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Preface

This LNCS volume contains the selected papers together with invited papers and
tutorials presented at the 11th International Workshop on Rewriting Logic and Its
Applications (WRLA 2016), held during April 2–3, 2016, in Eindhoven, The
Netherlands.

Rewriting is a natural model of computation and an expressive semantic framework
for concurrency, parallelism, communication, and interaction. It can be used for spec-
ifying a wide range of systems and languages in various application domains. It also has
good properties as a metalogical framework for representing logics. Several successful
languages based on rewriting (ASF+SDF, CafeOBJ, ELAN, Maude) have been
designed and implemented. The aim of WRLA is to bring together researchers with a
common interest in rewriting and its applications, and to give them the opportunity to
present their recent work, discuss future research directions, and exchange ideas. WRLA
2016 was a special edition by marking its 20th anniversary since the first edition was
held in Asilomar, California, in 1996.

The topics of the workshop include, but are not limited to:

A. Foundations

– Foundations and models of rewriting and rewriting logic, including termination,
confluence, coherence and complexity

– Unification, generalisation, narrowing, and partial evaluation
– Constrained rewriting and symbolic algebra
– Graph rewriting
– Tree automata
– Rewriting strategies
– Rewriting-based calculi and explicit substitutions

B. Rewriting as a Logical and Semantic Framework

– Uses of rewriting and rewriting logic as a logical framework, including
deduction modulo

– Uses of rewriting as a semantic framework for programming language
semantics

– Rewriting semantics of concurrency models, distributed systems, and network
protocols

– Rewriting semantics of real-time, hybrid, and probabilistic systems
– Uses of rewriting for compilation and language transformation

C. Rewriting Languages

– Rewriting-based declarative languages
– Type systems for rewriting



– Implementation techniques
– Tools supporting rewriting languages

D. Verification Techniques

– Verification of confluence, termination, coherence, sufficient completeness, and
related properties

– Temporal, modal, and reachability logics for verifying dynamic properties of
rewrite theories

– Explicit-state and symbolic model-checking techniques for verification of
rewrite theories

– Rewriting-based theorem proving, including (co)inductive theorem proving
– Rewriting-based constraint solving and satisfiability
– Rewriting-semantics-based verification and analysis of programs

E. Applications

– Applications to logic, mathematics, and physics
– Rewriting models of biology, chemistry, and membrane systems
– Security specification and verification
– Applications to distributed, network, mobile, and cloud computing
– Specification and verification of real-time, probabilistic, and cyber-physical

systems
– Specifications and verification of critical systems
– Applications to model-based software engineering
– Applications to engineering and planning

Following the tradition of the last editions, WRLA 2016 was a satellite event of
ETAPS 2016. The workshop programme included the accepted regular papers, two
invited talks, and three tutorials. The regular papers were reviewed by at least three
reviewers and intensively discussed in the electronic meeting of the Program Com-
mittee (PC) members. We sincerely thank all the authors of papers submitted to WRLA
2016; we were really pleased by the quality of the submissions.

These proceedings include the revised versions of the contributions accepted as
regular papers, one invited paper, one invited tutorial, and the abstracts of the other
invited talks and tutorials. We warmly thank the invited speakers – Hélène Kirchner
and Nikolaj Bjorner – and the authors of tutorials – Carolyn Talcott, Salvador Lucas,
and Grigore Roşu – for kindly accepting to contribute to WRLA 2016.

We would like to thank the members of the PC and all the referees for their excellent
work in the review and selection process. All of this was possible also thanks to the
valuable and detailed reports provided by the reviewers. We benefited from the
invaluable assistance of the EasyChair system through all the phases of submission,
evaluation, and production of the proceedings.

Last but not least, we would also like to thank the ETAPS 2016 Tutorials and
Workshops organizers, led by Erik de Vink, for their efficient coordination of and
assistance with all the activities leading to WRLA 2016.

July 2016 Dorel Lucanu
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All Strings Attached: String and Sequence
Constraints in Z3

Nikolaj Bjorner

Microsoft Research
nbjorner@microsoft.com

Abstract. In this talk I describe recent efforts for theory support for strings,
sequences and regular expressions in Z3. One of the main conveniences of
Satisfiability Modulo Theories (SMT) solvers is their support for theories that
are commonly used in program verification and analysis. The theories of
arithmetic and bit-vectors have shown to be ubiquitous in almost all applications
of SMT, while other theories, such as algebraic data-types, seem to be essential
to cover only more sophisticated applications. The theory of strings, sequences
and regular expressions have been an occasional but persistent ask from users of
SMT tools. Efforts on supporting strings and sequences, have however only
been catching on relatively recently, first with tools that solve string constraints
under assumptions of bounded lengths (Kaluza, Hampi and the string solver in
Pex), followed by a proposal for sequences in the exchange format for SMT
solvers and implementations for strings in CVC4, Princess, S3, and Z3Str.
A separate line of work has considered Symbolic Automata, where transitions
are labeled by formulas over a background theory, and automata operations are
performed directly by solving satisfiability constraints. Our approach in Z3
combines some of the approaches taken in string solvers and integrate methods
from symbolic automata. I will describe some of our experiences so far, propose
new opportunities with using SMT solvers with sequences, and summarise some
of the technical challenges ahead.



Program Verification Using Reachability Logic

Grigore Roşu1, Andrei Ştefănescu1, and Ştefan Ciobâcă2

1University of Illinois at Urbana-Champaign, USA
{grosu,stefane1@illinois.edu}

2University “Alexandru Ioan Cuza” of Iaşi, Romania
stefan.ciobaca@info.uaic.ro

Abstract. Matching logic is a logic for reasoning about program configuration
properties in a language-parametric manner. On top of matching logic we define
reachability logic and equivalence logic. Reachability logic enables reasoning
about the correctness of both deterministic programs (one-path reachability
logic) and non-deterministic programs (all-path reachability logic). Equivalence
logic enables reasoning about program equivalence. We introduce K, a
semantics framework which has been used to define the operational semantics of
real-world languages such as C, Java, and JavaScript. We show how the logics
above are integrated in K. In particular, we show how the semantics of C, Java,
and JavaScript yield automatic program verifiers for the respective languages.
The verifiers can check the full functional correctness of challenging heap
manipulation programs implementing the same data-structures in these lan-
guages (e.g. AVL trees). We also show how to reason about program equiva-
lence using semantics defined in K.



Pathway Logic: Executable Models
of Cellular Processes

Carolyn Talcott

SRI International, USA
clt@csl.sri.com

Abstract. Pathway Logic (PL) is a framework based on rewriting logic for
developing and analysing executable models of cellular processes. The long
term objective is better understanding of how cells work. Progress towards this
goal involves curation of experimental knowledge, assembly of models to study
a question of interest, visualisation, and analysis.

In this tutorial we will focus on signal transduction: how cells sense their
external and internal environment and make decisions. We will begin with some
background and describe the informal models and reasoning often used by
biologists.

We will describe the PL representation of cellular signalling systems as
Maude modules, and explain how knowledge is curated, including steps toward
partial automation.

We will then introduce the Pathway Logic Assistant (PLA) a tool for
interacting with PL knowledge bases. Using PLA one can search a knowledge
base or assemble and visualise a model. Once a model is assembled one can
explore its structure or ask questions such as ‘how can a given state be reached?’
(the answer is an execution pathway) or ‘what if I remove this or add that?’.

We will look under the hood of PLA to see how reflection is used to enable
Maude to be part of an interactive system. Reflection is also used to manage
multiple representations of the knowledge base and derived models for
export/import to integrate with other tools and knowledge bases, for example
graph drawing tools or special purpose model checkers.
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Labelled Graph Rewriting Meets Social
Networks

Maribel Fernández1, Hélène Kirchner2(B), Bruno Pinaud3, and Jason Vallet3

1 King’s College London, London, UK
maribel.fernandez@kcl.ac.uk
2 Inria, Rocquencourt, France
helene.kirchner@inria.fr

3 CNRS UMR5800 LaBRI, University of Bordeaux, Bordeaux, France
{bpinaud,jvallet}@labri.fr

Abstract. The intense development of computing techniques and the
increasing volumes of produced data raise many modelling and analysis
challenges. There is a need to represent and analyse information that is:
complex –due to the presence of massive and highly heterogeneous data–,
dynamic –due to interactions, time, external and internal evolutions–,
connected and distributed in networks. We argue in this work that rel-
evant concepts to address these challenges are provided by three ingre-
dients: labelled graphs to represent networks of data or objects; rewrite
rules to deal with concurrent local transformations; strategies to express
control versus autonomy and to focus on points of interests. To illus-
trate the use of these concepts, we choose to focus our interest on social
networks analysis, and more precisely in this paper on random network
generation. Labelled graph strategic rewriting provides a formalism in
which different models can be generated and compared. Conversely, the
study of social networks, with their size and complexity, stimulates the
search for structure and efficiency in graph rewriting. It also motivated
the design of new or more general kinds of graphs, rules and strategies
(for instance, to define positions in graphs), which are illustrated here.
This opens the way to further theoretical and practical questions for the
rewriting community.

1 Introduction

With the intense development of computing techniques, the last decades have seen
an increasing complexity of models needed to study phenomena of the physical
world and, at the same time, increasing volumes of data produced by observa-
tions and computations. New paradigms of data science and data exploration have
emerged and opened the way to analytic approaches, such as data-driven algo-
rithms, analysis and mining (also called data analytics). Social and human sci-
ences are also impacted by this evolution and provide interesting research prob-
lems for computer scientists. To illustrate these concepts, we choose to focus
our interest on social networks, which have been intensively studied in the last
years [12,31,36]. The analysis of social networks, used to represent users and their
c© Springer International Publishing Switzerland 2016
D. Lucanu (Ed.): WRLA 2016, LNCS 9942, pp. 1–25, 2016.
DOI: 10.1007/978-3-319-44802-2 1



2 M. Fernández et al.

relations with one another, raises several questions concerning their possible con-
struction and evolutions. Among these questions, the study of network propa-
gation phenomena has initiated a sustained interest in the research community,
offering applications in various domains, ranging from sociology [23] to epidemiol-
ogy [9,17] or even viral marketing and product placement [15]. To solve these prob-
lems we need to model and analyse systems that are complex, since they involve
data that are massive and highly heterogeneous, dynamic, due to interactions,
time, external or internal evolutions, connected and distributed in networks.

We argue in this paper that relevant concepts to address these challenges
are: Labelled Graphs to represent networks of data or objects, Rules to deal
with concurrent local transformations, and Strategies to express control versus
autonomy and to focus on points of interests. Indeed, modelling social networks
raises many questions we have to address. First, large networks are involved for
which an efficient search of patterns is needed, along with capability of focusing on
points of interest and defining appropriate views. Since data are often corrupted
or imprecise, one should also deal with uncertainty, which implies that we need
to address probabilistic or stochastic issues in the models. The dynamic evolution
of data is generally modelled by simple transformations, applied in parallel and
triggered by events or time. However, such models should also take into account
controlled versus autonomous behaviour. Modelling may reveal conflicts that have
to be detected (for instance through overlapping rules) and solved (using prece-
dence, choices, i.e., strategic issues). Memory and backtracking must be provided,
through notions of computation history or traces. Last but not least, visualisation
is important at all levels: for data analysis, program engineering, program debug-
ging, tests and verification (for instance to provide proof intuition).

In [37], we focused on propagation phenomena and showed how some popu-
lar models can be expressed using labelled graph and rewriting. In the current
paper, we use this previous work to illustrate our computing model and introduce
a generative model for social networks. Indeed, many data sets, extracted from
various social networks, are publicly available.1 However, in order to demonstrate
the generality of a new approach, or to design and experiment with stochastic
algorithms on a sufficiently large sample of network topologies, it is more conve-
nient to use randomly generated networks. Several generative models of random
networks are available to work with (e.g., [5,8,18,39]). Some, like the Erdös–
Rényi (ER) model [18], do not guarantee any specific property regarding their
final topology, whereas others can be characterised as small-world or scale-free
networks. This paper shows how to generate such models using labelled graphs,
rules and strategies.

Port graph rewriting systems have been used to model systems in a wide vari-
ety of domains, such as biochemistry, interaction nets, games or social networks
(e.g., [1,20,21,37]). In the following, we reuse from [19] the formal definitions
of port graphs with attributes, rewrite rule and rewriting step, the concept of
strategic graph program, as well as the definition of the strategy language and
its operational semantics, and enrich them in order to achieve a more complete

1 For instance from http://snap.stanford.edu.

http://snap.stanford.edu


Labelled Graph Rewriting Meets Social Networks 3

and generic definition. Most notably, the refined definitions permit the use of ori-
ented edges and conditional existence matching, reminiscent of similar solutions
found in Elan [10] and GP [35]. We use the Porgy environment which sup-
ports interactive modelling using port graph rewriting; more details concerning
the rewriting platform can be found in [33].

Summarising, our contributions are twofold: we present a general modelling
framework, based on strategic port graph rewriting, that facilitates the analysis
of complex systems, and we illustrate its power by focusing on social networks
(more precisely, their generation). For this application, the visual high-level mod-
elling features of port graph rewriting are particularly relevant. Concepts of port
graphs, rules and strategies are illustrated on this specific domain. Conversely,
the study of social networks, with their size and complexity, stimulates the search
for structure and efficiency in graph rewriting. We identify open problems and
questions that arise when studying social networks.

The paper is organised as follows. Section 2 introduces the modelling concepts
we propose to use: port graphs, morphism, rewriting, derivation tree, strategy
and strategic graph programs are defined in their full generality, while illustrated
on the special case of social networks. In Sect. 3, we focus on social network
behaviour simulation, more precisely on social network generation. In Sect. 4,
we conclude by synthesising the lessons learned from this study and giving per-
spectives for future work.

2 Labelled Graph Rewriting

Several definitions of graph rewriting are available, using different kinds of graphs
and rewrite rules (see, for instance, [6,7,16,24,28,34]). In this paper we consider
port graphs with attributes associated with nodes, ports and edges, generalising
the notion of port graph introduced in [2,3]. The following definitions, based
on [19], have been generalised to use indistinctly either directed or undirected
edges. We present first the intuitive ideas, followed by the formal definition of
port graph rewriting.

2.1 Port Graphs

Intuitively, a port graph is a graph where nodes have explicit connection points
called ports, to which edges are attached. Nodes, ports and edges are labelled by
records listing their attributes.

A signature ∇ used to label the graph is composed of:

– ∇A , a set of attributes;
– XA , a set of attribute variables;
– ∇V , a set of values;
– XV , a set of value variables.

where ∇A , XA , ∇V and XV are pairwise disjoint. ∇A contains distinguished
elements Name, (In/Out)Arity , Connect , Attach, Interface. Values in ∇V are
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assumed to be of basic data types such as strings, int, bool,. . . or to be well-typed
computable expressions built using ∇ and basic types.

Definition 1 (Record). A record r over the signature ∇ is a set of pairs
{(a1, v1), . . . , (an, vn)}, where

ai ∈ ∇A ∪ XA for 1 ≤ i ≤ n, called attributes; each ai occurs only once in
r, and there is one distinguished attribute Name.

vi ∈ ∇V for 1 ≤ i ≤ n, called values.
The function Atts applies to records and returns all their attributes:

Atts(r) = {a1, . . . , an}
if r = {(a1, v1), . . . , (an, vn)}. As usual, r.ai denotes the value vi of the attribute
ai in r.

The attribute Name identifies the record in the following sense: For all r1,
r2, Atts(r1) = Atts(r2) if r1.Name = r2.Name.

Definition 2 ((Directed) Port Graph). Given sets N ,P,E of nodes, ports
and edges, a port graph over a signature ∇ is a tuple G = (N,P,E,L) where

– N ⊆ N is a finite set of nodes; n, n′, n1, . . . range over nodes.
– P ⊆ P is a finite set of ports; p, p′, p1, . . . range over ports.
– E ⊆ E is a finite set of edges between ports; e, e′, e1, . . . range over edges.

Edges can be directed and two ports may be connected by more than one edge.
– L is a labelling function that returns, for each element in N ∪ P ∪ E, a record

such that:
• For each edge e ∈ E, L(e) contains an attribute Connect whose value is

the ordered pair (p1, p2) of ports connected by e.
• For each port p ∈ P , L(p) contains an attribute Attach whose value is the

node n which the port belongs to, and an attribute Arity whose value is
the number of edges connected to this port. When edges are directed, ports
have instead two attributes, InArity and OutArity, whose respective values
are the number of edges directed to and from this port.

• For each node n ∈ N , L(n) contains an attribute Interface whose value is
the set of names of ports in the node: {L(pi).Name | L(pi).Attach = n}.
We assume that L satisfies the following constraint:

L(n1).Name = L(n2).Name ⇒ L(n1).Interface = L(n2).Interface.

By Definition 2, nodes with the same name (i.e., the same value for the
attribute Name) have the same set of port names (i.e., the same interface),
with the same attributes but possibly with different values. Variables may be
used to denote any value.

Two nodes n, n′ ∈ N connected by an undirected edge are said to be adjacent
and each other neighbours. However, for a directed edge (n, n′) ∈ E going from
n to n′, only n′ is said adjacent to n (not conversely) and is called a neighbour
of n. The set of nodes adjacent to a subgraph F in G consists of all the nodes in
G outside F and adjacent to any node in F . N(n) denotes the set of neighbours
of the node n.
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The advantage of using port graphs rather than plain graphs is that they
allow us to express in a more structured and explicit way the properties of
the connections, since ports represent the connecting points between edges and
nodes. However, the counterpart is that the implementation, rules and matching
operations are more complex. So, whenever possible, it is simpler and more
efficient to keep the number of ports for each node to a minimum.

Example 1 (Social Network). A social network [11] is commonly described as a
graph G = (N,E) built from a set of nodes (the users) N and a set of edges
E ⊆ N × N linking users. Although in most real-world social relations, two
persons relate to each other with a mutual recognition, some social networks
present an asymmetric model of acknowledgement, the most popular of them
being Twitter, classifying one of the users as a follower while the other is a
followee. Such relations can be very simply represented by orienting edges, thus
transforming our initial graph in a directed graph.

In this paper, we model a social network as a port graph, where nodes repre-
sent users and edges are connections between them. Edges are directed to reflect
the relation between users (e.g., follower/followee) and store the attributes of
their relation (e.g., influence level, threshold value. . . ). An alternative solution
would be to use undirected edges and nodes with two ports called “In” and “Out”
for instance, as in [37], to simulate edge direction. In this paper, the nodes rep-
resenting users have only one port gathering directed connections. While this is
sufficient for simple cases, when facing real social networks, multiple ports are
useful, either to connect users according to the nature of their relation (e.g.,
friends, family, co-workers. . . ) or to model situations where a user is connected
to friends via different social networks. The full power of port graphs is indeed
necessary in multi-layer networks [27] where edges are assigned to different layers
and where nodes are shared. In that case, different ports are related to differ-
ent layers, which can improve modularity of design, readability and matching
efficiency through various heuristics. This is however a topic left for future work.

Example 2 (Propagation). Propagation in a network can be seen as follows: when
users perform a specific action (announcing an event, spreading a gossip, sharing
a video clip, etc.), they become active. They inform their neighbours of their state
change, giving them the possibility to become active themselves if they perform
the same action. Such process reiterates as the newly active neighbours share
the information with their own neighbours. The activation can thus propagate
from peer to peer across the whole network.

To replicate this phenomena observed in real-world networks, some models
opt for entirely probabilistic activations (e.g., [14,42]) where the presence of
only one active neighbour is enough to allow the propagation to occur. Other
models use threshold values (e.g., [22,26,40]) building up during the propagation.
Such values represent the influence of one user on his neighbours or his tolerance
towards performing a given action (the more solicited a user is, the more inclined
he becomes to either activate or utterly resist).

To express propagation conditions (e.g., a probabilistic model for node acti-
vation, or activation after reaching a predefined threshold), it is natural to make
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use of records with expressions, i.e., include specific attributes whose values are
numerical expressions. More specifically:

– Each node n has an attribute Active that indicates whether it contributes to
the propagation or not. It is coupled with the Colour attribute, which takes
accordingly green or red values. The node n has also a Sigma attribute that
measures the maximum influence withstood by n from its active neighbours
at the time being.

– An edge e that connects two ports p′ and p of the respective nodes n′ and n has
an attribute Influence which indicates the influence of n′ (i.e., L(p′).Attach)
on n (i.e., L(p).Attach). The edge e has also a Boolean attribute Marked ,
initially false, which becomes true when n is inactive, n′ is active and n′ has
tried to influence n.

2.2 Rewriting

We see a port graph rewrite rule L ⇒ R as a port graph consisting of two
subgraphs L and R together with a special node (called arrow node) that encodes
the correspondence between the ports of L and the ports of R. Each of the ports
attached to the arrow node has an attribute Type ∈ ∇A , which can have three
different values: bridge, wire and blackhole. The value indicates how a rewriting
step using this rule should affect the edges that connect the redex to the rest of
the graph. We give details below.

Definition 3 (Port Graph Rewrite Rule). A port graph rewrite rule is a
port graph consisting of:

– two port graphs L and R over the signature ∇, respectively called left-hand
side and right-hand side, such that all the variables in R occur in L, and R
may contain records with expressions;

– an arrow node with a set of edges that each connect a port of the arrow node
to ports in L or R.

The arrow node has for Name ⇒. Each port in the arrow node has an attribute
Type, which can be of value: bridge, blackhole or wire, satisfying the following
conditions:

1. A port of type bridge must have edges connecting it to L and to R (one edge
to L and one or more to R).

2. A port of type blackhole must have edges connecting it only to L (at least one
edge).

3. A port of type wire must have exactly two edges connecting to L and no edge
connecting to R.

The arrow node has an optional attribute Where whose value is a Boolean expres-
sion involving the predicate Edge, applied to node and port names, and Boolean
operators.
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When modelling rumour propagation, the rules never suppress nor add new
nodes. Moreover, when there is only one port per node, there is no ambiguity on
the rewiring between left and right-hand sides. In that case indeed, the structure
and visualisation of the arrow node is much simpler. However, this only holds
when the network’s structure does not change.

The introduction of the Where attribute is inspired from the GP program-
ming system [35] (and from Elan [10] with a more general definition), in which
a rule may have a condition introduced by the keyword where. For instance,
a condition where not Edge(n,n’) requires that no edge exists between the
nodes n and n′. This condition is checked at matching time.

Let us first recall the notion of port graph morphism [19]. Let G and H be two
port graphs over the same signature ∇. A port graph morphism f : G → H maps
nodes, ports and (directed) edges of G to those of H such that the attachment
of ports and the (directed) edges connections are preserved, all attributes and
values are preserved except for variables in G, which must be instantiated in H.
Intuitively, the morphism identifies a subgraph of H that is equal to G except at
positions where G has variables (at those positions, H could have any instance).

Definition 4 (Match). Let L ⇒ R be a port graph rewrite rule and G a port
graph. We say a match g(L) of the left-hand side (also called a redex) is found if:

– There is a port graph morphism g from L to G; hence g(L) is a subgraph of G.
– If the arrow node has an attribute Where with value C, C must be true of g(L).
– For each port in L that is not connected to the arrow node, its corresponding

port in g(L) must not be an extremity in the set of edges of G − g(L).

This last point ensures that ports in L that are not connected to the arrow
node are mapped to ports in g(L) that have no edges connecting them with
ports outside the redex, to avoid dangling edges in rewriting steps.

Several injective morphisms g from L to G may exist (leading to different
rewriting steps); they are computed as solutions of a matching problem from L
to (a subgraph of) G.

Definition 5 (Rewriting Step). According to [19], a rewriting step on G
using a rule L ⇒ R (where C) and a morphism g : L → G (satisfying C),
written G →g

L⇒R G′, transforms G into a new graph G′ obtained from G by
performing the following operations in three phases:

– In the build phase, after a redex g(L) is found in G, a copy Rc = g(R) (i.e.,
an instantiated copy of the port graph R) is added to G.

– The rewiring phase then redirects edges from G to Rc as follows:
For each port p in the arrow node:

• If p is a bridge port and pL ∈ L is connected to p:
for each port piR ∈ R connected to p,
find all the ports pkG in G that are connected to g(pL) and are not in g(L),
and redirect each edge connecting pkG and g(pL) to connect pkG and piRc

.
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• If p is a wire port connected to two ports p1 and p2 in L, then take all the
ports outside g(L) that are connected to g(p1) in G and connect each of
them to each port outside g(L) connected by an edge to g(p2).

• If p is a blackhole: for each port pL ∈ L connected to p, destroy all the
edges connected to g(pL) in G.

– The deletion phase simply deletes g(L). This creates the final graph G′.

Example 3 (Propagation). Figure 1 shows two rules used for propagation. Active
nodes are depicted in green and visited nodes in purple. Red nodes are in an
inactive state (however, they may have been visited already). Rule R1 in Fig. 1(a)
indicates that when an activated node n is connected to an inactive node n, it
tries to influence it. If it succeeds, a second rule, Rule R2 in Fig. 1(b), makes
this node active.

In a social network G = (N,E), let n and n be two nodes (n, n ∈ N)
connected via an edge e = (n, n) ∈ E. The node’s attribute L(n).Sigma, giving
the influence withstood by n and initially set to 0, is updated such as:

L(n).Sigma = max
(L(e).Influence

r
,L(n).Sigma

)

where r is a random number between 0 and 1 and L(e).Influence is the influence
of n on n. The formula is stored as a node attribute in the right-hand side of
Rule R1 in Fig. 1(a) and each corresponding rewriting performs the update.
More details are given in [37].

(a) R1 : Influence trial. An active
neighbour (green) influences an inac-
tive node (red) by visiting it (transfor-
mation into a blue node).

(b) R2 : Node activation. A visited
node (blue) sufficiently influenced is
activated (transformation into a green
node).

Fig. 1. Rules used to express a propagation model. For both rules, we use two specific
node’s attributes–active and visited– to manage the matching performed, the different
colours being visual cues helping users identifying the node state at a glance. Green
nodes, or active nodes, must have their attributes active equal to 1 and visited equal to
0; red nodes, or inactive nodes, must have their attributes active equal to 0 and visited
equal to 0; finally, blue nodes, or visited nodes, must have their attributes active equal
to 0 and visited equal to 1. (Color figure online)
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Given a finite set R of rules, a port graph G rewrites to G′, denoted by G →R
G′, if there is a rule r in R and a morphism g such that G →g

r G′. This induces
a reflexive and transitive relation on port graphs, called the rewriting relation,
denoted by →∗

R. A port graph on which no rule is applicable is irreducible.
A derivation, or computation, is a sequence G →∗

R G′ of rewriting steps.
Each rewriting step involves the application of a rule at a specific position in
the graph. A derivation tree from G represents all possible computations (with
possibly infinite ones) and strategies are used to specify the rewriting steps of
interest, by selecting branches in the derivation tree.

2.3 Strategic Graph Programs

In this section, we recall the concept of strategic graph program, consisting of a
located graph (a port graph with two distinguished subgraphs that specify the
locations where rewriting is enabled/disabled), a set of rewriting rules, and a
strategy expression. We then recall the strategy language presented in [19] to
define strategy expressions. In addition to the well-known constructs to select
rewrite rules, the strategy language provides position primitives to select or ban
specific positions in the graph for rewriting. The latter is useful to program
graph traversals in a concise and natural way, and is a distinctive feature of
the language. In the context of social networks, the position primitives are also
convenient to restrict the application of rules to specific parts of the graph.

Located Graphs and Rewrite Rules. First, we recall that, in graph theory,
a subgraph of a graph G = (NG, EG) is a graph H = (NH , EH) contained in G,
that is, NH ⊆ NG and EH ⊆ EG. The definition extends to directed port graphs
in the natural way: let G = (NG, PG, EG,LG) and H = (NH , PH , EH ,LH) be
port graphs over the signature ∇. H is a subgraph of G if NH ⊆ NG, PH ⊆ PG,
EH ⊆ EG, LH = LG|NH∪PH∪EH

, that is, LH is the restriction to H of the
labelling function of G.

Definition 6 (Located Graph). According to [19], a located graph GQ
P con-

sists of a port graph G and two distinguished subgraphs P and Q of G, called
respectively the position subgraph, or simply position, and the banned subgraph.

In a located graph GQ
P , P represents the subgraph of G where rewriting

steps may take place (i.e., P is the focus of the rewriting) and Q represents the
subgraph of G where rewriting steps are forbidden. We give a precise definition
below; the intuition is that subgraphs of G that overlap with P may be rewritten,
if they are outside Q.

When applying a port graph rewrite rule, not only the underlying graph G
but also the position and banned subgraphs may change. A located rewrite rule,
defined below, specifies two disjoint subgraphs M and M ′ of the right-hand side
R that are respectively used to update the position and banned subgraphs. If
M (resp. M ′) is not specified, R (resp. the empty graph ∅) is used as default.
Below, we use the operators ∪,∩, \ to denote union, intersection and complement
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of port graphs. These operators are defined in the natural way on port graphs
considered as sets of nodes, ports and edges.

Definition 7 (Located Rewrite Rule). A located rewrite rule is given by
a port graph rewrite rule L ⇒ R, and, optionally, a subgraph W of L and
two disjoint subgraphs M and M ′ of R. It is denoted LW ⇒ RM ′

M . We write
GQ

P →g

LW ⇒RM′
M

G′Q′
P ′ and say that the located graph GQ

P rewrites to G′Q′
P ′ using

LW ⇒ RM ′
M at position P avoiding Q, if G →L⇒R G′ with a morphism g

such that g(L) ∩ P = g(W ) or simply g(L) ∩ P �= ∅ if W is not provided, and
g(L)∩Q = ∅. The new position subgraph P ′ and banned subgraph Q′ are defined
as P ′ = (P \ g(L)) ∪ g(M), Q′ = Q ∪ g(M ′); if M (resp. M ′) are not provided
then we assume M = R (resp. M ′ = ∅).

In general, for a given located rule LW ⇒ RM ′
M and located graph GQ

P , more
than one morphism g, such that g(L) ∩ P = g(W ) and g(L) ∩ Q is empty, may
exist (i.e., several rewriting steps at P avoiding Q may be possible). Thus, the
application of the rule at P avoiding Q produces a set of located graphs.

Example 4. In influence propagation, banned subgraphs are used to avoid sev-
eral activations of the same neighbours. Another usage is to select a specific
community in the social network where the propagation should take place.

2.4 Strategies

To control the application of the rules, a strategy language is presented in [19].
We recall it in Table 1, including some additional constructs that are needed to
deal with directed edges.

Strategy expressions are generated by the grammar rules from the non-
terminal S. A strategy expression combines applications of located rewrite rules,
generated by the non-terminal A, and position updates, generated by the non-
terminal U , using focusing expressions, generated by F . Subgraphs of a given
graph can be defined by specifying simple properties, expressed with attributes
of nodes, edges and ports. The strategy constructs, generated by S, are used to
compose strategies and are strongly inspired from term rewriting languages such
as Elan [10], Stratego [38] and Tom [4].

We briefly explain below the constructs used in this paper. A full description
of the language can be found in [19].

The primary construct is a located rule, which can only be applied to a
located graph GQ

P if at least a part of the redex is in P , and does not involve
Q. When probabilities π1, . . . , πk ∈ [0, 1] are associated to rules T1, . . . , Tk such
that π1 + · · · + πk = 1, the strategy ppick(T1, π1, . . . , Tk, πk) picks one of the
rules for application, according to the given probabilities.

all(T ) denotes all possible applications of the transformation T on the
located graph at the current position, creating a new located graph for each
application. In the derivation tree, this creates as many children as there are
possible applications.
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Table 1. Syntax of the strategy language.

one(T ) computes only one of the possible applications of the transformation
and ignores the others; more precisely, it makes an equiprobable choice between
all possible applications.

Similar constructs exist for positions focusing: one(F ) returns one node in F
and all(F ) returns the full F . In the remaining of this paper, when not specified,
F stands for all(F ).

Focusing expressions are used to define positions for rewriting in a graph, or
to define positions where rewriting is not allowed. They denote functions used
in strategy expressions to change the positions P and Q in the current located
graph. In this paper, we use:
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– crtGraph, crtPos and crtBan, applied to a located graph GQ
P , return respec-

tively the whole graph G, P and Q.
– property(F, ρ) is used to select elements of a given graph that satisfy a certain

property, specified by ρ. It can be seen as a filtering construct: if the expression
F generates a subgraph G′ then property(F, ρ) returns only the nodes and/or
edges from G that satisfy the decidable property ρ = Elem,Expr. Depending
on the value of Elem, the property is evaluated on nodes, ports, or edges.

– ngb(F, ρ) returns a subset of the neighbours (i.e., adjacent nodes) of F accord-
ing to ρ. Note that the direction of the edge is taken into account; to emphasise
it, we introduce ngbOut(F, ρ) and its counterpart ngbIn(F, ρ). If edge is used,
i.e., if we write ngb(F, edge, Expr), it returns all the neighbours of F con-
nected to F via edges which satisfy the expression Expr.

– setPos(D) (resp. setBan(D)) sets the position subgraph P (resp. Q) to be the
graph resulting from the expression D. It always succeeds (i.e., returns id).

The following constructs are also used:

– S;S′ represents sequential application of S followed by S′.
– repeat(S)[max n] simply iterates the application of S until it fails, but, if
max n is specified, then the number of repetitions cannot exceed n.

– (S)orelse(S′) applies S if possible, otherwise applies S′. It fails if both S and
S′ fail.

– When probabilities π1, . . . , πk ∈ [0, 1] are associated to strategies S1, . . . , Sk

such that π1 + · · · + πk = 1, the strategy ppick(S1, π1, . . . , Sk, πk) picks one
of the strategies for application, according to the given probabilities. This
construct generalises the probabilistic constructs on rules and positions.

Example 5 (Propagation). (Example 3 cont’d) To illustrate the strategy lan-
guage, let us come back to the propagation model in social networks and to the
two rules described in Fig. 1. When Rule R1 in Fig. 1(a) is applied on a pair of
nodes active(n)/non active(n) (green/red): (a) we generate a random number
r ∈]0, 1]; (b) we store in the attribute L(n).Sigma the new value of Sigma for n
computed with the previously given formula; and (c) using the Marked attribute,
we mark the edge e linking n to n to prevent the selection of this particular pair
configuration in the next pattern matching searches. This ensures that the active
node n will not be able to try to influence the same node n over and over.

Once every pair of active/inactive neighbours has been tried, if n is suffi-
ciently influenced (i.e., L(n).Sigma ≥ 1), Rule R2 in Fig. 1(b) is applied and n
becomes active. This behaviour is expressed with the following strategy:

Strategy 1: Influence propagation in social network.
repeat(R1);1

setPos(property(crtGraph, node,Sigma ≥ “1”));2

repeat(R2)3

This example illustrates how record expressions may be used to compute
attribute values and how they are updated through application of rules.
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Probabilistic features of the Porgy strategy language, through the use of
the ppick() construct, are illustrated in Sect. 3 for social network generation.

A more complete formal definition of strategic graph programs and their
semantics can be found in [19]. Correctness and completeness of strategic port
graph rewriting are stated and imply in particular that the derivation tree in
which each rewrite step is performed according to the strategy –let us call it
the strategic derivation tree– is actually a subtree of the derivation tree of the
rewrite system without strategy. The strategic derivation tree is a valuable con-
cept because it records the history of the transformations and provides access
to generated models. It is, by itself, a source of challenging questions, such as
detecting isomorphic models and folding the tree, finding equivalent paths and
defining the “best ones”, abstracting a sequence of steps by a composition strat-
egy, or managing the complexity of the tree and its visualisation.

From now on, the paper focuses on social networks generation using the
introduced labelled graph rewriting concepts and the Porgy environment.

3 Social Network Generation

We focus in the following on generating graphs with a small-world property as
defined in [41]. Such graphs are characterised by a small diameter –the average
distance between any pair of nodes is short– and strong local clustering –any pair
of connected nodes tend to both be connected to the same neighbour nodes thus
creating densely linked groups of nodes, also called communities. Popularised
by Milgram in [30], small-world graphs are a perfect case study for information
propagation in social networks due to their small diameter allowing a quick and
efficient spreading of information among the users. Furthermore, the graph G =
(N,E) produced by the generation process satisfies the following requirements:
the number of nodes |N | and directed edges |E| are given a priori ; G is formed
of a sole connected component thus |E| should at least be equal to |N | − 1;
any ordered pair of nodes (n, n′) can only be linked once, thus maximising the
possible number of edges in G to |E|max = |N | × (|N | − 1); finally, the definitive
number of communities is left to be randomly decided during the generative
operations.

A few previous works have explored the idea of using rules to generate
networks. In [25], the authors define and study probabilistic inductive classes
of graphs generated by rules which model spread of knowledge, dynamics of
acquaintanceship and emergence of communities. The model presented below
follows a rather similar approach; however, we have adjusted its generative rules
to cope with directed edges and ensure the creation of a graph with a single con-
nected component. This is achieved by performing the generation through local
additive transformations, each only creating new elements connected to the sole
component, thus increasingly making the graph larger, more intricate and more
interesting to study.
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Starting from one node, the generation is divided into three phases imitating
the process followed by real-world social networks. Whenever new users first join
the social network, their number of connections is very limited, mostly to the
other users who have introduced them to the social network. Then comes the
second phase where the new users reach the people they already know personally,
thus creating new connections within the network, which may seem random for
any spectator only aware of the present social network. Finally, the new users
start to get to know the people with whom they are sharing friends in the
network, potentially leading to the creation of new connections.

The method presented below can easily be extended to create graphs with
more than one component. One has to use a number of starting nodes equal to
the number of desired connected components and ensure that no edge is created
between nodes from different components. The generative rules and strategies
can then be applied on each component iteratively or in parallel (parallel appli-
cation of rules is possible but beyond the scope of this paper).

The first step (Sect. 3.1) generates a simple directed acyclic graph represent-
ing an initial simple network evolving as new users join it. It is then comple-
mented with additional edges in the second step (Sect. 3.2), as users “import”
their pre-existing connections into the social network. Finally, the third and final
step (Sect. 3.3) focuses on creating communities as users connect with the friends
of their friends within the network.

3.1 Generation of a Directed Acyclic Graph

The first step toward the construction of the directed graph G = (N,E) uses
the two rules shown in Figs. 2(a) and (b). Both rewriting operations start with
a single node and transform it to generate a second node linked to the first
one (thus creating a new node and a new edge with each application). The
difference between those two rules lies in the edge orientation as Rule 2(a) creates
an outgoing edge on the initiating node, while Rule 2(b) creates an incoming
edge.

We can notice the left hand-sides of both rules require the existence of a node
prior to their application, thus imposing the starting graph upon which the rules
will be applied to have at least one node. As we also seek to ensure that only one
connected component exists prior to any transformation, we use a single node
as the starting graph.

Strategy 2: Node generation: Creating a directed acyclic graph of size N

//equiprobabilistic application of the two rules used for generating nodes1

repeat(2

ppick(one(GenerationNode1), 0.5,3

one(GenerationNode2), 0.5)4

)(|N | − 1) // Generation of N nodes5
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(a) Rule GenerationNode1. (b) Rule GenerationNode2.

Fig. 2. Rules used for generating and re-attaching nodes to the social network. For
both rules, a new node is created in the right-hand side and connected to the pre-
existing node. The main difference between the two rules resides in the generated edge
orientation: going from the pre-existing node (belonging to the social network) to the
newly added node in Rule (a) or oriented in the opposite direction in Rule (b).

The whole node generation is achieved during this first phase and managed
using Strategy 2. It repeatedly applies the generative rules |N | − 1 times so that
the graph reaches the appropriate number of nodes. As mentioned earlier, each
rule application also generates a new edge, which means that once executed,
Strategy 2 produces a graph with exactly |N | nodes and |N | − 1 edges. The ori-
entation of each edge varies depending of the rule applied (either 2(a) or 2(b)),
moreover, their application using the ppick() construct allows us to ensure an
equiprobable choice between the two rules. We focus next on generating addi-
tional edges.

3.2 Creating Complementary Connections

We still need to generate (|E|−|N |+1) additional edges in the graph G. However,
because we want to ensure the creation of communities during the last phase,
we do not wish to create all the remaining edges just now. Depending on how
we balance the number of edges created during this phase and the next one,
the final graphs will present different characteristics (see Figs. 5 and 6). During
this phase, we aim to create either seemingly random connections between the
network users or to reciprocate already existing single-sided connections.

We use two rules to link existing nodes thus creating a new additional edge
with each application. The first rule (Fig. 3(a)) simply considers two nodes and
adds an edge between them to emulate the creation of a (one-sided) connection
between two users. The second rule (Fig. 3(b)) reciprocates an existing connec-
tion between a pair of users: for two nodes n, n′ ∈ N connected with an edge
(n′, n), a new edge (n, n′) is created; it is used to represent the mutual appreci-
ation of users in the social network. Note that, because each node is randomly
chosen among the possible matches, we do not need to create alternative versions
of these rules with reversed oriented edges.

In both rules, the existence of edges between the nodes on which the rule
applies should be taken into account. Though the rules visual representations do
not explicitly indicate it, any edge (n, n′) created by either rule cannot already
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(a) Rule GenerationEdge. (b) Rule GenerationMirror.

Fig. 3. First set of rules used to generate additional connections within the social
network. Rule (a) is used to create a new connection between two previously created and
unrelated nodes, while Rule (b) is applied on a pair of connected nodes and generates
a new edge reciprocating the pre-existing connection.

exist in the network, thus forbidding the rules to apply in such case. This require-
ment can be taken into account by adding a condition “where not Edge(n,n’)”
introduced in Definition 3. It can also be handled through positions for limiting
the elements to be considered during matching. We use the latter solution here.
Strategy 3 presents how we proceed. First, we filter the elements to consider dur-
ing the matching. We randomly select one node among the nodes whose outgoing
arity (OutArity) is lower than the maximal possible value (i.e., |N | − 1), and we
banish all of its outgoing neighbours as they cannot be considered as potential
matching elements. Then, Rule 3(a) or Rule 3(b) are equiprobably applied to add
a new edge from the selected node. Previously banishing neighbours allows only
considering pair of nodes not already connected. This ensures that the graph is
kept simple (i.e., only one edge per direction between two nodes).

Strategy 3: Edge generation: addition of |E′| edges if possible.
repeat(1

//select one node with an appropriate number of neighbours2

setPos(one(property(crtGraph, node,OutArity < |N | − 1)));3

//for this node, forbid rule applications on its outgoing neighbours4

setBan(all(ngbOut(crtPos, node, true)));5

//equiprobable application of the edge generation rules6

ppick((one(GenerationEdge))orelse(one(GenerationMirror)), 0.5,7

(one(GenerationMirror))orelse(one(GenerationEdge)), 0.5);8

)(|E′|)9

We aim to create |E′| more edges, where |E′| < (|E| − |N | + 1) to keep the
number of edges below |E|. The use of the ( )orelse() construct allows testing
all possible rule application combinations, thus, if one of the rules can be applied,
it is found. If neither rule can be applied, the maximum number of edges in the
graph has been reached, i.e., the graph is complete. The values given for the
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number of edges |E′| is too high to create a simple graph. If the strategy went
well, we are left with (|E|− |E′|− |N |+1) remaining edges to create in the next
step for enforcing communities within G.

3.3 Construction of Communities

To create a realistic social network, we want to add communities. Thus, some of
the links between users have to follow certain patterns. Based on ideas advanced
in several previous works (e.g., [13,25,29,32]), we focus our interest on triad
configurations (i.e., groups formed by three users linked together) to generate
and extend communities via the three rewrite rules introduced in Fig. 4.

The first triad rule (Fig. 4(a)) considers how a first user (A) influences a
second user (B) who influences in turn a third user (C). This situation can
produce some sort of transitivity as “the idol of my idol is my idol”, meaning
that A is much likely to influence C. We use here the term “idol” instead of the
more classical “friend” because we only consider single-sided relations as a base
for the transformation. The second rule (Fig. 4(b)) shows two users (B and C)
being influenced by a third user (A). When in this position, the users B and C

(a) Rule CommunityLegacy.

(b) Rule CommunityDown. (c) Rule CommunityUp.

Fig. 4. Generation of additional connections based on triads. Rule (a) is used to identify
influence chains: when C is influenced by B, itself influenced by A, the rule creates a
new connection from A to C. Rule (b) focuses on triads where two users B and C are
influenced by a third person A: this common characteristic can lead B and C to develop
a relation. Rule (c) is somewhat the opposite of Rule (b): two users A and C influence a
third user B, creating a connection between them (from A to C). Two distinctive edge
types are used: standard arrow edges for representing existing connections and cross-
shaped headed edges for indicating edges which should not exist during the matching
phase.
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might start exchanging (similar connections, common interests. . . ), thus creating
a relation between the two of them (either from B to C or the opposite). The
last rule (Fig. 4(c)) depicts one user (B) being influenced by two other users (A
and C). This case can happen when A and C are well-versed about a common
subject of interest which is of importance to B. An exchange can thus appear
between the two influential users (from A to C for instance).

The three rules use a where not Edge(n,n’) condition to forbid the exis-
tence of an edge between two matching nodes. The condition is visually encoded
using a cross-shaped headed edge to indicate which edge should be verified as
non-existent during the matching operations.

Strategy 4: Community generation: remaining edges creation to
strengthen communities
repeat(1

ppick(2

(one(CommunityDown))orelse(3

ppick(4

(one(CommunityUp))orelse(one(CommunityLegacy)), 0.5,5

(one(CommunityLegacy))orelse(one(CommunityUp)), 0.5)6

), 1/3,7

(one(CommunityUp))orelse(8

ppick(9

(one(CommunityLegacy))orelse(one(CommunityDown)), 0.5,10

(one(CommunityDown))orelse(one(CommunityLegacy)), 0.5)11

), 1/3,12

(one(CommunityLegacy))orelse(13

ppick(14

(one(CommunityDown))orelse(one(CommunityUp)), 0.5,15

(one(CommunityUp))orelse(one(CommunityDown)), 0.5)16

), 1/3)17

)(|E| − |E′| − |N | + 1)18

Strategy 4 is used to drive the three rules. Like the previous strategy, this
one aims at equiprobably testing all possible combinations between the rules.

3.4 Resulting Network Generation

Once the last strategy execution is completed, the social network generation is
achieved. For the sake of simplicity, the strategies presented above aim at making
equiprobable choices between rules. The probabilities may of course be modified
to take into account any specific condition present in the modelled system, more-
over, whatever the chosen probabilities are, the following result holds.

Proposition 1. Given three positive integer parameters |N |, |E|, |E′|, such that
|N |−1 ≤ |E| ≤ |N |×(|N |−1) and |E′| ≤ |E|−|N |+1, let the strategy S|N |,|E|,|E′|
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be the sequential composition of the strategies Node generation, Edge generation
and Community generation described above, and G0 be a port graph composed of
one node with one port. The strategic graph program [S,G0] terminates with a
port graph G with |N | nodes and |E| edges, which is simple, directed and weakly-
connected.

Proof. Let us prove by induction that the generated port graphs are directed,
simple (at most one edge in each direction between any two nodes) and weakly
connected (connected when direction of edges is ignored). This is trivially true
for G0 and each rewrite step preserves these three properties, thanks to the
positioning strategy that controls the outdegree in Edge generation (Strategy 3)
and the forbidden edges in the rules for Community generation (Fig. 4). As the
strategic program never fails, since a repeat strategy cannot fail, this means
that a finite number of rules has been applied and the three properties hold by
rewriting induction. Then by construction, the strategy Node generation creates
a new node and a new edge at each step of the repeat loop, exactly |N | − 1, and
is the only strategy that creates new nodes. From here, G has exactly |N | nodes
and |N | − 1 edges. The strategies Edge generation and Community generation
create a new edge at each step of the repeat loop, so respectively |E′| and
|E| − |E′| − |N | + 1. As a result, when the strategy S terminates, the number of
edges created is equal to |N | − 1 + |E′| + |E| − |E′| − |N | + 1 = |E|. 
�

Fig. 5. A generated social network. |N | = 100 nodes, |E| = 500 edges and |E′| = 50.
With these parameters, the average characteristic path length is L � 2.563 and the
average clustering coefficient is C � 0.426.
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3.5 Implementation, Experimentation and Visualisation

We use the Porgy system [33] to experiment with our generative model. The
latest version of the rewriting platform2 is available either as source code or
binaries for MacOS and Windows machines.

Figures 5 and 6 are two examples of social networks generated using a sequen-
tial composition of the previous strategies. Although both graphs have the same
number of nodes and edges (|N | = 100 and |E| = 500), they have been gener-
ated with different |E′|, respectively |E′| = 50 for Fig. 5 and |E′| = 0 for Fig. 6.
This changes the number of purely random edges created in the resulting graph
and explains why the first graph seems to visually present less structure than
the other one. Conversely, a graph with only randomly assigned edges could be
generated with |E′| = |E| − |N | + 1.

To ensure that our constructions present characteristics of real-world social
networks, we have performed several generations using different parameters and
measured the characteristic path length – the average number of edges in the

Fig. 6. A generated social network. |N | = 100 nodes, |E| = 500 edges and |E′| = 0.
With these parameters, the average characteristic path length is L � 3.372 and the
average clustering coefficient is C � 0.596.

2 Porgy website: http://tulip.labri.fr/TulipDrupal/?q=porgy.

http://tulip.labri.fr/TulipDrupal/?q=porgy
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shortest path between any two nodes in the graph – and the clustering coefficient
– how many neighbours of a node n are also connected with each other – as
defined in [41]. In a typical random graph, e.g., a graph generated using the
Erdös–Rényi model [18] or using our method with the parameters |N | = 100
nodes, |E| = 500 edges and |E′| = |E|−|N |+1 = 401, the average characteristic
path length is very short (L � 2.274), allowing information to go quickly from one
node to another, but the clustering coefficient is low (C � 0.101), implying the
lack of well-developed communities. However, with the parameters used in Fig. 5
(respectively, Fig. 6), we retain a short characteristic path length L � 2.563
(resp. L � 3.372) while increasing the clustering coefficient C � 0.426 (resp.
C � 0.596), thus matching the characteristics of small-world graphs: a small
diameter and strong local clustering.

The graphs generated using our method can be subsequently used as any
randomly generated network. For instance, we have used such graphs in [37] to
study the evolution of different information propagation models. Porgy was
used in this work to run several propagation scenarios and analyse the resulting
outputs with its visualisation tools.

4 Conclusion

Our first experiments and results on generation and propagation in social net-
works, obtained in [37] and in this work, illustrate how labelled port graph
strategic rewriting provides a common formalism in which different mathemat-
ical models can be expressed and compared. The ultimate goal is to provide
a simulation environment helpful for making decisions, such as choosing good
parameters, detecting and preventing unwanted situations, or looking for a bet-
ter diffusion strategy.

As a first approach to this ambitious challenge, we focused on social net-
works that already offer a big variety of situations and problems. Several lessons
and research directions can be drawn from this study, both for the rewriting
community and for the social network community.

First, dealing with this application domain led us to validate the concepts
of labelled port graphs on a given signature, of rules that are themselves also
labelled port graphs with variables from the given signature, and of strategy con-
structs added to define positions in graphs in a flexible way. When modelling the
evolution of the studied network, the derivation tree (also a port graph) provides
support for history tracking, state comparison, state recovery and backtracking.
For the social network community, the rewrite rule approach is not quite surpris-
ing because some works such as [25] already use rules to generate social networks,
although without claiming it. The fact that different models can be expressed
in a common formalism provides a good argument for those who are interested
to compare various algorithms and models. In such situations, simulations can
indeed help for taking decision, for instance to prevent bad situations, or to look
for optimal diffusion strategy.
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Indeed several issues remain to address. For rewriting, although graph rewrit-
ing has been largely studied, addressing social network applications causes a
drastic change of scale for the structures. Dealing with millions of nodes and
edges requires great attention to size and complexity. There is also room for
improvement in data storage and retrieval –in connection with graph data bases–,
subgraph matching algorithms –either exact or approximate– for finding one or
all solutions, parallel graph rewriting avoiding dangling edges, and probabilistic
or stochastic issues for matching and rewriting, for instance, in the context of
imprecise data or privacy constraints.

Also related to size, but even more to complexity of information data, there is
a need for data structuring and management, that may be carried on by abstrac-
tion pattern, focusing on points of interests, hierarchies and views (for instance,
through multi-layer graphs). All these notions need a precise and logical defini-
tion that may be influenced by well-known programming language concepts.

As programs, data need certification and validation tools and process, not
only at one step but all along their evolution. The knowledge developed in the
logic and rewriting community should be valuable in this context.

This study has also revealed the importance of visualisation and raises some
challenges in this area. Visualisation is important, more widely, for data analy-
sis, program engineering, program debugging, testing or verifying. However, the
representation of dynamic or evolving data, such as social networks or richer
graph structures, is yet an actual research topic for the visualisation community.

In future work, we plan to address multi-layer networks, based on societal
problems. An example is tracking criminal activities. The objective then is to
build a new methodology for tracking, based on construction, manipulation and
analysis of heterogeneous digital information coming from different sources: legal
records of tribunal sentences, social networks coming from exchanges, meetings,
phone calls, information on financial flows and even family relations. Beyond the
modelisation challenge, in connection with jurists and social scientists, we expect
that our formalism of labelled port graphs, rules and strategy will provide an
adequate framework for simulations and hypotheses testing.

Acknowledgements. We thank Guy Melançon (University of Bordeaux) and all the
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carefully reading this paper and making valuable suggestions for improvement.
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Abstract. A declarative programming language is based on some logic
L and its operational semantics is given by a proof calculus which is often
presented in a natural deduction style by means of inference rules. Declar-
ative programs are theories S of L and executing a program is proving
goals ϕ in the inference system I(S) associated to S as a particulariza-
tion of the inference system of the logic. The usual soundness assumption
for L implies that every model A of S also satisfies ϕ. In this setting,
the operational termination of a declarative program is quite naturally
defined as the absence of infinite proof trees in the inference system I(S).
Proving operational termination of declarative programs often involves
two main ingredients: (i) the generation of logical models A to abstract
the program execution (i.e., the provability of specific goals in I(S)), and
(ii) the use of well-founded relations to guarantee the absence of infinite
branches in proof trees and hence of infinite proof trees, possibly taking
into account the information about provability encoded by A. In this
paper we show how to deal with (i) and (ii) in a uniform way. The main
point is the synthesis of logical models where well-foundedness is a side
requirement for some specific predicate symbols.

Keywords: Abstraction · Logical models · Operational termination

1 Introduction

A recent survey defines the program termination problem as follows [4]: “using
only a finite amount of time, determine whether a given program will always
finish running or could execute forever.” Being an intuitively clear definition,
some questions should be answered before using it: (Q1) What is a program?
(Q2) What is running/executing a program? (Q3) How to determine the prop-
erty (in practice!)? In declarative programming, early proposals about the use of
logic as a programming framework provide answers to the first two questions:
(A1) programs are theories S of a given logic L; and (A2) executing a program
S is proving a goal ϕ as a deduction in the inference system I(L) of L, written
S � ϕ [15, Sect. 6].
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Example 1. The following Maude program is a Membership Equational Logic
specification [16] somehow sugared, as explained in [13]. Sort Node represents
the nodes in a graph and sorts Edge and Path are intended to classify paths
consisting of a single edge or many of them, respectively [3, pages 561–562]:

fmod PATH is
sorts Node Edge Path .
subsorts Edge < Path .
ops source target : Edge -> Node .
ops source target : Path -> Node .
op _;_ : [Path] [Path] -> [Path] .
var E : Edge .
vars P Q R S : Path .
cmb E ; P : Path if target(E) = source(P) .
ceq (P ; Q) ; R = P ; (Q ; R)

if target(P) = source(Q) /\ target(Q) = source(R) .
ceq source(P) = source(E) if E ; S := P .
ceq target(P) = target(S) if E ; S := P .

endfm

The execution of PATH is described as deduction of goals t →[s] u (one-
step rewriting for terms t, u with sorts in the kind [s]), t →∗

[s] u (many-
step rewriting), or t : s (membership: claims that term t is of sort s)
using the inference system of the Context-Sensitive Membership Rewriting
Logic [5] in Fig. 1 (see also [13]). Here, a new kind [Truth] with a con-
stant tt and a function symbol eq : [Node] [Node] -> [Truth] are added
to deal with equalities like target(E)=source(P) as reachability conditions
eq(target(E),source(P)) →∗ tt. And a new membership predicate t :: s arises
where terms t are not rewritten before checking its sort s. Also note that the
overloaded functions source and target (which are used to describe edges in
a graph by establishing their source and target nodes, respectively) receive a
single rank [Path] -> [Node] and the different overloads are modeled as rules
(M1E

src), (M1E
tgt), (M1P

src), and (M1P
tgt).

The notion of operational termination [11] (often abbreviated OT in the
subsequent related notions and definitions) provides an appropriate definition of
termination of declarative programs: a program S is operationally terminating
if there is no infinite proof tree for any goal in S. We have recently developed a
practical framework for proving operational termination of declarative programs
[14]. In our method, we first obtain the proof jumps A ⇑ B1, . . . , Bn associated
to inference rules B1···Bn···Bn+p

A in I(S) (where A, B1, . . . , Bn, . . . , Bn+p are logic
formulas, n > 0, and p ≥ 0). Proof jumps capture (infinite) paths in a proof tree
T as sequences (chains) of proof jumps. A set of proof jumps τ is called an
OT problem. We call it finite if there is no infinite chain of proof jumps taken
from τ . The initial OT problem τI consists of all proof jumps obtained from
the inference rules in I(S) as explained above. Thus, (A3) determining that S
is operationally terminating is equivalent to proving τI finite. This answers Q3.
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(SRN )
t →[Node] u u : Node

t : Node
(SRE )

t →[Path] u u : Edge

t : Edge

(SRP )
t →[Path] u u : Path

t : Path
(M1P )

X :: Edge

X :: Path

(M1Esrc)
X :: Edge

source(X) :: Node
(M1Etgt)

X :: Edge

target(X) :: Node

(M1Psrc)
X :: Path

source(X) :: Node
(M1Ptgt)

X :: Path

target(X) :: Node

(M2N )
t :: Node

t : Node
(M2E )

t :: Edge

t : Edge

(M2P )
t :: Path

t : Path

(R∗
N )

t →∗
[Node] t

(R∗
P )

t →∗
[Path] t

(R∗
T )

t →∗
[Truth] t

(TN )
t →[Node] u u →∗

[Node] v

t →∗
[Node] v

(TP )
t →[Path] u u →∗

[Path] v

t →∗
[Path] v

(TT )
t →[Truth] u u →∗

[Truth] v

t →∗
[Truth] v

(Csrc)
t →[Path] u

source(t) →[Node] source(u)
(Ctgt)

t →[Path] u

target(t) →[Node] target(u)

(Csq1
)

t →[Path] u

t ; v →[Path] u ; v
(Csq2

)
t →[Path] u

v ; t →[Path] v ;u

(CN
eq1

)
t →[Node] u

eq(t, v) →[Truth] eq(u, v)
(CN

eq2
)

t →[Node] u

eq(v, t) →[Truth] eq(v, u)

(M1 ; )
E :: Edge P :: Path eq(target(E), source(P )) →∗

[Truth] tt

E;P :: Path

(Re1)
P :: Path Q :: Path R :: Path eq(target(P ), source(Q)) →∗

[Truth] tt eq(target(Q), source(R)) →∗
[Truth] tt

(P ;Q);R →[Path] P ; (Q;R)

(Re2)
E :: Edge P :: Path S :: Path P →∗

[Path] E;S

source(P ) →[Node] source(E)

(Re3)
E :: Edge P :: Path S :: Path P →∗

[Path] E;S

target(P ) →[Node] target(S)

(Re4)
N :: Node

eq(N,N) →[Truth] tt

Fig. 1. Inference rules I(PATH) for PATH

The OT Framework provides an incremental proof methodology to simplify OT
problems τ in a divide-and-conquer style to eventually prove termination of the
program (Sect. 2). In order to remove proof jumps ψ : A ⇑ B1, . . . , Bn from
τ we often use well-founded relations: if there is a well-founded relation � on
formulas of the language of S such that, for all substitutions σ,

if S � σ(Bi) for all i, 1 ≤ i < n, then σ(A) � σ(Bn), (1)

then we can remove ψ from τ to obtain a new OT problem τ ′ whose finiteness
implies that of τ [14]. For the sake of automation, recasting (1) as follows:

∀x (B1 ∧ · · · ∧ Bn−1 ⇒ A � Bn) (2)

would be interesting to apply theorem proving or semantic methods to prove
(1). In [14] we anticipated that logical models are useful for this purpose.

In order to provide a general treatment of the aforementioned problems which
is well-suited for automation, we need to focus on a sufficiently simple but still
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powerful logic which can serve to our purposes. In [6] Order-Sorted First-Order
Logic (OS-FOL) is proposed as a sufficiently general and expressive framework
to represent declarative programs, semantics of programming languages, and
program properties (see Sect. 3). In [10] we show how to systematically generate
models for OS-FOL theories by using the convex polytopic domains introduced in
[12]. In Sect. 4 we extend the work in [10] to generate appropriate interpretations
of predicate symbols that can be then used to synthesize a model for a given OS-
FOL theory S.

Unfortunately, even with S an OS-FOL theory, (2) is not a formula of the
theory S: the new predicate symbol � is not in the language of S. And (2) is
not well-formed because predicate � is applied to formulas A and Bn rather
than terms as required in any first-order language. Section 5 shows how to solve
this problem by using theory transformations. It also shows how to obtain well-
founded relations when the general approach to generate interpretations of pred-
icate symbols described in Sect. 4 is used. Section 6 illustrates the use of the new
developments to prove operational termination of PATH in the OT Framework.
Automation of the analysis is achieved by using AGES [8], a web-based tool that
implements the techniques in [10] and also in this paper. Section 7 concludes.

2 The OT Framework for General Logics

A logic L is a quadruple L = (Th(L),Form,Sub, I), where: Th(L) is the class of
theories of L, Form maps each theory S ∈ Th(L) into a set Form(S) of formulas
of S, Sub is a mapping sending each S ∈ Th(L) to its set Sub(S) of substitutions,
with a containment Sub(S) ⊆ [Form(S)→Form(S)].

Remark 1. In [14, Sect. 2] we further develop the generic notion of substitution
we are dealing with. In this paper we focus on first-order theories where the
notion of substitution is the usual one: a mapping from variables into terms
which is extended to a mapping from terms (formulas) into terms (formulas) in
the usual way.

Finally, I maps each S ∈ Th(L) into a subset I(S) ⊆ Form(S) × Form(S)∗,
where each (A,B1 . . . Bn) ∈ I(S) is called an inference rule for S and denoted
B1...Bn

A . In the following we often use Bn to refer a sequence B1, . . . , Bn of n
formulas. A proof tree T is either

1. an open goal, simply denoted as G, where G ∈ Form(S). Then, we denote
root(T ) = G. Or

2. a derivation tree with root G, denoted as T1 ··· Tn

G (ρ) where G ∈ Form(S),
T1,. . . ,Tn are proof trees (for n ≥ 0), and ρ : B1...Bn

A is an inference rule in
I(S), such that G = σ(A), and root(T1) = σ(B1), . . . , root(Tn) = σ(Bn) for
some substitution σ ∈ Sub(S). We write root(T ) = G.

A finite proof tree without open goals is called a closed proof tree for S. If there
is a closed proof tree T for ϕ ∈ Form(S) using I(S) (i.e., such that root(T ) = ϕ),
we often denote this by writing S � ϕ.
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A proof tree T for S is a proper prefix of a proof tree T ′ (denoted T ⊂ T ′)
if there are one or more open goals G1, . . . , Gn in T such that T ′ is obtained
from T by replacing each Gi by a derivation tree Ti with root Gi. A proof tree T
for S is well-formed if it is either an open goal, or a closed proof tree, or a tree
T1 ··· Tn

G (ρ) where there is i, 1 ≤ i ≤ n such that T1, . . . , Ti−1 are closed, Ti

is well-formed but not closed, and Ti+1, . . . , Tn are open goals. An infinite proof
tree T for S is an infinite sequence {Ti}i∈N of finite trees such that for all i,
Ti ⊂ Ti+1. We write root(T ) = root(T0).

Definition 1 [11]. A theory S in a logic L is called operationally terminating
iff no infinite well-formed proof tree for S exists.

A proof jump ψ for S is a pair (A ⇑ Bn), where n ≥ 1 and A,B1, . . . , Bn ∈
Form(S); A and Bn are called the head and hook of ψ, respectively. The proof
jumps of I(S) are JS = {(A ⇑ B i) | Bn

A ∈ I(S), 1 ≤ i ≤ n}.

Remark 2. Given an inference rule B1,...,Bn

A with label ρ and 1 ≤ i ≤ n, [ρ]i

denotes the i-th proof jump A ⇑ B1, . . . , Bi which is obtained from ρ.

An (S,J )-chain is a sequence (ψi)i≥1 of proof jumps ψi : (Ai ⇑ B i
ni

) ∈ J
together with a substitution σ such that for all i ≥ 1, σ(Bi

ni
) = σ(Ai+1) and

for all j, 1 ≤ j < ni, S � σ(Bi
j). An OT problem τ in L is a pair (S,J ) with

S ∈ Th(L) and J ⊆ Jumps(S); τ is finite if there is no infinite (S,J )-chain; τ
is called infinite if it is not finite. The set of all OT problems in L is OTP(L).
The initial OT problem τI of a theory S is (S,JS).

Theorem 1 [14]. A theory S is operationally terminating iff (S,JS) is finite.

An OT processor P : OTP(L) → P(OTP(L)) ∪ {no} maps an OT problem into
either a set of OT problems or the answer “no”. A processor P is sound if for
all OT problems τ , if P(τ) �= no and all OT problems in P(τ) are finite, then
τ is finite. A processor P is complete if for all OT problems τ , if P(τ) = no or
P(τ) contains an infinite OT problem, then τ is infinite. By repeatedly applying
processors, we can construct a tree (called OT-tree) for an OT-problem (S,J )
whose nodes are labeled with OT problems or “yes” or “no”, and whose root
is labeled with (S,J ). For every inner node labeled with τ , there is a processor
P satisfying one of the following: (i) P(τ) = no and the node has just one child
that is labeled with “no”. (ii) P(τ) = ∅ and the node has just one child that is
labeled with “yes”. (iii) P(τ) �= no, P(τ) �= ∅, and the children of the node are
labeled with the OT problems in P(τ).

Theorem 2 (OT-Framework). Let (S,J ) ∈ OTP(L). If all leaves of an
OT-tree for (S,J ) are labeled with “yes” and all used processors are sound, then
(S,J ) is finite. If there is a leaf labeled with “no” and all processors used on the
path from the root to this leaf are complete, then (S,J ) is infinite.
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3 Order-Sorted First-Order Logic

Given a set of sorts S, a many-sorted signature is an S∗ × S-indexed family
of sets Σ = {Σw,s}(w,s)∈S∗×S containing function symbols with a given string
of argument sorts and a result sort [7]. If f ∈ Σs1···sn,s, then we display f
as f : s1 · · · sn → s. This is called a rank declaration for symbol f . Constant
symbols c (taking no argument) have rank declaration c : λ → s for some sort
s (where λ denotes the empty sequence). An order-sorted signature (S,≤, Σ)
consists of a poset of sorts (S,≤) together with a many-sorted signature (S,Σ).
The connected components of (S,≤) are the equivalence classes [s] corresponding
to the least equivalence relation ≡≤ containing ≤. We extend the order ≤ on
S to strings of equal length in S∗ by s1 · · · sn ≤ s′

1 · · · s′
n iff si ≤ s′

i for all i,
1 ≤ i ≤ n. Symbols f can be subsort-overloaded, i.e., they can have several
rank declarations related in the ≤ ordering [7]. Constant symbols, however, have
only one rank declaration. Besides, the following monotonicity condition must
be satisfied: f ∈ Σw1,s1 ∩ Σw2,s2 and w1 ≤ w2 imply s1 ≤ s2. We assume that Σ
is sensible, meaning that if f : s1 · · · sn → s and f : s′

1 · · · s′
n → s′ are such that

[si] = [s′
i], 1 ≤ i ≤ n, then [s] = [s′]. An order-sorted signature Σ is regular iff

given w0 ≤ w1 in S∗ and f ∈ Σw1,s1 , there is a least (w, s) ∈ S∗ × S such that
f ∈ Σw,s and w0 ≤ w. If, in addition, each connected component [s] of the sort
poset has a top element �[s] ∈ [s], then the regular signature is called coherent.

Given an S-sorted set X = {Xs | s ∈ S} of mutually disjoint sets of variables
(which are also disjoint from the signature Σ), the set TΣ(X )s of terms of sort s
is the least set such that (i) Xs ⊆ TΣ(X )s, (ii) if s′ ≤ s, then TΣ(X )s′ ⊆ TΣ(X )s;
and (iii) for each f : s1 · · · sn → s and ti ∈ TΣ(X )si

, 1 ≤ i ≤ n, f(t1, . . . , tn) ∈
TΣ(X )s. If X = ∅, we write TΣ rather than TΣ(∅) for the set of ground terms.
Terms with variables can also be seen as a special case of ground terms of the
extended signature Σ(X ) where variables are considered as constant symbols
of the apporpriate sort, i.e., Σ(X )λ,s = Σλ,s ∪ Xs. The assumption that Σ is
sensible ensures that if [s] �= [s′], then TΣ(X )[s] ∩ TΣ(X )[s′] = ∅. The set TΣ(X )
of order-sorted terms is TΣ(X ) = ∪s∈STΣ(X )s.

Following [6], an order-sorted signature with predicates Ω is a quadruple
Ω = (S,≤, Σ,Π) such that (S,≤, Σ) is an coherent order-sorted signature, and
Π = {Πw | w ∈ S+} is a family of predicate symbols P , Q, . . . We write P : w for
P ∈ Πw. Overloading is also allowed on predicates with the following conditions:

1. There is an equality predicate symbol = ∈ Πss iff s is the top of a connected
component of the sort poset S.

2. Regularity : For each w0 such that there is P ∈ Πw1 with w0 ≤ w1, there is a
least w such that P ∈ Πw and w0 ≤ w.

We often write Σ,Π instead of (S,≤, Σ,Π) if S and ≤ are clear from the context.
The formulas ϕ of an order-sorted signature with predicates Σ,Π are built up
from atoms P (t1, . . . , tn) with P ∈ Πw and t1, . . . , tn ∈ TΣ(X )w, logic connec-
tives (e.g., ∧, ¬) and quantifiers (∀) as follows: (i) if P ∈ Πw, w = s1 · · · sn, and
ti ∈ TΣ(X )si

for all i, 1 ≤ i ≤ n, then P (t1, . . . , tn) ∈ FormΣ,Π (we often call
it an atom); (ii) if ϕ ∈ FormΣ,Π , then ¬ϕ ∈ FormΣ,Π ; (iii) if ϕ,ϕ′ ∈ FormΣ,Π ,
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then ϕ ∧ ϕ′ ∈ FormΣ,Π ; (iv) if s ∈ S, x ∈ Xs, and ϕ ∈ FormΣ,Π , then
(∀x : s)ϕ ∈ FormΣ,Π . As usual, we can consider formulas involving other logic
connectives and quantifiers (e.g., ∨, ⇒, ⇔, ∃,...) by using their standard defini-
tions in terms of ∧, ¬, ∀. A closed formula, i.e., whose variables are all universally
or existentially quantified, is called a sentence.

Order-Sorted Algebras and Structures. Given a many-sorted signature
(S,Σ), an (S,Σ)-algebra A (or just a Σ-algebra, if S is clear from the context)
is a family {As | s ∈ S} of sets called the carriers or domains of A together
with a function fA

w,s ∈ Aw → As for each f ∈ Σw,s where Aw = As1 × · · · × Asn

if w = s1 · · · sn, and Aw is a one point set when w = λ. Given an order-sorted
signature (S,≤, Σ), an (S,≤, Σ)-algebra (or Σ-algebra if (S,≤) is clear from the
context) is an (S,Σ)-algebra such that (i) If s, s′ ∈ S are such that s ≤ s′, then
As ⊆ As′ , and (ii) If f ∈ Σw1,s1 ∩Σw2,s2 and w1 ≤ w2, then fA

w1,s1
∈ Aw1 → As1

equals fA
w2,s2

∈ Aw2 → As2 on Aw1 . With regard to many sorted signatures
and algebras, an (S,Σ)-homomorphism between (S,Σ)-algebras A and A′ is an
S-sorted function h = {hs : As → A′

s | s ∈ S} such that for each f ∈ Σw,s with
w = s1, . . . , sk, hs(fA

w,s(a1, . . . , ak)) = fA′
w,s(hs1(a1), . . . , hsk

(ak)). If w = λ, we
have hs(fA) = fA′

. Now, for the order-sorted case, an (S,≤, Σ)-homomorphism
h : A → A′ between (S,≤, Σ)-algebras A and A′ is an (S,Σ)-homomorphism
that satisfies the following additional condition: if s ≤ s′ and a ∈ As, then
hs(a) = hs′(a).

Given an order-sorted signature with predicates (S,≤, Σ,Π), an (S,≤
, Σ,Π)-structure (or just a Σ,Π-structure) is an order-sorted (S,≤, Σ)-algebra
A together with an assignment to each P ∈ Πw of a subset PA

w ⊆ Aw such that
[6]: (i) for P the identity predicate = : ss, the assignment is the identity
relation, i.e., (=)A = {(a, a) | a ∈ As}; and (ii) whenever P : w1 and P : w2 and
w1 ≤ w2, then PA

w1
= Aw1 ∩ PA

w2
.

Let (S,≤, Σ,Π) be an order-sorted signature with predicates and A,A′ be
(S,≤, Σ,Π)-structures. Then, an (S,≤, Σ,Π)-homomorphism h : A → A′ is an
(S,≤, Σ)-homomorphism such that, for each P : w in Π, if (a1, . . . , an) ∈ PA

w ,
then h(a1, . . . , an) ∈ PA′

w . Given an S-sorted valuation mapping α : X → A, the
evaluation mapping [ ]αA : TΣ(X ) → A is the unique (S,≤, Σ)-homomorphism
extending α [7]. Finally, [ ]αA : FormΣ,Π → Bool is given by:

1. [P (t1, . . . , tk)]αA = true for P : w and terms t1, . . . , tk if and only if
([t1]αA, . . . , [tk]αA) ∈ PA

w ;
2. [¬ϕ]αA = true if and only if [ϕ]αA = false;
3. [ϕ ∧ ψ]αA = true if and only if [ϕ]αA = true and [ψ]αA = true;
4. [(∀x : s) ϕ]αA = true if and only if for all a ∈ As, [ϕ]α[x�→a]

A = true;

We say that A satisfies ϕ ∈ FormΣ,Π if there is α ∈ X → A such that [ϕ]αA =
true. If [ϕ]αA = true for all valuations α, we write A |= ϕ and say that A is a
model of ϕ. Initial valuations are not relevant for establishing the satisfiability
of sentences; thus, both notions coincide on them. We say that A is a model of
a set of sentences S ⊆ FormΣ,Π (written A |= S) if for all ϕ ∈ S, A |= ϕ. And,
given a sentence ϕ, we write S |= ϕ if and only if for all models A of S, A |= ϕ.
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Sound logics guarantee that every provable sentence ϕ is true in every model of
S, i.e., S � ϕ implies S |= ϕ.

4 Interpreting Predicates Using Convex Domains

In [10] we have shown that convex domains [12] provide an appropriate basis to
the automatic definition of algebras and structures that can be used in program
analysis with order-sorted first-order specifications. In the following definition,
vectors x ,y ∈ R

n are compared using the coordinate-wise extension of the order-
ing ≥ among numbers which, by abuse, we denote using ≥ as well:

x = (x1, . . . , xn)T ≥ (y1, . . . , yn)T = y iff x1 ≥ y1 ∧ · · · ∧ xn ≥ yn (3)

Definition 2 [12, Definition 1]. Given a matrix C ∈ R
m×n, and b ∈ R

m, the
set D(C, b) = {x ∈ R

n | Cx ≥ b} is called a convex polytopic domain.

Sorts s ∈ S are interpreted as convex domains As = D(Cs, bs), where Cs ∈
R

ms×ns and bs ∈ R
ms for some ms, ns ∈ N. Thus, As ⊆ R

ns . Function symbols
f : s1 · · · sk → s are interpreted by F1x1 + · · · + Fkxk + F0 where (1) for all i,
1 ≤ i ≤ k, Fi ∈ R

ns×nsi are ns × nsi
-matrices and xi are variables ranging on

R
nsi , (2) F0 ∈ R

ns , and (3) the following algebraicity condition holds:

∀x1 ∈ R
ns1 , . . . ∀xk ∈ R

nsk

(
k∧

i=1

Csixi ≥ bsi ⇒ Cs(F1x1 + · · · + Fkxk + F0) ≥ bs

)

In [10] no procedure for the automatic generation of predicate interpretations
was given. We solve this problem by providing (parametric) interpretations for
predicate symbols P of any rank w ∈ S+. Each predicate symbol P ∈ Πw with
w = s1 · · · sk with k > 0 is given an expression

R1x1 + · · · + Rkxk + R0 (or
k∑

i=1

Rixi + R0 for short)

where (i) for all i, 1 ≤ i ≤ k, Ri ∈ R
mP ×nsi are mP × nsi

-matrices for some
mP > 0 and xi are variables ranging on R

nsi and (ii) R0 ∈ R
mP . Then,

PA
w = {(x 1, . . . ,xk) ∈ As1 × · · · × Ask

|
k∑

i=1

Rix i + R0 ≥ 0}

or, in our specific setting,

PA
w = {(x 1, . . . ,xk) ∈ R

ns1 × · · · × R
nsk |

k∧
i=1

Csix i ≥ bsi ∧
k∑

i=1

Rix i + R0 ≥ 0}

Note that PA
w ⊆ Aw, as required. As explained in [10, Sect. 4], the automatic

generation of predicate interpretations is treated as done for sorts s and function
symbols, i.e., by using parametric entries in the involved matrices and vectors
that are given numeric values through constraint solving processes.
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Example 2. ‘Extreme’ relations PA
w associated to a predicate P ∈ Πw are

obtained as follows: if w = s1 · · · sk, let Ri be null mP × nsi
-matrices for

i = 1, . . . , k.

– If R0 = (1, 0, . . . , 0)T , then PA
w = ∅ (empty relation).

– If R0 is a null vector, then PA
w = Aw (full relation).

Example 3 (Equality). Equality cannot be defined as such at the (first-order)
logical level1. For this reason, the interpretation of an equality predicate = ∈
Πs s is explicitly required to be the equality relation {(x, x) | x ∈ As} in the
domain As of sort s. Fortunately, we can easily obtain such an interpretation by
using the generic method above. With mP = 2ns, R1, R2 ∈ R

mP ×ns given by

R1 =
[

Ins

−Ins

]
(for Ins

the identity matrix of ns × ns entries) and R2 = −R1,

respectively, and R0 = (0, . . . , 0)T ∈ R
mP , we obtain the equality predicate on

R
ns .

Example 4 (Orderings). The coordinate-wise extension (3) of ≥ to n-tuples
x ,y ∈ R

n is obtained if R1 = In, R2 = −In and R0 = 0 . In particular, if
n = 1, we obtain the usual ordering ≥ over the reals.

Definition 3 (Well-Founded Relation). Consider a binary relation R on a
set A, i.e., R ⊆ A × A. We say that R is well-founded if there is no infinite
sequence a1, a2, . . . such that for all i ≥ 1, ai ∈ A and ai R ai+1.

In the following, given δ > 0, and x, y ∈ R, we write x >δ y iff x − y ≥ δ.

Example 5. (Well-Founded strict ordering). Borrowing [2], the following strict
ordering on vectors in R

n:

(x1, . . . , xn)T >δ (y1, . . . , yn)T iff x1 >δ y1 ∧ (x2, . . . , xn)T ≥ (y2, . . . , yn)T

is obtained if R1 = In, R2 = −In and R0 = (−δ, 0, . . . , 0)T . In particular, if
n = 1, we obtain the ordering >δ over the reals which is well-founded on subsets
A of real numbers which are bounded from below, i.e., such that A ⊆ [α,∞) for
some α ∈ R.

Example 6. For tuples of natural numbers the following strict ordering on vec-
tors in R

n x >w
Σ y iffx ≥ y ∧ ∑n

i=1 xi >1

∑n
i=1 yi, borrowed from the “weak

decrease + strict decrease in sum of components” ordering over tuples of nat-
ural numbers in [17, Definition 3.1] is obtained if mP = n + 1 (hence R1, R2 are
(n + 1) × n-matrices and R0 ∈ R

n+1) and we let

R1 =
[
1T

In

]
R2 = −R1 R0 = (−δ, 0, . . . , 0)T

for some δ > 0, where 1 is the constant vector (1, . . . , 1)T ∈ R
n.

1 It is well-known that equality x = y can be defined by the second-order expression
∀P (P (x) ⇔ P (y)).
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5 Using the Removal Pair Processor

We can remove proof jumps (A ⇑ Bn) from OT problems (S,J ) by using
removal pairs (�,�), where � and � are binary relations on Form(S) such
that � is well-founded and � ◦ �⊆� or � ◦ �⊆� (we say that � is compatible
with �) provided that the hook Bn is ‘smaller ’ (w.r.t. �) than the head A.

Definition 4 [14]. Let (S,J ) ∈ OTP(L), ψ : A ⇑ Bn ∈ J , and (�,�) be a
removal pair. Then, PRP (S,J ) = {(S,J − {ψ})} if and only if

1. for all C ⇑ Dm ∈ J − {ψ} and substitutions σ, if S � σ(Di) for all 1 ≤ i <
m, then σ(C) � σ(Dm) or σ(C) � σ(Dm), and

2. for all substitutions σ, if S � σ(Bi) for all 1 ≤ i < n, then σ(A) � σ(Bn).

In order to use PRP , we need to check conditions (1) and (2) in Definition 4. That
is, given a proof jump F ⇑ Ep with E1, . . . , Ep, F ∈ Form(S), and 
� ∈ {�,�},
we have to prove statements of the following form: for all substitutions σ,

if S � σ(Fi) for all i, 1 ≤ i < p, then σ(E) 
� σ(Fp) (4)

Although (4) is an “implication”, the provability statements S � σ(Fi), and the
presence of symbols � and � (in statements σ(E) 
� σ(Fp)) which do not belong
to the language of S, prevents (4) from being an implication of the language of
S. We use theory transformations to overcome this problem.

Remark 3. Our approach leads to implementing PRP when applied to an OT
problem τ = (S,J ) as a satisfiability problem, i.e., the problem of finding a
model A for a theory Sτ which is obtained by extending S with appropriate
sentences to represent the application of PRP to τ (see Sect. 5.2).

5.1 Transforming Order-Sorted First-Order Theories

We define a transformation of order-sorted signatures with predicates as follows:
given Ω = (S,≤, Σ,Π), an Ω-theory S and an OT problem τ = (S, {Ai ⇑ B i

ni
|

1 ≤ i ≤ m}) where for all i, 1 ≤ i ≤ m, Ai and Bi
ni

are Ω-atoms, a new order-
sorted signature with predicates Ωτ = (Sτ ,≤τ , Στ ,Πτ ) is defined, where, if we
let Ψτ = {pred(Ai) | 1 ≤ i ≤ m} ∪ {pred(Bi

ni
) | 1 ≤ i ≤ m}, then

– Sτ = S ∪ {sτ} where sτ is a fresh sort symbol.
– ≤τ extends ≤ by defining sτ ≤τ sτ , and for all s, s′ ∈ S, s ≤τ s′ iff s ≤ s′.

Note that we do not assume any subsort relation between sτ and sorts s ∈ S.
– Στ = Σ ∪{fP : w → sτ | w ∈ S+, P ∈ Ψτ ∩Πw}, i.e., each (overloaded version

of a) predicate symbol P in Ψτ with input sorts w is given a new function
symbol fP : w → sτ with input sorts w and output sort sτ .

– Πτ = Π ∪ Πsτ sτ
where Πsτ sτ

= {π�, π�} for new binary (infix) predicate
symbols π� and π�.

Since Ωτ is an extension of Ω, every Στ ,Πτ -structure A is also a Σ,Π-structure.
Given an atom P (t1, . . . , tn) with P ∈ Ψτ ∩ Πs1···sn

and terms ti ∈ TΣ(X )si
, for

1 ≤ i ≤ n, the transformation ↓ from atoms in Ω to terms in Ωτ is obtained
by replacing P by fP ∈ Στ : P (t1, . . . , tn)↓ = fP (t1, . . . , tn). We can use Ωτ -
structures A to define binary relations on Ω-formulas.
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Definition 5. Let Ω be an order-sorted signature with predicates, τ be an OT-
problem, and A be an Ωτ -structure. Given π�	 ∈ Πsτ sτ

, we define a relation 
�
on Ω-formulas as follows: for all Ω-formulas A and B A 
� B iff A |= A↓π�	B↓.

Now, we can recast (4) as a logic formula:

∀x (F1 ∧ · · · ∧ Fp−1 ⇒ E↓ π�	 F ↓
p ) (5)

Theorem 3. Let Ω be an order-sorted signature with predicates, τ = E ⇑ Fp be
an OT-problem, A be an Ωτ -structure such that A |= S, π�	 ∈ Πsτ sτ

, and σ be a
substitution. If for all i, 1 ≤ i < p, S � σ(Fi) holds and A |= ∀x(F1∧· · ·∧Fp−1 ⇒
E↓ π�	 F ↓

p ), then (4) holds for 
� as in Definition 5.

Proof. Since for all i, 1 ≤ i < p, S � σ(Fi) holds and A |= S, by soundness we
have A |= σ(Fi) for all i, 1 ≤ i < p. Now, since A |= ∀x (F1 ∧ · · · ∧ Fp−1 ⇒
E↓ π�	 F ↓

p ), we have that A |= σ(E↓ π�	 F ↓
p ) holds, i.e., A |= σ(E)↓ π�	 σ(Fp)↓

holds. Thus, by Definition 5, we have σ(E) 
� σ(Fp) as desired.

Compatibility. Component � of a removal pair (�,�) must be compatible with �.
This can be guaranteed at the logical level by the following Ωτ -sentence:
(∀xyz : sτ (x π� y ∧ y π� z ⇒ x π� z)

) ∨ (∀xyz : sτ (x π� y ∧ y π� z ⇒ x π� z)
)

Well-Foundedness. We also need to guarantee well-foundedness of �. Unfortu-
nately, the well-foundedness of a relation PA interpreting a binary predicate
symbol P can not be characterized at once in first-order logic [18, Sect. 5.1.4].
We can guarantee well-foundedness of �, though, at the semantic level by inter-
preting π� as a well-founded relation πA

� in the Ωτ -structure A.

Proposition 1. Let Ω be an order-sorted signature with predicates, τ be an OT
problem, and A be a Ωτ -structure. If πA

� is a well-founded relation on Asτ
, then

� as in Definition 5 is a well-founded relation on Ω-formulas.

Proof. By contradiction. If there is an infinite sequence (Ai)i≥1 of Ω-formulas
such that for all i ≥ 1 Ai � Ai+1, then, by Definition 5, for all i ≥ 1 we have
A |= A↓

i π� A↓
i+1, i.e., for all valuations α, ([A↓

i ]
α
A, [A↓

i+1]
α
A) ∈ πA

� . Therefore,
there is an infinite sequence ([A↓

i ]
α
A)i≥1 for some valuation α that contradicts

well-foundedness of πA
� .

5.2 A Semantic Version of the Removal Pair Processor

We can provide the following semantic version of the removal pair processor.

Definition 6 (Semantic Version of PRP). Let L be an OS-FOL with order-
sorted signature with predicates Ω, τ = (S,J ) ∈ OTP(L), A be an Ωτ -structure,
and ψ : A ⇑ Bn ∈ J . Then, PRP (S,J ) = {(S,J − {ψ})} if A |= S, and the
following conditions hold:
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1. if J − {ψ} �= ∅, then

A |= (∀xyz : sτ (x π� y ∧ y π� z ⇒ x π� z)
) ∨ (∀xyz : sτ (x π� y ∧ y π� z ⇒ x π� z)

)
2. for each C ⇑ Dm ∈ J − {ψ}, there is π�	 ∈ {π�, π�} such that

A |= ∧m−1
i=1 Di ⇒ C↓ π�	 D↓

m.
3. πA

� is well-founded and A |= ∧n−1
i=1 Bi ⇒ A↓ π� B↓

n

Definition 6 transforms the application of PRP to (S,J ) into the problem of
finding a model A of S which satisfies the following formulas (where J is the
number of proof jumps in J ):

1. ϕ1 (for the modeling condition (1) in Definition 6; only required if J > 1),
2. ϕ2

1, . . . , ϕ
2
J−1 (where, for all j, 1 ≤ j < J , ϕ2

j is a disjunction of two formulas
due to condition (2)) and

3. ϕ3 (the formula in the removal condition (3)).

Remark 4 (Finding Models to Implement PRP). Let Sτ = S ∪ {ϕ1, ϕ2
1,

. . . , ϕ2
J−1, ϕ

3}. We can use the theory in [10] and Sect. 4 to obtain a model
A such that A |= Sτ holds. Then, if πA

� is well-founded, we can remove the
targetted proof jump ψ from J in τ .

We still need to envisage a method to guarantee that πA
� is well-founded. In the

following section, we show how to guarantee that binary relations synthesized
as part of a model as explained in Sect. 4 are well-founded.

5.3 Well-Foundedness of Relations Defined on Convex Domains

The following result provides a sufficient condition to guarantee well-foundedness
of a binary relation R on a subset A ⊆ R

n defined as explained in Sect. 4. It is
based on generalizing the fact that the relation >δ over real numbers given by
x >δ y iff x − y ≥ δ is well-founded on subsets A ⊆ R of real numbers which are
bounded from below (i.e., A ⊆ [α,+∞) for some α ∈ R) whenever δ > 0 [9].

Theorem 4. Let R1, R2 ∈ R
m×n and R0 ∈ R

m for some m,n > 0, and R be
a binary relation on A ⊆ R

n as follows: for all x,y ∈ A, x R y if and only if
R1x + R2y + R0 ≥ 0. If there is i ∈ {1, . . . , n} such that

1. (R2)i· = −(R1)i·, i.e., the i-th row of R2 is obtained from the i-th row of R1

by negating all components,
2. There is α ∈ R such that for all x ∈ A, (R1)i·x ≥ α, and
3. (R0)i < 0,

then R is well-founded.

Proof. By contradiction. If R is not well-founded, then there is an infinite
sequence x 1, . . . ,xn, . . . of vectors in R

n such that, for all j ≥ 1, x j R x j+1.
By (1), we have that, for all j ≥ 1, (R1)i·x j − (R1)i·x j+1 + (R0)i ≥ 0. For all
p > 0,
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p∑
j=1

(R1)i·x j − (R1)i·x j+1 + (R0)i = (R1)i·x 1 − (R1)i·x p+1 + p(R0)i ≥ 0

By (2), there is α ∈ R such that for all p > 0, (R1)i·x p ≥ α. Therefore, for all
p > 0, (R1)i·x 1−α ≥ (R1)i·x 1−(R1)i·xp+1, and then (R1)i·x 1−α+p(R0)i ≥ 0.
By (3), (R0)i < 0; let r = −(R0)i. Note that r > 0. Then, for all p > 0,
(R1)i·x 1 ≥ α + pr, leading to a contradiction because α + pr tends to infinite as
p grows to infinite, but (R1)i·x 1 ∈ R is fixed.

Example 7. Theorem 4 applies to >δ and >w
Σ defined on As as follows:

1. For >δ, take A ⊆ [α,+∞) × R
n−1, for some α ∈ R and i = 1 in Theorem 4

with the corresponding R1, R2, and R0 to prove >δ well-founded on A.
2. For >w

Σ , take A ⊆ [α,+∞)n, for some α ≥ 0 and i = 1 with the corresponding
R1, R2, and R0 to prove >w

Σ well-founded on A.

Note that we can use Theorem 4 to prove well-foundedness of relations R defined
on domains A which are not bounded from below.

Example 8. Consider C =
[

1 0
−1 0

]
and b = (0,−2)T . Then, A = D(C, b) =

[0, 2] × R is not bounded from below in the sense that there is no α ∈ R such

that A ⊆ [α,+∞)2. The relation R on A defined by R1 =
[

1 0
1 1

]
, R2 =

[−1 0
0 1

]

and R0 = (−1, 0) is well-founded as it satisfies the conditions of Theorem 4.

6 Operational Termination of PATH in the OT-Framework

The set JPATH of proof jumps for I(PATH) has 43 elements. A powerful processor
to reduce the size of an OT problem (S,J ) is the SCC processor [14]. The
so-called estimated proof graph EPG(S,J ) for (S,J ) has J as set of nodes; and

there is an arc from ψ : (A ⇑ Bm) to ψ′ : (A′ ⇑ B ′
n) iff σ(Bm) = σ(A′)

for some substitution σ. The Strongly Connected Components (SCCs) of a graph
are its maximal cycles, i.e., those cycles that are not part of other cycles. The
SCC Processor (PSCC ) is given by

PSCC (S,J ) = {(S,J ′) | J ′ is an SCC in EPG(S,J )}
This is a sound and complete processor.

Example 9. Although EPG(PATH,JPATH) is huge and we do not display it here,
the SCCs are displayed in Fig. 2. The involved proof jumps are made explicit in
Fig. 3 to ease our further developments. We use PSCC to transform the initial
OT problem τPATH = (PATH,JPATH) by PSCC (τPATH) = {τ1, . . . , τ9} where

τ1 = (PATH, {[SRN ]2}) τ2 = (PATH, {[SRE ]2}) τ3 = (PATH, {[SRP ]2})

τ4 = (PATH, {[TN ]2}) τ5 = (PATH, {[TP ]2}) τ6 = (PATH, {[Csq1 ]
1})

τ7 = (PATH, {[Csq2 ]
1}) τ8 = (PATH, {[M1 ; ]2}) τ9 = (PATH, {[TT ]2})
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[SRN ]2 [SRE ]
2 [SRP ]

2

[Csq1 ]
1 [Csq2 ]

1

[TN ]2 [TP ]
2

[M1 ; ]
2 [TT ]

2

Fig. 2. SCCs of the estimated dependency graph of PATH

[SRN ]2 t : Node ⇑ t →[Node] u u : Node

[SRE ]
2 t : Edge ⇑ t →[Path] u u : Edge

[SRP ]
2 t : Path ⇑ t →[Path] u u : Path

[TN ]2 t →∗
[Node] v ⇑ t →[Node] u u →∗

[Node] v

[TP ]
2 t →∗

[Path] v ⇑ t →[Path] u u →∗
[Path] v

[TT ]
2 t →∗

[Truth] v ⇑ t →[Truth] u u →∗
[Truth] v

[Csq1 ]
1 t ; v →[Path] u ; v ⇑ t →[Path] u

[Csq2 ]
1 v ; t →[Path] v ;u ⇑ t →[Path] u

[M1 ; ]
2 E;P :: Path ⇑ E :: Edge P :: Path

Fig. 3. Proof jumps of the SCCs in Fig. 2

Any further use of PSCC on τ1, . . . , τ9 is hopeless. Note that τ1, . . . , τ9 all consist
of a single proof jump, i.e., τi = (PATH, {ψi}) for 1 ≤ i ≤ 9. With PRP we prove
them finite, thus obtaining a proof of operational termination of PATH.

6.1 Using PRP to Prove τPATH finite

Following the approach in Sect. 5.2 (see Remark 4), for each OT problem τi we
need to find a appropriate model Ai to remove ψi from τi thus obtaining the
empty OT problem (PATH, ∅) which is trivially finite. For this purpose, we use the
tool AGES to automatically generate models for order-sorted first-order theories
[8]. The tool provides an implementation of the techniques introduced in [10]
and also in this paper (Sects. 4 and 5.3).

First we express the order-sorted first-order signature with predicates that
corresponds to PATH as a Maude module as follows:

mod PATH_OSSig is
sorts KTruth .
sorts Node KNode .
sorts Edge Path KPath .
subsorts Node < KNode .
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subsorts Edge < Path < KPath .
op tt : -> KTruth .
op eq : KNode KNode -> KTruth .
ops source target : KPath -> KNode .
op seq : KPath KPath -> KPath .
op mbEdge : KPath -> Bool .
op mbNode : KNode -> Bool .
op mbPath : KPath -> Bool .
op redN : KNode KNode -> Bool .
op redsN : KNode KNode -> Bool .
op redP : KPath KPath -> Bool .
op redsP : KPath KPath -> Bool .
op redT : KTruth KTruth -> Bool .
op redsT : KTruth KTruth -> Bool .

endm

where

1. KNode, KPath, and KTruth represent kinds [Node], [Path], and [Truth] of the
MEL specification of PATH and have the expected subsort relation with the
corresponding sorts in the kind.

2. We use the function seq instead of the infix operator _;_.
3. We are using predicates (encoded here as boolean functions, as Maude has

no specific notation for predicates) mbEdge, mbNode, and mbEdge instead of
: Edge, : Node and : Path.

4. Similarly, we use redN, redsN, redP, redsP, redT, and redsT instead of
→[Node], →∗

[Node], →[Path], →∗
[Path], →[Truth], and →∗

[Truth], respectively.

The OS-FOL theory SPATH consists of the sentences obtained from I(PATH) in
Fig. 1 when each rule B1···Bn

A (with variables x1, . . . , xm of sorts s1, . . . , sm) is
interpreted as a sentence ∀x1 : s1 · · · xm : sm(B1 ∧ · · · ∧ Bn ⇒ A) and written
by using the symbols in PATH OSSig. For instance, rule (SRN ) becomes

redN(t:KNode,u:KNode) /\ mbNode(u:KNode) => mbNode(t:KNode)

in the notation used in AGES, where each variable bears its sort, and universal
quantification is assumed.

For the sake of brevity, rather than computing a model Ai for each OT
problem τi, 1 ≤ i ≤ 9, we proceed in three steps by computing models for
different clusters of OT Problems.

– For OT problems τ1, . . . , τ5, we compute a model A of S ∪{ϕ3
1, . . . , ϕ

3
5} being

ϕ3
i for 1 ≤ i ≤ 5 the specific formula ϕ3 in Sect. 5.2 particularized to ψi.

– For OT problems τ6, . . . , τ8, we compute a model A′ of S ∪ {ϕ3
6, . . . , ϕ

3
8}.

– For τ9, we compute a model A′′ of S ∪ {ϕ3
9}.

Obviously, each computed structure can be used with each individual OT prob-
lem τi in its cluster to remove the corresponding proof jump. Note that, since
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each OT problem τi contains a single proof jump, we do not pay attention to
the component �i of the removal pair. Hence, no instance of formulas ϕ1 and
ϕ2 in Sect. 5.2 is required in the extensions of S.

OT Problems τ1, . . ., τ5. We extend PATH OSSig with new sorts, functions
and predicate symbols due to the transformation described in Sect. 5.1:

mod PATH-tau1to5 is
sorts Top1 Top2 Top3 Top4 Top5 .
op fmbNode : KNode -> Top1 .
op wfr1 : Top1 Top1 -> Bool [wellfounded] .
op fisEdge : KPath -> Top2 .
op wfr2 : Top2 Top2 -> Bool [wellfounded] .
op fisPath : KPath -> Top3 .
op wfr3 : Top3 Top3 -> Bool [wellfounded] .
op fredsN : KNode KNode -> Top4 .
op wfr4 : Top4 Top4 -> Bool [wellfounded] .
op fredsP : KPath KPath -> Top5 .
op wfr5 : Top5 Top5 -> Bool [wellfounded] .

endm

In AGES we can impose that the relations interpreting binary predicates
wfr1, . . . , wfr5 (representing the well-founded components �i of the removal
pair which is used in the application of PRP to τi for 1 ≤ i ≤ 5) be well-
founded2. AGES uses Theorem 4 to ensure this. Then, we obtain a new theory
SPATH
1..5 by adding new sentences ϕ3

1, . . . , ϕ
3
5 corresponding to the proof jumps in

τ1, . . . , τ5 to SPATH; in AGES notation:

redN(tN:KNode,uN:KNode) =>
wfr1(fmbNode(tN:KNode),fmbNode(uN:KNode))

redP(tP:KPath,uP:KPath) =>
wfr2(fisEdge(tP:KPath),fisEdge(uP:KPath))

redP(tP:KPath,uP:KPath) =>
wfr3(fisPath(tP:KPath),fisPath(uP:KPath))

redN(tN:KNode,uN:KNode) =>
wfr4(fredsN(tN:KNode,vN:KNode),fredsN(uN:KNode,vN:KNode))

redP(tP:KPath,uP:KPath) =>
wfr5(fredsP(tP:KPath,vP:KPath),fredsP(uP:KPath,vP:KPath))

AGES obtains the following model A for SPATH
1..5 :

1. Interpretation of sorts:

AKTruth = [−1,+∞) ANode = [−1, 0] AKNode = [−1, 0]
AEdge = {−1} APath = {−1} AKPath = [−1, 0]

ATop1 = [0,+∞) ATop2 = [−1,+∞) ATop3 = [0,+∞)
ATop4 = [0,+∞) ATop5 = [−1, 0]

2 We have enriched the syntax of Maude modules to specifiy this requirement.
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2. Interpretation of function symbols (with argument variables taking values in
the corresponding sort):

eqA(x, y) = y − x seqA(x, y) = −1 − y sourceA(x) = 0
targetA(x) = −1 ttA = 0

fisEdgeA(x) = 1 + x fisPathA(x) = 2 + x fmbNodeA(x) = 2 + x
fredsNA(x, y) = 4 + x + y fredsPA(x, y) = 0

3. Interpretation of predicate symbols (as characteristic predicates):

mbEdgeA(x) ⇔ x ∈ [−1, 0] mbNodeA(x) ⇔ x ∈ [−1, 0]
mbPathA(x) ⇔ x ∈ [−1, 0] redNA(x, y) ⇔ false
redPA(x, y) ⇔ false redTA(x, y) ⇔ x, y ∈ [−1,+∞) ∧ y ≥ x

redsNA(x, y) ⇔ x, y ∈ [−1, 0] redsPA(x, y) ⇔ x, y ∈ [−1, 0] ∧ x ≥ y
redsTA(x, y) ⇔ x, y ∈ [−1,+∞) ∧ y ≥ x

wfr1A(x, y) ⇔ x, y ∈ [0,+∞) ∧ x >1 y
wfr2A(x, y) ⇔ x, y ∈ [0,+∞) ∧ x >1 y
wfr3A(x, y) ⇔ x, y ∈ [0,+∞) ∧ x >1 y
wfr4A(x, y) ⇔ false
wfr5A(x, y) ⇔ x, y ∈ [−1, 0] ∧ y >1 x

Note that redNA and redPA are empty relations. Actually, this is enough to
guarantee that conditions ϕ3

1, . . . , ϕ
3
5 for the proof jumps at stake hold, thus

enabling their removal from the corresponding OT problem.

OT Problems τ6, . . ., τ8. We extend now PATH OSSig with the following:

mod PATH-tau6to8 is
sorts Top6 Top7 Top8 .
op fredP : KPath KPath -> Top6 .
op wfr6 : Top6 Top6 -> Bool [wellfounded] .
op fredP : KPath KPath -> Top7 .
op wfr7 : Top7 Top7 -> Bool [wellfounded] .
op fisPath : KPath -> Top8 .
op wfr8 : Top8 Top8 -> Bool [wellfounded] .

endm

The new theory SPATH
6..8 extends SPATH with ϕ3

6, . . . , ϕ
3
6, i.e.,

wfr6(fredP(seq(tP:KPath,vP:KPath),seq(uP:KPath,vP:KPath)),
fredP(tP:KPath,uP:KPath))

wfr7(fredP(seq(vP:KPath,tP:KPath),seq(vP:KPath,uP:KPath)),
fredP(tP:KPath,uP:KPath))

EP:KPath :: Edge =>
wfr8(fisPath(seq(EP:KPath,PP:KPath)),fisPath(PP:KPath))

AGES computes the following model A′ of SPATH
6..8 :
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1. Interpretation of sorts:

A′
KTruth = [−1,+∞) A′

Node = [0,+∞) A′
KNode = [0,+∞)

A′
Edge = {1} A′

Path = [1,+∞) A′
KPath = [1,+∞)

A′
Top6 = [0,+∞) A′

Top7 = [0,+∞) A′
Top8 = [0,+∞)

2. Interpretation of function symbols:

eqA′
(x, y) = x + y − 1 seqA′

(x, y) = x + y sourceA′
(x) = x − 1

targetA′
(x) = 0 ttA′

= 0

fisPathA′
(x) = 1 + x fredPA′

(x, y) = y − 1

3. Interpretation of predicate symbols:

mbEdgeA′
(x) ⇔ x ∈ [1,+∞) mbNodeA′

(x) ⇔ x ∈ [0,+∞)
mbPathA′

(x) ⇔ x ∈ [1,+∞) redNA′
(x, y) ⇔ x, y ∈ [0,+∞) ∧ x ≥ y

redTA′
(x, y) ⇔ x, y ∈ [−1,+∞) redPA′

(x, y) ⇔ x, y ∈ [1,+∞) ∧ x ≥ y

redsNA′
(x, y) ⇔ x, y ∈ [0,+∞) redsPA′

(x, y) ⇔ x, y ∈ [1,+∞)
redsTA′

(x, y) ⇔ x, y ∈ [−1,+∞)

wfr6A′
(x, y) ⇔ x, y ∈ [0,+∞) ∧ x >1 y

wfr7A′
(x, y) ⇔ x, y ∈ [0,+∞) ∧ x >1 y

wfr8A′
(x, y) ⇔ x, y ∈ [0,+∞) ∧ x >1 y

Note that wfr6A′
, wfr7A′

, and wfr8A′
coincide with the ordering >1 on [0,+∞)

which is clearly well-founded.

OT Problem τ9. We extend PATH OSSig with:

mod PATH-tau9 is
sorts Top9 .
op fredsT : KTruth KTruth -> Top9 .
op wfr9 : Top9 Top9 -> Bool [wellfounded] .

endm

We obtain a new theory SPATH
9 by adding the sentence ϕ3

9:

wfr9(fredsT(tT:KTruth,vT:KTruth),fredsT(uT:KTruth,vT:KTruth))

corresponding to the proof jumps in τ9 to SPATH. We obtain a model A′′ of SPATH
9 :

1. Interpretation of sorts:

A′′
KTruth = [−1,+∞) A′′

Node = [−1, 1] A′′
KNode = [−1, 1]

A′′
Edge = {−1} A′′

Path = {−1} A′′
KPath = [−1, 0] A′′

Top9 = [−1,+∞)

2. Interpretation of function symbols:

eqA′′
(x, y) = x − y + 1 seqA′′

(x, y) = 0 sourceA′′
(x) = −x

targetA′′
(x) = −1 ttA′′

= 0 fredsTA′′
(x, y) = x
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3. Interpretation of predicate symbols:

mbEdgeA′′
(x) ⇔ x ∈ [−1, 0] mbNodeA′′

(x) ⇔ x ∈ [−1, 1]
mbPathA′′

(x) ⇔ x ∈ [−1, 0] redNA′′
(x, y) ⇔ false

redPA′′
(x, y) ⇔ false redTA′′

(x, y) ⇔ x, y ∈ [−1,+∞) ∧ x >1 y

redsNA′′
(x, y) ⇔ x, y ∈ [−1, 1] redsPA′′

(x, y) ⇔ x, y ∈ [−1, 0] ∧ x ≥ y

redsTA′′
(x, y) ⇔ x, y ∈ [−1,+∞) ∧ x ≥ y

wfr9A′′
(x, y) ⇔ x, y ∈ [−1,+∞) ∧ x >1 y

6.2 Proof of Operational Termination of PATH

Putting all together, we have the following OT-Tree for the proof:

τPATH
yes!

PSCC

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9

yes

PA
RP

yes

PA
RP

yes

PA
RP

yes

PA
RP

yes

PA
RP

yes

PA
RP

yes

PA
RP

yes

PA
RP

yes

PA
RP

We label the application of PRP with symbols A, A′, and A′′ to highlight
the different ways to apply it. By Theorem2, PATH is operationally terminating.

7 Conclusions

The use of logical models in proofs of operational termination in the OT Frame-
work was suggested in [14] as an possible approach to implement the new proces-
sor PRP introduced in the paper. This observation was a main motivation to
develop the idea of convex polytopic domain [12] as a sufficiently simple but
flexible approach to obtain a variety of domains that can be used in proofs of
termination and which are amenable for automation [10]. The research in this
paper closes some gaps left during these developments and provides a basis for
the implementation of PRP in the OT Framework by means of the automatic
generation of logical models for order-sorted first-order theories.

We have extended the work in [10] to achieve the automatic generation
of interpretations for predicate symbols using convex polytopic domains. These
results are the basis of the implementation of the tool AGES for the automatic
generation of models for OS-FOL theories. To our knowledge, no systematic
treatment of the generation of (homogeneous or heterogeneous, i.e., with argu-
ments in different sorts) predicate interpretations has been attempted to date.
We have also shown how to mechanize the use of PRP in the OT Framework for
proving operational termination of declarative programs by recasting it as the
problem of finding a model through appropriate transformations.
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We believe that the research in this paper is an important step towards the
practical use of logical models in proofs of operational termination of programs
and hence towards the implementation of a tool for automatically proving oper-
ational termination of declarative programs based on the OT Framework in [14].
This is a subject for future work.

Acknowledgments. I thank Raúl Gutiérrez for implementing the results of Sects. 4
and 5.3 in AGES.
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Abstract. On shared memory multicore architectures, cache memory
is used to accelerate program execution by providing quick access to
recently used data, but enables multiple copies of data to co-exist during
execution. Although cache coherence protocols ensure that cores do not
access stale data, the organisation of data in memory and the schedul-
ing of tasks may significantly influence the performance of a parallel
program in this setting. As a step towards understanding how the data
organisation impacts the performance of a given parallel program using
shared memory, this paper proposes a framework defined in Maude for
the executable modelling of program execution on cache coherent multi-
core architectures, formalising the interactions between cores executing
tasks, their caches, and main memory. The framework allows the specifi-
cation and comparison of program execution with different design choices
for the underlying hardware architecture, such as the number of cores,
the data layout in main memory, and the cache associativity.

1 Introduction

Program execution on multicore architectures can be accelerated by cache mem-
ory, which provides quick access to recently used data but allows multiple copies
of data to co-exist during execution. Cache coherence protocols ensure that the
data in the caches is consistent and that cores never access stale data from the
caches. Requested data which has become stale or which is not in the cache,
leads to a so-called cache miss; the requested data needs to be loaded into the
cache before it can be accessed, resulting in a performance penalty. With the
current dominating position of multicore architectures in hardware design, we
believe that language designers may benefit from a better understanding and
ability to reason about interactions between cores executing tasks, their caches,
and main memory. For this purpose we need clear and precise operational models
which allow us to reason about such interactions. However, work on operational
semantics for parallel programs generally abstracts from the caches of multicore
architectures, and assumes that there are only single copies of data in memory
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(i.e., memory is directly accessed from threads). As a consequence, these seman-
tic models provide little guidance for language designers in making efficient use
of cache memory.

Maude has been proposed as a unifying framework for language semantics
which supports a wide range of definitional styles (e.g., [22,30]). Its usefulness
as a semantic framework has been widely demonstrated, including low-level and
highly complex languages such as C [13]. In this paper, we develop a Maude
framework for modelling execution on cache consistent multicore architectures,
capturing how data movement between cores and main memory is triggered
by the execution of program tasks on the different cores. Our purpose is not
to evaluate the specifics of a concrete cache coherence protocol, but rather to
capture program execution on shared data at locations with coherent caches in
a formal yet highly configurable way. We let the Maude specification keep track
of the cache hit/miss ratio per core as a way to evaluate the performance of an
execution path. This allows runtime design choices for programs to be compared
by means of Maude’s analysis techniques. We illustrate how models of multicore
architectures can be configured and compared with some small examples.

Related Work. Previous work by the authors developed an SOS for cache coher-
ent multicore architectures using multi-set label synchronisation on transitions
to model parallel instantaneous broadcast, and proved that this semantics guar-
anteed properties such as data race free access to data and no access to stale
data [2]. This paper extends the previous work in several ways: (1) it makes
the source-level programming language more expressive by supporting loops,
choice, and dynamic task creation, (2) it allows the modeller to configure the
cache associativity of the architecture, and (3) it refines the abstracted declar-
ative definitions of the previous work, resulting in an executable semantics in
Maude. Rewriting logic has previously been used to specify and analyse inter-
action between a single microprocessor and its cache [1,14], and to model and
analyse memory safety and garbage collection for hardware architectures [24,29].

Other approaches to the analysis of multicore architectures include on the one
hand simulators for evaluating the efficiency of specific cache coherence protocols
and on the other hand formal techniques for proving their correctness. Simula-
tion tools allow cache coherence protocols to be specified in order to evaluate
their performance on different architectures (e.g., gems [19] and gem5 [3]). These
tools run benchmark programs written as low-level read and write instructions
to memory and perform measurements, e.g., the cache hit/miss ratio. Advanced
simulators such as Graphite [23] and Sniper [5] can handle multicore architec-
tures with thousands of cores by running on distributed clusters. A framework,
proposed in [17], statically estimates the worst-case response times for concurrent
applications running on multiple cores with shared cache.

Both operational and axiomatic formal models have been used to describe
the effect of parallel executions on shared memory under relaxed memory mod-
els, including abstract calculi [7], memory models for programming languages
such as Java [16], and machine-level instruction sets for concrete processors such
as POWER [18,31] and x86 [32]. The behaviour of programs executing under
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total store order (TSO) architectures is studied in [12,33]. However, work on
weak memory models abstracts from caches, and is as such largely orthogonal to
our work which does not consider the reordering of source-level syntax. Cache
coherence protocols can be formally specified as automata and verified by (para-
metrised) model checking (e.g., [9,25,27]) in terms of operational formalisations
which abstract from the specific number of cores to prove the correctness of the
protocols (e.g., [10,11,34]). For example, Maude’s model checker has recently
been used to verify the correctness of configurations of the MSI and ESI proto-
cols [20,28]. In contrast, our work, which also uses MSI, focuses on specifying the
abstract interactions between caches and shared memory for parallel programs
executing on a multicore architecture.

Paper Overview. Section 2 reviews background concepts on rewriting logic and
Maude, and on multicore architectures, Sect. 3 presents our abstract model of
cache coherent multicore architectures, Sect. 4 details the Maude model, Sect. 5
presents examples with different configurations, and Sect. 6 concludes the paper.

2 Preliminaries

2.1 Maude

The semantics of our framework is defined in Maude [6], a specification and
analysis system based on rewriting logic (RL) [21]. In a rewrite theory (Σ,E,R),
the signature Σ defines the ground terms, E equations between terms, and R a
set of labelled rewrite rules. Rewrite rules apply to terms of given sorts, spec-
ified in (membership) equational logic (Σ,E). When modelling computational
systems, different system components are typically modelled by terms of suit-
able sorts and the global state configuration is represented as a multi-set of
these terms. RL extends algebraic specification techniques with transition rules
which capture the dynamic behaviour of a system. Conditional rewrite rules on
the form crl [label] : t−→ t′ if cond transform an instance of the pattern t
into the corresponding instance of the pattern t′, where the condition cond is
a conjunction of rewriting conditions and equalities that must hold for the rule
to apply (the label identifies the rule). When auxiliary functions are needed,
these can be defined in equational logic, and thus evaluated in between the
state transitions [21]. In a conditional equation ceq t = t′ if cond, the condi-
tion must similarly hold for the equation to apply. Unconditional rewrite rules
and equations are denoted by the keywords rl and eq, respectively.

To structure specifications in Maude, equations and rewrite rules can be
scoped in modules which may be parameterised. In particular, Maude sup-
ports the modelling of systems as multi-sets of objects in a standardised for-
mat, with suitable communication mechanisms. The pre-defined Maude module
CONFIGURATION provides a notation for object syntax. An object in a given
state has the form 〈 O : C | a1 : v1,....,an : vn 〉 , where C is the class name
and O the object identifier, and there is a set of attributes with identifiers ai
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which have corresponding values vi in the current state. Given an initial config-
uration, Maude supports simulation and breadth-first search through reachable
states, and model checking of systems with a finite number of reachable states.
In this paper, Maude is used to implement executable operational semantics of
a framework to experiment with architectural models.

2.2 Overview of Multicore Architectures

Processing units, or cores, in modern multicore architectures use caches to store
their most recently accessed data. Caches are usually small and fast compared
to main memory, and they can be either private to one core or shared among
multiple cores. Main memory in general consists of blocks, each with a unique
address. Each block is organised in multiple continuous words, and each word is
associated to a memory reference. Cache memory, on the other hand, consists
of cache lines, each of which may contain several words. In general, a cache line
can contain at least as many words as one memory block.

A cache hit refers to the case that the desired data is found in the cache,
the other case is called a cache miss. In the case of a miss, the cache fetches
data from the next levels in the memory hierarchy (e.g., main memory). The
fetched data, which includes the requested data, consists of consecutive words
starting at the beginning of a memory block and corresponds in size to a cache
line. Since caches are small in size compared to main memory, fetching data
from main memory to caches may require the eviction of existing cache lines.
The choice of cache lines to evict depends on the organisation of the cache lines,
the so-called cache associativity, and on the replacement policy. In k-way set
associative caches, the cache lines are grouped as sets with k cache lines and
the fetched data can go anywhere in a particular set. Direct mapped caches have
one-way set associativity as these caches are organised in single-line sets. In fully
associative caches, the entire cache is considered as a single set and the fetched
data can be placed anywhere in the cache. The modulo operation n%c calculates
the index of the cache set to which the fetched data starting at the block with
address n should be placed, where c is the number of sets per cache. Replacement
policies select the line to evict from a specific cache set when the fetched data
is placed into that set, e.g., random, FIFO, LRU (Least Recently Used).

Since multiple copies of data may be stored in different local caches and in
main memory, cache coherence protocols are used to keep all copies consistent.
In particular, invalidation-based protocols broadcast invalidation messages when
a particular core requires write access to a memory address. Typical invalidation
protocols are MSI and its extensions (e.g., MESI and MOESI). In MSI, a cache
line can be in one of three states: Modified, Shared, and Invalid. A line in
modified state indicates that it is the most updated copy and that all other
copies in the system are invalid, whereas a line in shared state implies that all
copies in the system are consistent. A cache has a miss when the requested line
is either invalid or is not present in the cache; in this case, the cache broadcasts
a request. Upon receiving this request, the cache which has the modified copy of
the relevant cache line flushes the cache line to the main memory. The state of the
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cache line will then be updated to shared in both the cache and the main memory.
An invalidation message will be broadcast in the system before writing in a cache
line. The state of the cache line will be updated to modified if the write operation
succeeds. Upon the arrival of an invalidation message, a cache will invalidate its
shared copy. For more details on variations of multicore architectures, coherence
protocols, and memory consistency, the reader may consult, e.g., [8,15,26].

3 An Abstract Model of Execution on Cache Coherent
Multicore Architectures

This section outlines an abstract model of execution for parallel programs run-
ning on multicore architectures. We first explain the source-level language that
the model executes, then the abstract model of the hardware architecture, and
finally how the relation between these two is captured by the execution model.

The Source-Level Language. Programs are written in a source-level input lan-
guage with the following syntax, where r is a memory reference and T a task name:

LLP ::=Task main{sst}
Task ::=task T{sst}
sst ::=ε | sst ; sst | PrRd(r) | PrWr(r) | commit(r) | sst � sst | sst∗ | Spawn T

A (low-level) program LLP consists of a set of tasks, denoted by the overbar Task ,
and a main block. Each task task T{sst} has a name T and a body with state-
ments sst . Statements include PrRd(r) for reading the word from main memory
reference r, PrWr(r) for writing to r, commit(r) for flushing the content of the
cache line with reference r to main memory, and Spawn T to dynamically cre-
ate a task T . In addition, there are standard operators for sequential composition
sst ; sst , non-deterministic choice sst � sst , and repetition sst∗.

Example 1. Let r0, r1, r2, and r3 be references inside memory blocks. This is a
simple example of a low-level program:

task T1{PrRd(r0);PrWr(r1)}
task T2{PrRd(r2);PrWr(r3)}
main{SpawnT1;SpawnT2} ��

The Hardware Architecture. As depicted in Fig. 1, our hardware architecture
model consists of multiple cores with shared memory, where each core has a pri-
vate one-level cache. Communications between different components are through
messages. Cores are responsible for sending messages to other components in the
architecture, if needed. The exchange of messages between different cores and
main memory is captured by a communication medium, which abstracts from
different concrete topologies such as bus, ring, or mesh. Observe that the commu-
nication medium needs to arbitrate between requests from different cores (e.g.,
to exclude conflicting invalidation messages). We here abstract from how this
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Fig. 1. Abstract model of multicore architecture (illustration). Here we let circled
numbers 1© – 4© suggest the ordering of communication events.

arbitration is realised by a specific communication medium by modelling the
communication as instantaneous. For simplicity, we ignore the data contained in
memory blocks and cache lines. We further assume that the size of a cache line
is same as the size of a memory block, and data move from one core to another
one indirectly via the main memory. Our model includes an abstract version of
the MSI protocol.

The Execution Model. A runtime configuration consists of several components:
the cores with their associated cache, where each cache has its own associativity
relation, a main memory, a scheduler with a global pool of dynamically created
tasks that are waiting to be executed, a task lookup table [T �→ sst ] mapping
task names to bodies, and a reference lookup table [r �→n] binding references to
block addresses.

To execute LLP programs, new tasks are scheduled on the idle cores in the
abstract model. Cores execute runtime statements rst by interacting with their
local caches. Runtime statements include the source-level statements sst and
statements PrRdBl(r), PrWrBl(r) and commit. Statements such as PrRd(r)
and PrWr(r) may trigger data movement between the cache and main mem-
ory. Such data movements are captured by data instructions fetch(n) and
flush(n), where n is the address of the memory block in which the word with
reference r resides. A task executing on a core may be blocked waiting for data
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to be fetched, which is captured by statements PrRdBl(r) and PrWrBl(r). To
ensure that modified data is stored in main memory before another task is sched-
uled, we use commit to force all modified lines in the cache to be flushed after
the execution of a task. In an initial state, all memory blocks in the main mem-
ory have status shared, the task pool contains a main block sst generated from
main{sst}, and each core has an empty cache, no data instructions and no
executing task.

To illustrate a behaviour in our model, let a reference r map to a memory
address n, and consider a core which does not have the memory block n available
in the local cache and attempts to access n by executing a statement PrRd(r) (or
PrWr(r)). To retrieve the memory block, the core first broadcasts the request as
messages to other cores and main memory through the communication medium.
Messages include requests for read and read exclusive (for write operation) access
to memory address n, which are of the form Rd(n) and RdX (n), respectively.
Once the message is broadcast, the execution of the task in the core will be
blocked by a PrRdBl(r) (or PrWrBl(r)) statement and a fetch(n) instruction
is added to the data instructions. The request will be instantaneously broadcast
to the other cores and to main memory (thereby mimicking the use of label
synchronisation in SOS such as [2]). If the requested cache line is modified in
another cache, the protocol ensures that the line in the other cache is first flushed
to main memory. The requesting core can then proceed to fetch the memory
block n from main memory after the flush(n) instruction, and continue with
the execution of its task. Note that a request message for read exclusive access
will invalidate all copies of the relevant block in the other caches as well as in
main memory. Consequently, data race freedom and the consistency of copies of
data in different caches in this model are maintained by an abstracted version
of the basic coherence protocol MSI.

4 Formalising Multicore Architectures in Maude

We formalise the abstract model presented in Sect. 3 as an object-oriented spec-
ification in Maude [6], and focus the presentation on the main parts of this
specification. Section 4.1 explains the main sorts and signatures of the model,
Sect. 4.2 focuses on a subset of the rewriting rules which capture task execution
and Sect. 4.3 on a subset of the equations and rewriting rules for coordination
and communication between cores and main memory using message passing1.

4.1 Sorts and Signatures of the Model

Figure 2 shows the main sorts and objects used in our model. The components
(e.g., cores, memory, and scheduler) are modelled as Maude objects floating in
a global configuration. A system wide operator { } is used to wrap complete

1 The complete Maude model is available from http://folk.uio.no/∼shijib/
wrla2016maude.zip.

http://folk.uio.no/~shijib/wrla2016maude.zip
http://folk.uio.no/~shijib/wrla2016maude.zip
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Fig. 2. Runtime syntax: relevant sorts and object representation in Maude

configurations into the sort GlobalSystem, and ensures that communication
messages are correctly propagated to every part of the system. Each memory
block has an address of sort Address and may contain multiple words. The
operator ref(r) of sort Reference means the reference r to a word in a memory
block. Observe that multiple references can be mapped to the same block address,
which gives us flexibility to specify the size of memory blocks and cache lines.
The Assoc operator of sort MapPolicy takes an integer k as parameter to specify
that each cache set has k cache lines. As shown in Fig. 2, the object MM models the
main memory. The attribute M is a map of sort MemoryMap that binds Address

to Status, which can be modified mo, shared sh or invalid inv, as in the MSI
protocol. The attribute fetchCount logs the total number of fetch operations
which have been used in the whole configuration during an execution.

Cores are modelled by a class identifier CR and a number of attributes, such as
CM stores the cache memory, Rst the task to be executed, D the data instructions
(fetch and flush), CacheSz the size of the cache, ˜ the cache associativity, Miss
the number of local cache misses, and Hit the number of local cache hits. As
the core object has a number of attributes, we model it using the pre-defined
object syntax from the CONFIGURATION module, which introduces an object
format with a set of attributes. This allows a compact presentation format for the
rewrite rules as a variable Atts of sort AttributeSet can be used to replace all
attributes which are not important for a specific rule as shown later in Fig. 3. The
cache memory CM of sort Cache{Int, MemoryMap} is a collection of cache sets
where each set has an integer index as the identifier. Similar to the attribute M,
a cache set is also of sort MemoryMap, which maps each cache line in the set to
its status. The sort stList refers to the sequence of statements to be executed
in both Rst and D.

Object Task models a task lookup table which binds task Qid to sequences
of statements (for dynamic task allocation). The scheduler is modelled by the
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object Qu, which selects a task id from its pool and allocates the sequence of
statements (using the object Task) to an idle core. Object TBL models the ref-
erence lookup table by mapping each reference r to a word in the main memory
to the address of the memory block where the word resides.

4.2 Rewriting Rules for Task Execution

Rewriting rules are used to capture the execution of parallel tasks in the multi-
core hardware architecture. For brevity in the presented rules, we omit the static
table TBL and use addr[ref(r)] to denote the block address of a memory ref-
erence r. Figure 3 contains the subset of rules that are explained in this section,
gray boxes are used to highlight the evolving patterns in each rule.

Rule PrRd1 describes the case when a read statement PrRd(r) proceeds with
a cache hit, because the block N (= addr[ref(r)])) is either in status mo or sh in
the cache. To simplify the presentation of the rules, we let σ denote the frequently
recurring expression selectStatus(mapPol, Ca, size, addr[ref(r)]), where
mapPol , Ca, size, and r are the parameters which respectively refer to the cache
associativity ∼, the cache memory, the number of cache lines and references. The
function returns the status of block N; if N is not present in the cache, it returns
unknown. In the case of a cache miss, rule PrRd2 adds a fetch-instruction to
the data instructions D, (which will later fetch data from the main memory) and
replaces the read statement by a blocking statement PrRdBl(r) to indicate that
the core is waiting for the memory block to be fetched. To request block N, rule
PrRd2 broadcasts a read request Rd(N) to the communication medium from
which all other cores instantaneously receive the request; upon receipt, a core
which has a modified copy of the requested block will make a flush. For each
cache hit and cache miss, the related local counters are incremented.

A write statement PrWr(r) is treated as a hit if the status of the relevant
block N is mo, where the corresponding rule is similar to the rule PrRd1 (and
therefore omitted here). In case block N is in sh status, which is also counted
as a cache hit, the core needs to broadcast an invalidation message RdX(N) to
ensure exclusive access to the block N, captured by rule PrWr2 . Upon receiving
the invalidation message, all other cores and the main memory will instanta-
neously invalidate their shared copy of block N. In the case of a cache miss,
the core first requests the block by sending a read request Rd(N), as captured
by rule PrWr3 , and the write statement is replaced by a blocked statement
PrWrBl(r), indicating that the core is waiting for the block to be fetched. Once
the block is fetched, the core will request exclusive access to N, similar to rule
PrWr2 . Observe that before requesting exclusive access, the cache line may get
invalidated by a RdX(N) message from another core in the configuration. In this
situation, the core has to broadcast the Rd(N) message again as in rule PrWr3 .
Rule PrWrBlock2 captures this situation; here, the occurs operation avoids
repeated execution of the same rule by checking whether the fetch instruction
for the requested block is already added to the data instructions D or not. Rule
Commit1 forces a core to flush the modified copy of a particular memory block
to main memory.
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Fig. 3. Subset of rewriting rules in Maude (part 1)
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Only memory blocks with status sh can be fetched from main memory. Oth-
erwise, the fetch instruction is blocked until the data is flushed from another
cache. In the rule Fetch1 , the allModified function returns true if the cache
set in which the memory block should be placed is full with modified cache lines.
This function returns false if there is vacant space in the set or all cache lines in
the set are not modified (resulting in an eviction without flushing). Apart from
fetching the cache line, this rule uses fetchUpdateLine to update the status
of the fetched block to sh. The global counter fetchCount is used to log the
total number of fetch operations. As explained in rule PrWrBlock2 , executing
one read (or write) statement may entail multiple fetch operations, and therefore
the value of fetchCount can be greater than the sum of local cache misses from
all cores. Rule Flush1 stores a modified cache line in main memory, setting its
status to sh both in the cache and main memory. The rules for the remaining
statements (e.g., spawn, choice, repetition) are standard.

4.3 Synchronisation Through Message Passing

Figure 4 contains the main equations used to coordinate the accesses to memory
blocks. To access a memory block N, a core broadcasts a read request Rd(N)

to get the most recent copy of N or a write request RdX(N) to get exclusive
access to N. Each broadcast request is of the form broadcast Re from C1,
where Re denotes the read or write request and C1 the identity of the sender.
As the requests are broadcast to all the other cores and to the main memory,
each broadcast request is recursively transformed into individual messages of the
form msg Re from C1 to C2 where Re is the request and C1 and C2 are the
sender and receiver, respectively. The function objectIds collects the identities
of objects from the configuration REST.

Upon receiving a read request Rd(N), if the core has the requested block N

in its cache with status mo, the block will be flushed to the main memory. This

Fig. 4. Subset of rewriting rules and equations in Maude (part 2)
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allows the core sending the request to eventually get access to the most recent
copy of N. If a core receives a read request about a block that is not locally
modified, the message is ignored. Note that the main memory will discard all
messages with a read request. When receiving a write request RdX(N), the main
memory and all cores with a local copy of N (except the sender) will update the
status of the relevant block to inv by the function updateLine. If the sender and
the receiver are the same core, it indicates that exclusive access to the relevant
block is granted to that core. In this case, the status of the block is updated
from sh to mo. Note that the rewriting rules for write operations ensure that a
write request can only be sent when the block is in sh status.

5 Examples

The presented Maude specification constitutes a highly configurable modelling
framework for programs executing on cache coherent multicore architectures.
In this section we consider small examples to show how the cache associativity
relation, cache size, and memory layout can be configured in concrete models,
and how these parameters can influence the cache hit/miss ratio. In addition, we
consider search conditions to check the correctness of concrete instances of our
modelling framework. Maude’s search command evaluates all reachable states
from a given initial configuration with respect to a given condition. Out of these
reachable states of the execution of terminating LLPs, we are interested in the
worst case scenarios, that is, states which give the highest number of cache
misses or the worst hit/miss ratios.

Below, we present the execution paths which give the highest number of total
cache misses. To observe differences in the status of cache lines and memory
blocks in main memory, we inspect the state where all the tasks have been
executed, but before the cache is flushed (using the commit2 statement). We
refer to this state as the observing state of the execution path.

Example 2. In this example we illustrate the effect of changing the cache size
and cache associativity. Consider an initial configuration config0 consisting of
one core C1 with a cache of size five, CacheSz : 5, and with direct map associativ-
ity ˜: Assoc(1). The size of a memory block is one word and the reference table
TBL maps exactly one memory reference to each block. Assume that a program
which consists of a main block that spawns a task executes in this configuration:

eq config0 =
〈C1 : CR | M : empty,Rst : nil,D : nil,Miss : 0,Hit : 0,CacheSz : 5,˜ : Assoc(1) 〉
〈M : MM | M : 0�→sh, 1 �→sh, 2�→sh,3 �→sh, 4�→sh, 5�→sh, fetchCount : 0 〉
〈Sch : Qu | TidSet : (’main) 〉
〈Tbl : TBL | Addr:ref(0)�→0,ref(1) �→1,ref(2) �→2,ref(3) �→3,ref(4) �→4,ref(5) �→5 〉
〈Ta : Task | Data:’main �→Spawn(’T1), ’T1 �→(PrWr(0);PrWr(5);PrWr(0)) 〉 .

2 Recall that the commit statement forces the flushing of all modified cache lines,
which does not affect the number of cache misses.
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In the following observing state (which omits the static tables TBL and Task),
observe that due to the cache size and associativity, memory blocks with
addresses 0 and 5 will compete for the same cache line with index 0. All the
statements in task ’T1 entail a cache miss, which gives the global counter
fetchCount : 3 in the main memory and the local counter Miss : 3 in the cache:
〈c1 : CR | M : 0 �→(0�→mo),Rst : commit,D:nil,Miss : 3,Hit : 0,CacheSz : 5,˜ : Assoc(1) 〉
〈m : MM | M : 0 �→inv, 1 �→sh, 2�→sh, 3�→sh, 4 �→sh, 5�→sh, fetchCount : 3 〉
〈sch : Qu | TidSet : empty 〉
...

Let us change the cache size to CacheSz : 10 and cache associativity to
˜: Assoc(2), which means that each cache set has two cache lines. In this
setting, there is enough space for two memory blocks 0 and 5 to be in the same
cache set with index 0 at the same time:
〈C1 : CR | M : 0 �→(0 �→mo,5 �→mo),Rst : commit,D : nil,Miss : 2,

Hit : 1,CacheSz : 10,˜ : Assoc(2) 〉
〈M : MM | M : 0 �→inv, 1 �→sh, 2�→sh, 3�→sh, 4 �→sh, 5�→inv, fetchCount : 2 〉
〈sch : Qu | TidSet : empty 〉
...

Observe that the same program executing in this configuration has only two
cache misses in the observing state. ��
Example 3. In this example we illustrate the effect of changing the main mem-
ory organisation. Consider an initial configuration config1 consisting of two
cores C1 and C2 with caches of size five, CacheSz : 5, and with direct map asso-
ciativity ˜: Assoc(1). The size of a memory block is four words, so the reference
table TBL maps four different memory references to one block. Consider the pro-
gram in Example 1, which consists of tasks trying to concurrently access the
memory block 0, executes in this configuration:
eq config1 =
〈C1 : CR | M : empty,Rst : nil,D : nil,Miss : 0,Hit : 0,CacheSz : 5,˜ : Assoc(1) 〉
〈C2 : CR | M : empty,Rst : nil,D : nil,Miss : 0,Hit : 0,CacheSz : 5,˜ : Assoc(1) 〉
〈M : MM | M : 0 �→sh, 1�→sh, 2�→sh, 3 �→sh, 4�→sh, fetchCount : 0 〉
〈Sch : Qu | TidSet : (’main) 〉
〈Tbl : TBL | Addr : ref(0) �→0, ref(1) �→0, ref(2) �→0, ref(3) �→0,

ref(4) �→1, ref(5) �→1, ref(6) �→1, ref(7) �→1 〉
〈Ta : Task | Data : ’main �→(Spawn(’T1);Spawn(’T2)),’T1 �→(PrRd(0);PrWr(1)),

’T2 �→(PrRd(2);PrWr(3)) 〉 .

Observe that in a possible path: C1 executes the main block and then spawns
two tasks where C2 executes ’T1 and later C1 executes ’T2. The concurrent
execution of ’T1 and ’T2 may lead to the mutual invalidation of memory block 0

in both caches due to the presence of the so-called false sharing pattern in
which parallel cores operate on independent words located in the same memory
block. This pattern causes mutual cache invalidations as if cores were truly using
shared memory block, which increases the number of cache misses. For this
configuration, the total number of cache misses is three in the observing state:
〈C1 : CR | M : 0 �→(0�→inv),Rst:commit,D : nil,Miss : 1,Hit:1,CacheSz : 5,˜ : Assoc(1) 〉
〈C2 : CR | M : 0 �→(0�→mo),Rst:commit,D : nil,Miss : 2,Hits:1,CacheSz : 5,˜ : Assoc(1) 〉
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〈M : MM | M : 0�→inv, 1�→sh, 2 �→sh, 3�→sh, 4�→sh, fetchCount : 3 〉
〈sch : Qu | TidSet : empty 〉
...

Let config2 be a variant of config1, where the main memory layout in the
TBL object is organised such that ’T1 and ’T2 access different memory blocks,
preventing the false sharing pattern. In this case, the observing state is:

〈C1 : CR | M : 0�→(0 �→mo),Rst:commit,D : nil,Miss : 1,Hit : 1,CacheSz : 5,˜ : Assoc(1) 〉
〈C2 : CR | M : 1�→(1 �→mo),Rst:commit,D : nil,Miss : 1,Hit : 1,CacheSz : 5,˜ : Assoc(1) 〉
〈M : MM | M : 0�→inv, 1�→inv, 2�→sh, 3 �→sh, 4�→sh, fetchCount : 2 〉
〈sch : Qu | TidSet : empty 〉
〈Tbl : TBL | Addr : ref(0) �→0, ref(1) �→0, ref(4) �→0, ref(5) �→0,

ref(2) �→1, ref(3) �→1, ref(6) �→1, ref(7) �→1 〉
...

Observe that the highest number of total cache misses is two from this initial
configuration, which reorganises the memory layout in the TBL object. ��

We now consider search conditions to show a correctness property for con-
crete instances of our modelling framework with respect to data race freedom.
Consider the initial configuration config1 in Example 3. We consider a search
condition stating that after a core executes a PrWr(n) statement, only that core
has the modified copy of n, while all other copies are invalid. This property, for
which Maude’s search finds no reachable states, can be formulated as follows:

search {config1} −→ ∗{C : Configuration
〈C1 : Oid : CR | CM : (x : Int �→(y : Address �→stA : Status),CaA : Cache{Int,MemoryMap}),
Atts : AttributeSet 〉
〈C2 : Oid : CR | CM : (x : Int �→(y : Address �→stB : Status),CaB : Cache{Int,MemoryMap}),
Atts’ : AttributeSet 〉
〈O : Oid : MM | M : (y : Address�→ stM : Status, D : MemoryMap),fetchCount: N : Int 〉
} such that ((stM : Status = sh) and (stA : Status = mo)) or

((stA : Status = mo) and (stB : Status = mo)) or
((stA : Status = mo) and (stB : Status = sh)) .

We can similarly verify the absence of deadlock and livelock which result in
statements or data instructions to be remained in the final state.

search {config1} −→ ! {C : Configuration
〈A : Oid : CR | Rst : rstA : stList,D : dA : stList,Atts : AttributeSet 〉
} such that (rstA : stList �= nil) or (dA : stList �= nil) .

6 Conclusions

This paper has presented a Maude framework for modelling programs execut-
ing on cache coherent multicore architectures. The framework formalises in a
highly configurable way how task execution on cores with explicit caches trig-
gers interactions between the different caches and between the caches and main
memory in cache coherent multicore architectures. The framework allows the
specification and comparison of program execution with different design choices
for the underlying hardware architecture, such as the number of cores, the data
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layout in main memory and the cache associativity. We have illustrated by exam-
ples that the presented framework may be used to help us understand how the
data organisation and the properties of the caches influence the performance of
parallel programs executing on shared memory.

There are several interesting possible extensions of the presented work. At
the level of the presented model, ongoing work considers the inclusion of multi-
level caches and abstract notions of data locality. It is also interesting to see how
models such as the one presented in this paper can be used to understand real
programs, for example by extracting LLP programs from real code; here we run
into the problem of optimisations and instruction reordering which could perhaps
be addressed by extracting worst-case LLP representations. In the context of
the actor-based programming language Encore [4], we plan in future work to try
that approach and use the presented framework to study the effects of program
specific optimisations of data layout and scheduling derived by, e.g., locking
disciplines, annotations such as behavioural type systems, or static analyses.

Acknowledgments. We are grateful to the anonymous reviewers for their very thor-
ough reviews and for giving helpful and critical feedback.
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Abstract. Over-approximating the descendants (successors) of an ini-
tial set of terms under a rewrite system is used in reachability analysis.
The success of such methods depends on the quality of the approxi-
mation. Regular approximations (i.e. those using finite tree automata)
have been successfully applied to protocol verification and Java program
analysis. In [2,10], non-regular approximations have been shown more
precise than regular ones. In [3] (fixed version of [2]), we have shown
that sound over-approximations using synchronized tree languages can
be computed for left-and-right-linear term rewriting systems (TRS). In
this paper, we present two new contributions extending [3]. Firstly, we
show how to compute at least all innermost descendants for any left-
linear TRS. Secondly, a procedure is introduced for computing over-
approximations independently of the applied rewrite strategy for any
left-linear TRS.

Keywords: Term rewriting · Tree languages · Reachability analysis

1 Introduction

The reachability problem R∗(I)∩Bad
?= ∅ is a well-known undecidable problem,

where I is an initial set of terms, Bad is a set of forbidden terms and R∗(I)
denotes the terms issued from I using the rewrite system R. Some techniques
compute regular over-approximations of R∗(I) in order to show that no term of
Bad is reachable from I [1,4,6,7]. [8] introduce regular over-approximations of
R∗(I) using innermost strategy.

In [5], we have defined a reachability problem for which none of those tech-
niques works. In [3] (corrected version of [2]), we have described a technique for
computing non-regular approximations using synchronized tree languages. This
technique can handle the reachability problem of [5]. These synchronized tree
languages [9,11] are recognized using CS-programs [12], i.e. a particular class of
Horn clauses. From an initial CS-program Prog and a linear term rewrite system
(TRS) R, another CS-program Prog′ is computed in such a way that its lan-
guage represents an over-approximation of the set of terms (called descendants)
reachable by rewriting using R, from the terms of the language of Prog. This
algorithm is called completion.

In this paper, we present two new results that hold even if the TRS is not
right-linear:
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D. Lucanu (Ed.): WRLA 2016, LNCS 9942, pp. 64–81, 2016.
DOI: 10.1007/978-3-319-44802-2 4
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1. We show that a slight modification of completion gives an over-approximation
of the descendants obtained with an innermost strategy (see Sect. 3).

2. We introduce a technique for over-approximating1 copying2 clauses by non-
copying ones, so that all descendants (not only the innermost ones) are
obtained (see Sect. 4).

2 Preliminaries

Consider two disjoint sets, Σ a finite ranked alphabet and Var a set of vari-
ables. Each symbol f ∈ Σ has a unique arity, denoted by ar(f). The notions of
first-order term, position and substitution are defined as usual. Given two sub-
stitutions σ and σ′, σ ◦ σ′ denotes the substitution such that for any variable
x, σ ◦ σ′(x) = σ(σ′(x)). TΣ denotes the set of ground terms (without variables)
over Σ. For a term t, Var(t) is the set of variables of t, Pos(t) is the set of
positions of t. For p ∈ Pos(t), t(p) is the symbol of Σ ∪Var occurring at position
p in t, and t|p is the subterm of t at position p. The term t is linear if each
variable of t occurs only once in t. The term t[t′]p is obtained from t by replac-
ing the subterm at position p by t′. PosVar(t) = {p ∈ Pos(t) | t(p) ∈ Var},
PosNonVar(t) = {p ∈ Pos(t) | t(p) �∈ Var}.

A rewrite rule is an oriented pair of terms, written l → r. We always assume
that l is not a variable, and Var(r) ⊆ Var(l). A rewrite system R is a finite
set of rewrite rules. lhs stands for left-hand-side, rhs for right-hand-side. The
rewrite relation →R is defined as follows: t →R t′ if there exist a position p ∈
PosNonVar(t), a rule l → r ∈ R, and a substitution θ s.t. t|p = θ(l) and t′ =
t[θ(r)]p. →∗

R denotes the reflexive-transitive closure of →R. t′ is a descendant of
t if t →∗

R t′. If E is a set of ground terms, R∗(E) denotes the set of descendants
of elements of E. The rewrite rule l → r is left (resp. right) linear if l (resp. r)
is linear. R is left (resp. right) linear if all its rewrite rules are left (resp. right)
linear. R is linear if R is both left and right linear.

2.1 CS-Program

In the following, we consider the framework of pure logic programming, and the
class of synchronized tree-tuple languages defined by CS-clauses [12,13]. Given a
set Pred of predicate symbols; atoms, goals, bodies and Horn-clauses are defined
as usual. Note that both goals and bodies are sequences of atoms. We will use
letters G or B for sequences of atoms, and A for atoms. Given a goal G =
A1, . . . , Ak and positive integers i, j, we define G|i = Ai and G|i.j = (Ai)|j = tj
where Ai = P (t1, . . . , tn).

1 This approximation is often exact, but not always. This is due to the fact that a
tree language expressed by a copying CS-program cannot always be expressed by a
non-copying one.

2 I.e. clause heads are not linear.
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Definition 1. Let B be a sequence of atoms.
B is flat if for each atom P (t1, . . . , tn) of B, all terms t1, . . . , tn are variables.
B is linear if each variable occurring in B (possibly at sub-term position) occurs
only once in B. So the empty sequence of atoms (denoted by ∅) is flat and linear.

A CS-clause3 is a Horn-clause H ← B s.t. B is flat and linear. A CS-
program Prog is a logic program composed of CS-clauses. Variables contained
in a CS-Clause have to occur only in this clause. Pred(Prog) denotes the set of
predicate symbols of Prog. Given a predicate symbol P of arity n, the tree-(tuple)
language generated by P is LProg(P ) = {t ∈ (TΣ)n | P (t) ∈ Mod(Prog)}, where
TΣ is the set of ground terms over the signature Σ and Mod(Prog) is the least
Herbrand model of Prog. LProg(P ) is called synchronized language.

The following definition describes syntactic properties over CS-clauses.

Definition 2. A CS-clause P (t1, . . . , tn) ← B is :

– empty if ∀i ∈ {1, . . . , n}, ti is a variable.
– normalized if ∀i ∈ {1, . . . , n}, ti is a variable or contains only one occurrence

of function-symbol.
– non-copying if P (t1, . . . , tn) is linear.
– synchronizing if B is composed of only one atom.

A CS-program is normalized and non-copying if all its clauses are.

Example 1. Let x, y, z be variables. P (x) ← Q(f(x)) is not a CS-clause.
P (x, y, z) ← Q(x, y, z) is a CS-clause, and is empty, normalized, non-copying
and synchronizing.
The CS-clause P (f(x), y, g(x, z)) ← Q1(x), Q2(y, z) is normalized and copying.
P (f(g(x)), y) ← Q(x) is not normalized.

Given a CS-program, we focus on two kinds of derivations.

Definition 3. Given a logic program Prog and a sequence of atoms G,

– G derives into G′ by a resolution step if there exist a clause H ← B in Prog
and an atom A ∈ G such that A and H are unifiable by the most general
unifier σ (then σ(A) = σ(H)) and G′ = σ(G)[σ(A) ← σ(B)]. It is written
G �σ G′.

– G rewrites into G′ if there exist a clause H ← B in Prog, an atom A ∈ G,
and a substitution σ, such that A = σ(H) (A is not instantiated by σ) and
G′ = G[A ← σ(B)]. It is written G →σ G′.

Sometimes, we will write G �[H←B,σ] G′ or G →[H←B,σ] G′ to indicate the
clause used by the step.

Example 2. Prog = {P (x1, g(x2)) ← P ′(x1, x2). P (f(x1), x2) ← P ′′(x1, x2).},
and consider G = P (f(x), y). Thus, P (f(x), y) �σ1 P ′(f(x), x2) with σ1 =
[x1/f(x), y/g(x2)] and P (f(x), y) →σ2 P ′′(x, y) with σ2 = [x1/x, x2/y].
3 In former papers, synchronized tree-tuple languages were defined thanks to sorts of

grammars, called constraint systems. Thus “CS” stands for Constraint System.
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Note that for any atom A, if A → B then A � B. On the other hand, A �σ B
implies σ(A) → B. Consequently, if A is ground, A � B implies A → B.
We note the transitive closure �+ and the reflexive-transitive closure �∗ of �.

For both derivations, given a logic program Prog and three sequences of
atoms G1, G2 and G3 :

– if G1 �σ1 G2 and G2 �σ2 G3 then one has G1 �∗
σ2◦σ1

G3;
– if G1 →σ1 G2 and G2 →σ2 G3 then one has G1 →∗

σ2◦σ1
G3.

In the remainder of the paper, given a set of CS-clauses Prog and two
sequences of atoms G1 and G2, G1 �∗

Prog G2 (resp. G1 →∗
Prog G2) also denotes

that G2 can be derived (resp. rewritten) from G1 using clauses of Prog.
It is well known that resolution is complete.

Theorem 1. Let A be a ground atom. A ∈ Mod(Prog) iff A �∗
Prog ∅.

2.2 Computing Descendants

Figure 1 summarizes the procedure introduced in [2] (corrected by [3]) and for-
mally reminded in Definition 8. This procedure always terminates and computes
an over-approximation of the descendants obtained by a linear rewrite system,
using synchronized tree-(tuple) languages expressed by logic programs.

The notion of critical pair (Definition 4) is at the heart of the technique.
Given an CS-program Prog, a predicate symbol P and a rewrite rule l → r,
a critical pair is a way to detect a possible rewriting by l → r for a term t in
a tuple of LProg(P ). A convergent critical pair means that the rewrite step is
already handled i.e. if t →l→r s then s is in a tuple of LProg(P ). Consequently,
the language of a normalized CS-program involving only convergent critical pairs
is closed by rewriting.

For short, a non-convergent critical pair gives rise to a CS-clause. Adding this
CS-clause to the current CS-program makes the critical pair convergent. However,
this new clause may not be normalized. This is why we apply a normalization step
(Definition 7). The function removeCycles has been introduced in [2] to ensure that
every finite set of CS-clauses generates finitely many critical pairs.

Critical Pairs. The notion of critical pair allows to add CS-clauses into the
current CS-program in order to cover rewriting steps. It is described below.

R
DETECTION

UNCOVERED

CRITICAL PAIRS

REMOVE CYCLES

CRITICAL PAIRS

OBTAINED FROM

ADD CS−CLAUSES
Prog

Prog’
No

Yes

Fig. 1. An overview of completion technique
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Definition 4 [2]. Let Prog be a CS-program and l → r be a left-linear rewrite
rule. Let x1, . . . , xn be distinct variables s.t. {x1, . . . , xn} ∩ V ar(l) = ∅. If there
are P and k s.t. P (x1, . . . , xk−1, l, xk+1, . . . , xn) �+

θ G where resolution is
applied only on non-flat atoms, G is flat, and the clause P (t1, . . . , tn) ← B
used during the first step of this derivation satisfies tk is not a variable4, then
the clause θ(P (x1, . . . , xk−1, r, xk+1, . . . , xn)) ← G is called critical pair.

Critical pairs that are already covered by the current CS-program are said to be
convergent.

Definition 5 [2]. A critical pair H ← B is said convergent if H →∗
Prog B.

Example 3. Let Prog be the normalized and non-copying CS-program defined
by Prog = {P (c(x), y) ← Q(x, y). Q(h(x), y) ← Q(x, y). Q(c(x), y) ← Q(x, y).
Q(a, b) ← .} and consider the left-linear rewrite rule c(c(x′)) → h(h(x′)). It
generates 2 critical pairs, P (h(h(x′)), y) ← Q(x′, y) which is not convergent and
Q(h(h(x′)), y) ← Q(x′, y) which is convergent.

Normalizing CS-Clause. Since rewriting is done only at root position in
clauses, we need a normalized CS-Program. But in general, critical pairs are not
normalized. Normalization is achieved thanks to Function norm (Definition 7).
We first need some technical definitions.

Definition 6 [2]. Consider a tree-tuple
−→
t = (t1, . . . , tn). We define :

–
−→
t cut = (tcut

1 , . . . , tcut
n ), where tcut

i =
x′

i,1 if ti is a variable
ti if ti is a constant
ti(ε)(x′

i,1, . . . , x
′
i,ar(ti(ε))

) otherwise

and variables x′
i,k are new variables that do not occur in

−→
t .

– for each i,
−−→
V ar(tcut

i ) is the (possibly empty) tuple composed of the variables of
tcut
i (taken in the left-right order).

–
−−→
V ar(

−→
t cut) =

−−→
V ar(tcut

1 ) . . .
−−→
V ar(tcut

n ) (concatenation of tuples).

– for each i, trest
i is the tree-tuple trest

i =
(ti) if ti is a variable
the empty tuple if ti is a constant
(ti|1, . . . , ti|ar(ti(ε))) otherwise

–
−→
t rest = (trest

1 . . . trest
n ) (concatenation of tuples).

Example 4. Let
−→
t be a tree-tuple such that

−→
t = (x1, x2, g(x3, h(x4)), h(x5), b)

where xi’s are variables. Thus,

–
−→
t cut = (y1, y2, g(y3, y4), h(y5), b) with yi’s new variables;

–
−−→
V ar(

−→
t cut) = (y1, y2, y3, y4, y5);

–
−→
t rest = (x1, x2, x3, h(x4), x5).

4 In other words, the overlap of l on the clause head P (t1, . . . , tn) is done at a non-
variable position.
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Note that
−→
t cut is normalized,

−−→
V ar(

−→
t cut) is linear,

−−→
V ar(

−→
t cut) and

−→
t rest have

the same arity.

Adding a critical pair (after normalizing it) into the CS-program may cre-
ate new critical pairs, and the completion process may not terminate. To force
termination, two bounds predicate-limit and arity-limit are fixed. If predicate-
limit is reached, Function norm should re-use existing predicate symbols instead
of creating new ones. On the other hand, if a new predicate symbol is created
whose arity5 is greater than arity-limit, then this predicate has to be split by
Function norm into several predicates whose arities do not exceed arity-limit.

Definition 7 (norm [2]). Let Prog be a normalized CS-program.
Let Pred be the set of predicate symbols of Prog, and for each positive integer
i, let Predi = {P ∈ Pred | ar(P ) = i} where ar means arity.
Let arity-limit and predicate-limit be positive integers s.t. ∀P ∈ Pred, arity(P ) ≤
arity-limit, and ∀i ∈ {1, . . . , arity-limit}, card(Predi) ≤ predicate-limit. Let
H ← B be a CS-clause.
Function normProg(H ← B)
Res = Prog
If H ← B is normalized
then Res = Res ∪{H ← B}
else If H →Res A by a synchronizing and non-empty clause

then (note that A is an atom) Res = normRes(A ← B) (*)
else let us write H = P (

−→
t )

If ar(
−−→
V ar(

−→
t cut)) ≤ arity-limit

then let c′ be the clause P (
−→
t cut) ← P ′(

−−→
V ar(

−→
t cut))

where P ′ is a new or an existing predicate symbol 6

Res = normRes∪{c′}(P ′(
−→
t rest) ← B)

else choose tuples
−→
vt1, . . . ,

−→
vtk and tuples

−→
tt1, . . . ,

−→
ttk s.t.−→

vt1 . . .
−→
vtk =

−−→
V ar(

−→
t cut) and

−→
tt1 . . .

−→
ttk =

−→
t rest,

and for all j, ar(
−→
vtj) = ar(

−→
ttj) and ar(

−→
vtj) ≤ arity-limit

let c′ be the clause P (
−→
t cut) ← P ′

1(
−→
vt1), . . . , P ′

k(
−→
vtk)

where P ′
1, . . . , P

′
k are new or existing predicate symbols7

Res = Res ∪{c′}
For j=1 to k do Res = normRes(P ′

j(
−→
ttj) ← B) EndFor

EndIf
EndIf

EndIf
return Res

(*) Before normalizing a critical pair H ← B (more precisely at the beginning
of Function norm), for efficiency we first try to reduce H using the CS-clauses of
5 The number of arguments.
6 If card(Pred

ar(
−−→
V ar(

−→
tcut))

(Res)) < predicate-limit, then P ′ is new, otherwise P ′ is

chosen in Pred
ar(

−−→
V ar(

−→
tcut))

(Res).
7 For all j, P ′

j is new iff card(Predar(−→
vtj)

(Res)) + j − 1 < predicate-limit.
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Prog. This mechanism is called by-pass. An example of normalization is given
in Example 5.

Completion

Definition 8 [3]. Let arity-limit and predicate-limit be positive integers. Let R
be a linear rewrite system, and Prog be a finite, normalized and non-copying
CS-program. The completion process is defined by:
Function compR(Prog)

Prog = removeCycles(Prog)
while there exists a non-convergent critical pair H ← B in Prog do

Prog = removeCycles(Prog ∪ normProg(H ← B))
end while
return Prog

For a given CS-program, the number of critical pairs may be infinite. Function
removeCycles modifies some clauses so that the number of critical pairs is finite.
Due to the lack of space, we do not give this mechanism here. See [2] for a formal
description.

Given a rewrite system R and CS-program Prog, if every critical pair that can
be detected is convergent, then for any set of terms I such that I ⊆ Mod(Prog),
Mod(Prog) is an over-approximation of the set of terms reachable by R from I.

Theorem 2 [3]. Let R be a left-linear8 rewrite system and Prog be a normalized
non-copying CS-program.
If all critical pairs are convergent, then Mod(Prog) is closed under rewriting by
R, i.e. (A ∈ Mod(Prog) ∧ A →∗

R A′) =⇒ A′ ∈ Mod(Prog).

Theorem 3 [3]. Let R be a linear rewrite system and Prog be a normalized
non-copying CS-program. Function comp always terminates, and all critical pairs
are convergent in compR(Prog). Thus R∗(Mod(Prog)) ⊆ Mod(compR(Prog)).

Example 5. Let I = {f(a, a)}, and R = {f(x, y) → u(f(v(x), w(y)))}. Intu-
itively, the exact set of descendants is R∗(I) = {un(f(vn(a), wn(a))) | n ∈ N}.
We define Prog = {P0(f(x, y)) ← P1(x), P1(y). P1(a) ← .}. We choose
predicate-limit = 4 and arity-limit = 2.

The following critical pair is detected: P0(u(f(v(x), w(y)))) ← P1(x), P1(y).
The normalization produces P0(u(x)) ← P2(x). P2(f(x, y)) ← P3(x, y) and
P3(v(x), w(y)) ← P1(x), P1(y). Adding these three CS-clauses into Prog pro-
duces the new critical pair P2(u(f(v(x), w(y)))) ← P3(x, y). It can be normalized
without exceeding predicate-limit P2(u(x)) ← P4(x). P4(f(x, y)) ← P5(x, y).
and P5(v(x), w(y)) ← P3(x, y).

Once again, a new critical pair has been introduced: P4(u(f(v(x), w(y)))) ←
P5(x, y). Note that, from now, we are not allowed to introduce any new predicate
8 From a theoretical point of view, left-linearity is sufficient when every critical pair

is convergent. However, to make every critical pair convergent by completion, full
linearity is necessary (see Theorem 3).
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of arity 1. Let us proceed the normalization of P4(u(f(v(x), w(y)))) ← P5(x, y)
step by step. We choose to re-use the predicate P4. Thus, we first generate
the following CS-clause: P4(u(x)) ← P4(x). So, we have to normalize now
P4(f(v(x), w(y))) ← P5(x, y). Note that P4(f(v(x), w(y))) →+

Prog P3(x, y). Con-
sequently, the CS-clause P3(x, y) ← P5(x, y) is added into Prog.

Note that there is no critical pair anymore.
To summarize, we obtain the final CS-program Progf composed of the fol-

lowing CS-clauses:

Progf =⎧⎪⎪⎨
⎪⎪⎩

P0(f(x, y)) ← P1(x), P1(y). P1(a) ← . P0(u(x)) ← P2(x)
P3(v(x), w(y)) ← P1(x), P1(y). P2(f(x, y)) ← P3(x, y). P2(u(x)) ← P4(x).
P5(v(x), w(y)) ← P3(x, y). P4(f(x, y)) ← P5(x, y). P4(u(x)) ← P4(x).
P3(x, y) ← P5(x, y)

⎫⎪⎪⎬
⎪⎪⎭

For Progf , note that L(P0) = {un(f(vm(a), wm(a))) | n,m ∈ N} and R∗(I) ⊆
L(P0).

3 Computing Innermost Descendants

Starting from a non-copying program Prog and given a left-linear TRS R, using
the completion algorithm presented in the previous section we may obtain a
copying final program Prog′. Consequently, the language accepted by Prog′ may
not be closed under rewriting i.e. Prog′ may not recognize an over-approximation
of the descendants. Example 6 illustrates this problem.

Example 6. Let Prog = {P (g(x)) ← Q(x). Q(a) ←} and R = {a → b, g(x) →
f(x, x)}. Performing the completion algorithm detailed in Definition 8 returns
compR(Prog) = {P (g(x)) ← Q(x). P (f(x, x)) ← Q(x). Q(a) ← . Q(b) ←}.
Note that P (f(a, b)) �∈ Mod(compR(Prog)) although P (g(a)) ∈ Mod(Prog)
and P (g(a)) →∗

R P (f(a, b)).
Thus, some descendants of Mod(Prog) are missing in Mod(compR(Prog)). How-
ever, all descendants obtained by innermost rewriting (subterms are rewritten
at first) are in Mod(compR(Prog)), since the only innermost rewrite derivation
issued from g(a) is g(a) →in

R g(b) →in
R f(b, b).

In this section, we show that with a slight modification of [3], if the initial
CS-program Prog is non-copying and R is left-linear (and not necessarily right-
linear), we can perform reachability analysis for innermost rewriting. Theorem 5
shows that, in that case, we compute at least all the descendants obtained by
innermost rewriting. To get this result, it has been necessary to prove a result
about closure under innermost rewriting (Theorem 4).

To prove these results, additional definitions are needed. Indeed, to perform
innermost rewriting, the rewrite steps are done on terms whose subterms are
irreducible (cannot be rewritten). However, for a given TRS, the property of
irreducibility is not preserved by instantiation, i.e. if a term t and a substitution
θ are irreducible, then θt is not necessarily irreducible. This is why we need to
consider a stronger property.
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Definition 9. Let R be a TRS. A term t is strongly irreducible (by R) if for
all p ∈ PosNonVar(t), for all l → r ∈ R, t|p and l are not unifiable.
A substitution θ is strongly irreducible if for all x ∈ Var, θx is strongly irre-
ducible.

Lemma 1. If t is strongly irreducible, then t is irreducible.

Proof. By contrapositive. If t →[p,l→r,σ] t′, then t|p = σl. Since it is assumed
that V ar(t) ∩ V ar(l) = ∅, then t|p and l are unifiable by σ.

Lemma 2. If t is strongly irreducible, then for all p ∈ Pos(t), t|p is strongly
irreducible.
For a substitution θ, if θt is strongly irreducible, then for all x ∈ V ar(t), θx is
strongly irreducible (but t is not necessarily strongly irreducible).

Proof. Obvious.

Example 7. Let t = f(x), θ = (x/a), R = {f(b) → b}. Thus θt = f(a) is strongly
irreducible whereas t is not.

Corollary 1. For substitutions α, θ, if α.θ is strongly irreducible, then α is
strongly irreducible.

Note that the previous definitions and lemmas trivially extend to atoms and
atom sequences.

Lemma 3 (Closure by Instantiation). If t is strongly irreducible and θ is irre-
ducible, then θt is irreducible.

Proof. By contrapositive. If θt →[p,l→r,σ] t′, then (θt)|p = σl.

– If p �∈ PosNonVar(t), then there exist a variable x and a position p′ s.t.
(θx)|p′ = σl. Then θ is reducible.

– Otherwise, θ(t|p) = σl. Then t|p and l are unifiable, hence t is not strongly
irreducible.

Example 8. Let t = f(x), θ = (x/g(y)), and R = {g(a) → b}. Thus t is strongly
irreducible, θ is irreducible, and θt = f(g(y)) is irreducible. Note that θt is not
strongly irreducible.

Before introducing two families of derivations, we show in Example 9 that
performing the completion, as presented in Sect. 2.2, with a non-right-linear TRS
may add copying clauses, and some innermost descendants may be missing.

Example 9. Let R = {f(x) → g(h(x), h(x)), i(x) → g(x, x), h(a) → b}, and
Prog be the initial non-copying program:
Prog = {P (i(x)) ← Q1(x). Q1(a) ← . P (f(x)) ← Q2(x). Q2(a) ←}. We start
with Prog′ = ∅. The completion procedure computes the critical pairs:
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1. P (g(x, x)) ← Q1(x) and add it into Prog′,
2. P (g(h(x), h(x))) ← Q2(x), which could be by-passed into:

Q1(h(x)) ← Q2(x), which is added into Prog′,
3. Q1(b) ←, which is added into Prog′.

No more critical pairs are detected, thus all critical pairs are convergent in
Prog′′ = Prog∪Prog′. However P (f(a)) →R P (g(h(a), h(a))) →R P (g(b, h(a)))
by an innermost derivation, whereas P (f(a)) ∈ Mod(Prog) and P (g(b, h(a))) �∈
Mod(Prog′′).
Actually, the clause P (g(x, x)) ← Q1(x) prevents the reduction of P (g(b, h(a)))
and consequently, it is impossible to get the set of all innermost-descendants
up to now. Now, we introduce two families of derivations, i.e. NC and SNC,
which allow us to compute every innermost descendant. For an atom H,
Varmult(H) denotes the set of the variables that occur several times in H. For
instance, Varmult(P (f(x, y), x, z)) = {x}.

Definition 10. Let A be an atom (A may contain variables).
The step A �[H←B,σ] G is NC (resp. SNC 9) if for all x ∈ V armult(H), σx is
irreducible (resp. strongly irreducible) by R.
A derivation is NC (resp. SNC) if all its steps are.

Remark 1. SNC implies NC and if the clause H ← B is non-copying, then the
step A �[H←B,σ] G is SNC (and NC).

Example 10. Consider the clause P (g(x, x)) ← Q(x) and R = {h(a) → b}. The
step P (g(h(y), h(y))) �[(x/h(y)] Q(h(y)) is NC (h(y) is irreducible), but it is not
SNC (h(y) is not strongly irreducible).

Lemma 4. If A →[H←B,σ] G is SNC and ∀x ∈ V armult(H), ∀y ∈ V ar(σ(x)),
θy is irreducible, then θA →[H←B,θ.σ] θG is NC.

Proof. Let x ∈ V armult(H). Then σx is strongly irreducible. From Lemma 3,
θ.σ(x) is irreducible. Therefore θA →[H←B,θ.σ] θG is NC.

Lemma 5. If σ′A �[H←B,γ] G is NC, then A �[H←B,θ] G′ is NC and there
exists a substitution α s.t. αG′ = G and α.θ = γ.σ′.

Proof. From the well-known resolution properties, we get A �[H←B,θ] G′ and
there exists a substitution α s.t. αG′ = G and α.θ = γ.σ′.
Now, if A �[H←B,θ] G′ is not NC, then there exists x ∈ V armult(H) s.t. θx is
reducible. Then γx = γ.σ′(x) = α.θ(x) is reducible. Therefore σ′A �[H←B,γ] G
is not NC, which is impossible.

Let us now define a subset of Mod(Prog).

Definition 11. Let Prog be a CS-program and R be a rewrite system.
ModR

NC(Prog) is composed of the ground atoms A such that there exists a NC
derivation A �∗ ∅.
9 NC stands for Non-Copying. SNC stands for Strongly Non-Copying.
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Remark 2. ModR
NC(Prog) ⊆ Mod(Prog) and if Prog is non-copying, then

ModR
NC(Prog) = Mod(Prog).

Example 11. Let Prog = {P (f(x), f(x)) ← Q(x). Q(a) ← . Q(b) ← .} and R =
{a → b}. P (f(a), f(a)) �∈ ModR

NC(Prog), hence ModR
NC(Prog) �= Mod(Prog).

Theorem 4. Let Prog be a normalized CS-program and R be a left-linear
rewrite system. If all critical pairs are convergent by SNC derivations,
ModR

NC(Prog) is closed under innermost rewriting by R, i.e.
(A ∈ ModR

NC(Prog) ∧ A →in,∗
R A′) =⇒ A′ ∈ ModR

NC(Prog)

Proof. Let A ∈ ModR
NC(Prog) s.t. A →in

l→r A′. Then A|i = C[σ(l)] for some
i ∈ IN, σ is irreducible, and A′ = A[i ← C[σ(r)].

Since A ∈ ModR
NC(Prog), A �∗ ∅ by a NC derivation. Since Prog is nor-

malized, resolution consumes symbols in C one by one, thus G′′
0=A �∗ G′′

k �∗ ∅
by a NC derivation, and there exists an atom A′′ = P (t1, . . . , tn) in G′′

k and j
s.t. tj = σ(l) and the top symbol of tj is consumed (or tj disappears) during the
step G′′

k � G′′
k+1.

Since tj is reducible by R and A ∈ ModR
NC(Prog), tj = σ(l) admits only

one antecedent in A. Then A′ �∗ G′′
k [A′′ ← P (t1, . . . , σ(r), . . . , tn)] by a NC

derivation (I).
Consider new variables x1, . . . , xn s.t. {x1, . . . , xn} ∩ V ar(l) = ∅, and let us

define the substitution σ′ by ∀i, σ′(xi) = ti and ∀x ∈ V ar(l), σ′(x) = σ(x).
Then σ′(P (x1, . . . , xj−1, l, xj+1, . . . , xn)) = A′′.

From G′′
k �∗ ∅ we can extract the sub-derivation Gk = A′′ �γk

Gk+1 �γk+1

Gk+2 �∗ ∅, which is NC. From Lemma 5, there exist a positive integer u > k,
a NC derivation G′

k = P (x1, . . . , l, . . . , xn) �∗
θ G′

u, and a substitution α s.t.
αG′

u = Gu, α.θ = γu−1. . . . .γk.σ′, G′
u is flat, and for all i, k < i < u implies

G′
i is not flat. In other words, there is a critical pair, which is assumed to be

convergent by a SNC derivation. Therefore θ(G′
k[l ← r]) →∗ G′

u by a SNC
derivation.

Let us write γ = γu−1. . . . .γk. If there exist a clause H ← B used in this
derivation, and x ∈ V armult(H) s.t. α.θ(x) is reducible, then there exist i and
p s.t. α.θ(x) = γ.σ′(x) = γ(ti|p) (because σ is irreducible). Note that γ is a
unifier, then γx = γ(ti|p). Therefore γx = γ(ti|p) = γ.σ′(x) = α.θ(x), which is
reducible. This is impossible because x ∈ V armult(H) and Gk �∗

γ Gu is a NC
derivation.

Consequently, from Lemma 4, α.θ(G′
k[l ← r]) →∗ α(G′

u) = Gu �∗ ∅
by a NC derivation. Note that α.θ(G′

k[l ← r]) = γ.σ′(P (x1, . . . , r, . . . , xn)) =
γ(P (t1, . . . , σ(r), . . . , tn)). Then γ(P (t1, . . . , σ(r), . . . , tn)) �∗ ∅ by a NC deriva-
tion. From Lemma 5 we get:
P (t1, . . . , σ(r), . . . , tn) �∗ ∅ by a NC derivation. Considering Derivation (I)
again, we get A′ �∗ G′′

k [A′′ ← P (t1, . . . , σ(r), . . . , tn)] �∗ ∅ by a NC deriva-
tion. In other words, A′ ∈ ModR

NC(Prog).
By trivial induction, the proof can be extended to the case of several rewrite

steps.
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In the following result, we consider an initial non-copying CS-program Prog,
and a possibly copying program Prog′ composed of the CS-clauses added by
the completion process. The normalization function norm makes critical pairs
convergent by SNC derivations, provided by-pass step is achieved only if the
clause used to rewrite is SNC.

Theorem 5. Let R be a left-linear rewrite system and Prog′′ = Prog ∪ Prog′

be a normalized CS-program s.t. Prog is non-copying and all critical pairs of
Prog′′ are convergent by SNC derivations. If A ∈ Mod(Prog) and A →∗

R A′

with an innermost strategy, then A′ ∈ Mod(Prog′′).

Proof. Since Prog is non-copying, Mod(Prog) = ModR
NC(Prog). Then A ∈

ModR
NC(Prog), and since Prog ⊆ Prog′′ we have A ∈ ModR

NC(Prog′′). From
Theorem 4, A′ ∈ ModR

NC( Prog′′), and since ModR
NC(Prog′′) ⊆ Mod(Prog′′),

we get A′ ∈ Mod(Prog′′).

Example 12. Let us focus on the critical pair given in Example 9 Item 2 i.e.
P (g(h(x), h(x))) ← Q2(x). Adding the clause Q1(h(x)) ← Q2(x) makes the
clause convergent in Prog′′ (in Example 9), but not convergent by a SNC deriva-
tion. Indeed (just here, we add primes to avoid conflict of variables):
P (g(h(x′), h(x′))) �[x/h(x′)] Q1(h(x′)) �[x/x′] Q2(x′). But the following step
P (g(h(x′), h(x′))) �[x/h(x′)] Q1(h(x′)) is not SNC. Consequently, one has to
normalize P (g(h(x), h(x))) ← Q2(x) in an SNC way.
For instance, P (g(h(x), h(x))) ← Q2(x) can be normalized into the follow-
ing clauses: P (g(x, y)) ← Q3(x, y). Q3(h(x), h(x)) ← Q2(x). After adding
these clauses, new critical pairs are detected, and the clauses Q3(b, h(x)) ←
Q2(x). Q3(h(x), b) ← Q2(x). Q3(b, b) ← . will be added. So, the final CS-program
is Prog′′ = Prog ∪
{P (g(x, x)) ← Q1(x). Q3(b, b) ← . P (g(x, y)) ← Q3(x, y). Q3(h(x), h(x)) ←
Q2(x). Q3(b, h(x)) ← Q2(x). Q3(h(x), b) ← Q2(x). }.
Thus P (g(b, h(a))) ∈ Mod(Prog′′).

One can apply this approach to a well-known problem: the Post Correspon-
dence Problem.

Example 13. Consider the instance of the Post Correspondence Problem (PCP)
composed of the pairs (ab, aa) and (bba, bb). To encode it by tree languages, we
see a and b as unary symbols, and introduce a constant 0.
Let R = {Test(x) → g(x, x), g(0, 0) → True, g(a(b(x)), a(a(y))) →
g(x, y), g(b(b(a(x))), b(b(y))) → g(x, y)}, and let I = {Test(t) | t ∈ T{a,b,0}, t �=
0} be the initial language generated by P0 in Prog = {P0(Test(z)) ←
P1(z). P1(a(z)) ← P2(z). P1(b(z)) ← P2(z). P2(a(z)) ← P2(z). P2(b(z)) ←
P2(z). P2(0) ←}.

Thus, this instance of PCP has at least one solution iff True is reachable by R
from I. Note that R is not right-linear. However, each descendant is innermost,
and from Theorem 5 it is recognized by the CS-program obtained by completion:
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compR(Prog) = Prog ∪⎧⎨
⎩

P0(g(x, x)) ← P1(x). P0(g(x, y)) ← P4(x, y). P4(x, a(x)) ← P2(x).
P0(g(x, y)) ← P5(x, y). P5(x, b(x)) ← P2(x). P0(g(x, y)) ← P6(x, y).
P6(x, b(y)) ← P7(x, y). P7(x, a(x)) ← P2(x).

⎫⎬
⎭

Note that P0(True) �∈ Mod(compR(Prog)), which proves that this instance of
PCP has no solution.

4 Getting Rid of Copying Clauses

In this section, we propose a process (see Definition 16) that transforms a copying
CS-clause into a set of non-copying ones. In a second part we introduce a way to
force termination of this process by over-approximating the generated language.
In that way, even if the TRS is not right-linear and consequently copying clauses
may be generated during the completion process, we can get rid of them as
soon as they appear. Thus, the final CS-program is non-copying, and Theorem 2
applies. Therefore, an over-approximation of the set of all descendants can be
computed.

For instance, let Prog = {P (f(x, x)) ← Q(x). Q(s(x)) ← Q(x). Q(a) ←}.
Note that the language generated by P is {f(sn(a), sn(a)) | n ∈ N}. We introduce
a new binary predicate symbol Q2 that generates the language {(t, t) | Q(t) ∈
Mod(Prog)}, and we transform the copying clause P (f(x, x)) ← Q(x) into a
non-copying one as follows: P (f(x, y)) ← Q2(x, y). Now Q2 can be defined by the
clauses Q2(s(x), s(x)) ← Q(x) and Q2(a, a) ←. Unfortunately Q2(s(x), s(x)) ←
Q(x) is copying. Then using the same idea again, we transform it into the non-
copying clause Q2(s(x), s(y)) ← Q2(x, y). The body of this clause uses Q2, which
is already defined. Thus the process terminates with Prog′ = {P (f(x, y)) ←
Q2(x, y). Q2(s(x), s(y)) ← Q2(x, y). Q2(a, a) ← . Q(s(x)) ← Q(x). Q(a) ←}.
Note that Prog′ is non-copying and generates the same language as Prog. The
clauses that define Q are useless in Prog′, but in general it is necessary to keep
them.

Let us formalize the general process.

Definition 12 (expand). Let P (x1, . . . , xk) be a linear atom, x1, . . . , xk be vari-
ables and n be a number.

expand(P (x1, . . . , xk), n) =
{

Pn(x1
1, . . . , x

1
k, . . . , xn

1 , . . . , xn
k ) if n > 1

P (
−→
t ) Otherwise.

Definition 13 (copy). Let P (
−→
t ) be an atom and n be a number.

copy(P (
−→
t ), n) =

⎧⎨
⎩

Pn(
−→
t , . . . ,

−→
t︸ ︷︷ ︸

n times

) if n > 1

P (
−→
t ) Otherwise.
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Definition 14 (clausesnew). Let Prog be a set of CS-clauses. Let Qn(
−→
t ) be

an atom where Q is a predicate symbol occuring in Prog and n is an integer with
n > 1.

clausesnew(Qn(
−→
t ), P rog) = {copy(Q(

−→
t ), n) ← B |Q(

−→
t ) ← B ∈ Prog}.

Definition 15 (uncopyoneProg). Let Prog be a set of normalized CS-clauses. Let
P (

−→
t ) ← Q1, . . . , Qn be a copying clause such that P (

−→
t ) ← Q1, . . . , Qn /∈

Prog. Let V ar(
−→
t ) = {x1, . . . , xk} be the set of variables occurring in

−→
t . Let

m1, . . . ,mk ∈ N be integers such that xi occurs exactly mi times in
−→
t .

uncopyoneProg(P (
−→
t ) ← Q1, . . . , Qn) = {P (

−→
t′ ) ← Q′

1, . . . , Q
′
n}∪⋃

Q′
i 	=Qi

(clausesnew(Q′
i, P rog′))

where Prog′ = Prog ∪ {P (
−→
t′ ) ← Q′

1, . . . , Q
′
n}, −→

t′ is obtained from
−→
t by replac-

ing for each j ∈ {1, . . . , k}, the different occurrences of xj by x1
j , . . . , x

mj

j and

Q′
i = expand(Qi,maxi) with maxi =

(
Max

xi∈V ar(Qi)
{mi}

)
when maxi > 1.

Definition 16 (uncopying(Prog)). Let Prog be a set of normalized CS-
clauses.

uncopying(Prog) =
{
uncopying(uncopyoneRem(H ← B) ∪ Rem) if COND
Prog Otherwise.

where COND is Prog = {H ← B} ∪ Rem and H ← B is copying.

Let us illustrate the previous definitions in Example 14.

Example 14. Let Prog be a normalized copying CS-Program such that Prog =
{P (f(x)) ← Q1(x). Q1(a) ← . Q1(b) ← . P (g(x, x) ← Q1(x)}. Thus, according
to Definition 16, one has

uncopying(Prog) = uncopying(uncopyoneRem(P (g(x, x)) ← Q1(x)) ∪ Rem) (1)

where Rem = {P (f(x)) ← Q1(x). Q1(a) ← . Q1(b) ← .}.
Applying Definition 15, uncopyoneRem(P (g(x, x)) ← Q1(x)) = {P (g(x1, x2)) ←

expand(Q1(x), 2)}∪clausesnew(Q2
1(x

1, x2), Rem∪{P (g(x1, x2)) ← expand(Q1(x),
2)}) since expand(Q1(x), 2) = Q2

1(x
1, x2) according to Definition 12. So, for

now, one has uncopyoneRem(P (g(x, x)) ← Q1(x)) = {P (g(x1, x2)) ← Q2
1(x

1, x2)} ∪
clausesnew( Q2

1(x
1, x2), Rem ∪ {P (g(x1, x2)) ← Q2

1(x
1, x2)}).

So, applying Definition 14, one obtains that clausesnew(Q2
1(x

1, x2), Rem ∪
{P (g(x1, x2)) ← Q2

1(x
1, x2)}) = {copy(Q1(a), 2) ← .} ∪ {copy(Q1(b), 2) ← .}.

Consequently, according to Definition 13, one has clausesnew(Q2
1(x

1, x2), Rem ∪
{P (g(x1, x2)) ← Q2

1(x
1, x2)}) = {Q2

1(a, a) ← . Q2
1(b, b) ← .}. Thus, one

has: Prog′ = uncopyoneRem(P (g(x, x)) ← Q1(x)) = {P (g(x1, x2)) ← Q2
1(x

1, x2).
Q2

1( a, a) ← . Q2
1(b, b) ← .}. Using Eq. (1), one obtains uncopying(Prog)
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= uncopying(Prog′) ∪ {P (f(x)) ← Q1(x). Q1(a) ← . Q1(b) ← .}. Moreover,
Prog′ is a non-copying normalized CS-program. So, uncopying(Prog′) = Prog′

according to Definition 16.
Let Progf be the set of CS-clause resulting from uncopying(Prog). One can

note that Progf is a normalized CS-Program and Progf generates the same
language as Prog.

Lemma 6. If algorithm (Definition 16) terminates, then for all copying clauses
P (

−→
t ) ← B ∈ Prog, Luncopying(Prog)(P ) = LProg(P ).

It comes from the fact that if Qi has p arguments, then Qmaxi
i has maxi × p

arguments, and L(Qmaxi
i ) =

⎧⎨
⎩

−→
t . . .

−→
t︸ ︷︷ ︸

maxi times

| −→
t ∈ L(Qi)

⎫⎬
⎭.

Then L(Q1
i ) = L(Qi) and10 L((Qx

i )y) = L(Qx×y
i ). Thus we will confuse Q1

i

with Qi, and (Qx
i )y with Qx×y

i .
Now, we give some examples of completion (Definition 8) supplied with

uncopying.

Example 15. Let R = {f(x) → g(x, x), a → b}, Prog0 = {P (f(x)) ←
Q1(x). Q1(a) ←}. Prog0 is a normalized non-copying CS-Program and R is a
non-right-linear rewrite system. There are 2 critical pairs, P (g(x, x)) ← Q1(x).
and Q1(b) ←. To make the critical pairs convergent, we add them into the pro-
gram and we get

Prog1 = Prog0 ∪ {P (g(x, x)) ← Q1(x). Q1(b) ←}
Prog1 contains the copying clause P (g(x, x)) ← Q1(x) and is exactly Prog used
in Example 14. So, uncopying(Prog1) = Prog0 ∪ {Q1(b) ← . P (g(x1, x2)) ←
Q2

1(x
1, x2). Q2

1(a, a) ← . Q2
1(b, b) ←}.

Let Prog2 = uncopying(Prog1). Now, there are 2 non-convergent critical
pairs, Q2

1(a, b) ← and Q2
1(b, a) ←. If we add them to Prog2, we get a normalized

non-copying CS-Program, all critical pairs are convergent. Applying Theorem 2,
Mod(Prog2) is closed by rewriting.

Remark 3. If at least one Qmaxi
i is not defined and there is a clause Qi(

−→
tj ) ← Bj

in Prog such that
−→
tj is not ground, then the algorithm will generate new copying

clauses.

Unfortunately, this algorithm does not terminate in general case. For
instance, the example below does not.

Example 16. Let Prog = {P (c(x, x)) ← P (x).(1) P (a) ← .(2)}. Prog
is a normalized, copying CS-Program. Clause (1) is copying, we apply uncopying
and add {P (c(x, x′)) ← P 2(x, x′).(3) P 2(a, a) ← .(4) P 2(c(x, x′), c(x, x′)) ←
P 2(x, x′).(5)} to Prog. Clause (5) is copying. Thus, the same process

10 If the loop while is run several times, predicate symbols of the form (Qx
i )y may

appear.
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is performed and the clauses {P 2(c(x1, x
′
1), c(x2, x

′
2)) ← P 4(x1, x

′
1, x2,

x′
2).(6) P 4(a, a, a, a) ← .(7) P 4(c(x1, x

′
1), c(x2, x

′
2), c(x1, x

′
1), c(x2, x

′
2)) ←

P 4(x1, x
′
1, x2, x

′
2).(8)} are added to Prog. Unfortunately Clause (8) is copying.

The process does not terminate, consequently we will never get a program with-
out copying clauses.

To force termination while getting rid of all copying clauses, we fix a positive
integer UncopyingLimit. If we need to generate a predicate Qx where x >
UncopyingLimit we cut Qx into Qx1 , . . . , Qxn with Σ

i∈[1,n]
xi = x, which leads to

an over-approximation since

L(Qx) =

⎧⎨
⎩

−→
t . . .

−→
t︸ ︷︷ ︸

x times

| −→
t ∈ L(Q)

⎫⎬
⎭ ⊆ L(Qx1) × . . . × L(Qxn)

Example 17. Consider Example 16 again, and let UncopyingLimit = 4. Clause
(8) is copying. Applying the process would generate the clause

P 4(c(x1, x
′
1), c(x2, x

′
2), c(x3, x

′
3), c(x4, x

′
4)) ← P 8(x1, x

′
1, x2, x

′
2, x3, x

′
3, x4, x

′
4)

However UncopyingLimit is exceeded. So, we cut P 8 and obtain

P 4(c(x1, x
′
1), c(x2, x

′
2), c(x3, x

′
3), c(x4, x

′
4))

← P 4(x1, x
′
1, x2, x

′
2), P

2(x3, x
′
3), P

2(x4, x
′
4).(9)

Predicates P 4 and P 2 have been defined previously in Prog, so we do not need
to add more clauses to do it.

Finally, the CS-program uncopying(Prog) includes the uncopying clauses (2),
(3), (4), (6), (7) and (9). Recall that L(P 8) is supposed to be defined so that
L(P 8) = {−→

t . . .
−→
t︸ ︷︷ ︸

8 times

| −→
t ∈ L(P )}. Then replacing P 8(x1, x

′
1, x2, x

′
2, x3, x

′
3, x4, x

′
4)

by P 4(x1, x
′
1, x2, x

′
2), P

2(x3, x
′
3), P

2(x4, x
′
4) in the clause-body generates the set

{−→
t . . .

−→
t︸ ︷︷ ︸

4 times

.
−→
t′ .

−→
t′ .

−→
t′′ .

−→
t′′ | −→

t ,
−→
t′ ,

−→
t′′ ∈ L(P )} ⊂ L(P 8), which leads to an over-

approximation. For example P 4(c(a, a), c(a, a), c(c(a, a), c(a, a)), c(a, a)) is in
Mod(uncopying(Prog)) but not in Mod(Prog).

Now, we give a simple example of completion (Definition 8) supplied with
uncopying.

Example 18. Let R={f(x) → g(x, x), a → b}, Prog0={P (f(x)) ← Q1(x). Q1

(a) ←}. Prog0 is a normalized non-copying CS-Program and R is a non-right-
linear rewrite system. There are 2 critical pairs, P (g(x1, x1)) ← Q1(x1). and
Q1(b) ←. To make the critical pairs convergent, we add them into the program
and we get

Prog1 = Prog0 ∪ {P (g(x1, x1)) ← Q1(x1). Q1(b) ←}
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Prog1 contains the copying clause P (g(x1, x1)) ← Q1(x1). So, Definition
16 has to be applied on Prog1. From P (g(x1, x1)) ← Q1(x1), one obtains the
clause P (g(x1

1, x
2
1)) ← Q2

1(x
1
1, x

2
1) by applying applying Definition 15. Thus, in

the same time, one has to compute clausesnew(Q2
1(x

1
1, x

2
1), P rog1). From Q1(a) ←

and Q1(b) ← we get respectively Q2
1(a, a) ← and Q2

1(b, b) ← using Definition 14.
Finally uncopying(Prog1) = Prog0 ∪ {Q1(b) ← . P (g(x1

1, x
2
1)) ← Q2

1(x
1
1, x

2
1).

Q2
1(a, a) ← . Q2

1(b, b) ←}. So, uncopying(Prog1) is a normalized non-copying
CS-Program.

Let Prog2 = uncopying(Prog1). Now, there are 2 non-convergent critical
pairs, Q2

1(a, b) ← and Q2
1(b, a) ←. If we add them to Prog2, we get a normalized

non-copying CS-Program, all critical pairs are convergent. Applying Theorem 2,
Mod(Prog2) is closed by rewriting.

5 Further Work

In this paper, we have shown that the non-regular approximation technique by
means of CS-programs can also deal with left-linear non-right-linear rewrite sys-
tems. Naturally, the question that still arises is: can this technique be extended to
non-left-linear rewrite systems. From a theoretical point of view, applying a non-
left-linear rewrite rule amounts to compute the intersection of several languages
of sub-terms, i.e. the intersection of CS-programs. Unfortunately, it is known
that the class of synchronized tree languages (i.e. the languages recognized by
CS-programs) is not closed under intersection. In other words, except for partic-
ular cases, such intersection cannot be computed in an exact way. However, it
could be over-approximated by a CS-program. We are studying this possibility.
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Abstract. Telephony Denial of Service (TDoS) attacks target telephony
services, such as Voice over IP, not allowing legitimate users to make calls.
There are few defenses that attempt to mitigate TDoS attacks, most of
them using IP filtering, with limited applicability. In our recent work, we
proposed to use selective strategies for mitigating HTTP Application-
Layer DDoS Attacks demonstrating their effectiveness in mitigating dif-
ferent types of attacks. This paper demonstrates that selective strategies
can also be successfully used to mitigate TDoS attacks, in particular,
two attacks: the Coordinated Call Attack and the Prank Call attack. We
formalize a novel selective strategy for mitigating these attacks in the
computational tool Maude and verify these defenses using the statisti-
cal model checker PVeStA. When compared to our experimental results
(reported elsewhere), the results obtained by using formal methods were
very similar. This demonstrate that formal methods is a powerful tool for
specifying defenses for mitigating Distributed Denial of Service attacks
allowing to increase our confidence on the proposed defense before actual
implementation.

1 Introduction

Telephony Denial of Service (TDoS) attacks is a type of Denial of Service (DoS)
attack that target telephony services, such as Voice over IP (VoIP). With the
increase in the popularity of VoIP services, we have witnessed an increase in
TDoS attacks being used to target hospital VoIP systems [1,2] and systems for
emergency lines (like the American 911 system) [3]. Moreover, according the
FBI, 200 TDoS attacks have identified only in 2013 [2].

This paper investigates the use of selective defenses [4] for mitigating two
common TDoS attacks: The Coordinated Call [5] and the Dial Call [6] attacks:

The Coordinated Call attack [5] exploits the fact that pairs of attackers, Alice
and Bob, can collude to exhaust the resources of the VoIP server. Assume that
Alice and Bob are valid registered users.1 The attack goes by Alice simply calling

1 This can be easily done for many VoIP services.
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Bob and trying to stay in the call as long as she can. Since the server allocates
resources for each call, by using a great number of pairs of attackers, one can
exhaust the resources of the server and denying service to honest participants.
This is a simple, but ingenious attack, as only a small number of attackers
is needed generating a small network traffic (when compared to SIP flooding
attack for example). Thus it is hard for the network administrator to detect and
counter-measure such attack.

The Dial Call attack [6] is similar to the usual flooding attack [7] denying
service by overloading the target resources. It has been carried out to shutdown
essential public services, such as the US emergency number (911) and hospital
lines. The attack follows by a large number of attackers (or their bots) initiating
calls to the target call-center. This causes that many, if not all, telephones in the
center to ring. Once the attendant picks up the phone, he can normally notice that
this is fake call and puts down the phone. However, since the number of calls is
very large, the phone rings again, not allowing legitimate clients to be served.

Formal methods and, in particular, rewriting logic can help developers to
design defenses for mitigating DDoS attacks. In our previous work [4] we used
selective strategies in the form of the tool SeVen for mitigating HTTP Low-Rate
Application-Layer DDoS attacks targetting web-servers. We formalized different
attack scenarios in Maude and since our strategies are constructed over some
probability functions, we used statistical model checking [8], namely PVeStA [9],
to validate our defense. Due to our reasonable preliminary results, we imple-
mented SeVen and carried out experiments over the network obtaining similar
results to the ones obtained using formal methods. It took us only 3 person
months to obtain our results using formal methods, while it took us 24 person
months to obtain our first experimental results. Although we strongly believe
that systems should also be validated by means of experiments, the confidence
acquired from our formal analysis was invaluable for the success of this project.2

This paper continues our general goal of using selective strategies for mitigat-
ing DoS attacks, in particular, here for mitigating TDoS attacks. We followed the
same methodology as before, first formalizing our defense, the Coordinated Call
and the Dial Call attacks in Maude and using PVeStA to validate our defense’s
effectiveness. While this paper explains the formal model used, in another techni-
cal report [10], we detail our initial experimental results on mitigating the Coor-
dinated Call attack using SeVen to defend VoIP servers. The results obtained
by using our formal model and our experimental results were very similar.

This paper is organized as follows. Section 2 we review Session Initiation Pro-
tocol (SIP) used for initiating a VoIP call and also explain two different TDoS
attacks: Coordinated Call and Dial Call attacks. Section 3 explains how SeVen
works, while Sect. 4 describes its formalization in Maude. In Sect. 5, we explain
our simulation results including our main assumptions, results and discussion of

2 Notice that although our experiments on the network were controlled experiments,
they used off-the-shelf tools, such as Apache web-servers, which implement a number
of optimizations, and our experiments suffered from interferences that cannot be
controlled, such as network latency.
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the results obtained. We comment in Sect. 6 related and future work. Finally, the
implementation used to carry out our simulations is available for download at [11].

2 VoIP Protocols and DDoS Attacks

We now review the Session Initiation Protocol [12], which is one of the main
protocols used to establish Voice over IP (VoIP) connections. Figure 1 shows the
message exchanges performed to establish a connection between two registered
users, Alice and Bob, where Alice tries to initiate a conversation with Bob. It
also contains the messages exchanged to terminate the connection.

INVITE

Alice SIP Proxy Bob

INVITE

TRYING

RINGING

RINGING

BYE

BYE

OKOK

Initiation

Communication

Termination

OK

OK

ACK

ACK

Fig. 1. Exchange of messages between the server and two users (Alice and Bob) during
a normal execution of the SIP protocol.

For initiating a call, Alice sends an INVITE message to the SIP server inform-
ing that she wants to call Bob. If Bob or Alice is not registered as valid users, the
server sends a reject message to Alice. Otherwise, the server sends an INVITE
message to Bob.3 At the same time, the server sends a TRYING message to Alice
informing her the server is waiting for Bob’s response to Alice’s invitation. Bob
might reject the request, in which case the server informs Alice (not shown in the
Figure), or Bob can accept the call by sending the message RINGING. Finally,
the server sends the message RINGING to Alice and the parties exchange OK
and ACK messages.

At this point, the communication is established and Alice and Bob should
be able to communicate as long as they need/want. (This is represented by the
three ellipses in Fig. 1.) The call is then terminated once one of the parties (Alice)
sends a BYE message to the server. The server then sends a BYE message to the
other party (Bob), which then answers with the message OK, which is forwarded
to Alice, and the connection is terminated.

3 In fact, we omit some steps carried out by the server to find Bob in the network.
This step can lead to DDoS amplification attacks [13] for which known solutions
exists. Such amplification attacks are not, however, the main topic of this paper.
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Many attacks have exploited SIP to deny the VoIP service. We detail two
different attacks to the SIP protocols. The first one is the Coordinated Call
attack and the second one is the Dial Call attack.

Coordinated VoIP Attack. A pair of colluding attackers, A1 and A2, that are
registered in the VoIP service,4 call each other and stay in the call for as much
time as they can. Once the call is established, the attackers stay in the call
for indefinite time. They might be disconnected by some Timeout mechanism
establishing some time bounds on the amount of time that two users might call.
During the time that A1 and A2 are communicating, they are using resources
of the server. If many pairs of attackers collude, then the resources of the server
can be quickly exhausted. This attack is hard to detect using network analyzers
because the traffic generated by attackers is similar to the traffic generated by
legitimate clients. The attackers follows correctly the SIP protocol.

Our own experiments [10] replicating this attack show its effectiveness reduc-
ing the availability of the VoIP service to less than 15 % of legitimate users.

Dial Call Attack. The Dial Call attack is similar to a flooding attack [7] in that
the attackers send a large number of requests targeting essential public resources
services, such as the American 911 service. The attacker launches a high volume
of calls in order to flood the target VoIP service, reducing the availability to
legitimate users. Usually a particular call from the Dial Call attack does not
take long, because the callee hangs up the call when he realizes that is a prank
call. Dial Call attacks are difficult to track and investigate because the calls are
classified as anonymous, hence using traditional traffic analysis tools might not
be an efficient approach to mitigate such attacks.

3 SeVen

We proposed recently [4] a new defense mechanism, called SeVen, for mitigating
Application-Layer DDoS attacks (ADDoS) using selective strategies. An appli-
cation using SeVen does not immediately process incoming messages, but waits
for a period of time, TS , called a round. During a round, SeVen accumulates
messages received in an internal buffer k. If the number of messages accumu-
lated reaches the maximum capacity of the service being protected and a new
incoming request R arrives, SeVen behaves as follows:

1. SeVen decides whether process R or not based on a probability P1. P1 is
defined using the variable PMod following [14]:

k

k + PMod

At the beginning of the round, we set the variable PMod = 0. PMod is incre-
mented whenever the application’s capacity is exhausted and a new incoming

4 Or alternatively two honest users that have been infected to be zombies by some
attacker.
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request arrives reducing thus the probability of new incoming request being
selected by SeVen during a round.

2. If SeVen decides to process R, then as the application is overloaded, it should
decide which request currently being processed should be dropped. This deci-
sion is governed by P2, a distribution probability which might depend on the
state of the existing request.

3. Otherwise, SeVen simply drops the request R without affecting the requests
currently being processed and sends a message to the requesting user inform-
ing that the service is temporally unavailable;

At the end of the round, SeVen processes the requests that are in its internal
buffer (surviving the selective strategy) sending them to the application.

The intuition of why such a defense works is because whenever a system
is overloaded, it is very likely that it is suffering a DoS attack, which means
that it is very likely that an attacker request is occupying the resources of the
service. Therefore, the probability of dropping an attacker’s request is higher
than the probability of dropping an honest request. Thus, even under severe
attack of multiple attackers, an application running SeVen can maintain fair
levels of availability.

There is, however, much space for specifying these probability distributions
governing SeVen. In [4], we showed that by using simple uniform distributions for
dropping existing requests, SeVen can be used to mitigate a number of ADDoS
attacks using the HTTP protocol, such as the Slowloris and HTTP POST attacks
even in the presence of a large number of attackers.

For mitigating both Dial Call and Coordinated Call attacks described in
Sect. 2, we set the probability P2 to depend on (1) the status of the call and (2)
on the duration of a call. We consider two types of call status:

– WAITING: A call is WAITING if it has already sent an INVITE message, but it
is still waiting for the responder to join the call, that is, it has not completed
the initiation part of the SIP protocol;

– INCALL: A call is INCALL if the messages of initiation part of SIP have been
completed and initiator and the responder are already communicating (or
simply in a call).

Thus, any incoming INVITE requests assume the status of WAITING, and these
can change its status to INCALL once the initiation part of SIP is completed.

We assume here that it is preferable to a VoIP server, when overloaded, to drop
WAITING requests than INCALL requests that are communicating not for a very
long duration. In many cases, it is true that interrupting an existing call is consid-
ered to be more damaging to server’s reputation than not allowing a user to start
a new call. This could also be modeled by configuring the probability distributions
of SeVen accordingly. To determine whether a call is taking too long, we assume
that the server knows what is the average duration, tM , of calls.5

5 The value of tM can be obtained by the history of a VoIP provider’s usage.
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Chance to be Dropped

Duration
tM

pWAIT

pIN

Fig. 2. Graph (not in scale) illustrating the behavior of SeVen according to the status
of a call and its duration. pWAIT is the probability of dropping a WAITING call, while
pIN the probability of dropping a INCALL call.

The probability of an INCALL request increase using a Poisson distribution6

once this has a duration of more than tM . Figure 2 depicts roughly the probability
distribution used to drop requests. The actual function d (for drop factor) is of
the form, where t is the call duration:

d(t) =

⎧⎪⎨
⎪⎩

pWAIT if t = 0
pIN if 0 ≤ t ≤ tM

pWAIT + eαt/tM if t > tM

(1)

We use this probability distribution as an illustration of how SeVen can be
used for mitigating VoIP DDoS attacks. Of course, there are many decision
options for these probabilities which will depend on the intended application.
For instance, one could consider that the Poisson distribution should begin only
a period after tM , or that it should be another distribution, etc. It will depend
on the specific requirements of the defense. As our results in Sect. 5 demonstrate,
the values chosen are good enough for the VoIP attacks we consider.

We also have developed SeVen as a proxy in C++ which implements the
strategy explained above, e.g., using the drop function 1, Poisson distribution
and so on. The measures and results (which can be found in another submis-
sion [10]) were very similar to the ones detailed in Sect. 5. Such results confirm
the success of our formal model proposed here.

3.1 Sample Execution

Consider the following buffer, Bi, at the beginning of a round and assume that
k = 3, PMod = 0, the initial time is 9 and the average call duration is tM = 5
time units:

B1 = [〈id1,WAITING, undef〉, 〈id2, INCALL, 0.5〉]
〈id, st, tm〉 specifies that the call id has status st and the call started at time
tm where tm is undef whenever st = WAITING. This buffer specifies that the
6 We used a Poisson distribution because such distributions are normally used for

modeling telephone calls arrival.
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id1 is waiting the responding party to answer (with a RINGING message) his
invitation request and that id2 is currently in a call. This means that id2 is
calling already for way more than the expected average.

Assume that a message 〈id1,RINGING〉 at time 9.5 arrives specifying that
the responder of the request id1 answered the call. The buffer is updated to the
following:

B2 = [〈id1, INCALL, 9.5〉, 〈id2, INCALL, 0.5〉]
Then the message 〈id3, INVITE〉 arrives. Since the buffer is not yet full,

a new request is inserted in the buffer and the message TRYING is sent to
the requesting user. Notice that the RINGING message is not yet sent to the
responding user. The buffer changes to:

B3 = [〈id1, INCALL, 9.5〉, 〈id2, INCALL, 0.5〉, 〈id3,WAITING, undef〉]

Suppose now that another message m1 = 〈id4, INVITE〉 arrives at time 10.5.
As the buffer is now full, it sets PMod to 1 and the application has to decide
whether it will keep m1. SeVen generates a random number in the interval [0,1]
using uniform distribution. Say that this number is less than (3/3 + 1), which
means that it will select to process m1. However, it has to drop some existing
request. The probabilities of dropping one the request in the buffer are as follows
(see Fig. 2):

– id1 has probability pIN to be dropped because it is calling for a duration less
than tM : 10.5 − 9.5 < 5;

– id2 has a much higher probability to be dropped because it is calling for twice
tM : 10.5 − 0.5 = 2 × 5;

– id3 has probability pWAIT to be dropped because it has WAITING status.

Suppose that the application decides to drop id2, which means that the call is
interrupted by the application. The resulting buffer is:

B4 = [〈id1, INCALL, 9.5〉, 〈id4,WAITING, undef〉, 〈id3,WAITING, undef〉]

Assume that now the round time is elapsed. The application sends a RINGING
message to the responder of the requests id3 and id4.

4 Formal Specification

Our specification follows [4,15,16] specifying the attack scenarios using the Actor
Model where attackers, clients, and server send and receive messages. These
messages are stored in a scheduler that maintains a queue of messages. The
attackers do not take control over the channel. Instead they share a channel
with clients.

We formalize all actors in the computational system Maude and carry out
simulations by using the statistical model checker PVeStA. For sake of simplicity,
we considered the server and SeVen as one actor, which means that SeVen is
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also able to operate as a normal SIP Server, e.g., processing and establishing
call connections. Such decision does not affect the analysis of our results, which
are similar to the ones of our experiments over the network [10]. In the following,
we describe our Maude specification.7

eq initState =
<name: server | req-cnt: 0.0 , b-set: [0 | none], none >
<name: client-generate | server: server, cnt: 0 , none >
<name: attacker-generate | server: server, cnt: 0 , none >

{initActor, (attacker-generate <- spawn )}
{initActor, (client-generate <- spawn )}
{Ts, server <- ROUND} .

The equation for initState specifies the initial state of our model, which
contains three actors, an attacker generator, a client generation and SeVen. Each
actor has an ID and a set of attributes. For example, SeVen is called server with
attributes req-cnt storing the value of PMod and b-set the internal buffer with
the current call connections. The attributes cnt in the other two actors stores
how many clients and attackers have been created.

Finally, we also formalize the message configuration between actors that
are going to be added in our scheduler. Each message configuration has the
parameters delivery time and the message itself. For instance, we use the same
initActor delivery time to initialize both actors clients and attackers with a
message spawn. Besides that, we also create a periodically ROUND message to
control the SeVen’s round explained in Sect. 3, which is scheduled to be sent
after Ts time units.

The equations for generating both clients and attackers are omitted here.
Instead, we show their main rewrite rules. The clients have an attribute status
specifying their call state. Its status is none before sending an INVITE message
to the server which happens when it receives a message pool from the equation
generating clients8 as specified by the following rewrite rule:

rl [CLIENT-RECEIVE-POOL] :
<name: c(i) | server: Ser, status: none, AS >
{c(i) <- poll}

=>
<name: c(i) | server: Ser , status: invite, AS >
{ gt + delay, (Ser <- INVITE(c(i)))} .

The following rewrite rule specifies the behavior of a client upon receiving a
RINGING message from the server. It changes the client’s state from invite to
connected and generates a message BYE, scheduled to be sent after some time

7 For the sake of presentation, we simplified here some aspects such as the use of the
scheduler appearing in the complete model which can be found in [11].

8 Note that there is a value delay inserted when a message is sent in order to have a
more realistic model.
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in the interval ]0, tMedio]. This means that all legitimate clients do not overpass
the average time of the duration of calls. We omit the rule specifying when client
receives a drop message.

rl [CLIENT-RECEIVE-RINGING] :
<name: c(i) | server: Ser, status: invite, AS >
{c(i) <- RINGING}

=>
<name: c(i) | server: Ser , status: connected, AS >
{ gt + randomNumber(0,tMedio), (Ser <- BYE(c(i)))} .

The rewrite rules for the attackers are similar to the client rules. The only
difference is that no BYE message is generated, thus, specifying the Coordinated
Call attack where attackers attempt to stay in the call for indefinite time. We
elide these rules.

Fig. 3. Rewrite rules specifying SeVen’s selective strategy.

Figure 3 depicts the rules implementing SeVen’s strategy. For each INVITE
message received by some actor Actor, the rule SeVen-RECEIVE-INVITE checks
whether the buffer of the server reached its maximum. If not, then the incoming
request is added to the server’s buffer (ConfAcc2) and a message TRYING to the
corresponding actor is created. Otherwise, SeVen throws a coin (p1) to decide
whether the incoming request will be processed using pmod. If SeVen decides to
process the incoming request, then some request being processed (the one sent by
ActorDr) is swapped with the new incoming request resulting in the buffer nBuf
and pmod gets incremented, resulting in the configuration ConfAcc. Moreover,
a poll message to ActorDr and a TRYING to Actor are created. Otherwise,
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the incoming request is rejected and pmod is incremented without affecting the
server’s buffer resulting in the configuration ConfRej. A poll message to Actor
is also created.

The rule SeVen-APP-ROUND specifies that when the round finishes, all surviv-
ing requests in the server’s buffer are answered, where a new round starts and
pmod is re-set.

5 Simulation Results

We detail our simulation results obtained from our formal specification using
the statistical model checker PVeStA [9]. Our simulations are parametric in the
following values:

– Average time of a call – tM : This is the assumed average time of the of calls
of honest users. We assume tM = 5 time units;

– Probability distribution parameters (Func 1) – pIN, pWAIT and α: These are the
constants used to configure the distribution probability for dropping requests
as shown in Fig. 2;

– SeVen Round Time – tS : This is the time that SeVen waits accumulating
requests, as described in Sect. 3. In our simulations, we use 0.4 time units.

– Size of Buffer – k: This is the upper-bound on the size of B, denoting the
processing capacity of the application. k = 24;

– Number of calls among honest participants (countHonest) and among collud-
ing attackers (countAttacker). In all our simulations, we fixed the number of
clients to countHonest = 24 requests. Whenever we create an honest request,
we specify how long the users want to talk, i.e., have the INCALL status;

– Total time of the simulation - total: This is the total time of the simulation
using PVeStA. We used in our simulations total equal to 40 time units, similar
to the time used in [15];

– Delay of the Network: We also assumed a delay of 0.1 time units of message
in the network;

– Degree of confidence for the simulation: Our simulations were carried out
with a degree of confidence of 99 % (see [8,17] for more details on probabilistic
model checking).

Quality Measures. In our simulation, we use novel quality measures specific for
VoIP services. These are specified by expressions of the QuaTEx quantitative,
probabilistic temporal logic defined in [17]. We perform statistical model check-
ing of our defense in the sense of [8]: once a QuaTEx formula and desired degree
of confidence are specified, a sufficiently large number of Monte Carlo simula-
tions are carried out allowing for the verification of the QuaTEx formula. The
Monte Carlo simulations are carried out by the computational tool Maude [18]
and the statistical model checking is carried out by PVeStA.

The QuaTEx formulas, i.e., the quality measures, that we use in our simu-
lations are defined below. The operator © is a temporal modality that specifies
the advancement of the global time to the time of the next event (see [17] for
more details).
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– Complete: How many honest calls were able to stay in the INCALL status for
the expected duration.

complete(total) = if time > total then countComplete
countHonest

else © complete(total)

where countComplete is a counter that is incremented whenever an honest
call is completed.

– Incomplete: How many honest calls were able to have the INCALL status but
were dropped before completing the call, i.e. not staying in INCALL status for
the expected duration;

incomplete(total) = if time > total then countIncomplete
countHonest

else © incomplete(total)

where countInComplete = countIncall − countComplete and countIncall is
a counter that is incremented whenever an honest calls changes from status
WAITING to INCALL.

– Unsuccessful: How many honest calls were not even able to reach the INCALL
status. That is, how many calls were not even able to start talking between
each other.

unsuccessful(total) = if time > total then countUnsuccess
countHonest

else © unsuccessful(total)

where countUnsuccessful = countHonest − countIncall.
– The average of clients incomplete calls: We also measure how many percent

in average legitimate clients were able to talk in an incomplete call.

avgInCall(total) = if time > total then totalT imeInCall
totalIncompleteCall

else © avgInCall(total)

where totalT imeInCall is the sum of how many percent of time clients were
able to talk before being interrupted and the totalIncompleteCall is the total
of clients the were not able to finish their call as explained in Incomplete.

We consider that an honest request that was completed has a better perfor-
mance than an honest request that was interrupted in the middle of a call which,
on the other hand, has a better performance than an honest request that did
not even succeed in starting a call, i.e., never reached the INCALL status.
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5.1 Coordinated Call Attack

Figure 4 contains our main results for the scenarios where the application is under
the Coordinated Call attack discussed in Sect. 2. We considered scenarios where
the application is using SeVen (Fig. 4(a)) and not using any defense mechanism
(Fig. 4(b)).

Figure 4(a) shows that the application maintains great levels of availability
when using SeVen. The Complete calls reduce from 95 % to 81 % of the legitimate
calls when the number of attackers increase. The difference is distributed between
Incomplete and Unsuccessful calls, where the former is around 13 % and the
latter is around 6 % of the legitimate calls. On the other hand, when SeVen is
not running, in all simulations, most legitimate users are not able to start a call:
When the number of attackers increase, the rate of Unsuccessful call increase
from 55 % to 75 % and the rate of Successful call decrease from 45 % to 25 %,
which means that when SeVen is running, there is an increase of availability by
a factor of 3.

Moreover, the average duration of incomplete calls (Fig. 4(c)) stayed around
70 %, that is, in average, a call that was dropped before completing its duration
was able to stay communicating for around 70 % of the intended time.

Comparison with Our Experimental Results. We implemented [10] the Coordi-
nated Call attack and SeVen as described here. Our experimental results were

(a) Client Success Ratio when run-
ning SeVen.

(b) Client Success Ratio when not running
SeVen.

(c) Average Duration of Incomplete Calls
when using SeVen

Fig. 4. Simulation results for when the application suffers a Coordinated Call attack.
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very similar to the ones we obtained here. In particular, when not running SeVen,
we observed very high levels of Unsuccessful calls (85 % of legitimate calls), low
levels of Complete calls (15 % of legitimate calls) and no Incomplete calls. These
results are very similar to the ones in Fig. 4(b). When running SeVen, our exper-
iments showed a high rate of Successful calls (65 % of legitimate calls), a low
rate of Incomplete calls (25 % of legitimate calls) and very low rate of Unsuc-
cessful calls (10 % of legitimate calls). These results are very similar to the ones
in Fig. 4(a). Finally, we also measured the average duration of Incomplete calls
with an average of 60 % of total call duration being very close to the results in
Fig. 4(c).

These results support our claim that Formal Methods can be used for propos-
ing novel selective defenses for mitigating DDoS attacks. We leave to future work
the comparison of formal methods results with experimental results for other
attacks such as the Dial Call attack.

5.2 Dial Call Attack

Figure 5 shows the results obtained when the application is under a Dial Call
attack. We observe that when SeVen is running, the application maintains fair
levels of availability. Whereas without SeVen the number of calls that have been
completed drops to around 28 % of legitimate calls, it drops to 53 % when SeVen

(a) Client Success Ratio when run-
ning SeVen.

(b) Client Success Ratio when not running
SeVen.

(c) Average Duration of Incomplete Calls

Fig. 5. Simulation results for when the application suffers Dial Call attack.



Formal Specification and Verification of a Selective Defense 95

is running, which means an improve of availability by a factor of almost 2.
Moreover, the number of calls that is not even able to reach an INCALL sta-
tus, the Unsuccessful calls, only increases more sharply to 21 % in the presence
of 550 attackers when using SeVen, while it increases considerably when not
using SeVen to around 71 %. Finally, the average duration of Incomplete calls
(Fig. 5(c)) remains at around 70 % of their intended duration.

These results provide us with strong evidence that SeVen can be used to
mitigate the Dial Call attack. We are currently implementing the machinery to
carry out experiments on the network.

6 Related and Future Work

This paper formalized a new selective defense to mitigating Coordinated Call
and Dial Call attacks. We have shown that using state-dependent probability
distributions for selecting which calls are to be processed results in high levels
of availability even in the presence of a great number of attackers. The results
obtained by our formal model using statistical model checking tools were very
similar to the results we obtained running experiments at least for the Coordi-
nated Call attack scenarios.

For VoIP protocols, there have been some defense proposals. For example [19]
proposes a filtering mechanism for SIP flooding attacks. It is not clear whether
such mechanisms will be enough for mitigating the Coordinated VoIP attack, as
the number of messages needed to carry out such attack is much less, a feature
of ADDoS. Wu et al. [20] have proposed mechanism to identify intruders using
SIP by analyzing the traffic data. Although we do not tackle the identification
of intruders problem, we find it an interesting future direction.

The formalization of DDoS attacks and their defenses has been subject of
other papers. For example, Meadows proposed a cost based model in [21], while
others use branching temporal logics [22]. This paper takes the approach used
in [15,16,23], where one formalizes the system in Maude and uses the Statistical
Model Checker PVeStA to carry out analyses. While [15,16,23] modeled tra-
ditional DDoS attacks exploiting stateless protocols on the transport/network
layers, we are modeling stateful Application Layer DDoS attacks. Moreover, the
quality measures used for VoIP services under TDoS attacks, described in Sect. 3,
are different to the quality measures considered in the previous work.

More recently [4], we proposed SeVen showing that it can be used to mitigate
ADDoS attacks that exploit the HTTP protocol. This paper shows that SeVen
can also be used to mitigate DDoS attacks in VoIP protocols, but in order to
do so one needs state-dependent probabilistic distributions. This is because of
the quality requirements that we need in VoIP communications. We would like
to give a priority to the types of call that should be given more chances to keep
using resources of the server. In particular, we give preference to calls that do
not take more than the average duration time. Such quality measures are not
present in HTTP protocols that we analyzed in [4].
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For future work, we are currently implementing controlled experiments with
the Dial Call attack carried out on the network. We expect that these experi-
ments also validate our simulation results for this attack. We are also thinking
on intrusion detection mechanisms. We are also interested in building defenses
for mitigating amplification attacks [13]. We have also been using SeVen for
mitigating High-Rate ADDoS attacks using Software Defined Networks [24].
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Abstract. We argue that considering transitions at the same level as
states, as first-class citizens, is advantageous in many cases. Namely, the
use of atomic propositions on transitions, as well as on states, allows tem-
poral formulas and strategy expressions to be more powerful, general, and
meaningful. We define egalitarian structures and logics, and show how
they generalize well-known state-based, event-based, and mixed ones. We
present translations from egalitarian to non-egalitarian settings that, in
particular, allow the model checking of LTLR formulas using Maude’s
LTL model checker. We have implemented these translations as a proto-
type in Maude itself.

Keywords: Modular specification · State/transition structure ·
Rewriting logic · Model checking · Kripke structure · LTS · Temporal
logic · Strategy

1 Introduction

There is a case of discrimination in computer science that favors states against
transitions (call them events or actions, if you prefer). It is not unlike the dis-
crimination by gender in some human societies. Considering transitions just as
a means to go from a state to another is as unfair as considering women just as
a means for passing genes from father to son. We want to show that this dis-
crimination (against transitions) hinders specification and programming tasks.

There exist, certainly, transition-oriented formalisms as well as state-oriented
ones. State-oriented structures (like Kripke structures) give names to states and
assert that some atomic propositions are true on each state. State-oriented tem-
poral logics (like LTL and CTL) use these propositions as basic formulas. On
the other hand, transition-oriented structures (like labeled transition systems,
LTSs) also give names to states; transitions are associated to a non-unique action
name. The only way to identify a transition is by looking at the adjacent states.
Action names are used in formulas in transition-oriented temporal logics, like
HML (Hennessy-Milner logic) [10] and ACTL* [6], but they are not formulas
by themselves. In both types of logics, formulas are evaluated on states or on
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computations starting at an initial state. Even the idea of evaluating a formula
on a transition sounds odd.

The origin of this discriminating view is a model of information systems in
which indivisible and instantaneous events occur that change the system’s state.
We argue that, as successful as this model has been, it is not the whole story.

An imperative program is a sequence of instructions and it is natural to see
a state in the gap between two consecutive instructions. The evolution of (part
of) one such program can be represented like this:

We used askH as an abbreviation for “ask for handle to file” and relH for “release
handle”. The si are names for states. Suppose now that this is not the only
program or process running in the system, and the two write instructions involve
a shared resource and need to be executed in mutual exclusion. There is a critical
section, and it is natural to consider it as an unrefined composed state. This
would be a bird’s-eye view of the program:

Now, we can define the proposition in-crit1 to be true in the critical section;
and in-crit2 for the other program. We can assert mutual exclusion by the
LTL formula

mutex := �(¬in-crit1 ∨ ¬in-crit2)
and perform verification as needed.

There is a better way. There is no reason why states s2 and s4 should be
considered to be in the critical section. Indeed, the very question of whether
a state belongs to the critical section is dubious: mutual exclusion is required
when doing something, not while standing still. The alternative is to consider
the critical section as an unrefined composed instruction:

However, mutual exclusion algorithms specified in this way are rare. In rewriting
logic, specifications in the spirit of the one on the left are way more usual than
the one on the right:

rl [enter] : rem => crit . rl [crit] : entering => exiting .
rl [exit] : crit => rem . rl [rem] : exiting => entering .

The reason, or one of them, is that the formula mutex involves atomic proposi-
tions, and these are usually only available on states. If propositions on transitions
were available, we could define in-crit to hold true on both writing instructions
and then use the same formula mutex.

Another desirable property of such a program is that the shared file is not
used unless access to it has been granted previously. In a state-based setting this
could be expressed by the formula

�(in-crit → -�gotFileH)
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with -� meaning “at some past time”. We would declare in-crit to hold on s3,
and gotFileH to hold on s2. However, an unexpected way to go from s1 to s2 is
discovered: through the action hackH, that gets a handle in a non-standard way,
without asking or letting the system know. So, the question is not whether the
program got access to the file, but how it did so. We need to refer to transitions
in our formula. If we had action names available as basic formulas, we could use

askB4use := �(write1 → -�askH)

as a more fitting formula. But note the difference between mutex and askB4use
as written above: while the former reflects mutual exclusion by itself, and is valid
for any programs in which in-crit can be defined, the latter is only meaningful
for file-sharing programs whose actions are named exactly as they appear in the
formula. The way to go is by defining propositions on transitions using-res and
asking-for-res, making them hold, for our example system, on the transitions
labeled write1 and askH, respectively, and then using the formula

�(using-res → -�asking-for-res).

This is a meaningful and general formula.
Consider now strategy languages. If, instead of verifying, we want to control

the programs so as to ensure mutual exclusion, we can impose the following
regular-expression strategy:

((askH1; other* ; relH1) | (askH2 ; other* ; relH2))*

We have added process indices to instructions, and other is a shorthand for
the disjunction of all instructions different from askH and relH. This expression
ensures that after askH1 no other instruction related to file handling is possible
until relH1 is performed; in particular, askH2 is forbidden in between. And vice
versa. Again, this expression can only be applied to systems that use these same
labels, and often this is not possible or reasonable.

Specifications should be written just thinking of the behavior they model.
Later, atomic propositions are defined and formulas or strategies are built on
them. This is usual in state-oriented systems. When such a system is refined or
otherwise modified, propositions are redefined if needed, but their names do not
need to change, let alone the formulas.

The approach we propose to improve the strategy is to define enter and
exit as propositions on transitions, common to both programs, representing
the entrance to and exit from the critical section, respectively. These are true,
for our example system, of askH and relH, respectively, and false otherwise. In
Maude-like syntax, we would define, for both programs:

var enter exit : Prop .
eq askH |= enter = true .
eq relH |= exit = true .
eq I:Instruction |= P:Prop = false [owise] .

We can thus build the strategy:

(enter ; (¬enter)* ; exit)*
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Then, if there is the need to specify a system with exclusive access to a commu-
nication channel, using instructions, say, get-channel and release-channel,
the same proposition names and the same strategy expression can be used.

In a word, the advantage of propositions on transitions (and on states) is
decoupling : writing the system specification and writing the temporal prop-
erty are independent tasks. The definition of propositions provides an inter-
face. Changes in the identifiers used in the system need not be accompanied by
changes in temporal formulas, but just in the definition of propositions. Tempo-
ral formulas and strategy expressions gain in generality.

Our proposal of giving transitions first-class citizenship is visually represented
by making a box appear in the middle of every arrow representing a transition,
with states in rounded shapes and transitions in rectangles—Petri-net style:

In this way, every element—state or transition—is explicit and can be treated
the same. The same as only states were treated before. There remains an only
source of discrimination: while a state can have several arrows going in and out,
a transition only has one of each. Monogamy for her, polygamy for him. (But
see section on future work.)

1.1 Related Work

Several temporal logics have been proposed that make joint use of actions and
propositions on states: ACTL* [6], RLTL [18], SE-LTL [4], TLR* [16], ESTL
[11]. There are also definitions of structures with mixed ingredients: LKS [4],
L2TS [5], Petri nets [17].

The best moves towards fairness we know of are the temporal logic of rewrit-
ing, TLR*, and the event-and-state-based temporal logic, ESTL, the former
designed for rewriting logic and the latter for Petri nets. The explanations and
examples in [16] and [11] are good arguments for an egalitarian view. In both
cases, the point is that some properties of systems can only be directly specified
if we can talk about states and transitions within the same logic. Our formula
askB4use above was inspired by an example in [11]. In another example, this
time from [16], fairness for a rule � is expressed by the formula:

�� enabled-� → � � taken-�

The proposition enabled-� is on states: it means that the current state of the
system has the form needed to apply rule � to it. But taken-� is on transitions:
it tells that the transition being executed is according to rule �. Propositions on
transitions are unavoidable. Or, rather, they are avoidable at the price of cooking
the system (in Meseguer’s terminology), making it artificially complex, so that
some information about transitions is kept in states.

In ESTL, formulas are evaluated on cuts that are composed of places and
transitions mixed together. A basic ESTL formula is a name of a place or of a
transition. This is indeed an egalitarian view. What ESTL does not achieve is
decoupling, as it uses literally names from the Petri net. We are not discussing
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Petri nets, and egalitarian structures are not directly related to them, although
at least part of our work can probably be adapted to them through the imple-
mentation on rewriting logic proposed in [15].

Rewriting logic is an appropriate formalism to be egalitarian, because, as
pointed out in [15], transitions are represented by proof terms, in the same way
as states are represented by state terms. We expand on this below. But TLR*
stays a step away from our aim, because, while it uses atomic propositions on
states, it uses proof-term patterns (called spatial actions) to express properties
of transitions. These patterns are less powerful than general propositions (for
an example, a pattern cannot represent the set of proof terms in which a given
variable has been instantiated with an even integer). But the real drawback
is that a TLR* formula is only meaningful for algebraically specified systems,
and for a particular algebraic specification. Spatial actions use literally elements
from the text of the specification, so that no decoupling is achieved. In contrast,
formulas using propositions—on states, like in CTL*, or on transitions, as we
advocate—are meaningful for any system where the atomic propositions can be
defined, irrespective of the formalism used to specify it. Notably, we know of
three implementations of model checkers for (the linear-time subset of) TLR*,
and all of them propose some kind of propositions on transitions [1,2,13].

1.2 Our Contributions in This Paper

In Sect. 2, we propose egalitarian structures, and show how they encompass typical
state-based and event-based structures. In Sect. 3, we show how systems (espe-
cially rewrite ones) can be given egalitarian semantics. In Sect. 4, we describe
translations from egalitarian structures to state-based ones. Correspondingly, we
describe a way to split each rule of a rewrite system into two halves, so that new
states arise that represent the transitions of the original system. In Sect. 5, we show
how also temporal logics can be translated, and how all this allows performing ver-
ification on the resulting state-based systems to draw conclusions about the orig-
inal, egalitarian systems. In Sect. 6, we describe our implementation, that allows
the specification and model checking of egalitarian structures in Maude. Sections
on future work and conclusions complete the paper.

There is an extended version of this paper available at http://maude.sip.
ucm.es/syncprod. The Maude code for our implementation and some examples
can also be found there.

2 Egalitarian Structures

Let us recall the usual definitions of labeled transition system (LTS) and Kripke
structure. An LTS is given by a tuple (S,Λ, δ), where S is the set of states, Λ the
alphabet of actions, and δ : S×Λ → 2S the non-deterministic transition function.
A Kripke structure is given by a tuple (S,R,AP, L), where S is again the set
of states, R ⊆ S2 the transition relation, AP the set of atomic propositions,
and L : S → 2AP the labeling function, that assigns to each state the set of
propositions that hold true on it. Graphically:

http://maude.sip.ucm.es/syncprod
http://maude.sip.ucm.es/syncprod
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In some cases, both action names and atomic propositions on states are used
in a mixed structure. We propose egalitarian structures as a generalization of all
these cases. An egalitarian structure is given by a tuple (S, T,R,AP, L), where:

– S is the set of states;
– T is the set of transitions;
– R ⊆ (S × T ) ∪ (T × S) is the bipartite accessibility relation that is functional

on T , that is, for each t ∈ T there are exactly one s ∈ S and exactly one s′ ∈ S
such that (s, t) ∈ R and (t, s′) ∈ R;

– AP is the set of atomic propositions on both states and transitions;
– L : S ∪ T → 2AP is the labeling function for both states and transitions.

The same atomic proposition can be defined on states and on transitions in
the same structure. Indeed, it is plausible that a proposition that is satisfied on
several consecutive states also holds on the transitions between them. As pointed
out in the introduction, the functionality of R on T is the only discriminatory
requirement we allow.

Egalitarian structures generalize LTSs and Kripke structures. An LTS L =
(SL, ΛL, δL) can readily be made into an equivalent egalitarian structure E(L) =
(SE , TE , RE ,APE , LE) by defining:

– SE := SL;
– TE := {(s, λ, s′) ∈ SL × ΛL × SL : s′ ∈ δL(s, λ)};
– RE is given by sRE (s, λ, s′) and (s, λ, s′)RE s′;
– APE := ΛL;
– LE((s, λ, s′)) := {λ}, and LE(s) := ∅.

Graphically:

Atomic propositions in E(L) represent actions in L, so it seems fitting that
states are assigned no label. The equivalence between these two structures is left
at the intuitive level and we do not care to make it formal in this paper.
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A Kripke structure K = (SK, RK,APK, LK) can be made into an equivalent
egalitarian structure E(K) = (SE , TE , RE ,APE , LE) by defining:

– SE := SK;
– TE := RK (considered as a subset of SK2);
– RE is given by sRE (s, s′) and (s, s′)RE s′;
– APE := APK;
– LE(s) := LK(s), and LE((s, s′)) := LK(s) ∩ LK(s′).

Graphically:

The choice LE((s, s′)) := LK(s)∩LK(s′) allows the continuity of satisfaction,
that is, that a proposition true on two consecutive states is also true while
traveling between them. Whether this is appropriate depends on the precise
concept of equivalence between K and E(K), but, again, we do not care to make
it formal. We will have something more to say on this below when dealing with
rewriting logic.

3 Egalitarian Semantics for Rewrite Systems

The embedding of Kripke structures in egalitarian ones given above implies that
any specification that is interpretable on the former can use the latter instead.
The definition of transitions as pairs of states can be improved in some cases,
because we can produce objects (read terms, if you prefer) that properly identify
transitions without explicitly relying on the states around. In [3], for instance,
it is shown how transitions in CCS can be represented by proof terms derived
from the system of rules that implement the semantics of the language. These
proof terms, however, are not CCS terms—they are built according to a different
syntax.

Rewriting logic provides a better example. A transition in a rewrite system
is represented by a proof term [15], just as a state is represented by a term of
the appropriate sort. Proof terms need some extra symbols in the signature,
but they are still terms, and structural information can be drawn from them.
Consider this toy example system:

ops f g : Nat -> SomeSort .
op _+_ : SomeSort SomeSort -> State .
var N : Nat .
rl [a] : N => N + 1 .
rl [b] : f(N) => f(3) .



Egalitarian State-Transition Systems 105

From the initial state g(1) + f(2) the three possible transitions are shown here,
with their respective proof terms:

Each proof term includes the rule label in the context in which it is being
applied, and with the values that instantiate the variables in the rule. Seen in this
way, rewrite systems are naturally egalitarian, and are easily interpretable on
egalitarian structures. (Indeed, as rewriting logic is well suited for implementing
language syntax and semantics, proof terms become available for any language,
if only in this indirect way.)

We propose a definition of rewrite system slightly different from the usual
one, in order to make its egalitarian nature clearer, and also so that our ensuing
exposition gets easier. Namely, we include in its signature the declaration of rule
labels. It is not the definition of a more egalitarian kind of rewrite system, but
a more egalitarian definition of the same concept.

In the setting of rewriting logic, the standard definition of a rewrite system
(or rewrite theory) is given by a tuple (S,O,E ∪ Ax,R), where S is a set of
declarations of sorts (sometimes with a subsort relation among them), O is a set
of declarations of function symbols (operators), E is a set of equations, Ax is a
set of equational attributes, and R is a set of rewrite rules. Sometimes, S and O
are denoted together by Σ and called the signature.

The egalitarian definition of a rewrite system is a tuple (S,O,L,E ∪ Ax,R),
where L, the only novelty, is a set of declarations of rule labels. As rule labels
are used to identify transitions (by building proof terms), it is fair that they are
declared, as operators are. Each rule-label declaration has the same form as an
operator declaration, that is, it contains argument sorts and a result sort. For
the example above, the rule label declarations would be:

lb a : Nat -> Nat .
lb b : Nat -> SomeSort .

The argument sorts are the ones of the variables that appear in the rule with
that label (in their textual order if there are several variables, or the empty list
of sorts if there are none). It is a requirement for any valid rewrite rule that both
sides are terms of the same kind. We add to this that the result sort of the rule
label has to be of the same kind as well. In a simple but typical case, both sides
of the rule would be terms of the same sort State, and so will be the result sort
of its label.

For verification and other purposes, one often assumes, in the standard set-
ting, that S includes declarations for sorts State and Prop, and that O includes
the infix symbol |= : State× Prop → Bool. For the egalitarian setting we assume
the sort Elem to represent both states and proof terms. We also still need Prop.
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Thus, the operator |= is declared as |= : Elem×Prop → Bool. Any sort can include
terms built using symbols from O and from L, but with either one or no symbol
from L. (This reflects the remaining discrimination pointed out in the intro-
duction.) States are represented by terms of sort Elem with no symbol from L;
transitions are terms of sort Elem with exactly one occurrence of a symbol from L
(so-called one-step proof terms). When needed, we assume the existence of sorts
State and Trans, defined as subsorts of Elem as described; or, equivalently, we
assume the existence and definition of predicates isState, isTrans : Elem → Bool.
No particular sort is needed for other proof terms, that is, f(2) and b(2) are
both of sort SomeSort. (More precise, though slightly different, algebraic defin-
itions are given in [13].)

The semantic function, that we denote as E ′, is now easy. For a rewrite
system R = (SR, OR, LR, ER ∪ AxR, RR), its semantics are given by E ′(R) =
(SE , TE , RE ,APE , L′

E), where:

– SE := TSR∪OR /ER∪AxR,State (terms of sort State modulo equations);
– TE := TSR∪OR∪LR /ER∪AxR,Trans (terms of sort Trans modulo equations);
– RE is given by sRE t and tRE s′ for each t that is a proof term for a one-step

derivation from s to s′;
– APE := TSR∪OR /ER∪AxR,Prop (terms of sort Prop modulo equations);
– L′

E(s) := {p ∈ APE : s |= p = true modulo ER ∪ AxR}, for s ∈ SE ;
– L′

E(t) := L′
E(s) ∩ L′

E(s′) for t ∈ TE , and s, s′ such that sRE t and tRE s′.

The definition of the labeling, in particular, reflects the one for the embedding
of Kripke structures in egalitarian ones given in the previous section to guarantee
continuity of satisfaction. Thus, we have that this diagram commutes:

In it, we denote as RwS the class of rewrite systems, as KS the class of Kripke
structures, and as EgS the class of egalitarian structures. Also, “sem” is the
semantics based on term algebras described in [7], E is the embedding of Kripke
structures in egalitarian ones from Sect. 2, and E ′ is the semantics just defined.

The labeling deserves a deeper thought. In a rewrite system, seen in an egal-
itarian way, atomic propositions and the equations defining them apply equally
to states and to transitions. Often, a state and a neighboring transition have
similar algebraic shapes, and that eases a continuous definition of satisfaction
for them. In the simple example above, consider this proposition has-g1:

op has-g1 : Prop .
var E : Elem .
eq g(1) + E |= has-g1 = true .
eq E |= has-g1 = false [owise] .

This equational definition makes at once the proposition true for the transi-
tion g(1) + b(2) and for the state g(1) + f(2), and false for the transition
g(a(1)) + f(2) and for the state g(2) + f(2).
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Considering this, a better, more egalitarian, and more flexible definition of
the labeling for any Elem e is:

– LE(e) := {p ∈ APE : e |= p = true modulo ER ∪ AxR}.

The semantics of rewrite systems as egalitarian structures according to this label-
ing is denoted as E (instead of the previous E ′) from now on.

4 Translation to Familiar Grounds

We define now functions K and “split” so that the following diagram commutes:

EgRwS is the class of rewrite systems defined in the egalitarian way. (More pre-
cisely, the diagram commutes only when monogamy of transitions is guaranteed;
more on this below.)

Our aim is to benefit from tools and concepts available for the lower half of
the diagram, and use them in the egalitarian systems and structures on the upper
half. For instance, in Sect. 5 we define the satisfaction of a temporal formula on
an egalitarian structure based on the standard satisfaction on a Kripke structure,
and in Sect. 6 we use existing model checkers with a new mission.

Also note that, although rewriting logic is egalitarian in nature, as discussed
above, because states and transitions are represented as like terms, Maude is not
so, as proof terms are not Maude objects. The function “split”, as we describe
below, makes transitions appear as new states, allowing thus to be egalitarian in
an indirect way. Our implementation, described in Sect. 6, is based on this idea.

Sometimes we call split systems or structures the ones that result from apply-
ing K or “split”. Also, the states of a split system or structure that were originally
a transition are called t-states; the others are s-states.

Transforming an egalitarian structure into a Kripke one is accomplished in
this simple way:

(S, T,R,AP, L) K−−−−−→ (S ∪ T,R,AP, L).

That is, we make old states and transitions into new states. Visually, this is
reflected by changing square shapes into rounded ones:

(Note that this is not the inverse of the embedding E : KS → RwS given above.)
The transformation “split” on rewrite systems, designed to reflect K, is more

involved. The idea is removing each rule
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crl [�] : l(x) → r(x) if C(y)

and adding in its place
crl [�1] : l(x) → �(x, y) if C(y) and rl [�2] : �(x, y) → r(x)

with the straightforward simplification for non-conditional rules. The condition
applies to the firing of the rule, not to its continuation. The variables in the tuple
y are the new ones, not in x, that appear in matching and rewriting conditions
in C.

This splitting of a rule into two produces new states in the split rewrite
system that correspond to the new states produced by K. With rules a and b
(from the beginning of Sect. 3) split in the way described, we get a rewrite system

rl [a1] : N => a(N) .
rl [a2] : a(N) => N + 1 .
rl [b1] : f(N) => b(N) .
rl [b2] : b(N) => f(3) .

whose standard Kripke semantics includes this:

This is exactly K applied to the egalitarian structure for the original system, as
drawn in Sect. 3.

More formally now, given R = (S1, O1, L1, E1∪Ax1, R1), we build split(R) =
(S2, O2, E2 ∪ Ax2, R2) by this series of steps:

1. S2 is produced by renaming sorts State to SState, Trans to TState and
Elem to State in S1 (so SState and TState are subsorts of State); this
renaming must be propagated all through the specification;

2. letting O2 := O1 ∪ L1 (that is, rule labels are transformed into operators);
3. letting E2 := E1, and Ax2 := Ax1;
4. splitting rules in R1 to produce the ones in R2, as explained above.

There is still a difficulty with the resulting system. For it to be equivalent
to the original one, we need to ensure that half-rule �1 is always immediately
followed by �2, for each original rule �. Otherwise, another half-rule �′

1 could
take place in between, a behavior not possible in the original system. Again, this
reflects the discrimination of monogamy for transitions, polygamy for states.

A solution is restricting our attention to topmost rewrite systems. Many
interesting rewrite systems are topmost or can be easily transformed into an
equivalent one that is topmost and formally similar [9]. A topmost rewrite system
is one in which all rewrites happen on the whole state term—not on its subterms.
Formally, this is guaranteed by requiring that all rule labels have result sort Elem
(or its subsort Trans), and that the sort Elem does not appear as argument in
any constructor or rule label, so that no term of sort Elem can be subterm of
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another term of the same sort. In particular, this prevents that the left-hand
side of a rule is a variable (of sort State). If this happened, the resulting proof
term would have shape �(S), for S of sort State, so the split system would not
be topmost even though the original one was.

In a topmost system, the term �(t1, . . . , tn), resulting from applying the half-
rule �1, can only be rewritten using half-rule �2, as we need. Or, this is so if
there are no two rules with the same label and the same argument sorts. We
assume that our systems fulfill this mild requirement. This is the same reasonable
requirement made to overloaded function symbols.

We assume from now on that transition monogamy is guaranteed in split
systems in some way. Thus, the diagram at the beginning of this section is
commutative. The definitions have been chosen so that the proof of that result
is straightforward.

5 Temporal Logics on Egalitarian Structures

As LTSs and Kripke structures can be seen as particular cases of egalitarian
structures, any temporal logic designed for the former ones can also be inter-
preted on the latter. This includes HML [10] and the μ-calculus [12], and all the
CTL* family [8]. More interestingly, mixed logics like ACTL* [6] that use at the
same time action identifiers and atomic propositions on states, are interpretable
on egalitarian structures.

As introduced above, we would like to define and verify the satisfaction of
temporal formulas on egalitarian structures by translating the problem to well-
known non-egalitarian settings. That is, we want temporal logics TL1 and TL2

and a translation σ to complete the previous diagram to this one:

TL2 is any state-based logic, like LTL. In Meseguer’s terminology [16], the maps

(K, σ) : EgS × TL1 → KS × TL2

(split, σ) : EgRwS × TL1 → RwS × TL2

must be faithful maps of tandems, that is, the satisfaction relation must be
preserved. Indeed, instead of giving a new, independent definition for semantics,
we consider they are given by σ and define satisfaction on the upper half of the
diagram as satisfaction of translations on the lower half:

R, e |=eg ϕ iff split(R), e |= σ(ϕ).

Here, |=eg is the egalitarian satisfaction relation, R is an egalitarian rewrite
system, e a state or transition, and ϕ a temporal formula. Remember that, for
this definition of |=eg to work as expected, we need monogamous transitions in
split(R).
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Raw LTL. The perfect temporal logic to play the role of TL1 would also be
egalitarian, to exploit the full potential of egalitarian structures. By that we
mean a logic able to use propositions both on states and on transitions as its
basic formulas, and to evaluate formulas on transitions. In a different way: we
want σ to be onto. To the best of our knowledge, no such logic has been proposed,
although TLR* [16] and SE-LTL [4] come close.

The obvious onto transformation is the identity: TL1 = TL2 = LTL and
σ = id. Thus, for example, the next operator � has to be interpreted on an
egalitarian structure as “in all outgoing transitions” when on a state, and “in the
destination state” when on a transition. That gives the specifier full power. This
is equally valid for state-based temporal logics other than LTL. The moral is:
instead of (or in addition to) looking for new state-and-transition-based temporal
logics, use well-known state-based logics on split systems.

From LTLeg to LTL. Consider a Kripke structure K and an LTL formula ϕ
interpreted on K. We can interpret ϕ on E(K), the embedding of K as egalitarian
structure, by pretending that transitions are not present and jumping from state
to state. Let us refer to LTL with these semantics on egalitarian structures as
LTLeg. We want to find the σ that makes faithful the map of tandems (K, σ) :
EgS × LTLeg → KS × LTL. From a practical point of view this is pointless, as it
amounts to translating a problem (K, ϕ) on KS × LTL to the more complex one
(K(E(K)), σ(ϕ)) on the same setting; but it is an interesting exercise.

The next operator � is originally only interested in states, so it must skip
t-states. The translation σ must duplicate this operator: σ(�ϕ) := � � σ(ϕ).
The at all future times operator �, being an LTL operator, must rather be
understood as on all future states. The translation σ must make it skip every
second state, which is known to be non-doable in LTL [19]. We have to use the
atomic proposition isTrans, true for t-states and false otherwise, and define
σ(�ϕ) := �(isTrans ∨ σ(ϕ)).

However, intuitively, something is wrong in the specification of a system if
a property that is supposed to hold at all future times does not hold while
transitions are being executed. If I am feeling sleepy until lunch and also after
lunch, so would I be while having lunch. Remember the discussion at the end
of Sect. 3 about the proposition has-g1. For another example, think of a system
whose states are given as soups of objects, that is, independent objects tied by
a commutative and associative operator (often represented by empty syntax).
This could be such a state:

<client1, waiting, info1> <client2, running, info2> <server, client2>

We are interested in knowing whether some client is waiting. The proposition
some-waiting can be defined like this:

eq <C, waiting, I> Rest |= some-waiting = true .
eq Conf |= some-waiting = false [owise] .

When client2 finishes its communication with the server, the system executes
the rule

rl [finish] : <C, running, I> <server, C>
=> <C, finished, I> <server, noclient> .
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and goes to state
<client1, waiting, info1> <client2, finished, info2> <server, noclient>

by means of the transition
<client1, waiting, info1> finish(client2, info2)

The point to note is that some-waiting is true, as defined, in both states and
in the transition.

From TLR* to CTL*. The approach to propositions on transitions in TLR* is
through the use of so-called spatial actions, that is, patterns for proof terms. A sin-
gle rule label �, for instance, is a valid spatial action. Variable instantiations and
contexts for rewriting can also be specified. For each of these patterns, an equiva-
lent atomic proposition on t-states can be defined. Equivalent in the sense that a
t-state satisfies the proposition iff it matches the pattern. This was implemented
in [1] and in [13]. We assume this equivalence, so that any spatial action appearing
in a TLR* formula can appear as a proposition in a CTL* formula. (Defining a
proposition equivalent to a single rule-label pattern involves exploring the proof
term to search for the label at any nesting level. However, rules tend to be applied
at particular spots in the term. Compare to operators: it is rare that we are inter-
ested in whether a particular operator appears at any nesting level on a state term,
and then define atomic propositions according to it.)

In TLR*, propositions on states and spatial actions are clearly separate enti-
ties: the former are only tested on states, the latter only on transitions. But when
interpreted on K(R) both are propositions on states. In order to be able to define
σ, we need that K(R) includes two subsorts of Prop: SProp and TProp.

From TLR*’s point of view, a transition is tied to its origin state. Thus, if
Pt is a TProp and Ps is an SProp, the formula �(Pt ∧ Ps) means “Ps must hold
on the next state, and Pt must hold on the transition going out from that next
state”. Likewise, the formula � Pt means “Pt must hold in all future transitions”.

This deserves formalization. Taking as primitive constructs for TLR* nega-
tion, disjunction, next, until, and existential quantification on paths, we define
σ : TLR* → CTL* by:

– σ(P ) = P , if P has sort SProp;
– σ(P ) = �P , if P has sort TProp;
– σ(¬ϕ) = ¬σ(ϕ);
– σ(ϕ1 ∨ ϕ2) = σ(ϕ1) ∨ σ(ϕ2);
– σ(�ϕ) = � � σ(ϕ);
– σ(ϕ1 Uϕ2) = (isState → σ(ϕ1))U (isState ∧ σ(ϕ2));
– σ(Eϕ) = Eσ(ϕ).

The proposition isState, as explained in Sect. 3, needs to be defined in K(E) as
true on s-states and false on t-states.

The previous two examples defined new semantics for raw LTL and LTLeg

through the translations σ. This case is different, because TLR* already has
semantics [16]. It can be shown that these semantics agree. The proof is in the
extended version of this paper.
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6 Our Implementation

We have implemented in Maude the translation just defined, but restricted to
the linear-time subset of TLR*, called LTLR, and to topmost systems. That is:

(split, σ) : EgRwS × LTLR → RwS × LTL.

The implementation and some examples are available for download from our
website: http://maude.sip.ucm.es/syncprod. The extended version of this paper,
also available from our website, contains an appendix with detailed instructions
for using the implementation.

The function “split” is implemented by a module operator SPLIT[ModName].
It produces a module with each original rule split into two, and with the original
rule labels added as operators to the signature. Users, after coding a system mod-
ule, say Orig, can import the split module by using protecting SPLIT[Orig].
Then, they have available sorts StateOrig (a renaming of the original State)
and TransOrig, and also a new sort State, which is a supersort of the other
two.

In the exposition in Sect. 3 we proposed the name Elem to include states
and transitions. However, we want to be ready for our future developments in
which we anticipate that nested module operators will be used. That is why we
always assume that the input system has a sort named State, and we guarantee
that the same is true for the produced system. Module operators observing
this convention can be combined. For instance, SPLIT[SPLIT[Orig]] is a valid
module expression.

If model checking is the aim, atomic propositions on s-states and t-states
can be declared and their satisfaction defined by the usual means. The model-
checking function, modelCheck, expects an LTL formula, that it interprets in the
split module (without any consideration to the fact that it is a split module).
We have implemented the syntax of LTLR and the translation σ described at
the end of the previous section (except that we do not need quantification on
paths, as we restrict to linear time). The function that performs the translation
is called LTLR. We have not included in this implementation spatial actions, so
our flavor of LTLR uses propositions on transitions and no spatial actions. The
syntax for LTLR formulas has been defined with a symbol “@” attached to each
logical symbol, to avoid clashes with LTL syntax: @True, @->, and so on. Not a
beautiful choice, but acceptable for a prototype. The formula LTLR(@~ P @-> Q),
for example, can be used in the model checker, assuming propositions P and Q
have been properly declared and defined, each one either of sort SProp or TProp.

To test the performance of our tool, we have found useful an example sys-
tem about a communication channel described in [16]. The system contains a
parameter, maxFaults, that limits the number of duplications and losses of mes-
sages the communication can suffer. This single number allows tuning the size of
the state space and drawing some conclusions on the performance of the model
checker.

We have chosen a pure LTL formula and have model checked it in the stan-
dard way. Then, we have split the system specification and translated the formula

http://maude.sip.ucm.es/syncprod
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(considering it is in LTLR) and have model checked it again. In short, we are
performing an equivalent model checking in a more involved and costly way.
The aim is to get an idea of how much is lost in performance to pay for being
egalitarian, for being interested in transitions. Part of the data is in this table:

Standard LTL Split

maxFaults States Secs States Secs

7 26,077 1 202,686 2

9 61,676 1 518,097 4

11 129,695 3 1,157,874 10

13 249,981 8 2,344,098 30

15 450,261 33 4,396,666 105

(It must be noted that this system has an infinite number of reachable states.
It is a surprise that Maude’s model checker behaves gracefully on it. The reason
must be that the system is finitely branching and that the property we try to
verify is indeed satisfied in finite time in every computation.)

According to the table, the transitions in the original system seem to out-
number the states, and this results in large split systems. Each state on the split
system needs less mean time to be processed than each state on the original,
presumably because t-states have unique in and out arrows.

Note that this extra complexity is not introduced by our splitting translation,
but by our egalitarian view. Transitions have to be explored, either as such
transitions or as new states after the translation.

6.1 An Alternative Translation

Already in [16], Meseguer proposed a different translation from TLR* to CTL*,
with a corresponding translation of rewrite systems. It was later implemented
in Maude by Bae for LTLR in [2], with the explicit aim of using Maude’s LTL
model checker. Both their translation and their implementation differ from ours.

They include in each state the information about the transition that took
to it. If a given state has several transitions leading to it, the resulting system
has a copy of the state for each such transition. The number of states added is
usually much larger in our translation, but each state is more complex in theirs.
This is a different way to pay for being interested in transitions.

The translation of temporal formulas is based on the replacement of each
occurrence of a proposition on transitions P by �P : what was a property of a
transition associated to the current state, becomes a property of the transition
part of the next state.

Their implementation does not require the system to be topmost. Our own
translation, on the other hand, seems more intuitive, because it just adds new
states in each arrow, without really changing the structure. Consider this simple
system (on the left), our translation (in the middle), and theirs (on the right):
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The implementation in [2] works at the metalevel, as does the theoretical
description in [16]. Basically, they emulate the original rewrite system with a
single rule rl t → next(t), with the function next doing all the work and the term
t including all the information about the original module, the current state, and
some bookkeeping needed for the emulation. In contrast, we use the metalevel
to produce a new object-level module, which we then model check. Obtaining
modules at the object level is important for us because, as noted above, we
foresee we will be using nested module operators in the future.

Our method’s performance is better on the systems we have tested. This is
most probably due to the fact that we work at the object level, with simpler
terms being rewritten. The following data comes from model checking the same
communication-channel system cited above, this time with a formula containing
a proposition on transitions (resp., a spatial action):

Our method [2]’s method

maxFaults States Secs States Secs

2 3,886 0 2,406 2

3 35,459 1 20,281 25

4 77,804 2 42,937 57

5 332,256 12 172,510 278

6 568,066 30 not run

It has to be noted that Bae and Meseguer took one more step and modified
Maude’s model checker at the C++ level to allow for model checking LTLR
directly.

7 Future Work

We want to point out three directions in which our proposals could be profitable.
We intend to pursue some of them in the near future.

Concurrent Proof Terms. The persistence of a discrimination in the defini-
tion of egalitarian systems is a hint that we are midway to somewhere. Remember
the discrimination: transitions have unique in and out arrows. Bipartite alternat-
ing automata—or any bipartite structures—can be seen as extensions of egali-
tarian structures where the discrimination has been dropped in a particular way.
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In a different spirit, Petri nets also represent a generalization of our egalitarian
structures, allowing several arrows in and out of a transition.

Removing the topmost requirement seems more interesting, thus allowing
several rules to be executing simultaneously. For instance, the toy system we
used above, with the rule rl [a] : N => N + 1, allows the derivation

f(1) + g(1) −→ f(a(1)) + g(1) −→ f(a(1)) + g(a(1))

This last term represents two concurrent executions of rule a. Suppose f and
g represent two components of a software system, and the argument is their
version number. Rule a is version updating for each component. It happens,
however, that version 2 of each component is only compatible with version 2
of the other. Any sequential, interleaved execution (like the ones performed by
Maude’s engine) necessarily visits a state with incompatibility. This same engine
will find the right way on a split system.

Synchronization and Strategies. In [14], we study the possibility of syn-
chronized execution of several Maude systems. In principle, the synchronization
happens on states by agreement on their propositions, but on transitions only
by identity of rule labels. This is often not enough, and having propositions on
transitions opens interesting possibilities.

A use of such synchronized execution will be the implementation of strategic
control. Strategy languages for rewrite systems usually include rule labels to
denote actions, but more general tests (or propositions) on states. The use of
propositions on transitions, as already pointed, would allow decoupling the tasks
of system specification and strategy design. If, for example, the system is refined,
or modified in some way, the definition of the propositions can also be modified
correspondingly, with no change in the name or meaning of the propositions, let
alone in the formulas to be verified.

Shrinking the Size of Systems. Several methods for shrinking the size
of systems, especially with model checking in mind, are in common use:
invisible-transition collapse, partial order reduction, equational abstraction, fold-
ing abstractions, well-structured transition systems. Some of them focus only on
states and others only on transitions. An egalitarian view could result in new
insights.

8 Conclusion

We have tried to convince the reader that granting to transitions all the privileges
enjoyed by states can help in specification and verification tasks. In particular,
we advocate for the free use of atomic propositions on transitions, as well as
on states. Mixing both kinds of propositions helps make specifications, both of
systems and of their temporal properties, more powerful and intuitive. Indeed,
it allows to definitely decouple specification tasks from verification ones: entities
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from the system specification are not used literally in formulas, because propo-
sitions provide an interface. For strategy languages, propositions on transitions
make it possible to give general meaning to strategies, independent from the
particular formalization of the system to be controlled.

Structures that allow general propositions on transitions are not common.
Egalitarian structures are designed to play this role, and labeled transition sys-
tems and Kripke structures can be embedded in them. Rewriting logic is par-
ticularly well suited for an egalitarian view, that is, there are natural semantics
from rewrite systems as egalitarian structures.

There are ways to apply existing tools and concepts to egalitarian structures.
Faithful maps of tandems can be given from egalitarian structures and logics
to better-known settings. This paper presents a prototype implementation in
Maude, allowing the specification of egalitarian systems and their verification
using the available LTL model checker.
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Abstract. Non-Functional Properties (NFPs) are crucial in the design
of software. Specification of systems is used in the very first phases of the
software development process for the stakeholders to make decisions on
which architecture or platform to use. These specifications may be ana-
lyzed using different formalisms and techniques, simulation being one of
them. During a simulation, the relevant data involved in the analysis of
the NFPs of interest can be measured using monitors. In this work, we
show how monitors can be parametrically specified so that the instrumen-
tation of specifications to be monitored can be automatically performed.
We prove that the original specification and the automatically obtained
specification with monitors are bisimilar by construction. This means
that the changes made on the original system by adding monitors do
not affect its behavior. This approach allows us to have a library of pos-
sible monitors that can be safely added to analyze different properties,
possibly on different objects of our systems, at will.

1 Introduction

As system complexity grows, specification of systems becomes an even more
important task during the first phases of the software life cycle. With the prolifer-
ation of distributed systems due to Cloud-computing systems, Internet of Things,
etc., with software being present in all activities of our lives, Non-Functional
Properties (NFPs) are gaining relevance in design decisions.

Specification of software and its simulation can be used to get insights about
how the system is going to behave. Furthermore, by adding monitors or observers
to system specifications, software engineers can analyze those NFPs of inter-
est [9]. System specifications have to be instrumented in order to get probes of
executions. One may think of different NFPs, such as response time, through-
put, mean cycle time or rate of failures. However, different NFPs have to be
monitored by different observers, and such observers are typically hard-coded in
the specifications.

To cope with this lack of modularity, many alternatives have been proposed.
For example, in Aspect-Oriented Programming, code is instrumented by moni-
tors as a cross-cutting concern. Other works, as the one presented in [16], propose
c© Springer International Publishing Switzerland 2016
D. Lucanu (Ed.): WRLA 2016, LNCS 9942, pp. 118–133, 2016.
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adding observers as new elements (objects) of the language. See [17] for a discus-
sion of how to monitor non-functional properties in component-based systems.

In most cases, and even with more emphasis in the case of distributed or
concurrent systems, these specifications are written with, among others, the
purpose of verification. Different kinds of verification can be achieved depending
on the desired level of evidence and precision in the proofs. Furthermore, some
formalisms are more amenable to perform some proofs or checks than others.
For example, a specification in Promela/Spin [8] is more amenable to perform
model-checking that a specification in UML. Likewise, a specification in Coq [1]
is well-suited to perform theorem-proving. This means that a tight dependence
between formalisms and the verification one can perform exists. Among all kind
of formalisms, we find very attractive those which can be executed, since the
software engineers involved in the software development can get insights on where
they are failing or on which parts they have to stress.

Execution of a system specification means that the system at hand can be
simulated in the very first phases of software design, and, at very low additional
cost, software engineers can test different designs and approaches, thus getting
insight about how the system is going to fulfill the required NFPs. However,
to analyze the behavior of a system under simulation, we have to measure the
properties we want to study.

Rewriting logic [10] provides a formal framework where concurrent and dis-
tributed systems can be naturally defined. Since the specification remains within
a formal environment, different kinds of verification can be performed: conflu-
ence, model-checking, reachability analysis or invariant analysis. Additionally,
rewriting logic specifications are executable, providing prototypes that can be
simulated and tested.

In this work we propose the definition of monitors in a very general way.
If monitors are defined following certain guidelines, their addition to any real-
time object-oriented specification is automatic, and what more important, the
original behavior of the system after being instrumented is not changed.

We focus on object-oriented modules that must be defined using Real-Time
Maude [14], since the main applications we envision are real-time and stochastic
systems. On these specifications, we are interested in measuring system proper-
ties, i.e., properties that affect the whole system as throughput, and individual
properties, i.e., properties related to concrete objects as traffic or utilization.

Monitors can be defined just by querying data. Thus, we give a skeleton
Maude module which can be used to define any kind of monitor query by spec-
ifying the data structure to use and the query to perform.

Besides the theoretical results, a tool in the rewriting logic language Maude is
presented to include generically defined monitors to system specifications. Using
the reflective capabilities of Maude, we have defined module operations that take
the specifications to be analized and the generic monitors to be used on them, and
generate new modules with the instrumented specifications. We have used the
extensibility capabilities of Full Maude [4,6] to provide a new module expression
giving access to such module operation. Thus, we can not only automatically
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instrument our specifications with reusable monitors, but also use them in our
specifications and commands as any other module.

The rest of the paper is structured as follows. Section 2 presents the rewriting
logic language Maude and its Real-Time Maude extension, which allows us to
define systems with time annotations. Section 3 presents the structure of moni-
tors we use and basic principles of the approach. Section 4 presents the automatic
transformation and the module operation implementing it. Section 5 provides the
proof for bisimilarity between the original specification and the instrumented
one. Section 6 provides one additional example. Section 7 wraps up the paper
with some conclusions and ideas for further extensions and improvements.

2 Maude and Real-Time Maude

Maude [2,3] is an executable formal specification language based on rewrit-
ing logic [10], a logic of change that can naturally deal with states and
non-deterministic concurrent computations. A rewrite logic theory is a tuple
(Σ,E,R), where (Σ,E) is an equational theory that specifies the system states
as elements of the initial algebra T(Σ,E), and R is a set of rewrite rules that
describe the one-step possible concurrent transitions in the system.

Rewriting operates on congruence classes of terms modulo E. This of
course does not mean that an implementation of rewriting logic must have an
E-matching algorithm for each equational theory E that a user might specify.
The equations E are divided into a set A of structural axioms for which matching
algorithms are available and a set E of equations. Then, for having a complete
agreement between the specification’s initial algebra and its operational seman-
tics by rewriting, a rewrite theory (Σ,E ∪ A,R) is assumed to be such that the
set E of equations is (ground) Church-Rosser and terminating modulo A, and
the rules R are (ground) coherent with the equations E modulo A (see [5,7]).

Maude provides support for rewriting modulo associativity, commutativity
and identity, which perfectly captures the evolution of systems made up of
objects linked by references. Maude has a rich set of verification and valida-
tion tools, and its use is widespread in many fields of research. Furthermore,
Maude has demonstrated to be a good environment for rapid prototyping, and
also for application development (see [3]).

Among the tools and extensions of Maude, one interesting tool for specifying
distributed and concurrent systems is Real-Time Maude [14], a rewriting-logic-
based specification language and formal analysis tool that supports the formal
specification and analysis of real-time systems. Real-Time Maude provides a sort
Time to model the time domain, which can be either discrete or dense. Then,
passage of time is modelled with tick rules of the form

crl [l] : {t, T} => {t′, T + τ} ifC.

where t and t′ are system states, T is the global time, and τ is a term of sort Time
that denotes the duration of the rewrite, and that advances by τ the global time
elapse. Since tick rules advance the global time, in Real-Time Maude time elapse
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is usually modeled by one single tick rule, and the system dynamic behavior by
instantaneous transitions [14]. Although there are other sampling strategies, in
the most convenient one this single tick rule models time elapse by using two
functions: the delta function, that defines the effect of time elapse over every
model element, and the mte (maximal time elapse) function, that defines the
maximum amount of time that can elapse before any action can be performed.
Then, time can advance non-deterministically by any time amount τ , which must
be less than or equal to the maximum time elapse of the system.

crl [tick] : {t, T} => {delta(t, τ), T + τ} if 0 < τ ≤ mte(t) ∧ C.

3 General Monitors

In this section we present our proposal for the specification of system-
independent monitors. Given a Real-Time Maude object-oriented system speci-
fication we provide operations to automatically add objects to measure different
properties. We distinguish two types of properties, namely, those on individual
objects, e.g., the number of messages received by each node in a network, or the
number of defective pieces produced by each machine in a production line, and
those on global systems, e.g., the average time taken by messages in reaching
their destination or the average failure rate of the machines in a system. We
handle both cases uniformly by assuming that there are classes in our specifica-
tion whose objects “represent” the subsystems being monitored. For instance,
we might assume that our network of nodes has a net object with references to
all the nodes in it. This would allow us to use an individual monitor associated
to the net object instead of a system monitor associated to all the node objects.
This might be the case if we wanted to consider, for instance, multiple nets in
the same system and separately monitor information on them.

We assume a Real-Time Maude object-oriented specification, with a flat con-
figuration of objects and messages (i.e., no nested configurations) and with all
rewrite rules of the system defined on terms of sort System, that is, on terms of
the form {Conf, T }, with Conf a flat configuration and T a term of sort Time.

To present and illustrate our monitors, we use a very simple specification of
a messaging system, shown in Fig. 1, where we have interconnected nodes, some
of which belong to a subclass a message creator nodes, which create messages
to be delivered through the net via specific neighbors. The Node class is defined
with an attribute neighbors of type List{Oid}. Its MsgCreator subclass has, in
addition, attributes targets, with the identifiers of the nodes it may be address-
ing messages to, and a counter to limit the number of generated messages. The
Net class represents the entire net of nodes. It has an attribute elems with the
identifiers of the nodes in the net. Messages are of the form to T via N, without
sender identifier nor any contents to simplify the specification, where T is the
identifier of the target node and N is the neighbor node the message is being sent
through. The auxiliary operation pickOne is used to select an element in a list,
which will be used in the create-msg and resend-msg rules to randomly select
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omod SMP i s
pr NAT−TIME−DOMAIN−WITH−INF .
inc RANDOM + COUNTER .
pr LIST{ Oid} .

var Msg : Msg . vars O O1 ON : Oid .
var VCreator : MsgCreator . var VNode : Node .
var VNet : Net . vars T T ’ : TimeInf .
vars L L ’ EL EL ’ : List{ Oid} . var N : Nat .
var Atts : AttributeSet . var Conf : Configuration .

sort System .
op {_ , _} : Configuration TimeInf −> System [ ctor ] .

class Net | elems : List{ Oid} .
class Node | neighbors : List{ Oid} .
class MsgCreator | targets : List{ Oid } , counter : Nat .
subclass MsgCreator < Node .
msg to_via_ : Oid Oid −> Msg .

op delay : Msg Time −> Msg .
eq delay ( Msg , 0) = Msg .

r l [ create−msg ] :
{ < ON : VNet | elems : ( EL O EL ’ ) >

< O : VCreator | targets : L , neighbors : L ’ ,
counter : s ( N ) , Atts > Conf , T }

=>
{ < ON : VNet | elems : ( EL O EL ’ ) >

< O : VCreator | targets : L , neighbors : L ’ , counter : N , Atts >
delay ( to pickOne ( L , random ( counter ) rem size ( L ) )

via pickOne ( L ’ , random ( counter ) rem size ( L ’ ) ) ,
random ( counter ) rem 500)

Conf , T } .
r l [ get−msg ] : { < ON : VNet | elems : ( EL O EL ’ ) >

< O : VNode | Atts > ( to O via O1 ) Conf , T }
=> { < ON : VNet | elems : ( EL O EL ’ ) >

< O : VNode | Atts > Conf , T } .
cr l [ resend−msg ] : { < ON : VNet | elems : ( EL O EL ’ ) >

< O : VNode | neighbors : L , Atts >
( to O1 via O ) Conf , T }

=> { < ON : VNet | elems : ( EL O EL ’ ) >
< O : VNode | neighbors : L , Atts >
delay ( to O1 via pickOne ( L , random ( counter ) rem size ( L ) ) ,

random ( counter ) rem 5) Conf , T }
i f O =/= O1 .

op pickOne : List{ Oid} Nat ˜> Oid .
eq pickOne ( O L , 0) = O .
eq pickOne ( O L , s ( N ) ) = pickOne ( L , N ) .

op mte : Configuration −> TimeInf .
eq mte ( delay ( Msg , T ) Conf ) = min ( T , mte ( Conf ) ) .
eq mte ( ( to O via O1 ) Conf ) = 0 .
eq mte ( Conf ) = INF [ owise ] .

op delta : Configuration Time −> Configuration .
eq delta ( delay ( Msg , T ) Conf , T ’ )

= delay ( Msg , T monus T ’ ) delta ( Conf , T ’ ) .
eq delta ( Conf , T ) = Conf [ owise ] .

cr l [ tick ] : { Conf , T } => { delta ( Conf , T ’ ) , T + T ’ }
i f T ’ := mte ( Conf ) /\ 0 < T ’ /\ T ’ < INF .

endom

Fig. 1. Specification of a simple messaging system



Towards Generic Monitors for Object-Oriented Real-Time Maude 123

omod MONITOR i s
pr CONFIGURATION .
pr NAT−TIME−DOMAIN−WITH−INF .
sort Data .
class @Monitor | o : Object , data : Data .
op eval : Data Time Object Configuration Configuration Configuration

−> Data .
op mon : Oid −> Oid [ ctor ] .

endom

Fig. 2. Core of monitors

elements in the list of targets and neighbors. The create-msg rule creates a
new message addressed to a random target via a random neighbor, the get-msg
specifies the reception of a message by its addressee, and the resend-msg rule
specifies the action in which a node receives a message that is not addressed for
it and resends it via one of its neighbors. Note that such rule will resend the
message via one of its randomly chosen neighbors. Delays in message delivery is
specified with the usual delay operator (see [14]). Real-Time Maude’s tick rule
and mte and delta functions are defined as usual.

Inspired by the works on wrapper objects, and specifically on the Onion-Skin
pattern [11,13], we add monitors to our specification by means of wrappers. We
will show a generic monitor structure that, by specifying the definition of the
data structure and the query for the monitor to use, can be instantiated to a
concrete monitor to be added to our system.

Each object to be monitored is wrapped inside a monitor object that will
observe its behavior and will collect the required information on it. This generic
monitor structure is defined by the MONITOR module in Fig. 2. There is a class
@Monitor whose instances will wrap objects in their o attributes. The data of
the monitor is stored in the attribute data, of sort Data, to be later instantiated
depending on the specific kind of monitor defined. There is an operation eval,
that will be used to recalculate the monitored information, depending on the

omod TRAFFIC−MONITOR i s
inc MONITOR .
pr NAT .
subsort Nat < Data .

var N : Nat .
var T : Time .
var Obj : Object .
vars LConf RConf GConf : Configuration .

eq eval ( N , T , Obj , LConf , RConf , GConf )
= N + #msgs ( LConf ) .

op #msgs : Configuration −> Nat .
eq #msgs ( Msg Conf ) = s(#msgs ( Conf ) ) .
eq #msgs ( Conf ) = 0 [ owise ] .

endom

Fig. 3. Traffic monitors
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actions specified in individual rules, with parameters: (i) the current monitor’s
data, (ii) the time at which the expression is evaluated, (iii) the monitored object
in the LHS of the rule, (iv) the objects and messages explicitly stated in the rule’s
LHS, (v) the objects and messages in the rule’s RHS, and (vi) the rest of the
LHS’ configuration. The individual monitor of an object with identifier O will
have identifier mon(O).

Specific monitors can be defined by specifying of the function eval, which
could be defined over any data structure, just by appropriately subsorting the
sort Data. For example, given the simple messaging system specified in the mod-
ule in Fig. 1, we may count the number of messages received by each of the nodes

var Msg : Msg . vars O O1 ON : Oid .
var VCreator : MsgCreator . var VNode : Node .
vars L L ’ EL EL ’ : List{ Oid} . var N : Nat .
vars Atts @Atts : AttributeSet . var Conf : Configuration .
vars T T ’ : TimeInf . var VNet : Net .
var @D : Data .

r l [ create−msg ] :
{ < ON : VNet | elems : ( EL O EL ’ ) >

< mon ( O ) : @Monitor |
o : < O : VCreator |

targets : L , neighbors : L ’ , counter : s ( N ) > >
Conf , T }

=>
{ < ON : VNet | elems : ( EL O EL ’ ) >

< mon ( O ) : @Monitor |
o : < O : VCreator |

targets : L , neighbors : L ’ , counter : N > >
delay ( to pickOne ( L , random ( counter ) rem size ( L ) )

via pickOne ( L ’ , random ( counter ) rem size ( L ’ ) ) ,
random ( counter ) rem 500)

Conf , T } .
r l [ get−msg ] : { < ON : VNet | elems : ( EL O EL ’ ) >

< mon ( O ) : @Monitor | o : < O : VNode | Atts > >
( to O via O1 ) Conf , T }

=> { < ON : VNet | elems : ( EL O EL ’ ) >
< mon ( O ) : @Monitor | o : < O : VNode | Atts > > Conf , T } .

cr l [ resend−msg ] : { < ON : VNet | elems : ( EL O EL ’ ) >
< mon ( O ) : @Monitor |

o : < O : VNode | neighbors : L >,
data : @D >

( to O1 via O ) Conf , T }
=> { < ON : VNet | elems : ( EL O EL ’ ) >

< mon ( O ) : @Monitor |
o : < O : VNode | neighbors : L >,
data : eval ( @D , T ,

< O : VNode | neighbors : L >,
(< ON : VNet | elems : ( EL O EL ’ ) >
< O : VNode | neighbors : L > ( to O1 via O ) ) ,

(< ON : VNet | elems : ( EL O EL ’ ) >
< O : VNode | neighbors : L >
delay ( to O1

via pickOne ( L , random ( counter ) rem size ( L ) ) ,
random ( counter ) rem 5) ) ,

Conf ) >
delay ( to O1 via pickOne ( L , random ( counter ) rem size ( L ) ) ,

random ( counter ) rem 5) Conf , T }
i f O =/= O1 .

Fig. 4. Rules of the simple messaging system with individual monitors
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in the system by wrapping each of them inside monitor objects as in Fig. 4, and by
defining the eval function in a module TRAFFIC-MONITOR extending the MONITOR
module, given an auxiliary #msgs function which counts the number of messages
in a configuration, as shown in Fig. 3. Note that the data attribute remains
unchanged in the create-msg rule, but it is recalculated in rules get-msg and
resend-msg, those rules in which node objects receive messages.

The subsort relation states the data type of the monitor data. This monitor
is going to store only a natural number, used to count the number of messages
the node at hand has processed. Note that the operation eval is total and it
will increment the natural number stored in the monitor with the number of
messages in the rule’s LHS.

By rewriting our initial configuration with our nodes wrapped inside mon-
itor objects using the rules in Fig. 4, we get a final configuration in which the
data attributes of each of the monitor objects contains the number of messages
received by that node.

4 Construction of the Instrumented Specification

The construction of instrumented specifications has been automated by provid-
ing a module expression MONITOR that takes as arguments the specification to
be monitored, the class whose objects are to be wrapped, the set of rules on
which the measures are to be evaluated, and a concrete monitor to apply to it,
in which the Data sort and the eval functions are defined, and that produces the
corresponding new module. The module expression is integrated in Full Maude
and is handled as any other module expression [6].

Given an object-oriented system specification S, a class C, a set of rule labels
LS, and a concrete monitor M , the rewrite theory M [S,C,LS,E] denotes the
system S but now instrumented with the monitor E as follows:

– M [S,C,LS,E] includes both S and M , plus transformed copies of the rules
of S so that each rule of the form

cr l [L ] : { < O : C′ | Atts > Conf , T }
=> { < O : C′ | Atts′ > Conf ′ , T }
i f Cond .

with C ′ a subclass of C or C itself, and L in LS, generates a new rule
cr l [L ] :

{ < mon (O ) : Monitor | o : < O : C | Atts >, data : D > Conf , T }
=>
{ < mon (O ) : Monitor |

o : < O : C | Atts′ >,
data : eval (D , T ,

< O : C | Atts >,
Conf ,

< O : C | Atts′ > Conf ′ ) >

Conf ′ ,
T }

i f Cond .

– All other occurrences of objects
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< O : C | Atts >

of subclasses of C in rules, equations and memberships will be rewritten as
< mon (O ) : Monitor | o : < O : C | Atts >, data : D >.

– All other objects in rules are left as they were.
– In case multiple objects appear in the same rule/equation/membership, dif-

ferent D variables will be consistently used. E.g., if L is not in LS, for a rule
with two objects of class C in its left-hand side, the following rule will be
generated:

cr l [L ] :
{ < mon (O1) : Monitor | o : < O1 : C | Atts1 >, data : D1 >

< mon (O2) : Monitor | o : < O2 : C | Atts2 >, data : D2 >
Conf , T }

=>

{ < mon (O1) : Monitor | o : < O1 : C | Atts1 ′ >, data : D1 >

< mon (O2) : Monitor | o : < O2 : C | Atts2 ′ >, data : D2 >

Conf ′ , T }

Note that:

– Those rules with no objects in subclasses of C remain as in the original module,
and

– There might be more than one object in subclasses of C in the lefthand side
of a rule, in which case the above transformation has to be applied to each
of them, that is, we must consider all possible matches of the above pattern.
E.g., given a rule

cr l [L ] :
{ < O1 : C1 | Atts1 >

< O2 : C2 | Atts2 >
Conf , T }

=>

{ < O1 : C1 | Atts1 ′ >

< O2 : C2 | Atts2 ′ >

Conf ′ , T }
i f Cond .

with C1 and C2 subclasses of C and L in LS, we get the rule
cr l [L ] :

{ < mon (O1) : Monitor | o : < O1 : C1 | Atts1 >, data : D1 >
< mon (O2) : Monitor | o : < O2 : C2 | Atts2 >, data : D2 >
Conf , T }

=>
{ < mon (O1) : Monitor |

o : < O1 : C1 | Atts1 ′ >,
data : eval (D1 , T ,

< O1 : C1 | Atts1 >,
< O2 : C2 | Atts2 > Conf ,

< O1 : C1 | Atts1 ′ > < O2 : C2 | Atts2 ′ > Conf ′ ) >
< mon (O2) : Monitor |

o : < O2 : C2 | Atts2 ′ >,
data : eval (D2 , T ,

< O2 : C2 | Atts2 >,
< O1 : C1 | Atts1 > Conf ,

< O1 : C1 | Atts1 ′ > < O2 : C2 | Atts2 ′ > Conf ′ ) >

Conf ′ , T }
i f Cond .
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Given the SMP module shown in Fig. 1 and the module TRAFFIC-MONITOR in
Fig. 3 defining the counter of received messages, the module expression
MONITOR [ SMP , Node , get−msg resend−msg , TRAFFIC ]

produces the instrumented version of the SMP module as previously explained.
This module operation is indeed integrated in Full Maude and can be used, for
example, to execute the following rewrite command:
rew in MONITOR [ SMP , Node , get−msg resend−msg , TRAFFIC−MONITOR ] :
{ < n : Net | elems : ( n1 n2 n3 n4 n5 n6 n7 ) >

< mon ( n1 ) : @Monitor |
o : < n1 : MsgCreator | targets : ( n2 n3 n4 n5 n6 n7 ) ,

neighbors : ( n2 n3 n4 n5 n6 ) ,
counter : 500 >,

data : 0 >
< mon ( n2 ) : @Monitor | o : < n2 : Node | neighbors : ( n1 n3 n7 ) >,

data : 0 >
< mon ( n3 ) : @Monitor | o : < n3 : Node | neighbors : ( n1 n2 n4 ) >,

data : 0 >
< mon ( n4 ) : @Monitor | o : < n4 : Node | neighbors : ( n1 n3 n5 ) >,

data : 0 >
< mon ( n5 ) : @Monitor | o : < n5 : Node | neighbors : ( n1 n4 n6 ) >,

data : 0 >
< mon ( n6 ) : @Monitor | o : < n6 : Node | neighbors : ( n1 n5 n7 ) >,

data : 0 >
< mon ( n7 ) : @Monitor | o : < n7 : Node | neighbors : ( n1 n6 n2 ) >,

data : 0 >, 0 } .
result GoodSystem :
{ < n : Net | elems : ( n1 n2 n3 n4 n5 n6 n7 ) >

< mon ( n1 ) : @Monitor |
o : < n1 : MsgCreator | neighbors : ( n2 n3 n4 n5 n6 ) ,

targets : ( n2 n3 n4 n5 n6 n7 ) ,
counter : 0 >,

data : 923 >
< mon ( n2 ) : @Monitor | o : < n2 : Node | neighbors : ( n1 n3 n7 ) >,

data : 459 >
< mon ( n3 ) : @Monitor | o : < n3 : Node | neighbors : ( n1 n2 n4 ) >,

data : 545 >
< mon ( n4 ) : @Monitor | o : < n4 : Node | neighbors : ( n1 n3 n5 ) >,

data : 537 >
< mon ( n5 ) : @Monitor | o : < n5 : Node | neighbors : ( n1 n4 n6 ) >,

data : 530 >
< mon ( n6 ) : @Monitor | o : < n6 : Node | neighbors : ( n1 n5 n7 ) >,

data : 470 >
< mon ( n7 ) : @Monitor | o : < n7 : Node | neighbors : ( n1 n6 n2 ) >,

data : 219 >,
1238 }

5 Addition of Individual Monitors Preserves Behavior

Adding individual monitors to our specification should not modify the behav-
ior of the system specification, in the sense that there must be a one-to-one
correspondence between the rewrites in the original specification and the instru-
mented one. This idea is captured by the notion of bisimulation, defined as a
simulation relation whose inverse relation is also a simulation [12]. In this section
we provide bisimulation proofs for the addition of monitors.

We will name S a generic system defined as an object-oriented system
with time annotations. We assume a Real-Time Maude specification as above
described. We will denote by E a particular monitor to be added to S. The result
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of the composition of E in S, with a distinguish class C of S and a set of labels
of rules LS of S, will be denoted as M [S,C,LS,E]. In this section we prove
that adding this general individual monitors does not modify the behavior of
our system by showing that a bisimulation between M [S,C,LS,E] and S exists.

First, notice that the transformation injecting the monitors depends on the
class whose objects are to be monitored, and that in order to define a total
function we need to restrict the kind of systems we may consider. We intro-
duce sorts GoodSystemS and GoodSystemM [S,C,LS,E] respectively as subsorts
of SystemS and SystemM [S,C,LS,E]. The kind of object configurations permit-
ted in these sorts satisfy all the usual requirements of object configurations
(no repeated object identifiers, no repeated attributes in objects, objects have
attributes defined in their classes or superclasses, etc.). Moreover, all objects
in configurations of terms of sort GoodSystemM [S,C,LS,E] wrapped in monitor
objects are instances of class C or subclasses of it. We define these good-system
sorts using conditional memberships.

By using techniques related to ground invariance [15], and assuming
that the term algebra TΣS/ES ,GoodSystemS

is closed under the relation →RS
,

we prove that TΣM[S,C,LS,E]/EM[S,C,LS,E],GoodSystemM[S,C,LS,E]
is closed under

→RM[S,C,LS,E] . If not total, a transition relation → can be extended to
→• by adding pairs of the form a →• a when a cannot be rewritten
(see [3,12] for an automatic transformation). Assuming a set of propositions
AP and labeling functions LS : GoodConfigS → P (AP ) and LM [S,C,LS,E] :
GoodConfigM [S,C,LS,E] → P (AP ), which associates to each state with the
set of atomic propositions that hold in it, we extend S and M [S,C,LS,E]
to Kripke structures AS = (TΣS/ES ,GoodSystemS

,→S , LS) and AM [S,C,LS,E] =
(TΣM[S,C,LS,E]/EM[S,C,LS,E],GoodSystemM[S,C,LS,E]

,→M [S,C,LS,E], LS ◦ H), respec-
tively, where H is the function defined below.

Let us consider the following map H and let us prove it is a (strict) simulation:

H : GoodSystemM [S,C,LS,E] → GoodSystemS

First of all, note that, since we have labeling functions L and H ◦L, H preserves
labeling functions in a strict sense. Given variables O, C, Atts, D and Conf of
sorts Oid, C, AttributeSet, Data and Configuration, respectively, we define
the H function using a recursively-defined auxiliary function H ′ as follows:

H({Conf, T}) = { H ′(Conf), T}
H ′(< mon(O) : @Monitor | o : < O : C |Atts >, data : D > Conf)

= < O : C | Atts > H ′(Conf)
H ′(Conf) = Conf otherwise

H is a function that removes all monitor objects, leaving the monitored
objects as they were (without wrappers). Other objects and all messages are
just left as such.

Following the methods introduced in [12], we split the rules RM [S,C,LS ,E] into
the following three disjoint sets of rules:
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– Let R1
M [S,C,LS,E] be the set of rules without modifications, i.e., rules in RS

(rules with no objects of subclasses of C are not changed in the transformation,
either if in LS or not).

– Let R2
M [S,C,LS,E] be the set of rules whose labels are not in LS but include

objects of subclasses of C.
– Let R3

M [S,C,LS,E] be the set of rules whose labels are in LS and include objects
of subclasses C.

Theorem 1. H defines a (strict) simulation map from an instrumented system
specification M [S,C,LS,E] to a system specification S.

Proof. Let →k,M [S,C,LS,E], with k ∈ {1, 2, 3}, be the transition relation defined
by Rk

M [S,C,LS,E]. We differentiate two cases:

– a ∈ GoodSystemM [S,C,LS,E] is rewritten to a′ ∈ GoodSystemM [S,C,LS,E] using
a rule in R1

M [S,C,LS,E], i.e., a →1
1,M [S,C,LS,E] a′. Since rules in R1

M [S,C,LS,E] do
not have monitored objects, H(a) = b ∈ GoodSystemS can be rewritten to
H(a′) = b′ ∈ GoodSystemS using a transition in →S .

– a ∈ GoodSystemM [S,C,LS,E] is rewritten to a′ ∈ GoodSystemM [S,C,LS,E]

using a rule L in R2
M [S,C,LS,E] or R3

M [S,C,LS,E], i.e. a →1
k,M [S,C,LS,E] a′,

with k = 2 or 3. Then the rewritten subterm contains monitored objects
that are removed by H. The rule in RS from which the rule with label L
was generated may then be used to rewrite H(a) = b ∈ GoodSystemS into
H(a′) = b′ ∈ GoodSystemS . �	

Theorem 2. The relation

H−1 : GoodSystemS → GoodSystemM [S,C,LS,E]

defines a (strict) simulation map from the system specification S to the instru-
mented system M [S,C,LS,E].

Proof. H−1 is a relation from valid states in S to states in M [S,C,LS,E] with
monitor objects. Given a state a ∈ GoodSystemS which by →S may be rewritten
to another state a′ ∈ GoodSystemS . Using H−1, a may be lifted to a possibly
infinite number of states in GoodSystemM [S,C,LS,E]. Basically, H−1(a) will yield
states where objects of subclasses of C have been wrapped into monitor objects.
All other objects and messages in the configurations will be left as such. The
structure of the monitor objects introduced, including their identifier is fixed,
but their data attribute may take any value in the Data sort. We prove that
for all states b in GoodSystemM [S,C,LS,E] such that H(a) = b, a transition to a
state H(a′) = b′ in GoodSystemM [S,C,LS,E] exists in →M [S,C,LS,E].

We reason by cases:

– if the state a is rewritten into a′ using a rule with no objects of subclasses of C,
then H−1(a) = b ∈ SystemM [S,C,LS,E] and b is rewritten to some H−1(a′) = b′

using a rule in R1
M [S,C,LS,E].
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– if the state a is rewritten by a rule whose label is not in LS but that involves
objects of subclasses of C, these objects will be wrapped by monitor objects by
H−1(a). This is the case in which a state H−1 = b ∈ GoodSystemM [S,C,LS,E]

will be rewritten using a rule in R2
M [S,C,LS,E]. In this case, there is an infinite

number of possible wrappers since the variable D is free. However, since the
rule label is not in LS, the value of D remains unchanged, and therefore, the
state b transitions to b′ so that H(b′) = a′ in GoodSystemS .

– if the state a is rewritten using a rule in R3
M [S,C,LS,E], then a can be lifted

to an infinite number of possible monitor wrappers b ∈ H−1(a). Moreover,
since b will transition using a monitored rule, the value of the attribute data
matters. However, since eval is assumed to be a well-defined total function,
for every value of D of sort Data, the state b can transition to a state b′ such
that H(b′) = a′. �	
Then, since H is a bisimulation of Kripke structures AM [S,C,LS,E] and

AS , since strict simulations always reflect satisfaction of CTL∗ formulas [12,
Theorem 2], we have that given any CTL∗ formula φ, and a configuration
a ∈ GoodSystemM [S,C,LS,E],

H(a) |=AS
φ ⇐⇒ a |=AM[S,C,LS,E] φ

6 The Throughput Monitor

As an example of a global monitor, suppose we want to calculate the number of
messages passing through nodes per time unit. By using the definition of Data
and the eval function in a module extending the MONITOR module as shown in
Fig. 5, we may count the number of messages forwarded by rules per time unit.

In the module THROUGHPUT-MONITOR, sort Data is declared a supersort of 2-
tuples in which the first component keeps the number of messages and the second
one the current throughput. We assume that if the number of messages in the
left- and right-hand sides is the same it is because the message is being forwarded,
in which case the number of messages in the data attribute is increased and the
current number of messages is divided by the actual time.

We may rewrite the system using the MONITOR module expression as follows:
rew in MONITOR [ SMP , Net , resend−msg , THROUGHPUT−MONITOR ] :

{ < mon ( n ) : @Monitor |
o : < n : Net | elems : ( n1 n2 n3 n4 n5 n6 n7 ) >,
data : {0 , 0 .0} >

< n1 : MsgCreator | targets : ( n2 n3 n4 n5 n6 n7 ) ,
neighbors : ( n2 n3 n4 n5 n6 ) ,
counter : 500 >

< n2 : Node | neighbors : ( n1 n3 n7 ) >
< n3 : Node | neighbors : ( n1 n2 n4 ) >
< n4 : Node | neighbors : ( n1 n3 n5 ) >
< n5 : Node | neighbors : ( n1 n4 n6 ) >
< n6 : Node | neighbors : ( n1 n5 n7 ) >
< n7 : Node | neighbors : ( n1 n6 n2 ) >, 0 } .

result GoodSystem :
{ < n1 : MsgCreator | neighbors : ( n2 n3 n4 n5 n6 ) ,

targets : ( n2 n3 n4 n5 n6 n7 ) ,
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counter : 0 >
< n2 : Node | neighbors : ( n1 n3 n7 ) >
< n3 : Node | neighbors : ( n1 n2 n4 ) >
< n4 : Node | neighbors : ( n1 n3 n5 ) >
< n5 : Node | neighbors : ( n1 n4 n6 ) >
< n6 : Node | neighbors : ( n1 n5 n7 ) >
< n7 : Node | neighbors : ( n1 n6 n2 ) >
< mon ( n ) : @Monitor |

o : < n : Net | elems : ( n1 n2 n3 n4 n5 n6 n7 ) >,
data : { 3683 , 2.9797734627831716 } >,

1238}

omod THROUGHPUT−MONITOR i s
inc MONITOR .
pr CONVERSION .

sort 2 Tuple .
op ‘{ _ ‘ , _ ‘} : Nat Float −> 2 Tuple [ ctor ] .
subsort 2 Tuple < Data .

var N : Nat . var T : Time .
var Obj : Object . var Thp : Float .
vars LConf RConf Conf : Configuration . var Msg : Msg .

eq eval ({ N , Thp } , T , Obj , LConf , RConf )
= i f (#msgs ( LConf ) == #msgs ( RConf ) )

then { N + #msgs ( LConf ) ) ,
float ( N + #msgs ( LConf ) ) / float ( T ) }

else { N , Thp}
fi .

op #msgs : Configuration −> Nat .
eq #msgs ( Msg Conf ) = s(#msgs ( Conf ) ) .
eq #msgs ( Conf ) = 0 [ owise ] .

endom

Fig. 5. Throughput system monitor

The result shows, that for this execution, messages have been re-sent 3683 times,
with around 2.98 messages re-sent per time unit.

7 Conclusions and Future Work

We have presented a methodology to define monitors that can be added to any
real-time object-oriented system specification.

We have proven that the addition of these generic monitors to a system
specification does not change its behavior. Furthermore, due to properties of
simulations, safety formulas are preserved after instrumenting the specifications.
This assures bisimulation by construction for any monitor and system.

Besides the theoretical results, we have presented a Maude tool which per-
forms the weaving of monitors and specifications, as well as two case studies. The
instrumentation has been implemented as part of Full Maude following its reflec-
tive and extensible design. We have provided a module expression that allows
us to instantiate predefined generic monitors in a very simple way, perfectly
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integrated with Full Maude. The extended version of Full Maude, and several
examples are available at http://maude.lcc.uma.es/monitors.

There is much work ahead. We believe that the need for indicating the rules
to be monitored may be avoided when the eval functions have all the required
information to decide when the information needs to be computed. Views from
parameter monitors to specific systems may be provided, thus reducing the cou-
pling with monitors and increasing flexibility: we may want to specify monitors
depending on multiple classes or on other parameters. Multiple monitors should
be used on the same systems to monitor different properties on different objects.
First steps towards this kind of composition have already been taken, but the
constructions will be presented elsewhere.
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Abstract. Reachability Logic (rl) is a formalism for defining the oper-
ational semantics of programming languages and for specifying program
properties. As a program logic it can be seen as a language-independent
alternative to Hoare Logics. Several verification techniques have been
proposed for rl, all of which have a circular nature: the rl formula
under proof can circularly be used as a hypothesis in the proof of another
rl formula, or even in its own proof. This feature is essential for dealing
with possibly unbounded repetitive behaviour (e.g., program loops). The
downside of such approaches is that the verification of a set of rl for-
mulas is monolithic, i.e., either all formulas in the set are proved valid,
or nothing can be inferred about any of the formula’s validity or invalid-
ity. In this paper we propose a new, incremental method for proving a
large class of rl formulas. The proposed method takes as input a given
rl formula under proof (corresponding to a given program fragment),
together with a (possibly empty) set of other valid rl formulas (e.g.,
already proved using our method), which specify sub-programs of the
program fragment under verification. It then checks certain conditions
are shown to be equivalent to the validity of the rl formula under proof.
A newly proved formula can then be incrementally used in the proof
of other rl formulas, corresponding to larger program fragments. The
process is repeated until the whole program is proved. We illustrate our
approach by verifying the nontrivial Knuth-Morris-Pratt string-matching
program.

1 Introduction

Reachability Logic (RL) [1–4] is a language-independent logic for defining the
operational semantics of programming languages and for specifying properties
of programs. For instance, on the sum program in Fig. 1, the rl formula

〈sum, n �→a 〉∧a ≥ 0 ⇒ (∃i, s)〈skip, n �→a i �→i s �→s〉〉∧s = sum(a) (1)

specifies that after the complete execution of the sum program from a config-
uration where the program variable n is bound to a non-negative value a, a
configuration where s is bound to a value s = sum(a) is reached. Here, sum(a)
is a mathematical definition of the sum of natural numbers up to a.
c© Springer International Publishing Switzerland 2016
D. Lucanu (Ed.): WRLA 2016, LNCS 9942, pp. 134–151, 2016.
DOI: 10.1007/978-3-319-44802-2 8
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Fig. 1. Program sum.

Existing rl verification tools [1,2,4–6] would typically verify formula (1)
as follows. First, they would consider (1) together with, e.g., the following for-
mula (2), where while denotes the program fragment consisting of the while-
loop in Fig. 1. The formula (2) is intended to specify the while loop, just like (1)
specifies the whole program, and can be seen as encoding a loop invariant.

〈while, n �→a i�→i s �→s〉∧0 < i ≤ a + 1 ∧ s = sum(i − 1) (2)
⇒ (∃i′, s′)〈skip, n �→a i �→i′ s �→s′〉∧s′ = sum(a)

Then, the tool would symbolically execute at least one instruction in the
programs in the left-hand side of both (1) and (2) using the semantics of the
instructions of the language (assumed to be also expressed as rl formulas1),
and then execute the remaining programs in the left-hand sides of the resulting
formulas as if both (1) and (2) became new semantical rules of the language. For
example, when the program executed in (1) reaches the while loop, the rule (2)
can be applied instead of the rule defining the semantics of the while instruction -
that is, when proving (1), (2) is assumed to hold. Similarly, when the program
in (2) completes one loop iteration, the left-hand side of (2) contains again the
same while loop as initially, with other values mapped to the variables. Then,
(2) is applied instead of the rule defining the semantics of the while instruction.
Thus, it is assumed that (2) holds after having completed one loop iteration.

The circular reasoning illustrated in the above example is sound, in the sense
that if such a proof succeeds, all the formulas under proof are (semantically)
valid. However, if the proof does not succeed, nothing can be said about the
validity of the formulas. In our example, (1) or (2) (or both) could be invalid.

Contribution. In this paper we propose a new method for proving a significant
subset of rl formulas, which, unlike existing verification methods, is incremental.
In our example, the proposed method would first prove (2), and then would prove
(1) knowing for a fact (i.e., not assuming) that (2) is valid. Thus, if the proof
of (1) fails for some reason, the user still knows that (2) holds, and can take
action for fixing the proof based on this knowledge. Of course, for a simple
program such as the above example the advantage of incremental rl verification
is not obvious, but it turns out to make quite a difference when verifying more
challenging programs, such as the kmp program illustrated later in the paper.
1 For the language of interest in this paper the rules are shown in Sect. 2.
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We first establish an equivalence between the validity of rl formulas and two
technical conditions (one condition is an invariance property, and the other one
regards the so-called capturing of terminal configurations). Then we propose a
graph-construction approach that takes a given rl formula under proof (corre-
sponding to a given program fragment), together with a (possibly empty) set of
other valid rl formulas (e.g., proved using a previous iteration of our approach,
or by any other sound rl formula verification method). The latter formulas
specify sub-programs of the program fragment currently under verification. The
invariance and terminal-configuration capturing conditions are then checked on
the graph, thus establishing the validity of the rl formula under proof. The
newly proved formula can then be incrementally used in the proof of other rl
formulas, corresponding to larger program fragments. The same process is then
repeated until, eventually, the whole program is proved.

Of course, the proposed method has limitations, since verification of rl for-
mulas is in general undecidable. The graph construction may not terminate, or
the conditions to be checked on it may not hold. One situation that a purely
incremental method cannot handle is mutually recursive function calls, in which
none of the functions can be verified individually unless (coinductively) assuming
that the other function’s specifications hold. A natural solution here is to use an
incremental method as much as possible, and to locally apply a circular approach
only for subsets of formulas that the incremental method cannot handle.

In order to demonstrate the feasibility of our approach we illustrate it on the
nontrivial Knuth-Morris-Pratt kmp string-matching program. The program is
written in a simple imperative language, whose syntax and semantics is defined
in Maude [7]. We chose Maude in order to benefit from its reflective capabilities,
which turned out to be very useful for implementation purposes. We are using a
specific version of Maude that has been interfaced with the Z3 solver [8], which
is here used for simplifying conditions required for proving rl formula validity.

Paper Organisation. After this introduction we present in Sect. 2 the Maude-
based definition of a simple imperative programming language imp+ that
includes assignments, conditions, loops, and simple procedures operating on
global variables. In Sect. 3 we present background notions: Reachability Logic,
and how the language definition from the previous section fits in this framework
(Sect. 3.1); and language-parametric symbolic execution, together with its imple-
mentation by rewriting based on transforming the semantical rules of a language
(Sect. 3.2). In Sect. 4 we present the incremental rl-formula verification method.
In Sect. 5 we illustrated our method on the kmp string-matching algorithm, and
in Sect. 6 we conclude and present related and future work. An extended version
containing detailed proofs of technical results is available at https://hal.inria.fr/
hal-01282379.

2 Defining a Simple Programming Language

In this section we define the language imp+ in Maude. imp+ is simple enough
so that its Maude code is reasonably small (less than two hundred lines of code),

https://hal.inria.fr/hal-01282379
https://hal.inria.fr/hal-01282379
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yet expressive enough for programming algorithms on arrays such as the kmp.
We assume Maude is familiar to readers; for details the standard reference is [7].

Datatypes. imp+ computes over Booleans, integers, and integer arrays. We use
the builtin Booleans and integers of Maude, and provide a standard algebraic def-
inition of arrays. The constructor array : Nat -> IntArray creates an array of
a given length. The operation store : IntArray Nat Int -> IntArray stores
a given integer (third argument) at a given natural-number index. An operation
select : IntArray Nat -> Int returns the element at the position given by
the second argument. These functions are defined equationally. They return error
values in case of attempts to access indices out of an array’s bounds.

Syntax. The syntax on imp+ consists of expressions (arithmetic and Boolean)
and statements. Each of these syntactical categories is defined by a sort, i.e.,
AExp, BExp, and Stmt. Allowed arithmetical operations are addition, substrac-
tion, and array selector, denoted by _++_, _--_, and _[_] respectively, in order
to avoid confusion with the corresponding Maude operations on the datatypes.
In the same spirit, Boolean operations are less-or-equal-than (_<==_) and equal-
ity (_===_); negation !; and conjunction _&&_. Such expressions are built from
identifiers (i.e., program variables) and constants (Maude integers and Booleans).

The statements of imp+ are: assignments to integer variables and array ele-
ments (_:=_); conditional (if_then_else_endif); while loops (while_do_end);
parameterless function declaration (function_(){_}) and call (_()); a print
instruction; and finally, a sequencing _;_ instruction that, for convenience,
is declared associative with the “do-nothing” skip instruction as a neutral
element.

Semantics. Semantical rules operate on configurations, which consist of a pro-
gram to be executed, a mapping of integer variables to values and of function
names to statements, and a list of integers denoting the output of the program.
In Maude we write a constructor <_,_,_,_> : Stmt Map Funs Ints -> Cfg.
Getters and setters for the Map and Funs maps are also equationally defined.

The semantics of imp+ then consists in evaluating expressions (in a given
map, assigning values to variables) and statements (in a given configuration,
describing all the infrastructure required for statements to execute). Expressions
are evaluated using equations, and statements are evaluated using rewrite rules.

Evaluating Expressions. This amounts to writing a function eval and equations:

op eval : AExp Map -> Int .
eq eval(I, M) = I .
eq eval(X, (M (X -> J))) = J .
eq eval(X[E], (M (X -> A))) = select(A,eval(E,(M (X -> A)))) .
...
op eval : BExp Map -> Bool .
eq eval(B,M) = B .
eq eval(Cnd1 && Cnd2, M) = eval(Cnd1,M) and eval(Cnd2,M) .
...
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That is, eval goes through the structure of an expression and evaluates
it in a given mapping of values to variables. Here, e.g., M (X -> J) denotes
an associative-commutative map, constructed as the anonymous juxtaposition
operation __ of a map variable M with a map of the identifier X to the integer J.

Evaluating Statements. This is performed by rewrite rules, some of which are:

rl [assign]: <((X := E) ; S), M, F, O > => < S, set(X, eval(E, M), M), F, O > .

crl [if-true]: <(if Cnd then S1 else S2 endif) ; S, M, F, O > => < S1 ; S, M, F, O >
if eval(Cnd,M) .

crl [if-false]: <(if Cnd then S1 else S2 endif) ; S, M, F, O > => < S2 ; S, M, F, O >
if not eval(Cnd,M) .

rl [while]: <(while Cnd do S1 end) ; S, M, F, O > =>
<(if Cnd then S1 ; while Cnd do S1 end else skip endif) ; S, M, F, O > .

rl [print]: < (print E) ; S, M, F, O > => < S, M, F, (O ; eval(E,M)) > .

The first rule deals with assigment to a program-variable X of an arithmetic
expression E. It uses the set function on maps in order to update the map so
that X is mapped to the value of E. Another rule, not shown here, deals with
assignments to array elements. The following two rules describe the two possible
outcomes of a conditional instruction, depending on the value of the condition.
The rule for the while loop consists essentially in loop unrolling. The rule for the
printing instruction appends the value of the instruction’s argument to the list
of integers (last argument of configurations) denoting the program’s output.

3 Reachability Logic and Symbolic Execution

In this section we present background material used in the rest of the paper. We
illustrate the concepts with examples from the imp+ language.

3.1 Reachability Logic

Several versions of rl have been proposed in the last few years [1–4]. Moreover,
rl is built on top of Matching Logic (ml), which also exists in several versions [9–
11]. (The situation is somewhat similar to the relationship between rewriting
logic and the equational logics underneath it.) We adopt the recent all-paths
interpretation of rl [4], built upon a minimal ml that is enough to express typical
practically-relevant properties about program configurations and is amenable to
symbolic execution by rewriting, a key ingredient of our method.

The formulas of ml that we consider are called patterns and are defined as
follows. Assume an algebraic signature Σ with a set S of sorts, including two
distinguished sorts Bool ,Cfg ∈ S. We write TΣ,s(Var) for the set of terms of
sort s over a set Var of S-indexed variables and TΣ,s for the set of ground terms
of sort s. We identify the Bool -sorted operations in Σ with a set Π of predicates.
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Example 1. Consider the Maude definition of the imp+ language. Then,
Σ is the algebraic signature containing all the sorts and operations
described in the previous section, including the Bool and Cfg sorts. The
operation eval : BExp Map -> Bool has sort Bool and is thus identi-
fied with a predicate in the set Π. The sort Cfg has the constructor
<_,_,_,_> : Stmt Map Funs Ints -> Cfg.

Definition 1 (Pattern). A pattern is an expression of the form (∃X)π∧φ,
where X ⊂ Var, π ∈ TΣ,Cfg(X) and φ is a FOL formula over the FOL signature
(Σ,Π) with free variables in X.

We often denote patterns by ϕ and write ϕ � (∃X)π∧φ to emphasise its com-
ponents: the quantified variables X, the basic pattern π, and φ, the condition.
We let FreeVars(ϕ) denote the set of variables freely occurring in a pattern ϕ,
defined as usual (i.e., not under the incidence of a quantifier). We often identify
basic patterns π with (∃∅)π∧true, and elementary patterns π∧φ with (∃∅)π∧φ.

Example 2. The left and right-hand sides of the rules defining the semantics of
imp+ are basic patterns, < S, M, F, O > /\ eval(true,M) is an elementary
pattern, and (∃ O) < S, M, F, O > /\ eval(true,M) is a pattern.

We now describe the semantics of patterns. We assume a model M of the alge-
braic signature Σ. In the case of the Maude specification of imp+ the model M ,
M is the initial model induced by the specification’s equations and axioms. For
sorts s ∈ S we write Ms for the interpretation (a.k.a. carrier set) of the sort s.

We call valuations the functions ρ : Var → M that assign to variables in Var
a value in M of a corresponding sort, and configurations the elements in MCfg .

Definition 2 (Pattern Semantics). Given a pattern ϕ � (∃X)π∧φ, γ ∈
MCfg a configuration, and ρ : Var → M a valuation, the satisfaction relation
(γ, ρ) |= ϕ holds iff there exists a valuation ρ′ with ρ′|Var\X = ρ|Var\X such
that γ = ρ′(π) and ρ′ |= φ (where the latter |= denotes satisfaction in FOL, and
ρ|Var\X denotes the restriction of the valuation ρ to the set Var \ X).

We let [[ϕ]] denote the set {γ ∈ MCfg | (∃ρ : Var → M)(γ, ρ) |= ϕ}. A formula ϕ
is valid in M , denoted by M |= ϕ, if it is satisfied by all pairs (γ, ρ).

We now recall Reachability-Logic (rl) formulas, the transition systems that
they induce, and their all-paths semantics [4] that we will be using in this paper.

Definition 3 (RL Formulas). An rl formula is a pair of patterns ϕ ⇒ ϕ′.

Examples of rl formulas were given in the introduction. The rules defining the
semantics of imp+ are also rl formulas (for the conditional rules, just assume
that the expression following if is the condition of the rule’s left-hand side).

Let S denote a fixed set of rl formulas, e.g., the semantics of a given language.
We define the transition system defined by S together with some notions related
to this transition system, and then the notion of validity for rl formulas.
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Definition 4 (Transition System Defined by S). The transition system
defined by S is (MCfg ,⇒S), where ⇒S = {(γ, γ′) | (∃ϕ ⇒ ϕ′ ∈ S)(∃ρ)(γ, ρ) |=
ϕ ∧ (γ′, ρ) |= ϕ′}. We write γ ⇒S γ′ for (γ, γ′) ∈ ⇒S . A state γ is terminal
if there is no γ′ such that γ ⇒S γ′. A path is a sequence γ0 · · · γn such that
γi ⇒S γi+1 for all 0 ≤ i ≤ n − 1. Such a path is complete if γn is terminal.

An rl formula ϕ ⇒ ϕ′ is valid, written S |= ϕ ⇒ ϕ′, if for all pairs (γ0, ρ)
such that (γ0, ρ) |= ϕ, and all complete paths γ0 ⇒S · · · ⇒S γn, there exists
0 ≤ i ≤ n such that (γi, ρ) |= ϕ′.

Note that the validity of rl formulas is only determined by finite, complete paths.
Infinite paths, induced by nonterminating programs, are not considered. Thus,
termination is assumed: as a program logic, rl is a logic of partial correctness.
We restrict our attention to rl formulas satisfying the following assumption:

Assumption 1. RL formulas have the form πl∧φl ⇒ (∃Y )πr∧φr and satisfy
FreeVars(πr) ⊆ FreeVars(πl) ∪ Y , FreeVars(φr) ⊆ FreeVars(πl) ∪FreeVars(πr),
and FreeVars(φl) ⊆ FreeVars(πl).

That is, the left-hand side is an elementary pattern, and the right hand side
is a pattern, possibly with quantifiers. Such formulas are typically expressive
enough for expressing language semantics (for this purpose, quantifiers are not
even required)2 and program properties. For program properties, existentially
quantified variables in the right-hand side are useful to denote values computed
by a given program, which are not known before the program computes them,
such as s - the sum of natural numbers up to a given bound - in the formula (1).

3.2 Language-Parametric Symbolic Execution

We now briefly present symbolic execution, a well-known program analysis tech-
nique that consists in executing programs with symbolic input (e.g. a sym-
bolic value x) instead of concrete input (e.g. 0). We reformulate the language-
independent symbolic execution approach we already presented elsewhere [6],
with some simplifications (e.g., unlike [6] we do not use coinduction). The app-
roach consists in transforming the signature Σ and semantics S of a programming
language so that, under reasonable restrictions, executing a program with the
modified semantics amounts to executing the program symbolically.

Consider the signature Σ corresponding to a language definition. Let Fol be
a new sort whose terms are all FOL formulas, including existential and univer-
sal quantifiers. Let Id and IdSet be new sorts denoting identifiers and sets of
identifiers, with a union operation , . Let Cfgs be a new sort, with constructor
(∃ ) ∧ : IdSet × Cfg × Fol → Cfgs. Thus, patterns (∃X)π∧φ correspond to
terms (∃X)π∧φ of sort Cfgs in the enriched signature and reciprocally. Consider
also the following set of rl formulas, called the symbolic version of S:

Ss � {(∃X )πl∧ψ ⇒ (∃X , Y )πr∧(ψ ∧ φl ∧ φr)|πl∧φl ⇒ (∃Y )πr∧φr ∈ S}
with ψ a new variable of sort Fol , and X a new variable of sort IdSet .
2 See, e.g., the languages defined in the K framework: http://k-framework.org.

http://k-framework.org
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Example 3. The following conditional rule is part of the semantics S of imp+:
< if C then S1 else S2 endif ; S, M, F, O > => < S1 ; S, M, F, O > if eval(C,M) Writ-
ten as an rl formula (with patterns in left and right-hand sides) it becomes3

<if C then S1 else S2 endif ; S, M, F, O > ∧ eval(C,M)=> < S1 ; S, M, F, O >

The corresponding rule in Ss becomes an unconditional rule: (∃X )
<if C then S1 else S2 endif ; S, M, F, O > ∧ψ => (∃X ) <S1 ; S, M, F, O >
∧ (ψ ∧ eval(C,M)).

The interest of the above nontrivial construction is that, under reasonable
assumptions, stated below, rewriting with the rules in Ss achieves a simulation
of rewriting with the rules in S, which is a result that we need for our approach.

Assumption 2. There exists a builtin subsignature Σb
� Σ. The sorts and

operations in Σb are builtin, while all others are non-builtin. The sort Cfg is
not builtin. Non-builtin operation symbols may only be subject to a (possibly
empty) set of linear, regular, and non-collapsing axioms.

We recall that an axiom u = v is linear if both u, v are linear (a term is linear if
any variable occurs in it at most once); it is regular if both u, v have the same
set of variables; and it is non-collapsing if both u, v have non-builtin sorts.

Example 4. For the imp+ language specification we assume that the non-builtin
sorts are Cfg, Stmt (for statements), and Funs (which map function identifiers
to statements). Statements were declared to be associative with unity, whereas
maps of identifiers to statements were taken to be associative and commutative
with unity. All these axioms have the properties requested by Assumption 2.

In order to formulate the simulation result we now define the transition relation
generated by the set of symbolic rl rules Ss. It is essentially rewriting modulo the
congruence ∼= on TΣ(Var) induced by the axioms in Assumption 2. Let Var b ⊂
Var be the set of variables of builtin sorts. We first need the following technical
assumption, which does not restrict the generality of our approach:

Assumption 3. For every πl∧φl ⇒ (∃Y )πr∧φr ∈ S, πl ∈ TΣ\Σb(Var), πl is
linear, and Y ⊆ Var b.

The assumption can always be made to hold by replacing in πl all non-variable
terms in Σb and all duplicated variables by fresh variables, and by equating in
the condition φl the new variables to the terms that they replaced.

For the sake of complying with the definition of rewriting we need to extend
the congruence ∼= to terms of sort Cfgs by (∃X)π1∧φ ∼= (∃X)π2∧φ iff π1

∼= π2.

Definition 5 (Relation ⇒αs). For αs � (∃X )πl∧ψ ⇒ (∃X , Y )πr∧(ψ ∧ φl ∧ φr)

∈ Ss we write (∃X)π∧φ ⇒αs (∃X,Y )π′∧φ′ whenever (∃X)π∧φ αs is rewritten by
αs to (∃X,Y )π′∧φ′, i.e., there exists a substitution σ′ on Var ∪ {X , ψ}such that
σ′((∃X )πl∧ψ) ∼= (∃X)π∧φ and σ′((∃X , Y )πr∧(ψ ∧ φl ∧ φr) = (∃X,Y )π′∧φ′.
3 We liberally use a mixture of Maude and math notation for the sake of the example.
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Lemma 1 (⇒αs Simulates ⇒α). For all γ, γ′ ∈ MCfg , all patterns ϕ with
FreeVars(ϕ) ⊆ Var b, and all valuations ρ, if (γ, ρ) |= ϕ and γ ⇒α γ′ then there
exists ϕ′ with FreeVars(ϕ′) ⊆ Var b such that ϕ ⇒αs ϕ′ and (γ′, ρ) |= ϕ′.

As a consequence, any concrete execution (following ⇒S) such that the initial
configuration satisfies a given initial pattern ϕ is simulated by a symbolic exe-
cution (following ⇒Ss) starting in ϕ. We shall also use the following notion of
derivative, which collects all the symbolic successors of a pattern by a rule:

Definition 6 (Derivatives). Δα(ϕ) = {ϕ′ | ϕ ⇒αs ϕ′} for any α ∈ S.

Since the symbolic successors are computed by rewriting, the derivative opera-
tion is computable and always returns a finite set of patterns.

4 Proving RL Formulas Incrementally

In this section we present an incremental method for proving rl formulas. We
first state two technical conditions and prove that they are equivalent to rl
formula validity. The equivalence works for so-called terminal formulas, whose
right-hand side specifies a completed program; however, a generalisation to non-
terminal formulas, required for incremental verification, is also given. Thus, rl
formula verification amounts to checking the two above-mentioned conditions.

For this, we present a graph construction based on symbolic execution that,
if it terminates successfully, ensures that the two conditions in question hold for
a given rl formula. The graph construction is parameterised by a set of formulas
that have already been proved valid (using the same method, or any other sound
one). These formulas correspond to subprograms of the given program fragment
that the current formula under proof specifies. The current formula, once proved,
can then be used in proofs of formulas specifying larger program fragments.

We consider a fixed set S or rl formulas and their transition relation ⇒S .
The first of the two following definitions says that all terminal configurations
reachable from a given pattern “end up” as instances of a quantified basic pat-
tern:

Definition 7 (Capturing All Terminal Configurations). We say that a
pattern (∃Y )π′ captures all terminal configurations for a pattern ϕ if for all (γ, ρ)
such that (γ, ρ) |= ϕ, and all complete paths γ ⇒S · · · ⇒S γ′, (γ′, ρ) |= (∃Y )π′.

The second definition characterises FOL formulas that hold in a given quantified
pattern, i.e., conditions satisfied by all configurations reachable from a given
initial pattern whenever they “reach” the quantified pattern in question:

Definition 8 (Invariant at, Starting from). We say that a FOL formula
(∃Y )φ′ is invariant at a pattern (∃Y )π′ starting from a pattern ϕ if for all
(γ, ρ) such that (γ, ρ) |= ϕ, all paths γ ⇒S · · · ⇒S γ′, and all valuations ρ′ with
ρ′|Var\Y = ρ|Var\Y , if γ′ = ρ′(π′), then ρ′ |= φ′.

Note that the same values of the variables Y were used for satisfying π′ and φ′.
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Definition 9. A basic pattern π′ is terminal if for all valuations ρ, ρ(π′) is a
terminal configuration. A rule π∧φ ⇒ (∃Y )π′∧φ′ is terminal if π′ is terminal.

The following proposition characterises the validity of terminal rl formulas:

Proposition 1 (Equivalent Conditions for Terminal Formula Valid-
ity). Consider a terminal formula π∧φ ⇒ (∃Y )π′∧φ′. Then S |= π∧φ ⇒
(∃Y )π′∧φ′ iff

1. (∃Y )φ′ is invariant at (∃Y )π′ starting from π∧φ, and
2. (∃Y )π′ captures all terminal configurations for π∧φ.

Remark 1. The (⇐) implication in Proposition 1 is the important one for the
soundness of our method. Its proof naturally follows from definitions. For the
reverse implication, the following assumption is required: for all right-hand sides
ϕr � (∃Y )πr∧φr of rules in S, if ρ(πr) = ρ′(πr) then ρ|FreeVars(πr) = ρ′|FreeVars(πr).
The assumption does not restrict generality as it can always be made to hold, by
replacing subterms of patterns by fresh variables (and adding equations to the con-
dition) and by noting that the Cfg sort is interpreted syntactically in the model
M . Then, πr � f(x1, . . . , xn) where f is the constructor for the Cfg sort, and
ρ(f(x1, . . . , xn)) = ρ′(f(x1, . . . , xn)) iff ρ(x) = ρ′(xi) for all variables xi.

Remark 2. Proposition 1 works for terminal rl formulas. We shall need the fol-
lowing observation: assume that an rl formula of the following form 〈P . . .〉∧φ ⇒
(∃Y )〈skip . . .〉∧φ′ has been proved valid, where P is a program, skip denotes the
empty program, and suspension dots denote the rest of the configurations (which
depend on the programming language). Then, assuming a sequencing operation4

denoted by semicolon, the following formula 〈P ;Q . . .〉∧φ ⇒ (∃Y )〈Q . . .〉∧φ′ is
also valid: if each terminal path executing P ended up in the empty program,
then each path executing P ;Q still has Q to execute after having executed P . As
shown later in this section, the validity of such “generalized” formulas enables
us to incrementally use a proved-valid formula in the proofs of other formulas.

Proposition 1 is the basis for proving rl formulas, by checking the conditions
(1) and (2). We now show how the conditions can be checked mechanically.

Symbolic Graph Construction. The graph-construction procedure in Fig. 2
uses symbolic execution and is used to check the conditions (1) and (2) in Proposi-
tion 1. Before we describe the procedure we introduce the components that it uses.

A Partial Order < on S. The procedure assumes a set of rl formulas S, which
consist of the semantical rules S0 of a programming language and a (possibly
empty) set of rl formulas G that were already proved valid in an earlier step of
our envisaged incremental verification method. Such formulas, sometimes called
circularities in rl verification, specify subprograms of the program under verifi-
cation, and are assumed here to have the form 〈P ;Q, . . .〉∧φ ⇒ (∃Y )〈Q, . . .〉∧φ′

4 “Sequencing” and “empty” do not need to be actual statements of the programming
language; they can just be artifacts required by the language’s operational semantics.
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Fig. 2. Graph construction. match∼=() is matching modulo the non-bultin axioms (cf.
Sect. 3.2), and inclusion() is the object of Definition 10.

(cf. Remark 2). During symbolic execution, circularities can be symbolically
applied “in competition with” rules in the semantics (e.g., when the program to
be executed is P ;Q, the symbolic version of the above rule can be applied, but
the symbolic version of the semantical rule for the first instruction of P can be
applied as well). We solve the conflict between semantical rules and circularities
by giving priority to the latter.

We use the following notations. Let lhs(α) denote the left-hand side of a
formula α. Let G < S0 denote the fact that for every g ∈ G and α ∈ S0, g < α.
Let S0 |= G denote S0 |= g, for all g ∈ G, and min(<) denote the minimal
elements of <.

Assumption 4. We assume a partial order relation < on S � S0∪G satisfying:
G < S0, S0 |= G, and for all α′ ∈ S and pairs (γ, ρ), if (γ, ρ) |= lhs(α′) then
there exists a rule α ∈ min(<) such that (γ, ρ) |= lhs(α).

This assumption is satisfied by taking as minimal elements of < previously proved
circularities, which gives them priority over rules in the semantics that can be
applied in competition with them. The other rules in the semantics, which are not
in competition with circularities, are not related by < with other formulas and are
thus minimal by definition (and valid, since α ∈ S implies S |= α).

Inclusion Between Patterns. The graph-construction procedure uses a test of
inclusion between patterns, which satisfies the following definition.

Definition 10 (Inclusion). An inclusion test is a function that, given patterns
ϕ, ϕ′, returns true if for all pairs (γ, ρ), if (γ, ρ) |= ϕ then (γ, ρ) |= ϕ′.

The Graph Construction. We are now ready to present the procedure in Fig. 2.
The procedure takes as input an rl formula π∧φ ⇒ (∃Y )π′∧φ′ and a set S of
rl formula with an order < on S as discussed earlier in this section. It builds a
graph (N,E) with N the set of nodes (initially, {π∧φ}) and E the set of edges
(initially empty). It uses two variables to control a while loop: a Boolean variable
Failure (initially false) and a set of nodes New (initially equal to N = {π∧φ}).
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At each iteration of the while loop, a node ϕn � (∃Xn)πn∧φn is taken out
from New (line 2) and checks whether there is a matcher modulo ∼= (cf. Sect. 3.2)
of π′ onto πn (line 3). If this is the case, then πn is an instance of the (termi-
nal) basic pattern π′, and the procedure goes to line 10 to check whether ϕn “as
a whole” is included in (∃Y )π′∧φ′. If this is not the case, then, informally, this
indicates a terminal path that does not satisfy the right-hand side of the formula
under proof, i.e., of the fact that (∃Y )φ′ is not invariant at (∃Y )π′, in contradiction
with the first hypothesis of Proposition 1 that the procedure is checking; Failure is
reported, which terminates the execution of the procedure. However, if the test at
line 3 indicated that πn is not an instance of the terminal pattern π′, then another
inclusion test is performed (line 4): whether there exists a minimal rule in S (i.e.,
a rule in the language’s semantics, or a circularity already proved, as discussed
earlier in this section) whose left-hand side includes ϕn. If this is not the case
then, informally, this indicates a terminal configuration that is not an instance
of (∃Y )π′, which contradicts the second hypothesis of Proposition 1, making the
procedure terminate again with Failure = true.

If, however, the inclusion test at line 4 succeeds then all symbolic successors
ϕ′

n of ϕn by minimal rules α w.r.t. < are computed. Each of these patterns
is tested for inclusion in the initial node π∧φ. If inclusion holds then an edge
is added from ϕn to the initial node, labelled by the rule that generated the
symbolic successor in question. Otherwise, a new node ϕ′

n is created, and an edge
from the current node ϕn to the new node, labelled by the rule that generated
it, is created, and the while loop proceeds to the next iteration.

The graph-construction procedure does not terminate in general, since the
verification of rl formulas is undecidable. However, if it does terminate with
Failure = false then the two conditions equivalent to the validity of the proce-
dure’s input π∧φ ⇒ (∃Y )π′∧φ′ hold, i.e., S |= π∧φ ⇒ (∃Y )π′∧φ′, which is the
desired conclusion. This is established by the results in the rest of this section.

The paths in the constructed graph simulate concrete execution paths whose
transitions are given by rules from S0. This is formalised and used in the proof
of the main theorem states that the hypotheses of Proposition 1, equivalent to
rl formula validity, are checked by the graph-construction procedure.

Theorem 1. If the procedure in Fig. 2 terminates with Failure = false on a ter-
minal rl formula π∧φ ⇒ (∃Y )π′∧φ′, then (∃Y )φ′ is invariant at (∃Y )π′ starting
from π∧φ, and (∃Y )π′ captures all terminal configurations starting from π∧φ.
Theorem 1 uses the following (and last) assumptions on rl formulas:
Assumption 5. All rules ϕl ⇒ ϕr ∈ S have the following properties:

1. for all pairs (γ, ρ) such that (γ, ρ) |= ϕl there exists γ′ such that (γ′, ρ) |= ϕr
5.

2. �ϕl� ∩ �ϕr� = ∅.
The first of the above assumptions says that if the left-hand side of a rule matches
a configuration then there is nothing in the right-hand side preventing the appli-
cation. This property is called weak well-definedness in [4] and is shown there

5 This property is called weak well-definedness in [4].
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to be a necessary condition for obtaining a sound proof system for rl. The sec-
ond condition just says that the left and right-hand sides of rules cannot share
instances - such rules could generate self-loops on instances, which are useless.
We then obtain as a corollary the soundness of our rl formula proof method:

Corollary 1 (Soundness). If procedure in Fig. 2 terminates with Failure =
false on a terminal rl formula π∧φ ⇒ (∃Y )π′∧φ′ then S |= π∧φ ⇒ (∃Y )π′∧φ′.

Incremental Verification. We are now ready to describe our incremental rl
formula verification method. The method works in a setting where each formula
has an associated code that it specifies, and that for a given rl formula f , code(f)
returns the given code. Considering the rl formulas (1) and (2) in Sect. 1, code(1)
is the sum program in Fig. 1 and code(2) is the while subprogram.

The problem to be solved is: given two sets of formulas: S (the semantics
of a language) and G (the specification of a given program and of some of its
subprograms) prove for all g ∈ G, S |= g (for short, S |= G).

We use partial orders < on S (initially empty) and � on G, defined by g1 � g2
whenever code(g1) is a strict subprogram of code(g2). Without restriction of
generality we take the formulas in G to be terminal (which is natural: a piece
of code is specified by stating what the code “does” when it terminates). The
verification consists repeatedly applying the following steps while G �= ∅:

– choose g ∈ G minimal w.r.t. � and prove it, based on Corollary 1;
– remove g from G, transform g into a non-terminal formula (cf. Remark 2) and

add the resulting formula g′ to S;
– extend < on the newly obtained set S so that g′ is smaller than any formula

in S that can be applied concurrently with g′.

Example 5. Consider the sum program in Fig. 1. S consists of the semantical
rules of imp+, and G consists of formulas (1) and (2) in Sect. 1, with (2) � (1).

At the first iteration (2) is chosen. It is verified based on Corollary 1 (which
builds the graph according to the procedure shown in Fig. 2), then transformed
into a nonterminal formula, removed from G and added to S. The relation < is
extended so that the newly added formula is smaller than the semantical rule
for the while instruction, since the two rules can be applied concurrently.

At the second (and final) iteration, (1) is verified. The graph-construction
procedure exploits the fact that (2) is minimal in S and thus it will be applied
instead of the semantical rule for while, producing a finite graph by avoiding
an infinite loop unfolding, and allowing Corollary 1 to establish that (1) is valid.

5 Incrementally Verifying the KMP Algorithm

The kmp (Knuth-Morris-Pratt) algorithm is a linear-time string-matching algo-
rithm. The algorithm optimises the naive search of a pattern P into a text T by
using some additional information collected from the pattern.
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For instance, let us consider T = ABADABCDA and P = ABAC. It can be easily
observed that ABAC does not match ABADABCDA starting with the first position
because there is a mismatch on the fourth position, namely C �= D. A naive
algorithm, after having detected this, would restart the matching process of P
at the second position of T (which fails immediately) then at the third one, where
it woud first match an A before detecting another mismatch (between B and D).
The kmp optimises this by comparing directly the B and D, as it “already knows”
that they are both preceded by A, thereby saving one redundant comparison.

The overall effect is that the worst-case complexity of KMP is determined
by the sum of the lengths of P and T , whereas that of a naive algorithm is
determined by the product of the two lengths.

The kmp algorithm pre-processes the pattern P by computing a so-called
prefix function π. Let Pj denote the subpattern of P up to a position j. For such
position j, π(j) equals the length of the longest proper prefix of Pj, which is also
a suffix of Pj . In the case of a mismatch between the position i in T and the
position j in P , the algorithm proceeds with the comparison of the positions i
and π[j]. This is why, in the above example, kmp direcly compared the B and D.

We prove that the kmp algorithm is correct, i.e., given a non-empty pattern
P and a non-empty string T , the algorithm finds all the occurrences of P in T .
We use the incremental method presented in Sect. 4 on an encoding of kmp in
the imp+ language formally defined in Maude (cf. Sect. 2).

The program is shown in Fig. 3. Its specification uses the following notions:

Definition 11. – Pj denotes the prefix of P up to (and including) j. P0 is the
empty string ε. If a string P ′ is a strict suffix of P we write P ′ � P .

– The prefix function for P is π : {1, . . . , m} → {0, . . . ,m − 1} defined by
π(i) = max{j | 0 ≤ j < i ∧ Pj � Pi}. We let π∗(q) = {π(q), π(π(q)), . . .}.

– Let T be a string of length n. We define θ : {1, . . . , n} → {0, . . . , m} the
function which, for a given i ∈ {1, . . . , n}, returns the longest prefix of P
which is a suffix of Ti: θ(i) = max{j | 0 ≤ j ≤ m ∧ Pj � Ti}.

– Let T be a string of length n and Out a list. The function allOcc(Out, P, T, i)
returns true iff the list Out contains all the occurrences of P in T [1..i].

The grey-text annotations, written as pre/post conditions and invariants, are
syntactical sugar for rl formulas. The annotations are numbered (C1 to C6)
according to the order in which the rl formulas are verified by our incremental
method. So, for example, the annotation for the inner loop of the computePrefix
function is the first to be verified, and corresponds to an rl formula for the form

〈while C do . . . endwhile, . . .〉 ∧ C ∧ C1 ⇒ 〈skip, . . .〉 ∧ ¬C ∧ C1

where while C do . . . endwhile denotes the inner loop of computePrefix. Simi-
larly, the specification of the KMP program is an rl formula of the form:

〈KMP, . . . , .Ints〉 ∧ C6 ⇒ 〈skip, . . . , Out〉 ∧ allOcc(Out, . . .),
where KMP denotes the whole program, .Ints denotes an empty list of inte-
gers (cf. Sect. 2), Out is a list of integers denoting the program’s output, and
allOcc(Out, . . .) states that Out contains all positions of the pattern in the text.

The rl formulas corresponding to the annotations (C1 . . .C6) were verified
in the given order. Once a formula was verified, it was generalised (cf. Remark 2)
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Fig. 3. The kmp algorithm in imp+: prefix function (left) and the main program (right).
Grey-text annotations are syntactic sugar for rl formulas. Pi, Theta, allOcc, and Pi∗
denote the functions π, θ, and allOcc, and the set π∗ respectively (cf. Definition 11).

and added to the rules denoting the semantics of imp+ as new, prioritary rules.
Each rule verification follows the construction of a graph (cf. procedure in Fig. 2),
performed by symbolic execution, implemented by rewriting as described in
Sect. 3. For this purpose we have intensively use Maude’s metalevel mechanisms
in order to control the application of rewrite rules.

The main verification effort (besides coming up with the annotations
C1 . . . C6) went into the inclusion test between patterns that occurs in our graph-
construction procedure. For this purpose we have used certain properties of the
π, π*, and θ mathematical functions from [12], which we include in Maude as
equations used for the purpose of simplification. Some elementary simplifications
involving properties of integers and Booleans were performed via Maude’s inter-
face to the z3 solver. Collectively, these properties can be seen as axioms that
define the class of models in which the correctness of our kmp program holds.

Benefits of Incremental Verification. In earlier work [5] we attempted to verify
kmp using a circular approach of the “all-or-nothing” variety. The main difficulty
with such approaches is that, if verification fails, one is left with nothing: any of
the formulas being (simultaneously) verified could be responsible for the failure.
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The consequence was that (as we realised afterwards by revisiting the problem)
our earlier verification was incorrect. We found some versions of the annotations
C1 . . . C6, which, as rl formulas, would only hold under unrealistic assumptions
about the problem-domain functions π, π∗, and θ.

We decided to redo the kmp verification incrementally, starting with smaller
program fragments, and rigorously proving at each step the required facts about
the problem domain. Our incremental approach was first a language-dependent
one [12], as it was based on proving pre/post conditions of functions and loop
invariants. Of course, not all languages have the same kinds of functions and
loops; some lack such constructions altogether. The method proposed in this
paper is (with some restrictions) both incremental and language-independent, is
formally proved correct, and was instrumental in successfully proving the kmp
program, this time, under valid assertions regarding the problem domain.

6 Conclusion, Related Work and Future Work

In this paper we propose an incremental method for proving a class of rl for-
mulas useful in practical situations. Mainly, rl formula verification is reduced to
checking two technical conditions: the first is an invariance property, while the
second is related to the so-called capturing of terminal configurations. Formally,
the conjunction of these conditions is shown to be equivalent to rl formula valid-
ity. We also present a graph construction procedure based on symbolic execution
which, if it terminates successfully, ensures that these conditions hold for a given
rl formula. The method is successfully applied on the nontrivial Knuth-Morris-
Pratt algorithm for string matching, encoded in a simple imperative language.
The syntax and the semantics of this language have been defined in Maude,
whose reflective features were intensively used for implementation purposes.

Using the proposed approach rl formulas are proved in a systematic manner.
One first proves formulas that specify sub-programs of the program under ver-
ification, and then exploits the newly proved formulas to (incrementally) prove
other formulas that specify larger subprograms. By contrast, monolithic/circu-
lar approaches [1–4,6,13] attempt to prove all formulas at once, in no particular
order. In case of failure, in a monolithic approach, any circularly dependent sub-
set of formulas under proof might be responsible for the failure; whereas in an
incremental approach, there is only one subset of formulas to consider (and to
modify in order to progress in the proof): the formula currently under proof,
together with some already proved valid formulas. Thus, an incremental method
saves the user some effort in the trial-and-error process of program verification.

Related Work. Besides the already mentioned work on rl we cite some
approaches in program verification; an exhaustive list is outside the scope of
this paper.

Some approaches are based on exploring the state-space of a program, e.g.,
[14], in which software model checking is combined with symbolic execution
and abstraction techniques to overcome state-space explosion. Our approach has
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some similarities with the above: we also use symbolic execution to construct a
graph, which is an abstraction of the reachable state space of a program.

Some verification tools (e.g., Why3 [15]) are based on deductive methods.
These tools use the program specifications (i.e., pre/post-conditions, invariants)
to generate proof obligations, which are then discharged to external provers (e.g.,
coq, Z3, . . . ). Similarly, our implementation uses a version of Maude which
includes a connection to the Z3 SMT solver (used for simplifying conditions).

In the same spirit, compositional methods for the formal verification (e.g.,
[16]) shift the focus of verification from global to local level in order to reduce
the complexity of the verification process.

Future Work. One issue that needs to be addressed is the handling of domain-
specific properties. Each program makes computations over a certain domain
(e.g., arrays), and in order to prove a program, certain properties of the under-
lying domain are required (e.g., relations between selecting and storing elements
in an array). Currently, these properties are stated as axioms in Maude, and we
are planning to connect Maude to an inductive prover in order to interactively
prove the axioms in questions as properties satisfied by more basic definitions.
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Abstract. This paper introduces contextual string rewriting as a special
kind of parallel string rewriting in which each rule defines a context
which is not changed by the application of the rule and can be read (but
not modified) by other rules applying concurrently. We study maximal
parallel rewriting in this setting and provide a method to encode the
computation of a maximally parallel instance for a contextual string
rewrite system as a decidable normal form problem for a particular term
rewrite system.

1 Introduction and Motivation

One of the main problems of structural linguistics is segmentation, i.e. how
to divide a linguistic construct into its constituents, on different levels (e.g.
phonemes, morphemes, etc.). This segmentation has various applications, from
correctly identifying words in the presence of ambiguity (e.g., Arabic script), to
the more recent theories of Levelt and Indefrey [8] according to which an impor-
tant role in producing words is played by the way the brain segments them
into syllables. The necessity of segmenting linguistic constructs brings a new
challenge: can this segmentation be performed sequentially or parallel? When
attempting a computational approach to segmentation, parallelism seems more
natural; this is strengthen by Mitchell who proposes the brain as being a super-
computer able to process data in parallel: “Many of the brains activities have
been thought to work in parallel. For example, the fast processing abilities of
the brain in tasks such as face recognition may follow from a highly parallel
process” [13]. However, linguists seem more reserved regarding sequential vs.
parallel segmentation. Recently, Hopf et al. [6] tackling the question “Is human
sentence parsing serial or parallel?” give the following answer “These data are
taken as evidence for a strictly serial parser”.

Dinu and Dinu [3] propose insertion grammars with maximal parallel deriva-
tion as a formalization for parallel syllabification, noticing a connection between
syllabification and word generation using Marcus’ contextual grammars [10,11].
This parallel syllabification uses an insertion mechanism dual to that of contex-
tual grammars, introduced by Galiuschov [5], which is enhanced by introducing
a parallel derivation, and additionally constraining the number of insertion in a
single parallel step to be maximal. This parallel approach to syllabification can
constitute an argument for parallel segmentation of words at brain level in the
context of the recent cognitive theory of speech production [8].
c© Springer International Publishing Switzerland 2016
D. Lucanu (Ed.): WRLA 2016, LNCS 9942, pp. 152–166, 2016.
DOI: 10.1007/978-3-319-44802-2 9
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The expressive power of this formalization and comparisons with existing
formal languages classes is further studied by Dinu [4]. However, results were
purely theoretical, lacking a computational implementation mechanism.

This paper comes to address this limitation by proposing contextual string
rewriting as a generalization of maximally parallel insertion grammars, as well as
a concrete mechanism for implementing and experimenting with them through
translations to traditional term rewriting systems.

Our Approach. Inspired from several approaches in the theory of formal lan-
guages and computation [1,4,7,12,15,16] defining contextual application of rules
we introduce contextual string rewriting as a generalization of insertion-deletion
systems [7] and study concurrent application of rules with sharing of context in
the spirit of maximally parallel insertion grammars [4].

We define the notion of a parallel instance of the application of multiple
concurrent contextual string rewrite rules on a word and a refinement relation
among such parallel instances increasing the degree of parallelism. Maximal par-
allel rewriting is defined as transforming a word according to a “maximally
refined” parallel instance.

Finally, we tackle the problem of computing a maximal parallel instance
with the aim of allowing simulation, execution, and analysis of the behavior of
maximal parallel rewriting for contextual string rewrite systems. Two encodings
of the problem as a normal forms computation problem for regular term rewriting
(modulo associativity and identity axioms), one more explicit, and an optimized
one, are proposed and shown adequate.

2 Preliminaries and Related Work

In this section we introduce some basic formal-language notions and review sev-
eral contextual derivation methods (mostly for words) with various degrees of
parallelism and sharing.

An alphabet is a finite non-empty set. The elements of an alphabet Σ are
called letters or symbols. A word over alphabet Σ is a finite sequence of zero or
more letters of Σ; the word with zero letters is called the empty word and is
denoted by λ.

The set of all words over Σ is denoted by Σ∗, while Σ+ = Σ∗\{λ} represents
the set of non-empty words over Σ. Given two words u and w, their concatenation
is denoted uw and is obtained by juxtaposition. Thus, (Σ∗, ·, λ) is the free monoid
generated by Σ. A language over the alphabet Σ is a subset of Σ∗.

Insertion-Deletion Systems. A reasonably well studied example of contextual
rewriting/derivation of strings is that of insertion-deletion systems introduced
by Kari and Thierrin [7].

An insertion-deletion system is a tuple Γ = (Σ,T,A, I,D), where Σ is an
alphabet, T ⊆ Σ is the terminal alphabet (symbols from Σ \ T are called non-
terminals), A ⊆ Σ∗ is the set of axioms, while I (the insertion rules) and D (the
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deletion rules) are finite sets of triples of the form (u, x, v), where u, x, v ∈ Σ∗

with x �= λ, having the following semantics: an insertion rule (u, x, v) specifies
the insertion of x in the context (u, v), while a deletion rule (u, x, v) specifies a
deletion of x in the context (u, v).

Formally, for w, z ∈ Σ∗, we write w ⇒I z if w = w1uvw2 and z = w1uxvw2,
for some insertion rule (u, x, v) in I and w1, w2 ∈ Σ∗; if (u, x, v) in D, this
induces z ⇒D w. Therefore, an insertion rule is similar to the string rewriting
rule uv → uxv, while a deletion rule is similar to the reverse rule uxv → uv.

Let ⇒Γ denote ⇒I ∪ ⇒D and ⇒∗
Γ be its reflexive and transitive closure.

The language generated by Γ is defined by the set of terminal words which can
be derived through ⇒∗

Γ from the axioms A:

L(Γ ) = {z ∈ T ∗|w ⇒∗
Γ z, for w ∈ A}

Insertion Grammars with Maximum Parallel Derivation. Insertion grammars
are a special case of insertion-deletion systems, without non-terminals (T = Σ)
and deletion rules (D = ∅).

Introduced by Dinu [4] for defining a cognitive model for syllabification, par-
allel derivation with shared context of an insertion grammar Γ , here denoted
as �Γ , is defined by: w �Γ z iff w = w0w1 . . . wr, for some r � 1, z =
w0x1w1x2w2 . . . xrwr and, for all 1 � i � r, there exist (ui, xi, vi) ∈ I and
αi, βi ∈ Σ∗ such that wi−1 = αiui, wi = viβi.

Maximum parallel derivation for insertion grammars is defined as parallel
derivation with a maximum number of rules (i.e., maximum r in the decompo-
sition above).

Example 1. Let Σ = {a1, a2, . . . , ak} (k � 2), A = {a1a2 · · · ak}, and

I = {(ai, ai, ai+1) | i ∈ {1, . . . , k − 2}} ∪ {(ak−1, ak−1ak, ak)}.

If using non-maximally parallel derivation, this grammar generates the context-
free language a+

1 a+
2 · · · a+

k−2a
n
k−1a

n
k . However, under maximum parallel deriva-

tion, the generated language is an
1an

2 · · · an
k .

The next example exhibits the generation of Fibonacci sequences.

Example 2. Let Σ = {a, b}, A = {a, b}, and I = {(a, b, λ), (λ, ba, b)}.
If using non-maximally parallel derivation, this grammar generates the lan-

guage {a}∪{(ab+)+}∪{b(ab+)∗}. However, under maximum parallel derivation,
the generated language is the so called set of “Fibonacci words”:

{a, b, ab, bab, abbab, bababbab, abbabbababbab, bababbababbabbababbab . . .}
The K semantic framework [16] proposes a semantics for concurrent term rewrit-
ing with sharing of context based on graph transformation, again with no focus
on maximality.

A K rule is of the form k[l1 → r1, . . . , ln → rn] where k is an n-ary con-
text (which can be shared by concurrent rule applications), l1, . . . , ln are the
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parts to be rewritten, and r1, . . . , rn are their corresponding replacements. The
“flattening” of a K rule as a rewrite rule is: k[l1, . . . , ln] → k[r1, . . . , rn].

K rules can be written in a visual form as where in the

term k[l1, . . . , ln] the parts to be rewritten (l1, . . . , ln) are underlined and their
corresponding replacements (r1, . . . , rn) are written under the lines.

Other Related Work

The object semantics of rewriting logic [12] allows concurrent rewriting with
sharing of context in the setting of multi-set rewriting of objects, but without
studying maximality.

Context-sensitive Lindenmayer systems, also termed IL-systems [9,15] also
exhibit a form of maximally parallel contextual rewriting in which the context
is shared by rules; however, unlike the above approaches, the context itself can
be rewritten by the concurrent rule applications.

Membrane systems with promoters [1] are a variation of membrane computing [14]
whose semantics resembles some form of multiset rewriting over structured nested
cells in which rules (local to each cell) are applied in a maximally parallel way
and where promoters (special atoms) can be shared by multiple rule instances.
Our goals are somehow similar, but our setting is different: we study maximal
parallelism with sharing on plain strings instead of structured multisets.

3 Concurrent Contextual String Rewriting

In this section we introduce contextual string rewriting systems, a generalization
of string rewriting systems inspired by the approaches presented in Sect. 2.

A string rewriting system (SRS) is a tuple S = (Σ,R) where Σ is an alphabet
and R is a finite set of rewrite rules x → y. The rewriting relation induced by
R is the reflexive and transitive closure ⇒∗

R of the relation w ⇒R z given by
w = w1xw2 and z = w1yw2 for some rule x → y ∈ R and some w1, w2 ∈ Σ∗.

3.1 Contextual String Rewriting

In this section we generalize the concept of parallel derivation from the contex-
tual insertion grammars to SRSs, with the aim to obtain a rewrite relation which
allows both parallel rewriting and sharing of context.

Noting that multiple concurrent instances of string rewriting can only share
the prefixes and suffixes of each rule, we define the a contextual string rewrite
rule as a string rewrite rule in a (shared) context.

Definition 1. A contextual string rewrite rule is defined as a tuple (u, x, y, v)
of words over Σ, such that uxv, xy ∈ Σ+, written u 〈x → y 〉 v and read as x
rewrites to y in the context (u, v). A set R of contextual string rewrite rules is
called a contextual string rewrite system.
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Thus, a contextual string rewrite rule can be viewed as both a generalization
of an insertion-deletion systems [7] (insertion rules correspond to x = λ, while
deletion rules correspond to y = λ) and a specialization of a K term rewrite
rule [16] to strings.

A contextual string rewrite rule u 〈x → y 〉 v can be flattened to the regular
string rewrite rule uxv → uyv, allowing us to define ⇒R as ⇒R, the rewrite
relation corresponding to the SRS R consisting of the flattened rules of R.

Let us now generalize the notion of parallel derivation from insertion gram-
mars [4] to contextual SRSs.

Definition 2. Let R be an contextual SRS. We define the parallel rewriting
relation, denoted �R, by: w �R z iff w = w0x1w1x2w2 . . . xrwr, for some r � 1,
z = w0y1w1y2w2 . . . yrwr and, for all 1 � i � r, there exist ui 〈xi → yi 〉 vi ∈ R
and αi, βi ∈ Σ∗ such that wi−1 = αiui, wi = viβi.

It is easy to see that regular string rewriting is a particular instance of con-
textual string rewriting:

Proposition 1. Let R be a contextual SRS. Then ⇒R ⊆ �R.

3.2 Comparison with Existing Approaches

Insertion/Deletion Systems rules can be seen as particular forms of contex-
tual string rewriting rules. Insertion rules are contextual string rewriting rules
of the form u 〈λ → y 〉 v. Deletion rules are contextual string rewriting rules
of the form u 〈x → λ 〉 v. Contextual string rewriting can be seen as a slight
relaxation of insertion/deletion systems. Conversely, the application of a con-
textual string rewriting rule u 〈x → y 〉 v can be seen as an application of
the deletion rule u 〈x → λ 〉 v followed by an application of the insertion rule
u 〈λ → y 〉 v. Therefore, in a sequential rewriting setting, any of them can sim-
ulate the other. However, if considering (maximally) concurrent application of
rules, insertion/deletion systems can no longer simulate contextual string rewrit-
ing. As pointed out by Dinu [4], the languages generated by insertion/deletion
systems are incomparable with those generated through maximall parallel deriva-
tion.
K Rewriting. Contextual string rewriting can be seen as a particular form of
K rewriting over a signature defining strings and using only “ground” rules,
i.e., rules with no variables. The fact that the context k involved in a K rule
can have multiple holes is not relevant, as the “shared” parts between two
holes cannot in fact be shared by any other rule applications. Therefore, the

K rule , where xi, yi, wi are all (ground) words, is similar

(semantic-wise) with the contextual string rewrite rule

w0 〈x1w1 · · · xn−1wn−1xn → y1w1 · · · yn−1wn−1yn 〉wn.
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3.3 Maximally Concurrent Contextual String Rewriting

In order to capture the maximal parallel rewriting we extract from the definition
above the notion of a parallel instance of a contextual SRS and we subsequently
define a refinement relation among such parallel instances.

Definition 3. A sequence π : w0〈y1〉ρ1w1〈y2〉ρ2w2 . . . wr−1〈yr〉ρrwr is an
r-parallel instance of system R on word w if for all 1 � i � r, ρi ∈ R is of
the form ui 〈xi → yi 〉 vi and there exist αi, βi ∈ Σ∗ such that wi−1 = αiui, wi =
viβi, and w = w0x1w1x2w2 . . . xrwr. In this case r is called the length of π. A
parallel instance of non-zero length is termed proper.
Let w0x1w1x2w2 . . . xrwr �R,π w0y1w1y2w2 . . . yrwr denote the parallel rewrit-
ing step induced by π.

Note that the sequence defining a r-parallel instance on w uniquely deter-
mines both r and w, allowing us to omit the mentioning either of them in the
sequel. Also note that if the length of π is 0 then π is just a word w0 over Σ and
�R,π rewrites w0 to itself.

It follows straight from the definition that:

Proposition 2.

�R =
⋃

π proper parallel instance

�R,π and ⇒R =
⋃

π 1-parallel instance

�R,π.

Next result shows that parallel string rewriting is sound and complete for
regular string rewriting.

Theorem 1.

�R ⊆ ⇒∗
R. Therefore, �∗

R = ⇒∗
R

We define a maximal parallel instance as a maximal element of a refinement
relation between parallel instances.

Definition 4. An r-parallel instance π: w0〈y1〉ρ1w1〈y2〉ρ2w2 . . . wr−1〈yr〉ρrwr

on a word w is refinable if there exists an index 0 � i � r and an 1-parallel
instance πi: wi,0〈yi,1〉ρi,1wi,1 on wi such that replacing wi by πi in π we obtain
an r+1-parallel instance of w, say π′. We denote this by π�π′ and let 
 denote
the refinement relation obtained as the transitive closure of �.

A parallel instance π of R is maximal if there exists no other parallel instance
of R refining it.

Let us also show that all parallel instances can be obtained through successive
refinements from 0-parallel instances, i.e., words over Σ, which are the minimal
parallel instances, refining no other parallel instance.

Proposition 3. Let π′ be a r + 1-parallel instance, r � 0. Then there exists a
r-parallel instance π such that π′ refines π.
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The following result relates the length of a parallel instance over a word w
to the length of w.

Proposition 4. Any r-parallel instance on a word w satisfies that r � 2|w|.
Corollary 1. � is Noetherian. Therefore, the set of maximal parallel instances
over any word w is nonempty and finite.

Proof. The length of any � chain is at most 2|w| + 1, hence maximal elements
must exist. Moreover, given the finiteness of both the length of a parallel instance
and of the set of rules R, � is finitely branching, which corroborated with the
above guarantees finiteness.

The following (insertion grammar) example shows that multiple maximal
parallel instances are possible, as well as having maximal instances with the
“maximal” length 2|w|:
Example 3. Consider Σ = {a, b, c}, R = {ρ1 : b 〈λ → c 〉λ, ρ2 : λ 〈λ → a 〉 b, ρ3 :
b 〈λ → b 〉 b}, and the word w = bbb. Then 〈a〉ρ2bb〈c〉ρ1〈a〉ρ2b〈c〉ρ1 is a 4-parallel
instance over w, which can be refined directly to the maximal 5-parallel instance
〈a〉ρ2b〈b〉ρ3b〈c〉ρ1〈a〉ρ2b〈c〉ρ1 , or in two steps to the maximal 6-parallel instance
〈a〉ρ2b〈c〉ρ1〈a〉ρ2b〈c〉ρ1〈a〉ρ2b〈c〉ρ1 . There is even a maximal 4-parallel instance
over w: 〈a〉ρ2b〈b〉ρ3b〈b〉ρ3b〈c〉ρ1 .

Definition 5. Let R be a contextual string rewriting system. We define the
maximal parallel rewriting relation induced by R, denoted �mR, by:

�mR =
⋃

π maximal parallel instance of R
�R,π

Since maximal parallel rewriting is a special case of parallel rewriting, it is
easy to see that regular rewriting simulates maximal parallel rewriting.
Proposition 5. If R is non empty, then

�mR � �∗
R = ⇒∗

R
In the remainder of this paper we will attempt simulating maximal parallel

rewriting for contextual SRS by regular string rewriting (with strategies). A
way to achieve this is by computing a maximal parallel instance followed by
extracting the result of rewriting from it.

4 Computing a Maximal Parallel Instance

In this section we would like to derive rewrite rules for defining the refinement
relation between parallel instances. But first, let us recall a formalization of
strings as a multi-sorted signature.

Strings over an alphabet Σ (with unit λ and concatenation) can be defined as
the canonical (initial) model associated to the ordered-sorted signature (S, F,A)
where S = {Alphabet < Words} (specifying that the interpretation of the
Alphabet sort is included in the interpretation of the Words sort), F = {a :
λ → Alphabet | a ∈ Σ} ∪ { : Words Words → Words} ∪ {λ : λ → Words}, and
A specifies the monoid axioms: is associative with identity λ.
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4.1 Encoding Parallel Instances

Consider a contextual string rewrite rule u 〈x → y 〉 v. To be able to use this rule
to refine an existing parallel instance, we must ensure that (1) we are matching
inside a wi and (2) the letters of x must not have been previously matched by
any rule (i.e., they don’t belong to ui and vi+1), since they will be rewritten.
Thus any encoding of parallel instances would need to (1) distinguish letters
corresponding to wis from those corresponding to yis and (2) mark those letters
which were previously matched by other rules.

Now, if u, x, and v are all non-empty, the above two conditions would be
sufficient during the matching process, and the rule defining refinement would
simply have to replace x with y, mark y as non-matchable, and mark the letters
from u and v as matched.

However, when u, x, or v are empty, things are less straightforward.
Consider first that x is empty (insertion grammars case) and take rules

aa 〈λ → c 〉 bb and a 〈λ → d 〉 a on word aabbcc. Suppose now we use the first
rule to refine it into aa〈c〉bbcc. The reasoning above would allow aa to be further
refined to a〈d〉a which would be wrong as both as were matched by the same u
and thus need to be kept together.

To address this issue, note that in a parallel instance a letter can be matched
at most twice: once as part of a u and once as part of a v. Let us incorporate
this into our designs, and mark for each letter inside a wi whether it is matched
as part of a v in the left side of wi or as part of a u in the right side of wi, or
both. Then, in the matching process, we additionally require that a letter can
only be matched by u if it hasn’t been previously matched by a u, and similarly
for v, making sure to propagate this information into the refinement.

Consider now the case when, in addition to x being empty, one of u or v
are also empty. Let us assume u is empty, and use the rules aa 〈λ → c 〉 bb and
λ 〈λ → d 〉 a to refine word aabbcc. Again, using the first rule we can refine it to
aa〈c〉bbcc. Using the second rule we could correctly refine this to 〈d〉aa〈c〉bbcc;
however, the reasoning above does not prevent the refinement a〈d〉a〈c〉bbcc either,
which again breaks the fact that aa needs to stay atomic.

Analyzing this, we can notice that the problem occurs from the fact that
either x or u would have ensured that the existing match would not be broken;
to maintain this property, it is enough to analyze one additional letter to the left
of the match, to ensure our match is not inside of an atomic sequence. However,
to do so, we would also need to have markers to account for matching at the
beginning or at the end of the word.

Note that, if for any rule u 〈x → y 〉 v both u and v are ensured to be non-
empty, then the above property could be easier ensured by marking the first
letter of u and last letter of v.1

With this understanding it becomes clear that if an instance component of
the form wi contains a letter which was matched both by an u and a v, then wi

cannot be further refined.

1 As signaled by an annonymous reviewer of an earlier draft.
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In the sequel, we will try to formalize the above intuitions into an appropriate
encoding.

To be able to track the rules involved in a parallel instance, let n be the
number of rules in R, and let 	 : {1, . . . , n} → R be an indexing bijection for
the rules of R. We extend the above signature with two new sorts MAlphabet <
MWords and operations { : MWords MWords → MWords} and {λ : λ →
MWords} satisfying the same associativity and identity axioms.

Now, define an operation ( , , ) : NatAlphabetNat → MAlphabet to track
how the letters are matched by contexts (u, v). Thus a matching letter (i, a, j)
represents a letter which is part of the original word being rewritten, embellished
with numbers to its left and right denoting the index of the rule matching it from
that (left/right) side. The index 0 means no rule is matching it yet.

Also define instance : Word Nat → MAlphabet to represent the encoding of a
yi part. The reason an entire word is encoded as a single matching letter is that
yis play no role in instance refinement other than indicating the rule introducing
the wrapped word and delimiting wis which can potentially be further refined. To
improve the visual resemblance between parallel instances and their encodings,
we will display instance(yi, k) as 〈k yi k〉.

Before concluding this section, let us present the encodings of 0-instances, as
they will be the starting point for our refinement process.

A 0 instance is simply a word w. Every letter a of this w was not yet matched
by any rule, thus its encoding is (0, a, 0). To formalize this, let · : Word →
MWord be the word (monoid) morphism defined on Alphabet by a = (0, a, 0).

However, as it will become clearer in the sequel, we need to be able to deter-
mine the borders of the word. And since for inner wis in a parallel instance this
role is played by 〈k · k〉 matching letters, we will use 〈0λ 0〉 as delimiters.

Therefore, the encoding of a 0-instance w is 〈0λ 0〉 w 〈0λ 0〉.
Let ( ) : Word × Nat → {0, 1} be the mapping defined by

w(k) =
{

1 if k <= |w|
0 otherwise

checking whether positive k can be an index in word w, and let w(k)i denote the
(integer) multiplication between w(k) and i. For each i, let ui, vi, xi, yi be such
that 	(i) : ui 〈xi → yi 〉 vi. Conveniently let u0 = v0 = λ.

To encode a general parallel instance we define a mapping i· j : Word →
MWord for each 0 � i, j � n, where n is the number of rules, encoding a w-word
in a parallel instance whose prefix is matched by vi of rule 	(i) and whose suffix
is matched by uj of rule 	(j). For every w = a1a2 . . . am, let

iwj = (vi(1)i, a1, uj(m)j) (vi(2)i, a2, uj(m − 1)j) · · · (vi(m)i, am, uj(1)j)

An obvious (but useful) property of the above encoding is that

Proposition 6.

iviwuj
j = ivi

0 w 0uj
j and 0w0 = w
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Finally, given a parallel instance π : w0〈y1〉ρ1w1〈y2〉ρ2w2 . . . wr−1〈yr〉ρrwr,
define its encoding π as:

π = 〈0λ 0〉 0w0
k1 〈k1 y1 k1〉 k1w1

k2 〈k2 y2 k2〉 k2w2
k3 . . . kr−1wr−1

kr 〈kr yr kr〉 krwr
0 〈0λ 0〉

For example, the encoding of 〈a〉ρ2b〈c〉ρ1〈a〉ρ2b〈c〉ρ1〈a〉ρ2b〈c〉ρ1 , the maximal
parallel instance presented in Example 3, would be

〈0λ 0〉〈2 a 2〉(2, b, 1)〈1 c 1〉〈2 a 2〉(2, b, 1)〈1 c 1〉〈2 a 2〉(2, b, 1)〈1 c 1〉〈0λ 0〉,
while that of the non-maximal 4-parallel instance 〈a〉ρ2bb〈c〉ρ1〈a〉ρ2b〈c〉ρ1 would
be 〈0λ 0〉〈2 a 2〉(2, b, 0)(0, b, 1)〈1 c 1〉〈2 a 2〉(2, b, 1)〈1 c 1〉〈0λ 0〉.

4.2 Encoding Refinement

In this section we will encode contextual string rewrite rules 	(k) : u 〈x → y 〉 v
into rules refining encoding of instances.

As deduced in our informal analysis above, all letters in u, x, v must belong
to a w, thus their encodings would need to match (i, a, j) letters. Furthermore,
x needs to be encoded as x.

Now, for the encoding of u (and dually for v), we need to make sure all its
letters have not been previously matched from the left side; we don’t care about
their right side. Moreover, in the refined version, the right sides need to stay
unchanged while the left sides will be marked with the index of the rule, k.

Define therefore two families of mappings l ·̃ and ·̃r from Word to MWord
with variables, defined for each word w = a1a2 · · · am by:

l
w̃ = (l, a1, r1) (l, a2, r2) · · · (l, am, rm) and

w̃
r

= (l1, a1, r) (l2, a2, r) · · · (lm, am, r),

where l, r are Nats, l1, . . . , lm, r1, . . . , rm are distinct Nat variables. A pattern
l, ai, ri matches a letter a1 which has been previously matched “from the left
side” by rule ρl, (or by no rule, if l = 0), while variable ri is used to record what
rule matched letter ai “from the right side” (or whether it was not yet matched).

If both ux and xv are non-empty, we will encode rule k as the refinement
rule

ũ0 x 0ṽ → ũk 〈k y k〉 kṽ

Assuming u = a1 · · · am, v = b1 · · · bn, and x = c1 · · · cp, the complete form of
the rule above is:

(l1, a1, 0) · · · (lm, am, 0) (0, c1, 0) · · · (0, cp, 0) (0, b1, r1) · · · (0, bn, rn)

→ (l1, a1, k) · · · (lm, am, k) 〈k y k〉 (k, b1, r1) · · · (k, bn, rn)

Therefore, the encoded rule matches a segment of an encoded instance for
which the u-part is not matched from the right side, the x-part is not matched
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from any side, and the v-part is not matched from the left side, and transforms
it by marking that u is now matched from the right side by rule k (the left
matching information is preserved by the li variables), v is now matched from
the left side by rule k (the right matching information is preserved by the ri

variables), and the x part is replaced by the instance(y, k).
For example, the encoding of rule ρ3 : b 〈λ → b 〉 b from Example 3 would be:

(l1, b, 0) (0, b, r1) → (l1, b, 3) 〈3 b 3〉 (3, b, r1)

If ux is empty, i.e., the rewrite rule is of the form λ 〈λ → y 〉 v, we need to
match the immediate letter to the left, which can be either a matchable letter
or an instance letter, thus requiring two rules:

〈j z j〉 0ṽ → 〈j z j〉 〈k y k〉 kṽ, and

?̃
0 0

ṽ → ?̃
0 〈k y k〉 k

ṽ,

where j is a Nat variable, z is a Word variable, and ? is an Alphabet variable.
Obviously, the additionally matched letter is used only for giving context and is
thus left unchanged.

For example, the two rules encoding rule ρ2 : λ 〈λ → a 〉 b are:

〈j z j〉 (0, b, r1) → 〈j z j〉 〈2 a 2〉 (2, b, r1), and
(l1, ?, 0) (0, b, r1) → (l1, ?, 0) 〈2 a 2〉 (2, b, r1)

Dually, when the initial rule is of the form u 〈λ → y 〉λ, we need to match
the immediate letter to the right:

ũ0 〈j z j〉 → ũk 〈k y k〉 〈j z j〉, and

ũ
0 0

?̃ → ũ
k 〈k y k〉 0

?̃,

where j is a Nat variable, z is a Word variable, and ? is an Alphabet variable.
For example, the two rules encoding rule ρ1 : b 〈λ → c 〉λ are:

(l1, b, 0) 〈j z j〉 → (l1, b, 1) 〈1 c 1〉 〈j z j〉, and
(l1, b, 0) (0, ?, r1) → (l1, b, 1) 〈1 c 1〉 (0, ?, r1)

Let Rr be the set of rules encoding refinement for all rules of R, and let ⇒r

be the rewrite relation induced by Rr.
Finally, let us show that the above rules correctly encode refinement.

Theorem 2. Let π be a parallel instance. Then

(Completeness). If π � π′ then π ⇒r π′ ; and
(Soundness). If π ⇒r 
′ then there exists π′ such that π′ = 
′ and π � π′

(Termination). ⇒r terminates for the encoding of any parallel instance.
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Therefore, maximal parallel rewriting can be simulated by the encoding pre-
sented in this section.

Corollary 2. w �m w′ iff there exists a proper parallel instance

π′ = w0〈y1〉�(k1)w1〈y2〉�(k2)w2 . . . wr−1〈yr〉�(kr)wr

such that w′ = w0y1w1y2w2 · · · wr−1yrwr and

〈0λ 0〉 w 〈0λ 0〉 ⇒!
r π′,

where ⇒!
r denotes rewriting to a normal form (using the refinement encoding

system Rr.

4.3 An Optimized Encoding

The encoding above was designed to help prove the correspondence between
parallel instances and their encodings by tracking which rules match and refine
an instance.

Note however that the only property tested by the rules encoding refine-
ment for the indices added to letters is whether they are zero or not. Assume
sorts BAlphabet and BWord and operations defined on them such that BWord
represents strings over BAlphabet.

We define ( , , ) : BoolAlphabet Bool → BAlphabet to encode letters which
are part of the original word being matched, where the booleans to the left and
right of a letter denoting whether the letter is matched by a rule from that side.

Additionally, no rule uses the index denoting the rule associated for any 〈k y k〉.
Therefore we can define 〈 · 〉 : Word → BAlphabet to encode words to be added
by rule instances.

Let ·̂ : Word → BWord be the monoid morphism defined by ̂(i, a, j) =

(δ(i), a, δ(j)), and 〈̂i w i〉 = 〈w〉, where δ(i) =
{

false if i = 0
true otherwise

Then the boolean encoding of a parallel instance π is defined as π̂.
To transform index-based rules into boolean rules, we need to extend our

transformation ·̂ to letters with variables as follows:

– ̂(li : Nat, a, i) = (li : Bool, a, δ(i))

– ̂(i, a, ri : Nat) = (δ(i), a, ri : Bool)

– ̂(li : Nat, ? : Alphabet, 0) = (li : Bool, ? : Alphabet, false)

– ̂(0, ? : Alphabet, ri : Nat) = (false, ? : Alphabet, ri : Bool);
– ̂〈j:Natw : Word j:Nat〉 = 〈w : Word〉

With these additions, we can transform each index based rule l → r to a
boolean encoding rule l̂ → r̂.

Let Rb be the set of rules encoding refinement for all rules of R, and let ⇒b

be the rewrite relation induced by Rb.
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Since, as already mentioned above, the index-based rules only transform 0
indexes into non-0 indexes, leaving all other indexes unchanged, it is relatively
easy to prove that ⇒b is sound and complete for ⇒r.

Theorem 3. Completeness. If 
 ⇒r 
′ then 
̂ ⇒b 
̂′
Soundness. If 
̂ ⇒b 
′

b then there exists 
′ such that 
̂′ = 
′
b and 
 ⇒r 
′.

Therefore, ⇒b can be used instead of ⇒r to simulate the derivation of a maxi-
mally parallel instance for contextual string rewriting.

5 On Implementing Maximal Concurrent Rewriting

In this section we give a couple of pointers for how an implementation of maximal
concurrent rewriting making use of the above encodings could be achieved. For
simplicity we assume below a rewrite language with the capabilities of Maude [2]
(including matching modulo associativity and the distinction between equations
and rules), although we believe this could be implemented in any language with
basic support for rewrite strategies [17].

It is relatively easy to define a function for transforming an word w into its
encoding as an 0 instance 〈λ〉w〈λ〉. Let us call the set of equations allowing us
to achieve this encoding Ee:

encode, encode′ : Word → BWord
∀w : BWord . encode(w) = 〈λ〉 encode′(w) 〈λ〉
∀w : BWord, a : Alphabet . encode′(a w) = false, a, false encode′(w)

encode′(λ) = λ

Let ⇒e be the rewrite relation generated by Re.
Similarly, it is quite straightforward to define a function for flattening an

instance to the word corresponding to rewriting the original word using this
instance. Let us call the set of equations allowing us to achieve this flattening
Ef :

flatten : BWord → Word
∀y : Word, w : BWord . flatten(〈y〉 w) = y flatten(w)
∀l, r : Bool, a : Alphabet, w : BWord . flatten(l, a, r w) = a flatten(w)

flatten(λ) = λ

Let ⇒f be the rewrite relation generated by Rf .
Therefore we have a set of equations Ee for encoding a word into its 0-instance

representation, a set of rules Rb for computing a maximal instance, and a set of
equations Ef for flattening this instance back to a regular word. We can define
the maximally parallel rewrite step as:

∀w1, w2 : Word, w′ : BWord . w1 → w2 if encode(w) ⇒!
b w′ ∧ w1 := flatten(w′)

Above ⇒!
b means rewriting to a normal form. This can either be achieved by

means of strategies or reflection, or by defining a predicate matchb(w′) which is
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true iff any of the rules in Rb can match w′, and changing encode(w) ⇒!
b w′ to

encode(w) → w′ ∧ not(matchb(w′)). A way to define matchb would be adding an
equation

∀X ∪ {init, end : BWord}.matchb(init l end) = true

for any rule ∀X.l → r, where l and r are terms with variables from set X, and
init and end are variable symbols not occurring in X, together with a “default”
equation defining matchb to be false for all other terms.

∀w′ : BWord.matchb(w′) = false [owise]

6 Conclusion and Future Work

We have introduced the concept of concurrent contextual string rewriting and
studied maximal parallel rewriting in this context. We presented a method for
simulating maximal parallel rewriting for contextual string rewriting systems
through an encoding of the problem into regular (associative) term rewriting.

A proper interface for defining, executing and analyzing contextual string-
rewrite systems using Maude’s “LOOP”-mode and reflection [2] is under devel-
opment.

The focus of this paper was on introducing contextual string rewriting and
its implementation. The study of its relation with other systems as well as it
expressive power is left as future work.

An interesting addition to the above work would be the ability to structure
strings similarly to the usage of brackets in L-systems [15] and the use of mem-
branes in membrane computing [14], and to allow matching context by skipping
over nested structures.
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Abstract. Variant satisfiability is a theory-generic algorithm to decide
quantifier-free satisfiability in an initial algebra TΣ/E when the the-
ory (Σ, E) has the finite variant property and its constructors satisfy
a compactness condition. This paper: (i) gives a precise definition of sev-
eral meta-level sub-algorithms needed for variant satisfiability; (ii) proves
them correct; and (iii) presents a reflective implementation in Maude 2.7
of variant satisfiability using these sub-algorithms.

Keywords: Finite variant property (FVP) · Folding variant narrow-
ing · Satisfiability in initial algebras · Metalevel algorithms · Reflection ·
Maude

1 Introduction

SMT solving is at the heart of some of the most effective theorem proving and
infinite-state model checking formal verification methods that can scale up to
impressive verification tasks. A current limitation, however, is its lack of exten-
sibility : current SMT solvers support a (typically small) library of decidable
theories. Although these theories can be combined by the Nelson-Oppen (NO)
[30,31] or Shostak [33] methods under some conditions, only the theories in the
SMT solver library and their combinations are available to the user: any other
theories extending the tool must be implemented by the tool builders.

In practice, of course, the problem a user has to solve may not be expressible
by the theories available in an SMT solver’s library. Therefore, the goal of making
SMT solvers user-extensible, so that a user can easily define new decidable
theories and use them in the verification process is highly desirable.

For a well-known subproblem of SMT solving, such user extensibility has
recently been achieved: E-unifiability is the subproblem of satisfiability defined
by: (i) considering theories of the form th(TΣ/E(X)), associated to equational
theories (Σ,E), where th(TΣ/E(X)) denotes the theory of the free (Σ,E)-algebra
TΣ/E(X) on countably many variables X, and (ii) restricting ourselves to posi-
tive (i.e., negation-free) quantifier-free (QF) formulas. Lack of extensibility was
the same: a unification tool supports a usually small library of theories (Σ,E),
which can be combined by methods similar to the NO one (the paper [2] explic-
itly relates the NO algorithm and combination algorithms for unification). Again,

c© Springer International Publishing Switzerland 2016
D. Lucanu (Ed.): WRLA 2016, LNCS 9942, pp. 167–184, 2016.
DOI: 10.1007/978-3-319-44802-2 10
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the user could not extend such decidable unifiability/unification algorithms by
defining new theories and using a theory-generic algorithm. This is now possi-
ble for theories (Σ,E) satisfying the finite variant property (FVP) [13] thanks
to variant unification based on folding variant narrowing [18]. In fact, variant
unification for user-definable FVP theories is already supported by Maude 2.7.

This suggests an obvious question: could variant unification be generalized
to variant satisfiability, so that, under suitable conditions on and FVP theory
(Σ,E), satisfiability of QF formulas in the initial algebra TΣ/E becomes decidable
by a theory-generic satisfiability algorithm? This would then make satisfiability
user-extensible as desired. This question has been positively answered in [27,28]
by giving general conditions under which satisfiability of QF formulas in the
initial algebra TΣ/E of an FVP theory (Σ,E) is decidable. Section 3 summarizes
the main results from [27,28]; but the punchline is easy to summarize: Suppose
that: (i) the convergent rewrite theory R = (Σ,B,R) is a so-called FVP decom-
position of (Σ,E) (which is what it means for (Σ,E) to be FVP), (ii) B has
a finitary B-unification algorithm, and (ii) R has an OS-compact constructor
decomposition RΩ (definition in Sect. 3). Then satisfiability of QF formulas in
TΣ/E is decidable by a theory-generic algorithm called variant satisfiability.

What This Paper is About. The results in [27,28] do not really provide an
algorithm in the full sense of the word, but rather a theoretical skeleton on which
such an algorithm can be fleshed out. Specifically, they assume that the construc-
tor decomposition RΩ is OS-compact, but do not provide a way to automate both
the checking of OS-compactness and the implementation of the various auxiliary
functions needed for variant satisfiability based on OS-compactness. They also
use the notions of constructor variant and constructor unifier (see Sect. 3), but
give only their theoretical definitions instead of algorithms to compute them.

Main Contributions. A theory-generic algorithm such as variant satisfiability
manipulates metalevel data structures such as theories, signatures, equations,
disequations, rewrite rules, and the like. In this paper we provide for the first
time: (i) a full-fledged algorithm for variant satisfiability with its sub-algorithms;
(ii) a proof of its correctness; and (iii) a reflective Maude implementation of it.
The algorithm uses the following auxiliary functions:

These functions automate the two main unsolved problems already mentioned:
(a) checking and satisfiability in OS-compact theories; and (b) computing con-
structor variants and constructor unifiers. These sub-algorithms are defined and
proved correct at the metalevel of rewriting logic. Since rewriting logic is reflec-
tive [10], the correctness-preserving passage from the metalevel description of the
sub-algorithms to their implementations is very direct: we just meta-represent
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them at the logic’s object level as suitable meta-level theories extending Maude’s
META-LEVEL module [8]. Due to space limitations all proofs and some definition
details are omitted. They can all be found in [34].

2 Preliminaries on Order-Sorted Algebra and Rewriting

The material is adapted from [18,25,28]. Due to space limitations the following
elementary notions, which can be found in [25], are assume known: (i) order-
sorted (OS) signature Σ; (ii) set Ŝ of connected components (each denoted
[s] ∈ Ŝ) of a poset of sorts (S,�); (iii) sensible OS signature; (iv) order-sorted
Σ-algebras and homomorphisms, and its associated category OSAlgΣ ; and (v)
the construction of the term algebra TΣ and its initiality in OSAlgΣ when Σ

is sensible. Furthermore, for connected components [s1], . . . , [sn], [s] ∈ Ŝ,

f
[s1]...[sn]
[s] = {f : s′

1 . . . s′
n → s′ ∈ Σ | s′

i ∈ [si], 1 � i � n, s′ ∈ [s]}

denotes the family of “subsort polymorphic” operators f .
TΣ will (ambiguously) denote: (i) the term algebra; (ii) its underlying

S-sorted set; and (iii) the set TΣ =
⋃

s∈S TΣ,s. For [s] ∈ Ŝ, TΣ,[s] =
⋃

s′∈[s] TΣ,s′ .
An OS signature Σ is said to have non-empty sorts iff for each s ∈ S, TΣ,s �= ∅.
We will assume throughout that Σ has non-empty sorts. An OS signature Σ is
called preregular [19] iff for each t ∈ TΣ the set {s ∈ S | t ∈ TΣ,s} has a least
element, denoted ls(t). We will assume throughout that Σ is preregular.

An S-sorted set X = {Xs}s∈S of variables, satisfies s �= s′ ⇒ Xs ∩ Xs′ = ∅,
and the variables in X are always assumed disjoint from all constants in Σ. The
Σ-term algebra on variables X, TΣ(X), is the initial algebra for the signature
Σ(X) obtained by adding to Σ the variables X as extra constants. Since a Σ(X)-
algebra is just a pair (A,α), with A a Σ-algebra, and α an interpretation of the
constants in X, i.e., an S-sorted function α ∈ [X→A], the Σ(X)-initiality of
TΣ(X) can be expressed as the following theorem:

Theorem 1 (Freeness Theorem). If Σ is sensible, for each A ∈ OSAlgΣ and
α ∈ [X→A], there exists a unique Σ-homomorphism, α : TΣ(X) → A extending
α, i.e., such that for each s ∈ S and x ∈ Xs we have xαs = αs(x).

In particular, when A = TΣ(X), an interpretation of the constants in X, i.e., an
S-sorted function σ ∈ [X→TΣ(X)] is called a substitution, and its unique homo-
morphic extension σ : TΣ(X) → TΣ(X) is also called a substitution. Define
dom(σ) = {x ∈ X | x �= xσ}, and ran(σ) =

⋃
x∈dom(σ) vars(xσ). A variable spe-

cialization is a substitution ρ that just renames a few variables and may lower
their sort. More precisely, dom(ρ) is a finite set of variables {x1, . . . , xn}, with
respective sorts s1, . . . , sn, and ρ injectively maps the x1, . . . , xn to variables
x′
1, . . . , x

′
n with respective sorts s′

1, . . . , s
′
n such that s′

i � si, 1 � i � n.
The first-order language of equational Σ-formulas is defined in the usual

way: its atoms are Σ-equations t = t′, where t, t′ ∈ TΣ(X)[s] for some [s] ∈
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Ŝ and each Xs is assumed countably infinite. The set Form(Σ) of equational
Σ-formulas is then inductively built from atoms by: conjunction (∧), disjunction
(∨), negation (¬), and universal (∀x:s) and existential (∃x:s) quantification with
sorted variables x : s ∈ Xs for some s ∈ S. The literal ¬(t = t′) is denoted
t �= t′. Given a Σ-algebra A, a formula ϕ ∈ Form(Σ), and an assignment α ∈
[Y →A], with Y = fvars(ϕ) the free variables of ϕ, the satisfaction relation
A,α |= ϕ is defined inductively as usual: for atoms, A,α |= t = t′ iff tα =
t′α; for Boolean connectives it is the corresponding Boolean combination of
the satisfaction relations for subformulas; and for quantifiers: A,α |= (∀x:s) ϕ
(resp. A,α |= (∃x:s) ϕ) holds iff for all a ∈ As (resp. some a ∈ As) we have
A,α�{(x:s, a)} |= ϕ, where the assignment α�{(x:s, a)} extends α by mapping
x:s to a. Finally, A |= ϕ holds iff A,α |= ϕ holds for each α ∈ [Y →A], where
Y = fvars(ϕ). We say that ϕ is valid (or true) in A iff A |= ϕ. We say that ϕ is
satisfiable in A iff ∃α ∈ [Y →A] such that A,α |= ϕ, where Y = fvars(ϕ). For a
subsignature Ω ⊆ Σ and A ∈ OSAlgΣ , the reduct A|Ω ∈ OSAlgΩ agrees with
A in the interpretation of all sorts and operations in Ω and discards everything
in Σ − Ω. If ϕ ∈ Form(Ω) we have the equivalence A |= ϕ ⇔ A|Ω |= ϕ.

An OS equational theory is a pair T = (Σ,E), with E a set of Σ-equations.
OSAlg(Σ,E) denotes the full subcategory of OSAlgΣ with objects those A ∈
OSAlgΣ such that A |= E, called the (Σ,E)-algebras. OSAlg(Σ,E) has an
initial algebra TΣ/E [25]. Given T = (Σ,E) and ϕ ∈ Form(Σ), we call ϕ T -valid,
written E |= ϕ, iff A |= ϕ for each A ∈ OSAlg(Σ,E). We call ϕ T -satisfiable
iff there exists A ∈ OSAlg(Σ,E) with ϕ satisfiable in A. Note that ϕ is T -valid
iff ¬ϕ is T -unsatisfiable. The inference system in [25] is sound and complete
for OS equational deduction, i.e., for any OS equational theory (Σ,E), and Σ-
equation u = v we have an equivalence E � u = v ⇔ E |= u = v. Deducibility
E � u = v is abbreviated as u = Ev, called E-equality. An E-unifier of a system
of Σ-equations, i.e., a conjunction φ = u1 = v1 ∧ . . . ∧ un = vn of Σ-equations
is a substitution σ such that uiσ = Eviσ, 1 � i � n. An E-unification algorithm
for (Σ,E) is an algorithm generating a complete set of E-unifiers Unif E(φ) for
any system of Σ equations φ, where “complete” means that for any E-unifier σ
of φ there is a τ ∈ Unif E(φ) and a substitution ρ such that σ = Eτρ, where
=E here means that for any variable x we have xσ = Exτρ. The algorithm is
finitary if it always terminates with a finite set Unif E(φ) for any φ.

Given a set of equations B used for deduction modulo B, a preregular OS
signature Σ is called B-preregular1 iff for each u = v ∈ B and variable special-
ization ρ, ls(uρ) = ls(vρ).

1 When the axioms B consist of a combination of associativity, commutativity, and
(left and/or right) identity axioms, we can decompose B into the disjoint union
B = B0 � U , where B0 are associativity and/or commutativity axioms, and U are
left and/or right identity axioms. The equations in U , of the general form f(e, x) = x
and/or f(x, e) = x, can be oriented as rewrite rules R(U) of the form f(e, x) → x
and/or f(x, e) → x to be applied modulo B0. The B-preregularity notion can then
be broadened by requiring only that: (i) Σ is preregular; (ii) Σ is B0-preregular in
the standard sense that ls(uρ) = ls(vρ) for all u = v ∈ B0 and sort specializations
ρ; and (iii) the rules R(U) are sort-decreasing in the sense of Definition 1. Maude
automatically checks B-preregularity of an OS signature Σ in this broader sense [8].
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In the above logical notions the lack of predicate symbols is only apparent :
full order-sorted first-order logic can be reduced to order-sorted algebra and
equational formulas. The essential idea is to view a predicate p(x1:s1, . . . , xn:sn)
as a function symbol p : s1 . . . sn → Pred , with Pred , a new sort having a
constant tt . An atomic formula p(t1, . . . , tn) is then expressed as the equation
p(t1, . . . , tn) = tt . We refer the reader to [27,28] for a detailed account of this
reduction of predicate symbols to function symbols.

Recall the notation for term positions, subterms, and term replacement from
[14]: (i) positions in a term viewed as a tree are marked by strings p ∈ N

∗

specifying a path from the root, (ii) t|p denotes the subterm of term t at position
p, and (iii) t[u]p denotes the result of replacing subterm t|p at position p by u.

Definition 1. A rewrite theory is a triple R = (Σ,B,R) with (Σ,B) an order-
sorted equational theory and R a set of Σ-rewrite rules, i.e., sequents l → r,
with l, r ∈ TΣ(X)[s] for some [s] ∈ Ŝ. In what follows it is always assumed that:

1. For each l → r ∈ R, l �∈ X and vars(r) ⊆ vars(l).
2. Each rule l → r ∈ R is sort-decreasing, i.e., for each variable specialization

ρ, ls(lρ) � ls(rρ).
3. Σ is B-preregular (if B = B0 � U , in the broader sense of Footnote 1).
4. Each equation u = v ∈ B is regular, i.e., vars(u) = vars(v), and linear, i.e.,

there are no repeated variables in u, and no repeated variables in v.

The one-step R, B-rewrite relation t →R,B t′, holds between t, t′ ∈ TΣ(X)[s],
[s] ∈ Ŝ, iff there is a rewrite rule l → r ∈ R, a substitution σ ∈ [X→TΣ(X)],
and a term position p in t such that t|p =B lσ, and t′ = t[rσ]p. Note that, by
assumptions (2)–(3) above, t[rσ]p is always a well-formed Σ-term.

R is called: (i) terminating iff the relation →R,B is well-founded; (ii) strictly
B-coherent [26] iff whenever u →R,B v and u =B u′ there is a v′ such that
u′ →R,B v′ and v =B v′; (iii) confluent iff u →∗

R,B v1 and u →∗
R,B v2 imply

that there are w1, w2 such that v1 →∗
R,B w1, v2 →∗

R,B w2, and w1 =B w2 (where
→∗

R,B denotes the reflexive-transitive closure of →R,B); and (iv) convergent if
(i)–(iii) hold. If R is convergent, for each Σ-term t there is a term u such that
t →∗

R,B u and (�v) u →R,B v. We then write u = t!R,B, and call t!R,B the
R, B-normal form of t, which, by confluence, is unique up to B-equality.

Given a set E of Σ-equations, let R(E) = {u → v | u = v ∈ E}. A decompo-
sition of an order-sorted equational theory (Σ,E) is a convergent rewrite theory
R = (Σ,B,R) such that E = E0 � B and R = R(E0). The key property of a
decomposition is the following:

Theorem 2 (Church-Rosser Theorem) [22,26]. Let R = (Σ,B,R) be a decom-
position of (Σ,E). Then we have an equivalence:

E � u = v ⇔ u!R,B =B v!R,B .
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If R = (Σ,B,R) is a decomposition of (Σ,E), and X an S-sorted set of
variables, the canonical term algebra CR(X) has CR(X)s = {[t!R,B ]B | t ∈
TΣ(X)s}, and interprets each f : s1 . . . sn → s as the function CR(X)f :
([u1]B , . . . , [un]B) �→ [f(u1, . . . , un)!R,B ]B . By the Church-Rosser Theorem we
then have an isomorphism h : TΣ/E(X) ∼= CR(X), where h : [t]E �→ [t!R,B ]B . In
particular, when X is the empty family of variables, the canonical term algebra
CR is an initial algebra, and is the most intuitive possible model for TΣ/E as an
algebra of values computed by R, B-simplification.

Quite often, the signature Σ on which TΣ/E is defined has a natural decom-
position as a disjoint union Σ = Ω � Δ, where the elements of CR, that is,
the values computed by R, B-simplification, are Ω-terms, whereas the function
symbols f ∈ Δ are viewed as defined functions which are evaluated away by
R, B-simplification. Ω (with same poset of sorts as Σ) is then called a construc-
tor subsignature of Σ. Call a decomposition R = (Σ,B,R) of (Σ,E) sufficiently
complete with respect to the constructor subsignature Ω iff for each t ∈ TΣ

we have: (i) t!R,B ∈ TΩ , and (ii) if u ∈ TΩ and u =B v, then v ∈ TΩ . This
ensures that for each [u]B ∈ CR we have [u]B ⊆ TΩ. Of course, we want Ω as
small as possible with these properties. In Example 1 below, Ω = {�,⊥} and
Δ = { ∧ , ∨ }. Tools based on tree automata [11], equational tree automata
[21], or narrowing [20], can be used to automatically check sufficient completeness
of a decomposition R with respect to constructors Ω under some assumptions.

Sufficient completeness is closely related to the notion of a protecting theory
inclusion.

Definition 2. An equational theory (Σ,E) protects another theory (Ω,EΩ) iff
(Ω,EΩ) ⊆ (Σ,E) and the unique Ω-homomorphism h : TΩ/EΩ

→ TΣ/E |Ω is an
isomorphism h : TΩ/EΩ

∼= TΣ/E |Ω.
A decomposition R = (Σ,B,R) protects another decomposition R0 =

(Σ0, B0, R0) iff R0 ⊆ R, i.e., Σ0 ⊆ Σ, B0 ⊆ B, and R0 ⊆ R, and for all
t, t′ ∈ TΣ0(X) we have: (i) t =B0 t′ ⇔ t =B t′, (ii) t = t!R0,B0 ⇔ t = t!R,B, and
(iii) CR0 = CR|Σ0 .

RΩ = (Ω,BΩ , RΩ) is a constructor decomposition of R = (Σ,B,R) iff R
protects RΩ and Σ and Ω have the same poset of sorts, so that by (iii) above R
is sufficiently complete with respect to Ω. Furthermore, Ω is called a subsignature
of free constructors modulo BΩ iff RΩ = ∅, so that CR0 = TΩ/BΩ

.

3 Variants and Variant Satisfiability

The notion of variant answers two questions: (i) how can we best describe sym-
bolically the elements of CR(X) that are reduced substitution instances of a given
pattern term t? and (ii) when is such a symbolic description finite?

Definition 3. Given a decomposition R = (Σ,B,R) of an OS equational theory
(Σ,E) and a Σ-term t, a variant2 [13,18] of t is a pair (u, θ) such that: (i)
2 For a discussion of similar but not exactly equivalent versions of the variant notion

see [7]. Here we follow the formulation in [18].



Metalevel Algorithms for Variant Satisfiability 173

u =B (tθ)!R,B, (ii) if x �∈ vars(t), then xθ = x, and (iii) θ = θ!R,B, that is,
xθ = (xθ)!R,B for all variables x. (u, θ) is called a ground variant iff u ∈ TΣ.
Note that if (u, θ) is a ground variant of some t, then [u]B ∈ CR. Given variants
(u, θ) and (v, γ) of t, (u, θ) is called more general than (v, γ), denoted (u, θ) �R,B

(v, γ), iff there is a substitution ρ such that: (i) θρ =B γ, and (ii) uρ =B v. Let
�t�R,B = {(ui, θi) | i ∈ I} denote a most general complete set of variants of t,
that is, a set of variants such that: (i) for any variant (v, γ) of t there is an
i ∈ I, such that (ui, θi) �R,B (v, γ); and (ii) for i, j ∈ I, i �= j ⇒ ((ui, θi) ��R,B

(uj , θj) ∧ (uj , θj) ��R,B (ui, θi)). A decomposition R = (Σ,B,R) of (Σ,E) has
the finite variant property [13] (FVP) iff for each Σ-term t there is a finite most
general complete set of variants �t�R,B = {(u1, θ1), . . . , (un, θn)}.

If B has a finitary unification algorithm, the folding variant narrowing strat-
egy described in [18] provides an effective method to generate �t�R,B. Further-
more, �t�R,B is finite for each t, so that the strategy terminates iff R is FVP.

Example 1. Let B = (Σ,B,R) with Σ having a single sort, say Bool , constants
�,⊥, and binary operators ∧ and ∨ , B the associativity and commutativity
(AC) axioms for both ∧ and ∨ , and R the rules: x ∧ � → x, x ∧ ⊥ → ⊥,
x ∨ ⊥ → x, and x ∨ � → �. Then B is FVP. For example, �x ∧ y�R,B =
{(x ∧ y, id), (y, {x �→ �}), (x, {y �→ �}), (⊥, {x �→ ⊥}), (⊥, {y �→ ⊥})}.

FVP is a semi-decidable property [7], which can be easily verified (when
it holds) by checking, using folding variant narrowing, that for each function
symbol f the term f(x1, . . . , xn), with the sorts of the x1, . . . , xn those of f , has
a finite number of most general variants.

Folding variant narrowing provides also a method for generating a complete
set of E-unifiers when (Σ,E) has a decomposition R = (Σ,B,R) with B having
a finitary B-unification algorithm [18]. To express systems of equations, say,
u1 = v1 ∧ . . . ∧ un = vn, as terms, we can extend Σ to a signature Σ∧ by
adding:

1. for each connected component [s] that does not already have a top element,
a fresh new sort �[s] with �[s] > s′ for each s′ ∈ [s]. In this way we obtain a
(possibly extended) poset of sorts (S�,�);

2. fresh new sorts Lit and Conj with a subsort inclusion Lit < Conj , with a
binary conjunction operator ∧ : Lit Conj → Conj , and

3. for each connected component [s] ∈ Ŝ� with top sort �[s], binary operators
= : �[s] �[s] → Lit and �= : �[s] �[s] → Lit .

Theorem 3 [28]. Under the above assumptions on R, let φ = u1 = v1 ∧ . . . ∧
un = vn be a system of Σ-equations viewed as a Σ∧-term of sort Conj . Then

{θγ | (φ′, θ) ∈ �φ�R,B ∧ γ ∈ Unif B(φ′) ∧ (φ′γ, θγ) is a variant of φ}

is a complete set of E-unifiers for φ, where Unif B(φ′) denotes a complete set of
most general B-unifiers for each variant φ′ = u′

1 = v′
1 ∧ . . . ∧ u′

n = v′
n.



174 S. Skeirik and J. Meseguer

Since if R = (Σ,B,R) is FVP, then R∧ = (Σ∧, B,R) is also FVP, Theo-
rem 3 shows that if a finitary B-unification algorithm exists and R is an FVP
decomposition of (Σ,E), then E has a finitary E-unification algorithm.

The key question asked and answered in [27,28] is: given an FVP decom-
position R = (Σ,B,R) of an equational theory (Σ,E), under what condi-
tions is satisfiability of QF equational Σ-formulas in the canonical term alge-
bra CR decidable? It turns out that: (i) R having a constructor decomposition
RΩ = (Ω,BΩ , RΩ), and (ii) the associated notions of constructor variant and
constructor unifier [28] play a crucial role in answering this question.

Definition 4. Let R = (Σ,B,R) be a decomposition of (Σ,E), and let RΩ =
(Ω,BΩ , RΩ) be a constructor decomposition of R. Then an R, B-variant (u, θ)
of a Σ-term t is called a constructor R, B-variant of t iff u ∈ TΩ(X).

Suppose, furthermore, that B has a finitary B-unification algorithm, so that,
given a unification problem φ = u1 = v1 ∧ . . . ∧ un = vn, Theorem 3 allows us
to generate the complete set of E-unifiers

{θγ | (φ′, θ) ∈ �φ�R,B ∧ γ ∈ Unif B(φ′) ∧ (φ′γ, θγ) is a variant of φ}

Then a constructor E-unifier3 of φ is either: (1) a unifier θγ in the above
set with φ′γ ∈ TΩ∧(X); or otherwise, (2) a unifier θγα such that: (i) θγ belongs
the above set, (ii) α is a substitution of the variables in ran(θγ) such that φ′γα ∈
TΩ∧(X), and (iii) (φ′γα, θγα) is a variant of φ. mguΩ

R(φ) denotes a set of most
general constructor E-unifiers of φ, i.e., for any constructor E-unifier μ of φ
there is another one η ∈ mguΩ

R(φ) and a substitution ν such that μ =B ην.

Note that if (v, δ) is a ground variant of t, then [v]B ∈ CR, so that v is
an Ω-term. Therefore, any ground variant (v, δ) of t is “covered” by some con-
structor variant (u, θ) of t, i.e., (u, θ) �R,B (v, δ). If (Σ,E) has a decomposition
R = (Σ,B,R), B has a finitary B-unification algorithm and we are only inter-
ested in characterizing the ground solutions of an equation in the initial algebra
TΣ/E , only constructor E-unifiers are needed, since they completely cover all
such solutions. Likewise, if we are only interested in unifiability of a system of
equations only constructor E-unifiers are needed.

Theorem 4 [27,28]. Let (Σ,E) have a decomposition R = (Σ,B,R) with B
having a finitary B-unification algorithm. Then, for each system of Σ-equations
φ = u1 = v1 ∧ . . . ∧ un = vn, where Y = vars(φ), we have:

1. (Completeness for Ground Unifiers). If δ ∈ [Y →TΣ ] is a ground E-unifier of
φ, then there is a constructor E-unifier η ∈ mguΩ

R(φ) and a substitution β
such that δ =E ηβ, i.e., xδ =E xηβ for each variable x ∈ Y .

2. (Unifiability). TΣ/E |= (∃Y ) φ iff φ has a constructor E-unifier.

Given an OS equational theory (Σ,E), call a Σ-equality u = v E-trivial iff
u =E v, and a Σ-disequality u �= v E-consistent iff u �=E v. Likewise, call a
conjunction

∧
D of Σ-disequalities E-consistent iff each u �= v in D is so.

3 [27,28,34] give examples of constructor variants and constructor unifiers.
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Theorem 4 is a key step to find conditions for the decidable satisfiability of
QF equational Σ-formulas in CR for R = (Σ,B,R) an FVP decomposition of
(Σ,E), where B has a finitary B-unification algorithm and R has a constructor
decomposition RΩ = (Ω,BΩ , RΩ). The key idea is to reduce the problem to
one of satisfiability of a conjunction of Ω-disequalities in the simpler canonical
term algebra CRΩ

. By CR|Ω = CRΩ
, Theorem 4, and the Descent Theorems in

[27,28] (see [27,28] for full details), we can apply the following algorithm to a
conjunction of literals φ =

∧
G ∧ ∧

D, with G equations and D disequations:

1. Thanks to Theorem 4 we need only compute the constructor E-unifiers
mguΩ

R(
∧

G), and reduce to the case of deciding the satisfiability of some con-
junction of disequalities (

∧
Dα)!R,B , for some α ∈ mguΩ

R(
∧

G), discarding
any (

∧
Dα)!R,B containing a B-inconsistent disequality.

2. For each remaining (
∧

Dα)!R,B we can then compute a finite, complete set
of most general R, B-variants �(

∧
Dα)!R,B�R,B by folding variant narrowing,

and obtain for each of them its BΩ-consistent constructor variants
∧

D′.
3. Then by the Descent Theorems in [27,28], φ will be satisfiable in CR iff

∧
D′

is satisfiable in CRΩ
for some such

∧
D′ and some such α.

Therefore, the method hinges upon being able to decide when a conjunction
of Ω-disequalities

∧
D′ is satisfiable in CRΩ

. This is decidable if RΩ is the
decomposition of an OS-compact theory, which generalizes the notion of compact
theory in [12]:

Definition 5 [27,28]. An equational theory (Σ,E) is called OS-compact iff:
(i) for each sort s in Σ we can effectively determine whether TΣ/E,s is finite
or infinite, and, if finite, can effectively compute a representative ground term
rep([u]) ∈ [u] for each [u] ∈ TΣ/E,s (ii) =E is decidable and E has a finitary
unification algorithm; and (iii) any E-consistent finite conjunction

∧
D of Σ-

disequalities whose variables all have infinite sorts is satisfiable in TΣ/E.

The reason why satisfiability of a conjunction of disequalities in the initial
algebra of an OS-compact theory is decidable [27,28] is fairly obvious: by (iii) it
is decidable when all variables have infinite sorts; and we can always reduce to a
disjunction of formulas in that case by instantiating each variable with a finite
sort s by all the possible representatives in TΣ/E,s. Therefore we have:

Corollary 1. For R = (Σ,B,R) an FVP decomposition of (Σ,E), where B
has a finitary B-unification algorithm and R has an OS-compact constructor
decomposition RΩ, satisfiability of QF equational Σ-formulas in CR is decidable.

The papers [27,28] contain many examples of commonly used theories that
have FVP specifications whose constructor decompositions are OS-compact.
This can be established by one of the two methods discussed below.

A first method to show OS-compactness is both very simple and widely
applicable to constructor decompositions of FVP theories. It applies to OS equa-
tional theories of the form (Ω,ACCU ), where ACCU stands for any combina-
tion of associativity and/or commutativity and/or left- or right-identity axioms,
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except combinations where the same operator is associative but not commuta-
tive. We also assume that if any typing for a binary operator f in a subsort-
polymorphic family f

[s] [s]
[s] satisfies some axioms in ACCU , then any other typ-

ing in f
[s] [s]
[s] satisfies the same axioms. The following theorem generalizes to the

order-sorted and ACCU case a similar result in [12] for the unsorted and AC
case:

Theorem 5 [27,28]. Under the above assumptions (Ω,ACCU ) is OS-compact.
Furthermore, satisfiability of QF Ω-formulas in TΩ/ACCU is decidable.

The range of FVP theories whose initial algebras have decidable QF satisfi-
ability is greatly increased by a second method of satisfiability-preserving FVP
parameterized theories. For our present purposes it suffices to summarize the
basic general facts and assumptions for the case of FVP parameterized data
types with a single parameter X. That is, we can focus on parameterized FVP
theories of the form R[X] = (R,X), where R = (Σ,B,R) is an FVP decom-
position of an OS equational theory (Σ,E), and X is a sort in Σ (called the
parameter sort) such that: (i) is empty, i.e., TΣ,X = ∅; and (ii) X is a minimal
element in the sort order, i.e., there is no other sort s′ with s′ < X.

Consider an FVP decomposition G = (Σ′, B′, R′) of a finitary OS equa-
tional theory (Σ′, E′), which we can assume without loss of generality is dis-
joint from (Σ,E), and additionally let s be a sort in Σ′. Then the instantiation
R[G,X �→ s] = (Σ[Σ′,X �→ s], B ∪ B′, R ∪ R′) is the decomposition of a theory
(Σ[Σ′,X �→ s], E ∪E′), extending (Σ′, E′), where the signature Σ[Σ′,X �→ s] is
defined as the union Σ[X �→ s] ∪ Σ′, with Σ[X �→ s] just like Σ, except for X
renamed to s. Its set of sorts is (S −{X})�S′, and the poset ordering combines
those of Σ[X �→ s] and Σ′. Furthermore, R[G,X �→ s] is also FVP under mild
assumptions [27].

Suppose B, B′ and B ∪ B′ have finitary unification algorithms and both
R[X] = (R,X) and G protect, respectively, the two constructor theories, say
RΩ [X] = (Ω,BΩ , RΩ) and GΩ′ = (Ω′, BΩ′ , RΩ′). Then R[G,X �→ s] will protect
RΩ [GΩ′ ,X �→ s]. Suppose, further, that BΩ, BΩ′ , and BΩ ∪ BΩ′ have decid-
able equality. The general satisfiability-preserving method of interest is then as
follows: (i) assuming that GΩ′ is the decomposition of an OS-compact theory,
then (ii) under some assumptions about the cardinality of the sort s, prove the
OS-compactness of RΩ [GΩ′ ,X �→ s]. It then follows from our earlier reduction
of satisfiability in initial FVP algebras to their constructor decompositions that
satisfiability of QF formulas in the initial model of the instantiation R[G,X �→ s]
is decidable.

In [27] the following parameterized data types have been proved satisfiability-
preserving following the just-described pattern of proof: (i) L[X], parameterized
lists, which is just an example illustrating the general case of any constructor-
selector-based [29] parameterized data type; (ii) Lc[X], parameterized compact
lists, where any two identical contiguous list elements are identified [15,16]; (iii)
M[X], parameterized multisets; (iv) S[X], parameterized sets; and (v) H[X],
parameterized hereditarily finite sets.
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4 Metalevel Algorithms for Variant Satisfiability

For R = (Σ,B,R) an FVP decomposition of (Σ,E), where B has a finitary B-
unification algorithm and R has a constructor decomposition RΩ , the issue of the
decidable satisfiability of QF equational Σ-formulas in CR has been condensed
in Sect. 3 to two key sub-issues: (i) steps (1)–(3) in the high-level algorithm,
which reduce satisfiability of a conjunction of Σ-literals in CR to satisfiability
of a conjunction of Ω-disequalities in CRΩ

; and (ii) decidable satisfiability of
conjunctions of Ω-disequalities in CRΩ

when RΩ is OS-compact (Corollary 1).
At a theoretical level this gives the skeleton of a high-level algorithm for

variant satisfiability. But at a concrete, algorithmic level several important ques-
tions, essential for having an actual satisfiability algorithm, remain unresolved,
including: (1) how can we automatically check that the constructor decomposi-
tion RΩ is OS-compact using the two methods for OS-compactness outlined in
Sect. 3? (2) how can we compute constructor variants and constructor unifiers?
(3) how can we prove that the auxiliary algorithms answering questions (1) and
(2) are correct? and (4) how can we implement both the main algorithm and
the auxiliary algorithms in a correctness-preserving manner?

Let us begin with question (3). The algorithm skeleton sketched in Sect. 3
manipulates metalevel entities like operators, signatures, terms, equations, and
theories. Likewise, the checks for OS-compactness and the computation of con-
structor variants and constructor unifiers (questions (1) and(2)) are problems
fully expressible in terms of such metalevel entities. Therefore, both for mathe-
matical clarity and for simplicity of the needed correctness proofs, the definitions
of the auxiliary algorithms should be carried out at the metalevel of rewriting
logic.

This brings us to question (4), which has a simple answer: since rewriting
logic is reflective [10], once we have defined and proved correct at the metalevel
the auxiliary algorithms solving questions (1) and (2), we can derive correct
implementations for them by meta-representing them at the logic’s object level
as equational or rewrite theories. In fact, this can be carried out in Maude by
defining suitable meta-level theories extending the META-LEVEL module [8].

The previous paragraphs lead us to the main contributions of the present
paper. We answer questions (1) and part of (3) by defining and proving correct
at the metalevel a method to check OS-compactness, including: (a) checking
which sorts s satisfy |TΩ/BΩ ,s| < ℵ0, and (b) computing for each such s a
unique representative rep([t]BΩ

) for each [t]BΩ
∈ TΩ/BΩ ,s. We answer question

(2) and the other part of (3) by defining and proving correct at the meta-level a
method to compute constructor unifiers and constructor variants. And we answer
question (4) by meta-representing both the auxiliary algorithms and the main
algorithm (already proved correct at the meta-level in [27,28]) in Sect. 5.

To help guide the discussion, the reader may refer to the tree diagram in the
Introduction, which describes the dependencies among different subalgorithms.
Due to space limitations, we cannot describe these metalevel sub-algorithms in
full detail in the body of the paper: all remaining details, together with full
proofs of correctness, can be found in [34].
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4.1 OS-Compact Satisfiability

EΩ-consistency of a conjunction of Ω-disequalities
∧

D′ in a constructor decom-
position RΩ = (Ω,BΩ , RΩ) is easy to check: we may assume

∧
D′ in RΩ , BΩ-

normal form and just need to check that u �=BΩ
v for each u �= v in

∧
D′.

Checking that the constructor subtheory RΩ of R is OS-compact breaks into
two cases: (1) when R is an unparameterized theory ; and (2) when R is the
instantiation of a possibly nested collection of satisfiability-preserving parame-
terized theories such as, for, example, sets of lists of natural numbers. In case (2)
it is enough (for the parameterized theories described in Sect. 3) to check that:
(i) the unparameterized theory G in the innermost instantiation (in our exam-
ple the theory N+ of naturals with addition) is OS-compact, and the chosen
sort (in our example the sort Nat) is infinite; and (ii) that the sorts chosen to
instantiate each remaining parameter is the principal sort of the parameterized
module immediately below in the nesting. In our example this is just checking
that the parameter sort X for the set parameterized module is instantiated to
the principal sort, namely List , of the list parameterized module immediately
below. In this way, checking OS-compactness of RΩ in the, nested, parameter-
ized case is reduced to checking OS-compactness of the unparameterized inner
argument, plus a check of an infinite sort. All checks for the unparameterized
case (1), including the two needed in case (2), are described below.

OS-Compactness Check (Unparameterized Case). As shown in Theorem
5, a sufficient condition for an unparameterized constructor decomposition RΩ =
(Ω,BΩ , RΩ) to be OS-compact is for RΩ to be of the form RΩ = (Ω,ACCU , ∅).
Thus, a sufficient condition is to require: (1) BΩ to be a set of ACCU axioms,
and (2) Ω to be a signature of free constructors modulo BΩ . Fortunately, both of
these subgoals are quite simple to check. Goal (1) can be solved by iterating over
each axiom and applying a case analysis against its structure. Goal (2) can be
solved by an application of propositional tree automata (PTA). In particular, if
the rules R in R are linear and unconditional, then constructor freeness modulo
B is translatable into a PTA emptiness problem; see [32] for further details.

Finite Sort Classification. Another needed algorithm takes as input a sig-
nature Ω and a sort s and checks if |TΩ/BΩ ,s| < ℵ0. We solve this problem in
two phases: (1) we devise an algorithm to check |TΩ,s| < ℵ0, and (2) we use
this as a subroutine in an approximate algorithm to check |TΩ/BΩ ,s| < ℵ0 when
BΩ = ACCU . If the approximate algorithm fails to classify some s as either
infinite or finite, s is returned to the user as a proof obligation [34].

If Ω is finite and has non-empty sorts, we show that |TΩ,s| = ℵ0 iff there
exists a cycle in the relation (≺) ⊆ S2 reachable from s where s ≺ s′ iff the
formula ∃f : s1 · · · sn → s′′ ∈ Ω ∃i ∈ N[s′′ � s ∧ s � si] ∨ [s′ < s] holds.
We construct a rewrite theory RF over S such that s →RF

s′ iff s ≺ s′. If
cy(S) = {s ∈ S | s →+

RF
s}, then s →∗

RF
s′ with s′ ∈ cy(S) implies |TΩ,s| = ℵ0.

Then
∨

s′∈cy(S⊃∅) RF � s →∗ s′ holds iff there is a cycle in the relation (≺)
reachable from s [34].
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We now lift the algorithm above to phase (2). We can show that for ACC
axioms BΩ there is an exact correspondence |TΩ/BΩ ,s| < ℵ0 iff |TΩ,s| < ℵ0. The
tricky case is when BΩ contains unit axioms, since they may break this happy
correspondence. For example, consider the unsorted signature Ω = (0, + )
where 0 is a unit element for + . For the ACCU case, [34] describes two simple
checks for |TΩ/BΩ ,s| < ℵ0 that apply in most cases. Failing that, the classification
of sort s is returned to the user as a proof obligation.

Finite Sort Representative Generation. Here we require a method to do
two things: (1) when |TΩ/BΩ ,s| < ℵ0, we can compute each [t]BΩ

∈ TΩ/BΩ ,s

(2) for each such [t]BΩ
, we can compute a unique representative rep([t]BΩ

). We
first show how to generate TΩ,s. Recall that any order-sorted signature Ω can be
viewed as a tree automaton such that the tree automaton accepts a term t in final
state s iff t ∈ TΩ,s. Note also that tree automata are very simple ground rewrite
theories. Let RP be the ground rewrite rules for Ω’s tree automaton over TΩ∪S ,
so that t ∈ TΩ,s iff t →+

RP
s. Let RG = R−1

P then TΩ,s = {t ∈ TΩ | s →!
RG

t}
[34]. Furthermore, if |TΩ,s| < ℵ0 and Ω has no empty sorts, this process will
always terminate. Note that we can apply the rules RG modulo BΩ . Then the
set Rep(TΩ/BΩ ,s) = {rep([t]) | [t] ∈ TΩ/BΩ ,s} is exactly the set Rep(TΩ/BΩ ,s) =
{t | s →!

RG,BΩ
t}.

4.2 Constructor Variants and Constructor Unifiers

We first show how to compute a set of most general constructor variants of a
term t (i.e. a set of constructor variants �t�Ω

R,B such that for any constructor
variant (t′, θ), we have ∃(t′′, ψ) ∈ �t�Ω

R,B[(t′′, ψ) �R,B (t′, φ)]) and then show
how to use this method to compute a set of most general constructor unifiers
mguΩ

R(φ). Recall that a constructor variant is just an variant (t, θ) such that
t ∈ TΩ(X). Thus, �t�Ω

R,B can be computed in two steps: (1) computing a set
of most general variants �t�R,B, and (2) for each most general variant (t′, θ),
compute the set of its most general constructor instances, i.e. a set of instances
mgciB(t′) = {t′η1, · · · , t′ηn} where for any other instance t′α, there exists a
substitution γ and ηi with α =B ηiγ. Note that (1) can be solved via folding
variant narrowing, so we tackle (2) by a reduction to a B-unification problem via
a signature transformation Σ �→ Σc. In this transformed signature, the instances
mgciB(t′) correspond exactly to the solutions of a single B-unification problem.

The signature transformation Σ �→ Σc splits into two steps: (i) we extend
the sort poset (S, <) of Σ and Ω and (ii) likewise extend the operator sets F
and FΩ , as specified by the definitions below, respectively. Recall we assume Σ
(and thus Ω) are finite; otherwise these transformations would not be effective.

Definition 6. A constructor sort refinement of (S,<) is defined by the follow-
ing: (a) a set Sc = S � S↓ with c : S → S↓ a bijection, (b) a relation (<c) the
smallest strict order where: (i) ∀s, s′ ∈ S [s < s′ ⇔ [s <c s′ ∧ c(s) <c c(s′)]] and
(ii) ∀s ∈ S [c(s) <c s], and (c) functions (•) : Sc → S and (•) : Sc → S↓ defined
by s• = s if s ∈ S else c−1(s) and s• = s if s ∈ S↓ else c(s).
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We let (<c) also ambiguously denote its extension to strings (Sc)∗. Similarly,
let (•) and (•) ambiguously denote their extensions to (Sc)∗ and P(Sc).

Definition 7. Given Σ = ((S,<), F ) and Ω = ((S,<), FΩ) where Ω ⊆ Σ and
(Sc, <c, (•), (•)) is a constructor sort refinement of (S,<), we define signatures
Ω↓ = ((Sc, <c), F ↓

Ω) and Σc = ((Sc, <c), F c) such that F c = F � F ↓
Ω and F ↓

Ω =
{f : w• → s• | f : w → s ∈ FΩ}. Then let X↓ = {Xs}s∈S↓ and Xc = X � X↓.

In particular, we refer to signatures Σc(Xc) and Ω↓(Xc) as the constructor
sort refinement of Σ(X) and Ω(X). It is in these signatures where we will perform
unification. Also note that (•) and (•) extend naturally to signature morphisms
(•) : Σc → Σ and (•) : Ω → Ω↓. On ground terms (•) and (•) are the identity,
but variables x ∈ Xc are mapped either into X or X↓ respectively. They further
extend into substitution mappings where (x, t) ∈ θ is mapped into (x•, t•) ∈ θ•

and (x•, t•) ∈ θ• respectively.
In practice, for our unification algorithm to be efficiently used modulo a

set of rewrite rules R, we want our transformed signature to be sensible and
B-preregular. In general, sensibility is preserved, but preregularity (and thus B-
preregularity) is not. Thus, we give a relatively mild condition which ensures B-
preregularity is preserved. If Ω ⊆ Σ, then we write Ω ≺ Σ and say Ω is preregular
below Σ iff Ω and Σ are preregular and ∀t ∈ TΣ [t ∈ TΩ ⇒ lsΩ(t) = lsΣ(t)].
Intuitively this means whenever a constructor typing is possible for a term, we
need only examine its constructor typings to find its least possible typing.

Theorem 6 [34]. Let R = (Σ,B,R) be convergent and have the constructor
decomposition RΩ = (Ω,BΩ , RΩ) and Ω ≺ Σ. Then Σc and Ω↓ are sensible
and B-preregular.

Now we can derive the most general constructor instances via unification.

Theorem 7 [34]. Let Σ(X) and Ω(X) be sensible and B-preregular, Ω ≺ Σ,
and B respect constructors. Then (a) ∀t ∈ TΣ(X)s ∀t′ ∈ TΩ(X)s′ with s ≡< s′

and x �∈ vars(t), tα =B t′ iff there are η ∈ mguB(t = x : c(s′)) and θ such
that η•θ|vars(t) =B α where α ∈ [vars(t) → TΩ(X)] and θ ∈ [X → TΩ(X)] and
(b) the set of most general constructor instances of t modulo B is defined by
mgciΩ

B(t) = {t(η•) | η ∈ mguB(t = x : lsΣ(X)(t)•)}.
Now that we can obtain constructor instances, we just need to show how to

compute constructor variants. But this is now straightforward, since we already
know we can compute every most general variant by folding variant narrowing.

Corollary 2 [34]. Let (Σ,B,R) be convergent and protect constructor decom-
position (Ω,BΩ , ∅) and Ω ≺ Σ. The most general constructor variants of t ∈
TΣ(X) are �t�Ω

R,B = {(t′η•, θη•) | (t′, θ) ∈ �t�R,B∧η ∈ mguB(t′, x : lsΣ(X)(t′)•)}.
The reduction of constructor unifiers to constructor variants is simple. Recall

any unification problem φ is a Σ∧-term φ ∈ TΣ∧(X)Conj . Let {αi}i∈I denote
the finite set of most general R, B-variant unifiers of φ obtained as explained
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in Theorem 3. Then the set of most general constructor unifiers of φ is the set
{αiη

• | η ∈ mguB((φαi)!R,B , x : Conj •)}.
We finish with an example of constructor variants and unifiers, which illus-

trates some issues relating to subsort-overloading that need to be considered.
Consider the theory Int of integers with addition. In our example, we have four
sorts: Int, Nat, NzNat, and NzNeg where NzNat < Nat < Int and NzNeg < Int.
There are five constructors + : NzNat NzNat → NzNat, + : Nat Nat → Nat,
0 :→ Nat, 1 :→ NzNat, and − : NzNat → NzNeg, and one defined operator
+ : Int Int → Int, where the addition operators all satisfy associativity, com-

mutativity, and identity axioms with unit element 0. Let n,m : NzNat and i : Int.
Then the operators satisfy four equations: i + −(n) + −(m) = i + −(n + m),
i + n + −(n) = i, i + n + −(n + m) = i + −(m), i + n + m + −(n) = i + m.

Note that this theory is FVP and protects its constructor subtheory. Suppose
that using this signature we wish to compute the constructor variants of term
i + n where i : Int and n : NzNat. We start computing the most general variants
of the term i+n using finite variant narrowing and obtain four variants: i, i+n,
i + −(n), and i + n + −(m), where i : Int and n,m : NzNat.

We then construct the extended signatures according to Definition 7. Figure 1
below illustrates how this is done, where for each sort s, we let s• denote its low-
ered sort. Then, for each variant t above, we just compute and apply substitu-
tions mguB(t = x : lsΣ(X)(t)•)}. Thus, we obtain the four constructor variants:
i, k+n, 0+n, and 0+−(n) where i : Int, k : Nat, and n : NzNat. Now recall (+)
is a defined operator over Int but a constructor over Nat ; therefore, for each (+)
variant, in order to obtain the corresponding constructor variants, we instantiate
subterm i : Int so the typing of the whole term lowers into Nat.

Fig. 1. Int signature Σ and its refinement Σc

5 Implementation and Example

Now we describe our implementation of the metalevel algorithms using Maude.
Thanks to the reflective nature of rewriting logic and the fact that Maude
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directly implements rewriting logic, we can directly represent metalevel con-
cepts in Maude as terms in a theory. In fact, such a library already exists in
Maude’s META-LEVEL module. By using META-LEVEL, we can directly write func-
tions over meta-level constructs to implement our algorithms. Essentially, the
algorithm follows the outline sketched in Sect. 4 and shown in the diagram in
the Introduction, except that the finite sort checks for theories with axioms have
not been implemented yet. The algorithm takes as input a reflected theory M
and a formula φ =

∧
G ∧ ∧

D and returns a boolean indicating if the formula is
satisfiable in M . For further details, we refer the reader to [34].

Let us see how our algorithm can be applied to a concrete example theory
NatList of lists of natural numbers with Presburger arithmetic. It has four
sorts: Bool, Nat, NeList, and List such that NeList < List, seven constructors
0 :→ Nat, 1 :→ Nat, + : Nat Nat → Nat, : : Nat List → NeList,
nil :→ List, true :→ Bool, and false :→ Bool, and three defined operators

< : Nat Nat → Bool, hd : NeList → Nat, and tl : NeList → List where
+ satisfies associativity, commutativity, and identity axioms for element 0.

The theory has four equations: m + 1 + n > n = true, n > n + m = false,
hd(n : l) = n and tl(n : l) = l where n,m : Nat and l : List.

Suppose we want to show φ = ∀l, l′ : NeList [hd(l) > hd(l′) = true ⇒ l �= l′]
is a theorem of the initial algebra of NatList. Usually, to solve equations in this
combined theory, we would need a separate solver for each subtheory and use
the Nelson-Oppen combination method to reason in the combined theory, but
here, since the theory NatList is FVP and protects an OS-compact subtheory,
we can directly reason in the combined theory. Thus, we proceed by proving the
negation of φ ∃l, l′ : NeList [hd(l) > hd(l′) = true∧l = l′] is unsatisfiable. But we
immediately find that the formula has no variant unifiers, proving unsatisfiability,
and thus, the original formula is a theorem, as claimed.

6 Conclusions and Related Work

We have presented the meta-level sub-algorithms needed to obtain a full-fledged
variant satisfiability algorithm, proved them correct, and derived a Maude reflec-
tive implementation. Correctness has been the main concern, but efficiency has
also been taken into account. Much work remains ahead. We plan to experi-
mentally evaluate and optimize the performance of our algorithm by means of
representative satisfiability case studies. We also plan to use the algorithm itself
in various infinite-state model checking and theorem proving applications.

The most closely-related work is [27,28], for which it provides the first full-
fledged algorithm and implementation. Other related topics include folding vari-
ant narrowing [18], the FVP [13], and unsorted compactness [12]. Of course,
this work occurs in the larger context of decidable satisfiability algorithms and
the vast literature on SMT solving, e.g., [1,3–6,6,17,23,24], and additional ref-
erences in [27,28]. Finally, the literature on Maude’s reflective algorithms and
tools, e.g., [8,9] is also closely related.
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