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Preface

This volume presents the revised extended version of a selection of contributions
submitted at the joint TIES-GRASPA 2017 Conference on Climate and Environ-
ment held at the University of Bergamo, Italy, from 24th to 26th of July 2017, as a
satellite meeting of the 61st World Statistics Congress—ISI2017, in Marrakesh.

The International Environmetrics Society (TIES, www.environmetrics.org) is a
nonprofit organization aimed to foster the development and use of statistical and
quantitative methods in the environmental sciences and environmental monitoring
and protection. The Italian environmetricians group named GRASPA (www.graspa.
org) is active since 1995, and it is a standing group of the Italian Statistical Soci-
ety (SIS, https://www.sis-statistica.it/) for statistical applications to environmental
problems.

The theme for the TIES-GRASPA 2017 Conference was “climate and environ-
ment,” and the scientific program was a rich mix of methodological and applied
topics presented through 59 sessions. The applications presented at the conference
included air pollution, ecology, epidemiology, meteorology, atmospheric measure-
ments, climate change, seismology, and remote sensing, while methodological
sessions focused on functional and directional data analysis, spatial and spatiotem-
poral models, computational effective algorithms, and multivariate methods for
complex data. In total 221 participants from 29 different countries attended the
conference.

The seven contributions of this volume cover the following problems: detection
of disease clusters, analysis of harvest data, change point detection in ground-
level ozone concentration, modelling of atmospheric aerosol profiles, prediction
of wind speed, precipitation prediction, and analysis of spatial cylindrical data. In
particular, the paper by Gómez-Rubio et al. proposes a new method for detecting
spatial disease clusters by generalizing the spatial scan statistics approach in the
context of Bayesian hierarchical models. The problem of cluster detection is thus
reformulated as a problem of variable selection of a generalized linear model, which
can also include random effects and can be extended to the spatiotemporal and zero-
inflated case. The proposed method is computationally efficient thanks to the use
of the integrated nested Laplace approximations (INLA). A Bayesian hierarchical
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vi Preface

model is also used in the paper by Nadeem et al. for estimating the age distribution
of wildlife population such as white-tailed deer in Canada. The proposed method
is based on a Leslie matrix and employs a multinomial likelihood depending on
Beta-distributed probabilities estimated using age-specific harvest data collected by
wildlife agencies.

The detection of sudden changes in spatially and temporally correlated data
is the topic of the paper by Sun and Wu. The authors improve the estimation
algorithm of the general spatiotemporal autoregressive (GSTAR) model by using
a method which is more stable in estimating parameters and more accurate in
detecting change-points also in the case of outliers or heavy-tail distributed errors.
The paper by Negri et al. deals with uncertainty assessment of vertical profiles
of atmospheric aerosol when they are observed using satellite and ground-based
instruments. Uncertainty assessment is a key aspect in climate modelling, and the
approach proposed in the paper can be extended to other instruments and essential
climate variables. Nicolis et al. address the problem of calibrating simulation outputs
with observed data, with application to wind speed forecasting. This is achieved by
means of spatiotemporal characterized by time-varying basis functions and spatially
varying coefficients. Abdelfattah et al. discuss the modelling of the spatiotemporal
variability of precipitations over the area of a country. Precipitation dynamics is
described using empirical orthogonal function analysis, while dynamic harmonic
regression is adopted in order to understand the partial influence of global sea
surface temperatures. Modelling space-time phenomena gets complicated when data
have a complex support. This is the case of spatial cylindrical series discussed in
the paper by Lagona and modelled as a mixture of copula-based bivariate densities
whose parameters vary according to a latent Markov random field. The approach is
applied to marine currents in the Adriatic Sea.

We wish to thank all the authors and reviewers as well as Eva Hiripi from
Springer-Verlag for the excellent cooperation in publishing this volume. We also
thank the president of TIES Prof. Alessandro Fassò and the coordinator of GRASPA
Prof. Alessio Pollice for organizing a conference that brought together eminent
researchers and scientists and young students from all over the world.

Bergamo, Italy Michela Cameletti
Bergamo, Italy Francesco Finazzi
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Fast Bayesian Classification for Disease
Mapping and the Detection of Disease
Clusters

V. Gómez-Rubio, John Molitor, and Paula Moraga

Keywords Spatial statistics · Disease clusters · Bayesian inference · Integrated
nested Laplace approximation

1 Introduction

The detection of disease clusters is an important topic in public health research.
Many statistical methods have been proposed (see [22] for a review), and several
journals have devoted special issues to this and other related topics (see, e.g.
[24, 25]). One popular approach to detecting these clusters of disease is to utilise
scan-based methods which are based on a moving window which is placed over
the study region at several possible cluster centres and then perform a local test for
clustering (see, e.g. [30] for a general description). Scan statistics provide both a
test for statistical significance and estimates of, e.g. the relative risk inside versus
outside the detected cluster (see, e.g. [31]).

Based on concepts inherent in partition models (see, e.g. [11, 20]), we propose a
new approach that uses dummy variables in a regression model to group regions into
clusters, similarly as in Gangnon and Clayton [13]. The importance of the clusters
is then assessed based on a likelihood calculation that measures the extent to which
the clusters capture the variability in the outcome. This is very similar to what [19,
43, 44] have done; however we extend their work to cope with new problems and
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2 V. Gómez-Rubio et al.

provide a new way of assessing cluster significance and importance by means of a
more general model selection criteria. Anderson et al. [4] also tackle the problem of
spatio-temporal clustering by grouping areas and estimating a different risk for each
group.

We regard the problem of cluster detection as a problem of variable selection,
where covariates include a number of dummy variables that represent all possible
clusters. Although the cluster space is quite large, different approaches to search this
space can be used (see, e.g. [7] for a discussion on searching large variable spaces).

Our general method is implemented under the general framework of Bayesian
hierarchical models, which have been widely used in classification because of their
flexibility and ease of fit by means of Markov chain Monte Carlo (MCMC) methods
(see, e.g. [15]). However, when the problem is large, there is a huge computational
burden that is particularly restrictive when a large number of model parameters must
be estimated. Rue et al. [34] have provided a way of approximating the marginal
distributions of the parameters in the model. We will use this approximation to fit
the model, provide a reasonable estimate of the coefficient of the cluster variables
and compute the deviance information criterion (DIC, [35]), which we will use in
model selection. In this context, selecting the best set of covariates is equivalent to
choosing the best set of clusters in the region. Hence, when fitting individual model
to test for different clusters, our approach, based on INLA, will be faster than fitting
the same models with MCMC.

Another reason for considering this approach is that most methods for the
detection of clusters focus on assessing the presence of a cluster (usually, by testing
its significance), but these methods seldom try to relate the cluster to an outcome
variable, as is the case when we want to calculate the disease risk associated with
the cluster in question. By including the dummy variables as terms in a regression
model, we can estimate the increased risk of disease associated with living in an
area defined by the cluster. Hence, the methods proposed in this paper will address
both detection and risk estimation.

We have decided to use Bayesian inference for several reasons. First of all,
hierarchical models allow us to extend the former model to include other sources
of variability, such as random effects. Secondly, credible intervals for the cluster
coefficients will be obtained, so that the significancy of the clusters can be com-
puted. Finally, Bayesian inference provides several methods for model assessment
that will be helpful to define the location and number of clusters, as described in the
next section.

Other authors have already tackled the problem of disease cluster detection using
similar approaches. Anderson et al. [3] and Bilancia and Demarinis [6] have recently
proposed a similar approach, but we believe that our description on the methods
covers a wider range of situations. Wakefield and Kim [39] consider the problem
of cluster detection using partition models, and they use the Bayes factor to select
areas of clusterings. However, they use a full MCMC approach for model fitting that
can be very time-consuming. Knorr-Held and Rasser [20], Gangnon and Clayton
[14], Gangnon [12] have proposed a similar approach based on reversible jump
MCMC and partition models, but our approach is different. We are trying to find



Fast Bayesian Detection of Disease Clusters 3

a small number of clusters of high risk as a spatial scan statistic does. In addition,
our method is also able to estimate the number of relevant clusters at a most lower
computational cost compared to previous approaches.

Finally, we believe as Rothman [33] that it is more important to assess exposure
and the detection of risk factors than simply detecting clusters. However, by
highlighting areas of unexplained high risk, we believe that new risk factors can
be identified and new hypothesis about the aetiology can be proposed.

This paper is organised as follows. Firstly, we introduce the spatial scan statistic
and classification methods in Sect. 2. We then describe the basic generalisation of
the spatial scan statistic using generalised fixed-effects models in Sect. 3. Section 4
describes our model fitting using Bayesian hierarchical models and INLA. Another
extension using generalised mixed-effects models is described in Sect. 5. Zero-
inflated models for the detection of disease clusters are discussed in Sect. 6.
Section 7 describes how to extend these ideas to detect clusters in space and time.
A simulation study is summarised in Sect. 8. Finally, some examples are discussed
in Sect. 9, and a discussion is provided in Sect. 10.

2 Scan Methods for the Detection of Disease Clusters

2.1 Spatial Scan Methods

The spatial scan statistic [21] scans the study region with a huge number of overlap-
ping windows and determine the windows which group together an unusual number
of cases, possibly adjusting for multiple testing. The collection of windows depends
on the application. Typically, the spatial version uses circular windows constructed
by consecutively aggregating nearest-neighbouring areas until a proportion of the
total study population is included.

Conditioning on the observed total number of cases, the scan test statistic S

is defined as the maximum likelihood ratio over all possible windows Z: S =
maxZ

L(Z)
L0

, where L(Z) is the likelihood for window Z and L0 is the likelihood
function under the null hypothesis which states that the probability of being a case
inside Z is equal to the probability of being a case outside Z. The mathematical
formulation of S depends on the probability model used. For example, a Poisson
model is used for data where the number of events are Poisson distributed, and a
Bernoulli model for case-control type data.

The window with the maximum likelihood constitutes the most likely cluster, the
cluster that is least likely to have occurred by chance. Its statistical significance is
obtained through Monte Carlo hypothesis testing. Thus, the previous procedure is
repeated for a large number of replicas of data generated under the null hypothesis,
say R, and their respective test statistics are calculated. The test statistic of the
observed data is combined with these, and the set of the R + 1 values are ordered.
If M is the rank of the observed test statistic, a p-value equal to M/(R + 1) would
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be obtained. Apart from the most likely cluster, secondary clusters can also be
identified, ordered according to the value of S.

There will always be a secondary cluster which is almost identical to the most
likely one and with almost the same likelihood, expanding or reducing the size
of the initial cluster, but clusters of this type provide little additional information.
Normally the option chosen is to show the secondary clusters which do not overlap
with the most probable cluster, as they can be of greater interest.

In the end, some areas will be assigned to a small number of clusters, where the
number of cases is higher than expected. The remaining areas can be regarded as
assigned to another group with no significant increase in the number of cases.

2.2 Classification of Disease

As seen in Sect. 2.1, detecting clusters of disease can be regarded as a classification
problem where n areas are assigned to K + 1 groups. K is the number of spatial
clusters with increased risk and the areas not in any of these clusters are assigned
to another group. Usually, we face a double estimation problem here: finding the
number of clusters K and allocation of areas to each cluster. We note that a partition,
or a set of allocations of areas to clusters, can be represented by dummy variables
c(j) = (c

(j)

1 , . . . , c
(j)
n ) (j = 0, . . . ,K), so that they are defined as follows:

c
(j)

i =
{

1 if element i belongs to group j

0 otherwise

where c(0) denotes a null cluster and represents areas not included in any other
cluster. This group will not contribute to the computation of the model likelihood
and will effectively be ignored in the spatial analysis.

In our context of disease mapping each cluster is made of several contiguous
areas which are neighbours and that have a significant increased risk when
considered together. Hence, some constraints on c(j) will be imposed to show this
spatial aggregation. In Sect. 4.1 we describe how to explore the set of possible
cluster covariates to find the significant ones, similarly as the spatial scan statistic.

3 Classification of Disease: Generalised Linear Models

Generalised linear models (GLM, [27]) provide a suitable way of modelling public
health data, which are often modelled using a Poisson or binomial distribution.

In the Poisson case, the observed number of cases Oi in area i is distributed as

Oi |μi ∼ Po(μi); i = 1, . . . , n
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where the mean is taken usually as μi = eiθi . Here, ei represents the expected
number of cases and θi the relative risk. The expected number of cases ei is often
computed using internal age-sex standardisation (see, e.g. [41]). If other covariates
need to be accounted for to compute ei , they can be used in the standardisation [10,
21] or ei can be computed from a set of covariates xi using a log-linear regression
model [41].

Furthermore, the mean can be modelled on a vector of covariates xi:

log(μi) = log(ei) + log(θi) = log(ei) + α + s(xi)

Here s(·) represents a generic function on the covariates as the relationship between
the covariates and the disease risk can be non-linear [10]. Usually, it will be a linear
function, but other non-linear functions (e.g. splines) could be used. If a cluster
covariate c(j) is added, then we have the following:

log(θi) = α + s(xi) + γj c
(j)
i

Coefficient γj indicates the importance and significance of the cluster defined by
dummy variable c(j).

Instead of a Poisson, a binomial distribution may be preferred (e.g. for common
diseases). Hence, we will denote that observed cases come from a binomial
distribution as

Oi |πi ∼ Binom(πi,Ni); i = 1, . . . , n

where πi is the probability of being a case and Ni the population at risk.
As in the Poisson case, covariates can be considered by using, for example, a

logit link function on πi in the usual manner [29]:

logit(πi) = logit(p̂) + log(θi)

where θi depends on some covariates and cluster variables, and p̂ is the observed
proportion of cases:

p̂ =
∑n

i=1 Oi∑n
i=1 Ni

Note that logit(p̂) is an offset in the linear predictor and that it can also be written
as

logit(p̂) = log

( ∑n
i=1 Oi∑n

i=1(Ni − Oi)

)
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This is the observed odds ratio, and it can be regarded as a reference odds ratio as it
provides a measure of the overall incidence of the disease.

Similarly as in the Poisson case, modelling θi on the covariates and the cluster
covariate c(j) can be done as follows:

log(θi) = α + s(xi) + γj c
(j)

i

3.1 Adjustment for Relevant Covariates

As we are interested in detecting clusters of disease which cannot be explained by
known or possible risk factors (i.e. observed covariates), it is important to remove
the effect of the covariates beforehand. Further, risk factors obtained through the
use of stratified covariates can be used to compute reference rates, as discussed, for
example, by Ferrándiz et al. [10]. Given that our new approach also provides a more
general framework to incorporate this information and the cluster specification into
a single model, a model without any cluster covariate can be fitted and use the fitted
values as an offset in a model with cluster covariates.

In the Poisson case, this is equivalent to considering the expected number of
cases as

Ei = ei exp(α̂ + ŝ(xi)) (1)

Here we can see how the standardised expected cases ei are modulated by the
covariates. α̂ and ŝ(·) represent the fitted values for α and s(·). The mean of the
Poisson distribution for observation i is now modelled as

log(μi) = log(Ei) + log(θi), (2)

with log(Ei) an offset in the model.
In the binomial case, a similar model can be used for the covariates if instead of

a common log odds ratio logit(p̂) we consider a modulated log odds ratio logit(p̂i )

for each observation:

logit(p̂i ) = log

( ∑n
i=1 Oi∑n

i=1(Ni − Oi)

)
+ α̂ + ŝ(xi)

The resulting model for the probability of the binomial distribution is

logit(πi) = logit(p̂i) + log(θi) (3)

with logit(p̂i ) an offset in the linear predictor.
Once we have filtered for the covariates, cluster covariates can be included by

modelling the relative risk θi using cluster covariates or other effects to perform
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the detection of clusters as described in Sect. 4.1. For example, if a single cluster
covariate is included in the model we will have the following:

log(θi) = γ1c
(1)
i

4 Bayesian Hierarchical Models for the Detection of Disease
Clusters

4.1 Detection of Clusters

The spatial scan statistic [21] described in Sect. 2.1 performs the detection of
clusters by proposing a large number of putative cluster candidates that are later
examined for significance. Here, we proceed similarly using our Bayesian linear
model framework with cluster indicator variables. We do this by expressing a set
of putative clusters as binary covariates in a linear model and then assess the
significance (in terms of Bayesian posterior probabilities) as one would using any
other set of binary covariates. This allows us to exploit the computational advantages
of the Laplace approximation estimation approach to analysing linear models (via
the R-INLA software) whilst still framing the model in a fully Bayesian manner.

We first obtain our set of candidate clusters by creating a vector c(1) =
(1, 0, . . . , 0) which contains a ‘1’ corresponding to an area that is in to be a member
of the putative cluster to be examined. We start with a single area and then create
larger and larger contiguous clusters by simply adding other areas in turn (nearest
areas to the cluster centre first). Each cluster covariate will have components c

(j)
i ,

which will be 1 if area i is in cluster j and 0 otherwise. We will stop adding
new areas to the cluster when a certain percentage of the total population has
been reached. By repeating this procedure using all possible areas (or cases) as
cluster centres, we will obtain C number of putative clusters and associated cluster
covariates {c(j)}Cj=1.

In order to assess the relationship these clusters have with our outcome of
interest, we fit a generalised linear model with a single covariate. The linear
predictor ηi (for the Poisson and binomial cases) will be

ηi = offseti + γjc
(j)

i (4)

where offseti is the standard offset denoting, say, population size of each area. γj

is the coefficient of the cluster variable. Note that we have deliberately not included
an intercept term in this model, and because of this, the risk baseline is set to one.
Furthermore, the adjustment for covariates is done such as it is included in the offset
to filter for their effects, as explained in Sect. 3.

In our formulation of the problem of the detection of disease clusters, we
propose fitting a hierarchical Bayesian model to account for the different sources
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of uncertainty. In particular, we fit

Oi | . . . ∼ f (Oi; . . . )

ηi = offseti + γjc
(j)
i

γj ∼ N(0, τγ ) (5)

Here f (Oi; . . . ) represents the likelihood of the data; ηi is a linear predictor on the
covariates that is conveniently related to the mean of the distribution of the data by a
an appropriate link function. Cluster coefficients are assigned a vague normal prior
with zero mean and precision τγ = 0.01.

4.2 Cluster Selection

We choose our clusters by fitting many models, each corresponding to a particular
cluster configuration, and then we choose the model with the lowest DIC value.
Significance of each cluster can be assessed by computing the posterior probability
of the coefficient of being higher than zero, e.g. P(γj > 0|y). Note that this measure
of ‘significance’ is Bayesian in nature, as it encapsulates both point estimate and
error into one quantity. Further, one can compute the probability that γj > γt , where
γt is some threshold chosen to have substantive, subject-area significance.

Hence, the DIC will give us a ranking of the cluster configurations according
to how the cluster variables model important areas of extreme risk. Furthermore,
P(γj > 0|y) will actually tell us whether the cluster has a ‘significantly’ high risk,
where significance denotes P(γj > 0|y) > 0.95 or, equivalently, P(γj < 0|y) <

0.05. Our aim is to build a final model with all significant non-overlapping clusters
so that model fitting cannot be improved (measured through the DIC) and all cluster
covariates are significant (measured through P(γj < 0|y)).

In summary, we will fit different models considering one cluster variable at a
time, and we will rank them according to the DIC (in ascending order). We will also
compute the posterior probability of the cluster coefficient being lower than zero to
consider only clusters with a significant high risk, i.e. those with P(γj < 0|y) <

0.05. The ranked putative clusters will then be processed to obtain a set of significant
and non-overlapping clusters in the study region, as described in Sect. 4.3. This will
define the number of cluster and the definite partition of the areas in the study region
in clusters.

4.3 Number of Clusters

In order to obtain the set of clusters Cd in our final model, the cluster with the lowest
DIC will be considered first, and then other non-overlapping clusters will be added
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in turn so that significant clusters are in the final model, or they are removed because
they overlapped with a cluster with a lower DIC that had been added previously.

This is similar to a forward stepwise variable selection. As more and more
clusters are added to the final model, the value of the DIC should continue to
decrease, and then at a certain point, it will increase. We could stop adding clusters
when P(γj < 0|y) is large (i.e. higher than 0.05) or when the difference in the
DIC is small. However, it is not clear what a small difference in the DIC is. Several
authors propose different solutions. Spiegelhalter et al. [35] suggest that differences
higher than 5 are substantial. We will take this criterion with caution, and we will
discuss this in Sect. 9, where we analyse some examples with real data.

The resulting significant cluster variables will produce a partition of the areas
into multiple clusters, similarly as the partition models proposed by other authors
Ferreira et al. [11], Knorr-Held and Rasser [20]. Zhang et al. [45] propose a modified
test for the spatial scan statistic for multiple clusters, but we believe that our
approach to include multiple clusters in the model is more general (as it is based on
variable selection procedures and regression models). Furthermore, Zhang et al. [45]
approach is based on removing some areas in the most likely and subsequent clusters
which is very ad hoc to the model proposed in their paper, whilst our approach can
handle multiple clusters regardless of the model used.

Once we have the list of significant and non-overlapping clusters, they can put
together into a final model as follows:

ηi = offseti +
∑
j∈Cd

γjc
(j)
i (6)

where Cd is the subset of the cluster covariates that we have selected. Note that this
model is effectively adjusting for several clusters.

Hence, our method will produce a partition of the observations into |Cd | cluster
groups plus another group of areas with no increased risk. The idea of a cluster as a
well-defined area with a discontinuity in risk along its boundary is an oversimplistic
notion because risk is a continuous spatial process. However, this does not stop
it from being a useful device to find areas of high risk, but findings should be
interpreted with caution because spatial risk variation is a continuous process.
Also, note that Eq. (6) can be regarded as a low-rank approximation to a spatially
continuous Gaussian process.

The fact that the model also includes covariates, which can potentially have a
smooth spatial variation, means that risk estimates may also show smooth spatial
variation. In the next section, we introduce an extension to this model that includes
random effects that can be used to better account for risk variation. In particular,
this will allow for within-cluster risk variation whilst still providing a classification
of the areas into groups via cluster dummy variables.
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5 Classification of Disease: Generalised Mixed-Effects
Models

5.1 Motivation

Overdispersion often occurs when working with count data if relevant covariates
are not taken into account in the model. Gómez-Rubio et al. [17] propose using a
Monte Carlo test for spatial scan statistics where the observed number of cases are
drawn from a negative binomial distribution. Loh and Zhou [26] propose a similar
Monte Carlo test, but the observed cases are now simulated from a Poisson GLM
with spatially correlated random effects.

A more general approach is the use of GLMs with random effects in the cluster
selection procedure that we have described in the previous section. This not only
allows for a more flexible modelling of the data, but also by including area-level
random effects, it is also possible to model risk variation within clusters.

5.2 GLM with Random Effects

Our proposal to deal with overdispersion is to extend the previous model to include
random effects under the framework of generalised mixed-effects models (GLMM)
[28]. In this case the resulting model will be

Oi | . . . , ui ∼ f (Oi; . . . , ui)

ηi = offseti + γj c
(j)
i + ui

ui |σ 2
u ∼ N(0, σ 2

u )

γj ∼ N(0, τγ )

(σ 2
u )−1 ∼ Ga(1, 0.00005)

(7)

where f (Oi; θi, ui) is the likelihood of the data and ui represents the random
effects, which are assumed to be independent and normally distributed. Cluster
coefficients are again assigned a vague Gaussian prior, and variance of the random
effects σ 2

u is assigned a vague inverted Gamma prior.
Zhang and Lin [43], Anderson et al. [3], Bilancia and Demarinis [6] propose

the use of spatially correlated random effects when looking for disease clusters. We
believe that this may be problematic because we are trying to model the unexplained
spatial variation by means of cluster variables and there may be some clash between
the cluster variables and the spatial random effects.
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5.3 Selection and Number of Clusters Using GLMM

We will follow the same approach as described in the previous section to find the
disease clusters in the region by conducting repeated evaluations of the model
for different cluster covariates and computing the DIC. Note that the DIC is
also a feasible tool to compare mixed-effects models because it accounts for the
complexity of the random effects.

This is another advantage of using a Bayesian approach. In a frequentist
framework, we will need to define a model selection criterion which accounts for
the complexity of the random effects. See, for example, the cAIC proposed by Vaida
and Blanchard [38]. However, the cAIC is only developed for normal responses, and
it would need to be extended to a more general case to accommodate the use of non-
Gaussian likelihoods.

Note that now the linear predictor of the model will look like the following:

ηi = offseti +
∑
j∈Cd

γj c
(j)
i + ui

This is very similar to other popular models for spatial risk variation, such as
the one proposed by Besag et al. [5]. In this model, the linear predictor is made
of the sum of some linear effect on the covariates (that we have included in the
offset) plus independent random effects (same as ui above) plus spatially correlated
random effects. In our model we have replaced the spatially correlated random
effects by cluster components with the aim of identifying groups in the data, but
that have a spatial nature (by the way they have been built). Hence, there is an
evident connection between the model proposed above and standard methods for
measuring spatial variation of disease risk, with the cluster components being a
low-rank approximation to the underlying spatial process.

Cluster detection based on models for spatial risk variation (such as the one in
[5]) is based on declaring a cluster as a region within which we are confident risk
exceeds some threshold level. However, we think there are some advantages of our
method over this procedure. First, to detect clusters using a risk surface, it is required
to choose a threshold level. We think it is not always clear what level should be
chosen and different clusters can be detected using different levels. Second, our
method allows looking for clusters with a maximum population. Using a varying
risk surface, it would be necessary to examine each of the clusters detected to see if
they fulfil these constrains, and this can be a difficult task especially when there are
a large number of regions and periods of time.
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6 Classification of Disease: Zero-Inflated Models

Another common problem, particularly with very rare diseases, is that the number of
zeros observed tends to be very high, and this can affect the results of the detection
of clusters [9, 16]. Ugarte et al. [36] propose the use of zero-inflated models to
accommodate the high number of zeros observed.

Zero-inflated models are a mixture model with two components: a probability
mass function with all its mass at zero, which occurs with probability π , and another
distribution that generates the non-zero values, which occurs with probability 1−π .
In our case this distribution may be a Poisson or binomial.

The probability of observing ni cases is given as follows:

Pr(Oi = ni) =
{

π + (1 − π)f (0; θi) ni = 0
(1 − π)f (ni; θi) ni = 1, 2, . . .

(8)

Hence, we can follow a similar approach for the detection of clusters of disease
by including cluster covariates in the second term of the mixture, as part of the
f (ni; θi) term [16]. In this way, we will be looking for clusters after adjusting for
the effect of the zero inflation.

For model fitting, π must be assigned a prior distribution. In particular, logit(π)

is assigned a Gaussian distribution with mean −1 and precision 0.2. This is the
default in R-INLA and π has its prior mode around 0.27. As we shall see in one of
our examples, this prior assumption does not seem to have a strong impact (in this
particular example). However, this prior can be set in R-INLA using a wide range
of distributions and parameters for cases when this prior is too informative.

Note that π could vary among regions, so that it can be replaced by πi in Eq. (8).
πi can also be further modelled to depend on a number of covariates (see, e.g. [40]).
However, it may be difficult to disentangle the effects between the two terms in the
mixture model.

6.1 Cluster Selection

When we deal with mixture models the problem of estimating the complexity of
the model becomes more difficult, and we should be cautious. Many times it is not
clear how many parameters we are trying to estimate. Burnham and Anderson [8,
pp. 342–344] discuss this issue in detail. Note that in simple cases, such as when
comparing similar models (as in our case), we know that the complexity of the
different models is similar. For all these reasons, the DIC should be used with care,
and the marginal likelihood of the model could also be used as an indicator to choose
the best clusters. In any case, P(γj < 0|y) should be a good indicator to find the
clusters in the study region.
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7 Space-Time Clusters

When there are different measures for each area in time, we may be interested in
detecting clusters in space and/or time. Jung [19] points out, in the discussion of her
paper, how to use the spatial scan statistic to look for prospective or retrospective
clusters. For the case of Poisson data, this new model can be formulated by
modelling μi,t , the mean in area i and time t , as follows:

log(μi,t ) = log(Ei,t ) + γj c
(j)

i,t (9)

c
(j)
i,t is now the cluster variable in space and time.

In order to define space-time clusters, a temporal window is defined together with
a spatial one. The easiest approach is to consider homogeneous blocks in space and
time, i.e. for each time period that is considered the same, areas are included in the
cluster. Regarding the size of the temporal window, [23] consider a time frame of
up to half the total number of time slots.

When dealing with space-time models, we need to account for the temporal trend,
so that the clusters detected are not the result of the natural variation of the disease.
This could be done by considering time when the disease rates and expected cases
are computed. Alternatively, a smooth term can be considered in the linear predictor
in Eq. (9). Splines or a different random intercept term for each time period are
convenient ways of modelling temporal variation. This approach has the advantage
of adjusting for non-linear changes in time which may distort the cluster detection
when a linear term is used.

Anderson et al. [4] address the problem of spatio-temporal clustering by provid-
ing a separate partition of areas and times so that a different risk is estimated for
each group.

8 Simulation Study

In this section we assess the performance of the methods proposed above by means
of a simulation study. It is based on the cases of brain cancer in basic health zones
in the province of Navarre (Spain), which we have used as a case study in Sect. 9.2.
Altogether, there are 40 different areas and 129 cases.

The datasets have been simulated assuming different cluster sizes (5 or 15 areas),
relative risks (1.5 or 3) and two covariates to produce mild or strong overdispersion
if they are not taken into account in the model. The covariate that produces strong
overdispersion has been simulated by taking the y coordinate of each region, re-
scaling the values (by subtracting the mean and dividing by its standard deviation)
and then randomly assigning the values to the areas. This is a simple way of creating
a covariate from the real dataset that has no spatial pattern but that induces a strong
overdispersion as the values are between −2.01 and 1.77. By dividing these values
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by 3, we have created another covariate that induces mild overdispersion in the data
when not taking into account in the model because its values are in the range of
the exceed risk in the simulated clusters. Hence, this will also provide a way of
measuring how overdispersion affects the cluster detection procedure. Altogether,
we have eight combinations according to the covariate, relative risk and cluster size.

In this setting, the mean μi of each area is

log(μi) = 1 · xi + log(RR) · Ii

where xi is the value of the simulated covariate in area i, RR the cluster relative risk
and Ii a binary variable that indicates whether area i is in the cluster.

In order to obtain the simulated value of the number of cases, we have condi-
tioned on the total number of cases of the real dataset (129) and distributed them
at random using a multinomial distribution with probabilities μi/

∑40
i=1 μi, i =

1, . . . , 40.
To simulate the zero-inflated data, we have considered that six areas have a

structural zero. This follows from the estimated value of π obtained after fitting
a zero-inflated model to the actual dataset (see Sect. 9.2). First, we have sampled the
six areas with structural zeros completely at random, and, for the remaining areas,
we have assigned the number of cases similarly as in the previous case. Note that
now the cases are distributed over 34 regions only.

This setting is very similar to the simulation study in Bilancia and Demarinis
[6], which considered a region with 60 different areas and used a Poisson model
with covariates and cluster effects to create the simulated datasets. However, our
simulation study also includes GLMs, GLMMs and ZIP models to analyse datasets
based on Poisson and zero-inflated Poisson distributions. Hence, our study is more
general.

Finally, in order to assess the performance of the method, we have followed
the procedure described before to remove overlapping clusters and keep non-
overlapping cluster only. Then, this classification of the areas has been used to
compute sensitivity and specificity, by comparing how our method has classified
an area and whether it actually belongs to a cluster.

Table 1 summarises the average cluster size, sensitivity and specificity of cluster
detection using a particular model (GLM, GLMM or ZIP) over the 100 simulated
datasets for each combination of relative risk, cluster size, covariate and data model
(Poisson and ZIP).

In general, specificity is quite high, which means that the proportion of areas with
no exceeded risk included in a cluster is quite low. Sensitivity behaves similarly as
in other simulation studies (see, e.g. [6]), and it primarily increases with size and
risk inside the cluster. Small clusters (i.e. size 5) with high risk (i.e. 3) seem to be
the best detected clusters. The average size of the detected clusters also depends on
the actual size and risk, but seems to be dominated by whether adjustment for the
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Table 1 Results of simulation study to assess the performance of our method for the detection of
disease clusters

Simulation parameters Poisson data ZIP data

Model Cov. adj. RR Size cl. size Sens Spec cl. size Sens Spec

Covariate with mild overdispersion

GLM No 1.50 5.00 11.20 0.62 0.77 10.80 0.54 0.77

GLM No 3.00 5.00 7.10 0.96 0.93 7.99 0.83 0.89

GLM No 1.50 15.00 14.50 0.67 0.82 11.70 0.47 0.82

GLM No 3.00 15.00 13.10 0.81 0.96 12.23 0.73 0.95

GLM Yes 1.50 5.00 6.80 0.44 0.87 8.84 0.48 0.82

GLM Yes 3.00 5.00 7.20 0.98 0.93 6.97 0.83 0.92

GLM Yes 1.50 15.00 6.40 0.38 0.97 8.72 0.40 0.89

GLM Yes 3.00 15.00 12.30 0.77 0.97 11.89 0.72 0.96

GLMM No 1.50 5.00 7.80 0.40 0.83 5.02 0.27 0.90

GLMM No 3.00 5.00 4.82 0.86 0.98 1.64 0.21 0.98

GLMM No 1.50 15.00 10.07 0.48 0.89 6.20 0.27 0.91

GLMM No 3.00 15.00 9.63 0.63 0.99 1.71 0.11 1.00

GLMM Yes 1.50 5.00 5.89 0.38 0.89 5.37 0.29 0.89

GLMM Yes 3.00 5.00 5.91 0.92 0.96 2.61 0.37 0.98

GLMM Yes 1.50 15.00 8.39 0.44 0.93 6.27 0.30 0.93

GLMM Yes 3.00 15.00 10.87 0.70 0.99 3.12 0.20 0.99

ZIP No 1.50 5.00 8.93 0.47 0.81 9.05 0.52 0.82

ZIP No 3.00 5.00 6.69 0.93 0.94 6.38 0.85 0.94

ZIP No 1.50 15.00 11.98 0.56 0.86 10.11 0.44 0.86

ZIP No 3.00 15.00 13.00 0.82 0.97 12.55 0.79 0.97

ZIP Yes 1.50 5.00 5.58 0.37 0.89 5.54 0.38 0.90

ZIP Yes 3.00 5.00 6.12 0.93 0.96 5.38 0.84 0.97

ZIP Yes 1.50 15.00 8.09 0.42 0.93 6.30 0.33 0.94

ZIP Yes 3.00 15.00 12.53 0.80 0.98 12.28 0.76 0.97

GLM No 1.50 5.00 12.90 0.64 0.72 9.15 0.36 0.79

GLM No 3.00 5.00 12.00 0.82 0.77 11.04 0.73 0.79

GLM No 1.50 15.00 10.60 0.39 0.81 10.31 0.32 0.78

GLM No 3.00 15.00 11.50 0.59 0.90 11.10 0.56 0.89

GLM Yes 1.50 5.00 6.00 0.46 0.89 8.17 0.45 0.83

GLM Yes 3.00 5.00 6.00 0.82 0.95 7.21 0.82 0.91

GLM Yes 1.50 15.00 7.30 0.44 0.97 9.32 0.42 0.88

GLM Yes 3.00 15.00 13.00 0.83 0.98 11.71 0.70 0.95

GLMM No 1.50 5.00 0.00 0.00 1.00 0.00 0.00 1.00

GLMM No 3.00 5.00 0.00 0.00 1.00 0.00 0.00 1.00

GLMM No 1.50 15.00 0.00 0.00 1.00 0.00 0.00 1.00

GLMM No 3.00 15.00 0.00 0.00 1.00 0.00 0.00 1.00

GLMM Yes 1.50 5.00 5.98 0.46 0.89 4.97 0.28 0.90

GLMM Yes 3.00 5.00 5.67 0.85 0.96 2.47 0.29 0.97

GLMM Yes 1.50 15.00 8.09 0.40 0.91 4.62 0.22 0.95

GLMM Yes 3.00 15.00 9.99 0.64 0.98 1.91 0.11 0.99

(continued)
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Table 1 Continued

Simulation parameters Poisson data ZIP data

Model Cov. adj. RR Size cl. size Sens Spec cl. size Sens Spec

Covariate with strong overdispersion

ZIP No 1.50 5.00 11.84 0.55 0.74 11.07 0.48 0.75

ZIP No 3.00 5.00 14.38 0.90 0.72 12.36 0.77 0.76

ZIP No 1.50 15.00 13.79 0.49 0.74 12.29 0.40 0.75

ZIP No 3.00 15.00 13.20 0.64 0.85 10.92 0.52 0.87

ZIP Yes 1.50 5.00 5.90 0.46 0.90 4.93 0.36 0.91

ZIP Yes 3.00 5.00 6.04 0.88 0.95 5.32 0.80 0.96

ZIP Yes 1.50 15.00 7.91 0.39 0.92 6.94 0.35 0.93

ZIP Yes 3.00 15.00 12.99 0.82 0.97 11.36 0.71 0.97

The summary is split according to the two covariates used in the simulation study that will induce
mild (top) or strong (bottom) overdispersion when not accounted for in the model

covariate is done. Adjusting for covariates seems to have a positive effect on the
cluster detection as it increases sensitivity and specificity, as well as provides better
estimates of the cluster size. This supports the use of the methods described in this
paper for the detection of disease clusters including covariates and cluster variables.

Regarding the use of different models for cluster detection for Poisson data,
GLMs provide good detection, which increases with cluster size and risk. Cluster
detection is also better when the appropriate covariates have been adjusted for in
the model. GLMMs increase specificity but are not able to detect clusters under
strong overdispersion as the two patterns cannot be disentangled. Under mild
overdispersion, they detect smaller clusters and have a high specificity. This is
probably due to the fact that random effects pick up some of the extra variation
within the cluster areas and these produces smaller cluster being detected. ZIP
models provide similar results as GLMs, probably because the estimates of π are
very close to zero and it becomes a Poisson model. Under strong overdispersion,
they seem to have lower sensitivity and specificity.

Regarding the performance for ZIP datasets, Poisson models have lower sensitiv-
ity and specificity than for Poisson datasets. In particular, this happens when there
is no adjustment for significant covariates. GLMMs also have a lower sensitivity
but a higher specificity, which probably means that zero inflation and clustering are
picked up by the random effects in the model. ZIP models perform worse for ZIP
data than for Poisson data. However, they are still better than using a Poisson model
in terms of sensitivity when there is strong overdispersion. With no overdispersion,
they have higher specificity than Poisson models and similar sensitivity.

Finally, all analyses have been run on a high performance computer using six
nodes so that computations are run in parallel. Total computing time for each dataset
was between 20 and 140 s for this region. For each dataset, we have fit about 40 ×
(40 × 0.5) = 800 models because we have considered clusters that are up to a 50%
of the total population. This means fitting about six models (i.e. investigating six
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putative clusters) per second in the worst-case scenario and about 40 models per
second in the best-case scenario. Fitting any of these models using MCMC using
a reasonable number of iterations will require, at least, 1 s, which means that we
could fit about six models per second using six nodes on the computer in the best-
case scenario.

9 Examples

The methods presented in this paper have been applied to a number of case studies.
They have been implemented using the R programming language [32]. Packages
DCluster [17] and R-INLA have been used to embed fitting Bayesian hierar-
chical models with INLA into the general framework of spatial scan statistics. All
datasets described here can be obtained by downloading R package DClusterm
[18] from CRAN.

9.1 Cancer in Upstate New York

In the first example, we revisit the dataset on leukaemia incidence in New York
[42]. This dataset comprises cases of leukaemia in upstate New York and its
possible relationship to TCE-contaminated waste sites. Ahrens et al. [2] highlight
the importance of accounting for relevant factors to avoid drawing misleading
conclusions on the causes of leukaemia. This example is particularly interesting
because covariates measure not only socio-economic variables but also proximity to
putative pollution centres.

Data are available at the census tract level, for which number of cases, population
and other risk factors are available. Raw expected cases ei were computed using the
population in each census tract. Covariate standardised expected number of cases Ei

were computed fitting a Poisson regression with offset log(ei) on three covariates:
the percentage of the population aged 65 or more, percentage of population who
own their home and a measure of exposure based on the inverse distance to the
nearest TCE site. Then, the fitted values from this model were used to compute the
expected number of cases using Eq. (1).

Our analyses will use raw data with no covariate adjustment (e.g. using ei ) and
analysis after covariate adjustment (e.g. with Ei ) for the spatial scan statistic, GLMs
and GLMMs. When summarising the clusters found for a particular model and
adjustment for covariates, we have only shown non-overlapping clusters.

9.1.1 Spatial Scan Statistic

Firstly, we have run the spatial scan statistic as described in [1]. This computes
the p-value using a Gumbel distribution (often used to model the maximum of
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Table 2 Summary of non-overlapping clusters detected using the spatial scan statistic

ID Centre Statistic Size Observed Expected SMR p-value

No covariates

CL1 36007014300 287,500.94 29 103.63 62.97 1.65 0.00e+00

CL2 36023990600 4912.04 9 44.50 22.78 1.95 0.00e+00

CL3 36067000400 475.74 16 44.69 25.56 1.75 7.77e−16

CL4 36011991300 207.43 4 27.30 13.75 1.99 3.02e−06

Adjusting for covariates

CL2 36023990700 1212.02 9 43.43 22.17 1.96 0.00e+00

CL5 36067005700 185.81 3 11.13 4.95 2.25 1.85e−02

CL3 36067000400 84.90 16 44.69 25.56 1.75 9.86e−03

ID is a label for the cluster, centre is the census tract where the centre of the cluster is, size is the
number of regions in the cluster, p-value is the one associated to the test statistic, observed is the
number of cases in the cluster, expected the number of expected cases in the cluster and SMR is
the standardised mortality ratio in the cluster

a number of samples from a distribution) instead of Monte Carlo methods. In all
cases, we have considered clusters containing up to a 15% of the total number of
expected cases and a p-value lower than 0.05. Now clusters are ordered according
to increasing p-values, so that the cluster with the lowest p-value is ranked first. The
number of clusters have been reduced by removing overlapping clusters as explained
in Sect. 4.1, and the remaining clusters are outlined in Table 2 and shown in Fig. 1.

Clusters detected have been labelled according to their location. In order to
compare the clusters among the different methods, we have assigned the same label
to two clusters that overlap, even if they do not share all their areas completely.

9.1.2 Cluster Selection Using GLMs

The results obtained with our method based on cluster covariates and GLMs are
shown in Table 3 and displayed in Fig. 1. As it can be seen, the results are very sim-
ilar to those found with the spatial scan statistic. However, our method is also able
to provide an estimate of the cluster risk, a 95% credible interval and the posterior
probability of the risk being lower than 1, i.e. P(γj < 0|y). In addition, we have dis-
played the DIC of the model including the cluster alone and all the previous clusters
detected (under column DICadj). This is the DIC for a model that adjusts for several
clusters and will give us information about how several clusters perform together.

The DIC of the model with no cluster covariates can be used as a threshold
to compare all the other models with cluster covariates. For the model with no
covariates, it is 957.62, whilst when we adjust for the covariates, it becomes 882.72.
As seen in Table 3, only a few clusters have an important (i.e. higher than 5, as
suggested by Spiegelhalter et al. [35]) difference with the DIC of the null model (i.e.
a model with no cluster covariates). We shall consider these clusters as definitive
clusters, whilst the others may have appeared due to the random variation of the
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Fig. 1 Clusters detected by
the different methods
discussed in this paper (top)
and zoom around Syracuse
city in Onondaga County
(bottom). Clusters have been
labelled according to their
location, and it is possible
that two overlapping clusters
obtained with different
models have the same label
even if they do not have all
their areas in common
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data. It should be noted that all these ‘spurious’ clusters have, in general, a very
small size.

This might happen because the DIC does not penalise enough. Broman and Speed
[7] also acknowledge this problem and suggest multiplying the penalty term (in our
case, the effective number of parameters) by a constant. We prefer to stop adding
clusters to the list when the decrease in the DIC is not important (e.g. lower than 5),
but we have reported all clusters with significant cluster coefficients. As we will see
below, this is less of a problem when random effects are considered.

9.1.3 Cluster Selection Using GLMMs

Next, we have performed cluster detection when i.i.d. random effects are included
in the model. This is the model shown in Eq. (7), in Sect. 5.2. The results are shown
in Table 4 and displayed in Fig. 1. The DIC of the models without cluster variables
are 923.87 (no adjustment for covariates) and 882.70 (adjusting for covariates).

In this case the comparison of the DIC of the univariate models and that of
the null model is better seen when adjusting for several clusters. In addition, we
have seen that some of the detected clusters (not included in the table) have a non-
significant increased risk because the 95% credible intervals contains the zero.

It should be noted that when the expected counts are not adjusted for the
covariates Dean’s test for overdispersion gives a p-value of 4.70e−08, whilst
the p-value when adjusting for covariates is 4.10e−02 (which means very weak
overdispersion). This is the reason why the differences in the DIC between GLMs
and GLMMs are so small, and they provide very similar values when covariates are
taken into account.

9.2 Analysis of Zero-Inflated Data: Brain Cancer in Navarre,
Spain

In this example we consider the number of cases of brain cancer among the male
population in Navarre, Spain, in the period 1988–1994 (see [36, 37] for details).
The aggregation level is the basic health zone (BHZ), and the expected number
of cases has been computed using standardisation by age group. This dataset has
been positively tested for zero inflation. Hence, we will use a zero-inflated Poisson
(ZIP) model in this case. A similar analysis can be found in [16] using maximum
likelihood estimation.

We have conducted an analysis using the spatial scan statistic, our method using
both Poisson and zero-inflated Poisson models described in Eq. (8), in Sect. 6. The
only cluster detected using a Poisson and ZIP model is shown in Table 5. The DIC
of the null model (without any cluster covariate) is 142.02. Figure 2 shows the SMR
of brain cancer and the clusters detected with the different methods.
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Fig. 2 Standardised Mortality Ratios (top) and clusters detected (bottom) of brain cancer in
Navarre, Spain, 1988–1994

Regarding the clusters detected, all methods detected only one cluster. In the
case of the spatial scan statistic, the size of the cluster detected is 9, which has two
areas with zero cases. On the other hand, the methods based on the Poisson and
ZIP model detected an overlapping cluster of size 4, with no areas with zero cases.
Hence, accounting for zero-inflation provides a better detection of the clusters as
areas with no cases are not included in the cluster. Furthermore, the posterior mean
of π is 0.161, with a 95% credible interval of (0.038, 0.397), which clearly indicates
zero-inflation and is very similar to the value obtained in [36]. Hence, we believe
that the default prior on π is not too informative in this case.
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10 Discussion

In this paper we have proposed a new methodology for the detection of disease
clusters based on the use of partition models and dummy variables in Bayesian
hierarchical models to assign each area to a cluster. Although the main ideas are
very similar to those found in [3, 6, 19, 39, 43, 44], our approach is based on
methods to detect clusters in space, and that can be easily extended to space-time
clusters, using different configurations of the dummy variables to mimic the spatial
scan statistic. This new approach has several advantages. First of all, we have used
INLA [34] to fit the Bayesian models, and the detection of clusters is done by
means of the DIC [35]. Hence, we are able to detect the most significant clusters
and avoid the use of simulation techniques, which are very time-consuming and
computer-intensive. Second, the same approach is used to detect clusters regardless
of whether fixed effects or mixed effects are included in the model. Detection of
disease clusters with mixture models (such as zero-inflated Poisson) can also be
tackled with our approach. Furthermore, the code used to develop the examples in
this paper will eventually be included in the DClusterm R package [18], which is
currently available on CRAN and implements similar (i.e. non-Bayesian) methods.

In order to show the potential of these ideas, we have conducted a simulation
study that confirms that ours is a valid approach to detect disease clusters in a wide
number of situations. Furthermore, we have considered several datasets that show
different problems of cluster detection. In some ways, our results are similar to those
found by other authors. However, we are able to expand on these results with our
approach by quantifying the increase in risk within a disease cluster, and we are
even able to model different risks within the clusters by means of random effects.

As a general advice on how to use the models presented in this paper, the GLM
presented in Sects. 3 and 4 should be used when only the effect of the clusters and
covariates is thought to affect the data. The model with random effects presented
in Sect. 5 is useful to accommodate overdispersion in the data or the effect of
unmeasured covariates (through the random effects). This a very general model that
can be used with different types of likelihoods as well. Finally, the model based on
the zero-inflated GLM, described in Sect. 6, is particularly addressed for situations
where we find a large number of zero counts such as, for example, the analysis
of rare diseases. Although the DIC will make a selection of the clusters, it is also
important to consider the posterior probability of its associated coefficient of being
higher than zero, as this is the actual indicator of increased risk.

Finally, the approach presented in this paper could be improved in a number of
ways. First of all, another model selection criteria could be considered in addition to
the DIC. Bilancia and Demarinis [6] use the DIC and CPO, but do not consider zero-
inflated models. Although the presented method can be implemented in parallel, this
aspect of the method could be improved by including a better algorithm to ensure
that the same cluster is not tested twice, which may happen when two cluster centres
correspond to regions which overlap. The lack of parallelization is not a problem
with our current approach, but it could be used to reduce the computational burden
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related to the analysis of larger datasets. In general, other Bayesian approaches could
be considered in order to tackle the problem of cluster selection and risk assessment
under different models for the observed number of cases. This would potentially
reduce the problem of multiple testing inherent to the current approach.
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A Novel Hierarchical Multinomial
Approach to Modeling Age-Specific
Harvest Data

Khurram Nadeem, Entao Chen, and Ying Zhang

Keywords Leslie matrix · White-tailed deer · Harvest data · Beta distribution ·
Population reconstruction

1 Introduction

Population reconstruction methods, originally developed in the context of quantita-
tive stock assessment in fisheries [16], provide a useful framework for estimating
population demographic trends in harvested wildlife population [6, 7, 17]. The
traditional reconstruction techniques, such as the Downing method [6] and the sex-
age-kill (SAK) method [15], are giving way to recently developed more powerful
likelihood-based statistical population reconstruction (SPR) methods [5, 9, 18]. A
key attraction of the SPR methodology is that it relies on age-specific or age-at-
harvest data that are routinely collected by wildlife agencies over a large geographic
scale. The analysis is based on a product multinomial likelihood of observed age-
specific cohorts’ harvest counts as a function of initial recruitment, survival, and
harvesting mortality processes. However, age-at-harvest data alone are insufficient
to parse these demographic processes as auxiliary data are needed to ensure
identifiability of the associated demographic parameters even in the simplest of SPR
models [9]. The auxiliary data sources normally include a separate radiotelemetry
study, independent abundance estimates or hunter catch-effort indices. Strong
assumptions on the form of natural survival, such as constant survival for all age
classes and years, are further required to fit these models [8, 9].

We develop a new modeling approach to estimate the age distribution, i.e.,
proportion of animals in various age classes, in a short time range from age-at-
harvest data without requiring auxiliary data source. Our approach is based on
stable age distribution properties of a Leslie age-classified matrix projection model
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through a Beta distribution approximation to the natural survivorship curve [13].
We estimate the yearly age distribution using a hierarchical multinomial model for
the yearly age-specific harvest counts. Unlike the existing SPR methodology, which
requires auxiliary reporting data to account for underreporting of harvest counts, our
modeling approach automatically adjusts for reporting errors by assuming that the
reported data constitute a random sample from the overall harvest count.

The rest of this paper will be presented in the following manner. After introducing
a motivational example in Sect. 2, we propose a harvest Leslie matrix model and our
estimation approach in Sect. 3. In Sect. 4, we investigate the estimation performance
of our approach by generating age-at-harvest data using the stochastic harvest
Leslie matrix model. In Sect. 5, we perform the analysis of a motivational example
regarding the age distribution for a white-tailed deer population from year 2009 to
2013 in Nova Scotia, Canada.

2 Age-Specific Harvest Data

The Department of Natural Resources in Nova Scotia (NSDNR), Canada, is
responsible for regulating white-tailed deer (Odocoileus virginianus) harvest across
the whole province. Apart from a keystone species of the local fauna, white-tailed
deer provides a valuable aesthetic and recreational resource for human residents.
Harvesting also provides a management tool to maintain the deer herd size at levels
tolerable for farmers and other factions of the society. The data considered are the
jawbone age measures collected from harvesting of white-tailed deer from the year
2009 to the year 2013. Figure 1 shows the age frequency distributions of the jawbone
samples in these 5 years. In each year, a sample of white-tailed deer jawbones
collected from hunters, as well as through various programs within the NSDNR,
was collected. The sampled jawbones were aged by advanced technologies to obtain
precise estimates. Population age distribution information is important for wildlife
population monitoring programs. Harvest data are routinely collected by wildlife
management systems in Canada. Our goal is to develop a novel modeling approach
with this type of harvest data in order to provide with the reliable population age
profile.

3 Model Development

3.1 Harvest Leslie Matrix Model

The Leslie matrix, in principle, is an age-classified matrix projection model
for modeling and predicting population growth based on survival and fertility
information [1, 11, 12, 19]. The Leslie matrix divides the continuous variable age
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Fig. 1 Age class frequency distributions of jawbone samples from year 2009 to year 2013. (a)
Year 2009 jawbone sample. (b) Year 2010 jawbone sample. (c) Year 2011 jawbone sample. (d)
Year 2012 jawbone sample. (e) Year 2013 jawbone sample

into discrete age classes. Starting from 1, the age class i includes individuals in
ages (i − 1) < x ≤ i. An individual of age i means that it belongs to age class
i instead of natural age i. Suppose the animal population can be divided into A

age classes. We use nit to denote the number of individuals in age class i at time
t such that a population vector nt = (n1t , n2t , . . . , nAt ) describes the population
age distribution at time t . A simple Leslie matrix contains two components—a
vector of fertilities, F = (F1, F2, . . . , FA), on the first row and a vector of survivals
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S = (S1, S2, . . . , SA−1), on the sub-diagonal:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1 F2 F3 · · · · · · · · · FA

S1 0 · · · · · · · · · · · · 0

0 S2
. . .

...
...

. . . S3
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...

0 · · · · · · · · · 0 SA−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where Fi denotes the number of female animals born to a female of age i, and Si

denotes the probability of a female of age i surviving to age i+1. This form of Leslie
matrix is also known as the female-only Leslie matrix [19], and thus nt corresponds
to the age distribution of females in the population. If sex components need to be
considered, fertilities Fi and survivals Si should be scaled by the sex ratio, or a two-
sex Leslie matrix [19] should be employed. To simplify our demonstration, we will
employ the one-sex Leslie matrix (1) and assume that the fertilities and survivals
have been scaled by the sex ratio.

Starting from the initial population vector n0, the vector nt+1 can be projected
by right multiplying the Leslie matrix M by nt :

nt+1 = M · nt . (2)

Noting that in the Leslie matrix (1), Si denotes the overall survival from age class
i to age i + 1, it is the complement of the overall mortality. When we equip the
Leslie matrix with harvest parameters, it is necessary to distinguish the natural
mortality and the harvest mortality. Deaths caused by harvesting belong to the
harvest mortality, while deaths caused by sources other than harvesting belong to
the natural mortality. We use Hi to denote the probability that an individual in age
class i survives the harvest, and now Si represents the probability of surviving the
natural death from age i to age i+1. In wildlife management, harvesting of mammal
game species is regulated by setting up harvesting seasons, which are generally
some continuous time segments in a year. The harvesting season in Nova Scotia
usually lasts 1 month starting in late October. Although harvesting and natural death
can happen simultaneously during the harvest season, we assume that harvesting
plays a dominant role and thus natural death is negligible in the harvest season.
Therefore, harvesting and natural death can be considered as independent events,
and by probability theory, we have the following:

P {survive from class i to class i + 1}
= P {survive natural death ∩ survive harvest}
= SiHi+1.

(3)
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We also assume that harvesting and reproduction are independent because the
harvest season generally does not overlap with the breeding season of animals. We
define a harvest matrix H as

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H1 0 · · · · · · · · · 0

0 H2
. . .

...
...

. . . H3
. . .

...
...

. . .
. . .

. . .
...

...
. . . HA−1 0

0 · · · · · · · · · 0 HA

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

to project the harvest yields. Suppose nt is counted right after the harvest season of
year t , then the population of next year nt+1, can be projected by

nt+1 = HMnt . (5)

That is, the population lives through a full-year life cycle described by the Leslie
matrix (1) and then suffers harvesting before it enters the next time to be counted in
year t + 1. Thus we use P = HM to denote the harvest Leslie matrix as

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1H1 F2H1 · · · · · · · · · FAH1

S1H2 0 · · · · · · · · · 0

0 S2H3
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...

0 · · · · · · 0 SA−1HA 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

where Fi, i = 1, . . . A, are fertilities; Si, i = 1, . . . , (A − 1), are natural survival
probabilities; and Hi, i = 1, . . . , A, are harvest survival probabilities. Since H is a
diagonal matrix, P has the same structure as M. By the Perron–Frobenius theorem,
P has a dominant eigenvalue and the associated eigenvector that determine the
population growth rate and the stable age distribution. Let π = (π1, π2, . . . , πA)T

be the vector of the stable age distribution determined by (6), it then satisfies

Pπ = λπ , (7)

where λ is the right eigenvalue of (6). Writing (7) explicitly, we have

S1H2π1 = λπ2

S2H3π2 = λπ3
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S3H4π3 = λπ4 (8)

...

SA−1HAπA−1 = λπA

Assuming the population is a birth-pulse population and the Leslie matrix is built
right after the breading season, the survival probabilities are approximated by

Si = l(i)

l(i − 1)
, (9)

where l(i) is the survivorship function of the underlying population, that is, the
probability that an individual survives up to time i. Note that the approximation of
Si is based on the birth type (birth-pulse or birth flow) and time when the matrix is
built during the life circle. Different approximations can be found in [3]. Lynch and
Fagan [2] modeled the survivorship function as

l(i) = 1 − FBeta(i/A), (10)

where FBeta(·) denotes the cumulative density function of a Beta distribution
with nonnegative shape parameters (α,β) and A is the maximum lifespan of the
species. Here age a is rescaled by A to fall in the interval [0,1], the support
of the Beta probability distribution. The shape parameters (α,β) and longevity A

describe the shape and scale of the survivorship function, respectively [13]. The Beta
survivorship function (10) has been found to provide excellent fits to survivorship
schedules of a wide range of mammal species [13, 14]. Notice that the estimation of
l(i) using (10) is based on annual survival counts of a cohort starting from birth to
death of the last cohort members. If the population is stationary (λ = 1), solution to
the age distribution may be written as

πi =
(

1 − FBeta

(
i − 1

A
,α, β

))
Hi . . .H2π1, (11)

where i = 2, . . . , A. Thus the age distribution can be obtained by estimating the beta
distribution shape parameters (α,β) given the information of harvest probabilities.

3.2 Beta Distribution-Based Hierarchical Multinomial Model

Given the age-at-harvest data, with the assumptions that:

(i) The underlying harvested population follows a stochastic matrix process model
with a mean matrix P that may be characterized by (6)

(ii) The process is stationary
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(iii) If the data were reported sample values, it should be a simple random sample
of the total harvest data

then the procedure proposed below is to estimate the stable age distribution π based
on Eq. (11).

We summarize some key notations in Table 1. Specifically, we denote the age-
at-harvest data matrix by XY×A, over Y years and A age classes. Depending on the
context, entries of XY×A represent the harvest counts of a reported sample thereof.
Furthermore, we denote random variables and their realized values by uppercase and
lowercase letters, respectively. The italic, boldfaced letters represent vector-valued
random variables. The age classes are denoted by a in this section. Assumptions (i)
and (ii) indicate that the mean level of the age distribution is converged to a constant
vector of age distribution and the mean level of the total size of the population
is converged to a constant over time. Thus we can use the approximation (11) to
model the age proportions. Assumption (iii) guarantees that the model likelihood
using reported age-at-harvest data is identical to the one using total age-at-harvest
data. We will further discuss the model likelihood after we specify the model.

We model the annual age-specific harvest, Xya , by the following binomial
distribution:

P(Xya = xya|Nya) = Binom(Nya, pya), (12)

Table 1 Notation and definitions of various quantities

Notation Description

Nya Number of animals alive of age a in year y;
a = 1, 2, . . . , A; y = 1, 2, . . . , Y

Ny· Annual population size in year y, i.e., Ny· = ∑A
a=1 Nya

xya Number of animals harvested and reported in age class a in year y.
The corresponding harvest vector is denoted as
xy = (xy1, xy2, . . . , xyA)T

xy· Total reported harvest size in year y, i.e., xy· = ∑A
a=1 xya . The

corresponding total harvest vector is denoted by
x. = (x1·, x2·, . . . , xY ·)T

X(Y×A)

Reported age-at-harvest data matrix: X(Y×A) =

⎡
⎢⎢⎣

xT
1
.
.
.

xT
Y

⎤
⎥⎥⎦

hy· Total, reported plus unreported, harvest count in year y

πa The underlying mean proportion of the population in age class a

πya True latent proportion of the population of age a in year y

pya Binomial probability of harvesting an animal of age a in year y

from age-specific population of size Nya
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where pya is the probability that an animal belonging to age class a is harvested in
year y. Further conditioning on the total annual harvest Xy·, we propose the follow-
ing multinomial model for yearly harvest counts, Xy = (Xy1,Xy2, . . . , XyA)T :

P(Xy = xy |Xy·) = Multinom(Xy·,π (x)
y ), (13)

where we parameterize the probability vector π
(x)
y = (π

(x)
y1 , π

(x)
y2 , . . . , π

(x)
yA )T as

follows:

π(x)
ya = E(Xya|Nya)∑A

a=1 E(Xya|Nya)
. (14)

That is, π
(x)
ya is the proportion of total expected harvest that falls in age a in year y.

Noticing that E(Xya|Nya) = Nyapya and denoting πya = Nya/Ny·, (14) can be
written as

π(x)
ya = Nyapya∑A

a=1 Nyapya

= (Nya/Ny·)pya

(
∑A

a=1 Nyapya)/Ny·

= πyapya∑A
a=1 πyapya

(15)

Here, we model the latent age-specific abundance proportions, πya, as

πya = g−1(g(πa) + εya), (16)

where g(·) is a smooth invertible link function, εya is the age-specific random effect
that is independently distributed as N(0, σ 2

a ), and πa is the age distribution given
by (11). Throughout this paper, we use the logit link function: g(π) = ln(π/(1−π)).

The likelihood function for the observed age-at-harvest data may be written as

L(θ ;X|x·) =
Y∏

y=1

∫
P(Xy ; α, β,py |xy·, εy)gε(εy; σ 2

ε )dεy, (17)

where σ 2
ε = (σ 2

1 , σ 2
2 , . . . , σ 2

A)T is the variance vector of the age-specific random
effects introduced in (16), py = (py1, py2, . . . , pyA) is the age-specific harvest
probability vector in year y, X is the Y × A age-at-harvest data matrix, and gεy (·)
denotes joint density function of the random effects vector εy = (εy1, . . . , εyA).

In the above derivations, we have implicitly assumed that X is the full age-
at-harvest data matrix, i.e., entries of X are the true harvest counts without any
underreporting. The following theorem, whose proof is relegated to Appendix,
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shows that the likelihood (17) remains unchanged even when only a fraction of
the harvested animals are aged and reported as a simple random sample.

Theorem 1 Let hy = (hy1, hy2, . . . , hyA)T now represent the full (reported plus
unreported) age-specific harvest vector, which is modeled by the likelihood function
given by

L(θ;H|h·) =
Y∏

y=1

∫
P(Hy; α, β,py |hy·, εy)gε(εy; σ 2

ε )dεy, (18)

where hy· = ∑A
a=1 hya , h· = (h1·, h2·, . . . , hY ·)T , and H is the full age-at-

harvest data matrix. Then, if xy· ≤ hy· and the animals are reported as a simple
random sample with replacement (SRSWR) from the total hy· harvested animals,
the likelihood function corresponding to the reported age-at-harvest data matrix X
is given as L(θ;X|x·) as defined in (17).

The above theorem emphasizes that with the guarantee of assumption (iii), we
can directly use the reported harvest sample as our input data without knowing
the reporting rate, as long as it is a simple random sample of the full age-at-
harvest data. Technically, xy· cannot be a SRSWR from hy· as we assume that
none of the harvested animals are duplicated in the total age-reported harvest count,
xy·. Rather, simple random sampling without replacement (SRSWoR) is a more
reasonable sampling model. However, as we remark in Appendix, the SRSWR is
a good approximation to SRSWoR as the annual harvest count, hy·, is normally
sufficiently large for most of the harvested populations.

In model (17), we generally denote the yearly age-specific harvest probability
vector as py = (py1, py2, . . . , pyA). However, in the hunting process, hunters
seldom hunt animals based on age of animals precisely. Besides, the action of
hunters tends to be stable in a short time unless new management policies on hunting
are introduced during the period. Based on this fact, we loosen the assumption on
age-specific harvests and consider the harvest is time-invariant and uniform to all
ages. However, there actually exists a selection between juveniles and adults. It is
difficult to identify the age in hunting, but it is possible to tell apart juveniles and
adults. For example, juvenile white-tailed deers are mostly raised by their mothers
and have small antlers, while adult white-tailed deers usually have larger and sharper
antlers. Hunters may tend to hunt adult deers for the reason such as trophy winning
and avoid hunting juvenile deers for the sustainability of the population. Based on
these assumptions, we introduce two time-invariant harvest probabilities in place of
the yearly age-specific harvest, with the additional assumption that:

(iv) The harvest probabilities for juveniles and adults are constants over time.

We denote the harvest to juveniles and adults as pju and pad , respectively. In the
white-tailed deer example described in Sect. 2, it is reasonable to consider all deer
of at least 2 years of age as adults. Thus the overall model in this case may be
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summarized as follows:

πa =
(

1 − FBeta

(
a − 1

A
,α, β

))
pa−1

ad π1

πya = g−1(g(π(a)) + εya), εya ∼ N(0, σ 2
a )

π(x)
ya = πyapa∑A

a=1 πyapa

p1 = pju; p2 = pad, . . . , pA = pad

Xy|xy·, εy ∼ Multinom(xy·,π (x)
y )

(19)

where π
(x)
y = (π

(x)
y1 , . . . , π

(x)
yA ). We will focus on this particular Beta distribution

based hierarchical multinomial model (BetaHM) in the rest of the paper. We argue
that the BetaHM model is also applicable to other species which reflect a hunting
selection between juveniles and adults.

Since the likelihood functions (17) or (18) contain integrals over the random
effects on age proportions, theoretical derivation of parameter estimators is chal-
lenging. For this reason, we attempt to perform an extensive simulation to evaluate
the model estimation performance. A simulation trial includes generating an age-
at-harvest data table and the trial of fitting the BetaHM model to the simulated
age-at-harvest data table. In a single simulation trial, we generate a 5 × 8 age-at-
harvest data table as the primary input of the BetaHM model. We perform 200
simulation trials in each scenario in order to collect the point estimates and the
associated standard deviation of the model parameters. We employ non-informative
Bayesian approach for model estimation in our simulations through the JAGS
sampler. JAGS is a program for analysis of Bayesian hierarchical models using
Markov chain Monte Carlo (MCMC) simulation. The Beta distribution parameters
(α, β) are given log-Norm(0, 1) prior distributions; the random effect variance
(precision) parameters σ−2

i are all given Gamma(0.01, 0.01) prior distributions;
and the harvest probabilities (pju, pad) are given Unif(0, 1) distributions. All
computations are performed via the rjags package under the R 3.2.2 computing
environment.

4 Simulation Study

In each simulation trial, we obtain a set of point estimates of the parameters. With
200 simulation trials, we calculate the mean and standard error of the point estimates
of each parameter.
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4.1 Generating Data

We employ the stochastic matrix simulation framework proposed in Chen [4] to
simulate population data and the corresponding age-at-harvest data. The objective
is to generate the population and the age-at-harvest data which are similar to those
generated from the exact BetaHM model setting but with life circle fluctuations that
can resemble the real animal world in order to evaluate the robustness of theBetaHM
parameterization procedure. The models assume stability and stationarity of the
animal population, which can be ensured by setting up appropriate fertility, survival
and harvest parameters of the mean Leslie matrix P to generate a mean growth rate
λP = 1. The stochastic Leslie matrix simulation model should naturally produce
randomness in the age proportions by introducing probability distributions on the
Leslie matrix parameters with their underlying mean values. The harvest data are
generated from a binomial process according to age-specific harvest probabilities.

4.1.1 Matrix Parameter Settings

We consider a population with eight age classes and a 5-year successive age-specific
harvest table as data. We use two harvest probabilities, pju for juveniles (age class =
1) and pad for adults (age classes ≥ 2), which are set to 0.05 and 0.20, respectively.
We employ a Beta(1, 3) distribution to approximate the natural survivorship
function and further generate the postbreeding survival probability parameters (9).
These natural survival parameters are approximated to 0.67, 0.63, 0.58, 0.51, 0.42,
0.30, and 0.13. We adjust the fertility parameters f so that λP = 1. Without loss of
generality, we adopt f = (0, 1.05, 1.05, 1.05, 1.05, 1.05, 1.05, 1.05), even though
there are other possible choices of f which produce λP = 1.

4.1.2 Matrix Randomness Settings

Without loss of generality, we employ uniform distributions to generate randomness
to all of the Leslie matrix parameters. We employ Unif(1.05 ± 0.2) uniformly on
(f2, . . . , f7), leaving f1 = 0 constant. We employ Unif(0.67 ± 0.20), Unif(0.63 ±
0.20), Unif(0.58 ± 0.20), Unif(0.51 ± 0.20), Unif(0.42 ± 0.20), Unif(0.30 ± 0.15),
and Unif(0.13 ± 0.05) on the natural survival parameter vector. We do not generate
any randomness on the harvest parameters, as the BetaHM models model the harvest
probabilities as fixed parameters.

We set the size of each age class uniformly equal to 10,000 which forms
our initial population vector with the total size equal to 80,000. We project the
population vector 50 times with the stochastic harvested Leslie matrix framework
defined above. We retain the population- and age-specific harvest data from the last
five projections to be fitted by the BetaHM models.
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The assumptions remain the same as specified in Sect. 3. For simplicity, we use
one random effect variance σ 2 (instead of the age-specific random effect variance)
to fit the data generated.

4.2 Results

Table 2 shows that the harvest probabilities are estimated as p̂ju = 0.0625 and
p̂ad = 0.287. The ratio between two harvest estimates is 0.0625/0.287 = 0.2177,
which is close to the true ratio 0.05/0.20 = 0.25, preserving the order of two true
harvest probabilities (pju < pad ). Figure 2 reveals that the boxplots of the estimated
age proportion capture the true mean population age distribution.

Table 2 Mean (standard
error) of estimates of the
parameters of the BetaHM
model, fitting to data
generated from the stochastic
Leslie matrix setting using
the type III survivorship
curve Beta(1, 3)

Parameter Value Estimate

α 1 1.6312(0.6101)

β 3 2.888(0.4132)

pju 0.05 0.0625(0.0191)

pad 0.2 0.2877(0.0956)

σ 2 × 0.1312(0.0528)

× means the underlying true value of
the parameter is unobserved in gener-
ating data
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Fig. 2 Mean true age distribution curve and the boxplots of the estimates obtained from the
BetaHM model fitting to data generated from the stochastic Leslie matrix setting using the type
III survivorship curve Beta(1, 3)



A Novel Hierarchical Multinomial Approach to Modeling Age-Specific Harvest Data 41

As shown in Table 2, α and β are not precisely estimated. This implies the true
parametric form of the Beta survivorship curve may not be recovered from the
estimates α̂ and β̂. As Eq. (19) shows that the age distribution is determined jointly
by α̂, β̂ and p̂ad , this is likely inducing confounding and bias in the corresponding
estimates. However, our simulation study shows that estimation of the underlying
age distribution is robust against this parameter confounding as the true form of the
age distribution is accurately estimable in almost all cases. See Figs. 2, 3, 4.

The above Beta(1, 3) survivorship curve is referred to the type III survivorship.
We also study the cases with the type I and type II survivorship curves. The type I
survivorship is a convex decreasing curve, and we use Beta(5, 1) for example. The
type II survivorship is an approximate linear decreasing curve, and we use Beta(0.5,
0.5) for example. With the change of survivorship curve, the constructed survival
probabilities used in the harvested Leslie matrix model are also changed. We adjust
the fertility parameters in the harvested Leslie matrix model to ensure it produces a
mean-stationary population. The mean (standard error) of estimates are summarized
in Tables 3 and 4. The estimated age distributions are displayed in Figs. 3 and 4.

Tables 3 and 4 show that neither the type I nor the type II survivorship can
be recovered when α and β are poorly estimated. The harvest ratio p̂ju/p̂ad is
calculated as 0.033/0.164 = 0.201 from Table 3 and as 0.057/0.240 = 0.237 from
Table 4. Similarly to the estimation results in Table 2, the estimated harvest ratio
is preserving the order of two harvest rates but underestimating that true ratio 0.25.
Figures 3 and 4 show that the age distribution is generally estimated well, except for
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Fig. 3 Mean true age distribution curve and the boxplots of the estimates obtained from the
BetaHM model fitting to data generated from the stochastic Leslie matrix setting using the type
I survivorship curve Beta(5, 1)
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Fig. 4 Mean true age distribution curve and the boxplots of the estimates obtained from the
BetaHM model fitting to data generated from the stochastic Leslie matrix setting using the type
II survivorship curve Beta(0.5, 0.5)

Table 3 Mean (standard
error) of estimates of the
parameters of the BetaHM
model, fitting to data
generated from the stochastic
Leslie matrix setting using
the type I survivorship curve
Beta(5, 1)

Parameter Value Estimate

α 5 2.4430(0.9445)

β 1 0.6967(0.1636)

pju 0.05 0.0333(0.0066)

pad 0.2 0.1645(0.0371)

σ 2 × 0.1558(0.0599)

Table 4 Mean (standard
error) of estimates of the
parameters of the BetaHM
model, fitting to data
generated from the stochastic
Leslie matrix setting using
the type II survivorship curve
Beta(0.5, 0.5)

Parameter Value Estimate

α 0.5 1.8430(0.9420)

β 0.5 0.5352(0.1450)

pju 0.05 0.0572(0.0104)

pad 0.2 0.2400(0.0456)

σ 2 × 0.1069(0.0417)

the slight underestimation of age class 1 in Fig. 3 and the slight overestimation of
age class 1 in Fig. 4.

We conclude that the BetaHM model can reasonably estimate the age distribu-
tions of the models described above. The beta shape parameters α, β and the harvest
parameters pju, pad should be regarded as “assisting” parameters. Even though
they are not correctly estimated, they can jointly ensure the age distribution to be
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estimated well. The estimated ratio between two harvest probabilities maintains the
correct order of the true ratio, despite of the shape of survivorship curve.

5 Motivating Example

In this section, we demonstrate the application of the BetaHM model by fitting the
model to data described in Sect. 2. Although the jawbones are obtained from hunters
on a voluntary basis, there is considerable variation in age and sex of jawbones
returned by a specific hunter across multiple years. This ensures that collected
sample is arising from a random catch, thereby making it sufficiently representative
of the overall harvested deer population in a given year. We first visualize the age
distributions of the jawbone samples in these 5 years, which are plotted in Fig. 1.
From Fig. 1 we discover that the age distributions of the male deer jawbone samples
are similar across 5 years, while those of the female jawbone samples are different
across 5 years. We also notice that the male jawbones take a large proportion of
the total jawbone sample in each year, suggesting that hunters should have sex
selection in harvesting. In the distributions of male jawbone samples, there exists an
age selection between juveniles and adults. The deer population size in the juvenile
class is generally higher than in other classes, but on the contrary, we receive only
a small proportion in the juvenile class in the reported jawbone sample (age class
1 in Fig. 1). This is the reason why we propose two harvest probabilities pju and
pad . As the sex selection is a potential issue affecting the model estimation result,
we only fit the BetaHM model to the male jawbone samples and estimate the age
distribution in the male-only population. We assume that the male-only population
is mean stable in its age distribution and mean stationary in the total size.

The harvest of juvenile male white-tailed deer is estimated as 0.0237, and the
harvest of adult male white-tailed deer is estimated as 0.323. Notice that the BetaHM
model cannot correctly estimate the harvest probabilities, we only interpret the ratio
between two harvest probabilities. The ratio pad/pju is 0.323/0.0237 ≈ 14, which
means the harvest of adults is 14 times higher than of the juveniles. See Table 5.

Figure 5 shows that the male white-tailed deer age proportion decreases as age
increases. The juveniles take about 40% of the population, dominating the whole
population. Since we do not have the reference age distribution of the male white-
tailed deer for comparison, the interpretation of the age distribution estimation
should be considered with caution.
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Table 5 Estimation result of
one trial fitting the BetaHM
model to the male jawbone
data

Parameter Mean estimates(Stds)

α 1.988(0.6837)

β 2.007(0.4211)

pju 0.0237(0.0042)

pad 0.323(0.0553)

σ 2 0.0299(0.0406)
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Fig. 5 Age distribution estimated by one trial of the BetaHM model fitting to the male jawbone
data

6 Conclusion

The harvest data are routinely collected. Based on the stable age distribution
properties of a harvest Leslie matrix model, we attempt to propose a population
reconstruction model, the BetaHM model to estimate age proportions of the
harvested animal population. Our modeling framework makes two basic assump-
tions concerning the age-structured population dynamics, i.e., (1) the harvested
population is stable and stationary and (2) the available aged and reported sample
of harvested animals represents a simple random sample from the underlying total
annual harvest. Although we incorporate an age-specific structure on the harvest
mortality to adjust for juvenile vs adult harvest rates, our modeling approach makes
no assumptions about the underlying form of the age-specific natural mortality and
fertility rates. This is an important relaxation from wildlife management point of
view as direct incorporation of these rates in age-structure population modeling is
challenging because auxiliary information about age-specific vital rates is rarely
available for game populations. The simulation results from our stochastic Leslie
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matrix models with two harvest rates (juvenile vs adult) show that the BetaHM
model can reasonably estimate the age proportions and preserve the order between
two harvest probabilities.

Appendix

Here we provide the proof of Theorem 1 stated in Sect. 3.2. We omit model
parameter notation from the respective probability distribution for simplicity of
exposition. We start with the following lemma.

Lemma 1 Let H = (H1,H2, . . . , HA)T and Z = (Z1, Z2, . . . , ZA)T be random
vectors such that

PH (H = h) = Multinom(M,πH) (20)

PZ(Z = z|h) = Multinom(1,πZ) (21)

where πH = (π1, π2, . . . , πA), πZ = ( h1
M

, h2
M

, . . . , hA

M
) and M is the number of

multinomial trials. Then PZ(Z = z) = Multinom(1,πH).

Proof Let us evaluate the probability for some fixed index value i∗:

P(Zi∗ = 1, Zi = 0∀i 
= i∗) =
∑
S

P (Zi∗ = 1, Zi = 0∀i 
= i∗|H = h)P (H = h),

(22)

where S is the sample space containing all possible outcomes under P(H = h). We
can partition S into M+1 mutually exclusive and exhaustive subsets S0, S1, . . . , SM ,
i.e.

S =
M⋃

r=0

Sr (23)

and Sr

⋃
St = ∅. Here, the r-th subset is defined as

Sr =
⎧⎨
⎩H|Hi∗ = r,

∑
i 
=i∗

Hi = M − r

⎫⎬
⎭ . (24)

As we have H ∈ Sr ⇔ Hi∗ = r

P (H ∈ Sr) = P(Hi∗ = r) =
(

M

r

)
πr

i∗(1 − πi∗)M−r (25)
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That is, (25) is in fact the marginal probability mass function (pmf) of Hi∗ . Thus,
the sum in (22) can be rearranged as follows:

PZ(Zi∗ = 1, Zi = 0∀i 
= i∗)

=
M∑

r=0

P(Zi∗ = 1, Zi = 0∀i 
= i∗|Hi∗ = r)P (Hi∗ = r)

=
M∑

r=0

(
h1

M

)0(
h2

M

)0

· · ·
(

r

M

)1

· · ·
(

hM

M

)0(
M

r

)
πr

i∗(1 − πi∗)M−r

= 1

M

M∑
r=0

r

(
M

r

)
πr

i∗(1 − πi∗)M−r

= 1

M
E(Hi∗) = 1

M
Mπr

i∗, (26)

and

P(Zi∗ = 0) = 1 − πr
i∗ , (27)

for some arbitrary index value i∗ = 1, 2, . . . , A. This can be represented more
compactly as

PZ(Z = z) = π
Z1
1 π

Z2
2 · · · πZA

A ,Zi ≥ 0,

A∑
i=1

Zi = 1. (28)

Thus, the result follows immediately.

Lemma 2 Let {Zj }Rj=1 be a collection of independently and identically distributed
random vectors, where Zj is distributed as

PZ(Zj = zj ) = Multinom(1,πH), (29)

where zj = (zj1, zj2, . . . , zjA)T . Also define a random vector

X =
⎛
⎝ R∑

j=1

Zj1,

R∑
j=1

Zj2, . . . ,

R∑
j=1

ZjA

⎞
⎠

T

. (30)

Then, the probability mass function of X is given as

PX(X = x) = Multinom(R,πH ) (31)
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The proof of Lemma 2 can be found in Johnson et al. [10]. Next we show the proof
of Theorem 1.

Proof Let hy = (hy1, hy2, . . . , hyA)T denote the complete (reported plus unre-
ported) age-specific harvest distribution of animals. This, in terms of the model (17),
has the following conditional pmf:

PH (Hy = hy |hy·, εy) = Multinom(hy·,π (x)
y ). (32)

Also, let zj = (zj1, zj2, . . . , zjA)T be the outcome of the j -th SRSWR draw from
the full harvest distribution hy, j = 1, 2, . . . , xy·. Notice that

xy =
⎛
⎝xy1 =

xy·∑
j=1

zj1, xy2 =
xy·∑
j=1

zj2, . . . , xyA =
xy·∑
j=1

zjA

⎞
⎠

T

. (33)

Thus, it follows from the definition of the multinomial distribution that

PZ(Zj = zj |hy, εy) = PZ(Zj = zj |hy) = Multinom(1,π (z)
y ), (34)

where π
(z)
y = (

hy1
hy· ,

hy2
hy· , . . . ,

hyA

hy· ). Then, it also follows from Lemma 1 that

PZ(Zj = zj |εy) = Multinom(1,π (x)
y ). (35)

Furthermore, setting πH = πy
(x) and R = xy·, it also follows from Lemma 2 that

PX(Xy = xy |xy·, εy) = Multinom(xy; xy·,π (x)
y ). (36)

This yields

PX(Xy = xy |xy·) =
∫

PX(Xy = xy |xy·, εy)gε(εy; σ 2
ε)dεy. (37)

Thus, by the conditional independence of X1,X2, . . . ,XY , we have

L(θ;X|x·) =
Y∏

y=1

PX(Xy = xy |xy·), (38)

thereby completing the proof.
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Detection of Change Points
in Spatiotemporal Data in the Presence
of Outliers and Heavy-Tailed
Observations

Bin Sun and Yuehua Wu

Keywords Change-point detection · EM-type algorithm · General
spatiotemporal autoregressive model · M-estimation · Outlier

1 Introduction

Spatial-temporal data has been drawing a dramatically increasing attention due
to their wide availabilities in many research fields including environmental study,
climate change, and biology. They are usually spatially correlated and/or temporally
correlated. In the literature, there are many approaches to model the spatial depen-
dence structure as well as the temporal dependence structure in the spatiotemporal
data. Research interest also arises on the topic to detect sudden changes occurring
in spatiotemporal data over a long time period. These changes could be due to
exposure changes, instrument/observer changes, the implementation of government
regularities and policies [7], etc.

This paper proposes approaches for the analysis of multiple change- point models
when dependency in the data is modeled through a hierarchical Gaussian Markov
random field. Integrated nested Laplace approximations are used to approximate
data quantities, and an approximate filtering recursions approach is proposed
for savings in computational cost when detecting change-points. All of these
methods are simulation free. Analysis of real data demonstrates the usefulness
of the approach in general. The new models which allow for data dependence
are compared with conventional models where data within segments is assumed
independent.

Under the framework of Bayesian approaches, [9] presented methods for analyz-
ing multiple change-point models when dependency in the data is modeled through a
hierarchical Gaussian Markov random field, and Altieri et al. [1] proposed methods
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for detecting multiple change-points over time in the inhomogeneous intensity
of a spatiotemporal point process with spatial and temporal dependence within
segments, among others.

On the other hand, under the framework of maximum likelihood methods, [4]
and [5] introduced methods for modeling spatiotemporal or spatial data containing
changes over time or space. Nappi-Choulet and Maury [4] proposed a hybrid method
for incorporating a temporal regime switch into the spatiotemporal autoregressive
model to deal with exogenous macroeconomic factors. For spatial data, [5] pro-
posed a test procedure to detect change-points of multidimensional autoregressive
processes. Their method works well to find possible structural breaks in the process
that can occur at a certain distance from the predefined center. Most recently, [8]
proposed a general spatiotemporal autoregressive (GSTAR) model which takes into
account the effect of station surroundings, seasonality, temporal correlation among
observations at the same spatial location, and spatial correlation among observations
from different spatial locations. The model is so multifunctional that it can also
be used to detect new influences that largely affected the measurements in the
treatment area compared to the control area. However, their method is dependent
on the normality assumption.

As the spatial-temporal data is usually observed over a large area and in many
years, undetectable outliers can easily occur unexpectedly in any days for any small
area because of measurement error or other reasons. The parameter estimation
method given in [8] may not be stable or robust. There is a great need to develop
a parameter estimation method for the GSTAR model that is resistant to outliers
and stable in respect to heavy-tail distributed errors. In the development of such
robust methods, M-estimation can play important and complementary roles. Thus
we modify the EM-type algorithm given in [8] by replacing the least squares (LS)
estimation by M-estimation, which is more stable in estimating parameters in the
presence of outliers and/or heavy-tailed observations [2]. We name the modified
EM-type algorithm as the MEM-type algorithm. We also modify their change-point
detection procedure accordingly, which is more accurate in detecting change-points
in the presence of outliers and/or heavy-tailed observations.

The outline of this article is the following. In Sect. 2, a general spatiotemporal
autoregressive model is reviewed, and the MEM-type algorithm is presented. Then
we describe the procedure for detecting change-points in the treatment area via
the GSTAR models. In Sect. 3, a real data application and simulations are given
to compare the MEM-type algorithm with the original one and to compare both
change-point detection procedures. Section 4 summarizes the results.

2 The GSTARModel-Based Procedure of Change-Point
Detection in the Daily Spatiotemporal Data

In this section, we first introduce the GSTAR model and present a specially designed
EM-type algorithm to estimate the model parameters. We then give a change-point
detection procedure based on the GSTAR model.
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2.1 The GSTAR Model

In the following, we present the GSTAR model given in [8] that takes into
account the effect of station surroundings, seasonality, temporal correlation among
observations at the same spatial location, and spatial correlation among observations
from different spatial locations while allowing the coefficients to vary over time. The
GSTAR is defined as the following:

yi,T (k−1)+t = x ′
T (k−1)+tβT (k−1)+t + ỹ′

i,T (k−1)+tγ + c i + ρ

L∑
l=1

wil(yl,T (k−1)+t (1)

−x′
T (k−1)+tβT (k−1)+t − ỹ′

l,T (k−1)+tγ − cl) + εi,T (k−1)+t ,

where εi,T (k−1)+t are assumed to be independently and identically (iid) normal
distributed with mean 0 and variance σ 2; yi,T (k−1)+t is the spatiotemporal variable
of interest observed at spatial location i on tth day in the kth year; t ∈ S with S
being a set of consecutive days in a year with size T ; W = (wil)L×L is a neighbor-
hood matrix to describe the spatial correlation among observations collected from
different spatial locations, which satisfies the conditions that wil ≥ 0, wii = 0
and

∑L
l=1 wil = 1; xT (k−1)+t = (xT (k−1)+t,1, xT (k−1)+t,2, xT (k−1)+t,3)

′
are explanatory variables, where xT (k−1)+t,1 = 1 for all t ∈ S and
(xT (k−1)+t,2, xT (k−1)+t,3)

′ = (sin(tjπ/sj ), cos(tjπ/sj ))
′ for t ∈ Sj to model the

seasonal cyclicities and Sj , j = 1, . . . , J , are J seasons in S with S = ∪Sj , and
sj is the number of days in the j th season for j = 1, . . . , J , and tj is the number of
days of t in Sj if t falls into the j th season; βT (k−1)+t = (β0,k,j , β1,k,j , β2)

′
are regression coefficients when t falls into the j th season; ỹi,T (k−1)+t =
(yi,T (k−1)+t−1, yi,T (k−1)+t−2, . . . , yi,T (k−1)+t−ι)

′; and γ = (γ1, γ2, . . . , γι)
′.

An autoregression term is included in the model to take into account the possible
autocorrelation among observations at each location. Here ι denotes the number
of autoregression terms in the model which is predetermined but may be chosen
by an order selection. The parameter set to be estimated in model (1) is H =
{β0,k,j , β1,k,j , j = 1, . . . , J, k = 1, 2, . . . , K; β2, γ , τ1, . . . , τκ , ρ, σ 2}.

2.2 The Estimation

M-estimation is a maximum likelihood-type estimation (see [2]). In the development
of robust methods, M-estimation can play an important and complementary role.
The well-known dispersion function for the M-estimation is Huber’s function
defined as the following:

H(x) =
{

x2, if |x| ≤ k,

2k |x| − k2, if |x| > k,
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where k is a tuning constant and usually chosen as 1.345. The EM-type algorithm
given in [8] used the least squares technique. The performance of the LS estimation
relies heavily on the normality assumption on the errors. Because of the complexity
of spatial-temporal data, the normality assumption is easily violated in the presence
of undetectable outliers and/or heavy-tailed observations. We propose to modify it
by replacing the LS technique used in the algorithm by M-estimation for estimating
the GSTAR model parameters, which is more stable regardless if there are outliers
and/or heavy-tailed observations in the dataset.

2.2.1 Initial Values

First, we give the initial values to {β0,k,j , β1,k,j , j = 1, . . . , J, k =
1, 2, . . . , K; β2, γ , τ1, . . . , τκ , ρ}. We then carry out the following:

1. We calculate the mean of the available observations for each type of stations
and denote them by a1, a2, . . . , aκ . We then calculate the overall mean of the
available observations and denote it by a. The initial estimates of τq ’s are thus put

as τ
(0)
q = aq −a, q = 1, . . . , κ . Let c̄ = ∑L

i=1 ci/L. The initial estimate of c̄ can

be obtained by c̄(0) = ∑L
i=1 c

(0)
i /L, where c

(0)
i takes values in {τ (0)

1 , . . . , τ
(0)
κ }

according to different kinds of surrounding areas around the location.
2. By averaging all equations in (1), we obtain that

ȳT (k−1)+t = x′
T (k−1)+tβT (k−1)+t + ¯̃y′

T (k−1)+tγ + c̄ + εT (k−1)+t ,

= β0,k,j + β1,k,jxT (k−1)+t,2 + β2xT (k−1)+t,3 + γ1ȳT (k−1)+t−1 (2)

+ . . . + γoȳT (k−1)+t−o + c̄ + εT (k−1)+t ,

where ȳT (k−1)+t is the average of the observations on the (T (k − 1) + t)th day
of all spatial locations after removing all missing observations, ¯̃yT (k−1)+t =
(ȳT (k−1)+t−1, . . . , ȳT (k−1)+t−o)

′ and εT (k−1)+t = 1
L
�′
L(IL − ρW)−1

εT (k−1)+t , in which �L = (1, 1, . . . , 1)′L×1.
3. Since sin(π − θ) = sin(θ), sin(π + θ) = sin(2π − θ), cos(π − θ) = − cos(θ),

and cos(π + θ) = − cos(θ), we can remove both the constant term and the
term related to β1,k,j by the difference between two properly chosen pair of the
equations given in (2). By doing so, we obtain

y
(1)
T1(k−1)+t = β2y

(2)
T1(k−1)+t + γ ỹ

(3)
T1(k−1)+t + ε̃T1(k−1)+t , t ∈ S(1). (3)

(A specific example of how to calculate y
(1)
T1(k−1)+t , y

(2)
T1(k−1)+t , ỹ

(3)
T1(k−1)+t ,

ε̃T1(k−1)+t , and S(1) are given in Appendix.)
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Denote y(1) = (y
(1)
1 , y

(1)
2 , . . . , y

(1)
T1K

)′, y(2) = (y
(2)
1 , y

(2)
2 , . . . , y

(2)
T1K

)′,
and ỹ(3) = (ỹ

(3)
1 , ỹ

(3)
2 , . . . , ỹ

(3)
T1K

)′. The M-estimates of β2 and γ are given by

arg min
β2,γ

H(y(1) − β2y
(2) − γ ỹ(3)),

which are used as the initial estimate β
(0)
2 and γ (0) of β2 and γ , respectively.

4. We substitute β2 and γ by β
(0)
2 and γ (0) in model (2). For each year k and season

j , we denote y
(1)
j = (ȳT (k−1)+t − β

(0)
2 xT (k−1)+t,3 − γ (0) ¯̃yT (k−1)+t − c̄(0), t ∈

Sj )
′, and y

(2)
j = (xT (k−1)+t,2, t ∈ Sj )

′. We derive the M-estimates of
β0,k,j , β1,k,j for season j of the kth year by

arg min
β0,k,j ,β1,k,j

H (y
(1)
j − β

j
0,k�sj − β

j
1,ky

(2)
j )

for j = 1, . . . , J , respectively, where �sj = (1, 1, . . . , 1)′sj×1. Therefore, we

use these least square estimates of β0,k,j and β1,k,j as the initial estimates β
(0)
0,k,j

and β
(0)
1,k,j .

5. Set the initial value of ρ(0) as 0.5.

2.2.2 The MEM-Type Algorithm

Let H(m−1) = {β(m−1)
0,k,j , β

(m−1)
1,k,j , j = 1, . . . , J, k = 1, 2, . . . , K, β

(m−1)
2 ,

γ (m−1), τ
(m−1)
1 , . . . , τ

(m−1)
κ , ρ(m−1), σ 2(m−1)} be the set of estimates we obtained

after the (m − 1)th iteration. The MEM-type algorithm has the following three
steps:

1. E-step: Estimate the observation yi,T (k−1)+t at the mth iteration by the following
conditional expectation:

y
(m)
i,T (k−1)+t

= E
(
yi,T (k−1)+t |y(m−1)

l,T (k−1)+t , l = 1, 2, . . . , L,H(m−1)
)

= x′
T (k−1)+tβ

(m−1)
T (k−1)+t + ỹ′

i,T (k−1)+tγ
(m−1) + c

(m−1)
i + ρ(m−1) ×

∑
l:wil 
=0

(
y

(m−1)
l,T (k−1)+t − x′

T (k−1)+tβ
(m−1)
T (k−1)+t − ỹ ′

l,T (k−1)+tγ
(m−1) − c

(m−1)
l

)
,

if it is missing.
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2. M-step: Obtain the estimates c(m), σ 2(m), ρ(m), β
(m)
2 , γ (m), β

(m)
0,k,j , β

(m)
1,k,j , j =

1, . . . , J, k = 1, . . . , K at the mth iteration sequentially as follows:

(a) First derive the estimates
{
τ

(m)
1 , . . . , τ

(m)
κ

}
in the same way as we obtained

the estimates
{
τ

(0)
1 , . . . , τ

(0)
κ

}
. Then c(m) = (c

(m)
1 , c

(m)
2 , . . . , c

(m)
L ), where

c
(m)
i ’s take values from {τ (m)

1 , . . . , τ
(m)
κ } based on the types of the stations.

(b) Similarly, we can remove both the constant term and the term related to β1,k,j

by the difference between one properly chosen pair of the equations given
in (1). Then we estimate σ 2 as σ 2(m) by sample variances.

(c) Find the M-estimates of ρ, β2, and γ after substituting σ 2 by σ 2(m) to get
ρ(m), β

(m)
2 , and γ (m), respectively.

(d) Substitute the estimates
{
c(m), ρ(m), β

(m)
2 , γ (m)

}
into model (1) to obtain

the M-estimates of β0,k,j , β1,k,j as β
(m)
0,k,j , β

(m)
1,k,j .

3. Keep repeating the steps 1–2 until |γ (m) − γ (m−1)| < v, |β(m)
2 − β

(m−1)
2 | < v,

|β(m)
0,k,j − β

(m−1)
0,k,j | < v and |β(m)

1,k,j − β
(m−1)
1,k,j | < v for all k and j , where v is a

predetermined small value. Then we denote β̂0,k,j = β
(m)
0,k,j , β̂1,k,j = β

(m)
1,k,j , for

j = 1, . . . , J, k = 1, 2, . . . , K; β̂2 = β
(m)
2 , γ̂ = γ (m); τ̂i = τ

(m)
i , for

i = 1, . . . , κ ; ρ̂ = ρ̂(m), and σ̂ 2 = σ̂ 2(m).

The set of estimates we obtained is Ĥ = {β̂0,k,j , β̂1,k,j , j = 1, . . . , J, k =
1, 2, . . . , K, β̂2, γ̂ , τ̂1, . . . , τ̂κ , ρ̂, σ̂ 2}.

2.3 The Change-Point Detection Procedure

We now introduce the procedure for detecting new influences that affected the
measurements in the treatment area substantially by comparing with that in the
control area, which is similar to the one given in [8]. We model the data collected,
respectively, from the treatment and control areas of the region by two different
GSTAR models using the algorithm proposed in the previous section. The main
idea is that if new influences in the treatment area are not negligible, there should
be detectable changes in the time-dependent regression coefficients in the GSTAR
model for that area compared to those in the GSTAR model for the control area.
A change-point detection method can be applied to the differences of regression
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coefficient estimates from these two areas. The M-estimation-based change-point
detection procedure is described below:

1. We group the stations in the treatment area of the region into group 1 and model
the spatiotemporal data collected at these stations by

yi,T (k−1)+t = βI
0,k,j + βI

1,k,jxT (k−1)+t,2 + βI
2xT (k−1)+t,3 + ỹ ′

i,T (k−1)+tγ
I

+c i + ρI
L∑

l=1

wil(yl,T (k−1)+t − βI
0,k,j − βI

1,k,jxT (k−1)+t,2

−βI
2xT (k−1)+t,3 − ỹ′

l,T (k−1)+tγ
I − cl) + εi,T (k−1)+t . (4)

Then we group the stations in the control area into group 2 and model the data
from these stations by

yi,T (k−1)+t = βII
0,k,j + βII

1,k,jxT (k−1)+t,2 + βII
2 xT (k−1)+t,3 + ỹ′

i,T (k−1)+tγ
II

+c i + ρII
L∑

l=1

wil(yl,T (k−1)+t − βII
0,k,j − βII

1,k,jxT (k−1)+t,2

−βII
2 xT (k−1)+t,3 − ỹ ′

l,T (k−1)+tγ
II − cl) + εi,T (k−1)+t . (5)

Note that these two models have different parameters except the effect of the
station locations, ci’s.

2. First, we estimate the parameters as their initial values. Following the steps

presented in Sect. 2.2.1, we derive the station type effect
{
τ

(0)
1 , . . . , τ

(0)
κ

}
using

observations collected on stations from both groups so that the same type of
stations in different groups has the same station type effect. Then, we obtain
{βI(0)

0,k,j , β
I(0)
1,k,j , j = 1, 2, 3, 4, k = 1, 2, . . . , K, β

I(0)
2 , γ I(0)} and

{βII(0)
0,k,j , β

II(0)
1,k,j , j = 1, 2, 3, 4, k = 1, 2, . . . , K, β

II(0)
2 , γ II(0)} for

two groups of stations separately. We also set the initial values of ρI and ρIIas
ρI(0) = ρII(0) = 0.5.

3. We apply the MEM-type algorithm proposed in Sect. 2.1. In the E-step, the
missing observations are filled up. In the M-step, we estimate the station type
effects using data from all the stations and then estimate the other parameters
sequentially for two groups of stations separately. These two steps are repeated
until convergence. We obtain the estimates β̂I

0,k,j , β̂
I
1,k,j for model (4) and

β̂II
0,k,j , β̂

II
1,k,j for model (5).

4. We take the difference between these two sets of parameter estimates to obtain
two sets of estimates {d0,k,j = β̂I

0,k,j − β̂II
0,k,j , j = 1, 2, 3, 4, k =

1, 2, . . . , K} as the difference in the intercepts of two models and {d1,k,j =
β̂I

1,k,j − β̂II
1,k,j , j = 1, 2, 3, 4, k = 1, 2, . . . , K} as the difference in the
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slopes of two models. Then we apply the R package change point [3] to detect
the possible mean shifts in {d0,k,j } and {d1,k,j}.

For convenience, we name the change-point detection procedure given in [8] as the
LS-based change-point detection procedure.

It is worth mentioning that in the above procedure d0,k,j and d1,k,j describe
the effect after eliminating the effects of station types, the temporal correlation,
the spatial correlation, and the randomness. Therefore, after applying the proposed
procedure, the estimates {β̂I

0,k,j , β̂I
1,k,j } and {β̂II

0,k,j , β̂II
1,k,j } derived, respectively,

from two groups of data should behave similarly if there are no new influences in the
treatment area. Then there are no changes in the means of both {d0,k,j } and {d1,k,j}.

3 Application

In this section, we, respectively, compare the MEM-type algorithm with the EM-
type algorithm in [8] and the M-estimation-based change-point detection procedure
with the LS-based change-point detection procedure through a real data application
and simulations.

3.1 A Real Data Example

The data of [8] includes measurements of the ground-level ozone concentration
readings measured in parts per billion (ppb) from 36 monitoring stations in a region
with longitude from −80◦ to −78.5◦ and latitude from 43◦ to 45◦ in Southern
Ontario over the period from 1988 to 2010. Locations of the stations are shown in
Fig. 1. Following [6], the data used in the examples is the log of the daily maximum
8-h moving averages of ozone concentration. There are 36 stations. Among these 36
stations, we choose 27 stations which have been monitored for more than 5 years.
On average, each station has 39.4% data missing. We let ι = 1 by the pre-analysis of
the data. The total number of the parameters is 194. First, we obtain the estimates of
the parameters in the GSTAR model using the EM-type algorithm in [8]. We name
these estimates ĤLS . Then the proposed MEM-type algorithm is used to obtain the
parameters in GSTAR model on the same dataset. We name these estimates ĤM .
We use the Euclidean distance to measure the differences as the following:

∥∥∥ĤLS − ĤM

∥∥∥ =
√

(ĤLS − ĤM)′(ĤLS − ĤM).

The distance is 0.1015, which is small enough to show that these two methods
produce almost the same parameter estimates on the same dataset.
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Fig. 1 The locations of 27 stations which have data for more than 5 years are shown in circle.
Data source: Regional Aquatics Monitoring Program http://www.ramp-alberta.org

3.2 A Simulated Example

3.2.1 Data with Outliers

We now show that the MEM-type algorithm works well in the presence of outliers.
To make the outliers reasonable, we first choose an area whose latitude is less than
43.55◦N. There are eight stations within this area. Then we randomly pick up a
day, and for a period of 9 days after this day, we expanded the log-transformed
ozone concentrations by 1.6 times. In real life, this could happen for the reasons
including the machine broken, unexpected activities in this area, etc. The experiment
is repeated for 500 times, we recorded the Euclidean distance for both algorithms,
and in Table 1, the mean and the standard deviation (sd) of the Euclidean distance
are reported.

http://www.ramp-alberta.org
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Table 1 Mean and standard
deviation of the Euclidean
distances

MEM-type algorithm EM-type algorithm

Mean sd Mean sd

0.2704 0.1325 0.4392 0.0541
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Fig. 2 Change-points in both means of {d0,k,j } and {d1,k,j } detected by using the R package
change-point. The left and right panels, respectively, display the results by using both LS-based
and M-estimation-based change-point detection procedures

The simulation shows that when there are outliers, they have less impact on the
performance of parameter estimation if the proposed MEM-type algorithm is used.

3.2.2 The Change-Point Detection

In [8], they simulated the change-points under their scenario 1 in the following
reasonable way. First they separated the stations into two groups by the latitude
43.65◦. Then, for each station in group 1, they added a random number generated
from the normal distribution with mean μ = σ̃ and variance σ 2 = 1

2 σ̃ to each
observation collected from 1998 to 2010 to create the first change-point at 1998.
They also added a random number generated from the normal distribution with
mean μ = σ̃ and variance σ 2 = 1

2 σ̃ to the previously modified observations from
2008 to 2010 to create the second change-point at 2008. The results of detecting the
change-points by using the LS-based change-point detection procedure are shown in
Fig. 2. The right panel displays the results by using the M-estimation-based change-
point detection procedure. Two sets of estimates, {d0,k,j} and {d1,k,j }, are obtained.
The plot displays the change-points in {d0,k,j } (upper panel) and {d1,k,j} (lower
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Fig. 3 Change points in both means of {d0,k,j } and {d1,k,j } detected by using the R package
change-point for heavy-tailed observations. The left and right panels, respectively, display the
results by using both LS-based and M-estimation-based change-point detection procedures

panel) using both procedures. Figure 2 shows that both procedures capture the
change-points equally well.

We now modify the random number generation by changing the variance σ 2 =
1
2 σ̃ to σ 2 = 1.6σ̃ . This modification produces large variation in the observations
after the change-points. This is a reasonable scenario because if there are some
activities happening in a region, the observations would be more fluctuated than
other times due to these activities. The M-estimation-based change-point detection
procedure detects the change-points at 1998 and 2008 successfully using the R
package change point; however, the LS-based method produces false change-points.
The results are shown in Fig. 3, which demonstrate that the M-estimation-based
change-point detection procedure is more stable than the LS-based change-point
detection procedure in change-point detection in the presence of outliers and/or
heavy-tailed observations.

4 Conclusions

In this paper, we improve the EM-type algorithm for the parameter estimation of
the GSTAR model by replacing the least squares technique in the algorithm by M-
estimation such that the modified algorithm is more stable in estimating parameters
and more accurate in detecting change-points when the dataset contains outliers
and/or has heavy-tailed observations. In the real data example, it is shown that
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MEM-type algorithm produces almost the same parameter estimates for the GSTAR
model as the EM-type algorithm. In the simulation, we test the robustness of our
methods in two ways. In the first case, we add some random outliers to the real data,
and the parameter estimates from our method are more stable than the LS method. In
the second case, we test the accuracy of detecting the change-points of our method
when the observations under the same scenario as in [8]. Both methods detect the
change-points equally well. Then we test the performance of our method in the
case when the observations are heavy-tail distributed. We increase the variance
of the observations after the change-points by 1.6 times, the result shows that the
method in [8] produces false change-points, but our method still successfully detects
the change-points with no false ones. Thus we conclude that our method is more
robust and stable for modeling spatiotemporal data where the inconsistently behaved
observations are more likely to appear as the size of data is growing rapidly.

Appendix

A specific example is given to show how to calculate y
(1)
T1(k−1)+t , y

(2)
T1(k−1)+t ,

ỹ
(3)
T1(k−1)+t and ε̃T1(k−1)+t in Sect. 2.1.

Consider t1 = 1, S1 = {1, 2, . . . , 90, 307, 308, . . . , 366} for Winter, S2 =
{91, 92, . . . , 152} for Spring, S3 = {153, . . . , 244} for Summer and S4 =
{245, . . . , 306} for Fall. In this case, T = 366 and T1 = 181. For winter,

y
(1)
181(k−1)+t−1 ≡ ȳ366(k−1)+t − ȳ366(k−1)+75−t

y
(2)
181(k−1)+t−1 ≡ 2 cos(2tπ/s1),

y
(3)
181(k−1)+t−1 ≡ ȳ366(k−1)+t−1 − ȳ366(k−1)+75−t−1

ε̃181(k−1)+t−1 ≡ ε366(k−1)+t − ε366(k−1)+75−t , t = 2, . . . , 37.

y
(1)
181(k−1)+37+t ≡ ȳ366(k−1)+t+75 − ȳ366(k−1)+366−t

y
(2)
181(k−1)+37+t ≡ −2 cos(2tπ/s1),

y
(3)
181(k−1)+37+t ≡ ȳ366(k−1)+t+75−1 − ȳ366(k−1)+366−t−1

ε̃181(k−1)+37+t ≡ ε366(k−1)+t+75 − ε366(k−1)+366−t, t = 0, 1, 2, . . . , 15.

y
(1)
181(k−1)+37+t ≡ ȳ366(k−1)+t+291 − ȳ366(k−1)+366−t

y
(2)
181(k−1)+37+t ≡ −2 cos(2tπ/s1),

y
(3)
181(k−1)+37+t ≡ ȳ366(k−1)+t+291−1 − ȳ366(k−1)+366−t−1

ε̃181(k−1)+37+t ≡ ε366(k−1)+t+291 − ε366(k−1)+366−t, t = 16, 17, . . . , 37.



Detection of Change Points in Spatiotemporal Data in the Presence of Outliers. . . 61

For Spring,

y
(1)
181(k−1)+74+t ≡ ȳ366(k−1)+90+t − ȳ366(k−1)+121−t

y
(2)
181(k−1)+74+t ≡ 2 cos(2tπ/s2),

y
(3)
181(k−1)+74+t ≡ ȳ366(k−1)+90+t−1 − ȳ366(k−1)+121−t−1

ε̃181(k−1)+74+t ≡ ε366(k−1)+90+t − ε366(k−1)+121−t, t = 1, 2, . . . , 15.

y
(1)
181(k−1)+90+t

≡ ȳ366(k−1)+121+t − ȳ366(k−1)+152−t

y
(2)
181(k−1)+90+t

≡ −2 cos(2tπ/s2),

y
(3)
181(k−1)+90+t ≡ ȳ366(k−1)+121+t−1 − ȳ366(k−1)+152−t−1

ε̃181(k−1)+90+t ≡ ε366(k−1)+121+t − ε366(k−1)+152−t, t = 0, 1, 2, . . . , 15.

For Summer,

y
(1)
181(k−1)+105+t ≡ ȳ366(k−1)+152+t − ȳ366(k−1)+198−t

y
(2)
181(k−1)+105+t ≡ 2 cos(2tπ/s3),

y
(3)
181(k−1)+105+t ≡ ȳ366(k−1)+152+t−1 − ȳ366(k−1)+198−t−1

ε̃181(k−1)+105+t ≡ ε366(k−1)+152+t − ε366(k−1)+198−t, t = 1, 2, . . . , 22.

y
(1)
181(k−1)+128+t ≡ ȳ366(k−1)+198+t − ȳ366(k−1)+244−t

y
(2)
181(k−1)+128+t ≡ −2 cos(2tπ/s3),

y
(3)
181(k−1)+128+t ≡ ȳ366(k−1)+198+t−1 − ȳ366(k−1)+244−t−1

ε̃181(k−1)+128+t ≡ ε366(k−1)+198+t − ε366(k−1)+244−t, t = 0, 1, 2, . . . , 22.

For Fall,

y
(1)
181(k−1)+150+t ≡ ȳ366(k−1)+244+t − ȳ366(k−1)+275−t

y
(2)
181(k−1)+150+t

≡ 2 cos(2tπ/s4),

y
(3)
181(k−1)+150+t ≡ ȳ366(k−1)+244+t−1 − ȳ366(k−1)+275−t−1

ε̃181(k−1)+150+t ≡ ε366(k−1)+244+t − ε366(k−1)+275−t, t = 1, 2, . . . , 15.

y
(1)
181(k−1)+166+t ≡ ȳ366(k−1)+275+t − ȳ366(k−1)+306−t

y
(2)
181(k−1)+166+t ≡ −2 cos(2tπ/s4),
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y
(3)
181(k−1)+166+t ≡ ȳ366(k−1)+275+t−1 − ȳ366(k−1)+306−t−1

ε̃181(k−1)+166+t ≡ ε366(k−1)+275+t − ε366(k−1)+306−t, t = 0, 1, 2, . . . , 15.

References

1. Altieri L, Cocchi D, Greco F, Ellian JB, Scott EM (2016) Bayesian P-splines and advanced
computing in R for a changepoint analysis on spatio-temporal point processes. J Stat Comput
Simul 86:2531–2545

2. Huber PJ (1973) Robust regression. Ann Stat 1:799–821
3. Killick R, Eckley I (2014) Changepoint: an R package for changepoint analysis. J Stat Softw

58:1–13
4. Nappi-Choulet I, Maury T-P (2009) A spatiotemporal autoregressive price index for the Paris

office property market. Real Estate Econ V37:305–340
5. Otto P, Schmid W (2016) Detection of spatial change points in the mean and covariances of

multivariate simultaneous autoregressive models. Biometrical J 58:1113–1137
6. Porter PS, Rao ST, Zurbenko IG, Dunker AM, Wolff GT (2001) Ozone air quality over North

America: part II-an analysis of trend detection and attribution techniques. J Air Waste Manag
Assoc 51:283–306

7. Wu Y, Jin B, Chan E (2015) Detection of Changes in Ground-level ozone concentrations via
entropy. Entropy 17:2749–2763

8. Wu Y, Sun X, Chan E, Qin S (2017) Detecting non-negligible new influences in environmental
data via a general spatio-temporal autoregressive Model. Br J Environ Clim Chang 7(4):223–235

9. Wyse J, Friel N, Rue H (2011) Approximate simulation-free Bayesian inference for multiple
changepoint models with dependence within segments. Bayesian Anal 6:501–528



Modeling Spatiotemporal Mismatch
for Aerosol Profiles

Ilia Negri, Alessandro Fassò, Lucia Mona, Nikolaos Papagiannopoulos,
and Fabio Madonna

Keywords Data comparison · Uncertainty · CALIOP measurements ·
EARLINET measurements

1 Introduction

The high variability both in space and time of tropospheric aerosols is one of
the main causes of the high uncertainty related to tropospheric aerosols and
their interactions with clouds. Since 2006, CALIOP (Cloud-Aerosol Lidar with
Orthogonal Polarization), the LIDAR onboard CALIPSO (Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observations) specifically designed for aerosol and
clouds study, is providing high-resolution vertical profiles of aerosols and clouds on
a global scale. How well these CALIOP measurements represent the atmospheric
conditions of a surrounding area over a longer time is an important issue to be
investigated; see [19] for an overview of the CALIPSO mission and CALIOP data
processing algorithms. EARLINET (European Aerosol Research Lidar NETwork)
is the first LIDAR network for aerosol studies on a continental scale. EARLINET
is a network of different instruments and instrumental setups with a wide variety of
instrumental specifics and team expertises, so that there is not a common vertical
and temporal sampling overall within the network. For a complete description of
EARLINET, see [16] and references therein.
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The comparison of EARLINET profiles and their CALIPSO counterpart is a
straightforward procedure. Since June 2006, many EARLINET stations are provid-
ing measurements in correspondence to CALIPSO overpasses within 100 km (see
[15]), according to CALIPSO validation plans. An integrated study of CALIPSO
and EARLINET correlative measurements opens new possibilities for spatial (both
horizontal and vertical) and temporal representativeness investigation of this set of
satellite measurements.

The main aim of this work is to investigate the horizontal smoothing impact
on the uncertainty term between the satellite and the ground measurement of the
aerosol layers. In the current study, nine different horizontal averaging schemes
for the CALIPSO data are used in order to investigate the influence of horizontal
smoothing of CALIPSO data when compared against the EARLINET data. In a
first analysis, we minimize the RMSE (root-mean-square error) to search for the
best horizontal smoothing for CALIOP considering the whole column of aerosol
from the ground to the free troposphere, in five different sites. In a second step, to
take into account the differences in the vertical dimension and to exploit the vertical
profiling capability of both EARLINET and CALIPSO, we split the atmosphere into
three zones, below 2.5 km (as representative of local aerosol conditions), between
2.5 and 5.5 km (middle troposphere with transport of aerosols), and above 5.5 km
(free troposphere), and we investigate the impact of horizontal smoothing in the
three vertical zones.

Our study shows that the co-location mismatch decreases as the altitude
increases, and it has its minimum around 50 km, while for peculiar situations
(mountain or region surrounded by mountains), this minimum is shifted around
100–150 km.

The paper is organized as follows. The next section recalls the metrology of a
data comparison and associated errors. Section 3 is devoted to the presentation of the
dataset used in the paper, the CALIOP/CALIPSO description is given in Sect. 3.1,
and the EARLINET description is given in Sect. 3.2. Section 4 is dedicated to the
presentation of the comparison setup. The horizontal smoothing procedure and its
results are presented in Sect. 5, while in Sect. 6, the method is applied to the three
vertical atmosphere zones. Finally in Sect. 7, some conclusions and further remarks
are given.

2 Metrology of a Data Comparison and Associated Errors

Every measurement has imperfections that give rise to an error in the result. As a
consequence, a measurement y is never a perfect indicator of the instantaneous state
of the measured parameter μ, but

y = μ + ε
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where ε is the error usually assumed as a random variable normally distributed with
mean zero and variance σ 2. Denote ysat = ysat (t, s) the satellite measure at time t

and location s and ygnd = ygnd(t
′, s′) the ground measure at time t ′ and location s′.

In perfect co-location, the true value that has to be measured is μ = μ(t, s) for s ∈
D and t ∈ T where D and T are the domains of the location and time observation,
respectively. The ground measurement equation is ysat (t, s) = μ(t, s) + εsat (t, s),
and the satellite measurement equation is ygnd(t, s) = μ(t, s)+εgnd(t, s). The total
co-location error is Δ(t, s) = ysat(t, s) − ygnd(t, s) = Δy that can be written as
Δy = εsat − εgnd . Assuming εsat and εgnd are independent, we have E(Δy) = 0,
V ar(Δy) = σ 2

sat + σ 2
gnd . See [17].

In case of spatiotemporal mismatch, i.e., non-perfect co-location, we can have
different times of observation with Δt = t ′ − t and t = t ′ + Δt and different
locations of observation with Δs = s′ − s and s = s′ + Δs. In case of profile
measures, where the layer is given at different altitudes, we can have also different
heights of observation with Δh = h′ −h and h = h′ +Δh. In this case the measures
are ygnd(t, s, h) = μ(t, s, h) + εgnd and ysat(t

′, s′, h′) = μ(t ′, s′, h′) + εsat where
εsat and εgnd are the random error with mean zero and variance σ 2

sat and σ 2
gnd ,

respectively. They can be assumed independent, but they may depend on (t, s, h).
The total co-location error with mismatch is Δ(t, s, h, t ′, s′, h′) = ysat (t

′, s′,
h′) − ygnd(t, s, h) = Δy . It can be written as Δy = δenv + Δε where
δenv(t, s, h, t ′, s′, h′) = μ(t ′, s′, h′) − μ(t, s, h) is the environmental component
and Δε = εsat − εgnd is the co-location error. The environmental component can be
statistically modeled such as in [3] and [10]. In case of spatiotemporal mismatch,
i.e., non-perfect co-location, we can suppose that an additional error term εmis term,
with variance σ 2

mis , is introduced. So we have E(Δy) = δenv and

E(Δ2
y) = σ 2

sat + σ 2
gnd + σ 2

mis (1)

Eq. (1) is valid if we can suppose no correlation between εsat , εgnd , and εmis . If we
suppose such correlation, we have

E(Δ2
y) = E(εsat − εgnd + εmis)

2

= E(ε2
sat ) + E(ε2

gnd) + E(ε2
mis)+

− 2E(εsatεgnd) + 2E(εsatεmis) − 2E(εgndεmis)

We can suppose E(εsatεgnd) = 0 because we make the assumption that there is no
correlation between the ground error and the satellite error measurement. So we can
write

E(Δ2
y) = σ 2

sat + σ 2
gnd + σ 2

mis + 2ρsat,mis − 2ρgnd,mis (2)
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where ρsat,mis = E(εsatεmis) and ρgnd,mis = E(εgndεmis) are covariances that we
cannot suppose to be zero. Indeed it seems reasonable to suppose they are negative
because the more the measurement error decreases (and this happens if you increase
the time and space in the measurement), the more the mismatch error increases.

This fact is observed in data. Let l be a multi-index identifying the different
observations. For example, in our study, l = (h, d, s) where h is the height, d

the day, and s the station of any measure. For any l the observations are ysat,l −
ygnd,l = Δl . Related to any of these observations, we have the given measurement
uncertainty usat,l and ugnd,l that can be considered as an estimation for σsat and
σgnd , respectively, at each spatiotemporal location l. At a first analysis, fix a station
s. The quantity σ̂ 2

T OT = 1
N−1

∑
l (ysat,l − ygnd,l)

2, where N is the total number of

observations, is an estimation of E(Δ2
y). The quantities σ̂ 2

sat = 1
N−1

∑
l u

2
sat,l and

σ̂ 2
gnd = 1

N−1

∑
l u

2
gnd,l are estimation of σ 2

sat and σ 2
gnd , respectively. The correlation

terms ρsat,mis and ρgnd,mis have to be estimated. Let ρ̂sat,mis and ρ̂gnd,mis be
such estimators. An estimation of the variance of the mismatch component can be
achieved as σ̂ 2

mis = σ̂ 2
T OT −σ̂ 2

sat−σ̂ 2
gnd +ρ̂sat,mis−ρ̂gnd,mis . Usually the uncertainty

σ̂ 2
sat related to CALIOP measurement is very high. This gives negative values for

σ̂ 2
mis if we consider the decomposition given by (1). For this reason is it essential

to include the term ρ̂sat,mis , expected as negative, in the uncertainty budget given
by (2).

3 Aerosol Profiles: Comparison of CALIOP/CALIPSO
and EARLINET

The high variability both in space and time of tropospheric aerosols is one of the
main causes of the high uncertainty about radiative forcing related to tropospheric
aerosols and their interactions with clouds (see [4]). In particular, information about
the vertical layering of aerosol and aerosol vertical distribution is a crucial point
for aerosol-clouds interaction study. Moreover, the lack of information about the
vertical mixing can lead also to significant horizontal inhomogeneities. These are
due to large vertical concentration gradients, and it is therefore a large source of vari-
ability. Typically this source is not considered in the models. Since 2006, CALIOP is
providing high-resolution vertical profiles of aerosols and clouds on a global scale.
However, because of the small footprint and the revisit time of 16 days, how well
these CALIOP measurements represent the atmospheric conditions of a surrounding
area over a longer time is an important issue to be investigated. An integrated study
of CALIPSO and EARLINET correlative measurements opens new possibilities for
spatial (both horizontal and vertical) and temporal representativeness investigation
of this set of satellite measurements.
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3.1 CALIOP/CALIPSO Description

The NASA/CNES CALIPSO mission is designed to study aerosols and clouds (see
[20]). Its aim is to provide profiling information at a global scale for improving our
knowledge and understanding their climatic role. The main instrument, CALIOP,
is a dual wavelength (532 and 1064 nm) elastic backscatter LIDAR with the
capability of polarization sensitive observations at 532 nm [18]. The CALIPSO
satellite was launched into a near sun-synchronous orbit (SSO) and low Earth
orbit (LEO) at a 705 km altitude. Using active remote sensing techniques, CALIOP
observes aerosols during daytime and nighttime conditions and therefore provides
constant observations of aerosols and clouds. In particular, CALIPSO mission offers
unprecedented observations of day and night aerosol global optical properties pro-
files, vital for aerosol-radiation-cloud interaction studies to understand their climatic
role [21]. Instrument data is transmitted from the satellite to the ground station
once per day and transferred to the level 0 processing facility to packetize, time
order, and archive. The instrument data is combined with ancillary datasets such
as meteorological, ephemeris, and instrument status and global reference products
to enhance the quality and accuracy of the data products. The LIDAR level 1 data
product contains a half orbit (day or night) of calibrated and geolocated LIDAR
profiles. Apart from LIDAR data, satellite position data and viewing geometry
are provided in the product. There are three types of Lidar level 2 products:
layer products (cloud and aerosol), profile products (backscatter and extinction),
and a vertical feature mask (cloud and aerosol locations and the corresponding
type). Details of the CALIOP instrument and algorithms can be found in the
companion papers of the JTECH special issue (http://journals.ametsoc.org/topic/
calipso). Additional details can be found in the CALIPSO algorithm theoretical
basis documents (ATBDs; available online at https://www-calipso.larc.nasa.gov/
resources/project_documentation.php). The aerosol-related data are generated at a
uniform horizontal resolution of 5 km. Finally, the level 3 product reports monthly
mean profiles of aerosol optical properties on a uniform spatial grid. All level 3
parameters are derived from the CALIPSO level 2, 5 km aerosol profile products
applying some additional quality screening filters (see [21]). The retrieval of optical
profiles from CALIPSO observations is highly complex, and its detailed description
is out of the scope of this document. However, the whole procedure could be
briefly summarized in the following manner. Aerosol extinction and backscatter
coefficients are retrieved in three steps: (1) layers are searched in the LIDAR-
acquired profiles, with horizontal averaging varying from 1/3 km to 80 km; (2)
these layers are flagged as clouds or aerosols; and (3) the aerosol extinction
and backscatter profiles are retrieved. The succession of the abovementioned
steps is described in detail in a special issue of the Journal of Atmospheric and
Oceanic Technology (see [19]). Note that the above retrieval from CALIOP elastic
backscatter LIDAR is underdetermined, and an additional assumption is needed.
In case of an elevated aerosol layer that lies in clear air, the transmittance through
the layer can be estimated from the clear-air signals [22]. This offers the needed

http://journals.ametsoc.org/topic/calipso
http://journals.ametsoc.org/topic/calipso
https://www-calipso.larc.nasa.gov/resources/project_documentation.php
https://www-calipso.larc.nasa.gov/resources/project_documentation.php
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constraint for the extinction retrieval; however the CALIOP SNR (signal-to-noise
ratio) levels do not usually permit the application of the technique. Therefore,
an algorithm [13] is used to estimate the extinction-to-backscatter ratio from the
532 nm depolarization and backscatter signals, which provides the abovementioned
assumption [23]. The signal calibration, which precedes the above chain of aerosol
retrieval, along with the correct aerosol layer detection and the aerosol layer
subtyping dictate the correct retrieval, and any errors in these parameters will lead to
errors in the optical properties retrieved by CALIPSO. An extended error analysis
of the aerosol extinction and backscatter retrieval can be found in [24]. As only
CALIPSO level 2 aerosol profiles are used, these data are described in the following
subsections.

3.1.1 CALIOP Sampling

The CALIOP sampling is dictated by the laser repetition rate, the detection con-
figuration, and the satellite-target geometry. In particular the fundamental sampling
resolution of the LIDAR is 30 m vertically and 333 m horizontally. The firing rate of
the laser is 20 Hz and, according to the minimal resolution of 1/3 km (average of 15
single-shot profiles), leads to a temporal sampling of 0.75 s (https://www-calipso.
larc.nasa.gov/resources/pdfs/PC-SCI-201v1.0.pdf).

3.1.2 CALIOP Smoothing

The SNR level of the CALIPSO raw signals at sampling could be very low because
of many factors: CALIPSO’s distance from the target, the high speed at which the
LIDAR sweeps across the target space, constraints placed on the pulse energy of
the laser transmitter by eye-safety requirements, the relatively low firing rate of
the laser (20 Hz) relative to the velocity of the satellite, and vertical and horizontal
variations in the composition of the layers being measured. Appropriate procedures
are used for the CALIPSO satellite-borne aerosol measurements for improving the
SNR affecting the smoothing in the vertical, horizontal, and temporal dimensions.

Vertical Smoothing

There exists a multistep averaging scheme that dominates the vertical and horizontal
resolution. The spatial invariant resolution shown in Table 1 is the resolution
applied to raw data already in the onboard averaging scheme. An altitude-dependent
averaging scheme is used by CALIPSO and provides higher resolution in the lower
troposphere where the spatial variability of cloud and aerosol is larger and lower
resolution above. The degree of averaging varies with the altitude, as detailed in
the mentioned Table 1 (see https://www-calipso.larc.nasa.gov/resources/pdfs/PC-
SCI-202.Part1_v2-Overview.pdf). This scheme is performed before the data are
downlinked to ground data processing stations and can be regarded as preprocessing.

https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-201v1.0.pdf
https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-201v1.0.pdf
https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202.Part1_v2-Overview.pdf
https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202.Part1_v2-Overview.pdf
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Table 1 Spatial resolution for the CALIPSO onboard averaging scheme (altitudes are with respect
to mean sea level)

Altitude Vertical Horizontal Profile per 5 Samples per
range (km) resolution (m) resolution (km) (km) profile

20.2 to 30.1 180 1.7 3 55

8.2 to 20.2 60 1.0 5 200

−0.5 to 8.2 30 1/3 15 290

Table 2 The horizontal averaging applied to CALIPSO data along with the corresponding
temporal sampling and number of laser shots

Level 2 product post-processing

Horizontal averaging (km) Temporal resolution (s) Laser shots (number)

25 3.75 75

45 6.75 135

75 11.25 225

105 15.75 315

125 18.75 375

155 23.25 465

175 26.25 525

205 30.75 615

For the current study, only level 2 aerosol profile data in the range −0.5 to
20.2 km are used. For these data the vertical resolution is made homogenous at 60 m
by averaging consecutive points in the lower range, −0.5 to 8.2 km. As a result, we
have 145 and 200 samples per profile in the 0.5–8.2 km and 8.2–20.2 km ranges,
respectively. Within this study no further vertical averaging has been applied to the
original level 2 as released by the CALIPSO team following the ATBD reported on
the CALIPSO website.

Horizontal Smoothing

The CALIPSO algorithms perform a horizontal averaging to enhance the detection
of aerosol layers. The averaging is performed for 1/3, 1, 5, 20, and 80 km. For
the current study, CALIPSO level 2 data are used which are spatially uniform and
reported in 5 km segments. Details on how this is achieved are reported at https://
www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202.Part1_v2-Overview.pdf.
For the purpose of the current study, further horizontal averaging was applied on the
level 2 CALIPSO data (see Sect. 5). Different horizontal averaging schemes for the
CALIPSO data are used (Table 2) in order to investigate the influence of horizontal
smoothing of CALIPSO data when compared against EARLINET data. CALIPSO
data at different horizontal resolutions are obtained averaging the original 5 km
ones, without applying any screening criteria on them.

https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202.Part1_v2-Overview.pdf
https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202.Part1_v2-Overview.pdf
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3.2 EARLINET Description

EARLINET (European Aerosol Research Lidar NETwork) is the first LIDAR
network for aerosol studies on a continental scale. EARLINET comprises of
different instrumental setups, specifics, and team expertises. Building up on sub-
stantial measurement heritage, EARLINET worked on three main aspects: (1)
harmonization of the QA procedures (instrumental and algorithm), (2) establishing
measurement schedule, and (3) creating a centralized dataset and homogeneous data
format (see [16] and references therein). The success of EARLINET, established
in 2000 and currently part of ACTRIS, the European Research Infrastructure for
Aerosol, Clouds, and Trace gases observations, paved the way for a further step
in the global LIDAR aerosol monitoring even if starting up from heterogeneous
LIDAR networks within the global aerosol lidar network (GALION) established by
the WMO.

3.2.1 EARLINET Sampling

EARLINET is a network of different instruments with a wide variety of instrumental
specifics, so that there is not a common vertical and temporal sampling overall
within the network. On the other hand, differences in the instrument components
result in different signal-to-noise ratio throughout the network; therefore different
smoothing levels are needed station by station. Spatiotemporal resolution and
sampling are established at station level and vary in a significant way among the
network. This aspect could mean a loss of homogeneity in the considered dataset,
but on the other hand, it provides the opportunity for investigating how the different
setups affect the EARLINET-CALIPSO comparison. As illustrated in Table 3,
EARLINET LIDAR signals considered here are acquired with vertical sampling
between 3.75 and 60 m. Moreover, temporal sampling is characterized by the fact
that each LIDAR signal is acquired over a temporal window between 10 and 60 s.
Of course, horizontal sampling can be considered as pointwise measurements.

Table 3 Vertical and horizontal sampling and repetition rate of the EARLINET LIDAR systems
considered in this study

Vertical Temporal Laser repetition
Station Lidar name sampling (m) sampling (s) rate (Hz)

Évora Paoli 30 60 20

Granada Raymetrics D400 7.5 10 10

Leipzig Martha 60 30 30

Napoli – 15 60 20

Potenza MUSA 3.75 60 20
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3.2.2 EARLINET Smoothing

Vertical Smoothing

After the LIDAR signal acquisition, the signals are integrated, thus modifying both
the vertical and temporal resolution. Vertical resolution is decided at station level
with the goal to improve the SNR levels. It can be variable with the altitude range:
typically a finer vertical resolution is set in the lowest altitude range where the
aerosol load is high and a coarser one at the upper levels where the aerosol load
is low for improving the SNR. The aerosol extinction retrieval is numerically more
complex with respect to aerosol backscatter because it involves the derivative of the
signal. This complexity results in a coarser resolution. Even if the vertical extinction
profiles are provided to the original raw resolution (typically 15 m), the effective
resolution is coarser: each point is provided because the ensemble of these ‘not-
independent’ points provides a better reconstruction of the real atmospheric feature
(exactly as happens for image processing). The effective resolution is evaluated
adopting interferometric criteria for peak discrimination [9]. For the EARLINET
stations, typically the resolution for the aerosol backscatter is 60 m, while the
resolution typically ranges between 200 and 600 m for aerosol extinction, reaching
values of 1.2–1.5 km at the highest altitude ranges when no aerosol layers are
identified.

Temporal Smoothing

With regard to the temporal resolution, the signals are averaged for increasing the
SNR in such a way to cover the widest altitude range possible. Typically signals
are averaged between 30 min and 1 h in homogeneous aerosol load conditions.
Laser shots vary between 18,000 and 36,000 for a laser repetition rate of 10 Hz,
between 36,000 and 72,000 for a laser repetition rate of 20 Hz, and between 54,000
and 108,000 for a laser repetition rate of 30 Hz. This resolution depends also on
the aerosol content: low aerosol content means low signal, and therefore a longer
temporal integration time is needed for obtaining high SNR. Table 3 reports in the
last column the repetition rate of the EARLINET LIDAR systems considered in this
study.

4 Comparison Setup

Since June 2006, many EARLINET stations are providing measurements in corre-
spondence to CALIPSO overpasses within 100 km [15], according to CALIPSO
validation plans. Additionally, simultaneous measurements are planned in order
to study the aerosol temporal variability or in the case of special events to study
specific aerosol types and to investigate the geographical representativeness of the
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observations [15]. The measurement schedule is centrally distributed among the
stations, and measurements are performed under weather favorable conditions and
conditioned by the station’s manpower availability. Up to July 2016, the EARLINET
database reports more than 9000 files related to CALIPSO overpasses (EARLINET
publishing group 2014; https://data.earlinet.org). In the following, we consider only
files related to overpasses within a 100 km radius from the station and excluding
special events (Case B and Case C described in [15]). In particular, 143 aerosol
backscatter coefficient profiles are compared against their CALIPSO counterparts.
This parameter has been selected for investigating the balance difference between
the two observations because it was demonstrated that, among the CALIPSO optical
properties, the aerosol backscatter is less affected by the inversion assumptions
[14]. Further only nighttime measurements are considered because of the larger
calibration uncertainty for daytime CALIPSO measurements.

The comparison of EARLINET profiles and their CALIPSO counterpart is a
straightforward procedure. Both EARLINET and CALIPSO make use of active
remote sensing instruments, yet, the nature and the needs of the satellite mission
require special care for any validation study. EARLINET is performing correlative
measurements since CALIPSO started its life cycle (April 2006), based on a
schedule established before the satellite mission. The strategy followed by the
member stations is as follows: the observations occur during the satellite overflight
within 100 km distance of the satellite ground track from the station and are
performed for at least 60 min.

Only CALIPSO measurements synchronous to the EARLINET measurements
are used here. The CALIPSO data are searched for the closest in distance point. This
point corresponds to a 5 km CALIPSO profile. In this study more 5 km CALIPSO
profiles are also averaged in order to assess the spatiotemporal satellite’s perfor-
mance. Apart from the original 5 km profile, further eight horizontal resolutions are
used: 25, 45, 75, 105, 125, 155, 175, and 205 km.

To investigate dependence on the specific site, only the EARLINET stations with
a large enough number of co-located observations are considered and analyzed.
Namely, the stations are Évora, Granada, Napoli, Potenza, and Leipzig giving
19, 21, 40, 37, and 26 co-located observations, respectively. Table 4 reports the
localization parameters of each station.

Prior to the aforementioned analysis, the following identified cirrus cases have
been screened out from EARLINET data (CALIPSO aerosol data are already
screened in this sense). The cloud screening of EARLINET data is not an automatic
procedure for the current version of the database. This was done for this work

Table 4 Latitude, longitude,
and altitude (m.o.s) of the
location of EARLINET
stations considered in this
study

Station Latitude Longitude Altitude (m.o.s)

Évora 38.568 N 7.912 W 293

Granada 37.164 N 3.605 W 680

Leipzig 51.353 N 12.435 E 90

Napoli 40.838 N 14.183 E 293

Potenza 40.601 N 15.724 E 760

https://data.earlinet.org
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Table 5 Cirrus clouds
detected and discarded in
EARLINET stations involved
in this study

Station Date Altitude range (km)

Naples 19 Sep 2008 Above 6.5

17 May 2009 Above 6

24 Nov 2009 Above 8

18 Apr 2010 Above 5.4

Potenza 03 Apr 2007 At 8–9.5

21 Apr 2008 Above 7.5

14 Nov 2008 Above 7

27 Apr 2010 Above 8

taking advantage of the available labeling of the data. Cirrus clouds are high clouds
and are predominantly of ice. These clouds attenuate the laser pulse, and their
pronounced structures can be easily discriminated. The cirrus category and the
reported information about the cirrus cloud altitude range found in the comment
field of the data file were used. However, in some cases, manual inspection of the
data was needed for identifying the cirrus cloud in the profiles, since the inclusion of
this information within the EARLINET file is not mandatory at this stage. As a result
the data reported in Table 5 have been removed from the analysis. In addition, the
27 data point in profiles where the uncertainties above 6923 m resulted to be greater
than 1 m−1sr−1 at Granada have been also removed from subsequent uncertainty
analyses.

In order to homogenize the EARLINET aerosol profiles in terms of altitude levels
(i.e., the same altitude points for all the profiles provided by the same stations),
an interpolation on two points has been applied to Évora profiles. In fact this
station changed instrument configuration during the considered period so that an
adaptation is needed to homogenize the data from the two periods. Finally, aerosol
backscatter data from the station of Naples have been reconstructed to match the
altitude points of the corresponding extinction profiles in order to allow in a second
step to investigate the differences of the LIDAR ratio obtained from EARLINET
and CALIPSO (i.e., EARLINET LIDAR ratio). The Naples aerosol backscatter
profiles vertical resolution has been modified for the backscatter to fit the coarser
extinction resolution. At each extinction altitude, it has been associated to the value
of backscatter which is the closest in altitude (the difference is always within the
vertical effective resolution).

5 Horizontal Smoothing

As reported above, the performed analysis is done on the backscatter variable,
because it is the CALIPSO product less affected by retrieval assumptions. From
Eq. (1) in Sect. 2, the uncertainty term σ 2

mis depends on the horizontal and temporal
mismatch error between ysat and ygnd , the satellite and ground backscatter, respec-
tively. In order to investigate how the horizontal smoothing impacts on the term σ 2

mis
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of the uncertainty budget, we consider the root-mean-square error (RMSE), which
is defined as

RMSE =
√

1

N

∑
k

(ysat,l − ygnd,l)2

where l = (h, d, s) is a multi-index defined in Sect. 2 and N is the total number of
observations.

In this case study, we have 200 altitude levels, corresponding to CALIOP
observations. The vertical range is 97.67–12,013m, with a step of 60 m. The
counter s = 1, . . . , 5 identifies the five EARLINET stations (Évora, Granada,
Leipzig, Napoli, and Potenza), d = 1, . . . , gs identifies the day’s profile, and gs

gives the number of profiles available for station s. In total, the analysis considers
143 EARLINET profiles. To understand how the co-location error depends on the
horizontal smoothing, we have computed the RMSE of the eight different horizontal
averaging schemes for CALIOP described in Table 1, which includes also the
original CALIPSO 5 km data.

In Fig. 1 and Table 6, the co-location uncertainty averaged by station and
CALIOP horizontal smoothing is presented in order to understand how smoothing

Fig. 1 Co-location uncertainty (log.RMSE) for CALIOP and EARLINET backscatter mismatch
by smoothing parameter for different stations. Vertical bars represent the 95% error intervals
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Fig. 2 Co-location uncertainty (log.RMSE) for CALIOP and EARLINET backscatter mismatch
by station for different smoothing parameters

affects the comparison. The bold values correspond to station minima. The minimal
co-location uncertainty is obtained at 45 km for Évora, Leipzig, and Napoli, which
have small uncertainties already at 5 km. This suggests that using 45 km as standard
horizontal averaging is advisable for the comparison of pointwise ground-based
measurements with the CALIOP level 2 product. At Potenza and Granada instead,
the minimal co-location uncertainty is obtained for 105 and 125 km, respectively.
This different behavior of Granada and Potenza can be ascribed to the variant
orography that affects the atmosphere sampled by the satellite LIDAR: compared
to the other sites in fact, Granada and Potenza are the unique ones located at upper
altitudes and surrounded by different areas (see [1] and [12]).

From Fig. 2, we see also that for all the stations, the co-location uncertainty tends
to increase in the tails of smoothing range that is 175–205 km and 5–25 km. Figs. 1
and 2 indicate that the uncertainty in Granada is larger than in all the other stations,
with the exception of Potenza at 105 km smoothing, where however the uncertainties
are comparable. This underlines the peculiarity of Granada comparison: in this case
the co-location uncertainty is higher than for all the other stations, independently
from the horizontal smoothing. Granada station is located in a natural basin
surrounded by mountains with the highest mountain range located to the southeast,
with altitudes above 3000 m [5]. The presence of these mountains can act as a
boundary for both local and free troposphere aerosol layers depending on the
specific aerosol source, so that if the CALIOP track location is not favorable, very
large differences are expected when compared to the ground-based measurements.
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Fig. 3 Measurement uncertainty by station. Dashed lines: CALIOP uncertainty averaged by
smoothing parameter. Solid lines: EARLINET uncertainties

Finally both Figs. 1 and 2 report the mean co-location uncertainty, which has the
same behavior of Granada values, because it is driven by these very large values and
therefore cannot be regarded as representative of the ensemble of the considered
locations.

In order to better understand these results on co-location uncertainty, the
measurement uncertainty has been investigated. In Fig. 3, the solid horizontal lines
represent the averaged measurement uncertainty of EARLINET, while the dashed
lines represent the uncertainties of CALIOP smoothed backscatter. As expected,
the uncertainty of ground measurements is smaller than the satellite one for all
stations. Moreover, in Table 7, the mean of the measurement uncertainties by station
and smoothing are reported, while in Table 8, the relative measurement uncertainty
(coefficient of variation) for the backscatter values is reported.

Generally speaking, the satellite uncertainty is larger or equal to ground uncer-
tainty. Granada has the largest measurement uncertainty, for both EARLINET and
CALIOP. This appears also from Table 8 where Granada has the largest values
of relative uncertainty both for EARLINET and CALIOP when averaged over
smoothing. Comparing Figs. 1 and 2, we can conclude that horizontal smoothing
affects in a different way measurement uncertainty and co-location uncertainty.
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Table 8 Relative measurement uncertainty of ground and smoothed satellite backscatter

Horizontal smoothing (km)

Station Earlinet 5 25 45 75 105 125 155 175 205

E 0.1 1.1 1.2 1.3 2106.6 2199.6 2247.2 2578.7 2273.2 2010.4

G 8.1 1422.1 1270.2 3325.5 4591.2 4897.2 4654.4 4381.4 1174.7 592.6

L 0.2 1.2 2.3 2.3 2.2 5.9 5.8 4.8 4.4 4.5

N 0.6 1794.8 1031.6 1331.7 1674.2 1410.4 1278.1 1863.5 1741.8 1479.4

P 5.1 1.9 2547.4 2499.9 2196.3 2237.3 2117.8 1468.9 1335.4 1327.9

6 Vertical Splitting

All values reported in the analysis in Sect. 5 are related to the whole column:
uncertainties related to altitude regions with high aerosol content are mixed with
altitude regions where the aerosol content is very low and uncertainties are expected
to be high because of a low SNR. To take into account the differences in the vertical
dimensions and to exploit the vertical profiling capability of both EARLINET and
CALIPSO, we split the atmosphere into three zones: below 2.5 km (as representative
of local aerosol conditions), between 2.5 and 5.5 km (middle troposphere with
transport of aerosols), and above 5.5 km (free troposphere).

Figure 4 (left panel) corresponds to the lowest part of the troposphere, that
is, the planetary boundary layer, where, normally, lower agreement is expected
between the ground station and the satellite swath. All the values are grouped
around −6.0 log10(m

−1sr−1), with the exception of Granada probably because of
the already mentioned variant topography surrounding this EARLINET station
(see [1] and [14]). Regarding Potenza station, there is a decrease in the RMSE
for smoothing up to 100 km, while it is approximately constant and comparable
with Évora, Leipzig, and Napoli stations for larger smoothing. This effect could be
attributed on one hand to the mountainous area where Potenza is situated and, on
the other hand, to the variety of surfaces that the satellite encounters (e.g., land,
sea). In particular, Potenza is on a mountain close to the sea but also to big cities,
so the difference with smaller horizontal smoothing can be larger (e.g., CALIPSO
ground track lies over the sea) than at higher smoothing where smoothing procedure
merges different conditions (comparing EARLINET mountain sampling versus an
average of sea, cities, and mountain). This finding is in agreement with the smaller
discrepancies observed in the PBL (planetary boundary layer, the lowest part of the
atmosphere in contact with the Earth’s surface) at Potenza between EARLINET and
corresponding CALIPSO observations for the overpasses at about 80 km distance
with respect to the closer overpasses at 40 km distance because of topographic and
local effects (see [12]). The opposite behavior is found for Leipzig because of the
more homogeneous topography. For the remaining stations, the RMSE is lower at
original horizontal smoothing and gradually increases with increasing smoothing.
Generally, the increasing smoothing tends to increase the RMSE as the satellite
contains a vast geographic area, and therefore the aerosol fields can be dramatically
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Fig. 4 RMSE for CALIOP and EARLINET measure of aerosol backscatter at different smoothing
parameters for different stations and for different zones of atmosphere

different. This effect has been documented and reported in several studies (see, e.g.,
[2, 15]).

The mid-troposphere plot (Fig. 4; middle panel) corresponds to the height
range typically free from local sources and indicates the transboundary motion
of aerosol, and therefore this plot is the most relevant to assess the CALIPSO
representativeness. At first sight the lines are contained in the range between −6.5
and −5.0 log10(m

−1sr−1) which shows a better agreement with respect to the
previous figure implying that the effect of local sources is greatly reduced, especially
at Granada. For the first 50 km and for the stations of Napoli, Leipzig, and Évora,
the RMSE is the lowest and then either gradually or steeply increases for increasing
values of the smoothing parameter. On the other hand, for the station of Potenza,
the situation is reversed in the range 0–50 km, and behind that, it shows a behavior
which is similar to the other locations. For Granada, the situation is more complex
as the RMSE peaks at 25 km and then decreases until 75 km, to follow the behavior
of the other stations for the next smoothing ranges.

The free troposphere behavior of Fig. 4 (right panel) corresponds to predom-
inantly aerosol-free area without large variations of RMSE w.r.t. the smoothing
parameter. As a case in point, Évora, Potenza, and Leipzig produce a constant value
for the whole smoothing range, showing that in free troposphere, the smoothing
parameter loses its importance in explaining the co-location error. We observe a
finer structure at Granada and Napoli that can be attributed to aerosol structures
not observed by either instruments or in case of CALIPSO cloud misclassification
(e.g., sub-visual, thin cirrus clouds). These opaque clouds in the higher altitude
levels frequently penetrate the CALIOP aerosol retrievals and alter the CALIPSO-
provided atmospheric description (see [6–8, 11]).
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7 Conclusions

A first effort has been undertaken toward identifying the main contributions of
co-location mismatch uncertainties in comparisons of CALIOP and EARLINET
aerosol backscatter profiles. The comparison is not trivial because of two main
reasons: (1) the small footprint of CALIPSO measurements comparing to the
distance from EARLINET sites and (2) the high uncertainty of CALIPSO products
(see [24]). The comparison is then even more complex because of the fine vertical
structure of the aerosol field and its variability. Co-location mismatch has been
investigated as a function of the observational site and of the horizontal smoothing
of the CALIOP data. Furthermore, the investigated altitude range [90 m–12 km asl]
has been split in three regions corresponding to the PBL, the mid-troposphere,
and the free troposphere range. The co-location mismatch decreases as the altitude
increases: 10−6−5×10−5 m−1 sr−1 in the PBL, 5×10−7−5×10−6 m−1sr−1 in the
middle troposphere, and typically lower than 10−6m−1 sr−1 in the free troposphere.
An influence of the smoothing on co-location mismatch is found for the two lowest
atmospheric ranges, while in the free troposphere, its influence can be disregarded.
This shows that above 5.5 km, LIDAR pointwise measurements can be typically
considered representative even over horizontal scale as large as 200 km, because of
the low variability of the aerosol field at these altitudes. In the middle troposphere,
the LIDAR data are representative for distances up to 100 km in agreement with
[15]. Finally in the lowest troposphere where the orography and local source play
a relevant role, the representativeness strongly depends on the site characteristics.
Typically the co-location mismatch has its minimum around 50 km, while for
peculiar situations (mountain or region surrounded by mountains), this minimum
is shifted around 100–150 km. As a further remark, we have to say that we were not
able to estimate the covariance component due to the mismatch of the observation
with the data in this form. This is only a first attempt to understand how the co-
location error is affected by the horizontal smoothing.
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A Spatiotemporal Approach
for Predicting Wind Speed Along
the Coast of Valparaiso, Chile

Orietta Nicolis, Mailiu Díaz, and Omar Cuevas
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1 Introduction

Despite recent improvements in weather predictions due to the use of sophisticated
and complex numerical models, many problems still remain unresolved. The main
drawback is that the prediction from numerical models is often affected by model
errors (systematic and stochastic) and that it is not possible to have a measure of
the uncertainty associated to the prediction. Despite that different methods have
been proposed in the literature to understand and reduce biases, the correction of
the weather prediction still remains a challenge, probably due to the large variety of
possible error sources (uncertainties in initial condition, parameterizations, model
errors, etc.).

A common practice is to calibrate the output of the numerical weather prediction
models using observations collected from monitoring stations. In particular, weather
station data are more accurate since, up to measurement error, they provide the
actual true values. A wide literature on the spatiotemporal regression models focuses
on the estimation and prediction of particular environmental variables (such as air
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pollution) by using a series of exogenous variables (meteorological and land-use
variables, temporal features, etc.) (see [2] and the references therein). Interesting
works on this topic have been recently proposed by Craimile and Guttorp [5],
Casquilho-Resende et al. [3], Fassò et al. [6], Sahu and Nicolis [13], Sahu et al.
[14], Sahu and Bakar [12], Lindström et al. [10]. A short-term wind forecasting has
been recently proposed by Tastu et al. [17] in order to take decisions about reliable
and economic power systems.

In this work we use the spatiotemporal model proposed by Lindström et al. [10]
for calibrating the wind speed forecasts coming from the WRF model. In particular,
we consider the observation collected by a network of meteorological stations as
response variable of the model and the WRF output as covariate. The application
of the model will allow to assess the wind speed between January 1 and April 1,
2016, each 1 h at multiple sites with 1 km × 1 km spatial resolution in the coast of
Valparaiso.

The paper is organized as follows. Section 2 provides a description of the data
and a preliminary analysis. In Sect. 3 we shortly describe the spatiotemporal model
proposed by Lindström et al. [10]. Main results on the wind predictions are given in
Sect. 4. Conclusions and further developments follow in Sect. 5.

2 Preliminary Analysis

2.1 The Data Sets

We consider the hourly wind speed [m/s] data collected by 11 weather monitoring
stations located along the coast of Valparaiso (see Fig. 1) and the meridional and
zonal wind components (u and v, respectively) at 10 m above ground level coming
from a Weather Research and Forecasting (WRF) model on small spatial resolution
1 km ×1 km every 1 h. Both databases are collected for the period from January 1
to April 1, 2016. The area of study is delimited by a green line in Fig. 1. Wind
speed observations considered in this work can be downloaded by the web site of the
National Air Quality Information System (http://sinca.mma.gob.cl/), Government of
Chile. The WRF model is a computationally efficient model which offers advances
in physics and numeric and provides detailed databases for land use, topography,
and soil type. In this work, we used the Version 3.8.1 [15]. This model was run
fully compressible, non-hydrostatic, with three domains (left panel of Fig. 2). The
boundary condition was used from the Global Forecasting System (GFS) run at
the National Centers for Environmental Prediction [18] that is a global operational
model with 3 h of temporal forecasting resolution and 0.25◦ × 0.25◦ of horizontal
resolution. Simulations were saved every 1 h from the innermost domain (d03 at
1 km horizontal resolution) centered in the coast zone between −32.5 and −33.8 S
of latitude.

http://sinca.mma.gob.cl/
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Fig. 1 Google map of the coast of Valparaiso region with the locations of the 11 weather stations
(red) and the area of study (green line)

Fig. 2 Domains used in WRF model along the Valparaiso coast (left panel) and zoom of the
smaller domain (right panel)
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All simulations were performed using the RRTMG longwave and shortwave
radiation [9], the Quasi-Normal Scale Elimination (QNSE) planetary boundary layer
[16], the Noah land surface model [4], and the WRF Single-Moment 5-class scheme
[8] parameterizations. Then wind speed from GFS was calculated with u and v

components as
√

u2 + v2.

2.2 Preliminary Statistical Analysis

2.3 The Data Sets

Summary statistics for each weather station are described in Table 1. Figure 3a and b
show the boxplots for each station and each hour, respectively. Note that station 9
(Quintero), located close to the sea, has the highest wind speed values, and the
lowest values are measured by the station 10 (Valle Alegre), which is the farther
station from the sea. From Fig. 3b we observe that the wind speed is higher in the
afternoon.

In order to show that WRF predictions are affected by a bias and random errors,
we compare the observations from the 11 monitoring stations with the output of a
WRF model evaluated at the closest points to the locations of the weather stations.
From Fig. 4a and b, we can see that WRF predictions are very different from the
observations and the WRF model tends to overestimate the values of the wind speed.
In Fig. 4b we choose the wind speed at station 6 (Los Maitenes) for the month of

Table 1 Descriptive statistics of meteorological stations

Id Weather station Min. 1st Qu. Median Mean 3rd Qu. Max. S.D.a C.V.b

1 Centro Quintero 0.000 0.703 1.240 1.323 1.816 4.994 0.856 64.707

2 Colmo 0.343 1.119 1.766 2.300 3.370 6.922 1.446 62.860

3 Junta de Vecinos 0.195 0.406 1.044 1.398 2.243 5.406 1.128 80.636

4 La Greda 0.044 0.488 1.230 1.705 2.892 5.531 1.362 79.873

5 Las Gaviotas 0.220 1.003 1.608 1.658 2.268 5.461 0.845 50.954

6 Los Maitenes 0.015 0.496 0.951 1.176 1.811 3.759 0.804 68.383

7 Puchuncavi 0.009 0.586 1.106 1.421 2.180 6.294 1.024 72.074

8 Quintero 0.063 1.215 1.902 2.111 2.715 9.020 1.303 61.749

9 Sur 0.012 0.665 1.786 2.132 3.230 8.253 1.644 77.106

10 Valle Alegre 0.003 0.338 0.521 0.733 1.077 2.511 0.535 72.983

11 Viña del Mar 0.000 0.300 0.700 0.798 1.200 2.900 0.568 71.161
aStandard deviation
bCoefficient of variation
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Fig. 3 Boxplots of the wind speed data for each station (a) and each hour (b)

Fig. 4 Observations versus WRF outputs for all the meteorological stations (a) and time series of
the observations (black line) with the WRF outputs (red line) for the station 6-Los Maitenes on
March, 2016 (b)
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March as example to better show the bias of the WRF predictions. Similar results
have been obtained for the other stations.

3 Space-Time Regression Modeling

The spatiotemporal model for correcting the WRF predictions can be written as

Y (s, t) = μ(s, t) + ν(s, t) (1)

where Y (s, t) denotes the wind speed observed from weather stations, s ∈ R
2 and

t ∈ R, and μ(s, t) is a structured mean field. Following the spatiotemporal approach
proposed by Lindström et al. [10], the μ(s, t) component can be defined as

μ (s, t) = γM (s, t) +
m∑

i=1

βi (s) fi (t) (2)

where the M (s, t) denotes the spatiotemporal output of numerical model WRF
with GFS edge condition; γl are coefficients; {fi (t)}mi=1is a set of smooth temporal
basis functions, with m as the number of temporal basis functions (including the
intercept) and f1 (t) ≡ 1; and the βi (s) are spatially varying coefficients, βi(s) ∼
N(Xiαi,Σβi (θi)) for i = 1, . . . ,m, where Xi are design matrices (normally
contain geographical covariates) and αi are matrices of coefficients. The space-time
residual field is denoted by ν(s, t), and it is distributed with the following stationary
parametric spatial covariance ν(s, t) ∼ N (0,�ν (θν)) where �ν is a block matrix
and the size depends on the observations at each meteorological station. The smooth
temporal basis functions,fi(t), describe the temporal variability in the data. These
functions can either be obtained as smoothed singular vectors as proposed by
Fuentes et al. [7]. The cross-validation is then used to determine the optimal number
of smooth temporal basis functions by evaluating a set of regression statistics such as
the Mean Squared Errors (MSE), the coefficient of determination (R2), the Akaike
information criterion (AIC), and the Bayesian information criterion (BIC) that those
describe how well the left out columns are explained by smooth temporal functions.

Then the model (1) can be written in matrix form as

Y = M γ + FB + V, (3)

where B ∼ N (Xα,�B (θB)) and V ∼ N (0,�v (θv)) (see [10] for details).
Since Eq. (3) is a linear combination of independent Gaussians and introducing the
matrices X̃ = [M FX] and �̃ (�) = �v (θv) + F�B (θB)FT , the distribution

of Y can be written as [Y |�, γ, α ] ∼ N

(
X̃

[
γ

α

]
, �̃ (�)

)
.
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The parameter estimates are obtained by maximizing the log-likelihood of

2l(Ψ, α, γ |Y ) = −N log(2π) − log
∣∣�̃ (Ψ )

∣∣

−
(

Y − X̃

[
γ

α

])T

�̃−1 (Ψ )

(
Y − X̃

[
γ

α

])
(4)

(see [10]). The spatiotemporal model of [10] can be implemented using the R
packages SpatioTemporal [1].

4 Results

4.1 Spatiotemporal Estimation

In this section we estimate the spatiotemporal model proposed by Lindström et al.
[10] in order to correct the WRF data using the observations coming from the 11
monitoring stations. As mentioned in the last section, we considered the WRF output
as the covariate of the model and the observations as the response variable. In order
to estimate the model, we considered the observations and WRF data from January
1 to March 30, leaving out the days March 31 and April 1 (equally to 48 h) for
the spatiotemporal prediction. First, we selected the number of smoothed temporal
bases by using the cross-validation method. Table 2 shows the outputs of cross-
validated in terms of MSE, R2, AIC, and BIC for four basis functions. As expected
in any regression scenario, increasing the number of basis functions increases R2

and decreases the MSE. Since the increment of R2 after two basis functions was not
remarkable, we decided to select two basis functions in the estimation of the model.

The estimated parameters using an exponential spatial covariance structure are
shown in Table 3 (the NAs are probably due to the logarithm of standard deviations
which are very close to zero).

In order to estimate the performance of the model, we implemented leave-one-out
cross-validation and predicted the wind speed for the entire period (from January 1
to April 1) at each step. The results can be summarized in Table 4 where we compare
the prediction errors using the WRF and the spatiotemporal model (ST). Since in all
cases the prediction obtained by the spatiotemporal model is better than the WRF

Table 2 Cross-validation
statistics computed for each
smoothed basis function

Basis function MSE R2 AIC BIC

0 0.1879 0.0000 −3702.718 −3697.052

f1 0.1483 0.2070 −4198.758 −4187.426

f2 0.1451 0.2230 −4241.356 −4224.359

f3 0.1420 0.2399 −4287.005 −4264.341

f4 0.1416 0.2420 −4291.117 −4262.788
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Table 3 Regression and
log-covariance parameters

Parameters Est. S.D.

γ 0.0790 0.0019

α const.(intercept) 0.8923 0.1182

α (f1 intercept) 0.1348 0.0289

α (f2 intercept) −0.0196 0.0253

Log range const. −2.9991 0.9674

Log sill const. −3.0172 0.6615

Log nugget const. −3.0186 0.7935

Log range (f1) −4.9987 1.1058

Log sill (f1) −6.0144 1.3386

Log nugget (f1) −5.0390 1.1429

Log range (f2) −2.9964 0.8185

Log sill (f2) −5.9960 0.7205

Log nugget (f2) −7.0049 1.6869

ν Log range −0.1906 0.0807

ν Log sill −2.9692 0.0317

ν Log nugget (intercept) −3.0628 0.0135

Table 4 Validation results

MSE a RMSE b MAE c MAPE d BIAS e rBIAS f rMSEP g

Obs vs. WRF 4.3856 2.0942 1.6059 250.6468 1.3834 0.9119 0.9529

Obs vs. ST 0.7190 0.8480 0.6313 96.0073 −0.0717 −0.0473 0.4927
aMean squared error
bRoot mean squared error
cMean absolute error
dMean absolute percentage error
eBias
fRelative bias
gRelative mean separation

forecasts, we think that the model is able to partially correct the bias and errors that
affect the WRF model.

Figure 5 compares the predictions obtained by the cross-validation with the
WRF predictions for each station. We can note that in all cases the spatiotemporal
predictions are much better than the WRF, although for some stations (such as the
numbers 2 and 9), the model slightly underestimates the true values of the wind
speed. We think that this problem could be solved and the predictions could be
further improved by increasing the number of weather stations for getting a more
robust spatial correlation structure.

In Fig. 6 we represent the predictions for station 6-Los Maitenes for the month
of March. In this case it is evident that the predictions using the spatiotemporal
approach are much better than the WRF forecasts.

In Figs. 7a and 8a, we show the wind speed predictions for the day March 31
at 4:00 a.m. and 4:00 p.m., respectively. The predictions are characterized by small
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Fig. 5 Correlation plots obtained by the leave-one-out cross-validation between observations and
WRF predictions (black points) and observations and ST predictions (red points) for each weather
station
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Fig. 6 Wind speed predictions for the station 6-Los Maitenes: (a) wind speed observations (black
line) and ST predictions (red line) for the month of March, 2016; (b) ST predictions (black line)
with the 95% interval confidence (gray area) and WRF predictions (red line) for the days March
31 and April 1. The green and blue dashed lines represent the mean (WRF data) and beta (basis
function) contribution in the model
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Fig. 7 Wind speed predictions with their contour lines for the day March 31, 4:00 a.m.: (a) ST
prediction map and (b) its standard deviation. (c) Interpolated observed wind speed data using the
thin spline regression and (d) WRF predictions. The red points indicate the monitoring stations
with their observed values

standard predictions (Figs. 7b and 8b), and the range of the wind speed values are
very close to the observations. In order to compare the predicted values with the
observations, we use a thin plate spline (TPS) regression (see [19]) for interpolating
the data where there are no monitoring stations (Figs. 7c and 8c). For implementing
the TSP, we use the package fields [11] of the R software. If we compare the ST
predictions with the WRF, we can note a significative difference. However, although
the model seems very good for correcting the WRF predictions in the locations close
to the weather stations, we cannot evaluate its performance in the sea where there
are no weather stations and the meteorological conditions could be different.
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Fig. 8 Wind speed predictions with their contour lines for the day March 31, 4:00 a.m.: (a) ST
prediction map and (b) its standard deviation. (c) Interpolated observed wind speed data using the
thin spline regression and (d) WRF predictions. The red points indicate the monitoring stations
with their observed values

5 Conclusions and Further Developments

In this work we use the spatiotemporal model proposed by Lindström et al. [10]
for correcting the WRF predictions. The estimation of the model and the cross-
validation study show that the proposed methodology is able to improve the
predictions provided by the WRF model by reducing the bias and the random errors.
However, it is very difficult to assess the performance of the method where there
are not monitoring stations such as in the sea. We think that better results could be
achieved if more weather stations were available on the entire area of study. Also, we
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are going to improve the spatiotemporal model by considering different covariance
structures and by including local information (such as land use or others).
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Spatiotemporal Precipitation Variability
Modeling in the Blue Nile Basin:
1998–2016
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1 Introduction

The Nile basin is an ecological system under severe tension. Any future variations in
the river flow will add to an already existing pressure on basin inhabitants and will
elevate water stress. Precipitation over the Ethiopian highlands at the Greater Horn
of Africa in East Africa is feeding the headwaters of the Blue Nile basin (BNB),
which supplies approximately 60% of the main flow of the mighty Nile [6, 44]. The
Grand Ethiopian Renaissance Dam (GERD), currently under construction on the
Ethiopian-Sudanese border, is agitating the water conflict because of its negative
influence on downstream countries’ water share especially Egypt. Consequently, it
is essential to review the effect of climate change and climate variability on BNB
precipitation, as Nile water resources management and planning are necessary to
its riparian countries [15, 23]. This paper, therefore, assesses how much of the
seen decline in BNB precipitation is due to natural climate variability or to human-
induced effects. Identification of the factors controlling precipitation trends is vital
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to the understanding of contemporary precipitation variability and to the prediction
of future precipitation changes in BNB.

The East African monsoon is a key atmospheric phenomenon leading the
precipitation regime in the Greater Horn of Africa. There are considerable indi-
cations proposing that the monsoon of East Africa is strongly connected to the
spatiotemporal changes in global sea surface temperatures (SSTs). The SST exhibits
intense variabilities due to the heterogeneity of oceanic hydrographic features
affecting it. An example of SSTs are El Niño-Southern Oscillation (ENSO) and
the Indian summer monsoon, which are significant influencers of large-scale modes
of natural climate variability. There is tremendous year-to-year differences in timing
and magnitude of the Ethiopian precipitation. The seasonal north-south intertropical
convergence zone (ITCZ) movement is the most known driver of underlying
physical mechanisms of precipitation in the headwaters of the BN [6, 25]. ITCZ is
the region where the exchange winds from the two hemispheres converge. Berhane
et al. [5] advocate that in the summer months [June–September (JJAS)], the ITCZ
brings lots of humid air from the Indian Ocean in the south, the Gulf of Guinea
and the equatorial Atlantic Ocean across the Congo, and the Sahel in the west as
well as possibly from the Mediterranean Sea in the north and the Red and Arabian
Sea in the east. Then, ITCZ moves southward and dry conditions start to take
place from October through May. Accordingly, there are two rainy seasons: the pre-
monsoon season called the Belg in Ethiopia (short rainy season from March to May)
which paves the way to the Kirmet (rainy season from June to September) followed
by Bega (dry season from October to February). ITCZ fuels Kirmet season by
precipitation events. Uncertainty surrounding climate change projections is causing
the prediction of precipitation variability in the BNB to be rather challenging
especially for water resources management and planning for society and for regional
economies.

There is an ongoing literature studying the teleconnections between large-scale
ocean-atmosphere interactions and precipitation in the River Nile basin as a whole
and BNB precipitation in particular with the intention of predicting Nile flow. For
instance, Siam and Eltahir [45] assessed the flow and rainfall patterns of the Upper
BNB, Sobat and Atbara, and projected increases in the inter-annual variability of
the Nile River flow as a consequence of climate change. Jury [22] examined the
determinants of southeast Ethiopian seasonal rainfall in the September–November
season from year 1980 to 2010 using satellite observations and elevation models.
Siam and Eltahir [44] estimated that Pacific and Indian oceans SSTs indices can
jointly describe around 84% of the Nile flow inter-annual variation. Berhane et al.
[5] found links between Upper BNB boreal summer precipitations and large-scale
atmospheric and global SST field, a strong relationship between the Indian monsoon
and the eastern stimuli-ENSO in September. Elsanabary and Gan [14] adopted
wavelet principal component analysis to predict rainfall at the Upper BNB and
identified a correlation between the first wavelet principal component of the June to
September seasonal rainfall and selected sectors of the Atlantic, Indian, and Pacific
Oceans SSTs. Block and Rajagopalan [6] proposed an ensemble forecast framework
for analyzing Kirmet precipitation for the Upper BNB. It is constructed using a
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nonparametric approach grounded on local polynomial regression. They concluded
that ENSO phenomenon is the foremost determinant of the inter-annual variability
of seasonal precipitation in the Upper BNB. Remarkably, almost all precipitation
studies on the Blue Nile have concentrated on Kirmet precipitation as the most
relevant response variable. Given the large number of large-scale drivers involved
in describing and predicting precipitation in the BNB, an extra thorough temporal
modeling is needed. Therefore, this paper studies teleconnections and potential
drivers of precipitation variability at different temporal scales (inter-annual, intra-
annual, inter-seasonal, and intra-seasonal) over the whole of Ethiopia, not only
Upper BNB as the rest of the other studies.

In recent years, investigating the effect of climate variability on hydrometeorol-
ogy involved matrix methods for statistical analysis of structures in large datasets
(as considered in this paper). The methods ranged from simple correlation analysis
and multiple linear regression [13, 16, 18] to linear multivariate methods such as
empirical orthogonal function (EOF) analysis (see, e.g., [2, 4, 12, 14, 25, 37, 40,
52, 57]). For example, Zeleke and Damtie [57] studied Upper BNB rainfall seasonal
variability and annual cycle from year 1979 to 2014 using rotated EOFs and wavelet
analysis via station and satellite data. Similarly, linear multivariate methods such
as EOF analysis are now frequently used by regional attribution studies to study
the impact of natural climate variability on precipitation in other regions such as
Australia [59], the United States [50], Hawaii [17], Alaska, [27], India [31], Peru
[41], Oman [48], China [51, 54, 55], Zimbabwe [30], and West Africa [1, 47]. As for
human-induced climate change, also known as the anthropogenic effect, its impact
on global precipitation has been identified [35, 58]. In climate science, including
linear trend term in linear regression model is most commonly used to quantify
the change in a climate variable (e.g., temperature and precipitation) over time [3].
These climate variables exhibit linear trends in response to climate change. Regional
attribution studies have not perceived an anthropogenic sign in precipitation trends
beyond natural forcing [42]. Alternatively, Frazier et al. [17] detected a significant
linear trend term in the multiple linear regression models only in the dry season
in Hawaii. Therefore, estimating the effect of anthropogenic signal on precipitation
trends is problematic, as a lot of studies try to eliminate the effect of natural forcing
and test if the trend is significant [19].

From the studies above, we find a research gap regarding BNB precipitation
patterns and its spatiotemporal variability. In sum, the region exhibits high spatial
precipitation variability and intensified extreme climatic conditions giving impor-
tance in applying spatiotemporal techniques to BNB precipitation magnitude. This
paper aims at measuring the total influence of natural climate changeability to
precipitation variations over the time span of the study and evaluates whether an
anthropogenic effect can be distinguished from natural forcing. To reach this end,
the paper uses an empirical orthogonal function (EOF) analysis to define the leading
precipitation structures and their amplitude variability modes in the BNB. Then,
the relative impact of natural forcing and human-induced effect on the leading
precipitation amplitudes are estimated by dynamic harmonic regression (DHR).
This is the first precipitation study in BNB to use such type of regression which
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takes into account BNB precipitation periodic modes. By using these techniques,
the current paper provides a better understanding of the driving forces behind
the existing precipitation trends in BNB. This information can aid Nile countries’
decision-makers in mitigating possible catastrophes. The paper embarks on datasets
description and potential predictors of precipitation. Then, the adopted method of
EOFs and DHR models are presented, followed by results of the study. The final
section extends the study conclusions.

2 Data

2.1 Tropical Precipitation Measuring Mission (TRMM)

The precipitation data employed in this study are obtained from the Tropical
Precipitation Measuring Mission (TRMM) Multisatellite Precipitation Analysis
3B42 V7 [21]. TRMM 3B42 V7 is a gauge-calibrated satellite product which
provides estimates of precipitation magnitude [7], and it is validated using in situ
data in West Africa. No bias is revealed with the root mean square error (RMSE)
in the order of 0.7 and 0.9 mm/day for the seasonal and August precipitation,
respectively [34]. The coverage of the TRMM 3B42 V7 is global (i.e., 50◦S and
50◦N), and the estimates of monthly precipitation with a spatial resolution of
0.25◦ × 0.25◦ are provided [32]. Owing to its high spatial resolution, TRMM 3B43
is utilized to estimate seasonal and monthly precipitation in the BNB. The study
covers monthly means over the period 1998–2016. TRMM 3B42 V7 dataset is
accessible at the National Aerospace and Space Administration (NASA) Goddard
Space Flight Center (GSFC) website.1 The lack of in situ measurements restricts the
robustness and large-scale monitoring possibility of major hydrological variables in
the BNB. Routine readings of these hydrological quantities are unavailable because
of the limited number of gauge stations and deteriorating condition of available
facilities. Most of the date is unobtainable to the public or to the relevant research
institutions because of government policies. Incomplete data records affect the
proper assessment of the region’s hydrological conditions. Nevertheless, the existing
satellite climate data allows for the examination of hydro-climatic conditions.

2.2 Large-Scale Atmospheric and Climate Indices

Because of the importance of BNB precipitation for the region, the mechanism
behind the modes of large-scale climate variability and its teleconnection with BNB
precipitation has been studied by a number of researchers. Sir Gilbert Walker, in

1https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_V7/summary.

https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_V7/summary
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1910, was the first to find a positive correlation between the summer Indian monsoon
rainfall and the Nile floods [9]. Several studies have shown that ENSO and its related
indices are the most connected large-scale climate variability with inter-annual
and seasonal BNB precipitation patterns (e.g., [5, 39, 44–46]). El Niño-Southern
Oscillation (ENSO) comprises of El Niño, which is a periodic fluctuation in sea
surface temperature (SST) (e.g., every 2–7 years), and Southern Oscillation which
is air pressure of the overlying atmosphere across the equatorial Pacific Ocean.
El Niño is interconnected with dry waves, while it’s opposite event, La Niña, is
associated with high precipitation. Following the general approach, precipitation
is modeled as a function of climate indices and atmospheric fields as predictors.
Previous studies have guided our indices selection. The indices are retrieved from
the National Oceanic and Atmospheric Administration/Climate Prediction Center
(NOAA/CPC).2 A range of indices considered to measure SSTs anomalies are as
follows:

1. East Central Tropical Pacific SST “Niño 3.4” (5N-5S, 170W-120W).
2. Southern Oscillation Index “SOI” is calculated as a standardized monthly-mean

sea level pressure alteration among Darwin and Tahiti.
3. Atlantic Meridional Mode “AMM” (21S-32N, 74W-15E) described as the

tropical Atlantic basin leading maximum covariance analysis mode.

3 Methods

Precipitation and large-scale ocean-atmosphere interactions are characterized by
complexity, and their spatiotemporal interactions cannot be disregarded. In this
context, empirical orthogonal functions (EOFs) are implemented to understand
the precipitation dynamical/physical behavior (in terms of space-time covari-
ance/correlation structure). This will allow us to obtain a considerably smaller
number of renowned modes of variability. Then, dynamic harmonic regression
(DHR) is applied to estimate the partial influence of selected global SSTs as well as
linear time trend on the BNB precipitation time series amplitude.

3.1 Space-Time Empirical Orthogonal Function Analysis

Empirical orthogonal functions (EOFs) are extensively used and important multi-
variate statistical analysis in climate and atmospheric sciences including meteorol-
ogy, climatology, and oceanography. Lorenz [29] was the first study to introduce
EOFs into meteorological literature. The early review of EOFs mathematical

2https://www.esrl.noaa.gov/psd/data/climateindices/list.

https://www.esrl.noaa.gov/psd/data/climateindices/list
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derivation using eigenvector representation is by Kutzbach [26]. EOFs is a geo-
physicist’s term for the eigenvectors in the classical eigenvalue decomposition
analysis of covariance/correlation matrix. It can also be obtained by the singular
value decomposition algorithm. EOF analysis is basically principal component
(PC) analysis and Karhunen-Loeve (KL) in its spatially continuous representation
(e.g., [28]). Thus, EOF/PC analysis is a dimension reduction (spatially and/or
temporally) technique which is an important part of spatiotemporal modeling in
large spatiotemporal datasets like high-resolution satellite datasets such as TRMM
dataset. EOFs/PCs is an exploratory (i.e., non-model orientated) method. We focus
on the discrete setting, where the dimensionality of spatiotemporal dataset is
reduced by obtaining the foremost dominant modes of variability which are the
EOFs. These modes explain most of the observed variance from a spatiotemporal
precipitation field via a linear combination of the original variables. The first few
EOFs describe most of the original dependencies between variables while at the
same time reducing noise. Therefore, EOFs have multiple uses: dimension reduction
and patterns extraction [4, 11, 52].

BNB precipitation data have three dimensions—one dimension in time and
two dimensions in space—it is a random field F. The latter is a function of time
t, longitude φ, and latitude θ . The latitudes θj are the horizontal coordinates,
j = 1, . . . , p1, and the longitudes φk are the vertical coordinates, k = 1, . . . , p2.
Thus, the total number of grid points is p = p1p2 and the random field is read as
follows:

Fijk = F(ti, θj , φk) (1)

with 1 ≤ i ≤ n, 1 ≤ j ≤ p1, and 1 ≤ k ≤ p2. The random
field F is transformed into a data matrix Z where longitude and latitude are
combined together to represent a space-time field Z(t, s). Thus, let Zt =[
{(Z(s1; t), . . . , Z(sp; t))

′ }; (s, t) ∈ D × T
]

denotes BNB monthly precipitation

observation at a discrete time ti (i = 1, . . . , n) and grid point s (s = 1, . . . , p)

where D ⊆ �2and T ⊆ �+. It is depicted by the data matrix:

Z =

⎡
⎢⎢⎢⎣

z11 z12 z13 . . . z1p

z21 z22 z23 . . . z2p

...
...

...
. . .

...

zn1 zn2 zn3 . . . znp

⎤
⎥⎥⎥⎦ (2)

In order to calculate EOFs, the empirical lag τ spatial covariance matrix has to be
obtained first, and it is represented by

Ĉτ
Z = 1

n − τ

n∑
t=τ+1

(Zt − μ̂Z)(Zt−τ − μ̂Z)
′

(3)
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where lag τ = (0, 1, . . . , n − 1) and the time average μ̂Z is equal to

μ̂Z = 1

n

n∑
t=1

Zt (4)

EOFs are obtained by using spectral decomposition of the empirical lag zero
covariance matrix as follows:

Ĉτ
Z = Ψ ΛΨ

′
(5)

where Ψ is eigenvectors matrix and Λ is the diagonal matrix of eigenvalues,
specifically, Λ = Diag(λ1, λ2, . . . , λr ) where r ≤ min(n, p) which is the
rank of Z. The kth eigenvectors ψk is the kth column of Ψ which is the kth
empirical orthogonal function (EOF), is analogous to the PC loadings. Thus, the
PCs are also called EOFs expansion coefficients, EOFs amplitudes, PCs time
series, and PCs scores. Here, EOFs and PCs terminologies stand for the spatial
and temporal patterns, respectively. Each EOF represents a spatial map. The time-
varying amplitude function which is PC time series is calculated by the projection
method using the formula:

at (k) = Ψk
′
Zt, k = 1, . . . , p. (6)

The EOFs eigenvectors are orthogonal, Ψ
′
Ψ = 1. This orthogonality constraint

enables us to maximize var(at (1)) then var(at (2)) to be maximized, etc. as in the
classical PCA where var(at (k)) = λk, k = 1, . . . , p. The eigenvalues are normally
written in descending order as λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0. Usually, the variance
accounted for in percentage is written as follows:

100λk∑p
k=1 λk

% (7)

Finally, in order to test the significance of the EOFs modes, North et al. [36] rule of
thumb is used to calculate the uncertainty of a given eigenvalue as:

Δλk ≈ λk

√
2

n∗ (8)

Δψk ≈ Δλk

λj − λk

ψj (9)

where λj is the nearest eigenvalue to λk and n∗ is the independent sampling grid
points. EOFs have a shortcoming of not being able to explain physical patterns, and
they are used to obtain simple structures. This is due to the fact that the physical
processes are known to be non-orthogonal in nature. Rotated EOFs (REOFs) solve
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this problem of physical interpretation by further rotating the leading EOFs. In this
study, Varimax criterion is used—the most well-known rotation algorithm. Varimax
rotation secures physical variability patterns as well as the orthogonality of EOFs
[39, 40]. The normalized Varimax criterion was developed by Kaiser [24] as follows

max

⎧⎨
⎩

1

n

m∑
j=1

⎧⎨
⎩

n∑
i=1

(ψij )4 − 1

n

(
n∑

i=1

(ψij )2

)2
⎫⎬
⎭
⎫⎬
⎭ (10)

where m is the number of chosen rotated EOFs. The Varimax rotation leads to
maximizing the leading EOFs, so they are close to one, and minimizing the rest
of EOFs, so they are close to zero. This process yields to an extremely localized
pattern. Therefore, the different REOFs modes are spatially orthogonal, and the
corresponding RPCs (Rotated Principal Components) are temporally uncorrelated.

3.2 Dynamic Harmonic Regression (DHR)

In the 1980s, dynamic harmonic regression (DHR) model was first introduced by
Young and fellow workers [56] to deal with time series data that has periodic
or quasi-periodic behavior. DHR decomposes the BNB precipitation amplitudes
obtained in Sect. 3.1 and express it mathematically as an algebraic sum of harmonic
components. These components are represented as sine and cosine waves of
precipitation curve. The two waves are representing a single cosine wave. Each
harmonic component has its wave size (amplitude) and the wave offset (wave phase
angle) [8, 20]. The first harmonic component represents a curve with frequency one
(i.e., one maximum and one minimum). This accounts for annual variation of the
precipitation curve. The difference between the annual precipitation maximum and
minimum is represented by its amplitude. The second harmonic represents a curve
with frequency two (i.e., two maxima and minima). This harmonic describes any
semiannual variation in precipitation curve. Likewise, the third harmonic represents
4-month variation and so on [43]. Thus, the purpose of using DHR in our study
is to detect hidden periodicities in the BNB precipitation amplitudes which is well
known for exhibiting strongly periodic behavior. Harmonic components represent
the process of BNB precipitation seasonal variations throughout the year.

DHR is basically a multivariate time series technique. As, DHR is a regression
model with Fourier components and a time series residuals. This is due to the fact
that estimating regression with time series variables such as precipitation and large-
scale atmospheric and climate indices will impose the model’s residuals to follow a
time series process too. DHR may be a better choice than multiple linear regression
(MLR) in this case. As regression with time series residuals follow an autoregressive
moving average (ARMA) process which are more likely to violate the ordinary
least squares (OLS) independent errors assumption if MLR is estimated instead.
This leads to incorrect standard errors, confidence interval, and tests as well. The
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residuals of DHR are modeled as an ARMA process which is estimated by Box
and Jenkins methodology. This kind of models accounts for the serial correlation of
the residuals. The appropriate ARMA process relies on the autocorrelation function
(ACF) and partial autocorrelation function (PACF). DHR is defined as follows:

yt = β0 +
K∑

k=1

[αk sin(2πkt/m) + γk cos(2πkt/m)] + β1xt,1 + . . . + βsxt,s + ηt

(11)

ϕp(B)ηt = θq(B)εt (12)

AR(p) : ϕp(B) = 1 − ϕ1B − . . . − ϕpB
p (13)

MA(q) : θq(B) = 1 + θ1B + . . . + θqB
q (14)

where a response variable yt = y1, . . . , yn which is EOF precipitation ampli-
tudes and several predictors (xs), which are global climate indices and trend,
β0, β1, . . . , βs are (s + 1) parameters, αk and γk are the amplitudes of the sine
and cosine coefficients of the kth harmonic Fourier mode, k is the total number of
harmonics and is chosen based on the lowest Akaike information criterion (AIC)
value, m is the seasonal period, B stands for the backward shift operator, Bayt =
yt−a, ηt are residuals following ARMA process, εt are white noise errors, and n is
the number of observations. The stationarity of time series is one of the time series
models crucial assumption. The latter entails that the series exhibits constant mean,
variance, and autocorrelation function over the time period. Augmented Dickey-
Fuller (ADF) test is used to test stationarity of the resulting residuals. Finally, the
best DHR model is selected based on some criteria which are the largest value for
the likelihoods and the lowest AIC value.

4 Results

In order to depict the whole picture of BNB precipitation, first the spatial dis-
tribution at different temporal scales (inter-annual, intra-annual, inter-seasonal,
intra-seasonal) of TRMM precipitation dataset are inspected all over Ethiopia. Then,
EOF/PC modes and DHR are estimated. This will give us a chance to have an in-
depth knowledge of contemporary precipitation modes of variability together with
the projected impact of climate change on BNB precipitation.
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4.1 Spatial and Temporal Variation of BNB Precipitation
Patterns

The mapping of inter-annual precipitation variation is among the most essential
tools in climate research. Thereby, yearly climatology maps of precipitation over
the study years 1998–2016 is used to quantify year-to-year changes in the yearly
climatological mean precipitation (Fig. 1). Ethiopia has an intense tendency toward
exhibiting drought and flooding episodes that dominate the inter-annual variation.
Figure 1 shows wave of drought in the following years: 1999, 2000, 2002, as well
as the period from 2008 to 2011. These drought waves are the same ones which
Viste et al. [49] have found in their study. In their paper, they investigated drought
all over Ethiopia from year 1971 to 2011, and they concluded that year 1984 was the
driest year followed by year 2009, which is very obvious in Fig. 1. In 2016, deadly
flooding in Ethiopia made headlines in news media [33], and this is clearly shown
as well in the mapped climatological mean BNB precipitation.

BNB precipitation has three dominant intra-annual variations which constitute
the three seasons (Kirmet, Belg, and Bega) as discussed in Sect. 1. Thereby, monthly
TRMM precipitation magnitude distribution supports the seasonality of BNB
precipitation and the existence of three seasons. Moreover, TRMM precipitation in
the BNB has the same monthly spatial distribution in the Ethiopian precipitation
literature [10]. In March, precipitation starts in the southwest of Ethiopia with
an average precipitation of 45 mm. Precipitation moves toward western region in
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Fig. 1 Blue Nile Basin mean annual precipitation (mm) from year 1998 to 2016
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May, which is the end of Belg known as the short rainy season with approximately
113 mm. In June, the Kirmet rainy season accelerates precipitation magnitude in the
western region. The highest average precipitation magnitude in BNB is 155 mm in
August, where precipitation covers the whole of the basin except for the southern
part of Ethiopia. Kirmet ends in September where precipitation declines and reaches
the same average as in the end of the Belg. The Bega dry season starts in October,
with low precipitation declining and moving toward the southern region of Ethiopia.
Thereafter, it starts the same cycle again from the beginning. Finally, there is barely
any precipitation over all of Ethiopia from November to February. Accordingly,
maximum precipitation magnitude occurs between June and September, while the
lowest magnitude occurs between November and February in the BNB. Seasonal-
to-inter-annual precipitation maps in Figs. 2, 3, and 4 display the three different
seasons, Bega, Belg, and Kiremt, respectively, for each year of the study. These
maps give initial insights about the inter-annual and intra-annual BNB precipitation
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Fig. 2 Seasonal-to-inter-annual BNB precipitation (mm) from 1998 to 2016: Bega dry season
(October–February)
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Fig. 3 Seasonal-to-inter-annual BNB precipitation (mm) from 1998 to 2016: Belg short rainy
season (March–May)

variations to help detecting if there is seasonal variations over BNB. A shift in
precipitation distribution over the three different seasons has been observed over the
years. The drought wave during the period 2008–2011 seems to be due to extreme
dryness of both Belg and Bega seasons. Viste et al. [49] and Williams et al. [53]
studied the reasons that contributed to the drought in Ethiopia during this period.
Both studies agreed that the drought was due to repetition of a dry Belg season.
Also, Viste et al. [49] added that the year-to-year variation of the Belg precipitation
is greater than the Kirmet ones and this affects resource-poor farms in Ethiopia. All
of the studies on Ethiopia’s and BNB precipitation focus only on Kirmet season,
and only few studies considered the impact of Belg season as well, but none have
included the Bega. Here, we study the effect of the three seasons simultaneously to
discover this seasonal imbalance. Another example of this observed climate change
effect is in year 2004 and 2016, where extreme dry Belg and wet Bega seasons are
detected. This repeated phenomenon in year 2004 and 2016 contrasts the normal
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Fig. 4 Seasonal-to-inter-annual BNB precipitation (mm) from 1998 to 2016: Kirmet rainy season
(June–September)

seasonal precipitation climatology maps of Ethiopia. This shift in BNB precipitation
would lead to 50% increase in the twenty-first-century Nile flow as compared to
the twentieth century as concluded by Siam and Eltahir [45]. This is a result of
Nile-ENSO teleconnection and the frequent occurrence of El Niño and La Niña

phenomena.

4.2 Spatiotemporal Patterns of Precipitation by EOFs

In this paper, we have used the EOF/PC analysis. First, the BNB precipitation
anomaly is calculated according to Onyutha [38], to deseasonalize the monthly
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Fig. 5 REOFs and the corresponding RPCs time-varying amplitude functions of monthly pre-
cipitation anomalies. (a) Ethiopian northern region’s precipitation pattern, (b) Ethiopian western
region’s precipitation pattern and, (c) Ethiopian eastern and southern region’s precipitation pattern

series.3 Then, the leading BNB precipitation structures and their amplitude mode
of variability are extracted from the decomposition of the correlation matrix Ĉτ

Z

depicted in Eq. (5). North et al. [36] rule of thumb imposed a restriction on retaining
only the first three EOFs modes. The first three EOFs/PCs are extracted and rotated
using Varimax criterion. The first 100 EOFs modes account for approximately
99% of the BNB precipitation anomaly variation, while the first three EOFs
account for over 74% of the BNB precipitation anomaly variation. The BNB
precipitation spatial pattern for the three rotated EOFs was plotted together with
corresponding rotated PC time amplitudes in Fig. 5. The figure defines spatially
distinct regions. The spatial structure is simplified by rotation through separating
regions with similar temporal variation. The REOF1 precipitation mode has the
highest portion of variance; it accounts for 47% of the total spatial precipitation
variance. The precipitation anomalies in the REOF1 mode reflect higher loading

3The steps to remove the seasonality from monthly precipitation time series are as follows:
compute the mean for each month, and then repeat the monthly mean values for every year of
the dataset, followed by deseasonalize the data by subtracting the monthly mean, the seasonal
component of each month, from the original series. This renders precipitation residual which can
be utilized in the analysis.
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over the Ethiopian northern region. Positive time coefficients indicate that the
precipitation has increased in the northern area, while negative coefficients indicate
that the precipitation has decreased. Positive values are observed in the middle
of each year during Kirmet season. The REOF1 reflects the existence of intra-
seasonal variation as the different months of Kirmet season have different positive
values. The REOF1 also reflects clear inter-annual variation, and this is also clear
when we compare the time coefficients of the first REOF1 across the years of
study. The largest positive value is in the year 2006 associated with the flooding
as mentioned before. Negative loadings corresponds to the Belg and Bega seasons
and the dry waves in 2011 and 2016. RPC1 also shows that there are years where
there are waves of extremes (drought and flooding) in the same year such as in
year 2006 and year 2016. These results were consistent with that shown in Sect. 4.1.
The REOF2 mode depicts the precipitation mode of variability in the Ethiopian
western region, which is represented by REOFs and the corresponding RPCs time-
varying amplitude functions in Fig. 5b. It explains 13% of the total variance where
precipitation starts to cover during the Belg season. The RPC2 time amplitudes
take smaller values than the RPC1 ones. The worst dry waves were in 2011 as
well which has the largest negative value of RPC2. The precipitation variations in
the REOF3 mode account for 12% of the total variance covering the eastern and
southern Ethiopia where there are few or barely any precipitation in the southern
region all year, which is represented by REOFs and the corresponding RPCs time-
varying amplitude functions in Fig. 5c. The RPC3 scores show greater inter-annual
variation than they did for inter-seasonal ones, a trend of negative values. Still, year
2011 was the worst dry wave, covering Ethiopia.

4.3 Dynamic Harmonic Regression with Global Atmospheric
and Climate Indices

The dynamic harmonic regression is used to model the three RPC time amplitudes
over as a function of atmospheric, oceanic, and anthropologic predictors using
standard Box and Jenkins methodology. The dynamic behavior of the stochastic
trend and seasonal subcomponents of RPC time amplitudes are needed to have a
complete model. Therefore, DHR models are estimated to find hidden sinusoids
of precipitation. Cosines and sines found at the harmonic Fourier frequencies
generate an orthogonal set of regressors. Another addition to the estimated models
is including a dummy variable presenting the occurrence of significant effect of El
Niño and La Niña events.

The DHR modeling scheme in this paper starts with estimating mean model for
each of the RPC time amplitude. Then we estimated the model using independent
variables without El Niño and La Niña events dummies and Fourier components.
Subsequently, the events dummies are added to the model, followed by the
estimation of the full model with gradual inclusion of Fourier components. The
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determination of the number of Fourier components to be included depends on two
criteria: the shape of RPC time amplitude curve and the contributed variance of
each component. Likelihood-ratio test is adopted to compare between these nested
models for each dependent variable separately. Finally, the residuals of each model
were checked using diagnostic tests related to fitting and model assumptions. In
addition to that, models are characterized by having Gaussian white noise residual
distribution and minimum AIC value.

The estimated parameters of the DHR for the three RPC amplitudes models
are shown in Table 1. The first RPC amplitude represents the precipitation mode
of variability in northern Ethiopia. It is regressed as a function of six predictors
(Niño3.4, linear trend, Kirmet and Belg season dummies, October 2011 dummy
and May 2016 dummy). Two Fourier components are used for this first dependent
variable as the precipitation curve of this region exhibit two maxima and minima.
RPC1 model is represented by ARIMA (2, 0, 3) process. The western Ethiopia
full model (model 11) is displaying statistical significant relationship with all the
incorporated covariates. In addition to that, model (11) is the best performing model
for western Ethiopia with the smallest log likelihood and AIC equal to 817.9 and
1659.8, respectively. This entail several important results. First, linear trend term
has a significant negative relationship with northern precipitation. Meaning that
northern precipitation has a downward trend, which is due to human made effect
other than natural forcing. Second, El Niño event in October 2011 had a significant
negative impact, while La Niña event in May 2016 had a significant positive impact.
Third, the results shows a negative relationship between precipitation over Northern
Ethiopia and Niño3.4. Finally, strong positive relationship between precipitation
mode of variability in this region and both of Belg and Kirmet season is depicted.

The second RPC amplitude acts for the precipitation mode of variability in
western Ethiopia which is regressed as a function of three predictors (AMM,
SOI, and July 2015 dummy). Three Fourier components are used for this second
dependent variable as the precipitation curve of this region has more than two
maxima and minima. RPC2 model is represented by ARIMA (1,0,0) process.
The western Ethiopia full model (model 11) is displaying statistical significant
relationship with all the incorporated covariates. In addition to that, model (11) is
the best performing model for western Ethiopia with the smallest log likelihood
and AIC equal to 817.9 and 1659.8, respectively. Furthermore, important results are
also reached. They show a negative relationship between precipitation over Western
Ethiopia and AMM. Besides a positive relationship between precipitation mode of
variability in this region and SOI is observed. Moreover, La Niña event in July
2015 had a significant positive impact.

The third RPC amplitude symbolizes the precipitation mode of variability in east-
ern and southern Ethiopia. It is regressed as a function of four predictors (Niño3.4,
May 2003 dummy, September 2011 dummy, and September 2012 dummy). Three
Fourier components are added to the model explaining this dependent variable since
the precipitation curve of this region has more than two maxima and minima. RPC3
model is represented by a white noise process. The eastern and southern Ethiopia
full model (model 17) is showing statistical significant relationship with all the



Spatiotemporal BNB Precipitation Modeling 115

T
ab

le
1

D
yn

am
ic

ha
rm

on
ic

re
gr

es
si

on
(D

H
R

)
re

su
lt

s

R
PC

1
R

PC
2

R
PC

3

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

(1
1)

(1
2)

(1
3)

(1
4)

(1
5)

(1
6)

(1
7)

C
on

st
an

t
−0

.0
16

−1
4.

72
2∗

∗∗
−1

4.
29

4∗
∗∗

−4
.9

79
∗∗

−4
.9

94
∗∗

∗
−0

.0
48

0.
51

6
0.

31
8

−0
.0

88
0.

25
0

0.
24

3
0.

00
0

−0
.0

68
0.

24
2

0.
22

7
0.

20
8

0.
14

6

(0
.5

44
)

(0
.9

55
)

(0
.7

88
)

(2
.2

61
)

(1
.7

49
)

(1
.1

42
)

(1
.2

25
)

(1
.2

13
)

(1
.1

00
)

(0
.8

52
)

(0
.7

28
)

(0
.8

27
)

(0
.8

24
)

(0
.7

77
)

(0
.7

32
)

(0
.6

88
)

(0
.6

47
)

Si
n

( 2π
t 12

)
4.

41
8∗

∗∗
−2

1.
94

2∗
∗∗

−3
.2

28
∗∗

−3
.5

28
∗∗

∗
−3

.6
12

∗∗
∗

−0
.2

63
−0

.2
78

−0
.2

16

(1
.1

27
)

(1
.3

99
)

(1
.4

09
)

(1
.1

10
)

(0
.9

45
)

(1
.0

37
)

(0
.9

75
)

(0
.9

18
)

C
os

( 2π
t 12

)
−9

.8
13

∗∗
∗

−1
2.

56
9∗

∗∗
−5

.5
54

∗∗
∗

−5
.0

05
∗∗

∗
−4

.8
56

∗∗
∗

5.
58

1∗
∗∗

5.
61

7∗
∗∗

5.
65

1∗
∗∗

(2
.4

13
)

(1
.7

08
)

(1
.4

96
)

(1
.1

80
)

(1
.0

04
)

(1
.0

30
)

(0
.9

69
)

(0
.9

11
)

Si
n

( 2π
2t 12

)
22

.5
69

∗∗
∗

−8
.5

32
∗∗

∗
−8

.5
89

∗∗
∗

5.
29

1∗
∗∗

5.
32

5∗
∗∗

(1
.0

70
)

(1
.0

21
)

(0
.8

57
)

(0
.9

69
)

(0
.9

11
)

C
os

( 2π
2t 12

)
4.

80
1∗

∗∗
1.

57
0

1.
55

0∗
0.

23
7

0.
29

9

(0
.7

83
)

(1
.0

17
)

(0
.8

53
)

(0
.9

75
)

(0
.9

18
)

Si
n

(2
π

3t 12
)

5.
91

3∗
∗∗

−4
.4

92
∗∗

∗

(0
.8

21
)

(0
.9

21
)

C
os

(2
π

3t 12
)

−5
.9

76
∗∗

∗
2.

18
8∗

∗

(0
.8

17
)

(0
.9

08
)

A
R

(1
)

1.
27

0∗
∗∗

−0
.3

77
−0

.4
34

0.
00

5
0.

03
2∗

∗
0.

25
7∗

∗∗
0.

24
3∗

∗∗
0.

24
3∗

∗∗
0.

17
1∗

∗∗
0.

05
3

0.
08

4

(0
.0

80
)

(0
.3

63
)

(0
.3

40
)

(0
.0

04
)

(0
.0

16
)

(0
.0

64
)

(0
.0

65
)

(0
.0

65
)

(0
.0

66
)

(0
.0

67
)

(0
.0

67
)

A
R

(2
)

−0
.6

32
∗∗

∗
0.

18
0

0.
14

4
−0

.9
99

∗∗
∗

−0
.9

78
∗∗

∗

(0
.0

74
)

(0
.2

10
)

(0
.1

98
)

(0
.0

03
)

(0
.0

13
)

M
A

(1
)

−0
.4

23
∗∗

∗
0.

06
5

0.
04

8
−0

.5
16

∗∗
∗

0.
03

1

(0
.0

96
)

(0
.3

62
)

(0
.3

38
)

(0
.0

65
)

(0
.0

79
)

M
A

(2
)

−0
.1

65
∗∗

−0
.5

66
∗∗

∗
−0

.6
32

∗∗
∗

0.
99

0∗
∗∗

0.
95

7∗
∗∗

(0
.0

73
)

(0
.1

04
)

(0
.0

78
)

(0
.0

24
)

(0
.0

42
)

M
A

(3
)

−0
.2

06
∗∗

∗
0.

04
1

0.
03

3
−0

.5
34

∗∗
∗

0.
15

6∗

(0
.0

78
)

(0
.1

72
)

(0
.1

93
)

(0
.0

65
)

(0
.0

83
)

L
in

ea
r

tr
en

d
−0

.0
17

∗∗
∗

−0
.0

18
∗∗

∗
−0

.0
17

∗∗
∗

−0
.0

17
∗∗

(0
.0

05
)

(0
.0

04
)

(0
.0

05
)

(0
.0

07
)

N
iñ
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applied covariates with the smallest log likelihood and AIC equal to 841.5 and
1706.9, respectively. East Central Tropical Pacific SST Niño3.4 remains a dominant
global climatic field. A statistically significant negative relationship exists between
eastern and southern Ethiopia precipitation mode of variability and Niño3.4.
Second, El Niño event in October 2011 also hit this region as well as northern
Ethiopia, followed by another El Niño event in 2012 at the same time of the year.
La Niña event in May 2003 had a significant positive impact.

5 Conclusions

The main purpose of this study is to explain the precipitation spatiotemporal
distributions in the Blue Nile basin and their responses to large-scale modes of
climate variability and anthropologic impact. The monthly scale BNB precipitation
is decomposed into spatial variation and temporal patterns using EOF/PC analysis.
BNB precipitation is obtained from TRMM dataset covering Ethiopia during
the period 1998–2016. The teleconnections between three global climatic events
Niño3.4 , SOI, and AMM as well as anthropogenic effect, namely, linear trend
term, harmonic Fourier frequencies, El Niño and La Niña events dummies and
the RPCs time amplitudes were modeled using dynamic harmonic regression. This
regression modeling approach is implemented with the intention of determining the
dominant climatic driving factors while taking account of periodic seasonality of
BNB precipitation. Thereby, the two methods of analysis (EOFs/PCs and DHR)
compliment each other. Given the analysis results in Sect. 4, it can be concluded
that most studies on precipitation over Ethiopia which discuss natural climate
variability focus only on Kirmet and Belg as the dominant seasons, and Bega is
regularly overlooked. Examining Bega, in this study, has given insights about the
seasonal shifts that is causing BNB extreme precipitation events. The EOF analysis
yields three BNB precipitation modes of variability with cumulative variance of
approximately 74%. Our results confirm the strong influence of distant SST anoma-
lies on the observed Ethiopian precipitation trend patterns via varying large-scale
circulation features in various periodicities. In the dynamic harmonic regression,
Niño 3.4 is the dominant term for RPC1 and RPC3. AMM and SOI are significant
in RPC2 model. Those regression results have demonstrated that the influences of
distant tropical Atlantic climatic events must be considered. The SOI has a positive
relationship with RPC2. To address whether a detectable anthropogenic influence on
BNB precipitation has been found, a line of evidence shows that the linear trend term
in RPC1 model is significant. The RPC1 model is the only model where the trend
term exhibited statistical significance. This study provides a modeling scheme which
allows for seasonal periodicity, accounting for serial correlation of residuals and
El Niño and La Niña events. All of the previous literature on BNB precipitation
ignores all of these modeling essentials to have a well-constructed analysis that gives
reliable insights about BNB precipitation-large-scale atmospheric teleconnections
nexus. Furthermore, it represents the first regional attribution study that perceives
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an anthropogenic sign in BNB precipitation trends beyond natural forcing using
linear trend term. The latter is a popular trend analysis method in climate research.
Last but not least, two policy implications can be inferred: first, there has to be
global awareness on the negative impact of anthropogenic influence on precipitation
and, second, the need of regional cooperation between Egypt, Sudan, and Ethiopia
on several issues such as Grand Ethiopian Renaissance Dam-High Aswan Dam
safeguard policy. This policy allows the uses of GERD storage to ensure that the
High Aswan Dam lowest power pool elevation (147 m) is secured. There is an
urgent need for regional cooperation to increase total water storage in Eastern Nile
basin to accommodate future increase of extreme drought/flood events which both
have disastrous impact on the economies of these three countries. A caveat, this
study lacks the insights on the BNB intra-decadal precipitation variability with
the associated dominant climatic factors. Moreover, a similar analysis of longer
time spam of BNB precipitation is needed. Finally, future research exploiting
statistical climate prediction models will also be essential to predict monthly BNB
precipitation at different lead time for proactive water risk management.
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A Hidden Markov Random Field
with Copula-Based Emission
Distributions for the Analysis of Spatial
Cylindrical Data

Francesco Lagona
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1 Introduction

Cylindrical spatial series are bivariate vectors of angles and intensities that are
simultaneously observed at a number of sites in an area of interest. The name
cylindrical is motivated by the special domain of these data, because the pair of an
angle and an intensity can be described as a point on a cylinder. Cylindrical spatial
series arise frequently in environmental and ecological studies. Examples include
hurricane wind satellite data [25], wave directions and heights that are generated
by deterministic wave models [31, 32], speeds and directions of marine currents
recorded by a network of high-frequency radars [20, 28], as well as telemetry data
of animal movement [8]. Further examples of cylindrical spatial series can be found
in specific case studies of image analysis [15, 27].

The analysis of cylindrical spatial series is complicated by the special topology
of the support on which the measurements are taken (the cylinder) and by the
difficulties in modeling the cross-correlations between angular and linear measure-
ments across space. Additional complications arise from the multimodality of the
marginal distribution of the data, which are often observed under heterogeneous,
space-varying conditions.

We describe a cylindrical hidden Markov random field (MRF) model that
parsimoniously accounts for the specific features of cylindrical spatial series. More
precisely, we approximate the data distribution with a mixture of copula-based
cylindrical densities, whose parameters vary across space according to a latent Potts
model. The Potts model [29] is a categorical MRF, i.e., a multinomial process
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in discrete space, which fulfills a spatial Markovian property: the conditional
distribution at each site given the rest of the field is independent of the field values
outside a neighborhood of the site. It segments an area of interest according to an
interaction parameter that captures the correlation between adjacent observations
and controls the smoothness of the segmentation.

Cylindrical hidden MRFs have been already proposed in the literature [19, 28],
by exploiting the Abe-Ley density [1] as emission distribution. The Abe-Ley density
is a five-parameter bivariate density on the cylinder. A mixture of Abe-Ley densities
therefore provides a distributional extension to allow for multimodal cylindrical
data. Assuming that the mixture parameters vary according to the segmentation
provided by a Potts MRF is a further extension to capture unobserved spatial
heterogeneity and to allow for spatial correlation.

We extend these proposals by considering copula-based cylindrical densities.
Copulas allow the marginal densities and the joint dependence structure to be
modeled separately. As a result, they provide a general method for binding any
pair of univariate marginal distributions together to form a bivariate distribution.
This is particularly advantageous in the cylindrical setting, because a copula can
be exploited to bind two marginal densities that do not necessarily have the same
support. In this work, we take this approach by binding a Weibull and a circular
wrapped Cauchy together to form a cylindrical density. However, this proposal can
be promptly adapted with different marginal densities, if desired.

Hidden MRFs are popular models in spatial statistics, since the seminal paper by
Besag [3]. They can be seen as an extension of hidden Markov models, exploited in
time series analysis, to the spatial setting. Hidden Markov models have been recently
proposed for the analysis of cylindrical time series [21, 22]. This paper extends this
approach to the analysis of cylindrical spatial series.

Special computational issues arise in the estimation of the parameters of the
proposed cylindrical hidden MRF model. When the spatial interaction parameter of
the Potts model is equal to zero, the cylindrical hidden MRF reduces to a latent class
model for independent cylindrical data, and a standard expectation-maximization
(EM) algorithm can be exploited for likelihood maximization [17, 18, 23]. EM
algorithms are based on the definition of a complete-data likelihood function and,
under regularity conditions [33], provide a sequence of estimates that converges to
a local maximum of the likelihood function by iteratively updating and maximizing
the expected value of the complete-data log-likelihood function. When, however,
the interaction parameter of the Potts model is not equal to zero, the computation of
the expected complete-data log-likelihood is unfeasible, and special approximation
strategies are needed. For Gaussian MRFs, Celeux et al. [5] suggest a mean-
field approximation of the conditional distribution of the segmentation labels given
the data that is optimal in the sense of the Kullback-Leibler divergence. By
extending this method to a cylindrical setting, we propose a numerically efficient
EM algorithm for estimating the parameters of the cylindrical hidden MRF.

Unfortunately, the proposed EM algorithm does not provide information on the
uncertainty of the estimates. In principle, standard errors could be obtained by
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numerically approximating the observed information matrix, but reliable results
are obtained only when the sample size is extremely large. However, we show that
simulation of the proposed cylindrical MRF is straightforward, and, as a result, we
recommend parametric bootstrap as the most convenient method to obtain quantiles
of the distribution of the estimates.

The rest of the paper is organized as follows. Section 2 illustrates the data that
motivated this study. The copula-based cylindrical hidden MRF is presented in
Sect. 3, while Sect. 4 describes the EM algorithm that we propose for maximizing
the likelihood and the routine that we exploit to compute bootstrap quantiles of the
estimates. Section 5 summarizes the results obtained from the model when it was
used to segment a vector field of sea currents in the Adriatic sea. A list of relevant
discussion points is finally included in Sect. 6.

2 Sea Currents in the Adriatic Sea

Sea current segmentation is useful in several research areas which include studies
of the drift of floating objects and oil spills [10], sediment transport [11], and
coastal erosion [26]. Surface current measurements are often obtained by high-
frequency (HF) radars installed along the coast of the area of interest. HF radars
measure surface currents by detecting the Doppler shift of an electromagnetic wave
transmitted at a certain frequency. A single HF radar station determines only the
radial component of the surface currents relative to that station. Therefore, two
or more radar stations are needed to reconstruct the surface currents field in an
area of overlapping coverage. HF radars extract the radial components of the ocean
surface currents from the analysis of the Doppler spectrum of reflected signals, by
combining their radial components, and produce vector maps of the currents. A
vector map (or field) decomposes the currents field into the u and v components
(Cartesian representation) of the sea surface at each observation point in time and
space, where u corresponds to the W-E and v to the N-S current component. The
data considered in this paper are based on a network of three HF radars. Two are
installed on the western coast of Istria (Zub and Savudrija, Cratia), while the third
station (Bibione—Punta Tagliamento, Italy) is located on the Italian coast (Fig. 1).
The entire network was created in the framework of the NASCUM (North Adriatic
Surface Current Mapping) project [6, 24]. We illustrate the proposed cylindrical
hidden MRF model on a surface current field, observed in wintertime across a
regular grid of 297 points having a horizontal resolution of about 2 km × 2 km. For
each grid point, we computed the speed ω = √

u2 + v2 ∈ (0,+∞) of the current
(m/s) and its direction x = arctan(u/v) ∈ (0, 2π], hence obtaining a cylindrical
spatial series with linear and circular components. The proposed model requires the
definition of a neighborhood structure among the sites. The neighborhood of each
observation site i was in this study defined by including all the sites j at a distance
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Fig. 1 Top: the spatial grid of 297 sites that partition the study area in the northern Adriatic.
Bottom: vector field of the observed data; the orientation of each arrow indicates the current
direction at each observation site; the arrow length is proportional to the current speed at that
site

d(i, j) < 4 km. Figure 1 displays both the location of the study and the observed
data. Figure 2 shows the marginal distribution of both the directions and the speeds.
The observed speeds range between 0.009 and 0.966 m/s, while directions are
distributed around a main southwestern direction. Figure 2 further includes the joint
distribution of the data. This planar scatterplot should be interpreted by recalling that
points are actually on a cylinder, obtained by wrapping the picture along the x-axis.
It shows that the fastest currents flow along the modal southwestern direction.
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Fig. 2 Top: marginal distribution of current direction. Middle: marginal distribution of current
speed. Bottom: joint distribution of current directions (0, π/2, π , and 3π/4 indicate north, west,
south, and east, respectively) and speeds
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3 A Copula-Based Hidden Markov Field

The proposed model integrates copula-based cylindrical densities with a latent Potts
model. In the following, Sect. 3.1 introduces the proposed family of cylindrical
densities, while Sect. 3.2 is devoted to the Potts model. Finally, Sect. 3.3 introduces
the proposed hidden MRF.

3.1 Copula-Based Cylindrical Densities

A cylindrical sample is a pair z = (x, y), where x ∈ [0, 2π) is a point in the
circle and y is a point in the positive semi-line [0,+∞). Let f (x; α) be a density
on the circle, known up to a parameter α, with cumulative distribution function
(cdf) F(x; α), defined with respect to a fixed, although arbitrary, origin. Moreover,
let f (y; β) be a density on the semi-line, known up to a parameter β, with cdf
F(y; β). Finally, let g(u; γ ), u ∈ [0, 2π) be a parametric circular density, known
up to a parameter γ . Then,

fq(z; θ) = 2πg (2π (F(x; α) − qF(y; β))) f (x; α)f (y; β) q = ±1 (1)

is a parametric cylindrical density with support [0, 2π) × (0,+∞), known up to
the parameter vector θ = (α, β, γ ), having the marginal densities f (x; α) and
f (y; β) [12]. Equation (1) is a typical example of a copula-based construction of a
bivariate density, obtained by de-coupling the margins from the joint distribution.
When the binding density g is the uniform circular distribution, say g(x) =
(2π)−1, then Eq. (1) reduces to the product of the marginal densities. Otherwise,
the dependence between x and y is captured by the concentration of g: when g is
highly concentrated, the dependence is high; when g is more diffuse, dependence is
low. Finally, the constant q = ±1 determines whether the dependence between x

and y is positive (q = 1) or negative (q = −1). Additional details on copula-based
methods that use a circular binding density to specify bivariate and multivariate
densities can be found in [13].

3.2 The Potts Model

Often introduced as an extension of the more popular spatial autologistic model
[7], the K-colors Potts model is a multinomial process in discrete space with K

classes. Given a lattice that divides an area of interest according to n observation
sites i = 1, . . . , n, a sample that is drawn from a spatial multinomial process is a
segmentation of this area, obtained by associating each site with a segmentation
label k = 1, . . . ,K . Formally, each observation site i is associated with a
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multinomial random variable Ui = (Ui1, . . . , UiK) with one trial and K classes,
where Uik is a Bernoulli random variable that is equal to 1 if i is labelled by k and
0 otherwise. A specific segmentation of the area can be accordingly represented
as a sample drawn from the multinomial process U = (U1, . . .Un). The Potts
model is a spatial multinomial process which accounts for a neighborhood structure
N(i), i = 1, . . . , n among the observation sites, which associates each site with a
set N(i) of neighbors. Under the simplest one-parameter form of the Potts model,
each segmentation u is associated with a single sufficient statistic that indicates the
number of neighboring sites which share the same class k 
= K , say

n(u) =
n∑

i=1

∑
j>i:j∈N(i)

K−1∑
k=1

uikujk.

Accordingly, the probability of a specific segmentation u is known up to a single
parameter ρ, and it is given by

p(u; ρ) = exp (ρn(u))

W(ρ)
, (2)

where W(ρ) is the normalizing constant. The parameter ρ is an autocorrelation
parameter: if it is positive (negative), then it penalizes segmentations with a few
concordant (discordant) neighbors. In the image analysis literature, it is often
referred to a regularization parameter, given that large values of ρ are associated
with segmentations where areas with the same label are geometrically regular. For
each site i and each label k, let

nk(uN̄(i)) = uik

∑
j∈N(i)

ujk

be the number of sites in the neighborhood of i that are labelled by k, where N̄(i)

indicates the neighborhood of i, completed by i. Under model (2), the conditional
distribution of each site depends only on the labels taken by the neighboring sites,
namely,

p(uik = 1 | u1, . . .ui−1,ui+1, . . .un) =
exp

(
ρnk(uN̄(i))

)

1 + ∑K−1
k=1 exp

(
ρnk(uN̄(i))

) , (3)

Accordingly, the Potts model is a Markov random field with respect to the chosen
neighborhood structure, and the autocorrelation coefficient ρ can be viewed as
an auto-regression coefficient that is associated with the spatially lagged outcome
nk(uN̄(i)) .
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3.3 A Cylindrical Hidden Markov Random Field

The specification of the cylindrical hidden MRF is completed by assuming that
the cylindrical observations at the n sites of an areal partitioning are conditionally
independent, given a segmentation generated by the Potts model. Formally, a
cylindrical spatial series can be represented as a bivariate vector of angles xi and
intensities yi , observed at n observation points, say z = (zi , i = 1, . . . , n),
zi = (xi, yi), xi ∈ [0, 2π), and yi ∈ [0,+∞). We assume that the conditional
distribution of the observed process, given the latent process, takes the form of a
product density, say

f (z|u; θ) =
n∏

i=1

K∏
k=1

fq(zi; θk)
uik , (4)

where the vector θ = (θ1 . . . θK) includes K label-specific parameters and
fq(z; θk), k = 1, . . . ,K are K copula-based densities defined in (1) and known
up to the label-specific vector of parameters θk . Under this setting, the segmentation
labels generated by the Potts model can be interpreted as latent classes, which cluster
observation sites according to label-specific cylindrical distributions.

The joint density of the observed data and the unobserved class memberships is
therefore given by

f (z,u; θ, ρ) = f (z|u; θ)p(u; ρ).

Integrating this distribution with respect to the segmentation u, we obtain the
marginal distribution of the observed data, known up to the parameters (ρ, θ). Under
this setting, the maximum likelihood estimates, ρ̂ and θ̂ , of the parameters can be in
principle obtained by maximizing the likelihood function

L(ρ, θ; z) =
∑
u

p(u; ρ)f (z | u; θ). (5)

These parameter estimates can be usefully exploited to infer a posterior segmenta-
tion of the study area, by computing the posterior probabilities p(uik = 1 | z; ρ̂, θ̂ )

and exploiting a maximum a posteriori (MAP) criterion: site i is associated to class
k if

p(uik = 1 | z; ρ̂, θ̂ ) > p(uih = 1 | z; ρ̂, θ̂)

for each h 
= k. According to this rule, data are clustered according to the latent
class that is conditionally expected at each location, given the observed data and the
estimated parameters.

When ρ = 0, data are independent, and the proposed hidden MRF reduces to
a latent class model that involves K cylindrical densities. In this setting, standard
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EM algorithms for mixture models can be exploited to maximize the likelihood
function, and maximum likelihood estimates can be exploited to compute posterior
class membership probabilities. However, by assuming ρ = 0, we take a latent
class approach to spatial segmentation, and the cylindrical observations are clustered
according to similarities in the variable space, i.e., the cylinder [0, 2π) × (0,+∞).
More generally, by allowing ρ 
= 0, we account for the redundancy of the data
which is due to spatial correlation. As a result, on the one side, taking a hidden
MRF approach to segmentation, data clustering is not only based on similarities
in the variables space but also on similarities that occur in a spatial neighborhood.
On the other side, assuming spatial dependence complicates maximum likelihood
estimation and requires special approximation methods.

4 Parameter Estimation

4.1 Mean-Field Approximation and EM Algorithm

Maximum likelihood estimates of the proposed cylindrical hidden MRF model can
in principle be obtained by maximizing the log-likelihood function

l(θ , ρ) = log
∑
u

f (z | u; θ)p(u; ρ).

However, direct maximization of this likelihood is unfeasible due to the summation
over all the possible segmentations u. In this setting, EM algorithms offer a viable
maximization strategy. By treating the segmentation labels u as missing values, a
complete-data log-likelihood function can be defined as follows:

lcomp(θ, ρ) =
n∑

i=1

K∑
k=1

uik log f (zi; θk) − log W(ρ) + ρn(u). (6)

Starting with an initial parameter estimate, say θ0, ρ0, the EM algorithm alternates
an expectation (E) step and a maximization (M) step, generating a sequence of
estimates (θ s, ρs), s = 1, 2 . . . that converges to a local maximum of the likelihood,
under suitable regularity conditions [33]. During the sth E step, the expected value
of the complete-data log-likelihood lcomp(θ , ρ) is computed with respect to the
conditional distribution p(u | z; θ s−1, ρs−1) of the unobserved segmentation given
the data and the estimates available from the previous step s − 1 of the algorithm.
During the sth M step, this expected value is then maximized, and an update (θ s , ρs)

of the estimates is provided. However, these steps require the computation of the
normalizing constant W(ρ), which is unfeasible.

Following Celeux et al. [5], a possible solution relies on a mean-field approxi-
mation of the posterior distribution p(u | z). This approach has been successfully
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exploited in the estimation of complex Markov random field models [2, 15]. Given
the estimate (θ s−1, ρs−1), we first compute for each location a mean-field value

ûiq =
∑K

k=1 uik exp
(
ρs−1

∑
j∈N(i) ûjk,s−1 + log f (zi | θk,s−1)

)
∑K

k=1 exp
(
ρs−1

∑
j∈N(i) ûjk,s−1 + log f (zi | θk,s−1)

) , (7)

where ûik,s−1 is the mean-field estimate at location i, available from the previous
step. We then approximate the posterior segmentation distribution by

p(u | z; θ s , ρs) ≈
n∏

i=1

p(ui | ûN(i),s),

where ûN(i),s = (ûj,s , j ∈ N(i)) is the mean-field configuration in the neigh-
borhood of i, and p(ui | ûN(i),s) is the univariate conditional distribution under
the Potts model, obtained by setting the neighborhood as equal to the mean-field
configuration. This is the best approximation of the posterior distribution p(u | z)
with respect to the Kullback-Leibler divergence [5].

By taking this approximation into account, the expected value of the complete-
data log-likelihood at the sth iteration reduces to the sum of the following two
functions

Q(θ) =
n∑

i=1

K∑
k=1

p(uik = 1 | ûN(i),s−1) log f (zi | θk) (8)

Q(ρ) =
n∑

i=1

K∑
k=1

p(uik = 1 | ûN(i),s−1) log p(ui | ûN(i),s−1; ρ). (9)

Because (8) and (9) depend on separate sets of parameters, the M step of the
EM algorithm reduces to the separate maximization of the two functions. We can
maximize (8) with respect to all the parameters, or, more efficiently, we can take a
IFM (inference function for margins [14]) approach. Precisely, (8) can be written as
the sum of three components, namely,

n∑
i=1

π̂ikf (zi; θk) =
n∑

i=1

π̂ik log g(2π(F(xi; α) − qF(yi; β)); γ ) (10)

+
n∑

i=1

π̂ikf (xi; αk) (11)

+
n∑

i=1

π̂ikf (yi; βk), (12)
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where

π̂ik = p̂(uik = 1 | ûN(i),s−1).

Accordingly, IFM proceeds by finding the parameter values α̂ and β̂ that respec-
tively maximize (11) and (12) and then maximizing function (10), evaluated at
α = α̂ and β = β̂, to obtain an estimate of γ . Maximization of Q(ρ) instead
reduces to a traditional one-dimensional optimization routine such as that provided
by the function optimize of R.

4.2 Computational Aspects

The EM algorithm is quite sensitive to the choice of the starting values that are
exploited at the initialization step. Depending on the initial conditions, the EM
algorithm may converge to local maxima of the log-likelihood function or diverge
to singularities at the edge of the parameter space, where the log-likelihood is
unbounded [33]. The presence of multiple local and spurious maxima is well
documented in the literature on mixture models and several strategies have been
proposed to select a local maximizer and detect a spurious maximizer [23]. We
follow the strategy developed by Bulla et al. [4]. Precisely, we pursue a short-run
strategy, by running the EM algorithm from a number of random initializations and
stopping the algorithm without waiting for full convergence. We have observed that
convergence to spurious maxima is fast and can be detected within short EM runs
by monitoring the class proportions. We selected the ten outputs of the EM short
run maximizing the log-likelihood and checked for spurious solutions, where this
effect did not occur. Then, these ten parameter sets were used to initialize longer
runs of the EM algorithm. We stopped the optimization when the increase of two
successive log-likelihoods fell below 10−4%, as this stopping criterion produced
stable parameter estimates in preliminary experiments.

In the analysis of the marine data illustrated in Sect. 2, carried out by using a
i7 processor (2.50 GHz), the computational time of a single short run was rarely
greater than 30 s, whereas a single long run could take up to 200 s. Therefore the
computational cost of the proposed estimation strategy essentially depends on the
number of short runs. Computational speed can be improved by choosing a small
number of short runs, at the price of a high risk of convergence to a local maximum.

The procedure outlined above does not produce standard errors of the estimates,
because approximations based on the observed information matrix often require a
very large sample size [23]. By alternatively taking a parametric bootstrap approach,
we re-fitted the model to R = 200 bootstrap samples, which were simulated
from the estimated model parameters. In this case, the EM was initialized at the
estimated model parameters, and only one long run was executed. As a result, for
each bootstrap sample, convergence was mostly achieved within 30 s, by using a
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i7 processor (2.50 GHz), and the total procedure required less than 2 h. We finally
computed the 2.5% and the 97.5% quantiles of the empirical distribution of each
bootstrap estimate.

Simulation of the hidden MRF proposed in this paper is straightforward. We first
simulate a spatial segmentation from a Potts distribution. Several are the routines
available to simulate this model. We exploit the Swendsen-Wang algorithm [30]
that is available in the R package potts. Given a configuration of segmentation
labels, a cylindrical observation at site i is obtained as follows. First, a sample η1
is drawn from the uniform circular distribution. Then a sample η is drawn from the
binding distribution g, evaluated at γ = γ̂k , where k is the class of the random field
at site i. Finally, by setting η2 = (η + qη1)(mod2π), the cylindrical sample at site
i is obtained as (xi, yi) = (F−1(η1/2π; α̂k), F

−1(η2/2π; β̂k)), where k is the class
that the field takes at site i.

5 Segmenting Sea Current Fields

We have segmented the study area by estimating a number of cylindrical hidden
MRFs from the data illustrated above, by varying the number K of latent classes
from 2 to 5. The BIC statistic is an excellent tool to detect the order of complex
hidden Markov random fields [16]. In this application, it suggested a model with
K = 2 components. Table 1 displays the estimates under this model, along with
bootstrap percentiles.

This table provides two general pieces of evidences that support the distributional
choices of this paper. First, within each state, the copula dependence parameter is
significant. This supports the choice of a cylindrical density and indicates that, at
least in this case study, a conditional independence assumption between univariate
distributions of circular and linear variables is unrealistic. Second, the spatial
dependence parameter is significant. This supports the inclusion of a spatial process
to account for spatial autocorrelation and indicates that the assumption of spatial
independence is unrealistic.

The rest of Table 1 should be interpreted with the help of Fig. 3. This figure
displays the threefold output of the model. First, the data are clustered according to
the posterior state-membership probabilities p(uik = 1 | z; ρ̂, θ̂) (black indicates
p(uik = 1 | z; ρ̂, θ̂) = 1) under each state (Fig. 3, top). Second, the data
distribution is described in terms of two conditional distributions under each state
(Fig. 3, middle). Third, the cylindrical spatial series is segmented according to two
spatial patterns, each associated with a specific latent state (Fig. 3, bottom). The
interpretation of these results is intuitively appealing. State 1 is associated with
anticyclonic circulation flows. The moderate currents that travel along the Istrian
coast are clustered under this regime. State 2 is instead associated with Bora wind
jets that blow northeasterly. Bora blows when a polar high-pressure area sits over the
snow-covered mountains of the interior plateau behind the coastal mountain range
and a calm low-pressure area lies further south over the warmer Adriatic. Under a



HMRF for Cylindrical Data 133

Table 1 Parameter estimates and bootstrap quantiles of a two-state cylindrical hidden Markov
random field

Parameter Estimate 2.5% Quantile 97.5% Quantile

State 1

Wrapped Cauchy Location 2.586 0.654 4.763

Concentration 0.399 0.182 0.718

Weibull Shape 2.015 1.798 2.301

Scale 0.228 0.183 0.710

Copula Dependence 0.042 0.015 0.054

q −1

State 2

Wrapped Cauchy Location 2.655 2.481 2.791

Concentration 0.895 0.777 0.902

Weibull Shape 4.075 3.371 4.345

Scale 0.581 0.210 1.045

Copula Dependence 0.077 0.040 0.110

q −1

Markov field Spatial dependence 0.401 0.341 0.521

Bora episode, most of the wind energy is transferred to the sea surface, and, as a
result, most of the currents that flow at the fastest rates in the sample are clustered
within this regime. The high value of the concentration parameter further indicates
that currents are highly concentrated around one modal direction.

6 Discussion

We have illustrated a novel hidden Markov random field for the analysis of
cylindrical spatial series. The model can be exploited to cluster spatially correlated
cylindrical data according to a finite number of latent classes, associated with
specific copula-based cylindrical densities that describe the distribution of the data
under each class. The proposed approach was motivated by segmentation issues that
arise in marine studies, but it can be easily adapted to a wide range of real-world
data, including ecological studies of animal behavior, where direction and speed
of movements are recorded across space [9], as well as environmental studies that
involve spatial patterns of wind speeds and directions [25].

From a methodological viewpoint, the model offers a number of advantages.
It flexibly accommodates spatial correlation, linear-circular correlation, and multi-
modality by means of parameters that can be easily interpreted in terms of traditional
concepts such as location, shape, scale, and concentration. In the examined case
study of marine data, the model offered a parsimonious description of current
dynamics by capturing the plasticity of current fields in terms of intuitively
appealing copula-based distributions that represent specific environmental regimes.
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Fig. 3 Model-based clustering and state-specific data distributions according to a cylindrical
hidden Markov random field model with two states. Top: clusters of the observed data in a
planar plot (points are colored with gray levels according to the estimated posterior membership
probabilities—black indicates a probability equal to 1). Middle: state-specific cylindrical densities.
Bottom: spatial clusters of the observed data (arrows are colored with gray levels according to the
estimated posterior membership probabilities)
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