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Preface

In the last decade, considerable interest has been paid to the problem of estimating
integrated volatility using financial high-frequency data. It is now possible to use
copious high-frequency data including stock markets and foreign exchange mar-
kets. Although the statistical literature contains some discussion on estimating
continuous stochastic processes, earlier studies often ignored the presence of
micro-market noise when trying to estimate the volatility of the underlying
stochastic processes. Because the micro-market noise is important variously to
analyze high-frequency financial data both in economic theory and in statistical
measurement, several new statistical estimation methods have been developed. The
main purpose of this book is to develop a new statistical approach, which is called
the separating information maximum likelihood (SIML) method, for estimating
integrated volatility and integrated covariance by using high-frequency data in the
presence of possible micro-market noise.

In April, 2007, I (Naoto Kunitomo) was invited to Osaka University as the first
visiting Osaka Stock Exchange (OSE) Professor by Kazuhiko Nishina and Hideo
Nagai. Back then, I assumed that I knew the basics about stochastic analysis and
financial economics, the former having been invented by the Japanese mathemati-
cian Kiyoshi Itô and refined by subsequent mathematicians at Osaka and Kyoto.
I had co-authored a book in Japanese on mathematical finance and financial
derivatives (Kunitomo and Takahashi 2003), which was awarded as the 2003 Nikkei
Prize. I asked some staff of OSE for access to their high-frequency data because the
Nikkei-225 Futures index, one of OSE’s major financial products, had been suc-
cessful as the major financial derivatives actively traded in Japan since 1987.1 Upon
examining their data, I realized that my understanding on both stochastic analysis

1It is known in finance that Dôjima rice market at Osaka in the seventeenth century was the oldest
organized futures market. The trade of modern Nikkei-225 Futures was started in 1987 as the
first financial futures in Japan. Osaka Stock Exchange (OSE) and Tokyo Stock Exchange
(TSE) were merged as Japan Exchange Group (JPX) in 2013.

v



and real financial data was too poor to allow meaningful analysis, and I decided to
start investigating the problem of financial high-frequency data further.

We inclined to think that we have more accurate information on hidden
parameter if we have finer observations. Apparently, it is not the case for the
estimation problem of volatility and co-volatilities of financial prices when we use
high-frequency financial data. After a while, it was fortunate for me to have a new
idea to measure volatilities and co-volatilities from high-frequency financial data
and began to write the first paper on the method that we termed the separating
information maximum likelihood (SIML) method. I asked Seisho Sato, then at the
Institute of Statistical Mathematics and now at the University of Tokyo, to do some
simulations and data analysis, whereupon he kindly joined my research project.
Since then, Sato and I have tried to investigate statistical estimation problem on the
volatility and covariation by using high-frequency data. Our approach seems to be
novel, and there have been several applications of the basic SIML method. At the
last moment, Daisuke Kurisu, who is a graduate student at the University of Tokyo,
joined our research project because he was interested in jumps in financial markets
and the application of stochastic analysis of jumps. I would also like to mention
Hiroumi Misaki, then a graduate student and now at Tsukuba University, who
conducted some simulations in the early stage. Because 10 years have passed since
we started the research project, it is a good time for us to summarize our research
activities and results in a coherent way.

This book is a summary of our joint research project on the SIML method for
financial applications. We hope that it gives many readers a better understanding
of the high-frequency financial data problem and also that it will be a good starting
point to investigate the unsolved related topics in future.

During the process of preparing manuscripts, we have received several com-
ments from researchers including Hiroumi Misaki, Wataru Ôta, Yoshihiro Yajima,
and Katsumi Shimotsu, and we thank them for their comments to parts of the earlier
versions. This work was supported by JSPS Grant-in-Aid for Scientific Research
No. 25245033 and 17H02513.

Tokyo, Japan Naoto Kunitomo
December 2017

Reference

Kunitomo, N., and A. Takahashi. (2003). A Foundation of Mathematical Finance: An Application
of Malliavin Calculus and Asymptotic Expansion. Toyo-Keizai (in Japanese).
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Chapter 1
Introduction

Abstract We introduce recent issues and research around volatility estimation based
on high-frequency financial data. Previous studies often ignored the presence of
micro-market noises, thereby obtaining misleading estimation results. In this book,
we propose the separating information maximum likelihood (SIML) method.

Recently in the field of financial econometrics, considerable interest has been paid to
the problem of estimating integrated volatility using high-frequency financial data.
It is now possible to use copious high-frequency data in financial markets including
stock markets and foreign exchange rates markets. Although the statistical literature
contains some discussion on estimating continuous-time stochastic processes, ear-
lier studies often ignored the presence of micro-market noise in financial markets
when trying to estimate the volatility of the underlying stochastic process. Because
micro-market noise is important variously to analyze high-frequency financial data
both in economic theory and in statistical measurement, several new statistical esti-
mation methods have been developed. For further discussion on the related topics,
see Zhou (1998), Andersen et al. (2000), Gloter and Jacod (2001), Ait-Sahalia et al.
(2005), Hayashi and Yoshida (2005), Zhang et al. (2005), Ubukata and Oya (2009),
Barndorff-Nielsen et al. (2008), Christensen et al. (2009), Ait-Sahalia and Jacod
(2014), and Camponovo et al. (2017) among others.

Themain purpose of this book is to develop a new statisticalmethod for estimating
integrated volatility and integrated covariance by using high-frequency data in the
presence of possible micro-market noise. Kunitomo and Sato (2008a, unpublished)
originally proposed the separating informationmaximum likelihood (SIML)method.
Subsequently, Kunitomo and Sato (2008b, 2010, 2011, 2013) investigated some
further properties of the SIML method. The SIML estimator of integrated volatility
and covariance for the underlying continuous (diffusion-type) process is represented
as a specific quadratic formof returns. Aswe show inChap.3, the SIMLestimator has
reasonable asymptotic properties: It is consistent and asymptotically normal when
the sample size is large and the integrated volatility is time-changing under general
situations including some non-Gaussian processes and volatility models. When the
integrated volatility is stochastic, we require the concept of stable convergence and
there is a further technical problem involved, see Jacod and Shiryaev (2003), Jacod

© The Author(s) 2018
N. Kunitomo et al., Separating Information Maximum Likelihood Method
for High-Frequency Financial Data, JSS Research Series in Statistics,
https://doi.org/10.1007/978-4-431-55930-6_1
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2 1 Introduction

andProtter (2011).Gloter and Jacod (2001) developed themaximum likelihood (ML)
estimation of a one-dimensional diffusion process with measurement errors and our
method could be interpreted as a modification of their procedure. There have been
related studies by Zhou (1998) and Barndorff-Nielsen et al. (2008). However, the
SIML approach differs from their methods in certain aspects as well as embodying
novel features.

The main motivation for our study is that it is usually difficult to handle the exact
likelihood function and more importantly the ML estimation lacks robustness if the
assumption of a Gaussian distribution does not hold in the underlying multivariate
continuous stochastic processwithmicro-market noise. This aspect is quite important
for analyzing multivariate high-frequency data in stock markets and the associated
futures markets. Instead of calculating the full likelihood function, we try to separate
the information on the signal and noise from the likelihood function and then use
each type of information separately. This procedure simplifies the maximization of
the likelihood function and makes the estimation procedure applicable to multivari-
ate high-frequency data. We call our estimation method the separating information
maximum likelihood (SIML) estimator because it represents an interesting exten-
sion of the standard ML estimation method. The main merit of SIML estimation is
its simplicity and robustness against possible mis-specifications of the underlying
stochastic processes. Then, it can be extended in several directions and can be used
practically for multivariate (high-frequency) financial time series. Not only does the
SIML estimator have desirable asymptotic properties in situations including some
non-Gaussian processes and volatility models, it also has reasonable finite-sample
properties. The SIML estimator is asymptotically robust in the sense that it is consis-
tent when the noise terms are weakly dependent and endogenously correlated with
the efficient market price process. The SIML method was developed in an empirical
study of the multivariate high-frequency Nikkei-225 Futures data for risk hedging
problem, andwe noticed that in real applications, wemust consider themicro-market
structure and noise as illustrated in Chap. 4.

The plan of this book is as follows. In Chap. 2, we discuss on the underlying back-
ground to volatility and high-frequency econometrics. In Chap. 3, we introduce the
basic model and the SIML estimation of integrated volatility and integrated covari-
ances with micro-market noise as well as showing the asymptotic properties of the
SIML estimator. In Chap. 4, we discuss the finite-sample properties of the SIML
method and an application to the Nikkei-225 Futures data at the Osaka Securities
Exchange (OSE). InChap.5,wedetail themathematical derivations of the asymptotic
results given in Chap.3. In Chaps. 6 and 7, we investigate the asymptotic robustness
of SIML estimation when we have the round-off errors and price adjustment mech-
anisms. In Chap.8, we propose the local SIML method, which is an extension of
the basic SIML method introduced in Chap. 3. In Chap.9, we consider the estima-
tion of the quadratic variation of Ito’s semi-martingales including jumps. Finally,
in Chap.10, we make some final comments and suggest possible extensions of the
SIML method.
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Chapter 2
Continuous-Time Models and Discrete
Observations for Financial Data

Abstract We introduce continuous-time financial models and the stochastic
processes of diffusions and jumps. This chapter reviews recent developments in
mathematical finance and financial econometrics and then summarizes the basic
financial problems that motivate the SIML estimation in this book.

2.1 Developments in Quantitative Finance

In Figs. 2.1 and 2.2, we show daily data from the Nikkei-225 spot price index and
the dollar–yen exchange rate during 2000∼2016, which are two major sources of
financial data in Japan. It is commonly observed that price of an actively traded
(financial) commodity in a financial market fluctuates wildly over time, and predict-
ing its future value based on present and past observations is known to be difficult.
A basic and interesting question is how to interpret these price movements over time
and among early attempts (Bachelier 1900) tried to develop a key mathematical idea
to use Brownian motion as an appropriate mathematical tool.

Let the security price at t ∈ [0, T ] be S(t), which is a continuous-time stochastic
process. We divide [0, T ] into n intervals, Δt = T/n, and let Sn(tnk ) be the security
price at tnk ∈ ((k − 1)T/n, kT/n], k = 1, . . . , n. For simplicity, we often take tnk =
kT/n, and we set tn0 = 0 and T = 1. When there is no dividend in [0, T ], the returns
of Sn(tni ) can be defined by

rn(iΔt) = Sn(tnk ) − Sn(tnk−1)

Sn(tnk−1)
(i = 1, . . . , n), (2.1)

where Sn(tn0 ) is the initial (fixed) price and Δt = 1/n.
For each return, we consider the simple situation when in the period ((i −

1)Δt, iΔt], the return satisfies the next assumption.

© The Author(s) 2018
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6 2 Continuous-Time Models and Discrete Observations for Financial Data

Fig. 2.1 Nikkei-225 spot
price (daily closing data)
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Fig. 2.2 Yen–dollar
exchange rate (daily closing
data)
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Assumption 2.1 For any t ∈ [0, T ] and Sn(t) (> 0), rn(iΔt) (i = 1, . . . , n) satisfy
the following:

(i) the expected return is constant as EP [rn(iΔt)] = μΔt (i = 1, 2, . . . , n);
(ii) rn(iΔt) and rn( jΔt) (i �= j) are uncorrelated random variables;
(iii) the variances of returns are constant as VP [rn(iΔt)] = σ 2Δt ;
(iv) the third-order moment exists and EP [|rn(iΔt)|3] = o(Δt),
where EP [ · ] is the mathematical expectation under the probability measure P.

The parameters μ and σ are called the drift and volatility coefficients, respec-
tively. The excess return r∗

n (iΔt) = r(iΔt) − μΔt (i = 1, . . . , n) is a sequence of
martingale differences; that is, the conditional expectation EP [r∗

n (iΔt)|Fn,i−1] =
0 (i = 1, . . . , n), where Fn,i−1 is the information at (i − 1)Δt as the σ -field.
Because we denote r∗

n (iΔt) = rn(iΔt) − μΔt , then the conditional expectation
EP [r∗

n (iΔt)|r (∗)
n ( jΔt), i − 1 ≥ j] = 0 and EP [(r∗

n (iΔt))2|r∗
n ( jΔt), i − 1 ≥ j] =

σ 2Δt . From the sequence of mutually uncorrelated random variables, we define
{Bn(iΔt)} such that r∗

n (iΔt) = σ [Bn(iΔt) − Bn((i − 1)Δt)] and denote the ini-
tial value Bn(0) = 0. Then, we write σ Bn(iΔt) = ∑i

j=1 r
∗
n ( jΔt) and rn(iΔt) =

μΔt + σ [Bn(iΔt) − Bn((i − 1)Δt)] . We interpolate the price process Bn(t) for
any t ∈ [0, T ] by using the values at discrete points. Then,
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Sn(iΔt)

Sn(0)
= Sn(iΔt)

Sn((i − 1)Δt)

Sn((i − 1)Δt)

Sn((i − 2)Δt)
· · · Sn(Δt)

Sn(0)

=
i∏

j=1

(1 + rn( jΔt)) .

By taking the logarithm of both sides, we have for small Δt that log rn( jΔt)) =
rn( jΔt) − 1

2rn( jΔt)2 + op(Δt). By using the notation [nt] = i(n),

log[ Sn(i(n)Δt)

S(0)
] ∼

i(n)∑

j=1

rn( jΔt) − 1

2

i(n)∑

j=1

rn( jΔt)2

∼
i(n)∑

j=1

{(

μ − σ 2

2

)

Δt + σ [Bn( jΔt) − Bn(( j − 1)Δt)]
}

=
(

μ − σ 2

2

)

[i(n)Δt] + σ Bn(i(n)Δt).

For any fixed t ∈ [0, 1], as n → +∞, we have Δt → 0. Hence, as i(n)Δt → t ,
Sn(t) → S(t) and Bn(t) → B(t) in the sense of convergence in distribution. As the
limit, we write

log
S(t)

S(0)
=

(

μ − σ 2

2

)

t + σ B(t). (2.2)

Then, by using the functional central limit theorem (FCLT) (see Section 37 of
Billingsley (1995) for instance), we summarize the above arguments.

Theorem 2.1 Under Assumption 2.1, asΔt −→ 0 the security price process {S(t)}
satisfies the geometric Brownian motion (GMB) of (2.2) with the drift parame-
ter μ and volatility parameter σ , where {B(t)} is the standard Brownian motion
(SBM) on [0, T ].
The random variable B(t) follows a normal distribution with zero mean and variance
t . It is known that for any t , B(t) does not have a finite variation and the sample path
of Brownian motion is inC[0, T ],which is the totality of all continuous functions on
[0, T ], but it is nowhere differentiable. The GBM satisfies the stochastic differential
equation (SDE) given by

dS = μSdt + σ SdB. (2.3)

2.2 On Financial Derivatives and the Black–Scholes
formula

We consider the financial market in which (i) there is a risky security with price
S(t) at time t in the period [0, T ], (ii) there is also a safe asset without any risk (i.e.,
a government bond), and (iii) many participants can trade two assets at any time
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(t ∈ [0, T ]) with any arbitrary unit. As a friction-less financial market, we assume
several conditions.

[Condition 2.2]: At any time t ∈ [0, T ], we can trade assets freely and continu-
ously and the financial market satisfies the following conditions

(i) there is no transaction cost such as tax and trade commission, and short sales
are possible,

(ii) the risky asset has no default risk, and the security price follows the GBM
of (2.2). There is no dividend during the period, and we have a constant compound
interest r (≥ 0) if we invest the safe asset in the period,

(iii) in the economy, there is no-arbitrage opportunity.
The economy satisfying the above conditions is called the Black–Scholes (BS)

model (Black and Scholes 1972). When we have a safe asset with constant interest
rate, we normalize the price of risky asset by the bond price ert (i.e., continuous
compounding), and then the present value of the risky asset X (t) = e−r t S(t) satisfies

X (t) = X (0)e(μ−r− σ2

2 )t+σ B(t)

and under the probability measure P. If we set B∗(t) = B(t) + (
μ−r
σ

)
t, then

X (t) = X (0)e(− σ2

2 )t+σ B(t)∗ . (2.4)

In this representation, we take another probability measure Q such that {B(t)∗} is an
SBMwith Q.We displace the drift term under P by (μ − r)t/σ . Let θ = (μ − r)/σ
and use the exponential martingale

M(t) = exp

[

− θB(t) − 1

2
θ2t

]

. (2.5)

For any measurable set A, we define

Q(A) = EP [M(T )1{A}]. (2.6)

Then if we take A = Ω (the sample space), we have Q(Ω) = 1. Conversely, if we
set any A (⊂ Ω), then Q(A) > 0 is a probability measure. When B∗ is an SBM
under Q, we have the martingale property under Q of X (t) as

EQ[X (t)|X (r), t > s ≥ r ] = X (s) (a.s.). (2.7)

Let a measurable set A be in Fs and a σ−field Fs can be interpreted as the infor-
mation sets available for participants in a market at s. By using the conditional
expectation operation, for any 0 ≤ s ≤ t and A ∈ Fs ,
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EP [X (t)M(t)1A] = ∫
A EP [X (t)M(t)|Fs]1A dP

= ∫
A X (s)dQ

= EQ[X (t)|Fs],
(2.8)

where we have used the product process X (t)M(t) as

X (t)M(t) = X (0) exp[(σθ − σ 2

2
)t + σ B(t)] × exp[−θB(t) − θ2

2
t]

= X (0) exp[(σ − θ)B(t) − 1

2
(σ − θ)2t].

Then, EP [X (t)M(t)|Fs] = X (s)M(s) (t > s) and hence for k = 1, 2 we have

EQ[B∗(t)k] = EQ[(B(t) + θ t)k]
= EP [(B(t) + θ t)ke−θB(t)− 1

2 θ2t ]
= ∫

R(x + θ t)ke−θx− 1
2 θ2t 1√

2π t
e− 1

2t x
2
dx .

For instance, we find that EQ[B∗(t)] = 0 and EQ[(B∗(t))2] = t , and thus, B∗ is a
Q-SBM.

To summarize the basic arguments, the stochastic process X (t) is a continuous
martingale with respect to the probability measure Q, and by using this SBM under
Q, we represent the risky asset price as the solution of stochastic differential equation
(SDE)

dS = r Sdt + σ SdB∗. (2.9)

The important issue is that the drift term of the stochastic processμ has been replaced
by the return of the riskless asset r , which corresponds to the no-arbitrage condition
in the financial market.

As consequence, the theoretical price of the European-type option contract with
pay-off function g(S(T )) at the expiration period T is given by the conditional expec-
tation

Vt = EQ
t [e−r(T−t)g(S(T ))], (2.10)

where EQ
t [ · ] is the conditional expectation given the information at time t . For

instance, ifwe take anEuropean call option contractwith pay-off function g(S(T )) =
max{S(T ) − K , 0} (K is a positive constant), then it is possible to find a function
(or strategy) π∗(t) and v such that

g(S(T )) = ver(T−t) +
∫ T

t
er(T−s)π∗(s)σ dB∗(s). (2.11)
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As a typical exercise, we take the theoretical price of European call option when the
price process follows GBM and there is no dividend in the period (t, T ]. We denote
the density of S(t) at time t as f (S(t)), and then,

C(S, t) = EQ[e−r(T−t) max{S(T ) − K , 0}|S(t) = S]
= e−r(T−t)

∫ ∞

K
S(T ) f (S(T ))dS(T ) − Ke−r(T−t)

∫ ∞

K
f (S(T ))dS(T ).

We denote μ∗ = r − σ 2/2 and use the log transformation, whereupon the distri-
bution at T is given by X = log S(T ) ∼ N [log S + μ∗(T − t), σ 2(T − t)]. We set
constants

d1 = log(S/K ) + (r + σ 2

2 )(T − t)

σ
√
T − t

(2.12)

and d2 = d1 − σ
√
T − t . For the second integration, we can use the relation

P(S(T ) ≥ K ) = P[ log S(T ) − log S − μ∗(T − t)

σ
√
T − t

≥ log K − log S − μ∗(T − t)

σ
√
T − t

]
= N (d2),

where N (·) is the standard normal distribution function given by N (z) = ∫ z
−∞

1√
2π

e−x2/2dx, and we have 1 − N (−d2) = N (d2). The first integration becomes

∫ ∞

K
S(T ) f (S(T ))dS(T )

=
∫ ∞

log K
ex

1
√
2πσ 2(T − t)

exp{−[x − log S − μ∗(T − t)]2
2(T − t)σ 2

}dx

= Ser(T−t)N (d1)

by using the factorization of the exponential part. Thus, we can summarize the fair-
price as

C(S, t) = SN (d1) − Ke−r(T−t)N (d2). (2.13)

The above formula corresponds to the one derived by Black and Scholes (1973), who
solved the partial differential equation (PDE)

1

2
σ 2S2CSS + r SCS + Ct − rC = 0, (2.14)

subject to the boundary condition C(S, T ) = max{S(T ) − K , 0}, where CSS is a
second-order partial derivative and CS and Ct are the first-order partial derivatives.
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2.3 Diffusion, Realized Volatility, and Micro-Market Noise

TheGBMmodel has been successful as the classical model of the asset-price process
in financial economics mainly because we have the explicit BS formula for derivative
pricing. In this framework, the unknown drift parameter μ is replaced by r, which is
observable, and the only unknown parameter we need is the volatility σ 2 (or σ ) in
(2.9), and we then need to estimate the volatility parameter from data.

However, it is quite a special case in the sense that both the drift and volatility
parameters are constant over time as a continuous-time stochastic process. The obvi-
ous limitation of the GBM model in application is that the log-return follows the
Gaussian distribution, but then there are many empirical studies against this aspect
in real financial data; that is, we often find that the actual financial returns exhibit fat
tails and non-Gaussianity.

As the theory of continuous-time stochastic processes, a more general form of the
SDE is given by

dS = μt Stdt + σt Std Bt , (2.15)

which has been called the diffusion-type continuous process. (In stochastic analy-
sis, the notation with μ∗

t = μt St and σ ∗
t = σt St is often used. There is no essential

difference due to Ito’s Lemma.) The GBM model corresponds to a special case in
which μt = μ and σt = σ with constants μ and σ . (2.15) has another representation
as

S(t) = S(0) +
∫ t

0
μs Ssds +

∫ t

0
σs SsdBs, (2.16)

where the first term is an integration in the sense of Riemann, while the second term
is an Itô’s stochastic integration with respect to the Brownian motion Bt . A detailed
theory of stochastic differential equation (SDE) and stochastic integration has been
explained by Ikeda and Watanabe (1989).

In order to estimate the volatility parameter, it may be natural to use the set of
returns (2.1) froma set ofn observations of the underlyingprices.Whenwehavehigh-
frequency data, n can be large. From the traditional statistical theory, we can estimate
the unknown parameters precisely as we have finer observations. For the simplicity
of our arguments, we set p = 1 (one-dimensional case), T = 1, and Δt = 1/n. For
the observed prices S(tni ), which follows the continuous-time diffusion process, we
define the log-returns Y (tni ) = log S(tni ) (or S(tni )). Then, the realized volatility (RV)
can be defined by

RVn =
n∑

i=1

[Y (tni ) − Y (tni−1)]2 (2.17)
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Fig. 2.3 x (time in second)
versus y (realized volatility)
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(or we use
∑n

i=1[Y (tni )/Y (tni−1) − 1]2 for Y (tni ) = S(tni ) in (2.17)), and it is known
in stochastic analysis

RVn
p−→

∫ 1

0
σ 2
s ds (2.18)

as n −→ ∞ in the sense of convergence in probability for the class of continuous-
time diffusion processes. (See Chap.5, for instance.)

When σs = σ (a constant parameter), the probability limit of (2.18) is σ 2, which
was originally called the volatility or diffusion parameter because of Black–Scholes
derivatives theory. Then, there were a number of applications using RV, which mea-
sures the risk involved in many financial markets. We mainly use the log-returns
(Y (tni ) = log S(tni )) for the resulting convenience in the following analysis.

However, it is known that there is a strong evidence against the underlying argu-
ment in this line of reasoning. For instance, whenwe take the estimates of the realized
volatilities with different n by using high-frequency data, we find that the estimate
of σ 2 becomes large as we take finer high-frequency data (from 120 to 1 s). As an
example, we have Fig. 2.3, which gives the realized volatility of Nikkei-225 Futures
based on Table4.1. (We shall discuss this applicationmore in Chap.4.)Whenwe take
high-frequency financial data, the effects of micro-market noise cannot be negligible.
In Fig. 2.4, we give the high-frequency data (from 1 to 60s) of Nikkei-225 Futures in
one day of the year 2007. These figures also suggest that the observed sample paths
are not realizations of continuous-time diffusion processes, which were developed
in stochastic analysis.

As a possible explanation, we consider the role of noise in high-frequency finan-
cial data. For this purpose, first, we consider the additive model for the observed
(log-)price at tni ∈ [0, 1] as

Y (tni ) = X (tni ) + εnv(tni ) (i = 1, . . . , n), (2.19)
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Fig. 2.4 a : Nikkei-225 Futures (1 and 10min). b : Nikkei-225 Futures (30 and 60min)

where εn is a sequence of nonnegative numbers and X (t) is the continuous-time
Brownian martingale as the simplest case with

X (t) = X (0) +
∫ t

0
σsd Bs (0 ≤ s ≤ 1). (2.20)

We take Bs as SBM, and σs is the (instantaneous) volatility function, which is pre-
dictable (and progressively measurable) with respect to (Ω,F , (Ft )t≥0, P). We
use the notations Xi = X (tni ) and Yi = Y (tni ), where Yi = log S(tni ) in the following
one-dimensional analysis.

For instance, εn can be a constant, and then, the market noise term dominates
the realized volatility as n → ∞. When εn are small, however, there can be other
possibilities.

In this way, we can construct the diffusion model with micro-market noise, which
gives an important way to resolve the contradictory evidence on the estimation of
volatility. Then, it may be important to investigate the situation in which the micro-
market noise terms v(tni ) (= vi ) as a sequence of random variables with E[vi ] =
0,E[v2

i ] = 1, and εn (≥ 0) is a (nonnegative) sequence of parameters depending on
n, which goes to zero as n −→ ∞. We call this situation the small-noise case. For
instance, Kunitomo and Kurisu (2017), and Kurisu (2017) have used (2.19) when
εn is a sequence of constants depending on n, which goes to zero as n → ∞. They
showed that the standard methods for estimating volatility parameter, such as the
realized volatility, are quite sensitive to the presence of micro-market noise. The
standard model of micro-market noise in many studies is the case when εn = ε (>
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0, a constant) while n −→ ∞. The classical high-frequency model corresponds to
the case when εn = 0. Hence, by using the present formulation, we can bridge the
gaps between the classical high-frequency models and the recent micro-market noise
models because the two situations represent the extreme cases. In the constant-noise
case as n −→ ∞, the market noise dominates the hidden intrinsic price movements
as the limit eventually, which may not be reasonable in real financial markets.

Regarding to the micro-market noise, the additive model we are considering in
(2.19) can be regarded as an approximation to the possible nonlinear models, such as

Y (tni ) = fn(X (tni ),ΔX (tni ), v(tni )) (i = 1, . . . , n), (2.21)

where fn(·) is a sequence of measurable functions depending on n and ΔX (tni ) =
X (tni ) − X (tni−1). For instance, one important example of (2.21) without the second
term ΔX (tni ) corresponds to the round-off error models and the price-adjustment
models which we shall consider in Chaps. 6 and 7. Another important case is the
situation when the observations are randomly sampled, and it will be discussed in
Chap.7.

In the theory of stochastic analysis, it is known that the diffusion process given by
(2.15) and (2.16) can be extended to the class of Itô semi-martingales. When jumps
are possible in the underlying stochastic process and p = 1, it is natural to assume
that the hidden price process follows an Itô’s semi-martingale (continuous-time)
process

X (t) = X (0) + ∫ t
0 μsds + ∫ t

0 σsd Bs + ∫ t
0

∫
|δ(s,x)|<1 δ(s, x)(μ − ν)(ds, dx)

+ ∫ t
0

∫
|δs,x)|≥1 δ(s, x)μ(ds, dx) ,

(2.22)

whereμs (drift parameter) and σs (diffusion parameter) are bounded, predictable, and
progressively measurable, δ(s, x) is a predictable process, μ(·) is a jump measure,
and ν(·) is the compensator of 1A ∗ μ for 1 ∗ ν(ω)t = ν(ω : [0, t) × A). Here, we
follow the notation of Ikeda and Watanabe (1989, Chap.2), Jacod and Protter (2012,
Section 2), and the details of diffusion and jump processes are explained rigorously
in these standard textbooks on stochastic analysis.

Here, we need to formulate the problem of micro-market noise in financial mar-
kets with some mathematical notation. Let the first-filtered probability space be
(Ω (0),F (0), (F (0)

t )t≥0, P (0)) on which the Itô semi-martingale Xt (0 ≤ t ≤ 1) is
well-defined. Let also the second-filtered probability space be

(Ω (1),F (1), (F (1)
t )t≥0, P (1)) on which the micro-market noise terms v(tni ) (i =

1, . . . , n) are well-defined with 0 ≤ tni ≤ 1. Then, we can construct the filtered
probability space and the probability measure as (Ω,F , (Ft )t≥0, P), where Ω =
Ω (0) × Ω (1), F = F (0) ⊗ F (1) withFt = ⋂

s>tF
(0)
s ⊗ F (1)

s (0 ≤ t ≤ s ≤ 1) and
P = P (0) × P (1).

In the next chapter, we extend the discussions of the one-dimensional diffusion
case in this chapter to general p-dimensional cases with micro-market noise. For
ease of exposition, we make several assumptions about the underlying stochastic
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processes, but most of them can be extended to the more general cases. For instance,
we treat a further problem of jumps in Chap.9. However, we will not purse mathe-
matical rigor because of their complicated arguments involved. We generally require
few conditions essentially at the end, but we omit the detailed mathematical devel-
opments.
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Chapter 3
The SIML Estimation of Volatility
and Covariance with Micro-market Noise

Abstract We introduce the SIMLmethod for estimating the integrated volatility and
co-volatility (or covariance) parameters from a set of discrete observations. We first
define the SIML estimator in the basic case and then give the asymptotic properties
of the SIML estimator in more general cases.

3.1 Statistical Models in Continuous-Time
and Discrete-Time

Let yi j be the i th observation of the j th (log-) price at tni for i = 1, . . . , n; j =
1, . . . , p; 0 = tn0 ≤ tn1 ≤ · · · ≤ tnn = 1. We set yi = (yi1, . . . , yip)

′
be a p × 1 vec-

tor, andYn = (y
′
i ) is an n × pmatrix of observations and y0 is the initial observation

vector. The underlying continuous vector process xi at tni (i = 1, . . . , n) is not nec-
essarily the same as the observed prices, and let v

′
i = (vi1, . . . , vi p) be the vector of

the additive micro-market noise at tni , which is independent of xi . Then we have

yi = xi + vi , (3.1)

where vi forms a sequence of independent random variables with E(vi ) = 0 and
E(viv

′
i ) = Σv . We assume thatΣv is nonnegative definite and finite.We focus on the

equidistance case, and we set hn = tni − tni−1 = 1/n (i = 1, . . . , n) in this chapter.
We assume that

x(t) = x0 +
∫ t

0
Cx (s)dB(s) (0 ≤ t ≤ 1), (3.2)

where we denote xi = x(tni ) (i = 1, . . . , n) for convenience,B(s) is a q × 1 (q ≥ 1)
vector of the standardBrownianmotions, andCx (s) = (c(x)

gh (s)) is a p × q (bounded)
coefficient matrix that is progressively measurable with respect to Fs (s ≥ 0) and
predictable, andF0 is the initial σ -field. We write the instantaneous diffusion func-
tion Σ x (s) (= (σ

(x)
gh (s))) = Cx (s)C

′
x (s), where C

′
x (s) is the transposed matrix of

Cx (s) and Fs is the σ -field generated by {B(r), r ≤ s}.
© The Author(s) 2018
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The main statistical problem is to estimate the integrated volatility and co-
volatility as

Σ x = (σ
(x)
gh ) =

∫ 1

0
Σ x (s)ds (3.3)

of the underlying continuous process {x(t)} and the variance–covarianceΣ v = (σ
(v)
gh )

of the noise process from the observed discrete-time process yi (i = 1, . . . , n). We
use the notation that σ

(x)
gh (s) and σ

(v)
gh are the (g, h)-th element of Σ x (s) and Σv,

respectively. When p = q = 1, we sometimes use the notation Cx (s) = σx (s) (or
σs) and Σ x = σ 2

x for convenience.
There are three different situations regarding the instantaneous variance–

covariance function, and we discuss the estimation problem of each. (i) When the
coefficient matrix is constant, i.e., Cx (s) = C, we call this the basic case or simple
case. The instantaneous variance and covariance are constant over time, and then
the integrated variance and covariance are constant. (ii) When the coefficient matrix
varies with time, but it is a deterministic function of time (Cx (s)), we call this the
deterministic time-varying case. (iii) When the coefficient matrix varies with time
and it is a stochastic function of time (Cx (s)), we call this the stochastic case. For
case (iii), we denote the conditional covariance function of the (underlying) price
returns without micro-market noise as

E
[
(xi − xi−1)(xi − xi−1)

′ |Fn,i−1

]
=
∫ ti

ti−1

Ei−1[Σ x (s)]ds ,

where ri = xi − xi−1 is a sequence of martingale differences, Ei−1[Σ x (s)] is the
time-dependent (instantaneous) conditional variance–covariance matrix, Fn,i−1 is
the σ -field generated by x j ( j ≤ i − 1) with (3.1) and v j ( j ≤ i − 1), and Fn,0 is
the initial σ -field.Without loss of generality, we assume thatΣ x (s) is a progressively
measurable instantaneous variance–covariance matrix and sup0≤s≤1 ‖Σ x (s)‖ <

∞ (a.s.).

3.2 Basic Case

We first consider the simple situation in which xi , vi (i = 1, . . . , n) are independent
with Σ x (s) = Σ x (0 ≤ s ≤ 1), and vi are independently, identically, and normally
distributed as Np(0,Σv). Then Δxi = xi − xi−1 follows Np(0, (1/n)Σ x ). We use
an n × p matrix Y = (y

′
i ) and consider the distribution of the np × 1 random vector

(y
′
1, . . . , y

′
n)

′
. Given the initial condition y0, we have

Yn ∼ Nn×p

(
1n · y′

0, In ⊗ Σv + CnC
′
n ⊗ hnΣ x

)
, (3.4)

where 1
′
n = (1, . . . , 1), In is the n × n identity matrix, hn = 1/n (= tni − tni−1), C

′
n

is the transposed matrix of Cn and
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Cn =

⎛
⎜⎜⎜⎜⎝

1 0 . . . 0 0
1 1 0 . . . 0
1 1 1 . . . 0
1 . . . 1 1 0
1 . . . 1 1 1

⎞
⎟⎟⎟⎟⎠ . (3.5)

To investigate the likelihood function in the basic case, we prepare the next lemma,
which may be of independent interest. The proof is given in Chap.5.

Lemma 3.1 (i) Define an n × n matrix An by

An = 1

2

⎛
⎜⎜⎜⎜⎝

1 1 0 . . . 0
1 0 1 . . . 0
0 1 0 1 . . .

0 0 . . . 0 1
0 . . . 0 1 0

⎞
⎟⎟⎟⎟⎠ . (3.6)

Then cosπ( 2k−1
2n+1 ) (k = 1, . . . , n) are eigenvalues of An, and the eigenvectors are

⎡
⎢⎢⎢⎣

cos
[
π
(
2k−1
2n+1

)
1
2

]
cos

[
π
(
2k−1
2n+1

)
3
2

]
...

cos
[
π
(
2k−1
2n+1

) (
n − 1

2

)]

⎤
⎥⎥⎥⎦ (k = 1, . . . , n). (3.7)

(ii) We have the spectral decomposition

C−1
n C

′−1
n = PnDnP

′
n = 2In − 2An , (3.8)

where Dn is a diagonal matrix with the kth element

dk = 2

[
1 − cos

(
π

(
2k − 1

2n + 1

))]
(k = 1, . . . , n) , (3.9)

C−1
n =

⎛
⎜⎜⎜⎜⎝

1 0 . . . 0 0
−1 1 0 . . . 0
0 −1 1 0 . . .

0 0 −1 1 0
0 0 0 −1 1

⎞
⎟⎟⎟⎟⎠ (3.10)

and

Pn = (p jk) , p jk =
√

2

n + 1
2

cos

[
2π

2n + 1

(
k − 1

2

)(
j − 1

2

)]
. (3.11)
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We transform Yn to Zn (= (z
′
k)) by

Zn = h−1/2
n PnC−1

n

(
Yn − Ȳ0

)
(3.12)

where
Ȳ0 = 1n · y′

0 . (3.13)

Given the initial condition y0, this transformation is one-to-one and all compo-
nents of Zn are independent in the present situation. By using the relation dk =
4 sin2(π/2)[(2k − 1)/(2n + 1)] (k = 1, . . . , n), the (conditional) likelihood func-
tion under Gaussian noise is given by

L∗
n(θ) =

(
1√
2π

)np n∏
k=1

|aknΣv + Σ x |−1/2e

{
−1

2
z

′
k (aknΣv + Σ x )

−1 zk

}
, (3.14)

where we denote

akn = 4n sin2
[
π

2

(
2k − 1

2n + 1

)]
(k = 1, . . . , n) . (3.15)

Hence, the (conditional) ML estimator can be defined as the solution of maximizing

Ln(θ) =
n∑

k=1

log |aknΣv + Σ x |−1/2 − 1

2

n∑
k=1

z
′
k[aknΣv + Σ x ]−1zk . (3.16)

From this representation, we find that the ML estimator of unknown parameters is
a rather complicated function of all observations in general because each akn term
depends on k as well as n.

Let denote akn ,n and k depending on n explicitly, whereupon we find that akn ,n →
0 as n → ∞ when kn = O(nα) (0 < α < 1

2 ) because sin x ∼ x as x → 0. Also
an+1−ln ,n = O(n) when ln = O(nβ) (0 < β < 1). When kn is small, we expect akn ,n
to be small. We denote akn without any confusion in the following discussion.

Then we may approximate 2 × Ln(θ) by

L(1)
n (θ) = −m log |Σ x | −

m∑
k=1

z
′
kΣ

−1
x zk . (3.17)

It is proportional to the standard log-likelihood function except for the fact that we
use only the first m terms (see Lemma 3.2.2 of Anderson 2003). Then the SIML
estimator of Σ x is defined by

Σ̂ x = 1

mn

mn∑
k=1

zkz
′
k . (3.18)
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By contrast, when ln is small and kn = n + 1 − ln , we expect an+1−ln ,n to be large.
Thus we may approximate 2 × Ln(θ) by

L(2)
n (θ) = −

n∑
k=n+1−l

log |aknΣv| −
n∑

k=n+1−l

z
′
k[aknΣv]−1zk . (3.19)

This is also proportional to the standard log-likelihood function approach except for
the fact that we use only the last l terms of (3.16). Then the SIML estimator of Σv

is defined by

Σ̂v = 1

ln

n∑
k=n+1−ln

a−1
kn zkz

′
k . (3.20)

When p = q = 1, we use the notation σ 2
x and σ̂ 2

x for Σ x and Σ̂ x , respectively, and
also σ 2

v and σ̂ 2
v for Σv and Σ̂v , respectively.

For both Σ̂v and Σ̂ x , the respective number of terms mn and ln can depend on
n. Then we need only the order requirements that mn = O(nα) (0 < α < 1

2 ) and
ln = O(nβ) (0 < β < 1) for Σ x and Σv, respectively. In the above construction,
we define the SIML estimator by approximating the exact likelihood function under
Gaussian micro-market noise. Although the convergence rate of the estimator of the
integrated volatility and covariance is not optimal when the volatility is constant (see
Gloter and Jacod 2001), the SIML estimator has some asymptotic robustness as we
will show in later chapters. The most important characteristic of the SIML estimator
is its simplicity, and it has other properties for dealing with high-frequency data. The
simplicity of the SIML method differs from other estimation methods known, and
it is crucial because the number of observations of tick data becomes large in the
standard statistical sense. It is quite easy to deal with the multivariate high-frequency
data in our approach.

By using a linear transformation in (3.12) (and Lemma 5.2 in Chap.5), we can
alternatively write

Σ̂ x = 1

m

(
2n

n + 1
2

)
m∑

k=1

[
n∑

i=1

r∗
i cos

[
π

(
2k − 1

2n + 1

)(
i − 1

2

)]]

×
⎡
⎣ n∑

j=1

r∗′
j cos

[
π

(
2k − 1

2n + 1

)(
j − 1

2

)]⎤
⎦

′

=
n∑

i=1

c∗
i ir

∗
i r

∗′
i +

∑
i �= j

c∗
i jr

∗
i r

∗′
j ,
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where r∗
i = yi − yi−1 and

c∗
i i =

(
2n

2n + 1

)⎡
⎣1 + 1

m

sin 2πm
(
i−1/2
2n+1

)

sin
(
π

i−1/2
2n+1

)
⎤
⎦ ,

c∗
i j = 1

2m

(
2n

2n + 1

)⎡
⎣ sin 2πm

(
i+ j−1
2n+1

)

sin
(
π

i+ j−1
2n+1

) +
sin 2πm

(
j−i
2n+1

)

sin
(
π

j−i
2n+1

)
⎤
⎦ (i �= j) .

Hence, we have an alternative representation of the SIML estimator in terms of
returns (i.e., yi − yi−1 = (yi, j − yi−1, j ) with the observation interval hn (= 1/n)).

3.3 Asymptotic Properties of the SIML Estimator
in the Basic Case

Because the SIML estimator has a simple representation, it is not difficult to derive its
asymptotic properties. To make our arguments clear, we first consider the asymptotic
normality of the SIML estimator of integrated volatility and integrated covariance in
the basic case and then the time-varying cases. It may be appropriate here to stress
the fact that we do not assume that the noise process is Gaussian when developing
the analysis of the asymptotic properties of the SIML estimator in this subsection.

Let ri = xi − xi−1 (i = 1, . . . , n). When Cx (s) (0 ≤ s ≤ 1) does not depend on
s, we write Cx (= Cx (s)). The conditional covariance matrix is then given by

E
[
n rir

′
i |Fn,i−1

]
= Σ x (3.21)

for all i (i = 1, . . . , n), and Fn,i−1 is the σ -field available at tni−1. (Fn,0 is the null-

set.) The covariance matrix Σ x = (σ
(x)
gh ) is a constant (nonnegative definite) matrix.

Then we have the next result, the proof of which is given in Chap.5.

Theorem 3.1 We assume that xi and vi (i = 1, . . . , n) are mutually independent
and follow (3.1) and (3.2)withCx (s) = Cx ,Σ x (s) = CxC

′
x = Σ x ≥ 0 (nonnegative

definite) for s ∈ [0, 1] andΣv ≥ 0. We further assume that vi are a sequence of inde-
pendent random vectors with E [v2

igv
2
jh] < ∞ (i, j = 1, . . . , n; g, h = 1, . . . , p).

Define the SIML estimator Σ̂ x = (σ̂
(x)
gh ) of Σ x = (σ

(x)
gh ) and Σ̂v = (σ̂

(v)
gh ) of Σv =

(σ
(v)
gh ) by (3.18) and (3.20), respectively.

(i) For mn = [nα] and 0 < α < 1/2, as n −→ ∞

Σ̂ x − Σ x
p−→ O . (3.22)
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(ii) For mn = [nα] and 0 < α < 0.4, as n −→ ∞
√
mn

[
σ̂

(x)
gh − σ

(x)
gh

]
w−→ N

(
0, σ (x)

gg σ
(x)
hh +

[
σ

(x)
gh

]2)
. (3.23)

The covariance of the limiting distributions of
√
mn[σ̂ (x)

gh − σ
(x)
gh ] and √

mn[σ̂ (x)
kl −

σ
(x)
kl ] is given by σ

(x)
gk σ

(x)
hl + σ

(x)
gl σ

(x)
hk (g, h, k, l = 1, . . . , p).

(iii) For ln = [nβ] and 0 < β < 1, as n −→ ∞

Σ̂v − Σv

p−→ O . (3.24)

(iv) Furthermore

√
ln
[
σ̂

(v)
gh − σ

(v)
gh

]
w−→ N

(
0, σ (v)

gg σ
(v)
hh +

[
σ

(v)
gh

]2)
. (3.25)

The covariance of the limiting distributions of
√
ln[σ̂ (v)

gh − σ
(v)
gh ] and√

ln[σ̂ (v)
kl − σ

(v)
kl ]

is given by σ
(v)
gk σ

(v)
hl + σ

(v)
gl σ

(v)
hk (g, h, k, l = 1, . . . , p).

It may be obvious that we have the joint normality of Σ̂ x and Σ̂v as the limiting
distributions of the SIML estimator in this case if we take a closer look at the proofs
in Chap.5. One interesting observation is that the asymptotic covariance in (3.23)
and (3.25) does not depend on the fourth-order moments of the non-normal noise.
This feature has an important implication for the statistical inference such as the
problems of constructing confidence interval and conducting hypothesis testing on
the integrated volatility in the presence ofmicro-market noise. In the SIML approach,
the testing procedures and confidence regions can be constructed rather directly by
using (3.25) for the covariance of the underlying continuous-time stochastic process
and the covariance of the noise.

In the decomposition

1

n

n∑
k=1

zkz
′
k =

(m
n

) 1

m

m∑
k=1

zkz
′
k +

(
n − l − m

n

)
1

n − l − m

n−l∑
k=m+1

zkz
′
k

+
(
l

n

)
1

l

n∑
k=n+1−l

zkz
′
k ,

three terms are asymptotically independent, and we can construct the testing pro-
cedure and confidence region on any elements of Σ x and Σv based on them. One
simple statistical testing example is to test the null-hypothesisH0 : σ (v)

gg = 0 versus
H1 : σ (v)

gg > 0 for some g, where σ (v)
gg is the (g, g)-th element ofΣv (g = 1, . . . , p).

For this problem, we consider the test statistic
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T1 = √
mn

⎡
⎢⎢⎢⎢⎢⎣

1

ln

n∑
k=n+1−ln

z2kg

1

mn

mn∑
k=1

z2kg

− 1

⎤
⎥⎥⎥⎥⎥⎦

, (3.26)

where zk = (zkg) (k = 1, . . . , n; g = 1, . . . , p).
When H0 is true, both (1/ ln)

∑n
k=n+1−ln

z2kg and (1/mn)
∑mn

k=1 z
2
kg converge to

σ (x)
gg in probability. Hence, it may be reasonable to use this statistic for testing the

null hypothesis H0. Under the null hypothesis H0, we have the next result, the proof
of which is given in Chap.5.

Corollary 3.1 Assume 0 < α < β < 1 and the conditions of Theorem 3.1. Under
H0 : σ (v)

gg = 0 for some g (1 ≤ g ≤ p),

T1
d→ N (0, 2) (3.27)

as n → ∞.

It is straightforward to construct test statistics and testing procedures based on
the SIML estimator, and these are valid asymptotically as the standard statistical
procedure. Ait-Sahalia and Xiu (2018) have developed a different testing procedure
on the same problem.

3.4 An Optimal Choice of mn

Because the properties of the SIML estimation method depends crucially on the
choice of mn, which is dependent of n, we have investigated the asymptotic effects
as well as the small-sample effects of its choice.

As we will see in Chap.5 (see the proof of Lemma 5.3), the dominant order of the
bias of the SIML estimator is n−1∑mn

k=1 akn = O(n2α−1). Because the normalization
of the SIML estimator is in the form of

√
mn[σ̂ (x)

gg − σ (x)
gg ] = Op(1), its variance is

of the order O(n−α). Hence, when n is large, we can approximate the mean squared
error of σ̂ (x)

gg (g = 1, . . . , p) as

gn(α) = c1g
1

nα
+ c2gn

4α−2 , (3.28)

where c1g and c2g are some constants.
The first and second terms of (3.28) correspond to the order of the variance and

the squared bias, respectively. By minimizing gn(α) with respect to α and using the
fact that d

dα
[n−α] = (− log n)n−α , we have the condition that n5α−2 is constant. Then

we can obtain an optimal choice of mn as follows.
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Theorem 3.2 An optimal choice of mn = [nα] (0 < α < 0.5) to minimize (3.28)
with respect to α, when n is large, is given by α∗ = 0.4.

When α = 0.4

√
mn

[
σ̂

(x)
gh − σ

(x)
gh − aσ

(v)
gh

1√
mn

]
w−→ N

(
0, σ (x)

gg σ
(x)
hh +

[
σ

(x)
gh

]2)
, (3.29)

where

a = lim
n→∞

1√
mn

n∑
k=1

akn = π2

3
. (3.30)

See the proof of Lemma 5.3 in Chap.5 for the derivation of a. In this case, we have
some asymptotic bias, which is dependent upon the covariance σ

(v)
gh .

It is possible to generalize the rulemn = [d nα], and d is a positive constant.When
p = q = 1, for instance, we use the notationΣ x = σ 2

x andΣv = σ 2
v . In this case, we

find that c1g = 2σ 4
x d and c2g = (π2/3)2σ 4

v d
4 by ignoring the fractional term of [·].

Then we have the conditions that n5α−2 is constant and 2σ 4
x d

−1 = 4(π2/3)2σ 4
v d

4.
They give the asymptotically optimal choice of α and d as α∗ = 0.4 and

d∗ =
[

9

2π4

σ 4
x

σ 4
v

]1/5
∼ 0.541

(
σ 2
x

σ 2
v

)0.4

. (3.31)

Inmost cases of our simulations,we obtain reasonable estimateswhenwe setα = 0.4
and d = 1. It may be problematic to use an estimate of the unknown signal-to-
noise ratio with d except d = 1 in practical applications. For ln , we have only the
condition 0 < β < 1 and we obtain a reasonable estimate when we set β = 0.8 by
using our results in simulations. There could be some improvements on the finite-
sample properties when we use different criteria for choosing mn .

3.5 Asymptotic Properties of the SIML Estimator When
Instantaneous Volatility is Time Varying

It is important to investigate the asymptotic properties of the SIML estimator when
the instantaneous volatility functionΣ x (s) (= (σ

(x)
gh (s))) of the underlying asset price

is not constant over time. When the integrated volatility is a positive (deterministic)
constant a.s. (i.e., σ

(x)
gh = ∫ 1

0 σ
(x)
gh (s)ds is not stochastic) while the instantaneous

covariance function is time varying, we have consistency and asymptotic normality
for the SIML estimator as n → ∞. We summarize the asymptotic properties of the
SIML estimator, the proof of which is again given in Chap. 5.

Theorem 3.3 We assume that xi and vi (i = 1, . . . , n) in (3.1) and (3.2) are
independent and that Σ x (s) = Cx (s)C

′
x (s) ≥ 0, whose elements are continuous
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and bounded functions. Assume (3.3) and Σ x is a deterministic matrix and vi
are a sequence of independent random vectors with E[v2

igv
2
jh] < ∞ (i, j = 1, . . . ,

n; g, h = 1, . . . , p).
Define the SIML estimator Σ̂ x = (σ̂

(x)
gh ) ofΣ x = (σ

(x)
gh ) by (3.18) and (3.20), respec-

tively.
(i) For mn = [nα] and 0 < α < 0.5, as n −→ ∞

Σ̂ x − Σ x
p−→ O . (3.32)

(ii) For mn = [nα] and 0 < α < 0.4, as n −→ ∞
√
mn

[
σ̂

(x)
gh − σ

(x)
gh

]
d→ N

[
0, Vgh

]
, (3.33)

where

Vgh =
∫ 1

0

[
σ (x)
gg (s)σ (x)

hh (s) + σ
(x)2
gh (s)

]
ds . (3.34)

For the basic case, the above result reduces to Theorem 3.1. We allow the volatil-
ity and co-volatility to be deterministic and time varying. Furthermore, we allow
Σ x to be a random matrix, but then we need the concept of stable convergence
which has been explained by Hall and Heyde (1980), Jacod and Protter (2012), and
Häusler and Luschgy (2015). For this purpose, we need to extend the probability
space (Ω,F , P) to the nice extended probability space (Ω̃, F̃ , P̃). Then we say
that a sequence of random variables Zn with an index n converges stably in law
if E[Y f (Zn)] −→ Ẽ[Y f (Z)] for all bounded continuous functions f (·) and all
bounded random variables Y , and Ẽ[·] is the expectation operator with respect to the
extended probability space. We denote this convergence as Zn

L −s−→ Z . Also we
write

Zn
L −s−→ N (0, 2

∫ 1

0
σ 4
x (s)ds) (3.35)

if Zn is a sequence of one-dimensional normalized processes as
√
mn[σ̂ 2

x − σ 2
x ]

(p = q = 1) and Z is a continuous process defined on a very good filtered extension
of (Ω,F , P), and conditionally on the sub-σ -field G̃ of σ -field F̃ , it is a Gaussian
process with independent increments satisfying

Vx = Ẽ[Z2|G ] = 2
∫ 1

0
σ 4
x (s)ds , (3.36)

where the σ -field G ⊂ F̃ .
The results of Theorem 3.3 hold in the stochastic case because we can apply the

stable convergence results given by Chap.9 of Jacod and Shiryaev (2003) or Chap.2
of Jacod and Protter (2012) to our present formulation. The only modification is that
the limiting distribution is a mixed-Gaussian distribution.
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We consider the general p-dimensional Itô’s semi-martingale X (t) with

X(t) = X(0) +
∫ t

0
μx (s)ds +

∫ t

0
Cx (s)dB(s) (0 ≤ t ≤ 1), (3.37)

where μx (s) and Cx (s) are the p × 1 drift terms and the p × q volatility matrix,
respectively, which are bounded and progressively measurable with respect to the
σ -fieldFt and B(s) is q-dimensional Brownian motion (q ≥ 1).

In this case, we also make a simple assumption on the (stochastic) volatility
function, which follows an Itô’s Brownian semi-martingale given by

c(x)
i j (t) = c(x)

i j (0) +
∫ t

0
μσ
i j (s)ds +

∫ t

0
ωσ
i j dB

σ (s) , (3.38)

whereCx (t) = (c(x)
i j (t)) is a p × q volatility process,Bσ (s) is a q∗ × 1 secondBrow-

nian motions (which can be correlated with B(s)), μσ
i j (s) are the drift terms of

volatilities, and ωσ
i j (s) (1 × q∗) are the diffusion terms of instantaneous volatili-

ties, respectively. They are predictable and progressively measurable with respect to
(Ω,F , (Ft )t≥0, P), and they are bounded and Lipschitz continuous such that the
volatility and co-volatility processes are smooth.

We summarize the asymptotic properties of the SIML estimator in the general
diffusion case, the proof of which is again given in Chap.5.

Theorem 3.4 We assume that xi and vi (i = 1, . . . , n) in (3.1) and (3.37) are inde-
pendent,Σ x (s) = Cx (s)C

′
x (s) ≥ 0 andCx (s) follows (3.38) (Σ x is a randommatrix)

and we have other conditions of Theorem 3.3. We also assume that μσ
i j (s) and ωσ

i j (s)
are progressively measurable, continuous, and bounded functions. Then the asymp-
totic results in Theorem 3.3 hold in the sense of stable convergence.

3.6 Discussion

Although we have introduced the SIML estimator as a modification of the ML esti-
mator in the basic case, Theorems 3.1, 3.3, and 3.4 show that the SIML estimator is
consistent and converges weakly to the normal or mixed-normal distribution under
more general conditions. Furthermore, it can be shown that the asymptotic properties
of the SIML estimator essentially remain the same even when the noise terms are
weakly dependent and can be correlated with the signal terms. In the SIML approach,
we can separate the information about the covariance matrix of the underlying price
volatilities and the covariance matrix of the micro-market noise in an asymptotic
sense. Then the resulting estimators of integrated volatility and covariances do not
require the assumption of independence among xi (the state vector) and vi (the noise
vector).
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Although there are merits in SIML estimation, however, there could naturally be
some cost. The convergence rate of the SIML estimator of Σ x in Theorem 3.1 is
slightly less than 0.25 if we take α = 0.4 (α/2 = 0.2). Hence, the SIML estima-
tion sacrifices a small efficiency loss against ML estimation based on the MA(1)
process when the standard assumptions hold without any misspecification. This is
because we have pursued simplicity and applicability of the estimation method, and
asymptotic robustness of the procedure for multivariate high-frequency data with
possible misspecification. As we will explain in Chaps. 6 and 7, the SIML estimator
is asymptotically robust under a variety of practical situations.
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Chapter 4
An Application to Nikkei-225 Futures
and Some Simulation

Abstract We present an application of the SIML estimation. We used the
high-frequency financial data of the Nikkei-225 Futures, which are the major finan-
cial products that are traded actively in Japan. We also give the simulation results of
SIML estimation in the basic case and consider the hedging problem, which was the
original motivation of developing the SIML method.

4.1 Introduction

An important financial futures market on Nikkei-225 in Japan began started in
September 1987 at the Osaka Securities Exchange (OSE), which was the second
largest securities exchange after the Tokyo Securities Exchange (TSE) in Japan.
Since then, the futures market (not in TSE, but in OSE) has grown in trading size
and scale. Nikkei-225 Futures, the most successful products of the OSE, correspond
to the Nikkei-225 Spot-Index as its future contracts and the Nikkei-225 spot rate
has been the most important stock index in the Japanese financial sector. The trad-
ing volume of Nikkei-225 Futures at the OSE has been heavy, and on most days,
trades usually occur within one second. The Nikkei-225 Futures have been the major
financial tool for risk managements in the financial industry because the Nikkei-225
spot rate has been the major financial index in Japan. We have high-frequency data
consisting of prices within less than 1s of Nikkei-225 Futures trades in most time. In
our analysis, we have used a set of data with intervals of 1, 5, 10, 30, 60, and 120s.
The SIML estimate of σ 2

x was calculated by (3.18) with p = 1 and α = .4.
WechoseApril 16, 2007, as a typical daybefore theLehmanShock in2008, andwe

used the same data set of observations. In Table 4.1, we list our estimates of integrated
volatility with different time intervals according to both traditional realized volatility
(or historical volatility (HI)) estimation and SIML estimation as a typical example.
We chose that one day because it was not associated with any significant moves in the
OSE and TSEmarkets and exhibited no significant daily, weekly, monthly, quarterly,
or fiscal-year effects, and there were no major and abrupt economic shocks around
that day. The values of the estimated HI depend heavily on the observation intervals;
for instance, the 1 s volatility estimate is more than 10 times the estimate with the

© The Author(s) 2018
N. Kunitomo et al., Separating Information Maximum Likelihood Method
for High-Frequency Financial Data, JSS Research Series in Statistics,
https://doi.org/10.1007/978-4-431-55930-6_4
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Table 4.1 Estimation of
integrated volatility

σ̂ 2
x RV(HI)

1 s 4.085E-05 4.946E-04

5s 3.994E-05 2.601E-04

10s 4.990E-05 1.764E-04

30s 3.551E-05 9.449E-05

60s 4.550E-05 6.964E-05

120s 4.750E-05 6.057E-05

60s. This phenomenon regarding the calculated RV has been observed in many high-
frequency financial data and has been one of the main reasons why we need to take
account ofmicro-market noise as we havementioned in Sect. 2.3. Several researchers
have highlighted the problem of significant biases in the estimated HI or RV, and
our analysis has been consistent with them. Also, by using the test statistic in (3.26)
and (3.27), we find that T1 = 103.56(1 s), 43.26(5 s), 19.15(10 s), 11.29(30 s), and
3.07(60 s). Most of these values are highly significant. This statistic also shows that
when we have longer time intervals as more than one minute, the effects of micro-
market noise become relatively small.

By contrast, the estimates based on the SIML method are more stable over the
different sampling intervals and may be reasonable as in Table 4.1. There are some
variations, but they are within the range of sampling effects. Thus, we have confirmed
that the presence of micro-market noise is an important factor when we have high-
frequency data in the Nikkei-225 Futures market.

The analysis of the Nikkei-225 spot and futures markets with bivariate high-
frequency data was the real motivation for developing our approach in this book, and
we will illustrate this hedging problem in this chapter.

There can be other empirical applications of the SIML approach, and Misaki
(2018) has given one example.

4.2 Basic Simulation Results

We have also conducted a large number of simulations and, we first present three
representative cases among many possibilities. We chose the sample sizes n = 300,
5,000, and 20,000, which correspond roughly to data intervals 1min, 10 and 1s,
respectively. We also report one simulation of hedging in Table 4.6, but we omit
the result simulations on the cases of stochastic volatility, autocorrelated noise, and
endogenous noise. The number of replications in our simulations is basically 5,000.
We conducted a two-dimensional simulation for Table 4.6 because we need two
simulated data sets for the spot price series and the futures price series. The other
tables are based on one-dimensional simulations becausewe need only one simulated
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Table 4.2 Estimated
noise-variance

σ̂ 2
v

5s 3.009E-08

10s 4.168E-08

60s 8.976E-08

120s 6.834E-08

data set for the futures price series, and we have utilized the formulation of the
estimation problem in Chap. 3 when p = q = 1.

In simulation, it is important to set the reasonable value of signal and noise vari-
ances. For this purpose, we calculated the SIML estimate of noise variance by using
the same data set, which is given in Table 4.2. The SIML estimate of σ 2

v was calcu-
lated by (3.20) with p = q = 1 and β = .8. We have found that the variance of noise
is about 10−2 ∼ 10−3 of the variance or volatility level in this case, which gives a
standard value for later simulations.

In our simulations, Tables 4.3, 4.4, and 4.5 give the SIML estimation results for
integrated volatility, where σ

(v)
f f stands for the variance of noise and H-vol stands for

the historical volatility (i.e., realized volatility). Table 4.3 corresponds to the standard
case of flat volatility, while Table 4.4 corresponds to the case of a U-shaped intra-
day volatility function. The integrated volatility and the (instantaneous) volatility
function are defined by

σ
(x)
f f =

∫ 1

0
σ

(x)
f f (s)ds (4.1)

and
σ

(x)
f f (s) = σ

(x)
f f (0)

[
a0 + a1s + a2s

2
]

(0 ≤ s ≤ 1), (4.2)

respectively, where ai (i = 1, 2, 3) are constants satisfying σ
(x)
f f (s) > 0 for s ∈

[0, 1]. The flat volatility function of Table 4.3 corresponds to the case with a1 =
a2 = 0.

First, when the noise variance is small and n = 300 (the interval length is several
minutes), the H-vol does not differ from the true value substantially. Even when the
noise level is small, however, the bias of H-vol becomes large for n = 5,000 and
n = 20,000. In most cases, the H-vol is completely unreliable.

Second, the SIML estimates in Tables 4.3 and 4.4 are reliable, and their biases
are of smaller order.

Third, the SD (standard deviation) and MSE are reasonable and the AVAR (the
asymptotic variance given in Theorem 3.1 of Chap.3) are useful approximations in
all cases.

Fourth, Table 4.5 gives the SIML estimation result when the signal term x f i

and the noise term v f follow t-distributions. Strictly speaking, this case does not
correspond to the model of (4.1) and (4.2) with a deterministic volatility function.
In some stochastic volatility cases, the signal term may follow a t-distribution, but
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Fig. 4.1 Nikkei-225 spot
and futures (1min frequency
data)
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those situations are far more complicated than the present discussion, and we do
not pursue the resulting problems herein. Nonetheless, this simulation result may be
interesting because it shows that the SIML estimation is not overly dependent on
the assumption of Gaussian distribution. Since the SIML estimate gives the similar
results as Tables 4.3 and 4.4, we confirm that it is robust against the non-normality
for both the noise term and diffusion process.

To summarize the findings from our basic simulations, the SIML estimation gives
stable and reasonable estimates even when the (instantaneous) volatility function
changes during a day.

4.3 Realized Hedging

An important use of realized volatility and realized co-volatility (or covariance) is to
form the (estimated) realized hedging coefficient. The use of financial futures as the
risk hedging instruments for spot-securities is quite common in financial industries,
and the details of risk hedging problem are explained by Duffie (1989) for instance.
In this respect, Nikkei-225 futures is the major hedging tool to the Nikkei-225 spot
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rate (which is the major stock index of Japan) and other stock prices in the Japanese
financial industries. It is because by using Nikkei-225 futures, it may be possible
to replicate the Nikkei-225 spot index quite easily. For an illustration, we show the
Nikkei-225 futures and spot-rate in Fig. 4.1 within in one day. (Colored one means
future data, while Black means spot data.)

We have also conducted number of simulations of hedging. Table 4.6 gives the
SIML estimation simulation on spot-rate, futures-rate, and their covariances for the
hedging problem, where Hx stands for the SIML estimate, while Hh stands for the
estimate based on the historical volatility and covariance. When the noise variance is
small, the value of hedging ratio based on realized volatility and co-volatility looks
reasonable. When the noise is not small, however, its bias becomes significant. The
SIMLestimates of the covariance for the hedging ratio also give stable and reasonable
estimates in most cases.

Based on the volatility and covariance estimates, we have replicated the SIML
estimate of the hedging ratio in number of different situations. Unlike with other
methods, we find that our estimates are stable and reliable. The estimated values of
RV and its hedging estimates (HI) vary from day to day and often deviate signifi-
cantly different from 1 when we use high-frequency data and the volatility function
is time-varying. By contrast, the SIML estimated values are often close to unity,
which agrees with the intuitive reasoning among the market participants. The most
important finding is that the hedging ratio estimate from high-frequency historical
data is unreliable, whereas those from the SIML estimation are reasonable. Then,
it may be possible that by using the high-frequency data, each day we can estimate
the hedging strategy with the optimal hedging ratio and then determine the hedging
strategy for the next day. When we use only historical data and RV, we hedged risk
poorly. However, we have found that the SIML-based hedging performs reasonably
well in the sense that it approximates the pure futures hedging.

Wehave conducted a large number of simulations for the hedging problembecause
it is important for financial risk managements and some of them will be reported in
Chap. 7 under a variety of different situation of micro-markets.
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Chapter 5
Mathematical Derivations

Abstract We give the mathematical derivations of the results on the asymptotic
properties of the SIML estimator in Chap.3. For the sake of completeness, we also
give useful relations of trigonometric functions that are the results of direct but often
tedious calculations. This chapter can be skipped for readers who are interested in
only financial applications.

5.1 Some Lemmas

Proof of Lemma 3.1: (i) Let An = (ai j ) in (3.6) (i, j = 1, . . . , n) and an n × 1
vector x = (xt ) (t = 1, . . . , n) satisfying Anx = λx . Then

x1 + x2
2

= λx1 , (5.1)

xt−1 + xt+1

2
= λxt (t = 2, . . . , n − 1) , (5.2)

1

2
xn−1 = λxn . (5.3)

Let ξi (i = 1, 2) be the solutions of ξ 2 − 2λξ + 1 = 0. Because 2λ = ξ1 + ξ2 and
ξ1ξ2 = 1, we have the solution of (5.2) as xt = c1ξ t

1 + c2ξ
−t
1 (t = 1, . . . , n) and

ci (i = 1) are real constants. Then (5.1) implies

0 = c1ξ1 + c2ξ
−1
1 + c1ξ

2
1 + c2ξ

−2
1 − (ξ1 + ξ−1

1 )(c1ξ1 + c2ξ
−1
1 )

= (ξ1 − 1)(c1 − c2ξ
−1
1 ) .

Because ξ = 1 cannot be a solution (i.e. it leads to a contradiction), we find that
c2 = c1ξ1. Then we find that xt = c1[ξ t

1 + ξ
−(t−1)
1 ] and (5.3) implies ξ 2n+1

1 = −1
and

λk = cos

[
π
2k − 1

2n + 1

]
(k = 1, . . . , n) . (5.4)
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By taking c1 = (1/2)ξ−1/2
1 , the elements of the characteristic vectors of An with

cos[π(2k − 1)/(2n + 1)] are

xt = 1

2

[
ξ
t−1/2
1 + ξ

−(t−1/2)
1

]
= cos

[
π
2k − 1

2n + 1

(
t − 1

2

)]
. (5.5)

(ii) The rest of the proof involves the standard arguments of spectral decomposition
in linear algebra. �

Lemma 5.1 (i) For any integers l,m and n (1 < l,m ≤ n), we have

m∑
k=1

[
cosπ

2k − 1

2n + 1
l

]
= 1

2

sin 2πm l
2n+1

sin π l
2n+1

(5.6)

and
m∑

k=1

[
cosπ

2k − 1

2n + 1
l

]2
= m

2
+ 1

4

sin 4πm l
2n+1

sin 2π l
2n+1

. (5.7)

(ii) For any integer k, we have

n∑
t=1

[
cosπ

2k − 1

2n + 1

(
t − 1

2

)]2
= n

2
+ 1

4
. (5.8)

Proof of Lemma 5.1: We use the relation

m∑
t=1

(
ei2π

[
l

2n+1 (t− 1
2 )
]
+ e−i2π

[
l

2n+1 (t− 1
2 )
])

= ei2π
[

l
2n+1

]
1
2 × 1 − ei2π

[
l

2n+1

]
m

1 − ei2π
[

l
2n+1

] + e−i2π
[

l
2n+1

]
1
2 × 1 − e−i2π

[
l

2n+1

]
m

1 − e−i2π
[

l
2n+1

]

= 1

1 − ei2π
[

l
2n+1

]
(
ei2π

[
l

2n+1

]
1
2 − e2π i

[
l

2n+1
2m+1

2

]
− e2π i

[
l

2n+1
1
2

]
+ e−i2π

[
l

2n+1 (
2m−1

2 )
])

= 1

eiπ
[

l
2n+1

]
− e−iπ

[
l

2n+1

]
(
ei2π

[
l

2n+1

]
m − e−i2π

[
l

2n+1

]
m
)

.

Then we find (5.6). When we take m = n and l is an odd integer, eiπl = −1 and the
above equation equals to

−eπ i
[

l
2n+1 (2n+1)

]
+ e−π

[
l

2n+1 (2n+1−2)
]

1 − ei2π
[

l
2n+1

] = 1 .
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Then by using the relation

m∑
t=1

[
cosπ

2k − 1

2n + 1

(
t − 1

2

)]2
=

m∑
t=1

[
1

2
+ 1

2
cosπ

2k − 1

2n + 1
2

(
t − 1

2

)]

= m

2
+ 1

2

m∑
t=1

cos 2π
2k − 1

2n + 1

(
t − 1

2

)
,

we have(5.7) and (5.8). �

Lemma 5.2 Let ci j = (2/m)
∑m

k=1 siks jk (i, j = 1, . . . , n) and

s jk = cos

[
2π

2n + 1

(
j − 1

2

)(
k − 1

2

)]
. (5.9)

(These ci j are the same as c∗
i j in Sect.3.2 except for the constant factor n/(n + 1

2 ).)
Then we have
(i) for any integers j, k

n∑
i=1

ci j cik = 1

m

(
n

2
+ 1

4

)
c jk (5.10)

and
n∑

i, j=1

c2i j = 4

m

[
n

2
+ 1

4

]2
. (5.11)

(ii) As n → ∞,

1

n

n∑
i=1

(cii − 1) → 0 (5.12)

and
1

n

n∑
i=1

(cii − 1)2 → 0 . (5.13)

Proof of Lemma 5.2: We set

ci j = 2

m

m∑
k=1

siks jk

= 1

m

m∑
k=1

{
cos

[
2π

2n + 1
(i + j − 1)

(
k − 1

2

)]
+ cos

[
2π

2n + 1
(i − j)

(
k − 1

2

)]}
.
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Then by using Lemma 5.1

c j j = 1 + 1

m

m∑
k=1

cos

[
π

2n + 1
(2 j − 1)(2k − 1)

]
(5.14)

= 1 + 1

2m

sin
[
2πm
2n+1 (2 j − 1)

]
sin
[

π
2n+1 (2 j − 1)

]

and

n∑
j=1

c j j = n + 1

m

m∑
k=1

⎡
⎣ n∑

j=1

cos

[
2π

2n + 1
(2 j − 1)

(
k − 1

2

)]⎤
⎦ (5.15)

= n + 1

m

m∑
k=1

1

2

sin
[

2πn
2n+1 (2k − 1)

]
sin
[

π
2n+1 (2k − 1)

] ,

which is n + 1/2 because for k ≥ 1

sin

[
π(2n + 1 − 1)

2n + 1
(2k − 1)

]

= sin[π(2k − 1)] cos
[

π

2n + 1
(2k − 1)

]
− cos[π(2k − 1)] sin

[
π

2n + 1
(2k − 1)

]

= sin

[
π

2n + 1
(2k − 1)

]
.

Similarly,

c2i j =
(
2

m

)2 m∑
k,k′=1

siks jksik′ s jk′

= (
1

m
)2

m∑
k,k′=1

[
cos

[
2π

2n + 1
(i + j − 1)

(
k − 1

2

)]
+ cos

[
2π

2n + 1
(i − j)

(
k − 1

2

)]]

×
[
cos

[
2π

2n + 1
(i + j − 1)

(
k

′ − 1

2

)]
+ cos

[
2π

2n + 1
(i − j)

(
k

′ − 1

2

)]]

= (
1

m
)2

m∑
k,k′=1

{
1

2
cos

[
2π

2n + 1
(i + j − 1)(k + k

′ − 1)

]

+1

2
cos

[
2π

2n + 1
(i + j − 1)(k − k

′
)

]

+2

[
1

2
cos

[
2π

2n + 1
((i + j − 1)

(
k − 1

2

)
+
(
k

′ − 1

2
)(i − j)

)]
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+1

2
cos

[
2π

2n + 1

(
(i + j − 1)

(
k − 1

2
) − (k

′ − 1

2

)
(i − j)

)]]

+1

2
cos

[
2π

2n + 1
(i − j)(k + k

′ − 1)

]
+ 1

2
cos

[
2π

2n + 1
(i − j)(k − k

′
)

]}
.

Hence

c2j j =
(
2

m

)2 m∑
k,k′ =1,i= j

siks jksik′ s jk′

= 1 + 2

m

m∑
k=1

cos

[
2π

2n + 1

(
k − 1

2

)
(2 j − 1)

]

+ 1

2m2

m∑
k,k′ =1

[
cos

[
2π

2n + 1
(2 j − 1)(k + k

′ − 1)

]
+ cos

[
2π

2n + 1
(2 j − 1)(k − k

′
)

]]
.

We use the relation
∑n

j=1 cos
[

2π
2n+1 l(2 j − 1)

] = (−1/2) cosπl, which is 1/2 for l

being an odd integer and −1/2 for l being an even integer, and k ≥ 1. To evaluate∑n
j=1(c

2
j j − 1), we apply the formula of c2j j and we need to calculate the cases in

which
∑

k=k ′ and
∑

k �=k ′ , separately. Then we find

1

n

n∑
i=1

(c2i i − 1) = 2

m

m∑
k=1

1

n

n∑
j=1

s jk + 1

2m2

m∑
k,k′ =1

⎡
⎣ 1

n

n∑
j=1

s j,k+k′ −1 + 1

n

n∑
j=1

s j,k−k′

⎤
⎦

= 2

m

m∑
k=1

1

n

1

2
+ 1

2m2

m∑
k,k′ =1

1

n

(
− 1

2

)
+ 1

2m2

m∑
k,k′ =1

[
1

n
nδ(k, k

′
) + 1

n
δ(k �= k

′
)

(
− 1

2

)]

= 1

2m
+ 1

2n
+ 1

4mn
,

and then

1

n

n∑
i=1

(cii − 1)2 = 1

n

n∑
i=1

[
c2i i − 1 − 2(cii − 1)

] = 1

2m
+ 1

4mn
− 1

2n
.

Since
∑n

j=1 s jks jk ′ = δkk ′ ( n2 + 1
4 ),

m
n∑

i, j=1

c2i j = 4

m

m∑
k,k ′=1

n∑
i, j=1

siksik ′ s jks jk ′ =
(
n + 1

2

)2

. (5.16)

Here we use the notation the indicator function that δkk ′ = 1 (k = k
′
) and δkk ′ =

δ(k �= k
′
) = 0 (k �= k

′
).
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5.2 Proofs of Theorems

We now prove Theorems 3.1, 3.3 and 3.4 of Chap.3. Because Theorem 3.1 is essen-
tially a special case of Theorem 3.3 except the latter half of Theorem 3.1, we focus
on proving Theorems 3.3 and 3.4. The proof of some parts of Theorem 3.1 will be
given as Lemma 5.5 and some additional arguments, which are presented after the
proof of Lemma 5.8 below.

We set Ki (i ≥ 1) as positive constants in the following derivations. For any
unit vector eg = (0, . . . , 0, 1, 0, . . . , 0)

′
(g = 1, . . . , p), we define σ

(x)
gh = e

′
gΣ xeh,

σ̂
(x)
gh = e

′
gΣ̂ xeh, σ

(v)
gh =e

′
gΣveh and σ̂

(v)
gh = e

′
gΣ̂veh . With the transformation of (3.12)

we set zkg = e
′
gzk (k = 1, . . . , n) and zkg = z(1)

kg + z(2)
kg , where z(1)

kg and z(2)
kg corre-

spond to the (k, g)−elements of Z(1)
n = h−1/2

n PnC−1
n (Xn − Ȳ0) and Z(2)

n = h−1/2
n Pn

C−1
n Vn, respectively. By using Lemma 3.1, we have E[Z(1)

n eg] = 0, E[Z(2)
n eg] = 0

and

E [Z(2)
n ege

′
hZ

(2)′
n ] = (e

′
gΣveh)h−1

n PnC−1
n C

′−1
n Pn = (e

′
gΣveh)h−1

n Dn . (5.17)

In the following derivations, we mainly discuss the estimation of integrated vari-
ance (or integrated volatility) because the estimation of integrated covariance is
quite similar but with additional notation. One important difference is that we
use the fact that in the limiting distribution 2(E[X2

g])2 should be replaced by
(E[X2

g])(E[X2
h]) + (E[XgXh])2. (It is analogous to the standard practice in statis-

tical multivariate analysis whenX = (Xg) follows a multivariate normal distribution
for any g, h = 1, . . . , p. See Chap.2 of Anderson 2003, for instance.) In our proofs
of theorems we make an extensive use of the decomposition:

σ̂ (x)
gg − σ (x)

gg (5.18)

= 1

mn

mn∑
k=1

[
z2kg − σ (x)

gg

]

= 1

mn

mn∑
k=1

[
z(1)2
kg − σ (x)

gg + σ (v)
gg akn

]
+ 1

mn

mn∑
k=1

[
z(2)2
kg − σ (v)

gg akn
]

+2
1

mn

mn∑
k=1

[
z(1)
kg z

(2)
kg

]
.

Lemma 5.3 Assume the conditions of Theorem 3.3.
(i) For 0 < α < 0.5,

σ̂ (x)
gg − σ (x)

gg
p−→ 0 (5.19)

as n → ∞.
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(ii) For 0 < α < 0.4,

√
mn

[
σ̂ (x)
gg − σ (x)

gg −
n∑

i=1

(cii − 1)
∫ ti

ti−1

σ 2
x (s)ds

]
(5.20)

−√
mn

[
1

m

m∑
k=1

(
z(1)2
kg

)
− σ (x)

gg −
n∑

i=1

(cii − 1)
∫ ti

ti−1

σ 2
x (s)ds

]

p−→ 0

as n → ∞.

Proof of Lemma 5.3: By using (3.15) and the relation sin x = x − (1/6)x3 +
(1/120)x5 + O(x7),

1

mn

mn∑
k=1

akn = 1

mn
2n

mn∑
k=1

[
1 − cos

(
π
2k − 1

2n + 1

)]

= n

mn

[
2mn − sin π 2mn

2n+1

sin π 1
2n+1

]

∼ n

mn

[
2mn −

(
π 2mn

2n+1

)− 1
6

(
π 2mn

2n+1

)3
(

π
2n+1

)− 1
6

(
π

2n+1

)3
]

= n

mn

⎡
⎣ π3

6

( 2mn
2n+1

)3 − 2π2

6

(
1

2n+1

)3
π

2n+1

(
1 − π2

6

(
1

2n+1

)2)
⎤
⎦ ,

which is approximately (π2/3)(m2
n/n) and it is O(

m2
n
n ). Also we find that

1

mn

mn∑
k=1

a2kn = 1

mn
4n2

mn∑
k=1

[
1 − 2 cos

(
π
2k − 1

2n + 1

)
+ 1

2

(
1 + cos

(
2π

2k − 1

2n + 1

))]

= 4n2

mn

[
3

2
mn − sin π 2mn

2n+1

sin π 1
2n+1

+ 1

4

sin π 4mn
2n+1

sin π 2
2n+1

]
,

which isO(
m4

n
n2 ) asn → ∞. Then the above terms areo(1)whenwehave the condition

thatm2
n/n → 0 (n → ∞). Hence for the first term of (5.18)we need 0 < α < 0.5 for

consistency and 0 < α < 0.4 for asymptotic normality as theminimum requirements
because (1/

√
mn)

∑mn
i=1 akn = O(

√
mnm2

n/n) is negligible in the latter case. To show
that these conditions are sufficient, we evaluate each term of

√
mn[σ̂ (x)

gg − σ (x)
gg ] based

on the decomposition (5.18).
For the third term of (5.18), there exists a positive constant K1



46 5 Mathematical Derivations

E

[
1√
mn

mn∑
k=1

z(1)kg z
(2)
kg

]2
= 1

mn

mn∑
k,k′ =1

E
[
z(1)kg z

(1)
k′

,g
z(2)kg z

(2)
k′

,g

]

= 1

mn

mn∑
k,k′ =1

E

⎡
⎣2

n∑
j, j ′ =1

s jks j ′ k′ E(r jgr j ′ ,g |Fn,min( j, j ′ ))z
(2)
kg z

(2)
k′

,g

⎤
⎦

= 1

mn

mn∑
k,k′ =1

E

⎡
⎣2

n∑
j=1

s jks j,k′ E(r2jg |Fn, j−1)z
(2)
kg z

(2)
k′

,g

⎤
⎦

≤ K1E

[
sup

0≤s≤1
σ (x)
gg (s)

]
2

n

(
n

2
+ 1

4

)
1

mn

mn∑
k=1

akn ,

which is O(
m2

n
n ) and Σ x (s) = (σ

(x)
gh (s)). In the above evaluation we have used the

independence of x (1)
kg and x (2)

kg and (5.9).

For the second term of (5.18), let b
′
k = hn−1/2e

′
kP

′
nC

−1
n = (bkj ) and e

′
k = (0, . . . ,

1, 0, . . .) is an n × 1 vector. Then we can write z(2)
kg =∑n

j=1 bkjv jg and

E

[
1√
mm

mn∑
k=1

(z(2)2
kg − σ (v)

gg akn)

]2
(5.21)

= 1

mn

mn∑
k,k ′=1

E
[
(z(2)2

kg − σ (v)
gg akn)(z

(2)2
k ′

,g
− σ (v)

gg ak ′n)
]

= 1

mn

mn∑
k,k ′=1

E

⎡
⎣
⎛
⎝ n∑

j=1

bkjv jg

⎞
⎠

2⎛
⎝ n∑

j ′ =1

bk ′ j ′ v j ′ ,g

⎞
⎠

2

− σ (v)
gg aknak ′n

⎤
⎦

≤ K2
1

mn

mn∑
k=1

n∑
j=1

b4k j ,

which is less than K2(1/mn)
∑mn

k=1 a
2
kn = O(m4

n/n
2) for a positive constant K2.

Hence we have found that the main effect of the sampling errors associated with the
SIML estimator of the integrated variance is the first term of (5.18).

Then we shall show the consistency of (5.19) and it means (3.22) with g = h.
(For the covariances σ

(x)
gh (g, h = 1, . . . , p), we have the same derivation with more

notations.)
We write ri = (rig) = xi − xi−1 (i, j = 1, . . . , n; g = 1, . . . , p) and by using

the fact that ri = (rig) (i = 1, . . . , n; g = 1, . . . , p) are a sequence of martingale
differences,
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E

⎡
⎣ 1

mn

mn∑
k=1

(z(1)2kg − σ
(x)
gg )

⎤
⎦
2

=
[

2n

2n + 1

]2
E

⎧⎨
⎩

n∑
i, j=1

[
ci j rigr jg − δi j

∫ ti

ti−1

σ
(x)
gg (s)ds

]⎫⎬
⎭
2

+ o(1)

=
[

2n

2n + 1

]2⎛⎜⎝E
⎧⎨
⎩

n∑
i= j=1

[
ci j r

2
ig −

∫ ti

ti−1

σ
(x)
gg (s)ds

]⎫⎬
⎭
2

+ E

⎧⎨
⎩

n∑
i �= j=1

[
ci j rigr jg

]
⎫⎬
⎭
2
⎞
⎟⎠ ,

where δi j = 1 (i = j); δi j = 0 (i �= j). Because 2n/(2n + +1) → 1 asn → ∞,we
can ignore the factor [2n/(2n + 1)]2 and we need to evaluate

E

{
n∑

i=1

[
cii r

2
ig −

∫ ti

ti−1

σ (x)
gg (s)ds

]}2

= E

[
n∑

i=1

(r2ig −
∫ ti

ti−1

σ (x)
gg (s)ds) +

n∑
i=1

(cii − 1)r2ig

]2
,

E

⎧⎪⎨
⎪⎩
⎡
⎣ n∑
i �= j=1

ci j rigr jg

⎤
⎦
2
⎫⎪⎬
⎪⎭ = 2

n∑
i �= j=1

c2i jE (r2ig)E (r2jg) . (5.22)

We also have the relation that for a constant K3,

E(r2ig) = E(

∫ ti

ti−1

[c(x)
gg (s)]2ds) ≤ K3

n
.

Hence the first term of (5.22) is approximately equivalent to

n∑
i=1

[
r2ig −

∫ ti

ti−1

σ (x)
gg (s)ds + (cii − 1)r2ig

]

=
√
1

n

√
n

n∑
i=1

[
r2ig −

∫ ti

ti−1

σ (x)
gg (s)ds

]
+
[

n∑
i=1

(cii − 1)(r2ig −
∫ ti

ti−1

σ (x)
gg (s)ds)

]

+
[

n∑
i=1

(cii − 1)
∫ ti

ti−1

σ (x)
gg ds

]
.

We have the basic relation (Jacod and Protter 1998 for instance)

√
n

n∑
i=1

[
r2ig −

∫ ti

ti−1

σ 2
x (s)ds

]
= Op(1) . (5.23)

and the inequality
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|
n∑

i=1

(cii − 1)
∫ ti

ti−1

σ (x)
gg (s)ds|2 =

[
n∑

i=1

(cii − 1)2
][

n∑
i=1

(∫ ti

ti−1

σ (x)
gg (s)ds

)2
]

≤
[
1

n

n∑
i=1

(cii − 1)2
][

sup
0≤s≤t

σ (x)
gg (s)

]2

= Op

(
1

mn

)

and

E

⎡
⎣|

n∑
i=1

(cii − 1)(r2ig −
∫ ti

ti−1

σ
(x)
gg (s)ds)|2

⎤
⎦ =

⎡
⎣ n∑
i=1

(cii − 1)2E(r2ig −
∫ ti

ti−1

σ
(x)
gg (s)ds)2

⎤
⎦

= O

(
1

n

)
.

Hence by using (5.11) of Lemma 5.2 to the first term of (5.22), we have (5.19) and
(5.20) when mn/n → 0 as n → ∞ . �
Lemma 5.4 For 0 < α ≤ 0.4,

√
mn

[
n∑

i=1

(cii − 1)
∫ ti

ti−1

σ (x)
gg (s)ds

]
p−→ 0 (5.24)

as n → ∞.

Proof of Lemma 5.4: We use the relation

√
mn

[
n∑

i=1

(cii − 1)
∫ ti

ti−1

σ (x)
gg (s)ds

]

=
n∑

i=1

1

2
√
mn

[
sin
[ 2πmn
2n+1 (2i − 1)

]
sin
[

π
2n+1 (2i − 1)

]
] ∫ ti

ti−1

σ (x)
gg (s)ds .

We take a positive constant γ (0 < γ < 1) and divide the summation of the right-
hand side from 1 to n into two parts, that is, (i) 1 ≤ i ≤ nγ and (ii) nγ + 1 ≤ i ≤ n.
For (i) there exists a positive K4 such that the first part of the summation is less than

K4
1√
mn

nγ∑
i=1

n

i

[
1

n
sup
0≤s≤1

σ (x)
gg (s)

]
= O

(
log nγ

√
mn

)
. (5.25)

For (ii) there exists a positive K5 such than the second part of the summation is less
than

K5
1√
mn

n∑
i=nγ +1

n

nγ

[
1

n
sup
0≤s≤1

σ (x)
gg (s)

]
= O

( n

nγ+α/2

)
. (5.26)
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Hence if we impose the condition γ + α/2 > 1, both terms converge to zero as
n −→ ∞. (We can take γ satisfying this condition.) �

Lemma 5.5 Under the assumptions of Theorem 3.1 (or Theorem 3.3) with the con-
dition 0 < β < 1, as n → ∞,

σ̂
(v)
gh − σ

(v)
gh

p−→ 0 (5.27)

and √
ln
[
σ̂

(v)
gh − σ

(v)
gh

]
= Op(1) . (5.28)

Proof of Lemma 5.5: We give only a brief proof of how to estimate the noise
variance σ (v)

gg because it is quite similar to the estimation of the noise covariance. For
this purpose we use the decomposition

σ̂ (v)
gg − σ (v)

gg (5.29)

= 1

ln

n∑
k=n+1−l

a−1
kn

[
z2kg − σ (x)

gg akn
]

= 1

ln

n∑
k=n+1−ln

a−1
kn

[
z(2)2
kg − σ (v)

gg akn
]

+ 1

ln

n∑
k=n+1−ln

a−1
kn

[
z(1)2
kg + 2z(1)

kg z
(2)
kg

]
.

Then the main argument of the proof is similar to that of Lemma 5.3 except with ln
instead ofmn . For the variance of the noise term, we use the fact that ln/n = o(1) and
for n + 1 − ln ≤ k ≤ n and akn = 2n[1 + cosπ( 2ln

2n+1 )] ≥ n for a sufficiently large

n. Because a−1
kn = o(n−1),

E[
n∑

k=n+1−ln

a−1
kn (z(1)2)

kg )] = σ (x)
gg

n∑
k=n+1−ln

a−1
kn = O

(
ln
n

)
. (5.30)

Then by using the similar evaluations as

E

⎡
⎣ 1√

ln

n∑
k=n+1−ln

a−1
kn z

(1)2
kg

⎤
⎦

2

= o(1)

and

E

⎡
⎣ 1√

ln

n∑
k=n+1−ln

a−1
kn z

(1)
kg z

(2)
kg

⎤
⎦

2

= o(1) . (5.31)

Hence we can ignore the last two terms on the right-hand side of (5.29) and we need
only evaluate the leading term. Then by using a similar evaluation as (5.18), it is
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possible to evaluate

E

⎡
⎣ 1

ln

n∑
k=n+1−ln

a−1
kn

(
z(2)2
kg − σ (v)

gg akn
)⎤⎦

2

= o(1) (5.32)

and

E

⎡
⎣ 1√

ln

n∑
k=n+1−ln

a−1
kn

⎛
⎝ n∑

i, j=1;i �= j

bikb jkvigv jg

⎞
⎠
⎤
⎦

2

= O(1) . (5.33)

�
Proof of Theorem 3.3: (Step 1) the of the SIML estimator, we use Lemmas 5.4 and
5.5 to have the result.

Then we prove the asymptotic normality of the SIML estimator of integrated
volatility σ

(x)
gh (g, h = 1, . . . , p). First, we need to derive the asymptotic variance of

the SIML estimator. We write
√
mn[σ̂ (x)

gh − σ
(x)
gh ] as

√
m

⎡
⎣ n∑

i, j=1

(
ci j rigr jh − δi j

∫ ti

ti−1

σ
(x)
gh (s)ds

)⎤⎦ (5.34)

= √
m
∑
i> j

ci j [rigr jh + r jgrih]] + √
m

[
n∑

i=1

cii rigrih −
∫ ti

ti−1

σ
(x)
gh (s)ds

]
,

where δi j = 1 (i = j); δi j = 0 (i �= j).
First, we have the relation

E[√mn

∑
i> j

ci j (rigr jh + r jgrih)]2 = mn

∑
i> j

c2i jE
[
r2igr

2
jh + r2jgr

2
ih + 2rigr jhr jgrih

]

= mn

∑
i �= j

c2i j
[
E(r2igr

2
jh) + E(rigrihr jgr jh)

]
.

By using the notation Ei−1[r2ig] = E[r2ig|Fn,i−1],
n∑

i=1

mnc
2
i i

(
Ei−1[r2ig]

)2 ≤
[
E sup

0≤≤1
σ (x)
gg (s)

]2 mn

n2

n∑
i=1

c2i i → 0 (5.35)

as mn/n → 0. Then, the asymptotic variance is the limit of

Vgh.n =
n∑

i, j=1

mnc
2
i j

[∫ ti

ti−1

σ
(x)
gg (s)ds

∫ t j

t j−1

σ
(x)
hh (s)ds +

∫ ti

ti−1

σ
(x)
gh (s)ds

∫ t j

t j−1

σ
(x)
gh (s)ds

]
.

(5.36)
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Lemma 5.6 As n → ∞

Vgh.n
p−→ Vgh =

∫ 1

0

[
σ (x)
gg (s)σ (x)

hh (s) + σ
(x)2
gh (s)

]
ds . (5.37)

Proof of Lemma 5.6: We set m = mn and by using Lemma 5.1, we find the relation

m c2i j = 1

4m

⎡
⎣ sin πm

(
i+ j−1
n+1/2

)

sin(π/2)
(
i+ j−1
n+1/2

) +
sin πm

(
i− j1
n+1/2

)

sin(π/2)
(

i− j
n+1/2

)
⎤
⎦

2

. (5.38)

For any real λ and ν, let

km(λ, ν) = 1

2πm

sin λm
2 sin νm

2

sin λ
2 sin

ν
2

, km(λ) = 1

2πm

sin2 λm
2

sin2 λ
2

,

and we use the classical evaluation method of the Fejé-kernel due to Chap.8 of
Anderson (1971). The effects of discretization of continuous functions are negligible
in the present case. Then for the square-integrable continuous functionsa(s) andb(s),
we write

1

4m

∫ 1

0

∫ 1

0

[
sin πm(s + t)

sin π
2 (s + t)

+ sin πm(s − t)

sin π
2 (s − t)

]2
a(s)b(t)dsdt (5.39)

= 1

4m

∫ 1

0

∫ 1

0

([
sin πm(s + t)

sin π
2 (s + t)

]2
+
[
sin πm(s − t)

sin π
2 (s − t)

]2

+2

[
sin πm(s + t)

sin π
2 (s + t)

] [
sin πm(s − t)

sin π
2 (s − t)

])
a(s)b(t)dsdt .

By using a transformation the second term becomes

∫ 1

0

sin2 π
2 2mu

2m sin2 π
2 u

[∫ 1−u

0
a(u + t)b(t)dt

]
du . (5.40)

Then by using the standard evaluation method used in Chap.8 of Anderson (1971)
with km(λ),wefind that the second term converges to

∫ 1
0 a(t)b(t)dt asm → ∞while

the other two terms converge to zeros. Finally by applying the above arguments to
each term in the present case we have the result. We have omitted some details
because they may be straightforward. �

(Step 2) Next, we need to show that the normalized SIML estimator converges to
the limiting Gaussian random variable when g = h.

In our proof we use of a sequence of random variables
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Un =
n∑
j=2

[
2

j−1∑
i=1

√
mnci jrig

]
r jg, (5.41)

which is a discrete martingale. We notice that for the process x(t) in (3.2)
and ri = (rig) = xi − xi−1 (i = 1, . . . , n) are the (discrete) martingale parts. Then
we set Xnj = (2

∑ j−1
i=1

√
mnci jrig)r jg, Wnj = r jg ( j = 2, . . . , n), V ∗

gg.n =∑n
j=2 E[X2

nj |Fn, j−1], and we apply the martingale central limit theorem (MCLT).
Thus we have to check Condition (B)

n∑
j=1

E[X4
nj ] −→ 0 , (5.42)

and Condition (C)
E[(V ∗

gg.n − Vgg)
2] −→ 0 (5.43)

as n −→ ∞. It it because we have Lemma 5.6 and Condition (B) implies the Lin-
deberg Condition such that

∑n
j=1 E[X2

nj I (|Xnj | > ε)] −→ 0 as n → ∞ for any
ε (> 0). Then it is possible to use Theorem 35.12 of Billingsley (1995) as theMCLT.

In the above conditions, first Lemma 5.7 below shows Condition (B).
Second, under the assumptions we have Vgg.n

p−→ Vgg where Vgg.n is given in
Lemma 5.6. We note that in the present situation that Vgg.n and Vgg are bounded.
Then we can find a positive K6 such that for any ε > 0

E[(Vgg.n − Vgg)
2] = E[(Vgg.n − Vgg)

2 I (|Vgg.n − Vgg| ≥ ε)]
+E[(Vgg.n − Vgg)

2 I (|Vgg.n − Vgg| < ε)]
≤ K6P(|Vgg.n − Vgg| ≥ ε) + ε2 .

Hence we need only to show Condition (D)

E[(V ∗
gg.n − Vgg.n)

2] −→ 0 (5.44)

as n −→ ∞. Then Lemma 5.8 below shows Condition (D).

(Step 3) For the case of σ̂gh and Vgh.n with g �= h, we use the similar arguments but
with some more notations. Also in order to show the joint normality of the limit-
ing random variables, we can use the standard device in the statistical multivariate
analysis. We have omitted the details of these routine works. �

Lemma 5.7 Under a set of assumptions, we have Condition (B).

Proof ofLemma 5.7:Without loss of generalitywe consider the stochastic casewhen
p = q = 1 and we denote Cx (s) = cs . When the instantaneous volatility function is
time-varying and bounded function as the assumption of Theorem 3.3, the proof is
the result of straightforward calculation.
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Here we shall show Condition (B) under a set of assumptions, which includes
stochastic cases. We set

Znj (t) =
∫ t

t j−1

csdBs (t j−1 ≤ t ≤ t j , j = 1, . . . , n)

and

W ∗
nj =

j−1∑
i=1

√
mnci j

∫ ti

ti−1

csdBs ( j = 2, . . . , n) .

Then we need to show that

n∑
j=2

E[W ∗4
nj Znj (t j )

4] −→ 0 (5.45)

as n → ∞.
First by using Ito’s Lemma, we have

Znj (t)
4 =

∫ t

t j−1

4[Znj (s)]3csdBs +
∫ t

t j−1

6[Znj (s)]2c2s ds .

Then by taking the conditional expectation of both sides given Fn, j−1 (we denote
the conditional expectation as E[ · |Fn, j−1] = E j−1[ · ]), we have

E j−1[Znj (t)
4] =

∫ t

t j−1

6E j−1[(Znj (t))
2c2s ]ds . (5.46)

Also by using the inequality E[X2Y 2] ≤ (1/2)[E(X4) + E(Y 4)]

E j−1[Znj (t)
4] ≤ 3

∫ t

t j−1

E j−1[(Znj (s))
4]ds + 3

∫ t

t j−1

E j−1[c4s ]ds . (5.47)

Furthermore, by using the boundedness condition, we have
∫ t
t j−1

c4s ds = O( 1n ). Then
by using the standard argument in stochastic calculus regarding the evaluation of
moments (i.e., Chap. 3 of Ikeda and Watanabe (1989), for instance), we can find a
positive constant K7 such that E j−1[Znj (t)4] ≤ K7(1/n) . By applying the Cauchy-
Schwartz inequality to (5.48), we can find a positive constant K8 such that

E j−1[Znj (t)
4] ≤ 6

∫ t

t j−1

(
E j−1[Z4

nj (s)]
)1/2 (

E j−1[c4s ]
)1/2

ds ≤ K8

[
1

n

]1+ 1
2

.

By repeating the above substitution procedure, we have the bound of the fourth-order
moment as K

′
8(

1
n )

1+1/2+(1/2)2+···+(1/2)r for an arbitrary positive integer r (r ≥ 2) and
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a positive constant K
′
8. Then we can find that for an arbitrary small ε (> 0) and

t j−1 ≤ t ≤ t j , E j−1[Znj (t)4] = O((1/n2(1−ε)) .

Next, we evaluate the expectation E[Wnj (t)∗4], that is

E[Wnj (t)
∗4]

= E

[
j−1∑

i1,i2,i3,i4=1

m2
nci1, j ci2, j ci3, j ci4, j

∫ ti1

ti1−1

cs1dBs1

∫ ti2

ti2−1

cs2dBs2

∫ ti3

ti3−1

cs3dBs3

∫ ti4

ti4−1

cs4dBs4

]
.

In this form we need only consider the summations of the forms (i)
∑

i1=i2,i3,i4
[ · ]

and (ii)
∑

i1=i2,i3=i4
[ · ] because ∫ ti1

ti1−1
cs1dBs1 is a martingale difference. We first con-

sider Case (i) and we set i1 = i2 > i3 > i4. In this case we can utilize the fact that
E[∫ ti1

ti1−1
cs1dBs1 ]2 = ∫ ti1

ti1−1
c2s1ds and |2 ∫ ti3

ti3−1
cs3dBs3

∫ ti4
ti4−1

cs4dBs4 | ≤ [∫ ti3
ti3−1

cs3dBs3 ]2
+ [∫ ti4

ti4−1
cs4dBs4 ]2.

By using the assumption that cs are bounded and
∫ ti1
ti1−1

cs1dBs1 is a martingale
difference, we can find a positive constant K9 such that

E

[
|
∫ ti1

ti1−1

cs1dBs1

∫ ti2

ti2−1

cs2dBs2

∫ ti3

ti3−1

cs3dBs3

∫ ti4

ti4−1

cs4dBs4 |
]

≤ K9

(
1

n

)2

. (5.48)

Hence we have E[Wnj (t)∗4] = o(1/n) if we can show

[
j−1∑

i1,i3,i4

m2
nc

2
i1, j ci3, j ci4, j

(
1

n

)1+2(1−ε)
]

−→ 0 (5.49)

as n → ∞. We apply the method used to prove Lemma 5.4 and for l > 1 we use the
relation

l∑
i=1

ci j = 2

mn

mn∑
k=1

[
sin
[

πl
2n+1 (2k − 1)

]
2 sin

[
π

2n+1 (2k − 1)
]
]
s jk .

For mn = nα and kn = nγ (α + γ − 1 > 0) we have sin
[

πl
2n+1 (2kn − 1)

]
/

sin
[

πl
2n+1 (2kn − 1)

]→ 0 (n → ∞) andweuse similar arguments as those inLemma
5.4. Then for a sufficiently small ε (> 0) we have

√
mn

n1−ε

l∑
i=1

ci j = o(1) (5.50)
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as n → ∞. Hence we have the result for Case (i). We can use the same evaluation
method for Case (ii), whereupon we obtain the order of E[Wnj (t)∗4].

Finally, because we make the assumption that cs and σ (x)
gg (s) are bounded and

W ∗
nj Znj (t) (t j−1 ≤ t ≤ t j ; j = 2, . . . , n) is a sequence of martingale differences, we

evaluate the fourth-order moments similarly. Then we have the desired result. �

Lemma 5.8 Under a set of assumptions, we have Condition (D).

Proof of Lemma 5.8: Without loss of generality, we consider the case in which
p = q = 1. Here we shall show Condition (D) under a set of assumptions, which
includes stochastic cases.

Then it is sufficient to evaluate

Dn = E

⎧⎨
⎩
⎛
⎝ n∑

j=1

[E j−1(X
2
nj ) − E(X2

nj )]
⎞
⎠

2⎫⎬
⎭

= E

⎧⎨
⎩

n∑
j=1

(
n∑

i1,i2=1

mnci1, j ci2, j

(∫ t j

t j−1

c2s ds

)

[(∫ ti1

ti1−1

csi1 dBsi1

)(∫ ti2

ti2−1

csi2 dBsi2

)
− δ(i1, i2)

(∫ ti1

ti1−1

c2si1 dsi1

)])}2

,

where E j−1(X2
nj ) = E(X2

nj |Fn, j−1), and δ(i1, i2) = 1 for i1 = i2 and δ(i1, i2) = 0
for i1 �= i2.

We use the arguments as (5.49) with ti1 = ti2 , ti1 = ti3 or ti1 = ti4 in the proof of
Lemma 5.7. Because we have E[∫ ti

ti−1
csdBs]2 = Op(

1
n ), which is bounded under the

present formulation, and Lemma 5.2, there exist positive constants K10 and K11 such
that

Dn ≤ K10(
1

n
)2

n∑
i1,i2=1

⎡
⎣ n∑

j, j ′ =1

m2
nci1, j ci2, j ci1, j ′ ci2, j ′

(∫ t j

t j−1

c2s ds

)(∫ t
j
′

t
j
′ −1

c2
s′ ds

′
)⎤
⎦

= K10

(
1

n

)2
⎡
⎣ n∑

j, j ′ =1

⎛
⎝ n∑

i1=1

mnci1, j ci1, j ′

⎞
⎠
⎛
⎝ n∑

i2=1

mnci2, j ci2, j ′

⎞
⎠
(∫ t j

t j−1

c2s ds

)(∫ t
j
′

t
j
′ −1

c2
s′ ds

′
)⎤
⎦

≤ K11

(
1

n

)2 (
n + 1

2

)2
⎡
⎣ n∑

j, j ′ =1

c2
j, j ′

⎤
⎦( 1

n

)2

.

Then by using Lemma 5.2 again and the fact that E[∫ t j
t j−1

csdBs]2 = O( 1n ), finally

we find that Dn = O( 1
mn

) . �

Proof of Theorem 3.1:We give some additional arguments to the proofs of Theorem
3.3 and Lemma 5.5. By using b

′
k = (bkj ), σ

(v)
gh and σ̂

(v)
gh for g, h = 1, . . . , p, we use

the representation
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√
ln

⎡
⎣ 1

ln

n∑
k=n+1−ln

a−1
kn

(
n∑

i=1

bkivig

)⎛
⎝ n∑

j=1

bkjv jh

⎞
⎠− σ

(v)
gh

⎤
⎦ (5.51)

= 1√
ln

n∑
k=n+1−ln

a−1
kn

⎡
⎣ n∑
i= j=1

b2ki (vigvih − σ
(v)
gh )

⎤
⎦+ 1√

ln

n∑
k=n+1−ln

a−1
kn

⎡
⎣ n∑

i �= j

bki bk jvigv jh

⎤
⎦ .

We denote (I) and (II) for
√
ln times each terms of the right-hand side and evaluate

their variances. The variance of (I) is given by

Var(I) =
n∑

i=1

⎡
⎣ n∑

k=n+1−ln

a−1
kn bki

⎤
⎦

2

Var(vigvih)] .

When vi follows the Gaussian distribution, the last term becomes σ (v)
gg σ

(v)
hh + σ

(v)2
gh

and then we can denote κgh as the effect of non-Gaussianity. (It turns out that the
effects of κgh are asymptotically negligible.)

The variance of (II) can be written

Var(II) = E

⎡
⎣ n∑

i> j

∑
k

a−1
kn bki bk jvigv jh +

n∑
i< j

∑
k

a−1
kn bki bk jvigv jh

⎤
⎦

2

= [σ (v)
gg σ

(v)
hh + σ

(v)2
gh ]

⎡
⎣ n∑

i> j

(∑
k

a−1
kn bki bk j

)2

+
n∑

i< j

(∑
k

a−1
kn bki bk j

)2
⎤
⎦ .

The covariance of (I) and (II) is asymptotically negligible. Then, by using the fact
that

∑n
i=1 bkibk ′

,i = δ(k, k
′
)akn + O(1) and

∑n
k=n+1−ln

aknb2ki = o(1) for k = n +
1 − ln, . . . , n, the variance of (5.51) is approximately given by ln[σ (v)

gg σ
(v)
hh + σ

(v)2
gh ].

Also by applying MCLT, we have the asymptotic normality in (iv) of Theorem 3.1.
For the asymptotic covariances of random variables σ̂

(v)
gh and σ̂

(v)
kl (g, h = 1, . . . ,

p), we have similar evaluations.
For the last part of (ii), we can evaluate the asymptotic covariances of random

variables σ̂
(x)
gh and σ̂

(x)
kl (g, h = 1, . . . , p), which are straightforward, and we omit

the details. �

Proof of Corollary 3.1: When σ (v)
gg = 0, we have X(2)

n eg = 0 and then Zneg =
h−1/2
n PnCn(Xn − Ȳ0)eg . We use the relation

T1 = √
mn

⎡
⎣
(

1
ln

∑n
k=n+1−ln

z2kg − σ (x)
gg

)
−
(

1
mn

∑mn
k=1 z

2
kg − σ (x)

gg

)

σ
(x)
gg +

(
1
mn

∑mn
k=1 z

2
kg − σ

(x)
gg

)
⎤
⎦

= −√
mn

[
1
mn

∑mn
k=1 z

2
kg − σ (x)

gg

σ
(x)
gg

]
+

√
mn√
ln

√
ln

[
1
ln

∑n
k=n+1−ln

z2kg − σ (x)
gg

σ
(x)
gg

]

+op(1) .
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Because of the condition 0 < α < β < 1, we have mn/ ln → 0 as n → ∞ and then
the second term of T1 converges to zero in probability. The first term converges to
N (0, 2) by Theorem 3.1, and thus we have the result. �

Finally, we give the proof of Theorem 3.4. Although we need to use the stable
convergence, we omit its details because there are standard literatures available as
we have stated.

Proof of Theorem 3.4: In addition to proving Theorem 3.3, we give some additional
arguments that (i) the effect of the existence of drift term in the stochastic process
is asymptotically negligible, and (ii) we have the same form of limiting random
variables for the case of stochastic volatility.

(On Drift Terms) We write the returns as

rni = xni − xni−1 =
∫ tni

tni−1

μx (s)ds +
∫ tni

tni−1

Cx (s)dBs (i = 1, . . . , n) (5.52)

and the martingale part as

r∗
i =

∫ tni

tni−1

Cx (s)dBs (i = 1, . . . , n∗) . (5.53)

Then we have

E[‖rnj‖2] = E

[
‖
∫ tni

tni−1

μx (s)ds‖2
]

+ 2E

⎡
⎣
(∫ tni

tni−1

μx (s)ds

)′

r∗
i

⎤
⎦+ E[‖r∗

i ‖2] ,

and

E

[
‖
∫ tni

tni−1

Cx (s)dBs −
∫ tni

tni−1

Cx (t
n
i−1)dBs‖2

]
= O

((
1

n

)2
)

.

Then we can evaluate as

E

[
‖rni ‖2 −

∫ tni

tni−1

tr(Σ x (s))ds

]
= O

((
1

n

)3/2
)

. (5.54)

Hence we find that the effects of drift terms are negligible when estimating integrated
volatility and the co-volatility function.

(On Stochastic Volatility) For each s ∈ [tnj , tnj+1) ( j = 1, . . . , n − 1), the differ-

ences of
∫ tnj
tnj−1

Cx (s)dB(s) − Cx (tnj−1)(B(tnj ) − B(tnj−1)) is stochastically negligible

and E[Cx (s)(B(tnj ) − B(tnj−1))] = 0 (s > t j ). We use the fact that the main part of√
mn(σ̂

(x)
gh − σ

(x)
gh ) is the quadratic Brownian functional as (5.34).
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Because we have the assumption of (3.37) and (3.38), the limits of
√
mn(σ̂

(x)
gh −

σ
(x)
gh ) are asymptotically and conditionally normal given the asymptotic covariances∫ 1
0 [σ (x)

gg (s)σ (x)
hh (s) + σ

(x)
gh (s)2]ds for g, h = 1, . . . , p. It is because we can apply the

arguments for the stable convergence of discretized stochastic processes (Theorem
2.2.15 of Jacod and Protter (2012), for instance) to the present situation and hence
we can extend the proof of Theorem 3.3 to the present case. �

Some Remarks: As we have mentioned in Sect. 3.5, we need to use the stable con-
vergence in Theorem 3.4 because the limiting integrated volatility and co-volatility
functions can be random. The stable convergences in the general stochastic processes
have been explained by Jacod (1997), Jacod and Shiryaev (2003) and Jacod and Prot-
ter (2012). As amore general reference on stable convergences, Hausler and Luschgy
(2015) give the different approach to stable convergences including the discussion
of the nested condition on filtrations and martingales.
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Chapter 6
Extensions and Robust Estimation (1)

Abstract We investigate the asymptotic properties of the SIML estimator and the
micro-market price-adjustment mechanisms in the process of forming the observed
transaction prices. We also investigate the problem of volatility estimation in the
round-off errormodel,which is a nonlinear transformationmodel of hidden stochastic
process.

6.1 Introduction

In this chapter and Chap.7, we investigate the robustness of SIML estimation when
we have the round-off error and the micro-market price adjustment mechanisms in
the process of forming the observed transaction prices. We formulate the round-off
error model as a nonlinear transformation of the underlying financial price process
withmicro-market noise. The statistical problem of the round-off error model of con-
tinuous stochastic processes has been investigated previously by Delattre and Jacod
(1997), Rosenbaum (2009), and Li and Myckland (2012). However, our formulation
has a new aspect and our motivation is the empirical observation that we have the
tick-size effects (the minimum price change and the minimum order size) and we
often observe bid-ask spreads on securities in actual financial markets.

Micro-market models including price adjustments have also been discussed in
the economic micro-market literature (Engle and Sun 2007; Hansbrouck 2007 for
instance). Among possible micro-market statistical models, we first take the (linear)
price adjustment model proposed by Amihud andMendelson (1987) as a benchmark
case in our investigation. Then, we consider the linear and nonlinear price adjustment
models in which a continuous martingale is the hidden intrinsic value on the under-
lying security. A new statistical feature of our approach is to utilize the nonlinear
(discrete) transformations of the continuous-time diffusion process with discrete-
time noise. We will utilize the formulation of relevant nonlinear time series models,
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namely the simultaneous switching autoregressive (SSAR) model due to Kunitomo
and Sato (1999).

The main theme of this chapter is the fact that the observed price can differ from
the underlying intrinsic value of the security. We can interpret this discrepancy by
a nonlinear transformation from the intrinsic value to the observed price. We can
represent the present situation as the nonlinear statistical model of an unobservable
(continuous-time) state process and an observed (discrete time) stochastic process
with measurement error. When the effects of measurement errors are present, the
SIML estimator is robust; that is, it is consistent and asymptotically normal (or
mixed-normal in the stable convergence sense) as the sample size increases under
a set of assumptions. The required condition on the threshold parameter for the
round-off errors is weak. The asymptotic robustness of the SIML method regarding
integrated volatility and covariance has desirable properties over other estimation
methods from large number of data for the underlying continuous stochastic process
with micro-market noise. In Chap.7, we investigate the multivariate problem when
we need to estimate the covariance and the hedging coefficient.

6.2 A General Formulation

Let y(tni ) be the i th observation of the (log-) price at tni for 0 = tn0 < tn1 < · · · <

tnn = 1.We consider the situation in which the underlying continuous-time stochastic
process X (t) (0 ≤ t ≤ 1) is not necessarily the same as the observed (log-)price at
tni (i = 1, . . . , n) and is one-dimensional diffusion as

X (t) = X (0) +
∫ t

0
μx (s)ds +

∫ t

0
σx (s)dB(s) (0 ≤ t ≤ 1), (6.1)

whereμx (s) is a predictable locally bounded drift term, σx (s) (= cx (s)) is an adapted
continuous and bounded volatility process, and B(s) is SBM. The statistical objective
is to estimate the integrated volatility (or the quadratic variation)

σ 2
x =

∫ 1

0
σ 2
x (s)ds (6.2)

of the underlying continuous process X (t) (0 ≤ t ≤ 1) from the set of observations
on y(tni ).

In this chapter, we consider the situation in which the observed (log-)price y(tni )

is not necessarily a Brownian semi-martingale but is generated by

y(tni ) = h
(
X (tni ), y(tni−1), u(tni )

)
, (6.3)

where h( · ) is a measurable function. In (6.3), the (unobservable) continuous
Brownian semi-martingale X (t) (0 ≤ t ≤ 1) is defined by (6.1), and u(tni ) is the
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micro-market noise process. For simplicity, we assume that u(tni ) are a sequence of
independently and identically distributed random variables with E(u(tni )) = 0 and
E(u(tni )2) = σ 2

u (0 = tn0 < tn1 < · · · < tnn = 1; tni − tni−1 = 1/n, i = 1, . . . , n).
There are special cases of (6.1) and (6.3) that can describe important aspects of

modeling financial markets and high-frequency financial data for practical market
applications. The simple (high-frequency) financial model with micro-market noise
can be represented by

y(tni ) = X (tni ) + v(tni ), (6.4)

where the underlying process X (t) is given by (6.1) and v(tni ) is a sequence of
independently and identically distributed (i.i.d.) random variables.

The most important statistical aspect of (6.4) is the fact that it is an additive
(signal-plus-noise) measurement-error model and the signal is a continuous process.
However, there are economic reasons why the standard situation such as (6.4) is
insufficient for applications. The round-off error models and the high-frequency
financial models with micro-market price adjustment cannot be reduced to (6.4) but
can be represented as special cases of (6.1) and (6.3).

6.3 The Basic Round-Off Error Model

First, we investigate the basic round-off error model with micro-market noise. One
motivation for doing so is that in actual financial markets, transactions occur with
the minimum tick size and the observed price data may not take a continuous path
over time. For instance, the traded price and quantity usually have minimum size :
The Nikkei-225 Futures, which have been the most important traded derivatives in
Japan, have a minimum traded-size of 10 yen, while the Nikkei-225-stock index was
around 9,000 yen in the year of 2011. (See Hansbrouck 2007 for details regarding
the business practice of major stock markets in the USA) Hence, it is interesting and
important to see the effects of round-off errors on the estimated integrated volatility.

Let yi = P(tni ) and
P(tni ) = gη

(
X (tni ) + u(tni )

)
, (6.5)

where the micro-market noise term u(tni ) is a sequence of i.i.d. random variables
with E[u(tni )] = 0 and E[u(tni )2] = σ 2

u . The nonlinear function

gη(x) = η

[
x

η

]
(6.6)

is the round-off part of x , [x] is the largest integer being equal or less than x , and the
threshold parameter η is a (small) positive constant.

This model corresponds to the micro-market model with the restriction of a mini-
mumprice changewithmicro-market noise, and η is the parameter that setsminimum
price change. In Fig. 6.1, we show typical sample paths of the standard round-off
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Fig. 6.1 a:
Round-off-simulation-1 b:
Round-off-simulation-2
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error model obtained from simulations. The true process is in black, while the
observed process is the colored onewith predetermined threshold level; e.g., η = 0.1,
or 0.25.

6.4 A Micro-market Price Adjustment Model

Previously in financial economics, many micro-market models have been developed
in attempts to explain the roles of noise traders, insiders, bid-ask spreads, transaction
prices, the effects of taxes and fees, and the associated price adjustment processes in
financial markets. As an illustration we give an underlying typical argument on the
financial market mechanism by Fig. 6.2. In the underlying financial market, we let P
be the price and Q be the quantity (in demand and supply) of a security. If the demand
and supply curves of a security fail to meet, there is no transaction occurring at the
same moment. The minimum (desired) supply price P̄ is higher than the maximum
(desired) demand price P, whereupon there is a (bid-ask) spread. On the one hand,
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Fig. 6.2 a: A micro-market
model-1 b: A micro-market
model-2

(a)

(b)

if there is some information on the supply side indicating that the intrinsic value
of Xt of a security at time t is less than the latest observed price Pt−�t at time
t − �t (i.e., Xt − Pt−�t < 0,�t > 0), the supply schedule is shifted downward. On
the other hand, if there is some information on the demand side indicating that the
intrinsic value of a security at time t is higher than the latest observed price (i.e.,
Xt − Pt−�t > 0), the demand schedule is shifted upward. In these circumstances
while the trade of a security occurs at price P∗ and quantity Q∗ as in Fig. 6.2, the
financial market is under pressure for price changes. Figure6.2a shows the case when
there is no transaction, while Fig. 6.2b shows the case when there is a transaction and
some excess demand remained.
Note: In Fig. 6.2, P and Q stand for the price and the quantity, respectively. D and
S are the demand curve and supply curve, respectively. η in Fig. 6.2 denotes the
minimum tick size, and Q∗ is the quantity traded in Fig. 6.2.

Let y(tni ) = P(tni ) (i = 1, . . . , n) and consider the (linear) micro-market price
adjustment model given by

P(tni ) − P(tni−1) = b
(
X (tni ) − P(tni−1)

) + u(tni ), (6.7)

where X (t) (the intrinsic log-value of a security at t) and P(tni ) (the observed log-
price at tni ) are measured logarithmically, the adjustment (constant) coefficient is b
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(0 < b < 2), and u(tni ) is an i.i.d. noise sequence withE[u(tni )] = 0 andE[u(tni )2] =
σ 2
u .
The specificmodel is (6.7) proposed originally byAmihud andMendelson (1987).

This is a typical example because it has been one of well-knownmicro-market model
involving transaction costs and interactions among different types of market partici-
pants in financial market. However, we depart from the Amihud–Mendelson model,
and in that we focus on estimating integrated volatility whereas their main pur-
pose was to investigate the micro-market mechanisms by using daily (open-to-open
and close-to-close) data. Also, whereas Amihud and Mendelson (1987) had X (tni )

following a (discrete) random walk in a discrete time series framework, we con-
sider the case in which X (t) is a general continuous-time Brownian semi-martingale
given by (6.1), and the integrated volatility of the intrinsic value is defined by
0 <

∫ t
0 σ 2

s ds < ∞ (a.s.).

6.5 Round-Off Errors and Nonlinear Price Adjustment
Models

We can generalize the round-off error model and the linear price-adjustment model
we have introduced. We will discuss two variants for illustration, although there
are others. As a nonlinear model, we represent the micro-market price-adjustment
models with round-off error effects.

Let yi (= y(tni )) = P(tni ) and

P(tni ) − P(tni−1) = gη

(
X (tni ) − P(tni−1) + u(tni )

)
, (6.8)

where u(tni ) is a sequence of i.i.d. noises with E[u(tni )] = 0, E[u(tni )2] = σ 2
u and

gη(x) is defined by (6.6). Then from (6.8), the difference between the observed price
and the underlying intrinsic value can be represented as

P(tni ) − X (tni ) = gη

(−(P(tni−1) − X (tni−1)) + �X (tni ) + u(tni )
)

+(P(tni−1) − X (tni−1) − �X (tni ))

= g∗
η

(
P(tni−1) − X (tni−1),�X (tni ), u(tni )

)
, (6.9)

where

�X (tni ) =
∫ tni

tni−1

μx (s)ds +
∫ tni

tni−1

σx (s)dBs

is a sequence of differences of X (tni ) and g∗
η(·) is defined implicitly by (6.9). The

round-off model of (6.8) and (6.9) can be represented as a nonlinear adjustment
model with noise components.

Regarding the price-adjustmentmechanism, there have been discussions on asym-
metrical movements of financial price processes, which are related to problems in
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financial risk management. It may be natural to consider the situation in which there
are differentmechanisms in the upwardphase offinancial prices (i.e., y(tni ) ≥ y(tni−1))
and in the downward phase (i.e., y(tni ) ≤ y(tni−1)). In the context of micro-market
models, some economists have tried to find appropriate econometric models, which
involve transaction costs and micro-market structures with market practice and reg-
ulation on the limits of downward price movements within a day. As an example of
discrete time series modeling of a nonlinear price of security price, we consider a
nonlinear extension of (6.7) with

P(tni ) − P(tni−1) = [b1I(X (tni ) ≥ P(tni−1)) + b2I(X (tni ) < P(tni−1))][X (tni ) − P(tni−1)] + u(tni ),

(6.10)
where bi (i = 1, 2) are some constants and I(·) is the indicator function.
This model is analogous to the class of SSAR models investigated by Kunitomo

and Sato (1999), which is analogous to the TAR (threshold AR)models developed by
Tong (1990) having delayed parameters. A set of sufficient conditions for the stability
of the SSAR-type process is given by b1 > 0, b2 > 0 and (1 − b1)(1 − b2) < 1 with
some moment condition on u(ti ). If we set b1 = b2 = b, then we have the linear
adjustment case as (6.7) and the stability condition is given by 0 < b < 2. Nonlinear
time series models such as the TAR model and the exponential AR model were
developed in nonlinear time series analysis, and their statistical properties have been
extensively discussed by Tong (1990).

To consider general nonlinear price adjustmentmodels, that differ from the round-
off-error models, we take yi = P(tni ) and

P(tni ) − P(tni−1) = g
(
X (tni ) − P(tni−1)

) + u(tni ) , (6.11)

where g( · ) is a nonlinear measurable function, and u(tni ) is a sequence of i.i.d.
micro-market noise with E[u(tni )] = 0 and E[u(tni )2] = σ 2

u .
This representation includes the linear and nonlinear price adjustment modes as

special cases.

6.6 Asymptotic Robustness of SIML for the Round-Off
Error and Price Adjustment Models

We investigate the asymptotic properties of SIML estimation with the round-off error
models and the micro-market adjustment models. First, we investigate the situation
for the basic round-off model when we have a sequence of discrete observations
P(tni ) with 0 = tn0 < tn1 < · · · < tnn = 1 and we estimate the integrated volatility of
the underlying security σ 2

x = ∫ 1
0 σx (s)2ds.

Let [x] and {x} be the integer part and the fractional part of a real number x ,
respectively. If there is no micro-market noise term in (6.5), we can decompose
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X (tni ) = η

[
X (tni )

η

]
+ η

{
X (tni )

η

}
(6.12)

for i = 1, . . . , n. Then, we have y(tni ) = η[ X (tni )

η
] and

n∑
i=1

(�y(tni ))2 =
n∑

i=1
(�X (tni ))2 + η2

n∑
i=1

({
X (tni )

η

}
−

{
X (tni−1)

η

})2

−2η
n∑

i=1
(�X (tni ))

({
X (tni )

η

}
−

{
X (tni−1)

η

})
,

where �y(tni ) = y(tni ) − y(tni−1) and �X (tni ) = X (tni ) − X (tni−1).
We set the threshold parameter η = ηn, which is dependent on n. If it satisfies the

condition
ηn

√
n = o(1), (6.13)

then the first term of the right-hand terms converges to the integrated volatility σ 2
x

as n → ∞ because the realized volatility is a consistent estimator of the integrated
volatility when we have no micro-market noise. However, if this condition is not
satisfied and also there is a micro-market noise term at the same time, it is not
obvious how to estimate the integrated volatility. Because n is finite in practice, we
need to search for a weak condition on the threshold parameter ηn , and in this respect,
we have the next result.

Theorem 6.1 We assume that in (6.1) and (6.2), μx (s) and σx (s) are bounded and
deterministic functions of time, and further σx (s) is bounded from zero. Also in (6.5)
and (6.6), we assume that there exists γ (γ > 0) such that the threshold parameter
η = ηn satisfies

ηnn
γ = O(1) . (6.14)

Define the SIML estimator of the integrated volatility of X (t) with mn = [nα] (0 <

α < 0.4) by (3.18). Then, the limiting distribution of the normalized estimator√
mn

[
σ̂ 2
x − σ 2

x

]
is asymptotically (mn, n → ∞) equivalent to the limiting distri-

butions given by Theorem 3.1.

As second case, we consider the linear price adjustmentmodel (6.7). The observed
price at tni (i = 1, . . . , n) can be expressed as

P(tni ) = (1 − b)P(tni−1) + bX (tni ) + u(tni )

= b
i−1∑
j=0

(1 − b) j X (tni− j ) +
i−1∑
j=0

(1 − b) j u(tni− j ) + (1 − b)i P(tn0 ) ,

which is a weighted linear combination of past intrinsic values and past noise terms.
In this case, however, we notice from (6.7) that
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P(tni ) − u(tni ) − X (tni )

= (1 − b)
[
P(tni−1) − X (tni )

]
= (1 − b)

[
P(tni−1) − X (tni−1) − u(tni−1)

]

+ (1 − b)

[
u(tni−1) −

∫ tni

tni−1

μx (s)ds −
∫ tni

tni−1

σx (s)dBs

]
. (6.15)

We define a sequence of random variables Ua(tni ) = P(tni ) − u(tni ) − X (tni ) and

W ∗(tni ) = (1 − b)[u(tni−1) − ∫ tni
tni−1

μx (s)ds − ∫ tni
tni−1

σx (s)dBs]. Then, we can represent
the present model as

Ua(t
n
i ) = (1 − b)Ua(t

n
i−1) + W ∗(tni ). (6.16)

Although W ∗(tni ) are correlated with Ua(tni−1), the linear price-adjustment model
can be regarded as an extension of the basic model of (6.1) and (6.4). Then, we have
the next result on the limiting distribution of the SIML estimator, the proof of which
is given in the last subsection of this chapter.

Theorem 6.2 We assume that X (t) and ui (i = 1, . . . , n) in (6.1) and (6.7) are
independent, and that b (0 < b < 2) in (6.7) is a constant. Define the SIML esti-
mator of the integrated volatility of X (t) with mn = [nα] (0 < α < 0.4) by (3.18).
Then, the asymptotic distribution of

√
mn

[
σ̂ 2
x − σ 2

x

]
is asymptotically (mn, n → ∞)

equivalent to the limiting distributions given by Theorem 3.1.

We notice that the present micro-market (linear) adjustment model is quite similar
to the structure of the micro-market model with autocorrelated micro-market noises.

Third, we investigate the situation in which we have a sequence of price adjust-
ments with the round-off error effect as (6.8) of Sect. 6.5.

Define
Ua(t

n
i ) = P(tni ) − X (tni ) − u(tni ) . (6.17)

Then,Ua(tni ) = [P(tni ) − P(tni−1)] + [P(tni−1) − X (tni ) − u(tni )] and the first term is
gη(X (tni ) − P(tni−1) + u(tni )). When |P(tni−1) − X (tni ) − u(tni )| > η,we use the fact
that x + η > x ≥ gη(x) > x − η and we have that |Ua(tni )| ≤ η. By contrast, when
|P(tni−1) − X (tni ) − u(tni )| ≤ η, then P(tni ) = P(tni−1) and |Ua(tni )| ≤ η.
Define yi = P(tni ) and vi = u(tni ) +Ua(tni ) (i = 1, . . . , n), we have yi = xi + vi
and

|Ua(t
n
i )| ≤ η . (6.18)

By using similar arguments to the results reported as Theorem 3.1 on the limiting
distribution of the integrated volatility estimator, we have the next result, the proof
of which is given in the last subsection of this chapter.

Theorem 6.3 We assume that X (t) and ui (i = 1, . . . , n) in (6.1) and (6.8) are
independent. The threshold parameter η = ηn depends on n satisfying
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ηn
√
n = O(1) . (6.19)

Define the SIML estimator of the integrated volatility of X (t) with mn = [nα] (0 <

α < 0.4) by (3.18). Then, the limiting distribution of the normalized estimator√
mn

[
σ̂ 2
x − σ 2

x

]
is asymptotically (mn, n → ∞) equivalent to the limiting distri-

butions given by Theorem 3.1.

In the above theorem, we have imposed the condition (6.19) on η, which is weaker
than (6.13) but stronger than (6.14). This condition could be relaxed because our
simulations suggest that the asymptotic result does not essentially depend upon these
conditions.

Finally, we investigate the situation in which we have a sequence of discrete
observations under the nonlinear adjustment model given by (6.11). We set y(tni ) =
P(tni ) and use a sequence of differences of X (tni ) as �X (tni ) = X (tni ) − X (tni−1) =∫ tni
tni−1

μx (s)ds + ∫ tni
tni−1

σx (s)dBs .

Also, we let
Ua(t

n
i ) = P(tni ) − [X (tni ) + u(tni )] (6.20)

and
w(tni ) = −�X (tni ) + u(tni−1) . (6.21)

The adjustment process Ua(tni ), which is the difference between the observed price
and the true process with noise, describes the additional price adjustment mechanism
because P(tni ) − X (tni ) = u(tni ) +Ua(tni ).

If there is no drift term (i.e., μx (s) = 0), w(tni ) are a sequence of uncorrelated
random variables when �X (tni ) and u(tni ) are independent. The difference between
the observed price and the underlying intrinsic value plus noise can be represented
as

Ua(t
n
i ) = Ua(t

n
i−1) + w(tni ) + g

[−Ua(t
n
i−1) − w(tni )

]
= g∗ [

Ua(t
n
i−1) + w(tni )

]
, (6.22)

where g∗(z) = z + g(−z), E[w(tni )] = 0 and E[w(tni )2] < ∞.
When we have an (ergodic) stationary solution for Ua(tni ), we can reduce the

model of (6.20)–(6.22) as a signal-plus-noise stationary process such that yi = xi +
vi (i = 1, . . . , n), where we set yi = P(tni ), xi = X (tni ) and vi = Ua(tni ) + u(tni ).
However, by our construction we have the situation in which the signal term xi
and the noise term vi are mutually correlated and vi are autocorrelated over time.
Because the discrete time series Ua(tni ) satisfies a stochastic difference equation, it
has a Markovian property.

To investigate the limiting behavior of the volatility estimation, we need a set of
sufficient conditions, which are some type of ergodic condition. We summarize our
results under some additional conditions with the nonlinear price adjustments, the
proof of which is given in the last subsection of this chapter.
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Theorem 6.4 We assume that X (t) does not have drift term and ui (i = 1, . . . , n) in
(6.1) and (6.11) are independent. For Ua(tni ) satisfying (6.22) and E[Ua(tni )4] < ∞,

we further assume that there exist functions ρ1( · ) and ρ2( ·, · ) such that

Cov[Ua(t
n
i ),Ua(t

n
j )] = c1ρ1(|i − j |) , (6.23)

where c1 is a (positive) constant,
∑∞

s=0 ρ1(s) < ∞ and

Cov
[
Ua(t

n
i )Ua(t

n
i ′ ),Ua(t

n
j )Ua(t

n
j ′ )

]
= c2ρ2(i − i

′
, j − j

′
) for j > j

′
> i > i

′
,

(6.24)
where c2 is a (positive) constant and

∑∞
s,s ′ =0 ρ2(s, s

′
) < ∞.

Define the SIML estimator of the realized volatility of P(tni ) with mn = [nα] (0 <

α < 0.4) by (3.18). Then, the asymptotic distribution of
√
mn

[
σ̂ 2
x − σ 2

x

]
is asymp-

totically (as mn, n → ∞) equivalent to the limiting distributions given by Theorem
3.1.

The assumption of no drift in X is not essential, but a convenient one. See Theorem
3.4 of Chap.3 on this problem.

In the above theorem, we impose a set of sufficient conditions for (6.24), which
is a strong-mixing condition. If we can find positive constants ρ (0 ≤ ρ < 1) and c3
such that the conditional expectation

|E[Ua(t
n
j )Ua(t

n
j ′ )|Ua(t

n
i ),Ua(t

n
i ′ )]| < c3ρ

| j− j
′ | (6.25)

for any j > j
′
> i > i

′
, then we have (6.23) and (6.24).

There are many (discrete statistical) time series models satisfying the ergodicity
conditions. A simple example is the linear case in which g(z) = c z (c is a constant
with 0 < c < 2 and Ua(tni ) represent a weakly dependent process. It is straightfor-
ward to have the above conditions in this case based on arguments that are similar
to the derivations in Chap.8 of Anderson (1971). The second example is a SSAR-
type model by (6.11). If we impose a strong condition such as 0 < b1, b2 < 1, it
is also straightforward to use the arguments for linear processes. According to our
simulations, however, this condition is often too strong to have the desired results
and it may be an interesting future topic. There can be large number of nonlinear
price-adjustment models and nonlinear discrete time series models for X (tni ) and
P(tni ).

6.7 Simulations

We have investigated the robustness of the SIML estimator for integrated volatility
based on a set of simulations, and the number of replications is 1,000. We took the
sample size as n = 20, 000, and chose α = 0.4 (or 0.45) and β = 0.8 in all cases.
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In our simulations, we consider several cases in which the observations are gen-
erated by (6.1) and (6.3). For simplicity, we set μx (s) = 0 and the volatility function
(σ 2

x (s)) is given by
σ 2
x (s) = σ(0)2

[
a0 + a1s + a2s

2
]
, (6.26)

where ai (i = 0, 1, 2) are constants andwe have some restrictions such that σx (s)2 >

0 for s ∈ [0, 1]. This is a typical time-varying (but deterministic) case and the inte-
grated volatility σ 2

x is given by

σ 2
x =

∫ 1

0
σx (s)

2ds = σx (0)
2
[
a0 + a1

2
+ a2

3

]
. (6.27)

In this examplewe take several intra-day volatility patterns includingflat (or constant)
volatility, monotone (decreasing or increasing) movements and U-shaped move-
ments.

From many Monte-Carlo simulations, we summarize our main results in tabular
form.We use several models in the form of (6.1) and (6.3), each ofwhich corresponds
to the typical cases when we take h(·, ·, ·) in (6.3) as

Model 1 h1(x, y, u) = gη(x + u) (gη(·) is (6.6)) ,

Model 2 h2(x, y, u) = y + b(x − y) + u (b : a constant) ,

Model 3 h3(x, y, u) = y + gη(x − y + u) (gη(·) is (6.6)) ,

Model 4 h4(x, y, u) = y + gη(x − y) + u (gη(·) is (6.6)) ,

Model 5 h5(x, y, u) = y + u +
{
b1(x − y) if x ≥ y
b2(x − y) if x < y

,

where bi (i = 1, 2) are constants.
Model 1 is the basic round-off error model in Sect. 6.2. Model 2 corresponds to

the linear price adjustment model with the micro-market noise when the adjustment
coefficient b is a constant. When 0 < b < 2, Model 2 corresponds to the stationary
linear price adjustment model with the micro-market noise. Models 1, 3, and 4 are
micro-market models with round-off errors. Model 1 is the basic round-off error
model, while Models 3 and 4 are the round-off error models with price adjustment
mechanisms.Model 5 is the SSAR-typemodel, which is a typical nonlinear (discrete)
time series model.

For comparison, we have calculated the historical integrated volatility (HI) esti-
mate and the SIML estimate, which we compare in each table. Overall, the estimates
by the SIML method are quite stable and robust against the possible values of the
variance ratio even in the nonlinear transformations we have considered. For Model-
1, the estimates obtained by historical-volatility (H-vol) are badly biased, which is a
known situation in the analysis of high-frequency financial data. In fact, the values
of H-vol are badly biased in all cases of our simulations, whereas the SIML method
gives reasonable estimates in all cases of Models 1 to 5 (see Tables 6.1, 6.2, 6.3, 6.4,
6.5, 6.6, 6.7 and 6.8). We give some representative cases as Tables 6.3, 6.4, 6.5, 6.6,
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Table 6.1 Comparison of alternative estimates (Model-1) (σ 2
u = 5.0E − 05, η = 0.25)

n = 20,000 SIML (σ 2
x ) H-vol RK PA

True-val 1.000 1.00 1.00 1.00

Mean 1.104 38.84 2.283 1.719

SD 0.258 9.354 0.514 0.387

MSE 0.092 1519.6 1.910 0.667

Table 6.2 Comparison of alternative estimates (Model-1) (σ 2
u = 1.0E − 04; η = 0.1)

n = 20,000 SIML (σ 2
x ) H-vol RK PA

True-val 1.000 1.00 1.00 1.00

Mean 0.969 12.14 0.948 0.934

SD 0.150 0.443 0.078 0.095

MSE 0.023 124.3 0.008 0.013

6.7 and 6.8, wherein in these tables the estimates by the SIML method are quite sta-
ble and robust against the possible values of the variance ratio even in the nonlinear
transformations we considered. We have chosen several simulation results, which
represent important aspects among many possibilities. Overall, the bias of the SIML
estimator is often small and the variance of the SIML estimator is often stable.

We have compared the SIML estimates with alternative estimation methods in
Tables 6.1 and 6.2.Wehave chosen two alternativewell-knownestimates, the realized
kernel (RK) method and the pre-averaging (PA) method, which were developed
by Barndorff-Nielsen et al. (2008) and Jacod et al. (2009), respectively. For a fair
comparison, we tried to follow the recommendation by Barndorff-Nielsen et al.
(2008) on the choice of kernel (Tukey–Hanning) and the bandwidth parameter H in
the RK method and we took the triangular function g(x), θ = 1 and K = √

n in the
PA method. An important issue in the RK method is the choice H, which depends
on the noise variance and the instantaneous variance (which are in fact unknown);
we choose H = c

√
σ 2
u /[σ 2

x /n] although σ 2
u and σ 2

x are not known in advance. We
have given two cases in the basic round-off model when the threshold parameter is
relatively large (η = 0.25) and not so large (η = 0.1). It is interesting that the SIML
method clearly dominates two methods in the first case, while three methods are
comparable in the second case. It may be surprising to find that the SIML method
gives reasonable estimates in all the cases. The biases of the RK method and the
PA method can be relatively large, whereas the SIML method does not have much
bias in some situations. Also, we find that the RK and PA estimation give reasonable
estimates in some basic cases if we take reasonable value of the key parameters H,
θ and K in many cases. The effects of not knowing the variance ratio may be more
unfavorable to the RK method.

By examining these reported results and other simulations, we conclude that we
can estimate the integrated volatility of the hidden martingale part reasonably by



72 6 Extensions and Robust Estimation (1)

Table 6.3 Estimation of integrated volatility (Model-2) (a0 = 1, a1 = 0, a2 = 0; σ 2
u = 1.00E − 04,

b = 0.2)

n = 20,000 σ 2
x H-vol

True-val 1.00E + 00 1.00E+00

Mean 1.01E+00 2.33E+00

SD 1.97E-01 2.32E-02

MSE 3.89E-02 1.78E+00

Table 6.4 Estimation of integrated volatility (Model-2) (a0 = 1, a1 = 0, a2 = 0; σ 2
u = 1.00E − 05,

b = 1.0)

n = 20,000 σ 2
x H-vol

True-val 1.00E+00 1.00E+00

Mean 9.88E-01 1.40E+00

SD 1.99E-01 1.40E-02

MSE 3.97E-02 1.60E-01

Table 6.5 Estimation of integrated volatility (Model-2) (a0 = 1, a1 = 0, a2 = 0; σ 2
u = 1.00E − 06,

b = 0.01)

n = 20,000 σ 2
x H-vol

True-val 1.00E+00 1.00E+00

Mean 8.40E-01 2.51E-02

SD 1.66E-01 5.41E-04

MSE 5.31E-02 9.50E-01

SIML estimation despite the possible nonlinear transformation such as the thresh-
old models. When we have nonlinear transformations of the original unobservable
security (intrinsic) values, however, the biases of the RK method and the PA method
are not negligible in some cases.
Note: In the following tables, the estimates of the variances (σ 2

x ) are calculated by
the SIML method, whereas H-vol values are calculated by historical (or realized)
volatility estimation. The term “true-val” means the true parameter value in simula-
tions and mean, SD, and MSE correspond to the sample mean, the sample standard
deviation, and the sample mean squared error of each estimator, respectively.

6.8 Derivation of Theorems

We give only the outlines of proofs because some parts are analogous to those in
Sect. 6.5. We prove Theorems 6.3 and 6.1. This is because the first parts are similar.
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Table 6.6 Estimation of integrated volatility (Model-3) (a0 = 7, a1 = −12, a2 = 6;
σ 2
u = 2.00E − 02, η = 0.5)

n = 20,000 σ 2
x H-vol

True-val 4.50E+01 4.50E+01

Mean 4.60E+01 1.37E+02

SD 1.05E+01 6.19E+00

MSE 1.11E+02 8.46E+03

Table 6.7 Estimation of integrated volatility (Model-4) (a0 = 1, a1 = 0, a2 = 0; σ 2
u = 0.00E + 00,

η = 0.005)

n = 20,000 σ 2
x H-vol

True-val 1.00E+00 1.00E+00

Mean 1.00E+00 6.85E-01

SD 1.94E-01 8.66E-03

MSE 3.77E-02 9.92E-02

Table 6.8 Estimation of integrated volatility (Model-5) (a0 = 1, a1 = 0, a2 = 0; σ 2
u = 1.00E − 03,

b1 = 0.2, b2 = 5)

n = 20,000 σ 2
x H-vol

True-val 1.00E+00 1.00E+00

Mean 1.02E+00 6.65E+01

SD 1.94E-01 1.66E+00

MSE 3.79E-02 4.30E+03

We give some additional arguments for Theorems 6.2 and 6.4. We use the notation
Ki (i ≥ 1) as positive constants.
Proof of Theorem 6.3 Most parts of this proof are very similar to the corresponding
ones in the proof of Theorem 3.1 (or Theorem 3.3). We write yi = xi + vi , vi =
ui + wi (i = 1, . . . , n), where |wi | ≤ ηn . Then, we need to check that the effects of
a sequence of random variableswi (i = 1, . . . , n) are negligible under the additional
assumption (6.19) with the threshold parameter ηn (> 0).

We illustrate the underlying arguments. As (5.21), from (6.4) and (6.5), we
notice that

[
z(2)kn

]2 = n

⎡
⎣ n∑
i=1

bki (ui + wi )

⎤
⎦
2

= n

⎡
⎣ n∑
i=1

bki ui

⎤
⎦
2

+ 2n

⎡
⎣ n∑
i=1

bki ui

⎤
⎦

⎡
⎣ n∑
i=1

bkiwi

⎤
⎦ + n

⎡
⎣ n∑
i=1

bkiwi

⎤
⎦
2

. (6.28)
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By using the Cauchy–Schwartz inequality under (6.19) and n
∑n

j=1 b
2
k j = akn (k =

1, . . . , n), we have

E

[
n∑

i=1

bkiwi

]2

≤ η2
nakn . (6.29)

Then, we can find a positive constant K1 such that

E
[
z(2)
kn

]2 = nE

[
n∑

i=1

bki (ui + wi )

]2

≤ K1akn
[
1 + ηn

√
n
]2

. (6.30)

Hence, under (6.19), the threshold effects in (6.29) and (6.30) are stochastically
negligible. Then, we use similar arguments to other terms in the decomposition and
we apply the same argument as the proof of Theorems 3.1 and 3.3. �
Proof of Theorem 6.1 In the first part of the proof, we use the similar arguments
to those for Theorem 6.3, but in the present situation it is possible to evaluate the
expected value of (6.28) more precisely.

We use the fact that the Fourier series of x for any 0 < x < 1 is given by

x = 1

2
−

∞∑
s=1

sin 2πsx

πs
= 1

2
−

∞∑
s=1

[
ei2πsx − e−i2πsx

2iπs

]
. (6.31)

Then, except for the countable points of discontinuity, the fractional part {x} of any
real number x (= [x] + {x}) is given by (6.31) since [x] = 0. For a random variable
X, let

{X}∗ =
∞∑
s=1

1

2iπs
[(ei2πsX − E(ei2πsX )) − (e−i2πsX − E(e−i2πsX )] . (6.32)

First, we assume that u(tni ) = 0 (i = 1, . . . , n), X (0) = 0, μx (s) = 0, and σx (s) is

a deterministic function such that X j = ∫ tnj
0 σx (s)dBs is a Gaussian process. Then

by using the Gaussianity, we find

E(ei2πsX j ) = E(e−i2πsX j ) = e−2π2s2
∫ tnj
0 σx (s)2ds (6.33)

and for any j, k ( j > k; j, k = 1, . . . , n)

Cov[{x j/ηn}, {xk/ηn}]

=
∞∑

s,s ′ =1

−1

4π2ss ′ E{[(ei2πsx j /ηn − E(ei2πsx j /ηn )) − (e−i2πsx j /ηn − E(e−i2πsx j /ηn ))]

× [(ei2πs ′
xk/ηn − E(ei2πs

′
xk/ηn )) − (e−i2πs

′
xk/ηn − E(e−i2πs

′
xk/ηn ))]} .
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LetGk,n be theσ -field generatedby the randomvariables Xl (= X (tnl ), l = 1, . . . , k).
Under the assumption that 0 < σ∗ ≤ σs ≤ σ ∗, the conditional expected value for
j > k becomes

E[(ei2πsX j /ηn − E(ei2πsX j /ηn )) − (e−i2πsX j /ηn − E(e−i2πsX j /ηn ))|Gk,n]
≤ K2 e

−2π2s2σ 2∗ ( j−k)/[nη2
n ] ,

where K2 is a positive constant. Because e−x < 1/x (x > 0), the sum converges to
a finite value. In fact, under condition (6.14), for any | j − k| > nδ1 (0 < δ1 < 1)
we have 2π2s2σ 2∗ ( j − k)/[nη2

n] = O(nδ1−1+2γ ) , which goes to +∞ as n → ∞ if
we can rake 2γ + δ1 > 1. By setting δ2 = δ1 − 1 + 2γ, −2π2s2σ 2∗ ( j − k)/[nη2

n] =
O(n−δ2). Now we can evaluate

Var

⎡
⎣ηn

n∑
j=1

bkj

{
X j

ηn

}∗
⎤
⎦ = η2

n

n∑
j, j ′ =1

bkjbk, j ′Cov
[{

X j

ηn

}∗
,

{
X j ′

ηn

}∗]
. (6.34)

We decompose summation (6.34) into two components as (a)
∑

| j− j ′ |<nδ3 , and (b)∑
| j− j ′ |≥nδ3 for 0 < δ3 < 1. Then, there are nδ3 terms in (a) and there are n − nδ3

terms, but which are of order o(1/n). Thus, by using the relation (6.31) and Lemma
6.1 below, we can take constants K3, K4 and K5 such that forw j = ηn{X j/ηn} ( j =
1, . . . , n)

nE

⎡
⎣ n∑

j=1

bkjwi

⎤
⎦

2

≤ K9

⎡
⎣n

n∑
j=1

b2k j

⎤
⎦ η2

n

[
nδ3 + (n − nδ2)

1

n

]

= K4 akn[nγ ηn]2 ≤ K5 akn (6.35)

by taking γ = δ3/2 (0 < δ3 < 1) (we can take δ1 = δ3 for instance). Thus for the
rest of evaluation, we can apply the arguments of the standard cases.

Next, we consider the case in which we have the micro-market noise term ui =
u(tnj ) ( j = 1, . . . , n). In the previous arguments, we replace ηn{(X j + u j )/ηn} ( j =
1, . . . , n) instead of ηn{X j/ηn} and apply the same arguments. Because of the inde-
pendence assumption on X (tnj ) and u(tnj ) ( j = 1, . . . , n), we can utilize the relation

E[ei2πs(X j+u j )/ηn ] = E[ei2πsX j /ηn ]E[ei2πsu j /ηn ] . (6.36)

Whenwe have the drift term, the effects of E[| ∫ tnj
tnk

μx (s)ds|2] ≤ K6|tnj − tnk | ,which
is asymptotically negligible. �

By using straightforward calculations, we have the next relation.

Lemma 6.1 For j, k = 1, . . . , n, let θ jk = [2π/(2n + 1)]( j − 1/2)(k − 1/2) and
θk = [2π/(2n + 1)](k − 1/2). Then,
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bkj = 2√
2n + 1

(cos θk j − cos θk, j+1) (6.37)

, and for any positive integer l (l < n),

n∑
j=l+1

bkjb j, j−l = 8 sin2(
θk

2
) cos(lθk) + o(1) . (6.38)

Proof of Lemma 6.1 We use the representation

bkj = 1

2n + 1

[
(1 − eiθk )eiθk j + (1 − e−iθk )e−iθk j

]
. (6.39)

Then, we have
∑n

j=1 e
i2θk j = 1/(1 − eiθk ) and

∑n
j=1(1 − eiθk )2ei2θk j = 1 − eiθk .

Then, it is straightforward to show that for any integer l,

(2n + 1)
n∑
j=1

bkjbk j−l =
∑
j

{
e−ilθk (1 − eiθk )2ei2θk j + eilθk (1 − e−iθk )2e−i2θk j

+ neilθk (1 − eiθk )(1 − e−iθk ) + ne−ilθk (1 − e−iθk )2(1 − eiθk )
}

∼ 4n

[
sin2

θk

2

]
[2 cos(lθk)]

when n is large. �
Proof of Theorems 6.2 and 6.4 Most parts of the proof of Theorems 6.2 and 6.4 are
essentially the same to the corresponding ones in the proof of Theorem3.3.Hence,we
give only the outline of our derivations.Wedefine vi = V (tni ) + u(tni ) (i = 1, . . . , n)

and write yi = xi + vi , where yi = P(tni ) and xi = X (tni ) in (6.19). The essential
difference is the presence ofUa(tni ) terms, whereupon vi (i = 1, . . . , n) are autocor-
related in the present situation.

By using conditions (6.23) and (6.24) and the Cauchy–Schwartz inequality, we
find a positive constant K7 such that

E[z(2)
kn ]2 = nE

⎡
⎣ n∑

i=1

bkivi

n∑
j=1

bkjv j

⎤
⎦

≤ n
n∑

s=0

c1ρ1(s)

[
n∑

i=1

bkibk,i−s

]

≤ K7 × akn . (6.40)
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We also evaluate the variance of

z(2)2
kn − E[z(2)2

kn ] = n
n∑

j, j ′ =1

bkjbk, j ′
[
v jv, j ′ − E(v jv j ′ )

]

and the expectations of
[
z(2)2
kn − E[z(2)2

kn ]
] [

z(2)2
k ′

,n
− E[z(2)2

k ′
,n

]
]
.

By using the condition imposed by (6.23) and (6.24), we can find a positive
constant K8 such that

n2
n∑

i,i ′=1

n∑
j, j ′ =1

bkibk,i ′ bk ′
, j bk ′

, j ′ ρ2(|i − i
′ |, | j − j

′ |) ∼ K8 × aknak ′
,n . (6.41)

Then by collecting each term, we can find a positive constant K9 such that

E

⎡
⎣ 1√

mn

mn∑
j=1

(z(2)2
kn − E[z(2)2

kn ])
⎤
⎦

2

≤ K9
mn

∑mn

k,k ′=1
aknak ′n

= O( 1
mn

× (
m3

n
n )2) , (6.42)

which is O(m5
n/n

2) because
∑m

k=1 akn = O(m3
n/n).

By taking care of these changes in our derivations, it is straightforward to prove
Theorems 6.2 and 6.4 as for Theorem 3.3. �
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Chapter 7
Extensions and Robust Estimation (2)

Abstract We further consider the asymptotic robustness of the SIML estimator
under the micro-market price adjustment mechanisms in two-dimensional processes.
In particular, we investigate the estimation problem of integrated volatility, covari-
ance and the resulting hedging coefficient in the round-off error models, which is
a nonlinear transformation of hidden process, and the price adjustment models. We
also investigate the effects of random sampling observations.

7.1 Introduction

In this chapter, we investigate further the properties of the SIML estimation of inte-
grated volatility, covariance, and the hedging coefficient when we have round-off
error, micro-market noise, and randomly sampled data. Actual high-frequency finan-
cial data are recorded at random times, and the effects of this randomness could be
significant when we have round-off error and micro-market noise. Empirically we
have price adjustments mechanisms such as the minimum price change and the
minimum order size and we observe bid-ask spreads in financial markets.

Also, non-synchronous sampling on the coviance estimation in high-frequency
financial data is common. That is, actual transactions of two or more different finan-
cial commodities often occur at different high-frequency time periods. The prob-
lem of estimating covariance from non-synchronous data was first investigated by
Hayashi and Yoshida (2005), who proposed the so-called Hayashi–Yoshida (H-Y)
method for the situation in which there is no micro-market noise. There are several
possible random sampling schemes for covariance estimation, and we shall adopt
the refreshing scheme developed by Bandorff-Nielsen, et al. (2011). By synchro-
nizing financial data, we consider the problem of estimating hedging coefficient and
correlation coefficients when we have micro-market noise. These quantities have
important roles in hedging risk and risk management. Because we must estimate the
volatility as well as the covariances for this purpose, it may be difficult to use the
H-Y method directly when we have micro-market noise.
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7.2 A Two-Dimensional Model

Let ys(t si ) be the i th observation of the (log-) price of the first asset at t si for 0 =
t s0 < t s1 < · · · < t sn∗

s
≤ 1 and y f (t

f
j ) be the j-th observation of the (log-) price of the

second asset at t fj for 0 = t f0 < t f1 < · · · < t fn∗
f
≤ 1, where t sn∗

s
= maxt si ≤1{t si }, t fn∗

f
=

maxt fi ≤1{t fi } and we denote na (a = s, f ) as constant indexes and n∗
a (a = s, f ) as

(bounded) stochastic indexes.
We consider the situation in which the observed (log-)prices differ from the cor-

responding underlying continuous process Xs(t) and X f (t) (0 ≤ t ≤ 1), respec-
tively. The two-dimensional continuous stochastic process X(t) = (Xs(t), X f (t))

′

is a Brownian semi-martingale with

X(t) = X(0) +
∫ t

0
μx (s)ds +

∫ t

0
Cx (s)dB(s) (0 ≤ t ≤ 1), (7.1)

where μx (s) and Cx (s) are the 2 × 1 drift terms and the 2 × 2 volatility matrix,
respectively, which are progressively measurable with respect to the σ -fieldFt and
B(s) is two-dimensional Brownian motion.

The first statistical objective is to estimate the quadratic variation or the integrated
volatility matrix

Σ x =
∫ 1

0

(
σ (x)
ss (r) σ

(x)
s f (r)

σ
(x)
s f (r) σ

(x)
f f (r)

)
dr =

(
σ (x)
ss σ

(x)
s f

σ
(x)
s f σ

(x)
f f

)
(7.2)

of the underlying continuous processX(t) (0 ≤ t ≤ 1) from the set of discrete obser-
vations on (ys(t si ), y f (t

f
j )) with i = 1, . . . , n∗

s and j = 1, . . . , n∗
f .

Assumption 7-I: The Brownian semi-martingale (7.1) satisfies the condition on
drift and volatility terms such that μx (s) and Cx (s) are continuous and bounded in
s ∈ [0, 1].

The basic high-frequency financial market model with micro-market noises can
be represented by

ys(t
s
i ) = Xs(t

s
i ) + vs(t

s
i ) , y f (t

f
j ) = X f (t

f
j ) + v f (t

f
j ) , (7.3)

where the underlying process X (t) = (Xs(t), X f (t))
′
is the Brownian semi-martin-

gale given by (7.1). In the basic model, we assume that vs(t si ) and v f (t
f
j ) are a

sequenceof i.i.d. randomvariableswithE(vs(t si )) = 0,E(v f (t
f
j )) = 0,E(vs(t si )

2) =
σ (v)
ss , E(v f (t

f
j )2) = σ

(v)
f f , E(vs(t si )v f (t

f
j )) = δ(t si , t

f
j )σ

(v)
s f , where δ(·, ·) is the indi-

cator function.
With some notational complications, it is possible to extend the basic case with

random sampling to several directions. First, we can consider the cases in which
vs(t si ) and v f (t

f
j ) are discrete stationary time series processes satisfying
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vs(t
s
i ) =

∞∑
j=0

θ s
jws(t

s
i− j ) , v f (t

f
i ) =

∞∑
j=0

θ
f
j w f (t

f
i− j ) , (7.4)

where there exist ρa (0 ≤ ρa < 1; a = s, f ) such that θa
j = O(ρ

j
a ) andws(tai ) (a =

s, f ) are a sequenceof independent randomvariableswithE(ws(t si )) = 0,E(w f (t
f
j ))

= 0, E(ws(t si )
2) < ∞, and E(w f (t

f
j )2) < ∞. We define the sequence of random

variables wa(tai ) = 0 for tai < 0 (a = s, f ), and we maintain the (weak) stationarity
conditions of va(tai ) in the MA representation (7.4) to simplify our arguments.

Second, an important aspect of (7.3) is the fact that it is an additive (signal-plus-
noise) measurement error model. However, there are some reasons why the basic
model (7.3) is insufficient for applications as discussed in Chap.6. Then we shall
further consider several examples of the more general situation when the observed
(log-)prices ya(tai ) are the sequence of discrete stochastic processes generated by

ya(t
a
i ) = ha

(
X(tai ), ya(t

a
i−1), ua(t

a
i )

)
(a = s, f ), (7.5)

where ha( · ) are measurable functions, the (unobservable) continuous martingale
process X(t) (0 ≤ t ≤ 1) is defined by (7.3), and the micro-market noise ua(tai ) and
u f (t

f
j ) are discrete stochastic processes.

We are interested in special cases in the form of (7.1) and (7.5), which reflect the
important aspects regardingmodeling financial markets and high-frequency financial
data. As a nonlinear transformation, we consider the case in which ya(tni ) = Pa(tni )

and
Pa(t

a
i ) = ga,η

[
Xa(t

a
i ) + ua(t

a
i )

]
, (7.6)

where the micro-market noise term ua(tai ) are sequences of i.i.d. random variables
with E[ua(tai )] = 0, E[ua(tai )2] = σ 2

a,u , the nonlinear function

ga,η(x) = ηa

[
x

ηa

]
(7.7)

is the round-off part of x , [x] is the largest integer equal to or less than x , and the
ηa are (small) positive constants.

Another directionmaybe the (linear)micro-market price adjustmentmodel,which
is given by ya(tai ) = Pa(tai ) (i = 1, . . . , n∗

a; a = s, f ) and

Pa(t
a
i ) − Pa(t

a
i−1) = ba

[
Xa(t

a
i ) − Pa(t

a
i−1)

] + ua(t
a
a ) , (7.8)

where Xa(t) (the intrinsic value of a security at time t) and Pa(tai ) are the observed
log-price at tai , the adjustment (constant) coefficients are ba (0 < ba < 2), and ua(tai )

is an i.i.d. noise sequence with E[u(tai )] = 0 and E[u(tai )2] = σ 2
aa .

Also, if we set ya(tai ) = Pa(tai ) and
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Pa(t
a
i ) − Pa(t

a
i−1) = gη,a

[
Xa(t

a
i ) − Pa(t

a
i−1) + ua(t

a
i )

]
, (7.9)

where the round-off error function ga,η(x) is defined by (7.7), and ua(tai ) is a sequence
of i.i.d. noise with E[ua(tai )] = 0 and E[ua(tai )2] = σ 2

aa .
The basic (high-frequency) financial model with micro-market noise is a spe-

cial case when the underlying process X (t) = (Xs(t), X f (t))
′
is given by (7.1).

The synchronous sampling means t si = t fi , and the fixed grid observation means
tai − tai−1 = n−1. There can be special cases of (7.5) such as (7.6), (7.8), and (7.9)
when we have micro-market adjustment models and non-synchronous observations
as well as random sampling. In this chapter, we consider the situation in which
the high-frequency data are observed at random time tai (a = s or f ) under some
conditions on random sampling. There are several ways to handle the problem of
non-synchronously observed data for covariance estimation. Hayashi and Yoshida
(2005), for instance, introduced the Hayashi–Yoshida method of covariance estima-
tion, which is given by

HY(s, f ) =
∑
i, j

[ys(t si ) − ys(t
s
i−1)][y f (t

f
j ) − y f (t

f
j−1)]I[(t si − t si−1) ∩ (t fj − t fj−1) �= φ] .

(7.10)
In this chapter, however, we mainly adopt the refreshing time method developed
by Harris et al. (1995) and used by Bandorff-Nielsen, et al. (2011). Define 0 =
t0, t1 = max{t s1 , t f1 } and tnj+1 = max{t sNs

j +1, tN f
j +1}, where taNa

j +1 are random times

for ya(taj ) (a = s, f ), and Na
j is the corresponding counting process. We denote

the resulting random times as 0 = t0 < t1 < · · · < tn∗ and the random number of
observations as n∗. Then the resulting counting process Nn

j and n∗ are finite-valued
random variables in [0, 1] for any finite n, and we denote tnn∗ (≤ 1) is the last trans-
action time before the market closing time in a day. We sometimes use the notations
n and n∗ for na and n∗

a (a = s, f ), respectively, for the sake of notational simplicity
in the following analysis and statements whenever there is no cause of confusion.

Assumption7-II: The samplingprocess {tnj } is independent of the underlyingprocess{X (t)}, and n∗ is a finite-valued random variable in [0, 1] for any n. There exist
positive constants cs, c f , c and an increasing sequence of fixed n such that as n → ∞

tn∗
p−→ 1 ,

n∗
a

n
p−→ ca (a = s or f ) ,

n∗

n
p−→ c . (7.11)

Let Δn
j t
n
j = tnj − tnj−1 = (1/n)Dn

j be a sequence of Fn, j−1−adapted random vari-
ables. The bounded increasing continuous process τ(t) with τ(0) = 0, τ (1) = 1
and the continuous process d(t) (0 ≤ t ≤ 1) are well-defined such that tnj = τ(t) +
Op(n−γ1) (γ1 > 0) and Dn

j = d(t) + Op(n−γ2) (γ2 > 0) uniformly in t (t ∈ (0, 1])
as j (n)/n → t and n → ∞.

These conditions imply that tnj
p→ τ(t), Dn

j
p→ d(t) and [Dn

j (t)]2
p→ d(t)2 uni-

formly (as j (n)/n → t and n → ∞), where E
[|tni − tni−1|

] = O(n−1) is propor-
tional to the average duration on intervals in [0, 1] for any fixed n. For the standard
normalization,weoften take cs = c f = 1or c = 1 in the following analysis.A typical
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example of random sampling is Poisson sampling on tai with the intensity functions
λ(a)
n = nca (a = s, f ). In this case, the (mutually) independent random durations
Da

i (a = s, f ) are exponentially distributed with E(Da
i ) = 1, nDa

i = tai − tai−1 and
τ(t) = t (0 < t ≤ 1) if we take the normalization c = 1.

Integrated Hedging Ratio and Correlation

We illustrated the use of the hedging coefficient in Chap.4. For financial risk-
managements, the role of hedging coefficient and correlation coefficient has often
been discussed in the literature on financial futures (see (Duffie 1989) for instance).
Then it is important to estimate the hedging ratio and the correlation coefficient from
a set of discrete sampled price or log-price data. The (integrated) hedging ratio based
on high-frequency financial data can be defined by

H = σ
(x)
s f

σ
(x)
f f

. (7.12)

The (integrated) correlation coefficient between two prices can be defined by

ρs f = σ
(x)
s f√

σ
(x)
ss σ

(x)
f f

. (7.13)

7.3 Asymptotic Properties of SIML Estimation

It is important to investigate the asymptotic properties of the SIML estimator when
the volatility function Σx (s) is not constant over time. The asymptotic properties of
the SIML estimator were given in Chap.3. We give a slightly general result as the
next proposition when the observations are randomly sampled in this section. For
the case of stochastic volatility and covariance in continuous-time, we assume that
Cx (t) = (c(x)

i j ) (2 × 2) follows

c(x)
i j (t) = c(x)

i j (0) +
∫ t

0
μσ
i j (s)ds +

∫ t

0
ωσ
i j (s)dB

σ (s) , (7.14)

where the drift coefficients μσ
i j (s) and diffusion vectors (1 × 2) ωσ

i j (s) of the volatil-
ities are extensively measurable, continuous, and bounded, and Bσ (s) is a 2 × 1
Brownian motion vector which can be correlated with B(s).

The asymptotic properties of the SIML estimator when data are randomly sam-
pled can be summarized as Theorem 7.1, the proof of which is given in the last
section of this chapter. We often use the notations n and n∗ for na and n∗

a (a = s, f ),
respectively, whenever no confusion arising from doing so.
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Theorem 7.1 We assume that X (t) and va(tai ) (a = s, f, i, j ≥ 1) in (7.1) and
(7.3) are independent and va(tai ) are sequences of independent ranfom variables
with E[vs(t si )] = 0 and E[v f (t

f
j )2] < ∞. Also, we assume the conditions on Cx (s)

in (7.14) and Σ x in (7.2) is nonnegative definite, and we involke Assumptions 7-I
and 7-II with c = 1 as the normalization. We further assume that E[vs(t si )4] < ∞,

E[v f (t
f
j )4] < ∞.

(i) For mn = [nα] and 0 < α < 0.5, as n −→ ∞, mn∗/mn
p→ 1,

σ̂ (x)
ss − σ (x)

ss
p−→ 0 , σ̂

(x)
f f − σ

(x)
f f

p−→ 0 (7.15)

and
σ̂

(x)
s f − σ

(x)
s f

p−→ 0 . (7.16)

(ii) For mn∗ and 0 < α < 0.5, as n −→ ∞, mn∗/mn
p→ 1,

√
mn

[
σ̂ (x)
ss − σ (x)

ss

] L −s−→ N [0, Vss] ,
√
mn

[
σ̂

(x)
f f − σ

(x)
f f

]
L −s−→ N

[
0, V f f

]
,

(7.17)
and √

mn

[
σ̂

(x)
s f − σ

(x)
s f

]
L −s−→ N

[
0, Vs f

]
, (7.18)

where Zn
L −s−→ Z is the stable convergence in law with

Vss = 2
∫ 1

0

[
σ (x)
ss (τ (s))

]2
d(s)ds , V f f = 2

∫ 1

0

[
σ

(x)
f f (τ (s))

]2
d(t)ds (7.19)

and

Vs f =
∫ 1

0

[
σ (x)
ss (τ (s))σ (x)

f f (τ (s)) + (σ
(x)
s f (τ (s)))2

]
d(s)ds . (7.20)

We make some remarks on the conditions we have used in Theorem 7.1 and some
possibilities of extending them.

First, we have given Theorems3.1, 3.3, and 3.4 for the basic case, the time-
changing deterministic case, and the time-changing stochastic case of volatility in
Chap.3, respectively.We have presented the basic result for these cases with stochas-
tic sampling. It may be possible to extend the results tomore general cases such as the
round-off error and micro-market price adjustment models we mentioned in Chap. 6.
Nonetheless, we only show some simulation results in Sect. 7.4 for these models.

Second, when vs(t si ), v f (t
f
j ) (i, j ≥ 1) are autocorrelated and have the repre-

sentation (7.4) with the fourth-order moment conditions that E[ws(t si )
4] < ∞

and E[w f (t
f
j )4] < ∞, we can strengthen the same result in Theorem7.1 with

0 < α < 0.4.
Third, when the variance–covariance matrix is constant, the number of obser-

vations is constant as n∗ = n, whereupon t si − t si−1 = 1/n, t fj − t fj−1 = 1/n (i, j =
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1, . . . , n) and τ(t) = t, d(t) = 1, τ (t) − τ(s) = t − s for 0 < s < t < 1, σ (x)
ss (s) =

σ (x)
ss , σ

(x)
f f (s) = σ

(x)
f f , σ

(x)
s f (s) = σ

(x)
s f , τ (t) = t, d(t) = 1, τ (t) − τ (s) = t − s for

0 ≤ s < t ≤ 1. The asymptotic variance and covariance are given by

Vss = 2[σ (x)
ss ]2 , Vs f = σ (x)

ss σ
(x)
f f + [σ (x)

s f ]2 . (7.21)

There can be several cases in which we have the representation of (7.5) and (7.6)
instead of (7.3) we have mentioned. We can extend the asymptotic results further,
but we omit the details in this chapter.

By using the estimators of integrated volatility and integrated covariance, the
SIML estimator of the hedging ratio H = σ

(x)
s f /σ

(x)
f f is defined by (7.12). From The-

orem7.1, we use the standard delta method to approximate the normalized hedging
estimator around the true coefficient as

√
mn(Ĥ − H) ∼ 1

σ
(x)
f f

√
mn(σ̂

(x)
s f − σ

(x)
s f ) − σ

(x)
f s

(σ
(x)
f f )2

√
mn(σ̂

(x)
f f − σ

(x)
f f ) .

Then by evaluating the asymptotic variances and covariance V(σ̂
(x)
f s ), V(σ̂

(x)
f f ) and

Cov(σ̂ (x)
f f , σ̂

(x)
f s ) (see Theorems3.3 and 7.1), the resulting asymptotic variance as

V [Ĥ ] =
[

1

σ
(x)
f f

]2

Vs f +
[

σ
(x)
s f

σ
(x)2
f f

]2

V f f − 4
σ

(x)
s f

σ
(x)3
f f

∫ 1

0
σ

(x)
s f (τ (s))σ (x)

f f (τ (s))d(s)ds .

(7.22)
Although this formula looks complicated, when the volatility and covariance func-
tions are constant in the basic case with the fixed (non-random) intervals, we have
the next result.

Corollary 7.1 Assume that the instantaneous volatility matrix Cx (s) and Σ x are
constant in the basic case with the fixed (non-random) intervals. Then the asymptotic

variance of the limiting distribution of
√
mn

[
Ĥ − H

]
is given by

ωH = σ (x)
ss

σ
(x)
f f

[
1 − σ

(x)2
s f

σ
(x)
ss σ

(x)
f f

]
. (7.23)

7.4 Further Simulations

We have conducted large number of simulations. For each table, we have calculated
the historical volatility (the realized volatility, RV), the realized co-volatiltity (RCV),
the Hayashi–Yoshida (HY) estimator, and the SIML estimator. In tables, Raw means
the estimates based on all simulated data and 10s means the estimates based on the
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simulated data at each grid of 10 s. We used the round-off error and micro-market
price adjustment models which correspond to those in Sect. 7.2. From many Monte
Carlo simulations, we summarize our main results in Tables7.1, 7.2, 7.3, 7.4, and
7.5.

In Table 7.2, we use the EACD(1,1) model, as proposed originally by Engle and
Russell (1998). Financial econometricians are interested in the exponential autore-
gressive conditional duration (EACD) models because the assumption of Poisson
random sampling leads to a sequence of i.i.d. randomvariables for durationswhereas
we may have the dependent structure on the observed durations, which are length of
execution times of traded prices. Although there are many types of duration depen-
dent models, we use the EACD(1,1) model as a representative one. For a = s or f,
let τ a

i = tai − tai−1 and τ a
i = ψa

i εai , where

ψa
i = ω + δεai + γψa

i−1 (7.24)

and εai are a sequenceof i.i.d. exponential randomvariableswith δ > 0, γ > 0, ω > 0
E[εai ]=0 and V [εai ]=1. We set δ=0.06, γ=0.9 and ω = 0.04 because ω = (average
duration)×[1 − (δ + γ )] when n ∼ 1800 and n ∼ 18,000 with the standardization
of 1s. The number of replications is 1000 in all cases.

In our simulations, we use several nonlinear transformation models in the form
of (7.5). We take Xs(t si ) and X f (t

f
j ) individually and each model in our simulation

corresponds to

Model 1 ha,1(x, y, u) = x + u ,

Model 2 ha,2(x, y, u) = ga,η(x + u) (where ga,η(z) = ηa[z/ηa] (7.7)) ,

Model 3 ha,3(x, y, u) = y + ba(x − y) + u (ba : constants) ,

Model 4 ha,4(x, y, u) = y + gηa ,a(x − y + u)

(where ga,η(z) = ηa[z/ηa] (7.7)) ,

Model 5 ha,5(x, y, u) = y + u +
{
b1,a(x − y) if x ≥ y
b2.a(x − y) if x < y

,

where bi,a (i = 1, 2; a = s, f ) are constants.
For the sake of simplicity, in our simulations for a = s, f , we set λa = λ (Poisson

intensity), ba = b, bi,a = bi (i = 1, 2) and the same values for parameters in two-
dimensional process. We also standardized the value of λ and other parameters such
that we have approximately n ∼ 1,800 and n ∼ 18,000 (i.e., ca ∼ 1 and c ∼ 1 in
Assumption 7-II), we only give the case of n ∼ 18,000 in this chapter. In Table 7.1,
the average and standard deviations are 17,995 and 139 in actual 1000 replications,
respectively, for instance.

Model 1 is the basic (signal-plus-noise) additive model and Model 2 is the basic
round-off errormodel.Model 3 corresponds to the linear price adjustmentwithmicro-
market noise and when the adjustment coefficients 0 < ba < 2, which is a sufficient
condition for the corresponding adjustment mechanism to be ergodic. Model 4 is the
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micro-market model with round-off error and price adjustments, and Model 5 is the
micro-market noise model with asymmetric nonlinear price adjustment.

When there are micro-market noise components with the martingale signal part,
the values of realized variance (RV) and realized covariance (RCV) often differ
substantially from the true integrated variance and covariance of the signal part.
However, we have found that it is possible to use SIML estimation for the integrated
volatilities, integrated covariance, and noise variances when we have the signal-to-
noise ratio as 10−2 ∼ 10−6. Although we have omitted the details, the estimation
results are similar in the stochastic volatility model.

Table7.1 gives the simulation results for the basic round-off error models with
Poisson sampling and constant intensity λ. Since there are two variables, we say
σ 2
xi (i = 1, 2) and σ 2

vi (i = 1, 2) are the variances of each intrinsic variables and
noises. RVi (i = 1, 2) are the realized volatilities, and RCV corresponds to the real-
ized covariance. To construct the estimator of hedging coefficient, there can be several
combinations of the covariance and variance estimates, and we have denoted RCV-
RC, HY-RV, and SIML-SIML. As we showed in Chap. 6, the SIML estimator may
dominate the existing methods including the realized kernel method and the pre-
average method in some round-off error cases. Selected simulation results for other
linear and nonlinear price adjustment models are given in Tables7.3, 7.4, and 7.5.

For the covariance estimation, we have confirmed that using the H-Y method
improves the historical covariancemethod aswas pointed out byHayashi andYoshida
(2005) in the absence of micro-market noise. However, in the presence of micro-
market noise, the volatility estimation bias of the H-Y method can be large, whereas
SIML estimation gives reasonable estimates of the hedging coefficient. There are
alternative ways to use the integrated volatility and integrated covariance for estimat-
ing the hedging coefficient, but the SIML-SIML combination (i.e., SIML volatility
estimate and SIML covariance estimate) gives reasonable estimates in all cases that
we investigated. This point is vivid and important for practical risk management
purposes, from Tables7.1, 7.2, 7.3, 7.4, and 7.5.

By examining these results of our simulations in addition to the basic cases in
Chap.4, we conclude that we can estimate the integrated volatility and integrated
covariance of the hidden continuous part reasonably well by SIML estimation. It may
be surprising to find that the SIMLmethod gives reasonable estimates even when we
have nonlinear transformations of the original unobservable security (intrinsic) val-
ues. We conducted large number of further simulations, but the results are essentially
the same to those reported in this section.

7.5 On Mathematical Derivations

In this subsection, we give some details of the proof of Theorem 7.1. The method of
our derivations is essentially the same to the derivations reported in Chaps. 5 and 6,
but we need some extra arguments. We denote Ki (i ≥ 1) as positive constants.
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Table 7.1 Estimation of covariance and hedging coefficient : Model 2 (n ∼ 18, 000; η = 0.001)

18000 True Raw 1s 10s 300s

σ 2
x1 2.00E-04 2.04E-04 2.05E-04 2.06E-04 2.10E-04

4.20E-05 4.20E-05 6.76E-05 1.33E-04

σ 2
v1 2.00E-06 2.09E-06 9.77E-07 2.10E-06 3.09E-06

5.94E-08 3.14E-08 1.43E-07 8.60E-07

RV1 2.00E-04 7.52E-02 4.76E-02 7.69E-03 4.52E-04

1.14E-03 8.33E-04 2.90E-04 8.81E-05

σ 2
x2 2.00E-04 2.05E-04 2.06E-04 2.07E-04 2.10E-04

4.26E-05 4.27E-05 6.70E-05 1.31E-04

σ 2
v2 2.00E-06 2.09E-06 9.78E-07 2.12E-06 3.09E-06

5.75E-08 3.20E-08 1.51E-07 8.75E-07

RV2 2.00E-04 7.52E-02 4.76E-02 7.71E-03 4.52E-04

1.13E-03 8.11E-04 2.99E-04 8.90E-05

σ 2
x12 1.00E-04 1.00E-04 9.99E-05 1.02E-04 1.07E-04

3.60E-05 3.36E-05 5.11E-05 1.05E-04

σ 2
v12 0.00E+00 5.68E-10 −8.17E-10 1.48E-08 5.24E-07

4.81E-08 1.98E-08 1.05E-07 6.01E-07

RCV 1.00E-04 8.59E-05 4.57E-05 1.02E-04 1.03E-04

5.66E-04 3.99E-04 2.18E-04 6.46E-05

HY 1.00E-04 1.00E-04

4.03E-04

RCV-RV 5.00E-01 1.14E-03 9.64E-04 1.32E-02 2.28E-01

7.52E-03 8.40E-03 2.83E-02 1.37E-01

HY-RV 5.00E-01 1.34E-03 2.11E-03 1.31E-02 2.29E-01

5.36E-03 8.46E-03 5.25E-02 9.48E-01

SIML-SIML 5.00E-01 4.91E-01 4.85E-01 4.99E-01 5.17E-01

1.45E-01 1.30E-01 2.02E-01 5.21E-01

(Step-1) The first step is to argue that the effects of random sampling and drift
terms in the underlying stochastic processes are stochastically negligible under our
assumptions.

Although tni and n∗ are random variables, which are finite-valued and bounded
in [0, 1] for any n. We write yai = xai + va

i with a = s or f, where yai = ya(tni ) and
xai = Xa(tni ) in the basic case.We set yni = (ys(tni ), y f (tni ))

′
, xni = (xs(tni ), x f (tni ))

′
,

and we write the underlying (unobservable) returns in the period (tni−1, t
n
i ] as

rni = xni − xni−1 =
∫ tni

tni−1

μx (s, X (s))ds +
∫ tni

tni−1

Cx (s)dBs (i = 1, . . . , n∗) (7.25)

and the martingale part as
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Table 7.2 Estimation of covariance and hedging coefficient : Model 1 (ACD, n ∼ 18, 000)

18,000 True Raw 1s 10s 300s

σ 2
x1 2.00E-04 2.05E-04 2.06E-04 2.05E-04 2.03E-04

4.30E-05 4.27E-05 6.64E-05 1.27E-04

σ 2
v1 2.00E-06 2.00E-06 9.32E-07 2.03E-06 2.98E-06

5.55E-08 3.36E-08 1.41E-07 8.14E-07

RV1 2.00E-04 7.22E-02 4.51E-02 7.40E-03 4.38E-04

1.62E-03 9.34E-04 3.01E-04 8.63E-05

σ 2
x2 2.00E-04 2.05E-04 2.06E-04 2.07E-04 2.12E-04

4.25E-05 4.27E-05 6.85E-05 1.42E-04

σ 2
v2 2.00E-06 2.01E-06 9.31E-07 2.03E-06 3.04E-06

5.58E-08 3.34E-08 1.46E-07 8.41E-07

RV2 2.00E-04 7.22E-02 4.52E-02 7.41E-03 4.45E-04

1.78E-03 9.57E-04 3.02E-04 8.89E-05

σ 2
x12 1.00E-04 1.01E-04 1.00E-04 1.02E-04 1.03E-04

3.70E-05 3.37E-05 5.13E-05 1.03E-04

σ 2
v12 0.00E+00 -9.58E-10 -3.15E-10 6.07E-09 4.83E-07

4.56E-08 1.83E-08 1.03E-07 5.84E-07

RCV 1.00E-04 7.51E-05 3.09E-05 8.39E-05 1.00E-04

5.01E-04 3.78E-04 2.16E-04 6.06E-05

HY 1.00E-04 1.31E-04

3.80E-04

RCV-RV 5.00E-01 1.04E-03 6.88E-04 1.13E-02 2.32E-01

6.94E-03 8.36E-03 2.91E-02 1.39E-01

HY-RV 5.00E-01 1.81E-03 2.90E-03 1.78E-02 3.10E-01

5.26E-03 8.41E-03 5.14E-02 9.22E-01

SIML-SIML 5.00E-01 4.90E-01 4.85E-01 4.98E-01 5.24E-01

1.46E-01 1.28E-01 2.06E-01 5.14E-01

r∗
i =

∫ tni

tni−1

Cx (s)dBs (i = 1, . . . , n∗) (7.26)

with 0 = t0 ≤ tn1 < · · · < tnn∗ ≤ 1. By using Assumptions I and II, we have n∗/n =
1 + op(1),

E[‖rnj‖2] = E[‖
∫ tni

tni−1

μx (s)ds|2] + 2E
[( ∫ tni

tni−1

μx (s)ds

)′

r∗
i

]
+ E[‖r∗

i ‖2] ,

and

E[‖
∫ tni

tni−1

Cx (s)dBs −
∫ tni

tni−1

Cx (t
n
i−1)dBs‖2] = O

((
1

n

)2)
.
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Table 7.3 Estimation of covariance and hedging coefficient : Model 3 (b = 0.2, n ∼ 18, 000)

18,000 True Raw 1s 10s 300s

σ 2
x1 2.00E-04 2.25E-04 2.28E-04 2.09E-04 2.15E-04

4.53E-05 4.53E-05 6.83E-05 1.38E-04

σ 2
v1 2.00E-06 6.27E-07 5.63E-07 4.31E-06 6.53E-06

1.78E-08 1.67E-08 3.12E-07 1.80E-06

RV1 2.00E-04 4.00E-02 3.63E-02 1.74E-02 8.59E-04

5.26E-04 5.97E-04 7.05E-04 1.81E-04

σ 2
x2 2.00E-04 2.27E-04 2.29E-04 2.10E-04 2.13E-04

4.74E-05 4.78E-05 6.83E-05 1.34E-04

σ 2
v2 2.00E-06 6.27E-07 5.63E-07 4.30E-06 6.45E-06

1.73E-08 1.71E-08 2.99E-07 1.81E-06

RV2 2.00E-04 4.00E-02 3.63E-02 1.74E-02 8.55E-04

5.37E-04 5.98E-04 6.80E-04 1.74E-04

σ 2
x12 1.00E-04 9.98E-05 9.96E-05 1.02E-04 1.06E-04

3.80E-05 3.66E-05 5.16E-05 1.07E-04

σ 2
v12 0.00E+00 5.23E-11 -3.47E-10 5.64E-09 5.67E-07

2.06E-08 1.14E-08 2.12E-07 1.30E-06

RCV 1.00E-04 2.40E-05 1.16E-05 6.91E-05 1.05E-04

3.42E-04 2.87E-04 4.83E-04 1.30E-04

HY 1.00E-04 2.74E-05

3.75E-04

RCV-RV 5.00E-01 5.94E-04 3.18E-04 3.96E-03 1.23E-01

8.55E-03 7.91E-03 2.77E-02 1.50E-01

HY-RV 5.00E-01 6.83E-04 7.46E-04 1.57E-03 2.98E-02

9.39E-03 1.04E-02 2.16E-02 4.63E-01

SIML-SIML 5.00E-01 4.43E-01 4.36E-01 4.89E-01 5.08E-01

1.45E-01 1.36E-01 2.05E-01 4.93E-01

Then we can evaluate as

E[‖rni ‖2 −
∫ tni

tni−1

tr(Σ x (s))ds] = O

((
1

n

)3/2)
. (7.27)

Hence, we find that drift terms have negligible effects on the estimation of the inte-
grated volatility function under Assumptions I and II.

Similarly, we can use that n∗/n
p→ 1 and

n∗∑
j=1

∫ tnj

tnj−1

Σ x (s)ds −
∫ 1

0
Σ x (s)ds

p→ O , (7.28)
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Table 7.4 Estimation of covariance and hedging coefficient : Model 4 (η=0.001, n ∼ 18,000)

18,000 True Raw 1s 10s 300s

σ 2
x1 2.00E-04 2.04E-04 2.05E-04 2.06E-04 2.11E-04

4.20E-05 4.19E-05 6.76E-05 1.34E-04

σ 2
v1 2.00E-06 2.09E-06 9.76E-07 2.11E-06 3.09E-06

5.82E-08 3.12E-08 1.45E-07 8.68E-07

RV1 2.00E-04 7.52E-02 4.76E-02 7.69E-03 4.51E-04

1.12E-03 8.45E-04 2.90E-04 8.90E-05

σ 2
x2 2.00E-04 2.05E-04 2.06E-04 2.06E-04 2.10E-04

4.26E-05 4.26E-05 6.68E-05 1.31E-04

σ 2
v2 2.00E-06 2.09E-06 9.79E-07 2.12E-06 3.07E-06

5.75E-08 3.22E-08 1.56E-07 8.75E-07

RV2 2.00E-04 7.52E-02 4.76E-02 7.71E-03 4.51E-04

1.13E-03 8.21E-04 3.05E-04 8.98E-05

σ 2
x12 1.00E-04 1.00E-04 9.99E-05 1.02E-04 1.07E-04

3.59E-05 3.35E-05 5.11E-05 1.05E-04

σ 2
v12 0.00E+00 -3.00E-10 -1.33E-09 1.39E-08 5.15E-07

4.74E-08 1.97E-08 1.04E-07 6.03E-07

RCV 1.00E-04 7.50E-05 4.12E-05 1.02E-04 1.02E-04

5.60E-04 3.98E-04 2.17E-04 6.47E-05

HY 1.00E-04 9.48E-05

3.99E-04

RCV-RV 5.00E-01 9.95E-04 8.70E-04 1.32E-02 2.27E-01

7.45E-03 8.37E-03 2.82E-02 1.38E-01

HY-RV 5.00E-01 1.26E-03 2.00E-03 1.23E-02 2.12E-01

5.30E-03 8.38E-03 5.19E-02 9.31E-01

SIML-SIML 5.00E-01 4.91E-01 4.86E-01 4.99E-01 5.19E-01

1.44E-01 1.30E-01 2.02E-01 5.17E-01

where upon

E[
∫ tni

tni−1

Σ x (s)ds] = O

(
1

n

)
. (7.29)

We note that the volatility function Σ x (s) (0 ≤ s ≤ 1) and the integrated volatility
Σ x = ∫ 1

0 Σ x (s)ds can be stochastic.
By above arguments, we advance the present proof as if n∗ were fixed and were

replaced by the corresponding fixed n.
Then we use the fixed n (and mn∗ ) as if it were n∗ (and mn) in the following

developments of this section for the sake of simplicity. (Basically we need to replace
n by n∗ in each step, and then we invoke many tedious arguments because n∗ is
stochastic.)
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Table 7.5 Estimation of covariance and hedging coefficient : Model 5 (b1 = 0.2, b2 = 5; n ∼
18, 000)

18,000 True Raw 1s 10s 300s

σ 2
x1 2.00E-04 2.15E-04 2.17E-04 2.08E-04 2.15E-04

4.36E-05 4.35E-05 6.83E-05 1.36E-04

σ 2
v1 2.00E-06 7.24E-07 6.00E-07 3.59E-06 4.98E-06

2.07E-08 1.81E-08 2.59E-07 1.37E-06

RV1 2.00E-04 4.29E-02 3.69E-02 1.37E-02 6.75E-04

5.75E-04 6.15E-04 5.55E-04 1.40E-04

σ 2
x2 2.00E-04 2.16E-04 2.18E-04 2.09E-04 2.13E-04

4.51E-05 4.53E-05 6.79E-05 1.33E-04

σ 2
v2 2.00E-06 7.23E-07 6.01E-07 3.59E-06 4.94E-06

2.00E-08 1.86E-08 2.47E-07 1.39E-06

RV2 2.00E-04 4.29E-02 3.69E-02 1.37E-02 6.74E-04

5.91E-04 6.10E-04 5.44E-04 1.37E-04

σ 2
x12 1.00E-04 1.01E-04 1.01E-04 1.03E-04 1.08E-04

3.71E-05 3.51E-05 5.17E-05 1.07E-04

σ 2
v12 0.00E+00 6.82E-11 -4.05E-10 9.73E-09 5.53E-07

2.26E-08 1.22E-08 1.81E-07 9.86E-07

RCV 1.00E-04 3.27E-05 1.98E-05 8.14E-05 1.05E-04

3.54E-04 2.95E-04 3.88E-04 1.01E-04

HY 1.00E-04 3.81E-05 0.00E+00 0.00E+00 0.00E+00

3.70E-04 0.00E+00 0.00E+00 0.00E+00

RCV-RV 5.00E-01 7.58E-04 5.39E-04 5.92E-03 1.56E-01

8.26E-03 8.00E-03 2.84E-02 1.48E-01

HY-RV 5.00E-01 8.89E-04 1.03E-03 2.80E-03 5.56E-02

8.63E-03 1.01E-02 2.71E-02 5.80E-01

SIML-SIML 5.00E-01 4.69E-01 4.63E-01 4.96E-01 5.14E-01

1.44E-01 1.33E-01 2.04E-01 4.95E-01

(Step-2) Let Z (1)
in and Z (2)

in (i = 1, . . . , n) be the i th elements of n × 2 vectors

Z(1)
n = h−1/2

n PnC−1
n (Xn − Ȳ0) , Z(2)

n = h−1/2
n PnC−1

n Vn, (7.30)

respectively, where Xn = (x
′
i ) = (xsi , x

f
i ), Vn = (v

′
i ) = (vs

i , v
f
i ), Xn = (z

′
in) are

n × 2 vectors with zin = z(1)
in + z(2)

in and Pn is defined by (3.11).
We write zs( j)kn and z f ( j)

kn ( j = 1, 2) as the first and second components of zkn , and
we use the notations zs, jkn and z f, j

kn ( j = 1, 2) for the jth components of zskn and z f
kn ,

respectively. Then we can use the arguments in Chap. 5.

(Step-3) We take σ̂ (x)
ss as the estimator of σ (x)

ss because we can use the similar
arguments to σ

(x)
f f and σ

(x)
s f . We give the asymptotic variance of the leading term of
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√
mn

[
σ̂ (x)
ss − σ (x)

ss

] = √
mn

[
(1/mn)

mn∑
k=1

(zskn)
2 − σ (x)

ss

]
,

that is,
√
mn

[
1

mn

mn∑
k=1

(zs,(1)kn )2 − σ (x)
ss

]
(7.31)

because it is of order Op(1). We write

zs,(1)kn =
√

n

2n + 1

n∑
j=1

r sj (e
iθk j + e−iθk j ) , (7.32)

where r sj is the first component of r∗
j and θk j = [2π/(2n + 1)](k − 1/2)( j − 1/2).

By using the relation that (eiθk j + e−iθk j )2 = 2 + e2iθk j + e−2iθk j , we represent

[
2n + 1

2n

] [
1

mn

mn∑
k=1

(zs,(1)kn )2 −
∫ 1

0
σ (x)
ss (s)ds

]
(7.33)

= 1

mn

mn∑
k=1

⎧⎨
⎩
1

2

[ n∑
j=1

(r sj )
2(eiθk j + e−iθk j )2 − 2

(
1 + 1

2n

) ∫ 1

0
σ (x)
ss (s)ds

]

+
[ n∑

j �= j ′ =1

r sj r
s
j ′ (e

iθk j + e−iθk j )(eiθk j ′ + e−iθ
k j

′
)

]⎫⎬
⎭

= 2
n∑

j> j ′ =1

r sj r
s
j ′

[
1

mn

mn∑
k=1

(eiθk j + e−iθk j )(eiθk j ′ + e−iθ
k j

′
)

]

+
n∑
j=1

[
(r sj )

2 −
∫ tnj

tnj−1

σ (x)
ss (s)ds

]

+1

2

n∑
j=1

[
(r sj )

2 −
∫ tnj

t j−1

σ (x)
ss (s)ds

][ mn∑
k=1

(e2iθk j + e−2iθk j )

]

− 1

2n

n∑
j=1

[ ∫ tnj

t j−1

σ (x)
ss (s)ds

]

= (A) + (B) + (C) + (D) , (say).

Then by using the same derivations of Chap. 5, it is possible to show that except

for the first term (A), we have
√
mn(B)

p→ 0,
√
mn(C)

p→ 0, and
√
mn(D)

p→ 0 as
mn → ∞ (n → ∞). Also by using the simple relation
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(eiθk j + e−iθk j )(eiθk j ′ + e−iθ
k j

′
)

= (ei(θk j+θ
k j

′ ) + e−i(θk j+θ
k j

′ )
) + (ei(θk j−θ

k j
′ ) + e−i(θk j−θ

k j
′ )
) ,

the random quantity
√
mn

[
1
mn

∑mn
k=1(z

s,(1)
kn )2 − σ (x)

ss

]
is asymptotically equivalent to

(A)
′ = 2

n∑
j> j ′ =1

r sj r
s
j ′ hm( j, j

′
) , (7.34)

where for j, j
′ = 1, . . . , n

hm( j, j
′
) = 1

2
√
mn

sin 2m(θ j + θ j ′ )/2

sin(θ j + θ j ′ )/2
+ 1

2
√
mn

sin 2m(θ j − θ j ′ )/2

sin(θ j − θ j ′ )/2

and θ j = [2π/(2n + 1)]( j − 1/2).
By extending the evaluation method on Fejér kernel (see Chap.8 of Anderson

(1971)), we can derive the variance of the asymptotic distribution of (A)
′
, which is

asymptotically equivalent to (A).

Lemma 7.1 Under Assumption II, as n → ∞ the asymptotic variance of (A)
′
is

given by

Vss = 2
∫ 1

0

[
σ (x)
ss (τ (s))

]2
d(s)ds . (7.35)

Proof of Lemma 7.1 From the representation of (A)
′
, given the sampling process

tnj ( j = 1, . . . , n∗) we have the conditional expectation

E[((A)
′
)2|{t sj }]

= 2
n∗∑

j> j ′ =1

σ
(x)
ss. jσ

(x)
ss. j ′

[
1

4m

][
sin 2mπ( j + j

′ − 1)/(2n
∗ + 1)

sin π( j + j ′
)/(2n∗ + 1)

+ sin 2mπ( j − j
′ − 1)/(2n

∗ + 1)

sin π( j − j ′
)/(2n∗ + 1)

]2

,

where we use the notation

σ
(x)
ss. j = E

[ ∫ tnj

tnj−1

σ (x)
ss (s)ds|

]
. (7.36)

Under Assumption I by using the standard approximation argument for integration,
we find that

E

[∫ tnj

tnj−1

σ (x)
ss (s)ds −

∫ tnj

tnj−1

σ (x)
ss (tnj−1)ds

]
= o

(
1

n

)
(7.37)
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and ∫ tnj

tnj−1

σ (x)
ss (t j−1)ds = (tnn − tnj−1)σ

(x)
ss (tnj−1) = Op

(
1

n

)
. (7.38)

For any bounded continuous functions a(s∗) and b(t∗) in [0, 1], we utilized the
representation

2
∫ 1

0

∫ 1

0

1

4m

[
sinmπ(s∗ − t∗)
sin(π/2)(s∗ − t∗)

+ sinmπ(s∗ + t∗)
sin(π/2)(s∗ + t∗)

]2

a(s∗)b(∗t)ds∗dt∗

= 2
∫ 1

0

∫ 1

0

1

4m

{[
sinmπ(s∗ − t∗)
sin(π/2)(s∗ − t∗)

]2

+
[

sinmπ(s∗ + t∗)
sin(π/2)(s∗ + t∗)

]2

+
[

sinmπ(s∗ − t∗)
sin(π/2)(s∗ − t∗)

][
sinmπ(s∗ + t∗)
sin(π/2)(s∗ + t∗)

]}
a(s∗)b(t∗)ds∗dt∗

= (E) + (F) + (G) , (say).

(See the proof of Lemma5.6 in Chap.5.) By changing the order of integration, as
m → ∞ we can evaluate the first term as

2
∫ 1

0

1

2m

[
sin2(2m) π

2 u

sin2(π/2)u

][ ∫ 1−u

0
a(u + t∗)b(t∗)dt

]
du −→ 2 lim

u→0

∫ 1−u

0
a(u + t∗)b(t∗)dt∗

and the second term is negligible because

(F) = 2
∫ 1

0

1

2m

[
sin2(2m) π

2 u

sin2(π/2)u

][ ∫ u

0
a(s∗)b(u − s∗)ds∗

]
du

p−→ 0

as m → ∞. By applying a similar argument to the third term (G), we find that it is
also negligible when m is large. (These arguments are essentially the same as the
ones in the proof of Lemma5.6 in Chap.5.)

We need to show the effects of discretization and random sampling because tni are
sequence of randomvariables. Under Assumptions I and II, as (i(n) − 1)/n → s and

( j (n) − 1)/n → t for n being large while m is fixed, we have tni
p→ τ(s), tnj → τ(t),

n(tni − tni−1)
p→ d(s), and n(tnj − tnj−1)

p→ d(t). Then the only non-negligible term
corresponds to

V
′ =

∫ 1

0

∫ 1

0

1

4m

[
sinmπ(s − t)

sin(π/2)(s − t)

]2

σ (x)
ss (τ (s))σ (x)

ss (τ (t))d(s)d(t)dsdt . (7.39)

Then by letting m → ∞, we have the desired result. ��
(Step-4) For this step, we need to show the stable convergence in law of (7.34),
but the arguments are quite similar to those in the proof of Theorem3.4, which is
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based on the method explained in Chap.5. Hence, we have omitted the details of our
arguments in this version.

(Step-5) Finally, we need to deal with the integrated covariance. By modifying the
derivations for the proof of integrated covariance, we use σ̂ (x)

ss , σ̂
(x)
f f and σ̂

(x)
s f . (It is

straightforward to develop arguments which are essentially the same for σ̂ (x)
ss , and

we have omitted the details.) Then we can evaluate the variance of the asymptotic
distributions of integrated covariance SIML estimator and the resulting variance
formula becomes

Vs f =
∫ 1

0

[
σ (x)
ss (τ (s))σ (x)

f f (τ (s)) + (σ
(x)
s f (τ (s)))2

]
d(s)ds . (7.40)

��
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Chapter 8
Local SIML Estimation of Brownian
Functionals

Abstract We introduce the local SIML (LSIML)method for estimating someBrow-
nian functionals including the asymptotic variance of the SIML estimator. It is an
extension of the basic SIML method and we show the usefulness of the LSIML
method through simulations.

8.1 Introduction

In the previous chapters, we developed the SIML method of estimating the volatility
and co-volatilities of security prices when the underlying processes are the class of
diffusion processes. In this chapter, we extend the SIML method by developing the
local SIML (LSIML) estimation,which is a newstatisticalmethod.Themethodof the
LSIML estimation is to use blocking original data and averaging the SIML estimates
of each block. The main motivation for developing this method is to estimate some
Brownian functionals which are more general than the cases of the volatility and co-
volatility. They are appeared in the asymptotic distributions of theSIMLestimator, for
instance. By using the local SIML method, we can estimate the asymptotic variance
of the SIML estimator. More generally, by using the LSIML method, it is possible
to estimate higher-order Brownian functionals which play an important role in high-
frequency econometric problems.

The LSIMLmethod has reasonable finite-sample properties, which are illustrated
by several simulations. Because the LSIML estimation is a straightforward extension
of the SIML estimation, it is quite simple and so is useful in practical applications.
Besides, the LSIML method may have desirable asymptotic properties such as con-
sistency and asymptotic normality under a set of additional assumptions. In this
chapter, we give only some results of simulations on the LSIML estimation.
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8.2 Estimation of Brownian Functionals

In this chapter, we consider the basic case and the deterministic time-varying case
when p = q = 1. Let

Y (tni ) = X (tni ) + v(tni ) (i = 1, . . . , n) (8.1)

be the (one dimensional) observed (log-)price at tni (0 = tn0 ≤ tn1 ≤ · · · ≤ tnn = 1) and
v(tni ) (= vi ) be a sequence of i.i.d. random variables with E[vi ] = 0 and E[v2

i ] =
σ 2

v (> 0).
The underlying continuous-time Brownian martingale is

X (t) = X (0) +
∫ t

0
σsd Bs (0 ≤ s ≤ t ≤ 1) , (8.2)

which is independent of v(tni ), and σs is the (instantaneous) volatility function, which
can be deterministic time-varying cases. Although it may be possible to apply the
LSIML method to more general Itô semi-martingales, we will consider only this
situation because it gives the essential feature of the LSIMLmethod in a simple way.

The problem of our original interest is how to estimate Brownian functionals of
the form

V (2r) =
∫ 1

0
σ 2r
s ds (8.3)

for any positive integer r from a set of observations of Y (tni ) (i = 1, . . . , n). There
are important examples of this type of Brownian functional. An obvious example is
the integrated volatility that corresponds to the case when r = 1.

Example 8.1 When r=1, we have the integrated volatility and it is given by

V (2) =
∫ 1

0
σ 2
s ds . (8.4)

Example 8.2 The asymptotic variance of the SIML estimator of integrated volatility
V (2) is given by

2V (4) = 2
∫ 1

0
σ 4
s ds . (8.5)

It should be noted that estimating V (4) with r = 2 is non-trivial task for which the
SIML estimation cannot be used. Ait-Sahalia et al. (2005), and Ait-Sahalia and Jacod
(2014) discussed some estimationmethods of higher-order Brownian functionals, but
it seems that they are more complicated than the method developed herein.
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8.3 Local SIML Estimation

We extend the standard SIML method developed in Chap.3. For simplicity, we take
tnj − tnj−1 = 1/n ( j = 1, . . . , n) and tn0 = 0.We divide (0, 1] into b(n) sub-intervals,
and in every interval, we allocate c(n) observations. First, we consider the sequence
c∗(n) such that c∗(n) → ∞ and we can take b(n) → ∞ and b(n) ∼ n/c∗(n). A
typical choice of observations in each interval would be c∗(n) = [nγ ] (0 < γ < 1),
whereupon b(n) ∼ n1−γ . Because there are some extra observations (n is not equal
to b(n)c∗(n)) and b(n) is a positive integer, we adjust the number of terms in each
interval c(n) = c∗(n) + (several terms). We can ignore the effects of extra terms
because they are asymptotically negligible and b(n)c(n) = n.

By setting mc = [c(n)α] (0 < α < 0.5), in the ith interval (i = 1, . . . , b(n))
we apply the SIML transformation such that the transformed data are denoted as
zk(i) (k = 1, . . . , c(n); i = 1, . . . , b(n)). Let the 2r th moment in the ith interval is

M2r,n(i) = 1

mc

mc∑
k=1

[zk(i)]2r . (8.6)

Then, we define the LSIML estimator of V (2r) by

V̂ (2r) = b(n)r−1

ar

b(n)∑
i=1

M2r,n(i) (8.7)

where
ar = 2r !

r ! 2r . (8.8)

In particular, a1 = 1, a2 = 3, and a3 = 15.
If we take c(n) = n, b(n) = 1, and r = 1, then we have the SIML estimator for

integrated volatility.
In this construction of the LSIML estimator, we need to normalize (8.6) due to

the scale factor 1/n and the local Gaussianity of underlying continuous martingales.

For the LSIML estimator, wemay expect the result that V̂ (2r)
p−→ V (2r) as n →

∞. Furthermore, because in the special cases when r = 1 the SIML estimator have
desirable asymptotic properties, we expect that we have the asymptotic normality as
well as the consistency of V̂ (2r) for r > 1 with some appropriate condition on mc.

There can be different ways to construct the localizing SIML estimation, but we
omit the discussion on the details.

8.4 Simulation

As an experimental exercise, we have done some simulation when r = 1 and r = 2,
for the true parameters V (2) and 3V (4). We note that the variance of the SIML
estimator of integrated volatility corresponds to 2V̂ (4).We set b(n) = [n1−γ ], c(n) =
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[nγ ] (γ = 2/3), n = 10, 000, and the number of replications is 5000. Also we have
investigated several cases in which the instantaneous volatility function σ 2

x (s) is
given by

σ 2
s = σ(0)2

[
a0 + a1s + a2s

2
]
, (8.9)

where ai (i = 0, 1, 2) are constants andwe have some restrictions such that σx (s)2 >

0 for s ∈ [0, 1]. This is a typical time-varying (but deterministic) case and the inte-
grated volatility σ 2

x is given by

σ 2
x =

∫ 1

0
σ 2
s ds = σx (0)

2
[
a0 + a1

2
+ a2

3

]
. (8.10)

In this example, we have taken several intra-day volatility patterns including the flat
(or constant) volatility, the monotone (decreasing or increasing) movements and the
U-shaped movements.

In the following tables, the true parameter values of M2, 3M4, and 3LM4 are∫ 1
0 σ 2

s ds, 3(
∫ 1
0 σ 2

s ds)
2, and 3

∫ 1
0 σ 4

s ds, respectively. In Tables 8.1, 8.2, and 8.3, the
values of 3M4 and 3LM4 are 2, 12, and 21.6, respectively, while in Table 8.4 they
are 2, 12, and 12, respectively.

In Tables 8.1, 8.2, 8.3, and 8.4, we first confirm that the LSIML method work
well for the estimation of the integrated volatility. Although there may be some loss
of estimation accuracy, the LSIML method gives desirable finite and asymptotic
properties. The most important result in our simulation is the estimation of 3LM4,

Table 8.1 Estimation of integrated fourth-order functional (a0= 6, a1 = − 24, a2= 24; σ 2
u = 0.00)

n=10,000 σ 2
x = 2.00 3M4 3LM4

mean 1.99779323 11.964321 21.517617

SD 0.20525937 6.528366 6.329717

Table 8.2 Estimation of integrated fourth-order functional (a0 = 6, a1 = −24, a2 = 24; σ 2
u =

1.0E-03)

n=10,000 σ 2
x = 2.00 3M4 3LM4

mean 2.08893559 12.07831 22.529918

SD 0.20769355 6.487159 6.456395

Table 8.3 Estimation of integrated fourth-order functional (a0 = 6, a1 = −24, a2 = 24; σ 2
u =

1.0E-04)

n=10,000 σ 2
x = 2.00 3M4 3LM4

mean 2.00795529 11.97925 21.556694

SD 0.20264466 6.48342 6.301122
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Table 8.4 Estimation of integrated fourth-order functional (a0 = 2, a1 = 0, a2 = 0; σ 2
u =

1.0E-04)

n=10,000 σ 2
x = 2.00 3M4 3LM4

mean 2.00454578 11.925724 12.03774

SD 0.15207006 4.904944 2.10631

which is (3/2) times the asymptotic variance of the SIML estimator of integrated
volatility. As we see in Tables, the mean and standard deviation (SD) have reasonable
values. It is interesting to find that the variance of 3LM4 is smaller than the one of
3M4.

From our numerical experiments, it seems that we need more than 20 blocks to
estimate the second-order Brownian functionals. The SIML estimation case, how-
ever, we do not need this kind of requirements.

In any case, from our simulations the LSIML estimator of integrated volatility σ 2
x

performs quite well as we expected. The behaviors of the LSIML estimator for higher
Brownian functionals as r = 2 are reasonable given the difficulties of the problem
involved. Although we did not discuss the details, there is an interesting estimation
problem of higher-order Brownian functionals when we have the stochastic volatility
cases.
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Chapter 9
Estimating Quadratic Variation Under
Jumps and Micro-market Noise

Abstract Weconsider the estimationof quadratic variationof Itô’s semi-martingales
with jumps, which is an extension of volatility estimation in previous chapters.
The SIML estimation gives reasonable estimation results of quadratic variation with
jumps since it has desirable asymptotic properties such as consistency and asymptotic
normality.

9.1 Introduction

In the previous chapters,we developed theSIMLestimation for estimating the volatil-
ity and co-volatilities of security prices when the underlying processes are the class
of diffusion processes. In this chapter, we investigate some functionals including
the quadratic variation and quadratic covariation when there can be jump terms.
When we can have jump terms in the underlying stochastic processes, an impor-
tant class of stochastic processes with continuous-time is the Itô’s semi-martingale.
The theory of Itô’s semi-martingale process has been developed as the general the-
ory of stochastic processes, see Ikeda and Watanabe (1989) or Jacod and Protter
(2012). In the theory of Ito’s semi-martingales, the quadratic variation of the under-
lying process, which can be regarded an extension of the realized volatility, plays
important roles as the fundamental quantities. Thus, it is important to estimate the
quadratic variation (QV) and covariations from the discrete set of observed time series
data.

There are some discussions on testing the presence of jumps in the underlying
processes. Kurisu (2017) has utilized the SIML method for investigating testing
procedures for jumps when there can be micro-market noise.
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9.2 SIML Estimation of Quadratic Covariation

LetY(tni ) be a p × 1 vector of observed (log-)prices at tni (0=tn0 ≤ tn1 ≤ · · · ≤tnn = 1),
which satisfy

Y(tni ) = X(tni ) + v(tni ) (i = 1, . . . , n), (9.1)

where v(tni ) is a p × 1 vector sequence of (mutually) independent micro-market
noise with E[v(tni )] = 0 and E[v(tni )v

′
(tni )] = Σv (> 0).

The underlying hidden process X(t) is a p-dimensional vector process, and it is
an Itô’s semi-martingale

X(t) = X(0) +
∫ t

0
μsds +

∫ t

0
Cx (s) dB(s) +

∫
s

∫
‖δ(s,x)‖<1

δ(s, x)(μ − ν)(ds, dx)

+
∫
s

∫
‖δ(s,x)‖≥1

δ(s, x)μ(ds, dx) . (9.2)

As we introduced at the end of Chap. 2, μs (p × 1) and Cx (s) (p × q) are the drift
vector and volatility matrix, respectively, and B(t) is a q × 1 vector of Brownian
motions, δ(s, x) is a p × 1 predictable function vector, μ(·) is a p × 1 vector of
jumpmeasure, and ν(·) is the p × 1 vector of compensator of 1A ∗ μ for 1 ∗ ν(ω)t =
ν(ω : [0, t) × A) as we have used the notation of Ikeda and Watanabe (1989), and
Jacod and Protter (2012).

When p = q = 1, the fundamental quantity for the continuous-time Itô’s semi-
martingale is the quadratic variation (QV), which is given by

U0 =
∫ 1

0
σ 2
s ds +

∑
0≤s≤1

(ΔXs)
2 , (9.3)

where we denote σs = Cx (s).
If there are no jump terms, QV is equivalent to the integrated volatility. When

there can be jump terms, however, it has been known in stochastic analysis that QV
plays a fundamental role in the class of Ito’s semi-martingales.

For the general case with p ≥ 1, we have developed the SIML estimation when
there are no jump terms. When we have p-dimensional jump terms ΔX(s) (=
(ΔXg(s))),

U0 =
∫ 1

0
Σ(s)ds +

∑
0≤s≤1

ΔX(s)ΔX
′
(s) . (9.4)

When there is no jump, the SIML estimator of Σ̂ x for the general p × p integrated
volatility matrix Σ(s) = Cx (s)C

′
x (s) (= (σgh(s))) and

Σx =
∫ 1

0
Σ(s)ds (9.5)
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is defined by

Σ̂ x = 1

mn

mn∑
k=1

zkz
′
k = (σ̂

(x)
gh ) , (9.6)

where zk = (zgk) (g = 1, . . . , p; k = 1, . . . ,mn), which are constructed by the
transformation from Yn = (y

′
k) to Zn (= (z

′
k)) as we have introduced in Chap.3.

In the case when there is no jump term (i.e., the Brownian Ito semi-martingale),
we have shown in Chap.3 that the SIML estimator is consistent and asymptotically
normal in the stable convergence sense. Formn = [nα] and0 < α < 0.4, asn −→ ∞

√
mn

[
σ̂

(x)
gh −

∫ 1

0
σgh(s)ds

]
d→ N

[
0, Vgh

]
(9.7)

in the stable convergence sense, where

Vgh =
∫ 1

0

[
σ (x)
gg (s)σ (x)

hh (s) + σ
(x)2
gh (s)

]
ds . (9.8)

When X is an Itô semi-martingale with jumps, the asymptotic properties of the SIML
estimator have not been given. In this respect, we have the next proposition in this
situation and the outline of derivation is in the next subsection.

Proposition 9.1 Assume (9.1) and (9.2) with additional conditions as in Theorem
3.4 (i.e., (3.38) and the related conditions), and let Σ̂ x = (σ̂

(x)
gh )be the SIMLestimator

given by (3.18).
(i) For mn = [nα] and 0 < α < 0.5, as n −→ ∞

Σ̂ x −
[∫ 1

0
Σ(s)ds +

∑
0<s≤1

(ΔX (s))(ΔX (s))
′
ds

]
p−→ O . (9.9)

(ii) For mn = [nα] and 0 < α < 0.4, as n −→ ∞

√
mn

[
σ̂

(x)
gh −

( ∫ 1

0
σgh(s)ds +

∑
0<s≤1

ΔXg(s)ΔXh(s)

)]
d→ N

[
0, Vgh

]
(9.10)

in the stable convergence sense, where

Vgh =
∫ 1

0

[
σ (x)
gg (s)σ (x)

hh (s) + σ
(x)2
gh (s)

]
ds (9.11)

+
∑
0<s≤1

[
σ (x)
gg (s)(ΔXh(s))

2 + σ
(x)
hh (s)(ΔXg(s))

2

+2σ (x)
h (s)σ (x)

g (s)(ΔXg(s)ΔXh(s))
]

.
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Corollary 9.1 When p = 1, the asymptotic variance V is given by

V = 2

[∫ 1

0
σ 4
s ds + 2

∑
0<s≤1

σ 2
s (ΔX (s))2

]
. (9.12)

9.3 An Outline of the Derivation of Proposition 9.1

We give an intuitive argument for the above results. The basic method of proof
is essentially the same to the one based on the derivations and their extensions
given in Chap.5. In the following, we only discuss the essential role of return vector
process ri = X(tni ) − X(tni−1) (i = 1, . . . , n) in the decomposition of Z(1)

n . We omit
the effects of ci j (i, j = 1, . . . , n), for instance.

First, we consider the case when there does not exist any micro-market noise. Let
p × p matrices An = (An(gh)) and A = (A(gh)) be

An(gh) =
n∑

i=1

(Xgi − Xg,i−1)(Xhi − Xh,i−1) (9.13)

and

A(gh) =
∫ 1

0
σgh(s)ds +

∑
0<s≤1

ΔXgiΔXhi , (9.14)

where we set X(0) = (Xg(0)), Xi = (Xg(tni )), ΔXi = (ΔXg(tni )), and Σ(s) =
(σgh(s)).

Let also q = 1 be the number of Brownian motions for simplicity. By using the
same arguments in Chap.5, we approximate

√
n [An(gh) − A(gh)]

∼√
n

⎧⎨
⎩

n∑
i=1

⎡
⎣c†g1(t

n
i−1)(Bi − Bi−1) +

∑
tni−1<s≤tni

ΔXg(s)

⎤
⎦

×
⎡
⎣c†h1(t

n
i−1)(Bi − Bi−1) +

∑
tni−1<s≤tni

ΔXh(s)

⎤
⎦

⎫⎬
⎭ − A(gh) ,

where Cx (s) = (c†g1(s)) and Bi = B(tni ). Then, the above quantity can be decom-
posed into
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√
n

[
n∑

i=1

c†g1(t
n
i−1)c

†
h1(t

n
i−1)(Bi − Bi−1)

2 −
∫ 1

0
σgh(s)ds

]

+ √
n

⎡
⎣ n∑

i=1

c†g1(t
n
i−1)(Bi − Bi−1)

∑
tni−1<s≤tni

ΔXh(s)

⎤
⎦

+ √
n

⎡
⎣ n∑

i=1

c†h1(t
n
i−1)(Bi − Bi−1)

∑
tni−1<s≤tni

ΔXg(s)

⎤
⎦ .

Then, we denote (I ), (I I ), and (I I I ) in each terms of the last equality, and we can
evaluate the asymptotic distributions.

Next, we apply the method of evaluating the asymptotic distributions of the SIML
estimator used in Chap. 5. Then, the variance of the limiting random variables can be
calculated as the variance of the above three terms except the factor

√
mn instead of√

n as stated in Proposition 9.1. In fact, we need to evaluate the effects of ci j (i, j =
1, . . . , n) as inChap.5,which are omitted here. It is because the resulting calculations
in the general case with q ≥ 1 are quite tedious, but they are straightforward as we
have given the details for the diffusion cases in Chap.5.

9.4 Some Numerical Analysis

We have performed a set of simulations with the general Itô semi-martingale pro-
cesses with jumps. For the simulation method of jumps in the continuous-time
stochastic process framework, see Cont and Tankov (2004).

Let X (t) = (X (1)
t , X (2)

t )
′
be a two-dimensional stochastic process. In particular,

we simulated a set of realizations of the two-dimensional Itô semi-martingale given
by

dX1(t) = c1(t)dB1(t) + Z1(t)dN1(t) + Z3(t)dN3(t)
dX2(t) = c2(t)dB2(t) + Z2(t)dN2(t) + Z4(t)dN3(t) ,

(9.15)

where B = (B1, B2)
′
is two-dimensional Brownian motion and N j for j = 1, 2, 3

are Poisson processes with intensities λ j that are mutually independent and also
independent of B.

We use Z = (Z1, Z1, Z3, Z4)
′
as the vector of jump sizes, which are cross

sectionally, temporally, and independently distributed with laws FZ j . In this sim-
ulation, we set λ1 = λ2 = 10 and λ3 = 15, and the jump size distributions are
Z1(t), Z2(t) ∼ N(0, 5−2), and Z3(t), Z4(t) ∼ N(0, 10−2) as Gaussian distributions.

For the volatility process c j (t), we set

d(c j (t)2) = α j (β j − c j (t)2)dt + κ j c j (t)dBσ
j (t) ( j = 1, 2), (9.16)
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where α1 = 3, α2 = 4, β1 = 0.8, β2 = 0.7, κ1 = κ2 = 0.5, E[dBσ
j (t)dBj (t)] =

ρ j dt ( j = 1, 2), ρ1 = −0.5, and ρ2 = −0.4. As the market micro-structure noise,
we use independent Gaussian noises for each component, that is, v(tni ) = (v1(tni ),

v2(tni ))
′ ∼ N2(0, 10−6I2), where I2 is the identity matrix.

Simulation Procedure

For i = 1 and 2, let

[X, X ](i,i)(t) =
∫ t

0
c(i,i)(s)ds +

∑
0≤s≤t

(ΔXi (s))
2

V(i,i)(t) = 2

⎡
⎣

∫ t

0
(c(i,i)(s))

2ds + 2
∑
0≤s≤t

(c(i,i)(s))(ΔX(i)(s))
2

⎤
⎦ ,

= 2
∫ t

0
(c(i,i)(s))

2ds

+ 4

⎡
⎢⎣ ∑

p:1≤T (i)
p ≤t

(c(i,i)(T
(i)
p )(ΔXi (T

(i)
p ))2 +

∑
p:1≤T (12)

p ≤t

(c(i,i)(T
(12)
p )(ΔXi (T

(12)
p )2

⎤
⎥⎦ ,

where {T (i)
p } (i = 1, 2) are jump times when only the i th component jumps, and

{T (12)
p } are jump times when both first and second components jump.

Fig. 9.1 a Finite sample distributions (Case 1). b Finite sample distributions (Case 2)
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Let n be the sample size, and we plot the following values to check the validity
of the central limit theorem (CLT) for the normalized random variables as

U1i = (V(i,i)(1)/n
0.39)−1/2

(
[̂X, X ](i,i)1,SI ML − [X, X ](i,i)1

)
, i = 1, 2, (9.17)

where [̂X, X ](i,i)1,SI ML is a (i, i) component of SIML estimator of the quadratic varia-
tion.

Simulation Results

We have plotted the histograms of the normalized estimator U11 and U12. Although
we performed number of simulations, we only have chosen two cases and in each
figure the colored curve corresponds to the density of standard normal distribu-
tion. We give the simulation results for two cases, namely (a) Case 1 : N = 1000,
Δn = 1/n, v(tni ) ∼ N2(0, 10−6I2) and (b) Case 2 : N = 1000, Δn = 1/n, v(tni ) ∼
N2(0, 10−2I2), where n = 10, 000 and N is the number of simulations.

Aswe see inFig. 9.1a, b in our simulations,we confirm that theSIMLestimator has
good finite sample as well as its asymptotic properties. The bias and the asymptotic
variance of the SIML estimator agree with Proposition9.1 of this chapter. Hence,
we find that the simulation results are consistent with the asymptotic properties of
the SIML estimator for the quadratic variation and covariation of the underlying
stochastic process although we have jumps and micro-market noise term at the same
time.
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Chapter 10
Concluding Remarks

Abstract We conclude that the SIML estimation method we introduced in this book
has good finite-sample as well as asymptotic properties. Because the SIML method
is simple, it would be useful for practical applications. We mention further problems
to be investigated.

Herein, we have developed a new statistical method for estimating integrated volatil-
ity and integrated covariances by using high-frequency financial data in the presence
of noise. The SIML estimator proposed by Kunitomo and Sato (2008a, 2013), which
was the origin of this book, can be regarded as a modification of the standard ML
method and has many merits in the statistical sense. The SIML estimator has rea-
sonable asymptotic properties; it is consistent and asymptotically normal (or has
stable convergence in the general case) when the sample size is large and the data
frequency interval is small under some conditions including non-Gaussian processes
and volatility models. As we have demonstrated herein, the SIML estimator also has
reasonable finite-sample properties and is asymptotically robust. We have omitted
some details of the results, some of which are given by published papers, Kunitomo
and Sato (2011, 2013), Misaki and Kunitomo (2015), Kunitomo et al. (2015), and
unpublished reports, Kunitomo and Sato (2008a, b, 2010).

The SIML estimator is so simple that it can be used practically not only for
the integrated volatility, but also for the covariations of multivariate high-frequency
financial series. Theremay be potentially applications, and as an example, we showed
a statistical analysis of high-frequency data of the Nikkei-225 Futures at OSE. We
have confirmed that the presence of micro-market noises is an important factor in
the market of Nikkei-225 Futures.

The original motivation to develop the SIML estimation method of volatility and
co-volatilities was to measure financial risk in an appropriate way and to apply it for
the risk managements and derivative pricing. When the volatility and co-volatility
are stochastic and there are jumps in the underlying stochastic process, the standard
finance theory based on the observed measure P and the equivalent (unique) martin-
gale measure Q as we briefly explained in Chap.2 is broken down. When we depart
from the classical BS model and there are jumps, there can be an infinite number of
equivalent martingale measures and then it is not clear how to develop the derivatives
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theory (see (Miyahara 2012) for instance). Although there has been a large literature
on the related problem inmathematical finance, there is no consensus on the resulting
procedure at this moment and thus there are interesting problems remained to utilize
the statistical analysis of high-frequency financial data. It is certainly true that the
volatility, co-volatility, and the quadratic variations are useful quantities for financial
risk managements as we discussed on the use of hedging coefficient in Chap.4.

As indicated in Chaps. 8 and 9, the SIML estimation method can apply to a num-
ber of interesting problems. Although the present discussions of these chapters are
incomplete, there will be possible extensions and hence could be developed further.
For instance, we did not analyze the problems around jumps in detail and determine
the number of factors for covariation of high-frequency financial data. Also, we did
not explain alternative methods proposed in the literature such as the realized kernel
method, the pre-averaging method, for estimating volatility and covariance except
brief comments in Chap.6 which differ from the SIMLmethod. The more systematic
comparison with the SIMLmethod may be an interesting topic although many of the
existing methods are rather complicated in our view. Although there are interesting
problems to be solved, further developments require new aspects and considerably
more space, and we will discuss them on another occasion.
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