NGEEIIREES
Nakahiro Yoshida

A Comprehensive R Framework for
SDEs and Other Stochastic Processes

@ Springer

Use R!

Series Editors

Robert Gentleman Kurt Hornik Giovanni Parmigiani

More information about this series at http://www.springer.com/series/6991

Use R!

Recently Published in Use R!

Boehmke: Data Wrangling with R

Wickham: ggplot2

Moore: Applied Survival Analysis Using R

Luke: A User’s Guide to Network Analysis in R

Monogan: Political Analysis Using R

Cano/M. Moguerza/Prieto Corcoba: Quality Control with R

Schwarzer/Carpenter/Riicker: Meta-Analysis with R

Gondro: Primer to Analysis of Genomic Data Using R

Chapman/Feit: R for Marketing Research and Analytics

Willekens: Multistate Analysis of Life Histories with R

Cortez: Modern Optimization with R

Kolaczyk/Csardi: Statistical Analysis of Network Data with R

Swenson/Nathan: Functional and Phylogenetic Ecology in R

Nolan/Temple Lang: XML and Web Technologies for Data Sciences with R

Nagarajan/Scutari/Lébre: Bayesian Networks in R

van den Boogaart/Tolosana-Delgado: Analyzing Compositional Data with R

Bivand/Pebesma/Gomez-Rubio: Applied Spatial Data Analysis with R
(2nd ed. 2013)

Eddelbuettel: Seamless R and C++ Integration with Rcpp

Knoblauch/Maloney: Modeling Psychophysical Data in R

Stefano M. Iacus - Nakahiro Yoshida

Simulation and Inference

for Stochastic Processes
with YUIMA

A Comprehensive R Framework for SDEs
and Other Stochastic Processes

@ Springer

Stefano M. lacus Nakahiro Yoshida

Department of Economics, Management Graduate School of Mathematical
and Quantitative Methods Sciences

University of Milan University of Tokyo

Milan Tokyo

Italy Japan

ISSN 2197-5736 ISSN 2197-5744 (electronic)

Use R!

ISBN 978-3-319-55567-6 ISBN 978-3-319-55569-0 (eBook)

https://doi.org/10.1007/978-3-319-55569-0
Library of Congress Control Number: 2017934627

© Springer International Publishing AG, part of Springer Nature 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by the registered company Springer International Publishing AG

part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To Maite, Lucy and Ludo,
to whom I wish to find what gives
their life true meaning and purpose

and to Tizy,
whose heart [met late in my life,
but, thanks God, not too late!
Stefano M. Iacus

Preface

Statistics for stochastic processes is rapidly developing. It forms a branch of
mathematical sciences, spreading over theoretical statistics, probability theory,
software development and real data analysis. Since a general theoretical framework
of statistical inference for stochastic processes was recently established, statistical
inference has been applicable to various stochastic systems and its scope is
expanding more and more from ergodic to nonergodic processes, from
low-frequency regular to high-frequency irregular sampling schemes, from linear to
nonlinear models, and so on.

The formulas provided by the theory are often fairly complicated, and it makes it
difficult for nonexperts to use them in their own fields. For example, an asymptotic
expansion formula derived by the Malliavin calculus involves hundreds of terms,
the Bayesian estimator theoretically validated recently needs modern MCMC
methods for computation in practice, and some random number generators for
simulation of Lévy-driven stochastic differential equations use quite sophisticated
algorithms. Software implementation is an issue in such circumstances.

YUIMA is a computational framework for statistical analysis and simulation for
stochastic processes, especially objects described in terms of the stochastic analysis.
YUIMA is designed to realize a circle of data analysis, modelling, fitting, simu-
lation, and prediction. Through YUIMA, the user enjoys easily, without depending
on his/her expertise, the latest developments in theoretical statistics for stochastic
processes.

The YUIMA Project was launched by Stefano Maria lacus and Nakahiro
Yoshida, respectively, an R guru and a dreamer, after a three-person discussion
around 2005 set by Masayuki Uchida. Supported by Japan Science and Technology
Agency PRESTO (2007-2011), the project implemented a basic structure on R and
extended by inviting Hideitsu Hino, Hiroki Masuda, Yasutaka Shimuzu, Kengo
Kamatani, Alexandre Brouste, Masaaki Fukasawa and Teppei Ogihara. Hino with
the Waseda University team was quite active in programming many YUIMA
functions. Collaboration with Kenji Kashiwakura and Kentaro Hoshi with their NS
Solutions team in 2012-2016 is acknowledged. The YUIMA Project got new
members Yuta Koike, Ryosuke Nomura, Lorenzo Mercuri, Yusuke Shimizu,

vii

viii Preface

Shoichi Eguchi, Yuma Uehara, Yuto Yoshida, Emanuele Guidotti and many other
young people. Most of them are mathematical statisticians, and this is the reason
why the functions of YUIMA are structurally designed with rigorous mathematical
backing. Presently, the YUIMA Project (YUIMA III) is supported by Japan Science
and Technology Agency CREST led by Prof. Takashi Tsuboi. Special thanks go to
Prof. Shigeo Kusuoka for his great support for statistics in mathematics. The
authors also thank Mrs. Sayako Takehara and Miss Homare Yoshihira for their help
as the secretaries of the laboratory.

We also need to thank MIUR—Ministero dell’Istruzione, dell’Universita e della
Ricerca, Grant: PRIN 2009JW2STY, for supporting the early work of Lorenzo
Mercuri, Emanuele Guidotti and the first author on this project.

Milan, Italy Stefano M. lacus
Tokyo, Japan Nakahiro Yoshida
February 2018

Contents

Part I The YUIMA Framework

1 The YUIMA Package
1.1 Overview of the Project
1.2 Who Should Read This Book?
1.3 Structure of the Book
1.4 How to Get the R Code for This Book
1.5 Main Contribution to the Yuima Package..................
1.6 Further Developments of Yuima Package.
1.7 Things to Know About R

1.71 HowtoGetR
1.72 Rand S4 Objects.
1.8 The Yuima Package
1.8.1 How to Obtain the Package
1.8.2 The Main Object and Classes
1.83 The yuima.model Class
1.9 On Model Specification.ooiio. ...
1.9.1 Basic Model Specification
1.9.2 User-Specified State and Time Variables
1.9.3 Specification of Parametric Models
1.10 Basic Facts on Simulation
1.10.1 Customization of Simulation Arguments
1.10.2 Simulation of Models with User-Specified Notation
1.10.3 Simulation of Parametric Models
1.11 Sampling and Simulate
1.11.1 Sampling and Subsampling.
1.12 How to Make Data Available into a yuima Object
1.12.1 Getting Data from Data Providers
1.13 How to Extract Data from a yuima Object

NN R R W

[OSERUSERUS I O RN \O T (S RN \O I (O R O R e e e e e
O N W JWnhWOOWOWOJIONWNDN R~~~

1.14 Time Series Classes, Time Data and Time Stamps
1.14.1 Review of Some Time Series Objects in R
1.14.2 How to Handle Real Time Stamps
1.14.3 Dates Manipulation
1.14.4 Using Dates to Index Time Series..............
1.14.5 Joining Two or More Time Series.
1.14.6 Subsetting a Time Series
1.I5 Miscellanea
1.15.1 From Yuima to IKEX.
1.152 The Yuima GUIL.

Part I Models and Inference

2 Diffusion Processes
2.1 Model Specification
2.1.1 Ornstein—Uhlenbeck (OU)

2.1.2 Geometric Brownian Motion (gBm)

2.1.3 Vasicek Model (VAS)

2.1.4 Constant Elasticity of Variance (CEV)...........

2.1.5 Cox-Ingersoll-Ross Process (CIR)

2.1.6 Chan—Karolyi-Longstaff-Sanders Process (CKLYS) . .

2.1.7 Hyperbolic Diffusion Processes

2.2 More About Simulation.
2.3 Multidimensional Processes.
2.3.1 The Heston Model

2.4 Parametric Inference
2.4.1 Quasi-maximum Likelihood Estimation

2.4.2 Adaptive Bayes Estimation

2.5 Example of Real Data Estimation for gBm.
2.6 Example of Real Data Estimation for CIR
27 Hypotheses Testing.
2.8 AIC Model Selectiono iinn...

2.8.1 An Example of AIC Model Selection for Exchange

RatesData.
2.9 LASSO Model Selection

2.9.1 An Example of Lasso Model Selection for Interest

RatesData...............................
2.10 Change Point Estimation

2.10.1 Example of Volatility Change Point Estimation

for Two-Dimensional SDEs
2.10.2 An Example of Two-Stage Estimation.

2.10.3 Example of Volatility Change Point Estimation

inRealData

Contents

... 109

Contents

4

2.11 Asynchronous Covariance Estimation
2.11.1 Example: Data Generation and Estimation by yuima
Package.
2.11.2 Asynchronous Estimation for Nonlinear Systems
2.11.3 Other Covariance Estimators.
2.12 Lead-Lag Estimationiiuiuo...
2.12.1 Application of the Lead-Lag Estimator to Real Data . . .
2.13 Asymptotic Expansion
2.13.1 Asymptotic Expansion for General Stochastic
Processes.

Compound Poisson Processes
3.1 Inhomogeneous Compound Poisson Process.
3.1.1 Linear Intensity Function
3.1.2 The Weibull Model
3.1.3 The Exponentially Decaying Intensity Model
3.14 Modulated and Periodical Intensity Model
3.1.5 Frequency Modulation Model
3.2 Multidimensional Compound Poisson Processes
3.2.1 Multivariate Gaussian Jumps.
3.2.2 User-Specified Jump Distribution
3.3 Estimation
3.3.1 Compound Poisson Process with Gaussian Jumps
3.3.2 NIG Compound Poisson Process.
3.3.3 Exponential Jump Compound Poisson Process.
3.3.4 The Weibull Compound Poisson Process.
3.3.5 Modulated and Periodical Intensity Model

Stochastic Differential Equations Driven by Lévy Processes
4.1 Lévy Processes.
4.1.1 Infinitely Divisible Distributions
4.1.2 Infinite Divisible Distributions, Lévy Processes,
Lévy-Itdé Decomposition
42 Wiener Process.
4.3 Compound Poisson Process.
4.4 Gamma Process and Its Variants
441 Gamma Process
442 Variance Gamma Process
4.4.3 Bilateral Gamma Process
444 Simulation of Gamma Processes
4.5 Generalized Tempered Stable Process, Tempered o Stable
Process, CGMY Process, Positive Tempered Stable Process
4.6 Inverse Gaussian Process
4.7 Increasing Stable Process

xi

165

xii

Contents

4.8 Subordination.............
4.8.1 Definition
4.8.2 Compound Poisson Process by Subordination
4.8.3 Subordination of a Wiener Process with Drift
4.8.4 Variance Gamma Process with Drift
4.8.5 Normal Inverse Gaussian Process
4.8.6 Normal Tempered Stable Process
4.9 Stable Process
4.10 Generalized Hyperbolic Processes
4.10.1 Generalized Inverse Gaussian Distribution
4.10.2 Generalized Inverse Gaussian Process
and Generalized Hyperbolic Process
4.10.3 GH Distributionsuuiinaa...
4.10.4 Subclasses of the GH Distributions
4.11 Stochastic Differential Equation Driven by Lévy Processes
and Their Simulation
4.11.1 Semimartingale
4.11.2 Stochastic Differential Equations
4.11.3 Compound Poisson Driving Processes.
4.11.4 Driving Processes of code Type
412 Estimation
4.12.1 Estimation of Jump-Diffusion Processes.
4.12.2 Estimation of Exponential Lévy Processes
4.13 Bessel Function of the Third Kind.

Stochastic Differential Equations Driven by the Fractional
Brownian Motion,
5.1 Model Specification
5.2 Simulation of the Fractional Gaussian Noise
5.2.1 Cholesky Method
5.2.2 Wood and Chan Method
5.3 Simulation of Fractional Stochastic Differential Equations
5.4 Parametric Inference forthe fOU.
5.4.1 Estimation of the Hurst Exponent and the Diffusion
Coefficient via Quadratic Generalized Variations
5.4.2 Estimation of the Drift Parameter
5.5 An Example on Climate Change Data

CARMA Models
6.1 Lévy-Driven CARMA Models.
6.2 CARMA Model Specification

6.2.1 The yuima.carma-class
6.3 CARMA(p,q) Model Estimation

Contents xiii
6.4 Examples of Lévy-driven CARMA(p,q) Models 222
6.4.1 Compound Poisson CARMA(2,1) Process 222

6.4.2 Variance Gamma CARMA(2,1) Process 224

6.4.3 Normal Inverse Gaussian CARMA(2,1) Process. 226

6.5 Application to the VIX Index 229

7 COGARCHModels 237
7.1 General Order (p,g) Model 239
7.1.1 How to Input a COGARCH(p,q) Model in yuima 240

7.1.2 Stationarity Conditions 241

7.2 Simulation Schemes 244
7.3 Generalized Method of Moments Estimation 248
7.3.1 Moments Matching Step. 248

7.3.2 Lévy Distribution Estimation 250

7.4 Quasi-maximum Likelihood Estimation 251

7.5 Relationship Between GARCH(1,1) and COGARCH(1,1). 253
7.6 Applicationto Real Data. 254
References 257
Index 265

Part 1
The YUIMA Framework

Chapter 1 ®)
The YUIMA Package e

1.1 Overview of the Project

The YUIMA' Project is collaborative effort of several people aimed at providing a
comprehensive environment for the simulation and inference for stochastic processes
based on the R (R Core Team 2017) language. The main infrastructure is implemented
in an R package called yuima (Brouste et al. 2014).

Stochastic differential equations are commonly used to model random evolutions
along continuous or practically continuous time, such as the random movements of
stock prices and the population dynamics. Theory of statistical inference for stochas-
tic differential equations already has a fairly long history, more than three decades,
but it is still developing quickly new methodologies and expanding the area. The
formulas produced by the theory are usually very sophisticated and rarely made
available through user-friendly software. This fact makes quite difficult for the ca-
sual practitioner, or even researchers in fields other than stochastic analysis, to take
full advantage of them.

For example, the asymptotic expansion method for computing option prices (i.e.
expectation of an irregular functional of a stochastic process) provides precise ap-
proximation values instantaneously compared to Monte Carlo methods. Unfortu-
nately, the analytic version of the expansion formula involves more than 900 terms
which are multiple integrals. In this situation, the hand coding of these formulas
is quite challenging but the yuima package automatically implements them for the
user. These and many other up-to-date methods are ready to be used through the
yuima package.

'YUIMA is both the acronym for Yoshida-Uchida-Iacus-Masuda-Andothers and the name of an
important character in Buddhism religion (http://www.kyohaku.go.jp/eng/syuzou/meihin/kaiga/
chuugoku/itemO1.html) whose approach to problems fits well this project.

© Springer International Publishing AG, part of Springer Nature 2018 3
S. M. Iacus and N. Yoshida, Simulation and Inference for Stochastic
Processes with YUIMA, Use R!, https://doi.org/10.1007/978-3-319-55569-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-55569-0_1&domain=pdf
http://www.kyohaku.go.jp/eng/syuzou/meihin/kaiga/chuugoku/item01.html
http://www.kyohaku.go.jp/eng/syuzou/meihin/kaiga/chuugoku/item01.html

4 1 The YUIMA Package

The yuima package is intended to offer the basic infrastructure on which com-
plex models and inference procedures can be built on. The present version of the
yuima package allows to specify stochastic differential equations of very abstract
type, including one- or multidimensional diffusion processes driven by Wiener pro-
cess or fractional Brownian motion with general Hurst parameter, with or without
jumps (i.e. driven by Lévy processes). Further, the yuima package allows for the
specification of other classes of models like the continuous autoregressive moving
average models (CARMA) Doob (1944), Brockwell (2001) and the continuous gen-
eralized heteroskedastic model (COGARCH) Kliippelberg et al. (2004), Brockwell
et al. (2006), Maller et al. (2008).

1.2 Who Should Read This Book?

Although we assume that the reader of this book has a basic knowledge of the R
language, most of the examples are easy to understand if he/she knows stochastic
differential equations intuitively or symbolically. This book is intended to be a step-
by-step introduction to simulation and inference for stochastic processes using the
yuima package. The content of this book will be useful to practitioners who want
to implement in their field of research, abstract models appearing in the specialized
literature of stochastic processes. The yuima package can also be very useful to
scholars in the field of theoretical statistics and stochastic processes, who want to
quickly implement their models and test their performance through simulation or
empirical analysis. This book contains examples of real data analysis coming from
different fields.

1.3 Structure of the Book

This book consists of two parts. The first part gives a brief introduction to the basic
infrastructure of the yuima package and its building blocks: model specification,
simulation, sampling, data input and the basic functions and methods. The second
part of the book is devoted to give a detailed description on how to implement, simu-
late and estimate several classes of models. Namely, Chap. 2 is focused on diffusion
processes and includes some advanced topics like asymptotic expansion methods
via Malliavin calculus. Chapter 3 considers compound Poisson processes, Chap.4
discusses Lévy processes while Chap. 5 treats stochastic differential equations driv-
en by fractional Brownian motion. Finally, Chaps.6 and 7 introduce CARMA and
COGARCH models, respectively. Throughout this book, we assume that all regu-
larity conditions for the existence of the stochastic processes are met; although in

1.3 Structure of the Book 5

special cases we remind explicitly which conditions are required. This is due to the
fact that the package yuima is not able to verify the correctness of the results when
the assumptions are not met. In some cases we will also put in evidence what are the
implications when these assumptions are not fully satisfied.

1.4 How to Get the R Code for This Book

The complete R code used in the book has been included in the yuima package.
R code have been collected by chapters. The yuima function to access the code is
called ybook and accepts a single argument chapter. So, for example, to access
the code of this chapter the reader should type the following command in the R
Console

(1)
For Chap. 3 the command will be

(3)

The R code in yuima package will be updated to keep up with future releases of
yuima or R. The examples of this book have been run with R version 3.4.1 and
yuima package version 1.7.4.

1.5 Main Contribution to the Yuima Package

This book about the YUIMA Project would have not been possible without the yuima
package itself. The Yuima package has several present and past contributors who de-
velop specialized parts of the software. The YUIMA Project team members are given
in alphabetical order: Alexandre Brouste, Stefano M. Iacus, Kengo Kamatani, Yuta
Koike, Hiroki Masuda, Lorenzo Mercuri, Ryosuke Nomura, Masayuki Uchida,
Yuma Uehara and Nakahiro Yoshida. Former members include Masaaki Fukasawa
and Yasutaka Shimizu, and a special mention goes to Hideitsu Hino for the hard
work in the early years of this project. We also acknowledge the efforts of Emanuele
Guidotti for providing the graphical user interface through the yuimaGUI package
(see Sect. 1.15.2).

Table 1.1 summarizes very roughly the contributors for each part and/or function
of yuima package. Most of the times these sets overlap with the theory developed
for such progress in yuima, but the theoretical papers are mentioned in each section
of this book; here, we only mention the coding efforts and the definition of classes
and methods. The whole Yuima Core Team took part in the design of the different
pieces of software.

6 1 The YUIMA Package

Table 1.1 Very rough contribution to the yuima package development

Topic In book Main authors

gmle coding Sect.2.4 Hino, Tacus

amle with ccp Sect.2.4.2 Kamatani

sampling and Sect. 1.11.1 Fukasawa, Hino, Iacus

subsampling

setModel Sect. 1.9.1 Hino, Iacus, Mercuri, Masuda,
Shimizu

simulate Sect. 1.10 Hino, Iacus, Mercuri, Masuda,
Shimizu

simulate with Sect. 1.10 Fukasawa, Hino

space.discretized

setPoisson with gmle Chap. 3 Tacus

CARMA(p.q), setCarma Chap. 6 Tacus, Mercuri

with gmle

COGARCH(p,q), setCarma | Chap. 7 Tacus, Mercuri

with gmle

Random number generators Chap. 4 Masuda, Uehara

for Lévy

Fractional Brownian motion Sect.5.2 Brouste

simulation

Fractional O-U estimation and | Sect. 5.4 Brouste, Tacus

mmfrac

Asymptotic expansion Sect.2.13 Hino, Nomura, Yoshida

Hypotheses testing Sect.2.7 Tacus

Lead-lag estimation Sect.2.12 Koike

Asynchronous covariance Sect.2.11 Koike, Hino

estimation

LASSO estimation Sect.2.9 Tacus

toLatex Sect. 1.15.1 Tacus, Mercuri

yuimaGUI Sect.1.15.2 Guidotti, Tacus, Mercuri

1.6 Further Developments of Yuima Package

The YUIMA Project is an ongoing project. Not all functionalities are described in
this book because at the time of this writing new modules are being added. Among
these, there is the class of point process regression models, i.e. where the intensity
function of the point process depends on time but also on the process itself and several
other covariate processes. This class includes Hawkes processes (Hawkes 1971) as
a special case.

The concepts of maps, transform and integration of wide classes of stochastic
processes are also under development along with a flexible structure to describe
probability laws and related quantities.

1.7 Things to Know About R 7

1.7 Things to Know About R

For the benefit of the reader who approaches R for the first time thanks to this
book, we briefly mention how to get his own copy of the software but we also give
some information on the concept of ‘classes’ and ‘methods’ as we will use quite
frequently these terms in the text. We redirect the user to Dalgaard (2008) for a
gentle introduction to R.

1.7.1 How to Get R

R exists for all major platforms (Mac OS X, MS Windows, Linux and the alike) and
can be freely downloaded from the main CRAN repository at the URL http://CRAN.
R-Project.org or one of its mirrors. MS Windows users can point their browser di-
rectly to http://cran.r-project.org/bin/windows/base, Macintosh users to http://cran.
r-project.org/bin/macosx/, and Linux users can choose the version for their system at
http://cran.r-project.org/bin/linux/ or use commands like yum, apt -get or similar,
depending on the incarnation of Linux installed in their machines. On Mac OS X
and MS Windows, the user needs to run the installer which automatically configures
R for their machine. Once installed, Linux users can just run R from the terminal
window typing R; MS Windows users will find the executable named, for example,
R-3.4.1-win32.exe if the system is 32-bit and the release of R is 3.4.1; Mac
OS X user will find the application R. app in their Applications folder. Different
replacement solutions for the default (or non existent) R GUI exist. We mention
one of the most popular named RStudio. The reader of this book can refer to the
corresponding website for full details: http://www.rstudio.com.

1.7.2 Rand S4 Objects

Although the reader is assumed to have a basic knowledge of R, he is not necessarily
aware of the object-oriented nature of the R language. In fact, each object in R belongs
to some class, and for each class, there exist generic functions called methods which
perform some task on that object. For example, the function summary provides
summary statistics which are appropriate for each particular object

(cars)
(cars)

[1] "data.frame"

http://CRAN.R-Project.org
http://CRAN.R-Project.org
http://cran.r-project.org/bin/windows/base
http://cran.r-project.org/bin/macosx/
http://cran.r-project.org/bin/macosx/
http://cran.r-project.org/bin/linux/
http://www.rstudio.com

8 1 The YUIMA Package

The command class shows the class of the object cars whichisadata. frame.

(cars)

speed dist

Min. : 4. Min. : 2.00
1st Qu.:12. Ist Qu.: 26.00
Median :15. Median : 36.00

o Ok O o o

Mean 8il5, Mean : 42.98
3rd Qu.:19. 3rd Qu.: 56.00
Max. :25. Max. :120.00
mod (dist~speed, data=cars)
(mod)
##
call:
1lm(formula = dist ~ speed, data = cars)
##
Residuals:
Min 10 Median 30 Max
-29.069 -9.525 -2.272 9.215 43.201
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.5791 6.7584 -2.601 0.0123 *
speed 3.9324 0.4155 9.464 1.49e-12 ***

Signif. codes:
0 '***/ 0.001 '**’ 0.01 ’*’ 0.05 *.” 0.1 * r 1
##

Residual standard error: 15.38 on 48 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12

We can look at the class of the object mod resulting from the application of a linear
model (1m)

(mod)

[1] "lm"

The standard set of classes and methods in Ris called S3. In this framework, a method
for an object of some class is simply an R function named method.class; e.g.
summary . 1m is the function which is called by R when the function summary is
called with an argument which is an object of class 1m. R methods like summary are
very generic, and the function methods provides a list of specific methods (which
apply to specific types of objects) for some particular method. For example,

(summary)
[1] summary,ANY-method
[2] summary,cogarch.est-method
[3] summary,cogarch.est.incr-method
[4] summary,diagonalMatrix-method

1.7 Things to Know About R 9

[5
[6

summary,mle-method
summary, sparseMatrix-method

[7] summary,yuima.CP.gmle-method

[8] summary,yuima.carma.gmle-method
[9] summary,yuima.gmle-method

[10] summary.Date

[11] summary.PDF_Dictionary*

[12] summary.PDF_Stream*

[13] summary.POSIXct

[14] summary.POSIX1t

[15] summary.aov

[16
(17
[18
[19

summary.aovlist*
summary.aspell*

summary .check_packages_in_dir*
summary .connection

[20] summary.data.frame
[21] summary.default

[22] summary.ecdf*

[23] summary.factor

[24] summary.glm

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

[25] summary.infl*

[26] summary.lm

[27] summary.loess*

[28]

[29]

[30]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

summary .manova
summary.matrix
summary .mlm*

[31] summary.nls*

[32] summary.packageStatus*
[33] summary.ppr*

[34] summary.prcomp*

[35] summary.princomp*

[36] summary.proc_time

[37] summary.shingle*

[38
[39
[40
[41

summary.srcfile
summary.srcref
summary.stepfun
summary.stl*

[42] summary.table

[43] summary.trellis*

[44] summary.tukeysmooth*
[45] summary.yearmon*

[46] summary.yearqtr*

[47] summary.zoo*
see ’'?methods’ for accessing help and source code

The dot ‘.’ naming convention is quite unfortunate because one can artificially create
functions which are not proper methods; for example, the t . test function is not
the method t for objects of class test but it is just an R function which performs
ordinary two-samples ¢ test. Moreover, as the function class is an accessor function,
i.e. can get and set data from/into an object, some weird things may happen. For
example, we now create a vector and assign it the class 1m as follows

x 1:4
X

[1] 1 2 3 4

10 1 The YUIMA Package

(x)

[1] "integer"

[1] "lm"

But if we now try commands like summary, print, plot or similar for which
methods explicitly designed for the class 1m exist, R will return an error. The new
system of classes and methods which is now fully implemented in R is called S4.
Objects of class S4 apparently behave like all other objects in R but they possess
properties called ‘slots’, which can be accessed differently from other R objects.
Moreover, the way they are constructed is more robust and the transition from a class
to another is controlled finely or prevented in some cases to avoid the above mis-
functioning situations. The next code estimates the maximum likelihood estimator
for the mean of a Gaussian law. It uses the function m1e from the package stats4
which is an S4 package as the name suggests. Again, we are not interested in the
statistical part of this example just in R code

(stats4)
(123)
h% (100, mean=1.5)
f function (theta=0) - ((x=y, mean=theta, 1og=TRUE))
fit (£)
fit
##
Call:
mle(minuslogl = f)
##
Coefficients:
#4# theta
1.590406

We now have a look at the object £it returned by the m1e function

(fit)

Formal class ’‘mle’ [package "stats4"] with 9 slots
..@ call : language mle(minuslogl = f)
..@ coef : Named num 1.59

.. ..- attr(*, "names")= chr "theta"
..@ fullcoef : Named num 1.59

.. ..- attr(*, "names")= chr "theta"
..@ vcov : num [1, 1] 0.01

.. ..- attr(*, "dimnames")=List of 2
..$: chr "theta"

..S$: chr "theta"

..@ min : num 133
..@ details :List of 6

1.7 Things to Know About R 11

.. ..S$ par : Named num 1.59

..- attr(*, "names")= chr "theta"

#4# ..$ value : num 133

.$ counts : Named int [1:2] 6 3

..- attr(*, "names")= chr [1:2] "function" "gradient"
.$ convergence: int 0

.. ..S message : NULL

.$ hessian : num [1, 1] 100

..- attr(*, "dimnames")=List of 2

..$: chr "theta"

..$: chr "theta"

..@ minuslogl:function (theta = 0)

.. ..- attr(*, "srcref")=Class ’'srcref’ atomic [1:8] 4 6 4
60 6 60 4 4

.- attr(*, "srcfile")=Classes ’'srcfilecopy’,

'srcfile’ <environment: 0x7f8ba6677a00>
..@ nobs : int NA
..@ method : chr "BFGS"

We now see that this is an S4 object with slots that, as the structure suggests, can be
accessed using the symbol @ instead of $. For example,

fit@coef

theta
1.590406

To get the list of methods for S4 objects, one should use the function showMethods

(summary)

Function: summary (package base)
object="ANY"

object="cogarch.est"

object="cogarch.est.incr"

object="data.frame"

(inherited from: object="ANY")
object="diagonalMatrix"

object="1lm"

(inherited from: object="ANY")
object="mle"

object="sparseMatrix"

object="yuima.CP.gmle"

object="yuima.carma.gmle"

object="yuima.gmle"

1.8 The Yuima Package

1.8.1 How to Obtain the Package

The stable version of the yuima package is available through CRAN and can be
installed from CRAN, as for any other package, typing the following command on
the R console

12 1 The YUIMA Package

("yuima")

or using the GUI functionality to install packages. The code companion to this book
is supposed to work with the CRAN version. There exists also a development ver-
sion of the yuima package which is hosted on R-Forge, and the Web page of the
project is http://r-forge.r-project.org/projects/yuima. Development versions of the
package are not supposed to be stable or functional; thus, it is for advanced users or
future developers of yuima only. The development version of yuima package can
be installed from R-Forge using the following command

("yuima",repos="http://R-Forge.R-project.org")

If, for some reason, the R-Forge system does not provide binary builds of the yuima
package, the user can also try

("yuima",repos="http: R-Forge.R-project.org",

type="source")

The package yuima depends on some other packages, such as zoo (Zeileis and
Grothendieck 2005), which can be installed separately if R does not install fully
all the dependencies. The package zoo is used internally to store time series data.
This dependence may change in the future adopting a more flexible class for internal
storage of time series. Once the package has been installed on your system, before
using any of the commands in this book, you should load the package as for any
other R package as follows

(yuima)

The official Web of the YUIMA Project can be found at https://yuima-project.
com.

1.8.2 The Main Object and Classes

The yuima package adopts the S4 system of classes and methods (Chambers 1998).
Although the discussion on the methods for simulation and inference for stochastic
processes will be postponed to the second part of the book, here, we discuss the
main classes of objects as well as some generic features and behaviour of the yuima
package. As mentioned, there are various classes of objects defined in the yuima
package but the main class is called the yuima-class. This class is composed of
several slots. Figure 1.1 represents the classes and their slots.

The different slots do not need to be all present at the same time. For example, in
case one wants to simulate a stochastic process, only the slotsmodel and sampling
have to be prepared, while the slot data will be filled by the simulator. We discuss
in full detail the different objects separately in the following sections.

The general idea of the yuima package is to keep separate the information about
the statistical model and the data into different objects to be used later by various

http://r-forge.r-project.org/projects/yuima
https://yuima-project.com
https://yuima-project.com

1.8 The Yuima Package

yuima
yuima

yuima

model

data
sampling
characteristic
functional

model
yuima.model

yuima.model

drift

diffusion
hurst
measure
measure.type
parameter
state.variable
jump.variable
time.variable
noise.number

equation.number

dimension
solve.variable
xinit

Jflag

Fig. 1.1 Main classes in the yuima package

sampling

yuima.sampling

yuima.sampling
Initial
Terminal

ol

delta

grid

random
regular
sdelta

sgrid

oindex
interpolation

data
yuima.data

yuima.data

original.data
zoo.data

characteristic
yuima.characteristic

functional
yuima.functional

yuima.functional
F

f

xinit

e

yuima.characteristic

equation.number
time.scale

13

statistical methods. As it will be explained with several examples, the user may give
a mathematical description of the statistical model with setModel which prepares
ayuima.model object by filling the appropriate slots. If the aim is the simulation
of the stochastic differential equations specified in the yuima .model object, then
using the method simulate, it is possible to obtain one trajectory of the process.
As an output, a yuima object (by ‘yuima object’ we mean a, possibly incomplete,
object of class yuima) is created which contains the original model specified in the
yuima.model object in the slot named model and two additional slots named

data, for the simulated data, and sampling which contains the description of

the simulation scheme used as well as other information. The details of simulate

14 1 The YUIMA Package

input data

input real time series
using the command
setData()

inference

use various methods for:

estimation (QMLE, Baye:

hypoth testing

model selection

change point analysis

covariance estimation
simulated data etc

statistical model

specify the model with
setModel ()

generate a trajectory
from the model with
simulate ()

sampling

describe the sampling

structure using

setSampling ()

o
functional

evaluation
prepare the func-

- evaluate the functional via
tional

asymptotic expansion with

to be evaluated with B E—

setFunctional ()

Fig. 1.2 An example of typical workflow of use of the main functionalities of the yuima package

will be explained in Sect. 1.10 along with the use of method setSampling which
allows to specify a sampling scheme to be used by the simulate method.

However, a yuima object may contain the slot data not only as the outcome of
simulate but also for own data the user wants to analyse. In this case, the method
setData is used to transform most types of R time series objects into a proper
yvuima.data object. When the slots data and model are available, many other
methods can be used to perform statistical analysis on these stochastic models. These
methods will be discussed from Sect. 2.4.

Further, functionals of stochastic differential equations can be defined using the
setFunctional method and evaluated wusing asymptotic expansion
methods as explained in Sect. 2.13. The setFunctional method creates a
yuima. functional object which is included along with a yuima .model in-
to a yuima object in order to be used for the evaluation of its expected value by
asymptotic expansion methods. Figure 1.2 gives an example of the typical use of the
functionalities of the yuima package.

1.8 The Yuima Package 15

1.8.3 The yuima.model Class

At present, in yuima several classes of stochastic differential equations driven by
Brownian motion, Lévy processes or fractional Brownian motion can be easily spec-
ified as well as CARMA and COGARCH models and some types of point processes.
Here, we present a brief overview of a simple one-dimensional diffusion model as
part IT of this book will consider several other models. This also allows to introduce
an overall view of the slots of the yuima .model class. In yuima, one can describe
a great variety of families of stochastic processes. These models can be one- or mul-
tidimensional and eventually described as parametric models. Let us consider the
stochastic differential equation

dX, = a(t, X,, 0)dt + b(t, X,, 0)dW,, Xo = xo,

where W, is a standard Brownian motion. The three arguments of the functions
a(-,-,-) and b(-, -, -) do not need to be specified every time. For example, if the
model is homogeneous in time and the drift and diffusion coefficients do not contain
the parameter 6, then it is sufficient to use the notation a(x) and b(x) to describe the
model dX, = a(X,)dt + b(X,)dW,. Detailed hypotheses and regularity conditions
on the coefficients a(-) and b(-) for each class of models will be given in the following
sections. Nevertheless, it is important to remark that these notations only matter to
the mathematical description of the model used in this book because the coefficients
are passed to yuima methods as R mathematical expressions. This means that, for
example, a(t, X,,0) =t - /60X, will be passed as t *sqgrt (x*theta) ; therefore,
from the R point of view, the order of the arguments is not relevant as well as the
mathematical description used in this text, although it is kept consistent through each
section. It is worth to remark that the yuima accepts any user-specified notation for
the state variable x (for X,) and the time variable ¢ so that the remaining terms in an
R expression will be interpreted as parameters by yuima as explained in Sect. 1.9.1.
We are now able to give an overview of the main slots of the most important classes
of the yuima package.

The yuima.model class contains information about the stochastic process of
interest. The constructor function setModel is used to provide a description of
the model considered. All functions in the yuima package are assumed to extract
as much information as possible from the classes to avoid duplications of code and
data.

An object of class yuima .model may contain several slots, but we will discuss
here only the subset which is relevant to this section. Still, the description given
here is abstract and can be well understood looking at the examples of Sect. 1.9.
The complete structure of a yuima .model object can be investigated as usual by
using the R command str on a yuima object or on its slot yuima .model. What
follows is a partial list of slots of the yuima . model class:

e driftisavector of R expressions describing the drift coefficient.

16 1 The YUIMA Package

e diffusionisa list-type object which describes the diffusion coefficient ma-
trix; each slot of the list corresponds to one row of the diffusion matrix.

e parameter, which is a short name for ‘parameters’, is a 11 st-type object with
the following entries (more details in Sect. 1.9.3):

— all contains the names of all the parameters found in the diffusion and drift
coefficients.

common contains the names of the parameters in common between the drift
and diffusion coefficients.

— diffusion contains the parameters belonging to the diffusion coefficient.

— drift contains the parameters belonging to the drift coefficient.

e state.variable and time.variable, by default, are assumed to be x
and t, respectively, but the user can freely choose names for them; these names
matter to the right-hand side of the equation of the SDE. The yuima .model
class assumes that the user either keeps default names for state.variable
and time.variable variables or specifies his own names. All other symbols
are considered parameters and distributed accordingly in the parameter slot.
Example of use will be given in Sect. 1.9.1;

e solve.variable contains a vector of variable names, and each element cor-
responds to the name of the solution variable (left-hand side) of each equation in
the model, in the respective order. An example of use can be found in Sect. 2.3.

e noise.number indicates the number of sources of noise.

e xinit is the initial value of the stochastic differential equation or a distribution.

e equation.number represents the number of equations, i.e. the number of one-
dimensional stochastic differential equations.

e dimension reports the dimensions of the parameter space. It is a list of the same
length of parameter with the same names.

As seen in the above, the parameter space is accurately described internally in a
yuima object because in inference for stochastic differential equations, estimators
of different parameters have different properties. This will be discussed in more detail
in Chap. 2.

1.9 On Model Specification

In order to show how general the approach of the yuima package is, we present some
examples. Throughout this section, we assume that the solutions of all the stochastic
differential equations exist, while in Sect. 2.4, we will give regularity conditions
needed to have a properly defined statistical model.

1.9 On Model Specification 17

1.9.1 Basic Model Specification

Assume that we want to describe the following stochastic differential equation

1
dX, = -3X,dt + ——=dW,, X, = xo. 1.1
t t 1 +_)(? t 0 0 ()
In the above a(x) = —3x and b(x) = # according to the notation of previous

section, x is the initial condition and W, is a standard Wiener process. This model
can be described in yuima specifying the drift and diffusion coefficients as plain R
expressions passed as strings using the setModel function:

modl (drift = "-3*x", diffusion = "1/ (1+x"2)")

By default, the yuima package assumes that the state variable (state.variable
in the yuima .model object) for X, is x and the time variable (time .variable
in the yuima .model object) is t and the solution variable is the same as the state
variable, hence again x. Notice that the left-hand side of the equation is implicit, this
is why yuima .model has the slot solve.variable to specify different cases,
as we will see in Sect. 2.3. The user should not be worried about the warning raised
by yuima at this stage, as this is just to inform him or her on the implicit assumption
on the solution variable. More precisely, this is how setModel thinks about the
different arguments:

diffusion

drift time.variable — . driving noise
—_— —_ 1 ——
dX; solve.variable = -3 X dr +—— AW
s L 1+ X3
LHS = state.variable ——

state.variable

RHS = state and time variables

At this point, the yuima package fills the proper slots of the yuima object

(mod1)

Formal class ’‘yuima.model’ [package "yuima"] with 16 slots
..@ drift : expression((-3 * x))
..@ diffusion :List of 1

.. ..$: expression((1/(1 + x"2)))
..@ hurst : num 0.5

..@ jump.coeff : list()

..@ measure : list()

..@ measure.type : chr(0)

..Q@ parameter :Formal class ’‘model.parameter’ [package
"yuima"] with 7 slots

.. ..@ all : chr(0)

.. ..@ common : chr(0)
#4#@ diffusion: chr(0)
.. ..@ drift : chr(0)

.. ..@ jump : chr(0)

.. ..@ measure : chr(0)
.. ..@ xinit : chr(0)

18 1 The YUIMA Package

..@ state.variable : chr "x"
..@ jump.variable : chr(0)
..@ time.variable : chr "t"
..@ noise.number : num 1
..Q@ equation.number: int 1
..@ dimension : int [1:6] 0 0 0 0 0 O
..@ solve.variable : chr "x"
..@ xinit : expression((0))
@

..@ J.flag : logi FALSE

From the above, it is possible to see that the jump coefficient is void and the Hurst
parameter is set to 0.5, because this is a model where the driving process is the
standard Brownian motion, i.e. a fractional Brownian motion if Hurst index H = %
For more details, see Chap. 5.

For a quick look at the type of process being specified, one can simply type the
name of the object in the R console or call the method show or print with the
yuima object as argument. For example,

modl

##

Diffusion process

Number of equations: 1

Number of Wiener noises: 1

gives the same result as show (modl) or print (modl).

1.9.2 User-Specified State and Time Variables

Suppose now that the user wants to specify his or her own model using a prescribed
notation, e.g. some SDE’s like

1
dYS = —3SY5dS + Wdst Y() = Yo, (12)

N

where a(s, y) = —3sy and b(y) = 1/(1 + y?). Then, this model can be described
in yuima as follows:

modlb (drift = "-3*gs*y", diffusion = "1/ (1+y"2)",

state.var="y", time.var="s")

In this case, the solution variable is the same as the state variable. Indeed, the
yuima.model object appears as follows:

tmp ((mod1b))
((tmp[c(2,3,4,17,19,23)],width=60))

..@ drift : expression((-3 * s * y))
..@ diffusion :List of 1

1.9 On Model Specification 19

.. ..S : expression((1l/(1 + y~2)))
..@ state.variable : chr "y"
..@ time.variable : chr "s"
..@ solve.variable : chr "y"

where we have printed only the relevant information of str (modlb) obtained
through capture.output.

1.9.3 Specification of Parametric Models
Assume now that we want to describe this parametric model:

1
dX, = —uX,dt + ——dW,, Xo = xo,
t 229 +1+Xry t 0= Xo

where a(x, u) = —pux and b(x, y) = 1/(14+x7). This model is specified as follows:

mod?2 (drift = "-mu*x", diffusion = "1/ (l+x"gamma)"

The yuima parser isolates the time and state variables in the expressions of the drift
and diffusion coefficients and assumes that the remaining symbols are names of
parameters; so, in this case, mu and gamma, which are different from x and t, are
assumed to be parameters. Notice that in the above notation p and y are generic
names for the components of a parameters’ vector 6 in the notation of Sect. 1.8.3.

tmp ((mod2))
((tmp[c(2,3,4,9:13,17,19,23)1,width=60))

..@ drift : expression((-mu * x))

..@ diffusion :List of 1

.. ..S : expression((1l/(1 + x"gamma))

..@ parameter :Formal class ’'model.parameter’ [package
"yuima"] with 7 slots

..@ all : chr [1:2] "mu" "gamma"
..@ common : chr(0)

.@ diffusion: chr "gamma"

@ drift : chr "mu"

..@ state.variable : chr "x"
..@ time.variable : chr "t"
..@ solve.variable : chr "x"

Again, we can have a small summary of the object in the following way

mod2

##

Diffusion process

Number of equations: 1

Number of Wiener noises: 1

Parametric model with 2 parameters

20 1 The YUIMA Package

1.10 Basic Facts on Simulation

The simulate function simulates yuima models according to the Euler—Maruyama
scheme in the presence of nonfractional diffusion noise and Lévy jumps and uses the
Cholesky or the Wood and Chan (1994) method for the fractional Gaussian noise.
For diffusion models without jumps, yuima also implements a space discretized
Euler-Maruyama method (see Sect. 1.10). We discuss here a quick way to perform
simulation. Consider again the diffusion process of Eq.(1.1) from Sect. 1.9.1

1
dX, = -3X,dt + ——=dW,, X, = xo,
' ' 1+ x2 ' 0 0

which was input into yuima as modl. Now, with modl in hands, it is extremely
easy to simulate a trajectory of the process as follows:

(123)
X (mod1)

This trajectory can be plotted using the command plot

(X)

and the result is shown in Fig. 1.3.

0.0

0.0 0.2 0.4 0.6 0.8 1.0
t

Fig. 1.3 The plot function is used to draw a trajectory of a simulated yuima object

1.10.1 Customization of Simulation Arguments

‘When no other arguments are passed to the simulate command, the default values
are taken into account. In particular, if not specified, the initial value for the simula-

1.10 Basic Facts on Simulation 21

1.0

04

0.2
|

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 1.4 A simulated trajectory with initial value specified with argument xinit=x0 in the
simulate command

tion, i.e. Xy, is always set to zero as we can see from Fig. 1.3. For different initial
values, one can specify the argument xinit as in the next example (see Fig. 1.4),
x0 1

(123)

X (modl, xinit=x0)
(X)

and the result is shown in Fig. 1.4.
Notice that the output of the simulate command is again a yuima object which
contains, in addition to the model specification, other two slots: the data slot:

(X@data,vec.len=2)

Formal class ’‘yuima.data’ [package "yuima"] with 2 slots
..@ original.data: Time-Series [1:101, 1] from 0 to 1: 1
0.942

.. ..- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr "Series 1"

..@ zoo.data :List of 1

.. ..$ Series 1:’'zooreg’ series from 0 to 1

Data: num [1:101] 1 0.942
Index: num [1:101] 0 0.01 0.02 0.03 0.04
Frequency: 100

and the sampling slot:

(X@sampling,vec.len=2)

Formal class ’‘yuima.sampling’ [package "yuima"] with 11 slots
..@ Initial : num 0

..@ Terminal : num 1

..@n : int 100

..@ delta : num 0.01

22 1 The YUIMA Package

..@ grid :List of 1

.. ..$: num [1:101] 0 0.01 0.02 0.03 0.04
..@ random : logi FALSE

..@ regular : logi TRUE

#4# ..@ sdelta : num(0)

..@ sgrid : num(0)

..@ oindex : num(0)

#4# .@ interpolation: chr "pt"

which are filled with proper information. In the above, we have used the argument
vec.len=2 to shorten the output of the command str to the first few elements
of the numerical vectors. Notice further that the xinit slot of the yuima object is
also properly filled:

tmp ((X))
((tmp[c(14:16,29,31,35,36)]1,width=60))

..@ diffusion :List of 1

..$: expression((l/(1 + x"2)))
#4# @ hurst : num 0.5

@ jump.variable : chr(0)

..@ noise.number : num 1

@ xinit : expression(l)

@ J.flag : logi FALSE

A small summary of X will show both the model and the data structure of this yuima
object can be obtained as follows:

X

##

Diffusion process

Number of equations: 1

Number of Wiener noises: 1

##

Number of original time series: 1
length = 101, time range [0 ; 1]

##

Number of zoo time series: 1

length time.min time.max delta
Series 1 101 0 1 0.01

Other arguments which are taken as default values are the Tnitial and Terminal
time values of the simulation as well as the number of steps in the simulation n. Next
is an example of a trajectory for process (1.1) from 7y = 0.5to T = 1.2 (see Fig. 1.5)
x0 1

(123)

X (modl, xinit=x0, Initial=0.5, Terminal=1.2)

(X)

The next code shows that Initial and Terminal are now set as required:

1.10 Basic Facts on Simulation 23

e
=

*
o

0.6

0.4

0.2

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Fig. 1.5 A simulated trajectory with user-specified Initial and Terminal values

(X@sampling,vec.len=2)

Formal class ’‘yuima.sampling’ [package "yuima"] with 11 slots
..@ Initial : num 0.5

@ Terminal : num 1.2

..@n : int 100

#4# ..@ delta : num 0.007
..@ grid :List of 1
.. ..$: num [1:101] 0.5 0.507 0.514 0.521 0.528 ...
@ random : logi FALSE
H## ..@ regular : logi TRUE
#4# ..@ sdelta : num(0)

@ sgrid : num(0)

H## @ oindex : num(0)

@ interpolation: chr "pt"

Section 1.11 explains in full detail how to have complete control over the sampling
scheme for a yuima object, and Table 1.2 summarizes some of the default values of
the simulate method.

1.10.2 Simulation of Models with User-Specified Notation

Suppose now that we want to simulate the model of Eq. (1.2)

1
dYs = —3SYSdS + des,

N
with user-specified notation as we did in object mod1b in Sect. 1.9.2. As the yuima
package is aware of the user choice for the time and state variables, the situation
remains unchanged, and the user just needs to call the simulate method on this
object,

24 1 The YUIMA Package

(123)
X (modlb, xinit=x0)

(X)

and the result is shown in Fig. 1.6.

0.0 0.2 0.4 0.6 0.8 1.0
S

Fig. 1.6 A simulated trajectory of a yuima object with user-specified notation as in mod1b. Notice
that the labels on the horizontal and vertical axes have been set accordingly

1.10.3 Simulation of Parametric Models

In order to simulate a parametric model, it is necessary to specify the values of
the parameters via the argument true . parameter in the simulate command.
Consider again the parametric model

1
dX;, = —uX,dt + ——dW,
t HA +1+Xty t

which was specified in the yuima object mod2 in Sect. 1.9.3. In order to simulate a
trajectory from this model, the simulate command needs to know which values of
w and y have to be used. Next code shows how to specify the couple of values u = 1
and y = 3 using anamed 1ist in the argument true.parameter (shortened to
true.par in the example):

(123)

X (mod2, true.param= (mu=1, gamma=3))
(X)

and the trajectory can be seen in Fig. 1.7.

1.11 Sampling and Simulate 25

0.8
|

00 02 04
1 1

-0.2
|

0.0 0.2 0.4 0.6 0.8 1.0
t

Fig. 1.7 A trajectory simulated from the parametric model mod2 with user-specified parameters
u=1landy =3

Table 1.2 Default values to the simulate method. Most options can be controlled using
sampling and subsampling arguments

Description Argument | Default value

Starting time o Initial |0

Ending time T Terminal |Initial + n*deltaor lif delta is not specified

Initial value xinit 0

Number of steps n 100

Time mesh delta If not specified: (Terminal-Initial)/n

Grid of times grid If specified, overwrites Initial, Terminal, n and
delta

1.11 Sampling and Simulate

The simulate function accepts several arguments including the description of the
sampling structure, which is an object of type yuima.sampling. The
setSampling allows for the specification of different sampling parameters in-
cluding random sampling. Further, the subsampling allows to subsample a tra-
jectory of a simulated stochastic differential equation or a given time series in the
yuima.data slot of a yuima object. Both sampling and subsampling can be spec-
ified as arguments to the simulate function. This is convenient if one wants to
simulate data at very high frequency but then return only low frequency data for in-
ference or other applications. In what follows we explain how to specify arguments
of these yuima functions. Although we will discuss more in detail how to speci-
fy multidimensional diffusion processes in Sect. 2.3, let us consider the following
two-dimensional model

26 1 The YUIMA Package

Xm’, = —9X1,tdl + dW]yt —+ Xz,,dWll
dXs, =X +yXo)dt + X1, AWy, + BdWy,

Now we prepare the model using the setModel constructor function specifying
a vector of drift functions and a matrix of diffusion coefficients (more details in
Sect. 2.3) as yuima requires a vector representation for the drift coefficient and a
matrix representation for the diffusion coefficient. The above model should be passed
to yuima in the following matrix representation:

X\ _ —6X1, Gl 10Xy g;v,l*f
dXo,) =~ \ =X, —v - Xo, X8 0 >

We now prepare a vector of drift expressions in the object b and a diffusion matrix in
object s as well as the description of the state variables we want to use to represent
this model in object sol:

sol ("x1","x2")

b ("-theta*xl","-xl-gamma*x2")

s (e("1","x1","0", "beta", "x2","0"),2,3)

mymod (drift = b, diffusion = s, solve.variable = sol)

Suppose now that we want to simulate the process on a regular grid on the interval
[0, 3] and n = 3000 observations. We can prepare the sampling structure using the
command setSampling as follows:

samp (Terminal=3, n=3000)

and let us analyse its content

(samp)

Formal class ’‘yuima.sampling’ [package "yuima"] with 11
slots
..@ Initial : num O

..@ Terminal : num 3
..@ n : int 3000

..@ delta : num 0.001
..@ grid :List of 1

.. ..$: num [1:3001] 0 0.001 0.002 0.003 0.004 0.005 0.006
0.007 0.008 0.009 ...

..@ random : logi FALSE

..@ regular : logi TRUE

..@ sdelta : num(0)

..@ sgrid : num(0)

..@ oindex : num(0)

..@ interpolation: chr "pt"

As seen from the output, the sampling structure is quite rich and we will show how to
specify some of the slots in the next section. We simulate this process by specifying
the sampling argument in the simulate method

1.11 Sampling and Simulate 27

(123)
X2 (mymod, sampling=samp,
true.param= (theta=1,gamma=1,beta=1))
X2
##

Diffusion process

Number of equations: 2

Number of Wiener noises: 3

Parametric model with 3 parameters
##

Number of original time series: 2
length = 3001, time range [0 ; 3]

##

Number of zoo time series: 2

#4# length time.min time.max delta
Series 1 3001 0 3 0.001
Series 2 3001 0 3 0.001

The sampling structure is recorded along with the data in the yuima object X2

(X2@sampling)

Formal class ’‘yuima.sampling’ [package "yuima"] with 11
slots
..@ Initial : num O

@ Terminal : num [1:2] 3 3
..@ n : int [1:2] 3000 3000
..@ delta : num 0.001

@ grid :List of 1

.. ..$: num [1:3001] 0 0.001 0.002 0.003 0.004 0.005 0.006
0.007 0.008 0.009

..@ random : logi FALSE

..@ regular : logi TRUE

..@ sdelta : num(0)

..@ sgrid : num(0)

..@ oindex : num(0)

..@ interpolation: chr "pt"

1.11.1 Sampling and Subsampling

The sampling structure can be used to operate subsampling. Next example shows
how to perform Poisson random sampling, with two independent Poisson processes,
one per coordinate of X2.

newsamp (
random= (rdist=c(function (x) (x, rate=10)
function (x) (x, rate=20))))

(newsamp)

28

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Formal class ‘yuima.sampling’

slots

@ Initial : num 0
num 1

Terminal
n : num(0)

grid : NULL

D ®® ® ®

'srcfilecopy’,

.$:function
e e .- attr(*,
3132812833
.- attr(*,

'srcfilecopy’,

.@ regular : logi FALSE
sdelta : num(0)
sgrid : num(0)
oindex : num(0)
interpolation:

® ® ® ®

delta : num(0)

random :List of 1
..$ rdist:List of 2

.$:function
e e .- attr(*,
2 22 2 49 22 49 2 2
.- attr(*,

(x)

'srcfile’

(x)

'srcfile’

chr

<environment:

<environment:

ot

[package "yuima"]

"srcref")=Class ’'srcref’

"srcfile")=Classes
0x7£8ba5188b58>

"srcref")=Class ’'srcref’

"srcfile")=Classes
0x7£8ba5188b58>

atomic

atomic

1 The YUIMA Package

with 11

[1:8]

[1:8]

In the above we have specified two independent exponential distributions to rep-
resent Poisson arrival times using the argument random in setSampling. The
argument random accepts a named 11ist, where the name rdist is used to spec-
ify the distribution of the random times in the form of a random number generator.
In the example, we chose rexp to specify exponential random times with some
rate. As we have a two-dimensional process, we have specified a vector of random
number generators. Looking at the result of the simulation, we can notice that the
slot regular is now set to FALSE. We subsample the original trajectory of X2
using the subsampl ing function (see Fig. 1.8)

sampling=newsamp)

i 31

.max delta note

.951 0.3586586
.999 0.1496092

newdata (X2,

newdata

##

Diffusion process

Number of equations: 2

Number of Wiener noises: 3

Parametric model with 3 parameters

##

Number of original time series: 2

length = 3001, time range [0

##

Number of zoo time series: 2

length time.min time

Series 1 31 0 2

Series 2 70 0 2

================

* : maximal mesh
(X2,plot.type="single", lty=

(1,3),ylab="X2")

*

*

1.11 Sampling and Simulate 29

0.0 0.5 1.0 1.5 2.0 25 3.0

Fig. 1.8 An example of Poisson random subsampling: green and red dots are sampled according
to two different and independent Poisson processes

((newdata) [[1]],col="red")
((newdata) [[2]],col="green",pch=18)

where we extract the data from the yuima object using the method get . zoo .data
which returns the zoo . data slot from the yuima .data slot of a yuima object.
Asthe zoo.datais a 1ist-type object where each element contains a single time
series, to access the first time series of a multidimensional stochastic process in a
yuima object we need to type get . zoo.data (myobj) [[1]], where myobj
is the yuima object containing the data slot. Notice that, for random sampling, the
time series will be irregularly spaced and so the delta between the observations
is not unique, so the print method calculates the largest time lag between the
observations and an asterisk is shown to indicate this. Further, the minimal and
maximal time span for the observations depends on the random sampling as well.

We can also operate a deterministic sampling by specifying two different regular
frequencies (see Fig. 1.9) or, better, two different values for delta. In this case, we
need to explicitly set n to NULL; otherwise, the default value of n takes precedence
over Terminal, which is recalculated.

newsamp (Terminal=3, delta=c(0.1,0.2), n=NULL)
newsamp

Formal class ’‘yuima.sampling’ [package "yuima"] with 11 slots

..@ Initial : num [1:2] 0 O

#4# @ Terminal : num [1:2] 3 3

#4# ..@n : int [1:2] 30 15

#4# ..@ delta : num [1:2] 0.1 0.2

..@ grid :List of 2

.. ..$: num [1:31] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ...
.. ..$: num [1:16] 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 ...
..@ random : logi FALSE

..@ regular : logi TRUE

#4# ..@ sdelta : num(0)

#4# ..@ sgrid : num(0)

30 1 The YUIMA Package

0.0 0.5 1.0 1.5 2.0 25 3.0

Fig. 1.9 An example of deterministic subsampling: the frequency of red dots is two times the one
of the green dots

#4# ..@ oindex : num(0)

..@ interpolation: chr "pt"

newdata (X2, sampling=newsamp)
newdata

##

Diffusion process

Number of equations: 2

Number of Wiener noises: 3

Parametric model with 3 parameters
##

Number of original time series: 2
length = 3001, time range [0 ; 3]

##

Number of zoo time series: 2

length time.min time.max delta
Series 1 31 0 3 0.1
Series 2 16 0 3 0.2

(X2,plot.type="single", lty=c(1l,3),ylab="X2")
((newdata) [[1]],col="red")
((newdata) [[2]],col="green", pch=18)

Notice that the number of resulting observations is now the result of the subsampling.
Again, one can look at the structure of the sampling structure

(newdata@sampling)

Formal class ’‘yuima.sampling’ [package "yuima"] with 11 slots

..@ Initial : num [1:2] 0 O

#4# ..@ Terminal : num [1:2] 3 3

..@n : int [1:2] 31 16
#4# ..@ delta : num [1:2] 0.1 0.2
.@ grid :List of 2

1.11 Sampling and Simulate 31

0.6
|

0.4

x1
0.2

-0.2 0.0

-04
|

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 1.10 An example of subsampling used within the simulate command

.. ..$: num [1:31] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ...
.. ..$: num [1:16] 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 ...
#4# @ random : logi [1:2] FALSE FALSE

..@ regular : logi [1:2] TRUE TRUE

#4# ..@ sdelta : num(0)

@ sgrid : num(0)

..@ oindex :List of 2

.. ..$: num [1:31] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#4#$: num [1:16] 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

..@ interpolation: chr "pt"

Subsampling can be used within the simulate function. What is usually done in
simulation studies is to simulate the process at very high frequency but then use data
for estimation at a lower frequency (see Fig. 1.10). This can be done in a single step
in the following way:

set.seed (123)

Y.sub <- simulate (mymod, sampling=setSampling(delta=0.001,n=1000),
subsampling=setSampling (delta=0.01,n=100),
true.par=1list (theta=1,beta=1,gamma=1))

set.seed(123)

Y <- simulate (mymod, sampling=setSampling(delta=0.001,n=1000),

true.par=1list (theta=1,beta=1,gamma=1))

plot (Y, plot.type="single")

points (get.zoo.data(Y.sub) [[1]],col="red")

points (get.zoo.data(Y.sub) [[2]],col="green",pch=18)

In the previous code, we have simulated the process twice just to show the effect of
the subsampling, but the reader should use only the line which outputs the simulation
to Y. sub as seen in Fig. 1.11.

32 1 The YUIMA Package

0.6
|

x1
00 0.2
| |

-0.2
|

-0.4
|

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 1.11 Plotting directly the subsampled trajectory Y . sub

(Y.sub, plot.type="single")

##

Diffusion process

Number of equations: 2

Number of Wiener noises: 3

Parametric model with 3 parameters
##

Number of original time series: 2
length = 1001, time range [0 ; 1]

##

Number of zoo time series: 2

#4# length time.min time.max delta
Series 1 1001 0 1 0.001
Series 2 1001 0 1 0.001
Y.sub

##

Diffusion process

Number of equations: 2

Number of Wiener noises: 3

Parametric model with 3 parameters
##

Number of original time series: 2
length = 1001, time range [0 ; 1]

##

Number of zoo time series: 2

length time.min time.max delta
Series 1 101 0 1 0.01

Series 2 101 0 1 0.01

1.12 How to Make Data Available into a yuima Object 33

1.12 How to Make Data Available into a yuima Object

Although most of the examples in this chapter are given on simulated data, the main
way to fill up the data slot of a yuima object is to use the function setYuima.
The function setYuima sets various slots of the yuima object. In particular, to fit
a yuima.model called mod on the data X one can use a code like the following:

my.yuima (data= (X), model=mod)

and then pass my . yuima to the inference functions as described in the following.
In the previous code, setData transforms time series data in a form that is liked
by the yuima package. In particular, when data are added to a yuima object into
the slot data, the data itself are duplicated: one slot original .data contains
the data as passed by the user, and the slot zoo.data contains a zoo version of
the data.

For example, assuming that an Internet connection is available, the following
simple list of commands downloads data from the Internet and constructs a yuima
object with the da ta slot containing the time series. First of all, we download the data
for the IBM stock using the function get Symbols from the quantmod package?
directly from Yahoo Finance:

(quantmod)

Loading required package: guantmod

Loading required package: xts

Loading required package: TTR

Version 0.4-0 included new data defaults. See ?getSymbols.

("IBM", to = "2017-07-31")

’‘getSymbols’ currently uses auto.assign=TRUE by default, but will

use auto.assign=FALSE in 0.5-0. You will still be able to use

’loadSymbols’ to automatically load data. getOption("getSymbols.env")
and getOption("getSymbols.auto.assign") will still be checked for

alternate defaults.

##

This message 1s shown once per session and may be disabled by setting
options("getSymbols.warning4.0"=FALSE). See ?getSymbols for details.
##

WARNING: There have been significant changes to Yahoo Finance data.
Please see the Warning section of ’?getSymbols.yahoo’ for details.

##

This message is shown once per session and may be disabled by setting
options ("getSymbols.yahoo.warning"=FALSE) .

The data downloaded from Yahoo Finance are transformed into a xts object with
the same name of the symbol, i.e. IBM

(IBM)

An ‘xts’ object on 2007-01-03/2017-07-28 containing:

%In Sect. 1.12.1 we will present different other ways to obtain financial data from the internet.

34

##
##
##
##
##
##
##
##
##

"IBM.Low"

TZ: UTC

Data: num [1:2662, 1:6] 125 125 126 127 128
- attr(*, "dimnames")=List of 2
.$: NULL
.$: chr [1:6] "IBM.Open" "IBM.High"
Indexed by objects of class: [Date]
xts Attributes:
List of 2
$ src chr "yahoo"
S updated: POSIXct[1l:1], format:

1 The YUIMA Package

"IBM.Close"

"2018-02-02 15:44:17"

The data downloaded from Yahoo Finance are transformed into a xts object with
the same name of the symbol, i.e. IBM

##
##
##
##
##
##
##
##
##
##

(IBM)

An 'xts’ object on 2007-01-03/2017-07-28 containing:

"IBM.Close"

Data: num [1:2662, 1:6] 125 125 126 127 128
- attr(*, "dimnames")=List of 2
.$: NULL
.$: chr [1:6] "IBM.Open" "IBM.High" "IBM.Low"
Indexed by objects of class: [Date] TZ: UTC
xts Attributes:
List of 2
S src chr "yahoo"
$ updated: POSIXct[1l:1], format: "2018-02-02 15:44:17"

which we can inspect with the head command just to shorten the output and have
a quick preview of this content:

##
##
##
##
##
##
##
##
##
##
##
##
##
##

(IBM)

2007-01-03
2007-01-04
2007-01-05
2007-01-08
2007-01-09
2007-01-10

2007-01-03
2007-01-04
2007-01-05
2007-01-08
2007-01-09
2007-01-10

IBM.Open IBM.High IBM.Low IBM.Close
125.
125.
125.
127.
127.

.021

127

319
409
861
021
769

126.
127.
126.
128.
129.
127

892
395
312
311
381

.731

124.
124.
124.
126.
127.
126.

133
932
971
828
756
286

IBM.Volume IBM.Adjusted
42905
23550
54537
69302
60034
68530

9196800
10524500
7221300
10340000
11108200
8744800

75.
76.
75.
76.
77 .
76.

97
98

97.

98

100.

98

.27
.31
42
.90
07
.89

Suppose we are interested, for example, in the Close column which corresponds
to the closing quotations for the IBM in our case. We access these data by pointing
to IBM.Close column of the object IBM. We can now use setData to prepare
the data for the new yuima object created with setYuima as follows:

X

Formal class

(data=

(x@data)

(IBMSIBM.Close))

‘yuima.data’

[package

"yuima"] with 2 slots

1.12 How to Make Data Available into a yuima Object 35

..@ original.data:An ’‘xts’ object on 2007-01-03/2017-07-28 containing:
Data: num [1:2662, 1] 97.3 98.3 97.4 98.9 100.1

- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr "IBM.Close"

Indexed by objects of class: [Date] TZ: UTC
#4# xts Attributes:
List of 2

.. ..$ src : chr "yahoo"

.. ..$ updated: POSIXct[1l:1], format:

..@ zoo.data :List of 1

#4#$ IBM.Close:’zoo’ series from 2007-01-03 to 2017-07-28

#4# Data: num [1:2662] 97.3 98.3 97.4 98.9 100.1
Index: Date[l:2662], format:

As can be seen from Fig. 1.12 (top plot), the data in the yuima object keep the
original time stamps. However, in some cases, one of the crucial information is
the time lag between two consecutive observations. As in the case above of daily
data, in estimation the data are considered consecutive even if there are holidays
or nonworking days between the data (although missing data are always kept). For
the above case, the time lag is numerically equivalent to one, i.e. A = 1, and this
fact may cause problems in the application of the asymptotic high-frequency theory
to these data. In this situation, as the chosen value of A is completely arbitrary,
the best thing to do is to change the time of the data in a way meaningful for the
analysis under consideration. Usually, at least in finance, for daily data the reference
time horizon T is one year and the time lag between two consecutive data is taken
as A = 1/252 ~ 0.00397, where 252 is the average number of working days of
financial markets in a year. It is possible in this case to pass the argument delta
directly into the function setData. In this case, the original data will not be altered
but only the zoo.data slot, which is used later in estimation. Indeed, we can
proceed as follows

b (data= (IBMSIBM.Close, delta=1/252))
(y@data)

Formal class ’‘yuima.data’ [package "yuima"] with 2 slots

..@ original.data:An ’‘xts’ object on 2007-01-03/2017-07-28 containing:
Data: num [1:2662, 1] 97.3 98.3 97.4 98.9 100.1

- attr(*, "dimnames")=List of 2

#4# ..$: NULL

..$: chr "IBM.Close"

#4# Indexed by objects of class: [Date] TZ: UTC
#4# xts Attributes:
List of 2

.. ..$ src : chr "yahoo"

.. ..$ updated: POSIXct[1l:1], format:

#4# ..@ zoo.data :List of 1

.. ..$ IBM.Close:’zo0’ series from 0 to 10.5595238095238

Data: num [1:2662] 97.3 98.3 97.4 98.9 100.1
Index: num [1:2662] 0 0.00397 0.00794 0.0119 0.01587

36 1 The YUIMA Package

data with the original time stamps

IBM.Close
150 200
! !

100
|

T T T T
2008 2010 2012 2014 2016

index

time stamps of data rescaled

200

IBM.Close
150
!

index

Fig. 1.12 Changing time stamps with setData for later inference

Indeed, the original . data has not been altered while the zoo . data slot has
(see also Fig. 1.12 bottom plot).

(x, main="data with the original time stamps")
(y, main="time stamps of data rescaled")

From the summary below, we can notice that the time stamps of the original time
series are kept for later use and passed to the zoo slot unless a different delta has
been specified at the time of setData

X

##

##

Number of original time series: 1

length = 2662, time range [2007-01-03 ; 2017-07-28]

##

Number of zoo time series: 1

#4# length time.min time.max delta note
IBM.Close 2662 2007-01-03 2017-07-28 5 &3
#$# ================

* : maximal mesh

##
##

1.12 How to Make Data Available into a yuima Object 37

Number of original time series: 1
length = 2662, time range [2007-01-03 ; 2017-07-28]

##

Number of zoo time series: 1

#4# length time.min time.max delta
IBM.Close 2662 0 10.56 0.003968254

1.12.1 Getting Data from Data Providers

Nowadays, there exist several data providers which distribute date via ht tp queries
or text-based files. Some packages make the process of data acquisition easier. Most
package stores the data in their own type of objects. These type of objects will be
discussed from Sect. 1.14 on.

The package quantmod (Ryan 2013) provides a function which allows to obtain
data from Yahoo! Finance,’ Google Finance,* FRED? - Federal Reserve Bank of St.
Louis or OANDA® but also from MySQL data bases, csv files or plain R data. We
have already used the function get Symbo1ls to download data. For example, with

(quantmod)
("IBM", to = "2017-07-31")

[1] "IBM"

(IBM, "src")

[1] "yahoo"

To get the data from Google Finance, one has to set the argument src in this way

("IBM", to = "2017-07-31", src="google")
[1] "IBM"
(IBM, "src")
(1] "google

FRED or OANDA offer exchange rates and currencies data

("DEXUSEU" , src="FRED")

[1] "DEXUSEU"

3http://finance.yahoo.com.
“http://finance.google.com.
Shitp://research.stlouisfed.org/fred2.
Shttp://www.oanda.com.

http://finance.yahoo.com
http://finance.google.com
http://research.stlouisfed.org/fred2
http://www.oanda.com

38

##

##

##

##
##
##
##
##
##
##
##
##
##

(DEXUSEU, "src")

[1] "FRED"

("EUR/USD", src="oanda")

[1] "EURUSD"

(EURUSD, "src")

[1] "oanda"

(EURUSD)

An ‘xts’ object on 2017-08-07/2018-02-01 containing:

Data: num [1:179, 1] 1.18 1.18 1.17 1.17 1.18
- attr(*, "dimnames")=List of 2
.$: NULL
..$: chr "EUR.USD"
Indexed by objects of class: [Date] TZ: UTC
xts Attributes:
List of 2
$ src : chr "oanda"
$ updated: POSIXct[1l:1], format: "2018-02-02 15:44:20"

1

The YUIMA Package

Once the data have been acquired, get Symbols creates an object of class xts in
the R workspace with the same name of the symbol and containing these data.

The package fImport (Wuertz and many others 2013) is similar in its use

but returns objects of class timeSeries or fWEBDATA. Both yahooSeries
or yahooImport can be used to get data from Yahoo! Similar functionalities
exist for FRED (fredSeries, fredImport) and OANDA (oandaSeries,
oandaImport).

The function get . hist . quote provided by the package tseries (Trapletti and

Hornik 2013) downloads data from Yahoo! Finance and creates a zoo object

##
##
##
##
##
##
##

(tseries)
("IBM")

'zoo’ series from 1991-01-02 to 2018-01-31
Data: num [1:6824, 1:4] 81.8 81.4 81.7 80.7 80
- attr(*, "dimnames")=List of 2

.$: NULL

.$: chr [1:4] "Open" "High" "Low" "Close"

Index: Date[1:6824], format: "1991-01-02" "1991-01-03"

"1991-01-04"

1.12 How to Make Data Available into a yuima Object 39

If a licence to Bloomberg is available, the RBloomberg package allows for direct
interaction with this platform. The function RB1 oomberg makes use of the Desktop
COM API which requires the additional RDCOMClient or rcom package to be
installed on the user’s workstation.

1.13 How to Extract Data from a yuima Object

In Sect. 1.11.1, we have already used the method get . zoo.data to extract data
from a yuima object. The data slot contains, as said, both the original.data
slot, which can store essentially any type of time series object, and the zoo .data
slot, which reorganizes the time series into a 1ist object, where each element of
the list is a zoo time series. We will discuss in full details many time series classes
available in R including the zoo class in Sect. 1.14.1. In order to extract the first
component of a multidimensional time series (or the one-dimensional time series
from the data), we need to use a command like this

mydat (y) [[11]
(mydat)

’zoo’ series from 0 to 10.5595238095238

Data: num [1:2662] 97.3 98.3 97.4 98.9 100.1
Index: num [1:2662] 0 0.00397 0.00794 0.0119 0.01587

To have access to the original data, one should extract the slot original.data
from the yuima object as follows:

(y@data@original .data)

IBM.Close
2007-01-03 97.27
2007-01-04 98.31
2007-01-05 97.42
2007-01-08 98.90
2007-01-09 100.07
2007-01-10 98.89

(y@data@original.data)

An ‘xts’ object on 2007-01-03/2017-07-28 containing:
Data: num [1:2662, 1] 97.3 98.3 97.4 98.9 100.1

- attr(*, "dimnames")=List of 2

..S : NULL

..$: chr "IBM.Close"

Indexed by objects of class: [Date] TZ: UTC

xts Attributes:

List of 2

S src : chr "yahoo"

S updated: POSIXct[l:1], format: "2018-02-02 15:44:17"

40 1 The YUIMA Package

1.14 Time Series Classes, Time Data and Time Stamps

The reader expert in the manipulation of time stamps, dates, time series objects and
related subjects can skip this section and continue the reading of this book from the
next chapter.

1.14.1 Review of Some Time Series Objects in R

This section presents a basic review of some of the time series classes available in

R.

1.14.1.1 The ts Class

The elementary class of time series object is called ts. The multidimensional exten-
sion of this class is called mt s, and they share the same properties. The t s structure
is designed for handling regularly spaced time series where observations have a giv-
en frequency (e.g. 12 for monthly data, 7 for daily data) and a given time mesh
between observations deltat. The arguments start date and/or the final date
end must be specified when a new object is created. Suppose we want to create a
time series from this randomly generated data
(123)

some.data (12)
(some.data)

num [1:12] -0.5605 -0.2302 1.5587 0.0705 0.1293 ...

To make it to appear as quarterly data starting from the second quarter of 1959, we
need to type something like this:

X (some.data, frequency = 4, start = (1961, 2))

X

Qtrl Qtr2 Qtr3 Qtr4
1961 -0.56047565 -0.23017749 1.55870831

1962 0.07050839 0.12928774 1.71506499 0.46091621
1963 -1.26506123 -0.68685285 -0.44566197 1.22408180
1964 0.35981383

If we want to create monthly data starting from February 1964, we input it in this
way:

(123)
X (some.data, start = c(1964, 2), frequency = 12)

#4# Jan Feb Mar Apr

1.14 Time Series Classes, Time Data and Time Stamps

##
##
##
##
##
##
##
##

1964
1965

1964
1965

1964
1965

0.35981383
May
0.07050839

Sep

-0.56047565 -0.23017749

Jun Jul
0.12928774 1.71506499
Oct Nov

-1.26506123 -0.68685285 -0.44566197

41

1.55870831

Aug
0.46091621

Dec
1.22408180

where frequency describes the number of data points per period; i.e. the time lag
is A = 1/12 =~ 0.083. There are several accessory functions to extract information
from a ts object. In particular, t ime returns the time instant of each observation in
the data set; deltat extracts the Ar between observations; end and start return,
respectively, the initial and terminal dates, and the frequency of the time series can
be obtained with frequency:

##
##
##

##

##

##

##

It is also possible to subset time series using the function window. Next code shows

(X) [1:12]

[1]

[6]

[11] 1964.917 1965.000
(X)

[1] 0.08333333
(X)

[1] 1964 2

(X)

[1] 1965 1

(X)
[1] 12

how to get quarterly data from X

##
##
##
##
##

(X, frequency=4)
Time Series:

Start =
End = 1964.83333333333
Frequency = 4
[1] -0.56047565

1964.08333333333

0.07050839

1964.083 1964.167 1964.250 1964.333 1964.417
1964.500 1964.583 1964.667 1964.750 1964.833

0.46091621 -0.44566197

42 1 The YUIMA Package
1.14.1.2 The zoo Class

The zoo class can host time series in more general way, and it is adopted by yuima
package to store time series data internally in the slot zoo . dataofayuima.data
object. The zoo objects can be indexed by any sequence of real numbers (the name
zoo stands for ‘Z-indexed ordered object’). To use zoo, one should load the cor-
responding zoo package (Zeileis and Grothendieck 2005). If no set of indexes is
specified, a new zoo object uses an increasing sequence of integers.

(zoo)

X (some.data)

X

#4# 1 2 3 4
-0.56047565 -0.23017749 1.55870831 0.07050839
5 6 7 8
0.12928774 1.71506499 0.46091621 -1.26506123
9 10 11 12

-0.68685285 -0.44566197 1.22408180 0.35981383
(X)
'zoo’ series from 1 to 12

Data: num [1:12] -0.5605 -0.2302 1.5587 0.0705 0.1293
#4# Index: int [1:12] 1 2 3 456 7 8 9 10

To alter or access the index, one can use either t ime or, better, index

[11 1 2 3 4 5 6 7 8 9 10 11 12

The object zoo allows also for irregularly spaced time series. For example, let us
generate 12 random times from the exponential distribution:

rtimes ((12, rate=0.2))
rtimes

[1]1 4.217286 7.100338 13.745612 13.903499 14.184554

[6] 15.767060 17.338196 18.064530 31.695713 31.841480
[11] 36.865630 39.266704

and then create a time series making use of the argument order . by:

X ((12), order.by = rtimes)
X
4.2173 7.1003 13.7456 13.9035 14.1846

0.3598138 0.4007715 0.1106827 -0.5558411 1.7869131
15.7671 17.3382 18.0645 31.6957 31.8415
0.4978505 -1.9666172 0.7013559 -0.4727914 -1.0678237
36.8656 39.2667
-0.2179749 -1.0260044

1.14 Time Series Classes, Time Data and Time Stamps 43

(X)
'zoo’ series from 4.21728630529201 to 39.2667037211185
Data: num [1:12] 0.36 0.401 0.111 -0.556 1.787
#4# Index: num [1:12] 4.22 7.1 13.75 13.9 14.18

To mimic the ts behaviour, one should use explicitly the zooreg (where ‘reg’
stands for ‘regular’) function:

Xreg (some.data, start = c(1964, 2), frequency = 12)
(Xreg)

[1] "Feb 1964" "Mar 1964" "Apr 1964" "May 1964"

[5] "Jun 1964" "Jul 1964" "Aug 1964" "Sep 1964"

[9] "Oct 1964" "Nov 1964" "Dec 1964" "Jan 1965"

Any ts object can be converted into a zoo object via as . zoo, but the contrary is
possible (via as . t) only if the time series is regularly spaced, otherwise times are
disregarded:

Y (X)

(X)
[1] 4.217286 7.100338 13.745612 13.903499 14.184554
[6] 15.767060 17.338196 18.064530 31.695713 31.841480

[11] 36.865630 39.266704

(Y)

Time Series:
Start =1

End = 12

Frequency =

1
(11 1 2 3 4 5 6 7 8 9 10 11 12

1.14.1.3 The Class xts

The class xts provided by the package xts (Ryan and Ulrich 2014) is specifically
designed to handle efficiently dates and time stamps. Here the ‘x’ means ‘extensible’.
By default, no index is assigned by the xts function, so it is necessary to specify
one:

(xts)

my .
my .

##
##
##
##

time.stamps
time.stamps

[1] "1970-01-05"
[4] "1970-01-14"
[7] "1970-01-18"
[10] "1970-02-01"

(rtimes)

"1970-01-08"
"1970-01-15"
"1970-01-19"
"1970-02-06"

"1970-01-14"
"1970-01-16"
"1970-02-01"
"1970-02-09"

44 1 The YUIMA Package

X (some.data , order.by = my.time.stamps)
X
#H [,1]

1970-01-05 -0.56047565
1970-01-08 -0.23017749
1970-01-14 1.55870831
1970-01-14 0.07050839
1970-01-15 0.12928774
1970-01-16 1.71506499
1970-01-18 0.46091621
1970-01-19 -1.26506123
1970-02-01 -0.68685285
1970-02-01 -0.44566197
1970-02-06 1.22408180
1970-02-09 0.35981383

(X)

An ‘xts’ object on 1970-01-05/1970-02-09 containing:

#4# Data: num [1:12, 1] -0.5605 -0.2302 1.5587 0.0705 0.1293
H## Indexed by objects of class: [Date] TZ: UTC

xts Attributes:

NULL

The function as . Date was used to transform the above random times into dates.’
Objects of class zoo and ts can be converted into objects of class xts only if
the indexes are true time/class objects or if an additional argument order . by is
specified appropriately. For example

X.ts (some.data, start = (1964, 2), frequency = 12)
X.ts

Jan Feb Mar Apr
1964 -0.56047565 -0.23017749 1.55870831
1965 0.35981383

H## May Jun Jul Aug
1964 0.07050839 0.12928774 1.71506499 0.46091621
1965

Sep Oct Nov Dec
1964 -1.26506123 -0.68685285 -0.44566197 1.22408180
1965

X.zoo (X.ts)

X.z00

#4# Feb 1964 Mar 1964 Apr 1964 May 1964

-0.56047565 -0.23017749 1.55870831 0.07050839

#4# Jun 1964 Jul 1964 Aug 1964 Sep 1964

0.12928774 1.71506499 0.46091621 -1.26506123

#4# Oct 1964 Nov 1964 Dec 1964 Jan 1965

-0.68685285 -0.44566197 1.22408180 0.35981383

TThis way of describing dates is called Unix or POSIX or epoch time. Each date is represented as
the number of seconds elapsed since 1 January 1970 at midnight in Coordinated Universal Time
(UTC).

1.14 Time Series Classes, Time Data and Time Stamps 45

X 1970-01-05 / 1970-02-09
15 15
1.0 1.0
05 05
0.0 0.0
-0.5 -0.5
-1.0 -1.0
Jan 05 Feb 01 Feb 09
1970 1970 1970

Fig. 1.13 The plot method for xts objects clearly shows the irregular frequency and missing
data of a time series

X.xts (X.ts)
X.xts

[,1]
Feb 1964 -0.56047565
Mar 1964 -0.23017749
Apr 1964 1.55870831
May 1964 0.07050839
Jun 1964 0.12928774
Jul 1964 1.71506499
Aug 1964 0.46091621
Sep 1964 -1.26506123
Oct 1964 -0.68685285
Nov 1964 -0.44566197
Dec 1964 1.22408180
Jan 1965 0.35981383

and so forth. The package xts has its own plot method which is designed for real
time stamps and irregular time series as shown by the plot in Fig. 1.13.

(X)

1.14.1.4 The Class irts

The tseries package (Trapletti and Hornik 2013) provides the class irts, where ‘ir’

stands for ‘irregular’. Compared to zoo, the arguments of irts are reversed
(tseries)

X (rtimes, some.data)
X

1970-01-01 00:00:04 GMT -0.5605

46

##
##
##
##
##
##
##
##
##
##
##

##
##
##
##

1970-01-01
1970-01-01
1970-01-01
1970-01-01
1970-01-01
1970-01-01
1970-01-01
1970-01-01
1970-01-01
1970-01-01
1970-01-01

(X)

List of 2
$ time
S value:
- attr(*,

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

07
13
13
14
15
17
18
31
31
36
39

GMT
GMT
GMT
GMT
GMT
GMT
GMT
GMT
GMT
GMT
GMT

POSIXt[1:12], -
num [1:12] -0.5605 -0.2302 1.5587 0.0705 0.1293
"class")= chr "irts"

1 The YUIMA Package

-0.2302
.559
.07051
.1293
.715
0.4609
-1.265
-0.6869
-0.4457
1.224
0.3598

[y

P O O

format: "1970-01-01 01:00:04"

The POSIXt and other time stamp and date types will be discussed in Sect. 1.14.2.

1.14.1.5 The Class timeSeries

The last class of this short review is called t imeSeries and belongs to the package
timeSeries (Wuertz and Chalabi 2013) of the suite Rmetrics. This package loads
the timeDate package (Wuertz et al. 2013) discussed later in Sect. 1.14.2.

##
##
##
##
##
##
##

##
##
##
##
##
##
##
##
##
##
##
##
##
##

(timeSeries)

Loading required package: timeSeries
Loading required package: timeDate

Attaching package:
The following object is masked from ’‘package:zoo’:

time<-

GMT

1970-01-05
1970-01-08
1970-01-14
1970-01-14
1970-01-15
1970-01-16
1970-01-18
1970-01-19
1970-02-01
1970-02-01
1970-02-06
1970-02-09

‘timeSeries’

some.data, my.time.stamps)

gilA s
:24:
8533
:41:
8253
:24:
8073
8343
:41:
gl g
:46:
:24:

53
29
40
02
45
33
00
55
49
43
30
03

-0.
=0,

= o

=0,
=0
1

TS.1
56047565
23017749

.55870831
.07050839
.12928774
.71506499
.46091621
.26506123

68685285
44566197

.22408180
.35981383

1.14 Time Series Classes, Time Data and Time Stamps 47

(X)

Time Series:

Name: object

Data Matrix:

Dimension: 12 1

Column Names: TS.1

Row Names: 1970-01-05 05:12:53 ... 1970-02-09 06:24:03
Positions:

Start: 1970-01-05 05:12:53

End: 1970-02-09 06:24:03

with:

Format: FY-%m-%d $H:%M:%S

FinCenter: GMT

Units: TS.1

Title: Time Series Object

Documentation: Fri Feb 2 15:44:21 2018

1.14.2 How to Handle Real Time Stamps

Most of the time, the users download data from some providers which specifies time
stamp in a proper format. Sometimes, after simulation, there is the need to attach
correct time stamps. This section explains the basic concepts necessary to handle
different time formats. The Portable Operating System Interface (POSIX) format
is an IEEE standard adopted by many UNIX-like operating systems. The function
ISOdate can be used to create a data object in this way

a (2008,7,3)

a

[1] "2008-07-03 12:00:00 GMT"

The arguments of the TSOdate function are as follows

(ISOdate)

function (year, month, day, hour = 12, min = 0, sec = 0, tz
= "GMT")
NULL

and they are self-explanatory. The most important one is the time zone argument t z
which is set to GMT (Greenwich Mean Time) also known as Coordinated Universal
Time (UTC). When the time zone is set in this way, then all time stamps d are in
Greenwich local time. CET (Central European Time) corresponds to UTC+1, and it
is the time zone for countries in central Europe (e.g. Italy, France, Spain, Germany)
We can see that this object d is indeed a POSIX time, and in particular, it is of class
POSIXct where ct stands for ‘calendar time’.

48 1 The YUIMA Package

(d)
[1] "POSIXct" "POSIXt"

Objects of type POSIXct represent in practice number of seconds passed since 1970
in UTC. An alternative representation is called POSIX1t which is represented as a
list

NULL

H## sec min hour mday mon year wday vyday isdst
#4# 0 0 12 3 6 108 4 184 0

There exist coercing functions to transform dates from one format to the other, such
as as.POSIX1t and as.POSIXct. Calendar information can be represented in
different formats through the function format

(4, "%a")

[1] "Thu"
(d, "8A")

[1] "Thursday"
(d, "sb")

[1] "Jul"

[1] "July"
(d, "wc")

[1] "Thu Jul 3 12:00:00 2008"
(d, "2D")

[1] "07/03/08"
(d, "sT")

[1] "12:00:00"
(d,"$A %¥B %d SH:%M:%S %Y")

[1] "Thursday July 03 12:00:00 2008"

1.14 Time Series Classes, Time Data and Time Stamps 49

(d,"%A %d/%m/%Y")

[1] "Thursday 03/07/2008"

[1] "03/07/2008 (Thursday)"

and so forth. For a more information on the date operator %, the reader should refer
to the man page of the function format. Strings can also be converted into date
objects through the function strptime

x ("10janl962", "2febl970", "11jul2011", "27junl968"

2yY")

(x, "%d%

[1] "1962-01-10 CET" "1970-02-02 CET"
[3] "2011-07-11 CEST" "1968-06-27 CEST"

In this case, ‘jan, feb, jul, jun’ are interpreted correctly as January, February, July and
June, but in different locales, e.g. Italian, ‘jan’ and ‘jul’ will not be understood by
the system and hence strptime returns a NA date. The user should check his own
environment before attempting such data manipulations. The Sys.getlocale
and Sys . setlocale functions allow to set and check the current ‘locale’ setting.
The next example temporarily sets the locale settings to Italian and then switches it
back to UK English®:

)
[1] "C/UTF-8/C/C/C/C"
(PTENALT ;e)
[1] "it_it/it_it/it_it/c/it_it/cn
(x, "%d%b%Y")

[1] "1962-01-10 CET" "1970-02-02 CET"
[3] "2011-07-11 CEST" "1968-06-27 CEST"

("LC_ALL", "en_ GB")
[1l] "en GB/en_GB/en_GB/C/en_GB/C"
(x, "%d%b%Y")

[1] "1962-01-10 CET" "1970-02-02 CET"
[3] "2011-07-11 CEST" "1968-06-27 CEST"

When data are created without any time specification, by default ISOdate uses
12am whilst as . POSIXct uses 12pm

8Note that this example is specific to version of OS X used by the authors of this book. It may give
different behaviour on the reader’s operating system.

50 1 The YUIMA Package

((2006,6,9), "$SH:$M:%35")
[1] "12:00:00"
(("2006-06-09"), "$H:¥M:%S")

[1] "00:00:00"

1.14.3 Dates Manipulation

The package timeDate (Wuertz et al. 2013) provides the function holiday* to
extract the nonworking days of financial markets:

(

NewYork

[1] [2018-01-01] [2018-01-15] [2018-02-19] [2018-03-30]
[5] [2018-05-28] [2018-07-04] [2018-09-03] [2018-11-22]
[9] [2018-12-25]

(
Eastern

[1] [2018-01-01] [2018-05-28] [2018-07-04] [2018-09-03]
[5] [2018-11-22] [2018-12-25]

It is possible to make calculations with times such as the following:
(2006,7,10) - (2005, 3, 1)
Time difference of 496 days

or, via timeDate, we can write

my.dates (c("2001-01-09", "2001-02-25"))
(my.dates)

Time difference of 47 days

To synchronize data coming from different financial markets, one should take care of
time zones. The package timeDate provides the function 1istFinCenter which
allows to identify financial markets by name:

("America*") [1:50]
[1] "America/Adak"
[2] "America/Anchorage"

[4] "America/Antigua"

]
]

[3] "America/Anguilla"
]

[5] "America/Araguaina"

1.14 Time Series Classes, Time Data and Time Stamps

[6] "America/Argentina/Buenos_Aires"
[7] "America/Argentina/Catamarca"
[8] "America/Argentina/Cordoba"
[9] "America/Argentina/Jujuy"

[10] "America/Argentina/La_Rioja"
[11] "America/Argentina/Mendoza"
[12] "America/Argentina/Rio_Gallegos"
[13] "America/Argentina/San_Juan"
[14] "America/Argentina/Tucuman"
[15] "America/Argentina/Ushuaia"
[16] "America/Aruba"

[17] "America/Asuncion"

[18] "America/Atikokan"

[19] "America/Bahia"

[20] "America/Barbados"

[21] "America/Belem"

[22] "America/Belize"

[23] "America/Blanc-Sablon"

[24] "America/Boa_Vista"

[25] "America/Bogota"

[26] "America/Boise"

[27] "America/Cambridge_Bay"

[28] "America/Campo_Grande"

[29] "America/Cancun"

[30] "America/Caracas"

[31] "America/Cayenne"

[32] "America/Cayman"

[33] "America/Chicago"

[34] "America/Chihuahua"

[35] "America/Costa_Rica"

[36] "America/Cuiaba"

[37] "America/Curacao"

[38] "America/Danmarkshavn"

[39] "America/Dawson"

[40] "America/Dawson_Creek"

[41] "America/Denver"

[42] "America/Detroit"

[43] "America/Dominica"

[44] "America/Edmonton"

[45] "America/Eirunepe"

[46] "America/El_Salvador"

[47] "America/Fortaleza"

[48] "America/Glace_Bay"

[49] "America/Godthab"

[50] "America/Goose_Bay"

and this information can be used to handle dates

da ("2011-02-05", Fin="Europe/Zurich")
dB ("2016-01-22", Fin="America/Chicago")
da

Europe/Zurich
[1] [2011-02-05 01:00:00]

dB

52 1 The YUIMA Package

America/Chicago
[1] [2016-01-21 18:00:00]

For further informations about date/time manipulation, a suggested reading is the
time/date FAQ (Wuertz et al. 2013) ebook.

1.14.4 Using Dates to Index Time Series

In this section, we will focus only on the classes zoo, xts and timeDate. Let us
create some random data and define some string dates’:

(123)
mydata (9)
chardata ("2

chardata
[1] "2010-09-01" "2010-08-01" "2010-07-01" "2010-06-01"

[5] "2010-05-01" "2010-04-01" "2010-03-01" "2010-02-01"
[9] "2010-01-01"

then generate the corresponding objects with the different classes:

X1 (mydata, (chardata))
X2 (mydata, (chardata))
X3 (mydata, chardata)

and let us check how these objects look like

X1

2010-01-01 2010-02-01 2010-03-01 2010-04-01
-0.68685285 -1.26506123 0.46091621 1.71506499
2010-05-01 2010-06-01 2010-07-01 2010-08-01
0.12928774 0.07050839 1.55870831 -0.23017749
2010-09-01
-0.56047565

X2

[,1]
2010-01-01 -0.68685285
2010-02-01 -1.26506123
2010-03-01 0.46091621
2010-04-01 1.71506499
2010-05-01 0.12928774

9For the use of the sprint f command, please check the help page typing help ("sprintf")
in the R Console. Here, we used sprintf with %s to convert integer numbers like 1, 2 and 3 into
string, i.e. ‘1’, ‘2" and ‘3’.

1.14 Time Series Classes, Time Data and Time Stamps

2010-06-01 0.07050839
2010-07-01 1.55870831
2010-08-01 -0.23017749
2010-09-01 -0.56047565

X3

GMT

TSI 1
2010-09-01 -0.56047565
2010-08-01 -0.23017749
2010-07-01 1.55870831

2010-06-01 0.07050839
2010-05-01 0.12928774
2010-04-01 1.71506499
2010-03-01 0.46091621
2010-02-01 -1.26506123
2010-01-01 -0.68685285

Similarly, we should have used the following commands to create a zoo object:

zA (mydata, (chardata))

zB (mydata, (2016, 9:1, 1, 0,0,0))
zC (mydata, (2016, 9:1, 1, 0))

ZA

2010-01-01 2010-02-01 2010-03-01 2010-04-01
-0.68685285 -1.26506123 0.46091621 1.71506499
2010-05-01 2010-06-01 2010-07-01 2010-08-01
0.12928774 0.07050839 1.55870831 -0.23017749
2010-09-01
-0.56047565

zB

2016-01-01 2016-02-01 2016-03-01 2016-04-01
-0.68685285 -1.26506123 0.46091621 1.71506499
2016-05-01 2016-06-01 2016-07-01 2016-08-01
0.12928774 0.07050839 1.55870831 -0.23017749
2016-09-01
-0.56047565

zC

2016-01-01 2016-02-01 2016-03-01 2016-04-01
-0.68685285 -1.26506123 0.46091621 1.71506499
2016-05-01 2016-06-01 2016-07-01 2016-08-01
0.12928774 0.07050839 1.55870831 -0.23017749
2016-09-01
-0.56047565

54 1 The YUIMA Package

1.14.5 Joining Two or More Time Series

Suppose we have two parts of the same time series collected in different periods of
time. It is possible to merge them by row, i.e. by date, using the rbind function. If
the time indexes do not overlap, all classes perform in the same way:

(123)

vall (9)

val2 (6)

mydatel (2016,1:9,1)
mydate2 (2015,6:11,1)
zZ1 (vall, mydatel)

Z2 (val2, mydate2)

(z1,22)

2015-06-01 14:00:00 2015-07-01 14:00:00

-0.44566197 1.22408180
2015-08-01 14:00:00 2015-09-01 14:00:00
#4# 0.35981383 0.40077145
2015-10-01 14:00:00 2015-11-01 13:00:00
#4# 0.11068272 -0.55584113
2016-01-01 13:00:00 2016-02-01 13:00:00
-0.56047565 -0.23017749
2016-03-01 13:00:00 2016-04-01 14:00:00
1.55870831 0.07050839
2016-05-01 14:00:00 2016-06-01 14:00:00
#4# 0.12928774 1.71506499
2016-07-01 14:00:00 2016-08-01 14:00:00
#4# 0.46091621 -1.26506123
2016-09-01 14:00:00
#4# -0.68685285
X1 (vall, mydatel)
X2 (val2, mydate2)

(X1,X2)
#H [,1]

2015-06-01 12:00:00 -0.44566197
2015-07-01 12:00:00 1.22408180
2015-08-01 12:00:00 0.35981383
2015-09-01 12:00:00 0.40077145
2015-10-01 12:00:00 0.11068272
2015-11-01 12:00:00 -0.55584113
2016-01-01 12:00:00 -0.56047565
2016-02-01 12:00:00 -0.23017749
2016-03-01 12:00:00 1.55870831
2016-04-01 12:00:00 0.07050839

2016-05-01 12:00:00 0.12928774
2016-06-01 12:00:00 1.71506499
2016-07-01 12:00:00 0.46091621
2016-08-01 12:00:00 -1.26506123
2016-09-01 12:00:00 -0.68685285
wl (vall, mydatel)

w2 (val2, mydate2)

(Wl,wW2)

1.14 Time Series Classes, Time Data and Time Stamps

GMT

TS.1_TS.1
2016-01-01 12:00:00 -0.56047565
2016-02-01 12:00:00 -0.23017749
2016-03-01 12:00:00 1.55870831
2016-04-01 12:00:00 0.07050839
2016-05-01 12:00:00 0.12928774
2016-06-01 12:00:00 1.71506499
2016-07-01 12:00:00 0.46091621
2016-08-01 12:00:00 -1.26506123
2016-09-01 12:00:00 -0.68685285
2015-06-01 12:00:00 -0.44566197
2015-07-01 12:00:00 1.22408180
2015-08-01 12:00:00 0.35981383
2015-09-01 12:00:00 0.40077145
2015-10-01 12:00:00 0.11068272
2015-11-01 12:00:00 -0.55584113

Some classes, like zoo, will fail to do the binding in case of overlapping dates

mydate2 (2016,4:9,1)
Z2 (val2, mydate2)

The following code produces an error:

(z21,22)

Error in rbind(deparse.level, ...) : indexes overlap

On the contrary, timeSeries and xts just duplicate the entries

X2 (val2, mydate2)
(X1,X2)

[,1]
2016-01-01 12:00:00 -0.56047565
2016-02-01 12:00:00 -0.23017749
2016-03-01 12:00:00 1.55870831
2016-04-01 12:00:00 0.07050839
2016-04-01 12:00:00 -0.44566197
2016-05-01 12:00:00 0.12928774
2016-05-01 12:00:00 1.22408180
2016-06-01 12:00:00 1.71506499
2016-06-01 12:00:00 0.35981383
2016-07-01 12:00:00 0.46091621
2016-07-01 12:00:00 0.40077145
2016-08-01 12:00:00 -1.26506123
2016-08-01 12:00:00 0.11068272
2016-09-01 12:00:00 -0.68685285
2016-09-01 12:00:00 -0.55584113

w2 (val2, mydate2)
(Wl,wW2)

56

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

GMT

2016-01-01
2016-02-01
2016-03-01
2016-04-01
2016-05-01
2016-06-01
2016-07-01
2016-08-01
2016-09-01
2016-04-01
2016-05-01
2016-06-01
2016-07-01
2016-08-01
2016-09-01

123
12:
12:
12:
12:
123
128
12:
12:
128
123
128
12:
12:
128

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

=0
=00,

TS.1_TS.1
56047565
23017749
.55870831

0.07050839

=0,

.12928774
.71506499
.46091621
.26506123
.68685285
.44566197
.22408180
.35981383
.40077145
.11068272
55584113

1

The YUIMA Package

Merging of time series, similarly to what happens for data . frame, is also possible.
Again, packages perform differently. Next code shows the different output generated
by zoo, xts and timeSeries:

##
##
##
##
##
##
##
##
##
##

##
##
##
##
##
##
##
##
##
##

(z21,22)

2016-01-01
2016-02-01
2016-03-01
2016-04-01
2016-05-01
2016-06-01
2016-07-01
2016-08-01
2016-09-01

(X1,X2)

2016-01-01
2016-02-01
2016-03-01
2016-04-01
2016-05-01
2016-06-01
2016-07-01
2016-08-01
2016-09-01

13:
13:
13g
14:
14:
14:
14:
14:
14:

123
128
12:
12:
128
123
128
123
12:

00:
00:
00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

-0.
=0

-0.
=0

o~ o

=i,
=0,

zZ1 Z2
56047565 NA
23017749 NA
.55870831 NA
.07050839 -0.4456620
.12928774 1.2240818
.71506499 0.3598138
.46091621 0.4007715
.26506123 0.1106827
.68685285 -0.5558411

X1 X2
56047565 NA
23017749 NA
.55870831 NA
.07050839 -0.4456620
.12928774 1.2240818
.71506499 0.3598138
.46091621 0.4007715
26506123 0.1106827
68685285 -0.5558411

Generate a two-dimensional time series where NA appears when missing observations
exist in each time series for a given time stamp. On the other side, timeSeries

returns a one-dimensional objects with duplicates entries

##

(Wl,wW2)

GMT

1.14 Time Series Classes, Time Data and Time Stamps 57

TS
2016-01-01 12:00:00 -0.56047565
2016-02-01 12:00:00 -0.23017749
2016-03-01 12:00:00 1.55870831
2016-04-01 12:00:00 -0.44566197
2016-04-01 12:00:00 0.07050839

2016-05-01 12:00:00 0.12928774
2016-05-01 12:00:00 1.22408180
2016-06-01 12:00:00 0.35981383
2016-06-01 12:00:00 1.71506499
2016-07-01 12:00:00 0.40077145
2016-07-01 12:00:00 0.46091621

2016-08-01 12:00:00 -1.26506123
2016-08-01 12:00:00 0.11068272
2016-09-01 12:00:00 -0.68685285
2016-09-01 12:00:00 -0.55584113

To mimic the output of zoo and xts, it is necessary to set explicitly the name of
the time series using the argument units

w2 (val2, mydate2, units="MyData")
(W1, W2)

GMT

H## TS.1 MyData

2016-01-01 12:00:00 -0.56047565 NA

2016-02-01 12:00:00 -0.23017749 NA

2016-03-01 12:00:00 1.55870831 NA

2016-04-01 12:00:00 0.07050839 -0.4456620
2016-05-01 12:00:00 0.12928774 1.2240818
2016-06-01 12:00:00 1.71506499 0.3598138
2016-07-01 12:00:00 0.46091621 0.4007715
2016-08-01 12:00:00 -1.26506123 0.1106827
2016-09-01 12:00:00 -0.68685285 -0.5558411

Contrary to xts and zoo, for timeSeries, the arguments of rbind are not
symmetric

mydatel (2016,1:9,1)
mydate2 (2015,6:11,1)
wl (vall, mydatel)
w2 (val2, mydate2)

The command

(W1,wW2)

GMT

TS.1_TS.1
2016-01-01 12:00:00 -0.56047565
2016-02-01 12:00:00 -0.23017749
2016-03-01 12:00:00 1.55870831
2016-04-01 12:00:00 0.07050839

2016-05-01 12:00:00 0.12928774
2016-06-01 12:00:00 1.71506499
2016-07-01 12:00:00 0.46091621

58

##
##
##
##
##
##
##
##

2016-08-01
2016-09-01
2015-06-01
2015-07-01
2015-08-01
2015-09-01
2015-10-01
2015-11-01

12:
12:
123
12:
12:
12:
12:
123

00:
00:
00:
00:
00:
00:
00:
00:

00
00
00
00
00
00
00
00

-0

.26506123
.68685285
.44566197
.22408180
.35981383
.40077145
.11068272
.55584113

produces a different output than

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

(W2,Wl)

GMT

2015-06-01
2015-07-01
2015-08-01
2015-09-01
2015-10-01
2015-11-01
2016-01-01
2016-02-01
2016-03-01
2016-04-01
2016-05-01
2016-06-01
2016-07-01
2016-08-01
2016-09-01

12:
12:
12:
12 ¢
123
128
12:
12:
128
123
128
12:
12:
12:
123

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

TS.1_TS.1
.44566197
.22408180
.35981383
.40077145
.11068272
.55584113
.56047565
.23017749
.55870831

0.07050839

o~ O

=i,
-0.

.12928774
.71506499
.46091621
26506123
68685285

1

The YUIMA Package

The two functions sort and rev: can be used to sort the time series according to
dates

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

((W2, Wl)

GMT

2015-06-01
2015-07-01
2015-08-01
2015-09-01
2015-10-01
2015-11-01
2016-01-01
2016-02-01
2016-03-01
2016-04-01
2016-05-01
2016-06-01
2016-07-01
2016-08-01
2016-09-01

128
123
128
12:
12:
12:
12:
128
123
12:
12:
12:
12:
123
12:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

((W2,wl),

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

o - O

=i,
=0

TS.1_TS.1
.44566197
.22408180
.35981383
.40077145
.11068272
.55584113
.56047565
.23017749
.55870831
.07050839
.12928774
.71506499
.46091621

26506123
68685285

decr=TRUE)

1.14 Time Series Classes, Time Data and Time Stamps 59

GMT

TS.1_TS.1
2016-09-01 12:00:00 -0.68685285
2016-08-01 12:00:00 -1.26506123
2016-07-01 12:00:00 0.46091621
2016-06-01 12:00:00 1.71506499
2016-05-01 12:00:00 0.12928774
2016-04-01 12:00:00 0.07050839
2016-03-01 12:00:00 1.55870831
2016-02-01 12:00:00 -0.23017749
2016-01-01 12:00:00 -0.56047565
2015-11-01 12:00:00 -0.55584113
2015-10-01 12:00:00 0.11068272
2015-09-01 12:00:00 0.40077145
2015-08-01 12:00:00 0.35981383
2015-07-01 12:00:00 1.22408180
2015-06-01 12:00:00 -0.44566197

or to revert the time stamps

W2

GMT

TS.1
2015-06-01 12:00:00 -0.4456620
2015-07-01 12:00:00 1.2240818
2015-08-01 12:00:00 0.3598138

2015-09-01 12:00:00 0.4007715
2015-10-01 12:00:00 0.1106827
2015-11-01 12:00:00 -0.5558411

(W2)

GMT

TS.1
2015-11-01 12:00:00 -0.5558411
2015-10-01 12:00:00 0.1106827

2015-09-01 12:00:00 0.4007715
2015-08-01 12:00:00 0.3598138
2015-07-01 12:00:00 1.2240818
2015-06-01 12:00:00 -0.4456620

1.14.6 Subsetting a Time Series

Selection of elements in time series object is similar to subsetting for matrix. Let
us consider the data set quotes available in package sde (Iacus 2008)

(sde)
(quotes)
(quotes)

60

##
##
##
##
##
##
##
##

1

'zoo’ series from 2006-01-03 to 2007-12-31
Data: num [1:520, 1:20] 26.8 27 27 26.9 26.9
- attr(*, "dimnames")=List of 2

.S chr [1:520] "2006-01-03" "2006-01-04" "2006-01-05"
"2006-01-06"

.S chr [1:20] "MSOFT" "AMD" "DELL" "INTEL"
Index: Date[1:520], format: "2006-01-03" "2006-01-04"
"2006-01-05"

The YUIMA Package

We can see that the Data slot consists of a matrix with attributes for colnames
and rownames, respectively, the time series names and time stamps. We can access
the elements of the time series using indexes and/or names

quotes[2,2:4]

##

AMD

DELL INTEL

2006-01-04 32.56 30.76 25.91

quotes[10:20, "INTEL"]

2006-01-16 2006-01-17 2006-01-18 2006-01-19 2006-01-20

25.5875
2006-01-23
21.3500
2006-01-30
21.6500

25,

5200

22.6000

22.4000

21.7600

2006-01-24 2006-01-25 2006-01-26 2006-01-27

a4,

2800

21.2100

21.4900

but we can use $ as for data. frame

quotesSINTEL[10:20]

2006-01-16 2006-01-17

21.6700

2006-01-18 2006-01-19 2006-01-20

25.5875 25.5200 22.6000 22.4000 21.7600
2006-01-23 2006-01-24 2006-01-25 2006-01-26 2006-01-27
21.3500 21.2800 21.2100 21.4900 21.6700
2006-01-30

21.6500

or by dates

mydate (("2006-08-%.2d",20:10))

mydate

[1] "2006-08-20" "2006-08-19" "2006-08-18"

[4] "2006-08-17" "2006-08-16" "2006-08-15"

[7] "2006-08-14" "2006-08-13" "2006-08-12"

[10] "2006-08-11" "2006-08-10"

quotes [mydate, 5:9]

HP SONY MOTO NOKIA EA

2006-08-10 33.01 44.31 23.05 19.95 48.48

2006-08-11 33.05 44.36 22.69 19.63 49.88

2006-08-14 33.29 44.81 23.02 19.85 48.92

1.14 Time Series Classes, Time Data and Time Stamps 61

2006-08-15 33.99 45.43 23.54 20.73 50.82
2006-08-16 34.43 45.06 23.81 21.34 51.64
2006-08-17 35.15 44.97 23.72 21.29 51.59
2006-08-18 35.52 46.09 23.80 21.35 51.29

Missing dates are automatically skipped. In the above, we have used sprintf with
% .2d to convert integer numbers like 1, 2 and 3 into a two digits string, i.e. ‘01,
‘02’ and ‘03’. Of course, because dates are objects, we can do selection on dates like
this:

initial ("2007-05-15")

terminal ("2007-05-21")

quotes[((quotes) >= initial) & ((quotes)<= terminal), 4:9]
INTEL HP SONY MOTO NOKIA EA

2007-05-15 22.01 44.75 52.70 17.92 26.31 48.70
2007-05-16 22.18 45.21 55.85 18.22 26.66 49.14
2007-05-17 22.23 44.87 55.05 18.60 26.57 48.41
2007-05-18 22.70 44.58 55.56 18.79 27.04 48.58
2007-05-21 22.63 45.22 57.38 18.90 26.97 49.21

Package xts is more flexible than others in date subsetting. Let use consider again
the IBM data.

("IBM", from="2015-01-01", to = "2016-12-31")
[1] "IBM"
(IBM)

An ‘xts’ object on 2015-01-02/2016-12-30 containing:
#4# Data: num [1:504, 1:6] 180 180 178 175 174

- attr(*, "dimnames")=List of 2
..S$: NULL
..$: chr [1:6] "IBM.Open" "IBM.High" "IBM.Low" "IBM.Close"

Indexed by objects of class: [Date] TZ: UTC

#4# xts Attributes:

List of 2

S src : chr "yahoo"

S updated: POSIXct[l:1], format: "2018-02-02 15:44:23"

‘We can subset this time series with

IBM["2015-01","IBM.Close"]

IBM.Close
2015-01-02 162.06
2015-01-05 159.51
2015-01-06 156.07
2015-01-07 155.05
2015-01-08 158.42
2015-01-09 159.11
2015-01-12 156.44
2015-01-13 156.81
2015-01-14 155.80

62

##
##
##
##
##
##
##
##
##
##
##

to extract only data for January 2015. Or

IBM["2016-02-11/2016-03-05", "IBM.Close"

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

to subset on a interval, or even

IBM["/2015-02-11", "IBM.Close"]

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

2015-01-15
2015-01-16
2015-01-20
2015-01-21
2015-01-22
2015-01-23
2015-01-26
2015-01-27
2015-01-28
2015-01-29
2015-01-30

2016-02-11
2016-02-12
2016-02-16
2016-02-17
2016-02-18
2016-02-19
2016-02-22
2016-02-23
2016-02-24
2016-02-25
2016-02-26
2016-02-29
2016-03-01
2016-03-02
2016-03-03
2016-03-04

2015-01-02
2015-01-05
2015-01-06
2015-01-07
2015-01-08
2015-01-09
2015-01-12
2015-01-13
2015-01-14
2015-01-15
2015-01-16
2015-01-20
2015-01-21
2015-01-22
2015-01-23
2015-01-26
2015-01-27
2015-01-28

.57
157.
156.
152.
155.
155.
156.
.67
151.
155.
153.

14
95
09
39
87
36

55
48
31

IBM.Close

117.
121.
122.
126.
132.
133.
133.
132.
132.
134.
132.
131.
134.
136.
137.
137.

85
04
74
10
45
08
77
40
80
50
03
03
37
30
80
80

IBM.Close

162.
159,
156.
155.
158.
159.
156.
156.
155.
154.
157.
156.
152.
155.
155.
156.
153.
151.

06
51
07
05
42
11
44
81
80
57
14
95
09
39
87
36
67
55

1

The YUIMA Package

1.14 Time Series Classes, Time Data and Time Stamps 63

2015-01-29 155.48
2015-01-30 153.31
2015-02-02 154.66
2015-02-03 158.47
2015-02-04 156.96
2015-02-05 157.91
2015-02-06 156.72
2015-02-09 155.75
2015-02-10 158.56
2015-02-11 158.20

to select dates up to a given date.

1.15 Miscellanea

1.15.1 From Yuima to BTEX

The R method toLatex has been extended to most of the models in the yuima
package. For example, consider again this parametric model

mod2 (drift = "-mu*x", diffusion = "1/ (l+x"gamma)")
mod2

##

Diffusion process

Number of equations: 1

Number of Wiener noises: 1

Parametric model with 2 parameters

We can obtain the I4TEX code ready to be inserted in a scientific paper by invoking
toLatex

(mod2)

%%% Copy and paste the following output in your LaTeX file

ss

dx

=

-\mu \cdot x dt
o+

#% 1/(1 + x"\gamma)
dwl

$$

$s

x(0)=0

ss

and the above I4TEX code will show, after typesetting, as follows

dx = —p-xdt +1/(1 +x")dW1

64 1 The YUIMA Package
x(0)=0

For multidimensional models, yuima uses the matrix notation

sol ("x1","x2")

b ("-theta*x1", "-x1-gamn)

s (@, "5, 0" , "EElEan , TSR0 , "0 2, 3)

mymod (drift = b, diffusion = s, solve.variable = sol)

and then toLatex (mymod) will produce the following output
dw1

dx1 —0-x1 1 0x2
(de) = (—xl —y -x2>dt+ |:x1 50 } dw2

dw3
x1(0) =0
x2(0) =0
which can be easily adjusted to one’s notation. The reader can try with the different
yuima models presented in this book.

0L g (]

Welcome to yuimaGUI

Developed by
i

Emanue

collaboration with

um in and out. Stefano M. lacu:

Fig. 1.14 How the graphical user interface of yuima appears thanks to the yuimaGUI package

1.15 Miscellanea 65

1.15.2 The Yuima GUI

There exists also a graphical user interface for yuima which allows for easy practical
analysis of real data using most of the functionalities of the package with interactive
graphics. To use this yuimaGUT, this is the name of the GUI for yuima, and one
need to install at first the package yuimaGUI with

("yuimaGUI")
This package depends on other packages, so all the other packages should be installed

first. Once the package is ready for use, the only commands to type in the R console
are the following

(yuimaGUI)
()

The yuimaGUT is a Web-based interface as shown in Fig. 1.14. More information
on how to use the GUI and its functionalities are provided by the GUI itself.

Part 11
Models and Inference

Chapter 2 ®)
Diffusion Processes Becit

2.1 Model Specification

Let {X,,t > 0} be a one-dimensional diffusion process defined by the stochastic
differential equation

dX; =al(t, X;,0)dt + b(t, X;, 0)dW,, (2.1)

with an initial value X,, where W, is a standard Brownian motion. We assume
that sufficient regularity conditions hold for the drift function a(-) and the diffusion
coefficient b(-) as well as for the initial condition X so that a solution of (2.1) exists.
The functions a(-) and b(-) may or may not depend on ¢ or a statistical parameter
6e® CR,d>1.

In Sect. 1.9.1 we have seen how to specify the simple model

1
dX, = -3X,dt + ———=dW,
' (dt + 1+ x2 '

with some constant initial condition Xj. It is also possible to specify a random initial
condition for the process via the argument xinit as follows

modl (drift = "-3*x", diffusion = "1/ (1+x"2)",
xinit="rnorm(1l)")
(mod1l)

Formal class ’‘yuima.model’ [package "yuima"] with 16 slots
..@ drift : expression((-3 * x))

..@ diffusion :List of 1

.. ..$: expression((1l/(1 + x72)))

..@ hurst : num 0.5

..@ jump.coeff : list()

..@ measure : list()

..Q@ measure.type : chr(0)

..@ parameter :Formal class '‘model.parameter’ [package

© Springer International Publishing AG, part of Springer Nature 2018 69

S. M. Iacus and N. Yoshida, Simulation and Inference for Stochastic
Processes with YUIMA, Use R!, https://doi.org/10.1007/978-3-319-55569-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-55569-0_2&domain=pdf

70 2 Diffusion Processes

©
o 7 <
o
N
3 3
< |
><O
x N
e N
gl
]
o
0'7 —]
©
(V. 0'7
o]
o T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
t t

Fig. 2.1 A yuima.model with random initial condition

"yuima"] with 7 slots

..@ all : chr(0)

#4# ..@ common : chr(0)

..@ diffusion: chr(0)
..@ drift : chr(0)

..@ jump : chr(0)

#4# ..@ measure : chr(0)
. ..@ xinit : chr(0)

#4# state.variable : chr "x"
#4# jump.variable : chr(0)
time.variable : chr "t"

¢!
Q@
@
..@ noise.number : num 1

..@ equation.number: int 1

@ dimension : int [1:6] 0 0 0 0 0 O
#4# @ solve.variable : chr "x"

@ xinit : expression((rnorm(1l)))

@ J.flag : logi FALSE

As we can see, the xinit slot of the yuima . model is set properly. If we simulate
trajectories from this model, the initial condition will be generated as well according
to the specified random distribution:

(123)
x1 (mod1)
x2 (mod1)
(mfrow=c(1,2))
(x1)
(x2)

where the initial condition is taken from the standard Gaussian distribution (see

Fig. 2.1).
The initial condition can also be parametrized as

mod?2 (drift = "-3*x", diffusion = "1/(1+x"2)",
xinit="rnorm(l, mean=mu)")
mod?2

2.1 Model Specification

(mod2)

71

Formal class ’‘yuima.model’ [package "yuima"] with 16 slots
..@ drift expression((-3 * x))

..@ diffusion :List of 1

.. ..S expression((1/(1 + x"2)))

..@ hurst num 0.5

..@ jump.coeff list()

..@ measure list()

.@ measure. type chr (0)

..@

parameter :Formal class ’‘model.parameter’ [package
"yuima"] with 7 slots
..@ all chr "mu"
#4# ..@ common chr (0)
..@ diffusion: chr(0)
..@ drift chr (0)
..@ jump chr (0)
#4# ..@ measure chr (0)
.@ xinit chr "mu"
@ state.variable chr "x"
#4# @ jump.variable chr (0)
@ time.variable chr "t"
..@ noise.number num 1
..Q@ equation.number: int 1
H## @ dimension : int [1:6] 1 0 0 0 0 O
@ solve.variable chr "x"
@ xinit expression((rnorm(l, mean = mu)))
#4# @ J.flag logi FALSE

and in this case, the parameter mu in the initial condition Xy ~ N (u, 1) becomes a
parameter in the model. Thus, for example, in order to simulate a trajectory, we need
to specify this parameter as well, i.e.

x (mod2, true.par= (mu=1))

The initial condition can also be overridden at the time of the simulate command
either putting a deterministic initial value or replacing a deterministic or random
initial condition with another random condition (see Fig. 2.2)

modl (drift = "-3*x", diffusion = "1/ (1+x"2)")
(123)
x1 (modl, xinit=1)
%2 (modl, xinit= ((1)))
x3 (mod2, xinit=3)
(mfrow=c(1,3))
(x1, main="modl, xinit=1")
(x2, main="modl, xinit=expression (rnorm(1l))")
(x3, main="mod2, xinit=3")
(mfrow=c(1,1))

We present here a list of well-known models which can be easily specified in yuima.

72 2 Diffusion Processes

mod1, xinit=expression

mod1, xinit=1 (rnorm(1)) mod2, xinit=3
o 4 o
- 32
o)
o < @
o
o |
© o
- w
x o x o7 % o
<
o
< | o
[S) -
o
e (e}
@
T T T T T T T T T T T T T T T T T T
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0

t t t

Fig. 2.2 Random versus deterministic initial condition

2.1.1 Ornstein-Uhlenbeck (OU)

The simple Ornstein—Uhlenbeck (Uhlenbeck and Ornstein 1930) has the following
stochastic differential equation:

dX[= _QXtdt + dW[, X() = X0,

and 6 > 0 ensures stationarity. This can be coded as

ou (drift="-theta*x", diffusion=1)

2.1.2 Geometric Brownian Motion (gBm)

The geometric Brownian motion (Osborne 1959) has the following stochastic dif-
ferential equation:
dX; = uX,dt + o X, dW,, Xo = xo,

and o > 0. Its solution is the exponential of a linear transform of the Brownian
motion and hence always nonnegative. This can be coded as
gBm (drift="mu*x", diffusion="sigma*x")

This process is the building block of the Black and Scholes (1973) and Merton
(1973a) theory for option pricing.

2.1 Model Specification 73

2.1.3 Vasicek Model (VAS)

The Vasicek (1977) process is the unique solution to the following stochastic differ-
ential equation
dX, = (0; — 0, X,)dr + 6;dW,

with 03 € R, and 61, 6, € R. This is essentially the Ornstein—Uhlenbeck process
with the mean reverting property. This process can be coded as follows:

vasicek (drift="thetal-theta2*x", diffusion="theta3")

2.1.4 Constant Elasticity of Variance (CEV)

The constant elasticity of variance (CEV) process introduced in finance in option
pricing (see Schroder 1989; Beckers 1980; Cox 1996) is a solution of the stochastic
differential equation:

dX, = uX,dt + o X7 dW,.

This process is quite useful in modelling a skewed implied volatility. In particular,
for y < 1, the skewness is negative, and for y > 1 the skewness is positive. For
y = 1, the CEV process is a particular version of the geometric Brownian motion.
The model can be coded as follows

cev (drift="mu*x", diffusion="sigma*x"gamma")

2.1.5 Cox-Ingersoll-Ross Process (CIR)

This model was introduced by Feller as a model for population growth (see Feller
1951b, a) and became quite popular in finance after Cox, Ingersoll and Ross proposed
it to model short-term interest rates (Cox et al. 1985). The process is a solution to
this stochastic differential equation:

dX; = (6) — 6, X,)dr 4+ 63/ X, dW,,

where 01, 6,,6; € R,. If 26, > 932, the process is strictly positive, otherwise it is
nonnegative, which means that it can reach the state 0. This can be coded as follows:

cir (drift="thetal-theta2*x", diffusion="theta3*sqgrt(x)")

74 2 Diffusion Processes

Table 2.1 Family of CKLS process dX; = (6) +6,X;)dr + 63X ,94dW, and its embedded elements
under different parametric specifications. In all cases, 3 > 0

01 (7)) 04 See
Merton Any 0 0 Merton (1973b)
Vasicek or Any Any 0 Vasicek (1977)
Ornstein—
Uhlenbeck
CIR or square Any Any 172 Cox et al. (1985)
root process
Dothan 0 0 1 Dothan (1978)
Geometric BM or | 0 Any 1 Black and
Black and Scholes (1973)
Scholes
Brennan and Any Any 1 Brennan and
Schwartz Schwartz (1980)
CIR VR 0 0 3/2 Cox et al. (1980)
CEV 0 Any Any Cox (1996)

2.1.6 Chan-Karolyi-Longstaff-Sanders Process (CKLS)

The Chan—Karolyi-Longstaff-Sanders (CKLS) family of models (see Chan et al.
1992) is a class of parametric stochastic differential equations widely used in many
financial applications, in particular to model interest rates or asset prices. The CKLS
process solves the stochastic differential equation

dX, = () + 6:X,)dt + 6;X"*dW, .
The CKLS model does not admit an explicit transition density unless §; = 0 or
04 = % It takes values in (0, +00) if 61,6, > 0, and 64 > % In all cases, 65 is

assumed to be positive. This model is an extension of several other models as can be
seen from Table 2.1. This model can be coded as follows:

ckls (drift="thetal-theta2*x", diffusion="thetal3*x"theta4")

2.1.7 Hyperbolic Diffusion Processes

The hyperbolic distribution has density

plx;a, B, 8, 1) = expi —a/8% + (x —)2+ﬂ(x—u)} x eR.

208K, (5k) (a) o)

2.1 Model Specification 75

In this parametrization, u € R is the location parameter, § > 0 is the scale parameter,
B is a real parameter which controls the asymmetry around w, @ > || > 0is called
the tail parameter, K, is the modified Bessel function of the third kind with index
one

1 * —Lr(x+xh
K@) = 3 e 2 dx
0

and k = \/a? — B2 (see also Sect. 4.10 for an extended treatment of the hyperbolic
distribution and related processes). The tails of the distribution are exponentially
decreasing withrate ¢ = 8 + o forx - —oo0 and y = o — B for x — 4-00; thus,
playing with the parameters « and 8, it is possible to obtain different shapes including
asymmetric and heavy-tail distributions. The name of the distribution comes from
the fact that the graph of In f(x) represents a hyperbola. The hyperbolic diffusion
process introduced in Barndorff-Nielsen (1978) and later applied in finance by many
authors (e.g., Kiichler et al. 1999) has the following stochastic differential equation:

2 X, —
ax, =2 | p—a—=2"B i+ odw,. 2.3)
2 NN

The name of this process comes from the fact that the invariant density of the process
follows the hyperbolic distribution (2.2). Indeed, remind that for any ergodic diffusion
of the type dX; = b(X,)dt + o(X,)dW,, the invariant law 7 (x) has always the
following form:

NGL1C)
where
_ 1
"= s

is the speed measure, M = f m(x)dx and

5 b(y)
= -2 d
$) exp{ f 2y }

is the scale function and x, is any point in the state space of the process X,. Hence,
in this case, it is easy to write down these expressions as follows:

76 2 Diffusion Processes

$(r) = exp / LS DR
0 \V&+(y—n?

o exp [a\/52 + (x — u)? — ,Bx}

m(x):iexp _/X _eb-w
o 0 \V&+(—n?
[0 %exp {—a\/éz + (x —)2 +,Bx}

B)dy

Given that m (£00) is finite because of the exponential decreasing tails, we have that
m(x) = p(x; «, B, 8, u) and the normalizing constant is M = m Notice that
this distribution is independent of 0. We can input into yuima this model quite easily
as follows:
hyperl (diff="sigma",

drift="(sigma”2/2) * (beta-alpha* ((x-mu) / (sgrt (delta”2+ (x-mu) "2))))")
In this case, the parameter ¢ is common to both drift and diffusion coefficients. We
can look at the structure of the parameter slot of the yuima .model:

hyperl

##

Diffusion process

Number of equations: 1

Number of Wiener noises: 1

Parametric model with 5 parameters

(hyperl@parameter)

Formal class ’‘model.parameter’ [package "yuima"] with 7 slots

..@ all : chr [1:5] "sigma" "beta" "alpha" "mu"
@ common : chr "sigma"

@ diffusion: chr "sigma"

#4# ..@ drift : chr [1:5] "sigma" "beta" "alpha" "mu"
#4# ..@ jump : chr(0)

#4# @ measure : chr(0)

H## @ xinit : chr (0)

With the idea of generalizing the geometric Brownian motion model to a richer class,
Bibby and Sgrensen (1997) proposed another type of stochastic differential equation
whose solution has a stationary hyperbolic distribution. Let

Sy ="t (2.4)

where .
Xl - X() +/ V(Xs)de
0

2.1 Model Specification 71

By It6 formula, it follows that the stochastic differential equation which represents
the dynamics of (2.4) is as follows:

1
ds, =, { |:m + Ev2(10g S, — mt)i| dr + v(log S, — mt)dW,} . (25)

Notice that, when v(#) is constant, (2.5) is of the same type of the stochastic differ-
ential equation for the geometric Brownian motion of Sect. 2.1.2. If

1
o =aexp | (TG 07 - s -)}

the process of the drift-adjusted log-prices X; = log S; — m¢ satisfies the following
stochastic differential equation:

1
dX, = o exp {5 (a\/82 T (X, —)2 — B(X, — u))} aw,, (2.6)

with the initial condition Xy = logSy. It is easy to check that the process X,
has also a hyperbolic invariant distribution. Indeed, in this case s(x) = 1 and

m(x) G% exp {—a 824+ (x —)2+ ,Bx}. Moreover, the increments over a short
time interval have thick tails while over long time intervals the distribution of its
increments is almost hyperbolic. This model can be prepared for yuima as follows

hyper?2 (drift="0",
diffusion = "sigma*exp (0.5*alpha*sqgrt(delta”2+ (x-mu) "2) -

beta* (x-mu)) ")

and, as before, we can look at the slot parameter of the yuima .model:

hyper?2

##

Diffusion process, driftless

Number of equations: 1

Number of Wiener noises: 1

Parametric model with 5 parameters

(hyper2@parameter)

Formal class ’'model.parameter’ [package "yuima"] with 7 slots

..@ all : chr [1:5] "sigma" "alpha" "delta" "mu"
@ common : chr(0)
#4# @ diffusion: chr [1:5] "sigma" "alpha" "delta" "mu"
#4# ..@ drift : chr (0)
..@ jump : chr(0)
#4# @ measure : chr(0)
#4# @ xinit : chr(0)

78 2 Diffusion Processes

Further relations between the models in (2.6) and (2.3) and extensions to the class
of the generalized hyperbolic diffusions can be found in Ryder (1999). Generalized
hyperbolic processes will be introduced in Sect. 4.10.

2.2 More About Simulation

In Sect. 1.10 we have seen the basic options available for simulation. The basic
simulation scheme used for multi- and unidimensional diffusion processes is the
Euler—-Maruyama scheme, which is based on the discretization of the stochastic
differential equation

dX; = a(t, X,)dt + b(t, X;)dW,

on a regular grid of times #; =i - A,i = 0,...,n, where A is a given time lag.
For simplicity, we denote by X; = X(¢;),i = 0, 1, ..., n. Roughly speaking, the
approximation is valid only at the points of the grid #; and only if A is very small
(Tacus 2008). From the previous stochastic differential equation, we can write

X, — X,

i

=a(ti, X,)A+ b1, X)) AW,

where AW, =W, — W, ~ VAN (0, 1) is the sequence of independent increments
of the Brownian motion. Thus, conditionally on the value X, we have

X[/ur] = XI; +a(tia Xl,)A +b(tla Xf;)A‘/I/ia i = 15 cee, = 17
and then
Xy, ~ NX, +alt;, X,)A, AV (6, X)), i=1,...,n—1.

The method simulate automatically generates increments of a Wiener process, but
the current implementation allows to input directly some other type of increments
via the argument increment .W. If this argument is specified, then the Euler—
Maruyama scheme uses this time series instead of generating new increments. This
flexibility of the yuima simulator allows for different tasks, including replication of
Monte Carlo experiments, using the same increments in different models, or even
specifying increments which are not necessarily Gaussian. The name of the argument
increment .W means only that those user-input increments replace the standard
AW;’s in Euler-Maruyama scheme.

(123)
modA (drift="-0.3*x", diffusion=1)
modB (drift="0.3*x", diffusion=1)

Terminal 1

2.2 More About Simulation 79

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 2.3 Using the same increments to simulate two different models using argument
increment.Win simulate

n 500

mod.sampling (Terminal=Terminal, n=n)

yuimal (model=modA, sampling=mod.sampling)
yuima?2 (model=modB, sampling=mod.sampling)

delta Terminal/n

my . dW ((n, O, (delta)), nrow=1l, ncol=n)
vl (yuimal, xinit=1, increment.W=my.dwW)

v2 (yuima2, xinit=1, increment.W=my.dw)

and now y1 and y2 contain two different trajectories corresponding to modA and
modB, respectively, as we see from Fig. 2.3 using the following R code

(y1)
((vy2) [[1]1]1, col="red",lty=3)

The simulate method provides also space-discretized Euler—Maruyama method
to solve SDEs. This is at the moment designed for 1 factor SDEs only; i.e., the sit-
uation when the driving Brownian motion W is one-dimensional. In this case, the
discretization scheme {7;} is defined as

790 =0, 741 =inf{t > 7;; |W, — W | = ¢}

for each j > 0. Internally, simulate takes g2 = T/n = A, which coincides
with the mean of the interval 7;4; — 7;. This space-discretizing scheme is known
to be three times efficient than the usual time-discretized scheme one in the sense
of the mean squared error (Fukasawa 2011). To make use of the space-discretized
Euler-Maruyama scheme, one should use the argument space.discretized
= TRUE which by default is set to FALSE. Other simulation scheme for one-
dimensional diffusion processes, as explained in Tacus (2008), will be implemented
in the near future.

80 2 Diffusion Processes

x1

0.0 0.2 0.4 0.6 0.8 1.0
t

Fig. 2.4 A trajectory of the multidimensional SDE described in mod3
2.3 Multidimensional Processes

Next is an example of a system of two stochastic differential equations for the couple
(X1, X»,1) driven by three independent Brownian motions (W, ,, W, ,, W3 ,)

Xm,t - —3X],fdt + dW],f + XZJdWB’[
dXz.r = _(Xl,r + 2X2,t)dt + Xl,tdWl,t + 3dW2,t

This system has to be organized into matrix form with a vector of drift expressions
and a diffusion matrix as follows:

dX,, —3Xy, 10Xy, Wi

axy,) T\ =x, —2x,,)4 T x5 07) | W

2.t 1,t 2.t 1,1 dWB,r

For this system, it is now necessary to instruct yuima about the state variable on both

the left-hand side of the equation and the right-hand side of the equation; i.e., one
needs to specify also the solve.variable for the left-hand side of the SDE:

sol ("x1","x2")

a ("=3%x1", "-x1-2%x2")

b (e("1","x1","0","3","x2","0"),2,3)

mod3 (drift = a, diffusion = b, solve.variable = sol)

Looking at the structure of the noise . number slot in mod3, one can see that this
is now set to 3 which is taken as the number of columns of the diffusion matrix.
Again, this model can be easily simulated and the trajectory can be seen in Fig. 2.4.

(123)
X (mod3)
(X, plot.type="single",lty=1:2)

2.3 Multidimensional Processes 81

Notice thattherole of solve.variableisessential becauseitallows to specify
the left-hand side of an SDE equation. For example, if one wants to specify this model
instead of the previous one

dXz,t - _3X1,td[+ dWl,t + Xz,tdWS,t
Xm,t = _(Xl,t + 2X2,,)dt + Xl,tdWI.t + 3dW2.t

the solve.variable argument should be specified as solve.variable=c
("x2","x1") in place of solve.variable=c("x1l", "x2"), all the rest
being the same as in model mod3.

It is also possible to specify more complex models like the following

2/3
Xm,z = X2,z ’Xl,z’ / dWl,t,
dXz,z = g(t)dXB,t,
dXs3, = X3,(udt + o (pdW;, + /1 — p2dW>,))

(X1,0, X2,0, X30) = (1.0,0.1, 1.0)

withu =0.1,06 =0.2, p = —0.7and g(r) = 0.4 + (0.1 + 0.21)e~2, for example,
where W = (W;, W») is a two-dimensional standard Brownian motion. In order
to pass this model to yuima, we need to rewrite it in matrix form. The solution
X = (X1, X5, X3) takes values on]Ri. This is a stochastic integral equation defined
as

t t
X =X +/ a(s, X,)ds +/ b(s, X;)dW,
0 0
with

0 xa|xp]*3 0
as,x)=| g uxs |, b(s,x) = g(s)opx; g(s)o/1 — p2x;
X3 opx3 o1 — p2xs

for x = (x1, x2, x3).

mu 0.1
sig 0.2
rho =0, 7
g function(t) {0.4 + (0.1 + 0.2*t)* (=2=E) §
f1 function(t, x1, x2, x3) {
ret 0
if(x1l > 0 && x2 > 0) ret SR ((x1)*2/3)
(ret)
}
£2 function(t, x1, x2, x3) {
ret 0

if (x3 > 0) ret rho*sig*x3

82 2 Diffusion Processes

(ret)
}
£3 function(t, x1, x2, x3) {
ret 0
if (x3 > 0) ret (1-rho"2) *sig*x3
(ret)
}
diff.coef.matrix (e("f1(t,x1,x2,x3)",
"f2(t,x1,x2,x3) * g(t)", "f2(t,x1,x2,x3)", "0",
"£3(t,x1,x2,x3)*g(t)", "£f3(t,x1,x2,x3)"), 3, 24)
sabr .mod (drift = ¢("0", "mu*g(t)*x3", "mu*x3"),
diffusion = diff.coef.matrix, state.variable = c("x1", "x2", "x3"),
solve.variable = e("x1", "x2", "x3"))

(sabr .mod@parameter)

The functions £1, £2 and £3 are defined in a way that, when the trajectory of the
processes crosses zero from above, the trajectory is stopped at zero. Notice that in
this way the only visible parameter for yuima is mu as rho and sig are inside
the bodies of the functions £2 and £3. If we want to instruct yuima about these
parameters, they should appear explicitly as arguments of the functions as shown in
the following R code

f2 function(t, x1, x2, x3, rho, sig) {
ret 0
if(x3 > 0) ret rho*sig*x3
(ret)
}
£3 function(t, x1, x2, x3, rho, sig) {
ret 0
if(x3 > 0) ret (1-rho"2) *sig*x3
(ret)
}
diff.coef.matrix (c("fl(t,x1,x2,x3)",
"f2(t,x1,x2,x3,rho, sig) * g(t)", "f2(t,x1,x2,x3,rho,sig)",
"0", "f3(t,x1,x2,x3,rho,sig)*g(t)", "f3(t,xl,x2,x3,rho,sig)"), 3, 2)
sabr .mod (drift = c¢("0", "mu*g(t)*x3", "mu*x3"),
diffusion = diff.coef.matrix, state.variable = c("x1", "x2", "x3"),
solve.variable = ("x1", "x2", "x3"))

(sabr .mod@parameter)

2.3.1 The Heston Model

Consider a system of stochastic differential equations

2.3 Multidimensional Processes 83

dX; = uXy,dt + /X2, X1, dWy;
dXz’l =k(0 — XQ,,)dt + SN/XQ,,dWl,

where the first equation represents the asset price and the second equation repre-
sents the dynamics of the volatility process through a CIR model. Conditions on the
parameters are that 2k > & to ensure positiveness of the volatility process. The
two Brownian motions (W, ,, W, ,) are correlated. In order to input this model into
yuima, we need to rewrite this system by a transform of two independent Brownian
motions, say (B, Bz,) viathe Cholesky decomposition. Indeed, let Y be a multivari-
ate Gaussian random variable with variance—covariance matrix X,i.e. Y ~ N(0, X).
By Cholesky decomposition, one can find a matrix A such that A7 - A = ¥. Then, if
Z is a standard multivariate Gaussian random variable, we have that AZ ~ N (0, X).
Now we should extract the variance—covariance matrix X' and apply the chol com-
mand to it to obtain the matrix A and transform the original diffusion matrix into a
new one as we show in the next steps. First of all, we need to think at this system in
matrix form

dX,, _ uXi, dr + \/Xiz,er,z 0 dw,
dXs, k(O — Xa;) 0 e/ Xos dW,,

then introduce the matrix X' to describe the correlation structure, for example

> = $1,1 81,2 . 0.50.7
- 82,1 82,2 - 0.7 2

and apply the Cholesky decomposition using chol

Sigma (c(0.5, 0.7, 0.7, 2), 2, 2)

C (Sigma)

C

[,11] [,2]

[1,] 0.7071068 0.9899495

[2,] 0.0000000 1.0099505
(C)

[,11 [,2]

[1,] 0.5 0.7

[2,] 0.7 2.0

Sigma

[,11 [,2]

[1,1 0.5 0.7

[2,]1] 0.7 2.0

so that CT . C = X. Then, we use two independent Brownian motions (B, B> ;)
to rewrite the above system

84 2 Diffusion Processes

x1
150 200
1 1

100
1

x2
0.38 042 046 0.50
| |

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 2.5 A trajectory of the Heston stochastic volatility model

dXy, _ uXi, dr + VX2 X1, 0 C1,1 €12 dB;;
dX,, k(@ — X3,) 0 e/ Xo, 0 c0) \dBy,

to get
dXi:\ _ wXy, dr + 11y X2, X1, €12/ X2, X1\ [dB1s
dX,, k(0 — Xo,) 0 208/ X2 dB;,
so we can finally code the Heston model as follows
(123)
drift ("mu*x1l", "kappa* eta-x2)")
diffusion (e("cll (x2)*x1", "O",
"cl2*sqgrt (x2) *x1", "c22*epsilon*sqgrt(x2)"),2,2)
heston (drift=drift, diffusion=diffusion,
state.var=ec("x1l","x2"))
X (heston, true.par= (theta=0.5, mu=1.2, kappa=2,
epsilon=0.2, cll1=C[1,1], cl2=C[1,2], c22=C[2,2]),
xinit=c(100,0.5))

Figure 2.5 shows a trajectory of the Heston model.

2.4 Parametric Inference

The yuima package implements several optimal techniques for parametric, semi- and
nonparametric estimation of (multidimensional) stochastic differential equations.
Most of the techniques presented below apply to high-frequency data, i.e. when
A,, the maximum time lag between two consecutive observations of the process,
converges to zero as the number n of observations increases.

2.4 Parametric Inference 85

2.4.1 Quasi-maximum Likelihood Estimation

Consider a multidimensional diffusion process
dX, = a(X;, 6;)dr + b(X,, 61)dW,, X, = xo, 2.7

where W, is an r-dimensional standard Wiener process independent of the initial
variable xo. Moreover, §; € ®; C R”, 6, € ® C R?,a : R? x @ — R? and
b:R?x @ — R?®R’. The naming of A, and 6, is theoretically natural in view of
the optimal convergence rates of the estimators for these parameters as we will see
in the following. Given sampled data X,, = (X;,)i=0,..», Witht; = iA,, A, — 0 as
n — 00, quasi-maximum likelihood estimator (QMLE) makes use of the following
approximation of the true log-likelihood for multidimensional diffusions

1 1
n (X, 0) = =5 ; {logdet(z,«f](el)) - A—nzf_ﬁ(el)[mxi - Anaiq(ez»@z]} (2.8)
where 0 = (01, 0,), AX; = X, — X,,_,, Xi(01) = X (01, X,,), a;(6) = a(X,, 6),
Y =b%2, A%? = AAT and A~ the inverse of A, A[B] = tr(AB). Then the QMLE
of 6 is an estimator that satisfies

6 = argmax £,(X,, 0)
0

exactly or approximately.

The yuima package implements QMLE via the gmle function. The interface
and the output of the gmle function are made as similar as possible to those of
the standard m1e function in the stats4 package of the basic R system. The main
arguments to gmle consist of a yuima object and initial values (start) for the
optimizer, as well as the data. The yuima object must contain the slots model and
data. The start argument must be specified as a named list, where the names of
the elements of the list correspond to the names of the parameters as they appear in
the yuima object. Optionally, one can specify named lists of upper and lower
bounds to identify the search region of the optimizer. The standard optimizer is BFGS
when no bounds are specified. If bounds are specified, then L-BFGS-B is used. More
optimizers can be added in the future.

2.4.1.1 QMLE in Practice
As an example, we consider the simple model

dX, = 2 —6:X)dt + (1 4+ XH"dW,, X, =1 (2.9)

86 2 Diffusion Processes

with 6; = 0.2 and 6, = 0.3. Before calling gmle, we generate sampled data X;,,

witht; =i -n"3:

ymodel (drift="(2-theta2*x)", diffusion="(1+x"2) thetal")
n 750
ysamp (Terminal = n”~(1/3), n = n)
yuima (model = ymodel, sampling = ysamp)
(123)
yuima (yuima, xinit = 1,
true.parameter = (thetal = 0.2, theta2 = 0.3))

Now, the yuima object contains both the model and the data slots. We set the
initial values for the optimizer as 6; = 6, = 0.5, and we specify them as a named list
called param. init. We can now use the function gml e to estimate the parameters
6 and 6, as follows

param.init (theta2=0.5, thetal=0.5)
low.par (thetal=0, theta2=0)

upp .par (thetal=1, theta2=1)

mlel (yuima, start = param.init,

lower = low.par, upper = upp.par)

where upp . par and low. par are the upper and lower bounds of the search region
used by the optimizer (L-BFGS-B in this case). The estimated coefficients are
extracted from the output object mlel as follows

(mlel)

Quasi-Maximum likelihood estimation
##

Call:

gmle(yuima = yuima, start = param.init, lower = low.par,
upper = upp.par)

##

Coefficients:

Estimate Std. Error

thetal 0.1969182 0.008095453

theta2 0.2998350 0.126410524

##

-2 log L: -282.8676

2.4.1.2 Theoretical Remarks on QMLE

Consistency of an estimator is always a required property; otherwise, the estimation
would lose mathematical backing because the more data the observer obtains, the
worse the estimator behaves. For the consistency of 6,, we are assuming A, — 0
as n — oo. Indeed, under this condition, 6; has asymptotically (mixed) normality
(Genon-Catalot and Jacod 1993; Uchida and Yoshida 2013; Yoshida 2011). On the
other hand, one needs T = nA, — oo for the consistency of éz since the Fisher

2.4 Parametric Inference 87

information for 6, is finite for a finite 7', and consistent estimation of 6, is theoretically
impossible. When T — oo, usually ergodicity is assumed to ensure a law of large
numbers, and as a result, the consistency of 6, is obtained. Moreover, asymptotic
normality is also established. We assume the condition n A P — 0for p = 2 while
applying the quasi-log-likelihood (2.8) based on the local Gaussian approximation.
In practical applications, reduction of the parameter’s dimension and relaxing the
above condition to nAY — 0 for p larger than 2 are extremely important. Adaptive
estimation methods were proposed for p = 3 and for any p in Yoshida (1992b)
and Uchida and Yoshida (2012), respectively, with the convergence of moments by
a large deviation argument. When 7 is regarded to be not large, the small sample
effect on estimation of 6, appears, which will be discussed in Sect. 2.4.2.2. Modules
for QMLE and Bayes estimators are going to be available for jump-diffusions. See
Shimizu and Yoshida (2006) and Ogihara and Yoshida (2011, 2014).

2.4.2 Adaptive Bayes Estimation

Consider again the diffusion process in (2.7) and the quasi-likelihood defined in
(2.8). The adaptive Bayes-type estimator (Yoshida 2011) is defined as follows: first
we choose an initial arbitrary value 6 € ©®, and pretend 6, is the unknown parameter
for which we construct the Bayesian type estimator 6; as follows

~ -1
0= [[expttnEu @1 050m@nden] [orexplen X, 61,03 0im 616y
=1

(2.10)

where | is a prior density on ©®,. According to the asymptotic theory under high-
frequency samplings, any function m; can be used if it is positive on ®;. For the
estimation of 6,, we use 51 to reform the quasi-likelihood function. That is, the
Bayes-type estimator for 6, is defined by

- - -1 -
92=[f exp{en<xn,(91,92))}n2(92)d92] / 0> exp{ly (X,r, (01, 0))}72(62)d0
&

&

(2.11)
where m, is a prior density on @,. In this way, we obtain the adaptive Bayes-type
estimator 6 = (51, éz) for 6 = (01, 6,).

Adaptive Bayes estimation is developed in yuima via the method adaBayes.
Consider again the model (2.9) with the same values for the parameters. In order
to perform Bayesian estimation, we prepare prior densities for the parameters. For
simplicity, we use uniform distributions in [0, 1]

prior (theta2= (measure. type="code",df="dunif (theta2,0,1) "),
thetal= (measure. type="code",df="dunif (thetal,0,1)"))

88 2 Diffusion Processes

Then we call adaBayes, on the same sample data we used for the gmle function,
as follows:

lower (thetal=0, theta2=0)
upper (thetal=1, theta2=1)
bayesl (yuima, start=param.init, prior=prior,

lower=lower, upper=upper, method="nomcmc")

and we can compare the adaptive Bayes estimates with the QMLE estimates

((bayesl))

#4# Estimate Std. Error
thetal 0.1967596 0.008091151
theta2 0.3029086 0.126341506

((mlel))

Estimate Std. Error
thetal 0.1969182 0.008095453
theta2 0.2998350 0.126410524

The argument method="nomcmc " in adaBayes performs numerical integration,
otherwise MCMC method is used.

2.4.2.1 Theoretical Remarks on Adaptive Bayes Estimator

Under the same conditions, the adaptive Bayes estimators 6, and 6, perform in the
same way as 6, and 6,, respectively. See the remark in Sect. 2.4.1 and also Yoshida
(2011) and Uchida and Yoshida (2012) for details.

2.4.2.2 The Effect of Small Sample Size on Drift Estimation

It is known from the theory that the estimation of the drift in a diffusion process
strongly depends on the length of the observation interval [0, T']. In our example
above, we took T = n%, with n = 750, which is approximately 9.09. Now, we
reduce the sample size to n = 500 and then 7" = 7.94. We then apply both quasi-
maximum likelihood and adaptive Bayes-type estimators to these data

n 500

ysamp (Terminal = n”(1/3), n = n)

yuima (model = ymodel, sampling = ysamp)
(123)

yuima (yuima, xinit = 1,

true.parameter = (thetal = 0.2, theta2 = 0.3))

param.init (theta2=0.5, thetal=0.5)

lower (thetal=0, theta2=0)

upper (thetal=1, theta2=1)

mle2 (yuima, start =param.init |,

lower = lower, upper = upper)

2.4 Parametric Inference 89

bayes2 (yuima, start=param.init, prior=prior,
lower=lower, upper=upper)

and we look at the estimates

((bayes2))

Estimate Std. Error
thetal 0.1961799 0.01000809
theta2 0.4121887 0.13561660

((mle2))

Estimate Std. Error
thetal 0.1947225 0.009974792
theta2 0.2193002 0.134937463

Compared to the results above, we see that the parameters in the diffusion coefficients
are estimated with good quality, while for the parameters in the drift the quality of
estimation deteriorates.

2.4.2.3 The Effect of A on the Estimation

We have seen that, for sufficiently large sample size n, the estimators of the parameters
in the diffusion coefficient converge at the speed /n, which means that the standard
error of the estimates is also proportional to Ln In the case of drift estimation,
consistency is possible only when T = nA, is large and the standard error of the
estimate is proportional to % The next example shows the effect of changing A
and the number of observations n keeping fixed nA, = T. We start with 100000
observations and A, = 0.001, then we subsample the same trajectory for different
values of A = 0.01, 0.05, 0.1, 0.5, and we look at the estimates and their standard

errors. We proceed as follows:

ymodel (drift="(2-theta2*x)", diffusion="(1+x"2) "thetal")
n 100000
ysamp (delta=0.001, n = n)
mod (model = ymodel, sampling=ysamp)
(123)

yuima (mod, xinit = 1,
true.parameter = (thetal = 0.2, theta2 = 0.3))
param.init (theta2=0.5, thetal=0.5)
yuima0.01 (yuima,

sampling= (delta=0.01,n=NULL, Terminal=100))
yuima0O.1 (yuima,

sampling= (delta=0.1,n=NULL, Terminal=100))
yuimal.O (yuima,

sampling= (delta=1,n=NULL, Terminal=100))

(mfrow=c(2,2))

(yuima,main="delta=0.001, n=100000")

90 2 Diffusion Processes

delta=0.001, n=100000 delta=0.01, n=10000

—

e,

0 15

10

5

80 100 0 20 40 60 80 100
t t
delta=0.1, n=1000 delta=1.0, n=100
Q - < 4
x 21 21
X ©
© -
o
<A
4
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
t t

Fig. 2.6 Same trajectory subsampled at different A, and fixed 7 = 100

(yuima0.01l,main="delta=0.01, n=10000")
(yuima0.1,main="delta=0.1, n=1000")
(yuimal.O,main="delta=1.0, n=100")

Figure 2.6 shows the same trajectory subsampled at different A,,’s.

We now perform quasi-maximum likelihood estimation on the different data and
extract the information about the estimated coefficients and their standard errors
using the slot coef from the output of the summary function:

low (thetal=0, theta2=0)
up (thetal=1, theta2=1)
mle0.001 (yuima, start = param.init, lower = low, upper = up)

(mle0.001) @coef

Estimate std. Error
thetal 0.2001445 0.0005939987
theta2 0.2909200 0.0316264349

mle0.01 (yuima0.01l, start = param.init, lower = low,
upper = up)
(mle0.01)@coef

Estimate Std. Error
thetal 0.1984925 0.001883003
theta2 0.2907650 0.031415656

mle0.1 (yuima0.1l, start = param.init, lower = low, upper = up)
(mle0.1)@coef

2.4 Parametric Inference

91

Table 2.2 Result of QMLE estimates on the same trajectory subsampled at different A’s and given
T = 100. Standard errors in parentheses. True values: 61 = 0.2, 6, = 0.3

0 () Ay n

0.200 0.291 0.001 100000

(0.001) (0.032)

0.198 0.291 0.010 10000

(0.002) (0.031)

0.192 0.290 0.100 1000

(0.006) 0.031)

0.223 0.293 1.000 100

(0.024) (0.035)

Estimate Std. Error

thetal 0.1921024 0.006063728

theta2 0.2896495 0.030602457

mlel.O (yuimal.0, start = param.init, lower = low, upper = up)
(mlel.0)@coef

Estimate Std. Error

thetal 0.2226859 0.02449657
theta2 0.2927327 0.03490789

Table 2.2 summarizes the analysis. Although this is an experiment based on a single
simulated trajectory and not a Monte Carlo experiment, the results of the analysis
clearly match the asymptotic theory for high-frequency data.

2.5 Example of Real Data Estimation for gBm

We now provide a couple of examples of estimation from real data. For this, we use
library quantmod to import the data using the function get Symbols to download
the daily quotation from Apple stock, using symbol AAPL.

##

##
##
##
##
##
##

(quantmod)
("AAPL", to="2016-12-31")

[1] "AAPL"

(AAPL)

2007-01-03
2007-01-04
2007-01-05
2007-01-08
2007-01-09

AAPL.Open AAPL.High AAPL.Low AAPL.
13.751 13.798 13.052 11.
13.394 13.697 13.358 13
13.668 13.737 13.450 12.
13.699 13.790 13.590 12,
13.777 14.817 13.570 13.

Close
97143
23714
15000
21000
22429

92 2 Diffusion Processes

s 2007-01-03 / 2016-12-30

Jan03 Jun01 NovO1 Apr01 Sep02 Feb02 Jul01 DecO JunO1 NovO1 AprO1 SepO1 FebO1 Jul02 Dec03 Jun03 NovO1 AprO1 Sep02 Feb02 JulO1 DecO1 Jun01 NovO1
2007 2007 2007 2008 2008 2009 2009 2009 2010 2010 2011 2011 2012 2012 2012 2013 2013 2014 2014 2015 2015 2015 2016 2016

Fig. 2.7 Historical adjusted values of the Apple Inc. stock

2007-01-10 15.100 15.586 14.892 13.85714

AAPIL.Volume AAPL.Adjusted
2007-01-03 309579900 10.73159
2007-01-04 211815100 10.96978
2007-01-05 208685400 10.89166
2007-01-08 199276700 10.94545
2007-01-09 837324600 11.85469
2007-01-10 738220000 12.42201
S AAPLSAAPL.Adjusted

Object S contains the adjusted (for dividends and splits) closing values of the Apple
stock series. We can now set up a geometric Brownian motion model and set as data
the closing values with rescaled time to delta=1/252 being that we use daily
data.

Delta 1/252
gBm (drift="mu*x", diffusion="sigma*x")
mod (model=gBm, data= (S, delta=Delta))

Looking at the plot in Fig. 2.7 of the stock price, we can imagine that the driving
process is indeed a geometric Brownian motion because it looks like an exponential
process, although we have no guarantee that the driving motion is a Gaussian noise.

(123)
(S)

We proceed as if it is a real geometric Brownian motion and then estimate the
parameters via quasi-maximum likelihood estimation as follows:

fit (mod, start= (mu=1, sigma=1),
lower= (mu=0.1, sigma=0.1)
upper= (mu=100, sigma=10))

(fit)

2.5 Example of Real Data Estimation for gBm 93

Quasi-Maximum likelihood estimation

##

call:

gmle (yuima = mod, start = list(mu = 1, sigma = 1), lower =
list(mu = 0.1,

sigma = 0.1), upper = list(mu = 100, sigma = 10))
##

Coefficients:

Estimate Std. Error

sigma 0.3320259 0.004741881

mu 0.2909865 0.105058353

##

-2 log L: 6799.443

and compare with the plug-in estimators for this model. Indeed, let

S
X,-:X,izlog(st’), i=1,...,n

ti—1

be the approximate log-returns of the process. It is easy to show that the X; form
a sequence of independent and identically distributed Gaussian random variables
X, ~ N4, ,c?A), where A = t;, —t;_;and o = p — %02. Then, the plug-in
estimators for ; and o can be calculated according to the following code:

X ((s))

X ((((S))))
alpha (X) /Delta

sigma ((X) /Delta)

mu alpha +0.5*sigma”?2

mu

[1] 0.2909959

sigma

[1] 0.3299242
(fit)

#4# sigma mu
0.3320259 0.2909865

which looks close to the QMLE estimates as it should be in this situation.

2.6 Example of Real Data Estimation for CIR

We now look at exchange rate data, which are usually mean reverting processes
of CIR type and try to estimate the parameters using quasi-maximum likelihood
approach. To this aim, we consider the US/Euro foreign exchange rate available at

94 2 Diffusion Processes

DEXUSEU 1999-01-04 / 2016-12-30

“ M Ww/m \M ‘\»v ”

Jan04 OctO1 Jul03 Apr02 Jan01 OctO1 Jul01 AprO1 Jan03 Oct03 Jul03 Apr02 Jan01 OctO1 Jul01 AprO1 Jan03 Oct03 Jul02 AprO1 Jan01 OctO1 JulO1 Apr0f Dec30
1999 1999 2000 2001 2002 2002 2003 2004 2005 2005 2006 2007 2008 2008 2009 2010 2011 2011 2012 2013 2014 2014 2015 2016 2016

Fig. 2.8 Historical values of US/Euro Foreign Exchange rates

FRED (Federal Reserve Back of St. Luis) which can be obtained using get Symbols
with argument src=FRED. In this case, the symbol is named DEXUSEU.

("DEXUSEU", src="FRED")
[1] "DEXUSEU"

DEXUSEU DEXUSEU["/2016"]
(DEXUSEU)

DEXUSEU
1999-01-04 1.1812
1999-01-05 1.1760

1999-01-06 1.1636
1999-01-07 1.1672
1999-01-08 1.1554
1999-01-11 1.1534
meanCIR (DEXUSEU, na.rm=TRUE)

meanCIR

[1] 1.212526

Looking at the plot in Fig. 2.8, we see that there is a long-run mean of the process
which is meanCIR = 1.21.

(123)
(DEXUSEU)

We can parametrize the model in two ways
dX;, = (0, — 0, X,)dt + o/ X, dW,

or

2.6 Example of Real Data Estimation for CIR 95
dX; =«(u — X,)dt + o/ X, dW,

where 6, = « - u and 6, = k. From the point of view of numerical estimation, it is
better to estimate the model using the first form, because the parameters 6, and 6,
do not multiply together and this makes the numerical optimization more stable. For
the point of view of the interpretation, it is better to consider the second form as u
is the long-run mean of the process and « plays the role of the mean reversion rate.
We proceed with both parametrizations

cirl (drift="thetal-theta2*x", diffusion="sigma*sqgrt(x)")
cir2 (drift="kappa* (mu-x)", diffusion="sigma*sqgrt(x)")

modl (model=cirl, data= ((DEXUSEU) ,
delta=Delta))

mod2 (model=cir2, data= ((DEXUSEU) ,

delta=Delta))

fitl (modl, start= (thetal=1, theta2=1, sigma=0.5)
lower= (thetal=0.1, theta2=0.1, sigma=0.1),
upper= (thetal=10, theta2=10, sigma=100),
method="L-BFGS-B")
(£itl)

Quasi-Maximum likelihood estimation

##

Call:

gmle(yuima = modl, start = list(thetal = 1, theta2 = 1,

sigma = 0.5),

method = "L-BFGS-B", lower = list(thetal = 0.1, theta2 =
0.1,

sigma = 0.1),
sigma = 100))
##

Coefficients:
Estimate Std. Error

sigma 0.1113335 0.001178086

thetal 0.2367827 0.189280186
theta2 0.2010643 0.157913224
##

-2 log L: -31277.3

upper = list(thetal = 10, theta2 = 10,

fit2 (mod2, start= (kappa=1, mu=meanCIR, sigma=0.5)
lower= (kappa=0.1, mu=0.1, sigma=0.1)
upper= (kappa=10, mu=10, sigma=100),
method="L-BFGS-B")
(fit2)

Quasi-Maximum likelihood estimation

##

Ccall:

gmle (yuima = mod2, start = list(kappa = 1, mu = meanCIR,
sigma = 0.5),

926 2 Diffusion Processes

method = "L-BFGS-B", lower = list(kappa = 0.1, mu = 0.1,
sigma = 0.1), upper = list(kappa = 10, mu = 10, sigma =
100))

##

Coefficients:

Estimate Std. Error

sigma 0.1108413 0.001165038
kappa 0.2010811 0.157213044
mu 1.1777081 0.141737640

##

-2 log L: -31277.71

From the second parametrization, we can calculate 6; as k -

thetal ((£it2) ["kappa"] * (£it2) ["mu"])
thetal

[1] 0.2368149
(£itl) ["thetal"]

thetal
0.2367827

and from the first parametrization, we can get u as 0, /6,

mu ((fitl) ["thetal"] / (£itl) ["theta2"])
mu

[1] 1.177647
(£it2) ["mu"]

mu
1.177708

2.7 Hypotheses Testing

Consider a d-dimensional ergodic diffusion process X, satisfying the stochastic dif-
ferential equation:
dX; = a(a, X;)dt + b(B, X,)dW;,

where functions a and b are suitably regular and known up to the parameters o € R”
and B € R? like in Sect. 2.4. Let us denote the parameter vector 6 = («,), and

consider the following hypotheses testing problem for two simple hypotheses

Hy:0 =6y versus Hj:0 # 6.

2.7 Hypotheses Testing 97

The problem of testing parametric hypotheses for diffusion processes is still a devel-
oping stream of research. In continuous time, Kutoyants (2004) and Dachian and
Kutoyants (2008) considered the problem for ergodic diffusion models; Kutoyants
(1994) considered the same problem for small diffusion processes. In discrete time,
Lee and Wee (2008) dealt with a parametric version of the score-marked empirical
process test statistic, while Ait-Sahalia (1996), Giet and Lubrano (2008) and Chen
et al. (2008) proposed tests based on the several distances between parametric esti-
mation and nonparametric estimation of the invariant density of ergodic diffusion
processes.

Let {p(X,0),0 € ©} be a family of probability densities. Denote by Ey the
expected value with respect to Py, the true law of the observations, say X. Let
¢ : [0,00) — R be a convex and continuous function. Furthermore, its restriction
on (0, co) is finite, two times continuously differentiable and such that ¢ (1) =
¢’'(1) = 0 and ¢”(1) = 1. Then the ¢-divergence measure between the two models
p(X, 0) and p(X, 6y), 0 # Oy is defined as

(2.12)

X.0
Dy(0,60) = Egp <M>

p(X, 6o)

The ¢-divergences contain, as special cases, many divergences like the a-divergences
(Csiszar 1967; Amari 1985), the Kullback-Leibler and the Hellinger divergences
(Beran 1977; Simpson 1989) the Rényi’s divergence (Rényi 1961), the power diver-
gences studied in Cressie and Read (1984). Liese and Vajda (1987) provide extensive
study of a modified version of «-divergences. Table 2.3 provides a list of well-
known divergences that are special cases of the family of the ¢-divergences. The
¢-divergence measures have been used for testing hypotheses in parametric models.
The reader can consult on this point, for example Morales et al. (1997) and Pardo
(2006).

Given a sample of n independent and identically distributed (i.i.d.) observations
and some asymptotically efficient estimator 6, to test Hy : 6 = 6, against H; :
0 # 0y, the ¢-divergence test statistic is given by Dy (é,,, 6p), which cannot be used
directly as is for diffusion processes. As in De Gregorio and lacus (2013), let us
consider the following quantity

pi(6)
Dy (0, 60p) := 2.13
o0 60) = ;¢(pl(eo>> @

where p;(0) := exp(H;(0#)) and H; (#) is one of the summands of —¢,(X,, 0) in
(2.8), i.e.

1 1
H; () = {10gdet(Ez 100)) + =2 LODLAX; — Ayai1(6,)%]}

98

2 Diffusion Processes

Table 2.3 Family of ¢-divergences include many special cases

¢ (x) with x = p(6,)/ p(bo,)

Divergence

xlogx —x +1 Kullback-Leibler

—logx + —1 Minimum discrimination information
(x —1)logx J-divergence

%(x — 1)2 Pearson, Kagan

g;};z Balakrishnan and Sanghvi

—xS+s(x—1)+1
5 s#1

—1/r
—r
15x7<l+§c) r>0

(1—x)?

Rathie and Kannappan

Harmonic mean (Mathai and Rathie)

m 0 <a< 1 Rukhin
ax logx—(ax+1—a)log(ax+1—a) .
a=a) a#0,1 Lin
% A#0,—1 Cressie and Read
M—x4Y" 0<a<1 Matusita
[1—x4 a>1 x -divergence of order a (Vajda) and total

variation if a = 1 (Saks)

The statistic Z, (6, 6y) represents the empirical mean of the functions ¢ (%)
which measure the discrepancy between two (approximated) parametric models
given the sample X,,. The statistic Z (6, 6p) is not an approximation of the ¢-

divergence (2.12) because it does not converge to

f¢ (“9(’”) 6, (x)dx,
Mg, (X)

with pg, the ergodic measure under 6, but it proves to be useful in the construction
of a new class of asymptotically distribution-free test statistic as follows

Ty.n(0,60) :=2nDy (0, 6p).

The above quantity is similar to that used by Morales et al. (1997), where Z ,, (6, 65)
is replaced by the true ¢-divergence.

Let 6, be the quasi-maximum likelihood estimator or the Bayes-type estimator
defined in Sect. 2.4. It is known (De Gregorio and lacus 2013) that the family of test
statistics

T.n(0n, 60) (2.14)

is asymptotically distribution-free under Hy, i.e.

A d
Ty B, 00) > Xy,

asn — 0o,nA2 - 0, A, > 0andnA, =T — oo.

2.7 Hypotheses Testing 99

Given the level o, such test rejects Hy if T , > ¢, where ¢, is the 1 — « quantile
of the limiting random variable X,Z, +q-

The power function of the test and higher-order expansion of the distribution of
the test statistic is also known but not yet implemented in yuima; see De Gregorio
and Iacus (2013) for further details.

The ¢-divergence test is available in yuima through the function phi . test.
This function requires as input a yuima object with the model and data slot as
well as the definition of the function ¢ (-). The estimator é,, is the quasi-maximum
likelihood estimator of Sect. 2.4.1. Consider the simple Gaussian model

dX; =6 x (6, — X,;)dt + 6;dW,
and assume that we want two hypotheses for 6 = (6, 6,, 63)
H()() . 900 = (03, 1, 025)

and
H()] . 901 = (03, 02, 01)

model (drift="tl* (t2-x)",diffusion="t3")

We simulate the model according to 6y = Hog

T<-300
n<-3000
sampling (Terminal=T, n=n)
yuima (model=model, sampling=sampling)
hoo (t1=0.3, t2=1, t3=0.25)
hol (t1=0.3, t2=0.2, t3=0.1)
(123)
X (yuima, xinit=1, true.par=h00)

and we choose as ¢(x) = 1 — x + xlog(x) which gives a test equivalent to the
likelihood ratio test

phil function(x) 1-x+x* (x)
Now we assume that we do not know the true value of 6, and we set up a generalized

likelihood ratio test of the form T ,, (én, 6p), with én the quasi-maximum likelihood
estimator. To this aim, we apply the function phi . test specifying Hy = Hyo

(X, HO=h00, phi=phil, start=h00,

lower= (t1=0.1, t2=0.1, t3=0.1),
upper= (tl=2,t2=2,t3=2) ,method="L-BFGS-B")
##
estimating parameters via QMLE...
Phi-Divergence test statistic based on phi = ’‘phil’

HO: tl = 0.300 t2 = 1.000 t3 = 0.250
versus

100 2 Diffusion Processes

H1: tl = 0.342 t2 = 1.033 t3 = 0.248
H1 parameters estimated using QMLE

##

Test statistic = 1.419, df = 3, p-value = 0.7011919

Signif. codes: 0 ’***’ 0.001 '**’ 0.01 "*’ 0.05 .’ 0.1 * ' 1

In the above H; corresponds to the value of the QMLE é,,. As we can see, the above
test does not reject Hy = Hyy as the QMLE estimator performs quite well and
provides estimated values for 6 almost equal to Hyy, with a p value of 0.701. We
now test against a false Hy replacing Hyo with Hy;, and we expect the test to reject
the null hypothesis.

(X, HO=h0l, phi=phil, start=h00,
lower= (t1=0.1, t2=0.1, t3=0.1),
upper= (tl=2,t2=2,t3=2) ,method="L-BFGS-B")

##

estimating parameters via QMLE...

Phi-Divergence test statistic based on phi = ’‘phil’
HO: tl = 0.300 t2 = 0.200 t3 = 0.100

versus

HL1: tl = 0.342 t2 = 1.033 t3 = 0.248

H1 parameters estimated using QMLE

##

Test statistic = 8.5e+l17, df = 3, p-value = 0 ***

-

Signif. codes: 0 ’***’ (0.001 ‘**’ 0.01 '*’ 0.05 ’'.” 0.1 ’ 1

This time the test rejects very sharply the null hypothesis Hy = Hy; in favour of
H, = 6,. Notice that if the function ¢ (-) is not specified, the phi . test command
assumes by default the same phil.

2.8 AIC Model Selection

The Akaike information criterion (AIC) is a measure of the relative quality of a
statistical model, for a given set of data (Akaike 1973; Sakamoto et al. 1986). As
such, AIC is a tool for model selection, possibly of non-nested models, but it is not a
statistical test in the sense of Sect. 2.7. Indeed, the AIC statistic says nothing about
the quality of the model in an absolute sense; i.e., if all the candidate models fit
poorly AIC will not give any warning of that. AIC deals with the trade-off between
the goodness of fit of the model and the complexity of the model. Let 6 € ® C R?,
and é,, a maximum likelihood estimator of 6, and then, the AIC statistic is defined as

AIC = —2¢£,(6,) + 2dim(®).

Given a set of candidate models for the data, the preferred model is the one with the
minimum AIC value. Hence, AIC not only rewards goodness of fit, but also includes

2.8 AIC Model Selection 101

a penalty that is an increasing function of the number of estimated parameters. The
penalty discourages overfitting (increasing the number of parameters in the model
always improves the goodness of the fit). R has a function called ATC which evaluates
this statistic for statistical models and in particular for objects which extends the class
mle like the output of the method gmle. Unfortunately, the construction of the true
AIC statistic is a delicate problem for diffusion processes and this function should be
used with care as the standard ATC function in R does not know when the theoretical
conditions to apply it hold or not. In particular, the necessary conditions hold for
ergodic diffusion processes such that A, — 0, nA> — 0 and nA = T — o0 as
n — oo. Uchida (2010) contains several results on information criteria, including
the AIC statistic. Other criteria like the quasi-Bayesian information criterion are
becoming available in yuima.

2.8.1 An Example of AIC Model Selection for Exchange
Rates Data

Consider again the data in Sect.2.6, which clearly looks like a CIR model (see
Fig. 2.8). We now try to fit both a geometric Brownian motion model

dX[= MX[dt +0X[dW[(mod)
and the CIR model according to the two different parametrizations
dX, = 0 — 0, X,)dt + o/ X,dW, (modl)

or
dX, = «x(u — X,)dt + o/ X,dW, (mod2)

and the CKLS model
dX, =«(u — X,)dt + o X/dW, (mod3)
(quantmod)

Delta 1/252
("DEXUSEU", src="FRED")

[1] "DEXUSEU"

DEXUSEU DEXUSEU["/2016"]

USEU ((DEXUSEU) , delta=Delta)
meanCIR ((USEU) [[11])

gBm (drift="mu*x", diffusion="sigma*x")
mod (model=gBm, data=USEU)

102 2 Diffusion Processes

cirl <- setModel (drift="thetal-theta2*x", diffusion="sigma*sqrt (x)")
cir2 <- setModel (drift="kappa* (mu-x)", diffusion="sigma*sqgrt (x)")
ckls <- setModel (drift="thetal-theta2*x", diffusion="sigma*x"gamma")
modl <- setYuima(model=cirl, data=USEU)
mod2 <- setYuima (model=cir2, data=USEU)
mod3 <- setYuima (model=ckls, data=USEU)
gBm.fit <- gmle(mod, start=1list (mu=1, sigma=1),
lower=1list (mu=0.1, sigma=0.1),
upper=1list (mu=100, sigma=10))
cirl.fit <- gmle(modl, start=1list(thetal=1l, theta2=1, sigma=0.5),
lower=1list (thetal=0.1, theta2=0.1, sigma=0.1),
upper=1list (thetal=10, theta2=10, sigma=100),
method="L-BFGS-B")
cir2.fit <- gmle(mod2, start=1list(kappa=1, mu=meanCIR, sigma=0.5),
lower=1list (kappa=0.1, mu=0.1, sigma=0.1),
upper=1list (kappa=10, mu=10, sigma=100),
method="L-BFGS-B")
ckls.fit <- gmle(mod3, start=list(thetal=1, theta2=1, sigma=0.5,
gamma=0.5), lower=1list(thetal=0.1, theta2=0.1, sigma=0.1,
gamma=0.1), upper=list(thetal=10, theta2=10, sigma=10,
gamma=2), method="L-BFGS-B")

we now pass the output of the estimated models to the ATC function and select the
model with the lowest AIC statistic

AIC(gBm.fit,cirl.fit,cir2.fit,ckls.fit)

daf AIC
gBm.fit 2 -31064.73
cirl.fit 3 -31271.30
cir2.fit 3 -31271.71
ckls.fit 4 -31300.71

which turns to be the “ckls.fit” model, and, as expected, the two CIR models perform
almost in the same manner. We now run the same experiment on some simulated
data from the geometric Brownian motion

set.seed (123)
S <- simulate(gBm, true.par=1list (mu=1l, sigma=0.25),
sampling=setSampling (T=1, n=1000), xinit=100)
mod <- setYuima (model=gBm, data=S@data)
modl <- setYuima (model=cirl, data=Sedata)
mod2 <- setYuima(model=cir2, data=S@data)
mod3 <- setYuima (model=ckls, data=S@data)
gBm.fit <- gmle(mod, start=1list(mu=1, sigma=1),
lower=list (mu=0.1, sigma=0.1),
upper=1list (mu=100, sigma=10))
cirl.fit <- gmle(modl, start=1list(thetal=1, theta2=1, sigma=0.5),
lower=1list (thetal=0.1, theta2=0.1, sigma=0.1),
upper=1list (thetal=10, theta2=10, sigma=100),
method="L-BFGS-B")
cir2.fit <- agmle(mod2, start=list(kappa=1l, mu=meanCIR, sigma=0.5),
lower=1list (kappa=0.1, mu=0.1, sigma=0.1),
upper=1list (kappa=10, mu=10, sigma=100),
method="L-BFGS-B")
ckls.fit <- gmle(mod3,

2.8 AIC Model Selection 103

start= (thetal=1, theta2=1, sigma=0.5, gamma=0.5)
lower= (thetal=0.1, theta2=0.1, sigma=0.1, gamma=0.1)
upper= (thetal=10, theta2=10, sigma=10, gamma=2),

method="L-BFGS-B")

(gBm.fit,cirl.fit,cir2.fit,ckls.fit)

daf AIC
gBm.fit 2 3449.091
cirl.fit 3 3538.850
cir2.fit 3 3540.618
ckls.fit 4 3474.849

The best model turns to be “gBm.fit”, and, as before, the two CIR models perform
almost at the same manner.

2.9 LASSO Model Selection

The least absolute shrinkage and selection operator (LASSO) is a useful and well-
studied approach to the problem of model selection, and its major advantage is the
simultaneous execution of both parameter estimation and variable selection (Tibshi-
rani 1996; Knight and Fu 2000; Efron et al. 2004).

To simplify the idea, consider a fully specified regression model

Y=600+0X1+bLXo+ - +6 Xy +¢,
where ¢ is the Gaussian error term, and perform least squares estimation under L
constraints, i.e.
k
0 = argmin { (v —0X)" (¥ —0X) + > _ |6
o i=1

Model selection occurs when some of the §; are estimated as zeros. The same idea
can be applied to diffusion processes. Let X, be a diffusion process solution to

dX, = a(X,, ®)dt + b(X,, B)dW,
o= (a,...0,) €0, CR, p=>1
B=(B1....0,) €0, CRI, g=>1
witha :RYx @, > R, b :R! x ©, > R?@R" and W,, t € [0, T], is a standard

Brownian motion in R™. We assume that the functions a and b are known up to
a and B. We denote by 6 = (a, B) € ®, x O, = O the parameter vector, with

104 2 Diffusion Processes

0o = (ag, Bo) the unknown true value. Let H,, (X,,,) = —¢,(X,,,) from equation
(2.8). Denote by én the quasi-maximum likelihood estimator for this model. The
adaptive LASSO estimator is defined as the solution to the quadratic problem under
L constraints
6, = (&n, Bn) = argmin % ().
0

with

14 q
2’(0) = (9 - en)THn(Xnv 9,,)(9 - 9,,) + Z)\n,j|aj| + Zyn,klﬁkl
j=1 k=1

and [, is the matrix of second partial derivatives of H with respect to the vector 6.
For more details, see De Gregorio and lacus (2012). The tuning parameters should
be chosen as in Zou (2006) in the following way

Do = 20l&ul ™ Yk = volBral ™ (2.15)
whered; , and ﬁk,,, are the unpenalized QMLE’s of «; and B, respectively, §;, 8, > 0

and usually taken unitary. Suppose to have this two-dimensional stochastic differen-
tial equation

dXi | _ (1= wunXi + pnnXay, dr + s1 X1, —s3Xo, | (AWy,
dX,, 24 X — punXs, 5o X1, s4Xo, dW,,

and let us generate data from this model setting (11, = oy = 55 = 53 = 0.

a ("l-mull*X1+mul2*X2", "2+mu2l*X1-mu22*X2")
b (c("sl*X1","s2*X1", "-s3*X2","sd*X2"),2,2)
mod.est (drift=a, diffusion=b,
solve.var=c("X1","X2"),state.variable=c("X1", "X2"))
truep (mull=.9, mul2=0, mu2l=0, mu22=0.7,
sl=.3, s2=0,s3=0,s4=.2)
low (mull=1le-5, mul2=1le-5, mu2l=le-5, mu22=le-5,
sl=le-5, s2=le-5, s3=le-5,s4=1le-5)
upp (mull=2, mul2=2, mu2l=1, mu22=1,
sl=1, s2=1, s3=1,s4=1)
(123)
n 1000
X (mod.est, T=n"(1/3), n=n, xinit=c(1,1),

true.parameter=truep)

We now run the 1asso on the simulated data

myest (X, delta=2, start=truep, lower=low, upper=upp,
method="L-BFGS-B")
myest

2.9 LASSO Model Selection 105

Adaptive Lasso estimation
##

call:

lasso(yuima = X, start = truep, delta = 2, lower = low,
upper = upp,

method = "L-BFGS-B")

##

QMLE estimates

Estimate Std. Error

sl 0.27067445 0.02064474
s3 0.01924009 0.02634989
s2 0.03562399 0.07725490
s4 0.19273459 0.01413467
mull 1.05919238 0.33439039
mul2 0.11540187 0.14993938
mu2l 0.00001000 0.40618976
mu22 0.76739528 0.21222991
##

LASSO estimates

Estimate Std. Error

s1 0.2717053 0.0138140011
s3 0.0000100 0.0006085617
s2 0.0000100 0.0011283299
s4 0.1915552 0.0097779142
mull 0.8074355 0.0616505395

mul2 0.0000100 0.0036563071
mu2l1 0.0000100 0.0003170211
mu22 0.7612227 0.0431996864

and in this simulation example the Lasso method selects correctly the model. We can
this result against the AIC method.

fitl <- gmle(X, start=truep, lower=low, upper=upp, method="L-BFGS-B")

against the selected model which should be written anew

a <- c¢("l-mull*X1","2-mu22*X2")

b matrix(c("sl*xX1","0", "0","s4*X2"),2,2)

mod.est2 <- setModel (drift=a, diffusion=b,
solve.var=c("X1","X2"),state.variable=c("X1", "X2"))

truep <- list(mull=.9, mu22=0.7, sl=.3,s4=.2)

low <- list(mull=le-5, mu22=1le-5, sl=le-5, s4=1e-5)

upp - list (mull=2, mu22=2, sl=1, sd=1)

Y <- setYuima (model=mod.est2, data=X@data)

fit2 <- gmle(Y, start=truep, lower=low, upper=upp, method="L-BFGS-B")

summary (fitl)

Quasi-Maximum likelihood estimation

##

Call:

gmle(yuima = X, start = truep, method = "L-BFGS-B", lower = low,
upper = upp)

##

Coefficients:

Estimate Std. Error

sl 0.27067445 0.02064474

106 2 Diffusion Processes

s3 0.01924009 0.02634989
s2 0.03562399 0.07725490
s4 0.19273459 0.01413467
mull 1.05919238 0.33439039
mul2 0.11540187 0.14993938
mu2l 0.00001000 0.40618976
mu22 0.76739528 0.21222991
##

-2 log L: -287.3061

(£it2)

Quasi-Maximum likelihood estimation

##

Call:

gmle(yuima = Y, start = truep, method = "L-BFGS-B", lower = low,
upper = upp)

#4#

Coefficients:

Estimate Std. Error

sl 0.2738216 0.01949123
s4 0.1936306 0.01379907
mull 0.8142334 0.08659001
mu22 0.7680186 0.06123139
##

-2 log L: -286.2465

(fitl, fit2)
df AIC

fitl 8 -271.3061
fit2 4 -278.2465

and in this case LASSO and AIC select the same model with the difference that in
the LASSO method there is no need to specify two different models.

2.9.1 An Example of Lasso Model Selection for Interest
Rates Data

Let us consider the full CKLS model (Chan et al. 1992)
dX, = (@ + BX,)dt + o X7 dW,

and let us try to estimate the parameter on the US Interest Rates monthly data from
June 1964 to December 1989 (see Fig. 2.9). We prepare the data, taking into account
that these are monthly data, the model and the constraints for optimization
(v
("Irate
rates Irates|[,"rl1"]

2.9 LASSO Model Selection 107

w |
=
1]
2
o
o
© T T T T T
1950 1960 1970 1980 1990
Time

Fig. 2.9 US Interest Rates monthly data from June 1964 to December 1989

plot (rates)

X <- window(rates, start=1964.471, end=1989.333)

mod setModel (drift="alpha+beta*x", diffusion="sigma*x gamma")
yuima <- setYuima (data=setData(X,delta=1/12), model=mod)

start <- list(alpha=1, beta =-.1, sigma =.1, gamma =1)

low <- list(alpha=-5, beta =-5, sigma =-5, gamma =-5)

upp <- list(alpha=8, beta =8, sigma =8, gamma =8)

Looking at the data, we can see that this time series is not ergodic, so the application
of the Lasso method in this case may be questionable but we proceed anyway.
Now we apply the lasso function

lasso.est <- lasso(yuima, start=start, lower=low, upper=upp,
method="L-BFGS-B", delta=2)
lasso.est

From which we see that, instead of the general model
dX; = (¢ + BX,)dt + o X! dW,
the LASSO method selects the reduced model
dX, = adt + o X/ dW,

We can compare with the AIC statistic to see if this conclusion is further supported
or not.

modl <- setModel (drift="alpha", diffusion="sigma*x"gamma")

yuimal <- setYuima(data=setData(X,delta=1/12), model=modl)

startl <- list(alpha=1, sigma =.1, gamma =1)

lowl <- list(alpha=-5, sigma =-5, gamma =-5)

uppl list (alpha=8, sigma =8, gamma =8)

fit <- gmle(yuima, start=start, lower=low, upper=upp,
method="L-BFGS-B")

fitl <- gmle(yuimal, start=startl, lower=lowl, upper=uppl,

method="L-BFGS-B")

108 2 Diffusion Processes

(fit)
(fitl)
(fit, fitl)

Quasi-Maximum likelihood estimation
##

Call:

gmle (yuima = yuima, start = start, method = "L-BFGS-B",
lower = low,

upper = upp)

##

Coefficients:

Estimate Std. Error

sigma 0.1325225 0.0255461

gamma 1.4432799 0.1027345

alpha 2.0755483 0.9917822

beta -0.2629820 0.1958201

##

-2 log L: 475.7687

Quasi-Maximum likelihood estimation
##

Call:

gmle (yuima = yuimal, start = startl, method = "L-BFGS-B",
lower = lowl,

upper = uppl)

##

Coefficients:

Estimate Std. Error

sigma 0.1297013 0.02413509

gamma 1.4555461 0.09944181

alpha 0.8072980 0.29588245

##
-2 log L: 477.5659
df AIC

fit 4 483.7687
fitl 3 483.5659

and we can see a slight preference for the reduced model.

2.10 Change Point Estimation

Consider a multidimensional stochastic differential equation of the form
dY; = a,dt + b(X,, 0)dW,, t €[0,T],

where W, is an r-dimensional Wiener process and @, and X, are multidimensional
processes, 8 € & C R, b : RY x ® — RY ® R’, is the diffusion coefficient
(volatility) matrix.

When Y = X and 4, is a function of X;, the model above is a diffusion model.
The process a; may have jumps but should not explode, and it is treated as a nuisance

2.10 Change Point Estimation 109
in this model. The change point problem for the volatility is formalized as follows

v _ {Y0+f0’ asds + [b(X,,05)dW, fort € [0, %)
" ve + [agds + [1 b(X,, 67)dW, fort € [¢7, T,

The change point * instant is unknown and is to be estimated, along with 65 and
0y, from the observations sampled from the path of (X, Y). The yuima package
implements the quasi-maximum likelihood approach as described in the following
Tacus and Yoshida (2012). Let A;Y = Y;, — Y;._, and define

[nt/T] n
B, (1;600,00) = Y GiO)+ Y. Gi(6), (2.16)
i=1 i=[nt/T]+1
with
G;(0) =logdet S(X,_,,0) + A, (A Y)S(X,_,,0) (A Y) (2.17)

and S = b®2. Suppose that there exists an estimator 6y for each 6, k = 0, 1. In case
0; are known, we define 6k just as 6 = 6; . The change point estimator of T* is

7 = argmin @, (¢; 8o, 01).
t€[0,T]

2.10.1 Example of Volatility Change Point Estimation for
Two-Dimensional SDEs

One example of model that can be analysed by this technique is, for example, the
two-dimensional stochastic differential equation

dXy, a1 (X1,) Ok X1 0- Xy, AWy,
) = o) dr + ’ ’ “), tel0,T],
(dXZ,t) (az(Xz,t) 0-Xa2, 6rp-Xa,) \dWy, 10. 71
where a;(-) and a,(-) are any functions and 6, ; and 6, the value of the parameters
before (k = 0) and after (k = 1) the change point. Just for simplicity and in order
to simulate some data, we specify some specific form for a;(-) and a,(-) but this

information will not be used in the change point analysis. For example, we will
simulate the following two-dimensional stochastic differential equation:

dX, sin(X ;) Oik-X1: 0-Xy, dwy;
) = ’ dr ’ ’), tel0,T],
(dxz,t) (3 - xz.,) + (0-Xa, Ors Xz_t> (dwz,f> 9. 7]

Xi10=3, Xp0=3,

110 2 Diffusion Processes

with change point at time v = 4. We set T = 10. First, we describe the model to be
simulated

diff.matrix <- matrix(c("thetal.k*x1","0*x2","0*x1", "theta2.k*x2"),
2, 2)

drift.c <- c¢("sin(x1l)", "3-x2")

drift.matrix <- matrix(drift.c, 2, 1)

ymodel <- setModel (drift=drift.matrix, diffusion=diff.matrix,
time.variable="t", state.variable=c("x1", "x2"),
solve.variable=c("x1", "x2"))

ymodel

##

Diffusion process

Number of equations: 2

Number of Wiener noises: 2

Parametric model with 2 parameters

and then simulate two trajectories. The first trajectory is simulated up to the change
point T = 4 with parameters 8, o = 0.5 and 6,9 = 0.3 as follows:

n <- 1000

set.seed (123)

t0 <- list(thetal.k=0.5, theta2.k=0.3)

T <- 10

tau < 4

pobs <- tau/T

ysampl <- setSampling(n=n*pobs, Initial=0, delta=0.01)
yvuimal <- setYuima (model=ymodel, sampling=ysampl)

yuimal <- simulate(yuimal, xinit=c(3, 3), true.parameter=t0)

vll <- get.zoo.data(yuimal) [[1]]

x1 <- as.numeric(vll[length(v1l)]) #

v21 <- get.zoo.data(yuimal) [[2]]

X2 <- as.numeric(v2l[length(v21l)]) # terminal value

The second trajectory is then generated with parameters 6; ; = 0.2 and 6, = 0.4,

from 7 till 7. The initial value of the second trajectory is set equal to the last value
of the first trajectory stored in x1 and x2 for the two component of the process (see
Fig. 2.10)

tl <- list(thetal.k=0.2, theta2.k=0.4)

ysamp2 <- setSampling(Initial=n*pobs*0.01, n=n*(l-pobs), delta=0.01)
yuima2 <- setYuima (model=ymodel, sampling=ysamp2)

yuima2 <- simulate(yuima2, xinit=c(xl, x2), true.parameter=tl)

Finally, we collate the two trajectories

v1l2 <- get.zoo.data(yuima2) [[1]]

v22 <- get.zoo.data(yuima2) [[2]]

vl <- c(vll,v12[-1])

v2 <- c(v21,v22[-1])

new.data <- setData(zoo(cbind(vl,v2)),delta=0.01)

yuima <- setYuima (model=ymodel, data=new.data)

2.10 Change Point Estimation 111

x1
| | | |

X2
2.0 3.0 40 5020 3.0 4.0

Fig. 2.10 Two-dimensional trajectory with change point around t = 4

The composed trajectory is visible in Fig. 2.10 and can be plotted simply typing this
command:

(yuima)

As said, the change point analysis does not consider the information coming from
the drift part of the model and, indeed, yuima ignores it internally. Just to make clear
that the information on the drift term is not considered by the function CPoint, we
redefine the yuima model removing the information coming from the drift and then
adding back the data.

noDriftModel (drift=c(0,0), diffusion=diff.matrix,
time.variable="t", state.variable=c("x1", "x2"),
solve.variable=c("x1", "x2"))

noDriftModel (noDriftModel, data=new.data)

noDriftModel@model@drift

expression((0), (0))

noDriftModel

##

Diffusion process, driftless

Number of equations: 2

Number of Wiener noises: 2

Parametric model with 2 parameters
##

Number of original time series: 2

length = 1001, time range [0 ; 10]

##

Number of zoo time series: 2

#4# length time.min time.max delta
vl 1001 0 10 0.01
v2 1001 0 10 0.01

First, we show that there is no difference in using the complete model or the model
without drift. For simplicity, we assume to know the true values of the parameters
for 0, ; and 6,

112

t.est (yuima, paraml=t0, param2=tl)
t.eststau

[1] 3.98

t.est2 (noDriftModel, paraml=t0, param2=tl)
t.est2Stau

[1] 3.98

2 Diffusion Processes

As it can be seen, the above estimates of the change point are the same for the
complete model yuima and the model without drift, i.e. noDriftModel.

2.10.2 An Example of Two-Stage Estimation

In practical situations, the initial values of the parameters are not known and it is
necessary to provide some preliminary estimators of them. One possible solution is
the two-stage change point estimation approach (Iacus and Yoshida 2012). The idea
is to take a small subset of observations at the very beginning and the end of the time
series to obtain initial guess of the parameters 6, estimate a change point and then
refine the estimation of # using the information about the change point.

To this aim, the yuima package contains two functions which are useful in the
framework of change point or sequential analysis. The function gmleL estimates a
model by quasi-maximum likelihood using observations in the time interval [0, ¢]
where ¢t can be specified by the user. Similarly for gm1leR, which uses only obser-
vations in the time interval [z, T']. In our example, we set t=1.5 and t=8.5,

respectively.
(noDriftModel, t=1.5, start= (thetal.k=0.
lower= (thetal.k=0, theta2.k=0),
upper= (thetal.k=1, theta2.k=1),
method="L-BFGS-B") estL
(noDriftModel, t=8.5, start= (thetal.k=0
lower= (thetal.k=0, theta2.k=0),
upper= (thetal.k=1, theta2.k=1),
method="L-BFGS-B") estR
t0.est (estL)
tl.est (estR)

and now we proceed with change point estimation

t.est3
t.est3

Stau
[11]
##

Sparaml

thetal.k theta2.k

3.98

1,

odl,

theta2.k=0.1),

theta2.k=0.1),

(noDriftModel,paraml=t0.est,param2=tl.est)

2.10 Change Point Estimation 113

change point statistic

-1400 -1200 -1000

-1600

Time

Fig. 2.11 Change point statistic reaches the minimum at change point date

0.474565 0.287590

Sparam2
thetal.k theta2.k
0.1921615 0.4413915

Notice that, even if the estimated parameters are not too accurate because we use
small subsets of observations, the change point estimate remains good. Setting the
argument plot=TRUE, it is possible to see the graph of the change point statistic
@, (t; 6y, 0)) from (2.16), denoted as D in the plot shown in Fig.2.11 and obtained

typing
(noDriftModel, paraml=t0.est,param2=tl.est, plot=TRUE)
We can now refine the estimate of 6 at the first stage making use of the change
point estimate:

(noDriftModel, t=t.est3S$tau,

start= (thetal.k=0.1, theta2.k=0.1),

lower= (thetal.k=0, theta2.k=0)

upper= (thetal.k=1, theta2.k=1),

method="L-BFGS-B") estL
(noDriftModel, t=t.est3$tau,

start= (thetal.k=0.1, theta2.k=0.1),

lower= (thetal.k=0, theta2.k=0)

upper= (thetal.k=1, theta2.k=1),

method="L-BFGS-B") estR

t02s.est (estL)

tl2s.est (estR)

t2s.est3 (noDriftModel,paraml=t02s.est,param2=t12s.est)

t2s.est3

Stau

[1] 3.98

#4#

Sparaml

thetal.k theta2.k

114 2 Diffusion Processes

0.4859283 0.2995279
##

Sparam2

thetal.k theta2.k
0.2036140 0.4087094

and these new estimates of the second stage are qualitatively better than the estimates
at the first stage. There is no need to further estimate 7.

2.10.3 Example of Volatility Change Point Estimation in Real
Data

We now apply the change point analysis to real stock data. We consider for our
experiment the Apple stock exchange, and we focus on the adjusted values. For
simplicity, we assume a geometric Brownian motion model dX, = puX,dr+o0 X, dW;:

(quantmod)
("AAPL", to="2016-12-31")

[1] "AAPL"

S AAPLSAAPL.Adjusted

Delta 1/252

gBm (drift="mu*x", diffusion="sigma*x")

mod (model=gBm, data= (S, delta=Delta))

lower (mu=0.1, sigma=0.1)

upper (mu=100, sigma=10)

start (mu=1, sigma=1)

fit (mod, start= start, upper=upper, lower=lower)
(fit)

Quasi-Maximum likelihood estimation
##

call:

gmle (yuima = mod, start = start, lower = lower, upper = upper)
##

Coefficients:

#4# Estimate Std. Error

sigma 0.3320259 0.004741881

mu 0.2909865 0.105058353

##

-2 log L: 6799.443

Now we prepare initial estimates for (i, o) using the very beginning and the very
end of the time series

fitl (mod, t=1, start= (mu=1, sigma=1)
fit2 (mod, t=6, start= (mu=1, sigma=1))
fitl

##

2.10 Change Point Estimation 115

Call:

gmle(yuima = <S4 object of class "yuima">, start = list(mu = 1,
H## sigma = 1))

##

Coefficients:

sigma mu

0.3759766 0.9164062

fit2

##

Call:

gmle(yuima = <S4 object of class "yuima">, start = list(mu = 1,
#4# sigma = 1))

##

Coefficients:

sigma mu

0.2567383 0.1625000

The above estimates indeed look different. We now look at the change point estimate
using these initial guess

cp (mod, paraml= (fitl) ,param2= (£it2))
Ccp

Stau

[1] 2.384921

##

Sparaml

sigma mu
0.3759766 0.9164062
##

Sparam2

sigma mu

0.2567383 0.1625000

To check if this change point is meaningful, one can look at Fig. 2.12 which shows
the nonconstant volatility log-returns and the value of the change point. The change
point time 7 has been estimated as 2.385. A quick inspection of the plot shows that
the volatility of the stock is higher (6 = 0.376) before 7 and lower (6 = 0.257) in
the second part of the trajectory (Fig.2.12). The change-point statistics reaches its
minimum at t (see Fig2.13)

X (log ((mod) [[111))

(X)
(v=cp$tau, 1lty=3,lwd=2,col="red")

2.11 Asynchronous Covariance Estimation

Suppose that two Itd processes are observed only at discrete times in a nonsyn-
chronous manner. We are interested in estimating the covariance between the two

116 2 Diffusion Processes

log returns of AAPL

0.00 0.10
| I

-0.10

-0.20

Index

Fig. 2.12 Log-returns of the Apple stock indeed show non constant volatility. The dotted line
represents the time of the change point

change point statistic

3350 3450 3550
Il Il Il Il

1

3250
|

Time

Fig. 2.13 Change point statistic reaches the minimum at change point date for the AAPL stock

processes accurately in such a situation. This type of problem arises typically in
high-frequency financial time series.

Let T € (0, 0o) be a terminal time for possible observations. We consider a two-
dimensional Itd process (X, X») satisfying the stochastic differential equations

dX;; = w . dt +o7,dW;,, t€[0,T]
X0 = x50

for I = 1, 2. Here, W, denote standard Wiener processes with a progressively mea-
surable correlation process d(W;, W,), = p,dt, u;, and oy, are progressively mea-
surable processes, and x; o are initial random variables independent of (W;, W,).
Diffusion-type processes are in the scope, however, this model can express more
sophisticated stochastic structures.

The process X; is supposed to be observed over the increasing sequence of times
Tl (i € Zso) starting at 0, up to time T. Thus, the observables are (7", X; ;)
with T7%" < T. Each T'' may be a stopping time, so it possibly depends on the

2.11 Asynchronous Covariance Estimation 117

history of (X, X») as well as on the precedent stopping times. The two sequences of
stopping times T/ and T%/ are nonsynchronous, and irregularly spaced, in general.
In particular, cce can apply to estimation of the quadratic variation of a single
stochastic process sampled regularly/irregularly.

The parameter of interest is the quadratic covariation between X; and X»:

T
0 = (X], Xz)r :/ O’]grO'Q,,,Oldl‘. (2.18)
0

The target variable 0 is random in general, and it can be estimated with the nonsyn-
chronous covariance estimator (Hayashi—Yoshida estimator)

U= Y. AX\UI")AX2(I*)1). (2.19)
i, j:TVi<T, T2 <T

That is, the product of any pair of increments AX; (1) = (X 71i — X 71:-1) and
AX>(J*)) = (Xa.725 — X5,725-1) will make a contribution to the sum only when the
respective observation intervals 1" = (T1~!, T and J>/ = (T>/~!, T?/] are
overlapping. It is known that U, is consistent and has asymptotically mixed normal
distribution as n — oo if the maximum length between two consecutive observing
times tends to 0. See Hayashi and Yoshida (2005, 2008a, 2006, 2008b) for details.

2.11.1 Example: Data Generation and Estimation by yuima
Package

We will demonstrate how to apply cce function to nonsynchronous high-frequency
data by simulation. As an example, consider a two-dimensional stochastic process
(X 1.1, X»,,) satisfying the stochastic differential equation:

Xm,z = Gl,tdBl,tv

(2.20)
dXo, = 07,dB,;.

Here, B, ; and B, denote two standard Wiener processes; however, they are corre-
lated as

By, = Wi,, 2.21)

t t
By, = / ps AWy + / ﬂdwz,s, (2.22)
0 0

where W;; and W, , are independent Wiener processes, and p; is the correlation
function between B, and B,,. We consider o7,,] = 1,2 and p, of the following
form in this example:

118 2 Diffusion Processes

Ul,t = V1+t’
02,[=V l +t2,

1
pt—ﬁ~

To simulate the stochastic process (X, X2 ;), we first build the model by setModel
as before. It should be noted that the method of generating nonsynchronous data can
be replaced by a simpler one, but we will take a general approach here.

Alrrus coerricient Ior proc

diff.coef.l function (t,x1=0, x2=0) (1+t)
diff.coef.2 function(t,x1=0, x2=0) (1+t72)
correlation

cor.rho function(t,x1=0, x2=0) (1/2)

diff.coef.matrix (("diff.coef.1(t,x1,x2)",
"diff.coef.2(t,x1,x2) * cor.rho(t,x1,x2)", "",

(l1-cor.rho(t,x1,x2)"°2)"),2,2)

cor.mod ",""), diffusion = diff.coef.matrix,
solve.variable=c("x1", "x2"))

The parameter we want to estimate is the quadratic covariation between X and X5:

T
6 = (X1, Xa)r = / o102 prdt. (2.23)
0

Later, we will compare estimated values with the true value of 6 given by

CC.theta function(T, sigmal, sigma2, rho) {
tmp function(t) ((t) * (g) * (t)
(tmp, 0, T)

For the sampling scheme, we will consider the independent Poisson sampling. That
is, each configuration of the sampling times T is realized as the Poisson random
measure with intensity np;, and the two random measures are independent each other
as well as the stochastic processes. Under this scheme, the data become asynchronous.
It is known that

n'2(U, —0) — N(O, ¢), (2.24)

as n — 0o, where

2 2 T 2 2 2 2 T 2
c = (— + —) / (01,[02,t) dr + (— +— - —) / (UI,IUZ,HOI) dr.
pr P2/ Jo Pt p2 pi+p2/)Jo

(2.25)

2.11 Asynchronous Covariance Estimation 119

complete data

|

|

x1
0.0 0.5 1.0

1

x2
1.0

0.0
L

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 2.14 Complete simulated data

(123)
Terminal 1
n 1000
theta (T=Terminal, sigmal=diff.coef.l,
sigma2=diff.coef.2, rho=cor.rho)$value
(("theta=%5.3f\n", theta))

theta=1.000

so in our case 6 = 1.

yuima.samp (Terminal=Terminal,n=n)
yuima (model=cor.mod, sampling=yuima.samp)
X (yuima)

cce takes the sample and returns an estimate of the quadratic covariation. For exam-
ple, for the complete data in Fig. 2.14, we obtain the following estimates:

(X)

Scovmat

Series 1 Series 2
Series 1 1.490955 1.085304
Series 2 1.085304 1.473602
##

Scormat

Series 1 Series 2
Series 1 1.0000000 0.7321991
Series 2 0.7321991 1.0000000

(X, main="complete data")

We now apply random sampling in the following way: we define a new sampling
structure via set Sampling specifying in the argument random a list which con-
tains a vector of random distributions. For the ith component of X, we specify an

120 2 Diffusion Processes

asynchronous data

.
© : \
o 7| //
- < _| A I
X o N ~
- - \
— ,/ N r 1
o~ ! Yy \
? 7 /
| I
. \
< | Va
Q - / ' W, i ‘ﬂ
T i //V\ - ' \(;‘/
4
o] SN oo JANEER'
© T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 2.15 Asynchronous data generated from the simulated ones using Poisson random subsam-
pling

exponential distribution with rate n - p; /T for the random times. This will generate
Poisson random times with the corresponding rate.

pl 0.2

p2 0.3

newsamp (random= (rdist=c(
function (x) (x, rate=pl*n/Terminal),
function (x) (x, rate=p2*n/Terminal))))

Now, we use the subsampling function to subsample the original data X into new
asynchronous data Y (see Fig. 2.15)

Y (X, sampling=newsamp)

(Y, main="asynchronous data")

We calculate the covariance estimator on the asynchronous data Y
(Y) Scovmat

Series 1 Series 2

Series 1 1.396354 1.083400
Series 2 1.083400 1.265823

(X) $covmat
Series 1 Series 2

Series 1 1.490955 1.085304
Series 2 1.085304 1.473602

and we obtain an unbiased estimate of the covariance.

2.11 Asynchronous Covariance Estimation 121

2.11.2 Asynchronous Estimation for Nonlinear Systems

Consider now the two-dimensional system with nonlinear feedback

dX, = Y, dt + o1(¢, X;, Y;)dW,
dy; =X dt+p(t, X;, Y1)oo(t, Xy, Y)dWi+o0a(t, X, Yi)+/1 — Pz(f, X;, Y)dB,

with 01(, X;, ¥) = VIX[[(T+ 0, 02(t, X,. ¥) = VIV, p(t, X,, ¥) = 15z and
W,, B, two independent Brownian motions. We construct the model and generate
data from it

bl function(x,y) vy
b2 function(x,y) -x
sl function(t,x,vy) ((x)*(1+t))
s2 function(t,x,y) ((v))
cor.rho function(t,x,y) 1/(1+x"2)
diff.mat (c("sl(t,x,y)", "s2(t,x,y) * cor.rho(t,x,y)","",
"s2(t,x,y) * sgrt(l-cor.rho(t,x,y)"2)"), 2, 2)
cor .mod (drift = e¢("bl","b2"), diffusion = diff.mat,
solve.variable = c¢("x", "y"),state.var=c("x","y"))
Generate é > f e pr
(111)
Terminal 1
n 10000
yuima.samp (Terminal = Terminal, n = n)
yuima (model = cor.mod, sampling = yuima.samp)
yuima (yuima, xinit=c(2,3))

We apply the same Poisson random sampling so that the object Y will contain asyn-
chronous data (see Fig. 2.16)

pl 0.2

P2 0.3

newsamp (random= (rdist=c(
function (x) (x, rate=pl*n/Terminal),
function (x) (x, rate=p2*n/Terminal))))

Y (yuima, sampling = newsamp)

We can plot again the asynchronous data as in Fig. 2.16.

(Y, main="asynchronous data (non linear case)")

The estimated covariance for the complete trajectory yuima is now compared with
the one obtained on asynchronous data Y

(yuima) Scovmat # full data
Series 1 Series 2

Series 1 2.709112 0.780349
Series 2 0.780349 3.470497

(Y) $Scovmat # as

122 2 Diffusion Processes

asynchronous data (non linear case)

o
o i
Ty

. Ve

o o [4
SEDSE B AV o Lt i
. Y.

— " L ¥, s \
o | f Ry
-~ r

1 ﬂ"\‘ N
Iy A N
= | | "v,r(W \,v‘,h ;“-,,”'WWL/ "

/ "
> 5] w«‘;m‘;,“ . s

@ ' Y B b X A o "

_ ’ Vot T " o
0 | A S T A N Y
N T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 2.16 Asynchronous data for the nonlinear system

#4# Series 1 Series 2
Series 1 2.7132456 0.7600877
Series 2 0.7600877 3.3807434

Notice that the argument psd of cce gives a positive semi-definite version of
estimated matrices by the HY-estimator.

2.11.3 Other Covariance Estimators

The cce command also evaluates other type of covariance estimators proposed in
the literature. The default estimator is the Hayashi and Yoshida (2005) estimator, but
the argument method accepts several options listed below:

e method="HY": default, the Hayashi and Yoshida (2005) estimator;

e method="PHY": the pre-averaged Hayashi—Yoshida estimator proposed in Chris-
tensen et al. (2010);

e method="MRC": the modulated realized covariance based on refresh time sam-
pling proposed in Christensen et al. (2010);

e method="TSCV": the previous tick two-scale realized covariance based on
refresh time sampling proposed in Zhang (2011);

e method="GME": the generalized multiscale estimator proposed in Bibinger
(2011);

e method="RK": the multivariate realized kernel based on refresh time sampling
proposed in Barndorff-Nielsen et al. (2011);

e method="QMLE": the nonparametric quasi-maximum likelihood estimator pro-
posed in Ait-Sahalia et al. (2010);

e method="SIML": the separating information maximum likelihood estimator
proposed in Kunitomo and Sato (2008) with the basis of refresh time sampling;

2.11 Asynchronous Covariance Estimation 123

e method="THY": the truncated Hayashi—Yoshida estimator proposed in Mancini
and Gobbi (2012);

e method="PHTY": the pre-averaged truncated Hayashi—Yoshida estimator, which
is a thresholding version of the pre-averaged Hayashi—Yoshida estimator (Chris-
tensen et al. 2010; Koike 2014);

e method="SRC": the calendar time subsampled realized covariance.

e method="SBPC": the calendar time subsampled realized bipower covariation.

For details on the different use of the cce function, we refer the reader to the manual
page of the command or use ?cce.

2.12 Lead-Lag Estimation

Market participants usually agree that certain pairs of assets (X, X;) share a “lead—
lag effect”, in the sense that the lagger (or follower) price process Y tends to partially
reproduce the oscillations of the leader (or driver) price process X, with some tempo-
ral delay, or vice versa. This property is usually referred to as the “lead—lag effect”.
The lead-lag effect may have some importance in practice, when assessing the qual-
ity of risk management indicators, for instance, or, more generally, when considering
statistical arbitrage strategies. Also, note that it can be measured at various temporal
scales (daily, hourly or even at the level of seconds, for flow products traded on elec-
tronic markets). The lead—lag effect is a concept of common practice that has some
history in financial econometrics. In time series analysis for instance, this notion can
be linked to the concept of Granger causality, and we refer to Comte and Renaut
(1996) for a general approach. From a phenomenological perspective, the lead—lag
effect is supported by empirical evidence reported in Chiao et al. (2004), de Jong and
Nijman (1997) and Kang et al. (2006), together with Robert and Rosenbaum (2011)
and the references therein.

The yuima package implements the lead-lag estimator recently proposed Hoff-
mann et al. (2013) which is based on the asynchronous covariance estimator of
Sect. 2.11. Let 6 € (-4, §) be the time lag between the two diffusion processes X
and X,. Roughly speaking, the idea is to construct a contrast function U, (6) which
evaluates the Hayashi—Yoshida estimator in formula (2.19) for the times series X ;
and X» ;1 and then to maximize it as a function of €; i.e., using the same notation
of Sect. 2.11, the contrast function is given by

Un® =lggzop Y AXiU")AX (D i 22
i,j:TVi<T, T <T

+tlo<o Y, AXIUTMYAX ()i iy
i,j:TVW<T,T%i<T

124 2 Diffusion Processes

where Jf’ej = (T%/~' =0, T/ —9land I, = (T""~' 46, T" +0]. The lead—lag
estimator én of 0 is defined as

én = argmax |U,(0)|.
—3<O<+6

Let us consider the following three-dimensional diffusion process

dX]Y[1 - Xl,[
dXs, | = 2-10- x5, | ar
dXs, 3-4-X3,)

vV Xl,t O 0 dWl’t
+13/5- /X2, 4/5- /X2 0 dW,,
1/3- VX5, 2/3 VX3, 2/3 /X5, | \dWs,

We generate data from this model and then artificially change the time of the second
and third processes, respectively, by 6, = 0.05 and 6; = 0.12.

diff.coef.matrix (c("sgrt(xl)", "3/5*sqgrt(x2)"
"1/3*sqgrt(x3)", "", "4/5*sqgrt(x2)","2/3*sqgrt(x3)","","",
"2/3*sqrt(x3)"), 3, 3)
drift ("1-x1","2*(10-x2)","3*(4-x3)")
cor.mod (drift = drift, diffusion = diff.coef.matrix,
solve.variable = c("x1", "x2","x3"))
(111)
Terminal 1
yuima.samp (Terminal = Terminal, n = 1200)
yuima (model = cor.mod, sampling = yuima.samp)
yuima (yuima, xinit=c(1,7,5))

datal (yuima) [[1]]
data2 (yuima) [[2]]
time2 (data2)
theta?2 0.05 # the lag of x2 beh 1
stime2 time2 + theta2
(data2) stime2
data3 (yuima) [[3]]
time3 (data3)
theta3 0.12 # the lag of x3 be
stime3 time3 + theta3
(data3) stime3
syuima (data= ((datal, data2, data3)))
yuima
##

Diffusion process

Number of equations: 3

Number of Wiener noises: 3

##

Number of original time series: 3

2.12 Lead-Lag Estimation

time shifted data

125

Fig. 2.17 Simulated data shifted in time contained in the object syuima

length = 1201, time range [0 ; 1]

##

Number of zoo time series: 3

length time.min time.max delta
Series 1 1201 0 1 0.0008333333
Series 2 1201 0 1 0.0008333333
Series 3 1201 0 1 0.0008333333
syuima

##

##

Number of original time series: 3

length = 1842, time range [0 ; 1.12]

##

Number of zoo time series: 3

length time.min time.max delta note
datal 1842 0 1.12 0.0008333333 &
data2 1842 0 1.12 0.0008333333 &
data3 1842 0 1.12 0.0008333333 &
= ====

* : maximal mesh

Fig. 2.17 shows clearly the effect of these shifting in time

(syuima,main="time shifted data")

M I

R)L ; |.‘ 4,\ j\\l\)f“ , o W () "
T o AU s - PN T Y A
g © M«JﬂﬂNN ’ R”” ky \ﬁ VWWM- f&w h‘m J“hh“ ‘}W& e

> | J v

e h Ao, v W \ S

™ g

@ ’ lf[!

- A
N 27 !’." \\'\J\
& 27 > ™
g 7 A el oy “"“' i "f ey

~ o \,/\ /v-‘»-mﬂ"“«‘".r ,._/~._"\w'*.»,(,\.‘ e /W\/’ww.,;(W N

© o

S < \

e ‘ L

1ty N

o« 9| W R o JNNM“
% < L I ‘h""“\y#" R |)’} l"A A }'r"‘
° S MM“LﬂAJE»w%M\ ¥ J ‘“ m ‘ '

@ Sy | \rd .,rwh I 4’1/“1"»,_"/"1 .

T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
index

We now apply the lead—lag estimator 11ag to the original data yuima and to the

shifted data syuima
(yuima)

Series 1 Series 2 Series 3

126

1 vs 2 (positive theta
means 1 leads 2)

1 vs 3 (positive theta
means 1 leads 3)

2 Diffusion Processes

2 vs 3 (positive theta
means 2 leads 3)

u(e)
u®)

-0.2
!

0.4

0.5
!

u®)
0.0

-0.5
!

T T T T T
-1.0 -05 0.0 05 1.0
0

T
-1.0

-05 00 05 1.0 -1.0 -05 0.0 05 1.0
0 0

Fig. 2.18 Confidence interval lines around the U (0) contrast function. This is the output of the
plot method for the 11ag object. The function U(6) crosses the lines at the point of the lag

estimate

Series 1 0 0

Series 2 0 0

Series 3 0 0
(syuima)

datal data2

datal 0.00000000 0.04985885 0.

data2 -0.04985885 0.00000000 O.

data3 -0.11978284

The 11ag function returns also the p

-0.06992400 0.

data3
1197828
0699240
0000000

value associated to each lag estimate and the

pointwise confidence intervals by specifying the argument ci=TRUE. The plot
method for 11ag produces a graphical representation of the same information as
shown in Fig. 2.18 obtained by typing plot (1lag (syuima, ci=TRUE)).
From the above result, we can see that the original data present no lag, while for
the shifted data we obtain the expected result. We can do one step further; i.e., to
avoid the suspect that the initial delay is the cause of this precise estimation, we cut
the series in a window of time on which all processes take values, for example for

te0.5,1)
data2 (yuima) [[2]]
time2 (data2)
theta2 0.05
stime2 time2 + theta2
(data2) stime2
data3 (yuima) [[31]1]

2.12 Lead-Lag Estimation 127

time3 (data3)
theta3 0.12 # the lag of x3 <1
stime3 time3 + theta3

(data3) stime3
datal datall ((datal)>0.5 & (datal)<1)
data2 data2 [((data2)>0.5 & (data2)<1)]
data3 data3 [((data3)>0.5 & (data3)<1)
syuima?2 (data= ((datal, data2, data3)))
syuima?2
##
#4#

Number of original time series: 3

length = 882, time range [0.500833333333333 ; 0.999166666666667]
##

Number of zoo time series: 3

length time.min time.max delta note
datal 882 0.501 0.999 0.0008333333 =
data2 882 0.501 0.999 0.0008333333 &3
data3 882 0.501 0.999 0.0008333333 *
= ====

* : maximal mesh

(syuima?2)

#4# datal data2 data3
datal 0.00000000 0.04972033 0.11978080
data2 -0.04972033 0.00000000 0.06949546
data3 -0.11978080 -0.06949546 0.00000000

and, as we can see, this is not an issue for the estimator. Furthermore, the lead-lag
estimator of Hoffmann et al. (2013) also works for asynchronous data. To this aim,
we perform Poisson random sampling on the data to obtain asynchronous series and
we re-estimate the lead-lag parameters

pl
P2

p3

0
0.
0
n 10

o B W N

0
newsamp (

random= (rdist=c(function(x) (x, rate=pl*n/Terminal)
function (x) (x, rate=p2*n/Terminal),

function (x) (x, rate=p3*n/Terminal))))

psample (syuima, sampling = newsamp)

psample

##

##

Number of original time series: 3
length = 1842, time range [0 ; 1.12]

##

Number of zoo time series: 3

length time.min time.max delta note
datal 250 0 1.117 0.03091730 @
data2 370 0 1.118 0.01631701 e

data3 419 0 1.119 0.01712454 *

128
LY ——
* : maximal mesh
(psample)
datal data2 data3

datal 0.00000000 0.05165984 0.12103949
data2 -0.05165984 0.00000000 0.07004067
data3 -0.12103949 -0.07004067 0.00000000

and still the estimator works as expected.

2 Diffusion Processes

2.12.1 Application of the Lead—Lag Estimator to Real Data

We now consider the daily closing values for the year 2013 of six IT companies:
Apple, IBM, Amazon, EBay, Facebook and Microsoft. We run a lead—lag analysis

just to verify if there is any leader among these assets.

(quantmod)

("AAPL", from="2013-01-01", to="2013-12-31")
("IBM", from="2013-01-01", to="2013-12-31")
("AMZN", from="2013-01-01", to="2013-12-31")
("EBAY", from="2013-01-01", to="2013-12-31")
("FB", from="2013-01-01", to="2013-12-31")
("MSFT", from="2013-01-01", to="2013-12-31")

datal AAPLSAAPL.Close
data2 IBMSIBM.Close
data3 AMZNSAMZN.Close
data4d EBAYSEBAY.Close
data5 FBSFB.Close
datab MSFTSMSFT.Close
market.data (datal, data2, data3, data4,datab5,datab)
(market.data) ("AAPL", "IBM", "AMZN",
"FB", "MSFT")
mkt (data= (market.data, delta=1/252))
mkt
##
##

Number of original time series: 6

length = 251, time range [2013-01-02 ; 2013-12-30]

##

Number of zoo time series: 6

#4# length time.min time.max delta
AAPL 251 0 0.992 0.003968254
IBM 251 0 0.992 0.003968254
AMZN 251 0 0.992 0.003968254
EBAY 251 0 0.992 0.003968254
FB 251 0 0.992 0.003968254
MSFT 251 0 0.992 0.003968254

2.12 Lead-Lag Estimation 129

i <
2 - . O
T 58’
< g WA
mi &
o}
n 4
N ['o}
3 i
s «° E 2
= | i
a 9
8 | i
8 | &
S 8]
z 8- g
s 3 g
< &7 2
S .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
index index

Fig. 2.19 Closing values of six time series in 2013. Which one is the leader?

((mkt) $Scormat,2) # correlati

#4# AAPL IBM AMZN EBAY FB MSFT
AAPL 1.00 0.11 -0.01 0.05 0.13 0.06
IBM 0.11 1.00 0.16 0.33 0.03 0.17
AMZN -0.01 0.16 1.00 0.36 0.29 0.25
EBAY 0.05 0.33 0.36 1.00 0.20 0.23
FB 0.13 0.03 0.29 0.20 1.00 0.10
MSFT 0.06 0.17 0.25 0.23 0.10 1.00

Looking at the data (see Fig. 2.19) and at the correlation matrix, we see that there is
some non-negligible link between the time series, as expected given that they belong
to the same sector.

(mkt)

We now look at the lead—lag estimator

((mkt) ,4)
AAPL IBM AMZN EBAY FB MSFT
AAPL 0.0000 0.2332 0.2727 0.2213 0.4980 0.4822
IBM -0.2332 0.0000 0.5217 -0.0040 0.6047 0.2253
AMZN -0.2727 -0.5217 0.0000 0.0040 -0.0040 0.0040
EBAY -0.2213 0.0040 -0.0040 0.0000 -0.0040 0.0040
FB -0.4980 -0.6047 0.0040 0.0040 0.0000 -0.2648
MSFT -0.4822 -0.2253 -0.0040 -0.0040 0.2648 0.0000

and we see a clear leader, which is Apple, as probably expected. Figure 2.20 presents
both the correlation matrix and the lead—lag matrix in graphical form and has been
obtained using the following R commands:

130 2 Diffusion Processes

~ 00000 -~-000/7/4
O-0000 - ~F0/ @
Q@ @O0 VN~ OO0
OO®~ 00 VO ~ OO
OC000® - O N0 -9
OOOO0 -~ NQOO@ -

-1 -08 -06 -04 -02 O 02 04 06 08 1 -06 -048 -0.36 -0.24 -0.12 0 012 024 036 048 06

Fig. 2.20 Correlation matrix (left) and lead—lag estimation matrix (right)

require (corrplot)

cols <- colorRampPalette(c("#7F0000", "red", "#FF7F00",
"yvellow", "white", "cyan",
"#007FFF", "blue", "#00007F"))
corrplot (cce (mkt) Scormat,method="ellipse",
cl.pos = "b", tl.pos = "d", tl.srt = 60,

col=cols (100), outline=TRUE)

corrplot (1llag (mkt) ,method="ellipse",is.corr=FALSE,
cl.pos = "b", tl.pos = "d", tl.srt = 60,
col=cols(100), outline=TRUE)

2.13 Asymptotic Expansion

For numerical computation of the expectation of a random variable, the Monte Carlo
method gives a universal solution although it is time-consuming and involves stochas-
tic errors of a certain scale depending on the number of replications (Iacus 2008). An
alternative tool is the asymptotic expansion method that can often give a solution with
accuracy comparable or superior to Monte Carlo methods. The asymptotic expansion
method has an advantage in the computational time because the approximation is
given through an analytic formula.

Let us consider a family of d-dimensional diffusion processes X = (X fg)),e[o,n
(e € (0, 1]) specified by the stochastic integral equation

t t
X =xo+ f a(X'®, e)ds + / b(X®, e)dW,, tel0,T] (2.26)
0 0

2.13 Asymptotic Expansion 131

for ¢ € (0, 1], where W, = (W,,, ..., W,,) is an r-dimensional Wiener process. A
functional of interest is expressed in the following abstract form:

r T
FO=3%" f fu(XE) dWe + F(XP,6), W’ =1. (2.27)
a=0 0

A typical application is the Asian option pricing. For example, in the Black—
Scholes model
dX® = uXPdt + exXPadw,, (2.28)

the price of the option under zero interest rate is of the form

1 T
E|:max (—/ Xf”dt—K,O)].
T Jo

Thus, the functional of interest is
1 T
F© = —/ XOde, r=1
T Jo

with
X

folx, &) = T

, fikx,e) =0, F(x,e)=0
in (2.27). Similarly, for F(x, &) = x, the functional becomes F® = X (TF) and the
price of the European call option is E[max (X gf) — K, 0)]. This value has a closed
form in the Black—Scholes economy, but it is necessary to apply some numerical
method for pricing the Asian option even in this linear case.

Returning to the general system (2.26)—(2.27), we will assume that the stochastic
system is deterministic in the limit as ¢ | 0, that is,

b(-,0) =0 and f,(-,00=0 (x=1,...,r).
Since X ,(0) is the deterministic solution to the ordinary differential equation

dx,”
—5— = a0, Xp" =xo,

the functional F© becomes a constant:

T
FO — / fox?, 0ydr + F(x, 0). (2.29)
0

Under standard regularity of a, b, f, and F, it is possible to show F) has a
version that is smooth in ¢ € [0, 1) almost surely, and hence,

132 2 Diffusion Processes
FO .= ¢ L(F© _ FO)
admits a stochastic expansion
FO ~ FIO 4 g FU 4 201 4 (2.30)

as ¢ |, 0. This stochastic expansion makes sense in the Sobolev spaces of the Malli-
avin calculus. Then the so-called Watanabe’s theory (Watanabe 1987) validates the
asymptotic expansion of the (generalized) expectation

E[g(F©)] ~ do(g) + edi(g) + e*dx(g) + - -- (2.31)

as¢ | Oformeasurable functions g at most polynomial growth or, more generally, for
Schwartz distributions, under the uniform nondegeneracy of the Malliavin covariance
of F® ! In the present situation, each d; (g) is expressed as

di(g) = /g(z)pi(z)¢(z; 0,v)dz,

where p; is a polynomial and ¢ (z; 0, v) is the density of the normal distribution
N (0, v) withv = Cov[F©]. Polynomials p; are given by the conditional expectation
of multiple Wiener integrals. The expansion (2.31) holds uniformly in a class of
functions g.

As mentioned above, Monte Carlo methods require a huge number of simulations
to get the desired accuracy of the calculation of the expectation, while the asymptotic
expansion of F® gives very fast and accurate approximation by analytic formulas.
The yuima package provides functions to construct the functional F® and perform
automatic asymptotic expansion based on the Malliavin calculus starting from a
yuima object. This asymptotic expansion approach to option pricing was proposed
in the early 1990s (Yoshida 1992a; Takahashi 1999; Kunitomo and Takahashi 2001),
and a huge number of related papers are available today.

Though the method can be applied to the nonlinear system (2.26)—(2.27), just
as an example, we shall consider the Asian call option of the geometric Brownian
motion of equation (2.28) with u = 1 and xo = 1, and

g(x) = max (F¥ — K + ex, 0) (2.32)

Set the model (2.26) and the functional (2.27) as follows:

model (drift = "x", diffusion = ("x*e", 1,1))
T 1

xinit 150

K 100

IThis condition ensures the smoothness of the distribution of). It should be remarked that the
Watanabe’s theory is more general than the present use for the variable F) having a Gaussian
principal part F©.

2.13 Asymptotic Expansion 133

f ((x/T), (0))
F 0
e 0.5
yuima (model = model,
sampling = (Terminal=T, n=1000))
yuima (yuima, f=f,F=F, xinit=xinit,e=e)

This time the setFunctional command fills the appropriate slots inside the
yuima object

(yuima@functional)

Formal class ‘yuima.functional’ [package "yuima"] with 4 slots
#4# ..@ F : num 0

..e f :List of 2

.. ..$: expression(x/T)
.. ..$: expression(0)
#4# ..@ xinit: num 150

#4# ..@ e : num 0.5

Then the limit F© of F(®) is easily obtained by calling the function F0 on the yuima
object:

FO (yuima)
FO

[1] 257.6134

Set the function g according to (2.32):

rho (0)

epsilon e # noise level

g function(x) {
tmp (FO - K) + (epsilon * x)
tmp[(epsilon * x) < (K-F0)] 0
tmp

}

Now we are at the point of computing the coefficients d; (i = 0, 1, 2) in the expansion
of the price E[max(F® — K, 0)] by applying the function asymptotic_term:

asymp (yuima, block=10, rho, g)
asymp

Then the sums

asyl asymp$d0 + e * asymp$dl

t as a ©

asyl
[1] 156.608

asy?2 asymp$d0 + e * asympS$Sdl + e"2* asymps$d2

d orde

asy?2

134 2 Diffusion Processes

[,1]
[1,] 157.6082

give the first- and second-order asymptotic expansions, respectively.

We remark that the expansion of E[g(F®)G®] is also possible by the same
method for a functional G® having a stochastic expansion like (2.30). Thus, the
method works even under the existence of a stochastic discount factor.

One can compare the result of the asymptotic expansion with other well-known
techniques like Edgeworth series expansion for the log-normal distribution as pro-
posed, e.g., in Levy (1992). This approximation is available through the package
fExoticOptions (Wuertz 2012).

("fExotic C
levy (TypeFlag = "c", S = xinit, SA = xinit,

'
X = K, Time = 1, time = 1, r = 0.0, b = 1, sigma = e)@price
levy

[1]1 157.7712

and the relative difference between the two approximations is —0.1%.

2.13.1 Asymptotic Expansion for General Stochastic
Processes

Of course, yuima approach is more general in that the above Lévy approximation
only holds when the process X, is a geometric Brownian motion. We now give an
example when the underlying process X is the following CIR model of Sect. 2.1.5:

dX, =09X,dt + ey X, dW,, Xo=1
and we calculate the asymptotic expansion of an European call option with strike
price K = 10 for ¢ = 0.4.
a 0.9
e 0.4

Terminal 3

xinit

K 10

drift "a * ox"

diffusion "e * ggrt(x)"

model (drift=drift,diffusion=diffusion)
n 1000*Terminal

yuima (model = model,
sampling = (Terminal=Terminal,n=n))

2.13 Asymptotic Expansion 135

f <- list (c(expression(0)),c(expression(0)))
F <- expression (x)

yuima.ae <- setFunctional (yuima, f=f,F=F,xinit=xinit, e=e)

rho <- expression(0)
Fl <- FO(yuima.ae)

get_ge <- function(x,epsilon,K,F0) {

tmp <- (FO0 - K) + (epsilon * x[1])
tmp[(epsilon * x[1]) > (K - FO0)] <- O
return(- tmp)

g <- function(x) {
return(get_ge(x,e,K,F1l))

timel <- proc.time ()
asymp <- asymptotic_term(yuima.ae,block=100,rho,qg)

[1] "compute X.t0"
time2 <- proc.time ()

We now extract the first- and second-order terms of the asymptotic expansion from
the asymp object

ae.value0 <- asympsd0
ae.value0

[1]1 0.7219652

ae.valuel <- asymp$d0 + e * asymp$dl
ae.valuel

[1] 0.5787545

ae.value2 <- as.numeric (asymps$Sd0 + e * asymp$dl + e"2 * asymp$d2)
ae.value2

[1] 0.5617722

ae.time <- time2 - timel
ae.time
user system elapsed

3.637 0.033 3.694

136 2 Diffusion Processes

As it can be seen, the contribution of the terms corresponding to the asymptotic
expansion gives a real contribution to the approximation and the final approximated
value 0.56177 can be compared with a Monte Carlo estimate based on 1000000 repli-
cations whichisequal to 0. 561059, but more demanding in terms of computational
time. The relative difference among the two estimates is 0.1%.

Chapter 3 ()
Compound Poisson Processes i

The compound Poisson process is defined as M, = mg + ZlNz’l Y;,, where N, is a
Poisson process and Y7, are the jumps at random times ;. As will be explained in
Chap. 4, the compound Poisson process plays an important role in the construction of
the Lévy process. The yuima model has some slots to describe the jump structure
in a stochastic differential equation with jumps and in particular when those jumps
are of compound Poisson type. Nevertheless, given the peculiarities of both the com-
pound Poisson process and stochastic differential equations with jumps, yuima has
an extension of the basic yuima-model class and a constructor method explicitly
designed for the compound Poisson process.

To define a compound Poisson process in yuima, one needs to use the
setPoisson function. Assume that N, is a Poisson process with intensity A, i.e.
N; ~ Poi(rt):

Ak
P(N; =k) ze*“%, k=0,1,2,...

with E(N;) = At. To define such process in yuima, we proceed as follows

modl (intensity="lambda", df= ("dconst(z,1)"))
modl

#4#

Compound Poisson process

Number of equations: 1

Parametric model with 1 parameters

where the argument intensity specifies the intensity function, in this case the
constant A, and df indicates the distribution of jumps. We have chosen dconst,
i.e. constant jumps of size 1 in this case. We can then simulate the process by just
specifying the sampling structure and the value of lambda as follows:

© Springer International Publishing AG, part of Springer Nature 2018 137
S. M. Iacus and N. Yoshida, Simulation and Inference for Stochastic
Processes with YUIMA, Use R!, https://doi.org/10.1007/978-3-319-55569-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-55569-0_3&domain=pdf

138 3 Compound Poisson Processes

25

20

Fig. 3.1 A trajectory of homogeneous Poisson process with parameter 1 = 1 as defined in mod1

Terminal 30
samp (T=Terminal,n=3000)
(123)
poissonl (modl, true.par= (lambda=1) , sampling=samp)
poissonl
#4#

Compound Poisson process

Number of equations: 1

Parametric model with 1 parameters

#4#

Number of original time series: 1

length = 29, time range [0 ; 30.1613615503751]
#4#

Number of zoo time series: 1

#4# length time.min time.max delta

x 3001 0 30 0.01

(poissonl)

As usual, as yuima assumes the high-frequency set-up, the process is returned on a
regular grid unless other sampling schemes are specified. Figure 3.1 shows a trajec-
tory of the process.

The setPoisson function has two additional arguments: scale, which is a con-
stant used to rescale the jumps and defaults to 1, and dimension which is used to
describe multidimensional compound Poisson processes. In the case of model mod1,
the following to lines of code describe essentially the same model of homogeneous
Poisson process with jumps of size 5

(intensity="1lambda", df= ("dconst(z,1)"), scale=5)
(intensity="lambda", df= ("dconst(z,5)"))

3 Compound Poisson Processes 139

15

Fig. 3.2 A trajectory of homogeneous Poisson process with Gaussian jumps as defined in mod2

Any distribution can be specified for the jump distribution. For example, if we want to
specify acompound Poisson process with Gaussian jumps, we can input the following
code (see Fig. 3.2 for the simulated path):

mod2 <- setPoisson(intensity="lambda", df=1list("dnorm(z,mu,sigma)"))
set.seed (123)
poisson2 <- simulate (mod2, sampling=samp,
true.par=1list (lambda=1,mu=0, sigma=2))
poisson2
#4#

Compound Poisson process

Number of equations: 1

Parametric model with 3 parameters

#4#

Number of original time series: 1

length = 29, time range [0 ; 30.1613615503751]

#4#

Number of zoo time series: 1

length time.min time.max delta
x 3001 0 30 0.01

plot (poisson2)

Any other distribution for which a density function and a random number generator
exist in R can be specified as well. For example, the next code specifies normal
inverse Gaussian jumps using the dNIG density function and the corresponding
random number generator rNIG existing in the yuima package:

mod3 <- setPoisson(intensity="lambda",
df=1ist ("dNIG(z,alpha,beta,gamma,mu) "))
poisson3 <- simulate (mod3, sampling=samp,

true.par=1list (lambda=10,alpha=2,beta=0.3,gamma=1, mu=0))
poisson3

140 3 Compound Poisson Processes

#4

Compound Poisson process

Number of equations: 1

Parametric model with 5 parameters
#4#

Number of original time series: 1
length = 316, time range [0 ; 30.0762710060585]
#4#

Number of zoo time series: 1

#4# length time.min time.max delta
x 3001 0 30 0.01

Moreover, one can use random generators and distributions defined in other packages.
For example, the package fBasics defines its own version of the normal inverse
Gaussian distribution called dnig/rnig. The next code describes the same model
in the above (although the dnig and ANIG are different in the interface and scope,
check the relative documentation from the two packages)

(fBasics)
mod4 (intensity="lambda",
df= ("dnig(z,alpha,beta,gamma) ")
poissond (mod4, sampling=samp,
true.par= (lambda=10, alpha=2,beta=0.3,gamma=1))
poissond

#4#

Compound Poisson process

Number of equations: 1

Parametric model with 4 parameters
#4#

Number of original time series: 1
length = 298, time range [0 ; 30.0430063761144]
#4

Number of zoo time series: 1

length time.min time.max delta
x 3001 0 30 0.01

3.1 Inhomogeneous Compound Poisson Process

It is also possible to specify a nonconstant intensity to describe time-inhomogeneous
compound Poisson processes. In this case, the intensity function can be time
dependent, i.e. A = A(¢), the process N, is characterized by its intensity function
A(t) = fot A(s)ds, and its distribution has the following form

P(Ntzk)ze

k
—am A k=0,1,2
o L2,

ie. N, ~ Poi(A(t)) with E(N,) = A(t). For time-inhomogeneous models, yuima
uses the thinning methods; see, e.g., Lewis and Shedler (1979) and Ogata (1981).

3.1 Inhomogeneous Compound Poisson Process 141

Fig. 3.3 A trajectory of time-inhomogeneous Poisson process with linear intensity A(t) = o + Bt
and Gaussian jumps as defined in mod5. The dotted line is the intensity A(¢), shifted down to —20
for graphical representation purposes

3.1.1 Linear Intensity Function

The following code is an example of compound Poisson process with linear intensity
A(t) = o + Bt and Gaussian jumps (see Fig. 3.3 as well):

mod5 <- setPoisson(intensity="alpha+beta*t",
df=1ist ("dnorm(z,mu,sigma) "))
set.seed (123)
poisson5 <- simulate (mod5, sampling=samp,
true.par=1list (alpha=2,beta=.5,mu=0, sigma=2))
plot (poisson5)
f <- function(t,alpha,beta) alpha + beta*t
curve (f (x,alpha=2,beta=0.5)-20,0,30,add=TRUE, col="red", 1lty=3, lwd=2)

3.1.2 The Weibull Model

The Weibull model has an intensity of the form A(1) = 019~ 0 <@ < 0 < 8 < o0.
The model can be specified as follows (see Fig.3.4 as well):

mod6 <- setPoisson(intensity="theta*t” (theta-1)",
df=1ist ("dnorm(z,mu,sigma) "))
set.seed(123)
poisson6 <- simulate (mod6, sampling=samp,
true.par=1list (theta=1.5,mu=0, sigma=2))
plot (poissoné6)
f <- function(t,theta) theta*t” (theta-1)
curve (f (x, theta=1.5),0,30,add=TRUE, col="red", 1lty=3, lwd=2)

142 3 Compound Poisson Processes

30
25
20

10
5
0

Fig. 3.4 A trajectory of time-inhomogeneous Poisson process with Weibull intensity A(r) = 6¢9~!
and Gaussian jumps as defined in mod6. The dotted line is the intensity A(z)

3.1.3 The Exponentially Decaying Intensity Model

Next is an example of exponentially decreasing intensity A(f) = B exp(—Af) and
exponential jumps with parameter y (see Fig. 3.5 as well):

mod7 (intensity="beta*exp (-lambda*t) ",
df= ("dexp (z,gamma) "))
(123)
poisson? (mod7, sampling=samp,
true.par= (lambda=.2,beta=10, gamma=1)
(poisson7)
f function(t,beta, lambda) beta* (-lambda*t)

(£(x,beta=10, lambda=0.2),0,30,add=TRUE, col="red",1ty=3,1lwd=2)

3.1.4 Modulated and Periodical Intensity Model

This is a physical model studied in Kutoyants (1998) and has a periodic intensity
of the form A(t) = %(1 + cos(wt + ¢)) + A, where a is called the amplitude (the
maximal value), w is the frequency, and ¢ is the phase of the harmonic signal observed
in background of a homogenous Poisson noise of intensity A > 0 (the so-called dark
current). We simply modify this model by adding Gaussian jumps (see Fig. 3.6 as
well):

3.1 Inhomogeneous Compound Poisson Process 143

50

40

30

20

0 5 10 15 20 25 30

Fig. 3.5 A trajectory of time-inhomogeneous Poisson process with exponentially decaying inten-
sity (1) = B exp(—Ar) and exponential jumps as defined in mod7. The dotted line is the intensity
A(t)

15

10 4

Fig. 3.6 A trajectory of time-inhomogeneous Poisson process with modulated and periodic inten-
sity A(t) = %(1 + cos(wt 4 ¢)) + A and Gaussian jumps as defined in mod8. The dotted line is the
intensity A(f)

mod8 <- setPoisson(intensity="0.5*a* (l+cos (omega*t+phi))+lambda",
df=1ist ("dnorm(z,mu, sigma) "))

set.seed (123)

poisson8 <- simulate (mod8, sampling=samp,
true.par=1list (a=2,omega=0.5,phi=3.14, lambda=5,mu=0, sigma=1))

plot (poisson8)

f <- function(t,a,omega,phi, lambda) 0.5*a* (l+cos (omega*t+phi))+lambda
curve (f (x,a=2,omega=0.5,phi=3.14, lambda=5),0,30,add=TRUE,
col="red",1lty=3, lwd=2)

144 3 Compound Poisson Processes

10

0 5 10 15 20 25 30
t

Fig. 3.7 A trajectory of time-inhomogeneous Poisson process with modulated and periodic inten-
sity A(¢) = a cos(6t) + A and Gaussian jumps as defined in mod9. The dotted line is the intensity
A(t)

3.1.5 Frequency Modulation Model

A model similar to the previous one, in which properties are also described in Ku-
toyants (1998), is the one that mixes exponential behaviour and periodicity in the
intensity A(t) = a cos(6t) + A, with 0 < a < A. We input it in yuima in this way
(see Fig. 3.7 as well):

mod9 (intensity="a*cos (theta*t)+lambda",
df= ("dnorm(z,mu, sigma) "))
(123)
poisson9 (mod9, sampling=samp,
true.par= (a=1, theta=0.5, lambda=5,mu=0, sigma=1))
(poisson9)
f function(t, a, theta, lambda) a* (theta*t) +lambda
(£ (x,a=1, theta=0.5, lambda=5),0,30,add=TRUE, col="red", lty=3, lwd=2)

3.2 Multidimensional Compound Poisson Processes

In the case of k-dimensional compound processes, it is necessary to specify the
k-dimensional distribution of the random jumps Y, through one of the existing
possibilities in R. Unfortunately, as there is no way to deduce the dimensionality of
the distribution from its specification when one constructs the model it is necessary
to specify this parameter in the argument dimension of setPoisson.

3.2 Multidimensional Compound Poisson Processes 145

300
X 150

0-

x 50

-200-

Fig. 3.8 A trajectory of time-inhomogeneous two-dimensional compound Poisson process with
multivariate Gaussian jumps as defined in mod10

3.2.1 Multivariate Gaussian Jumps

Next example specifies a two-dimensional inhomogeneous compound Poisson pro-
cess with multivariate Gaussian jumps (see Fig. 3.8 as well):

modl0 <- setPoisson(intensity="lambda*t",
df=1ist ("dmvnorm(z,c(0.15,-0.1) ,matrix(c(2,-1.9,-1.9,4.3),2,2))"),
dimension=2)
set.seed(123)
poissonl0 <- simulate (modl0, true.par=1list (lambda=5), sampling=samp)
poissonl0

#4#

Compound Poisson process

Number of equations: 2

Parametric model with 1 parameters

#4

Number of original time series: 2

length = 2305, time range [0 ; 30.0201047532617]

#4

Number of zoo time series: 2

length time.min time.max delta
x.1 3001 0 30 0.01
x.2 3001 0 30 0.01

plot (poissonl0)

The following is an example with a three-dimensional multivariate compound Pois-
son process (see Fig. 3.9 as well):

modll <- setPoisson(intensity="lambda*t",
df=1ist ("dmvnorm(z,c(0.01,-0.01,.05),
matrix(c(1,.5,0,.5,1,0,0,0,1),3,3))"),
dimension=3)

set.seed(123)

poissonll <- simulate(modll, true.par=1list (lambda=5)

146 3 Compound Poisson Processes

Fig. 3.9 A trajectory of time-inhomogeneous three-dimensional compound Poisson process with
multivariate Gaussian jumps as defined in mod11

sampling=samp,xinit=c(-100,200,300))
(poissonll)

3.2.2 User-Specified Jump Distribution

Parametric versions of the compound Poisson processes can be constructed. In this
case, the parameters must be set explicitly and specified during the simulation step.
Next example describes a two-dimensional compound Poisson process with two-
dimensional normal inverse Gaussian jumps. To this aim, we construct our functions
to describe the density and the random number generator. For simulation purposes,
yuima does not use the information coming from the distribution but only the random
number generator. For this reason, we can create a density object d2DNIG which
is not a true density which is needed only in model specification to allow yuima
to resume the random number generator r2DNIG from its name d2DNIG. This
approach will be replaced in future release of the package by the concept of law.

r2DNIG function (n, alpha) {
alpha 2

beta (0,0)

deltal 0.55

mu (0,0)

Lambda (e(1,0,0,1),2,2)

((n,alpha=alpha, beta=beta,delta=deltal, mu=mu, Lambda=Lambda))

fake der

1t needed for
d2DNIG function (n, alpha) {

(0,2)

3.2 Multidimensional Compound Poisson Processes 147

and we proceed with the construction of the model

modl2 <- setPoisson(intensity="lambda", df=1list ("d2DNIG(z,)"),
dim=2)

set.seed(123)

poissonl2 <- simulate(modl2, true.par= list(lambda=1),
sampling=samp)

poissonl2

##

Compound Poisson process

Number of equations: 2

Parametric model with 1 parameters

##

Number of original time series: 2

length = 29, time range [0 ; 30.1613615503751]

##

Number of zoo time series: 2

#4# length time.min time.max delta
x.1 3001 0 30 0.01
x.2 3001 0 30 0.01

One can describe a model where each component is independent and with different
distribution for the jumps like in the following example of a three-dimensional model
where the first component is Gaussian, the second is exponential, and the third is
normal inverse gamma:

rMydis <- function(n,a=1) {
cbind (rnorm(n), rexp(n), rNIG(n,1l,1,1,1))
}

dMydis <- function(n,a=1) {
rep(0,3)
}
modl3 <- setPoisson(intensity="lambda*t",
df=1list ("dMydis(z,1)"), dimension=3)
set.seed(123)
poissonl3 <- simulate (modl3, true.par=list (lambda=5),
sampling=samp)
poissonl3
#4#

Compound Poisson process

Number of equations: 3

Parametric model with 1 parameters

#4

Number of original time series: 3

length = 2305, time range [0 ; 30.0201047532617]

##

Number of zoo time series: 3

length time.min time.max delta
x.1 3001 0 30 0.01
x.2 3001 0 30 0.01
x.3 3001 0 30 0.01

148 3 Compound Poisson Processes

Note that the above argument a=1 is ignored but it is needed only to define
formally the density function and the random number generator.

3.3 Estimation

Estimation of compound Poisson processes in yuima is possible only in the one-
dimensional case at present. To this aim, the usual gm1e can be used. The likelihood
function exists in explicit form. Unfortunately, the asymptotic theory is model spe-
cific, and the estimators of the different coefficients in the intensity function have
non-standard rates (see Kutoyants 1998). In general, both high frequency and growing
T must be assumed to have good convergence properties. The large T requirement is
due to the fact that in the Poisson model the intensity function can only be estimated
as T diverges. The high-frequency requirement is needed in order to observe enough
events from the Poisson process.

3.3.1 Compound Poisson Process with Gaussian Jumps

Here is an example of compound Poisson process with nonconstant intensity A(¢) =
o + At and Gaussian jumps N (i, 0?). The aim is to estimate all the unknown

parameters in the model 0 = («, A, u, o) where the true value is 6y = (1, % 0,2):

modl4 (intensity="alpha+lambda*t",
df= ("dnorm(z,mu, sigma) ")
(123)
poissonléd (modl4, sampling=samp,
true.par= (alpha=1, lambda=.5,mu=0, sigma=2))
poissonl4
#4#

Compound Poisson process

Number of equations: 1

Parametric model with 4 parameters

#4#

Number of original time series: 1

length = 264, time range [0 ; 30.1784105685482]
#4#

Number of zoo time series: 1

length time.min time.max delta

x 3001 0 30 0.01

fitl4 (poissonld, start= (alpha=2, lambda=1,mu=0, sigma=1)
lower= (alpha=0.1, lambda=0.1,mu=-1,sigma=0.1)

upper= (alpha=10, lambda=10,mu=3, sigma=4) ,

method="L-BFGS-B")
(fit14)

3.3 Estimation 149

alpha lambda mu sigma
0.97964830 0.47913522 -0.00102812 2.05406584

The summary of the gmle in the case of jump process returns also additional infor-
mation on the observed jumps which are common to the case of diffusion processes
with jumps that will be considered in Chap. 4:

(£it14)

Quasi-Maximum likelihood estimation

#4#

Call:

gmle(yuima = poissonld, start = list(alpha = 2, lambda = 1, mu = 0,
sigma = 1), method = "L-BFGS-B", lower = list(alpha = 0.1,

lambda = 0.1, mu = -1, sigma = 0.1), upper = list(alpha = 10,
lambda = 10, mu = 3, sigma = 4))

#4#

Coefficients:

#4# Estimate Std. Error

alpha 0.97964830 0.55599883
lambda 0.47913522 0.04789083

mu -0.00102812 0.13122945

sigma 2.05406584 0.09279316

#4#

-2 log L: 434.4788

#4#

#4#

Number of estimated jumps: 245

#4

Average inter-arrival times: 0.122131

#4#

Average jump size: -0.001028

#4#

Standard Dev. of jump size: 2.058270

#4

Jump Threshold: 0.000000

#4#

Summary statistics for jump times:

Min. 1lst Qu. Median Mean 3rd Qu. Max.
#4# 0.13 14.55 20.37 19.59 25.97 29.93
#4#

Summary statistics for jump size:

Min. lst Qu. Median Mean 3rd Qu.
-5.619549 -1.386609 0.063052 -0.001028 1.278984
#4 Max.

5.383428

Notice that the summary statistics for jump size suggest that the jumps come from
the Gaussian distribution with zero mean and standard deviation 2.

150 3 Compound Poisson Processes

3.3.2 NIG Compound Poisson Process

Let us consider an example of homogenous compound Poisson process with normal
inverse Gaussian jumps.

modl5 <- setPoisson(intensity="lambda",

df=1ist ("dNIG(z,alpha,beta,gamma,mu) "))

set.seed(123)

poissonl5 <- simulate (modl5, sampling=samp,
true.par=1list (lambda=10, alpha=2,beta=0.3,gamma=1,mu=0))

poissonl5

fitl5 <- gmle(poissonl5,
start=1ist (beta=5, lambda=2, gamma=0.5,alpha=1,mu=0),
lower=1list (alpha=1,beta=0.1,lambda=0.1,gamma=0.1,mu=-1),
upper=1list (alpha=5,beta=0.99, lambda=20, gamma=2,mu=2) ,
method="L-BFGS-B")

summary (fitl5)

Quasi-Maximum likelihood estimation

#4

Call:

gmle(yuima = poissonlb5, start = list(beta = 5, lambda = 2,
gamma = 0.5,

alpha = 1, mu = 0), method = "L-BFGS-B", lower = list(alpha
= 1,

beta = 0.1, lambda = 0.1, gamma
list(alpha = 5,

beta = 0.99, lambda = 20, gamma
#4

Coefficients:

Estimate Std. Error

lambda 9.93334954 0.5754235

alpha 1.76434876 0.5016348

beta 0.41462936 0.2435998

gamma 0.88237689 0.1981752

mu -0.04894914 0.1064062

#4#

-2 log L: -131.3317

#4#

#4#

Number of estimated jumps: 298
#4

Average inter-arrival times: 0.099899
##

Average jump size: 0.164390

#4#

Standard Dev. of jump size: 0.731894

#4

Jump Threshold: 0.000000

#4#

Summary statistics for jump times:

Min. 1lst Qu. Median Mean 3rd Qu. Max.
0.120 7.415 15.190 14.884 22.510 29.790

0.1, mu = -1), upper =

2, mu = 2))

3.3 Estimation 151

##

Summary statistics for jump size:

Min. 1lst Qu. Median Mean 3rd Qu. Max.

-1.8322 -0.2782 0.0915 0.1644 0.5329 3.3452

3.3.3 Exponential Jump Compound Poisson Process

In this example, we assume that the jump distribution and the intensity function of
the process have one common parameter A:

modl6é <- setPoisson(intensity="beta*exp (-lambda*t)",
df=1ist ("dexp (z, lambda) "))
set.seed (123)

poissonl6 <- simulate (modl6, true.par=list (lambda=.2,beta=10),
sampling=samp)

poissonlé

#4#

Compound Poisson process

Number of equations: 1

Parametric model with 2 parameters

#4#

Number of original time series: 1

length = 56, time range [0 ; 22.576481101042]
#4#

Number of zoo time series: 1

length time.min time.max delta

x 3001 0 30 0.01

fitlé <- gmle(poissonlé6,
start=1ist (beta=.5, lambda=2),
lower=1list (beta=0.1,lambda=0.1),
upper=1list (beta=20, lambda=10) ,
method="L-BFGS-B")

summary (fitl6)

Quasi-Maximum likelihood estimation

#4#

Call:

gmle(yuima = poissonl6, start = list(beta = 0.5, lambda = 2),
method = "L-BFGS-B", lower = list(beta = 0.1, lambda = 0.1)
#4# upper = list(beta = 20, lambda = 10)

#4#

Coefficients:

#4 Estimate Std. Error

beta 10.0271900 1.70795286
lambda 0.1922273 0.01936245
##

-2 log L: 241.873

##

152 3 Compound Poisson Processes

##

Number of estimated jumps: 52

##

Average inter-arrival times: 0.440196

##

Average jump size: 5.368982

##

Standard Dev. of jump size: 5.344620

##

Jump Threshold: 0.000000

##

Summary statistics for jump times:

Min. 1lst Qu. Median Mean 3rd Qu. Max.
0.120 1.823 3.320 4.941 5.935 22.570
##

Summary statistics for jump size:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.02908 1.53416 3.54106 5.36898 7.78484 21.76591

3.3.4 The Weibull Compound Poisson Process

We consider again the Weibull compound Poisson process with Gaussian jumps:

modl7 - setPoisson(intensity="lambda*t” (lambda-1)",
df=1ist ("dnorm(z,mu,sigma)")

set.seed (123)

poissonl7 <- simulate(modl7, true.par=list(lambda=2,mu=0, sigma=2),
sampling=samp)

poissonl?7

fitl7 <- gmle(poissonl7,
start=1list (lambda=5,mu=0,sigma=1),
lower=1list (lambda=0.1,mu=-1,sigma=0.1),

upper=1list (lambda=10,mu=3, sigma=4),
method="L-BFGS-B")

summary (£it17)

Quasi-Maximum likelihood estimation

##

Call:

gmle(yuima = poissonl7, start = list(lambda = 5, mu = O,
sigma = 1),

method = "L-BFGS-B", lower = list(lambda = 0.1

sigma = 0.1), upper = list(lambda = 10, mu = 3, sigma = 4))
#4#

Coefficients:

Estimate Std. Error

lambda 1.94548958 0.01063067

mu -0.04916873 0.07964453

sigma 2.18696388 0.05631872

3.3 Estimation 153

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

-2 log L: -264.4562

Number of estimated jumps: 754

Average inter-arrival times: 0.039110
Average jump size: -0.049143

Standard Dev. of jump size: 2.188374
Jump Threshold: 0.000000

Summary statistics for jump times:

Min. 1lst Qu. Median Mean 3rd Qu. Max.
0.54 13.90 20.39 19.37 25.54 29.99
Summary statistics for jump size:

Min. 1st Qu. Median Mean 3rd Qu. Max.
-7.29017 -1.47597 -0.04692 -0.04914 1.40901 7.35593

also in this case the maximum likelihood approach produces good estimates.

3.3.5 Modulated and Periodical Intensity Model

Finally, we consider the estimation problem for the modulated and periodical inten-
sity model with Gaussian jumps

modl8 <- setPoisson(intensity="0.5*a* (l+cos (omega*t+phi))+lambda",
df=1ist ("dnorm(z,mu,sigma)"))
set.seed (123)

poissonl8 <- simulate (modl8, sampling=samp,
true.par=1list (a=2,omega=0.5,phi=3.14, lambda=5,mu=0, sigma=1))
fitl8 <- gmle(poissonl8§,

start=1list (a=1, omega=0.2, phi=1l, lambda=2, mu=1l, sigma=2),
lower=1list(a=0.1, omega=0.1, phi=0.1, lambda=0.1, mu=-2, sigma=0.1),
upper=1list (a=5, omega=1l, phi=5, lambda=10, mu=2, sigma=3),
method="L-BFGS-B")
summary (£it18)

##
##
##
##
##
##
##
##
##

Quasi-Maximum likelihood estimation

Call:
amle (yuima = poissonl8, start = list(a = 1, omega = 0.2,
phi = 1,

lambda = 2, mu = 1, sigma = 2), method = "L-BFGS-B", lower
= list(a = 0.1,

omega = 0.1, phi = 0.1, lambda = 0.1, mu = -2, sigma =
0.1),

154 3 Compound Poisson Processes

upper = list(a = 5, omega = 1, phi = 5, lambda = 10, mu =
2,
sigma
#4

Coefficients:

Estimate Std. Error

a 1.88325585 1.28883394

omega 0.42829021 0.13037074

phi 2.99248228 1.27490712

lambda 4.97892402 0.82826617

mu 0.03712969 0.07342504

sigma 0.97685658 0.05191948

#4#

-2 log L: 217.4368

#4#

#4#

Number of estimated jumps: 177

#4#

Average inter-arrival times: 0.168011

#4#

Average jump size: 0.037138

#4

Standard Dev. of jump size: 0.979623

#4#

Jump Threshold: 0.000000

#4#

Summary statistics for jump times:

Min. 1lst Qu. Median Mean 3rd Qu. Max.

0.31 6.78 12.82 14.18 21.44 29.88

#4#

Summary statistics for jump size:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.46590 -0.58948 0.03455 0.03714 0.70352 2.57146

3))

even in this 6-parameters model the estimation procedure seems to work properly.

Chapter 4 ®)
Stochastic Differential Equations Driven Gzt
by Lévy Processes

4.1 Lévy Processes

Definition 4.1 An R%-valued stochastic process X = (X,);er . defined on a proba-
bility space (£2, %, P)is called a Lévy process if it satisfies the following conditions:

(i) Xo=0as.

(ii) (independent increments) X, — X, , (i = 1, ..., n) are independent for any
(ti)i=0,.n O<tHp<---<t,)andn € N.

(iii) (stationary increments) Z{X, — X,} = L{X,_,} fors,t e Ry, s < t.!
(iv) (stochastic continuity) Forany ¢ > Oandr € R, lim,_,, P[|X; — X,| > ¢] =
0.
In Definition 4.1, Condition (iv) can be replaced by
(iv") Forany ¢ > 0, lim, o P[|X;| > €] = 0.
It is known that the Lévy process X in the sense of Definition 4.1 admits a cadlag
version.? That is,
(v) (cadlag) There exists an event §2¢ such that P[£2y] = 1 and each path R, >
t — X, (w) is cadlag for w € £2y.

Hereafter, we will assume the property (v) for Lévy processes unless otherwise
specified. Two stochastic processes X = (X;)r, and ¥ = (Y)g, are identified if
they are indistinguishable, i.e. P[X, = Y; (Vt € R,)] = 1. For a complete treatment
on Lévy processes see 1t6 (2013) and Sato (1999).

The distribution of a random variable Z is denoted by £{Z}.
2The term cadlag stands for “right-continuous and admitting left-hand limits”.
© Springer International Publishing AG, part of Springer Nature 2018 155

S. M. Iacus and N. Yoshida, Simulation and Inference for Stochastic
Processes with YUIMA, Use R!, https://doi.org/10.1007/978-3-319-55569-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-55569-0_4&domain=pdf

156 4 Stochastic Differential Equations Driven by Lévy Processes

4.1.1 Infinitely Divisible Distributions

A probability distribution 1+ on RY is called to be infinitely divisible if for every n €
N, there exists a probability distribution s, on RY such that o = u;" (n-convolution
of u,). Infinitely divisible laws are specified by the following representation.

Theorem 4.1 (Lévy-Khintchine formula) For any infinitely divisible law p on R,
the characteristic function [L of admits the representation

i) = exp(Ye)) (ueRY 4.1)
with
Vew) =ib-u— %C[u‘m] +/ (" =1 —iu-x1yy=y)v(dx), (42)
]Rd
where
(i) beRY

(ii) C is ad x d-nonnegative symmetric matrix, and
(iii) v is a measure on RY such that v({0}) = 0 and fRd(|x|2 A Dv(dx) < oc.

The representation (4.1) and (4.2) is unique. Moreover, for a triplet (b, C, v) satis-
fying (i)—(iii), there exists an infinitely divisible distribution u whose characteristic
function [i is given by (4.1) and (4.2).

When f{\x|§l} [x|v(dx) < 00, (4.2) can be written as
1 .
Ye(u) =ib_-u— 5C[u®2] +/ (e’”'x — l)v(dx) 4.3)
Rd

with correspondence

lL:b—/ x v(dx).
{lx|=1}

When f{ [x[v(dx) < oo, (4.2) is rewritten as

|x|>1

Veu) =iby -u— %C[u‘g’z] +/ (e"* —1—iu-x)v(dx)
Rd

with correspondence

by =b+f xv(dx).
{lx|>1}

4.1 Lévy Processes 157

4.1.2 Infinite Divisible Distributions, Lévy Processes,
Lévy-1to Decomposition

Obviously, for any Lévy process X, the law .Z{X,} is infinitely divisible for# € R .
Thanks to stationarity, independency of increments and stochastic continuity, the
law of X on the space D(RY), the space of all cadlag functions f : R, — RY, is
determined by the infinitely divisible law © = Z{X,}. In particular, 027{)(\, Hu) =
exp (19 (u)) with v in Theorem 4.1.

Conversely, Kolmogorov’s extension theorem ensures that for any infinitely divis-
ible distribution 12 on RY, there exists a unique Lévy process X = (X),cpe such that
ZL{X1} = n (See e.g., p-35, Theorem 7.10, Sato 1999, for details). Thus, there is a
one-to-one correspondence between Lévy processes X and infinitely divisible dis-
tributions u = Z{X,}. The triplet (b, C, v) of u characterizes a Lévy process. The
measure v is called a Lévy measure.

The Lévy-1t6 decomposition gives a description of paths of Lévy processes. Given
a probability space (§2, .7, P), a collection of measure ;4 = (iy)weg iS called a
Poisson random measure on E = R, x RY if it satisfies the following conditions.

(1) Foreachw € £2, i, (-) is a measure on E.

(2) Foreach B € B(E), u.(B) is measurable.

(3) For any disjoint measurable sets By, ..., B,, the family {u(B)), ..., u(B,)} is
independent.

(4) Forany B € B(E) with i(B) = E[(B)] < 00, iu(B) has the Poisson distribu-
tion with parameter i (B).

Here B(E) denotes the Borel o-field of E. The measure j& is called the intensity
measure of .

Theorem 4.2 (Lévy-Ité6 decomposition) Any d-dimensional Lévy process X has a
representation

t t
X, =bt +C'2W, + / / x(u —)(ds, dx) + / / xu(ds, dx),
0 Jix|<1 0 Jx|>1

where b € R, C € Ry, W = (W,),er, is a standard Wiener process, and [is
an independent Poisson random measure on R x RY with an intensity measure
i(ds,dx) = dsv(dx) for ameasure v such that v({0}) = Oanded [x]?v(dx) < oo.

The integral with respect to — ft is a stochastic integral that should be read in
L?-sense.

In the following sections, we shall observe several processes that have more or
less explicit representations. We will assume that d = 1 unless otherwise stated.

158 4 Stochastic Differential Equations Driven by Lévy Processes

4.2 Wiener Process

A d-dimensional standard Wiener process W = (W,),cr, is a Lévy process with
characteristics (0, Iq, 0), where Iy is the d-dimensional identity matrix. Obviously
the law Z{W,} of W, is infinitely divisible.

4.3 Compound Poisson Process

Consider a family of i.i.d. random variables {£;};cy taking values in RY. Let N =
(N1):er, be a Poisson process with intensity parameter A, independent of {§;} jen.
Define a stochastic process X = (X;);er, by

Ny
X, = ZE}
j=1

By convention, the summation reads O if there is no summand: X; = 0 when N, = 0.
With the occurrence times (7) jen, 0 < 71 < T < -+ -, we can write

[o¢]
Xi =Y Eiliz00)).
j=1

Then X is a compound Poisson process.

It is easy to show that X is a Lévy process. Indeed, by using the conditional
independency of {&;} ey given N and the property of independent increments of N,
we have

n n th
E[exp(izuj'(xt_/_Xt_/_1))] = E[HE[GXP(Z’MJ‘- Z Ej) ‘N:H
j=1 j=1 j:Nt_j_|+l

n

E[1_[%, (uj)N’./—l—N'j} - 1_[E[%l(uj)Nf_/—l—Nf.i]
j=1

Jj=1

]_[E[exp (iuj (X — X,j_])ﬂ
j=1

fort; (0 <ty <t; <---<ty)and {u;}j=,. .. C RY. The the Kac theorem ensures
that X has independent increments. The stationarity of increments and the stochastic
continuity are easily observed.

4.3 Compound Poisson Process 159

As a particular case of the above computation, we also obtain

E[exp (iu . X,)] = E[(pg1 (u)N’] = exp [M((pg, (u) — 1)]
= exp [r / (e"* — AP (dx)]
Rd

for the distribution P% of &,. Therefore, X is a Lévy process with characteristics
b_ =0,C =0and v(dx) = AP% (dx).

The function setPoisson can be used to build a yuima model of a compound
Poisson type. The jump distribution is specified by the argument df. Simulation is
run by applying simulate to yuima model so constructed.

(123)
mu 0
sigma 1
lambda 10
samp (Terminal=10, n=1000)
modl10b (intensity="lambda", df= ("dnorm(z,mu, sigma) "))
v10b (mod10b, sampling=samp,
true.par= (lambda=lambda,mu=0.1, sigma=2))
v10b
##

Compound Poisson process

Number of equations: 1

Parametric model with 3 parameters

#4

Number of original time series: 1

length = 113, time range [0 ; 10.2515652111658]

#4

Number of zoo time series: 1

length time.min time.max delta
x 1001 0 10 0.01

See Chap. 3 for more details on compound Poisson processes and their simulation
and inference within yuima.

4.4 Gamma Process and Its Variants

4.4.1 Gamma Process

For positive numbers é and y, the Gamma distribution /" (8, y) with density

P
prix) = %x“e*w‘lm,m)(x), x eR, (4.4)

160 4 Stochastic Differential Equations Driven by Lévy Processes
has the characteristic function
. -8
orw) =(1—iu/y) .
I" (8, y) is infinitely divisible, in particular,
L@, y)*«I'(82,y) = I'(61+ 82, 7).
There exists a Lévy process X such that
. —5t
ox, = (L —iu/y) ",

and Z{X,} = I'(8t, y). By the formula® log (1 — iu/y) = [;°(1 — e"”")e;ldx,

we obtain
R Se r¥
@x, (u) = exp <t / (" =1) dX>
0 X

Therefore, b_ = 0, C = 0 and dv/dx(x) = Sx"e_yxl{x>0}. The Lévy process
X with these characteristics is called a gamma process I'P(§, y) for parameters §,
y > 0, (see, e.g., Applebaum 2004)

4.4.2 Variance Gamma Process

A process X* = (X°),cg, is called a variance gamma process VGP(§, y_, y,) if
it has a decomposition

X; =X - X7,
where Xt = (X)/er . and X~ = (X);er, are independent gamma processes with
Lévy measures dvy+/dx(x) = (Sx’]e”’*xlgpo} and dvy-/dx(x) = Sxle "+

1{x~0), respectively. Here § and y. are positive constants.
By definition, the characteristic function gyo is given by

11, I
oxo(u) = pxrWex-(—u) = |1 = — — — |iu+ u .
Y+ V- V+V-

3log (1 — iu/y) = fol 77"”(1 - ius/y)_lds = fol fooo(—iu)ei“” e dxds = fooo fol
(—iu)e'"*ds e V*dx = fooo(l — e’"*)?dx.

4.4 Gamma Process and Its Variants 161

The process X is a Lévy process with characteristics b»_ = 0, C = 0 and
dv
E(X) =8|x| e M gy + 8x e 1 hnpy.

The parameterization

@am:Gy4W+y—ﬂ)

2 7 2
that is,

G y—ys) = (ha+B.a—p)

is often used. Then,

o — (B +iu)?™
Pxo(u) = [W}

For a constant i € R, the process X, = ut+ X? is called a normal gamma process
NGP(A, «, B,) or a variance gamma process VGP(A, «, 8, i) in the present yuima
package. The characteristics are b = u, C = 0 and v. In particular, @x, (1) =
ei“'”g0X9 (u). As it will be seen in Sect.4.8.4, the density of X, is

1 At — =3
rx, (x) = NI (a2 - /32) (%) th%(alx — ut]) exp(B(x — ut)).

Further reading on the variance gamma process can be found in Madan and Seneta
(1990a), Madan et al. (1998) and Seneta (2007).

4.4.3 Bilateral Gamma Process

The yuima package is equipped with the bilateral gamma process BI" (5., y,
8_, y-) that is a Lévy process with characteristics b = 0, C = 0 and

dv =3 —le=r-Ixlq Sox e r+]
a(x)— _|x|"e x<0} +8:x e (x>0}

Therefore, for the bilateral gamma process X;,

—8,1

ox, () = (1+iufy)" (1= iu/yy)

162 4 Stochastic Differential Equations Driven by Lévy Processes

The reader can refer to Kiichler and Tappe (2008a, b) for more details on the bilateral
gamma distribution and process.

4.4.4 Simulation of Gamma Processes

The correspondences between the parameters of the bilateral gamma process and the
arguments of the functions rbgamma and dbgamma of yuima are as follows:

delta.plus = §,, gamma.plus = y,, deltaminus=4_, gamma.minus = y_

Let us generate paths of the bilateral gamma process with §; = 1.4, y, = 0.3,
5_=2,andy_ =0.64

BGmodel <- setModel (drift="0", xinit="0", jump.coeff="1",
measure. type="code", measure=1list (df="rbgamma (z, delta.plus=1.4,
gamma.plus=0.3, delta.minus=2,
gamma .minus=0.6)"))

n <- 1000
samp <- setSampling(Terminal=1, n=n)
BGyuima <- setYuima (model=BGmodel, sampling=samp)

set.seed (127)
for (i in 1:5) {
result <- simulate (BGyuima)
plot (result,xlim=c(0,1),ylim=c(-6,6),
main="Paths of bilateral gamma process",col=i,par (new=T))

}

The simulated paths can be seen in Fig. 4.1. When 6_ = 4., the bilateral gamma
process is a variance gamma process.”

VGmodel <- setModel (drift="0", xinit="0", jump.coeff="1",
measure.type="code", measure=1list (df="rbgamma(z, delta.minus=2,
gamma.minus=0.6, delta.plus=2, gamma.plus=0.3)"))

VGyuima <- setYuima (model=VGmodel, sampling=samp)

set.seed (127)

for (i in 1:5) {
result <- simulate (VGyuima)
plot (result,xlim=c(0,1),ylim=c(-4,12),

main="Paths of variance gamma process",col=i,par (new=T))

}

Again, the simulated trajectories can be seen in Fig. 4.2. In the case where §_ = 0, the
bilateral gamma process becomes a gamma process. We use the simulator rgamma
instead of rbgamma (Fig.4.3).

4We owe YUIMA’s random number generators of Lévy processes to Hiroki Masuda.
3The function rvgamma is also available to generate variance gamma processes.

4.4 Gamma Process and Its Variants 163

Paths of bilateral gamma process

< I]
I

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4.1 Simulated trajectories of a bilateral gamma process

Paths of variance gamma process

| T

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4.2 Simulated trajectories of a variance gamma process

Paths of gamma process

X
0.0 0.2 04 06 0.8 1.0 1.2

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4.3 Simulated trajectories of a gamma process

164 4 Stochastic Differential Equations Driven by Lévy Processes

Gmodel <- setModel (drift="0", xinit="0", Jjump.coeff="1",
measure.type="code", measure=list (df="rgamma (z,
shape=0.7, scale=1)"))

n <- 10000

samp <- setSampling(Terminal=1, n=n)

Gyuima <- setYuima (model=Gmodel, sampling=samp)

set.seed(129)

for (i in 1:5){

result <- simulate (Gyuima)
plot (result,xlim=c(0,1),ylim=c(-0.1,1.2),

main="Paths of gamma process",col=i,par (new=T))

We shall compare the histogram of X; obtained by simulate with the density
function of Gamma(0.7, 1) (Fig.4.4).

nE<—5
sampling <- setSampling(Terminal=1, n=n)
Gmodel <- setModel (drift="0", xinit="0", jump.coeff="1",
measure. type="code", measure=list (df="rgamma (z,
shape=0.7, scale=1)"))
Gyuima <- setYuima (model=Gmodel, sampling=samp)
simdata <- NULL
set.seed(127)
for (i in 1:3000){
result <- simulate (Gyuima)
x1 <- result@data@original.data[n+1,1]
simdata <- c(simdata,as.numeric(xl))
}
hist(simdata, xlim=c(0,2), ylim=c(0,3), breaks=100, freg=FALSE,
main=expression (paste("Distribution of ", X[1],
" and Density of Gamma (0.7,1)")))
curve (dgamma (x,0.7,1) ,add=TRUE, col="red")

Distribution of X4 and Density of Gamma(0.7,1)

Density
00 05 1.0 15 20 25 3.0

T
0.0 0.5 1.0 15 2.0
simdata

Fig. 4.4 Distribution of simulated gamma process X versus theoretical gamma distribution

4.5 Generalized Tempered Stable Process, Tempered ... 165

4.5 Generalized Tempered Stable Process, Tempered o
Stable Process, CGMY Process, Positive Tempered
Stable Process

A generalization of the bilateral gamma process is the generalized tempered stable
process GTSP(«y, 6, y4+,a—,8_, y_, b) that has the Lévy triplet b € R, C = 0
and v such that

d—”(x) =8_|x|7 %71 + 8 x e
dx = 0_ {x <0} +X e {x>0}»
where 6+ > 0, y+ > 0 and o < 2 (see, e.g., Cont and Tankov 2004; Schoutens
2003; Kyprianou et al. 2005; Koponen 1995; Levendorskii and Boyarchenko 2002,
related with this section).

A special case is the tempered « stable process TSP(«, 6., y4+, 56—, y—, b) with
components C = 0 and

%(x) =5 |x |—l—ae}/fx 1{x<0} + 8+x—l—ote—)/+x 1{X>O}9
where §+ >0, y+ > 0and @ < 2.

The CGMY process (Carr et al. 2002) is a tempered « stable process for constants
b+ =c¢,y- = g, ¥+ = m, o = y. In particular, the CGMY process for y = 0 is a
variance gamma process. The positive tempered stable process PTSP(«y, 6, v+)
is GTSP(wy, 64, v+, 0,0,0,0) = TSP(a4, 6+, ¥4, 0,0, 0).

The yuima package provides a random number generator of X of the positive
tempered stable process X with parameters oy € (0, 1), §; > O and y; > 0. More
information on the simulation of tempered stable random variables can be found in
Barndorff-Nielsen and Shephard (2001b) and Kawai and Masuda (2011).

4.6 Inverse Gaussian Process

The inverse Gaussian distribution 1G(5, y) = GIG(—1/2, 8, y) is a distribution

with the probability density
8 8 - [1<82 :)}
eVxzexp| — = —+y°x 4.5)
2 P 2\ x v

PN\ 82(x — 8y~

27 2(8y—12x
forx > 0,8 > 0 and y > 0. The case y = O results in (4.13) with A =
—1/2. The fact the function pig(-; §, y) defines a probability distribution follows

pic(x; 8, y) =

166 4 Stochastic Differential Equations Driven by Lévy Processes

Histogram of x

<
i TH
o f S
=
g o
O
o
w
o
<]
e [T T T 1
0.0 0.5 1.0 1.5 2.0
X

Fig. 4.5 Theoretical versus simulated Inverse Gaussian distribution

more generally from the expression of its Fourier transform® ¢ig(u;$,y) =
Joo e pig(x; 8, y)dx:

oic(u; 8, y) = exp [y(S(l — V1 —2iu/y2)] ,ueR. (4.6)

Thus, the class of inverse Gaussian distributions satisfies the following reproducing
property:

IG(1, y) *1G(82,) = 1G(81 + 62, ¥)

The infinite divisibility of IG(4, y) is clear, and the corresponding Lévy process is
called an inverse Gaussian process IG(5, y) with parameters § > 0 and y > 0.
IG(8, ¥) has mean 8§y ~' and variance 8§y 3. The reader can also refer to Barndorff-
Nielsen (1997) and Chhikara and Folks (1989).

The function r IG with arguments n, delta and gamma generates n independent
random numbers having the distribution IG(§, y) (Michael et al. 1976) (Fig.4.5).

SFora > Oand > 0, let f(t) = I x 32 exp(—a/x — tx)dx = I y 12 exp(—ay —t/y)dy.

In particular, f(0) = /m/a. We see f'(t) = —./a/t f(t) by changing variables by x =
a(yt)™! for f'(1) = —fooox’l/z exp(—a/x — tx) dx. Solve the differential equation to show

I x 32 exp(—a/x — tx)dx = /m]a exp(—2+/ar). Then, we obtain (4.6) by substituting 52 /2
into a and y?2/2 — iu into t with analytic continuation.

4.6 Inverse Gaussian Process 167

delta <- 1
gamma <- 2
set.seed(127)
X <- rIG(100000,delta, gamma)
hist (x,xlim=c(0,2),ylim=c(0,2),breaks=100, fregq=FALSE)
curve (dIG(x,delta,gamma) ,add=TRUE, col="red",
from=min (x), to=max(x), n=500)
mean (x)

[1] 0.5012324

var (x)
[1] 0.1263361

We can build a yuima model of the inverse Gaussian process by setModel. We
select code for the argument measure. type and rIG(z,delta, gamma) for
the measure. Let us generate five paths as follows (Fig. 4.6).

IGmodel <- setModel (drift=0, xinit=0, jump.coeff=1,
measure.type="code", measure=1list(df="rIG(z, delta=1l, gamma=2)"))
n <- 1000
samp <- setSampling(Terminal=1, n=n)
IGyuima <- setYuima (model=IGmodel, sampling=samp)
set.seed(127)
for (i in 1:5){
result <- simulate (IGyuima,xinit=0)
plot (result, xlim=c(0,1), ylim=c(0,1),
main="Paths of IG process (delta=1, gamma=2)",par(new=T),col=1i)

}

Next, let us compare the empirical distribution Z{X} of simulated paths and
1G(3, y). We take n = 5 to reduce time of simulation since the theoretical distri-
bution is independent of a choice of n (Fig.4.7).

Paths of IG process (delta=1, gamma=2)

1.0

04 06 038
| | |

0.0 0.2

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4.6 Simulated paths of IG process

168 4 Stochastic Differential Equations Driven by Lévy Processes

Distribution of X4 and Density of 1IG(1,2)

Q_
N -
pap
N
Q| N
P
2 5
O «~ |
=)
n
g
o |
e [T T T 1
0.0 0.5 1.0 1.5 2.0
IGsimdata

Fig. 4.7 Theoretical versus simulated IG(1,2) process distribution

n <-5
samp <- setSampling(Terminal=1, n=n)
IGyuima <- setYuima (model=IGmodel, sampling=samp)
IGsimdata <- NULL
for (i in 1:3000) {
result <- simulate (IGyuima)
x1l <- result@data@original.datal[n+1,1]
IGsimdata <- c¢(IGsimdata,as.numeric(xl))

}
hist (IGsimdata,xlim=c(0,2), ylim=c(0,2), breaks=100, freg=FALSE,
main=expression (paste("Distribution of ",X[1],
" and Density of IG(1,2)")))
curve (dIG(x,delta,gamma) ,add=TRUE, col="red",
from = 0.001, to = 5, n=500)

It is know that the hitting time t; = inf{t > 0; yt + W, = §} for a standard
Wiener process W, with Wy = 0 has the inverse Gaussian distribution 1G(3, y).
The reproducing property looks natural by strong Markovian property of the Wiener

process.
The characteristic function ¢;g admits a representation

. 1 1.2
(u;8,y) =ex |:/ (" — 1)—=8x 32727 xdxi|.
[4(¢] Y p 0 \/E

Indeed,
1
V1=2iu/y?2—1= / 27N (=2iu/y?) /1 — 2ius/y2ds
0

1 00 1 —1
:/ 2_'(—2iu/y2)/ F<§> (y2/2)'/2x_'/zexp[iusx—2_'y2x]dxds
0 0

= /00(1 — ei”x)y_l(Zﬂ)_]/zx_3/2e_271”2xdx.
0

4.6 Inverse Gaussian Process 169

Therefore, the characteristics are given by b_ = 0, C = 0 and

dv
_ =1 -
I (x) (=0 5=

Sx 7322,

In the case y = 0, the distribution IG(8, 0) is called a Lévy distribution. It has a
density

§ _a 82
pLevy(-xg 8) = «/Ex 2exp| — ; s

and the corresponding Lévy measure is

dv(=1 1
— X)) = 1>
dx : 0}«/271

The process X is an increasing stable process for « = 1/2 and b_ = 0 described in
details in the next section.

sx32,

4.7 Increasing Stable Process

For a € (0, 1), the Lévy process with characteristics b > 0, C = 0 and

ac
y—————X
I'dl—ow

—1l—a

dv()= 1
X) = x>
dx x>0

is called an increasing stable process S (¢, b_) (See, e.g., Sato 1999; Cinlar 2011).
An S, («, b_) process X, has the characteristic function

@x, () = exp [t{ — ca|u|a(1 — i tan ?sign(u)) + ib_u”

where’

To
Cq = CCOS —.
2

The positive tempered stable process PTSP(«, §, y) given in Sect.4.5 is the Lévy
process having characteristics b_ = 0, C = 0 and

"For « € (0,1), u € Rand A > 0, one has [;° (eC+H0x — 1)x~1=%dx = [°(-1 +
iu) fov e A gox == gy = o~V (=A + iu) fooo eAMsg—age — (L — i)~ (1 —).
Let A | 0 with limy jo(A — iu)® = u|® exp(—i%sign(u))A

170 4 Stochastic Differential Equations Driven by Lévy Processes

dv
o0 =8 e gy,
where § > 0,y > 0and « € (0, 1).

The function rpts generates random numbers of the positive tempered stable
distribution. Let us generate random numbers of X for a positive tempered stable
process X in two ways X and X o+ (X1 —X12) = X1 o+ X/l/2 for an independent
copy X, of X1

rep 3000000

(129)
X1 (rep,0.5,0.2,1)

(X1,x1im=c(0,3),ylim=c (0, 3),breaks=100,

main= (X[1]),probability=TRUE)
X05 (rep,0.5,0.1,1)
X05.prime (rep,0.5,0.1,1)
Xsum X05+X05.prime

(X1)
Min. 1st Qu. Median Mean 3rd Qu.
0.008864 0.111001 0.212039 0.354374 0.427638
#4 Max.

10.587877

(Xsum)
Min. 1st Qu. Median Mean 3rd Qu.
0.008556 0.110882 0.211898 0.354134 0.426951
Max.

12.397137

(X1, Xsum)
#4
Two-sample Kolmogorov-Smirnov test
#4#

data: X1 and Xsum
D = 0.00069933, p-value = 0.4555
alternative hypothesis: two-sided

The above code shows the summary statistics for the simulated data and the results
of the Kolmogorov—Smirnov test which does not reject the hypothesis of equality
in distribution of the simulated data from X and X/, + X/ 2 Figure 4.8 represents
the histogram for the simulated data from X;. The random number generator uses
acceptance/rejection method with the acceptance rate = exp(§ 1" (—a)y*). A warning
appears if the acceptance rate is too small. This will be not a restriction in simulation
of stochastic differential equations because § is proportional to the discretization step
size.

4.8 Subordination 171

X4 positive tempered stable distribution

| | | | |

|

Density
00 05 10 15 20 25 3.0

L

0.0 0.5 1.0 1.5 2.0 25 3.0

Fig. 4.8 Histogram of simulated data from a positive tempered stable distribution

4.8 Subordination

4.8.1 Definition

Given a probability space (£2, .%, P),let Y = (Y;),cs be a d-dimensional stochastic
process with a parameter s in a set S. For example, S = R,, N = {1,2, ...}, Z, =
{0, 1, ...} and so on. For a process S = (S;);cr defined on 2, taking values in S and
having a parameter space T, we can make a new process X = (X;);cT by

X (w) = Ys,(0)(®) (we 2,teT).

This procedure to obtain Y is called subordination and S is called a subordinator.
The process X made by subordinating Y to a nondecreasing process in an order of S
is denoted by Y. Usually “subordinator” means a nondecreasing process.

4.8.2 Compound Poisson Process by Subordination

The compound Poisson process discussed in Sect. 4.3 is an example of subordination.
That is, for an i.i.d. sequence § = (§;);en and a Poisson process S = (S8;);ez,
independent of &, the compound Poisson process is given by Yg = (Ys),cz, for
Y = (Yy)sez,, wWith Yy =0and ¥, = Z‘}zl g fors > 1.

172 4 Stochastic Differential Equations Driven by Lévy Processes

4.8.3 Subordination of a Wiener Process with Drift

For a d-dimensional standard Wiener process W = (W,),er, and B € RY, we con-
sider subordination of the process (8¢ + W;),cr, to a one-dimensional nondecreasing
Lévy process S with characteristics b_ = b5 > 0 in the sense of (4.3), C = 0 and
v=1S charging only on (0, co) and fooo(x A DS (dx) < oo.

In a similar way as in Sect.4.3, it is easy to see that the process X; = S, + W,
is a Lévy process. In a special case where S is a compound Poisson process with
bounded jumps, with the aid of analytic continuation (in the second equality below),
we have

E[exp {iu - (5B + Ws,)}]
= E[exp{iu-(B+27"iu)S}]

bSiu-(B+2""iu) + /OO <exp (iu- (B + 2 "iu)s) — 1)v5(ds)H
0

~

= exp

=exp|t{bSiu- (B +27 iu) + foo (/ @"* — D (x; sp, sld)dx> vs(ds)”
0 Rd

=exp|r{iu- (biﬂ+/0°o v3(ds) | <1x¢(x;sﬂ,sld)dx) — 275 u)?
+/:O Rd(e""‘x —1—iu 'X1{|x\51});5(X; Bs, s)dx VS(dS)”

= exp Hiu : (bsﬂ +/0°Ov5(ds) | <1x¢(x;s/3,sld)dx) — 275 ju)?
+ Rd(el‘“'x —1—iu .xlux,q})(/ogomx;sﬁ,sld)us(ds)>dx ”

for u € RY.8 Thus, the resulting characteristics (b%, C¥*, vX) for (b, C, v) in (4.2)
are given by

X =bSB+ [T v5(ds) flxlfl x¢(x; 5B, sly)dx,
cX =bp51y, 4.7
v¥(dx) = [;° ¢ (x; 5B, sIg)v¥(ds) dx,

where ¢ (-; u, X) denotes the normal density function with mean vector u and covari-
ance matrix X.

As a matter of fact, the representation (4.7) of characteristics is valid for general
subordinator S. Note that

8The above computation (second equation) works by analytic continuation with respect to i in the
present case, but it is incorrect in general, where Fubini’s theorem cannot be applied.

4.8 Subordination 173

‘/ x¢(x; 5B, slg)dx| = O(s)
[x[=<1

and

/ |x[*¢ (x; B, sIg)dx = O(s)
lx|<1
as s |, 0 are necessary conditions for the validation of the above result, and that
/ |x|¢ (x; 5B, sIg)dx > c/s
lx|=<1

as s | 0 for some positive constant ¢ for the validity of the representation (4.2). The
Lévy measure has a representation

v¥(B) = / OOEUB(YS)]vS(ds) (B € B[RY])
0

with subordinated process Yy = s + W;.
For a d-dimensional standard Gaussian variable ¢, Z{S,8 + Ws,} = Z{S,B +
V/S,¢}. Therefore, the density of X, = S;8 + W, is

px, (x) =/0 ¢ (x; sB, s1g) ps, (s)ds (4.8)

for the density function pg, of S;.

4.8.4 Variance Gamma Process with Drift

Let A, € (0,00), B € R(a > |B]) and € R. For a gamma process S = (S;);er,
such that

S, ~ T (A, (@ — 2)/2),
let
X, = ut+ BS; + Ws,.

Then, X = (X;);er, is a Lévy process with

2 L \2 M
a”— (B +iu) i| 4.9)

ox, () = e [o’ — B2

174 4 Stochastic Differential Equations Driven by Lévy Processes

for u € R. Let us call the process X a variance gamma process VGP(}, «, 8, 1),
and the distribution of X the variance gamma distribution VG(A, «, 8,). From
(4.8) and (4.4), we obtain the density of X,

1
|x —ur|)“‘z

1 At
px0) = s («? - %) (- Ky, (alx — ptl) exp(Blx — un)).

Remark 4.1 The yuima package provides the random number generator rvgamma
and the density function dvgamma. Very old releases of the yuima package used to
name the above functions as “normal gamma”; however the term “normal gamma
distribution” is often used for the two-dimensional distribution that has the following
density

“« A i
PO) = TRx0,00 (X, r)%,/ S e exp (= arx — w)?/2),

which is not considered here.
We now generate a few paths of the variance gamma process as follows (the results

are shows in Fig.4.9).

Paths of variance gamma process

0.0

Fig. 4.9 Examples of variance gamma process as Wiener subordinator

4.8 Subordination 175

lambda <- 2
alpha <- 1.5
beta <- -0.7
mu <- 3
xinit <- 0
gamma <- sgrt(alpha”2-beta”2)
n <- 1000
T <- 1.8
VGPmodel <- setModel (drift=0, jump.coeff=1, measure.type="code",
measure=1list (df="rvgamma (z, lambda, alpha, beta,mu) "))
samp <- setSampling(Terminal=T, n=n)
VGPyuima <- setYuima (model=VGPmodel, sampling=samp)
simulation
set.seed(127)
for (i in 1:7) {
result <- simulate (VGPyuima, xinit=xinit,
true.par=1list (lambda=lambda, alpha=alpha,beta=beta, mu=mu))
plot (result,xlim=c(0,T),ylim=c(-5,6),col=1i,
main="Paths of variance gamma process",par (new=T))

}

Next, X; is simulated and its histogram is compared with the density function of
VG(At, a, B, ut) (see Fig. 4.10)

n <- 5
samp <- setSampling(Terminal=T, n=n)
VGPyuima <- setYuima (model=VGPmodel, sampling=samp)
VGPsimdata <- NULL
for (i in 1:5000) {

result <- simulate (VGPyuima, xinit=xinit,

true.par=1list (lambda=lambda, alpha=alpha, beta=beta, mu=mu))

x1 <- result@data@original.datal[n+1,1]

VGPsimdata <- ¢ (VGPsimdata,as.numeric (x1[1]))

}
hist (VGPsimdata,xlim=c(-7,10),ylim=c(0,0.22),breaks=100, freq=FALSE,
main=expression (paste("Distribution of ",X[1.8],

" and Density of VG")))
curve (dvgamma (x, lambda*T, alpha, beta, mu*T) ,add=TRUE, col="red")

4.8.5 Normal Inverse Gaussian Process

Let S = (S,):er. be an inverse Gaussian process with Z{S} = IG(8, \/a? —),
where 8§, « € (0, 00), B € R satisfying @ > |B]; ¥y = /@2 — B2 in the notation in
Sect.4.6. Define X = (X;);cr, by

X, = pt + BS, + Ws,.

176 4 Stochastic Differential Equations Driven by Lévy Processes

Distribution of X4 g and Density of NG

| |

Density
0.00 0.05 0.10 0.15 0.20
|

|

VGPsimdata

Fig. 4.10 Theoretical and empirical variance gamma distribution

where u € Rand W = (W,),cr, is a one-dimensional Wiener process independent
of S. Since BS + Wy is a subordination of a one-dimensional drifting Wiener process
Y, = Bs + W; by the inverse Gaussian process S, the process 85 + Wy and hence
X is a Lévy process. The process X is called a normal inverse Gaussian process
NIGP(«, B, 8,). This Lévy process X is characterized by the distribution

Xt =L+ BSi + W b (4.10)

and the distribution (4.10) is called a normal inverse Gaussian distribution
NIG(a, B, 8, n). By

Elexp(iu(BS; + Ws,)] = Elexp(iu(f + 27 'iu)S))]

and (4.6), we obtain the characteristic function of NIG(«, 8, 8, ®):

oG () = exp [ipu + 8(va? — 2 — Va2 — (B +iu)?)]
for u € R. A simple reproductive property of the NIG family is
NIG(a, B, 81, 1) * NIG(a, B, 62, it2) = NIG(e, B, 81 + 82, pu1 + 12).

For the NIGP(«, 8, 8, n) X, we have X, ~ NIG(«, B, 8t, ut) with characteristic
function

ox, () = exp [itpu +18(v/o? — B2 — o2 — (B +iu)?)].

Simple calculus gives the characteristics (b, C, v) of the NIGP(«, 8, 8, 1) as follows.
The Lévy density

4.8 Subordination 177

dv od px
—()_ﬁe Ky (a|x])

is obtained by (4.7) and (4.16) with (4.17) after transforming s = |x|a~'t. K| is
the Bessel function of third kind whose definition is reminded in Sect.4.13 for the
benefit of the reader. The second characteristic Cnyijg = 0 and the first one become

1y (x — Bs)?
| 7 r K “’S{ e[
V2ms 2s

1
@/ sinh(Bx)K;(ax)dx.
T Jo

S8
Il

Since K;(x) ~ x~! when x | 0, dv(x)/dx ~ constant - x2 near x = 0. The
Blumenthal-Getoor index of NIGP is 1.
By (4.5), (4.8) taking the shift ut into account, (4.16) and (4.17) and the transform

s =a~'\/(81)> + (x — ut)2y, we obtain the density function of X, as

Px, (x) = pnig(x; o, B, 8t, ut)
=a(=1/2,a, B,80)((6)* + (x — ut)?)
Ki(av/ (302 + (x — ut)?) exp (B(x — 1))

—-1/2
/ X

where

a(— 1/2aﬁat)_ﬁexp(a? = B2).

NIG; g built by subordination (green) and rNIG (white)

Density
00 01 02 03 04 05 06

Fig. 4.11 Simulated and theoretical data from the NIG distribution

178 4 Stochastic Differential Equations Driven by Lévy Processes

Let us now build X, by subordination and compare its histogram with the empir-
ical distribution of X, generated by rNIG («, 8, 6t, ut) and the density function
dNIG («, B, 8¢, uut) . The results are shown in Fig. 4.11.

delta <- 0.5
alpha <- 1.5
beta <- -0.7

mu <- 3

gamma <- sgrt(alpha”2-beta”2)

n <- 10000

T <- 1.8

set.seed(127)

normal .rn <- rnorm(n,0,1)

iv.rn <- rIG(n,delta*T,gamma)

z <- mu*T+beta*iv.rn+sgrt (iv.rn) *normal.rn
title <- expression (paste (NIGP[1.8],

" built by subordination (green) and rNIG (white)"))
nig.rn <- rNIG(n,alpha,beta,delta*T,mu*T)
hist(z,xlim=c(-1,10),ylim=c(0,0.61),breaks=100, freqg=FALSE,

col="green", main=title, xlab=expression(X[1.8]))

curve (ANIG (x,alpha,beta,delta*T, mu*T) ,add=TRUE, col="red")

par (new=T)

hist (nig.rn,xlim=c(-1,10),ylim=c(0,0.61),breaks=100,
freq=FALSE, main="", xlab="")

It is also possible to generate trajectories of X, as follows (results for the next code
are given in Fig. 4.12).

Paths of NIG process

Fig. 4.12 Simulated and theoretical data from the NIG distribution

4.8 Subordination

deltal <- 0.5

alpha <- 1.5

beta <- -0.7

mu <- 3

xinit <- 0

gamma <- sgrt(alpha”2-beta”2)

n <- 1000

T <- 1.8

NIG2model <- setModel (drift=0, jump.coeff=1, measure.type="code",
measure=1list (df="rNIG(z,alpha,beta,deltal,mu)"))

samp <- setSampling(Terminal=T, n=n)

NIG2yuima <- setYuima (model=NIG2model, sampling=samp)
set.seed(127)

for (i in 1:10) {

result <- simulate (NIG2yuima, xinit=xinit,

true.par=1list (deltal=deltal, alpha=alpha, beta=beta,

mu=mu, gamma=gamma))

plot (result,xlim=c(0,T),ylim=c(-1,10),col=i,
main="Paths of NIG process", par (new=T))

}

179

Function simulate also allows to generate the empirical distribution of X, for any

n as shown in Fig. 4.13.

n <- 5
samp <- setSampling(Terminal=T, n=n)
NIG2yuima <- setYuima (model=NIG2model, sampling=samp)
NIG2data <- NULL
for (i in 1:3000) {

result <- simulate (NIG2yuima, xinit=xinit,

true.par=1list (deltal=deltal, alpha=alpha, beta=beta,

mu=mu, gamma=gamma))

x1 <- result@data@original.data[n+1,1]

NIG2data <- c¢(NIG2data,as.numeric(x1[1]))

}
hist (NIG2data,xlim=c(2,8),ylim=c(0,0.8) ,breaks=100, freqg=FALSE,
main=expression(paste("Distribution of ",X[1.8],

" and Density of NIG")))
curve (dANIG (x,alpha,beta,delta*T, mu*T) ,add=TRUE, col="red")

4.8.6 Normal Tempered Stable Process

For a positive tempered stable process S in PTSP(«, §, y) witha € (0,1),6 > 0

and y > 0, the subordination

X, = put + BS + W,

180 4 Stochastic Differential Equations Driven by Lévy Processes

Distribution of X4 g and Density of NIG

0.8
]

Density
0.4

0.0

T T T T T T 1
2 3 4 5 6 7 8

NIG2data

Fig. 4.13 Simulated and theoretical data from the NIG process at time 1.8

defines the one-dimensional normal tempered stable process NTSP(«, 3, y, 8, 1t).
We call the distribution of X; the normal tempered stable distribution, and we
denote it by NTS(«, 8, v, 8, u). The yuima package provides a random number
generator obeying the distribution of X, by the function rnts (x, alpha, a, b,
beta,mu, Lambda) . The parameter Lambda is for multi-dimensional extension
but Lambda=1 in the one-dimensional case. We now simulate the normal tempered
stable process directly and by convolution as in the previous examples. Figure4.14
shows the results and the Kolmogorov—Smirnov test confirm the equality in distri-
bution among the data.

Xy Yi
N N
z ® z ®
2 S 2 S
c c
3 < I3 <
o o o o
o o
s T T T T T s 71 T 1 T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
x y
Xifo+ X2’
N N
> @ >
5 o 5 o
c c
3 < 3 <
o o o o
o o
] s 71 T 1 1 T
-3 -2 -1 0 1 2 3
Xt Xsum

Fig. 4.14 Normal tempered stable process with direct simulation and convolution

4.8 Subordination 181

nrep <- 100000

alpha <- 0.5

delta <- 0.2

gamma <- 1

beta <- 1

mu <- -0.7

Lambda <- matrix(1,1,1)

t <- 1.5

par (mfrow=c(2,2))

set.seed(127)

x <- rnts(nrep,alpha,delta*t,gamma,beta, mu*t, Lambda)
s <- rpts(nrep,alpha,delta*t,gamma)

w <- rnorm(nrep,0,1)

y <- rep(mu*t,nrep) + beta*s + sgrt(s)*w

hist (x,xlim=c(-3,3),ylim=c(0,1.2),breaks=200,
main=expression (X[t]),6 probability=TRUE)

hist (y,xlim=c(-3,3),ylim=c(0,1.2),breaks=200,
main=expression(Y[t]),6 probability=TRUE, col="red")

experiment by convolution

nrep <- 3000000

Xt <- rnts(nrep,alpha,delta*t,gamma,beta,mu*t, Lambda)
X05 <- rnts(nrep,alpha,delta*t/2,gamma,beta,mu*t/2, Lambda)
X05.prime <- rnts (nrep,alpha,delta*t/2,gamma,beta,mu*t/2,Lambda)
Xsum <- X05+X05.prime

hist (Xt,xlim=c(-3,3),ylim=c(0,1.2),breaks=300,
main=expression(X[t]),6 probability=TRUE)

hist (Xsum,xlim=c(-3,3),ylim=c(0,1.2),breaks=300,
main=expression(paste(X[t/2]1+X[t/2],"'")),
probability=TRUE, col="red")

ks.test (Xt, Xsum)

#4

Two-sample Kolmogorov-Smirnov test
#4

data: Xt and Xsum

D = 0.00096067, p-value = 0.1255

alternative hypothesis: two-sided

4.9 Stable Process

For a Lévy process X = (X,);cr, , suppose that each .Z’{X,} is a stable distribution,
that is, for any @ > 0, there exist ¢ > 0 and b € R such that

ox, ()" = gy, (cu)e™ (u € R).

182 4 Stochastic Differential Equations Driven by Lévy Processes

The, it is known that ¢ = a'/* for some « € (0, 2], and that the characteristic function

of X, has one of the following representations:

(i) fora € (0, 1)U (1,2),

¢x, (u) = exp |:in14 - maluI“(l — i sign(u) tan 712_a>:|’

(i) fora =1,

2
@x, (u) = exp |:iytu - t0|u|<1 + i —sign(u) log |u|)j|,
T

(iii) fora =2,
- 1 55
wx, () =exp | iytu — Siou

for u € R, where o € (0, 00), B € [—1, 1] and y € R are constants.

The process X is called an a-stable Lévy process or stable process SP(«, 8, o, v).
The increasing stable process in Sect.4.7 is an a-stable Lévy process. The Cauchy
process is the 1-stable Lévy process with parameters o € (0, 00), 8 =0and y € R.

Any nontrivial ¢-stable Lévy process X with o € (0, 2) has a Lévy measure of
the form

Paths of stable process (¢=0.5, p=—0.4) Paths of stable process (0=1,=-0.4)
o — I I
=3
x ' x
o
o o
1
o
@
I
o
<
! T T T T
0.0 0.5 1.0 15
t
Paths of stable process (0=1,=0.4)
<~
I R -
—
o~
x o = S — o A x
—e——r——— o
D
T 1 ¥
T T T T T T T T
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

Fig. 4.15 The a-stable process with different parametrizations for « and g

4.9 Stable Process 183

dv —l-a —l—a
E(x) =4&_|x| I(—o0,00(x) +64x 10,00y (%)

for some constants 6+ > 0 (§_ + 8+ > 0). The yuima package provides random
number generators for «-stable Lévy processes. The next example simulates some
paths from the «-stable process for different values of @ and g. The results are in
Fig. 4.15.

alpha <- 0.5
beta <- -0.4
sigma <- 0.7
gamma <- 0.5
n <- 1000
T <- 1.8

ASmodel <- setModel (drift=0, jump.coeff=1, measure.type="code",
measure=1list (df="rstable(z,alpha,beta, sigma,gamma) "))
samp <- setSampling(Terminal=T, n=n)
ASyuima <- setYuima (model=ASmodel, sampling=samp)
set.seed(129)
for (i in 1:10) {
result <- simulate (ASyuima, true.par=1list(alpha=alpha,
beta=beta, sigma=sigma, gamma=gamma))
plot (result,xlim=c(0,T),ylim=c(-40,10),col=1,
main=expression (paste("Paths of stable process (",

alpha==0.5,",",beta==-0.4,")")) ,par (new=T))
}

#param2

alpha <- 1

beta <- -0.4

sigma <- 0.7

gamma <- 0.5

AS2model <- setModel (drift=0, jump.coeff=1, measure.type="code",
measure=list (df="rstable(z,alpha,beta, sigma, gamma) "))

AS2yuima <- setYuima (model=AS2model, sampling=samp)

for (i in 1:10) {

result <- simulate (AS2yuima, true.par=list(alpha=alpha,
beta=beta, sigma=sigma, gamma=gamma))

plot (result,xlim=c(0,T),ylim=c(-5,5),col=1,
main=expression (paste("Paths of stable process (",
alpha==1,",",beta==-0.4,") ")) ,par (new=T))

}

#param3
alpha < 1
beta <- 0.4
sigma <- 0.7
gamma <- 0.5
AS3model <- setModel (drift=0, jump.coeff=1, measure.type="code",
measure=list (df="rstable(z,alpha,beta, sigma,gamma) "))
AS3yuima <- setYuima (model=AS3model, sampling=samp)
for (i in 1:10) {
result <- simulate (AS3yuima, true.par=list(alpha=alpha,

184 4 Stochastic Differential Equations Driven by Lévy Processes

beta=beta, sigma=sigma, gamma=gamma))

(result,xlim=c(0,T),ylim=c(-5,5),col=1i,
main= (("Paths of stable process (",
alpha==1,",",beta==0.4,")")), (new=T))
}
#paramd
alpha 1.5
beta 0.4
sigma 0.7
gamma 0.5
AS4model (drift=0, jump.coeff=1, measure.type="code",
measure= (df="rstable(z,alpha,beta, sigma,gamma) "))
AS4yuima (model=AS4model, sampling=samp)
for (i in 1:10) {
result (AS4yuima, true.par= (alpha=alpha,
beta=beta, sigma=sigma,gamma=gamma))
(result,xlim=c(0,T),ylim=c(-3,5),col=1i,
main= (("Paths of stable process (",
alpha==1.5,",",beta==0.4,")")), (new=T))

}

4.10 Generalized Hyperbolic Processes

4.10.1 Generalized Inverse Gaussian Distribution

The generalized inverse Gaussian distribution GIG(4, §, y) is a probability mea-
sure on (0, co) with the density function

8)* 1 /682
peic(X; A, 8, y) = %x*—‘ exp [- 5(; + yzx)} (x > 0) (4.11)

The characteristic function of GIG(2, §, y) is

_2 Ki(v8y/1 —2iu/y?)

500 (u €R) (4.12)

oaic(u; A, 8, y) = (1 —2iu/y?)

The inverse Gaussian distribution IG(8, y) in Sect.4.6 is a special case of GIG
A, 8, y) for A = —1/2.

The function (4.11) is not generally integrable. Integrability of the right-hand side
constrains the range of parameters as follows.

i) A >0, >0,y > 0.In particular, GIG(%, 0, y) = I'"'(%, y2/2), the gamma
distribution with density function

4.10 Generalized Hyperbolic Processes 185

paic(x; A, 0,y) = pr(x; &, y?/2)

Y v’
= —_— x}‘_l eXpy\ ———~x), x> Ov
rm\ 2 2

interpreted by (4.18) as the limit when é |, 0.

i) A=0,6>0,y >0.

(iii) A < 0,8 > 0, y > 0. In particular, GIG(A, 8, 0) = II"(|A[, 82/2), the inverse-
gamma distribution with density function

) 1 32 [A] A1 2
$3,8,0) = pir(x; 2], 87/2) = L P I}
PaiG (x) = pir(x; [A], 67/2) F(IM)(Z) x e x>

(4.13)

interpreted by (4.17) and (4.18) as the limit when y | 0.
A useful property of the class of GIG distributions is

X ~ GIG(A,8,y) = X' ~ GIG(—A7, y,).
In particular,
X ~T(heo)= X"~ 1K, 0
for A, ¢ > 0. There is a scaling invariance of the class of GIG distributions
X ~ GIG(,8,y) = cX ~ GIG(A, /c8,y//c)

for ¢ > 0. More information on the analytical properties of the GIG distribution can
be found in Masuda (2002).

4.10.2 Generalized Inverse Gaussian Process
and Generalized Hyperbolic Process

It is known that GIG distributions are infinitely divisible (Barndorff-Nielsen and
Halgreen 1977). Therefore, there is a Lévy process S for which S; ~ GIG(A, §, y).
We call such a Lévy process a generalized inverse Gaussian process GIGP(A, §, y).
From supp Z{S;} C Ry, it is easy to show any increments of S is distributed on
R.. Therefore, S is an increasing Lévy process, i.e. subordinator.

Suppose that > 0, 8 € R witha > [B],§ > Oand © € R. Let S = (S));er,
be a GIGP(A, 8, y) for y = /a? — B2. For a one-dimensional Wiener process
W = (W,),er, independent of S, let

X, = ut + BS; + WS,-

186 4 Stochastic Differential Equations Driven by Lévy Processes

By definition, X = (X;);er, is a Lévy process and we see’

(pX| (M) - (pGH(ua)"7 o, ﬂv 8’ /’L)
(@ =B K(8y/07 = (B +iu))
=e - — 2 — 4.14)
(> = (B +iu?) K. (8y/a? — p?)

for u € R. The Lévy process X is called a generalized hyperbolic process or
generalized hyperbolic Lévy motion and denoted by GHP(A, «, 8, 8, w). For this
process, the reader can also refer to Eberlein and Keller (1995), Eberlein (2001) and
Eberlein and von Hammerstein (2004).

4.10.3 GH Distributions

For a GHP(A, «, B, 8,) X, the distribution .Z’{ X} is called a generalized hyper-
bolic distribution GH(), «, 8, §,) (Barndorff-Nielsen and Halgreen 1977). Due
to (4.11) and (4.8), the density function of GH(A, «, B, 8, 1) is expressed as

=12
pan(x; ko, B,8, w) = ah, , B, 8) (8% + (x — w)?)

XKy 1 (/82 + (x — w)?) exp (Bx —)

with parameters A € R, o > 0, g satisfying 0 < || < «, § > 0 and u € R. The
coefficient a(A, «, B, §) is given by

(052 _ ﬁZ)A/Z

V27?2 84K, (/a2 — B2)

The moment generating function of GH(%, «, 8, §,) is

alh, o, B,68) =

a(h, o, 8,68, 1)
a()\'7a7ﬂ+t787u)

(a2 _ ﬂz)A/Z KA(S o2 — B+ t)2)
(@ —B+02)" K.(8J/a®—p)

Mcu(t; A, a, B, 8, 1) = e

= e”’t

fort € Rsuchthat|8+1¢| < «,and the characteristic functionis gy (u; A, o, 8, 8, L)
of (4.14).

9Replace u by u(8 + 2~ 'iu) in (4.12) and shift by .

4.10 Generalized Hyperbolic Processes 187

4.10.4 Subclasses of the GH Distributions

(1)

2

3)

Normal inverse Gaussian distribution NIG(e, 8, 8, u). A = —1/2: the charac-
teristic function is

(pNIG(u; o, ﬂ7 87 /'L) = exp [ZM[L + 6(\/(12 - ﬂz - \/az - (ﬂ + lu)z)]

The density function is

pNIG(X; «, 137 87 M) = PGH(X§ _1/27 o, 137 8’ M)
=a(—1/2,, B,8)(82 + (x — ;2) 2K (/82 + (x — ;w)2) exp (Bx —)

where

al
a(=1/2,a,B,8) = —exp (8y/a? — B?).

bid

A special case is the Cauchy distribution C(u, §) appears when o« = 8 = 0 with

onic(u; 0,0, 8,) = exp (ipuu — 8lul).

Hyperbolic distribution H(e, 8, §, ©). A = 1:

pH(x; @, B, 8, 1) = pou(x; 1, a, B,8,)
@ — g2

- a2+ (x —)2+ Bx — w)].

2ok v P /82 + (= 02 + B —)]

The characteristic function of H(e, 8, §, 1) is

on(us o, B, 6,) = geu(u; 1, a, B, 8, 1)
(052—,32)1/2 K|(5 az—(,B+iu)2)
(a2_(13+iu)2)1/2 K1(6 C(2_ﬂ2) ’

_ eip.u

Variance gamma distribution VG(A, «, B,). As 6 | 0, GH(A, «, B, 8,) con-
verges to VG(A, o, B, i). Indeed, we see

?Fol OGHG . 8,8,) (M) = OVGGLap (@) (U €R)

from (4.14), (4.18) and (4.9) for t+ = 1. In this sense, VG(A, «, B, u) =
GH®., «, 8,0,).

188 4 Stochastic Differential Equations Driven by Lévy Processes

(4) Skew Student’s t distribution SkewT(v, §, B8, ©). When A = —v/2 and ¢ —
|B] # 0, GH(A, «, B, 8§, 1) converges to a distribution with density function

V11V V2K 1y jp (1BIVS% + (x —)?)eP)
20-D/2 w5+ -2 T

Moreover, as B — 0, psrewr (x; v, 8, B, 1) converges to

: _I'(v+1)/2) PN R
PSkewT (X3 U,(S,O,M)_m[l+< :) i| reR

PSkewT (X5 v, 8, B,) = x eR.

In particular, when § = vi/2 and u = 0, we have SkewT (x; v, v1/2,0,0) = r(v),
the ¢ distribution with v degree of freedom. Instead, letting § = v'/?26 — oo for
o > 0for pskewr(x; v, 8, 0,), we have the normal distribution N(u, o).

4.11 Stochastic Differential Equation Driven by Lévy
Processes and Their Simulation

4.11.1 Semimartingale

Given a measurable space (§2,.%), an increasing family F = (%;);cgr, of sub o-
fields .7, of % is called a filtration. Usually, the right continuity %, = N,~,.%, is
assumed. Then, & = (£2, .%, F, P)isastochastic basis. We will fix a stochastic basis
AB. Arandomtime T : 2 — [0, oo] is called a stopping time if {T" < 7} € .%, forall
t € R,.. For a stopping time T, the o-field .%7 is, intuitively, the whole information
up to time 7. More rigorously, Zr is defined by % = {A € &; AN{T <t} e %
forallt € R, }.

We say a stochastic process X = (X;),er, is adapted if X, is .%,-measurable for
all + € R.. An adapted process X = (X;);cr, is called a martingale if each X, is
integrable and E[X,|.%;] = X, a.s. forevery s < t. We call X a uniformly integrable
martingale if the family {X,};cr, of random variables is uniformly integrable. For
a uniformly integrable martingale X, the limit X, = lim,_, - X, (a.s. and in LYY is
well defined and the optional sampling theorems holds:

E[X7|Fs] = Xras as.

for any stopping times S and 7.

A process X = (X,)cr, is called a local martingale if there exists an increas-
ing sequence of stopping times 7, — oo a.s. such that each stopped process X
is a uniformly integrable martingale, where X' is defined by X tT = X;ar,. For
local martingales, we assume that their paths are almost surely cadlag , i.e., right

4.11 Stochastic Differential Equation Driven ... 189

continuous and admitting left-hand limits. This is because one can always obtain
such a modification by completion of the probability space and augmentation of the
filtration.

The localization of stochastic processes is universally applied to various classes
of stochastic processes. For example, X = (X,),;cr+ is a locally square-integrable
martingale if each X is a square-integrable martingale for some localizing sequence
(T,,) as above. Here a martingale M = (M,),cg, is called a square-integrable mar-
tingale if sup, .z, E[M?] < 0o

We say a process X = (X;),ecr, has bounded variation if the variation of the
function [0, N] > ¢+ — X, is a.s. finite for all N > 0. A process X is called a
semimartingale if X has a decomposition X = Xo+ M + A by M and A as follows.
M 1is a local martingale with M, = 0. The process A is an adapted process with a.s.
cadlag paths of finite variation. This decomposition of X is not unique. It is know that
M can be a locally square-integrable martingale with M, = 0 in the decomposition
X = Xo + M + A for any semimartingale X.

Let us consider a so-called bounded simple predictable process H = (H;)cm,
that has a expression

J—1

H, = Ho+ Y Hla, 1,1,
j=0

where Hj is a bounded .#)-measurable random variable, H;) is a bounded ﬁ}i-
measurable random variable, 0 = Ty < T} < --- T, are R -valued stopping times.
For a square-integrable martingale X = (X,);cr, , a stochastic integral of H with
respect to X is naturally defined by

J—1

Jx(H), =Y Hyp(X, ™" = X)) (t €Ry)
Jj=0

Then, it turns out that the process Jx(H) is a square-integrable martingale. For
simplicity, let us assume that 7; are deterministic. It is not difficult to show Jyx (H),
is .#,-measurable, and Jx (H) is a martingale, i.e. E[Jx(H),|Z] = Jx(H); a.s. for
s < t; for that, we may assume s, t € {7}, if necessary. Moreover,

J—1
ELx(H)]1 = Y E[HZ (X" = X,')’]
j=0
swwmz (X, = X,
< sup | H;| E[X,].

S<t

190 4 Stochastic Differential Equations Driven by Lévy Processes

Here, the conditional expectation E|-|.%#,] and the martingale property are repeatedly
used. The last inequality implies a kind of continuity of the mapping Jx, and really we
can extend Jy to left continuous adapted processes H with right-hand limits by taking
advantage of this continuity. Consequently, if remembering the decomposition of a
semimartingale X, we can define a stochastic integral Jx for such processes H. So
defined Jx (H) becomes a semimartingale. The stochastic integral Jy (H) is denoted
by [, HdX;.

4.11.2 Stochastic Differential Equations

Suppose that we have semimartingales Z%, « = 1, ..., r. Then, it is possible to
produce various functionals of Z = (Z%),=;..r by the stochastic equations based
on Z. Consider a stochastic integral equation

12
X, =n+ Z/ (s, Xy)dZ{ (4.15)
o 0

where ¢, (¢, x) are (possibly vector valued) functions of (¢, x) and n is .#y-measurable.
The integrals on the right-hand side of (4.15) are stochastic integrals. Equivalently
to the integral form (4.15) of the equation, we also use the stochastic differential
equation

dX, =Y co(t. X,0)dZ¢, Xo = .

If there is a constant K such that
leq(t, x2) — co(t, x1)| < K|x2 — x4

for each r € R, and if the functions ¢ + ¢,(t, x) are cﬁgiad (left continuous with
right-hand limits) for each x, then a unique solution to (4.15) extists; see Protter
(1990).

The yuima package specifies the driving process Z differently according to the
Lévy measure type as described in what follows.

4.11.3 Compound Poisson Driving Processes

Lévy models can be specified in two different ways in yuima. The first one is in terms
of the compound Poisson structure, and the second one presented in the next section
allows for direct specification of the density of the Lévy process. The compound
Poisson specification is very close to what we have seen for pure, compound Poisson

4.11 Stochastic Differential Equation Driven ... 191

process in Chap.3 but in this case, the Poisson structure represents only the jump
part of the yuima model. Consider the following stochastic differential equation
with jumps

dX, = —0X,dt +cdW, + (y + X /1 + X%_)dj,, Xo = 0

on [0, T'], where J, is a compound Poisson process with spot intensity A and jump
sizes distributed as the normal distribution N (2, 0.1). We can specify this model in
yuima using the arguments measure and measure. type set to CP. The next
code illustrates briefly how to proceed

modJump (drift = e¢("-theta*x"), diffusion = "sigma",
jump.coeff=c("gamma+x/sqgrt (1+x°2)"),

measure = (intensity="lambda", df= ("dnorm(z, -3, 1)")),
measure.type="CP", solve.variable="x")
modJump

#4

Diffusion process with Levy jumps
Number of equations: 1

Number of Wiener noises: 1

Number of Levy noises: 1

Parametric model with 4 parameters

samp (n=10000, Terminal=10)
(125)
X (modJump, xinit=2, sampling=samp,
true.par= (theta=2, sigma=0.5,gamma=0.3,lambda=0.5))
(X)

Figure4.16 shows a simulated path of the above jump-diffusion process with com-
pound Poisson Gaussian jumps.

X
0.0 0.5 1.0 1.5 2.0
|

-1.0

Fig. 4.16 A simulated path of a diffusion process with compound Poisson jumps

192 4 Stochastic Differential Equations Driven by Lévy Processes

4.11.4 Driving Processes of code Type

Suppose we want to generate a sample path of the stochastic differential equation

dX; =a X,dt+cdZ,, te][0,T],
Xo = xo,

where Z = (Z;);ep0,7] 18 an inverse Gaussian Lévy motion with Z, ~ IG(6¢, y) =
GIG(—1/2, §t, y). For example, let us take xg = 2, a = 0.05, ¢ = —1, T = 10,
8 = 0.55, y = 2. The next code shows the usage of the argument mesure. type
which is set to "code", meaning that a random number generator will be specified
in the measure argument. The random number generator is rIG. The simulated
path of this process is given in Fig. 4.17.

%0 2

a 0.1

c =il

model.ig (drift="a*x", xinit=x0, jump.coeff=c,
measure.type="code", measure= (df="rIG(z, deltal, gamma) "))
model.ig

Levy process

Number of equations: 1

Number of Levy noises: 1

Parametric model with 3 parameters

sampling.ig (Terminal=10, n=10000)
yvuima.ig (model=model.ig, sampling=sampling.ig)
(128)
result.ig (yuima.ig, true.par= (delta0=0.55,gamma=2))

(result.ig)

22

2.0 21
I

1.9

Fig. 4.17 A simulated path of an IG(§ = 0.55, y = 2) process

4.11 Stochastic Differential Equation Driven ... 193

3.5

3.0

25

2.0

Fig. 4.18 A simulated path of an NIG(« = 2, 8 = 0,8 = 0.55, u = 0) process

The Lévy measure is specified by the parameters corresponding to the distribution
of Z;. Here we used delta0 for the parameter §, otherwise delta conflicts with
the internal variable delta describing the mesh size of the sampling.

Next is a stochastic differential equation where the driving process is replaced by
the normal inverse Gaussian Lévy motion Z, with Z; ~ NIG(«, B, §,). We apply
the normal inverse Gaussian random number generator rNIG. The simulated path
is shown in Fig. 4.18.

x0 2
a 0.1
© -1
model.nig (drift="a*x", xinit=x0, jump.coeff=c,
measure.type="code",measure= (df="rNIG(z, alpha,
beta, deltal, mu)"))
sampling.nig (Terminal=10, n=10000)
yuima.nig (model=model.nig, sampling=sampling.ig)
(128)
result.nig (yuima.nig, true.par= (alpha=2, beta=0,

delta0=0.55, mu=0))
(result.nig)

We should note the relation o = /y2 + 82 between parameters («, 8) of NIG and
y of IG.
The multivariate normal inverse Gaussian random number generator is also avail-

able in the present one-dimensional case to obtain the same result as above (see
Fig. 4.19).

194 4 Stochastic Differential Equations Driven by Lévy Processes

3.5
I

25

2.0

Fig. 4.19 A simulated path of a multidimensional NIG(a« =2, = 0,8 = 0.55, « =0, A =[1])
process with dimension 1

x0 <- 2

a <- 0.1

c <- -1

Lambda <- matrix(1,1,1)

model .nig <- setModel (drift="a*x", xinit=x0, jump.coeff=c,

measure. type="code" ,measure=1ist (df="rNIG(z, alpha,
beta, deltal, mu, Lambda)"))

sampling.nig <- setSampling(Terminal=10, n=10000)

yuima.nig <- setYuima (model=model.nig, sampling=sampling.ig)
set.seed (128)

result.nig <- simulate(yuima.nig, true.par=1list (alpha=2,

beta=0, delta0=0.55, mu=0, Lambda=Lambda))
plot (result.nig)

Next, let us consider the following two-dimensional stochastic differential equation
for X, = (X1, X»,;) driven by a multivariate Lévy process

dX; = a(t, X;)dt + b(t, X;)dW, +c(t, X;,_)dZ;, te€[0,T]
Xo

X0,

where a and b are mappings from [0, T] x R? to R?, and the driving noises are a
two-dimensional Wiener process W, = (W, W,,) and a two-dimensional Lévy
process Z;, = (Z1, Z24)-

For illustration, we set xo = (2,3), T =1,

X1 sin(2wt) 4+ x, cos(2mwt)

a(l,xl,xz)=<

t 0
b(t, x1,x) = (icz x1>

X1 cos(2mt) — x; sin(2mt))

4.11 Stochastic Differential Equation Driven ... 195

and

c(t,x1,x) = <?;)S_(2t7;)2 Sin(%n;))

fort € [0, T]and x1, x, € R. For Z;, we choose a two-dimensional NIG distribution
with parameters

em2 5= (2). smoss u=(2). 4= (10)

we set up the model as follows

x0 <- ¢(2,3)
al <- function(t,xl,x2){ xl*cos(2*pi*t)-x2*sin(2*pi*t) }
a2 <- function(t,xl,x2){ xl*sin(2*pi*t)+x2*cos(2*pi*t) }

a <- c¢c("al(t,x1,x2)","a2(t,x1,x2)")

b <- matrix(c("t*x2","1","0","x1"),2,2)

c <- matrix(c("cos(2*pi*t)", "(5-t)*x1","sin(2*pi*t)",1),2,2)
alpha <- 2

beta <- ¢ (0,0)

delta0 <- 0.55

mu <- c(0,0)

Lambda <- matrix(c¢(1,0,0,1),2,2)

model .mnig <- setModel (drift=a, xinit=x0, diffusion=b,
jump.coeff=c, measure.type="code",
measure=list (df="rNIG(z, alpha, beta, deltal, mu, Lambda)"),
state.variable=c("x1", "x2"),solve.variable=c("x1","x2"))

model .mnig

#4

Diffusion process with Levy jumps
Number of equations: 2

Number of Wiener noises: 2

Number of Levy noises: 1

Parametric model with 7 parameters

sampling.mnig <- setSampling(Terminal=1, n=10000)

yuima.mnig <- setYuima (model=model.mnig, sampling=sampling.mnig)
set.seed (128)

result.mnig <- simulate(yuima.mnig, true.par=1list (alpha=alpha,
beta=beta, deltalO=deltal, mu=mu, Lambda=Lambda))

plot (result.mnig)

and the simulated two-dimensional path is given in Fig. 4.20.

196 4 Stochastic Differential Equations Driven by Lévy Processes

x1
1.0

x2
35-1.0

2.0

0.0 0.2 0.4 0.6 0.8 1.0
t

Fig. 4.20 A simulated path of a multidimensional NIG process with dimension 2

4.12 Estimation

Estimation for general Lévy process is in continuous development in yuima pack-
age; here we present two options available. The the case of diffusion process with
compound Poisson jumps and the simple case of the estimation of exponential Lévy
processes.

4.12.1 Estimation of Jump-Diffusion Processes

The yuima package is providing the function gmle for the quasi-maximum like-
lihood estimation of jump-diffusion processes with randomly amplified compound
Poisson jumps. For an illustrative example, we will consider a jump-diffusion process
satisfying the stochastic differential equation with jumps

dX, = —0X,dt + odW, + (y + X, [\/1+ X}_)dJ,, Xo =0

on [0, T], where J, is a compound Poisson process with spot intensity A and jump
sizes distributed as the normal distribution N (2, 0.1%). We will estimate (o, 8, A,)
from the simulated data. The quasi-likelihood inference is based on thresholding the
increments of the observed path to separate the continuous part of the increments
and the Poissonian jumps. Ergodicity and high-frequency observations are required
for consistency and asymptotic normality of the estimators. We refer the reader to
Shimizu and Yoshida (2006) and Ogihara and Yoshida (2011) for parametric estima-
tion of jump-diffusion processes. The next code shows the practical implementation
using a threshold 2} with p < 1/2 for the mesh size h, between two consecutive
observation times. In our example, we choose p = 0.4; therefore, the threshold is set
to (T /N)#. The argument which specifies the thresholding in gm1eis threshold.
One condition on the jumps is, of course, that there should be few jumps around zero
to avoid loss of information in the estimation of the Poisson intensity. The simulated
path is shown in Fig. 4.21.

4.12 Estimation 197
©
©
<
~
o
T T T T T T
0 2 4 6 8 10

Fig. 4.21 A simulated path of a diffusion process with compound Poisson jumps

mod5 <- setModel (drift
jump.coeff=c("gamma+x/sqgrt (1+x"2)"),
list (intensity="lambda",df=1ist ("dnorm(z,

c("-theta*x"),

solve.variable="x")

measure =

measure. type="CP",
theta <- 2

sigma <- 0.5
gamma <- 0.3
lambda <- 2.5

T <- 10

N <- 10000

delta <- T/N

h <- T/N

true <- list (theta=theta,

set.seed(125)

X <-
plot (X)
r <- h"0.

4

simulate (mod5,

true.p=true,xinit=2,
sampling=setSampling (n=N, Terminal=T))

est.gmle <- gmle (yuima=X,
lower=1list (theta=1, sigma=0,gamma=0.1, lambda=0.1),
upper=1list (theta=3, sigma=2, gamma=0.8, lambda=20) ,
threshold=r)
unlist (true)

summary (est.gmle)

##
##
##
##
##
##
##
##
##
##

3

gamma lambda
0.

2.5

start=true,

Quasi-Maximum likelihood estimation

theta sigma
2.0 0.5

Call:
agmle (yuima = X,
list(theta = 1,
sigma = 0, gamma
3,
sigma = 2, gamma

start

0.

0.

1,

8,

true,

lambda

lambda

method =

0.1),

20),

diffusion

"L-BFGS-B",

upper =

threshold

list (theta

"sigma",

lower

r)

2, 0.1)")),

sigma=sigma, gamma=gamma, lambda=1ambda)

method="L-BFGS-B",

198 4 Stochastic Differential Equations Driven by Lévy Processes

#4

Coefficients:

Estimate Std. Error

sigma 0.5012518 0.003548335

theta 2.0530481 0.049587527

lambda 2.5000000 0.499999919

gamma 0.3094323 0.008028919

#4

-2 log L: -53574.4

#4

#4

Number of estimated jumps: 25

#4

Average inter-arrival times: 0.325708
#4

Average jump size: 2.002308

#4

Standard Dev. of jump size: 0.796882
#4

Jump Threshold: 0.063096

#4

Summary statistics for jump times:

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.332 2.718 6.335 5.612 8.110 9.149
#4

Summary statistics for jump size:

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.072 1.795 2.335 2.002 2.544 2.742

Next code shows the effect of setting the wrong threshold. If it is too large, then
the number of Poissonian events will be underestimate and vice versa. For example,
looking at the correct threshold, the above estimation result show an average jump
size of about 2. So we could have mistakenly chosen the threshold in this way. On
the other side, we can take a threshold lower than 4%* = 0.063.

est.gmlel <- gmle(yuima=X, start=true,

lower=1list (theta=1,sigma=0,gamma=0.1, lambda=0.1),

upper=1list (theta=3, sigma=2,gamma=0.8, lambda=20), method="L-BFGS-B",
threshold=2) # too large
coef (est.gmlel)

sigma theta lambda gamma
1.4538082 1.9782071 1.6000002 0.2954198

est.gmle2 <- gmle(yuima=X, start=true,

lower=1list (theta=1,sigma=0,gamma=0.1, lambda=0.1),

upper=1list (theta=3, sigma=2,gamma=10, lambda=1000), method="L-BFGS-B",
threshold=0.03) ## too low
coef (est.gmle2)

sigma theta lambda gamma
0.4274578 1.4596203 77.8515913 0.1114447

4.12 Estimation 199

4.12.2 Estimation of Exponential Lévy Processes

Let Z; be a Lévy process, then the process S; defined as
S; = Soez’, t >0,
is called an exponential L.évy process. This process is often used in finance to model

asset prices under the assumption of independent log-returns. Indeed, if we take the
log-returns of the process S;

t

S,
10g< t;m> =Zian — 2= AZ

these are distributed as the increments of the Lévy process Z,. Being Z, a process
with independent increments, true likelihood estimation can be applied for this i.i.d.
sequence of random variables. Notice that geometric Brownian motion

dS; = nS,dt + o S,dB;
is a special case of this model as its solutions is given in the form
Sl — S()e(u_%az)H—UBr.

The yuima package cannot fit yet directly a pure jump Lévy model, but this temporary
limitation of yuima can be turned around by using a compound Poisson structure
with known constant intensity and i.i.d. jumps based on the cumulative sum of the
Lévy increments. Indeed, letY,, = AZ,,, wheret; = j-T/N,with Yo = Zo. Assume
that the hypothetical arrival times of the Poisson process coincide exactly with the
instants #; where data have been collected and define the process

N,/. i
Xy = Z Y, = Z AZ,
j=0 j=0
= (Zti - Zt,-_l) +-+ (Zz, —Zy) = Zt,-

so that X, is distributed as Z, for each time #;, as we assume further X; being a
piecewise constant process. This can be seen as a degenerate compound Poisson
process where N, coincides with the number of observations at time i, with jumps
deterministically observed at time #;. Then, we can use the setPoisson function
to specify this model in yuima and estimate it via exact gmle as we explain now. In
the following code, we first try to fit on real data with geometric Brownian motion,
then a compound Poisson model with Gaussian jumps and, finally, a compound
Poisson model with NIG jumps, i.e. an NIG exponential Lévy model in this setup.
We collected the data using get Symbols from the quantmod package.

200 4 Stochastic Differential Equations Driven by Lévy Processes

require (quantmod)
getSymbols ("ENI.MI", to="2016-12-31")

[1] "ENI.MI"

S <- ENI.MISENI.MI.Adjusted
Z <- na.omit (diff (log(S)))
Dt <- 1/252
geometric Brownian motion estimation
modell <- setModel (drift="mu*x", diff="sigma*x")
gBm <- setYuima (model=modell, data=setData(S,delta=Dt))
gBm.fit <- gmle(gBm, start=list (mu=0,sigma=1),method="BFGS")
gBm.cf <- coef (gBm.fit)
zMin <- min(Z)
zMax <- max(Z)
Gaussian-Levy estimation
model3 <- setPoisson(df="dnorm(z,mu,sigma)")
Norm <- setYuima (model=model3, data=setData (cumsum(Z),delta=Dt))
Norm.fit <- gmle (Norm, start=1list (mu=1, sigma=1),
lower=1list (mu=le-7,sigma=0.01) ,method="L-BFGS-B")
Norm.cf <- coef (Norm.fit)
NIG-Levy estimation
model2 <- setPoisson(df="dNIG(z,alpha,beta,deltal,mu)")
NIG <- setYuima (model=model2, data=setData (cumsum(Z),delta=Dt))
NIG.fit <- gmle(NIG,start=list (alpha=10, beta=1, deltal=1,mu=1),
lower=1list (alpha=1,beta=-2, deltal=0.001,mu=0.0001),
method="L-BFGS-B")
NIG.cf <- coef (NIG.fit)
myfgBm <- function (u)
dnorm(u, mean=gBm.cf["mu"], sd=gBm.cf["sigma"])
myfNorm <- function (u)
dnorm(u, mean=Norm.cf["mu"],sd=Norm.cf["sigma"])

myfNIG <- function(u)
dNIG(u, alpha=NIG.cf["alpha"],beta=NIG.cf["beta"],
delta=NIG.cf["deltal"], mu=NIG.cf["mu"])

plot (density (Z,na.rm=TRUE) ,main="Gaussian versus NIG")
curve (myfgBm, zMin, zMax, add=TRUE, lty=2)

curve (myfNorm, zMin, zMax, col="red", add=TRUE, lty=4)
curve (myfNIG, zMin, zMax, col="blue", add=TRUE, lty=3)

Figure4.22 compares the empirical density of the data Z, with the densities of an
estimated geometric Brownian motion (dashed line), a Gaussian distribution where
the mean and the variance coincide with the sample means and variance of Z, and
the NIG density where the parameters have been estimated using the degenerate
compound Poisson process X; above. It can be clearly seen that the data are not
Gaussian (and especially not coming from a geometric Brownian motion), but more
likely to be of NIG type in this particular dataset. The Akaike information criterion
evaluated with the ATC function also confirms this empirical evidence.

4.12 Estimation 201

Gaussian versus NIG

Density
15 20 25 30
| | | | |

10

5
I

0
|

-0.10 -0.05 0.00 0.05 0.10 0.15
N =2536 Bandwidth = 0.002596

Fig. 4.22 Empirical density (continuous line) against a geometric Brownian motion fit (dashed
line), a Gaussian fit (horizontal dashed and dotted line) and the estimated NIG Lévy model density
(dotted line)

(gBm.fit)

[1] 2e+10

(Norm. fit)

[1] -12673.47

(NIG.fit)

[1] -12950.19

4.13 Bessel Function of the Third Kind

Denote by K, the modified Bessel function (Bessel function of the third kind) with
index v defined by the integral representation

K,(x) = %/ y”_1 exp |: — %x (y + l)] dy. (4.16)
0 y

Extending domain of v to a complex region, one has another integral representation

% oo
K,(2) = Llf e~ (2 — 1) idr
2r(v+3) /i

when Re(v) > —% and |arg z| < /2.

202 4 Stochastic Differential Equations Driven by Lévy Processes
The function K, has the following properties.
K_,(z2) = Kyv(2) (4.17)
Asz—0
K,(z) ~ %F(V)(Z/Z)_” (4.18)
when Re(v) > 0, and

Ko(z) ~ —logz.

3
K% () = \/2:162 (4.19)

@2 — D(@? =37 @402 — 2k — 1))
8kk! ’

With

ar(v) =

Ku() ~ \/Zzzez y ey
k=0

as z — oo under |arg z| < 3mw/2 — ¢.
We refer the reader to Abramowitz and Stegun (1964) for more details on Bessel
functions.

Chapter 5)
Stochastic Differential Equations Driven Gzt
by the Fractional Brownian Motion

5.1 Model Specification

The yuima allows for the description of stochastic differential equations driven by
fractional Brownian motion of the following type

dX, = a(X,)dt + b(X,)dW}!

where WH = (WtH , 1> O) is a normalized fractional Brownian motion (fBM), i.e.,
the zero-mean Gaussian processes with covariance function

1
BWS W) = 5 (s + 12 = 1 = s ")

with Hurst exponent H € (0, 1). The fractional Brownian motion process is neither
Markovian nor a semimartingale for H #* % but remains Gaussian (Kolmogorov
1940; Mandelbrot and Ness 1968). In order to specify a stochastic differential e-
quation driven by fractional Gaussian noise, it is necessary to specify the value of
the Hurst parameter. For example, if we want to specify the following fractional
Ornstein—Uhlenbeck model

dYy, = 3Y,dt +dw/

we can proceed as follows

mod4A (drift="3*y", diffusion=1, hurst=0.3, solve.var="y")
mod4A

##

Diffusion process with Hurst index:0.30
Number of equations: 1

Number of Wiener noises: 1

© Springer International Publishing AG, part of Springer Nature 2018 203
S. M. Iacus and N. Yoshida, Simulation and Inference for Stochastic
Processes with YUIMA, Use R!, https://doi.org/10.1007/978-3-319-55569-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-55569-0_5&domain=pdf

204 5 Stochastic Differential Equations Driven by the Fractional Brownian Motion

mod4B - setModel (drift="3*y", diffusion=1, hurst=0.7, solve.var="y")
mod4B

##

Diffusion process with Hurst index:0.70
Number of equations: 1

Number of Wiener noises: 1

set.seed(123)

X1 <- simulate (mod4A, sampling=setSampling (n=1000))
X2 <- simulate (mod4B, sampling=setSampling (n=1000))
par (mfrow=c(2,1))

par (mar=c(2,3,1,1))

plot (X1,main="H=0.3")

plot (X2,main="H=0.7")

and the two trajectories can be seen in Fig.5.1. In this case, the appropriate slot is
now filled

str (mod4A)
Formal class ‘yuima.model’ [package "yuima"] with 16 slots

..@ drift : expression((3 * y))
..@ diffusion :List of 1

.. ..S : expression((1l))

..@ hurst : num 0.3

..@ jump.coeff : list()

..@ measure : list()

..@ measure.type : chr(0)

..@ parameter :Formal class ‘model.parameter’ [package

"yuima"] with 7 slots

#4# ..@ all : chr(0)

#4# ..@ common : chr(0)

#4# ..@ diffusion: chr(0)
..@ drift : chr(0)

..@ jump : chr(0)

#4# ..@ measure : chr(0)
.. .. .@ xinit : chr(0)

..@ state.variable : chr "x"
..@ jump.variable : chr(0)
..@ time.variable : chr "t"
..@ noise.number : num 1

..@ equation.number: int 1
..@ dimension : int [1:6] 0 0 0 O O O
..@ solve.variable : chr "y"
..@ xinit : expression((0))
..@ J.flag : logi FALSE

5.2 Simulation of the Fractional Gaussian Noise 205

H=0.3
o
==
e |
T
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
° H=0.7
o 7 t
!
T
o
«S —
| T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Fig.5.1 Trajectories of the fractional Ornstein—Uhlenbeck process for different values of the Hurst
parameter

5.2 Simulation of the Fractional Gaussian Noise

We briefly recall the two standard methods for the simulation of a fractional Gaussian
noise (fGn) which yuima implements. It is important to compare different methods
in order to understand their computational complexity, memory use and computation
time. Both methods presented here are exact methods and the focus will be on the
capability to simulate the fractional Gaussian noise for different mesh grids: random,
deterministic, Poisson, tick-time (more generally for yuima . sampling object).
LetO0 =1 <t <--- < ty41 = T be the mesh grid, not necessarily deterministic
or regular. For i = 0...n, let us define

X; = W) — W)
such that the sequence X" = (X, X1, ..., X,,) is the fGn sample to be simulated.
Let us, finally, note y (-) the covariance function of the (zero-mean) process, that is,
fori, j € {0...n)2,
v, j) =E(X;X;) (5.1)
and the covariance (n + 1) x (n + 1) matrix

L= (@, j)ijeo.np - (5.2)

For the fGn, covariance function has a closed form, namely y (i, j) is equal to

2H 2H 2H 2H
(Itisr — 6177 =t — tja PP =1t — ;P + 11 — 4177) . (5.3)

N =

v, j) =

206 5 Stochastic Differential Equations Driven by the Fractional Brownian Motion

5.2.1 Cholesky Method

This algorithm relies on the Cholesky decomposition of the covariance matrix I,
namely,
r,=1L,L"

where L, is a lower triangular matrix. It can be proven that such a decomposition
exists when I, is a symmetric positive definite matrix.

Then X" = ¢"L}, where (" = (8o, ¢1,...,¢,) is a Gaussian (n + 1)-vector
of standard independent component, is a fGn sample associated to the mesh grid
because

cov (g‘”L:) = L,cov ({”) Ly=L,L=T,.
This method has been implemented in the Cholesky £Gn function and uses the

Cholesky decomposition R base function chol. The method is demanding in term
of storage and number of operations and it is of order n°.

5.2.2 Wood and Chan Method

This method proposed by and Wood and Chan (1994) can only be applied to stationary
sequences. In this case, for the fGn,

v j) =yi=jl.

The algorithm relies on the embedding of the covariance matrix I, into a circulant
covariance matrix C, of size 2(n + 1) — 2) x (2(n + 1) — 2), namely

y© oy ey lyi—D ...)
y(1) vy ...ym—=D| v(mn) ... y@)
a=| vy ya-v... yo | yO) . ya-1
ym—=1) ym ... y@@) vy ...y(n—-2)
y(1) @) ..yi—Dly=2)... y©

Since C, is a circulant matrix, it has the eigenvalue decomposition

1
C,=—F,AF;
2n

5.2 Simulation of the Fractional Gaussian Noise 207

where A, is the diagonal matrix of terms (A i, ..., A2,.2,) wWhich are the Fast Fourier
Transform of the first row components of C,

2n
Z(c),,exp(27112—) i=1...2n

and F), is a unitary matrix defined by

1 ..
(Fn)i,j = Eexp (-27'[1%) l,] =1...2n

with F) its the conjugate transpose. Here ¢« = V=1 and we extended (C,,);. ; for
all integers j periodically with period 2n. It has been shown (Crouse and Baraniuk
1999) that, in the fGn case, the matrix C, is positive semi-definite; therefore the
diagonal terms of A, are nonnegative and

~ Aii
A, = —_— .
i=1..2n

Let Z, = ¢, + 1&, be a complex Gaussian vector where ¢, and &, are 2n-vector
of standard independent component and E[¢,&,] = 0. And compute

Y =% (Fninzn) .

The first (n+1) component of Y, noted X" is a fGn sample associated to the mesh
grid (with the covariance).

This method has been implemented in the WoodChan £Gn function and uses the
Fast Fourier transform R base function £ £ t. Itis a fast and exact n log(n) operations
method for regular discretization.

5.3 Simulation of Fractional Stochastic Differential
Equations

In yuima, the user can choose between the above two simulation schemes specify-
ing the argument methodfGn in the simulate method. The default simulation
scheme is Wood and Chan and it is chosen by setting methodfGn="WoodChan",
the other simply by setting methodfGn to Cholesky.

Let H > 1/2. It had been shown that the one-dimensional stochastic differential
equation

t t
Yt = X0 +f S(Yv)ds +/ U(Yx)de 0 <t=<T
0 0

208 5 Stochastic Differential Equations Driven by the Fractional Brownian Motion

admits a unique solution whose paths are Holder continuous of order « > 1 — H
a.s.,wheno € ‘sz and § satisfy a global Lipschitz condition, and where the integral
is a pathwise Riemann—Stieltjes integral. Let us fix)?6‘, the approximation scheme
for the process Y is given by

)76’ =x9 andfork € {l...n},
Pr =77+ (05 + (= 0)SED) 01 = 1)
+ (o () + (= o () (Wi = W) -

which is an Euler scheme with linear-predictor method.
When o € 47 and S € € the above Euler scheme converges (Neuenkirch and
Nourdin 2007) to the true solution and

- 1
2N Y = Yo — = sup

almost surely as n — +o00,
2 1eq0,1)

t
/ o' (Ys)DyY,ds
0

where DY, is the Malliavin derivative at time s of ¥, with respect to the fractional
Brownian motion. Let us remark that for H = 1/2, the Euler explicit scheme con-
verges to the It6-SDE. Extensions to the multidimensional case are possible (Mishura
and Shevchenko 2008) but not yet implemented in yuima.

5.4 Parametric Inference for the fOU

Statistical inference for general stochastic differential equations driven by fractional
Brownian motion is not available due to its complexity. However, some results are
available for the fractional Ornstein—Uhlenbeck process (fOU) solution of

1
Y,=y0—)\f Yids +oWH, t>0, (5.4)
0

where unknown parameter ¢ = (X, o, H) belongs to an open subset @ of (0, A) x
[0,6] x (0,1),0 < A < 400,0 <0 <0 < +ooand H € (0, 1). The fOU
process is neither Markovian nor a semimartingale for H # % but remains Gaussian
and ergodic for A > 0 (see Cheridito et al. 2003). For H > %, it even presents
the long-range dependence property that makes it useful for different applications in
biology and physics (with the Fractional Langevin Equation), ethernet traffic (Bregni
and Erangoli 2005; Willinger et al. 1995) or finance (Xiao et al. 2011).

Estimation for the fOU from discrete observations is a relatively new field. Very
recent works considered methods to estimate the drift A by contrast procedure (Bertin
et al. 2011; Hu et al. 2011; Ludena 2004; Neuenkirch and Tindel 2011) or the drift

A and the diffusion coefficient o with discretization procedure of integral transform

5.4 Parametric Inference for the fOU 209

(Xiao et al. 2011). In these papers, the Hurst exponent is supposed to be known
and only consistency is obtained. On the other hand, methods to estimate the Hurst
exponent H and the diffusion coefficient are presented in Berzin and Leon (2008) with
classical order 2 variations convolution filters. The yuima implements the estimation
procedure of Brouste and Iacus (2013) when all the parameters ¥ = (X, o, H) are
unknown.

5.4.1 Estimation of the Hurst Exponent and the Diffusion
Coefficient via Quadratic Generalized Variations

The key point here is that the Hurst exponent H and the diffusion coefficient o can
be estimated without prior knowledge on A. Let us denote by X;,i =0, 1, ..., n, the
discrete observations from the process (5.4) on a regular grid. Let a = (ay, . .., ag)
be a discrete filter of length K + 1, K € N,oforder L > 1, K > L, i.e.

K K
D ak" =0 for 0<¢<L—1 and Y ak"#0. (5.5)
k=0 k=0

normalized by Zfzo(— 1)!~*a; = 1. In the following, we will also consider dilated
filter a® associated to a defined by

» [ap ifk=2K
G = { 0 otherwise. r 0sk=2k
2K K
Since Y afk” = 2" k"ay, filter a* as the same order as a. We denote by
k=0 k=0

N-K [K 2
Vva= (Zakxi+k>

i=0 \k=0

the generalized quadratic variations associated to the filter a (see for instance Istas

and Lang 1997). Finally,
~ 1 Vi a2
Hy = -1 :
N=73 0g; Vya

(5.6)

and

o=

1%
Gy = -2 Na — . (5.7)
Zk.K akaglk — £|2HNAN v

210 5 Stochastic Differential Equations Driven by the Fractional Brownian Motion

If ais afilter of order L > 2, then, both estimators 17 ~ and oy are strongly consistent
and asymptotically Gaussian which exists in closed form (see Brouste and Iacus
2013). Classical filters of order L > 1 are defined by

(_l)l—k K (—l)l_k K!
ay =CLk = 2—K k = 7K k'(K — k)' for 0O < k < K. (58)

Daubechies filters of even order can also be considered (Daubechies 1992), for
instance the order 2 Daubechies’ filter:

1
—2(.4829629131445341, —.8365163037378077, .2241438680420134, .1294095225512603). (5.9)

/2

and this is the default filter used by the function ggv by yuima. The function
agv' needs as input a yuima object, with the data slot and accepts as arguments:
filter. type (by default "Daubechies" butcanbe also "Classical"), the
order, and eventually the sequence a which describes the filter. Let us consider the
model

t
X, =1 —,\/ X, dt +odWl
0

and let us simulate a path with (H = 0.7, A = 2,0 = 1) in order to estimate the
parameters

(123)

samp (Terminal=100, n=10000)
mod (drift="-lambda*x", diffusion="sigma", hurst=NA)
ou (model=mod, sampling=samp)
fou (ou, xinit=1,

true.param= (lambda=2, sigma=1), hurst=0.7)
fou
##

Diffusion process

Number of equations: 1

Number of Wiener noises: 1

Parametric model with 2 parameters

##

Number of original time series: 1

length = 10001, time range [0 ; 100]

##

Number of zoo time series: 1

length time.min time.max delta
Series 1 10001 0 100 0.01

IFor ‘quadratic generalized variation’.

5.4 Parametric Inference for the fOU 211

Notice that in the definition of the model, we need to specify hurst=NA as, for real
data and the purpose of estimation, we do not know the true value of H. Subsequently,
in simulate, as the true value of H is unknown to the yuima model, we need
to specify its value through the argument hurst. Now, we can apply ggv to the
simulated data to get the following results

(fou)
##
Fractional OU estimation
hurst (sigma)

Estimate 0.70203080 1.0151571
Std. Error 0.01057269 0.0699011

5.4.2 Estimation of the Drift Parameter

It is well known that (Hu and Nualart 2010)

o2 QH + 1)

. R B S
723 _tgnoovar(Y,) = lim —/O Y dt = e

t—>00 t

The above limiting result suggests the following moment-type estimator for A:

1

- 2‘“ 28,
=t) (5.10)
oyl (2Hy +1)

where
LN
~ o 2
Man = nE_l X;

is the empirical moment of order 2. The estimator XN is consistent but asymptotically
Gaussian only for H € (%, %) as shown in Brouste and Iacus (2013). This moment-
type estimator is implemented in the function mmfrac which calls ggv if also H

and the diffusion coefficient are unknown.

(fou)
#4#
Fractional OU estimation
hurst sigma lambda

Estimate 0.70203080 1.0151571 2.21593
Std. Error 0.01057269 0.0699011 0.25919

212 5 Stochastic Differential Equations Driven by the Fractional Brownian Motion

5.5 An Example on Climate Change Data

The package yuima provides the data set MWK 151 which contains the measurements
of the ring width of pine trees collected by Graybill and Shiyatov (1992). In particular,
MWK151 is a small subset of the general dataset, concerning only one site and the
date spans from —608 to 1957.

(MWK151)
(MWK151)

‘zoo’ series from -608 to 1957

Data: num [1:2566] 0.9 0.96 0.94 0.85 0.69 0.74 0.64 0.45
0.58 0.66

Index: num [1:2566] -608 -607 -606 -605 -604 -603 -602 -601
-600 -599

Looking at the data in Fig. 5.2, one can guess the fractional nature of these data and
the persistence of the correlation through the plot of the autocorrelation function
using acf

(mfrow=c(1,2))

(MWK151, main="Methuselah Walk ring widths", xlab="year")
((MWK151))

Methuselah Walk ring widths

o
~ -
S} @« _|
- o
@
o 7 © _|
o
E [T
N @)
s ° < <
= <]
<
g
N
A
N
A
o
o [S)
= e L T
T T T T T T T T T T T T T T
-500 0 500 1000 1500 2000 0 5 10 15 20 25 30 35
year Lag

Fig. 5.2 Methuselah Walk ring widths, -608, 1957. The autocorrelation function presents strong
temporal correlation

5.5 An Example on Climate Change Data 213

We now estimate a fOU for these data although the process exhibits a mean-reverting
behaviour, thus the estimate of A would not be quite correct in this situation.

mod (drift="-lambda *x", diffusion="sigma", hurst=NA)
mwk (model=mod, data= (MWK151))

mwk

##

Diffusion process

Number of equations: 1

Number of Wiener noises: 1

Parametric model with 2 parameters

##

Number of original time series: 1

length = 2566, time range [-608 ; 1957]
##

Number of zoo time series: 1

length time.min time.max delta

Series 1 2566 -608 1957 1
(mwk)

##

Fractional OU estimation

hurst (sigma) lambda
Estimate 0.24027157 0.09808681 0.001823339
Std. Error 0.02208363 0.01202379 0.007963485

and we obtain H = 0.24. This results in line with the literature. As guessed, the
estimate of X is statistically not significant, meaning that probably the drift contains
some mean-reverting property which we cannot extract from the simple estimation
procedure for A explained in the above.

Chapter 6 ®)
CARMA Models i

Doob (1944) introduced continuous autoregressive moving average models, also
known as CARMA, as continuous versions of the most famous ARMA models.
The main assumption of both ARMA and CARMA were the Gaussian innovations
of the process. Recently, Brockwell (2001) has extended the class of CARMA to
Lévy process with finite second-order moments to allow for asymmetric and heavy-
tailed increments frequently noted in real-time series. Examples of uses of these
processes include Barndorff-Nielsen and Shephard (2001a), Todorov and Tauchen
(2006), Todorov (2011) and Brockwell and Marquardt (2005).

6.1 Lévy-Driven CARMA Models

This section reviews the basic knowledge about Lévy-driven CARMA(p,q) models
as described in Brockwell (2001). Let p, g nonnegative integers suchthatp > g > 0.
Then, the CARMA(p,q) process is defined as:

a(D)Y, = b(D)DL, (6.1)
where a and b are polynomials

a@=+a’" +-+a,
b(z)=by+biz"' +--+by_ 12"

with ay, ..., a, and by, ..., b,_; are coefficients such that b, # 0 and b; = 0
Vj > g and D is the differentiation operator with respect to 7.

The CARMA(p,g) model has the following convenient state-space representation

Y, =bTX, 6.2)

© Springer International Publishing AG, part of Springer Nature 2018 215
S. M. Iacus and N. Yoshida, Simulation and Inference for Stochastic
Processes with YUIMA, Use R!, https://doi.org/10.1007/978-3-319-55569-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-55569-0_6&domain=pdf

216 6 CARMA Models
where X, is p-dimensional process solution to
dX, = AX,dr +edL, (6.3)

and the p x p matrix A is given by

0 1 0 0
0 0 1 0
A= :
0 0 0 1
—ap, —ap_1 —dp_y ... —aj

e and b are p x 1 vectors defined as
e=1[0,...,0,1]7
b=[by,....0,1]".

Given the X, the solution of (6.3) has this form:

t
X, =eMIXx, + / e WedL,, Vi >s, (6.4)

N

where e” is the matrix exponential
+o00 1
A _ k
e’ = E o A",
h=0

If the real part of the eigenvalues Ay, ..., A, of A is negative, then X, in (6.3) has a
covariance stationary solution (Brockwell 2001)

t d “+00
X, = / e WedL, = f etedL, (6.5)
—00 0
with i
E [Xt] = —e
ap

+00
T
Cov [X,+h; X,] = ozeAh/ eMeeTe™du for h > 0.
0

where u = E [L]and 6> = Var [L1].

6.2 CARMA Model Specification 217

6.2 CARMA Model Specification

In yuima package, the CARMA(p,q) model is specified by means of setCarma that
creates an objectof class yuima . carma. The yuima . carma-class extends the
yvuima.model-class and simulate method works out of the box as well as
the gm1e method (Iacus and Mercuri 2015).

6.2.1 The yuima.carma-class

The yuima . carma class stores the model in its generalized linear state-space rep-
resentation. Let

Y, =cy+0o (X,
dX;, = AX, dt+e(yp+ y7X,)dZ,

(6.6)
where ¢y € R and o € (0, +00) are location and scale parameters, respectively. Let
b € R” be the vector of moving average parameters by, by, ..., b, and A the p x p
matrix containing the autoregressive parameters a, ..., a,

0 1 0 0
0 0 1 0
A = :
0 0 0 1
—dp, —dp—1 —4p—2 ... —da]
The yy € R and the vector y := [yl, N y,,] are called linear parameters (Brockwell

etal. 2006). The yuima . carma class extends the yuima .model by adding a new
slot info of class carma . info-class. The info object is built for the user by
setCarma function and contains the following slots:

e p the order of the autoregressive coefficients.

e g the order of the moving average coefficients.

e loc.par alabel denoting the location coefficient. The default value 1oc.par=
NULL means ¢y = 0.

e scale.par thelabel of scale coefficient. The default value scale.par=NULL
implies that sigma=1.

e ar.par thelabel of the autoregressive coefficients. The default Valueis ar . par=
"an.

e ma.par the label of the moving average coefficients. The default Value is
ma.par="b".

e Carma.var the label of the observed process. Defaults to "v".

218 6 CARMA Models

e Latent.var the label of the unobserved process. Defaults to "x".

e 1lin.par thelabel of the linear coefficients. If 1in.par=NULL, the setCarma
builds the CARMA(p,q) model of Brockwell (2001).

e XinExpr is a logical variable. The default value XinExpr=FALSE implies
that the starting condition for Latent . var is zero. If XinExpr=TRUE, each
component of Latent . var has a parameter as a initial value.

e ... Arguments to be passed to setCarma, such as the slots of yuima .model -
class. They play a fundamental role when the underlying noise is a pure jump
Lévy process. In particular, the following two arguments are necessary

— measure Lévy measure of jump variables.
— measure. type type specification for Levy measure.

Assume that we want to build a CARMA(p = 3, ¢ = 1) model. The representation
(6.6) takes this form

Y, =boXo; + b1 Xy,

dX()J = Xl,,dl
XmJ = Xz’ldl‘
dXo, = [—a3Xo, — a2 X1, — a1 Xo, | dt +dZ,
(6.7)
here Z, is a Wiener process. This model is created in yuima as follows
carma.mod (p=3,g=1,loc.par="c0",Carma.var="y",Latent.var="X")

carma.mod

#4#

Carma process p=3, g=1

Number of equations: 4

Number of Wiener noises: 1

Parametric model with 6 parameters

The internal structure of the object carma .mod

(carma.mod)

Formal class ’‘yuima.carma’ [package "yuima"] with 17 slots
..@ info :Formal class ‘carma.info’ [package "yuima"] with
10 slots

.. @ p : num 3

..@ g : num 1

..@ loc.par : chr "cO"
.. @ scale.par : chr(0)
.. @ ar.par : chr "a"

6.2 CARMA Model Specification 219

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

D ® ® ®

..@
"yui

ma.par : chr "b"

lin.par : chr(0)

Carma.var : chr "y"

Latent.var: chr "X"

. ..@ XinExpr : logi FALSE

drift : expression((b0 * X1 + bl * X2), (X1), (X2))
diffusion :List of 4

.$: expression((0
.$: expression
.$: expression
.$: expression
hurst : num 0.5
jump.coeff : list()

measure : list()

measure.type : chr(0)

parameter :Formal class ’‘model.parameter’ [package
ma"] with 7 slots

all : chr [1:6] "bO" "bl" "a3" "a2"

common : chr(0)

diffusion: chr(0)

drift : chr [1:5] "bO" "bl" "a3" "a2"

jump : chr(0)

measure : chr(0)

. ..@ xinit : chr "cO"

state.variable : chr [1:4] "y" "X0" "X1" "X2"
jump.variable : chr(0)

time.variable : chr "t"

noise.number : int 1

equation.number: int 4

dimension : int [1:6] 6 0 0 5 0 O

solve.variable : chr [1:4] "y" "X0" "X1" "X2"
xinit : expression((c0), (0), (0))

J.flag : logi FALSE

P ®® ® ®

(
((
((
((

P OO ®® ®®

the slots measure and measure. type are empty in this case because the driving
process is the standard Brownian motion. The slots drift and di f fusion contain
the yuima matrix-wise representation of model (6.7):

Y boX1 + b1 X 0
Xos | | Xus 0

d X |~ | %0, dr + 0 dz, (6.8)
Xo, —a3Xo; —ar X1, — a1 Xo, 1

The observable process Y; is represented as a stochastic differential equation. The
slot xinit contains the location parameter ¢y and the starting condition for ¥,

220 6 CARMA Models

y

X0

X1

X2
-10 05-06 00 -06 00 -06 0.0

0 20 40 60 80 100
t

Fig. 6.1 Simulation of a CARMA(3,1) process driven by a standard Brownian motion

Yo = co + bo Xy + b1 X,

Let us choose a := [ay, az, a3] such that the eigenvalues of the matrix A are real and
negative. For example, specifying a; = 4,a, = 4.75 and a3 = 1.5 gives A = —0.5,
Ay = —1.5 and A3 = —2. Now, we simulate a path of the process (6.7).

par.carma (al=4,a2=4.75,a3=1.5,b0=1,b1=0.23,c0=0)
samp (Terminal=100, n=3000)

(123)
carma (carma.mod,

true.parameter=par.carma, sampling=samp)

The simulated sample path can be drawn using the plot function. The upper part
of the plot contains a trajectory of the CARMA process Y; while the remaining plots
show the trajectories of each component of the state vector X, (see Fig.6.1).

(carma)

where the initial condition is a vector of zeros.

6.3 CARMA(p,q) Model Estimation

We assume that the condition for canonical state representation (i.e. distinct eigen-
values for A matrix whose real part is negative) is satisfied. The estimation of the
CARMA processes from real data involves a three steps procedure as the component
X of the model is unobservable. The steps are as follows:

1. estimation of the CARMA parametersa = [ay, ..., aplandb = [bo, ..., by, by
=0,...,b,_1 = 0] viaquasi-maximum likelihood estimation (see Schlemm and
Stelzer 2012, for univariate and multivariate cases). Least square estimation is
also possible (see Brockwell et al. 2011, for more details) but not implemented

6.3 CARMA(p,q) Model Estimation 221

in package yuima. Since the state space representation in system (6.3) is based
on the unobservable process X, a Kalman Filter procedure (see Témasson 2013,
for a CARMA model driven by a Brownian motion) is applied;

2. once the CARMA parameters have been estimated, the increments of the under-
lying Lévy process are extracted using the same ideas as in Brockwell et al. (2011,
2007); Brockwell and Schlemm (2013). To this aim the method CarmaNoise
should be used;

3. finally, with the increments at hand, the parameters of the Lévy measure can be
estimated. In yuima, the maximum likelihood approach is used.

Although the interface is the same, the gmle method accepts additional argu-
ments, like the estimated Lévy increments obtained via the function CarmaNoise.
The main new argument in the method gmle are the character-string variable
Est.Incr andthelogical variable aggregation. The variable Est . Incr man-
ages the output of the gm1e function. The variable Est . Incr assumes the following
three values:

e IncPar (Default) returns the increments and the estimated parameters of the
Lévy process.

e Inc returns just the increments of the Lévy process.

e Par returns only the estimated parameters of the Lévy measure.

The logical variable aggregation is related to the methodology for the estimation
of the Lévy parameter. Indeed if the variable is TRUE, the increments are aggregated in
order to obtain the increments on unitary time intervals. The function CarmaNoise
can called directly by the user.

(yuima, param, data=NULL)

where the arguments mean:

e yuima the CARMA model;
e param the 1ist of parameters for the CARMA model;
e data unitary spaced observation or, if NULL, the data in the yuima object.

We now fit the model of Sect. 6.2 on the simulated data

fit (carma, start=par.carma)

##
Starting gmle for carma ...

fit

#4#

Call:

agmle (yuima = carma, start = par.carma)
#4#

222 6 CARMA Models

Coefficients:

#4# b0 bl a3 a2
4.570696e+02 5.786199e+00 2.217946e+03 9.152726e+02
al c0

1.917346e+03 3.536935e-02

Since the driven noise is a standard Brownian motion, the estimated parameters are
only the AR and MA parameters.

6.4 Examples of Lévy-driven CARMA(p,q) Models

Given the Lévy process capability of yuima and the possibility to filter the Lévy
increments, we can now show how to model, simulate and estimate some types of
CARMA(p,q) processes driven by different types of Lévy noise.

6.4.1 Compound Poisson CARMA(2,1) Process

We simulate a trajectory from a CARMA(2,1) driven by a compound Poisson process
with normally distributed jumps, and then we use this trajectory for the estimation
procedure. It is worth to notice that since all the considered models can be seen
as mixture of normals, the maximum likelihood estimation could be efficiently per-
formed through an EM algorithm (Dempster et al. 1977). This algorithm was used by
Hinde (1982) for the compound Poisson case, Loregian et al. (2012) for the variance
gamma case and Dimitris (2002) for the NIG case. Let us consider a CARMA(2,1)
model driven by a compound Poisson with Gaussian jumps and constant intensity
A=1

modCP (p=2,g=1,Carma.var="y",

measure= (intensity="Lamb",df= ("dnorm(z, mu, sig)")),

measure. type="CP")

true.parmCP (al=1.39631,a2=0.05029,b0=1,bl=2,
Lamb=1,mu=0,sig=1)

Let us generate sample paths
samp.L (Terminal=200,n=4000)

(123)
simCP (modCP, true.parameter=true.parmCP, sampling=samp.L)

Figure 6.2 shows the trajectory of the process

(simCP,main="CP CARMA (2,1) model")

6.4 Examples of Lévy-driven CARMA(p,q) Models 223

CP CARMA(2,1) model

o
> o |
wv
o |
o~
o o
x -
<
I
* <7
-
o
! T T T T T
0 50 100 150 200
t

Fig. 6.2 Simulation of a CARMA(2,1) process driven by a compound Poisson process

and now we apply the estimation procedure described in Sect. 6.3

carmaoptCP (simCP, start=true.parmCP, Est.Incr="Incr")
##

Starting gmle for carma

##

Stationarity condition is satisfied...
Starting Estimation Increments

(carmaoptCP)

Two Stage Quasi-Maximum likelihood estimation

#4#

Call:

gmle(yuima = simCP, start = true.parmCP, Est.Incr = "Incr")
##

Coefficients:

Estimate Std. Error
bl 1.82692151 0.02127052
b0 0.78355697 0.25351014
a2 0.07855805 0.04679159
al 1.37994579 0.22821157
Lamb 1.00000000 0.00000000
mu 0.00000000 0.00000000
sig 1.00000000 0.00000000
#4#

-2 log L: 4006.415

##

#4#

Number of increments: 3999
##

Average of increments: -0.004649

224 6 CARMA Models

Compound Poisson with normal jump size

[QUE
g J
EOA
TA
N
N
[5¢]
o

T T T T T

0 50 100 150 200

Time

Fig. 6.3 The estimated increments from the CARMA(2,1) model with compound Poisson driving
noise

#4#

Standard Dev. of increments: 0.218469

##

Summary statistics for increments:

Min. 1st Qu. Median Mean 3rd Qu.
-3.1584305 -0.0051499 -0.0015587 -0.0046495 0.0006458
Max.

2.7267152

#4#

#4#

Carma(2,1) model: Stationarity conditions are satisfied.

We can now plot the estimated increments (see, Fig.6.3) extracted from the data
specifying argument Est . Incr="Incr".

(carmaoptCP,ylab="Incr.", type="1",
main="Compound Poisson with normal jump size")

6.4.2 Variance Gamma CARMA(2,1) Process

Now let us consider a variance gamma Lévy process (Madan and Seneta 1990b)

modVG (p=2,g=1,Carma.var="y",
measure= ("rvgamma (z, lambda, alpha, beta,mu) "),
measure. type="code")

true.parmvVG (al=1.39631, a2=0.05029, b0=1, bl=2,

lambda=1, alpha=1, beta=0, mu=0)

and let us simulate a sample path from this process (see, Fig.6.4)

6.4 Examples of Lévy-driven CARMA(p,q) Models 225

VG CARMA(2,1) model

-50 510
!

x0
6

024-2 2

x1

Fig. 6.4 The Variance Gamma CARMA(2,1) process

Variance Gamma increments

o
~ 4
g o-
‘I_ -
o~
I
™
b T T T T I
0 50 100 150 200
Time

Fig. 6.5 The estimated increments for the variance gamma CARMA(2,1) process

(100)
simVG (modVG, true.parameter=true.parmVG,
sampling=samp.L)
(simVG,main="VG CARMA (2,1) model")

We know estimate the parameters via gmle and plot the increments as shown in
Fig.6.5

carmaoptVG (simVG, start=true.parmVG, Est.Incr="Incr")
(carmaoptVG)
(carmaoptVG, xlab="Time",
main="Variance Gamma increments",ylab="Incr.",type="1")

226 6 CARMA Models

simulated noise increments

incrLevy
1
|

0 1000 2000 3000 4000
Index

Fig. 6.6 The simulated NIG Lévy increments

6.4.3 Normal Inverse Gaussian CARMA(2,1) Process

We conclude the examples with NIG Lévy noise (Barndorff-Nielsen 1977).

modNIG (p=2,g=1,Carma.var="y",
measure= ("rNIG(z,alpha,beta,deltal,mu)"),
measure. type="code")

IncMod (drift="0",diffusion="0", jump.coeff="1",
measure= ("rNIG(z,1,0,1,0)"),measure.type="code")

(100)
simLev (IncMod, sampling=samp.L)
incrLevy (((simLev) [[111))

(incrLevy,main="simulated noise increments", type="1")

The simulated Lévy increments (see Fig. 6.6) are necessary for building the sample
path of the CARMA(2,1) model driven by a Normal Inverse Gaussian Process. In
yuima package, we simulate a trajectory using the code listed below:

true.parmNIG (al=1.39631,a2=0.05029,b0=1,bl=2,
alpha=1,beta=0,deltal=1,mu=0)
simNIG (modNIG, true.parameter=true.parmNIG, sampling=samp.L)

Figure 6.7 shows the trajectory of the simulated process

(simNIG,main="NIG CARMA (2,1) model")

We now move to estimation

carmaoptNIG (simNIG, start=true.parmNIG, Est.Incr="Incr")

6.4 Examples of Lévy-driven CARMA(p,q) Models 227

x0

x1

NIG CARMA(2,1) model

o

-4 0 -10

-8

-2 0 2
L1

T T
0 50 100 150 200

Fig. 6.7 The NIG CARMA(2,1) process

##
##
##
##
##

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Starting gmle for carma

Stationarity condition is satisfied...
Starting Estimation Increments

(carmaoptNIG)

Two Stage Quasi-Maximum likelihood estimation

Call:
amle (yuima = simNIG, start = true.parmNIG, Est.Incr = "Incr")
Coefficients:

Estimate Std. Error
bl 1.96714121 0.02334417
b0 1.45518670 0.57884115
a2 0.08622383 0.05543702
al 1.63602425 0.41296660
alpha 1.00000000 0.00000000
beta 0.00000000 0.00000000
deltal 1.00000000 0.00000000
mu 0.00000000 0.00000000
-2 log L: 4610.317
Number of increments: 3999

Average of increments: -0.004172

Standard Dev. of increments: 0.218784

Summary statistics for increments:
Min. 1st Qu. Median Mean 3rd Qu.

228 6 CARMA Models

Normal Inverse Gaussian

Incr.
0
L

T T T T T
0 50 100 150 200

Time

Fig. 6.8 The estimated increments for the NIG CARMA(2,1) process

-3.138450 -0.050587 -0.001904 -0.004172 0.041460

#4# Max.
3.283058
##
##

Carma(2,1) model: Stationarity conditions are satisfied.

Figure 6.8 shows the estimated increments for the process.

(carmaoptNIG, main="Normal Inverse Gaussian",ylab="Incr.",type="1")

Now, we show how to estimate the parameters of the underlying Normal Inverse
Gaussian Lévy Process using the package GeneralizedHyperbolic just to
test the accuracy of the gmle function.

As a first step, we extract the Lévy innovations from the yuima .carma.gmle
object

NIG. Inc ((carmaoptNIG@Incr.Lev))
NIG. freqg (carmaoptNIGE@Incr.Lev)

then, we aggregate the innovations to work with increments on time intervals of
length one.

t.idx (from=1, to= (NIG.Inc), by=NIG.freq)
Unitary.NIG.Inc ((NIG.Inc) [t.idx])

The function nigFit, from Generalized Hyperbolic, fits the NIG distribution to
generic i.i.d. data Unitary.NIG. Inc by exact maximum likelihood method

(GeneralizedHyperbolic)

Loading required package: DistributionUtils
Loading required package: RUnit

6.4 Examples of Lévy-driven CARMA(p,q) Models 229

Log-Histogram of NIG Incr. Q-Q Plot of NIG Incr.
[e]
o
[0}
= N
> c
= © ~ —
(%2} >
& g
i 2
[} 1
S £
(72} » ®©
D
-3 -2 -1 0 1 2 3 4
Theoretical Quantiles
param = (-0.238, 1.232, 1.246, 0.161) param = (-0.238, 1.232, 1.246, 0.161, -0.5)

Fig. 6.9 The quality of fitting for the estimated NIG process

FitInc.NIG.Lev (Unitary.NIG.Inc)
(FitInc.NIG.Lev, hessian = TRUE, hessianMethod = "tsHessian")
##
Data: Unitary.NIG.Inc
Hessian: tsHessian
mu delta alpha beta
mu -236.98726 -17.66162 14.85199 -199.00307

delta -17.66162 -55.22145 41.34202 -26.00819
alpha 14.85199 41.34202 -38.04039 26.13861
beta -199.00307 -26.00819 26.13861 -201.81750
Parameter estimates:

mu delta alpha beta
-0.2385 1.2323 1.2464 0.1615
(0.1672) (0.3189) (0.4015) (0.1877)
Likelihood: -277.4848

Method: Nelder-Mead

Convergence code: 0

Iterations: 203

The summary of gmle and nigFit produce quite similar results. Figure 6.9 shows
the theoretical and empirical log-densities (left side) and the corresponding QQ-plot
(right side).

(mfrow = c(1, 2))
(FitInc.NIG.Lev, which = 2:3,
plotTitles = (c¢("Histogram of NIG ",
"Log-Histogram of NIG ",
"Q-Q Plot of NIG "), "Incr.", sep = ""))

6.5 Application to the VIX Index

In this example, adapted from Iacus and Mercuri (2014), we apply the CARMA model
to the VIX CBOE Volatility Index, which is a measure of the implied volatility of

230 6 CARMA Models

VIX daily log-Returns 2007-01-03 / 2016-12-30
4.0 4.0
3.5 35
3.0 3.0
25 25

Jan03 Jun01 NovOl Apr01 Sep02 FebO2 JulO1 DecOf JunO1 NovOi AprOi SepO1 FebO1 Jul02 Dec03 Jun03 NovOl Apr01 Sep02 Feb02 Jul01 DecO1 JunO1 NovO1
2007 2007 2007 2008 2008 2009 2009 2009 2010 2010 2011 2011 2012 2012 2012 2013 2013 2014 2014 2015 2015 2015 2016 2016

Fig. 6.10 The log(VIX) data

e
-

0.6

ACF

Lag

Fig. 6.11 The autocorrelation function for the log(VIX) data

S&P500 index options. VIX data can be accessed using getSymbols from the
quantmod package. We take the log values of the VIX for the index (Figs. 6.10).

(quantmod)
(" vIxX", to="2016-12-31")

[1] "VIX"

X VIXSVIX.Close
VIX.returns (X)
(VIX.returns, main="VIX daily log-Returns")

We can now plot the autocorrelation function (see Fig. 6.11)

(VIX.returns)

Using the extended autocorrelation function eacf from package TSA (Chan and
Ripley 2012), we can see that the most parsimonious model is an ARMA(2,1). For

6.5 Application to the VIX Index

231

this reason, we now try to fit a CARMA(2,1) using Gaussian noise and two other

types of Lévy noises: the VG and the NIG noise.

library (TSA)
eacf (VIX.returns,ar.max = 3, ma.max = 4)

AR/MA

01234
0 x X X X X
1 x o 0 0 x
2 x o0 0 0 ©
3 x 0 0 0 ©
Delta <- 1/252

VIX.Data<-setData (VIX.returns,delta=Delta)

Normal .model<-setCarma (p=2, g=1,loc.par="mu")

Normal.CARMA<-setYuima (data=VIX.Data, model=Normal.model)

Normal.start <- list(al=36,a2=56,b0=21,bl=1,mu=0)

Normal.est <- gmle(yuima=Normal.CARMA, start=Normal.start,
Est.Incr="Incr")

##

Starting gmle for carma

##

Stationarity condition is satisfied...
Starting Estimation Increments

summary (Normal.est)

Two Stage Quasi-Maximum likelihood estimation
##

Call:

gmle (yuima = Normal.CARMA, start = Normal.start, Est.Incr =
##

Coefficients:

Estimate Std. Error

bl 1.229888 0.02141029

b0 38.038621 14.32246330

a2 52.585978 33.17085654

al 57.771192 16.42969646

mu 2.876486 0.21132590

##

-2 log L: -5984.714

##

##

Number of increments: 2516

##

Average of increments: 0.000226

##

Standard Dev. of increments: 0.060366
##

Summary statistics for increments:

"Tncr")

232 6 CARMA Models

Series as.numeric(inc)

0.04

ACF
0.00
1

-0.04

Lag

Fig. 6.12 The autocorrelation for the estimated Lévy increments

Min. 1st Qu. Median Mean 3rd Qu.
-0.3522842 -0.0347673 -0.0065596 0.0002259 0.0284968
Max.

0.4056629

#4#

#4#

Carma(2,1) model: Stationarity conditions are satisfied.

We can now extract the increments and test if they are Gaussian

inc Normal.est@Incr.Lev

((inc))
##
Shapiro-Wilk normality test
##

data: as.numeric(inc)
W = 0.93811, p-value < 2.2e-16

The Shapiro—Wilk test rejects the null hypotheses of normality for these data. We
can also check if the CARMA model was able to remove residual autocorrelation

(((inc)))

Figure 6.12 suggests an autocorrelation effect at discrete lag 10, so we can apply the
tests

(x= (inc), lag = 10, type ="Ljung-Box")
#4#
Box-Ljung test
##

data: as.numeric(inc)
X-squared = 18.87, df = 10, p-value = 0.04195

(x= (inc), lag = 10, type ="Box-Pierce")

6.5 Application to the VIX Index 233

##

Box-Pierce test

#4#

data: as.numeric(inc)

X-squared = 18.797, df = 10, p-value = 0.04292

and they both fail al 1% level of significance. We now proceed with the specification
and estimation of the two alternative CARMA models

VG.model <- setCarma(p=2, g=1,loc.par="mu",
measure=list ("rvgamma (z, lambda, alpha,beta,mul) "),
measure. type="code")
NIG.model <- setCarma(p=2, g=1,loc.par="mu",
measure=list (df=1ist ("rNIG(z, alpha, beta, deltal, muO)")),
measure. type="code")

VG.CARMA<-setYuima (data=VIX.Data, model=VG.model)
NIG.CARMA<-setYuima (data=VIX.Data, model=NIG.model)

VG.start <- list(al=36,a2=56,b0=21,bl=1,mu=0,
lambda=1, alpha=1,beta=0,mu0=0)

NIG.start <- list(al=36,a2=56,b0=21,bl=1,mu=0,
alpha=2,beta=1,deltal=1,mu0=0)

fit.VG <- gmle(yuima=VG.CARMA, start=VG.start,
Est.Incr="IncrPar",aggregation=FALSE)

#4#

Starting gmle for carma

##

Stationarity condition is satisfied...
Starting Estimation Increments

#4#

Starting Estimation parameter Noise

fit.NIG <- gmle(yuima=NIG.CARMA, start=NIG.start,
Est.Incr="IncrPar",aggregation=FALSE)

##

Starting gmle for carma

#4#

Stationarity condition is satisfied...
Starting Estimation Increments

#4#

Starting Estimation parameter Noise

cf. VG <- coef (fit.VG)
cf.NIG <- coef (fit.NIG)

summary (fit.VG)

234 6 CARMA Models

Two Stage Quasi-Maximum likelihood estimation

#4#

Call:

gmle(yuima = VG.CARMA, start = VG.start, Est.Incr = "IncrPar",
aggregation = FALSE)

##

Coefficients:

Estimate Std. Error
b0 38.038621 14.32246330
bl 1.229888 0.02141029
a2 52.585978 33.17085654
al 57.771192 16.42969646
mu 2.876486 0.21132590

lambda 340.342772 28.16689722
alpha 30.227849 1.67107610

beta 7.129974 0.93903097

mu0 -5.566823 0.55743874

##

-2 log L: -5984.714

##

##

Number of increments: 2516

##

Average of increments: 0.000226

##

Standard Dev. of increments: 0.060366
##

##

-2 log L of increments: -7430.572460
##

Summary statistics for increments:

Min. 1st Qu. Median Mean 3rd Qu.
-0.3522842 -0.0347673 -0.0065596 0.0002259 0.0284968
#4# Max.

0.4056629

##

##

Carma(2,1) model: Stationarity conditions are satisfied.

(fit.NIG)

Two Stage Quasi-Maximum likelihood estimation

#4#

Call:

gmle (yuima = NIG.CARMA, start = NIG.start, Est.Incr = "IncrPar",
aggregation = FALSE)

##

Coefficients:

Estimate Std. Error

b0 38.038621 14.32246330

bl 1.229888 0.02141029

a2 52.585978 33.17085654

al 57.771192 16.42969646

6.5 Application to the VIX Index 235

mu 2.876486 0.21132590

alpha 18.288242 1.51942625

beta 6.735734 0.93264784

deltal 13.567081 0.75121361

mu0 -5.317212 0.54450503

##

-2 log L: -5984.714

##

#4#

Number of increments: 2516

##

Average of increments: 0.000226

##

Standard Dev. of increments: 0.060366
##

##

-2 log L of increments: -7439.914384
##

Summary statistics for increments:

Min. 1lst Qu. Median Mean 3rd Qu.
-0.3522842 -0.0347673 -0.0065596 0.0002259 0.0284968
Max.

0.4056629

##

##

Carma(2,1) model: Stationarity conditions are satisfied.

‘We now compare the empirical density of the Lévy increments against the theoretical
Gaussian, variance gamma and NIG densities. To put in evidence the discrepancy of
the data from the Gaussian density, we plot each density d as log(1 + d). We add 1
because most density estimate will return 0. This scaling has not effect on estimation
and it is done with the only purpose of plotting the data. Notice that in the next code
the parameters 1 and A of the variance gamma distribution and § and p of the NIG
distribution have been rescaled by the time mesh as the gmle return the estimation
of the Lévy process for time t = 1.

d.N <- function(u) log(l+dnorm(u, mean=mean(inc), sd=sd(inc)))
d.VG <- function(u) {
log(l+dvgamma (u, lambda=cf.VG["lambda"]*Delta,
alpha=cf.VG["alpha"], beta=cf.VG["beta"], mu=cf.VG["mu0"]*Delta))
}
d.NIG <- function(u) {
log (1+dNIG(u,alpha=cf.NIG["alpha"], beta=cf.NIG["beta"],

delta=cf.NIG["deltal"]*Delta, mu=cf.NIG["muO"]*Delta))
}
d.Emp density(inc)
plot (d.Emp$x, log(l+d.EmpSy),type="1"
main="Rescaled log-densities")
curve (d.N, min(d.Emp$x), max(d.Emp$x), col="blue",add=TRUE, lty=3)
curve (d.VG, min(d.EmpS$x), max(d.Emp$x), col="red",add=TRUE, lty=4)
curve (d.NIG, min(d.Emp$x), max(d.Emp$x), col="green",add=TRUE, lty=2)

236 6 CARMA Models

Rescaled log-densities

o
N
=
@ 0
Q=
IS
]
- <]
T <
% © |
Q o
o —_
S T T T T T
-0.4 -0.2 0.0 0.2 0.4
d.Emp$x

Fig. 6.13 The estimated densities of the Lévy increments. Each density d is plotted as log(1 4+ d).
The continuous line is the empirical density of the data, the dotted one is the Gaussian distribution,
the dashed line represents the NIG fitted density and the last one the VG fitted density

Figure 6.13 shows that both NIG and VG fit the data better than the Gaussian distri-
bution, with a slightly preference for the NIG distribution.

Chapter 7)
COGARCH Models iy

In financial literature, stochastic volatility models have been considered to take into
account the stylized facts often observed in the market. In general, for these models
there is the requirement of two sources of randomness that drive respectively return
and volatility processes. In GARCH and COGARCH processes, the idea is to focus on
a single source of noise which affects both the return and the volatility processes. The
COGARCH(1, 1) isindeed the stochastic volatility model introduced by Kliippelberg
et al. (2004) as the continuous counterpart of the GARCH(1, 1), i.e., the following
discrete-time series model:

)3 = €;0;
2 __ 2 2 :
of =B +MY_ | +do7, ieNy

where 8, A1, 8; are strictly positive, and both €, and o are independent from future
values of € and possibly random (Bollerslev 1986). The model developed by Kliip-
pelberg et al. (2004) is built on the idea to replace the discrete-time noise process
{e;, i € Ny} with the increments AL, of a Lévy process {L,, t > 0}. This procedure
occurs through several steps. Intuitively, a COGARCH(1, 1) is the limit of an explicit
representation of a GARCH(1, 1). In fact, very roughly speaking, first consider the
explicit representation of the volatility process for the GARCH(1, 1):

i—-1 i-1 i—1

of =By [] G+re)+og[[6+reh.

k=0 j=k+1 j=0
The above equation can be extended to continuous time representation as follows:

i—1 . .
i—1 i—1
O'l-z =p / exp Z log(s + Ae?) du + 002 exp Zlog(& +)»ejz-)
o j=lul+1 j=0
© Springer International Publishing AG, part of Springer Nature 2018 237

S. M. Iacus and N. Yoshida, Simulation and Inference for Stochastic
Processes with YUIMA, Use R!, https://doi.org/10.1007/978-3-319-55569-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-55569-0_7&domain=pdf

238 7 COGARCH Models

where |u| denotes the integer part of u. Now, the idea is to replace the sequence
{ei, i € Np} with the increments of a Lévy process. To this aim, one needs to introduce
the following auxiliary process {X,, t > 0}:

X, =nt— Y log(l+¢AL})

O<s<t

for which Ebe=X = ¢'¥(©) where W(c) is the Laplace exponent
W(c) = —ne +/ [(14¢x*)° —1]vr(dx)
R

with vy (-) the Lévy measure of process L. Then, for every u > 0 and ¢ > u, the
variance process can be rewritten as

t
o2 = ﬁe—om—xu)/ e~ X=X gy ¢ ==X 52,

u

It can be proved (Kliippelberg et al. 2004) that such a process, {o>, t > 0}, satisfies
the following stochastic differential equation

do? = Bdt + o eX-d(e™)

which is solved as

1
s
ol =pt —i—long olds + 3 > 6XAL) + o5 (7.1)

0 O<s<t

, Eq.(7.1) can be finally rewritten as

By setting n = —log § and ¢ = %

do? = (B —no?)dt + ¢o? d[L, L]?

where [L, L]? is the discrete part of the quadratic variation of the Lévy process and
is defined as:
[L, LY ==)" (ALy). (7.2)

0<s<t

As result of these steps, the COGARCH(1, 1) model is defined as the solution G =
(G1)r=0 to the following stochastic differential equation

dG; = 0,_dL,

7.3
dotz = (ﬂ - 770:2—)(11‘ + ¢Uzz—d[L’ L]? 7

where 8 > 0,7 >0,¢ >0, Gy =0, and 002 are independent of the Lévy process L.

7.1 General Order (p,q) Model 239

7.1 General Order (p,q) Model

The formulation of the COGARCH(1, 1) in formula (7.3) is not particularly suited
for the extension to the general (p, g) case. A much convenient formal definition of
the COGARCH(p, ¢g) is the one proposed by Brockwell et al. (2006) that includes as
a special case a version of (7.3) as we will see later. As mentioned in the above, the
idea is to capture market’s features using only one driving noise that controls both the
dynamics of a return process {G,} and a volatility process {V;}. In analogy with the
discrete-time GARCH(p, ¢) model, where the variance process is a “self-exciting”
predictable ARMA(g, p — 1) model driven by the squared of the innovations in the
returns dynamics, Brockwell et al. (2006) constructed the COGARCH(p, ¢) model
using the state-space representation of a CARMA(g, p — 1) model (see Chap. 6) for
the variance process. The result is the following definition: the process {G,, t > 0} is
aCOGARCH(p, g) model if it satisfies the following system of stochastic differential
equations:

dG[= A/ ‘/tdL[
V; =ao+a1Y1,,,+~-~+apr,,,
day,, = Yz);_dl‘

dYq—l,t = Yqyl_dl‘
dY,, = (=bgYi——- - —byYy,_)dt + Vd[L, L]¢

where {L,, t > 0} is a pure jump finite variation Lévy process. As in the above, the
quantity {[L, L]¢, t > 0} is the discrete part of the quadratic variation of process L.
From a practical point of view, one can think of the underlying Lévy process as a
pure jump process for which its variation is composed only by the quadratic part. To
be more precise and in order to input the above model into a yuima object, we make
of the following notation:

dG, = \/thLt
V, =ag+aTY,_ (7.4)

dY, = BY,_dt +e(ap+aTY,_)d[L, L]?

where ¢ and p are integers such that ¢ > p > 1. The state-space process Y; is a
vector with ¢ components:

T
YZ‘ = [Yl’[, ceey Yq’[] .
The vector a € R? is defined as:
T
a—= [al,...,a,,,a,,ﬂ,...,aq]

witha,,| = --- = a, = 0. The companion ¢ x g matrix B is

240 7 COGARCH Models

0o 0 .1
—by —by_1 ... b

The vector e € R? contains zero entries except the last component that is equal to
one, and [L, L]f is as in formula (7.2).

7.1.1 How to Input a COGARCH(p,q) Model in yuima

To specify a COGARCH(p, ¢) model in yuima, we need to use the constructor
function setCogarch which will build a new object of class yuima.cogarch.
This class extends the yuima .model-class, and it contains specific information
for the COGARCH(p, g) process. The use of the function is similar to setCarma
so we do not give full details here, but the reader can refer to the manual page of
the function. In the following lines, we build two models: a COGARCH(1, 1) and a
COGARCH(2, 2) models both driven by a compound Poisson process with standard
Gaussian jumps and constant intensity A = 1.

COGARCH(1,1) driven by CP

Cogll (p = 1, g=1, measure = (intensity="1",
df="dnorm(z, 0, 1)"), measure.type = "CP", XinExpr = TRUE)

Cogll

##

Cogarch process p=1, g=1 with Levy jumps
Number of equations: 3

Number of Levy noises: 1

Number of quadratic variation: 1

Parametric model with 4 parameters

COGARCH(2,2) driven by CP

Cog22 (p=2, g=2, measure = (intensity="1",
df="dnorm(z, 0, 1)"), measure.type = "CP", XinExpr = TRUE)

Cog22

##

Cogarch process p=2, g=2 with Levy jumps
Number of equations: 4

Number of Levy noises: 1

Number of quadratic variation: 1

Parametric model with 7 parameters

The arguments measure and measure. type specify the Lévy measure for the
underlying noise L,. Choosing XinExpr = TRUE, the user must specify the start-

7.1 General Order (p,q) Model 241

ing condition of the COGARCH(p, g) model in the simulation and estimation steps
for this model. The new object is of class yuima . cogarch which is an extension
of the yuima class with the additional slot info as we can see below

(Cogll)

[1] "yuima.cogarch"
attr(, "package")
[1] "yuima"

(Cogll)
[1] "info" "drift"
[3] "diffusion" "hurst"
[5] "jump.coeff" "measure"
[7] "measure.type" "parameter"
[9] "state.variable" "jump.variable"
[11] "time.variable" "noise.number"
[13] "equation.number" "dimension"
[15] "solve.variable" ‘"xinit"
[17] "J.flag"

(Cogll@info,2)

Formal class ‘cogarch.info’ [package "yuima"] with 11 slots

..@p : num 1

#4# ..@ g : num 1

..@ ar.par : chr "b"
..@ ma.par : chr "a"
..@ loc.par : chr "a0"
..@ Cogarch.var : chr "g"
..@ V.var : chr "v"
..@ Latent.var : chr "y"
..@ XinExpr : logi TRUE
#4# . .@ measure :List of 2
.@ measure.type: chr "Cp"

7.1.2 Stationarity Conditions

The process G has a stationary solution when the following assumption on the de-
composition of the matrix B holds true:

B = SDS™!

242 7 COGARCH Models

with
1 ... 1 N
R !
S = . . , D= (7.5)
= . N
A 1
where Ay, A2, ..., A, are the eigenvalues of matrix A and are ordered as follows:

R} =N} > =%}

Applying the theory of stochastic recurrence equations (Brandt 1986; Kesten 1973),
Brockwell et al. (2006) provide a sufficient condition for the strict stationarity of the
COGARCH(p, g) model under the assumptions that the eigenvalues Ay, ..., A, are
distinct and the underlying process L has a nontrivial Lévy measure vy (-). If this is
the case, the process Y; converges in distribution to the random variable Y, if there
exists some r € [1, +00] such that:

+00
/ In(1+1S " ea™S|l,x*) v, (dx) < R {i} (7.6)

o]

for some matrix S such that the matrix B is diagonalizable. If the initial condition

is set to Yy £ Yoo, then the process Y; is strictly stationary and consequently the
variance process V, is strictly stationary as well.

In the general case, COGARCH(p, g) case, the inequality in (7.6) gives only a
sufficient condition on the strict stationarity, but in the COGARCH(1, 1) case, it is
also a necessary condition and can be simplified as follows:

+00
/ In (1 +ajx?) vp(dx) < by. (7.7)

o]

For other specific configurations of p and ¢, Tsai and Chan (2005) listed some
useful conditions which must hold in addition to (7.6):

1. A necessary and sufficient condition to guarantee stationarity in the case of the
COGARCH(2, 2) model is that the eigenvalues of B are real and a, > 0 and
a; > —ap X (B), where A (B) is the largest eigenvalue.

2. Under condition 2 < p < g, all eigenvalues of B are negative and ordered in an
increasing way Ay > Ay >, ..., > A,_j and y; are the roots of a (z) = 0 ordered
as0 > y; > y» > ... > y,—. Then, a sufficient condition for stationarity is

k k
Yoy<Y i Vkell....p—1).

i=1 i=1

3. For the COGARCH(1, ¢) model, a sufficient condition that ensures stationarity
is that all eigenvalues must be real and negative.

7.1 General Order (p,q) Model 243

For some of these cases, the yuima package provides a diagnostic tool named
Diagnostic.Cogarch which requires the COGARCH model specification and
the parameters of the model as input:

Param of the COGARCH(1,1)
paramCP11l <- list(al = 0.038, bl= 0.053, a0 = 0.04/0.053,
y0l = 50.31)

checkll <- Diagnostic.Cogarch(Cogll, param=paramCPl1l)
#4#

COGARCH(11l) model

#4#

The process is strictly stationary

The unconditional first moment of the Variance process exists
#4#

the Variance is a positive process

str (checkll)

List of 4

$ meanVarianceProc : num [1, 1] 2.67
$ meanStateVariable: num [1, 1] 50.3
S stationary : logi TRUE

S positivity : logi TRUE

Param of the COGARCH(2,2)

paramCP22 <- list(al = 0.04, a2 = 0.001, bl = 0.705, b2 = 0.1,
a0 = 0.1, y01=01, y02 = 0)

check22 <- Diagnostic.Cogarch(Cog22, param=paramCP22)

##

COGARCH(22) model

#4#

The process is strictly stationary

The unconditional first moment of the Variance process exists
##

the Variance is a positive process

str (check22)

List of 4
$ meanVarianceProc : num [1, 1] 0.167

S meanStateVariable: num [1:2, 1] 1.67 0
S stationary : logi TRUE
S positivity : logi TRUE

244 7 COGARCH Models

7.2 Simulation Schemes

The yuima package implements two different schemes for the simulation of the
COGARCH(p, g) model. The first is a plain Euler-Maruyama scheme which is
based on the discretization of the system (7.4) on a regular grid on [0, 7] with N
intervals of length A¢. The steps of the algorithms are as follows:

1. generate the trajectory of the underlying Lévy process L, sampled on the grid
t=i-At,i=0,1,...,N;
2. given the initial conditions Yy = yy and G(= 0, we iterate this equation

Y,=(+BAt)Y, | +e(a+aTy,) A[LL]. (7.8)

where A [LL]Z is approximated as A [LL];;’ =(L, — Ln,l)z;
3. once the trajectory of the state process Y, is available, the variance process and
the COGARCH process G, are obtained through the following equations:

V,=ao+a'y,

and
G,=Gu 1+ v Vi (Ly — Lp—1) .

Although the discretized version of the state process Y, in (7.8) is a stochastic recur-
rence equation, the conditions for stationarity and non-negativity for the variance V,
process are not the ones of the original process. It is always possible to generate an
example in which the discretized variance process V,, assumes negative values while
the true process is non-negative with probability one. In fact, the following example
clarifies the problem. Let us consider the following COGARCH(1, 1) model driven
by a variance gamma Lévy process (Madan and Seneta 1990b; Loregian et al. 2012
see). In this case, in order to have a non-negative solution for the variance process
we need to check if ¢y > 0 and a; > 0, while the strict stationarity condition for
the COGARCH(1,1) is ensured by E[L?*] = 1 and a; — b; < 0. The last two re-
quirements guarantee also the existence of the stationary unconditional mean of the
variance process V.

modell (p =1, g=1,
measure= ("rvgamma (z, 1, sgrt(2), 0, 0)"),
measure.type = "code", Cogarch.var = "G",
V.var = "v", Latent.var="x", XinExpr=TRUE)

‘We now simulate this model under the following choice of the parameters and sam-
pling scheme

7.2 Simulation Schemes 245

VG-COGARCH(1,1) model with Euler scheme

-0.05

0.05 -0.20

0 1 2-0.05
L

x1

Fig. 7.1 Effect of discretization on the simulation of a COGARCH(I, 1) process under Euler
scheme

paraml (al = 0.038, bl = 301, a0 =0.01, x01 = 0)
(modell, param=paraml)

#4

COGARCH(11l) model

##

The process is strictly stationary

The unconditional first moment of the Variance process exists
#4#

the Variance is a positive process

Terminall 5
nl 750
sampl (Terminal=Terminall, n=nl)
(123)
siml (modell, sampling = sampl, true.parameter = paraml,

method="euler")

If we now look at the simulated trajectory in Fig. 7.1, we can see how the discretization
affects the simulation although the variance process is theoretically positive

(siml, main="VG-COGARCH(1l,1) model with Euler scheme")

This problem can be avoided using a different discretization of Y applying Ito’s
Lemma for semimartingales (Protter 1990) to the transformation e ~5"Y,. Indeed,

t t

Be 'Y, du +/ e Bugy,

t—At

e_BAth =Y a _/

t—At

) [- Yo —e P - Y]

s<t

246 7 COGARCH Models

We substitute the definition of Y; in (7.4) and get
t t
e By, =Y,_, — / Be Buy,_du + / e B BY,_du
t—At t—At

t
+/ e Be(ap+aTy,)d[LL]!
t—At

Making use of the following property for an exponential matrix

1 1
BeP' = B (1 + Br + 532# + 53%3 +..)

1 1
= (B +1tB% + 5#33 +t3§B4+...>

1 1
= (1 +1tB + 5#32 + t3§B3 +..) B = ¢%'B,

we get

t
Y, =B, + f eBe (ay+aTY,)d[LL]? (7.9)
t—At

Then, (7.9) is discretized as follows:
Y, =e?Y, 1 +e®Ye(ag+aTY,_y) (ILLIY — [LL]Y)) (7.10)
which can be rewritten as
Y, = ape® e A[LLY: + % (I + eaTA[LL]!) Y, . (7.11)

with A[LL]Y = [LL]¢ — [LL]?_,. Finally, (7.11) is used to replace (7.8) in the
original Euler scheme. To invoke this discretization scheme, one should specify the
argument method ="mixed" in the simulate method.

(123)
sim2 (modell, sampling = sampl, true.parameter = paraml,
method="mixed")

Figure 7.2 obtained with

(sim2, main="VG-COGARCH(1l,1) model with mixed scheme")

shows the stability of this method.

In the case of the COGARCH(p, ¢) driven by a compound Poisson Lévy process,
the trajectory can be simulated without error directly from (7.9) as it is possible
to know the jump times of the underlying Poisson process and calculate without
approximation the quadratic variation of the process. Then, simple interpolation is

7.2 Simulation Schemes 247

VG-COGARCH(1,1) model with mixed scheme

-0.10

0.00150.01000 0.01006 -0.25
L1
=
S
€
-
I

x1

0.0000

Fig. 7.2 Stability of the simulation of a COGARCH(I, 1) process under the mixed scheme

CP-COGARCH(1,1) with Gaussian noise

o
o ©
S
v
w |
=
> o]
N
o]
< 81
> -
s 4
T T T T T T
0 200 400 t 600 800 1000
CP-COGARCH(2,2) with Gaussian noise
o]
f
—
0
g %
£ MWWJ\J\N/\AWWMJ\/WW
S
> -
9 -
S
©]
< ¥
> -
o~]
o
w7
Q
N k k ‘ l
]
31

T T T T T T
0 200 400 600 800 1000

Fig.7.3 Exact simulation of compound Poisson COGARCH(1, 1) (up) and COGARCH(2, 2) (bot-
tom) processes under the Euler scheme

used to get observations on the given initial grid. As an example, we now plot a
trajectory of the two processes of Sect.7.1.2. The results are shown in Fig.7.3.

sampCP (0, 1000, 5000)
simCogll (Cogll, true.par=paramCPll, sampling=sampCP)
simCog22 (Cog22, true.par=paramCP22, sampling=sampCP)

248 7 COGARCH Models

Figure 7.2 obtained with

(simCogll, main="CP-COGARCH(1,1) with Gaussian noise")
(simCog22, main="CP-COGARCH(2,2) with Gaussian noise")

For more details about the simulation scheme and other properties of the moments
of the processes V, G, and Y, refer to lacus et al. (2017).

7.3 Generalized Method of Moments Estimation

One nice feature of the COGARCH(p, ¢) model is that the moments can be obtained
in explicit form and these can in turn be used for a generalized method of the moment
estimator. For the COGARCH(1, 1) model, the moment-type estimator has been
proposed in Kliippelberg et al. (2004) and Chadraa (2009) further generalized it to
the COGARCH(p, q) case. The estimation procedure is similar to the CARMA(p, q)
case of Chap. 6:

1. The parameters a := [al, .. .,a,,], b = [bl, e, bq] and the constant term
ay of COGARCH(p, g) model are first estimated by the generalized method of
moments by matching the empirical and the theoretical autocorrelation function.

2. Then the increments of the underlying Lévy process are obtained from the stan-
dardized residuals of the previously estimated model; and

3. Finally, maximum likelihood estimators of the parameters of the Lévy process
are calculated.

We now briefly go through the steps, but full details can be found in Iacus et al.
(2017).

7.3.1 Moments Matching Step

Let us assume that the Lévy process L is a zero-mean symmetric process. Let
Go,Gy,...,G,,...,Gy,where G; = G(t;),t; =i-A,,i =0,1,...,N. Let us
define the increments and the r-lagged increments of the observed COGARCH(p, ¢)
process as

G,(11) = Gn - Gn—la G,(:) = Gn - Gn—r

where r > 1 is an integer. The increments can be obtained through time aggregation
of increments of lag one, i.e., G = Y7_ GV, and this fact will be used to
simplify the estimation step later on. Using the lagged increments, we compute the
empirical second moments

N—d
0, = G(r)
Hr= N = d—r+1n2:;

7.3 Generalized Method of Moments Estimation 249

and the empirical autocovariance function y (h):

1 N—d 2
R S—— > ((Gi’lh) - u) ((G;)2 - ,2,) h=01,....d

n=r

where d is the maximal lag. From the above expressions, we obtain the empirical
autocorrelation function: .
yr (h)

o, (h) = = .
ri =50

Let p, (h; 0) be the theoretical correlation function, where we have put in evidence
the explicit dependence on the parameters 6 = (a, b). Now let

gn(©)=p, (h;0) —p, (), h=1,....d.
The GMM estimator of 6 is the solution of the following optimization problem

,min g @)

where ||-|| is some distance or norm. The yuima offers some options:

1. The L; norm

d
HOTEDNIAGOIE

h=1
2. The squared of L, norm
d 2
12 @)= (2 ©)" .
h=1
3. The following quadratic form
18 @)1y = & ()T Wg (0) (7.12)

where the positive definite weighting matrix W is chosen to obtain efficient esti-
mators between those that belong to the class of asymptotically normal estimators.

Clearly ||g (9) ||§ is a special case of the function ||g (9)||%,V where W is the identity
matrix. All distances are related with the generalized method of moments (GMM) as
introduced by Hansen (1982). Under some regularity conditions of Newey and Mc-
Fadden (1994), the GMM estimators are consistent and yuima implements optimal
weights (Iacus et al. 2017).

250 7 COGARCH Models

7.3.2 Lévy Distribution Estimation

Once the estimates of vector 6 are obtained through the generalized method of the
moments, it is possible to estimate the parameters in the Lévy distribution using the
estimated increments. From

Gn = anl + Y% Vn (Ln - Lnfl)

we immediately obtain that
AG, =/ V, (ALy)

where AG, = G, — G,—; = G!" and AL, = L, — L,_,. Taking Eq.(7.10) and
noticing that A [LL]? = [LL]? — [LL]?_, = (AL,)?, we obtain

Y, = P2y, | 4+ BV, (AL,)? = P2Y,_| + eBe (AG,)?.

Choosing Y| equal to the unconditional mean of the process Y;, we can reconstruct its
sample path form the previous recurrence equation, and through V, = ap +aTY, i,
we also obtain an estimate of the volatility process. At this point, we have both G,
and the estimated paths of ¥,, and V,;; hence, we can estimate the Lévy increments

as follows:
AG,

NV

and apply maximum likelihood estimation to this sequence of i.i.d. random variables.

In the next example, we try to estimate a COGARCH(1, 1) model for very high-
frequency data over a long time series. The yuima function in this case is called gmm
and accepts several arguments including the type objective function to optimize. We
refer the reader to the manual page of the function for full details; here, we just
present a simple example.

AL, =

(123)
sampCP (0, 5000, 15000)
simCogll (Cogll, true.par=paramCPll, sampling=sampCP)
fitll (simCogll, start=paramCP1l1l)

(fitl1)

GMM estimation

#4#

Call:

gmm(yuima = simCogll, start = paramCP11)
#4#

Coefficients:

Estimate Std. Error

bl 0.05845725 0.020777149
al 0.03195940 0.009100367

7.3 Generalized Method of Moments Estimation 251

a0 0.75346536 NA
##
Log.objFun L2: -4.228533
#4

Cogarch(l,1) model: Stationarity conditions are satisfied.
##
Cogarch(1l,1) model: Variance process is positive.

mat ((fit11), (paramCP11 [((fit11)) 1))
(mat) ("gmm", "true")

mat

#4# bl al a0

gmm 0.05845725 0.0319594 0.7534654
true 0.05300000 0.0380000 0.7547170

The GMM method in this case performs adequately although we suggest the QM-
LE approach for the next section. The estimated Lévy increments can be obtained
specifying the argument Est . Incr="Incr" as we did in the previous code and
subsequently extracted from the output of gmm accessing the slot Incr.Lev. In
the previous example, this means typing £it11@Incr.Lev in the R console. As
this functionality is available for the QMLE method, we will discuss this in the next
section.

A strictly related approach based on prediction-based estimating functions for the
COGARCH(1, 1) model can be found in Bibbona and Negri (2015), but this method
is not implemented in yuima.

7.4 Quasi-maximum Likelihood Estimation

The quasi-maximum likelihood approach is based on a sequence of approximations
of discrete stochastic processes to the COGARCH process. This method was first
proposed by Maller et al. (2008) in COGARCH(1, 1) case and the extended to the
COGARCH(p, g) model in Iacus et al. (2015). Let vz, (y) be the Lévy measure of
the process L,, and such that the Lévy process is centred in zero with unitary second
moment 4 =E(L;)=1.Let B:= B+ pea', u= [y*dvr (). Let further

ti
AG, =G, — G, = / V,dL,
1,

i—1

the sequence of increments on the, possibly irregular, grid0 =) < t; < ... <ty =
T . Then, the conditional first moment and the conditional variance of the increments
of AG,, are respectively (Chadraa 2009):

252 7 COGARCH Models

E[AG, |#,_,]=0

Var[AG, |7,] = E[L1]] (7.13)
% [cbl:f_glb;i | aTeBan g1 (1 _ emAt,-) (%, —E (Yt;,l))]
If the process Y, is stationary, we have: E (Y;) = % x [1,0,...,0]".
g —a1

Let G;, be a discrete approximation process for G, as defined in Iacus et al.
(2015), then the discretized version Y; ,, state process Y; takes the following form:

2 2
(Gin—Giz1n)” +\ g4 (Giw —Gi—1n)
Y=+ ———""""¢€a' |e""Y, |, +ap———"-e. (7.14
' < ap +aTYi—l,n b 0 ao +aTYi—l,n ()

Using (7.13) and (7.14), we obtain the pseudo-likelihood function for the case of the
COGARCH(p, g) model and the QMLE estimates of the model can be obtained as
the solution to the following optimization problem:

max %y (a, ag, B)
a,ap,Be®

where O is the parameter space and

_ NInQn)

N 2
1 AGy
Ly (a, a9, B) = —= Z (Var[([l) +1n (Var [AGy, |7,])))

2 i=1 AGti |‘gz[i71]
In the next example, we show the empirical convergence of the estimates for a VG-
COGARCH(1, 1) model in the case of QMLE and GMM approaches. As stationarity
and high frequency are both needed in this model, we consider the setting where T is
eithe_r 1000 and the number of observations is N = 15000; therefore, A = T/N =
0.066.

param.VG (al = 0.038, Dbl = 0.053, a0 = 0.04 / 0.053,
yv01l = 50.33)
cog.VG (p =1, g =1, work = FALSE,
measure= ("rvgamma (z, 1, sqgrt(2), 0, 0)"),
measure.type = "code", XinExpr = TRUE)
samp .VG (Terminal = 1000, n = 15000)
(123)
sim.VG (cog.VG, true.parameter = param.VG,
sampling = samp.VG, method = "mixed")
fit.gmm (sim.VG, start=param.VG)
fit.gmle (sim.VG, start=param.VG, grideg=TRUE)
nm ((fit.gmm))
mat ((fit.gmm) , (fit.gmle) [nm],
(param.VG[nm]))
(mat) ("gmm", "gmle", "true")

(mat,5)

7.4 Quasi-maximum Likelihood Estimation 253

bl al a0
gmm 0.01283 0.01001 0.49730
gmle 0.04973 0.03724 0.56738
true 0.05300 0.03800 0.75472

As we can see, the QMLE estimates are closer to the true parameters’ values than
the corresponding GMM estimates. This result is not general though.

7.5 Relationship Between GARCH(1,1)
and COGARCH(1,1)

Let us consider the notation from Sect.7.2 and the Euler approximation where the
increments of the Lévy process are a sequence of i.i.d. standard Gaussian distribution.
For simplicity, we denote by \/Zen =L,—L,.1 ~NO, A),n=0,1,...,N,
with A = T /N, and very small A. Consider the discretized COGARCH(1,1) process
(Maller et al. 2008; Iacus et al. 2015)

Gn = Gn—l + vV Vn—l“/ZEn

(7.15)
Vo =ao+a1¥,
where
Y, =C,Y,_1 + D, (7.16)

and coefficients
C,=(1+ eﬁAal) eMA D, =apelA,

therefore v
—
Yn _ n 0

ai
and, by using (7.16), we can write

Vi — o Vo1 — o
0 — (14 Aay) e A L0 4 g2 A.
ai ay

Now, using a bit of algebra, we get
V, = aph1 A+ a1 A2V, + V,_1e7"4 4 0(A)
and finally we can rewrite the whole system (7.15) in this GARCH(1,1) form

G, =G,_1 +0,¢,

2 __ 2 2 2
0, = + o0, 1€, + IBO’nfl

254 7 COGARCH Models

with
On = V%VCZ
= by A?
@= - (7.17)
B= e
o= a A

7.6 Application to Real Data

We now see an example, adapted from Bianchi et al. (2016), where this relationship
is also checked on the estimates from real data for these two models. We download
the data on Next Plc, and we try to fit to the de-trended log-returns (see Fig.7.4)
a GARCH(1,1) using the rugarch package (Ghalanos 2015) and later a COGA-
RCH(1,1) by yuima.

(quantmod)
("NXT.L", to="2016-12-31")

[1] "NXT.L"

S NXT.L$NXT.L.Close

X (((8)))
mx (X)

X X - mX

(X, main="Log-returns of NEXT Plc")
(rugarch)

spec (variance.model =
(model = "sGARCH", garchOrder = (1, 1)),
mean.model = (armaOrder = (0, 0), include.mean = FALSE))
Log-returns of NEXT Plc 2007-01-03 / 2016-12-30

Jan03 Jun01 NovO1 AprO1 SepO1 Feb02 Jul01 DecO1 Jun01 NovO1 AprO1 SepO! FebO1 Jul02 DecO3 Jun03 NovOl Apr01 SepO1 Feb02 Jul01 DecO JunO1 NovO1
2007 2007 2007 2008 2008 2009 2009 2009 2010 2010 2011 2011 2012 2012 2012 2013 2013 2014 2014 2015 2015 2015 2016 2016

Fig. 7.4 Log-returns of the stock Next Plc exhibit volatility clustering effect

7.6 Application to Real Data 255

fitGARCH <- ugarchfit (data = X, spec = spec)
GARCHllparam <- coef (fitGARCH)
GARCHllparam

omega alphal betal
1.913350e-06 2.524051e-02 9.690955e-01

Now, we construct a function to convert the parameters from a GARCH(1,1) to a
COGARCH(1,1) model according to formula (7.17). This function is similar to the
implementation in the package COGARCH.rm (Bianchi et al. 2017).

Delta <- 1/252
ParGarToCog<- function (GARCHllparam, dt, names=NULL) {
if (is.null (names))
names <- names (GARCHllparam)
my.omega <- GARCHllparam['"omega"]
my.alpha <- GARCHllparam["alphal"]
my.beta <- GARCHllparam["betal"]
al <- my.alpha/dt
bl <- -log(my.beta)/dt
a0 <- my.omega/ (bl*dt"2)
agmleparInGARCH <- ¢ (a0, al, bl)
names (gmleparInGARCH) <- c("a0", "al", "bl")
return (gmleparInGARCH)

Now, we use the converted values as initial point of the gm1le optimizer

ParGarToCog (GARCHllparam, Delta)

#4# a0 al bl
0.01535941 6.36060885 7.91080657

start <- as.list (ParGarToCog (GARCHllparam, Delta))
modCogll <- setCogarch(p=1, g=1, measure =

list (intensity="1", df=list("dnorm(z, 0, 1)")), measure.type="CP")
NXT.data <- setData(cumsum(X), delta = Delta)

Cogll <- setYuima(data = NXT.data, model = modCogll)
Cogll.fit <- gmle(yuima = Cogll, grideq=TRUE,
start = c(start, yl = 0.1),

aggregation = FALSE, method = "Nelder-Mead")
COGARCHllpar <- coef (Cogll.fit)
COGARCH11lpar
a0 al bl

0.01526955 6.31562511 7.73531392

256 7 COGARCH Models

and we apply the reverse transform from COGARCH(1,1) to GARCH(1,1)

ParCogToGar<- function (COGARCHllparam, dt, names=NULL) {

a0 <- COGARCHllparam["a0"]

al <- COGARCHllparam["al"]

bl <- COGARCHllparam["bl"]

my.omega <- al0*bl*dt"2

my.alpha <- al*dt

my.beta <- exp(-bl*dt)

amleparInGARCH <- c¢(my.omega, my.alpha, my.beta)

names (gmleparInGARCH) <- c("omega", "alphal", "betal")

return (gmleparInGARCH)

}
ParCogToGar (COGARCHllpar, Delta)

omega alphal betal
1.859958e-06 2.506200e-02 9.697706e-01

GARCHllparam

omega alphal betal
1.913350e-06 2.524051e-02 9.690955e-01

As seen, the estimated parameters are very close for the two models after repara-
metrization.

References

Abramowitz, M., & Stegun, 1. (1964). Handbook of mathematical functions. New York: Dover
Publications.

Ait-Sahalia, Y. (1996). Testing continuous-time models of the spot interest rate. The Review of
Financial Studies, 70(2), 385-426.

Ait-Sahalia, Y., Fan, J., & Xiu, D. (2010). High-frequency covariance estimates with noisy and
asynchronous financial data. Journal of the American Statistical Association, 105(492), 1504—
1517.

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In
B. Petrov & F. Caski (Eds.), Selected Papers of Hirotugu Akaike, Proceedings of the Second
International Symposium on Information Theory (pp. 267-281). Budapest: Akademiai Kiado.

Amari, S. (1985). Differential-geometrical methods in statistics (Vol. 28)., Lecture notes in statistics
New York: Springer.

Applebaum, D. (2004). Lévy processes and stochastic calculus. Cambridge: Cambridge University
Press.

Barndorff-Nielsen, O. (1977). Exponentially decreasing distributions for the logarithm of particle
size. Royal Society of London Proceedings Series A, 353.

Barndorff-Nielsen, O. (1978). Hyperbolic distributions and distributions on hyperbolae. Scandina-
vian Journal of Statistics, 5, 151-157.

Barndorff-Nielsen, O., & Halgreen, C. (1977). Infinite divisibility of the hyperbolic and generalized
inverse Gaussian distributions. Probability Theory and Related Fields, 38(4), 309-311.

Barndorff-Nielsen, O. E. (1997). Processes of normal inverse Gaussian type. Finance and Stochas-
tics, 2(1), 41-68.

Barndorff-Nielsen, O. E., & Shephard, N. (2001a). Non-Gaussian ornstein-uhlenbeck-based models
and some of their uses in financial economics. Journal of the Royal Statistical Society Series B,
63(2), 167-241.

Barndorff-Nielsen, O. E. & Shephard, N. (2001b). Normal modified stable processes. Economics
Papers 2001-W6, Economics Group, Nuffield College, University of Oxford.

Barndorff-Nielsen, O. E., Hansen, P. R, Lunde, A., & Shephard, N. (2011). Multivariate realised
kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise
and non-synchronous trading. Journal of Econometrics, 162, 149—-169.

Beckers, S. (1980). The constant elasticity of variance model and its implications in option pricing.
The Journal of Finance, 35(3), 661-673.

Beran, R. (1977). Minimum Hellinger estimates for parametric models. Annals of Statistics, 5,
445-463.

© Springer International Publishing AG, part of Springer Nature 2018 257
S. M. Iacus and N. Yoshida, Simulation and Inference for Stochastic
Processes with YUIMA, Use R!, https://doi.org/10.1007/978-3-319-55569-0

258 References

Bertin, K., Torres, S., & Tudor, C. (2011). Drift parameter estimation in fractional diffusions driven
by perturbed random walk. Statistic and Probability Letters, 81(2), 243-249.

Berzin, C., & Leon, J. (2008). Estimation in models driven by fractional Brownian motion. Annales
de I’Institut Henri Poincaré, 44(2), 191-213.

Bianchi, F., Mercuri, L., & Rroji, E. (2016). Measuring risk with cogarch(p,q) models. In SSRN.

Bianchi, F., Mercuri, L., & Rroji, E. (2017). COGARCH.rm: Portfolio selection with multivariate
COGARCH(p,q) models. R package version 0.1.0/r3.

Bibbona, E., & Negri, I. (2015). Higher moments and prediction-based estimation for the coga-
rch(1,1) model. Scandinavian Journal of Statistics, 42(4), 891-910.

Bibby, B. M., & Sgrensen, M. (1997). A hyperbolic diffusion model for stock prices. Finance and
Stochastics, 1, 25-41.

Bibinger, M. (2011). Efficient covariance estimation for asynchronous noisy high-frequency data.
Scandinavian Journal of Statistics, 38, 23—45.

Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political
Economy, 81, 637-654.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econo-
metrics, 31(3), 307-327.

Brandt, A. (1986). The stochastic equation y, +1 = a, y, +b, with stationary coefficients. Advances
in Applied Probability, 18(1), 211-220.

Bregni, S., & Erangoli, W. (2005). Fractional noise in experimental measurements of IP traffic in a
metropolitan area network. Proceedings of IEEE GlobeCom, 2005(2), 781-785.

Brennan, M., & Schwartz, E. (1980). Analyzing convertible securities. Journal of Financial and
Quantitative Analysis, 15(4), 907-929.

Brockwell, P. (2001). Lévy-driven CARMA processes. Annals of the Institute of Statistical Mathe-
matics, 53(1), 113-124.

Brockwell, P., & Marquardt, T. (2005). Lévy-driven and fractionally integrated arma processes with
continuous time parameter. Statistica Sinica, 15(2), 477-494.

Brockwell, P., Chadraa, E., & Lindner, A. (2006). Continuous-time GARCH processes. Annals of
Applied Probability, 16(2), 790-826.

Brockwell, P. J., & Schlemm, E. (2013). Parametric estimation of the driving Lévy process of
multivariate CARMA processes from discrete observations. Journal of Multivariate Analysis,
115,217-251.

Brockwell, P.J., Davis, R. A., & Yang, Y. (2007). Estimation for non-negative Lévy-driven Ornstein—
Uhlenbeck processes. Journal of Applied Probability, 44, 987-989.

Brockwell, P.J., Davis, R. A., & Yang, Y. (2011). Estimation for non-negative Lévy-driven CARMA
processes. Journal of Business and Economic Statistics, 29(2), 250-259.

Brouste, A., & lacus, S. (2013). Parameter estimation for the discretely observed fractional Ornstein—
Uhlenbeck process and the yuima R package. Computational Statistics, 28(4), 1529-1547.

Brouste, A., Fukasawa, M., Hino, H., Iacus, S. M., Kamatani, K., Koike, Y., et al. (2014). The
yuima project: A computational framework for simulation and inference of stochastic differential
equations. Journal of Statistical Software, 57(4), 1-51.

Carr, P,, Geman, H., Madan, D., & Yor, M. (2002). The fine structure of asset returns: An empirical
investigation. The Journal of Business, 75, 305-332.

Chadraa, E. (2009). Statistical modelling with COGARCH(P,Q) processes. Ph.D. thesis, Colorado
State University.

Chambers, J. M. (1998). Programming with data: A guide to the S language. New York: Springer.

Chan, K., Karolyi, G., Longstaff, F., & Sanders, A. (1992). An empirical investigation of alternative
models of the short-term interest rate. The Journal of Finance, 47, 1209-1227.

Chan, K.-S., & Ripley, B. (2012). TSA: Time series analysis. R package version 1.01.

Chen, S., Gao, J., & Cheng, Y. (2008). A test for model specification of diffusion processes. Annals
of Statistics, 36(1), 167-198.

Cheridito, P., Kawaguchi, H., & Maejima, M. (2003). Fractional Ornstein—Uhlenbeck processes.
Electronic Journal of Probability, 8(3), 1-14.

References 259

Chhikara, R. S., & Folks, J. L. (1989). The inverse Gaussian distribution: Theory, methodology,
and applications. New York, NY, USA: Marcel Dekker Inc.

Chiao, C., Hung, K., & Lee, C. (2004). The price adjustment and lead-lag relations between stock
returns: Microstructure evidence from the Taiwan stock market. Empirical Finance, 11,709-731.

Christensen, K., Kinnebrock, S., & Podolskij, M. (2010). Pre-averaging estimators of the ex-post
covariance matrix in noisy diffusion models with non-synchronous data. Journal of Econometrics,
159, 116-133.

Cinlar, E. (2011). Probability and stochastics., Graduate texts in mathematics New York: Springer.

Comte, F., & Renaut, E. (1996). Non-causality in continuous time models. Econometric Theory,
12,215-256.

Cont, R., & Tankov, P. (2004). Financial modelling with jump processes. Boca Raton: Chapman &
Hall/CRC.

Cox, J. (1996). The constant elasticity of variance option pricing model. The Journal of Portfolio
Management, 3, 15—-17.

Cox, J., Ingersoll, J., & Ross, S. (1980). An analysis of variable rate loan contracts. The Journal of
Finance, 35(2), 389-403.

Cox, J., Ingersoll,J., & Ross, S. (1985). A theory of the term structure of interest rates. Econometrica,
53, 385-408.

Cressie, N., & Read, T. (1984). Multinomial goodness of fit tests. Journal of the Royal Statistical
Society Series B, 46, 440-464.

Crouse, M. S., & Baraniuk, R. G. (1999). Fast, exact synthesis of Gaussian and NonGaussian
long-range-dependent processes. IEEE Transactions on Information Theory, X, X.

Csiszar, I. (1967). On topological properties of f-divergences. Studia Scientific Mathematicae
Hungarian, 2, 329-339.

Dachian, S., & Kutoyants, Y. A. (2008). On the goodness-of-fit tests for some continuous time
processes. In F. Vonta, M. Nikulin, N. Limnios, & C. Huber-Carol (Eds.), Statistical models and
methods for biomedical and technical systems (pp. 395—413). Boston: Birkhuser.

Dalgaard, P. (2008). Introductory statistics with R (2nd ed.). New York: Springer.

Daubechies, I. (1992). Ten lectures on wavelets. STAM.

De Gregorio, A., & lacus, S. M. (2012). Adaptive lasso-type estimation for ergodic diffusion pro-
cesses. Econometric Theory, 28, 1-23.

De Gregorio, A., & Iacus, S. (2013). On a family of test statistics for discretely observed diffusion
processes. Journal of Multivariate Analysis, 122, 292-316.

de Jong, F., & Nijman, T. (1997). High frequency analysis of lead-lag relationships between financial
markets. Journal of Empirical Finance, 4, 259-2717.

Dempster, A. P, Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1),
1-38.

Dimitris, K. (2002). An EM type algorithm for maximum likelihood estimation of the normal-
inverse Gaussian distribution. Statistics & Probability Letters, 57(1), 43-52.

Doob, J. (1944). The elementary Gaussian process. Annals of Mathematical Statistics, 15(3), 229—
282.

Dothan, U. (1978). On the term structure of interest rates. Journal of Financial Economics, 6, 59-69.

Eberlein, E. (2001). Application of generalized hyperbolic Lévy motions to finance (pp. 319-336).
Boston, MA: Birkhiuser.

Eberlein, E., & Keller, U. (1995). Hyperbolic distributions in finance. Bernoulli, 1, 281-299.

Eberlein, E., & von Hammerstein, E. A. (2004). Generalized hyperbolic and inverse Gaussian
distributions: Limiting cases and approximation of processes (pp. 221-264). Basel: Birkhduser.

Efron, B., Hastie, T., Johnstone, 1., & Tibshirani, R. (2004). Least angle regression. The Annals of
Statistics, 32, 407-489.

Feller, W. (1951a). Diffusion processes in genetics. In J. Neyman (Ed.), Proceedings of the 2nd
Berkeley Symposium on Mathematical Statistics and Probability (Vol. 54, pp. 227-246). Berkeley:
University of California Press.

260 References

Feller, W. (1951b). Two singular diffusion problems. Annals of Mathematics, 54, 173-182.

Fukasawa, M. (2011). Discretization error of stochastic integrals. The Annals of Applied Probaba-
bility, 21, 1436-1465.

Genon-Catalot, V., & Jacod, J. (1993). On the estimation of the diffusion coefficient for multi-
dimensional diffusion processes. Annales de I’ Institut Henri Poincaré, Probabilités et Statistiques,
29, 119-151.

Ghalanos, A. (2015). rugarch: Univariate GARCH models. R package version 1.3-6.

Giet, L., & Lubrano, M. (2008). A minimum Hellinger distance estimator for stochastic differen-
tial equations: An application to statistical inference for continuous time interest rate models.
Computational Statistics and Data Analysis, 52(6), 2945-2965.

Graybill, D., & Shiyatov, S. (1992). Dendroclimatic evidence from the northern Soviet Union. In
R. S. Bradley & P. D. Jones (Eds.), Climate since A.D. 1500. London: Routledge.

Hansen, L. (1982). Large sample properties of generalized method of moments estimators. Econo-
metrica, 50(4), 1029-1054.

Hawkes, A. G. (1971). Spectra of some self-exciting and mutually exciting point processes.
Biometrika, 58.

Hayashi, T., & Yoshida, N. (2005). On covariance estimation of non-synchronously observed dif-
fusion processes. Bernoulli, 11, 359-379.

Hayashi, T. & Yoshida, N. (2006). Nonsynchronous covariance estimator and limit theorem. Institute
of Statistical Mathematics, Research Memorandum No. 1020, 1-40.

Hayashi, T., & Yoshida, N. (2008a). Asymptotic normality of a covariance estimator for nonsyn-
chronously observed diffusion processes. Annals of the Institute of Statistical Mathematics, 60,
367-406.

Hayashi, T. & Yoshida, N. (2008b). Nonsynchronous covariance estimator and limit theorem ii.
Institute of Statistical Mathematics, Research Memorandum No. 1067, 1-40.

Hinde, J. (1982). Compound Poisson regression models. In GLIM 82: Proceedings of the Interna-
tional Conference on Generalised Linear Models. New York: Springer.

Hoffmann, M., Rosenbaum, M., & Yoshida, N. (2013). Estimation of the lead-lag parameter from
non-synchronous data. Bernoulli, 19(2), 426—461.

Hu, Y., & Nualart, D. (2010). Parameter estimation for fractional Ornstein—Uhlenbeck processes.
Statistics and Probability Letters, 80(11-12), 1030-1038.

Hu, Y., Nualart, D., Xiao, W., & Zhang, W. (2011). Exact maximum likelihood estimator for drift
fractional brownian motion at discrete time. Acta Mathematica Scientia, 31(5), 1851-1859.

Tacus, S. M. (2008). Simulation and inference for stochastic differential equations: With R examples.
New York: Springer.

Iacus, S. M., & Yoshida, N. (2012). Estimation for the change point of the volatility in a stochastic
differential equation. Stochastic Processes and Their Applications, 122, 1068-1092.

Iacus, S. M. & Mercuri, L. (2014). Estimation of Lévy CARMA models in the yuima package:
Application on the financial time series. In COMPSTAT 2014 21st International Conference on
Computational Statistics (pp. 451-458).

lTacus, S. M., & Mercuri, L. (2015). Implementation of Lévy CARMA model in yuima package.
Computational Statistics, 30(4), 1111-1141.

lTacus, S. M., Mercuri, L., & Rroji, E. (2015). Discrete time approximation of a COGARCH(p,q)
model and its estimation.

Tacus, S. M., Mercuri, L., & Rroji, E. (2017). Cogarch(p,q): Simulation and inference with yuima
package. Accepted for publication on Journal of Statistical Software 80, 1-49.

Istas, J., & Lang, G. (1997). Quadratic variations and estimation of the local Holder index of a
Gaussian process. Annales de I’Institut Henri Poincaré, 23(4), 407-436.

1t6, K. (2013). Stochastic processes: Lectures given at Aarhus university. Berlin, Heidelberg:
Springer.

Kang, J., Lee, C., & Lee, S. (2006). Empirical investigation of the lead-lag relations of returns
and volatilities among the KOSPI200 spot, futures and options markets and their explanations.
Journal of Emerging Market Finance, 5, 235-261.

References 261

Kawai, R., & Masuda, H. (2011). On simulation of tempered stable random variates. Journal of
Computational and Applied Mathematics, 235(8), 2873-2887.

Kesten, H. (1973). Random difference equations and renewal theory for products of random matri-
ces. Acta Mathematica, 131(1), 207-248.

Kliippelberg, C., Lindner, A., & Maller, R. (2004). A continuous-time garch process driven by a
Lévy process: Stationarity and second-order behaviour. Journal of Applied Probability, 41(3),
601-622.

Knight, K., & Fu, W. (2000). Asymptotics for Lasso-type estimators. The Annals of Statistics, 28(5),
1356-1378.

Koike, Y. (2014). An estimator for the cumulative co-volatility of asynchronously observed semi-
martingales with jumps. Scandinavian Journal of Statistics, 41(2), 460—481.

Kolmogorov, A. (1940). Winersche Spiralen und einige andere interessante Kurven in Hilbertschen
Raum. Academic Science USSR, 26, 115-118.

Koponen, 1. (1995). Analytics approach to the problem of convergence of truncated Lévy flights
towards the Gaussian stochastic process. Physics Review E, 52, 1197-1199.

Kiichler, U., & Tappe, S. (2008a). Bilateral gamma distributions and processes in financial mathe-
matics. Stochastic Processes and Their Applications, 118(2), 261-283.

Kiichler, U., & Tappe, S. (2008b). On the shapes of bilateral gamma densities. Statistics & Proba-
bility Letters, 78(15), 2478-2484.

Kiichler, U., Neumann, K., Sgrensen, M., & Streller, A. (1999). Stock returns and hyperbolic
distributions. Mathematical and Computer Modelling, 29, 1-15.

Kunitomo, N., & Takahashi, A. (2001). The asymptotic expansion approach to the valuation of
interest rate contingent claims. Mathematical Finance, 11(1), 117-151.

Kunitomo, N. & Sato, S. (2008). Separating information maximum likelihood estimation of real-
ized volatility and covariance with micro-market noise. CIRJE Discussion papers CIRJE-F-581,
University of Tokyo.

Kutoyants, Y. (1994). Identification of dynamical systems with small noise. Dordrecht: Kluwer.

Kutoyants, Y. (1998). Statistical inference for spatial Poisson processes., Lecture notes in statistics
New York: Springer.

Kutoyants, Y. (2004). Statistical inference for Ergodic diffusion processes. London: Springer.

Kyprianou, A., Schoutens, A., & Wilmott, P. (2005). Exotic option pricing and advanced Lévy
models. Chichester: Wiley.

Lee, S., & Wee, L. (2008). Residual emprical process for diffusion processes. Journal of Korean
Mathematical Society, 45(3), 683-693.

Levendorskii, S., & Boyarchenko, S. (2002). Non-Gaussian Merton—Black—Scholes theory. Singa-
pore: World Scientific.

Levy, E. (1992). Pricing European average rate currency options. Journal of International Money
and Finance, 11, 474-491.

Lewis, A., & Shedler, G. (1979). Simulation of nonhomogeneous poisson processes by thinning.
naval Research Logistics Quarterly, 26(3), 403—413.

Liese, F., & Vajda, 1. (1987). Convex statistical distances. Leipzig: Tuebner.

Loregian, A., Mercuri, L., & Rroji, E. (2012). Approximation of the variance gamma model with a
finite mixture of normals. Statistics & Probability Letters, 82(2), 217-224.

Ludena, C. (2004). Minimum contrast estimation for fractional diffusion. Scandinavian Journal of
Statistics, 31, 613—-628.

Madan, D. B., & Seneta, E. (1990a). The variance gamma (v.g.) model for share market returns.
Journal of Business, 64(4), 511-524.

Madan, D. B., & Seneta, E. (1990b). The variance gamma (v.g.) model for share market returns.
The Journal of Business, 63(4), 511-524.

Madan, D., Carr, P., & Change, E. (1998). The variance gamma process and option pricing. European
Finance Review, 2, 79-105.

Maller, R., Miiller, G., & Szimayer, A. (2008). Garch modelling in continuous time for irregularly
spaced time series data. Bernoulli, 14, 519-542.

262 References

Mancini, C., & Gobbi, F. (2012). Identifying the brownian covariation from the co-jumps given
discrete observations. Econometric Theory, 28, 249-273.

Mandelbrot, B., & Ness, J. V. (1968). Fractional Brownian motions, fractional noises and applica-
tion. SIAM Review, 10, 422-437.

Masuda, H. (2002). Analytical properties of GIG and GH distributions. Proceedings of the Institute
of Statistical Mathematics, 50(2), 165-199.

Merton, R. C. (1973a). Theory of rational option pricing. Bell Journal of Economics and Manage-
ment Science, 4(1), 141-183.

Merton, R. C. (1973b). Theory of rational option pricing. Bell Journal of Economics and Manage-
ment Science, 4(1), 141-183.

Michael, J. R., Schucany, W. R., & Haas, R. W. (1976). Generating random variates using transfor-
mations with multiple roots. The American Statistician, 30(2), 88-90.

Mishura, Y., & Shevchenko, G. (2008). The rate of convergence for Euler approximations of solu-
tions of stochastic differential equations driven by fractional Brownian motion. Stochastics, 80,
489-511.

Morales, D., Pardo, L., & Vajda, I. (1997). Some new statistics for testing hypotheses in parametric
models. Journal of Multivariate Analysis, 67, 137-168.

Neuenkirch, A., & Nourdin, I. (2007). Exact rate of convergence of some approximation schemes
associated to SDEs driven by a fractional Brownian motion. Journal of Theoretical Probability,
20(4), 871-899.

Neuenkirch, A. & Tindel, S. (2011). A least square-type procedure for parameter estimation in
stochastic differential equations with additive fractional noise.

Newey, W. K., & McFadden, D. (1994). Large sample estimation and hypothesis testing. Handbook
of Econometrics, 4, 2111-2245.

Ogata, Y. (1981). On Lewis’ simulation method for point processes. IEEE Transactions on Infor-
mation Theory, 27(1), 23-31.

Ogihara, T., & Yoshida, N. (2011). Quasi-likelihood analysis for the stochastic differential equation
with jumps. Statistical Inference for Stochastic Processes, 14(3), 189.

Ogihara, T., & Yoshida, N. (2014). Quasi-likelihood analysis for nonsynchronously observed dif-
fusion processes. Stochastic Processes and Their Applications, 124(9), 2954-3008.

Osborne, M. (1959). Brownian motion in the stock market. Operations Research, 7, 145-173.

Pardo, L. (20006). Statistical inference based on divergence measures. London: Chapman & Hal-
1/CRC.

Protter, P. (1990). Stochastic integration and differential equations. New York: Springer.

R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria:
R Foundation for Statistical Computing.

Rényi, A. (1961). On measures of entropy and information. Proceedings of the Fourth Berkeley
Symposium on Probability and Mathematical Statistics, University of California, Berkeley (Vol.
1, pp. 547-561).

Robert, C., & Rosenbaum, M. (2011). A new approach for the dynamics of ultra high frequency
data: The model with uncertainty zones. Journal of Financial Econometrics, 9, 344-366.

Ryan, J. A. (2013). quantmod: Quantitative financial modelling framework. R package version
0.4-0.

Ryan, J. A. & Ulrich, J. M. (2014). xts: eXtensible time series. R package version 0.9-7.

Ryder, T. H. (1999). Generalized hyperbolic diffusion processes with applications in finance. Math-
ematical Finance, 9(2), 183-201.

Sakamoto, Y., Ishiguro, M., & Kitagawa, G. (1986). Akaike information criterion statistics. Dor-
drecht: D. Reidel Publishing Company.

Sato, K. (1999). Lévy processes and infinitely divisible distributions. Cambridge: Cambridge Uni-
versity Press.

Schlemm, E., & Stelzer, R. (2012). Quasi maximum likelihood estimation for strongly mixing state
space models and multivariate Lévy-driven CARMA processes. Electronic Journal of Statistics
[electronic only], 6, 2185-2234.

References 263

Schoutens, W. (2003). Lévy processes in finance. Chichester: Wiley.

Schroder, M. (1989). Computing the constant elasticity of variance option pricing formula. The
Journal of Finance, 44(1), 211-219.

Seneta, E. (2007). The early years of the variance-gamma process (pp. 3—19). Boston, MA:
Birkhéuser.

Shimizu, Y., & Yoshida, N. (2006). Estimation of parameters for diffusion processes with jumps
from discrete observations. Statistical Inference for Stochastic Processes, 9(3), 227-277.

Simpson, D. (1989). Hellinger deviance tests: Efficiency, breakdown points, and examples. Journal
of the American Statistical Association, 84, 107-113.

Takahashi, A. (1999). An asymptotic expansion approach to pricing financial contingent claims.
Asia-Pacific Financial Markets, 6(2), 115-151.

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal
Statistical Society Series B, 58, 267-288.

Todorov, V. (2011). Econometric analysis of jump-driven stochastic volatility models. Journal of
Econometrics, 160(1), 12-21.

Todorov, V., & Tauchen, G. (2006). Simulation methods for Lévy-driven continuous-time autore-
gressive moving average (CARMA) stochastic volatility models. Journal of Business and Eco-
nomic Statistics, 24, 455-469.

Témasson, H. (2013). Some computational aspects of Gaussian CARMA modelling. Statistics and
Computing, 1-13.

Trapletti, A. & Hornik, K. (2013). tseries: Time series analysis and computational finance. R package
version 0.10-32.

Tsai, H., & Chan, K. S. (2005). A note on non-negative continuous time processes. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 67(4), 589-597.

Uchida, M. (2010). Contrast-based information criterion for ergodic diffusion processes from dis-
crete observations. Annals of the Institute of Statistical Mathematics, 62, 161-187.

Uchida, M., & Yoshida, N. (2012). Adaptive estimation of an ergodic diffusion process based on
sampled data. Stochastic Processes and Their Applications, 122, 2885-2924.

Uchida, M., & Yoshida, N. (2013). Quasi likelihood analysis of volatility and nondegeneracy of
statistical random field. Stochastic Processes and Their Applications, 123(7), 2851-2876. A
Special Issue on the Occasion of the 2013 International Year of Statistics.

Uhlenbeck, G., & Ornstein, L. (1930). On the theory of Brownian motion. Physical Review, 36,
823-841.

Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of Financial
Economics, 5, 177-188.

Watanabe, S. (1987). Analysis of Wiener functionals (Malliavin Calculus) and its applications to
heat kernels. The Annals of Probability, 15, 1-39.

Willinger, W., Tagqu, M., Leland, W., & Wilson, D. (1995). Self-similarity in high-speed packet
traffic: Analysis and modeling of ethernet traffic measurements. Statistical Science, 10, 67-85.
Wood, A., & Chan, G. (1994). Simulation of stationary Gaussian processes. Journal of Computa-

tional and Graphical Statistics, 3(4), 409-432.

Wauertz, D. (2012). fExoticOptions: Exotic option valuation. R Package Version, 2152, 78.

Wauertz, D., & Chalabi, Y. (2013). timeSeries: Rmetrics - financial time series objects. R Package
Version, 3010, 97.

Wuertz, D., Chalabi, Y., with contributions from Byers, J. W. Maechler, M., & others. (2013).
timeDate: Rmetrics - chronological and calendar objects. R package version 3010.98.

Wauertz, D., & many others. (2013). fImport: Rmetrics - economic and financial data import. R
package version 3000.82.

Xiao, W., Zhang, W., & Xu, W. (2011). Parameter estimation for fractional Ornstein—Uhlenbeck
processes at discrete observation. Applied Mathematical Modelling, 35, 4196-4207.

Yoshida, N. (1992a). Asymptotic expansion for statistics related to small diffusions. Journal of the
Japan Statistical Society, 22, 139-159.

264 References

Yoshida, N. (1992b). Estimation for diffusion processes from discrete observation. Journal of Mul-
tivariate Analysis, 41(2), 220-242.

Yoshida, N. (2011). Polynomial type large deviation inequalities and quasi-likelihood analysis for
stochastic differential equations. Annals of the Institute of Statistical Mathematics, 63, 431-479.

Zeileis, A., & Grothendieck, G. (2005). zoo: S3 infrastructure for regular and irregular time series.
Journal of Statistical Software, 14(6), 1-217.

Zhang, L. (2011). Estimating covariation: Epps effect, microstructure noise. Journal of Economet-
rics, 160, 33-47.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical
Association, 101(476), 1418-1429.

Index

Symbols

a-stable Lévy process, 182
¢-divergences, 98

IATEX, 63

A

AAPL, 91

acf, 212

Adapted process, 188
ATC, 100, 200
Akaike, 100

args, 47
as.Date, 44
as.ts,43
as.zoo0,43

B
Bilateral gamma process, 161
Bounded variation, 189

C
capture.output, 19
CarmaNoise, 221
Cauchy
distribution, 187
process, 182
cce, 122
CEV, 73
CGMY process, 165
chol, 83, 206
Cholesky, 20, 206
cholesky, 207
CholeskyfGn, 206
CIR, 73

CKLS, 74
class, 8
Classical, 210
COGARCH
diagnostic, 243
model specification, 240
simulation, 244

Compound Poisson process, 137, 158, 196
Constant elasticity of variance process, 73

crossprod, 83

D
data, 33
Daubechies, 210
dbgamma, 162
dconst, 137
delta, 35
deltat, 40, 41
DEXUSEU, 94
af, 137
Diagnostic.Cogarch, 243
dimension, 144
Distribution
Cauchy, 187
gamma, 159
generalized
hyperbolic, 186
inverse Gaussian, 184
hyperbolic, 187
inverse Gaussian, 165
Lévy, 169
normal
tempered stable, 179
Skew Student’s t, 188
variance gamma, 174, 187
dNIG, 139

© Springer International Publishing AG, part of Springer Nature 2018
S. M. Iacus and N. Yoshida, Simulation and Inference for Stochastic
Processes with YUIMA, Use R!, https://doi.org/10.1007/978-3-319-55569-0

265

266

dnig, 140
dvgamma, 174

E

eacft, 230

end, 40, 41

Euler—Maruyama, 20
Exponential Lévy process, 199

F

fft, 207
filter.type, 210
Filtration, 188
format, 48

FRED, 37
fredImport, 38
fredSeries, 38
frequency, 40, 41
fwEBDATA, 38

G
Gamma
distribution, 159
process, 160
Generalized
hyperbolic
distribution, 186
Lévy motion, 186
process, 186
inverse Gaussian
distribution, 184
process, 185
tempered stable
process, 165
GeneralizedHyperbolic, 228
Geometric Brownian motion, 72
get.zoo.data, 29, 39, 79
getSymbols, 33, 37,91, 199, 230
gmm, 250
Google, 37
gqv, 210

H

head, 34

Hurst, 18

hurst, 211

Hyperbolic, 75
distribution, 187

Hypotheses testing, 98

Index

|
Increasing stable process, 169
incrementWw, 78
index, 42
Infinitely divisible, 156
initial, 22
intensity, 137
Intensity function, 140
Inverse
Gaussian, 192
Inverse Gaussian
distribution, 165
process, 166
irts, 45
ISOdate, 47

K
ks.test, 170

L
Lévy
distribution, 169
measure, 157
process, 155
Lévy-1td6 decomposition, 157
Lévy-Khintchine formula, 156
listFinCenter, 50
llag, 125
Local martingale, 188

M
Martingale, 188
local, 188
square-integrable, 189
Matrix exponential, 216
Measure
Lévy, 157
measure, 191, 219
measure. type, 191, 219
merge, 56
methods, 8
mixed, 246
mle, 10
mmfrac, 211
mts, 40
MWK151, 212

N

nigFit, 228

Normal
inverse

Index

Gaussian, 193
tempered stable

distribution, 180

process, 180

(0}

OANDA, 37
oandaImport, 38
oandaSeries, 38
order, 210
order.by, 42
original.data, 33
Ornstein—Uhlenbeck, 72

P
phi.test, 99
Poisson
process
compound, 158, 196
random measure, 157
random sampling, 27
Positive tempered stable process, 165
pOSIXct, 47
pOSIX1t, 48
Predictable process, 189
print, 18
Process
a-stable, 182
adapted, 188
bilateral gamma, 161
Cauchy, 182
CGMY, 165
CKLS, 74
compound Poisson, 158
constant elasticity of variance, 73
Cox-Ingersoll-Ross, 73
exponential Lévy, 199
gamma, 160
generalized
hyperbolic, 186
inverse Gaussian, 185
tempered stable, 165
geometric Brownian motion, 72
increasing stable, 169
inverse Gaussian, 166
Lévy, 155
normal
tempered stable, 180
Ornstein-Uhlenbeck, 72
positive tempered stable, 165
predictable, 189

stable, 182
variance gamma, 160, 174, 244
Vasicek, 73

psd, 122

amle, 196

amlel, 112

gmleR, 112

Quadratic variation, 117
quantmod, 91
quotes, 59

R

random, 28
rbgamma, 162
rbind, 54
RBloomberg, 39
regular, 28
rev, 58

rexp, 28
rgamma, 162
rIG, 166, 192
Rmetrics, 46
rNIG, 139, 193
rnig, 140
rnts, 180
rpts, 170
rvgamma, 174

S
Sampling

deterministic, 29

random

Poisson, 27

sampling, 26
Semimartingale, 189
setCarma, 217
setCogarch, 240
setData, 33, 92
setModel, 17
setPoisson, 137, 159, 199
setSampling, 25, 26
setYuima, 33
show, 18
showMethods, 11
simulate, 20, 25
Skew Student’s t distribution, 188
solve.variable, 17
sort, 58
sprintf, 52, 61

268

Square-integrable martingale, 189
Stable

process, 182
start, 40
stat, 41
state.variable, 17
stats4, 10
Stochastic integral, 189
Stopping time, 188
strptime, 49
Subordinator, 171
Subsampling, 27
subsampling, 28
sys.getlocale, 49
sys.setlocale, 49

T

Terminal, 22

time, 41,42
time.variable, 17
timeDate, 46
timeSeries, 46
toLatex, 63
true.parameter, 24
ts, 40

tseries, 45

A\
Variance gamma
distribution, 187

process, 160, 174, 244

Vasicek, 73

W

window, 41
WoodChan, 207
WoodChanfGn, 207

X

XinExpr, 240
xinit, 21, 69
xts, 33, 34,43

Y

Yahoo, 37
yahooImport, 38
yahooSeries, 38
vbook, 5
yuima.carma, 217
yuima.data, 25
yuima.model, 17

yuima.sampling, 25

yuimaGUI, 65

Z

700, 39, 42

zoo .data, 33, 39
zooreg, 43

Index

	Preface
	Contents
	Part I The YUIMA Framework
	1 The YUIMA Package
	1.1 Overview of the Project
	1.2 Who Should Read This Book?
	1.3 Structure of the Book
	1.4 How to Get the R Code for This Book
	1.5 Main Contribution to the Yuima Package
	1.6 Further Developments of Yuima Package
	1.7 Things to Know About R
	1.7.1 How to Get R
	1.7.2 R and S4 Objects

	1.8 The Yuima Package
	1.8.1 How to Obtain the Package
	1.8.2 The Main Object and Classes
	1.8.3 The yuima.model Class

	1.9 On Model Specification
	1.9.1 Basic Model Specification
	1.9.2 User-Specified State and Time Variables
	1.9.3 Specification of Parametric Models

	1.10 Basic Facts on Simulation
	1.10.1 Customization of Simulation Arguments
	1.10.2 Simulation of Models with User-Specified Notation
	1.10.3 Simulation of Parametric Models

	1.11 Sampling and Simulate
	1.11.1 Sampling and Subsampling

	1.12 How to Make Data Available into a yuima Object
	1.12.1 Getting Data from Data Providers

	1.13 How to Extract Data from a yuima Object
	1.14 Time Series Classes, Time Data and Time Stamps
	1.14.1 Review of Some Time Series Objects in R
	1.14.2 How to Handle Real Time Stamps
	1.14.3 Dates Manipulation
	1.14.4 Using Dates to Index Time Series
	1.14.5 Joining Two or More Time Series
	1.14.6 Subsetting a Time Series

	1.15 Miscellanea
	1.15.1 From Yuima to LaTeX
	1.15.2 The Yuima GUI

	Part II Models and Inference
	2 Diffusion Processes
	2.1 Model Specification
	2.1.1 Ornstein–Uhlenbeck (OU)
	2.1.2 Geometric Brownian Motion (gBm)
	2.1.3 Vasicek Model (VAS)
	2.1.4 Constant Elasticity of Variance (CEV)
	2.1.5 Cox–Ingersoll–Ross Process (CIR)
	2.1.6 Chan–Karolyi–Longstaff–Sanders Process (CKLS)
	2.1.7 Hyperbolic Diffusion Processes

	2.2 More About Simulation
	2.3 Multidimensional Processes
	2.3.1 The Heston Model

	2.4 Parametric Inference
	2.4.1 Quasi-maximum Likelihood Estimation
	2.4.2 Adaptive Bayes Estimation

	2.5 Example of Real Data Estimation for gBm
	2.6 Example of Real Data Estimation for CIR
	2.7 Hypotheses Testing
	2.8 AIC Model Selection
	2.8.1 An Example of AIC Model Selection for Exchange Rates Data

	2.9 LASSO Model Selection
	2.9.1 An Example of Lasso Model Selection for Interest Rates Data

	2.10 Change Point Estimation
	2.10.1 Example of Volatility Change Point Estimation for Two-Dimensional SDEs
	2.10.2 An Example of Two-Stage Estimation
	2.10.3 Example of Volatility Change Point Estimation in Real Data

	2.11 Asynchronous Covariance Estimation
	2.11.1 Example: Data Generation and Estimation by yuima Package
	2.11.2 Asynchronous Estimation for Nonlinear Systems
	2.11.3 Other Covariance Estimators

	2.12 Lead–Lag Estimation
	2.12.1 Application of the Lead–Lag Estimator to Real Data

	2.13 Asymptotic Expansion
	2.13.1 Asymptotic Expansion for General Stochastic Processes

	3 Compound Poisson Processes
	3.1 Inhomogeneous Compound Poisson Process
	3.1.1 Linear Intensity Function
	3.1.2 The Weibull Model
	3.1.3 The Exponentially Decaying Intensity Model
	3.1.4 Modulated and Periodical Intensity Model
	3.1.5 Frequency Modulation Model

	3.2 Multidimensional Compound Poisson Processes
	3.2.1 Multivariate Gaussian Jumps
	3.2.2 User-Specified Jump Distribution

	3.3 Estimation
	3.3.1 Compound Poisson Process with Gaussian Jumps
	3.3.2 NIG Compound Poisson Process
	3.3.3 Exponential Jump Compound Poisson Process
	3.3.4 The Weibull Compound Poisson Process
	3.3.5 Modulated and Periodical Intensity Model

	4 Stochastic Differential Equations Driven by Lévy Processes
	4.1 Lévy Processes
	4.1.1 Infinitely Divisible Distributions
	4.1.2 Infinite Divisible Distributions, Lévy Processes, Lévy-Itô Decomposition

	4.2 Wiener Process
	4.3 Compound Poisson Process
	4.4 Gamma Process and Its Variants
	4.4.1 Gamma Process
	4.4.2 Variance Gamma Process
	4.4.3 Bilateral Gamma Process
	4.4.4 Simulation of Gamma Processes

	4.5 Generalized Tempered Stable Process, Tempered α Stable Process, CGMY Process, Positive Tempered Stable Process
	4.6 Inverse Gaussian Process
	4.7 Increasing Stable Process
	4.8 Subordination
	4.8.1 Definition
	4.8.2 Compound Poisson Process by Subordination
	4.8.3 Subordination of a Wiener Process with Drift
	4.8.4 Variance Gamma Process with Drift
	4.8.5 Normal Inverse Gaussian Process
	4.8.6 Normal Tempered Stable Process

	4.9 Stable Process
	4.10 Generalized Hyperbolic Processes
	4.10.1 Generalized Inverse Gaussian Distribution
	4.10.2 Generalized Inverse Gaussian Process and Generalized Hyperbolic Process
	4.10.3 GH Distributions
	4.10.4 Subclasses of the GH Distributions

	4.11 Stochastic Differential Equation Driven by Lévy Processes and Their Simulation
	4.11.1 Semimartingale
	4.11.2 Stochastic Differential Equations
	4.11.3 Compound Poisson Driving Processes
	4.11.4 Driving Processes of code Type

	4.12 Estimation
	4.12.1 Estimation of Jump-Diffusion Processes
	4.12.2 Estimation of Exponential Lévy Processes

	4.13 Bessel Function of the Third Kind

	5 Stochastic Differential Equations Driven by the Fractional Brownian Motion
	5.1 Model Specification
	5.2 Simulation of the Fractional Gaussian Noise
	5.2.1 Cholesky Method
	5.2.2 Wood and Chan Method

	5.3 Simulation of Fractional Stochastic Differential Equations
	5.4 Parametric Inference for the fOU
	5.4.1 Estimation of the Hurst Exponent and the Diffusion Coefficient via Quadratic Generalized Variations
	5.4.2 Estimation of the Drift Parameter

	5.5 An Example on Climate Change Data

	6 CARMA Models
	6.1 Lévy-Driven CARMA Models
	6.2 CARMA Model Specification
	6.2.1 The yuima.carma-class

	6.3 CARMA(p,q) Model Estimation
	6.4 Examples of Lévy-driven CARMA(p,q) Models
	6.4.1 Compound Poisson CARMA(2,1) Process
	6.4.2 Variance Gamma CARMA(2,1) Process
	6.4.3 Normal Inverse Gaussian CARMA(2,1) Process

	6.5 Application to the VIX Index

	7 COGARCH Models
	7.1 General Order (p,q) Model
	7.1.1 How to Input a COGARCH(p,q) Model in yuima
	7.1.2 Stationarity Conditions

	7.2 Simulation Schemes
	7.3 Generalized Method of Moments Estimation
	7.3.1 Moments Matching Step
	7.3.2 Lévy Distribution Estimation

	7.4 Quasi-maximum Likelihood Estimation
	7.5 Relationship Between GARCH(1,1) and COGARCH(1,1)
	7.6 Application to Real Data

	 References
	

	Index

