
52-1/4 352.7 80,240 3,071 15.08 1,339 396.8
53-5/8 362.0 86,740 3,235 15.48 1,374 407.2
55 371.3 93,590 3,403 15.88 1,410 417.7
56-3/8 380.5 100,800 3,575 16.27 1,445 428.1
57-3/4 389.8 108,300 3,752 16.67 1,480 438.5
59-1/8 399.1 116,300 3,933 17.07 1,515 449.0
60-1/2 408.4 124,600 4,118 17.46 1,551 459.4
8-1/2 in. width (r,=2.454 in.)

9-5/8 81.81 631.6 131.2 2.778 492.6 115.9
11 93.50 942.8 171.4 3.175 562.9 132.5
12-3/8 105.2 1,342 216.9 3.572 633.3 149.0
13-3/4 116.9 1,841 267.8 3.969 703.7 165.6
15-1/8 128.6 2,451 324.1 4.366 774.1 182.1
16-1/2 140.3 3,182 385.7 4.763 844.4 198.7
17-7/8 151.9 4,046 452.6 5.160 914.8 215.2
19-1/4 163.6 5,053 525.0 5.557 985.2 231.8
20-5/8 175.3 6,215 602.6 5.954 1,056 248.4
22 187.0 7,542 685.7 6.351 1,126 264.9
23-3/8 198.7 9,047 774.1 6.748 1,196 281.5
24-3/4 2104 10,740 867.8 7.145 1,267 298.0
26-1/8 222.1 12,630 966.9 7.542 1,337 314.6
27-1/2 233.8 14,730 1,071 7.939 1,407 331.1
28-7/8 245.4 17,050 1,181 8.335 1,478 347.7
30-1/4 257.1 19,610 1,296 8.732 1,548 364.3
31-5/8 268.8 22,400 1,417 9.129 1,618 380.8
33 280.5 25,460 1,543 9.526 1,689 397.4
34-3/8 292.2 28,770 1,674 9.923 1,759 413.9
35-3/4 303.9 32,360 1,811 10.32 1,830 430.5
37-1/8 315.6 36,240 1,953 10.72 1,900 447.0
38-1/2 327.3 40,420 2,100 11.11 1,970 463.6
39-7/8 338.9 44910 2,253 11.51 2,041 480.2
41-1/4 350.6 49,720 2,411 11.91 2,111 496.7
42-5/8 362.3 54,860 2,574 12.30 2,181 5133
44 374.0 60,340 2,743 12.70 2,252 529.8
45-3/8 385.7 66,170 2,917 13.10 2,322 546.4
46-3/4 397.4 72,370 3,096 13.50 2,393 562.9
48-1/8 409.1 78,950 3,281 13.89 2,463 579.5
49-1/2 420.8 85,910 3,471 14.29 2,533 596.1
50-7/8 4324 93,270 3,667 14.69 2,604 612.6
52-1/4 444.1 101,000 3,868 15.08 2,674 629.2
53-5/8 455.8 109,200 4,074 15.48 2,744 645.7
55 467.5 117,800 4,285 15.88 2,815 662.3

56-3/8 479.2 126,900 4,502 16.27 2,885 678.8
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TABLE B.6 (Continued)
Section Properties of Southern Pine Structural Glued Laminated

Timber (GLULAM)

Depth
d (in.)

57-3/4
59-1/8
60-1/2

11
12-3/8
13-3/4
15-1/8
16-1/2
17-7/8
19-1/4
20-5/8
2

23-3/8
24-3/4
26-1/8
27-172
28-7/8
30-1/4
31-5/8
33

34-3/8
35-3/4
37-1/8
38-1/2
39-7/8
41-1/4
42-5/8
44

45-3/8
46-3/4
48-1/8
49-12
50-7/8
52-1/4
53-5/8
55

56-3/8
57-3/4
59-1/8
60-1/2

Source: Courtesy of the American Forest & Paper Association, Washington, DC.

Area
A (in.2)

490.9
502.6
5143

1155
129.9
144.4
158.8
1733
187.7
202.1
216.6
231.0
2454
259.9
2743
288.8
303.2
317.6
332.1
346.5
360.9
3754
389.8
404.3
418.7
433.1
447.6
462.0
476.4
490.9
505.3
519.8
5342
548.6
563.1
571.5
591.9
606.4
620.8
635.3

x—x Axis y-y Axis
1, (in.%) S (in3  r (in) I, (i) S, (in.%)
8-1/2 in. width (r,=2.454 in.)
136,400 4,725 16.67 2,955 695.4
146,400 4,952 17.07 3,026 712.0
156,900 5,185 17.46 3,096 728.5
10-1/2 in. width (r,=3.031in.)
1,165 211.8 3.175 1,061 202.1
1,658 268.0 3.572 1,194 227.4
2,275 330.9 3.969 1,326 252.7
3,028 400.3 4.366 1,459 277.9
3,931 476.4 4.763 1,592 303.2
4,997 559.2 5.160 1,724 328.5
6,242 648.5 5.557 1,857 353.7
7,677 744.4 5.954 1,990 379.0
9,317 847.0 6.351 2,122 404.3
11,180 956.2 6.748 2,255 429.5
13,270 1,072 7.145 2,388 454.8
15,600 1,194 7.542 2,520 480.0
18,200 1,323 7.939 2,653 505.3
21,070 1,459 8.335 2,786 530.6
24,220 1,601 8.732 2918 555.8
27,680 1,750 9.129 3,051 581.1
31,440 1,906 9.526 3,183 606.4
35,540 2,068 9.923 3,316 631.6
39,980 2,237 10.32 3,449 656.9
44,770 2,412 10.72 3,581 682.2
49,930 2,594 11.11 3,714 707.4
55,480 2,783 11.51 3,847 732.7
61,420 2,978 11.91 3,979 758.0
67,760 3,180 12.30 4,112 783.2
74,540 3,388 12.70 4,245 808.5
81,740 3,603 13.10 4,377 833.8
89,400 3,825 13.50 4,510 859.0
97,530 4,053 13.89 4,643 884.3
106,100 4,288 14.29 4,775 909.6
115,200 4,529 14.69 4,908 934.8
124,800 4,778 15.08 5,040 960.1
134,900 5,032 15.48 5,173 985.4
145,600 5,294 15.88 5,306 1,011
156,800 5,562 16.27 5,438 1,036
168,500 5,836 16.67 5,571 1,061
180,900 6,118 17.07 5,704 1,086
193,800 6,405 17.46 5,836 1,112

405
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TABLE B.9
Reference Design Values for Structural Composite Lumber
Modulus
Shear of of Flexural Tension Compression Compression  Horizontal Shear
Elasticity  Elasticity Stress Stress Perpendicular Parallel to Parallel to Grain
Grade Orientation G (psi) E (psi) Fy2 (psi)  FP (psi) to Grain FS (psi)  Grain F|| (psi) F, (psi)
TimberStrand LSL
1.3E Beam/Column 81,250 1.3 x 10° 3,140 1,985 1,240 2,235 745
Plank 81,250 1.3 x 10° 3,510 790 2,235 280
1.55E Beam 96,875 1.55 x 10° 4,295 1,975 1,455 3,270 575
Microllam LVL
1.9E Beam 118,750 1.9 x 100 4,805 2,870 1,365 4,005 530
Parallam PSL
1.8E 1.8 x 10°
and2.0E  Column 112,500 2.0 x 108 4,435 3,245 775 3,990 355
2.0E Beam 125,000 2.0 x 10° 5,360 3,750 1,365 4,630 540

@ For 12-in. depth and for other depths, multiply, F), by the factors as follows: For TimberStrand LSL, multiply by [12/d]%%?; for Microllam
LVL, multiply by [12/d]°13; for Parallam, PSL, multiply by [12/d]!"".

b F, has been adjusted to reflect the volume effects for most standard applications.

¢ F,, shall not be increased for duration of load.
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420 Appendix B

TABLE B.13

Post-Frame Ring Shank Nail Reference Withdrawal
Design Values, W, Pounds per Inch of Ring Shank
Penetration into Side Grain of Wood Member

Diameter, D (in.)

Specific

Gravity, G 0.135 0.148 0.177 0.200 0.207
0.73 129 142 170 192 199
0.71 122 134 161 181 188
0.68 112 123 147 166 172
0.67 109 120 143 162 167
0.58 82 90 107 121 125
0.55 74 81 96 109 113
0.51 63 69 83 94 97
0.50 61 67 80 90 93
0.49 58 64 76 86 89
0.47 54 59 70 80 82
0.46 51 56 67 76 79
0.44 47 52 62 70 72
0.43 45 49 59 67 69
0.42 43 47 56 64 66
0.41 41 45 54 61 63
0.40 39 43 51 58 60
0.39 37 41 48 55 57
0.38 35 38 46 52 54
0.37 33 36 44 49 51
0.36 31 35 41 47 48
0.35 30 33 39 44 46

0.31 23 26 31 35 36
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424 Appendix B

TABLE B.15
Cut Thread or Rolled Thread Wood Screw Reference Withdrawal Design Values (W)

Pounds per Inch of Thread Penetration

Wood Screw Number

Specific

Gravity, G 6 7 8 9 10 12 14 16 18 20 24
0.73 209 229 249 268 288 327 367 406 446 485 564
0.71 198 216 235 254 272 310 347 384 421 459 533
0.68 181 199 216 233 250 284 318 352 387 421 489
0.67 176 193 209 226 243 276 309 342 375 409 475
0.58 132 144 157 169 182 207 232 256 281 306 356
0.55 119 130 141 152 163 186 208 231 253 275 320
0.51 102 112 121 131 141 160 179 198 217 237 275
0.50 98 107 117 126 135 154 172 191 209 228 264
0.49 94 103 112 121 130 147 165 183 201 219 254
0.47 87 95 103 111 119 136 152 168 185 201 234
0.46 83 91 99 107 114 130 146 161 177 193 224
0.44 76 83 90 97 105 119 133 148 162 176 205
0.43 73 79 86 93 100 114 127 141 155 168 196
0.42 69 76 82 89 95 108 121 134 147 161 187
0.41 66 72 78 85 91 103 116 128 141 153 178
0.40 63 69 75 81 86 98 110 122 134 146 169
0.39 60 65 71 71 82 93 105 116 127 138 161
0.38 57 62 67 73 78 89 99 110 121 131 153
0.37 54 59 64 69 74 84 94 104 114 125 145
0.36 51 56 60 65 70 80 89 99 108 118 137
0.35 48 53 57 62 66 75 84 93 102 111 130
0.31 38 41 45 48 52 59 66 73 80 87 102

Source: Courtesy of the American Forest & Paper Association, Washington, DC.
Note: Tabulated withdrawal design values (W) are in pounds per inch of thread penetration into side grain of main
member. Thread length is approximately two-thirds the total wood screw length.
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TABLE C.3c
Compactness Criteria for Angles
. Flexure
Compression
Nonslender up to Compact up to Noncompact up to
t Width of Angle Leg (in.)
11/8 8 8 —
1 —
7/8 -
3/4 —
518 —
9/16 7 8
172 6 7
7/16 5 6
3/8 4 5
5/16 4 4
1/4 3 3172 6
3/16 2 2172 4
1/8 1172 1172 3

Note: Compactness criteria given for F, = 36 ksi and C, = 1.0 for all angles.
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Load Resistance Factor Design
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Appendix D

CONCRETE
TABLE D.1
Diameter, Area, and Unit Weight of Steel Bars
Bar Number 4 5 8 9 10 14 18
Diameter (in.) 0375 0500 0.625 0750 0.875 1.000 1.128 1270 1410 1.693 2257
Area (in.?) 011 020 031 044 079 100 127 156 225 4.00
Unit weight per foot (Ib)  0.376  0.668 1.043  1.502 2670 3400 4303 5313 7.65  13.60
TABLE D.2
Areas of Group of Steel Bars (in.?)
Bar Size
Number of Bars #3 #4 #5 #6 #7 #8 #9 #10 #11
1 0.11 0.20 0.31 0.44 0.60 0.79 1.00 127 1.56
2 0.22 0.40 0.62 0.88 1.20 1.58 2.00 2.54 3.12
3 0.33 0.60 0.93 1.32 1.80 2.37 3.00 3.81 4.68
4 0.44 0.80 1.24 1.76 2.40 3.16 4.00 5.08 6.24
5 0.55 1.00 1.55 2.20 3.00 3.93 5.00 6.35 7.80
6 0.66 1.20 1.86 2.64 3.60 4.74 6.00 7.62 9.36
7 0.77 1.40 2.17 3.08 4.20 5.53 7.00 8.89 10.9
8 0.88 1.60 2.48 3.52 4.80 6.32 8.00 10.2 12,5
9 0.99 1.80 2.79 3.96 5.40 7.11 9.00 11.4 14.0
10 1.10 2.00 3.10 4.40 6.00 7.90 10.0 12.7 15.6
11 121 2.20 3.41 4.84 6.60 8.69 11.0 14.0 17.2
12 1.32 2.40 372 5.28 7.20 9.48 12.0 152 18.7
13 1.43 2.60 4.03 572 7.80 10.3 13.0 16.5 203
14 1.54 2.80 4.34 6.16 8.40 11.1 14.0 17.8 21.8
15 1.65 3.00 4.65 6.60 9.00 118 15.0 19.0 234
16 1.76 3.20 4.96 7.04 9.60 12.6 16.0 203 25.0
17 1.87 3.40 5.27 7.48 10.2 13.4 17.0 21.6 26.5
18 1.98 3.60 5.58 7.92 10.8 14.2 18.0 229 28.1
19 2.09 3.80 5.89 8.36 11.4 15.0 19.0 24.1 29.6
20 2.20 4.00 6.20 8.80 12.0 15.8 20.0 25.4 312
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TABLE D.3
Minimum Required Beam Widths (in.)
Number of Bars Bar Size
in One Layer #3 and #4 #5 #6 #7 #8 #9 #10 #11
2 6.0 6.0 6.5 6.5 7.0 75 8.0 8.0
3 75 8.0 8.0 8.5 9.0 9.5 10.5 11.0
4 9.0 9.5 10.0 105 11.0 12.0 13.0 14.0
5 105 11.0 115 125 13.0 14.0 155 165
6 12.0 12.5 135 14.0 15.0 16.5 18.0 19.5
7 135 145 15.0 16.0 17.0 185 20.5 225
8 15.0 16.0 17.0 18.0 19.0 21.0 23.0 25.0
9 16.5 17.5 18.5 20.0 21.0 23.0 25.5 28.0
10 18.0 19.0 20.5 215 23.0 25.5 28.0 31.0

Note: Tabulated values based on No. 3 stirrups, minimum clear distance of 1 in., and a 1%2 in. cover.
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Appendix D 487
TABLE D.5

Coefficient of Resistance (K) (f. = 3,000 psi, fy = 50,000 psi)

p K (ksi) p K (ksi) p K (ksi) p K (ksi) p K (ksi) g2
0.0020  0.098 0.0056  0.265 0.0092 0418 0.0128  0.559 0.0163  0.685 0.0050
0.0021  0.103 0.0057  0.269 0.0093  0.422 0.0129  0.563 0.0164  0.688 0.0049
0.0022  0.108 0.0058 0273 0.0094  0.427 0.0130  0.567 0.0165  0.692 0.0049
0.0023  0.112 0.0059  0.278 0.0095  0.431 0.0131 0571 0.0166  0.695 0.0048
0.0024  0.117 0.0060  0.282 0.0096  0.435 0.0132 0574 0.0167  0.698 0.0048
0.0025  0.122 0.0061  0.287 0.0097  0.439 0.0133  0.578 0.0168  0.702 0.0047
0.0026 0.127 0.0062 0.291 0.0098 0.443 0.0134 0.582 0.0169 0.705 0.0047
0.0027  0.131 0.0063  0.295 0.0099  0.447 0.0135  0.585 0.017 0.708 0.0047
0.0028  0.136 0.0064  0.300 0.0100  0.451 0.0136  0.589 0.0171 0712 0.0046
0.0029  0.141 0.0065 0304 0.0101  0.455 0.0137  0.593 0.0172 0715 0.0046
0.0030  0.146 0.0066  0.309 0.0102  0.459 0.0138  0.596 0.0173  0.718 0.0045
0.0031  0.150  0.0067 0313 0.0103 0463 0.0139  0.600 0.0174  0.722 0.0045
0.0032  0.155 0.0068  0.317 0.0104  0.467 0.0140  0.604 0.0175  0.725 0.0044
0.0033  0.159 0.0069 0322 0.0105 0471 0.0141  0.607 0.0176  0.728 0.0044
0.0034  0.164  0.0070  0.326 0.0106 0475 0.0142  0.611 0.0177  0.731 0.0043
0.0035  0.169 0.0071  0.330 0.0107  0.479 0.0143 0614 0.0178  0.735 0.0043
0.0036  0.174  0.0072  0.334 0.0108  0.483 0.0144  0.618 0.0179  0.738 0.0043
0.0037  0.178 0.0073  0.339 0.0109  0.487 0.0145  0.622 0.018 0.741 0.0042
0.0038  0.183 0.0074  0.343 0.0110  0.491 0.0146  0.625 0.0181  0.744 0.0042
0.0039 0.187 0.0075 0.347 0.0111 0.494 0.0147 0.629 0.0182 0.748 0.0041
0.0040  0.192 0.0076  0.352 0.0112  0.498 0.0148  0.632 0.0183  0.751 0.0041
0.0041  0.197 0.0077  0.356 0.0113  0.502 0.0149  0.636 0.0184  0.754 0.0041
0.0042  0.201 0.0078  0.360 0.0114  0.506 0.0150  0.639 0.0185  0.757 0.0040
0.0043  0.206 0.0079  0.364 0.0115  0.510 0.0151  0.643 0.0186  0.760 0.0040
0.0044 0210  0.0080  0.368 0.0116 0514 0.0152  0.646

0.0045 0215 0.0081 0373 0.0117  0.518 0.0153  0.650

0.0046  0.219 0.0082  0.377 0.0118  0.521 0.0154  0.653

0.0047 0224  0.0083  0.381 0.0119  0.525 0.0155  0.657

0.0048  0.229 0.0084  0.385 0.0120  0.529 0.0156  0.660

0.0049  0.233 0.0085  0.389 0.0121  0.533 0.0157  0.664

0.0050  0.238 0.0086  0.394 0.0122  0.537 0.0158  0.667

0.0051 0.242 0.0087 0.398 0.0123 0.541 0.0159 0.671

0.0052  0.247 0.0088  0.402 0.0124  0.544 0.0160  0.674

0.0053  0.251 0.0089  0.406 0.0125  0.548 0.0161  0.677

0.0054  0.256 0.0090 0410 0.0126  0.552 0.0162  0.681

0.0055 0260  0.0091  0.414 0.0127  0.556

* d=d, where d, is distance from extreme compression fiber to the outermost steel layer. For single layer steel, d, = d.
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TABLE D.6
Coefficient of Resistance (K) versus Reinforcement Ratio (p)
(f; = 3,000 psi; f, = 60,000 psi)

p K (ksi) p K (ksi) p K (ksi) g2
0.0010 0.0593 0.0059 0.3294 0.0108 0.5657

0.0011 0.0651 0.0060 0.3346 0.0109 0.5702

0.0012 0.0710 0.0061 0.3397 0.0110 0.5746

0.0013 0.0768 0.0062 0.3449 0.0111 0.5791

0.0014 0.0826 0.0063 0.3500 0.0112 0.5835

0.0015 0.0884 0.0064 0.3551 0.0113 0.5879

0.0016 0.0942 0.0065 0.3602 0.0114 0.5923

0.0017 0.1000 0.0066 0.3653 0.0115 0.5967

0.0018 0.1057 0.0067 0.3703 0.0116 0.6011

0.0019 0.1115 0.0068 0.3754 0.0117 0.6054

0.0020 0.1172 0.0069 0.3804 0.0118 0.6098

0.0021 0.1229 0.0070 0.3854 0.0119 0.6141

0.0022 0.1286 0.0071 0.3904 0.0120 0.6184

0.0023 0.1343 0.0072 0.3954 0.0121 0.6227

0.0024 0.1399 0.0073 0.4004 0.0122 0.6270

0.0025 0.1456 0.0074 0.4054 0.0123 0.6312

0.0026 0.1512 0.0075 0.4103 0.0124 0.6355

0.0027 0.1569 0.0076 0.4152 0.0125 0.6398

0.0028 0.1625 0.0077 0.4202 0.0126 0.6440

0.0029 0.1681 0.0078 0.4251 0.0127 0.6482

0.0030 0.1736 0.0079 0.4300 0.0128 0.6524

0.0031 0.1792 0.0080 0.4348 0.0129 0.6566

0.0032 0.1848 0.0081 0.4397 0.0130 0.6608

0.0033 0.1903 0.0082 0.4446 0.0131 0.6649

0.0034 0.1958 0.0083 0.4494 0.0132 0.6691

0.0035 0.2014 0.0084 0.4542 0.0133 0.6732

0.0036 0.2069 0.0085 0.4590 0.0134 0.6773

0.0037 0.2123 0.0086 0.4638 0.0135 0.6814

0.0038 0.2178 0.0087 0.4686 0.01355 0.6835 0.00500
0.0039 0.2233 0.0088 0.4734 0.0136 0.6855 0.00497
0.0040 0.2287 0.0089 0.4781 0.0137 0.6896 0.00491
0.0041 0.2341 0.0090 0.4828 0.0138 0.6936 0.00485
0.0042 0.2396 0.0091 0.4876 0.0139 0.6977 0.00480
0.0043 0.2450 0.0092 0.4923 0.0140 0.7017 0.00474
0.0044 0.2503 0.0093 0.4970 0.0141 0.7057 0.00469
0.0045 0.2557 0.0094 0.5017 0.0142 0.7097 0.00463
0.0046 0.2611 0.0095 0.5063 0.0143 0.7137 0.00458
0.0047 0.2664 0.0096 0.5110 0.0144 0.7177 0.00453
0.0048 0.2717 0.0097 0.5156 0.0145 0.7216 0.00447
0.0049 0.2771 0.0098 0.5202 0.0146 0.7256 0.00442
0.0050 0.2824 0.0099 0.5248 0.0147 0.7295 0.00437
0.0051 0.2876 0.0100 0.5294 0.0148 0.7334 0.00432

0.0052 0.2929 0.0101 0.5340 0.0149 0.7373 0.00427



Appendix D

TABLE D.6 (Continued)
Coefficient of Resistance (K) versus Reinforcement Ratio (p)

(f; = 3,000 psi; f, = 60,000 psi)

p
0.0053
0.0054
0.0055
0.0056
0.0057
0.0058

K (ksi)
0.2982
0.3034
0.3087
0.3139
0.3191
0.3243

p
0.0102
0.0103
0.0104
0.0105
0.0106
0.0107

K (ksi)
0.5386
0.5431
0.5477
0.5522
0.5567
0.5612

p
0.0150
0.0151
0.0152
0.0153
0.0154
0.01548

K (ksi)
0.7412
0.7451
0.7490
0.7528
0.7567
0.7597

g2
0.00423
0.00418
0.00413
0.00408
0.00404
0.00400

@ d = d, where d, is distance from extreme compression fiber to the outermost steel layer. For single

layer steel, d, = d.
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Appendix D 497
TABLE D.11
Values of p Balanced, p for ¢, = 0.005, and p Minimum for Flexure
3,000 psi 4,000 psi 5,000 psi 6,000 psi
f, f! B, =0.85 $, = 0.85 p, = 0.80 $,=0.75
Grade 40 p balanced 0.0371 0.0495 0.0582 0.0655
40,000 psi p when g, = 0.005 0.0203 0.0271 0.0319 0.0359
p min for flexure 0.0050 0.0050 0.0053 0.0058
Grade 50 p balanced 0.0275 0.0367 0.0432 0.0486
50,000 psi p when g, = 0.005 0.0163 0.0217 0.0255 0.0287
p min for flexure 0.0040 0.0040 0.0042 0.0046
Grade 60 p balanced 0.0214 0.0285 0.0335 0.0377
60,000 psi p when g, = 0.005 0.0136 0.0181 0.0212 0.0239
p min for flexure 0.0033 0.0033 0.0035 0.0039
Grade 75 p balanced 0.0155 0.0207 0.0243 0.0274
75,000 psi p when g, = 0.005 0.0108 0.0144 0.0170 0.0191
p min for flexure 0.0027 0.0027 0.0028 0.0031
TABLE D.12
Areas of Steel Bars per Foot of Slab (in.?)
Bar Size
Bar Spacing (in.) #3 #4 #5 #6 #7 #8 #9 #10 #11
2 0.66 1.20 1.86
2% 0.53 0.96 1.49 2.11
3 0.44 0.80 1.24 1.76 2.40 3.16 4.00
3% 0.38 0.69 1.06 1.51 2.06 271 3.43 4.35
4 0.33 0.60 0.93 1.32 1.80 237 3.00 3.81 4.68
4% 0.29 0.53 0.83 1.17 1.60 2.11 2.67 3.39 4.16
5 0.26 0.48 0.74 1.06 1.44 1.90 2.40 3.05 3.74
5% 0.24 0.44 0.68 0.96 1.31 1.72 2.18 2.77 3.40
6 0.22 0.40 0.62 0.88 1.20 1.58 2.00 2.54 3.12
6% 0.20 0.37 0.57 0.81 111 1.46 1.85 2.34 2.88
7 0.19 0.34 0.53 0.75 1.03 1.35 1.71 2.18 2.67
7% 0.18 0.32 0.50 0.70 0.96 1.26 1.60 2.03 2.50
8 0.16 0.30 0.46 0.66 0.90 1.18 1.50 1.90 2.34
9 0.15 0.27 0.41 0.59 0.80 1.05 1.33 1.69 2.08
10 0.13 0.24 0.37 0.53 0.72 0.95 1.20 1.52 1.87
11 0.12 0.22 0.34 0.48 0.65 0.86 1.09 1.39 1.70
12 0.11 0.20 0.31 0.44 0.60 0.79 1.00 1.27 1.56
13 0.10 0.18 0.29 0.41 0.55 0.73 0.92 1.17 1.44
14 0.09 0.17 0.27 0.38 0.51 0.68 0.86 1.09 1.34
15 0.09 0.16 0.25 0.35 0.48 0.64 0.80 1.02 1.25
16 0.08 0.15 0.23 0.33 0.45 0.59 0.75 0.95 1.17
17 0.08 0.14 0.22 0.31 0.42 0.56 0.71 0.90 1.10
18 0.07 0.13 0.21 0.29 0.40 0.53 0.67 0.85 1.04
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TABLE D.13
Size and Pitch of Spirals

f
Diameter of Column (in.) Out to Out of Spiral (in.) 2,500 3,000 4,000 5,000
f, = 40,000
14,15 11,12 3, 3.3 1,1 1.3
2 T2 2
16 13 S o 3.3 r,1 .,
2 T2 2
17-19 14-16 3., 3.3 L
4 2 72 2
20-23 17-20 3,1 3.3 1,1,
8 4 2 T2 2
24-30 21-27 3,1 3_ 1,1 1_
4 2 "2 2
f, = 60,000
14,15 11,12 1.3 3,3 3., 1,3
4 4 2
16-23 13-20 1.3 3.,3 3., L
4 2
24-29 21-26 1.3 3.3 3,0 1
4 4 2
30 17 1,3 3_ 3,1 .1
4 4 2 4
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Appendix D

FIGURE D.15 Column interaction diagram for tied column with bars on end faces only. (Courtesy of the
American Concrete Institute, Farmington Hills, M1.)
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FIGURE D.16 Column interaction diagram for tied column with bars on end faces only. (Courtesy of the
American Concrete Institute, Farmington Hills, M1.)
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FIGURED.17 Column interaction diagram for tied column with bars on all faces. (Courtesy of the American
Concrete Institute, Farmington Hills, M1.)
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FIGURE D.18 Column interaction diagram for tied column with bars on all faces. (Courtesy of the American
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FIGURED.19 Column interaction diagram for tied column with bars on all faces. (Courtesy of the American
Concrete Institute, Farmington Hills, M1.)
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FIGURE D.20 Column interaction diagram for circular spiral column. (Courtesy of the American Concrete
Institute, Farmington Hills, ML)
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FIGURE D.21 Column interaction diagram for circular spiral column. (Courtesy of the American Concrete
Institute, Farmington Hills, MI.)
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FIGURE D.22 Column interaction diagram for circular spiral column. (Courtesy of the American Concrete
Institute, Farmington Hills, MI.)

0.2

L







CIVIL ENGINEERING

SECOND EDITION

Principles of

STRUCTURAL DESIGN

Wood, Steel, and Concrete

“...a valuable source that provides efficient and authoritative guidance for students learning
the fundamentals of codes and standards in structural material design.”

—Dr. Peggi L. Clouston, University of Massachusetts, Amherst, USA

“From design loads determination and building codes, to various design philosophies,
to load distribution and load paths, the student is given a road map for designing a structure

that answers the common question of ‘where do I begin?’... It is concise and focuses on
applications rather than extensive theoretical background and current research...”

—Caesar Abi Shdid, Ph.D., P.E., Lebanese American University, Beirut, Lebanon

A structural design book with a code-connected focus, Principles of Structural Design: Wood, Steel,
and Concrete, Second Edition introduces the principles and practices of structural design. This book
covers the section properties, design values, reference tables, and other design aids required to accomplish
complete structural designs in accordance with the codes.

What’s New in This Edition:
* Reflects all the latest revised codes and standards

* The text material has been thoroughly reviewed and expanded, including a new chapter on concrete
design

¢ Suitable for combined design coursework in wood, steel, and concrete

* Includes all essential material—the section properties, design values, reference tables, and other design
aids required to accomplish complete structural designs according to the codes

e This book uses the LRFD basis of design for all structures

Principles of Structural Design: Wood, Steel, and Concrete, Second Edition was designed to be used
for joint coursework in wood, steel, and concrete design.

K15209

6000 Broken Sound Parkway, NW

CRC Press Suite 300, Boca Raton, FL 33487 g
Taylor &Francis Group 711 Third Avenue

ISBN: 978-1-4kk5- 5231 ‘:I
New York, NY 10017

an informa business 2 Park Square, Milton Park

78L4EL"5523
WwWw.crcpress.com Abingdon, Oxon OX14 4RN, UK wWww.crcpress.com







	Front Cover
	Contents
	Preface
	Author
	Chapter 1: Design Criteria
	Chapter 2: Primary Loads : Dead Loads and Live Loads
	Chapter 3: Snow Loads
	Chapter 4: Wind Loads
	Chapter 5: Earthquake Loads
	Chapter 6: Wood Specifications
	Chapter 7: Flexure and Axially Loaded Wood Structures
	Chapter 8: Wood Connections
	Chapter 9: Tension Steel Members
	Chapter 10: Compression Steel Members
	Chapter 11: Flexural Steel Members
	Chapter 12: Combined Forces on Steel Members
	Chapter 13: Steel Connections
	Chapter 14: Flexural Reinforced Concrete Members
	Chapter 15: Doubly and T Reinforced Concrete Beams
	Chapter 16: Shear and Torsion in Reinforced Concrete
	Chapter 17: Compression and Combined Forces Reinforced Concrete Members
	Bibliography
	Appendix A: General
	Appendix B: Wood�
	Appendix C: Steel
	Appendix D
	Back Cover

